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Abstract: This editorial of the special issue titled “Synthetic Aperture Radar (SAR) Techniques and
Applications”, reviews the nineteen papers selected for publication. The proposed studies investigate
different aspects of SAR processing including signal modelling, simulation, image analysis, as well as
some examples of applications. The papers are grouped according to homogeneous subjects, then
objectives and methods are summarised, and the more relevant results are commented.

Keywords: SAR imaging; multi-angle/wide angle SAR; inverse SAR; ground-based SAR; ionospheric
effects; SAR interferometry; SAR image analysis; SAR image change detection; SAR sea applications

1. Introduction

Synthetic Aperture RADAR (SAR) became a well-established and powerful remote sensing
technology used worldwide for several applications thanks to the possibility of sensing the Earth’s
surface at night and day, and in any weather condition. Recent advances have dramatically increased the
SAR monitoring potential by improving spatial resolution, revisit time, swath width and polarimetric
capability. Moreover, the present and forthcoming spaceborne missions, allow SAR imaging at different
bands and acquisition modes (e.g., spotlight, wide swath, bistatic, multi-static and geosynchronous). All
these advances stimulated the investigation of new processing algorithms, products, and applications
able to fully exploit the new sensor capabilities (e.g., wide spectral band, multi-angle view, short revisit
time), as well as the large and continuously updated SAR data archives. The same holds for SAR
imaging from ground-based platforms, airplanes and Unmanned Aerial Vehicles (UAVs).

This editorial paper reviews the content of the special issue dedicated to SAR techniques and
applications, by presenting advances on SAR signal modelling, SAR simulation, SAR processing, SAR
image analysis and SAR-based applications.

2. Contributions

The special issue has collected nineteen papers investigating different aspects of SAR processing,
SAR image analysis and SAR applications. The contributions cover topics related to multi-angle/wide
angle SAR imaging, Doppler parameter estimation, data-driven focusing, Inverse SAR (ISAR) applied
to pulsar signal modelling and detection, Ground-Based SAR (GBSAR), near-field Interferometric
ISAR, interaction between SAR signal and infosphere, SAR interferometry for ground displacement
monitoring, feature extraction, change detection and SAR-based sea applications. In the following, the
papers are grouped according to homogeneous subjects, and are reviewed by summarizing objectives,
methods and main contributions. Comments are also provided on those research aspects that are more
relevant with respect to the state-of-the-art research on SAR processing and applications.

Sensors 2020, 20, 1851; doi:10.3390/s20071851 www.mdpi.com/journal/sensors1
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2.1. SAR Imaging

The works in [1–6] concern several aspects of the SAR imaging. In [1], the authors propose
a multi-angle SAR imaging system suited for an ultrahigh speed platform and based on multi-beamforming.
By acquiring images at different angles during the same flight, the system allows better characterization
of the target on the ground, as well as a simplified motion error compensation. A procedure is proposed
aimed at both improving the range migration algorithm and imaging data from different view angles in
a unified coordinate system. This provides images with the same resolution, not deformed and scaled,
that can be fused quickly and accurately.

The work in [2] also deals with the optimal processing of SAR data acquired with wide aperture,
as for circular SAR systems, and in particular tackles the problem of aspect-dependent backscattering.
The authors propose an approach based on the least squares of compressed sensing residuals, which
is used in video imaging and does not require the isotropic scattering assumption adopted by other
methods. This procedure is able to reconstruct time sequences of sparse signals changing slowly with
time, and thus it is well suited to processing images derived from SAR sub-apertures, which are highly
overlapped. The proposed approach was tested on real data, providing a more accurate estimation of
aspect dependent scattering than other methods based on compressed sensing.

The work in [3] concerns the processing of multi-pass squinted SAR data. The proposed algorithm
combines images acquired with the same azimuth squint angle on each pass for performing 3D imaging
(as in SAR tomography), and data acquired with different azimuth squint angles for refining the
suppression of azimuth sidelobes. A performance analysis is carried out by using both simulated point
targets and real data acquired by TerraSAR-x satellite mission. The algorithm is able to improve the
azimuth suppression while preserving the mail lobe resolution.

The work in [4] considers the problem of Doppler parameter estimation and compensation for
SAR data acquired by airborne systems with very high squint geometries. The authors propose
an algorithm based on extended multiple aperture mapdrift, which is able to estimate the Doppler
phase spatial variation of the third-order. This high order is required for focusing data acquired at high
squint angle and at high resolution along very variable aircraft trajectories. In this case, indeed, the
inertial navigation system is not able to provide positioning, velocity and angle information accurate
enough for a reliable SAR focusing. The method was used for processing both simulated data and real
airborne data, and provided accurate targets focusing, thus demonstrating the reliability of high order
Doppler parameter compensation.

The imaging of airborne wide-area surveillance (WAS) radar is considered in [5]. For this kind
of radar system, Doppler beam sharpening (BDS) imaging is adopted, which, however, suffers from
low cross range resolution due to the short dwell time. The authors propose a knowledge-aided DBS
processing able to increase the cross-range resolution by a factor of two. The algorithm exploits the
strong spatial coherence between adjacent pulses for increasing the number of pulses processed in each
coherent interval, thus enhancing the DBS final resolution. A performance analysis was carried out by
first using simulated point targets, and then real WAS data. Results demonstrated that the proposed
algorithm outperforms other methods adopted in DBS imaging.

The work in [6] proposes an innovative SAR data focusing algorithm, which does not need
the knowledge of neither nominal SAR system parameters, nor sensor attitude and trajectory
information. The basic idea consists in estimating directly from the data the range and azimuth
reference functions needed for SAR focusing, by exploiting, through Singular Value Decomposition,
the inherent redundancy present in the SAR raw data. To ensure reliable parameter estimation, strong
point scatterers are needed within the imaged scene. This blind focusing could be very useful, for
instance, for SAR systems onboard simple aerial unmanned vehicles to be used in real-time and
low-cost applications. The algorithm performances were first assessed through simulations, and then
SAR data from the ERS mission were processed by using both the proposed algorithm and the standard
Range Doppler focusing approach. Results showed a reasonably good quality of the focused image
both in amplitude and phase.
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The list of papers devoted to SAR imaging concludes with the interesting study in [7], which
uses the principles of inverse SAR for modelling signals coming from a pulsar, reflected by space
objects (e.g., asteroids), and then detected by a radio telescope on the Earth. Thanks to the coherence of
pulsar emissions, pulsar signals can be modelled as monochromatic Gaussian pulses distributed in
a time-frequency signal grid. Accordingly, the detected pulsar signals reflected by a moving space
object can be considered as a delayed copy of such pulses and modelled within a passive inverse SAR
scenario. A range compression approach for this specific ISAR imaging was introduced theoretically
and demonstrated through numerical simulations. The Crab Nebula pulsar was considered as emission
source. This study can be used for performing space object navigation, localization and imaging based
on pulsar emission.

2.2. Ground-Based SAR

The special issue includes also three interesting papers [8–10] dedicated to ground-based SAR
(GBSAR) systems.

The first one [8] is a communication describing the Imaging Multiple-Input Multiple-Output
(MIMO) ground-based interferometric radar developed in order to overcome the main limitations of
traditional GBSAR systems, which are based on the mechanical movement of the antenna. The proposed
system reduces data acquisition time, thus both limiting the atmospheric artefacts and extending the
application to vibration measurements. Moreover, the use of independent modules and integrated
technologies allows reducing production costs and improving both the transportability and the
deployment of the system. The authors introduced the concept and the design of the system, and
presented first results derived by using the developed prototype.

The work in [9] concerns a GBSAR system consisting of an antenna on a rotating boom that
performs a 360-degree scanning of the surrounding scene, namely, an ArcSAR system. In order to
improve the quality of the ArcSAR imaging, the authors propose a refinement of the image focusing
by using a digital elevation model (DEM) derived through interferometric processing. The DEM
of the scene is first generated by processing ArcSAR interferometric images, and then projected
on ground range. Finally, this interferometric DEM is used for enhancing the ArcSAR imaging of
the targets on the scene. The authors described the procedure, provided an accuracy analysis and
presented results obtained by simulating ArcSAR images according to existing radar amplitude data
and an external DEM.

Finally, the work in [10] proposes improving the interferometric near-field 3D imaging by using
a multichannel joint sparse reconstruction. The basic idea consists in deriving multichannel signals by
dividing the two observed full apertures into sub-apertures. Then, by exploiting the sparsity of the
target echo in each channel, the imaging problem is set up as a multichannel joint sparse reconstruction,
and the 3D target image of each sub-aperture target is obtained through the improved orthogonal
matching pursuit method. Finally, the high-resolution 3D image is derived by synthesizing the 3D
images from each sub-aperture. The proposed algorithm improves the imaging accuracy of both strong
scattering centres and anisotropic targets. The procedure was tested by using both electromagnetic
simulations and real data acquired in an anechoic chamber by using a prototype system.

2.3. Ionosphere

This special issue includes also two works investigating the effects of the ionosphere onto SAR
imaging from spaceborne platforms.

In [11], the ionospheric scintillation is considered, being the main limiting factor of spaceborne
P-band SAR imaging. The sliding spotlight mode, while increasing the azimuth resolution,
is particularly affected by scintillation artefacts due to the long integration time. The theoretical
analysis of scintillation effects on the P-band spotlight SAR images was performed by introducing
a novel scintillation simulator based on the reverse back-projection algorithm. SAR raw data for
the sliding spotlight mode were simulated for both pointy and extended targets, under different
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scintillation conditions. Simulations allowed investigating the image degradation in azimuth induced
by scintillation, and deriving threshold values of scintillation strength and spectral index, which
guarantee acceptable P-band spotlight imaging.

One of the most relevant characteristics of the ionosphere is the total electron content (TEC), which
is investigated in [12] by exploiting spaceborne polarimetric SAR (PolSAR) data. First, the authors
assessed the precision of SAR-based TEC retrieval by comparing measurements derived from L-band
PolSAR data acquired by the ALOS satellite, and from very accurate incoherent scatter radars. Then,
the TEC of the topside profile was estimated by subtracting from the TEC derived by PolSAR, the TEC
of the bottom side profile measured by an ionosonde observing the same space of the satellite. This
procedure allows refining the topside TEC estimations and thus improves the modelling of the electron
density topside profile.

2.4. Ground Displacement Monitoring

The following seven papers are specifically dedicated to applications. The first two [13,14] use
SAR interferometry (InSAR) for investigating displacements related to land subsidence and highway
deformation. Multi-temporal InSAR is a well-established technique currently applied to displacement
monitoring thanks to the availability of reliable processing tools developed during the last two decades,
as well as data archives continuously updated by operative satellite missions. Nowadays, there is
an increasing need for advanced, application-oriented procedures for analysing the InSAR-based
displacement records.

In [13], high-resolution RADARSAT-2 SAR data were processed through the Small BAseline
Subset (SBAS) algorithm for deriving 3-year displacement time series over Wuhan city, which suffers
from subsidence problems related to urban construction. First, the InSAR results were compared to
measurements from levelling benchmarks for a quality check. Then, the mean displacement maps and
time series were analysed for studying the subsidence characteristics in space and time. Thanks to the
availability of data covering the whole urban area with unprecedented spatial and temporal density,
it was possible to provide a reliable assessment of subsidence causes.

The work in [14] proposes an interesting method for improving analysis and interpretation of
InSAR displacement products. It consists of modelling the displacement time series of man-made
structures by using rheological parameters, namely, viscosity and elasticity, which are engineering
properties of the soil allowing to define quantitatively how materials deform in response to forces. The
SBAS algorithm was used for processing high-resolution TerraSAR-X data, and then for monitoring
a highway segment built on soft clay and affected by deformation. Results were validated by using
independent levelling measurements, demonstrating that the proposed modelling method allows
improving the estimation of the nonlinear component of the deformation.

2.5. Target Discrimination and Change Detection

Thanks to the information content available under all-weather conditions and also during
night-time, SAR is widely used for target detection, classification and change detection. The following
two papers [15,16] concern this kind of applications.

The work in [15] proposes the use of aspect entropy for quantifying the degree of anisotropy in
SAR backscattering, and thus improving the detection of anisotropic targets and their classification.
The proposed method applies to SAR systems acquiring under different look angles, as circular SAR.
First, the use of aspect entropy as a reliably index of anisotropy was verified in simulations. Afterwards,
the authors described the algorithm, which consists of computing the aspect entropy at pixel level for
distinguishing between isotropic and anisotropic scattering mechanisms, and then at target level for
target classification. Moreover, a denoising method for the radar cross section curve was proposed.
Finally, the procedure was validated by using X-band data acquired by a circular SAR.

The work in [16] experiments with the use of two-colour multiview (2CMV) advanced geospatial
information products for detecting changes between SAR images acquired at different times.
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The proposed procedure consists of a pre-processing step for denoising SAR amplitude, followed by
the change detection step performed by running algorithms of unsupervised feature learning (K-SVD)
and clustering (k-means). Moreover, an optical flow algorithm is used for distinguishing changes
related to actual target motions (correct detections) from those related to errors in image co-registration
(false positives). The procedure was first introduced, and then tested on datasets coming from both an
airborne high-resolution X-band SAR, and the spaceborne medium resolution C-band ERS-2 mission.
Results were also compared with other methods, showing improvements in presence of co-registration
and perspective errors.

2.6. Sea Applications

The last three papers [17–19] of the special issue present SAR imaging algorithms devoted to two
sea applications, namely, ship detection and classification, and oceanic eddy detection and analysis.

The work in [17] presents a new method for refocusing moving ships in SAR images. Ship detection
is widely required for both civilian and military surveillance; however, SAR images derived by standard
focusing suffer from strong blurring in presence of moving ships. Therefore, a further processing
step is needed, which performs reliable motion compensation and refocusing. The paper proposes an
algorithm based on an inverse SAR technique able to refocus only the portions of SLC matrix containing
moving ships, instead of the whole raw image. Motion phase compensation is performed through
an iterative procedure based on a fast minimum entropy method. The procedure was presented and
validated by using both airborne data and spaceborne images acquired by TerraSAR-X and Gaofeng-3
missions. Results showed improvements with respect to other refocusing methods.

The work in [18] also deals with ship detection. It proposes a method that performs ship
classification by processing SAR images through convolutional deep neural networks (CNN). In this
application contest, the SAR datasets available for training the network are often limited, whereas
CNNs require thousands of examples to avoid overfitting. In order to overcome this problem,
the proposed algorithm starts with an augmentation method for enlarging the training dataset. Then,
transfer learning is used for improving the classification accuracy. The procedure was tested by
processing TerraSAR-X high-resolution images. Results were compared with outcomes coming from
other classification methods, showing improved performances.

Spaceborne SAR observations are very promising for identifying and studying the mechanism
governing oceanic eddies. The last paper [19] of this special issue concerns SAR imaging of oceanic
eddies generated by shear-waves. The authors developed a method for simulating the current field
of an ocean eddy according to the Burgers–Rott vortex model. These simulated ocean eddies were
then used to generate SAR images through a simulation tool. The developed procedure is able to
perform simulations under different geometric and radiometric SAR configurations, and different wind
conditions (speed and direction). Results were validated by using real SAR data provided by ERS-2 and
ENVISAT satellite missions. This kind of tool results very useful to understand how radar and wind
characteristics impact on the eddy features in SAR images, and thus to support their interpretation
and study.

3. Conclusions

In this editorial paper, we reviewed the content of the special issue dedicated to SAR techniques
and applications. All the selected nineteen papers proposed interesting advances on different aspects
of the SAR processing concerning signal modelling, imaging simulation, image analysis and some
applicative examples. In particular, issues were addressed related to multi-angle and wide-angle
acquisition modes, which, in the last years, have been becoming more and more common. Several
SAR systems were considered, including spaceborne and aerial platforms, light unmanned vehicles,
as well as ground-based radars. Specific aspects of SAR signal propagation (e.g., in ionosphere)
and back-scattering (e.g., anisotropic backscattering, ocean eddies) were also investigated though
modelling and simulation. Moreover, an interesting study proposed modelling pulsar signals by
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using inverse SAR imaging principles. Applicative examples were also presented based on advanced
techniques for image analysis and signal modelling, including, among others, convolutional deep
neural networks, unsupervised feature learning and clustering, and deformation modelling through
rheological parameters.

In conclusion, the proposed studies represent valid examples of the fertile research ongoing in the
field of SAR processing and applications, and demonstrate as SAR imaging still presents large margins
for investigations.
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Abstract: Considering the difficulty of pulse repetition frequency (PRF) design in multi-angle SAR
when using ultra-high speed platforms, a multi-angle SAR imaging system in a unified coordinate
system is proposed. The digital multi-beamforming is used in the system and multi-angle SAR
data can be obtained in one flight. Therefore, the system improves the efficiency of data recording.
An improved range migration algorithm (RMA) is used for data processing, and imaging is made in
a unified imaging coordinate system. The resolution of different view images is the same, and there
is a fixed delay between the images. On this basis, the SAR image fusion is performed after image
matching. The results of simulation and measured data confirm the effectiveness of the system and
the method.

Keywords: SAR imaging; multi-angle SAR; improved RMA; SAR image fusion

1. Introduction

Synthetic Aperture Radar (SAR) imaging is able to work day and night under all weather
conditions [1]. Therefore, it has wide applications in topographic mapping, environmental monitoring
and information acquisition, but the electromagnetic scattering property of a complex object varies
with incidence angle [2]. In order to meet requirements of omnidirectional observation, it is necessary
to implement new research on SAR imaging systems. The multi-angle SAR imaging system has
attracted considerable attention [2–8].

The electromagnetic scattering property varies with incidence, so the SAR imaging is greatly
affected by the incidence angle [3]. When the target is observed from one angle, since it is occluded,
or the scattering coefficient of the angle is low, the complete information of the target cannot be
obtained, but multi-angle SAR observes the target from different angle, and it can obtain as much
information as possible about the target. The current multi-angle SAR includes spotlight SAR [4],
wide azimuth beam SAR [5] and multiple flight paths SAR [6] In the spotlight SAR, the antenna is
steered to increase extend the synthetic time and to observe targets from different angles. In this mode,
the azimuth bandwidth of the signal may greater than the PRF, which causes spectrum ambiguity
and makes signal processing more complicated [4]. The spotlight SAR expands observation angle but
reduces the imaging scope. When using an ultra-high speed platform, the azimuth bandwidth of the
signal becomes large, and a very large PRF is required. The wide beam angle SAR increases the beam
width and obtains echoes of targets from different angles. The wide beam SAR increase the imaging
scope, but the two-dimensional spectrum is a sector. This means increased range cell migration (RCM)
and severe coupling of range and azimuth [5]. The error of range cell migration compensation in the
frequency domain will affect the imaging accuracy. The back projection algorithm can completely
compensate the RCM in time domain, but it needs a lot of calculations [7]. Multi angle observation
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can be realized by multiple flight paths [6], and a large imaging scope can be obtained, but the flight
efficiency is low and the cost is high.

For the above problems, a new multi-angle SAR imaging system is proposed in this paper. Digital
multi-beamforming is used to obtain SAR data from different angles. The digital T/R modules are
divided into three groups and three sets of receiving feeders are used to obtain the multi-beam signals
in the time domain. On this basis, an improved RMA in a unified coordinate system is proposed.
Modified Stolt interpolation was proposed to correct the distorted spectrum in squinted SAR and
improve the efficiency of the spectrum. Then, imaging is performed in a uniform coordinate system.
The images of different views only have a translational relationship in azimuth, which can achieve fast
matching of multi-angle images. This multi-angle SAR is not required to adjust the antenna direction,
nor large beam angle, which reduces the equipment requirements. SAR data from different angles can
be obtained in one flight, which reduces experimental costs.

2. A Multi-angle SAR Imaging System and Signal Model on a High-Speed Platform

As shown in Figure 1, the multi-angle SAR imaging system proposed in this paper adopts the
digital multi-beamforming, which uses the same antenna to form multiple beams. The squint angles of
three beams are different. The date of forward-looking beam, side-looking beam and backward-looking
beam are recorded simultaneously, and the data received by each channel are independent from
each other.

O XvA C

Y

B

P
 Side-looking beam

Backward-looking beam Forward-looking beam

Figure 1. Model of multi-angle SAR imaging system.

2.1. Digital Multi-Beamforming

There are two ways to obtain multi-beam data. One way is using one set of receiving feeders to
separate multi-beam data in the Doppler domain, the other way is using multiple sets of feeders to
obtain multi-beam data in time domain. When multi-beam data is separated in the Doppler domain,
the Doppler bandwidth of the multi-beam signal is large. To prevent spectrum aliasing, a large PRF
is required. Reference [8] gives a design to reduce the PRF, and the PRF is the sum of the Doppler
bandwidth of multi-beam signals, but the method limits beam pointing. In addition, when using
the ultrahigh speed platform, the Doppler bandwidth of the multi-beam signal becomes large. As a
result, a large PRF is required. As shown in Figure 2, the multi-angle SAR imaging system proposed
in this paper uses three sets of receiving feeders and the digital T/R modules are divided into three
groups, each with independent receiving feeder and phase shifter. The multi-beam data are separated
in the time domain. Thus, the PRF is equal to the Doppler bandwidth of a single beam. At the same
time, there is no restriction on the direction of the beam, and the required beam pointing can be set.
When the scattering angles vary from 20◦ to −20◦, the results of the imaging will be different [3].
In order to get as much information as possible in the scene, the difference in the direction of the three
beams is at least 20◦.
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Figure 2. Reception of digital multi-beamforming.

2.2. Signal Model

As shown in Figure 3, the speed of the carrier is v and the wavelength is λ. Taking the three
beams as an example, in data collecting, the echo data of target Pi(Xi, Rs) from forward-looking beam
is firstly obtained. When the carrier is located at A, the forward-looking beam center points to the
target Pi. At this time, the squint angle is θ, and the beam-width of forward-looking beam is θBW1.
When θBW1 is small, the Doppler bandwidth is approximately

BW1 =
2v
λ

[
sin(θ +

θBW1

2
)− sin(θ − θBW1

2
)

]
≈ 2v

λ
cos θ · θBW1 (1)

O XvA B C

i i SPX R
YY

AAAAA XCCCCBBBBB

Figure 3. Multi-angle SAR signal model.

Then, the echo data of target Pi from a side-looking beam is obtained. When the aircraft is at B,
the center of the side-looking beam points to the target Pi, the beam-width of side-looking beam is
θBW2, and the Doppler bandwidth of side-looking beam is

BW2 =
2v
λ

[
sin(

θBW2

2
)− sin(

θBW2

2
)

]
≈ 2v

λ
θBW2 (2)
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Finally, the echo data of target Pi from backward -looking beam is obtained. When the aircraft is
at C, the center of the backward-looking beam points to the target Pi, the backward-looking beam-width
is θBW3, and the Doppler bandwidth of backward-looking beam is

BW3 =
2v
λ

[
sin(−θ +

θBW3

2
)− sin(−θ − θBW3

2
)

]
≈ 2v

λ
cos θ · θBW3 (3)

The beam-width of the phased array antenna is θBW = θ′BW/ cos θ, where θ′BW is the beam-width
of the side-looking beam, and substitute it into Equations (1)–(3). It can be obtained that BW1 =

BW2 = BW3 and then the Doppler bandwidth of three beams is the same. Therefore, the three beam
images have the same azimuth resolutions.

The distance between AB is
LAB = RS tan θ (4)

The distance between the BC and the distance between the AB are the same. The time difference
between the forward-looking beam and the side-looking beam is

Δt = LAB/v (5)

The repetition frequency of the transmitted pulse is PRF and the data are received in the strip
mode. For a same target, it is located at different azimuth sampling units, and the difference of azimuth
sampling units between different beams is

Δnan = Δt · PRF = LAB · PRF/v (6)

The data of each beam are processed independently to obtain images. When fusing the
images from different beams, it is necessary to ensure the matching of the position of the target.
According to (6), the forward-looking image is moved back by 2Δnan azimuth sampling units, and the
side-looking image is moved back by Δnan azimuth sampling units. The images obtained from the
three beams are fused in backward-looking image.

3. Multi-Angle SAR Imaging Method Based on a Unified Coordinate

3.1. Problems of Multi-Angle SAR Registrations and Fusion

The fusion objects of current SAR images are various remote sensing images, including the
fusion of infrared images and SAR images, the fusion of optical images and SAR images, and the
fusion of SAR images. Most current SAR image registrations are performed in the image domain.
A heterogeneous-SAR image registration method by normalized cross correlation is proposed in [9].
Frost filtering is implemented on the SAR image and then the Gaussian gradient images of SAR
image is used to form two Gabor characteristic matrixes, and then the normalized cross correlation
matching is implemented on the two characteristic matrixes to achieve the registration of the image.
The edge features of the target and the feature points can be extracted from the SAR image [10–13],
and the SAR image registration is performed by the information. A new method is proposed in [10] to
detect stable features by intersecting Coherent Scatters. The stable features are used to achieve the
coarse registration and the Powell algorithm is used for precise registration. A new method using
boundary features of images to achieve SAR image registration is proposed in [12]. A globalized
boundary detection algorithm is used for feature extraction and the coherence point drift algorithm is
used to match the boundaries. A method for non-homologous SAR image registration is proposed
in [14]. The method utilizes multi-look technology to multi resolution images, then uses the coherent
phase to deal with multi resolution images, respectively, getting the registration point and achieving
image registration.
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3.2. Improved RMA Algorithm

RMA [15–21] achieves SAR imaging in the wave number domain. In spite of the squint angle
value, it can perfectly focus the whole scene without using any approximate conditions. The range cell
migration compensation, secondary range compression and azimuth compression are achieved by Stolt
interpolation [15]. In principle, it is the optimum algorithm for SAR imaging [16]. However, the Stolt
interpolation needs huge computation. Since the multi-angle SAR imaging system adopts the method
of multi-beamforming, the beam squint angle is more than 20◦, and the RMA algorithm can process
the data of the squint SAR. It can focus the whole scene by interpolation. For 20◦ squint, the general
interpolation formula has low spectrum utilization (Section 3.3. for details.), and the improved RMA
algorithm is used to improve the spectrum utilization.

To illustrate the derivation process of the echo signal, the imaging relationship at point A in
Figure 3 is drawn separately, as shown in Figure 4. Mi(Xi, Rb) is one point in the scenario and Rb is
the closest distance from the point target to the aircraft trajectory. The distance from the aircraft to the
point target can be expressed as:

R(tm) =
√

R2
b + (vtm − Xi)

2 (7)

where tm is the azimuth slow-time. Assuming that the transmitted signal is a LFM signal, the received
baseband echo signal is [17]:

s0(tr, tm) = A0ωr

(
tr − 2

R(tm)

c

)
ωa(tm − tmc) exp

{
−j4π fc

R(tm)

c

}
exp

{
jπγ

(
tr − 2R(tm)

c

)2
}

(8)

where A0 is the amplitude of the signal, ωr(·) is the range envelope, tr is the range fast time, ωa(·)
is the azimuth envelope, tmc is the center of synthetic aperture time, fc is the center frequency of the
transmitted signal, and γ is the chirp rate of the chirp signal. A two-dimensional FFT is applied to the
echo signal, and the two-dimensional frequency domain expression can be obtained:

S2DF( fr, fa) = A1Wr( fr)Wa( fa − fac) exp{jθ2DF( fr, fa)} (9)

where

θ2DF( fr, fa) = −4πRb( fc + fr)

c

√√√√1 − (c fa)
2

4( fc + fr)
2v2

− π f 2
r

γ
− 2π fa

Xi
v

(10)

Wa( fa) = wa

⎛⎝ −cR0 fa

2( fc+ fr)v2
√

1− c2 f 2
a

4v2( fc+ fr)2

⎞⎠ is the envelope of the azimuth spectrum, and Wr( fr) = ωr(
fr
γ )

is the envelope of the range spectrum.

O Xv

Y

O

i i bM X R

bR

ivtm X

Figure 4. Single beam signal model.
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Pulse compression needs to eliminate the quadratic term of fr in Equation (10), and a matched
filter can be constructed in frequency:

Hr( fr) = exp(j
π f 2

r
γ

) (11)

After multiplication of Equation (9) and Equation (11) to complete pulse compression, the phase
after pulse compression is:

θ( fr, fa) = −4πRb( fc + fr)

c

√√√√1 − (c fa)
2

4( fc + fr)
2v2

− 2π fa
Xi
v

(12)

Let kr =
4π( fr+ fc)

c , kx = 2π fa
v , Formula (12) is rewritten as:

θ(kr, kx) = −Rb

√
k2

r − k2
x − kxXi (13)

Since the signal processing of the RMA algorithm is performed in the two-dimensional frequency
domain, and Rb represents the time domain, the phase compensation cannot handle the change along
the range direction. At this time, a reference range is first selected, and the phase at the reference
distance is compensated. Generally, the reference range is set at the center of the scenario. At this time,
the matched function of consistent compression is:

HCOMP(kr, kx) = jRS

√
k2

r − k2
x + jkxRs tan θ (14)

where, Rs is the closest distance from the center point of the scenario to the aircraft trajectory. After
consistent compression, the point at the center of the scenario is completely focused, and the residual
phase at the other range is:

θRFM(kr, kx) = −(Rb − RS)
√

k2
r − k2

x − kx(Xi − Rs tan θ) (15)

The RMA algorithm performs range cell migration compensation, secondary range compression
and azimuth compression by interpolation ky =

√
k2

r − k2
x [1,17]. For 20◦ squint, the two-dimensional

spectrum is distorted, and it needs to extract a rectangular aperture of data adequately in such 2-D
support [18], as shown in Figure 5; it needs to discard part of the spectrum due to the squint angle,
which reduces the energy of targets after imaging. For each of the determined kr, the variation of ky

with kx is shown by the arc in Figure 5.

Figure 5. Spectrum of traditional interpolation.
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The improved interpolation uses the tangent of each arc instead of the traditional ky, and corrects
the distorted spectrum. Therefore, the method can effectively improve the utilization of the spectrum
in squint SAR. The improved interpolation is:

ky =
√

k2
r − k2

x −
[√

k2
rc − k2

xc −
kxc√

k2
rc − k2

xc
(kx − kxc)

]
(16)

where krc = 4π fc
c , kxc = 2π fac

c and fac = 2v sin θ
λ is Doppler center. The residual phase after

interpolation is

θSTOLT
(
ky, kx

)
= −(Rb − RS)

[
ky +

(√
k2

rc − k2
xc −

kxc√
k2

rc − k2
xc
(kx − kxc)

)]
− kx(Xi − Rs tan θ) (17)

Since the interpolation introduces a linear phase that varies with range, it is necessary to
compensate for the introduced linear phase in the Range–Doppler domain. After IFFT along the
range, the following is obtained:

sRD(Y, kx) = A2sin c
( Bky

2π Y
)

Wa

(
vkx
2π

)
exp{−jkx(Xi − Rs tan θ)}

· exp
{
−j(Rb − RS)

(√
k2

rc − k2
xc − kxc√

k2
rc−k2

xc
(kx − kxc)

)} (18)

where Bky is the bandwidth of ky, Y = Rb − RS, and the second phase in Equation (18) needs to be
compensated along azimuth, and the azimuth compensation function is:

HAZIMUTH(Rb, kx) = exp

{
j(Rb − RS)

(√
k2

rc − k2
xc −

kxc√
k2

rc − k2
xc
(kx − kxc)

)}
(19)

Multiply Equation (18) and Equation (19) and perform IFFT along azimuth to obtain:

sRX(Y, Xi) = A3sin c
(Bky

2π
Y
)

sin c
(

Bkx
2π

(Xi − Rs tan θ)

)
(20)

where Bkx is the bandwidth of kx. The point target Mi(Xi, Rb) is focused at (Xi − Rs tan θ, Rb − RS) in
the time domain.

The algorithm processing flow is shown in Figure 6:

r rH f

COMP r xH k k

AZIMUTH b xH R k

Figure 6. Multi-angle SAR algorithm flow chart.
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3.3. Application and Consideration

For many artificial objects, the SAR image is greatly affected by the azimuth angle. Through
multi-angle image fusion, we can obtain more detailed information about the target, which improves
the target detection and recognition ability of SAR images. SAR image matching fusion can be achieved
quickly by imaging in a unified coordinate system. In order to maximize the use of the spectrum,
it is necessary to make the interpolated spectrum as rectangular as possible. After interpolation,
the original coordinate axis kr is replaced by the new coordinate axis ky. Figure 7 is the bandwidth of
the spectrum after interpolation, and the effective spectrum is the part within the dashed box. Figure 5
shows the spectrum of the traditional interpolation method, and the spectrum is approximated as a
character quadrilateral. The effective spectrum is significantly smaller than the spectrum obtained by
the method of this paper.

Figure 7. Spectrum of proposed interpolation.

For accurate matching, images need to have a uniform scale. The bandwidth of ky

represents the range bandwidth after interpolation. In order to have the same range resolution
of multiple-angle images in the time domain, the bandwidth of ky is required to be the same.
The traditional method is to intercept the largest rectangle in the interpolated spectrum, as shown
in Figure 5. The traditional method is used to determine ky1. Let krL = min(kr), krH = max(kr),

kyL = max
(√

k2
rL − k2

x

)
, kyH = min

(√
k2

rH − k2
x

)
and N is the number of range sampling units,

and then ky1(i) = kyL + (i − 1)
(
kyH − kyL

)
/N, i = 1, 2, · · · , N. The result of ky1 − (kr − krc) is shown

in Figure 8. The slope greater than 0 represents the bandwidth of ky1 is greater than the bandwidth
of kr. In the images of different views, the bandwidth of ky1 is inconsistent and there is a slight change
in the range resolution of the time domain. In general SAR imaging applications, it can be ignored.
However, the change in the range resolution will lead to inaccurate matching and affect the quality
of the fusion in image matching. In the proposed method, in order to unify the bandwidth of ky

in different view images, the center value of ky is first determined, and then the bandwidth of ky is
determined according to the bandwidth of the kr. The proposed method is used to determine ky2

and ky2(i) = krc + (i − N/2)(krH − krL)/N, i = 1, 2, · · · , N. As shown in Figure 9, the bandwidth of
ky2 is smaller than the bandwidth of ky1, which means that the proposed method discards a small
portion of the spectrum. The result of ky2 − (kr − krc) is shown in Figure 8. The slope is 0, which
represents the bandwidth of ky2 is the same as the bandwidth of kr. In the images of different views,
the bandwidth of ky2 is consistent, and different images have the same range resolution in the time
domain. The advantage of the scale uniformity is obvious in image matching.
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Figure 8. Scale difference of two methods.

 
Figure 9. Comparison of two sampling methods.

It is difficult for the aircraft to maintain an ideal state due to factors such as airflow during flight.
Therefore, motion compensation is required in data processing. In the mode of multi-flight acquisition
for imaging data, the motion compensation of each SAR image is different because of the different
motion errors of each flight, which brings difficulties to image matching. When multi-angle SAR data
are taken by this system, data of each angle have the same motion error, and the data of multiple
angles can be compensated by the motion error of a single view, simplifying the compensation process.
It is also possible to jointly perform motion compensation through multiple viewing angles to improve
compensation accuracy.

4. Experimental Simulation, Measured Data

4.1. Experimental Simulation

In order to verify the validity of the algorithm, the simulation data are used for explanation.
The simulation resolution is 0.3 m × 0.3 m, the wavelength is 3 cm, the center frequency is10 GHz,
the signal bandwidth is 500 MHz, the range sampling rate is 600 MHz, the pulse width is 3.5 μs,
the speed of aircraft is 100 m/s, the antenna aperture is 0.6 m, and the pulse repetition frequency is
450 Hz. The closest distance from the center of the scenario to the aircraft route is 30 km. Three beams
are used with a beam spacing of 20◦ and the beam width is 2.86◦. There are five points in the scene,
and the simulation scenario layout is shown in Figure 10. The center point target is located at (0, 0),
and the remaining four points are located at (±30, ±30).

The squint angle of the forward-looking beam is 20◦, and the scenario image processed by the
above imaging algorithm is shown in Figure 11a, the position of the center point target is (1025, 2050),
and the positions of the other four points are (1025 ± 135, 2050 ± 120). The azimuth sampling rate is
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1.35 times of the azimuth bandwidth, so the distance between the center point target and the rest of
the point target in the azimuth direction is 135/1.35 × 0.3 = 30 m, which is consistent with the scenario
layout; The range sampling rate is 1.2 times of the bandwidth, and the distance between the center
point target and the rest of the point target in the range direction is 120/1.2 × 0.3 = 30 m, which is
consistent with the scenario layout. Figure 11b is a result of interpolation of the point (1025 − 135,
2050 − 120) in Figure 11a. It can be seen that the point target in forward-looking beam is well focused.
The profiles of range and azimuth-spread function of the target are presented in Figure 11c,d. The peak
sidelobe ratio (PLSR) along the range direction shown in Figure 11b is −13.2242. The integral sidelobe
ratio (ISLR) along the range direction is −9.8468. The PLSR along the azimuth direction shown in
Figure 11b is −13.2611. The ISLR along the azimuth direction is −9.8963.

Figure 10. Simulation layout map.

The scenario image of the side-looking beam processed by the above imaging algorithm is shown
in Figure 12a, the position of the center point target is (1025, 2050), and the positions of the remaining
four points are (1025 ± 135, 2050 ± 120). The distance between the center point target and the rest of the
point target in the azimuth direction is 135/1.35 × 0.3 = 30 m, and the distance between the center point
target and the rest of the point target in the range direction is 120/1.2 × 0.3 = 30 m, which is consistent
with the scenario layout. Figure 12b is a result of interpolation of the point (1025 − 135, 2050 − 120)
in Figure 12a. It can be seen that the point target in side-looking beam is well focused. The profiles
of range and azimuth-spread function of the target are presented in Figure 12c,d. The PLSR along
the range direction shown in Figure 12b is −13.2231. The ISLR along the range direction is −9.8464.
The PLSR along the azimuth direction shown in Figure 12b is −13.2602. The ISLR along the azimuth
direction is −9.8962.

  
(a) Imaging result of targets (b) Interpolation of a single point target 

Figure 11. Cont.
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(c) Profiles of range-spread function (d) Profiles of azimuth-spread function 

Figure 11. Imaging result of the forward-looking beam.

  
(a) Imaging result of targets (b) Interpolation of a single point target 

  
(c) Profiles of range-spread function (d) Profiles of azimuth-spread function 

Figure 12. Imaging result of the side-looking beam.

The scenario image processed by the above imaging algorithm for the backward-looking beam is
shown in Figure 13a. the position of the center point target is (1025, 2050), and the positions of the
remaining four points are (1025 ± 135, 2050 ± 120). The distance between the center point target and
the rest of the point target in the azimuth direction is 135/1.35 × 0.3 = 30 m, and the distance between
the center point target and the rest of the point target in the range direction is 120/1.2 × 0.3 = 30 m,
which is consistent with the scenario layout. Figure 13b is a result of interpolation of the point
(1025 − 135, 2050 − 120) in Figure 12a. It can be seen that the point target in backward-looking beam
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is well focused. The profiles of range and azimuth-spread function of the target are presented in
Figure 13c,d. The PLSR along the range direction shown in Figure 13b is −13.2299. The ISLR along the
range direction is −9.8458. The PLSR along the azimuth direction shown in Figure 13b is −13.2536.
The ISLR along the azimuth direction is −9.8859.

  
(a) Imaging result of targets (b) Interpolation of a single point target 

  
(c) Profiles of range-spread function (d) Profiles of azimuth-spread function 

Figure 13. Imaging result of the backward-looking beam.

In each beam, the absolute position and relative position of the point target are not changed and
matched with the ground point, so the imaging of the same point target on the ground by different
beams only has the difference in azimuth time. According to the time difference represented by
Formula (5) or the azimuth point difference represented by Formula (6), the image fusion of multi-view
SAR can be completed by delaying the forward-looking beam imaging result by 2Δt and delaying the
side-looking beam imaging result by Δt, and then superimposing them into the backward-looking
beam imaging result.

According to the time difference represented by the Formula (5), or the difference in the number
of azimuth points represented by the Formula (6), the front-view beam imaging result is delayed
by 2Δt, the due side-view imaging result is delayed by Δt, and then image fusion of multi-angle SAR
is completed after superimposition on back-view beam. The result of the fusion is shown in Figure 14a.
Figure 14b is a result of interpolation of the point in Figure 14a. It can be seen from Figure 14a,b that
the imaging and fusion of images can be completed in a uniform coordinate system within a viewing
angle range of −20◦ to 20◦. The Range PSLR is −8.31 and the azimuth PSLR is −6.37.
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(a) Imaging result of targets (b) Interpolation of a single point target 

  
(c) Profiles of range-spread function (d) Profiles of azimuth-spread function 

Figure 14. Result after image fusion.

4.2. Measured Data

In order to validate the effectiveness of the proposed algorithm, the large-angle spotlight SAR
measured data are processed using the proposed algorithm. The large-angle spotlight SAR measured
data contains information about multiple perspectives of the target. After dividing the data into two
parts according to the two viewpoints of forward-looking and backward-looking, the fusion image of
multi-angle SAR is obtained by using the algorithm proposed in this paper. The parameters of the
system are shown in Table 1.

Table 1. Parameters of the system.

Parameters Value

Velocity 102 m/s
Frequency band 9.6 GHz

Bandwidth 600 MHz
PRF 312 Hz

Angle range −30◦–30◦
Reference range 34 km

Figure 15a,b are images of six vehicles with forward-looking and backward-looking views. It can
be seen that the target information obtained is not complete because of sheltering of the single-view
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target. Figure 15c is obtained through the image fusion of two angles of view. From which, complete
geometric features of the target can be seen clearly. The information entropy is used to evaluate the
effects of image fusion. Information entropy in Figure 15a,b are 6.1819 and 6.1046, and information
entropy in Figure 15c is 6.6635. The information entropy in the image increases after fusion. This means
the fused image contains more information about the targets.

   
(a) Angle 1 (b) Angle 2 Multi-angle fusion image 

Figure 15. Image fusion results of proposed method.

Figure 16 shows the image fusion results of Range–Doppler algorithm. Different from the
proposed method, the result of angle 2 has a deformation, and the image registration needs to be
performed after the image is corrected. When the images are fully registered, the images can be well
fused as shown in Figure 16c. When the image is not fully registered, part of the target information
will be lost as shown in Figure 16d.

(a) Angle 1 (b) Angle 2 (c) Matched image (d) Unmatched image

Figure 16. Image fusion results of Range–Doppler algorithm.

Compared with the traditional method, the method proposed in this paper does not require
additional image registration, which simplifies the process of image fusion. It also avoids the effects of
mismatch between images. However, RMA requires interpolation and is computationally intensive,
which can cause real-time processing difficulties.

Figure 17 shows a multi-angle fusion result of two views in a large scenario area, in which
red represent the components of forward-looking view and green represent the components of
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backward-looking view. The background is spotlight SAR image, and the segmented portion is
forward-looking and backward-looking images.

 
Figure 17. A multi-angle fusion result of a large scenario area.

Figure 18 is an optical picture and enlarged fusion result of the transport vehicle of Figure 18.
Different colors represent components of different views. In a single view image, the occluded portion
can be supplemented by another view. The geometric characteristics of the transport vehicle are
relatively complete, which is beneficial to the identification of the target.

(a) Optical image (b) Fusion image by multiple angles

Figure 18. Optical image and fusion image of a vehicle.

5. Conclusions

A multi-angle SAR imaging system is proposed in this paper using multi-beamforming.
When using an ultrahigh speed platform, the main issue is an increase in Doppler bandwidth in
the signal. As a result, it is difficult to separate signals of multiple beams in the frequency domain.
Therefore, this paper separates the multi-beam signal in the time domain using three groups of feeders.
In order to achieve accurate matching of multi-view SAR images, an improved RMA in a unified
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coordinate is proposed. SAR data from different view angles is imaged in a uniform coordinate system.
The resolution between images is the same, and the image is not deformed and scaled. There is only
a time delay relationship between images of different view angle. Therefore, image fusion does not
require additional registration. Multi-angle images can be quickly and accurately fused.
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Abstract: Wide angle synthetic aperture radar (WASAR) receives data from a large angle, which
causes the problem of aspect dependent scattering. L1 regularization is a common compressed sensing
(CS) model. The L1 regularization based WASAR imaging method divides the whole aperture into
subapertures and reconstructs the subaperture images individually. However, the aspect dependent
scattering recovery of it is not accurate. The subaperture images of WASAR can be regarded as the
SAR video. The support set among the different frames of SAR video are highly overlapped. Least
squares on compressed sensing residuals (LS-CS-Residuals) can reconstruct the time sequences of
sparse signals which change slowly with time. This is to replace CS on the observation by CS on
the least squares (LS) residual computed using the prior estimate of the support. In this paper, we
introduce LS-CS-Residual into WASAR imaging. In the iteration of LS-CS-Residual, the azimuth-range
decoupled operators are used to avoid the huge memory cost. Real data processing results show that
LS-CS-Residual can estimate the aspect dependent scatterings of the targets more accurately than CS
based methods.

Keywords: wide angle SAR; compressed sensing; LS-CS-Residual; aspect dependent

1. Introduction

Wide angle synthetic aperture radar (WASAR) receives echo data from a large angle. Advances
in synthetic aperture radar (SAR) technology have enabled coherent sensing of WASAR. Circular
SAR (CSAR) is a specific case of WASAR whose track is circular. With the increase of the synthetic
angle, because of the reflector geometry, shadowing, and coherent scintillation, the problem of aspect
dependent scattering [1,2] arises. Traditional imaging methods are based on the isotropic assumption.
It means that the scattering is constant in the synthetic aperture angle, which is not valid in WASAR.

To accommodate the aspect dependent scattering, there are mainly two approaches,
the subaperture approach and full aperture approach [2]. The subaperture approach [1] divides the
whole aperture into the subapertures and assumes that the scatterings are constant in the subaperture.
Then, the narrow angle imaging methods such as matched filtering [3] and an L1 regularization based
SAR imaging method [4,5] can be adopted for the subaperture imaging. For the full aperture approach,
they can be divided into two kinds. The first one assumes that the scattering during one subaperture is
isotropic and reconstructs an imaging model with all subapertures included [6–8]. The subaperture
images are recovered jointly. The other one is the parametric method [9,10]. It assumes that the
scene includes some scattering targets and that their scatterings follow some functions. The scattering
functions of the targets are fitting with the whole aperture data included.
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In the past decade, compressed sensing (CS) [11,12] has drawn much attention in sparse signal
processing, which provides reconstruction guarantees for sparse solutions to linear inverse problems.
It is shown that, when the scene is sparse and the measurement matrix satisfies the Restricted Isometry
Property (RIP), the signal can be recovered with down-sampled data by solving an L1 minimization
problem [12]. An L1 minimization problem is also known as Basis Pursuit. The theory of Lagrange
multipliers indicates that we can solve an unconstrained problem that will yield the same solution,
provided that the Lagrange multipler is selected correctly. The unconstrained problem is known
as LASSO or L1 regularization [13]. For the subaperture reconstruction based on L1 regularization,
it mainly has two drawbacks. Firstly, as a common reconstructed model in compressed sensing (CS),
L1 regularization is a biased estimator [14], which means that the amplitude of the targets would be
underestimated. Secondly, the support set of the targets is not accurately estimated with the data of
one subaperture and there are some missed detections. For the first drawback, it can be solved via
debiased-CS proposed in [15,16]. Debiased-CS is a two-step method, which firstly reconstructs the
signal with CS and calculates the least squares (LS) estimates on the support set of the signal. For the
second drawback, since the support sets of different aspect subaperture images are highly overlapped
across the whole aperture [9], this information can be adopted in the subaperture image reconstruction
to avoid it.

The idea of CS is to compressively sense signals that are sparse in some known domains and then
use sparse recovery techniques to recover them. Considering the dynamic CS problem, i.e., the problem
of recovering a time sequence of sparse signals, CS recovers each sparse signal in the sequence
independently without using any information from other frames. Least squares on compressed
sensing residual (LS-CS-Residual) [17] is to replace CS on the observation by CS on the least squares
(LS) residual computed using the prior estimate of the support. It is suitable for dynamic CS problem.
It is proved that LS-CS-Residual can recover the signal better than CS [17].

The subaperture images of WASAR can be regarded as the SAR video. Every frame is the
subaperture image indexed by the aspect angle. In WASAR, the backscattering from a complex
target at high frequencies can be approximately modeled as a discrete set of the scattering
centers [9].The scattering center can be described by the aspect-dependent amplitude and position [9].
The supports of the scattering centers overlap across the whole aperture. This information can be
adopted in WASAR imaging.

In this paper, we propose a novel subaperture imaging method based on LS-CS-Residual.
The proposed method firstly implements Backprojection (BP) on all of the aperture data. Then,
the coarse support set is estimated from the BP image. For every subaperture of WASAR, the least
squares estimate on the support set is calculated. Then, the observation residual is calculated. With the
residual data, we can solve the residual observation model with L1 regularization. The accurate
supports of subaperture images are estimated from the L1 regularization image. Finally, the LS
estimate on the accurate supports is calculated. Since the structure information and LS estimate on the
support set are adopted in the proposed method, it can recover the aspect dependent scattering more
accurately than CS and debiased-CS.

In the iteration of LS-CS-Residual, there are matrix-vector products. For large scale scenes,
the storage of measurement matrix can cost a huge amount of memory. A common strategy is to adopt
the azimuth-range decouple operators in the algorithm. In this paper, the BP based azimuth-range
decouple operators are adopted. The memory cost is reduced from O(n2) to O(n).

This paper is organized as follows. In Section 2, we describe the WASAR subaperture imaging
model based on CS. Section 3 introduces the WASAR imaging method based on LS-CS-Residual.
Section 4 presents the experimental results. The conclusions are presented in Section 5.

2. WASAR Subaperture Imaging Based on Compressed Sensing

WASAR receives data from a large angle. The configuration of WASAR is depicted in Figure 1.
The whole aperture can be divided into subapertures. For the data collected from a little subaperture,

28



Sensors 2019, 19, 490

its scattering can be regarded as constant. Then, the phase history of the i-th (i = 1, 2 · · · I) subaperture
is formulated as

ri( fp, θq) =
M

∑
m=1

N

∑
n=1

si(xm, yn) · exp{−j
4π fp

c
· (xm cos(θq) + yn sin(θq))}+ zi, (1)

where ri is the phase history data of the i-th subaperture, and m and n are the pixel indexes along x and
y. M and N are the pixel numbers along x and y, s is the scattering reflectivity of the i-th subaperture
which is located at (xm, yn), fp (p = 1, 2 · · · P) is the frequency, c is the light velocity, θq (q = 1, 2 · · · Q)

is the aspect angle, and zi is additive noise.

x

y

z
i

I

Figure 1. The configuration of WASAR.

We vectorize Equation (1) and express it in a compact form

ri = Φi · si + zi, (2)

where ri is the history data of i-th subaperture, si is the backscattering of i-th subaperture, and zi is the
noise, the measurement matrix Φi is shown as

Φi =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

φi(1, 1) φi(1, 2) . . . φi(1, MN)
...

...
. . .

...
φi(pq, 1) φi(pq, 2) . . . φi(pq, MN)

...
...

. . .
...

φi(PQ, 1) φi(PQ, 2) . . . φi(PQ, MN)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (3)

where φi(pq, mn) = exp{−j 4π fp
c (xm cos(θq) + yn sin (θq))}.
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The subaperture imaging methods for WASAR imaging assume that the scattering of the targets
are not relevant to the aspect angle in a narrow angle. Then, a traditional imaging method can be
implemented in subaperture image focusing.

CS has been introduced into SAR imaging [4]. When the scene is sparse and the measurement
matrix satisfies the restricted isometry property (RIP) condition, Equation (2) can be solved via L1

regularization [18]
min

si
‖ri − Φi · si‖2

2 + λ‖si‖1. (4)

where λ is the regularization parameter.
For Equation (4), the optimality condition is

2ΦH
i (Φisi − ri) + λp = 0, (5)

where (·)H is the conjugate transpose and

p = ∂‖si‖1. (6)

Suppose the oracle support of the si is T, and then the solution of (4) is

(si)T = Φi
†
Tri − λ

(
Φi

H
T ΦiT

)−1
sign(siT), (si)TC = 0, (7)

where Φi
†
T =

(
Φi

H
T ΦiT

)−1
Φi

H
T , TC denotes the complement of T. sign(·) is the signal function

formulated as
sign(si) =

si
|si| . (8)

If the oracle support is accurate, then the first term of (7) is the exact estimate of the signal.
The second term of (7) is the bias that is brought by the regularized term of (4).

In [14], it is shown that L1 can reconstruct the targets with the underestimated amplitudes.
Some missed detections are also introduced in the results of L1 regularization. In addition, with less
azimuth measurements, the resolution of the subaperture is reduced. The underestimation can be
reduced via LS on the support. The missed detections can be reduced when more information is
adopted. In the next section, we will propose a novel method for WASAR subaperture imaging.

3. WASAR Imaging Based on LS-CS-Residual

L1 regularization would cause the errors of the amplitude and support set estimation in WASAR
imaging. In this section, we propose a novel WASAR imaging based on LS-CS-Residual.

In WASAR, the subaperture images can be regarded as the video indexed on subaperture [2],
which is a map of reflectivity as a function of viewing angle. The reflectivities of the targets can be
described via their amplitudes and positions. Although they vary with aspect angle, the positions are
highly overlapped. Some methods for dynamic scene such as video signal processing and dynamic
MRI imaging can be introduced to WASAR imaging.

LS-CS-Residual [17] has been proposed for dynamic CS problems, such as dynamic magnetic
resonance imaging (MRI). The idea of LS-CS-Residual is to perform CS not from the observations,
but from the least squares residual computed using the previous support estimation. It is shown
that it needs fewer samples and the bounded reconstruction error is smaller than the traditional CS.
In the model of LS-CS-Residual, the information between different frames are used and there is also a
debiasing step in the final to reduce the bias caused by L1 regularization. It can reconstruct the results
much more accurately than CS.

Since the support sets of between different WASAR subaperture images are highly overlapped,
which means that WASAR imaging can be regarded as a dynamic problem. Thus, LS-CS-Residual is
suitable for WASAR subaperture imaging. In the frame of LS-CS-Residual, the LS estimate is included,
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which means that the underestimation of L1 regularization is avoided. In addition, the support
information of different subapertures will be used, which will make the results more accurate.

LS-CS-Residual mainly has three steps: initial LS estimation, implementing CS on the residual
(CS-Residual) and final LS estimate.

Initial LS Estimate

For Equation (2), if the support set of sθi is known, we could simply compute the LS estimate on
the support while setting all other values to zeros. The previous support can be estimated from the
prior information. Suppose the estimated support is T, to compute and initial LS estimate

(si,init)T = (ΦiT)
†ri, (si,init)Tc = 0. (9)

Then, the LS residual is calculated as

ri,res = ri − Φisi,init. (10)

In WASAR, the scattering of the targets is aspect dependent. However, the support sets of the
subaperture images are highly overlapped, which means that a fairly accurate support T can be
estimated from the data. T is estimated via

T = supp(s0 : |s0| > α), (11)

which is the support of the elements whose amplitudes are larger than α.
In [17], the threshold α is determined by the b%-Energy support, which means that T contains at

least b% of the signal energy. In WASAR imaging, we set b% = 90%.
Notice that the LS residual, ri,res, can be rewritten as

ri,res = Φiβi, βi = si − si,init. (12)

CS-Residual

In this step, CS is implemented on the LS residual, i.e., solve (12) with CS in the following model

min
βi

‖ri,res − Φiβi‖2
2 + λ‖βi‖1. (13)

Iterative shrinkage thresholding algorithm (ISTA) [19] can be used to solve (13). In the iteration of
ISTA, there are no matrix inversions involved. ISTA is preferred for its simplicity in implementation
for distributed or parallel recovery due to nature of the involved matrix-vector multiplications [20,21].
The iteration is formulated as

β̂t
i = βt

i + μ
[
ΦH

i (ri − Φiβ
t
i)
]

, (14)

βt+1
i = fλμ

(
β̂t

i

)
=

{
sgn(β̂t

i)(|β̂t
i | − λμ), if |β̂t

i | > λμ

0, otherwise,
(15)

where μ ∈ (0, ‖A‖−2
2 ) is the step size controlling the convergence, λ is the regularization parameter,

and f is the iterative function of ISTA. In the iteration, the value of λ is

λ = |β̂t
i |K+1/μ, (16)

where |β̂t
i |K+1 is the (K + 1)-th largest element of β̂t

i and K = ‖β̂t
i‖0.

The final estimation is
ŝi = βi + si,init. (17)
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Final LS Estimation

It is shown that βi is obtained after L1 regularization, and the estimation will be biased towards
zeros. Thus, a debiasing step is needed

T′ = supp(ŝi), (18)

siT = (ΦiT′)†ri, siT′C = 0. (19)

After the construction of the subaperture images, the generalized likelihood ratio test (GLRT) [1]
can be implemented for the final composite image. GLRT is defined as

s(x, y) = max
i

|si(x, y)|, (20)

where si(x, y) is the scattering at pixel (x, y) of i-th subaperture.
The algorithm is summarized in Algorithm 1.

Algorithm 1 LS-CS-Residual based WASAR imaging.

Input: Subaperture echo data ri (i = 1 : I) and measurement matrix Φi, iterative parameter μ,

maxmum iterative step Tmax.
1: Implement BP on the whole aperture data, estimate T from the BP image. si = 0 (i = 1 : I), t = 0.
2: for i = 1 : I do

3: (si,init)T = (ΦiT)
†ri, (xi,init)Tc = 0

4: ri,res = ri − Φisi,init
5: β0

i = 0
6: Res = ε + 1
7: while t < Tmax and Res > ε do

8: β̂t
i = βt

i + μ
[
ΦH

i (ri − Φiβ
t
i)
]

9: λ = |β̂t
i |K+1/μ

10: βt+1
i = fλμ(βt

i + μ
[
ΦH

i

(
ri − Φst

i,res)
])

11: Res = ‖βt+1
i − βt

i‖2
12: t = t + 1
13: end while

14: ŝi = βt+1
i + xi,init

15: T′ = supp(ŝi)
16: si = ΦiT′ †yi
17: end for

18: s(x, y) = maxi |si(x, y)|
Output: s(x,y)

In WASAR imaging, it will cost huge amount of memory to store the measurement matrix.
The azimuth-range decouple operators can be used to reduce the memory cost [5]. In this paper,
we take BP based operators to substitute the measurement matrix and its conjugate transpose in real
WASAR imaging. With the BP based operators, the memory cost can be reduced dramatically. If we
reconstruct the measurement matrix, the memory cost is O(PQMN). With the BP based operators,
the memory cost is O(MN). It means that, with the measurement matrix, the memory cost is reduced
from O(n2) to O(n).
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BP mainly includes two operations: range Fourier transform and azimuth coherent addition.
The imaging and raw data generation procedures are formulated as

I {·} ∼= R−1{H{F−1{R{·}}}}, (21)

G {·} ∼= R{F{H−1{R−1{·}}}}, (22)

where F and F−1 are the the Fourier transform pairs, H is azimuth coherent addition operator and
(H)−1 is its inverse operation, R reshapes the vector into matrix and R−1 reshapes the matrix into
a vector.

4. Real Data Experiment

In this section, we will use two datasets to show the effectiveness of the proposed method.

4.1. Turntable Data

The turntable data collected by the Institute of Electronics, Chinese Academy of Sciences
will be used to show the effectiveness of the proposed method. The real data of a metal tank
model are measured in an anechoic chamber on a turntable, which is in uniform circular motion.
The radar is a stepped frequency type and has a center frequency of 15 GHz and bandwidth 6 GHz.
The turntable plane and its center are set as the imaging ground plane and the coordinate origin,
respectively. The radius of equivalent circular passes is 8.54 m. The 360◦ whole aperture is divided
into 36 subapertures. The pixel size of the SAR image is 0.25 cm × 0.38 cm.

We reconstruct the subaperture images with BP, CS, debiased-CS and LS-CS-Residual. The results
of the three methods are shown in Figure 2. Figure 2a is the result of BP, which is used as the referenced
image. Compared with the result of the three method, the result of LS-CS-Residual remains less
artifects as shown in the white circle.

To compare the performance of the three methods in the reconstruction of aspect dependent
scattering, we select an aspect dependent scattering target P and plot its aspect dependent amplitude
curve Figure 3. The result of BP is used as the reference. In Figure 3, we select Area 1 to show the
performance of LS-CS-Residual to reduce the underestimation. Area 2 in Figure 3 is selected to show
the performance of LS-CS-Residual to reduce the missed detections. As shown in Figure 3 Area 1,
CS underestimates the amplitude of the target. The results of Debiased-CS and LS-CS-Residual highly
overlap the result of BP. So Debiased-CS and LS-CS-Residual avoid the underestimation caused by CS.
In Figure 3 Area 2, CS and debiased-CS fail in reconstructing the weak scattering. Since the support
information of the other subapertures is adopted in LS-CS-Residual, the support of weak scattering
target is preserved in the subapertures. So with the prior support information and the final debiasing
step, LS-CS-Residual can reconstruct the aspect dependent scatterings of the targets more accurately
than CS and debiased-CS.

The time taken by the three algorithms is given in the Table 1. Debiased-CS takes more
time because of the debias step compared with CS. Compared with the former two algorithms,
LS-CS-Residual takes similar amount time.

Table 1. Time taken (in minutes) by the three algorithms.

CS Debiased-CS LS-CS-Residual

22.31 23.43 20.08
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(a)

(b)

(c)

(d)

Figure 2. Results of the four methods. (a) GLRT result of BP; (b) GLRT result of CS; (c) GLRT result of
debiased-CS; (d) GLRT result of LS-CS-Residual.
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Figure 3. Reconstructed aspect dependent scattering of pixel P via the three methods.

4.2. Gotcha Volumetric SAR DATA

Gotcha volumetric SAR dataset [22] is X-band circular SAR data that consists of CSAR phase
history data collected at the X-band with a 640-MHz bandwidth. The spotlighted scene is a parking lot
in an urban environment. The scene consists of numerous civilian vehicles and reflectors.

In this experiment, the HH polarization data are used. The whole aperture of 360◦ is divided
into 180 subapertures. Every subaperture is 4◦. The apertures overlap every 2◦. The pixel size is
0.2 m × 0.2 m. The area of reflectors is chosen. We reconstruct the scene with BP, CS, debiased-CS and
LS-CS-Residual. The GLRT results of the four methods are shown in Figure 4.

To evaluate the aspect dependent reconstruction performance of different methods, we select an
aspect dependent scattering target and plot its reconstructed aspect dependent scattering. The selected
target is a reflector that distributes across several pixels. We reconstruct the subaperture images with
BP, CS, debiased-CS and LS-CS-Residual. To compare the aspect dependent scattering reconstruction
performance of the three methods, we add the intensities of these pixels together and plot the results
in Figure 5. Figure 5 is the main valid scattering area of the reflector. BP result is used as the reference.
It is shown that the result of LS-CS-Residual is highly overlapped with the results of BP. The intensities
of CS and debiased-CS are less than BP and LS-CS-Residual. The underestimation of debiased-CS
is mainly caused by the missed detections. Since there are some missed detections in the result of
debiased-CS, the intensities of the debiased-CS is less than BP. CS causes bias and missed detections
because of the regularizer term. With the bias and missed detections, the peak of CS is lower than the
other three methods.

The time taken by the three algorithms is given in Table 2. Table 2 shows that the three algorithms
take similar amounts of time.
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(a) (b)

(c) (d)

Figure 4. Results of the four methods. (a) GLRT result of BP; (b) GLRT result of CS; (c) GLRT result of
debiased-CS; (d) GLRT result of LS-CS-Residual.

Figure 5. Reconstructed aspect dependent scattering of target via the three methods.
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Table 2. Time taken (in minutes) by the three algorithms.

CS Debiased-CS LS-CS-Residual

154.94 162.69 139.45

5. Conclusions

In this paper, an accurate WASAR imaging algorithm based on LS-CS-Residual is proposed.
The traditional regularized subaperture imaging method based on L1 regularization introduces the bias
and missed detections which will cause inaccurate aspect dependent scattering estimates. To overcome
this problem, LS-CS-Residual has been introduced into WASAR imaging. LS-CS-Residual mainly has
three steps: initial LS estimate, CS on the residual and final LS estimate. The LS estimate step can
be used to reduce the bias. The missed detections are reduced because the support information is
adopted in the process of the LS-CS-Residual. The proposed method accommodates aspect dependent
scattering better than CS and debiased-CS. The experiment results demonstrate its validity.
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Abbreviations

The following abbreviations are used in this manuscript:

SAR Synthetic aperture radar
WASAR Wide angle synthetic aperture radar
CSAR Circular synthetic aperture radar
LS Least squares
CS Compressed sensing
LS-CS-Residual Least squares on compressed sensing residual
BP Backprojection
CS-Residual CS on the residual
ISTA Iterative shrinkage thresholding algorithm
GLRT Generalized likelihood ratio test
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Abstract: A novel method is proposed for azimuth sidelobes suppression using multi-pass squinted
(MPS) synthetic aperture radar (SAR) data. For MPS SAR, the radar observes the scene with different
squint angles and heights on each pass. The MPS SAR mode acquisition geometry is given first.
Then, 2D signals are focused and the images are registered to the master image. Based on the new
signal model, elevation processing and incoherent addition are introduced in detail, which are the
main parts for azimuth sidelobes suppression. Moreover, parameter design criteria in incoherent
addition are derived for the best performance. With the proposed parameter optimization step,
the new method has a prominent azimuth sidelobes suppression effect with a slightly better azimuth
resolution, as verified by experimental results on both simulated point targets and TerraSAR-X data.

Keywords: multi-pass squinted (MPS); azimuth sidelobes suppression; synthetic aperture radar (SAR)

1. Introduction

For many applications of synthetic aperture radar (SAR), the images can be adversely affected by
sidelobes, especially in the case of strongly scattering targets with weak targets nearby, such as in a
harbour with ships and containers. Hence, it is often desirable to suppress the sidelobes in order to
improve image quality.

Several methods have been proposed to do this. The most common approach [1–3] imposes a
weighting on the signal spectrum, such as the Taylor and Hamming windows, but such methods
tend to widen the mainlobe. Another method, known as spatially variant apodization (SVA) [4,5],
and its modified versions [6–9], can reduce the sidelobes without degrading mainlobe resolution.
However, nonlinear apodization modifies the statistical distribution of the pixel intensities, thus
hindering the extraction of information from homogeneous regions [10]. In [11], a dual-Delta
factorization method was proposed to suppress sidelobes in squinted and bistatic SAR images, but this
iterative method is complex and computationally expensive.

This letter introduces a novel multi-pass squinted (MPS) SAR, whose data can be used to realize
3D imaging and also to produce 2D images with low azimuth sidelobes. Compared with traditional
multi-pass SAR for 3D imaging [12] or multi-baseline SAR for interferometry [13], in which the SAR
operates in broadside mode, MPS SAR works in squint mode and observes the scene with different
azimuth squint angles on each pass. Squint mode increases the difficulty of SAR signal processing
and can also provide more possibilities in terms of applications with corresponding imaging methods.
In this paper it is a novel application for azimuth sidelobes suppression based on MPS SAR mode; it can
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suppress azimuth sidelobes significantly and improve the azimuth resolution slightly simultaneously.
For azimuth sidelobes suppression, the first-order phase related to the Doppler centroid frequency
is specially preserved, which can be utilized in elevation processing. Some existing algorithms have
been adjusted to cater for this new signal model in elevation processing, resulting in the azimuth
mainlobe and sidelobes separating in elevation. Moreover, through the parameter optimization of
elevation integrated range, the performance of the azimuth sidelobes suppression can be better, which
is firstly introduced based on MPS SAR mode. The effectiveness of the proposed method is verified
by both simulated data and the real TerraSAR-X image data compared with the signal spectrum
weighting algorithms.

This letter describes a method for azimuth sidelobes suppression using MPS SAR data. In Section 2,
the imaging geometry is introduced. Section 3 builds the signal model and describes the processing of
the stack of images along elevation to yield resolution cells at different elevations, as in tomography.
However, unlike tomography, in this mode the azimuth sidelobes occur at different elevations and can
be eliminated by incoherent addition in elevation. The performance of the proposed method is related
to system parameters in Section 4, and a set of design criteria is proposed. Simulations with point
targets and real SAR images are performed to test the proposed method in Section 5 and conclusions
are drawn in Section 6.

2. Multi-Pass Squinted SAR

The imaging geometry of MPS SAR is shown in Figure 1a, where X, Y, Z, and S represent range,
azimuth, height, and elevation coordinates, respectively. The aircraft is in the azimuth-height plane, Ln

represents the nth pass of the aircraft, An,m is the center position of the SAR in the mth acquisition on
the nth pass, 2N + 1 and 2M + 1 are the numbers of passes and acquisitions, respectively, ϕn,m is the
azimuth squint angle, which is the angle between line-of-sight and broadside, and the heavy lines on
each pass represent the synthetic apertures of the acquisitions.
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Figure 1. Imaging geometry: (a) MPS SAR; (b) for azimuth sidelobes suppression.

Based on the imaging geometry in Figure 1a, data acquired with the same azimuth squint angle on
each pass can be combined and processed for 3D imaging, which is similar to the traditional TomoSAR.
Moreover, the data acquired with different azimuth squint angles on each pass can be selected and
used to suppress azimuth sidelobes. However, the acquisition of the data should meet the imaging
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geometry for azimuth sidelobes suppression, as shown in Figure 1b. Figure 1b represents the 2N + 1
MPS acquisitions taken from each pass in Figure 1a; An is the center position of the acquisition on
the nth pass, ϕn is the azimuth squint angle, H is the height of the center pass, θ is the incidence
angle and α is the “flight angle”, which is the angle between the line of the center positions (assumed

collinear and equally spaced) and the azimuth coordinate; this is given by α = acos
(( →

A1An · →y
)
/
∣∣∣∣∣ →A1An

∣∣∣∣∣).
B =

∣∣∣∣∣ →
AnAn+1

∣∣∣∣∣ is the distance between two adjacent center positions of the SAR and is referred to as

the baseline (assumed to be the same for all adjacent pairs), and Ba,n, B//,n, and B⊥,n are the azimuth,

parallel, and orthogonal baselines, respectively, which are the projections of the vector
→

AnAN+1 along
the azimuth, the line of sight, and elevation, with the following forms:⎧⎪⎪⎪⎨⎪⎪⎪⎩

Ba,n = (n−N − 1) · B · cosα
B⊥,n = (n−N − 1) · B · sinα · sinθ
B//,n = (n−N − 1) · B · sinα · cosθ

, (1)

P is a point target in the scene, and represents the distance between the SAR center position An and P:

Rn(r) ≈
√(

r + B//,n
)2
+ B2⊥,n + B2

a,n ≈
√(

r + B//,n
)2
+ (Ba,n)

2 + B2⊥,n

/(
2
√(

r + B//,n
)2
+ (Ba,n)

2
)

(2)

where r represents the distance between AN+1 and P.

3. Signal Processing

The signal model was built and the proposed method for suppressing azimuth sidelobes was
derived based on the imaging geometry described in Section 2. It contained four main steps: 2D
focusing, image registration, elevation processing, and incoherent addition, as indicated in Figure 2.

E nE NE

 
Figure 2. Flowchart of the proposed processing method for azimuth sidelobes suppression.

The data acquired on each pass were first focused to obtain a 2D image. Here, the modified chirp
scaling kernel [14], which is suitable for squinted SAR, was used to process the raw data to get focused
2D images. However, not only the energy was focused in this 2D image processing, but also the
phase was preserved, which can be utilized in subsequent elevation processing for azimuth sidelobes
suppression in the proposed method. The 2D images were then registered to the selected master image
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(n = N + 1). This allowed the stack of images to be processed along elevation, where the 2D signal
from the target P in the nth image is given by:

sn(y′, r′) =
√
σp · sin c

(
r′ − r
ρr

)
· sin c

(
y′
ρa

)
· exp

{
− j

4π
λ

Rn(r)
}
· exp

{
− j2π fd,ny′/v

}
, (3)

where σP is the radar cross-section (RCS) of P, λ is wavelength, ρa and ρr represent azimuth and range
resolution, respectively, r′ and y′ are the variables associated with the range and azimuth position of
the focused image, v is the velocity of the SAR, and fd,n is the Doppler centroid frequency of the nth
acquisition:

fd,n = 2v sinϕn/λ ≈ 2vBa,n/

⎛⎜⎜⎜⎜⎜⎝λ
√(

r + B//,n
)2
+ B2

a,n

⎞⎟⎟⎟⎟⎟⎠. (4)

In Equation (3), the second exponential term is the specially preserved phase, which indicates that
in different acquisitions the phase varies with the Doppler centroid frequency and the target’s azimuth
position. The 2D focusing and image registration are the basics of the proposed method.

We assumed that the variation in the heights of the targets in the scene was less than the resolution
in elevation (see Equation (9)), so the imaging area could be seen as effectively flat. Thus, the targets in
the same 2D image cell cannot be separated in elevation after elevation processing.

As a new application, the spectral analysis (SPECAN) [15,16] algorithm was used to process the
MPS SAR signal in elevation. The residual phase induced by varying center distance Rn(r) was first
compensated by multiplying the signal with its complex conjugate phase:

H(r, n) = exp
{
j 4π
λ Rn(r)

}
≈ exp

{
j 4π
λ

(√(
r + B//,n

)2
+ B2

a,n + B2⊥,n

/(
2
√(

r + B//,n
)2
+ (Ba,n)

2
))}

. (5)

After multiplication, the signal was modeled as:

sn
′(y′, r′) =

√
σp · sin c

(
r′ − r
ρr

)
· sin c

(
y′
ρa

)
· exp

{
− j2π fd,n

y′
v

}
, (6)

Then, a new variable ξn (different from that in [15,16]) was designed to focus the signal in elevation
by the single Fourier transform (FFT), to give:

ss(y′, r′, s) =
∑2N+1

n=1 (sn
′(y′, r′) · exp

{− j2πξns
}
) ≈ (2N + 1)√σp · sin c

(
r′−r
ρr

)
· sin c

(
y′
ρa

)
· sin c

(
s+y′cotα/sinθ

ρe

)
(7)

where,

ξn = 2B⊥,n

/⎛⎜⎜⎜⎜⎜⎝λ
√(

r + B//,n
)2
+ (Ba,n)

2

⎞⎟⎟⎟⎟⎟⎠ ≈ 2B⊥,n/(λr), (8)

ρe is the resolution in elevation, given by [12]:

ρe ≈ λr
/(

2B⊥,total
)
. (9)

Here, B⊥,total = 2N · B sinα · sinθ is the total orthogonal baseline. The elevation range after
elevation processing is [−Hmax/2, Hmax/2], where the maximum ambiguity in elevation Hmax is:

Hmax ≈ λr/(2B sinα · sinθ). (10)

From Equations (3) and (7), it can be seen that the signal in (r′, y′, 0) occurs at (r′, y′,−y′cotα/sinθ)
after elevation processing, which means the azimuth signal of the target will be located at different
positions in elevation, i.e., the mainlobe and sidelobes along the azimuth of the focused target will
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separate in elevation. Moreover, if
∣∣∣−y′cotα/sinθ

∣∣∣ > Hmax/2, the signal will be aliased in elevation;
the aliased position is given by:

s′ = −y′cotα/sinθ− ⌊−y′cotα/sinθ/Hmax + 0.5
⌋ ·Hmax, (11)

where �x� is the largest integer not larger than x.
To further explain the effect of elevation processing, Figure 3a shows the azimuth profiles of a

target in a 2D image, and Figure 3b is a slice across the 3D image in the azimuth-elevation plane. It can
be seen that after elevation processing, the sidelobes at different azimuth positions were shifted to
different elevations. Moreover, the F and G parts in Figure 3a were located at the wrong positions due
to aliasing in elevation, as given by Equation (11).

H

H−

h−

Figure 3. Effect of elevation processing. (a) Azimuth profile of a target in the 2D image; (b) slice across
the 3D image in the azimuth-elevation plane.

Thus, if we integrate the energy of the signal ss(y′, r′, s) incoherently over the elevation range
[−h, h] in which mainly the azimuth mainlobe and maybe several lower sidelobes are distributed,
an image, s̃(y′, r′), with low azimuth sidelobes is obtained:

s̃(y′, r′) =
∫ h

−h

∣∣∣ss(y′, r′, s)
∣∣∣2ds. (12)

It can be seen that the selection of h is crucial in determining the performance of the proposed
sidelobes suppression method and it will be discussed below in detail.

4. Parameter Design

Optimization of the performance of the proposed method is based on three criteria:

4.1. The Energy of the Azimuth Mainlobe Must be Preserved

From Equation (7), the azimuth signal is distributed in elevation. To preserve the energy of the
azimuth mainlobe, the integrating range [−h, h] must contain the position of the azimuth mainlobe.
This is distributed in space because a point target can occur anywhere within the resolution cell.
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We defined the azimuth mainlobe as the part of the azimuth profile (see Figure 4b) in which the energy
exceeds −4 dB (where the maximum value of the azimuth profile is normalized to 0 dB). Setting

10 log
(
sin c2

(
y′0/ρa

))
= −4, (13)

yields y′0 ≈ 0.5ρa. Assuming the center position of the azimuth mainlobe in elevation is s0 (where
s0 ∈ (−0.5ρe , 0.5ρe)), the elevation range of the azimuth mainlobe is [s0− y′0cotα/sinθ, s0 + y′0cotα/sinθ].
So, to preserve the energy of the azimuth mainlobe of the target, we select,

h = y′0cotα/sinθ+ 0.5ρe = 0.5ρacotα/sinθ+ 0.5ρe. (14)

a eh αρ ρ
θ

= + ( )aB r Nα λ ρ≥
( )

( )( )a
r N

B
k N

λ
α

ρ
−

≤
+

N k≥ +a eh αρ ρ
θ

= +

 

Figure 4. The design of parameter h.

4.2. The First Azimuth Sidelobes in Elevation Must Be Outside the Integrating Range [−h, h]

The zeroes of sin c(y′/ρa) occur at the points,

y′m = ±mρa(m = 1, 2, · · ·). (15)

The first zero point is y′1 = ρa, so the following relationship must hold:

y′1cotα/sinθ− 0.5ρe ≥ h. (16)

Inserting (9) and (14) into (16), we have:

y′1 = ρaB cosα ≥ λr/(2Nρa). (17)

4.3. The 2nd to the Kth Azimuth Sidelobes in Elevation Must Be Outside the Integrating Range [−h, h]

k is a number we select. With the increase of k, the performance of azimuth sidelobes suppression
is better. Two cases need to be considered: (a) if the kth azimuth sidelobes is not aliased in elevation,
it will be outside [−h, h] when (17) is satisfied, since y′kcotα/sinθ − 0.5ρe ≥ y′1cotα/sinθ − 0.5ρe,
where y′k = kρa; (b) if the kth azimuth sidelobes are aliased in elevation, the following conditions must
be satisfied: {

y′k+1 = (k + 1)ρa

y′k+1 cotα/sinθ+ 0.5ρe ≤ Hmax − h
, (18)

Hence,
B cosα ≤ λr(2N − 1)/(4(k + 1.5)Nρa). (19)

The sidelobes beyond kth with lower energy will contribute little, whether they are relocated in or
out the [−h, h] in elevation.
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The first to kth azimuth sidelobes up to and including the kth will be suppressed if (17) and (19)
are met. Furthermore, based on (17) and (19), we have:

N ≥ k + 2, (20)

which means that more flight passes allow more azimuth sidelobes to be removed. Figure 4 illustrates
the process of the parameter selection.

In summary, the integrating range can be computed based on (14), and the baseline B, the flight
angle α, and the number of passes 2N + 1, can be optimized using (17), (19), and (20).

5. Performance Simulation

This section shows the performance based on simulations, using the parameters listed in Table 1
where PRF represents the pulse repetition frequency. The associated elevation resolution is about 55 m,
and the maximum ambiguity in elevation (see (10)) is 1654 m. The integrating range in elevation is
[−92 m, 92 m]. Moreover, from (17) and (19), the first to the 10th azimuth sidelobes will be suppressed
after incoherent addition.

Table 1. List of simulation parameters.

Parameters Value Parameters Value

Aircraft Height 20 km Bandwidth 80 MHz
Incidence Angle 30◦ Sample Rate 100 MHz

Wavelength 0.03 m PRF 70 Hz
Velocity 100 m/s Antenna Length 4.0 m

Flight Angle 2◦ Pulse Duration 10
Baseline 12 m Flight passes 31

5.1. Point Target Simulations

Simulations for a point target were first performed to test the proposed method, as shown in
Figure 5. After elevation processing, a 3D image was obtained, and Figure 5a is a slice across this image
in the azimuth-elevation plane. It can be seen that the azimuth sidelobes were compressed to different
positions in elevation, and some sidelobes were aliased. The energy of the elevation signals between
the two red lines was then incoherently integrated to form a 2D image of the impulse response function
(IRF), as shown in the contour plot of Figure 5b. As can be seen, the target was well focused with low
azimuth sidelobes. The azimuth profile obtained using the proposed method was compared with
the (N + 1)th 2D azimuth profile obtained by a classical 2D focusing algorithm, using a rectangular
window (Figure 5c) and a Taylor window with parameters 0.25 (Figure 5d). The proposed method
is seen to suppress azimuth sidelobes without degrading the azimuth resolution. The first sidelobes
were preserved partly because they were in the integrating region, as shown in Figure 5a, but were less
than −30 dB. This was much lower than that for the rectangular window (Figure 5c), and was achieved
without the loss of resolution suffered when using the Taylor window (Figure 5d).

To further illustrate the performance of the proposed method, azimuth resolution, peak sidelobe
ratio (PSLR), and integrated sidelobe ratio (ISLR) [17] were given as follows. As shown in Table 2,
the azimuth resolution using the proposed method was 7.04% slightly higher than that for the
rectangular window, at about 1.85 m. PSLR of the images weighted by rectangular window and Taylor
window were −13.28 dB and −25.41 dB. ISLR of these two images were −10.11 dB and −20.18 dB,
correspondingly. Through processing with the proposed method, the PSLR and ISLR of the image
reached −31.07 dB and −29.36 dB, respectively, which were much lower than the other two images.
Overall, it could be concluded that the proposed method can suppress azimuth sidelobes splendidly
with the maintained azimuth resolution.

Simulations with three point targets with different RCSs illustrate the advantages of the proposed
method for detecting weak scatterers. The targets A, B, and C were located at −3 m, 0 m, and 3 m
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along the azimuth, with RCS −20, −10, and 0 dB, respectively, and they had the same height and
range positions. Figure 6 compared the azimuth profiles using the proposed method and the classical
2D focusing algorithm with a Taylor window. The dashed lines in Figure 6 indicated the true target
positions. It could be seen that they were clearly separated and had the correct RCS when the proposed
algorithm was used. In contrast, under the classical 2D focusing algorithm, the weaker scatterers (A
and B) were seriously affected by the sidelobes of the strong scatterer C and could not be detected.
Moreover, the mainlobe of C was widened and affected by the sidelobes of B.

h

  
(a) (b) 

aρ

 

aρ

 
(c) (d) 

Figure 5. Imaging results for a point target. (a) Profile in the azimuth-elevation plane after elevation
processing; (b) contour plots of the impulse response function (IRF) with the proposed method;
(c) comparison of azimuth profiles using the proposed method (red) and the classical 2D focusing
algorithm with a rectangular window (blue); (d) as for (c) but with a Taylor window (blue).

Table 2. Imaging quality indicators for a single point target along azimuth.

Single Point Target Resolution PSLR ISLR

Rectangular Window 1.99 m −13.28 dB −10.11 dB
Taylor Window 2.49 m −25.41 dB −20.18 dB

Proposed Method 1.85 m −31.07 dB −29.36 dB
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( )A − −

( )C

( )B −

Figure 6. Azimuth profiles of three point targets using the proposed method and the classical 2D
focusing algorithm.

Furthermore, simulations with three point targets at different heights were performed to verify
the proposed method in a scene with height variations. The targets D, E, and F had the same range
position and RCS and were located at (−10 m, −10 m), (0 m, 0 m), and (10 m, 10 m), where (y, z) are
the (azimuth, height) coordinates. Figure 7a,b showed the contour plots of the IRF using the classical
2D focusing algorithm with a Taylor window in azimuth and the proposed method. It could be seen
that the targets were focused at different range positions due to their different heights. The targets in
Figure 7b were all well focused, and had lower azimuth sidelobes and better azimuth resolutions than
those in Figure 7a.

D

E

F

 

D

F

E

 
(a) (b) 

Figure 7. Contour plots of a scene with three point targets using: (a) classical 2D focusing algorithm
with a Taylor window; (b) the proposed method.

5.2. Real SAR Image Simulations

Simulations were also performed on a TerraSAR-X image of a part of Dingxing airport, China,
which contains 500 × 300 (azimuth × range) pixels. The original image from TerraSAR-X was used as
RCS of the extended target to simulate MPS SAR data with the imaging geometry in Figure 1 and the
simulation parameters listed in Table 1. It should be noted that the height of the targets in this real
SAR scene is less than the elevation resolution 55 m. The focused 2D images were then processed by
the proposed method to suppress the azimuth sidelobes.

Figure 8 showed the resulting images, which were normalized to the same total energy. Figure 8a,
b were formed using the classical 2D focusing algorithm with a rectangular window and a Taylor
window in azimuth, respectively. High azimuth sidelobes can be seen in Figure 8a, which can be
suppressed with a Taylor window at the expense of resolution (Figure 8b). Figure 8c was the image
obtained using the proposed method. The targets now had low azimuth sidelobes and the mainlobes
had not been widened, compared with those in Figure 8a,b (for example, see the target in the red circle).
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As a measure of image focusing quality we used image contrast, γ, defined as the ratio of
standard deviation and mean of image intensity. Typically, a larger contrast means better image quality.
The values of contrast in the images in Figure 8 were γa = 0.1867, γb = 0.1963, and γc = 0.2492,
respectively; as expected, the image in Figure 8c had the highest contrast.

aγ =

bγ =

cγ =

Figure 8. 2D images obtained by processing the raw data simulated with a TerraSAR-X image of
part of Dingxing airport, China, with: (a) classical 2D focusing algorithm with a rectangular window;
(b) classical 2D focusing algorithm with a Taylor window; (c) the proposed method. The copyright of
the original SAR image belongs to Airbus.

6. Conclusions

This article proposed a novel MPS SAR mode and a method to process MPS SAR data together
with parameter selection criteria that can be used to optimize system design. Based on the MPS SAR
mode, this is a novel application to suppress azimuth sidelobes using some of the existing algorithms,
which were already adjusted to meet the new mode. Simulations indicated that it provided 2D images
with lower azimuth sidelobes compared with some existing azimuth suppression methods. The analysis
presented here is idealized, since it assumes flight passes whose center positions are collinear and equally
spaced, which would in practice be difficult to satisfy. Future work will analyze the effects of relaxing
these conditions.
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Abstract: Doppler parameter estimation and compensation (DPEC) is an important technique for
airborne SAR imaging due to the unpredictable disturbance of real aircraft trajectory. Traditional
DPEC methods can be only applied for broadside, small- or medium-squint geometries, as they
at most consider the spatial variance of the second-order Doppler phase. To implement the DPEC
in very-high-squint geometries, we propose an extended multiple aperture mapdrift (EMAM)
method in this paper for better accuracy. This advantage is achieved by further estimating and
compensating the spatial variation of the third-order Doppler phase, i.e., the derivative of the
Doppler rate. The main procedures of the EMAM, including the steps of sub-view image generation,
sliding-window-based cross-correlation, and image-offset-based Doppler parameter estimation, are
derived in detail, followed by the analyses for the EMAM performance. The presented approach is
evaluated by both computer simulations and real airborne data.

Keywords: Doppler parameter estimation and compensation (DPEC); extended multiple aperture
mapdrift (EMAM); very-high-squint airborne SAR imaging; spatial variance; the derivative of the
Doppler rate

1. Introduction

Airborne synthetic aperture radar (SAR) [1–5] is an all-weather and all-day microwave imaging
sensor that can provide two-dimensional high-resolution images of illuminated regions. High-squint
airborne SAR [6] is necessary for inverting target electromagnetic scattering characteristics in one track
of observation and, therefore, is significant for accurate target identification [7–10]. The larger the
squint angle, the more flexible the data acquisition and hence the more information a single observation
can achieve. For the very-high-squint (VHS) airborne SAR imaging, targets at different positions have
spatially-variant Doppler histories, as shown in Figure 1. While in range (along the direction of
electromagnetic wave propagation), the spatial variance can be easily estimated and compensated by
range blocking, it is not that convenient to estimate and compensate the azimuth spatially-variant
Doppler parameters (along the direction perpendicular to the direction of electromagnetic wave
propagation). Note that the spatial variance used below refers to the azimuth spatial variance if
without additional denotations.

Sensors 2019, 19, 213; doi:10.3390/s19010213 www.mdpi.com/journal/sensors51
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Ba(A) Ba(B) Ba(C)

fdc(A) fdc(B) fdc(C)

Figure 1. The illumination of the spatially-variant Doppler histories of targets at different positions for
the very-high-squint (VHS) airborne SAR imaging. Ts is the aircraft motion time. tstart and tend are the
time start and end, respectively. Ba is the Doppler bandwidth. fdc is the Doppler centroid.

One of the main challenges of the airborne SAR imaging is the Doppler parameter estimation
and compensation (DPEC) because the positioning, velocity, and angle information provided by
the onboard inertial navigation system are generally not accurate enough for the high-squint
high-resolution imaging [11]. Moreover, the real aircraft trajectories often deviate from the ideal
trajectories due to unexpected disturbances [12–15] as shown in Figure 1, which leads to the Doppler
parameter errors. If the spatially-variant Doppler parameter estimation (DPE) is not considered and
left compensated, the SAR image quality will be seriously deteriorated. Thus, it is necessary to perform
echo-based DPE to ensure good focusing performance [16–21]. For the VHS airborne SAR, the DPEC
is more challenging because of its complex spatially-variant characteristics.

Traditionally, the DPE can be implemented by the multiple aperture mapdrift (MAM) via the
azimuth multi-view processing. The basic MAM method (as shown in Figure 2a) [22,23] assumes that
the Doppler parameters do not change with respect to target positions. In this case, the estimated
Doppler parameters are the averaged results of the real ones. Although such approximation is
valid for the broadside or small-squint SAR imaging, it is no longer valid for the high-squint cases
because the spatially-dependent components of the DPE will seriously degrade the image quality if
left uncompensated. Although there exist some methods for the spatially-variant DPE, such as the
improved MAM (IMAM) method [24,25], their accuracy is limited as they only deal with the spatial
variance of the second-order Doppler phase. In the VHS case, for instance, with a 70-degree squint
angle [26], the less accurate DPEC methods will lead to serious image quality degradation.

Aiming at implementing accurate enough DPEC for the VHS airborne SAR imaging, we
propose an extended MAM (EMAM) method, as shown in Figure 2b. Compared with the IMAM
method, the EMAM method realizes higher accuracy by further estimating and compensating the
second-order component of the spatially-dependent Doppler rate and the first-order component of
the spatially-dependent derivative of the Doppler rate. The former is to avoid the azimuth sidelobe
lifting, and the latter is to get rid of the azimuth sidelobe asymmetry. Specifically, the new EMAM
method firstly achieves sub-view images via multi-looking processing. Then, a sliding-window-based
cross-correlation is implemented to achieve image offsets. Based on the unique mapping between such
offset and the Doppler parameters, the DPEC can be accurately implemented.

The paper is arranged as follows. Section 2 introduces the basic MAM method. Section 3 derives
the new EMAM method. Section 4 discusses the performance of the proposed method. In Section 5,
the validity of the proposed method is verified based on the computer simulations and the real airborne
data. Section 6 summarizes this study.
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Figure 2. The illuminations of the basic MAM method and the EMAM method. (a) The basic MAM
method; (b) the EMAM method. Δ fd,ij is the position offset between the sub-i image and sub-j image.

2. Basic Multiple Aperture Mapdrift Method

The core strategy of the MAM method divides the data along the azimuth into multiple blocks and
generates multiple sub-view images. By searching the offsets between two different sub-view images,
it is possible to estimate the higher order Doppler parameters. The MAM methods can be implemented
via either azimuth frequency-domain blocking [1] or time-domain blocking [22]. Specifically, the data
are divided into several parts in azimuth in the time domain after multiplying the deramping function.
Then, the azimuth fast Fourier transform (FFT) is carried out individually for each part to achieve
multiple sub-view images. As the presented EMAM method is an extension of the basic MAM method,
it is necessary to firstly give a brief introduction to the basic MAM method as follows.

Assume that the signal at a certain range cell is expressed as (1) (ignoring the azimuth four-order
and higher order terms of the phase).

s(ta) = rect
(

ta

Ts

)
exp

(
j2π fdcta + jπ fdr,at2

a + jπ f3rd,at3
a

)
, (1)
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where fdc is the Doppler centroid. Ts is the azimuth accumulation time. fdr,a and f3rd,a represent the
real Doppler rate and the derivative of the Doppler rate, respectively. ta is the azimuth slow time.

The deramping function is described as (2).

s(ta) = rect
(

ta

Ts

)
exp

(
−jπ fdr,bt2

a − jπ f3rd,bt3
a

)
, (2)

where fdr,b and f3rd,b represent the calculated Doppler rate and the derivative of the Doppler rate,
respectively, which are inaccurate.

After being multiplied by the deramping function, the data are as follows.

s(ta) = rect
(

ta

Ts

)
exp

(
j2π fdcta + jπedrt2

a + jπe3rdt3
a

)
, (3)

where edr and e3rd represent the errors of the Doppler rate and the derivative of the Doppler rate,
respectively.

Then, the data are divided into three equal long sub-segments as (4).

si(ta) = rect
(

ta − tac,i

Ts/3

)
exp

(
j2π fdcta + jπedrt2

a + jπe3rdt3
a

)
, (4)

where tac,i is the azimuth time for the center of each sub-segment and can be expressed as follows.

tac,i = −Ts

3
+ (i − 1)

Ts

3
, i = 1, 2, 3. (5)

The data in (4) can be translated to the position where ta = 0 and ta is replaced by ta + tac,i.

si(ta) = rect
(

ta

Ts/3

)
exp

⎧⎪⎨⎪⎩
j2π fdc(ta + tac,i)

+jπedr(ta + tac,i)
2

+jπe3rd(ta + tac,i)
3

⎫⎪⎬⎪⎭. (6)

By performing the phase derivative of the upper formula and letting ta = 0, the coefficient of the
first-order phase can be obtained as (7).

fd,i = fdc + edrtac,i +
3
2

e3rdt2
ac,i. (7)

Three sub-segments are subjected to the azimuth FFT to obtain three sub-view images, respectively.
The center of sub-i image is located at fd,i, and the position offset between sub-i image and sub-j image
can be expressed as (8).

Δ fd,ij = fd,i − fd,j = edr
(
tac,i − tac,j

)
+

3
2

e3rd

(
t2
ac,i − t2

ac,j

)
. (8)

Then, three pairs of sub-view images can be formed to get three position offsets. The system of
equations is as follows.

Δf = Tac

[
edr

3
2 e3rd

]
, (9)

where:
Δf = [Δ fd,12 Δ fd,13 Δ fd,23]

T

Tac =

⎡⎢⎣ tac,1 − tac,2 t2
ac,1 − t2

ac,2 t3
ac,1 − t3

ac,2
tac,1 − tac,3 t2

ac,1 − t2
ac,3 t3

ac,1 − t3
ac,3

tac,2 − tac,3 t2
ac,2 − t2

ac,3 t3
ac,2 − t3

ac,3

⎤⎥⎦. (10)
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After the cross-correlation of two sub-view images is computed and the position of the correlation
peak is searched, the estimated value of the offset Δ f̂d,ij between two sub-view images can be
obtained, then Δ f̂d,ij is taken into (9) to estimate the errors of the Doppler parameters by the least
squares principle. [

êdr
3
2 ê3rd

]
=
(

TT
acTac

)−1
TT

acΔf̂. (11)

In practice, since the sub-view images are defocused and the defocus conditions of the different
sub-view images are not exactly the same, there is certain error in the position of correlation peak
of the sub-view image, so the MAM methods often require multiple iterations to achieve better
estimate accuracy.

It can be seen that the basic MAM method only compensates the spatially-invariant Doppler
phases and hence can be only applied for the broadside or small-squint cases. Although the IMAM
methods have partly overcome this disadvantage by estimating and compensating the spatial reliance
of the Doppler phase up to the second-order, they still suffer from the problem of insufficient accuracy
for the VHS SAR imaging. In this study, this problem is solved by further estimating and compensating
the spatial variance of the third-order Doppler phase, resulting in the new EMAM method.

3. Extended Multiple Aperture Mapdrift Method

The spatial variance of the Doppler parameters refers to the fact that these parameters change
with the azimuth position of target and can be represented as the functions of fdc. Thus, the errors
of the Doppler rate edr and the derivative of the Doppler rate e3rd in (3) become the functions of fdc,
i.e., edr( fdc) and e3rd( fdc). The offset of two sub-view images in (8) also becomes the function of fdc as
shown in (12).

Δ fd,ij( fdc) = edr( fdc)
(
tac,i − tac,j

)
+

3
2

e3rd( fdc)
(

t2
ac,i − t2

ac,j

)
. (12)

Then, an additional sliding windowing manipulation for the sub-view image correlation is
employed to obtain the corresponding image offset Δ fd,ij( fdc). Specifically, the sliding windowing
manipulation is implemented by the short time Fourier transform (STFT). The two sub-view images at
the same range cell are individually processed by the STFT, followed by the conversion of the data
dimension from one to two, where one denotes the original Doppler frequency and the other denotes
the newly-generated frequency. After the conjugate multiplication of the data, the IFFT is generated
along the new frequency axis. Then, the offset of the sub-view images can be obtained based on the
peak position. Figure 3 shows the flowcharts of the basic MAM method and the EMAM method. It
can be seen that the use of STFT can achieve the sliding windowing manipulation, and the Doppler
parameters changing with the azimuth frequency can be obtained. In order to improve the efficiency
in practical applications, the intervals between windows can be appropriately increased, and the offset
of each azimuth frequency can be obtained by the curve fitting. Then, the spatially-variant êdr( fdc) and
ê3rd( fdc) can be obtained based on the estimated Δ f̂d,ij( fdc).

After obtaining êdr( fdc) and ê3rd( fdc), the operation of the curve fitting is performed. Here, the
quadratic curve fitting is taken as an example.

êdr( fdc) = edr0 + edr1( fdc − fdc,cen) + edr2( fdc − fdc,cen)
2

ê3rd( fdc) = e3rd0 + e3rd1( fdc − fdc,cen) + e3rd2( fdc − fdc,cen)
2,

(13)

where fdc,cen is the Doppler centroid of the azimuth center of the scene, the first terms of the two
expressions are the fixed errors, the second terms are the first-order spatial variance errors, and the
third terms are the second-order spatial variance errors. In general, the second-order spatial variance
error of the derivative of the Doppler rate is too small to be ignored. The first- and second-order spatial
variance errors of the Doppler rate and the first-order spatial variance error of the derivative of the
Doppler rate should be estimated and compensated.
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Use the fitting coefficients in (13) to correct the corresponding Doppler parameters in the
high-squint airborne SAR imaging algorithm [6] so as to achieve the focus improved image. In
order to improve the accuracy of the Doppler parameter estimation, multiple iterations are performed.
The flowchart of the azimuth compression combined with the EMAM method in the high-squint SAR
imaging algorithm is shown in Figure 4.

 
(a) (b) 

Figure 3. The flow charts of the basic MAM method and the EMAM method. (a) The basic MAM
method; (b) the EMAM method.

Figure 4. The flowchart of the azimuth compression combined with the EMAM method in the
high-squint airborne SAR imaging algorithm.
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4. Performance Analysis

4.1. Spatial Variance of Doppler Parameters

The spatial variance of the Doppler parameters is analyzed based on a typical VHS airborne SAR
geometry, as shown in Figure 5. The XOY plane is the ground plane. V and A are the velocity and
acceleration of the aircraft. The velocity vector is in the YOZ plane. H is the aircraft altitude. Rre f is
the corresponding slanting distance. γ and γA are the velocity dive angle (between the velocity vector
and the horizontal plane) and the acceleration dive angle (between the acceleration vector and the
horizontal plane), respectively. α and αA are the velocity azimuth angle (between the projections of
the slanting distance vector and the velocity vector to the ground) and the acceleration azimuth angle
(between the projections of the slanting distance vector and the acceleration vector to the ground),
respectively. θ is the squint angle (between the velocity vector and the slanting distance vector).
The aircraft motion time is 4 s.

A

A

Figure 5. Typical VHS airborne SAR geometry.

Figure 6a,b shows the spatial variance of the Doppler rate and the derivative of the Doppler rate,
respectively. The center of the figure represents the beam irradiation position B2. It can be clearly
seen that the spatial variations of the Doppler rate and the derivative of the Doppler rate are about
8 Hz/s and 0.08 Hz3, respectively. Figure 7a,b shows the spatially-variant phase errors caused by
the spatially-variant Doppler parameters, which are about 100 rad (larger than π

4 ) and 4 rad (larger
than π

8 ), respectively. If the phase error caused by the Doppler rate is larger than π
4 , or the phase

error caused by the derivative of the Doppler rate is larger than π
8 , it will seriously degrade the image

quality. Thus, the spatial variance of the Doppler rate and the derivative of the Doppler rate should be
estimated and compensated.

 
(a) (b) 

Figure 6. The spatial variance of the Doppler parameters. (a) The Doppler rate; (b) the derivative of
the Doppler rate.
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(a) (b) 

Figure 7. The spatially-variant phase errors caused by the spatially-variant Doppler parameters. (a) The
phase error caused by the Doppler rate; (b) the phase error caused by the derivative of the Doppler rate.

The data at the range time domain and the azimuth frequency domain in the step of the azimuth
compression for the high-squint airborne SAR imaging algorithm is as follows.

s( fa, tr; R, θ) = sin c
(

tr − 2R/c
1/Br

)
rect

(
fa − fac

fdrTs

)
exp {jϕ0 + jπa2( fa − fac)

2 + jπa3( fa − fac)
3}, (14)

where the first sinc function is the result of the range pulse compression, and the latter two are the
azimuth envelope and phase modulations. tr and fa are the range time and the azimuth frequency,
respectively. fac and fdr are the Doppler centroid and the Doppler rate of the target with the slant range
R and the squint angle θ (which is the angle between the velocity vector and range vector), respectively.
Br is the signal bandwidth. Ts is the azimuth accumulation time. In the phase modulation, the constant
phase ϕ0 does not affect focus, and the spatial variance of a2 and a3 (related to the spatial variance of
the Doppler parameters) is analyzed below. a2 and a3 can be expressed as the functions of (R, fdc).
Then, these functions can be further expanded at fdc = fdc,cen = (2V cos θcen)/λ as the Taylor series
shown in (15) [6].

a2 ≈ a20 + a21( fdc − fdc,cen) + a22( fdc − fdc,cen)
2

a3 ≈ a30 + a31( fdc − fdc,cen),
(15)

where a20 and a30 are the constant coefficients, a21 and a31 are the first-order spatial variance coefficients,
and a22 is the second-order spatial variance coefficient of a2.

When the target is at the azimuth center of the distance-isoline of the illuminated scene, θ and fac

become θcen and fdc,cen, respectively. V is the aircraft velocity. λ is the wavelength.
In order to get a well-focused image, the absolute values of the phase errors caused by the spatial

variance of a2 and a3 should be less than π
4 and π

8 , as expressed by (16) and (17), respectively.∣∣∣∣∣a21( fdc − fdc,cen)

(
Ba

2

)2
π

∣∣∣∣∣ < π

4
,

∣∣∣∣∣a22( fdc − fdc,cen)
2
(

Ba

2

)2
π

∣∣∣∣∣ < π

4
, (16)

∣∣∣∣∣a31( fdc − fdc,cen)

(
Ba

2

)3
π

∣∣∣∣∣ < π

8
, (17)

where Ba is the Doppler width of the target.

4.2. Complexity

The computational complexity (floating-point operation) of the EMAM method is analyzed in
detail. For the signal at a certain range cell, the number of azimuth points is Na. The complexity of the
main steps of the EMAM method is as shown in Table 1.
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Table 1. The complexity of the main steps of the EMAM method.

Main Step Operation Complexity

SI: Achieving three sub-view images FFT 15Na log2 Na

SII: Estimating êdr( fdc) and ê3rd( fdc)
(L operations of sliding windowing
manipulation, window width: Nw)

STFT 30LNw log2 Nw
Complex conjugate multiplication 21LNw

IFFT 15LNa log2 Na
Modulus 27LNa

SIII: Estimating the fitting coefficients
of êdr( fdc) and ê3rd( fdc)

Curve fitting 32L

Scom: Total 15Na log2 Na + (30Nw log2 Nw + 21Nw + 15Na log2 Na + 27Na + 32)L

Therefore, the computational complexity of the main steps for the EMAM method can be written
as (18).

Scom = SI + SII + SIII. (18)

In order to improve the accuracy of the Doppler parameters, multiple iterations are performed.
Therefore, if the number of iterations is K, the computational complexity of the EMAM method can be
written as:

SEMAM = KScom. (19)

The complexity of the main steps of the basic MAM method and the IMAM method are shown in
Tables 2 and 3, respectively.

Table 2. The complexity of the main steps of the basic MAM method.

Main Step Operation Complexity

SI: Achieving three sub-view images FFT 15Na log2 Na

SII: Estimating êdr and ê3rd

FFT 30Na log2 Na
Complex conjugate multiplication 21Na

IFFT 15Na log2 Na
Modulus 27Na

Scom: Total 15Na log2 Na + 30Na log2 Na + 21Na + 15Na log2 Na + 27Na

Table 3. The complexity of the main steps of the improved MAM (IMAM) method.

Main Step Operation Complexity

SI: Achieving two sub-view images FFT 10Na log2 Na

SII: Estimating êdr( fdc)
(L operations of sliding windowing
manipulation, window width: Nw)

STFT 10LNw log2 Nw
Complex conjugate multiplication 7LNw

IFFT 5LNa log2 Na
Modulus 9LNa

SIII: Estimating the fitting coefficients
of êdr( fdc)

Curve fitting 16L

Scom: Total 10Na log2 Na +
(10Nw log2 Nw + 7Nw + 5Na log2 Na + 9Na + 16)L

Assuming that the number of iterations K is three, the window width Nw in the IMAM method
and the EMAM method is 100, and the number of sliding windowing manipulations L is Na/50, then
the complexity of the different methods can be compared as shown in Figure 8. It can be clearly seen
that the complexity of the EMAM method is larger than the basic method and the IMAM method due to
further estimating and compensating the first-order component of the spatially-dependent derivative
of the Doppler rate, which increases the data processing time. When Na is 4096, the complexities
of the basic method, the IMAM method, and the EMAM method are 9.437 × 106, 7.196 × 107, and
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2.136 × 108, respectively. However, the computational complexity of the proposed method does not
change qualitatively, and the real-time implementation of the EMAM onboard could be achieved after
evaluating the existing hardware systems.

Figure 8. The computational complexity of the different methods.

5. Results

5.1. Simulation

The point target simulations are performed based on the geometry in Figure 5. The point targets
are distributed as a 3 × 3 matrix on the ground plane with both 3 km in range and azimuth. In order to
illustrate the advantages of the EMAM method, the imaging results of the basic MAM method and the
IMAM method are given. The velocity error ΔV(10 m/s) and the acceleration error ΔA

(−0.1 m/s2)
are added in the imaging process. Here are the examples of point targets C1, C2, and C3 in Figure 5 to
illustrate and compare the estimation results of the Doppler parameters of the different methods.

Figures 9 and 10 show the two-dimensional imaging results and the azimuth impulse responses of
targets by the different methods with the velocity and the acceleration errors, respectively. In Figure 9,
the horizontal axis and the vertical axis represent the azimuth samples and range samples, respectively.
In Figure 10, the horizontal axis represents the azimuth frequency and the vertical axis refers to the
corresponding amplitude of the target (converted to dB). The sub-images from left to right represent
C1, C2, and C3 in turn. Figures 9a and 10a show the two-dimensional imaging results and the azimuth
impulse responses based on the Doppler parameters with errors, respectively, and there is no Doppler
parameter estimation. It can be clearly seen that the images are seriously defocused, and the Doppler
bandwidths of the three points after the deramping are still about 10 Hz, indicating that there are still
significant secondary phases, and the errors of the Doppler rates are very large. Figures 9b and 10b
show the two-dimensional imaging results and the azimuth impulse responses by the basic MAM
method, respectively. It can be seen that the focus of point target C2 at the azimuth center is better, but
point targets C1 and C3 at the azimuth edges are noticeably defocused. The main reason is that the
estimated Doppler parameters by the basic MAM method are the averaged results of the real ones, and
their spatial variance is not considered, resulting in the fact that the point targets at the azimuth edges
still have significant secondary phase errors. Figures 9c and 10c show the results of the IMAM method.
It can be seen that the sidelobes of the three point targets are asymmetrical because the IMAM method
only deals with the spatial variance of the Doppler rate. The peak sidelobe ratios are about −10 dB, as
shown in Table 4. Figures 9d and 10d show the results of the EMAM method. It can be seen that the
targets both at the azimuth center and edges are well-focused, indicating that the EMAM method can
estimate the spatial variance of the Doppler rate and the derivative of the Doppler rate well. The peak
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sidelobe ratios are about −13 dB, as shown in Table 4, indicating that the EMAM method has achieved
higher estimation accuracy.
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Figure 9. The two-dimensional imaging results of targets by the different methods with the velocity
and acceleration errors. (a) No Doppler parameter estimation; (b) the basic MAM method; (c) the
IMAM method; (d) the EMAM method.

In order to further illustrate the accuracy of the Doppler parameter estimation, Table 5 shows the
estimation results of the errors of the Doppler parameters based on the basic MAM method, the IMAM
method, and the EMAM method. It can be seen that the estimation results of êdr0 based on the three
methods are relatively close to the real values, and likewise for the estimation results of ê3rd0 by the
basic method and the EMAM method. The IMAM method and the EMAM method can estimate êdr1
well. However, the errors of the estimation results of êdr2 based on the IMAM method and the EMAM
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method are relatively large. The reason is that the phase error caused by this term is very small and
has little effect on the image focus based on the specific geometry in Figure 5. Moreover, the EMAM
method can further estimate ê3rd1 well.
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Figure 10. The azimuth impulse responses of targets by the different methods with the velocity and
acceleration errors. (a) No Doppler parameter estimation; (b) the basic MAM method; (c) the IMAM
method; (d) the EMAM method.
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Table 4. The azimuth performance analysis of the three point targets C1, C2, and C3 based on the basic
MAM, the IMAM method, and the EMAM method.

Method Index Point Target C1 Point Target C2 Point Target C3

Basic MAM

PSLR (dB) −4.72 −10.88 −6.12
ISLR (dB) −8.25 −7.87 −8.72

Azimuth resolution (m) 5.67 0.59 4.35

IMAM

PSLR (dB) −9.85 −10.28 −10.71
ISLR (dB) −8.69 −8.95 −9.18

Azimuth resolution (m) 0.59 0.58 0.58

EMAM
PSLR (dB) −13.08 −13.10 −13.10
ISLR (dB) −9.63 −9.64 −9.63

Azimuth resolution (m) 0.57 0.57 0.57

Note: PSLR represents the peak sidelobe ratio (the peak strength ratio of the highest side-lobe to the main-lobe),
and ISLR represents the integral sidelobe ratio (the energy radio of all side-lobes to the main-lobe). The theoretical
azimuth resolution of the three point targets is 0.57 m.

Table 5. The estimation results of the errors of the Doppler parameters by the different methods.

Error Coefficient Real Value Basic MAM IMAM EMAM

êdr0 (Hz/s) −2.6426 −2.7048 −2.6485 −2.6464
êdr1 (Hz) 0.0012 - 0.0012 0.0012

êdr2 1.2575 × 10−7 - 1.4614 × 10−7 1.5608 × 10−7

ê3rd0

(
Hz3

)
−0.0360 −0.0396 - −0.0390

ê3rd1

(
Hz2

)
1.2540 × 10−5 - - 1.2630 × 10−5

Note: “-” indicates that the basic MAM method or the IMAM method cannot estimate this error coefficient. êdr2
is non-dimensional.

5.2. Real Data

To validate the EMAM method in practical applications, this section gives the results of real
airborne SAR data based on the different methods. The velocity of the aircraft is about 105 m/s, and
the acceleration is about 0.26 m/s2. The aircraft altitude is about 5 km. The squint angle is about
30◦. The azimuth width of the image is about 1.2 km, and the range width is about 500 m. The data
are processed based on the inertial navigation information (inaccurate), the basic MAM method, the
IMAM method, and the EMAM method, respectively, and the results of the slanting distance image are
shown in Figure 11. In the figures, the horizontal direction represents the azimuth frequency domain,
and the vertical direction refers to the range time domain.

Figure 11a is the image based on the inertial navigation information. It can be seen that the
defocus condition of the image is more and more serious from left to right, indicating that the spatial
variance of the Doppler parameters is very obvious. The Doppler parameters calculated from the
inertial information are closer to the real ones of the left scene. Figure 11b is the image based on the
basic MAM method. The azimuth center of the scene is well-focused, but there is still obvious defocus
at the azimuth edges, indicating that the estimation results of the Doppler parameters by the basic
MAM method are the averages of the real Doppler parameters of the whole scene, which are close
to the real ones of the central scene. Figure 11c,d shows the images based on the IMAM method and
the EMAM method, respectively. It can be seen that the focus of the image has been significantly
improved compared with the basic MAM method, but the comparison between these two methods is
not obvious. Therefore, a strong scatterer in the small red square is chosen as shown in Figure 11c,d to
further compare the two methods. Figure 12 is the azimuth impulse responses of the chosen strong
scatterer based on the IMAM method and the EMAM method. It can be clearly seen that the azimuth
sidelobe asymmetry exists in the IMAM result, while for the EMAM result, the main-lobe is narrower
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and the side-lobe is lower and basically symmetrical, which explains that the EMAM method is better
than the IMAM method.

(a) (b) 

(c) (d) 

Figure 11. The images of real airborne data based on the different methods. (a) The inertial navigation
information; (b) the basic MAM method; (c) the IMAM method; (d) the EMAM method.

Figure 12. The azimuth impulse responses of the chosen strong scatterer based on the IMAM method
and the EMAM method.
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Figure 13 shows the estimation curves of the spatially-variant Doppler parameters based on the
different methods. It can be seen from the figures that the Doppler parameters obviously change with
the azimuth frequency. The estimation results of the Doppler rate and the derivative of the Doppler
rate by the basic MAM method are basically the averages of the EMAM method. The blue solid
lines represent the estimation results of the Doppler parameters by the IMAM method or the EMAM
method, and the red dotted lines refer to the curve fitting values of the estimated Doppler parameters.
As shown in Figure 13a, the IMAM method can estimate the spatially-variant Doppler rate, and the
estimation result is basically consistent with the EMAM method; while the EMAM method can further
estimate the spatially-variant derivative of the Doppler rate as shown in Figure 13b.

(a) (b)  

Figure 13. The estimation curves of the spatially-variant Doppler parameters based on the different
methods. (a) The Doppler rate; (b) the derivative of the Doppler rate.

Figure 14 shows the residual spatial variance of the Doppler parameters after compensation based
on the estimation results of the EMAM method. It can be seen that the first- and second-order spatial
variance of the Doppler rate and the first-order spatial variance of the derivative of the Doppler rate
are basically eliminated; only the higher order spatial variance is left, which does not affect the focus
of the image.

Figure 14. The residual spatial variance of the Doppler parameters after compensation based on the
estimation results of the EMAM method.
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6. Conclusions

In this study, an EMAM method has been proposed for DPEC of the VHS airborne SAR imaging.
Comparing with the existing MAM-based DPEC methods, the EMAM is superior in achieving higher
accuracy benefiting from the additional estimation and compensation for the spatial dependence of the
third-order Doppler phase, corresponding to the derivative of the Doppler rate. The EMAM method
not only avoids the azimuth sidelobe lifting, but also gets rid of the azimuth sidelobe asymmetry.
Specifically, the EMAM method firstly achieves sub-view images via multi-looking processing. Then,
a sliding-window-based cross-correlation is implemented to achieve image offsets. Based on the unique
mapping between such offsets and the Doppler parameters, the DPEC can be accurately implemented.
By showing that the EMAM outperforms the existing DPEC methods in both the computer simulations
and the real airborne data processing experiments, the effectiveness of the presented approach has
been validated. Both the computer simulations and the real airborne data processing experiments show
that based on the EMAM method, the targets both at the azimuth center and edges are well focused,
indicating that the EMAM method can accurately estimate and compensate the spatial variance of
the Doppler rate and the derivative of the Doppler rate. Further research may focus on the real-time
implementation of the EMAM onboard.
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Abstract: This paper deals with the problem of high cross-range resolution Doppler beam sharpening
(DBS) imaging for airborne wide-area surveillance (WAS) radar under short dwell time situations.
A knowledge-aided DBS (KA-DBS) imaging algorithm is proposed. In the proposed KA-DBS
framework, the DBS imaging model for WAS radar is constructed and the cross-range resolution is
analyzed. Since the radar illuminates the imaging scene continuously through the scanning movement
of the antenna, there is strong spatial coherence between adjacent pulses. Based on this fact, forward
and backward pulse information can be predicted, and the equivalent number of pulses in each
coherent processing interval (CPI) will be doubled based on the autoregressive (AR) technique by
taking advantage of the spatial continuity property of echoes. Finally, the predicted forward and
backward pulses are utilized to merge with the initial pulses, then the newly merged pulses in each
CPI are utilized to perform the DBS imaging. Since the number of newly merged pulses in KA-DBS is
twice larger than that in the conventional DBS algorithm with the same dwell time, the cross-range
resolution in the proposed KA-DBS algorithm can be improved by a factor of two. The imaging
performance assessment conducted by resorting to real airborne data set, has verified the effectiveness
of the proposed algorithm.

Keywords: wide-area surveillance; super-resolution; Doppler beam sharpening

1. Introduction

Airborne or spaceborne wide-area surveillance (WAS) radar [1,2] can acquire a wide-area
surveillance scene at a very short time, which is usually accomplished by steering the antenna
beam from one azimuth angle to another. In the scanning movement of the antenna, the dwell time at
each azimuth angle is very short to guarantee a high revisit radio. Accordingly, airborne or spaceborne
WAS radar is widely applied in civilian and military fields [3–7], and Doppler beam sharpening (DBS)
technique is a very effective tool to accomplish the WAS ability [8–11]. However, the large surveillance
region in WAS radar is at the expense of low cross-range resolution. The low cross-range resolution
limits its further application. Therefore, it is definitely essential to study the high cross-range resolution
further for airborne or spaceborne WAS radar in short dwell time situations.
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Several researchers have studied this issue of WAS imaging in previous works, Scan-synthetic
aperture radar (Scan-SAR) [1,12,13] can acquire a wide-region compared with conventional TOPs SAR
mode [14,15], strip SAR mode [16–18] and spotlight SAR mode [19], and it is an effective means for
WAS imaging. However, the synthetic time is usually as large as 1~10 s, which limits the high revisit
ratio. Since DBS is the non-focused form of SAR [1,8–11], the imaging time for DBS is usually as small
as 0.05~0.1 s, the revisit ratio is very high. Therefore, our attention in this paper is mainly paid to
the DBS imaging. For DBS imaging, Fourier transform (FT) [1,8,9], Relax [10], APES [11] are used to
increase the cross-range resolution. However, the performance of these existing methods is generally
not satisfactory in the engineering applications.

In this paper, we propose an efficient DBS cross-range resolution enhancement architecture,
namely knowledge-aided DBS (i.e., KA-DBS), to increase the DBS imaging performance. For the
airborne WAS radar, the antenna usually works in a scanning mode, where the antenna illuminates
the surveillance region continuously by steering the antenna beam from one azimuth viewing angle
to another. Therefore, the echoes reflected from the scatterers on the ground may be coherent in the
space. The space coherence property means that more spatial information about the echoes may be
mined if proper means are used. Based on this fact, the knowledge of the spatial coherence property is
fully exploited in KA-DBS. And then, the spatial continuity model of the radar echo is constructed.
In order to well estimate the pulses information outside the observed coherent processing interval
(CPI), the forward prediction pulses and the backward prediction pulses are estimated based on the
autoregressive (AR) technique [20–22], respectively. Accordingly, the number of pulses at one azimuth
angle can be equivalently increased by merging the forward prediction pulses and the backward
prediction pulses with the original pulses. Finally, the “merged pulses” are utilized to perform the DBS
imaging. The number of “merged pulses” in the proposed KA-DBS algorithm is twice larger than that
in the conventional DBS algorithm with the same dwell time. Therefore, the cross-range resolution in
KA-DBS is doubled compared with the conventional DBS imaging algorithm. Real-data results show
that the proposed algorithm performs well with short dwell time.

The rest of this paper is organized as follows: in Section 2, the DBS architecture is discussed.
In Section 3, we introduce the novel KA-DBS algorithm in detail. The performance of the proposed
algorithm is verified by real measured data in Section 4. Finally, some conclusions are given in Section 5.

2. DBS Imaging Model

For airborne WAS radar system, the radar dwells in a particular beam position continuously
with a set of coherent processing intervals (CPIs). The surveillance region is searched by sequentially
looking in all azimuth angles, the working mode of the WAS radar is illustrated in Figure 1.
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Figure 1. Geometry of DBS imaging.
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Suppose that the aircraft flies along to the X-axis with velocity v, and with the flight altitude, H,
and the initial slant range between the target, R0. The azimuth angle and the elevation angle are θ and
φ, respectively. It is assumed that a linear frequency-modulated (LFM) signal is transmitted, and it can
be written as:

s(τ) = rect
(
τ

Tp

)
exp

[
j2π

(
fcτ+

γ

2
τ2

)]
(1)

where τ denotes the fast time, Tp denotes the pulse width, fc is the carrier frequency of the transmitted
signal, and rect(·) stands for the unit rectangular function. γ is the chirp rate. The echoed signal
reflected from a point target can be expressed as:

s(τ, t) = σ · rect

⎛⎜⎜⎜⎜⎜⎜⎝τ−
2R(t)

c
Tp

⎞⎟⎟⎟⎟⎟⎟⎠ exp
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⎡⎢⎢⎢⎢⎣ fc

(
τ− 2R(t)

c

)
+
γ

2

(
τ− 2R(t)

c

)2⎤⎥⎥⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭ (2)

where t denotes the slow time, R(t) is the instantaneous slant range history from the radar to the point
target at time t. σ is the radar cross-section (RCS) of the target, and c is the velocity of light.

According to the DBS geometry illustrated in Figure 1, the instantaneous slant range history
between the target and the radar can be written as:

R(t) =
√

R2
0 + (vt)2 − 2R0vt sinθ cosϕ (3)

Equation (3) can be expanded into a Taylor series, and it can be expressed as:

R(t) = R0 − vt sinθ cosϕ+
(vt)2

(
1− sin2 θ cos2 ϕ

)
2R0

+ O
(
t3
)

(4)

Since the dwell time in each fixed azimuth viewing angle is very short, the value of the airplane
travels vt is far less the slant range R0 (i.e., vt � R0), then the instantaneous slant range history can be
approximately expressed as:

R(t) ≈ R0 − vt sinθ cosϕ (5)

The Doppler centroid can be estimated by the follows:

fd = − 2
λ

dR(t)
dt

=
2v sinθ cosϕ

λ
(6)

It can be known that different azimuth angles corresponds to different Doppler frequencies.
Therefore, the problem of distinguishing different scatterers at different azimuth angles can be
transformed into the problem of distinguishing different scatterers at different Doppler frequencies.
Suppose a scatterer is located at the azimuth angle θ0, and the azimuth angle θ0 is also the center of
the antenna beam. The boundaries of the antenna beam can be denoted as θ0 – Δθ/2 and θ0 + Δθ/2,
which correspond to the Doppler frequencies fdh and fdl, respectively. Δθ is the 3 dB width of the radar
beam. The Doppler bandwidth of the scatterer can be derived as:

Δ fd =
∣∣∣ fdh − fdl

∣∣∣ = ∣∣∣∣∣ fd(θ0 − Δθ
2

)
− fd

(
θ0 +

Δθ
2

)∣∣∣∣∣ = 2v cosθ0 cosϕ
λ

Δθ (7)

The Doppler bandwidth illustrated in Equation (7) is the frequency excursion experienced by the
scatterer during the dwell time in which the scatter is illuminated by the 3 dB width of the antenna.
Assuming that pulse compression and range migration correction [23] are performed, then the echoed
signal can be written as:

s(τ, t) = σ · rect
( t

Ta

)
sin c

[
B
(
τ− 2R0

c

)]
exp

(
− j4π

R(t)
λ

)
(8)
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where Ta = NaTr, is defined as the CPI in one look direction, and Tr is the pulse repetition interval
(PRI). Na is the coherent pulse number in one CPI. Assuming that there are K scattering centers in one
range cell, and fast Fourier transform (FFT) is performed to get the DBS imaging result [1,8,9]:

S(τ, f ) = sin c
[
B
(
τ− 2R0

c

)]
sinc[Ta( f − fk)] (9)

From Equation (9), it can be seen that the Doppler resolution in the conventional FFT-based
method is approximately determined by:

δ fd = 1/Ta (10)

where δfd is the Doppler resolution.
One important parameter is the sharpening ratio of a DBS image, Ka, as the ratio of the Doppler

bandwidth to the Doppler resolution, is given by [1]:

Ka = Δ fd/δ fd = Δ fdTa (11)

For DBS imaging, the velocity of the aircraft and the antenna beam width are always fixed, which
makes the Doppler bandwidth is fixed at the given azimuth viewing angle. Since the CPI in one look
direction satisfies Ta = NaTr, then Equation (11) can be rewritten as:

Ka = Δ fdNaTr (12)

From Equation (11), we can know that increasing the Doppler bandwidth, the coherent pulse
number as well as the pulse repetition interval is a useful way to increase the sharpening ratio Ka.
However, the sharpening ratio Ka cannot be increased infinitely.

To estimate the maximum value of the sharpening ratio Ka, we should derive the maximum
aperture length in DBS imaging. Assuming that the mean slant range in Figure 2 is Rm, then we can
get the maximum effective aperture length Ls in one CPI [1], which satisfies:√

Rm
2 +

(Ls

2

)2
−Rm ≤ λ8 (13)

v
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Figure 2. Illustration of the maximum aperture length in DBS imaging.

After some mathematical derivation, the maximum aperture length in DBS imaging is given by:

Ls ≤
√

Rmλ (14)

and the maximum number of pulses in one CPI can be calculated as:

Nmax =

√
Rmλ
vtr

(15)
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Therefore, the sharpening ratio has the upper boundary:

Ka ≤ Δ fdNmaxTr (16)

In order to guarantee the wide-area surveillance ability and high revisit ratio, the number of
pulses in one CPI is bounded by the maximum value Nmax. The conflict between short CPI and high
resolution in cross-range motivates the study of super-resolution approaches for DBS imaging.

Inspecting Equation (16), we can find that increasing the equivalent number of pulses at each
CPI in one look direction may be effective to improve the cross-range resolution. In the following
section, we will consider an alternative strategy to increase the sharpening ratio Ka to improve the DBS
imaging performance.

3. Knowledge-Aided DBS Super-Resolution Imaging Algorithm

3.1. Spatial Continuity Property of the Echoed Signal

When the antenna of the airborne WAS radar scans the surveillance region, the radar illuminates
the imaging scene continuously through the scanning movement of the antenna beam. Since the
antenna beam is steered from one azimuth viewing angle to another, a target may be illuminated by
many pulses in one CPI in the very short dwell time. Therefore, the received echoes are spatially
coherent, and additional pulse information about the target may be acquired with the observed
pulses. By exploiting this spatial continuity information, we can try to extrapolate or predict the echo
information outside the observed CPI.

In order to demonstrate the assumption that the echoed signal is continuous in the spatial space
with a short dwell time, two slow moving targets modeled with Swerling I [1] are injected into the real
airborne radar data set. The Doppler frequencies of the two targets are 195 Hz and 215 Hz, respectively.
The azimuth angle of the antenna is corresponding to 40 degree. The airborne radar parameters are
listed in Table 1.

Table 1. Radar System Parameter.

Parameters Value

Time width 10 s
Band width 12 MHz

Pulse repetition frequency 2500 Hz
Azimuth beam width 3.2◦

Coherent pulses 128
Range gate number 2048

The injected signal just exist about 0.05 s in the slow time domain, which corresponds to about 128
pulses in one CPI with the given dwell time. We predict the forward and backward pulse by exploiting
the observed echo information. Detailed forward and backward prediction algorithm will be given in
the Section 3.2. The echoed signal of one range cell in the slow time domain is shown in Figure 3.

Based on the spatial continuity assumption, the predicted forward and backward echo information
is colored in red, while the initial echo pulse in blue. Detailed pulse information prediction method
will be introduced in the Section 3.2, and the prediction factor is set as 0.5 in the experiment. Because
the forward and backward pulse lengths are half of the length of one CPI, the equivalent CPI length
(i.e., about 0.1 s) in the newly merged signal is doubled than the original CPI length (i.e., about
0.05 s) as shown in Figure 3b. Performing the Fourier analysis to these two data sets shown in
Figure 3a,b, respectively.
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(a) (b) 

 
(c) (d) 

Figure 3. The original signal and the newly merged signal of one range cell in the slow time and the
spectrum domain (a) Original echoed signal in the slow time domain; (b) The newly merged (predicted
signal plus original signal) signal based on the spatial continuity property; (c)Spectrum of the original
echoed signal (d); Spectrum of the newly merged signal.

The corresponding spectrum information can be found in Figure 3c,d, respectively. The zoomed
in spectrum information about this two targets is left-top of the Figure. Since the Doppler frequency
difference between the two targets is 20 Hz, conventional FFT method cannot distinguish them in
the spectrum. The spectrum of the two targets is aliasing together and has just one peak in Figure 3c.
However, by exploiting the prior knowledge of the spatial continuity, we can distinguish them well in
the frequency domain as shown in Figure 3d. This experiment demonstrates that the assumption that
the echoed signal is spatially continuous in the spatial space, and the cross-range resolution can be
increased if the spatial continuity property is well exploited in DBS imaging.

3.2. KA-DBS Imaging Algorithm

From above analysis, it can be known that the Doppler resolution is proportional to the CPI Ta in
one azimuth angle. Therefore, we emphasize on increasing the equivalent number of pulses in each
CPI by exploiting the spatial continuity information.

By exploiting the spatial continuity information, the forward pulses and the backward pulses
outside the measured CPI can be predicated by taking the advantage of the autoregressive (AR)
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technique [20,21]. AR is a technique that can forecast the future values on the basis of past values of a
time series data, which has well been used in ISAR imaging [22]. In this section, we will introduce the
AR technique into the DBS imaging. Firstly, the spatial continuity model of the echoed signal should be
constructed. Suppose range compression is performed, the forward and backward predicated pulses
can be expressed as:

s f (τ, n) = − P∑
i=1

aP(i) · σ · rect
(
(n−i)·tr

Ta

)
·sin c

[
B
(
τ− 2R((n−i)tr)

c

)]
exp

(
− j4πR((n−i)tr)

λ

) (17)

sb(τ, n− P) = − P∑
i=1

aH
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)
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c
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exp

(
− j4πR((n−P+i)tr)

λ
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Since our emphasis is on how to improve the cross-range resolution. For clear expression,
Equations (17) and (18) can be simplified as:

s f (τ, n) = −
P∑

i=1

aP(i)s(τ, n− i) (19)

sb(τ, n− p) = −
P∑

i=1

aH
P (i)s(τ, n− p + i) (20)

Then, the forward and backward prediction error of the echoed signal can be calculated as:

e f (τ, n) = s f (τ, n) +
P∑

i=1

aP(i)s(τ, n− i) (21)

eb(τ, n− p) = sb(τ, n− p) +
P∑

i=1

aH
P (i)s(τ, n− p + i) (22)

where sf(τ,n) and sb(τ,n–p) denote the forward and backward prediction pulse, respectively, and ef(τ,n)
and esb(τ,n–p) denote the forward and backward prediction error, respectively. a(i) represents the AR
model coefficient. P is the AR model order, and [·]H denotes the conjugate transpose.

In order to obtain the AR model coefficient a(k), the criterion that to minimize the sum of the forward
and backward prediction errors in each iterative procedure is utilized [20,22], which is given as:

EP =

N∑
n=P+1

∣∣∣e f (τ, n)
∣∣∣2 + ∣∣∣eb(τ, n)

∣∣∣2
2

(23)

To solve Equation (23), the Levinson recursion algorithm [24–26] is used, which can be solved
as follows:

aP(i) = aP−1(i) + aP(P)aH
P−1(P− i), i = 1, 2, . . . , P− 1 (24)

By substituting Equation (24) into Equation (19) and Equation (20), respectively, we can have:

e f
P(τ, n) = e f

P−1(τ, n) + aP(p)eb
P−1(τ, n− 1) (25)

eb
P(τ, n) = eb

P−1(τ, n− 1) + aH
P (p)e

f
P−1(τ, n) (26)
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Since the forward and backward predictions are known in each iteration, then the AR coefficients
ap(p) can be calculated as:

ap(p) =
−2

N∑
n=P+1

e f
p−1(τ, n)

(
eb

p−1(τ, n− 1)
)H

N∑
n=P+1

∣∣∣∣e f
p−1(τ, n)

∣∣∣∣2 + ∣∣∣∣eb
p−1(τ, n− 1)

∣∣∣∣2 (27)

Based on the calculated AR coefficients ap(p)„ the forward and the backward signals (i.e., sf(τ,n)
and sb(τ,n–p) and can be calculated as:

s f (τ, n) = − P∑
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where K is the number of scatters in one range cell. In order to fully utilize the forward and the
backward signal, we will merge them with the original signal in the azimuth direction (i.e., the slow
time domain). Then the newly merged signal in one range cell can be expressed as:

ŝ(τ, 1 : N + 2P) =
[
sb(τ, N − P), . . . , sb(τ, N − 1), s(τ, 1) . . . , s(τ, N), s f (τ, N + 1), . . . , s f (τ, N + P)

]
(30)

where ŝ(τ, 1 : N + 2P) is the newly merged signal in the azimuth direction. One important problem is
how to determine the order of the AR model. Shall we increase P infinitely if we want to acquire more
predicted signal? Of course not. The selection criteria of the AR model order is detailed discussed
in [25,26], and the AR model order is set as one third of the data length in our experiment. Figure 4
gives the predicted energy ratio curve with the predictor factor. In Figure 4, the predicted energy ratio
is defined as the energy amount of the predicted signal to the energy amount of the range profile.

Figure 4. Predicted energy ratio curve with the prediction factor.

From Figure 4, we can know that a higher predictor factor corresponding to a higher predicted
energy ratio, which can be explained that more predicted signal contribute more energy. Higher energy
radio means a higher uncertainty. Typically, predictor factors less than 3 always lead to useful results
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(detailed information can be found in [24]). Therefore, the predictor factor is set as 0.5 in our proposed
KA-DBS algorithm.

3.3. Performance of the Cross-Range Resolution in KA-DBS

Assuming that the prediction factor is 0.5 in the proposed KA-DBS, then the CPI length in each
azimuth angle can be estimated as:

T̂a = 2NTr = 2Ta (31)

Now, the Doppler resolution in the proposed KA-DBS method is approximately given as:

δ f̂d =
1
T̂a

=
δ fd
2

(32)

Since the equivalent number of pulse (i.e., the CPI length) is doubled in the proposed KA-DBS
imaging algorithm, a finer Doppler frequency resolution can be achieved. Therefore, the sharpening
ratio in KA-DBS is given as:

K̂a = Δ fd/δ f̂d = 2Ka (33)

As illustrated in Equation (33), the sharpening ratio K̂a is theoretically improved by a factor of 2
compared to the conventional DBS imaging algorithm. Therefore, a high cross-range resolution and
large sharpening ratio can be achieved in the proposed KA-DBS imaging framework.

3.4. Super-Resolution Imaging Algorithm Based on KA-DBS

So far, the implementation of the proposed KA-DBS super-resolution imaging approach for WAS
radar has been described. Figure 5 below shows the whole imaging procedure.

Figure 5. Process of the proposed KA-DBS processing approach.

In Figure 5, first, range migration corrections and range compression are utilized to process the
raw echo data. Second, the Doppler centroid estimation parameter is estimated, and the Doppler centre
of the signal is modulated to zero frequency, which is quite useful for the latter sub-image stitching
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process. Third, the proper AR predictor factor is set, and the AR parameter can be data-driven based
on the Levinson recursion algorithm. Fourth, the forward range compressed data prediction and
the backward range compressed data prediction are performed simultaneously. Then, the forward
predicted range compressed data, the backward predicted range compressed data and the original
range compressed data are merged together to form a newly merged data. After that, the Doppler
analysis is performed to form the DBS sub-image. Finally, the final fan DBS image is formed by
stitching all the DBS sub-images based on the affine transformation [9]. The comparison of different
super-resolution methods is demonstrated in the following section.

4. Experimental Results

4.1. Simulation

The point target simulations are performed in Figure 6. The point targets are distributed as the
outline of an airplane. The simulation parameters are illustrated in Table 1.

 
(a) (b) 

 
(c) (d) 

Figure 6. Simulation results in the case of SNR=10 dB; (a) FFT algorithm; (b) Relax algorithm; (c) APES
algorithm; (d) KA-DBS algorithm.

Figure 6 shows the imaging results with FFT, Relax, APES and the proposed KA-DBS algorithm.
The SNR is set as 10 dB. From Figure 6, it can be seen that the imaging results based on the FFT
algorithm is a little blurred, especially for the closely spaced scatters in the red rectangle, while the
closely spaced scatters can be well distinguished in the imaging results based on Relax, APES and the
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proposed KA-DBS algorithm. Moreover, the image generated by the proposed KA-DBS algorithm is
much clear than that of the other algorithms.

The entropy curve of different imaging algorithms under different SNRs is shown in Figure 7.

Figure 7. Entropy curves with different algorithms.

From Figure 7, it can be seen that the entropies of all the algorithms are decreasing with the increase
of SNR. The proposed algorithm has the smallest entropy compared with the other algorithms when
the SNR is less than 15 dB, which is in accordance with the imaging results in Figure 6. An interesting
phenomenon can be seen form Figure 7 that the entropy of the proposed algorithm is a little higher
than that of the APES algorithm when the SNR is higher than 15 dB. This may be explained that the
APES algorithm has lower sidelobes than the proposed algorithm, and the lower sidelobes contribute
more in the process of entropy computing under the high SNR situations for the simple simulation
scene. The simulation results demonstrate that the proposed KA-DBS imaging algorithm outperforms
the other algorithms.

4.2. Real Data

We study the performance of the newly proposed KA-DBS algorithm by resorting to real data set
in this section. The experimental data collected on the wide-area surveillance mode of an airborne
radar system is selected. The experiment radar parameters are illustrated in Table 2.

Table 2. Radar System Parameter.

Parameters Value

Time width 24 us
Band width 40 MHz

Pulse repetition frequency 2500 Hz
Scanning area 45◦~135◦

Coherent pulses 128
Range gate number 4096

The DBS imaging results using different algorithms (i.e., the conventional FFT-based, Relax-based,
APES-based and the proposed KA-DBS algorithm) are given in Figure 8. In KA-DBS, the predicted
forward and backward pulse number is half of the pulse number in one CPI. The SNR is about 18 dB in
the experiment. All the sub-images are stitched together based on the affine transformation algorithms [9].
In Figure 8a, the image in the conventional FFT-based algorithm suffers from blur. Moreover, it is obvious
that the imaging results become clear and clear from the upper-left part of Figure 8 to the lower-right part
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of Figure 8. And the imaging result based on KA-DBS in Figure 8d performs the best. To further analyze
the imaging results, Figure 9 shows the same zoomed in patch of Figure 8.

  
(a) (b) 

  
(c) (d) 

Figure 8. Imaging fan results; (a) FFT algorithm with 128 pulses; (b) Relax algorithm with 128 pulses;
(c) APES algorithm with 128 pulses; (d) KA-DBS algorithm with 128 pulses.

From Figure 9, it can be found that the proposed KA-DBS algorithm can focus the scene much
clear than the other algorithms, and the texture information can be easily distinguished. For example,
the roads in Figure 9d are much thinner than that in Figure 9a–c. This can be explained that the forward
and backward predicted pulses in each CPI are well utilized to improve the cross-range resolution in
KA-DBS imaging.

In order to further verify the proposed algorithm, the coherent pulse number is changed from
32 to 64, and the selected pulse is the central part of the echoed signal. For example, the 49th to the
80th pulse in each azimuth angle is selected to form the 32 pulses data set, and the 33rd pulse to the
96th pulse in each azimuth angle is selected to form the 64 pulses data set. Different algorithms with
different pulses are compared in Figure 10. Figure 10a1–d1 are the imaging results with 32 pulses,
and Figure 10a2–d2 are results with 64 pulses. From the upper-left to the lower-right, FFT-based,
Relax-based, APES-based and the proposed KA-DBS algorithm are given. It can be seen that the
imaging results become better and better from the upper-left part of Figure 10 to the lower-right part
of Figure 10.

The zoomed in patch of the same zone in Figure 10 is shown in Figure 11. From Figure 11, we
can see that the imaging results with 64 pulses are much clear than that with 32 pulses for the same
imaging algorithm. Moreover, the image based on FFT method under 32 pulses is the most blurred
while the image based on the proposed KA-DBS method under 64 is the most clear. The road, farmland
and other detailed information can be well distinguished in the proposed KA-DBS imaging results.
Therefore, the proposed KA-DBS algorithm can improve the cross-range resolution at the situation of
short dwell time.
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(a) (b) 

  
(c) (d) 

Figure 9. Locally imaging results; (a) FFT algorithm with 128 pulses; (b) Relax algorithm with 128
pulses; (c) APES algorithm with 128 pulses; (d) KA-DBS algorithm with 128 pulses.

Figure 10. Cont.
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Figure 10. Imaging fan results; (a1) FFT algorithm with 32 pulses; (b1) Relax algorithm with 32 pulses;
(c1) APES algorithm with 32 pulses; (d1) KA-DBS algorithm with 32 pulses; (a2) FFT algorithm with
64 pulses; (b2) Relax algorithm with 64 pulses; (c2) APES algorithm with 64 pulses; (d2) KA-DBS
algorithm with 64 pulses.

  
(a1) (b1) 

  
(c1) (d1) 

Figure 11. Cont.
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(a2) (b2) 

  
(c2) (d2) 

Figure 11. Locally imaging results; (a1) FFT algorithm with 32 pulses; (b1) Relax algorithm with 32
pulses; (c1) APES algorithm with 32 pulses; (d1) KA-DBS algorithm with 32 pulses; (a2) FFT algorithm
with 64 pulses; (b2) Relax algorithm with 64 pulses; (c2) APES algorithm with 64 pulses; (d2) KA-DBS
algorithm with 64 pulses.

5. Discussion

In this part, we will evaluate the imaging performance of the KA-DBS algorithm with the other
imaging algorithms under different CPI lengths. To estimate the imaging quality, entropy is always
utilized, which can be defined as [8]:

E = −
M∑

m=1

N∑
n=1

pm,n log(pm,n) (34)

where the probability distribution function is:

pm,n =
I2
m,n

M∑
m=1

N∑
n=1

I2
m,n

(35)

In Equation (35), Im,n (m = 1,2, . . . ,M, n = 1,2, . . . ,N) is the concerned image, which is an
M×N matrix.

The entropy curves of the wide-area image and the local image are shown in
Figure 12a,b, respectively.
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(a) (b) 

Figure 12. Entropy curves with different algorithms (a) the fan images (b) the local images.

From Figure 12, we can find that the entropy of the KA-DBS algorithm is the lowest, which means
that a higher cross-range resolution can be acquired. Based on above experimental results, it proves
that the proposed KA-DBS algorithm outperforms the other algorithms.

6. Conclusions

In this paper, we have considered the problem of high cross-range resolution DBS imaging for
airborne WAS radar in short dwell time situations. A knowledge-aided Doppler beam sharpening
(i.e., KA-DBS) imaging algorithm is proposed. We have investigated the spatial property of the echoed
signal, and the spatial continuity model of the airborne radar system is constructed. By exploiting this
spatial continuity knowledge, the forward and backward pulse information outside the observed CPI
is well predicted based on the AR technique. Then the predicted pulses are merged together with the
original pulses to form the newly merged pulses. Finally, DBS imaging is performed. The number of
newly merged pulses in the proposed KA-DBS algorithm is twice larger than that in the conventional
DBS algorithm with the same dwell time. Therefore, the cross-range resolution is improved by a factor
of two in KA-DBS. Real airborne experiments have demonstrated that the proposed KA-DBS algorithm
performs well with short dwell time.
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Abstract: Synthetic Aperture RADAR (SAR) is a radar imaging technique in which the relative motion of
the sensor is used to synthesize a very long antenna and obtain high spatial resolution. Several algorithms
for SAR data-focusing are well established and used by space agencies. Such algorithms are model-based,
i.e., the radiometric and geometric information about the specific sensor must be well known, together
with the ancillary data information acquired on board the platform. In the development of low-cost and
lightweight SAR sensors, to be used in several application fields, the precise mission parameters and the
knowledge of all the specific geometric and radiometric information about the sensor might complicate
the hardware and software requirements. Despite SAR data processing being a well-established imaging
technique, the proposed algorithm aims to exploit the SAR coherent illumination, demonstrating the
possibility of extracting the reference functions, both in range and azimuth directions, when a strong
point scatterer (either natural or manmade) is present in the scene. The Singular Value Decomposition
is used to exploit the inherent redundancy present in the raw data matrix, and phase unwrapping and
polynomial fitting are used to reconstruct clean versions of the reference functions. Fairly focused images
on both synthetic and real raw data matrices without the knowledge of mission parameters and ancillary
data information can be obtained; as a byproduct, azimuth beam pattern and estimates of a few other
parameters have been extracted from the raw data itself. In a previous paper, authors introduced a
preliminary work dealing with this problem and able to obtain good-quality images, if compared to the
standard processing techniques. In this work, the proposed technique is described, and performance
parameters are extracted to compare the proposed approach to RD, showing good adherence of the
focused images and pulse responses.

Keywords: SAR system; efficient focusing of SAR data; inverse problem; remote sensing; SAR
data-focusing; synthetic aperture radar; Singular Value Decomposition; blind deconvolution; signal
processing; parameter estimation; computational modeling

1. Introduction

The Synthetic Aperture Radar (SAR) [1–4] can acquire very-high-resolution images of the inspected
area using high bandwidth of the transmitted coherent illumination signal by means of an accurate
processing of the ground-received returns. In a standard structure, the system is composed of a platform
(i.e., airborne or satellite) using the same antenna both for the transmitting and receiving phases; the target
scene is repeatedly illuminated with pulses of radio waves. The signal echoes are emitted at equispaced
positions along the satellite track, and their returns are received in the band of the transmitted pulse,
converted, and IQ-sampled to produce the baseband complex raw data. A baseband algorithm implements

Sensors 2019, 19, 1649; doi:10.3390/s19071649 www.mdpi.com/journal/sensors
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the synthetic aperture to produce the equivalent return of a very narrow azimuth antenna beam. Three
main algorithms are available to obtain such high-quality images, namely Range Doppler [5] algorithm,
Ω-K [6] algorithm and Chirp Scaling algorithm [7]. All such algorithms, which perform equally in terms
of focused image quality [5], require precise geometric acquisition parameters and radiometric parameters.
Such parameters are always available as a side documentation of each acquired image.

Figure 1 reports the acquisition geometry of a SAR system. The synthesis procedure in focusing the
acquired data is carried out by coherent integration. Each target on the ground contributes to the radar
return on several subsequent transmitted pulses. In SAR two main directions are important to focus the
data: slant range direction, in which transmitted pulses travel, and azimuth direction, i.e., the direction of
sensor movement. The precise knowledge of the geometry of the acquisition allows to add in phase all the
contributes of each single point scatterer on the ground present in the data to obtain the focused image.
The wider the beam, the smaller the detail acquired by any return, but the larger the integration size of the
track contributions to synthesize the image. The practical azimuth resolution is limited by the PRF choice
(the Pulse Repetition Frequency of transmitted pulses used for coherent illumination of the target area),
i.e., the azimuth sampling frequency.

Figure 1. SAR Data acquisition geometry.

In several cases, due to imprecise knowledge of the satellite or aerial vehicle acquisition geometry
or due to the presence of motion in the scene (ships, cars, etc.) a bad quality of the image is obtained
(defocusing); many authors addressed the problem of a post processing procedure able to exploit the
residual correlation present in data to perform accurate focusing of the image. Motion compensation is very
important to achieve high resolution in SAR imagery. The phase errors that may be present on the focused
image can be compensated through Inertial Measurement Unit (IMU) and Global Positioning System
(GPS) side information. However, the need to measure and add such information to the ancillary data
complicates the burden on any motion compensation system. In this cases SAR autofocus algorithms [8–12]
are used to solve the problem in a blind mode. SAR autofocusing algorithms are categorized into three
types: sub-aperture-based algorithms, prominent point-based algorithm, and metric-based autofocus.
Most of the traditional autofocus algorithms assume there are strong scatters in the scene. Compared to
the other conventional autofocus methods, the metric-based methods can work well without prominent
points but deal with an already focused image.

The defocused image can be considered as the perfect focused image convoluted with the point
spread function (PSF) caused by the phase error. Only recently and with the advent of lightweight and
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cheap SAR systems and UAV and drones, the problem of high cost of the system has pushed research to
find new solutions in the development of such systems that imply in some cases the development of new
techniques trying to focus the acquired raw data matrix using a subset of the ancillary data parameters
and in presence of strong geometry anomalies that occur in such cases [13–18]. As the availability of
the required parameters has always been guaranteed, at our knowledge, none has been done to develop
algorithms able to estimate the reference function to be used as the focusing operator from the data itself
and develop a completely blind focusing procedure.

While all the available algorithms to solve the SAR data-focusing problem are model driven, as they
use ancillary parameters information to model the inverse problem in radar soil backscatter, in this paper
a data-driven approach to develop a totally blind SAR data-focusing, based on the use of the Singular
Values Decomposition (SVD) and LMS fitting of the phase information extracted from singular vectors is
presented, able to obtain good image quality working on the complex SAR raw data matrix in absence
of any information about the sensor. The proposed approach, at the state of the art, works well in the
presence of a strong point scatterer in the scene.

The main idea is to exploit all the inherent information intrinsically stored in the data itself to
extract the focusing reference functions to be used in a Ω-K or RD algorithm to obtain the Single Look
Complex of any SAR sensor without even knowing important ancillary data parameters, needed by all the
SAR focusing processors, such as the distance at the center of the beam, the radar sampling frequency,
the transmitted chirp bandwidth, the chirp rate, and the chirp duration, the radar wavelength, the PRF,
the sensor speed and the off nadir angle, used in data acquisition.

The proposed approach has been tested on several images of ERS raw data, made accessible for the
scientific purpose from the Italian Space Agency (ASI) and the cross comparison with the state of the art
focusing algorithm were carried out. The results indicate a good accordance to the standard focusing of
obtained images with respect to the officially distributed ones. Also, the algorithm can reveal interesting
and convenient in several application fields such as local zones monitoring by SAR systems carried by
small lightweight and low-cost aerial unmanned vehicles. Modern hardware technology permits to reduce
the size and weight of SAR systems into small and cheap flying platforms that can be conveniently used
with low-cost platforms and flying drones. High-resolution microwave images of the observed scene
can be obtained under various environmental conditions. Thus, UAV-SAR attracts growing interest in
recent years [14]. The possibility of developing commercial low-cost systems is anyway still limited by
the complication of the development of SAR due to the precise need for mission parameters to obtain
good-quality images. Such parameters are very unstable for this kind of applications and the logging
system introduces a complication, increasing their cost.

With respect to the reference [19] in which authors have preliminary proposed the blind technique
to focus SAR data in the presence of a point scatterers in the scene, in this paper a more complete
discussion about the quality of the focused image is carried out. To define the resolution in the range
and azimuth directions, point scatterers responses are extracted from the image and azimuth and range
cuts are compared with Range Doppler focusing of the same image. Also, an interferometric pair has
been processed and the interference fringes have been extracted to show the good performance and phase
stability of the proposed technique.

2. Materials and Methods

The proposed approach aims to show that the information needed to obtain the focused image can
be extracted from the raw data itself when a point scatterer (either natural or manmade) is present in the
scene. The problem is addressed with pattern recognition techniques.
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In this section, the information exploitation method is presented. Initially the SVD approach used to
extract the maximally correlated information inherently present in the image is introduced. The useful
information of chirp in range and in azimuth are shown as extracted from the raw data. The SVD
decomposition is discussed to explain the correlation exploitation mechanism. Once defined, the two
reference functions extracted by the SVD, are used as inputs of a procedure needed to build clean versions,
by LMS fitting procedure on the unwrapped phases both in range and azimuth. Clean versions of such
signals are used to define the reference functions that are used to obtain the focused image. The reference
functions are finally applied to obtain the focused image. To validate the algorithm, the proposed approach
is then tested both on simulated data and on real data images. Focusing results have been carried out on
several ERS1/2 raw data images showing the feasibility of the approach.

2.1. Blind SAR Data-Focusing Algorithm

The acquired data are the result of backscattering contribution of the ground at the SAR frequency.
As a coherent illuminating source is used, the received data refer to several observations of the same scene
taken in different points along the sensor platform trajectory. The radar transmitted pulses are stable in
time, so the received returns show a strong azimuth correlation; several subsequent range lines in the raw
data matrix contain roughly the same information so that the exploitation of coherence of the received
signal can be attempted. This hypothesis allows the use correlation-based algorithm to extract useful
information from data. The use of SVD technique can give us information about the reference functions to
focus the image.

2.2. SVD—Signal Processing

SVD [20], in its economy formulation, is a standard algorithm able to decompose a given rectangular
matrix into the product of three matrices, U, S, and V.

X is the data matrix of size M · N, U, and V are orthonormal matrices, respectively named the le f t
and right singular vectors matrices; each singular vector, either left or right, is represented by the generic
column of the matrix U or V, respectively. In analytic form, The SVD decomposition can be written
simply as:

X = U · S ·VH (1)

where the superscript (·)H represents the transpose and conjugate operator (Hilbert operator). U has
the same size of the matrix X while S is a real valued diagonal matrix of order N and V is a complex
orthonormal square matrix of order N:

U
H ·U = IN (2)

and

V
H ·V = IN (3)

S is the matrix containing the singular values of the matrix decomposition, sorted along the diagonal from
the highest value to the lowest.

If a right multiplication for matrix V of both terms in (3) is applied, it can be usefully restated in
another form:

X ·V = U · S = E (4)
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The V matrix is the matrix performing linear combinations of the columns of the data matrix X to
obtain E, an orthogonal matrix. The right multiplication of the matrix U with S only scales the vector
columns in U not affecting the orthogonality property.

As a simple example, the SVD decomposition of the matrix X made of only two columns requires the
right singular vector matrix V an orthonormal matrix of size 2. The V matrix in this simple case represents
a complex Gibbs rotation matrix. In this very simple case, the operation carried out by the decomposition
becomes clear: [

�x1 �x2

]
·
[

c s
−s c

]
=
[
�e1 �e2

]
(5)

The E matrix is thus obtained as a simple linear combination of columns of X. V is the Gibbs rotation
matrix and:

|c|2 + |s|2 = 1 (6)

In a geometrical representation we can consider c and s parameters able to scale, rotate and phase
shift vectors they multiply so that their sum and difference mixtures give the two orthogonal vectors
in E. The modula of such vectors represent the singular values; it is easy to demonstrate that they are
proportional to the estimates of the standard deviations of the resulting signals in E. When applied to
a multicolumn matrix, this procedure tends to accumulate all the strongly correlated information on
columns in the first left singular vector.

2.3. SAR Raw Data SVD Decomposition

When the X matrix to be decomposed is the raw SAR data matrix, the row index is the along track
direction (azimuth) while the column index represents the slant range. The coherent illumination due to
the transmission of the chirp produces very correlated information; in particular, in the azimuth direction
the correlated information is the doppler phase history due to the scanning process. The expected result
is that the first left singular vector should closely be related to the doppler history of the SAR system.
As in E the transformed vectors are independent, the mostly correlated information in the signals in the
columns of X is stored in the first singular vector in E, while the remaining part is in the others. Also,
accordingly to the SVD decomposition scheme, the right singular vectors contain the mixing coefficients
able to orthogonalize the raw data matrix.

This information is closely related to the transmitted information in the slant range direction. All
the rows in the data matrix contain the same information, i.e., the transmitted chirp, delayed and phase
shifted of an amount depending on the SAR geometry. The data are, again, strongly correlated, so the SVD
decomposition will store in the rotation matrix V all the coefficients able to phase shift the subsequent
transmitted chirps in a way that their sum convey the most important part of the global transmitted energy
of the pulse. The coefficient must then be closely related to both the geometrical properties of the SAR
acquisition and the characteristics of the transmitted chirp. This consideration will be illustrated in the
next paragraph. Basing on these observations, a simple and direct scheme to obtain a good focusing of the
raw data in a blind mode has been devised.

3. Discussion

3.1. B-SAR—Blind SAR Data-Focusing Algorithm

The focusing algorithm acts as a simple SVD decomposition. Once obtained, the first left and first
right singular vectors can be used to define properly the reference functions to be used in the focusing
procedure. Figure 2 shows the plot of the elements of the diagonal matrix S. As the matrix E contains
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orthogonal components, the energy of the whole image can be computed as the sum of the squares of the
singular values. In the matrix a large part of the energy remains confined in the first left and first right
singular vectors of matrices U and V.

An example of the first right and first left singular vectors of the SVD decomposition are shown
in Figure 3.

From the simple observation of the first left singular vector of the matrix U two parameters can be
extracted: the antenna beam pattern in azimuth and the phase history of the azimuth reference to be used
in the focusing procedure. To select the proper parts of the two singular vectors for the focusing procedure
a threshold was selected aiming at retaining the portion of the signal with amplitude greater than a given
percentage of its peak value. In this paper, the 10% was selected. This allows to define the reference
functions both in range (working on the right singular vectors) and in azimuth (left singular vectors).

Figure 2. Singular values for the SAR raw data matrix decomposition. On abscissa the indexes of the
singular values, on the vertical axis the magnitude. The first singular value is very high compared to the
others showing that a large correlation was present in the raw data matrix and exploited in the first left and
first right singular vectors.

Figure 3. Real parts of first right and first left singular vectors for the SAR raw data matrix decomposition.
The range amplitude results almost constant, as the transmitted chirp is assumed to be. The azimuth
singular vector is shaped by the azimuth antenna beam pattern.

In real cases, a noisy appearance of the two signals is expected (see Figure 3); for this reason, instead
of using the two so extracted reference functions in the focusing procedure, the unwrapped phases of such
functions were extracted to define their clean versions and reduce the noise effects on the focused image.

Starting from the extreme points of such estimated phase functions a LMS polynomial fitting was
used to construct a clean version of the phase histories to be used in the description of the two reference
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functions, both in azimuth and in range. The unwrapped phase of the reference function in either
range or azimuth was approximated by a polynomial function and used to clean up the phase of the
reference functions.

Stated y the polynomial function to be used to approximate the unwrapped phase of the reference
function, the set of coefficients was computed via a LMS fitting procedure.

y =
N

∑
i=1

ai · xi (7)

Here, ai represent the polynomial coefficients and x the index of samples of the reference function.
Figure 4 represents the three diagrams of the unwrapped phase of the reference function, the

polynomial approximation, and the phase error.
The reference function unwrapped phase estimated with the described procedure was selected in an

interval of values in which the phase difference between subsequent samples is not larger than π. This
choice allows to contain the aliasing effect due to the sampled phase history. To further reduce the aliasing
effect at borders of the reference functions, raised cosine tunable length windowing was used.

Figure 4. Phase as extracted from the first left singular vector (blue), the phase polynomial LMS
approximation (red) and the phase error (yellow).

3.2. Experimental Results

In this section, a simulated experiment of a point target in Additive White Gaussian Noise (AWGN) is
presented to show the results that can be obtained using the SVD decomposition; here, all the information
inherently present in the raw data file is exploited; in the successive subsections, results of the focusing
procedure are presented for real SAR raw data.

3.2.1. Simulated Experiment

To test the performance of the proposed algorithm a simulated point target on a noise floor has been
used. The simulated azimuth antenna beam pattern was shaped by a Hanning window. The simulated
raw data matrix was affected by AWGN with a low SNR. The ERS mission parameters are used in the
simulation and reported in the Table 1.
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Table 1. Parameters used to simulate raw SAR data.

Parameters Units

Carrier Frequency fc = 5.300 GHz
Chirp Duration Tc = 37.12 μs
Chirp Bandwidth Bch = 15.50829 MHz
Sampling Frequency fs = 18.962 MHz
Satellite height h = 700 km
Satellite speed vsat = 11.75 km/s
Off Nadir Angle θ = 23 deg
Squint Angle φ = 0 deg

The obtained raw data matrix was decomposed using the SVD algorithm. A large part of the energy
in the data matrix is concentrated in the first singular value, clearly stating that the first left singular vector
(i.e., the first column of matrix U) should contain the orthogonal signal with maximum energy in the data.

To select the proper length of the range chirp history and reconstruct a clean reference in range,
a thresholding procedure was used; after the SVD decomposition, the reference signal power is much
higher than the background noise, so this procedure reveals effective. In this case, the selected range time
duration by the choice of a threshold at 10% of the signal peak value was efficient. After the procedure
described in the previous subsection, a clean range reference function was obtained.

The same procedure was carried out for the azimuth reference, with a slight more care: the antenna
beam pattern estimated in this way is not always effective due to the growing attenuation and the joint
influence of azimuth and range beam patterns with the slant range and the possible presence of wide
strong scatterers that can reduce the quality of the estimated pattern. Also, it is not clear, in this case,
where the azimuth phase history should be stopped. The main objective is to limit the phase history in a
proper way to avoid azimuth aliasing. The phase history was selected in a generally asymmetric interval
around the peak of the unwrapped phase of the reference function: the possible presence of a squint angle
in the true acquired data forces to select the proper doppler phase history to cover all the useful part of
the extracted signal phase. As for the range, the thresholding procedure used in the azimuth reference
definition was limited to the interval in which the signal was above the 10% of the estimated peak of
the beam pattern. Once extracted, anyway, the selection of the proper portion of the phase history to be
used in the construction of a clean reference was made basing on the phase, as discussed previously (cfr.
Figure 4). Tunable length tapered tails were used to control aliasing effects without reducing severely the
azimuth resolution of the focused image, both in the range and azimuth reference functions.

Figure 5 reports the obtained reference functions used to focus on range and azimuth the raw data.
Figure reports the range (left column) and azimuth (right column). On the rows, the phase, the real part,
and the spectrum of each reference function is presented.

Figure 6 reports the obtained focusing results for the simulated case. Specifically, the figure shows the
real part of the simulated (with additive gaussian noise) raw data the first left and right singular vectors as
extracted from the SVD decomposition, the 3D version of the (× 10 interpolated) pulse of the simulated
raw data focused with the B-SAR algorithm, the two cuts, in range and azimuth of the interpolated focused
pulse. The proposed approach is thus simple and direct and allows to extract useful information to focus
the received data.

It should be pointed out that the possibility of obtaining good estimates of the range and azimuth
chirp responses is due to the clear presence of a point scatterer with a sufficiently high signal to noise ratio
that conveys a large part of the data matrix energy.
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Figure 5. Range and Azimuth references to be used in the focusing procedure. Left range, right azimuth.
The three rows present extracted phase histories, the real parts of the reference functions and their spectra.

Figure 6. Results of simulated experiment. Top left: real part of the simulated (with additive gaussian
noise) raw data; top right: First left singular vector as extracted from the SVD decomposition. center left:
The 3D version of the (× 10 interpolated) focused pulse detail of the simulated raw data with the B-SAR
algorithm; center right: First right singular vector as extracted from the SVD decomposition. It refers to the
azimuth direction, showing a (hamming simulated) shape of the antenna beam pattern; bottom left: the
range cut of the interpolated focused pulse; bottom right: the azimuth cut of the interpolated focused pulse.
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Once the azimuth and range reference functions have been defined, focusing can become simple and
can be carried out with either RD or Ω-K algorithms. In this paper, the frequency approach has been used
to obtain the focused image.

A block diagram of the complete algorithm is reported in Figure 7.

3.2.2. Real SAR Raw Data-Focusing

The SVD decomposition was then applied as a test of the proposed approach to several ERS raw data
matrices without any knowledge of the mission ancillary data.

The thresholding applied on the range reference function estimated a length of the range chirp of
704 samples. In Figure 8, the focused ERS image obtained with the proposed algorithm (B-SAR) and the
focusing obtained by a standard Range Doppler SAR processor are compared.

The better appearance on the focused image is due to the normalization process. The images have
been normalized with the same algorithm that amplifies the focused revealed image to a fixed value after
normalization to the standard deviation of the whole image. The appearance of the image brightness is
different because of the circular convolution in the Range Doppler procedure due to the frequency domain
processing (its effect can be noted on the horizontal axis due to the presence of a periodic structure in the
image that folds around the image). No zero padding was used in this procedure in the Range Doppler
focusing software, while in the proposed algorithm the zero padding was used both in range and azimuth
directions to avoid the circular convolution distortion. This reduces the amplitudes of large portions of
the image, giving rise to a lower standard deviation and in the normalization a higher factor. This higher
factor enhances very much the point scatterer that appears larger on the image, but the range and azimuth
cuts in Figures 9 and 10 allow a better comparison of the performances.

Figure 7. B-SAR Data Processing block diagram.

3.3. Semi-Quantitative Evaluation of Focusing Performance

In this paragraph the comparison between the range and azimuth cuts of the proposed B-SAR and
RD algorithm is carried out.

In particular, in Figures 9 and 10 the range and azimuth cuts and the contour shaping of the same point
scatterer on respective images obtained focusing the raw SAR data matrix are presented, showing how the
range focusing obtained by the proposed procedure seems to adhere more precisely to the theoretical one
than the RD focusing.
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On the other side, at a lower resolution achieved by RD in the range direction, a higher rejection of
side lobes is obtained, showing that the clean aspect of the focused image is due to a higher smoothing of
range lines.

For the two focused images, a comparison of the amplitude statistics for the images focused with
standard RD approach and B-SAR are plotted in Figure 11. What is evident is a close adherence of
the statistics of the B-SAR image to the RD one, showing anyway a more compactness in the values,
symptom of an imperfect focusing of highest peaks for this approximated method. The possibility of
using the proposed algorithm in several applications in the field of Earth observation, interferometry and
multi-temporal interferometry should be a goal to pursue even when mission parameters are unknown.
To assess the performance obtained by the proposed approach with respect to the specific parameters of
the ERS missions, a comparison of some specific radiometric parameters was carried out. The radiometric
parameters table for ERS mission is reported in the Table 2.

Table 2. ERS radiometric parameters.

Parameter Units

Carrier Frequency fc = 5.300 GHz
Chirp Duration Tc = 37.12 μs
Chirp Bandwidth Bch = 15.50829 MHz
Sampling Frequency fs = 18.962 MHz

Figure 8. Sample of focused image with the proposed algorithm (upper) compared with the standard
focusing obtained via Range Doppler algorithm (lower). ERS 1—Matera. The red circle indicates the
point scatterer.

Using these parameters, the theoretical number of samples of the transmitted chirp can be computed
as the product of the ERS sampling frequency and the chirp duration, with a close adherence with our

97



Sensors 2019, 19, 1649

estimate of 704 samples of the proposed technique. Also, the theoretical relative bandwidth of the chirp
can be obtained as the ratio between the chirp bandwidth and the sampling frequency. For our algorithm,
the estimate of this parameter can be computed as the equivalent bandwidth of the reference in range
function. Also, in this case a close adherence of the theoretical and experimental relative bandwidth has
been obtained, as reported in the Table 3.

Table 3. Comparison of Theoretical and Estimated Chirp Relative Bandwidth.

Value

Theoretical Relative Bandwidth 0.8178
Estimate of the Relative Bandwidth 0.8164

Figure 9. Range Doppler algorithm. Point scatterer image, contour plot, and range and azimuth cuts.

Figure 10. B-SAR algorithm. Point scatterer image, contour plot, and range and azimuth cuts.
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3.3.1. B-SAR Phase Stability

An interesting parameter for the proposed approach for blind SAR data-focusing is its phase stability:
the interferometric image has been computed on real ERS1/2 tandem pair pass over the Fucino region
in Italy. Figure 12 shows one of the focused images of the tandem pass pair, while Figure 13 shows the
(5 looks, slope corrected) interferometric image obtained by B-SAR focusing algorithm with superimposed
the intensity image. A close correspondence between the flat zones in the valley with the smooth variations
of the phase seem to assess the good behavior and the phase stability of the proposed processing technique.

Figure 11. Histogram of focused images amplitudes comparison.

3.3.2. Processing Time

The description of the time processing required by the proposed approach to obtain the focused
image is reported in Table 4 with respect to the original size of the raw data matrices. The experiments
have been conducted on a desktop pc equipped by an Intel Core i7 Processor with clock speed of 3.4 GHz
and a total number of four cores, and a memory of 16 GB.

Table 4. Processing times.

Image Name [Rows, Cols] (Complex) Proc. Time [s]

Caramanico 1 [2001, 4001] 21.049431
Caramanico 2 [2001, 4001] 20.528043

Flevoland [1101, 5000] 13.358860
Matera [2048, 2048] 10.970114

Simulated Pulse [776, 2001] 2.473084
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Figure 12. B-SAR focusing. Caramanico site, Fucino Valley, Italy.

Figure 13. B-SAR, 5 looks, slope corrected interferometric image obtained by B.SAR focusing algorithm
with superimposed the intensity image. Caramanico site, Fucino Valley, Italy.

The processing times needed to obtain the SLC/PRI images reported in the table are comparable to
the standard processing times of other algorithms.

4. Conclusions

In this work the SVD decomposition has been used to extract correlated information from SAR raw
data on scenes where a strong point scatterer is present. The use of the SVD is a sufficient information
allowing the development of a simple and direct procedure to focus the acquired data without the need
for information about the sensor attitudes, path, and SAR system parameters. The aim of this paper is to
define a simple and direct method to obtain good focused images for several application, such as aerial
archaeology inspection, agriculture, change detection for land usage and so on. The availability of a blind
focusing algorithm can allow the development of simpler SAR systems to be used in low-cost applications
in which the highest precision in the focused image is not a strict requirement.
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To deal with the problem of precise focusing of the entire image taking care the range space variant
system impulse response can be addressed, in a post processing way, using one of the several available
autofocusing techniques available in the scientific literature.

The proposed algorithm, at the state of the art, is sufficient to obtain a fair focused image. The
appearance of the focused image obtained is comparable with standard RD focusing, as shown in Figure 9.
To assess the performance of the proposed approach, point scatterer responses have been compared
between the RD and B-SAR focused images, showing a pretty good correspondence.

Also, the problem of phase stability of the algorithm has been addressed, computing the interference
fringes corresponding to an ERS 1-2 tandem mission, showing also good adherence of the specific local
orography. The main limitations of the proposed algorithm depend on its need for the presence of a strong
point scatterer in the imaged zone. This limitation is payed back by its simplicity and the lack of need for
the ancillary parameters file in the focusing procedure, aspect that simplifies both the processing and the
development of simple and cheap SAR systems to be used in local monitoring also with the recourse to
simple aerial unmanned vehicles such as drones.

The focused image is obtained, at the state of the art, by SVD analysis. This algorithm performs
correlation exploitation of the contributes of the several azimuth lines. This leaves some room for further
analysis as the residual correlation is inherently present in the lower singular vectors and not only on
the first one, meaning that better image quality can be addressed using all the correlated components in
the SVD decomposition. Of course, the problem is crucial, and attention is being taken on this subject.
A precise focusing algorithm taking care of the Range Cells Migration Compensation is the goal of our
future work. Recently, some authors have presented good results for SAR With Nonlinear FM Chirp
Waveforms [21]. This specific case has not been addressed in this paper and will be the goal for future
research. The computational aspects to obtain good-quality focused images are also important: recently
some studies about efficiency have been presented [22] exploiting the multicore-based architectures of
modern processors. Also, this aspect needs further research, as the proposed approach pays the cost of
no information available for the SAR sensor with an increase of computational complexity. Also, the
possibility of blind focusing SAR raw data, here addressed only in the presence of a point scatterer (e.g., a
corner reflector or a transponder), in the general case of SAR strip map data-focusing represents the field
of application for future work.

The proposed algorithm, developed in MATLAB, is distributed under the Noncommercial—Share
Alike 4.0—International Creative Common license by the authors.
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Abstract: The present work addresses pulsar Crab Nebula emissions from point of view of their
modeling and applications for asteroid detection and imaging by applying inverse synthetic aperture
radar (ISAR) principles. A huge value of the plasma’s effective temperature is a reason for pulsar
emission coherency, a property of great practical meaning for a space objects navigation, localization
and imaging. Based on measurement data obtained by Goldstone-Apple Valley and Arecibo radio
telescopes, an original time frequency grid mathematical model of pulsar emissions is created. Passive
ISAR scenario, a space object’s geometry and a model of pulsar signals reflected from the space
object’s surface are also described and graphically illustrated. A new range compression approach
for ISAR imaging is suggested and demonstrated. In order to reduce the level of additive white
Gaussian noise in signals and enlarge the signal to noise ratio in the final image, coherent summation
of multiple complex images is applied. To prove the correctness of the geometry, signal models and
theoretical analysis, results of numerical experiments are provided.

Keywords: passive ISAR asteroid imaging; pulsar emission signal modeling

1. Introduction

The pulsars are rotating neutron stars formed due to the collapse of massive stars core. They
are the densest form of matter in the Universe. During the collapse stage the preservation of angular
momentum causes the star to “spin-up” to a rotation period of order 10ms, whereas the preservation of
magnetic flux drives the magnetic field strength at the stellar surface up to 1012 gauss or higher, with
magnetic moments up to 1026 gaus-m3. Typical dimensions (radiuses) of white dwarfs which pulsate
with period τ = 1 s, and neutron stars with pulsation period 10−2 s are in the interval (1− 5)× 106 m [1].

The pulsar can be considered as a massive freely spinning top and a powerful particle accelerator
since the rotating magnetic field generates enormous electric fields that accelerate charged particles.
These accelerated particles emit electromagnetic waves at spin frequency (across the spectrum, from
radio waves to gamma-rays). Due to their enormous mass and relatively simple structure, pulsars are
exceptionally stable rotators whose timing stability rivals that of conventional atomic clocks. It is the
reason pulsar emissions to be used for spacecrafts radio navigation, asteroids detection, and imaging [2].
A navigation system based on celestial sources will be an independent positioning system and available
in any Earth orbit as well as in interplanetary and interstellar space [3–5]. The stellar navigation accuracy
depends on the emission’s time period, which for pulsars is with the high stability and accuracy.

Pulsar navigation tracking system based on the Doppler frequency measurement model and
pulsar timing and an interplanetary navigation and positioning system using pulsar signals is discussed
in [6,7]. The pulsar signal processing algorithm that consists of epoch-folding, matched filtering and
detection is presented and evaluated in [8]. A hybrid detection algorithm based on energy and entropy
analysis as an approach for spectrum sensing is considered in [9]. Principles of the pulsar navigation
in the solar system are described in [10].
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Pulsars are located on thousands of light years from Earth and can be considered as uninterruptible
sources of electromagnetic waves. It allows the object illuminated by the pulsar beam as an asteroid or
spacecraft, to be considered as a secondary emitter in compliance with Babinet’s principle. The diffracted
electromagnetic field is a superposition of partial fields reemitted by all illuminated parts of the asteroid
and carries information concerning its geometry and kinematics as a moving rigid body. The asteroid
has an average orbital speed of 25 km/s. However, asteroids orbiting closer to a sun will move faster
than asteroids orbiting between Mars and Jupiter and beyond. The average orbital speed of a main-belt
asteroid is 17.9 km/s, the orbital speed of Ceres. If the asteroid comes from far away (e.g., the Oort
Cloud), it will be accelerated by the Sun and achieve a velocity equal to the escape velocity from
the Sun at the location of Earth, which is 30 km/s. The orbital speed and the escape velocity differ
by a factor of 20.5. That is, an object falling from infinity toward the Sun, will have a speed equal to
30 × 20.5 = 42 km/s. Then the asteroid’s speed in the solar system varies from 17.9 km/s to 42 km/s.

In order to analyze and realize localization, navigation and imaging properties of pulsar emissions,
adequate mathematical models need to be built, which is one of the goals of the present research. From
point of view of pulsar emissions utilization, including localization, navigation and imaging, the most
appropriate emissions are those from Crab Nebula pulsar. In this sense, the attention of the present
work is on the signal modeling of the pulsar Crab Nebula emission and its passive inverse synthetic
aperture radar application for asteroid imaging. The passive ISAR scenario, signal structure, power
budget, image reconstruction and numerical experimental results are also discussed.

The remainder of the paper is organized as follows. In Section 2, a general description of Crab
Nebula pulsar emission based on radio telescope measurements is given. In Section 3, an overview of
synthetic and inverse synthetic aperture radar issues is suggested. In Section 4, passive ISAR scenario
and asteroid’s geometry are described. In Section 5, a pulsar signal model as a time frequency grid
and an algorithm of ISAR signal formation are described. In Section 6, a power budget, ISAR signal
processing and asteroid image reconstruction are analytically described. In Section 7, results of a
numerical experiment are provided and discussed. In Section 8, conclusion remarks are drawn.

2. Crab Nebula Pulsar Emission Based on Radio Telescope Measurements

It is known that powerful celestial sources with small angular diameters as quasars, sources of
hydroxyl radical (OH)-emission and pulsars, are characterized by huge values of effective temperature,
the main preposition for a coherent radiation mechanism [1]. The relativistic, magnetized plasma of
pulsars radiates energy of (1036–1038)/kB, where kB is the Boltzmann constant. This enormous value can
be achieved only based on the coherency, the most important feature of pulsar electromagnetic emissions.

There exist measurement data obtained by radio telescopes that can be used for signal modeling
purposes [11,12]. For instance, the mean profiles from the Crab pulsar consist of two frequency-
dependent components, the main pulse (MP) and inter-pulse (IP). They appear at 70 and 215 degrees of
the pulsar’s rotation phase, and can be identified from low radio frequencies to hard X-rays. The Main
Pulses of the pulsar Crab emission are of particular interest for localization, navigation and imaging
purposes. It is due to the coherency and stability of the Main Pulse’s repetition period with time
duration 0.033 s.

The results of the observation show that most giant main pulses consist of several microbursts.
The integrated intensity of pulsar flux is measured with a time resolution of 6.4 ns, whereas the
dynamic spectrum is plotted with 19.5 MHz spectral resolution and 25.6 ns time resolution. It is
worth noting that pulsar Crab emissions observed by Arecibo radio telescope are preliminary and
coherently de-dispersed.

In Figure 1a typical main pulse with three microbursts, registered between 2 and 10 GHz with
125 ns time resolution and 8 MHz frequency spectrum resolution using the Goldstone-Apple Valley
radio telescope is presented. The bar at the top right illustrates the generalized, over all frequency
channels, root mean square (RMS) power level in the time-frequency coordinates. The left panel shows
on-pulse (red) and off-pulse (blue) power as a function of frequency, integrated in time across the pulse.
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The high spikes in the on-pulse power correspond to strong, narrowband spikes within each microburst.
On the right panel the pulse shape at eight frequencies within the pulse is depicted. The selected eight
pulses are over-plotted in the top figure, where the dotted lines separate the on-pulse and off-pulse
regions used for the left panel. All powers are given in terms of off-pulse noise (RMS) [12].

Figure 1. Typical main pulse time-frequency structure of Crab Nebula’s pulsar emission registered in
Goldstone-Apple Valley radio telescope [12].

Based on characteristics of the main pulse defined in [5,11,12], it is worth noting that the main
pulse consists of several microbursts, the time dimension of which is ≤1 μs long at 8−10 GHz, with a
bandwidth ≥2 GHz. From measurement data depicted in Figure 1, the following inferences regarding
the structure of the pulsar emission can be made.

1. In frequency channels from 4 to 9 GHz, the structure of the main pulse is preserved. The main
pulse consists of microbursts almost with the same form. In each frequency channel three
monochromatic microbursts can be revealed, which can be described as Gaussian pulses with
different amplitudes.

2. The entire time-frequency record of the pulsar’s main pulse can be presented as a wideband
signal. Each frequency component preserves time delay and, respectively, phase components
induced by the object crossing the pulsar emission beam. The algebraic sum of all monochromatic
components in frequency channels determines a sinc function with maximum in the position of a
particular reemitting scattering point of the space object.

3. Synthetic and Inverse Synthetic Aperture Radar Issues

Problems of synthetic aperture radar imaging are widely discussed in the recent literature.
Different modeling and imaging techniques including dominant scattering points and facets models,
Fourier transforms, and phase compensation methods are in the focus of the authors’ attention. An
adaptive ISAR imaging of maneuvering objects based on a modified Fourier transform and distributed
ISAR sub-image fusion of a nonuniform rotating target based on matching Fourier transform are

105



Sensors 2019, 19, 3344

discussed in [13,14]. To mitigate blurring and defocusing effects induced by maneuvering targets on the
process of ISAR imaging an original method based on modified chirp Fourier transform is suggested
in [15]. A Fourier-based image formation algorithm for GNSS-based bistatic forward-looking synthetic
aperture radar is presented in [16]. Returns form objects with complex motion in an ISAR imaging
system are modeled as multicomponent quadratic frequency modulation (QFM) signals. QFM signals’
parameter estimation based on two-dimensional product modified parameterized chirp rate-quadratic
chirp rate distribution is discussed in [17].

Non trivial ISAR image reconstruction methods are developed. An accurate method to extract ISAR
images of multiple targets by applying Hough transform and particle swarm optimization (PSO) to
find residual high order coefficients and to achieve better quality of ISAR imaging and moving target
separation is discussed in [18]. A method including a genetic algorithm, PSO and PSO with an island
model, to compensate for the inter-pulse phase errors caused by the target movement in stepped-frequency
ISAR imaging is proposed in [19]. Residual motion error correction with back-projection multi-squint
algorithm for airborne synthetic aperture radar interferometry is applied in [20].

An object’s movement of higher order as different kinds of accelerations and range displacements
causes the ISAR image to be blurred, which requires focusing the object. An autofocusing method for
improving synthetic aperture radar image quality and modified fractal signature image classification
technique are described in [21]. An algorithm based on keystone transform and time-domain chirp scaling
to deal with the space-variant range cell migration in ISAR imaging with ultrahigh range resolution is
proposed in [22]. Phase compensation and image autofocusing algorithms using randomized stepped
frequency emitted ISAR signals are described in [23].

A problem of coherent integration for detecting high-speed maneuvering targets, involving range
migration, quadratic range migration, and Doppler frequency migration within the coherent processing
interval, and a coherent integration algorithm based on the frequency-domain second-order phase
difference approach are discussed in [24]. Multi-sensor ISAR radar imaging and phase adjustment
based on a combination of signal sparsity and total variation is considered in [25].

To improve the azimuth resolution of ISAR images a fractional sparse energy representation
method combined with fractional Fourier transform is proposed in [26]. The clock jitter influence on
the signal to noise ratio (SNR) of an analog-to-digital-converter of the ISAR signal acquired from the
space object is analyzed in [27].

The abilities of the astronomical radars as unique and powerful information tools to measure
physical properties and orbital parameters of asteroids are thoroughly analyzed and illustrated in [28].

Based on the aforementioned, the present work will focus on the passive ISAR scenario—kinematics
and geometry—as well as signal modeling and special solutions in the asteroid’s imaging algorithm.

4. Passive ISAR Scenario and Asteroid Kinematics and Geometry

Consider a 3D regular grid, where the asteroid’s geometry is described. The grid is defined in
Cartesian system O′XYZ and moves on a rectilinear trajectory at a constant speed in the coordinate
system Oxyz. The mass-center of the object, the geometric center of the 3D grid and the origin of the
coordinate system O′XYZ coincide in point O’ Figure 2. The distance vector from the radio telescope
placed in the origin of the 3D observation coordinate system Oxyz to the g-th generic point of the object
space, measured at the p-th moment is described by the vector equation

Rg(p) = R0′(p) + ARg (1)

where R0′(p) = R0′(0) + VTp · p is the mass center position vector; Rg(p) =
[
xg(p), yg(p), zg(p)

]T
is

the generic point’s distance vector; xg(p), yg(p), and zg(p) are the current coordinates of the generic
point, p = 0, N − 1; N the number and full number of emitted pulses, respectively, during time of
observation (aperture synthesis); R0′(0) = [x0′(0), y0′(0), z0′(0)]T is the line-of-sight vector of the
object’s geometric center at the moment p = 0; V = [V cosα, V cosβ, V cos δ]T is the object’s linear
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vector velocity; Rg =
[
Xg, Yg, Zg

]T
is the distance vector to the g-th generic point in the coordinate

system O′XYZ; Xg = gX · (ΔX), Yg = gY · (ΔY), and Zg = gZ · (ΔZ) are the discrete coordinates
of the g-th generic point in the coordinate system O′XYZ; gX, gY, gZ are the coordinate indexes of
the generic point; ΔX, ΔY, and ΔZ are the spatial dimensions of the 3D grid cell; cosα, cosβ, and
cosγ = mod

(√
1− cos2 α− cos2 β

)
are the guiding cosines; and V is the module of the linear velocity

vector. The elements of transformation-rotation matrix A are defined by Euler’s expressions

a11 = cosψ cosϕ− sinψ cos θ sinϕ;
a12 = cosψ sinϕ+ sinψ cos θ cosϕ;
a13 = sinψ sin θ;
a21 = − sinψ cosϕ− cosψ cos θ sinϕ;
a22 = − sinψ sinϕ+ cosψ cos θ cosϕ;
a23 = cosψ sin θ;
a31 = sin θ sinϕ;
a32 = − sin θ cosϕ;
a33 = cos θ.

(2)

where in case of a rotating object, ψ, ϕ, and θ are time dependent angles, yaw, pitch and roll, respectively.

Figure 2. Inverse synthetic aperture radar (ISAR) scenario: asteroid’s kinematics and geometry.

5. Pulsar Signal Formation

Models of pulsars’ signals can be created based on the structure of their continuous electromagnetic
emissions. The pulsar signal detected by a radio telescope is registered in multiple frequency channels
Figure 1 as a set of sinusoids (waveforms) having almost the same Gaussian envelopes [5,8,11,12]. This
allows the pulsar signal model to be described as a time-frequency grid.

5.1. Time-Frequency Grid Pulsar Signal Model

For each frequency channel the pulsar signal model can be expressed as

sr(t) =
N−1∑
p=0

L−1∑
l=0

al · exp

⎡⎢⎢⎢⎢⎢⎢⎢⎣−
[
t− Tpl

]2

2σ2
p

⎤⎥⎥⎥⎥⎥⎥⎥⎦ · exp
[
j · 2π · fr · (t− Tpl)

]
(3)
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where fr is the frequency of the r-th frequency channel, defined by the expression fr = f0 + r.Δ f ,
where r = 0, R− 1 is the frequency channel’s number, R is the number of the frequency channels the
signal is registered in, f0 is the frequency of the 0-th channel, Δ f is the difference between frequency
channels (spectral resolution), al is the amplitude of the Gaussian microburst, σl is the time width of
the l-th Gaussian microburst, l = 0, L− 1 is the index of the Gaussian microburst, L is the number of
microbursts inside the main Pulse,p is the index of the main Pulse or the index of the Main Pulse’s
repetition period, Tpl is the composed repetition period defined by Tpl = p · Tp + l · Tl, where Tp is the
main pulse repetition period, Ti is the Gaussian microburst repetition period inside the main pulse, t is
the current time, which in discrete form can be presented as t = Tpl + (k− 1) · ΔT, where k is the time
sample index inside the microburst, ΔT is the sample’s time duration inside the microburst.

A generalized model of the main pulse with three microbursts with Gaussian envelopes registered
in a particular frequency channel is presented in Figure 3.

Figure 3. Main pulse with three microbursts measured in a particular frequency channel.

5.2. A Model of a Pulsar Signal Reflected from a Space Object

Signals reflected from the space object preserves the frequency characteristics of the pulsar
emission except the amplitude and time delay from a particular generic point of the object surface
or from the entire object. The signal amplitudes can be instrumentally measured whereas the time
delay can be defined by the correlation of the received real signal (signal plus additive Gaussian noise)
reemitted by a pseudo stationary object, slow moving in short integration time interval, with a priory
known pulsar signal with time displacement. The signal reemitted by a particular generic point of
the asteroid or from the entire surface is a delayed copy of a pulsar signal and can be interpreted as a
time-frequency grid signal model with time delay. The pulsar’s main pulse train with L microbursts
reemitted by the g-th asteroid’s generic point and registered in the r-th frequency channel is modeled
by the expression

ŝr,g(t) =
N−1∑
p=0

L−1∑
l=0

ag · exp

⎡⎢⎢⎢⎢⎢⎢⎢⎣−
[
t− Tpl − tg

]2

2σ2
l

⎤⎥⎥⎥⎥⎥⎥⎥⎦ · exp
[
j · 2π · fr · (t− Tpl − tg)

]
, (4)

where ag is the amplitude of the reemitted l-th microburst from the g-th generic point; σl = T/2 is the
time dispersion of the Gaussian microburst; T is the microburst’s time width; tg = tg(p) = Rg(p)/c
is the time delay of a reemitted signal by the g-th generic point from the object’s surface; Rg(p) =[
x2(p) + y2(p) + z2(p)

] 1
2 is the current distance to the particular generic point from the object; c is the

speed of light in vacuum.

108



Sensors 2019, 19, 3344

The time delays tg(p) for p-th main pulse and l-th microburst are arranged in ascending order, i.e.,
g = 0, 1, 2, 3, . . . , G-1, where G is the full number of asteroid’s generic points, g = 0 is the index of the
minimum time delay from the nearest generic point, i.e., t0(p) = tg,min(p), g = G -1 is the index of the
maximum time delay from the furthest generic point, i.e., tG−1(p) = tg,max(p).

For the p-th main pulse and l-th microburst in the sequence of pulsar emissions the signal reemitted
by g-th generic point limited by the microburst’s time width, T, can be rewritten as

sr,g(t) = ag · rect
( t− Tpl − tg

T

)
· exp

⎡⎢⎢⎢⎢⎢⎢⎢⎣−2 ·
[
t− Tpl − tg

]2

T2

⎤⎥⎥⎥⎥⎥⎥⎥⎦× exp
[
j · 2π · fr · (t− Tpl − tg)

]
, (5)

where rect
(

t−Tpl−tg
T

)
=

⎧⎪⎪⎨⎪⎪⎩ 1, i f 0 ≤ t−Tpl−tg
T < 1

0, othewise
.

The following substitutions are made t = Tpl + tkp, tkp = tg,min(p) + k.ΔT, t̂g(p) = tkp − tg(p),

where k = 0, K + (kmax − kmin) − 1 is the current signal sample’s number in the microburst and/or the
signal sample’s number measured on the range direction, K = int(T/(ΔT) is the full range signal
samples’ number, kmax = int[tg,max/(ΔT)] is the index of the range bin where the signal reemitted by
the furthest generic point with time delay tg,max is recorded, kmin = int[tg,min/(ΔT)] is the index of the
range bin where the signal reemitted by the nearest generic point with time delay tg,min is recorded,
the difference (kmax − kmin) denotes the relative object’s time width, measured on range direction.
The analytical discrete model of the ISAR signal reemitted from the entire surface of the asteroid for
each k,p, and r can be written as

S(k, p, r) =
∑
g∈G

ag · rect
(

t̂g(p)
T

)
· exp

⎡⎢⎢⎢⎢⎢⎢⎢⎣−2 ·
[
t̂g(p)

]2

T2

⎤⎥⎥⎥⎥⎥⎥⎥⎦ · exp
[
j · 2π · fr · t̂g(p)

]
(6)

where G is the asteroid’s object space.

5.3. ISAR Signal Modeling Algorithm

The flow chart of asteroid’s ISAR signal modelling is presented in Figure 4. The algorithm consists
of two parts. In the first part, calculations of time delays, tg(p) = Rg(p)/c, for each g ∈ G, of signals
reemitted by asteroid’s scattering points and their arrangement in ascending order, g = 0, G− 1, are
performed. In the second part, the asteroid’s ISAR signal modeling in accordance with the expression (7)

is accomplished. The summation is correct if and only if the inequality 0 ≤ t̂g(p)
T < 1 holds, otherwise

for particular r and p, k increases, and the procedure is repeated until k = K + (kmax − kmin) − 1, then
for particular r and k, p increases, and the procedure is repeated until p = N − 1, then for particular p
and k, r increases, and the procedure is repeated until r = R− 1, which is the end of the asteroid’s ISAR
signal formation.

Only one microburst is considered. The ISAR signal microburst in the main pulse sequence,
reemitted by the asteroid, after preliminary signal processing (signal detection and de-dispersion) is
recorded in two-dimensional coordinates, time t and frequency fr. The signal time record is divided
into two coordinates: fast time, measured on the range direction with index k (range sample number),
and slow time measured in cross-range direction with index p (azimuth sample number). Thus, the
ISAR signal microburst is registered in a three-dimensional array with discrete coordinates [k, p, r].
In case all microbursts are used for aperture synthesis, the procedure is repeated for all remained
microbursts inside the main pulse.
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Figure 4. Flow chart of asteroid’s ISAR signal modelling.

6. ISAR Signal Processing and Asteroid Image Reconstruction

6.1. Power Budget

Since the asteroid’s ISAR signal distinguishes with a low signal power density on the Earth’s
surface, long observation times will essentially enhance the signal to noise ratio (SNR), which can be
defined by the modified radar equation [29]

SNR =
S · ΔF ·G · λ2 · σ · Tint · n ·N

4 · π2(R0′)2kB · Ts
(7)

where S is the spectral flux density of the asteroid’s signal on the Earth measured in
[

W
m2·Hz

]
;

G = q
(
π·Dpr
λ

)2
is the parabolic reflector antenna gain; Dpr is the diameter of the parabolic reflector;

q is the efficiency factor which is around 0.5 to 0.6; σ = π3·D4

4·λ2 is the asteroid’s radar cross section;

kB = 1.38× 10−23
[

W
Hz·K

]
is the Boltzmann constant; D is the asteroid’s diameter; R0′ is the distance to

the asteroid’s mass center at the moment of imaging; Ts = 410 K is the receiver noise temperature;
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Tint = T is the integration time equal to the microburst time width; N is the number of main pulses for
aperture synthesis in one imaging segment; n is the number of imaging segments. In case the spectral
flux density of the direct pulsar signal is 10−23

[
W

m2·Hz

]
, assume the spectral flux density of the asteroid’s

signal S = 10−26
[

W
m2·Hz

]
. To evaluate SNR assume N = 128, ΔF = 2× 109 Hz; Dpr = 300 m; λ = 0.03

m; D = 100 m; Tint = 2 × 10−6 s; R0′ = 109 m. In case n = 102; 103; 104; 105; 106, the enhancement
(reducing of negative values) of the SNR in dB with the number of imaging segments is presented in
Table 1.

Table 1. Enhancement of the SNR with the number of imaging segments.

n 102 103 104 105 106

10.log10 (signal to noise ratio (SNR)) −119 −96 −73 −50 −27

The negative value of SNR (−27 dB) can be further reduced by multiple coherent summations
of the current complex image with the previous one after each accomplishment of the image
reconstruction procedure.

6.2. Range Compression of the ISAR Signal

Considering that the ISAR signal reemitted by the asteroid is registered in a time-frequency grid,
the range compression can be performed by the algebraic summation of signals from all frequency
channels. To prove this statement the range compressing will be illustrated assuming that the frequency
difference between channels, Δf tends to zero. It allows discrete time and continuous frequency
approach to be applied in the ISAR signal’s range compressing. The range compressed signal can be
expressed as a frequency integration of a pulsar ISAR signal, i.e.,

Ŝ(k, p) =

fc+ ΔF
2∫

fc− ΔF
2

∑
g∈G

ãg[t̂g(p)] · exp
[
j · 2π · f · t̂g(p)

]
d f , (8)

where ãg[t̂g(p)] = ag · rect
(

t̂g(p)
T

)
exp

[
− 2·[t̂g(p)]

2

T2

]
is the time dependent amplitude, fc = f0 + (ΔF/2) is

the central channel frequency, ΔF = R.Δ f is the frequency bandwidth.
After simple mathematical manipulations the solution of the integral can be written as

Ŝ(k, p) =
∑
g∈G

ãg[tkp − tg(p)]·ΔF · exp
[
j2π[tkp − tg(p)] · fc

]
·

sin
(
π[tkp − tg(p)] · ΔF

)
π[tkp − tg(p)] · ΔF

(9)

Thus, the range compressed ISAR signal is a time displaced copy of a sinc function defining the
position of g-th scattering point from the space object, the asteroid. In Figure 5, a range compressed
signal with time delay t1 = 0.5 μs is presented.

In Figure 6, three range compressed signals RCS1, RCS2, RCS3 and their sum RCS, is depicted
with the following parameters: microburst time width 2 μs, frequency band width ΔF = 100 MHz,
signals’ time delays: t1 = 0.5 μs, t2 = 0.515 μs, t3 = 0.52 μs, and amplitudes: a1 = 1.2, a2 = 1.8, a3 = 1.2.

It is worth noting that in case Δf differs from zero (i.e., has a finite value) an unambiguous time
interval Δτ of the ISAR compressed signal registration has to be defined (i.e., Δτ = 1/Δf ).

In a discrete time-frequency grid of the asteroid’s signal registration, the range compression can
be expressed as

Ŝ(k, p) =
R−1∑
r=0

∑
g∈G

ãg[t̂g(p)] · exp
(
j · 2π · fr · t̂g(p)

)
(10)
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Figure 5. A range compressed signal RCS1 with time delay 0.5 μs.

Figure 6. Three range compressed signals RCS1, RCS2, RCS3 and their sum RCS.

6.3. Azimuth Compression of the Range Compressed ISAR Signal and Complex Imaging

Pulsar ISAR signals reemitted by the asteroid are registered in a far field zone of electromagnetic
waves propagation. It means that a plane wave approximation can be applied and, hence, an inverse
Fourier transform can be used in order to perform azimuth compression of the range compressed ISAR
signal, i.e.,

Ŝ(k, p̂) =
1
N

N−1∑
p=0

Ŝ(k, p) · exp
(

j
2π · p · p̂

N

)
, (11)

where p̂ = 0, N − 1 is the discrete coordinate of the asteroid’s generic point at the moment of imaging.
The inverse Fourier transform (11) is a correlation procedure, searching for all Doppler components

exp
(
− j 2π·p·p̂

N

)
inside the spatial spectrum Ŝ(k, p̂), i.e., searching for that p̂ in the interval from 0 to (N – 1)

that reveal amplitudes by maximizing their intensities mod
[
Ŝ(k, p̂)

]
, and compensate for all phases

arg[Ŝ(k, p̂)] induced by the radial velocities, the motion of first order, except phases proportional to the
radial velocities (Doppler frequencies) of scattering points at the moment of imaging. The coordinate
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p̂ is proportional to a constant radial velocity (Doppler frequency), that corresponds to the azimuth
position of a particular scattering point at the moment of imaging. Thus, the expression (11) defines
the asteroid’s complex image with amplitude mod[Ŝ(k, p̂)], and phase arg[Ŝ(k, p̂)]. It is worth noting
that the Doppler bandwidth and, respectively, Doppler resolution or cross range (azimuth) resolution
of the ISAR signal are limited by the fixed main pulse repetition period equal to 0.033 s, and apparent
rotation angle between the vector velocity and mass-center’s line-of-sight vector in case rectilinear
movement of the asteroid.

7. Numerical Experiment

In order to validate the mathematical derivation of asteroid’s ISAR geometry, kinematics and
signal models, a numerical experiment with a signal model of one microburst is carried out based on the
following pulsar’s signal parameters: central channel frequency fc = 10.075 GHz; frequency channels
bandwidth ΔF = 150 MHz; spectral resolution Δf = 1MHz; fmin = 10 GHz, fmax = 10.15 GHz; number
of frequency channels R = 150; main pulses time repetition period Tp = 0.033 s, microburst time width
T = 10−6 s; number of range samples in microburst K = 128; sample’s time width ΔT = 0.8× 10−8 s;
number of azimuth measurements N = 128 in one imaging segment defined by the number of main
pulses used for aperture synthesis; initial coordinates of asteroid’s detection x0′ = 1 km, y0′ = 350 km,
z0′ = 103 km; distance to the mass-center R0′ = 1.06× 106 km; asteroid’s velocity V = 35 km/s; velocity
angles α = π/6, β = π/4, γ = π/2. The geometry of the asteroid is depicted in a 3-D grid with dimensions
64 × 64 × 64, and grid cell dimensions ΔX = ΔY = ΔZ = 0.5 m, Relative intensity of scattering points
is ag = 10−3. In order to obtain an asteroid’s image of high resolution the apparent rotation angle
between the asteroid’s vector velocity and mass-center’s line-of-sight vector has to be no less than 100.
It guaranties the Doppler displacement in the spectrum of the ISAR signal to realize the necessary
azimuth resolution of the asteroid’s image.

Considering that the ISAR signal from the asteroid is very weak in comparison with the thermal
noise, the experiment is carried out assuming the signal is obscured by additive white Gaussian noise,
an appropriate model of signal disturbances in deep space navigations and communications. Assume
as follows: number of imaging segments n = 100, S = 10−26

[
W

m2·Hz

]
, ΔF = 0.15× 109 Hz, Dpr = 300 m,

λ = 0.03 m, asteroid’s diameter D = 29 m, Tint = 10−6 s, then the signal to noise ratio calculated by (7)
is equal to −15 dB. To reduce the level of noise, coherent summation of multiple complex ISAR images
obtained after multiple applications of the image reconstruction procedure is applied. The number of
complex images’ sums mitigating the level of the additive white Gaussian noise is 10.

The ISAR signal from the asteroid is modelled in accordance with the algorithm presented by the
flow chart in Figure 4. In each frequency channel additive white Gaussian noise is added to the signal
using a standard procedure. The complex range compressed ISAR signal is modelled by expression (10).
The real and imaginary parts of the range compressed ISAR signal obtained after summation of the
signals from 150 frequency channels and registration in range (k) and azimuth (p) coordinates are
depicted in Figure 7a,b respectively.

The ISAR complex image as ISAR amplitude and ISAR phase is extracted from the range
compressed signal by applying azimuth compression with inverse Fourier transform (11) realized by
inverse fast Fourier transform. The ISAR image amplitude and the ISAR image phase, the complex
image with (−15) dB signal to noise ratio, just after azimuth compression of the range compressed
ISAR signal, are presented in Figure 8a,b, respectively. The asteroid’s image is obscured by noise.

A standard additive coherent summation (overlaying) of consecutive complex images is applied
to reduce the level of the additive white Gaussian noise. The process of the noise depression and image
quality improving by additive coherent summations of 3, 8, and 10 complex images is illustrated in
Figures 9–11, respectively.
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(a) (b) 

Figure 7. Range compressed ISAR signal obtained after summation of signals in all frequency channels:
(a) real part; (b) imaginary part.

Figure 8. Complex image after azimuth compression of the range compressed ISAR signal with –15 dB
signal to noise ratio: (a) ISAR image amplitude; (b) ISAR image phase.

Figure 9. Resulting complex image after 3rd additive summation of complex images: (a) ISAR image
amplitude; (b) ISAR image phase.
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Figure 10. Resulting complex image after 8th additive summation of complex images: (a) ISAR image
amplitude; (b) ISAR image phase.

Figure 11. Resulting complex image after 10th additive summation of complex images: (a) ISAR image
amplitude; (b) ISAR image phase.

The final complex image, amplitude and phase, obtained after additive Gaussian noise depression
by coherent summation of 10 consecutive complex images of the asteroid is presented in Figure 11a,b.
As can be seen, the asteroid’s ISAR amplitude image is of satisfactory quality, but noise still remains,
the asteroid’s silhouette is satisfactorily depicted. Further improving of the ISAR image quality can be
achieved by increasing the number of coherent summations which is limited by a huge processing
time and graphical properties of the software on which the experiment is carried out.

8. Conclusions

In the present work, on the base of real astrophysical measurements by radio telescopes
Goldstone-Apple Valley and Arecibo an analytical description of the pulsar Crab emission is suggested.
The structure of the Crab pulsar emission has been interpreted as multiple monochromatic Gaussian
pulses, distributed in a time-frequency signal grid. Models of pulsar signals reflected from the space
object are presented as a time delay copy of time frequency distributed monochromatic Gaussian
signals. A new range compression technique is applied to the ISAR complex signal through summation
of time recorded ISAR signals in all frequency channels. In case the registration spectral resolution
is not satisfactory, which limits the unambiguous time interval of coherency, interpolation in the
frequency domain is required.
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In the present work only one microburst was applied for aperture synthesis. The author states all
microbursts can be used for inverse aperture synthesis in order to improve the image quality through a
superposition of all images obtained for each microburst inside the main pulse. In addition, a new
ISAR procedure can be developed based on the whole structure of the main pulse. It is supposed that
it will further improve the quality of the ISAR image. Based on the sparsity of the ISAR signal due to
the limited number of frequency channels in which the ISAR signal is registered, a compressed sensing
approach, as l0 and l1 norm minimization, can be applied in restoring the pulsar signal structure and
ISAR image reconstruction.

Future research works will be focused on other properties and applications of pulsar emissions in
the area of stellar navigation and early warning systems for asteroid detection and imaging. From
a theoretical point of view, new mathematical structures of pulsar signal models and space object’s
imaging algorithms based on the atomic clock’s stability and wide bandwidth of pulsars’ emissions
will be developed. From a practical point of view, this work will motivate the development of new
highly sensitive technologies to detect pulsars reemissions of asteroids and other nonidentified objects.
The usage of steady and stable pulsar emissions for object navigation and imaging purposes is not
limited by time and space which is the main advantage of this kind of stellar technology. The problem
is the weakness of pulsar emissions, especially reemissions by asteroids and their reliable detection,
which requires the development of highly sensitive sensors. From an astronomical point of view, it is
very tough to detect the asteroid in the space by the narrow antenna beam of the radio telescope that is
not able to cover the whole visible space. A network of multiple synchronized radio-telescopes located
on the Earth’s surface and directed on different parts of space, or giant phase arrays antennas scanning
the space, are needed in order increase the asteroid’s detectability.
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Abstract: Ground-Based SAR Interferometry (GB-InSAR) is nowadays a proven technique widely
used for slope monitoring in open pit mines and landslide control. Traditional GB-InSAR techniques
involve transmitting and receiving antennas moving on a scanner to achieve the desired synthetic
aperture. Mechanical movement limits the acquisition speed of the SAR image. There is a need
for faster acquisition time as it plays an important role in correcting rapidly varying atmospheric
effects. Also, a fast imaging radar can extend the applications to the measurement of vibrations
of large structures. Furthermore, the mechanical assembly put constraints on the transportability
and weight of the system. To overcome these limitations an electronically switched array would
be preferable, which however faces enormous technological and cost difficulties associated to the
large number of array elements needed. Imaging Multiple-Input Multiple Output (MIMO) radars
can be used as a significant alternative to usual mechanical SAR and full array systems. This paper
describes the ground-based X-band MIMO radar SPARX recently developed by IDS GeoRadar in
order to overcome the limits of IDS GeoRadar’s well-established ground based interferometric SAR
systems. The SPARX array consists of 16 transmit and 16 receive antennas, organized in independent
sub-modules and geometrically arranged in order to synthesize an equally spaced virtual array of
256 elements.

Keywords: GB-SAR; MIMO radar; radar imaging

1. Introduction

Nowadays, thanks to its distinguishing features [1,2] GB-InSAR technology has become a
consolidated technique for measure ground displacements in many geophysical applications [2–4] and
has proved to be particularly suitable in environments where continuous and real-time monitoring is
required [5,6]. Despite the high number of technological advances seen in the last decade, some typical
limitations are still present in the standard GB-InSAR systems, and therefore many improvements can
be performed with respect to the current technique.

Some of the persisting GB-InSAR limitations are related to its mechanical scanning. In fact,
traditional GB-InSAR techniques require a radar sensor equipped with transmitting and receiving
antennas, moved by a mechanical scanner to achieve the desired synthetic aperture [7]. This approach,
even if it has proved to be simple and effective, can have a considerable impact on important
operational aspects such as scanning times, maintenance and installation, which will be discussed
briefly below.

The data acquisition time is one of the most important parameters in the evaluation of a remote
sensing monitoring system; since the first GB-InSAR introduction, the scanning times have been
significantly reduced, and currently the fastest systems can scan the entire 360◦ circular sector in just
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40 s [8,9]. However, further reducing this time by using a mechanical scan, could result too demanding
both in terms of power consumption and system operation.

Installation and maintenance are other important aspects to consider in the overall assessment of
a monitoring system. For example, even if the use of a large mechanical scanning system does not
entail particular problems in easily accessible installations, or in well-equipped environments such as
open-pit mines, it could turn out a strong limitation in remote regions operations.

Therefore, within the field of GB-InSAR systems, one of the most interesting lines of research is
the replacement of mechanical scanning with some kind of Electronically Scanned Array (ESA). To this
scope, Multiple Input Multiple Output (MIMO) radar are promising systems in the evolution of the
GB-InSAR technology [10,11]. The MIMO principle of operation is to transmit and receive the radar
signal alternately from various appropriately located elements. This strategy allows to synthesize
an arbitrary antenna array, using a relatively small number of physical elements, thus limiting the
complexity and cost of the whole system with respect to standard ESA [12].

Despite the innovations introduced by the MIMO strategy, the prototypes developed so far [10,11]
still seem to suffer from major disadvantages in terms of production cost and ease of installation. To let
GB-InSAR MIMO become a feasible and easily installable technology, IDS GeoRadar aimed to develop
a system with a modular and integrated architecture. Modularity will help the installation procedure,
allowing the sequential assembly of the various modules, rather than the whole system at the same
time. Furthermore, the exploitation of highly integrated technologies such as microstrips and patch
antennas, will lead to a cost reduction compared with other technologies such as coaxial cables and
horn antennas [10].

In this paper, we present the SPARX array, a MIMO system developed by IDS GeoRadar, composed
by 16 transmit and 16 receive antennas, organized in independent and integrated sub-modules and
geometrically arranged in order to synthesize an equally spaced virtual array of 256 elements.

2. MIMO Imaging System

A generic MIMO imaging system [13] is composed by nTX transmitting antennas placed in the
positions xm and by nRX receiving antennas placed in the positions yl . Given a MIMO configuration
consider a target located in r = re at a distance r far away respect to the system extent; the time of
flight τml that an electromagnetic signal takes to go from the m-th transmitter to the target and come
back to the l-th receiver is approximately:

τml
∼= 2

c

[
r −

(
xm + yl

2

)
·e
]

; (1)

that is equivalent to transmit and receive a signal from a unique antenna placed in the virtual phase
center placed in (xm + yl)/2. Therefore, transmitting alternately from every transmitter and receiving
alternately from every receiver, it can be generated a virtual array with N = nTX ·nRX elements placed
in the MIMO virtual phase centers. It can be noticed that, given a MIMO configuration, the dual one
with transmitter and receiver swapped, generates the same phase centers positions. One of the main
advantages of MIMO technique is that the number of virtual antennas grows as the square of the
number of physical antennas; it is therefore possible to generate a large number of virtual elements,
exploiting a relatively small number of physical antennas, with a significant cost and complexity
reduction of the imaging system hardware.

2.1. MIMO Array Factor

Consider a MIMO array working with central wavelength λ, the corresponding array factor
FMIMO(e) is given by the product of the transmitting and the receiving array factors:

FMIMO(e) = FTX(e)FRX(e) =
1
N

ei 4π
λ r ∑

m,l
ei 4π

λ (
xm + yl

2 )·e (2)
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To avoid grating lobes in the MIMO array factor, it is necessary that FTX has a null in
correspondence of every grating lobe of FRX and vice versa. In Figure 1 is shown an example of
a typical MIMO array factor resulting from the product of a transmitting and receiving array factors,
it can be noticed that all the grating lobes inside the receiving array factor are compensated by the
nulls of the transmitting one.

Figure 1. MIMO array factor (in blue), obtained from the product of a transmitting array factor
(in green) and a receiving array factor (in red).

In a physical array, different sources of errors cause deviations from the ideal model; this fact limits
the array performances, typically degrading the SideLobe Level (SLL) of the point spread function.
Assuming that, for a real system, the array factor F can be modeled as a random variable whose
expectation value 〈F〉 is equal to the ideal one, then the SLL distribution can be read from the power of
the statistical deviation δF = F − 〈F〉 :

SLL = 〈|δF|2〉. (3)

In a MIMO array, the physical imperfections cause statistical deviations δFTX, δFRX of the
transmitting and the receiving array factors from the ideal ones; ignoring second order terms, the total
deviation δFMIMO from the ideal MIMO array factor can be expressed as:

δFMIMO � δFTX ·FRX + FTX ·δFRX . (4)

Thus, in a MIMO array the SLL distribution is strongly dependent on the transmitting and the
receiving array factors:

SLLMIMO � |FRX |2〈|δFTX |2〉+ |FTX |2〈|δFRX |2〉+[〈δFTX ·δF∗
RX〉δFRX ·δF∗

TX ]. (5)

If the errors on the transmitter and the receiver are uncorrelated then the third term of this
expansion vanishes. As a simple example, consider small and uncorrelated phase and amplitude errors
on every transmitting and receiving element. From array theory it is well known that the effect of this
kind of errors is to add to the sidelobes a uniform power level proportional to the mean square error:

〈|δFTX |2〉 = σ2
TX/nTX ; 〈|δFRX |2〉 = σ2

RX/nRX . (6)

Using these relations to compute the MIMO SideLobe Level it is possible to gather that, in a MIMO
array, small and uncorrelated phase and amplitude errors generate a non-uniform SideLobe Level:

SLLMIMO � |FRX |2 σ2
TX

nTX
+ |FTX |2 σ2

RX
nRX

. (7)
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In particular, it can be noticed from the previous formula that, for a MIMO array, small
errors produce strong sidelobes in the correspondence of transmitting and receiving grating lobes.
To compensate this undesired effect, an efficient and reliable calibration procedure should be applied on
the MIMO system. This reasoning can be easily generalized to other sources of errors like inaccuracy in
the antennas placement, deformation of the system geometry, etc. The discussed behavior in the MIMO
SideLobe Level has already been noticed in various experimental tests with MIMO arrays [14,15].

2.2. MIMO Uniform Linear Configurations

The simplest MIMO array configuration is composed by a uniformly spaced linear array of
transmitting antennas parallel to a uniformly spaced linear array of receiving antennas [13,16].
Denoting with w the array axis direction, the antennas positions can be expressed as:

xm = m·pTX ·w + x0m = 1, · · · , nTX ;

yl = l·pRX · w + y0l = 1, · · · , nRX .
(8)

where pTX and pRX are the transmitting and receiving spacing, respectively. The corresponding virtual
phase centers are located in:

m·pTX + l·pRX
2

·w +
x0 + y0

2
. (9)

Starting from this configuration, in order to generate a uniformly spaced array with N = nTX ·nRX
virtual elements it is necessary that the array spacing satisfy the relation pRX = nTX ·pTX , or the dual
one pTX = nRX ·pRX . If one of these relations is satisfied, then the resulting linear array is uniformly
spaced with a virtual spacing equal to pTX/2, or pRX/2 in the dual configuration (Figure 2).

Figure 2. 16 elements MIMO uniform linear array (in blue) obtained from 4 elements transmitting
linear array and 4 elements receiving linear array.

In this case the smallest spacing between physical antennas is double the spacing of virtual
elements, yet MIMO technique allows to create configuration with arbitrary large ratio between real
spacing and the virtual spacing; to see this consider a MIMO configuration composed by a linear
array of nTX = 2k + 1 transmitting antennas uniformly spaced by pTX , and a linear array of nRX ≥ 2
receiving antennas uniformly spaced by nTX · pTX/2:

xm = m·pTX ·w + x0m = 1, · · · , 2k + 1;

yl = (2k + 1)·l· pTX
2 · w + y0l = 1, · · · , nRX .

(10)

The corresponding virtual array is linear and contains a N = nTX ·(nRX − 1) + 1 elements
sub-array uniformly spaced by pTX/4. The uniformly spaced sub-array in Figure 3 is equivalent
to the virtual array in Figure 2, however it has been obtained with five transmitting elements spaced by
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pTX instead of four transmitting elements spaced by pTX/2; the second MIMO configuration although
is require more physical antennas than the first one, allows to space apart the radiating elements
decreasing mutual coupling effects.

Figure 3. Twenty elements MIMO linear array (in blue) obtained from a five elements transmitting
linear array and a four elements receiving linear array.

3. SPARX Design

Recently, in order to overcome the current limits of the ground based interferometric SAR systems,
IDS GeoRadar developed SPARX: an X-band MIMO array. The SPARX array consists of 16 transmit
and 16 receiver antennas, organized in independent sub-modules and geometrically arranged in order
to synthesize a uniformly spaced virtual array of 256 elements. In Figure 4 is shown the SPARX block
diagram: a radar sensor generates an X-band RF signal with a central frequency of 9.7 GHz and an
instantaneous bandwidth of 275 MHz. The RF signal is transmitted to a Single Pole Double Throw
(SPDT) switch stage and then switched between two transmitting antenna modules, each one consisted
of an eight radiating elements switched array. The reflected signal is received by four receiving antenna
modules each one composed by four radiating elements switched array and then collected by the
Radar sensor through a Single Pole 4 Throw (SP4T) switch stage.

 

Figure 4. SPARX array block diagram.

The two transmitting antenna arrays have a uniform spacing of 18 mm and the receiving antenna
array has a uniform spacing of 144 mm; as discussed in the previous section, this configuration allow
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to generate 256 virtual elements uniformly spaced by 9 mm, that correspond to a uniform linear array
with a λ/3.44 spacing.

In Figure 5 it is shown a SPARX prototype with a reduced number of modules: two transmitting
modules located in the upper external part and two receiving modules located in the inner lower part

 

Figure 5. SPARX array prototype.

3.1. Transmitting Antenna Module

The transmitting antenna module consists in a microstrip switch matrix that route the RF signal
from a single input to eight stacked patch antennas. The microstrip transmission line and the patch
antenna technology allow to fully integrate the module in a single PCB (Figure 6). In Figure 7 is
shown the Transmitting Antenna Module block diagram: the incoming RF signal is transmitted by
a microstrip and pass through a SP4T switch followed by four SPDT switches, this matrix allow to
switch the signal between the eight antennas feed lines; immediately before every antenna a power
amplifier compensate the losses of the microstrip transmission line and the switch stages

 

Figure 6. Transmitting antenna module.

The radiating elements are stacked microstrip patch antennas with vertical polarization, properly
designed by IDS’ laboratories in order to have 1 GHz bandwidth with a VSWR < 1.5 and a 3 dB
beamwidth of 80◦ in the azimuth plane and 60◦ in the elevation plane. The total gain of the module
including the power amplifier gain and transmission line losses is 15.7 dB.
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Figure 7. Transmitting antenna module block diagram.

3.2. Receiving Antenna Module

The receiving antenna module consists in a microstrip switch matrix that route the RF signal
from four stacked patch antennas to a single output. The miscrostrip transmission line and the patch
antenna technology allow to fully integrate the module in a single PCB (Figure 8). In Figure 9 is shown
the receiving antenna module block diagram: immediately after every antenna a Low Noise Amplifier
stage allow to keep low the noise figure of the system; the received RF signal pass through two SPDT
switches followed by another SPDT switch, this matrix allow to switch the signal between the four
antenna feed lines.

 

Figure 8. Receiving antenna module.

 

Figure 9. Receiving antenna module block diagram.
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The radiating elements are stacked microstrip patch antennas with the same design of the
transmitting one. The total gain of the module including the LNA gain and transmission line losses is
13.6 dB.

4. Field Test

The SPARX array operating principle has been tested with a reduced MIMO configuration,
composed of two transmitting module and just one receiving module, for a total of 64 virtual channels.
The system has been deployed in an external environment where it was possible to recognize various
reflecting targets at different ranges and azimuth angles. The purpose of this preliminary test was to
achieve the correct MIMO imaging in order to detect and identify all the relevant targets.

The acquisition scenario from the SPARX point of view is shown in Figure 10, while in Figure 11
the same scenario from the top view is shown. In both images the reflecting targets were highlighted
in various colors to better distinguish them; in particular it is possible to recognize a paved road R
(in yellow), various metallic poles P1, P2, P3, P4 and P5 (in purple) and some structures S1, S2 and S3
(in light blue). In range, all the relevant targets are located between 140 m (P1) and 450 m (S1), while in
azimuth they are included between −35◦ (P2) and +20◦ (S3).

 

Figure 10. Acquisition scenario, SPARX point of view.

Figure 11. Acquisition scenario, top view.

5. Results

After a standard range-azimuth data focusing, it was possible to extract the scenario power maps;
in Figure 12 the resulting SNR map obtained from the SPARX acquisitions is shown. In this map target
SNR levels are estimated comparing their powers with respect to the background thermal noise level.
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From this map it is possible to notice that all the relevant targets have been detected with a SNR greater
than 35 dB, allowing an interferometric displacement measurement with precision greater than one
tenth of a millimeter [5].

Figure 12. SPARX SNR estimated map (in dB).

Overlapping the acquired SNR map (Figure 12) with the scenario top view (Figure 11) it is possible
to identify every strong measured signal with a specific reflecting target inside the acquisition scenario
(Figure 13); although it should be noted that, due to prototype’s low azimuth resolution, imaging of
the farthest structures becomes rather coarse.

Figure 13. SPARX SNR estimated map superimposed on the acquisition scenario top view.

6. Conclusions

In this paper SPARX system have been introduced and described. It is a new MIMO system
developed by IDS GeoRadar, in order to overcome some limitations of the current GB-InSAR systems.
In particular, by decomposing the system into independent modules and using integrated technologies
such as patch antennas and microstrip transmission line, SPARX development aims to reduce
production costs and facilitate installation procedures compared to the current GB-InSAR MIMO
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prototypes. The field test conducted with the SPARX prototype showed that the MIMO imaging works
effectively in detecting and identifying various target distributed inside the scenario.

However, it should be remarked that to obtain an azimuth resolution comparable to standard
mechanical systems, a large number of modules is needed, thus greatly increasing the cost and
complexity of the system. A possible solution to this difficulty is to exploit shorter wavelengths,
in order to obtain high azimuth resolution compact systems [15], on the other hand, by reducing the
transmitted wavelength, the operating range also decreases accordingly. From these considerations,
it emerges that to reach a manufacturable GB-InSAR MIMO, the future developments will require a
careful trade-off analysis between complexity and performances of the available technologies.
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Abstract: Ground-based arc-scanning synthetic aperture radar (ArcSAR) is the novel ground-based
synthetic aperture radar (GBSAR). It scans 360-degree surrounding scenes by the antenna attached
to rotating boom. Therefore, compared with linear scanning GBSAR, ArcSAR has larger field of
view. Although the feasibility of ArcSAR has been verified in recent years, its imaging algorithm still
presents difficulties. The imaging accuracy of ArcSAR is affected by terrain fluctuation. For rotating
scanning ArcSAR, even if targets in scenes have the same range and Doppler with antenna, if the
heights of targets are different, their range migration will be different. Traditional ArcSAR imaging
algorithms achieve imaging on reference plane. The height difference between reference plane and
target in scenes will cause the decrease of imaging quality or even image defocusing because the range
migration cannot be compensated correctly. For obtaining high-precision ArcSAR image, we propose
interferometric DEM (digital elevation model)-assisted high precision imaging method for ArcSAR.
The interferometric ArcSAR is utilized to acquire DEM. With the assist of DEM, target in scenes can
be imaged on its actual height. In this paper, we analyze the error caused by ArcSAR imaging on
reference plane. The method of extracting DEM on ground range for assisted ArcSAR imaging is
also given. Besides, DEM accuracy and deformation monitoring accuracy of proposed method are
analyzed. The effectiveness of the proposed method was verified by experiments.

Keywords: synthetic aperture radar (SAR); ground-based synthetic aperture radar (GBSAR);
arc-scanning synthetic aperture radar (ArcSAR); interferometric ArcSAR; DEM assisted SAR imaging

1. Introduction

Synthetic aperture radar (SAR) is capable of high-resolution imaging all-day and all-weather
conditions [1,2]. As a complex image, the SAR image contains amplitude and phase information.
We can get the deformation of the scenes by differential interferometric SAR (D-InSAR). Therefore, SAR
is widely used in the field of ground deformation monitoring [3–5]. Especially the spaceborne SAR
can achieve ground deformation monitoring in a wide range of scenes [6]. However, the spaceborne
SAR systems and airborne SAR system require a long revisit cycle. They cannot realize continuous
and repeated monitoring of a region. As an alternative, the GBSAR can achieve continuous and
repeated monitoring of a region and feedback monitoring information in real time. In view of the
above advantages, GBSAR has become one of the important means for deformation monitoring of
dams’ walls, buildings and slope [7–10].

The conventional GBSAR system scans the scenes along the linear rail. Its synthetic aperture is
generated by moving the radar on the rail [11]. This type of working mode limits its field of view.
A new mode GBSAR called ArcSAR can solve this problem. The ArcSAR system scans the surrounding
scenes by the antenna attached to the rotating boom which extending from the center of the rotating
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platform. Its synthetic aperture is generated by the rotation of the antenna [12]. Therefore, under the
premise of ensuring the resolution of the system, ArcSAR can cover the 360-degree scenes in once
scanning, which effectively improve the field of view. Currently, several teams are working on the
ArcSAR system [12–20], and the imaging algorithms for ArcSAR are also proposed.

Lee et al. deduced the geometric model and signal model of the ArcSAR system and proposed
the imaging algorithm for ArcSAR [17,18]. Luo Yunhua et al. proposed the fast imaging algorithm
for ArcSAR and used differential interferometric ArcSAR for ground deformation monitoring [19,20].
However, the above ArcSAR imaging algorithms perform the imaging on the reference plane.
The imaging accuracy of the ArcSAR system is affected by the terrain fluctuation. For rotating
scanning ArcSAR system, even if the targets in the scenes have the same range and Doppler with
the antenna, the targets with different height have different range migration. Therefore, if the height
of reference plane is inconsistent with the actual height of target in the scenes, the height difference
between the reference plane and the target will cause the decrease of imaging quality or even image
defocusing because the range migration cannot be compensated correctly.

To acquire the high precision ArcSAR image, the DEM of the scenes can be used to assist ArcSAR
imaging. In this paper, we propose an interferometric DEM-assisted high precision imaging method
for ArcSAR. Firstly, the DEM image of the scenes is acquired by interference with the ArcSAR slant
range images. The acquired DEM image is on the slant range. However, we require the DEM image on
the ground range to assist ArcSAR imaging. Thus, we next transform the DEM image on the slant
range to the ground range. Finally, with the assist of the DEM image on the ground range, the target in
the scenes can be imaged on its actual height. The proposed method does not rely on external DEM
data. It can effectively avoid the decrease of ArcSAR imaging quality.

This paper proceeds as follows. The ArcSAR geometric model and signal model that consider the
terrain of the scenes is introduced in Section 2. The error caused by ArcSAR imaging on the reference
plane is analyzed in Section 3. The principle of the interferometric DEM-assisted high precision
imaging method is given in Section 4. The DEM accuracy and deformation monitoring accuracy of
proposed method are analyzed in Section 5. The effectiveness of the proposed high precision imaging
method is verified by experiment in Section 6. In Section 7, we discuss the concluding remarks.

2. The Geometric Model and Signal Model of ArcSAR

Figure 1 shows the geometric model of ArcSAR system. The antenna of ArcSAR mounted by the
boom rotates counterclockwise. It transmits and receives signals at equal intervals. The coordinate
z-axis is the rotation axis of the ArcSAR system. We select xoy plane as the rotation plane. Point o is
the rotation center. Point P represents the target in the scenes. Its coordinates can be expressed as:(√

R2
0 − h2 cosϕ,

√
R2

0 − h2 sinϕ, h
)

(1)

where R0 is the distance between the target P and the point o. h is the height of the target P. ϕ stands
for the azimuth angle of the target position. Point S0 is the position of the antenna phase center (APC).
Its coordinates are

(r cosθ, r sinθ, h) (2)

where r represents the length of the boom and θ is the rotation angle of the boom.
Taking example for linear frequency modulation (LFM) signal, the echo signal of the target P in

ArcSAR system is shown as:

S(θ, tr) = δprect
((

tr − 2Rp/c
)
/Tp

)
· rect((θ−ϕ)/θbw)

exp
(
jπKr

(
tr − 2Rp/c

)2
)
· exp

(
−j4π fcRp/c

) (3)
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where δp is the backscattering coefficient, tr is the fast time of the ArcSAR system, c represents the
speed of light, Tp stands for the signal pulse width, θbw is the antenna beam width, Kr represents the
linear frequency modulation (LFM) rate, and f c is the center frequency. Rp represents the distance
between target P and the APC, which can be expressed as:

Rp =

√
R2

0 + r2 − 2r
√

R2
0 − h2 cos(θ−ϕ) (4)

We perform pulse compression of S(θ,tr) in the frequency domain on the range direction. The result
can be expressed as:

S(θ, f ) = δp · rect((θ−ϕ)/θbw) · rect( f /Br) · exp[−j4π( f + fc)Rp/c] (5)

where f is the current frequency in frequency domain after the spectral transformation of signal S(θ,tr),
Br is the bandwidth. Since the echo signal has a shift-invariant characteristic in the azimuth direction,
targets with different ϕ have the same form of range migration if they are the same distance from
the rotation center. Therefore, for the convenience of derivation, in this paper, we assume ϕ = 0.
The backscattering coefficient is also neglected. Rp and S(θ, f ) can be rewritten as a current frequency
in a frequency domain:

Rp =

√
R2

0 + r2 − 2r
√

R2
0 − h2 cosθ (6)

S(θ, f ) = rect(θ/θbw) · rect( f /Br) · exp[−j4π( f + fc)Rp/c] (7)

(a) Geometric model of ArcSAR system in 3-D space (b) Side view of ArcSAR geometric model 

Figure 1. Cont.
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(c) Top view of the ArcSAR geometric model 

Figure 1. The geometric model of ArcSAR system.

3. Analyzing the Error Caused by ArcSAR Imaging on the Reference Plane

In this section, the error model of ArcSAR imaging on the reference plane is first built. Then,
the height difference threshold for determining whether the ArcSAR image will severely defocus is
calculated. We also explore the relationship between height difference threshold and system parameters.

3.1. The Error Model of ArcSAR Imaging on the Reference Plane

As shown in Figure 2, the antenna rotates counterclockwise from S1 to S2. When the antenna
rotates to S, it is closest to the target P. The xoy plane is defined as the reference plane (the xoy plane
is defined as the reference plane in subsequent parts of this paper). We use the backward projection
algorithm (BP algorithm) to achieve the imaging of the target P on the reference plane. The P0 is the
imaging result on the reference plane. It has the same range and Doppler from the antenna with target
P. However, referring to the geometric model given in Figure 2, target P and P0 has different range
migration because the height of the reference plane is inconsistent with the actual height of the target P.

 

Figure 2. Target P and its imaging result on the reference plane.

The inverse Fourier transform is performed on S(θ, f ) at the range direction to obtain its time
domain form, which can be expressed as:

Sc(θ, tr) = sin c
(
Br

(
tr−2Rp/c

))
exp

(
−j

4π fc
c

Rp

)
(8)
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The exponential term of Sc(θ,tr) represents the range migration, which must be compensated
during the process of focusing. Therefore, the matched filter is used to compensate for the range
migration of Sc(θ,tr). The ideal matched filter is expressed as follows:

H(θ, tr) = exp
{

j
4π fc

c
·Rp

}
(9)

However, the actual matched filter used to compensate for the range migration of target P
is different from the ideal matched filter because target P and P0 have different range migrations.
The actual matched filter contains the phase error, which means the range migration of target P cannot
be compensated correctly. The actual matched filter can be expressed as:

H(θ, tr) = exp
{

j
(

4π fc
c
·Rp + Δp

)}
(10)

where Δp represents the phase error:

Δp =
4π fc

c
· (Rp0 −Rp) (11)

where Rp0 represents the distance between P0 and the APC, which can be expressed as:

Rp0 =

√
(ROA − r)2 + r2 + h2 − 2r

√
(ROA − r)2 + h2 cosθ (12)

ROA =
√

R2
0 − h2 (13)

where ROA is the ground range from the target to the rotation center. Therefore, the imaging result of
the target P on the reference plane is

Gp0 =

∫
θ

Sc(θ, tr) ·H(θ, tr)dθ =

∫
θ

Br sin c
(
Br

(
tr−2Rp/c

))
exp(jΔp)dθ (14)

The matched filter in Equation (10) cannot correctly compensate for the range migration. Thus,
the imaging quality of the target P on the reference plane will decrease.

Then, we derive the condition for the defocusing of the ArcSAR imaging result on the reference
plane. According to Equation (11), the occurrence of Δp is due to the slant range error caused by Rp

and Rp0. We define the slant range error as the ΔR, which can be expressed as:

ΔR = Rp0 −Rp (15)

Equations (6) and (12) indicate that the ΔR is the function of θ. The relationship curve of θ and
ΔR is shown in Figure 3. S1, S and S2 are marked in the curve. As can be seen from the curve, when the
antenna is at point S, the value of slant range error is zero. As the antenna deviates from position S,
the value of slant range error gradually increases. When the antenna is at S1 and S2, the value of slant
range error is the largest. We define the maximum slant range error as ΔRmax.
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Figure 3. The θ–ΔR relationship curve.

The maximum phase error acceptable for SAR image is π/4 [21]. If the phase error exceeds π/4,
the SAR image will severely defocus (when the phase error is less than π/4, this error is too small for
SAR imaging to be ignored). Therefore, the condition for severe defocusing of the ArcSAR imaging
result on the reference plane is:

Δpmax ≥ π/4
4π fc

c · ΔRmax ≥ π/4
ΔRmax ≥ λ

16

(16)

where λ represents the wavelength.

3.2. The Relationship between Height Difference Threshold and System Parameters

In this part, we calculate the height difference threshold for determining whether the ArcSAR
imaging result on the reference plane will severely defocus, and analyze the relationship between the
height difference threshold and the system parameters. We define the height of the reference plane as
href, which the value is 0 m. The geometric relationship is shown in Figure 2. The necessary parameters
are given in Table 1.

Table 1. The ArcSAR system parameters.

r (m) θbw (rad) θ (rad) λ (mm) Rsp (m) Br (MHz)

1 π/3 π/3 17.50 300 150

Rsp is the minimum slant range between the antenna and the target during the rotation.
The relationship between height of the target and ΔRmax is as follows:

Rp0max −Rpmax = ΔRmax (17)

Rp0max =

√(
r sin

θ
2

)2
+

(
Rsp + r− r cos

θ
2

)2
(18)

Rpmax =

√(
r sin

θ
2

)2
+

(√
Rsp − h2 + r− r cos

θ
2

)2
+ h2 (19)

where Rpmax is the maximum slant range between the antenna and the target P during system rotation,
Rp0max represents the maximum slant range between the antenna and P0 during system rotation.
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According to Equations (17)–(19) and the parameters given in Table 1, we can get the h–ΔRmax

relationship curve (Figure 4).

max /16R =

Figure 4. The h–ΔRmax relationship curve.

With reference to Figure 4, it can be seen that the ΔRmax increases with h. Applying the parameters
of Table 1 to Equations (17)–(19), we calculate that the height difference threshold is 38.26 m. When h
exceeds 38.26 m, the ArcSAR image of target P on the reference plane will severely defocus. We give the
simulated imaging results of the target P on the reference plane in Figure 5. When h is 0 m, the imaging
result of target P on the reference plane has no defocusing because the height of the reference plane is
consistent with the actual height of the target at this time. When h is 80 m, the height of the target P
exceeds height difference threshold, thus the imaging result of target P on the reference plane appears
severe defocusing.

(a) h = href                           (b) h = href +80m    

Figure 5. Imaging simulation results of target P on the reference plane.

The height difference threshold is determined by the system parameters given in Table 1. Therefore,
the change of system parameters has an impact on height difference threshold: under the premise of
changing only single system parameter, the increase of θbw, θ and Rsp will cause the height difference
threshold to rise, while the increase of the f c, r will cause the height difference threshold to decrease.

4. The Principle of Interferometric DEM-Assisted High Precision Imaging Method for ArcSAR

From the analysis of previous section, the ArcSAR imaging result on the reference plane is affected
by the terrain fluctuation. For acquiring high precision ArcSAR image, an interferometric DEM-assisted
high precision imaging method for ArcSAR is proposed in this paper. The interferometric ArcSAR is
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utilized to acquire the scenes DEM on the slant range. Since DEM-assisted ArcSAR imaging requires
the DEM image on the ground range, we propose a polar coordinate transformation method for
transforming DEM image from slant range to ground range. With the assist of DEM image on the
ground range, the target in the scenes can be imaged on its actual height.

The steps of the above method are as follows: (1) The ArcSAR system is utilized to scan the same
scenes at two different heights for getting ArcSAR Image 1 and ArcSAR Image 2. It should be noted
that the acquired two ArcSAR images are the imaging results on the reference plane. Although the
imaging accuracy of them is affected by the terrain fluctuation, their phase information can be used to
obtain the interferometric phase. (2) ArcSAR Image 1 and ArcSAR Image 2 are used for interference
to obtain interferometric phase. (3) We perform the operations of flat phase removing and phase
unwrapping for the interferometric phase. (4) The unwrapped interferometric phase is used to inverse
the DEM of the scenes. (5) The DEM image in slant range is transformed to the ground range by
proposed polar coordinate transformation method. (6) The DEM of the scenes is used to assist ArcSAR
imaging. A flow chart of the above method is shown in Figure 6.

Input Input

High precision 
ArcSAR image

Output

DEM image of the scenes

Output

Antenna rises 
a distanceArcSAR Image 1 ArcSAR  Image 2

Using polar coordinate 
transformation method to 

transform DEM image from 
slant range to ground range

Extracting DEM 
of scenes

DEM assisted 
ArcSAR
imaging

Figure 6. Flow chart of the proposed high precision ArcSAR imaging method.

4.1. Interferometric ArcSAR Extraction DEM of Scenes

Since the method of extracting DEM of the scenes using InSAR is relatively mature [22,23], we only
briefly describe the main principle of interferometric ArcSAR in this section.

The model of interferometric ArcSAR is shown in Figure 7. Firstly, the antenna scans the target P
at two different heights to obtain the imaging results on the reference plane, which can be shown as:

G1 = Es exp
(
− j

4π
λ

Rsp

)
(20)

G2 = Es exp
(
− j

4π
λ

Rsp2

)
(21)

where G1 is the ArcSAR image taken when antenna is rotating on the xoy plane and G2 is the ArcSAR
image taken after raising the antenna to leave the xoy plane. The height baseline is Δz. Es stands for
the amplitude information of the SAR image. Rsp2 represents the distance from S3 to the target P.
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z

Figure 7. The model of interferometric ArcSAR.

Then, we can acquire the complex conjugate result of G1and G2:

G2G∗1 = E2
s exp

(
− j

4π
λ

Rsp2

)
· exp

(
j
4π
λ

Rsp

)
= E2

s exp
(
j
4π
λ

(
Rsp −Rsp2

))
(22)

According to Equation (22), the interferometric phase p1 can be expressed as:

p1 =
4π
λ

(
Rsp −Rsp2

)
(23)

Based on the work in [22], plane wave approximation is used to simplify the derivation process.
Thus, Rsp2 can be approximated as:

Rsp2 = Rsp − δ (24)

where δ is the difference of Rsp and Rsp2, which can be expressed as

δ = Δz
h

Rsp
= Δz sin β (25)

Thus, the p1 is rewritten as:

p1 =
4π
λ

Δz sin β (26)

β is the angle between Rsp and the reference plane, which can be expressed as:

β = sin−1
(
λ

4πΔz
p1

)
(27)

The height of the target P can be expressed as:

h = Rsp sin β = Rsp

(
λ

4πΔz
p1

)
(28)

4.2. DEM Image Transforming from Slant Range to Ground Range

In this paper, the ArcSAR images used for extracting DEM are the slant range images. Therefore,
on the range direction, the pixel units of the ArcSAR image are equally spaced according to the slant
range. The DEM image obtained by the interference with the ArcSAR images is also the slant range
image (each pixel unit on the DEM image represents DEM data). However, assisted ArcSAR imaging
requires the use of DEM image on the ground range. Thus, it is necessary to transform the DEM image
from slant range to ground range.

The process of DEM image from slant range to ground range in linear scanning GBSAR is generally
achieved in Cartesian coordinate system. This is because the range direction and azimuth direction of
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the linear scanning GBSAR are along the coordinate axes of the Cartesian coordinate. Thus, in the
Cartesian coordinate system, the linear scanning of GBSAR only requires operating in one dimension
to complete the transformation of the DEM image.

However, if we realize the transformation of ArcSAR DEM image in Cartesian coordinate system,
we have to operate in two dimensions. Because the azimuth direction of the ArcSAR system is the
rotation direction of the antenna, and the range distance of the ArcSAR is the radial direction of the
antenna motion track. To simplify the transformation process of ArcSAR DEM image, we propose a
transformation method in polar coordinate system.

The DEM image in polar coordinate system is shown in Figure 8. The θ-axis of the coordinate
system represents the azimuth direction. The pixel units in azimuth direction are equally spaced
according to the rotation angle (θ) of the ArcSAR system, and there are N pixel units in this direction.
The Rs-axis of the coordinate system represents the range direction. The pixel units in this direction are
equally spaced according to the slant range (Rs), and there are M pixel units in this direction. The size
of the DEM image is M×N. The coordinates of the pixel units are also indicated in Figure 8. Taking the
pixel unit with coordinate (θi, Rsj) as an example, we discuss the process of transforming the pixel unit
from slant range to ground range. The specific operation steps of the proposed transformation method
are as follows,

( )1 1,Rs

( )1, jRs

( )1 M,Rs

( )1,i Rs

( ),i jRs

( )M,i Rs

( )N 1,Rs

( )N, jRs

( )N M,Rs

Figure 8. The DEM image in the polar coordinate system.

1. When θ = θi (i = 1, 2, ..., N), the sequence DEMs are taken from the DEM image. This sequence
stores the DEM data in the DEM image at θ = θi. Its size is M×1. At the same time, we define a
slant range sequence Rn. It stores the slant range corresponding to each element in the sequence
DEMs, which can be expressed as:

Rn =
[
Rs1, Rs2, ..., Rsj, ..., RsM

]
( j = 1, 2, ..., M) (29)

2. We calculate the ground range sequence Rg using the geometric relationship between the sequence
DEMs and the sequence Rn. The flow chart of the calculation process is shown in Figure 9.
Sequence Rg stores the ground range corresponding to each DEM data in the sequence DEMs.

3. We define a ground range sequence Rge, which is an increasing sequence. Its size is M × 1.
Furthermore, the largest element of this sequence is Rge(M), which is equal to the Rg(M).
The difference of adjacent elements in Rge is fixed.

4. We acquire the element in the sequence Rg that is numerically closest to the element Rge (j),
which we define as Rne.

5. According to the position of Rne in the sequence Rg, the DEM data corresponding to the element
Rne in the sequence DEMs can be found. We named these DEM data as Hne.

140



Sensors 2019, 19, 2921

6. Since Rge(j) is numerically close to Rne, the position of their corresponding DEM data on the DEM
image will be very close. Therefore, we assume that the DEM data of Rge(j) are also Hne.

7. According to Rge(j) and Hne, the slant range corresponding to Rge(j) can be calculated:

Rnew =
√

R2
ge( j) + H2

ne (30)

8. Let Rnew interpolate on the sequence Rn (the purpose of this operation is to find the position of
Rnew on the sequence Rn). According to the position of Rnew on the sequence Rn, we can find the
DEM data corresponding to Rnew on the sequence DEMs, which we define as Hnew.

9. Since Rge(j) is the ground range corresponding to Rnew, the DEM data of Rge(j) are also Hnew.

( ) ( )( ) ( )( )2 2
g n sR j R j DEM j=

 
Figure 9. Flow chart of calculating the sequence Rg.

Through the above steps, the DEM data with coordinate (θi, Rsj) on the slant range are transformed
to the ground range. The coordinate of these DEM data on the ground range is (θi, Rge(j)). The above
steps only describe the process of transforming one DEM datum in the DEM image from the slant
range to ground range. The complete transformation process is shown in Figure 10.

= i

Figure 10. The polar coordinate transformation method proposed in this paper.
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5. Accuracy Analysis

We extract the DEM using the SAR images imaged on the reference plane. The defocusing of SAR
image causes the larger phase error, which has the impact on the accuracy of the DEM and further
affects the imaging quality. The defocusing can cause two types of phase error. The first is the random
phase error due to the decrease of the SAR image’s signal-to-noise ratio (SNR). The second is the phase
error due to the difference in phase distortion of the SAR image pair used for the interference. In this
section, we analyze the impact of the above two phase errors on DEM accuracy. Since the application
background of the interferometric ArcSAR in this paper is deformation monitoring, the deformation
monitoring accuracy is also analyzed.

In addition, it should be noted that the purpose of analyzing DEM accuracy and deformation
monitoring accuracy is to demonstrate the effect of DEM assist on improving the accuracy of the results.
In practice, the analysis of DEM accuracy and deformation monitoring accuracy also needs to consider
more complex factors such as baseline decoherence and time decoherence. Since these factors are not
relevant to our topic, they are not considered in this paper.

5.1. The DEM Accuracy Analysis

5.1.1. Phase Error Analysis as the Decrease of the SNR Caused by Image Defocusing

Defocusing causes the decrease of the SAR image’s SNR, which results in larger phase error.
We analyze this type of phase error in this section. The SNR loss of the imaging result is defined as
Sloss. According to the geometric model in Figure 7, we apply the numerical analysis method to obtain
the h–Sloss curve of the imaging result P0. The relationship between h and Sloss can be expressed as:

Sloss = 10lg

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

i= θ2∑
i=− θ2

exp
(
j 4π f

c ΔR(i, h)
)

θ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

2

(31)

The necessary parameters are given in Table 1. The h–Sloss curve is shown in Figure 11.

Figure 11. h–Sloss curve.

It can be seen in Figure 11 that, as h increases, the SNR loss gradually becomes severe. We assume
that the SNR of the imaging result is 20 dB when h = 0 m. The SNR will decrease to 9.03 dB when
h = 100 m, which means that the imaging result is seriously defocused.
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According to the authors of [24], the root mean square error σps of the phase error due to the
decrease of the SNR can be expressed as:

σps =
1√
2NL

·
√

1− ρ2

ρ
(32)

where NL stands for the number of looks. ρ represents the coherence of the SAR image pair. It is
related to the SNR, which is [24]:

ρ =
1

1 + SNR−1
(33)

With reference to Equations (31) and (33), the h–ρ curve can be obtained, as shown in Figure 12.

Figure 12. h–ρ curve.

It can be seen in Figure 12 that as h increases, ρ gradually decreases. When h = 100 m, ρ decreases
to 0.89. We use the 3 × 3 filter window for phase filtering, thus NL = 9. According to Equation (32) and
Figure 12, the h–σps curve can be acquired, as shown in Figure 13.

Figure 13. h–σps curve.

As shown in Figure 13, as h increases, σps gradually rises. When h = 100 m, the σps rises to 6.96.
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5.1.2. Phase Error due to the Difference in Phase Distortion of the SAR Images

The defocusing can cause phase distortion in SAR images. If there is the difference in phase
distortion of the SAR image pair used for interference, the phase error will be introduced during the
interference process. In this section, we analyze this kind of phase error. We define the distortion phase
as pd. The h–pd curves of the SAR image pair are shown in Figure 14.

(a) The h–pd curve of ArcSAR Image 1            (b) The h–pd curve of ArcSAR Image 2 

Figure 14. The h–pd curves.

It can be found that the phase distortions of the above SAR image pair are similar, which means
that most of the distortion phase will be offset during the interference process. Therefore, the phase
error introduced by the process of interference is small, as shown in Figure 15.

Figure 15. h–σpd curve.

σpd represents the phase error due to the difference in phase distortion of the SAR image pair.

5.1.3. The Effects of Phase Errors on DEM Accuracy

With reference to Equations (25), (26) and (28), we can derive the relationship between DEM
accuracy σh and the above two types of phase error:

σh =
λRsp

4πΔz

(∣∣∣σps
∣∣∣+ ∣∣∣σpd

∣∣∣) (34)

According to Equation (34), Figures 13 and 15, the h–σh curve can be obtained, as shown in
Figure 16.
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Figure 16. h–σh curve.

Referring to the conclusion of Section 3.2, when the Rsp = 300 m, the height difference threshold is
38.26 m. Therefore, if the accuracy of the DEM for assisting imaging is better than 38.26 m, the proposed
imaging method can obtain high-precision ArcSAR imaging results. The curve in Figure 16 shows
that the DEM accuracy does not exceed 0.5 m, which is much smaller than the height difference
threshold. Thus, we can draw the following conclusion: Even if the SAR images used for interference
appears defocused, the obtained DEM can still be used to assist ArcSAR imaging and acquire high
precision image.

5.2. Deformation Monitoring Accuracy Analysis

We utilize the DEM obtained by interferometric ArcSAR to assist imaging, which can significantly
improve the imaging quality. The improvement of image quality also helps to improve the deformation
monitoring accuracy. In this part, the contribution of the proposed method to the improvement of
deformation monitoring accuracy is analyzed. As a comparison, the impact of traditional ArcSAR
imaging algorithm (the imaging method with the image on the reference plane) on the deformation
monitoring accuracy is also discussed. With reference to Section 5.1, defocusing causes two types
of phase error. They will affect the accuracy of deformation monitoring. We define the deformation
monitoring accuracy as σd, which can be expressed as [7]:

σd =
λ

4π

(∣∣∣σps
∣∣∣+ ∣∣∣σpd

∣∣∣) (35)

According to Equation (35), Figures 13 and 15, the h–σd curve can be acquired, as shown in
Figure 17.

Figure 17. h–σd curve.
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For the convenience of analysis, we take the deformation monitoring accuracy at h = 100 m as the
example. Referring to the curve in Figure 17, the deformation monitoring accuracy of the traditional
ArcSAR imaging algorithm is 1.78 × 10−4 m. If we use the proposed imaging method, the target in the
scenes will be imaged on its real position. According to Figure 16, the DEM accuracy at h = 100 m is
σh(100 m) = 0.27 m. Therefore, the deformation monitoring accuracy of the proposed method can reach
to σd(0.27 m) = 0.47 × 10−4 m, as marked in Figure 17. Through the above analysis, we can conclude
that, compared with the traditional ArcSAR imaging algorithm, the imaging method proposed in this
paper can effectively improve the deformation monitoring accuracy.

6. Experiment

We used a distributed scenes imaging experiment of ArcSAR to verify the effectiveness of the
proposed high-precision imaging method. The experiment contained two parts. First, we used the
ArcSAR images of the distributed scenes for interference to extract the DEM image of the scenes. Then,
the extracted DEM image was transformed from the slant range to the ground range using the polar
coordinate transformation method proposed in Section 4.2. Second, we performed the distributed
scenes ArcSAR imaging simulation experiment. The DEM image obtained in Experiment 1 was used
for assisted imaging.

6.1. The Simulation Experiment of Interferometric ArcSAR Extraction DEM

Based on the geometric model and working mode of the ArcSAR system, we uses the existing
RCS scenes and DEM data to simulate the ArcSAR image on the slant range. To facilitate subsequent
experiment, the simulated ArcSAR image is shown in the polar coordinate system in Figure 18.
The necessary parameters are given in Table 2.

(a) The RCS of scenes for simulation           (b)The DEM data for simulation 

 
(c) The simulated ArcSAR image in polar coordinate system 

Figure 18. The RCS scenes for simulation, the DEM data for simulation and the simulated ArcSAR
image in polar coordinate system.
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Table 2. Experiment parameters.

r (m) θbw (rad) θ (rad) λ (mm) Br (MHz) Rmax (m) Rmin (m)

1 π/3 2π 17.50 150 400 200

Rmax represents the maximum slant range from the imaging scenes to the ArcSAR system and
Rmin represents the minimum slant range from the imaging scenes to the ArcSAR system. They are
marked in Figure 18b. The point o in Figure 18b is the rotation center. We defined the height of rotation
plane to be 0 m. In Figure 18c, the horizontal axis represents the rotation angle of the ArcSAR system,
and the vertical axis is the interval from Rmin to Rmax.

The ArcSAR imaging result in Figure 18c was considered to be the main complex image for
interference. The height baseline Δz was 0.2 m. We simulated the sub SAR complex image for
interference. The interferometric phase can be obtained by interference with the main SAR complex
image and the sub SAR complex image. The interferometric phase image is shown in Figure 19.

 

Figure 19. Interferometric phase image of phase wrapping.

The measured interferometric phase value shown in Figure 19 was modulated by 2π, ranging from
−π to π, and there was an ambiguity of many cycles in the interferometric phase value. Thus, it was
necessary to perform phase unwrapping on the interferometric phase image. The branch cut method
was applied to interferometric phase unwrapping [25,26]. In addition, to reduce the complexity of
phase unwrapping, we also removed the flat phase of the interferometric phase. After the flat phase
removal and phase unwrapping operations, the interferometric phase image could be used for DEM
inversion. The DEM image obtained by the interferometric phase inversion is the slant range image,
as shown in Figure 20a. We utilized the proposed polar coordinate transformation method to transform
it to the ground range. The DEM image on the ground range is shown in Figure 20b.

We also calculated the mean square error (MSE) of the DEM image in Figure 20b with the existing
DEM data. The result of the MSE was only 1.69. It can be seen that the interferometric ArcSAR could
acquire high-precision DEM image of the scenes.
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(a) DEM image on the slant range                 (b) DEM image on the ground range 

Figure 20. Interferometric ArcSAR extraction the DEM image of scenes.

6.2. Distributed Scenes Imaging Simulation Experiment Verification the DEM-Assisted High Precision
Imaging Method for ArcSAR

We used the distributed scenes imaging simulation experiment to image the scenes given in
Experiment 1. The necessary parameters are shown in Table 2. The DEM image acquired in Experiment
1 was applied to assist ArcSAR imaging. In addition, we also used the traditional imaging method of
ArcSAR to image the distributed scenes on the reference plane as the comparison. The height of the
reference plane was 0 m. Based on Equations (17)–(19) in Section 3.2, we found the defocused area and
focused area of the distributed scenes imaging results on the reference plane, as shown in Figure 21.

 
Figure 21. The defocused area and focused area of imaging result on the reference plane.

The imaging results by the two imaging methods in Cartesian coordinate system are shown in
Figure 22.

It can be seen that the ArcSAR imaging result of the scenes on the reference plane showed severe
defocusing, and the ArcSAR image obtained by the proposed imaging method was not defocused.
To further analyze the imaging accuracy of the proposed imaging method, we set a strong scattering
target in the scenes and analyzed the quality of its imaging result. Its imaging result is marked in
Figure 22. We sliced the imaging result of the target and up sampled it 20 times, as shown in Figures 23
and 24. The imaging quality parameters of the strong scattering are shown in Table 3.
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x(m) x(m)  
(a) The ArcSAR Imaging on the reference plane (b) The ArcSAR Imaging by proposed method 

Figure 22. The distributed scenes imaging simulation results of ArcSAR in Cartesian coordinate system
by traditional method and proposed method.

 
(a) Target imaging on 

reference plane 
(b) Range direction profile (c) Azimuth direction profile 

Figure 23. Imaging simulation results of the strong scattering target on the reference plane.

(a) Target imaging by 
proposed method 

    (b) Range direction profile (c) Azimuth direction profile 

Figure 24. Imaging simulation results of the strong scattering target by proposed method.

According to Equations (17)–(19) in Section 3.2, we calculated that the height difference threshold
of the strong scattering target was 28.28 m. The height of the strong scattering target in Figure 22 was
36.82 m, which exceeded height difference threshold. Therefore, its imaging result on the reference
plane showed severe defocusing, as shown in Figure 23. The imaging result of the strong scattering
target obtained by the proposed high-precision imaging method was not defocused, as shown in
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Figure 24. Besides, it can be seen from the analysis results of the imaging quality in Table 3 that the
proposed imaging method could effectively improve the quality of ArcSAR image and achieve the
high-precision imaging.

Table 3. The quality parameters of the strong scattering target imaging result.

Parameters Imaging on Reference Plane Imaging by Proposed Method

Coordinates (m,deg) (220.91,185.19) (220.91,185.19)
Height (m) 36.82 36.82

Range direction resolution (m) 1.00 1.00
Range direction PSLR (dB) −13.21 −13.22

Azimuth direction resolution (m) 1.92 1.91
Azimuth direction PSLR (dB) −8.63 −12.57

7. Conclusions

In this paper, an interferometric DEM-assisted high precision imaging method for ArcSAR is
proposed. The proposed method applies the interferometric ArcSAR to extract the DEM of scenes.
The extracted DEM is utilized to assist ArcSAR imaging. This operation enables the target in the
scenes image on its actual height. The proposed imaging method does not rely on external DEM data.
Compared with the traditional ArcSAR algorithm imaged on the reference plane, the proposed method
can effectively improve the accuracy of ArcSAR imaging.
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Abstract: This paper proposes a new interferometric near-field 3-D imaging approach based on
multi-channel joint sparse reconstruction to solve the problems of conventional methods, i.e.,
the irrespective correlation of different channels in single-channel independent imaging which may
lead to deviated positions of scattering points, and the low accuracy of imaging azimuth angle for
real anisotropic targets. Firstly, two full-apertures are divided into several sub-apertures by the same
standard; secondly, the joint sparse metric function is constructed based on scattering characteristics
of the target in multi-channel status, and the improved Orthogonal Matching Pursuit (OMP) method
is used for imaging solving, so as to obtain high-precision 3-D image of each sub-aperture; thirdly,
comprehensive sub-aperture processing is performed using all sub-aperture 3-D images to obtain
the final 3-D images; finally, validity of the proposed approach is verified by using simulation
electromagnetic data and data measured in the anechoic chamber. Experimental results show that,
compared with traditional interferometric ISAR imaging approaches, the algorithm proposed in this
paper is able to provide a higher accuracy in scattering center reconstruction, and can effectively
maintain relative phase information of channels.

Keywords: joint sparse reconstruction; interferometric inverse synthetic aperture radar; compressed
sensing; near-field 3-D imaging; wide angle

1. Introduction

Near-field 3-D imaging is a microwave imaging technique that is developed on the basis of
two-dimensional (2-D) synthetic aperture imaging. As it has higher spatial resolution capability,
and has easy availability for engineering realization, near-field 3-D imaging is widely applied
in Radar Cross Section (RCS) [1], non-destructive testing and evaluation (NDTE) [2,3], security
check [4], concealed weapon detection [5–7], through-wall and inner wall imaging [8,9], breast cancer
detection [10,11], etc. So far, a variety of techniques have been applied in near-field 3-D imaging
to improve its performance, such as imaging based on range migration algorithm (RMA) [12–14]
and polar format algorithm (PFA) [14], tomography imaging method [15], microwave holography
method [16], confocal radar-based imaging [17], and NUFFT-based imaging [18,19].
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Imaging approaches as mentioned above are all based on the traditional Nyquist sampling
principle and matched filtering. In general, high range resolution is obtained by transmitting wideband
signals, and high azimuth resolution is obtained in longer synthetic aperture time. However, with
higher requirements for imaging resolution, traditional imaging approaches are encountering problems
such as the sampling rate is too high, the data volume is too large, and the fast processing is difficult to
carry out. According to the Compressed Sensing (CS) [20,21], a sparse signal or a sparse signal in a
particular transform domain is sampled in a way that is lower than or far below than requirements of
the Nyquist sampling theorem. The high-dimensional target signal can be accurately reconstructed by
applying low-dimensional observation data by solving a minimum L-norm constrained optimization
problem. At present, many scholars are combining CS with high-resolution near-field imaging and
have achieved a number of research results, which fully demonstrate great potential of CS in reducing
data sampling rate and improving imaging resolution [3,8,22,23].

At present, research on near-field 3-D imaging mainly focuses on planar scanning 3-D imaging.
Although high-resolution target 3-D images can be obtained by applying the planar scanning 3-D
imaging, the size of sampling data is huge, and conducting the measurement is time-consuming and
the imaging efficiency is low. For the interferometric inverse synthetic aperture radar (InISAR) [24,25]
method, 3-D views of the target can be obtained by applying the multi-antenna phase interference
method, and data acquisition and signal processing are relatively simple, which make it easy for
the system to perform functions. Thus, InISAR can be widely used in near-field 3-D imaging.
InISAR 3-D imaging based on CS technology has the following advantages: (1) high-resolution
ISAR images can be obtained only by short-time observation data. At the same time, rotation of the
target can be approximately considered to be uniform in short-phase processing interval and thus
the occurrence probability of range cell migration is reduced; (2) imaging results are not affected by
sidelobe, and image resolution can be improved by increasing imaging grids, so that it is helpful to
suppress angular glint phenomenon in InISAR imaging and (3) through the CS technology, the ISAR
images can be further reconstructed by adopting sparse sampling data, thus reducing the pressure of
data acquisition.

In interferometric imaging, compressed sampling and sparse reconstruction can be separately
performed for each channel, so as to reduce the system sampling rate and improve the quality of radar
imaging. For example, 3-D InISAR imaging method based on sparse constraint model is proposed
using the sparsity of ISAR images in reference [24]. However, traditional InISAR imaging methods have
the following problems: (1) because the observation objectives are consistent, multi-channel echoes in
the InISAR system have a strong correlation, i.e., images of each channel have the same target support
set. However, in single-channel independent processing, such prior information is not considered,
and consistent location and number of scattering points among channel images cannot be ensured,
which means it cannot ensure that all scattering points on the target are located in positions with the
same pixel in two interferometric images, thus reducing the estimation accuracy of interferometric
phase information and (2) in InISAR imaging, scattering characteristics of the target vary with the
observation angle, and the imaging azimuth accuracy is limited by scattering anisotropy of the target.

Motived by the above problems in traditional InISAR imaging methods, this paper proposes
the interferometric near-field 3-D imaging based on multi-channel joint sparse reconstruction.
Firstly, a more universal multi-channel interferometric near-field echo signal model is set up; secondly,
the two observed full apertures are divided into several sub-apertures according to the same criteria.
By analyzing sparse characteristics of the target echo in each channel, a joint sparse constrained
optimization model is set up and the problem of multi-channel high-resolution imaging is transformed
into an optimization problem based on multi-channel joint sparse reconstruction. The improved
orthogonal matching pursuit (OMP) is applied for high-resolution imaging solving to obtain 3-D
images of each sub-aperture target; thirdly, the 3-D images of each sub-aperture are synthesized
to obtain final 3-D imaging results of the target under full aperture; finally, the effectiveness of the
proposed approach is verified by processing point target simulation data and Backhoe electromagnetic
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simulation data, and the InISAR system is set up in the microwave anechoic chamber to verify the
practical applications of the proposed approach by processing the measured data obtained. Compared
with traditional InISAR imaging methods, the proposed method in this paper has the following
advantages: (1) reconstruction accuracy of strong scattering centers in ISAR images is improved owing
to utilization of correlation among cross channels, and relative phase information of cross channels
is kept effectively, so as to obtain interferometric phase information with higher accuracy; (2) owing
to sub-aperture synthesis method applied, the target with scattering anisotropy in all directions can
be accurately described, and the problem that accuracy of imaging azimuth angle is limited can be
overcome; (3) because of information complementation and redundancy among multi-channel signals
applied, given relatively large compression sampling ratio, generation of false scattering points can be
effectively suppressed, thereby improving the imaging quality.

2. Signal Model of Inisar Near-Field Imaging

The InISAR system includes multiple antennas. This paper proposes a dual-antenna ISAR imaging
system. Figure 1 shows geometric relationship between antennas and the target, where antenna TR2

is located at origin O’. Antennae TR1 and TR2 form the vertical baseline along axis Z’. Define two
coordinate systems, where T’(x’,y’,z’) is the radar coordinate system, axis y’ is the line of sight of radar,
x’ and y’ represent the horizontal and vertical directions, respectively. T(x,y,z) is the target coordinate
system, in which axis y is coincident with axis y’, and axes x and y represent the azimuth direction and
range direction of ISAR, respectively, and distance between origins of the two coordinate systems is
R0 (R0 < 4D2/λ, D is the maximum size of the target and λ is the wavelength of the incident wave).
The target is moving at a constant speed in plane (x,y) at an angular velocity ω, and plane (x’,y’)
is parallel to plane (x,y). Assuming that coordinate of any point P on the target is (x,y,z), and the
coordinate in the cylindrical coordinate system is (r0,θ0,z). Then, at the moment t, the distance from
the antenna I (i∈ TR1, TR2}) to the point P is:

Ri(t) =
√
(R0 + y)2 + x2 + (R0 tan αi − z)2

=
√
(R0 + r0 cos(θ0 + ωt))2 + (r0 sin(θ0 + ωt))2 + (R0 tan αi − z)2

(1)

where, αi refers to the pitch angle from the antenna i to the origin of target coordinate system.
Assuming that the antenna transmits a step frequency wideband signal [26]:

sit(t) =
M−1

∑
m=0

rect
(

t − tmp

T

)
exp[j2π fmt] (2)

where:

rect
(

t − tmp

T

)
=

{
1, 0 <

t−tmp
T < 1;

0, t−tmp
T < 0 and t−tmp

T > 1;
(3)

fm = f0 + Δ f is the frequency of the pulse centered at time tmp and for pulses spaced equally in
frequency and time; tmp = (m + pM)T; Δ f is the frequency difference for each step in the pulse burst;
T is the time interval between pulses (pulse repetition period of pulses in the burst); M the number
of pulses in each burst; p = 0, N − 1-the index of emitted burst. The echo of the target received by
antenna i after the coherent demodulation is (to understand easily, rectangular coordinates are used):

sir(t) =
�
D

gi(x, y)
M−1

∑
m=0

rect
(

t − tmp

T

)
exp[j2π fm

Ri(t, x, y)
c

]dxdy, (4)

where, D refers to the imaging scene area, (x, y) refers to the position coordinate of the target,
and gi(x, y) indicates the backscatter coefficient of the target at position (x, y) received by antenna i.
Since the imaging process is a linear system, and in the high frequency region, the total scattering
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of the target can be seen as a linear superposition of multiple strong scattering points, i.e., sir(t)
represents superposition of echo signals of all scattering points at (x, y) in the entire imaging region
gi(x, y). The signal is a complex signal, amplitude gi(x, y) represents scattering intensity of scattering
point (x, y), and phase exp(−j4π fmRi(t, x, y)/c) contains position information (x, y) of the scattering
point.

�
D
[]dxdy represents the summation of all the scattered echoes in the imaging scene. With signal

processing technology, the target image can be obtained by separating position (x, y) and amplitude
gi(x, y) from complex signal sir(t).

Figure 1. Geometric sketch of dual-antenna InISAR imaging.

The imaging scene is discretized. In order to represent the radar signal as a matrix,
the corresponding 2-D backscatter coefficient matrix is concatenated into a one-dimensional column
vector by row or line:

gi = [gi(1, 1), · · · , gi(P, 1), gi(1, 2), · · · , gi(P, 2), · · · , gi(1, Q), · · · , gi(P, Q)]T , (5)

where, gi refers to the vector of PQ × 1, and P is the discrete grid number of axis x. Q is the discrete
grid number of axis y.

According to the Formula (4), the discrete echo data can be indicated as follows:

sir(t) =
PQ

∑
l=1

M−1

∑
m=0

gi(l) exp
[
−j

4π

λm
Ri(t, l)

]
, (6)

where, λm refers to wave length corresponding to the frequency fm. Ri(t, l) refers to the distance
between the ith antenna and the lth target at time t.

The range (or frequency) and azimuth angle are also discrete in actual situations. Assuming that
the range sampling point is N, the azimuth sampling point is M. The frequency of nth (frequency)
pulse in the burst is defined by fn = f0 + (n − 1)Δ f , n = 1, 2, · · · , N, where f0 is the initial frequency,
Δ f is the step interval, and the azimuth is discretized as θm = (m − 1)Δθ, m = 1, 2, · · · , M, (Δθ is the
angular interval). Formula (6) can be discretized as:

sir( fn, θm) =
PQ

∑
l=1

gi(l) exp
[
−j

4π fn

c
Ri(θm, l)

]
(7)

Equation (7) is represented as a matrix considering the effect of noise in actual situations:

sir = Aigi + ei, (8)

where si is a vector with the size of MN × 1, which is formed through signal sampling; Ai is a
dictionary matrix with the size of MN × PQ, which is formed through mapping relationship between
the target and the signal; gi is a vector with the size of PQ × 1, which is composed of scene backscatter
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coefficients; ei is the additive complex noise in the channel. Specified composition of each vector and
matrix in formula (8) is as follows:

sir = [sir( f1, θ1), · · · , sir( f1, θM), sir( f2, θ1), · · · ,
sir( f2, θM), · · · sir( fN , θ1), · · · , sir( fN , θM)]

(9)

Make:

a( fn, θm, l) = exp
[
−j

4π fn

c
Ri(θm, l)

]
(10)

Following vectors are defined as:

a( fn, θm) = [a( fn, θm, 1), a( fn, θm, 2), · · · , a( fn, θm, PQ)]T . (11)

Then the dictionary matrix can be obtained as:

Ai = [α( f1, θ1), · · · , α( f1, θM), α( f2, θ1), · · · , α( f2, θM), · · · , α( fN , θ1), · · · , α( fN , θM)] (12)

Therefore, the projection relationship between the scene and signal in i channel is obtained.
The radar signal model in the interferometric channel is represented as follows:

s =

[
s1r
s2r

]
= Ag + e =

[
A1 0
0 A2

][
g1

g2

]
+

[
e1

e2

]
, (13)

where, s corresponds with the echo signal in the interferometric channel, A corresponds with the
dictionary matrix in the interferometric channel, g corresponds with the backscatter coefficient in each
interferometric channel, and e corresponds with the additive noise in each interferometric channel.
It should be noted that the dictionary matrix corresponding with each interferometric channel may be
the same. However, in order to keep their generality, dictionary matrixes of the two interferometric
channels should be represented separately.

In order to reduce the sampling data of each interferometric channel effectively, the M′(M′ ≤ M)

angular position is randomly selected to transmit signal in the azimuth direction, and then N′(N′ ≤ N)

frequency point is randomly selected in the distance direction. After compressed sampling,
the interferometric echo signal model can be represented as follows:

s′ = Φs =

[
Φ10
0Φ2

]
s = ΦAg + Φe = A′g + e′, (14)

where, s′ refers to CS echo signal with the size of 2N′M′ × 1, Φi = Φa
i ⊗ Φr

i refers to the measurement
matrix corresponding with each channel, ⊗ refers to the Kronecker product, A′ refers to the sensing
matrix with the size of 2N′M′ × PQ, g refers to the scene backscatter coefficient with the size of
2PQ × 1, and e′ refers to noise with the size of 2PQ × 1.

Since M′ ≤ M, N′ ≤ N, recovery of the signal s from the measurements s′ is ill-posed in
general. However, according to the CS theory, when the matrix ΦA = A′ has the Restricted Isometry
Property (RIP) [27], it is indeed possible to recover the K largest gi’s from a similarly sized set of
M′N′ = O(K log(MN/K)) measurements s′. The RIP is closely related to an incoherency property
between Φ and A, where the rows of Φ do not provide a sparse representation of the columns of A,
and vice versa.
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In order to obtain the target images of each channel, the problem of interferometric near-field
imaging can be converted into an optimization and reconstruction problem of two independent
channels according to CS theory and sparse space distribution characteristics of the target scene:{

min‖g1‖0 s.t. ‖s′1 − A′
1g1‖F ≤ ξ1

min‖g2‖0 s.t. ‖s′2 − A′
2g2‖F ≤ ξ2

(15)

where, ‖•‖0 refers to the zero norm of vector, namely the number of non-zero elements in the vector,
‖•‖F refers to the Frobenius norm of matrix, and ξi is a positive number which depends on the noise
level. In Formula (15), it is quite important to select an appropriate noise level for the final optimization
result: too high noise level will lead to the loss of some weak scattering points, while too low noise
level will make it difficult to suppress strong noises. In Formula (15), optimization solving can be
performed by applying the OMP method which not only guarantees reconstruction accuracy, but also
has high computational efficiency.

3. Joint Sparsity Constraint Near-Field 3-D Imaging of Inisar Based on CS

3.1. Algorithm Flow Description

We first give the flow of the proposed approach in this paper, and describe the solution precisely
in the following subsections. The process of the proposed approach is presented as follows:

Step 1: Full apertures of the two channels are divided into several sub-apertures by the same criteria,
and each sub-aperture has a very small azimuth angle range.

Step 2: Global sparsity constraint and improved OMP algorithm are applied to obtain the 2-D complex
images I1 and I2 of each sub-aperture in the two channels.

Step 3: Two images of each sub-aperture are performed with interferometric processing to obtain
projection coordinates of the scattering points along the baseline.

Step 4: 3-D images of each sub-aperture target are constructed by synthesizing the 2-D ISAR images
of the interferometric processing results.

Step 5: 3-D images of all sub-apertures are processed synthetically to obtain the final 3-D images.
Step 6: The imaging flow is shown in Figure 2.

3.2. Joint Sparse Constrained Optimization Model

As mentioned in Section 2, a small amount of compressed sampled data is used to achieve
high-resolution reconstruction of the scene in the single-channel independent CS approach. However,
it cannot guarantee consistency of positions and numbers of all scattering points in each channel,
and integrity of the cross-information of channels is destroyed, which are not favorable for target
scattering information extraction. In addition, complementarity and redundancy among multi-channel
data does not fully exploit in the single-channel independent CS approach, so it cannot further improve
the SNR gain and reduce data volume of the system.
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Figure 2. Imaging flow of proposed approach.
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Two ISAR images used in the InISAR imaging are usually highly correlated, so they are more
obvious in joint sparsity. Based on such prior information, the following joint sparse metric functions
with global sparsity can be obtained as:

‖g‖p,0 = ‖(|g1|p + |g2|p
)1/p‖0, p ≥ 1, (16)

where, ‖•‖0 is zero norm, which represents the number of non-zero elements in the vector. Different p
values correspond with different mixed norm forms. This paper defines the following three global
sparsity constraints:

(1) when p = 1, ‖g‖1,0 = ‖(|g1|+ |g2|)‖0, is termed as mixed sum norm, i.e., sparsity of amplitude
sum of the two ISAR images is taken as the global sparsity constraint;

(2) when p = 2, ‖g‖2,0 = ‖
(
|g1|2 + |g2|2

)1/2‖
0

is termed as mixed Euclidean norm;

(3) when p = ∞, ‖g‖∞,0 = ‖max(|g1|, |g2|)‖0 is termed as mixed infinite norm, i.e., the sparsity of
one of the two ISAR images (with larger amplitude) is taken as the overall sparsity constraint.

The mixed sum norm and mixed Euclidean norm are both measured by taking the number
of non-zero elements of amplitude sum of images in all channels as the global sparsity. Since the
scattering points are aligned at different angles, the additivity is reasonable. The mixed infinite norm
takes the number of non-zero elements of the pixel point with the largest amplitude in each image as
the joint sparsity, and can also ensure that scattering points in the reconstructed sub-aperture images
are aligned.

3.3. Optimal Solution Algorithm Constrained by Joint Sparse

According to the constructed global sparsity constraint function, the problem of InISAR imaging
solution is transformed into the problem of multi-channel joint sparse optimal reconstruction problem:

min
g1,g2

‖g‖p,0 s.t.

{
‖s′1 − A′

1g1‖2
2 ≤ ξ

‖s′2 − A′
2g2‖2

2 ≤ ξ
, (17)

where, ξ is determined by the minimum noise level of each channel to ensure that each channel
can generate the target image. In Formula (17), data cannot be processed directly by applying the
traditional CS optimal reconstruction algorithm. In [28], an improved convex optimization approach
was proposed to solve the joint sparse imaging problem of interferometric channels. As sparse
reconstruction is only performed for azimuth, the computational complexity is not high. While it
is applied to the 2-D sparse reconstruction concerning range and azimuth as studied in this paper,
the computational complexity becomes intensive, especially in high-resolution imaging. The target
coefficient vector to be reconstructed usually has a large size, and thus the memory shortage of the
computational platform will be inevitably encountered for practical applications. OMP algorithm
is a commonly used greedy algorithm, which has high computational efficiency and can guarantee
excellent reconstruction results. Therefore, this paper proposes an effective and improved OMP
algorithm to solve the multi-channel joint sparse reconstruction problem based on OMP algorithm.
Regarding the three mixed norm solutions proposed in this paper, step (2) is different in the way of
index finding:

(1) Initialization: number of iterations t = 1, and support set Λ0 = 0. For the ith channel, its
initialized target vector gi,0 = 0, and incremental matrix Φi,0 = 0, which is composed of column
vectors in the support set. Make ri,t the residual signal after t iterations, and initialize ri,0 = s′i.

(2) Obtain index λt by solving the following formulas:

Mixed sum norm: λt = arg max
k∈{1,··· ,PQ}

2

∑
i=1

(∣∣∣〈ri,t−1
∗, Ai,k′

〉∣∣∣), (18)
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Mixed Euclidean norm: λt = arg max
k∈{1,··· ,PQ}

2

∑
i=1

(∣∣〈ri,t−1
∗, Ai,k

′〉∣∣2)1/2

, (19)

Mixed infinite norm: λt = arg max
k∈{1,··· ,PQ}

(
max

i∈{1,2}
∣∣〈ri,t−1

∗, Ai,k
′〉∣∣), (20)

where, Ai,k′ is the k column vector in perception matrix.

(3) Record the obtained index λt to the support set and its corresponding vector in A′
i to the

incremental matrix:
Λt = Λt ∪ {λt};

Φi,t = [Φi,t−1 Ai,λt
′]

(21)

(4) Adopt the least square method to calculate the projection coefficient of each channel:

gi,t = arg min
gi

‖s′i − Φi,tgi‖ (i = 1, 2) (22)

(5) Update residual signal ri,t:
ri,t = si

′ − Φi,tgi,t (i = 1, 2) (23)

(6) For the number of iteration t = t + 1, repeat step (2) to (4) until the energy of the residual signal
is lower than the preset threshold Thres or the number of iterations reaches the preset sparsity K.

Compared with the standard OMP algorithm, the proposed algorithm is mainly improved in
step (2). In the standard OMP algorithm, the support set for different channels may be different,
because the index λt,i is determined only for the single-channel signal itself:

λt,l = arg max
k∈{1,··· ,PQ}

〈
ri,t−1

∗, Ai,k

〉
(i = 1, 2). (24)

Such independent processing makes inconsistent positions and number of non-zero coefficients
in the target vector finally reconstructed in each channel, which is not favorable for extraction of
target scattering information. For the improved OMP algorithm, the multi-channel target scattering
information is used to determine candidate vectors and solve the projection coefficients of each channel
in the same support set, so as to ensure the consistency of the position and number of non-zero
coefficients in target vector reconstructed in each channel.

Setting of the preset threshold Thres is related to the noise level of the echo signal. Considering
the high SNR ratio, the threshold can generally be set as about 0.05 of the energy of the echo signal.
At this time, most of the scattering centers on the target can be accurately reconstructed; whereas, with
the increase of noise in echo signal, the set threshold value also increases, so as to avoid more false
scattering points caused by noise in the generated image. If the sparsity K is known, the reconstruction
results obtained by applying the CS matching pursuit reconstruction algorithm are quite excellent but
it is difficult to obtain accurate sparsity in actual engineering. In such case it always requires a large
number of SAR images for statistical analysis to determine approximate sparsity K range of different
kinds of observation scenes, and then obtain the optimal sparsity K within the determined range by
the optimization criteria.
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3.4. Extraction of Target Scattering Information

When the distance between the target and the antenna satisfies the near-field condition and the
baseline of the antennas is much smaller than R0, according to plane spectrum theory [29], the distance
in Formula (1) can be represented as:

Ri(t) = (R0 + r0 cos(θ0 + ωt)) cos αi cos φ + r0 sin(θ0 + ωt) cos αi sin φ + (R0 tan αi − z) sin αi, (25)

where, φ = arctan
(

r0 sin(θ0+ωt)
R0+r0 cos(θ0+ωt)

)
is the angle between the target and antenna in the plane Oxy.

To simplify the expression, the Cartesian coordinates of the target are represented in the cylindrical
coordinate system, so Equation (25) can be expressed as:

Ri(t) =
√
(R0 + r0 cos(θ0 + ωt))2 + (r0 sin(θ0 + ωt))2 cos αi + (R0 tan αi − z) sin αi. (26)

Then, the echo signal of the scattering point P can be represented as:

si(t) = gi exp
(
−j4π f

R cos αi + (R0 tan αi − z) sin αi
c

)
, (27)

where, R =
√
(R0 + r0 cos(θ0 + ωt))2 + (r0 sin(θ0 + ωt))2. This item is the same for the two antennas.

According to Formula (26), it is found that phase information of the scattering point in target ISAR
image contains height information of the scattering point, interferometric processing for two ISAR
images is conducted, and the interferometric phase difference of P images is:

Δϕ = 4π f
c (R cos α2 + (R0 tan α2 − z) sin α2 − (R cos α1 + (R0 tan α1 − z) sin α1))

= 4π f
c (R(cos α2 − cos α1) + R0(tan α2 sin α2 − tan α1 sin α1)− z(sin α2 − sin α1))

(28)

In the InISAR imaging system, the baseline length is much less than the distance between the
antennas and target, so pitch angle difference between the antenna TR1 and TR2 is very small, namely
α2 = α1 + Δα, Δα � 1. In this paper, the antenna TR2 is at the origin, so α1 = 0, α2 = Δα, and the
height of the scattering point can be estimated as:

z =
λ

4π Δϕ −R cos α2 − R0 tan α2 sin α2

− sin α2
(29)

When the antenna TR1 and TR2 are symmetrically distributed in the coordinate origin, namely
α1 = α2, the height of the scattering point is estimated as:

z =
Δϕλ

8π sin α1
(30)

For target containing K scattering points, the height of each scattering point can be estimated by
interferometric processing of the corresponding pixel points in the two ISAR images.

In actual processing, in order to avoid possible ambiguity of interferometric phase difference,
the following judgements on the interferometric phase difference are required:{

i f Δϕ > π, Δϕ − 2π

i f Δϕ < −π, Δϕ + 2π
. (31)
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4. Experiments and Analysis

In order to verify the effectiveness of the algorithm in this paper, point target simulation data,
electromagnetic software simulation data, and measured data in anechoic chamber is adopted to carry
out imaging verification and performance analysis, respectively.

4.1. Numerical Simulations

The simulation target is composed of 46 scattering centers withe shape of plane model, and its
distribution is shown in Figure 3. Stepped frequency signal of radar transmission and system
parameters setting are as shown in Table 1.

Figure 3. Geometric distribution for scattering model of plane point. (a) 2D distribution diagram of
scattering point; (b) 3-D distribution diagram of scattering point.

Table 1. Simulation parameter.

Parameter Parameter Value

Carrier frequency 10 GHz
Bandwidth 4 GHz

Frequency step interval 40 MHz
Azimuth accumulation angle 20◦
Azimuth sampling interval 0.2◦

Distance between antenna and target 2 m
Baseline length 0.02 m

Independent CS processing and joint CS processing based on global sparsity are separately
used for InISAR imaging. The 3-D distribution of scattering points is shown in Figure 4. The above
experiments are carried out with full data and signal without noise. Figure 4a is the single-channel
independent processing reconstruction result, Figure 4b–d are the global sparse joint sparse
reconstruction results. It can be seen from the figures that traditional single-channel independent
processing can basically reflect the 3-D distribution of scattering points of the target, but cannot
guarantee location consistency of all scattering points in different channels, which results in deviated
location estimation. While with the proposed method, consistency of location and number of scattering
points and more accurate reconstruction results can be ensured.
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Figure 4. 3-D Imaging results of near-field InISAR. (a) Traditional imaging approach, (b) Global sparsity
mixed sum norm processing; (c) Global sparsity mixed Euclidean norm processing (d) Global sparsity
mixed infinite norm processing.

4.1.1. Precision Analysis of Scattering Point Coordinate Estimation

Based on the above experiments, three typical scattering points are selected for statistical
comparison. It can be seen from the coordinate values of scattering points in the Table 2 that the
conventional imaging approach has obvious deviation in estimating the height coordinate values
of scattering points, while the proposed approach is more accurate in estimating the location of
scattering points. For example, when estimating the height information, the maximum deviation of
the traditional imaging approach is 0.6438, while the maximum deviation of the approach in this paper
is 0.046. Compared with the traditional method, the accuracy of the proposed approach is improved
by roughly 90% as indicated by statistical analysis of the location errors of all scattering points.

Table 2. Comparison of coordinates of typical scattering points.

Scattering Point 1
(x, y, z)

Scattering Points 2
(x, y, z)

Scattering Points 3
(x, y, z)

Theoretical coordinate (0.0125, 0.2688, 0) (0.1438, 0.2438, 0) (0.1188, 0.1688, 0.0467)
Traditional imaging (0, 0.24, 0.6438) (0.12, 0.23, 0.14) (0.1, 0.1, 0.13)

Mixed sum norm (0.009, 0.26, 0) (0.1387, 0.24, 0.046) (0.11, 0.1, 0.046)
Mixed infinite norm (0.008, 0.26, 0) (0.1387, 0.24, 0.046) (0.1063, 0.1, 0.046)

Mixed Euclidean (0.01, 0.265, 0) (0.139, 0.241, 0.03) (0.1163, 0.15, 0.046)

4.1.2. Precision Analysis of Interferometric Phase

For near-field InISAR imaging system, to estimate the height information of target scattering
point through the phase difference of corresponding pixel among complex images of various channels,
it must ensure the consistency of strong scattering position among various channels images during
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imaging of various channels. The accuracy of interferometric phase has a direct influence on imaging
quality. Figure 5 is the interferometric phase distribution of the complex image of two channels after
processing. According to the comparative study on Figure 5a–d, the accuracy of scattering point in
obtaining interferometric phase is higher and broader for the proposed approach comparing with that
of the independent single-channel processing imaging approach.

Figure 5. Interferometric phase image of near-field InISAR 3-D imaging. (a) Traditional imaging
approach, (b) Global sparsity mixed sum norm processing; (c) Global sparsity mixed Euclidean norm
processing (d) Global sparsity mixed infinite norm processing.

4.1.3. Noise Suppression Performance

Figure 6 shows the results obtained by applying the traditional imaging approach and the
proposed approach when there is noise in echo signal, where the noise is 5 dB complex white Gaussian
noise. Add the complex white Gaussian noise with SNR ratio of −15 dB to 25 dB in the echo data,
repeat Monte-Carlo simulation test for 100 times under every noise level, and calculate MSE estimated
on the basis of height.

In Figure 6, imaging results show that there is a considerable deviation in estimation of traditional
processing approach on height of target scattering point. While by applying the imaging approach
(global sparsity Euclidean norm) proposed in this paper, the height of target scattering point can be
estimated more accurate.
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Figure 6. Imaging results obtained by adopting traditional approach and proposed approach
respectively under 5 dB Noise. (a) Traditional imaging processing; (b) imaging processing of proposed
approach (mixed Euclidean norm); interferometric phase images (top layer); complex images of
channels 1 and 2 (second and third layers); final 3-D imaging results (last layer).

Figure 7 describes MSE estimated by heights of four compressed sensing approaches under
different SNRs. Under low SNR, the performance estimated by the heights of the four approaches
is low. With the increase of SNR, height estimation performance increases. However, the estimation
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performance based on global sparsity in this paper is obviously superior to that obtained by the
traditional processing approach.

Figure 7. Comparison for imaging performance of four approaches under different SNRs.

4.1.4. Performance of Sparsity Sampling Imaging

Randomly select a certain quantity of data from echo data to carry out InISAR imaging for further
investigating the influence of sparsity sampling on height estimation. Then, estimate the height
information of the scattering point through interference processing. The SNR is fixed as 10 dB, and the
pitch angle of antenna TR1 is fixed as 0.05◦. Carry out Monte-Carlo simulation for 100 times to every
sparsity sampling scheme, and calculate the MES estimated on the basis of height.

Figure 8 shows that application of the traditional approach fails to perform effective imaging of
target given 80% under-sampling rate. However, with the proposed approach, accurate imaging of
target can be performed. Figure 9 shows that the height estimation performance of processing based
on global sparsity is still superior to that of results obtained on the basis of independent processing
under sparsity sampling condition. Even when the measurement quantity is low (10% of full data),
the overall sparsity constraint can still ensure a better interferometric imaging performance.

Figure 8. Cont.
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Figure 8. Imaging results of traditional approach and proposed approach under 20% of effective data.
(a) Traditional imaging processing; (b) imaging processing of proposed approach (mixed Euclidean
norm); interferometric phase images (top layer); complex images of channels 1 and 2 (second and third
layers); final 3-D imaging results (last layer).

Figure 9. Comparison for imaging performance of four approaches under different sparsity samplings.

4.1.5. Computational Complexity

The running time of independent CS approach of traditional single-channel depends on step (2).
Its computing cost is O(LtendNsPQ), wherein, the tend is the times of algorithm iterative circulation,
and the Ns is the signal sampling times. The proposed approach has higher calculation efficiency and
is only added with O(LtendPQ) times of addition calculation compared to independent CS approach
of single-channel. The increased calculation times by applying the proposed approach can be nearly
ignored in practical application. On the basis of the space storage efficiency, the approach proposed in
the paper needs to occupy more memory space compared to that needed by applying the independent
CS approach of single-channel, but it can be effectively released through parallelization.
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4.2. Experiments and Analysis of Backhoe

The electromagnetic scattering echo data which is more closed to actual measurement is obtained
by using high-frequency electromagnetic software and 3-D model of target. In this paper, Backhoe
electromagnetic simulation data is adopted to verify the effectiveness of the proposed approach. In the
experiment, select two groups of data with the adjacent pitch angle of 42◦ and 42.07◦ to divide the
whole aperture into 17 sub-apertures. Specific parameters are shown in Table 3, and Figure 10 shows
the CAD model of Backhoe.

Table 3. Parameters of electromagnetic simulation system.

Parameter Parameter Value

Carrier frequency 10 GHz
Bandwidth 6 GHz

Sampling point number of frequency 512
Azimuth accumulation angle 51◦

Sampling point number of direction 71 * 17
Pitch angle 0.07◦

Figure 10. 3-D CAD model of Backhoe.

Adopt traditional imaging approach and the proposed approach respectively to carry out InISAR
imaging, and the 3-D distribution of target scattering points is shown in Figure 11.

Figure 11. Cont.
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Figure 11. InISAR imaging results of Backhoe with complete data. (a) Traditional imaging processing;
(b) imaging processing of proposed approach (mixed Euclidean norm); complex images of channels 1
and 2 (first and second layers); interferometric phase images (third layer); final 3-D imaging results
(last layer).

Randomly select 25% observed data from full data to generate the sparsity sampling data,
and adopt traditional imaging approach and the proposed approach respectively to carry out InISAR
imaging. The 3-D distribution of target scattering points is shown in Figure 12. Figures 11 and 12 show
that the reconstructed target information of traditional approach has a larger deviation. Regardless of
complete data or insufficient data provided, the target can be imaged effectively. What’s more, with
the decrease of data quantity, the imaging performance gets worse. On the contrary, by applying the
proposed approach, 3-D target images with higher quality can be obtained. When the effective data is
25%, it can still maintain accuracy of height information in estimation.
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Figure 12. InISAR imaging results of Backhoe with 25% data. (a) Traditional imaging processing;
(b) imaging processing of proposed approach (mixed Euclidean norm); complex images of channels 1
and 2 (first and second layers); interferometric phase images (third layer); final 3-D imaging results
(last layer).
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4.3. Actual Measurement Experiment in Anechoic Chamber

In order to further verify the effectiveness of the proposed approach in terms of practical
applications perspective, a near-field InISAR test platform in an anechoic chamber is established,
and the test system is shown as Figure 13. The target is put on the low scattering foam bracket, under
which there is a turntable. The two antennas are fixed with interval of 0.2 m, and achieve azimuth
accumulation through the rotation of turntable. Test parameters are shown in Table 4.

Figure 13. Frame diagram for near-field InISAR imaging system in anechoic chamber.

Table 4. Parameters of near-field InISAR test system.

Parameter Parameter Value

Carrier frequency 10 GHz
Bandwidth 4 GHz

Frequency step interval 40 MHz
Azimuth accumulation angle 20◦
Azimuth sampling interval 0.2◦

Distance between antenna and target 0.02 m
Baseline length 2 m

The parameter calculation rules are as follows:

(1) Antenna baseline

Height information of the target is mainly calculated by phase difference of dual-antenna
propagation path. In general, the interferometric phase difference is a periodic function for the
period with 2π. In order to avoid fuzzy height, the interferometric phase difference shall meet the
requirement of Δϕ ≤ 2π, so that the baseline length meet the requirement of d ≤ λR0

2H , wherein λ

represents transmitting frequency, R0 represents distance from the receiving/transmitting antenna to
the target, and δy = c

2B represents maximum height of the target.

(2) Sampling principle

Range resolution in ISAR imaging is δy = c
2B , and azimuth resolution is δx = λ

2θ , wherein B
represents signal bandwidth and θ represents azimuth accumulation angle. In actual imaging, the
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range resolution is generally equal to the azimuth resolution. Concerning resolution requirements,
the signal bandwidth and azimuth accumulation angle can be determined through δy = c

2B and
δx = λ

2θ .
Concerning range resolution requirements, the frequency sampling interval is Δ f ≤ c

2R0
, also

taken as step frequency interval.
Concerning azimuth resolution requirements, the azimuth sampling interval is Δθ ≤ λ

2D , wherein
D represents maximum size of the target.

(3) Distance from antenna and target

This paper focuses on near-field imaging, in principle, distance from the antenna to the target is
represented as: R0 < 4D2

λ , wherein D represents maximum size of the target and λ represents length of
incident electromagnetic wave.

In addition, scanning in vertical direction does not exist because the two antennas are
located fixedly, the beam center is fixed and only the target rotates in InISAR. As mentioned in
Section 4.3, In the experiment, the range sampling interval and azimuth sampling interval are
Δ f ′ = nΔ f (n = 1, 2, · · · , N) and Δθ′ = mΔθ(m = 1, 2, · · · , M) respectively.

The test is adopted with stepped frequency signal, which features easy achievement of wideband
and low requirements for hardware system. In order to make easier application of CS in the
test, this paper adopts the deterministic sparsity observation approach based on Cat sequence for
distance-oriented compressed sampling. The following shows the steps of Cat mapping to produce
random sequence and construct observation matrix:

(1) Produce chaos sequence according to Cat mapping equation, and the mapping is defined as:[
xn+1

yn+1

]
=

[
1 a
b ab + 1

][
xn

yn

]
(mod 1), (32)

where, (mod 1) represents the integer whose real number is casted out, namely x mod 1 = x − �x�. xn

sequence is selected to construct the needed deterministic random sequence.
(2) For using the chaos sequence construction Φr in stable area, cast out the g value in front

of the sequence. It means to select xg+1 as the starting point of the sampling. Meanwhile, sample
the produced sequence with the interval of d for ensuring the mutual independence of elements in
chaos sequence:

zk = xg+kd, k = 0, 1, 2, · · · , N − 1 (33)

After obtaining the output sequence zk of Formula (33), directly divide the zk into N′ = N/U
with equal interval. Select the corresponding position of maximum value in various intervals, and
assign 1 to corresponding position of Φr, and others a zero:

Φr =

⎡⎢⎢⎢⎢⎢⎢⎣
1, · · · , 0, · · · , 0︸ ︷︷ ︸

U

0 · · · 0

...
. . . · · · · · ·

0 0 · · · 0, · · · , 0, · · · , 1︸ ︷︷ ︸
U

⎤⎥⎥⎥⎥⎥⎥⎦, (34)

where, each row has a (0, 1) random sequence with length of U, and value 1 is at the position of
the maximum value in the corresponding interval of the chaos sequence produced in {1, 2, · · · , U},
and others are zero.

In practical applications, adopt parallelization to transmit N′ random single frequency signal,
and its data rate is N′/T. Its achievement process is shown in Figure 14.
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Figure 14. Range compressed sampling process of stepped frequency signal.

Figure 15. Target model of five metal balls. (a) Scanning frame and probe; (b) optical picture of five
balls; (c) distribution of target spatial position.

Figure 15 is the optical pictures of the measurement system and target distribution.
Figures 16 and 17 show imaging results by applying the two approaches provided with complete
data and compressed sampling data. It can be found that by applying the traditional approach,
target height information cannot be estimated completely because of incomplete correspondence
of scattering point position, especially that the effective height information of target cannot be
extracted if the compressed sampling proportion is large. Comparatively, by adopting the proposed
approach, the height information of target can be estimated accurately given full data and compressed
sampling data.
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Figure 16. InISAR imaging results of five metal balls with complete data. (a) Traditional imaging
processing; (b) imaging process of proposed approach (mixed Euclidean norm); complex images of
channels 1 and 2 (first and second layers); interferometric phase images (third layer); final 3-D imaging
results (last layer).

175



Sensors 2018, 18, 3750

Figure 17. InISAR imaging results of five metal balls with 20% data. (a) Traditional imaging processing;
(b) imaging processing of proposed approach (mixed Euclidean norm); complex images of channels 1
and 2 (first and second layers); interferometric phase images (third layer); final 3-D imaging results
(last layer).
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From Tables 5 and 6, it can be found that by applying the traditional approach, position consistency
of all scattering points in images of different channels cannot be ensured. If the compression rate is
high, the consistency is more obvious. However, by applying the proposed approach, reconstruction is
performed through multi-channel joint sparsity, so as to ensure that the scattering points are at the
same pixel of the images from different channels, which is more favorable for extraction of target
height information.

Table 5. Target position information provided with complete data.

Approach Channel Ball 1 Ball 2 Ball 3 Ball 4 Ball 5

Initial
Traditional
approach

– (−0.20, −0.20) (0.20, −0.20) (0.00, 0.00) (−0.20, 0.20) (0.20, 0.20)
1 (−0.22, −0.19) (0.18, −0.18) (−0.05, 0.02) (−0.22, 0.19) (0.22, 0.22)
2 (−0.21, −0.18) (0.18, −0.19) (−0.03, 0.02) (−0.22, 0.18) (0.23, 0.23)

Proposed
approach

1 (−0.20, −0.20) (0.19, −0.19) (−0.01, 0.01) (−0.20, 0.19) (0.21, 0.21)
2 (−0.20, −0.20) (0.19, −0.19) (−0.01, 0.01) (−0.20, 0.19) (0.21, 0.21)

Table 6. Target position information provided with compressed sampling data.

Approach Channel Ball 1 Ball 2 Ball 3 Ball 4 Ball 5

Initial
Traditional
approach

– (−0.20, −0.20) (0.20, −0.20) (0.00, 0.00) (−0.20, 0.20) (0.20, 0.20)
1 (−0.20, −0.20) (0.19, −0.19) (−0.04, 0.01) (−0.22, 0.19) (−0.14, 0.20)
2 (−0.21, −0.20) (0.18, −0.19) (−0.04, 0.00) (−0.20, 0.17) (Null, Null)

Proposed
approach

1 (−0.20, −0.20) (0.19, −0.19) (−0.01, 0.01) (−0.20, 0.19) (0.20, 0.21)
2 (−0.20, −0.20) (0.19, −0.19) (−0.01, 0.01) (−0.20, 0.19) (0.20, 0.21)

One of the practical applications of the proposed approach is security check. Here we conduct
detecting and imaging on closed chamber in the anechoic chamber. The chamber is used to simulate
luggage carrier, which is placed with one knife, two bottles of water (one is full and the other is
half-full) and two bottles of Coco-cola. The test parameters are consistent with parameters as shown in
Table 4. With 10% echo data adopted, Figure 18 shows the test system and target scene and distribution
of targets within the box. The imaging results are as shown in Figure 19.

Figure 18. Imaging test for closed chamber. (a) Imaging system and target scene; (b) distribution of targets.
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Figure 19. InISAR imaging results of anechoic chamber target with complete data. (a) Traditional
imaging processing; (b) imaging processing of proposed approach (mixed Euclidean norm); complex
images of channels 1 and 2 (first and second layers); interferometric phase images (third layer); final
3-D imaging results (last layer).
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It can be seen from Figure 20 that in the case of only 20% echo data applied, effective imaging
on the targets is unable to be achieved with the traditional imaging approach. Through adoption
of the proposed imaging approach, clear target images are available, provided with the shapes and
location information of the knife, full bottle of water, half bottle of water and bottles of Coco-cola in
the chamber.

Figure 20. InISAR imaging results of anechoic chamber target with 20% data. (a) Traditional imaging
processing; (b) imaging processing of proposed approach (mixed Euclidean norm); complex images of
channels 1 and 2 (first and second layers); interferometric phase images (third layer); final 3-D imaging
results (last layer).

179



Sensors 2018, 18, 3750

5. Conclusions

Focusing on the near-field ISAR imaging, this paper puts forward an interferometric near-field
3-D imaging approach for joint sparsity reconstruction. Since scattering characteristics of targets in
different channels are effectively made use of in joint sparsity, the imaging results feature a combination
of interferometric processing and sparsity optimization. In addition to acquisition of near-field
high-resolution 3-D images with less observation echoes applied, it can also accurately reflect the
position information of scattering points. Moreover, it can effectively solve the problem that the
accuracy of target scattering azimuth is not high in different directions by adopting sub-aperture
synthesis. As verified by tests, target 3-D views with higher quality can be obtained by applying
the imaging approach as proposed in this paper, so as to provide reliable judgment basis for target
identification and other applications. Since this paper adopts an OMP-based reconstruction approach,
the calculation complexity is not high. Also, it requires more research on rapid InISAR near-field 3-D
imaging approach in combination with the traditional near-field imaging approach for future study.
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Abstract: The space-borne P-band synthetic aperture radar (SAR) maintains excellent penetration
capability. However, the low carrier frequency restricts its imaging resolution. The sliding spotlight
mode provides an operational solution to meet the requirement of high imaging resolution in P-band
SAR design. Unfortunately, the space-borne P-band SAR will be inevitably deteriorated by the
ionospheric scintillation. Compared with the stripmap mode, the sliding spotlight SAR will suffer
more degradation when operating in the scintillation active regions due to its long integration time
and complex imaging geometry. In this paper, both the imaging performance and scintillation
effect for P-band sliding spotlight mode are studied. The theoretical analysis of scintillation effect
is performed based on a refined model of the two-frequency and two-position coherence function
(TFTPCF). A novel scintillation simulator based on the reverse back-projection (ReBP) algorithm
is proposed to generate the SAR raw data for sliding spotlight mode. The proposed scintillation
simulator can also be applied to predict the scintillation effect for other multi-mode SAR systems
such as terrain observation by progressive scans (TOPS) and ScanSAR. Finally, a group of simulations
are carried out to validate the theoretical analysis.

Keywords: ionosphere; P-band; reverse back-projection (ReBP); synthetic aperture radar (SAR);
sliding spotlight; scintillation

1. Introduction

It is widely known that synthetic aperture radar (SAR) system working at P-band shows its
superiority in penetrating the forest foliage and the ground surface, which will have an extensive
application prospect in biomass measurement and geological observation [1–3]. Therefore, there has
been an upward trend of developing P-band SAR, for example the BIOMASS mission [4,5]. Despite
the remarkable advantages, there are two main drawbacks existing in the space-borne P-band SAR
systems. One is the severe susceptivity of the ionospheric impact [6–9], especially for the equatorial
scintillation effect. The other is the limitation of azimuth resolution which is restricted by the low
central frequency.

To elevate the azimuth resolution and maintain adequate imaging swath, the sliding spotlight
mode has been used in many SAR systems such as TerraSAR-X and PAMIR [10–13]. The sliding
spotlight mode controls the scanning velocity of beam footprint by steering the antenna, thus obtaining
longer integration time than stripmap mode and larger scene than spotlight mode. Consequently,
the sliding spotlight mode is a practical way for P-band high-resolution SAR system. However, little
literature has been proposed to evaluate the ionospheric effect for P-band sliding spotlight SAR system.

The intensive solar radiation results in the ionization of ionospheric molecule. Varying from the
scale of spatial distribution, the ionosphere is typically categorized into the background ionosphere
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(larger than 10 km) and ionospheric irregularities (less than 10 km) [8,14]. The background ionospheric
effect can be mitigated using the split-spectrum method or using the ionospheric prior knowledge
acquired from the global navigation satellite system (GNSS)/BeiDou system [15–18]. In recent papers,
the multi-squint (MS) interferometry methodology is proposed [5], which provides a new ionospheric
mitigation approach for SAR system with limited bandwidth. The scintillation effect is caused by small
scale ionospheric turbulent irregularities, which typically occurs after the sunset in the equatorial and
polar regions [14]. The strong scintillation effect, which usually shown as streaks in SAR images, has
been extensively reported by the Advanced Land Observing Satellite (ALOS)/the Phased Array-type
L-band Synthetic Aperture Radar (PALSAR) system. The scintillation turbulence on both amplitude
and phase will introduce serious spatial and frequency decorrelation within the SAR integration time
and further distort the imaging performance. The former research usually focuses on the analysis of
the scintillation effect for stripmap SAR systems [19–26]. The generalized ambiguity function (GAF)
proposed by Ishimaru [19] in 1999, provides a comprehensive model to evaluate the degradation of
signal coherence introduced by the ionospheric effect. Based on the GAF model, Li et al. [20] introduced
the two-frequency and two-position coherence function (TFTPCF) into the traditional GAF model
to evaluate the scintillation-induced signal decorrelation. The analysis of anisotropic irregularity is
performed by C. Wang [23] and a statistical evaluation of L-band equatorial scintillation is carried out
by Meyer [24]. The SAR scintillation simulator (SAR-SS) is studied by Carrano [27] based on the phase
screen theory for predicting the scintillation effect on the L-band SAR. In Carrano’s work, the inverse
range-Doppler algorithm (RDA) is applied to generate the unaffected SAR signal. However, it cannot
actually simulate the observation geometry of SAR system, thus it is not suitable to reconstruct the
SAR raw data for the sliding spotlight SAR system.

The former research builds the foundation of our work. However, these achievements only
take the stripmap mode into consideration and further research still needs to be accomplished by
considering the sliding spotlight observation geometry. Compared with the stripmap mode, the P-band
sliding spotlight SAR system has an ultra-long integration time and more complicated observation
geometry which means a longer exposure time and a longer ionospheric penetration length (IPL)
in scintillation active regions. Due to the beam scanning, the incident angle of beam center, which
is an important parameter in scintillation simulations, varies within the acquisition time. All these
characteristics will make the scintillation effect on sliding spotlight mode show different patterns.

In this paper, we firstly introduce the observation geometry of sliding spotlight SAR system in
Section 2. Then, in Section 3, the theoretical analysis of scintillation effect is performed based on the
refined GAF and TFTPCF model. The comparisons between sliding spotlight mode and stripmap
mode are presented. In Section 4, a novel SAR-SS is proposed by considering the beam scanning of
sliding spotlight mode. The reverse back-projection (ReBP) algorithm [28] is applied to generate the
sliding spotlight mode SAR raw data. Finally, the simulations are performed on both point target
and extended target to demonstrate the scintillation-induced imaging distortion. A group of 500-time
Monte-Carlo simulations are carried out to validate the theoretical analysis.

2. The Observation Geometry of Sliding Spotlight SAR System

The sliding spotlight mode SAR can make a good balance between the azimuth resolution and
imaging scene by controlling the velocity of beam footprint [10,11]. The observation geometry of
space-borne sliding spotlight SAR is shown in Figure 1. The beam center points at the steering point
position O′ within the entire acquisition time. Technically, the turbulent ionosphere can be considered
to be a very thin phase screen at an equivalent altitude and the radar beam scans over the phase
screen within the integration time. Hsat is the orbit height of radar platform and Hiono is the equivalent
ionospheric height at 350 km. IP represents the ionospheric penetration point (IPP) and Xiono is the
IPL within acquisition time. Vg and Vsat represent the ground velocity and the platform velocity,
respectively. θi0 is the ionospheric incident angle of beam center in zeros Doppler plane. Due to
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the steering of antenna, the beam central incident angle θi varies within the acquisition time and is
determined by the instant squint angle θsq (η). The relationship is given as follow

θi = arccos
(
cos (θi0) · cos

(
θsq (η)

))
(1)

Figure 1. The observation geometry of sliding spotlight SAR with ionosphere.

We define that Rc is the closest range between the radar platform and the scene center and Rrot is
the closest range between the radar platform and the steering point. Based on the imaging geometry,
the relationship between Rc and Rrot is expressed as

Rrot − Rc

Rrot
=

Vr − |kω | Rc

Vr
(2)

where Vr denotes the effective radar velocity and kω is the angular velocity of antenna steering.
In particular, when Rrot = +∞, the system is equivalent to the stripmap mode and when Rrot = Rc

the system is equal to the spotlight mode. The beam scanning prolongs the integration time of sliding
spotlight mode which can be calculated as Ta = 2Rc tan (λ/2D)

/
Vg, where λ is the wavelength, D is

the size of azimuth antenna and Vg is the ground velocity which is given as follow

Vg = Vr − Hsat

cos θ′i
· |kω | · sec2 (θsq (η)

)
(3)

where θ′i is the ground incident angle and θsq (η) = θsq0 + kωη is the instant squint angle. It can be seen
that kω is the key factor which determines the ground velocity and the integration time. The integration
time and theoretical azimuth resolution as a function of kω are shown in Figure 2. It is obvious that both
the integration time and azimuth resolution significantly increase with kω. When |kω | = 0.007 rad/s,
the integration time reaches 86.49 s compared to 10.67 s for stripmap (|kω | = 0 rad/s), meanwhile the
theoretical resolution will increase to less than 0.75 m.

As a consequence of beam scanning, the ionospheric incident angle of beam center varies within
the acquisition time, whereas the traditional scintillation simulator cannot accurately simulate the beam
scanning of sliding spotlight mode. Thus, in this paper, a novel scintillation simulator is proposed
to accommodate the sliding spotlight geometry and exactly reconstruct the SAR raw data of sliding
spotlight mode. Furthermore, a refined TFTPCF model is applied to perform the theoretical analysis
for sliding spotlight mode.
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(a) (b)

Figure 2. The integration time and azimuth resolution of P-band sliding spotlight mode as function
of kω . (a) Integration time. (b) Theoretical azimuth resolution.

3. Theoretical Analysis Based on TFTPCF Model

The GAF model which is first proposed by Ishimaru [19], provides a succinct model to analyze
the ionospheric effect. As is shown in Figure 1, the GAF can be expressed as the coherent accumulation
of the SAR signal received from the target at position r and the reference signal focus at the position r0,
which is expressed as

χ (r, r0) = ∑
n

2π
∫

gn (ω, rn) · f ∗n (ω, r0n) dω (4)

⎧⎪⎪⎨⎪⎪⎩
fn (ω, r0n) = ui (ω) exp

(
j
ω

c
2r0n

)
gn (ω, rn) = ui (ω)

exp (j2
∫

β (ω) dl + 2jφ (ω, ρn))

(4πrn)
2

(5)

where fn (ω, r0n) and gn (ω, rn) represents the reference signal and received signal at nth sampling
point, ψiono = 2

∫
β (ω)dl is the dispersive phase introduced by background ionosphere and φ (ω, ρn)

is the scintillation phase corresponding to the IPP position ρn on the scintillation phase screen and the
signal frequency ω.

Based on the stop-go assumption, the SAR signal penetrates the ionospheric phase screen twice at
one sampling point with different instant frequency (the SAR transmit signal is linear modulated). Thus,
the random phase induced by ionospheric irregularities can be properly analyzed by the two-position
two-frequency function. Based on the phase screen theory, Li et al. [20] proposed the proper TFTPCF
model to study the scintillation effect from the second moment of the GAF, which is expressed as

〈
|χ (r, r0)|2

〉
= (2π)2 ∑

m
∑
n

∫ −∞

+∞

∫ −∞

+∞
Γ1,1· exp

(
j2
(∫

rm
k (ω1)dl

∫
rn

k (ω2)dl
))

·

exp
(
−j2

(
ω1r0m − ω2r0n

c

))
dω1dω2

(6)

Γ1,1 = 〈exp {j2 [φ1 (ω1, ρn)− φ2 (ω2, ρm)]}〉 (7)

where ρm and ρn represent the IPP position at different azimuth position and 〈·〉 is the mathematical
expectation. Γ1,1 is the TFTPCF which serves as a window function in the accumulation process of
Equation (6). The signal decorrelation will be introduced when Γ1,1 < 0.707 (−3 dB threshold). Based
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on the law of large number, the scintillation phase error tends to follow the Gaussian distribution.
Thus, the Gaussian approximation can be used to simplify the TFTPCF, which is expressed as follows.

Γ1,1 (ω1, ω2; ρn − ρm) = 〈exp {j2 [φ1 (ω1, ρn)− φ2 (ω2, ρm)]}〉
≈ exp

(
−2 ·

〈
[φ1 (ω1, ρn)− φ2 (ω2, ρm)]2

〉)
= Rφ (ω1, ω1; 0) + Rφ (ω2, ω2; 0)− 2Rφ (ω1.ω2; Δx)

(8)

where Rφ (ωn, ωm; Δx) is the auto-correlation function (ACF) of the scintillation phase which
is determined by the frequency separation (ω1 and ω2) and the 1-D IPP spatial separation
(Δx = ‖ρm − ρn‖). The ACF in Equation (8) is derived from the inverse Fourier transform of the
power spectral density (PSD) function of the scintillation phase. In this paper, the Rino power law
spectrum [29] is applied to simulate the scintillation phase screen and the ACF based on Rino’s
spectrum can be expressed as

Rφ (ω1, ω2; Δx) = r2
e λ1λ2CsL sec θn sec θm cos θi · G

∣∣∣∣ Δx
2q0

∣∣∣∣v−1/2 Kv−1/2 (q0Δx)
2π · Γ0 (v + 1/2)

(9)

CsL = CkL
(

2π

1000

)p+1
(10)

where G is the gain factor, Kε (·) is the modified Bessel function and Γ0 (·) is the gamma function,
both CsL and CkL are the symbols of scintillation strength and p = 2v is the phase spectral index,
q0 = 2π/L0 is the wavenumber corresponding to the outer scales, θn and θm are the ionospheric
incident angle of beam center at different sampling points.

In previous work, the variation of beam central incident angle is never considered due to the
observation geometry of the stripmap mode. However, for sliding spotlight mode, the beam scanning
leads to the increase of incident angle which will prolong the signal propagation path in irregularity
layer and further aggravates the signal decorrelation. The instant ionospheric incident angle is applied
as a modification of ACF for sliding spotlight mode which is presented as

Rφ (ω1, ω2; Δx) = r2
e λ1λ2CsL sec θn sec θsq (ηm) · G

∣∣∣∣ Δx
2qL

∣∣∣∣v−1/2 Kv−1/2 (q0Δx)
2π · Γ0 (v + 1/2)

(11)

where θsq (ηm) is the squint angle at the mth sampling point. The influence of different scintillation
parameters is analyzed from the TFTPCF curves. Based on the refined ACF in (11), the TFTPCF curves
with different scintillation parameters are given in Figures 3–5, and Table 1 presents the default value
of irregularity parameters.

(a) (b)

Figure 3. TFTPCF curves with different Ck L. (a) TFTPCF versus frequency separation. (b) TFTPCF
versus spatial separation.
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(a) (b)

Figure 4. TFTPCF curves with different p. (a) TFTPCF versus frequency separation. (b) TFTPCF versus
spatial separation.

(a) (b)

Figure 5. TFTPCF with different L0. (a) TFTPCF versus frequency separation. (b) TFTPCF versus
spatial separation.

Table 1. The default value of ionospheric irregularity parameters

Parameters Symbol Value

Scintillation strength Ck L 1033

Spectral index p 3
Outer scale L0 10 km

Irregularity structure scale a/b 10/1

According to Figure 3, the frequency correlation shows a significant declination with frequency
separation when CkL > 1034. The signal decorrelation becomes more serious with the increase of
spectral index as is shown in Figure 4. In Figure 5 it is clear that the signal frequency coherence decays
dramatically for L0 ≥ 40 km, whereas the spatial coherence shows little difference with the increase of
outer scales. For a general comparison, the signal spatial coherence is more sensitive to the scintillation
strength and spectral index than outer scales. Furthermore, the signal correlation declines more
significant with the increasing of spatial separation which means the spatial variation of beam central
incident angle is considerable. The comparison of TFTPCF curves between the stripmap mode and
sliding spotlight mode with different CkL is shown in Figure 6. The red curves in Figure 6 represent the
TFTPCF value of stripmap mode (kω = 0 rad/s) and the blue curves represent the modified TFTPCF
of sliding spotlight mode. It is obvious that the sliding spotlight mode is more susceptible to the
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scintillation effect, which also consists with the aforementioned analysis. Furthermore, the ionospheric
coherent length is applied to analyze the decorrelation of P-band sliding spotlight mode, which is
defined as the spatial separation Δx when Γ (ω0; Δx) ≤ 0.707. The imaging degeneration need to be
considered when the IPL is longer than the ionospheric coherent length. The coherent length with
different spectral index is illustrated in Figure 7, and the scintillation strength is set as CkL = 1032

refers to the mildly scintillation condition.

(a) (b)

Figure 6. The comparison of TFTPCF curves between stripmap mode (red curves) and sliding
spotlight mode (blue curves) with different Ck L (real line: Ck L = 1032, dashed line: Ck L = 1033).
(a) kω = −0.005 rad/s (b) kω = −0.007 rad/s.

Figure 7. Coherent length with different spectral index.

According to Figure 7, the ionospheric correlation length dramatically declines with the increase
of spectral index. The correlation length of sliding spotlight mode is less than stripmap mode, which
means the sliding spotlight mode is more sensitive to the scintillation effect. The IPL of the space-borne
P-band sliding spotlight SAR system is 142.03 km (IPL = VsatTa, Vsat is the platform velocity obtained
from the orbit roots). Since the IPL is significantly longer than the ionospheric coherent length,
the P-band sliding spotlight mode will definitely be influenced by ionospheric irregularities. In Li’s
work, the SAR resolution is defined as the absolute range separation δr = ‖r − r0‖ by using the
criterion of ambiguity function, which is expressed as〈

|χ (r, r0)|2
〉/〈

|χ (r0, r0)|2
〉
= exp (−2) (12)
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However, the redefined SAR resolution in GAF model dose not conform to the general concept
of the SAR resolution based on the −3 dB criterion. Thus, the simulation of real scene is required to
evaluate the scintillation effect for sliding spotlight mode quantitatively.

4. The ReBP-Based Scintillation Simulator for Sliding Spotlight Mode

4.1. Basic of Scintillation Simulator

The scintillation simulator proposed by Carrano [27] is based on the phase screen theory and
has been widely acknowledged. The phase screen theory assumes that the turbulent irregularities are
constrained within a very thin layer. Therefore, the ray-bending and multi-scattering effect can be
neglected within the layer.

The complete SAR–SS consists of two essential steps: the phase screen simulator and propagation
simulator which corresponds to the wave propagation history. When the radio wave penetrates through
the ionosphere, the scintillation phase is introduced into the signal by the phase screen simulator.
The 2-D scintillation phase screen is generated by multiplying the irregularity’s phase spectrum by
complex white noise with unit power. After that when the radio wave transmits into the free space from
the ionosphere down to the ground, the diffraction effect is simulated by the propagation simulator.
It is calculated by solving the parabolic wave equation (PWE). Finally, the ionospheric transfer function
(ITF) is obtained by incorporating the phase screen and propagation simulator. In this paper, a novel
ReBP–based SAR–SS is proposed based on the observation geometry of sliding spotlight mode.

4.2. The Modified Propagation Simulator for Sliding Spotlight Mode

The propagation of transionospheric radio waves from the free space down to the ground follows
the scalar Helmholtz equation which is expressed as

∇2E (ρ) + k2
0 [1 + Δεr] E (ρ) = 0 (13)

E (ρ) = U (ρ) · ejk·ρ (14)

where k0 = 2π/λ is the wavenumber corresponds to the signal frequency, Δεr is the fluctuation
term of the dielectric permittivity mainly induced by the dispersive background ionosphere, E (ρ)

is the electronic field, U (ρ) is the complex amplitude and ρ = (x, y, z) is the space vector of the
electromagnetic waves defined in the geomagnetic coordinate as is shown in Figure 8. The coordinate
center is chosen at the IPP position and the x-axis, y-axis, and z-axis are defined as the magnetic
north, magnetic east, and vertical down to the earth. θ and ϕ are the ionospheric incident angle and
magnetic heading of radar beam center. To make an explicit description, we neglect the inclined angle
between the magnetic heading of radar platform and the magnetic east. Thus, ϕ is considered to be the
squint angle of beam center. In Figure 8, the squint angle rotates with a constant angular velocity in
acquisition time. k = k0 (sin θ cos ϕ, sin θ sin ϕ, cos θ) is the transmit vector of the radio waves as well
as k⊥ = k0 (cos ϕ, sin ϕ) is the projection of the transmit vector in horizontal plane.

Figure 8. The propagation coordinate system of sliding spotlight SAR signal.
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By substituting the equations above and considering the Fresnel assumption (which means
∂2U

/
∂z2 ≈ 0), the PWE in geomagnetic coordinate is expressed as

∇2
⊥U = −k2

0ΔεrU + 2j
∂U
∂x

k0 sin θ cos ϕ + 2j
∂U
∂y

k0 sin θ sin ϕ + 2j
∂U
∂z

k0 cos θ (15)

Please note that the dispersion induced by background ionosphere is not considered in the
simulator, so the fluctuating part Δεr in Equation (15) is neglected in the following derivations.
Since the ionosphere irregularities are considered to be a very thin phase screen, the diffraction effect
is neglected within the irregularity layer and the propagation path is considered to be a straight line
for SAR signals. Based on the aforementioned assumptions, the complex amplitude of transmitted
waves which has penetrated the phase screen is expressed as U (ρ⊥, 0+) = U (ρ⊥, 0) · ejφ(ρ⊥), where
ρ⊥ is the distance vector in the x-y plane and the φ (ρ⊥) is the scintillation phase corresponds to the
penetration point on phase screen. The Fourier split-step method is used to the PWE to solve the
second-order derivative terms in Equation (16). Then, we derive the complex amplitude for the SAR
signal as follow

U (ρ⊥, z) = U (ρ⊥, 0) · T (ρ⊥) (16)

T (ρ⊥) = F−1
{

exp
[

j
(

κ2 · z
2k0

sec θ

)]
· F
{

ejφ(ρ⊥)
}}

(17)

where κ =
(
κx, κy

)
is the transverse wavenumber. The spherical wave propagation is considered

in the simulator by scaling the horizontal coordinate and the propagation distance with the factor
z = z1z2

/
(z1 + z2), where z1 is the distance between the radar platform and the ionospheric height, z2 is

the ionospheric height, sec θ is applied to convert the vertical distance to the oblique distance. T (ρ⊥)

is the ITF which includes both the phase and amplitude fluctuations. The upward and downward ITF
are the same since the symmetric propagation history. Therefore, the two-way ITF is calculated by
squaring T (ρ⊥).

For sliding spotlight SAR system, the azimuthal temporal variation of beam central incident and
squint angle are considered to be a modification into the original model. Here we use the penetration
point at the edge of the phase screen as a reference, then the squint angle ϕ and incident angle θ are
expressed as ⎧⎪⎪⎨⎪⎪⎩

ϕ(m) = θsq0 + kω
Δxa · m

VIPP

θ(m) = arccos
{

cos (θi0) · cos
(

θsq0 + kω
Δxa · m

VIPP

)} (18)

where Δxa = VIPP/PRF is the sampling distance of ionospheric phase screen at the azimuth direction
and the VIPP = Re · Vg

/
(Re + Hiono) · sin (θi) is the velocity of the IPP, where Re is the radius of Earth.

4.3. The Modified Phase Screen Simulator for Sliding Spotlight Mode

The 2-D scintillation phase screen is typically generated by applying the Gaussian noise with unit
power passes through a linear filter with a specified PSD. Some research has been accomplished to study
the ionospheric spectrum including the Shkarofsky spectrum, the modified Kolmogorov spectrum,
and Rino power law spectrum. The Rino’s spectrum has been proved by real measured data and
widely used in global ionospheric scintillation model (GISM) and wide band model (WBMOD) [24,27].
The PSD function of Rino spectrum is expressed as

Pφ(κ) =
r2

e λ2sec2 (θ (κ)) · CsL · a · b[
q0 +

(
Aκ2

x + Bκxκy + Cκ2
y

)](p+1)/2 (19)
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where re is the classical electron radius, λ is the signal wavelength. Both a and b are structural scaling
factors of irregularities along and across the magnetic field. A, B and C are the coefficients determined
by the transmit direction and geomagnetic field whose expression has been discussed in Carrano’s
work [27]. θ (κ) is the incident angle of beam center correlates to the spatial wavenumber. In our work,
the spatial variant incident angle is applied as a modification for the original Rino spectrum and the
scintillation phase screen is then derived based on the modified phase spectrum in Equation (19).

4.4. The Structure of ReBP-Based Scintillation Simulator

Due to the shortage of space-borne P-band SAR data, the scintillation-contaminated SAR echo
is required to be reconstructed from the SAR images. However, the existing method such as the
inverse RDA cannot exactly accommodate the sliding spotlight observation geometry. The ReBP
algorithm [28] provides an efficient and flexible method to simulate the SAR raw data for arbitrary
imaging geometry which has been validated by the real data of Sential-1 mission. The ReBP algorithm
takes the advantages of the accuracy and the expandability for analyzing the atmospheric propagation.
Furthermore, the parallelization can be used in ReBP process to improve the computational efficiency.
In this paper, the modified two-steps scintillation simulator is merged into the ReBP process to exactly
accommodate the observation geometry of sliding spotlight mode and derive the SAR raw echo.
The block diagram of the SAR-SS proposed in this paper is shown in Figure 9. According to Figure 9,
the single look complex (SLC) image is given as an input and the outer loop runs for each image range
line. After the up-sampling process, a projection of the azimuth beam is used to limit the illumination
time of each target in the scene (shown as the SAR image pixels). In this procedure the beam scanning
is considered for sliding spotlight mode. Then the interpolation is performed for the whole range line
followed by the remodulation process where the ITF is introduced into the range-compressed raw
data and finally after the range decompression the scintillation-contaminated raw data is acquired.
By adjusting the beam projection procedure, the ReBP–based SAR–SS can also be applied to simulate
the scintillation effect for TOPS and ScanSAR modes, the modifications of incident and squint angle
follow the discussions in this section.

Figure 9. The block diagram of the ReBP–based SAR–SS.
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5. Simulation

In this section, the point target and extended target simulation are performed to present the
scintillation effect on P-band sliding spotlight system, and a group of 500-time Monte-Carlo simulations
are carried out to validate the theoretical analysis. The typical P-band LEO SAR system parameters
are applied to carry out the simulation. The radar system and orbit parameters are shown in Table 2.
The contrast simulation on stripmap mode SAR system also follows the parameters in Table 2.
The simulations are performed by using the ReBP–based SAR–SS which is shown in Figure 9 and the
detailed process is described as follow: The SLC image is used as the input and the image scene is
defined in the earth-centered earth-fixed (ECEF) coordinate. Then the IPP grids are calculated by the
positions of radar platform and scene targets and the corresponding ITFs are derived from the SAR–SS.
The ReBP algorithm is used to generate the scintillation-contaminated SAR echo. Finally, the BP
algorithm is used to reconstruct the SAR image from the raw data. Besides the imaging resolution,
the peak power loss, peak to sidelobe ratio (PSLR) and integrated sidelobe ratio (ISLR) are considered
to evaluate the imaging performance.

Table 2. Radar System and Orbit Parameters.

Parameters Value Unit

Carrier frequency 0.6 GHz
Bandwidth 60 MHz

Altitude of radar 700 km
Scanning angular velocity(kω) −0.0055 rad/s

Semi-major Axis 7071 km
Inclination 98.6 deg

The Argument of Latitude 40 deg

5.1. Point Target Simulation

The simulation on point targets are shown in Figures 10 and 11. A 6 km × 6 km point array is
applied to carry out the simulation. The origin point array is shown in Figure 10. The contour map,
range and azimuth slices are shown in Figure 11. The central point target in red square is selected to
perform a detail analysis. The ideal imaging result in Figure 11a has sub-meter level azimuth resolution
with 0.713 m in azimuth and 2.26 m in range by using the default system parameters. The ideal image
demonstrates the excellent performance of sliding spotlight mode in high-resolution SAR imaging.
The scintillation strength in Figure 11b,c are CkL = 1033 and CkL = 1034 which refers to the moderate
and strong strength of scintillation. Other ionospheric parameters are shown in Table 1 as the default
value. Compared with the ideal imaging result in Figure 11a, the resolution in azimuth degenerates
from 0.713 m to 4.894 m and 7.625 m in the case of CkL = 1033 and CkL = 1034, respectively. The more
significant deteriorations are shown as the degeneration of PSLR and ISLR. According to Figure 11b,
both the PSLR and ISLR decay to −3.19 dB and −3.26 dB and in Figure 11c the PSLR and ISLR drop to
−1.45 dB and −0.17 dB, respectively. The extremely high PSLR and ISLR indicate that the scintillation
effect will lead to serious expand of the azimuth mainlobe and further not only degenerate the azimuth
resolution but also induce the peak loss. Compared with the azimuth imaging result, the distortion in
range is not as serious as that in azimuth. The asymmetric sidelobe can be seen in Figure 11b mainly
due to the power leakage of azimuth mainlobe.
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Figure 10. The point array target used in simulation.

(a)

(b)

(c)

Figure 11. The simulation results of point targets. (a) Ideal imaging results. (b) Scintillation imaging
result for Ck L = 1033. (c) Scintillation imaging result for Ck L = 1034.

The scintillation mitigation on point target is performed in Figure 12. The peak loss induced
by ionosphere scintillation will weaken the SAR image contrast which makes the dominant scatters
hard to select. Therefore, in this paper, the minimum-entropy autofocusing is applied to mitigate
the scintillation effect instead of phase gradient autofocusing method. Since the spatial variation of
scintillation phase screen, the autofocusing performance is limited in strong scintillation conditions.
The scintillation parameters are set as CkL = 1033 and p = 3. The PSLR/ISLR before the autofocusing
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are −6.26 dB and −2.33 dB in Figure 12a. After the minimum-entropy autofocusing the PSLR/ISLR
become −10.76 dB and −5.65 dB, respectively. The autofocusing result indicates that the existing
scintillation mitigation method does not work perfectly even in moderate scintillation condition.
As is mentioned before, the MS interferometric method [5] shed some new light on the mitigation of
ionospheric scintillation, especially for sliding spotlight mode with large squint angle variations.

(a) (b)

Figure 12. The scintillation mitigation on point target. (a) Scintillation imaging result for Ck L = 1033.
(b) The autofocusing result.

5.2. Extended Target Simulation

The extended target simulations are carried out by using a 2000 × 2000 pixels real SAR image
acquired from a P-band air-borne SAR system working at 600 MHz as is shown in Figure 13a.
Since the observation geometry is redefined in the beam projection and interpolation process of
the ReBP algorithm, the geometry difference between two systems can be neglected in the simulation.
The simulation is performed by considering the influence of different spectral index from 3 to 5,
and CkL is set as 1034 to present a significant demonstration. Based on the theoretical analysis in
Section 3, the TFTPCF serious degenerates with the increasing of spectral index. The decrease of
TFTPCF will lead to the signal decorrelation and the azimuth defocusing.

(a) (b)

(c) (d)

Figure 13. The simulation results of extended target. (a) Original SAR image. (b) Scintillation imaging
result for p = 3. (c) Scintillation imaging result for p = 4. (d) Scintillation imaging result for p = 5.
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Based on the quantitative analysis from the Monte-Carlo simulation listed in Figure 14, both PSLR
and ISLR in azimuth increase with the rising of spectral index, which will distort the azimuth imaging
performance and weaken the SAR image contrast. It can be seen from the extended target result that
the image blur become more serious with the increase of spectral index. The image is still cognizable
in the case of p = 3. However, in Figure 13d for p = 5, the scintillation-contaminated image is nearly
unable to recognize. The image blur can be seen from the houses and trees in the middle of the scene.
The extended target simulation corroborates the experiment result of point target that the degeneration
of PSLR and ISLR induced by scintillation will seriously distort the imaging performance.

Figure 14. The Monte-Carlo simulation results of the scintillation effect on point targets.

5.3. Monte-Carlo Simulation

As is mentioned before, the phase and amplitude scintillation is a random process. Therefore,
the Monte-Carlo simulation is required to perform a statistical analysis. In our work, the simulation
is iteratively performed on the point array target as is shown in Figure 10. For each group of
scintillation parameters, the iterations are performed for 500 times and the statistical results are
shown in Figure 14. As is discussed in Section 3, the signal decorrelation is not sensitive to the outer
scale. Thus, the simulation focus on the imaging performance with different scintillation strength
(from 1032 to 1034 as is shown in different rows) and different spectral index (from 2 to 5 as is shown in
the x-axis of each line graph). The peak loss, PSLR and ISLR are counted and plotted as the line graph
in different rows. The black spot represents the mean value of the statistical data and the vertical short
lines represent the variation scope of the variables. The Monte-Carlo simulation has a good agreement
with the theoretical analysis that the imaging quality degenerates with the increase of scintillation
strength and spectral index. The positive ISLR happens in the case of CkL ≥ 1033 and p ≥ 4 due to the
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serious expand of the azimuth mainlobe. The peak loss is considerable under the scintillation, which
will reduce the visibility of weak scatters and the contrast of SAR images. The experiment results also
demonstrate that the scintillation effect is less serious in the case of CkL ≤ 1032 and p ≤ 2 and this can
be considered to be a threshold to evaluate the influence of scintillation effect on space-borne P-band
SAR system.

Another group of Monte-Carlo simulations are carried out to make a comparison between
stripmap mode and sliding spotlight mode as is shown in Table 3. The simulation is performed in
the case of CkL = 1034, the mean value of peak loss, PSLR and ISLR are illustrated in Table 3. It is
shown that all the indicators of sliding spotlight mode are lower than stripmap mode which means the
scintillation effect will bring more serious distortion in sliding spotlight mode in the same ionospheric
condition which validates the theoretical analysis in Section 3.

Table 3. The comparison of scintillation effect on point targets between stripmap mode and sliding
spotlight mode from Monte-Carlo simulation.

Peak Loss/dB PSLR/dB ISLR/dB

Spectral Index 2 3 4 5 2 3 4 5 2 3 4 5

Sliding spotlight 6.81 7.95 8.88 10.84 −4.77 −3.21 −2.33 −1.67 −1.35 −1.04 0.61 2.33
Stripmap 2.08 4.41 6.20 7.87 −6.57 −4.39 −2.76 −1.99 −3.96 −2.73 −0.45 0.36

6. Conclusions

The space-borne P-band SAR system has a splendid prospect for its advantage in penetration
ability. However, the P-band SAR imaging resolution is limited for its low central frequency and
sensitivity of the ionospheric effect. In this paper, an in-depth analysis of scintillation effect is
performed on P-band sliding spotlight SAR. Based on the refined TFTPCF model, the theoretical
analysis indicate that the beam scanning and longer IPL will aggravate the signal decorrelation and
make the sliding spotlight mode more sensitive to the ionospheric scintillation than stripmap mode.
To accommodate the sliding spotlight geometry, a novel ReBP-based SAR-SS is proposed to generate
the scintillation-contaminated SAR echo. The simulations on both point and extended target indicate
that the scintillation-induced azimuth degeneration becomes more serious with the increasing of
scintillation strength and spectral index. The Monte-Carlo simulation shows that the scintillation effect
will be insignificant in the case of CkL ≤ 1032 and p ≤ 2 which can be considered to be a threshold.
Since the ReBP algorithm also accommodates to TOPS and ScanSAR modes, the SAR-SS proposed
in this paper can also be used to analyze the scintillation effect for these multi-mode SAR systems
working in L-band or P-band. The mitigation of scintillation distortion will be further researched in
the future work.
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Abstract: Signals from spaceborne polarimetric synthetic aperture radar will suffer from Faraday
rotations when they propagate through the ionosphere, especially those at L-band or lower
frequencies, such as signals from the Phased Array type L-band Synthetic Aperture Radar (PALSAR).
For this reason, Faraday rotation compensation should be considered. On the other hand, Faraday
rotation could also be retrieved from distorted echoes. Moreover, combining Faraday rotation with
the radar parameters and the model of magnetic field, we could derive the total electron content
(TEC) along the signal path. Benefiting from the high spatial resolution of the SAR system, TEC
obtained from PALSAR could be orders of magnitude higher in spatial resolution than that from
GPS. Besides, we demonstrated that the precision of TEC from PALSAR is also much higher than
that from GPS. With the precise TEC available, we could fuse it with data from other ionosphere
detection devices to improve their performances. In this paper, we adopted it to help modify the
empirically modeled topside profile of ionosonde. The results show that the divergence between the
modified profile and the referenced incoherent scattering radar profile reduced by about 30 percent
when compared to the original ionosonde topside profile.

Keywords: polarimetric synthetic aperture radar; total electron content; ionospheric electron
density distribution

1. Introduction

Ionospheric variations have been studied for earthquake prediction, solar activity analysis,
radar image modification and geomagnetic storm research [1–5]. Among all kinds of ionospheric
characteristics, the total electron content (TEC) is one of the most used parameters. For TEC evaluation,
widely used instruments include Incoherent Scatter Radar (ISR), ionosonde, and Global Navigation
Satellite Systems (GNSS). Beyond their popularity, some inconveniences still exist for each instrument.
The ISR is the most powerful piece of equipment for TEC detection. However, it is poorly distributed
on the Earth due to its expensive cost for developing and operation. The ionosonde station is easy
to build and has a reasonable cost, so it has been set up worldwide [6]. Nevertheless, an inherent
issue of the ionosonde is that it can only directly detect the electron density under the peak height.
Though many methods have been proposed for modeling the topside profile of ionosphere from the
ionosonde measurement, it is still a subject for ongoing investigation [7–9]. The GNSS can map the
TEC of the ionosphere globally and in real-time, but the spatial resolution of the observation is too

Sensors 2019, 19, 516; doi:10.3390/s19030516 www.mdpi.com/journal/sensors201



Sensors 2019, 19, 516

low for the fine analysis of ionosphere above a certain area [10]. Recently, full polarimetric spaceborne
synthetic aperture radar (PolSAR) was demonstrated to be qualified for ionospheric inhomogeneities
imaging [11]. Specifically, Faraday rotation (FR) and TEC images were derived from PolSAR data, and
ionospheric perturbations observed from variations of these images were verified using ground-based
GPS receivers and network. Instead of analyzing relative variations in TEC images, we would like to
quantitatively determine the precision of TEC retrieved from PolSAR, i.e., how precise the TEC could
be when compared to that obtained from the powerful ISR. Furthermore, we would like to present a
method for improving the topside electron density profile of ionosonde using the precise TEC retrieved
from PolSAR.

This work relates to two parts of ionosphere detection. First, we evaluated the precision of TEC
measured by the spaceborne synthetic aperture radar. Experiments showed impressive results whereby
the precision was within 1 TECU when compared with the TEC obtained from ISR. Specifically, as
examples, we used the L band PolSAR data from the Phased Array type L-band Synthetic Aperture
Radar (PALSAR) onboard the Advanced Land Observation Satellite. The ISR station that observes the
same space as the PolSAR was found. Then, TECs derived from these two facilities were compared.
The results verified their consistency.

The second part of this paper presents a method to improve the topside profile of the ionosonde
with TEC retrieved from PolSAR data. The ionosonde station located in the scene of PolSAR was
found. Since the ionosonde could directly observe the electron densities under the peak height, we
were then able to derive the TEC of the topside profile by subtracting the TEC of the bottomside profile
from the PolSAR TEC. This topside TEC could then be used to help model the electron density topside
profile. To evaluate our method, we managed to find an ISR which was also located in the same area
as the ionosonde station. A comparison of the electron density profile of the ISR and the modified
topside profile of ionosonde validated our algorithm.

The outline of this paper is given as follows: Section 2 presents the method of TEC retrieval
from PolSAR and the method for improving the topside profile model of ionosonde with the known
TEC. Then, details of data used in this paper are introduced in Section 3. Section 4 illustrates our
experimental results to validate our proposed methods. Finally, Section 5 concludes the paper.

2. Methods for TEC Retrieval and Topside Profile Modification

We first present the methods used in this paper for retrieving TEC from PolSAR data, and then
introduce the algorithm for improving the topside profile of ionosonde with the retrieved TEC.

2.1. TEC Retrieval from PolSAR

Radar signals at the L band and lower frequencies will suffer strong Faraday rotation (FR) effects
when they pass the ionosphere. However, these FR effects could serve as useful information for
deriving the total electron density along the signal propagation path. According to [11,12], the TEC
along the radio path of PolSAR is related to FR by

Ω =
2.365 × 104

f 2

∫
neB cos θds =

2.365 × 104

f 2 〈B cos θ〉TEC, (1)

where Ω stands for FR, f is the radar operating frequency, B denotes the magnitude of the ambient
magnetic field, and θ is the angle between the radio wave and ambient magnetic field vectors. The
second equality in Equation (1) is deduced from the first mean value theorem for definite integrals [13],
where TEC =

∫
neds is the TEC along the radar signal path, and 〈B cos θ〉 corresponds to the mid-value

of B cos θ at a specific altitude of the path. Therefore, once FR is estimated from distorted radar signals,
we can easily derive TEC under a specified 〈B cos θ〉.
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FR retrieval has been well studied in the last two decades [14–21]. In this paper we chose the B&B
method [16] as the FR estimator due to its robustness and reliability:[

Z11 Z12

Z21 Z22

]
=

[
1 j
j 1

][
Mhh Mvh
Mvh Mvv

][
1 j
j 1

]
Ω = 1

4 arg
(〈

Z12Z∗
21
〉)

.
(2)

In Equation (2), the M matrix represents the measured full polarimetric scattering matrix.
Therefore, when the full polarimetric data is obtained, TEC can be calculated from Equations (1)
and (2).

2.2. Improving the Topside Profile Model of Ionosonde with Known TEC

Many models are available for the topside profile of ionosonde. In this paper, we aim to improve
the most commonly used model, the α-Chapman model, with a constant scale height HT [7]:

Ne = NmF2 × e
1−z−e−z

2

z = h−hm F2
HT

, (3)

where NmF2 represents the electron density at the peak height hmF2 of the F2 layer. Both NmF2 and
hmF2 can be directly obtained from the ionosonde station. Therefore, HT is the only parameter that we
need to estimate to determine a topside profile.

Traditional method estimates HT from the bottomside profile of each measurement [9]. Though
empirically feasible, this method does not take into account any truly measured characteristic about
the topside profile. In this paper, we propose a method to evaluate HT with the TEC of the topside
density profile. Integrating Equation (3) with respect to height gives

1

(NmF2)
2

∫
Ne2dh =

∫
e1−z−e−z

dh. (4)

According to [22–24], if the electron density profile is Chapman-model based, we have∫
Ne2dh = 0.66NemaxTEC, (5)

where Nemax is the maximal electron density along the path. Referring to the topside profile only, we
can obtain from Equation (5) ∫ HS

hm F2

Ne2dh = 0.66NemaxTECTop. (6)

TECTop is the TEC of the topside profile of the ionosonde. When we can measure the TEC through

other equipment precisely, TECTop is simply obtained by subtracting TECBott =
∫ hm F2

0 Nedh from TEC.
Substituting Equation (6) into the left side of Equation (4) gives

0.66NemaxTECTop

(NmF2)
2 =

∫ Hs

hm F2

e1−z−e−z
dh. (7)

In Equation (7), Hs is the maximum altitude to which the TEC is measured, and in this paper,
it is the altitude of PALSAR. Integrating the right side of Equation (7) while recalling Equation (3),
we can obtain

∫ Hs

hm F2

e1−z−e−z
dh = HT

∫ Hs−hm F2
HT

0
e1−z−e−z

dz = HT

(
exp

(
1 − e−

Hs−hm F2
HT

)
− 1

)
. (8)
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Joining Equations (7)–(8) leads to

0.66NemaxTECTop

(NmF2)
2 = HT

(
exp

(
1 − e−

Hs−hm F2
HT

)
− 1

)
(9)

Solving the nonlinear Equation (9), we can obtain HT . Thus, the topside profile can be obtained
from Equation (3) with the TEC-related constant scale height HT .

3. Data Details

3.1. Data for Estimating TEC Precision of PolSAR

The spaceborne L band PolSAR data for TEC retrieval were obtained from the Phased Array type
L-band Synthetic Aperture Radar (PALSAR) of the Japanese Advanced Land Observation Satellite
(ALOS) which orbits Sun-synchronously at about 692 km of altitude (data access https://vertex.
daac.asf.alaska.edu/). Each scene of the radar data covers a rectangle area of the Earth. The TEC of
each scene is estimated as the average TEC of the whole scene. For a quantitative evaluation of the
reliability of TEC derived from PolSAR, we compared it to the TEC derived from ISR, because ISR
is believed to be the most powerful device for monitoring the ionosphere. However, since ISRs are
sparsely distributed on the earth, despite trying our best, we only managed to find three groups of
corresponding data. The ISR data were collected from Poker Flat ISR station [25], and corresponding
PolSAR scenes were chosen to make sure the distance from the Poker Flat ISR to the scene was less
than 40 km. Three selected scenes are shown in Figure 1.

 
Figure 1. Position relationship of three ground tracks of PALSAR scenes and Poker Flat ISR. The red
rectangle corresponds to the PALSAR scene of Group 1, while the green and the blue ones correspond
to the measurement of Group 2 and Group 3, respectively. The position of Poker Flat ISR is shown
as a red asterisk, while the observation area of each group is shown as a dashed rectangle in its
corresponding color.

From Figure 1, we can find that Poker Flat ISR station is fully covered by PALSAR scenes of
Group 2 and 3, while the range between the ISR station and PALSAR scene 1 is within 40 km. The
PALSAR illumination modes of three scenes can also be observed in Figure 1. Specifically, the dashed
rectangles represent the actual observation areas of PALSAR on ionosphere at 300 km, i.e., the coverage
of PALSAR beam on the ionosphere at 300 km. Therefore, we know that the distance from each
observation area to its ground scene center is around 100 km and that the TEC obtained from PALSAR
is slant TEC rather than vertical TEC (VTEC). The VETC should be estimated as

VTEC = TEC × cos η, (10)
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where η is the off-nadir angle of the PALSAR. To ensure that the ISR and PALSAR observe the same
space, the best choice is to find an observation of ISR that just to illuminate the area of PALSAR.
However, this kind of observation is not available, so we picked the observation closest to that of
PALSAR as a representation and assumed that the ionosphere is stable within the observation area.
Details about the observations are given in Table 1. The Piercing Lat. (Lon.) in the table is the center
latitude (longitude) of the observation area of the corresponding instrument. From the Table 1, we can
see that the two devices observed the same ionosphere at the same time.

Table 1. Corresponding observing times and positions of three groups of data. The off-nadir angle
of PALSAR (Phased Array type L-band Synthetic Aperture Radar) in this table is 21.5 degrees. ISR:
Incoherent Scatter Radar.

Data Group Instrument
Center

Latitude
Center

Longitude

Center Observation
Time (UTC:Y/M/D

HH/MM)

Piercing
Latitude

Piercing
Lontitude

1
PALSAR 65.193 −148.439 2011/03/19 07/32 64.786 −151.022

Poker Flat
ISR 65.130 −147.471 2011/03/19 07/30 64.650 −148.000

2
PALSAR 65.194 −147.369 2011/03/31 07/28 64.782 −149.949

Poker Flat
ISR 65.130 −147.471 2011/03/31 07/28 65.130 −147.471

3
PALSAR 65.183 −147.450 2010/08/06 21/06 64.800 −144.832

Poker Flat
ISR 65.130 −147.471 2010/08/06 21/08 65.370 −145.070

3.2. Data for Modeling the Topside Profile of Ionosonde

Once the TEC of an area was calculated from PolSAR data, it was possible to utilize it to improve
the topside profile of the ionosonde that observes the same area with PolSAR. In this paper, the
ionosonde data was accessed from Digital Ionogram DataBase (DIDB) [26]. The topside profile of the
data was based on what we discussed previously, i.e., the α-Chapman model with a constant scale
height HT . Therefore, a comparison of the original profile and the modified profile is available. As
a reference of the true measured electron profile, ISR data was again adopted in the experiment to
validate our proposed method.

Despite doing our best, we only found one group of corresponding data, as shown in Table 2.
The ISR data was still obtained from Poker Flat ISR station, the ionosonde data was from EIELSON
station (ID: EI764), and the PolSAR data was from PALSAR-2 on board Advanced Land Observing
Satellite-2 (ALOS-2). Their geographic relationship is shown in Figure 2 where the PolSAR scene fully
covers the Poker ISR station and EIELSON station is adjacent to the right bottom of the scene. From the
“Piercing Lat.” and “Piercing Lon.” in Table 2, we could know that both ISR and ionosonde observe
the ionosphere vertically. Therefore, we only need to pay attention to the off-nadir angel of PALSAR
while estimating the VTEC.

Table 2. Observing time and positions of three instruments. The off-nadir angle of PALSAR-2 in this
table is 30.8 degree.

Instrument
Center

Latitude
Center

Longitude
Center Observation Time
(UTC: Y/M/D HH/MM)

Piercing
Latitude

Piercing
Longitude

PALSAR 65.193 −148.439 2014/08/29 22/24 64.603 −144.362
Poker Flat ISR 65.130 −147.471 2014/08/29 22/20 65.130 −147.471

EIELSON
station 64.660 −147.070 2014/08/29 22/15 64.660 −147.070
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Figure 2. Geographic relationship of ALOS-2 scene, EIELSON station, and Poker ISR station.

4. Results and Discussions

4.1. Validation of the Precision of PolSAR in Estimating TEC

Integrating the electron density profile of ISR up to the altitude of PALSAR gave the TEC of ISR
along the observing direction. The VTEC of ISR was obtained by using Equation (10), but the η of ISR
is the angle between the beam direction and the vertical direction.

Equation (1) tells us that the value of PolSAR TEC is affected by the mid-value 〈B cos θ〉 [13].
However, it is not easy to theoretically determine such a value. In our experience, the value of B cos θ

linearly decreases as the altitude increases, so the mid-value is determined mostly by the electron
density profile. Here, we give a brief discussion about how to determine the 〈B cos θ〉. Recall Equation
(1) and explicitly represent it into the form of the first mean value theorem for definite integrals:

Ω =
2.365 × 104

f 2

∫
neB cos θds =

2.365 × 104

f 2

∫ Hs

0
B cos θdTEC =

2.365 × 104

f 2 〈B cos θ〉TEC. (11)

Comparing Equation (11) to the first mean value theorem for definite integrals, we get

∫ b

a
f (x)dx = f (ξ)(b − a), ξ ∈ [a, b] (12)

It can be found that B cos θ corresponds to f (x) and TEC corresponds to x. Therefore, to determine
the mid-value 〈B cos θ〉, we should know the functional relationship between B cos θ and TEC. Though
the function cannot be explicitly represented, we can show it numerically in a figure and obtain some
useful information.

Take the data from ionosonde and PolSAR in Table 2 as an example. The B cos θ as a function of
altitude could be obtained from the ambient magnetic field of PALSAR, as shown in Figure 3a. Clearly
in Figure 3a,B cos θ decreases nearly linearly with the increase of altitude. TEC as a function of altitude
could be obtained by integrating the electron density profile of the ionosonde in Figure 3b. Taking
advantage of the same variable, i.e., the altitude in the above two functions, we can plot B cos θ as
a function of TEC, as shown in Figure 3c. For clarity, the relationship between altitude and TEC is
plotted in Figure 3c, so we can get a direct idea about the altitude where the mid-value 〈B cos θ〉 lies.
B cos θ still monotonically decreases in Figure 3c, but the curve changes from convex to concave at the
peak height.
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  (a) Bcos  as a function of altitude.      (b) Electron density profile.     (c) Bcos  as a function of TEC 

Figure 3. Relationship between altitude and total electron content (TEC) as well as B cos θ.

The first mean value theorem for definite integrals shows that 〈B cos θ〉TEC is actually the area
of the region under the “Bcosθ vs. TEC” curve of Figure 3c. Intuitively, the mid-value 〈B cos θ〉 of
Figure 3c should be located at around 5 TECU which corresponds to an altitude of about 400 km.
Though we only take one group of data as an example, most cases satisfy this mode where the altitude
for the mid-value 〈B cos θ〉 is a little higher than the peak height of the ionosphere as long as the TEC
of the topside profile is larger than the TEC of the bottom side. However, it was still not possible for us
to determine a specific mid-value for each scene of PolSAR, so we experimented on three different
altitudes to see how precisely the PolSAR could estimate TEC and how the magnetic field influences
the TEC value. The magnetic field at 300 km, 400 km, and 500 km was picked as the mid-value along
each radio path, respectively. For each scene of PolSAR, FR estimation from Equation (2) may be
biased by residual calibration errors, though PALSAR has been reported to be well calibrated [27,28].
Therefore, following [29], only pixels of SNR >10 dB were selected to estimate the final TEC. This
corresponds to select pixels of a signal amplitude higher than −17 dB, since the noise equivalent sigma
zero (NESZ) is estimated to be about −27 dB for PALSAR. Here, FR estimates as a function of the
signal amplitude are given in Figure 4 for each PolSAR scene, where the signal amplitude is defined
as the “circular cross-pol product” abs

(
Z12Z∗

12
)

from Equation (2). From Figure 4, we can see that
the signal amplitude of each PolSAR scene is higher than −17 dB. Therefore, the TEC derived from
averaging the whole PolSAR TEC image is countable. One should note that the average window used
to reduce the speckle noise in Equation (2) was set to be 21 × 41 pixels. Actually, we tested window
sizes from 10 × 10 to 200 × 200, and the changes between the resulting TECs were within 0.01 TECU.

    (a) PolSAR Scene of group 1.      (b) PolSAR Scene of group 2.     (c) PolSAR Scene of group 3. 

Figure 4. Faraday rotation (FR) estimates as a function of signal amplitude. PolSAR: polarimetric
spaceborne synthetic aperture radar.

Results of TECs retrieved from different instruments are given in Table 3. The TEC deviation at
400 km is defined as the absolute value of the difference between PALSAR VTEC and ISR VTEC. Since
TEC varies in a PolSAR scene, we calculated the standard deviation of TEC for each PolSAR scene
and present it following each term in parentheses. All figures in Table 3 are given in units of TECU
(1 TECU = 1016 electrons/m2).
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Table 3. TEC measurements of Poker Flat ISR and PolSAR. GNSS: Global Navigation Satellite System.

Instrument. Group 1 Group 2 Group 3

Poker Flat ISR 1.484 5.700 7.365
PolSAR (300 km) 1.514 (0.324) 4.646 (0.444) 6.812 (0.351)
PolSAR (400 km) 1.586 (0.340) 4.864 (0.465) 7.112 (0.367)
PolSAR (500 km) 1.660 (0.355) 5.092 (0.487) 7.434 (0.384)

Deviation (400 km) 0.102 0.836 0.253
Poker Flat ISR (average) 1.46 5.71 7.86

GNSS 6 12.5 10.7

From Table 3, some phenomena are observed. First, the standard deviation of TEC in each PolSAR
scene is small. This feature demonstrates that no strong variation occurred in the ionosphere during the
observations. Therefore, the average TEC of the scene can be represented by the PolSAR TEC. Second,
the derived PolSAR TEC increases along with the altitude of the magnetic field, which can be easily
explained from Equation (1). Since 〈B cos θ〉 decreases with an increase in altitude, the derived TEC will
get larger. Third, the TEC deviations between ISR and PolSAR are within 1 TECU. This illustrates the
feasibility of measuring TEC with PolSAR. For a better understanding of the performance of PolSAR,
we also present here the TECs obtained from GNSS. Clearly, the TEC differences between GNSS and
ISR range from 3 to 5 TECU. Since GNSS measures TEC up to about 20,000 km, the differences are
acceptable. However, for group 1 and group 2, the TECs from GNSS are way too large to be believed
as precise. For a further illustration that the ionosphere is stable during the measuring time, we also
give the average TEC of ISR in different directions. The ISR data belonging to different beam directions
were first collected together, and a polynomial fitting algorithm was adopted to form a smooth electron
density profile. Then average TEC of ISR was obtained by integrating the electron densities with
respect to the altitude. The small differences between “Poker Flat ISR” and “Poker Flat ISR (average)”
further verify the stable circumstance of the ionosphere.

4.2. Modeling the Topside Profile of Ionosonde with New HT

We have demonstrated that PolSAR data can be used to estimate the TEC under 700 km with
a considerable precision within 1 TECU. Therefore, after the bottomside electron density profile of
ionosphere has been precisely measured by an ionosonde, the corresponding PolSAR TEC can be used
to calculate the TECTop for the ionosonde. Resorting to Equation (9), we can derive the parameter
HT . Then, the topside profile could be easily calculated from Equation (3). In this section, PolSAR
TEC derived with magnetic field at 400 km is used, which is 11.4 TECU. Still, to account for potential
residual calibration errors, only pixels of SNR > 10 dB are employed. For clarity, the TECs of “Poker
Flat ISR” and “Poker Flat ISR (average)” are also given here, which are 12.37 TECU and 12.23 TECU,
respectively. Clearly, the deviation between PolSAR TEC and ISR TEC is still within 1 TECU, which
again validates the precision of PolSAR for TEC estimation. The small difference between “Poker Flat
ISR” and “Poker Flat ISR (average)” indicates a stable ionosphere. For comparison, the TEC obtained
from GNSS is 15.7 TECU, which is acceptable but not as precise as that of PolSAR.

Figure 5 shows the result of the proposed method where “ISR” represents the ISR data after
polynomial fitting. Note that we adopted the ISR data from all beams for polynomial fitting, rather
than the vertical beam only, because the TEC deviations between “Poker Flat ISR” and “Poker Flat
ISR (average)” are small, and vertical data is too sparse to form a fine polynomial fitting. In Figure 5,
“Ionosonde” stands for the original data obtained from DIDB, and “Improved” is our result with the
topside profile calculated from the known TECTop. It is clear that the bottomside profile of ionosonde
matches well with that of ISR, while the two topside parts are divergent. The reason for this was
discussed previously, i.e., that no topside information is considered in the original method. After
modifying the topside profile with the known TEC, we can easily see that the new topside profile
is more consistent with that of ISR. The divergence between the ionosonde topside profile and the
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ISR topside profile reduced by 30.41 percent after the presented algorithm was adopted. Here, the
divergence is defined as the average absolute difference between the ISR profile and the ionosonde
profile, and the percentage of reduction was calculated from Equation (13). This result proves the
validity of our method.

percentage = 1 − mean

( |ISR − Improved|Top

|ISR − Ionosonde|Top

)
. (13)

Figure 5. Electron density profiles for ISR and ionosonde.

5. Conclusions

This paper first validated the ability of PolSAR as an effective device in measuring the TEC of the
ionosphere, and then demonstrated the feasibility of using known TEC to help improve the topside
profile of ionosonde. The results show that PolSAR is able to measure the TEC with higher precision
compared to GNSS. Furthermore, the improved topside profile proved to be much more consistent
with the profile of ISR than the original profile.

In this paper, the α-Chapman model was used for the topside profile because of its popularity.
Actually, if any other model is developed for the topside profile, the proposed TEC modification
strategy could also be taken as an auxiliary process. One should note that the proposed method
could only detect the TEC under the altitude of the satellite. However, it is still reliable to expand the
modified ionosonde profile beyond this altitude, since TECs under 700 km cover the majority of TECs
under 10,000 km.
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Abstract: Wuhan city is the biggest city in central China and has suffered subsidence problems in
recent years because of its rapid urban construction. However, longtime and wide range monitoring
of land subsidence is lacking. The causes of subsidence also require further study, such as natural
conditions and human activities. We use small baseline subset (SBAS) interferometric synthetic
aperture radar (InSAR) method and high-resolution RADARSAT-2 images acquired between 2015
and 2018 to derive subsidence. The SBAS-InSAR results are validated by 56 leveling benchmarks
where two readings of elevation were recorded. Two natural factors (carbonate rock and soft soils)
and three human factors (groundwater exploitation, subway excavation and urban construction)
are investigated for their relationships with land subsidence. Results show that four major areas of
subsidence are detected and the subsidence rate varies from −51.56 to 27.80 millimeters per year
(mm/yr) with an average of −0.03 mm/yr. More than 83.81% of persistent scattered (PS) points
obtain a standard deviation of less than −6 mm/yr, and the difference between SBAS-InSAR method
and leveling data is less than 5 mm/yr. Thus, we conclude that SBAS-InSAR method with Radarsat-2
data is reliable for longtime monitoring of land subsidence covering a large area in Wuhan city.
In addition, land subsidence is caused by a combination of natural conditions and human activities.
Natural conditions provide a basis for subsidence and make subsidence possible. Human activities
are driving factors and make subsidence happen. Moreover, subsidence information could be used in
disaster prevention, urban planning, and hydrological modeling.

Keywords: land subsidence; Radarsat-2 images; small baseline subset (SBAS) method; interferometric
synthetic aperture radar (InSAR)

1. Introduction

Land subsidence is defined as a gradual settling or sudden sinking of the ground surface [1–3],
which results from natural processes or human activities [4–7]. Over the past decades, numerous
land subsidence events have been reported in many cities around the world where the rapid urban
construction and the extensive groundwater exploitation are taking place [8–13]. Land subsidence
can lead to serious environmental problems and considerable economic losses, such as damage to
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infrastructures and increased risk of urban pluvial flooding [14–18]. Thus, the demand for monitoring
the spatial and temporal distribution of land subsidence is increasing.

Traditional point-based monitoring approaches such as ground leveling and global positioning
system (GPS) techniques could not provide sufficient samples required by land subsidence
mapping [19]. In recent years, interferometric synthetic aperture radar (InSAR) technology has been
rapidly developed to cover a large geographic area. InSAR method is low-cost and effective [20,21].
Nevertheless, the InSAR method suffers from temporal decorrelation and atmospheric disturbance [22–24].
Therefore, many advanced InSAR methods based on multi-interferograms such as persistent scatterer
interferometry (PS-InSAR) and small baseline subset interferometry (SBAS-InSAR) have been proposed
to overcome these limitations [25–29]. Furthermore, high-resolution SAR images are gradually applied
such as ALOS-PALSAR and Radarsat-2 images [30,31].

The primary cause of land subsidence is human activities, such as groundwater withdrawal, coal
mining, petroleum extraction, land creation, subway excavation, and building loading [4,21,29,32–36].
Besides, natural factors might also be critical, such as soft soil, karst geomorphologic [37,38]. Previous
studies have examined the cross-correlations between these factors and land subsidence [39,40].
However, it remains unclear whether human factor works alone or with natural factor. Thus, the roles
of natural and human factors in land subsidence require further study.

Wuhan city, which is the biggest city in central China, has various types of natural conditions and
has experienced rapid urbanization in recent years. It is a typical city to study the problem of land
subsidence in China. Previous studies have mapped land subsidence in Wuhan city using advanced
InSAR methods [5,41,42]. However, longtime monitoring of land subsidence covering all urban areas
of Wuhan city is lacking. In addition, Radarsat-2 images have not yet been applied to subsidence
monitoring in Wuhan city.

This study explores the application of SBAS-InSAR method with high-resolution Radarsat-2
images to long-term monitoring of land subsidence in Wuhan city, and the cause of land subsidence.
Specifically, (i) we investigate the potentials of 20 Radarsat-2 images acquired between 17 October 2015
and 3 June 2018 to derive land subsidence rates in Wuhan city. (ii) The InSAR results are validated by
56 leveling benchmarks. (iii) We study the influence of natural conditions and human activities on
land subsidence and their interrelationships.

2. Study Area and Data Preparation

2.1. Study Area

Wuhan city (29◦58′ N–31◦22′ N, 113◦41′ E–115◦05′ E) is located in the east of an alluvial plain
called Jianghan Plain, see Figure 1. The Yangtze River, the world’s third longest river, flows through the
heart of the city. The average elevation of the city is about 37 m. About 26% of total area (2205.06 km2)
is covered by water [43], such as rivers, lakes, ponds and ditches. The city has a subtropical monsoon
climate characterized by four distinct seasons, abundant precipitation, and considerable sunshine.
The average annual temperature is 16.6 ◦C and the precipitation averages 1269 mm. The rainfall
concentrates in early summer (May to July) [44].

Carbonate rock and soft soils, which might contribute to land subsidence, are widespread in
Wuhan city, see Figure 1. There are six carbonate rock belts aligned in an East-West orientation, and they
cover an area of more than 1100 km2 [45–47]. Soft soils have high water content, high compressibility,
high porosity and low shear strength. Soft soils are mainly distributed along the banks of two rivers,
the Yangtze River and the Han River, and the maximum thickness exceeds 10 m [48,49]. Wuhan city
has experienced rapid economic growth since the China’s reform and opening up policy in 1979. It has
become a megacity with a population in excess of 10 million.
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Figure 1. The location of Wuhan city in China and the study area. The red rectangle illustrates the
coverage of Radarsat-2. B1–B6 represent six carbonate rock belts aligned in an East-West orientation,
namely Tianxingzhou, Daqiao, Baishazhou, Zhuankou, Junshan, and Hannan.

2.2. Datasets

We employ 20 descending Radarsat-2 wide ultra-fine (WUF) single-look complex (SLC) images
acquired from October 2015 to June 2018 at intervals of 24, 48, 72 or 96 days. These single
horizontal-horizontal (HH) polarization images covered a 50 × 50 km area, see the red rectangle
in Figure 1. Main parameters of Radarsat-2 WUF SLC data are detailed in Table 1. The Shuttle
Radar Topography Mission (SRTM) 90 m DEM is used to simulate and remove topographic phases.
To validate the InSAR results, we also employ 56 leveling benchmarks where two readings of elevation
were recorded in September 2016 and March 2017, respectively.

Table 1. Parameters of Radarsat-2 WUF SLC images.

Parameters Description

Product type Radarsat-2 WUF SLC
Track no. 226
Band C
Wavelength (cm) 5.5
Revisit frequency (day) 24
Incidence angle (degree) 30–50
Range resolution (m) 1.6
Azimuth resolution (m) 2.8
Orbit direction Descending

We gathered data about natural and human factors that influence land subsidence. Two natural
factors include soft soil and carbonate rock, see Figure 1. A map of soft soils distribution and a
map of carbonate belts distribution are obtained from Wuhan municipal commission of urban-rural
development and a geological study, respectively [47]. Three human factors are considered:
groundwater exploitation, subway excavation and urban construction. The data of the three human
factors include an official route map of the Wuhan subway system, the groundwater resources
regionalization of Wuhan, two high resolution images of the year 2015 and 2017. In addition,
impervious surface fraction is an index that measures the level of urban construction [50].
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3. Methodology

The SBAS-InSAR method is used to process Radarsat-2 WUF SLC images in the ENVI SARScape
module to obtain land subsidence information in Wuhan city [31]. The SBAS-InSAR method is an
advanced InSAR technique that could improve the monitoring accuracy [51]. The SBAS-InSAR method
relies on an appropriate combination of differential interferograms within the thresholds of temporal
and spatial baselines, so the geometric decorrelation is minimal [26,31,36,52]. Figure 2 shows the main
steps of SBAS-InSAR method to detect land subsidence.

Figure 2. Flowchart of SBAS-InSAR data processing.

3.1. Differential Interferogram Generation

The image acquired on 17 September 2016 is selected as the super master image, and the
remaining 19 images are slave images. The selection of interferograms is constrained by a maximum
spatial baseline of 630 m (45% of the critical spatial baseline) and a maximum temporal baseline of
350 days. After topographic phase removal, 106 differential interferograms are generated, see Figure 3.
The signal-to-noise ratio is improved by performing multi-looking factors of 4 × 4 in the range and
azimuth directions, and Goldstein filtering method.

Figure 3. (a) Time–position of Radarsat-2 image interferometric pairs and (b) time–baseline of
Radarsat-2 image interferometric pairs. The yellow diamond denotes the super master image. Blue
lines represent interferometric pairs. Green diamonds denote slave images.
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3.2. Phase Unwrapping

Both minimum cost flow (MCF) network and Delaunay 3D are employed for phase unwrapping,
and a coherence threshold of 0.35 is chosen [35]. Then, 39 interferometric pairs with poor unwrapping
and low coherence are eliminated.

3.3. Refinement and Re-flattening

After phase unwrapping, 46 Ground Control Points (GCPs) are selected to correct the unwrapped
phase. The selection criteria are as follows: (1) the location has a high coherence value and good phase
unwrapping, (2) land deformation is close to zero according to previous studies and leveling data,
and (3) we should select as many GCPs as possible.

3.4. Displacement Estimation

Preliminary displacements are estimated by a linear model that is robust and commonly used [36].
Meanwhile, the residual topography is also removed. Then, atmospheric phase was removed by an
atmospheric filtering. Subsequently, geocoding in the line of sight (LOS) direction with a resolution of
10 m is employed to calculate SBAS. Finally, subsidence rate and subsidence time series are obtained
and mapped across the study area.

3.5. InSAR Data Validation by Using Leveling Benchmarks

The InSAR results are validated by 56 leveling benchmarks. Among these leveling benchmarks, a
stable one located at East Lake Peony Garden (30◦34′27” N, 114◦21′57” E) is used as a reference point
to measure land subsidence. Four parameters, namely, maximum discrepancy (MaxD), minimum
discrepancy (MinD), mean absolute discrepancy (MD), and root mean square (RMS), are used to
describe the reliability of SBAS-InSAR derived land subsidence rate map.

4. Results and Validation

4.1. Rates of Land Subsidence

Figure 4 shows the average subsidence velocity in the radar LOS from October 2015 to June 2018
across Wuhan city by using SBAS-InSAR technique. A negative value (in red color) indicates land
subsidence, and a positive value (in blue color) indicates uplift. The total number of derived permanent
scatter (PS) points was 8,680,765, and the average density was 3472 points/km2. The subsidence
rate varies from −51.56 to 27.80 millimeters per year (mm/yr) with an average of −0.03 mm/yr.
Additionally, a pronounced subsidence area located in Hankou district, adjacent to the Xinrong Light
Rail Transit station with a maximum velocity exceeding −50 mm/yr, is identified.

Land subsidence is widely found in most areas of the city, and land uplift in surrounding rural
areas is also apparent (Figure 4). Four major areas of subsidence are detected: Hankou (HK), Qingshan
Industrial Zone (QSIZ), Northern Shahu Lake (NSL), and Baishazhou (BSZ). HK covers the largest
subsidence area, and is the main commercial district of the city. QSIZ is the city’s oldest and biggest
industrial area, and there are many large manufacturing plants, such as Wuhan Iron and Steel (Group)
Corporation, Wuhan Petrochemical Complex, and Qingshan Thermal Power Plant. NSL has been
undergoing rapid economic growth and high intensity of urban construction over the years. BSZ is
located in the south of the city, and has speed up the construction of traffic facilities. Interestingly,
all four major areas of subsidence are distributed along the banks of the Yangtze River. Other areas of
subsidence are sinking slowly at a rate of less than −10 mm/yr.
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Figure 4. The average subsidence velocity in LOS from October 2015 to June 2018 across Wuhan city by
using SBAS-InSAR technique. The four black rectangles are the four major areas of subsidence. A-E are
five points of subsidence, detailed in Figure 6.

4.2. Evolution of Land Subsidence

Figure 5 illustrates the spatial distribution of subsidence and its changes over time. In most part
of the city, the cumulative subsidence is stable in a range of −15 to 15 mm. But for the four major areas
of subsidence, the cumulative subsidence gradually increases over time, and the area is constantly
expanding. The maximum cumulative subsidence has reached up to −126.43 mm, is located in Xinrong
of HK, see Figure 4.

The time series of subsidence at five typical PS points marked as A–E in Figure.4, is shown in
Figure 6. Points A, B, C, and D are located in HK, BSZ, NSL, and QSIZ, respectively, which are the
four major areas of subsidence. Point E is located in an urban area with minor subsidence of nearly
zero mm. Points A, B, C, and D present nonlinear subsidence. One possible reason is that the seasonal
variation of groundwater levels might influence the rate of subsidence. When in early summer (May,
June, and July) rainfall concentrates, groundwater will be recharged and the rate of subsidence will
slow down, see Figure 6. Points B, C, and D show similar trends of subsidence, and point B subsides
more than points C and D. The subsidence at point A suddenly increases in 2017 probably due to the
construction of Wuhan Metro Line No. 8.
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Figure 5. Spatio-temporal evolution of accumulated subsidence in Wuhan city derived from Radarsat-2
images. Only 6 of the 20 subsidence maps are shown.
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Figure 6. Time-series subsidence at the five typical points A–E. The gray rectangle denotes the early
summer (May, June, and July).

4.3. InSAR Data Validation

Statistical analysis of the mean standard deviations is conducted to assess the internal precision
of subsidence rates of subsidence rates. More than 83.81% of PS points obtain a standard deviation of
less than -6 mm/yr, proving that applying SBAS-InSAR method to derive subsidence rates is reliable.

The land subsidence derived from Radarsat-2 images are compared to those derived from leveling
data (Figure 7). 41 out of 56 leveling benchmarks are located within the generated grids, and are
selected for validation. Figure 7 shows the results of leveling data against SBAS-InSAR method.
For most validation points, the difference between the two methods is less than 5 mm/yr. MaxD,
MinD, MD, and RMS are 9.22, 0.03, 1.38, and 4.03 mm/year, respectively. The result of SBAS-InSAR
coincides with that of leveling data, which indicates that SBAS-InSAR method is able to monitor land
subsidence with acceptable precision.
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Figure 7. Leveling data versus SBAS-InSAR method plots of land subsidence.

5. Discussion

5.1. Comparison with Previous Studies

In this study, SBAS-InSAR method with Radarsat-2 data is reliable for longtime monitoring of
land subsidence covering a large area in Wuhan city (October 2015 to June 2018). We also compare our
results with those of the following studies (Table 2).

Table 2. Summary of the previous studies of land subsidence in Wuhan city.

Previous Studies Data Method Subsidence Rate Reference

Zhou et al.
15 C-band Sentinel-1A images, interferometric
wide TOPS acquisition mode, VV polarization,
ascending orbit, covering most of Wuhan city

SBAS-InSAR −82–18 mm/yr [5]

Bai et al.
12 X-band TerraSAR-X images, stripmap
acquisition mode, HH polarization, ascending
orbit, covering major urban areas of Wuhan city

PS-InSAR −63.7–17.5 mm/yr [41]

Costantini et al.
45 X-band COSMO-SkyMed images, stripmap
acquisition mode, HH polarization, covering most
of HK

PS Pair
InSAR −80–40 mm/yr [42]

Benattou et al.

36 C-band Sentinel-1A images, interferometric
wide TOPS acquisition mode, VV polarization,
ascending orbit, covering major urban areas of
Wuhan city

PS-InSAR −127–23 mm/yr [53]

Zhou et al. [5] obtained the rate of subsidence in Wuhan city by using SBAS-InSAR method
with 15 Sentinel-1A images (April 2015 and April 2016) with 5 m × 20 m (range × azimuth) spatial
resolution. Their results showed that subsidence rates varied from−82 mm/yr to 18 mm/yr, and the
maximum rate of subsidence was detected in Houhu of HK. In addition, there are several centers of
subsidence areas in Wuchang, Qingshan, Hanyang, and Hongshan district.
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Bai et al. [41] investigated the rate and spatial patterns of subsidence in major urban areas in
Wuhan city using PS-InSAR method with TerraSAR-X images (October 2009 and August 2010) with
2.0 m × 3.3 m (range × azimuth) spatial resolution. Subsidence rates varied from−63.7 mm/yr to
17.5 mm/yr, and HK is the largest subsidence area.

Costantini et al. [42] obtained subsidence information from high-resolution X-band
COSMO-SkyMed data (June 2013 to June 2014) with 2.21 m × 1.63 m (range × azimuth) spatial
resolution using PS pair InSAR method. Subsidence rates of most PS points in HK varied from
−80 mm/yr to 40 mm/yr.

Benattou et al. [53] measured the rate of subsidence using 36 sentinel-1A images (June 2015 and
April 2017) with 5 m × 20 m (range × azimuth) spatial resolution. The average deformation ranged
from −127 mm/yr to 23 mm/yr and a new center of subsidence areas (Jiufengxiang) was found.

In our study, four major areas of subsidence are clearly identified, namely, HK, QSIZ, NSL, and
BSZ, which are consistent with earlier research conducted by Zhou et al. However, the maximum rate
of subsidence is −52 mm/yr, which is lower than the maximum rate of −82 mm/yr by Zhou et al.
It is also lower than the rate of −67 mm/yr conducted by Bai et al. and −127 mm/yr conducted by
Benattou et al. The reason behind this is that subsidence might occur over a short period of time
and the rate of longtime monitoring would be relatively lower. Our longtime monitoring of land
subsidence reflect a long term change of land subsidence relative to previous studies. The most severe
ground settlement site of our study is located at Xinrong of HK, but in the study of Zhou et al. it is
located at one other place named Houhu (Figure 4). Compared to the work of Bai et al. some places
within major areas of subsidence exhibit a considerable increase in subsidence velocity. For example,
the subsidence velocity in NSL is between −15 mm/yr and 5 mm/yr in the study of Bai et al. during
2009–2010, but it exceeds −15 mm/yr in our study during 2015–2018. By comparing and analyzing
the results of subsidence monitoring at different times, the law of land subsidence over time in Wuhan
city can be revealed.

5.2. Causes of Subsidence in Wuhan City

5.2.1. Natural Factors

In Wuhan city, carbonate rock and soft soils are widespread and might cause land subsidence
(Figures 1 and 4). For the four major areas of subsidence, BSZ and QSIZ are located on the carbonate
rock belts, and HK and NSL are located on the soft soils. Obviously, there exists a spatial correlation
between land subsidence and the two natural factors. The rate of subsidence increases with the
thickness of soft soils (Figure 8a). Taking Hongshan district and Jiangan district (Figure 1) as examples,
we compare areas located on carbonate rock belts with the whole of the two urban areas (Figure 8b).
The subsidence rate of areas on carbonate rock belts is higher than those of the whole of the two
urban areas.

However, land subsidence is not significant in some other areas located on carbonate rocks or
soft soil area. For example, the rate of land subsidence in Daqiao carbonate rock belt is lower than
−5 mm/yr, indicating that the surface is relatively stable. Therefore, an area located on carbonate rock
or soft soils is not sure to subside, but an area of subsidence requires natural conditions such as the
carbonate rock or soft soils. In summary, natural factors are necessary but not sufficient conditions for
land subsidence.
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Figure 8. (a) Relationship between soft soil thickness and subsidence rate. (b) The subsidence rate of
areas located on carbonate rock belts and those of the whole of the two urban areas.

5.2.2. Human Activities

According to the government’s planning for utilization of the groundwater resource, all four
major areas of subsidence are located in the groundwater exploitation regions (GERs) wherein large
quantities of groundwater is continuously pumped (Figure 9). Groundwater extraction will increase
the fluctuation of groundwater levels. That results in the compaction of highly compressible soft soils
and the dissolution of carbonate rocks or suffusion processes. Therefore, land subsidence occurs.

Figure 9. Map of the GERs and Metro Networks of Wuhan city.

Many subways have been built such as Metro Lines No. 3, 6, 8 and 21, or are under construction
such as Metro Lines No. 5, 7 and 11, during our study period 2015−2018. Digging subway tunnels
inevitably disturb the surrounding soil, and land subsidence is more likely to follow, especially in
areas of soft soil and carbonate rock. As shown in Figure 9, several centers of severe subsidence areas
are distributed along the metro lines such as Region 1.
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In Region 1 (Figure 9), the subway lines have a high density and two metro lines intersect, namely
Metro Lines No. 1 and 21, see Figure 10a. The intersection is near subway Station A and B that are situated
at the center of subsidence area. The rate of subsidence reaches up to −44.30 mm/yr. A subsidence
profile passing through stations A and B is shown in Figure 10b. The rate of subsidence decreases with
the distance to subway stations. Therefore, subway construction can affect land subsidence.

 
Figure 10. Maps show subsidence rate in Region 1 (a), and a subsidence profile passing through
stations A and B (b).

Wuhan city’s urban construction has entered into a stage of rapid growth during our study
period 2015−2018. The annual investment in urban construction exceeds 20 billion dollars and
many new buildings and transport facilities are constructed. Building a foundation often requires
pumping groundwater during excavation, which could result in subsidence. In addition, when the
soil underneath a building could no longer support the loading, the building will start to settle.
Traffic loading also has much more influence on land subsidence because it can cause foundation
deformation. Region 2 (Figure 9) is a new central business district (CBD) of the city where many
high-rise buildings concentrated in, such as Wuhan Center Tower (438 m). Many new buildings and
transport facilities have been constructed or being constructed. The rate of subsidence is shown in
Figure 11 and severe subsidence are detected. Four typical PS points (i.e., H, I, J, and K) are selected to
analyze the subsidence (Figure 11).

Figure 11. Maps show subsidence rate in Region 2 (a), and time-series subsidence at the four points
H-K (b).
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Points H, I and J are close to new buildings, new roads and a high-rise building, respectively
(Figure 12). Point K is located on a stable surface. Points H, I and J subside greatly over time compare
to point K. In addition, there is a correlation between subsidence and impervious surface fraction,
see Figure 13. Thus, we can infer that urban construction such as buildings and transport facilities may
drive subsidence.

 

Figure 12. Maps show the satellite images of Region 2 on 21 January 2015 (a) and 9 December 2017 (b).

Figure 13. The correlation between subsidence rate and impervious surface fraction.

In this city, soft soils or carbonate rocks are widespread, but only these areas with intensive human
activities show severe subsidence, so natural conditions provide a basis for subsidence and make
subsidence possible. Human activities are driving factors and make subsidence happen. Therefore,
land subsidence is caused by a combination of natural conditions and human activities.

6. Conclusions and Future Work

Our study employs SBAS-InSAR method with Radarsat-2 data for long-term monitoring of
land subsidence in a megacity, Wuhan city. The InSAR results are validated by leveling data, and
the causes of subsidence are investigated. The results allowed us to draw the following conclusions:
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(i) SBAS-InSAR method with Radarsat-2 data could be used for longtime monitoring of land subsidence
with acceptable accuracy in Wuhan city; (ii) natural conditions provide a basis for subsidence and
make subsidence possible while human activities are driving factors and make subsidence happen.

Despite our success of longtime monitoring of subsidence in a megacity, Wuhan city, other
advanced InSAR methods could also be investigated, such as PS-InSAR. Future study will be focused on
the causes of subsidence and its spatial differences using spatial regression models. While much work
has been conducted to derive land subsidence information in so many cities, the potential applications
of subsidence information are rarely discussed. It is also important to explore the application of
subsidence information to disaster prevention, urban planning and hydrological modeling.
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Abstract: Building deformation models consistent with reality is a crucial step for time-series
deformation monitoring. Most deformation models are empirical mathematical models, lacking
consideration of the physical mechanisms of observed objects. In this study, we propose an improved
time-series deformation model considering rheological parameters (viscosity and elasticity) based on
the Kelvin model. The functional relationships between the rheological parameters and deformation
along the Synthetic Aperture Radar ( SAR) line of sight are constructed, and a method for rheological
parameter estimation is provided. To assess the feasibility and accuracy of the presented model, both
simulated and real deformation data over a stretch of the Lungui highway (built on soft clay subgrade
in Guangdong province, China) are investigated with TerraSAR-X satellite imagery. With the proposed
deformation model, the unknown rheological parameters over all the high coherence points are
obtained and the deformation time-series are generated. The high-pass (HP) deformation component
and external leveling ground measurements are utilized to assess the modeling accuracy. The results
show that the root mean square of the residual deformation is ±1.6 mm, whereas that of the ground
leveling measurements is ±5.0 mm, indicating an improvement in the proposed model by 53%,
and 34% compared to the pure linear velocity model. The results indicate the reliability of the
presented model for the application of deformation monitoring of soft clay highways. The estimated
rheological parameters can be provided as a reference index for the interpretation of long-term
highway deformation and the stability control of subgrade construction engineering.

Keywords: deformation model; time series deformation; rheological parameter; highway

1. Introduction

Stability control of highways built on a soft clay subgrade is one of the key technical problems
for highway subgrade engineering. Due to the geological characteristics of large natural moisture
content, high compressibility, low strength, and poor structure of soft clay, roads built on soft
clay subgrade are more prone to displacement and instability, especially under large traffic loads.
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Consequently, long-term surface deformation monitoring for infrastructure built on soft clay, after
highway embankment settlement construction, is of considerable practical significance to the prevention
of transportation safety accidents and the assurance of highway construction quality [1,2]. Although
differential interferometric synthetic aperture radar (DInSAR) can cover a shortage of traditional ground
measurement methods, its capacity in highway deformation monitoring is limited by its well-known
spatial-temporal decorrelation and atmospheric delay effects [3,4]. Time-series technologies, such as
permanent scatterer interformetry (PSI) [5], small baseline subset (SBAS) [6,7], temporally coherent
point InSAR (TCP-InSAR) [8], and so on [9], have been proven to possess great capacities for large
traffic infrastructure monitoring (i.e., railways, highways, and bridges) [10–21]. They can pick up
ground displacement information with millimeter-level precision through high coherence points,
maintaining long-term stable backscatter characteristics. Thus, they are insusceptible to spatial-temporal
decorrelation [22].

Deformation modeling is a crucial step in time-series processing, determining the temporal
and functional relationships between the phase component of displacement and the deformation
parameters over highly coherent points. An accurate and reliable deformation model can not only
improve the accuracy of deformation estimation, but also control the residual phase within a reasonable
range of a whole phase cycle [−π, π]. Deformation modeling has a significant impact on the subsequent
processing steps, including high coherence point identification, unknown parameter estimation, and
phase unwrapping. It can also provide a reference for the interpretation of the final deformation results.
Among traditional time-series models, the most commonly used is the linear velocity model, which
simply assumes that temporal displacement follows linearly varying characteristics, and treats the
deformation rate as a constant parameter over each time-adjacent interferometric period. This model
was originally proposed as a PSI technique, and has been successfully applied in a large amount of cases.
However, under the assumption of a pure linear varying characteristic among all temporal periods, the
linear velocity model has significant limitations. When the real deformation of the monitored object is
close to a linearly varying characteristic, the residual phase can be easily suppressed within the range of
a whole phase cycle; however, when a strong non-linear component exists in the total displacement, the
residual phase may possibly exceed the reasonable range of [−π, π], thus inducing a non-unique solution
of unknown parameters and large inaccuracy. Due to the deficiency of the linear model, some non-linear
deformation models have been presented, such as the Seasonal [23,24], Polynomial [25], Hyperbola,
and Spline function [26] models. Although these models have achieved fitting of the temporally
varying process of deformation for different observed features with better experimental results, they
are generally based on a combination of one or several empirical mathematical functions to fit the
deformational variations, ignoring the physical mechanism of deformation of the monitored object.
The parameters for those models are generally mathematical coefficients that lack physical significance.
Soft clay has the properties of mellow soil, large natural water content, and high compressibility.
Under the conditions of constant external load, deformation is related to natural compression and the
extravasation of the inner water in the soft soil, combined with external environmental factors (such as
rainfall and temperature), thus the deformation of soft clay is characterized as an obvious temporal
non-linear variation. In particular, for highways built on soft clay, a single pure empirical mathematical
function may not describe the actual dynamic evolution, due to its temporally complicated non-linear
characteristics, and a negative impact could be imposed on the accuracy of the obtained measurements
and the subsequent displacement prediction. This would be adverse to the corresponding long-term
analysis and deformation interpretation following highway construction.

According to authoritative statistics, more than 70% of pavement structure damage is related
to long-term rheological deformation of the subgrade [27]. The rheological property is one of the
primary engineering properties of soft soil, representing the temporal effect of soil deformation.
Rheology is a subject that studies the deformation laws of materials over time under certain conditions
(e.g., stress and strain) [28]. Rheological parameters (elastic modulus and viscosity) are significant
factors for characterizing the rheological properties of soft clay. During the operation step of highway
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post-construction, the external load can be considered as constant and the underground deformation
increases with time, so the rheological deformation plays a dominant impact role. In the theory of
rheology, the rheological model is a kind of mechanical model (composed of spring, dashpot, and slide
rod) that represents the rheological characteristics of rocks and soil and describes the dynamic temporal
evolution process. The most widely used rheological models can be divided into linear models and
non-linear models. For linear rheological models, a qualitative analysis of the material is initially
carried out, then the corresponding rheological state function is constructed, which quantitatively
represents the functional relationship between the strain of soft soil material and physical variables
(i.e., viscosity, elastic modulus, and time). These are mainly based on the series-parallel connection of
basic mechanical components (i.e., Burgers model, Kelvin model, and Maxwell model, among others).
This kind of model can easily and intuitively express complex mechanical properties, which is helpful
for conceptually understanding the elastic and visco-elastic properties of soft soil deformation. Their
mathematical expressions can directly describe the rheological deformation, and are applicable to the
simulation of the initial or stable rheological deformation of rock and soil material [29,30]. However,
theoretical models for time-series displacement that consider rheological parameters have been rarely
mentioned in previous InSAR deformation studies.

Based on the background discussed above, we propose a time-series deformation model based
on rheological theory. The Kelvin rheological model, a typical one-dimensional linear rheological
model, is adopted to form a functional relationship between radar line-of-sight deformation and
the rheological parameters (elastic modulus and viscosity). The method of rheological parameter
estimation is also illustrated in this paper. The proposed model is tested by a simulated experiment
and a real data experiment. In the real data scenario, the rheological parameters of a stretch of highway
(namely, the Lungui Highway in Foshan, China) are obtained, and the time-series subsidence over the
period of June 2014 to December 2015 is investigated using TerraSAR X imagery.

2. Time-Series Modeling Considering Rheological Parameters

2.1. Time-Series Deformation Model

Suppose M + 1 SAR images covering the same area are acquired in repeat orbits at different
dates. Then, N interferometric pairs may be generated, according to certain temporal baseline and
spatial baseline thresholds, where the N interferometric pairs are generated through two-orbit D-InSAR

processing, while satisfying the inequality M
2 ≤ N ≤ M(M−1)

2 . In the processing, all images are registered
and resampled to the same image first. Then, an external DEM is used to remove the topographic
phase and, consequently, phase unwrapping is carried out for each interferometric pair. For each high
coherence point P in the i-th interferogram, the wrapped interferometric phase can be expressed as [31]:

Δϕp
i =

4π
λ

Δdi + Δϕtopo,p
i + Δϕres,p

i (1)

whereλ is the radar wavelength (the X band is used in our real data experiment, and the correspondingλ
is 3.2 mm); Δd is the line-of-sight cumulative deformation over the time period of the i-th interferogram,
indicating the low-pass (LP) component of the total deformation; Δϕtopo,p

i represents the residual

topographic phase component, which can be expressed a Δϕtopo,p
i = 4πBi

λRp sinθΔZp, where Bi defines
the vertical baseline, θ is the incident angle, Rp represents the distance between the sensor and the
target P, and ΔZp defines the residual elevation, which is an unknown parameter; and Δϕres,p

i is
the residual phase component, including phase noise, atmospheric delay, and the high-pass (HP)
deformation component. Taking the pure linear model as an example, Δdi in Equation (1) can be
written as

Δdi= v t, (2)
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where v is the linear deformation rate, which is regarded as a constant parameter over each time-adjacent
interferometric period, and t defines the temporal baseline for the i-th interferogram.

2.2. Rheological Model Based on the Kelvin Model

As discussed above, a Linear rheological model can express the complex mechanical properties of
the rheological deformation easily and directly. Consequently, a one-dimensional linear rheological
model, the Kelvin model, was selected for our experiments. The Kelvin rheological model is a kind of
commonly used delay model, based on mechanical composition elements. It is a parallel system with a
spring (pure elastomer) and a glue pot (pure viscous body), illustrating the phenomenon that, under
the action of stress, the strain of the material does not reach the final strain value immediately, but has
a relative lag process. Figure 1 shows a schematic diagram of the combined elements in the Kelvin
rheological model. The rheological state equation of the Kelvin model can be written as [32]:

ε =
σc

E
(1− e−

E
η t
) (3)

where ε defines the strain related to the material and σc defines a constant external load. When the
post-construction operation stage of a highway starts, the external load mainly includes the gravity
of the surface layer and the load of the traffic vehicles. However, for practical analysis, the load of
the vehicles can be ignored, due to its minor magnitude relative to the gravity of the highway layer.
The gravity of the highway layer can be obtained through the investigation of the highway structure
and soil mass sample testing in the upper part of the soft soil layer. E represents the elastic modulus of
the material, which is also called the deformation modulus; whereas η defines viscosity, also known as
the viscosity coefficient. E and η are significant rheological parameters, which are treated as unknown
parameters in Equation (3). Finally, t represents the total time span of strain occurrence.

Figure 1. Kelvin rheological model (with a constant external load σc).

The functional relationship between the subsidence of the soft clay subgrade Sv and the strain ε

can be expressed as [28]:

Sv =

t2∫
t1

H∫
0

ε·dhdt, (4)

where H is the average thickness of the soft soil layer, which can be obtained by consulting the highway
design materials; and h and t are integral variables, representing the soft clay thickness and the time
span of subsidence, respectively. The subsidence Sv can be further written as

Sv =
Hσc

E
(t2 − t1) − ηHσc

E2 (e−
E
η t1 − e−

E
η t2) (5)
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2.3. Improved Deformation Model Considering Rheological Parameters

When horizontal movement is ignored, the vertical settlement can be calculated according to the
formula SLOS = Svcos θ. Combined with Equations (3)–(5), the deformation components related to
rheology along the line-of-sight direction can be expressed as

SLOS_rhe =
H cosθσc

E
(t2 − t1) − η cosθHσc

E2

(
e−

E
η t1 − e−

E
η t2

)
. (6)

For each interferogram, t1 and t2 represent the acquisition date of master and slave images,
respectively. Equation (6) is introduced into the original time-series deformation model, and the
low-pass deformation component of the model can be rewritten as a combination of linear and
rheological components:

SLOS = v(t2 − t1) + SLOS_rhe (7)

After substituting Equation (7) into Equation (1), the phase in Equation (1) can be expressed as

Δϕp
i =

4π cosθ
λ

[
Hσc

E
(t2 − t1) − ηHσc

E2

(
e−

E
η t1 − e−

E
η t2

)]
+ v(t2 − t1)] +

4πBi
λRp sinθ

ΔZp + Δϕres,p
i . (8)

Suppose there are N interferometric pairs generated, and that the unknown parameters in
the Equation are the rheological parameters E and η, linear rate v , and elevation correction ΔZ.
Supposing that there are at least four interferometric pairs generated, the unknown parameters over
all high coherent points of each image can be solved and, consequently, the corresponding rheological
parameters can be estimated.

2.4. Unknown Parameter Estimation

The estimation of the unknown parameters in Equation (8) is a non-linear parameter estimation
problem. The genetic algorithm for non-linear least-squares estimation is utilized here to estimate
the unknown parameters. The genetic algorithm is a method based on global optimization searching
that is insusceptible to both the number of unknown parameters and the specific form of the model.
The basic idea of the genetic algorithm is to obtain the population individuals as the final solution
of the parameters, which can satisfy the condition of minimizing the fitness function through the
operations of selection, crossover, and mutation. The population size, iteration times, and individual
gene magnitudes for each individual of the population need to be set preliminarily [33]. According
to Equation (8), each individual gene of a population includes the rheological parameters (E and η),
linear velocity v, and elevation correction ΔZ. The fitness function is mainly modeled following the
residual minimum norm principle, which can be expressed as follows:

f =||Δϕres,p
i || = min, (9)

where Δϕres,p
i represents the residual phase in Equation (8). The general search procedure includes the

following steps. (1) The magnitude of each initial individual gene should be set, which means the
initial value range of each parameter should be fixed, and the corresponding fitness function value
of each individual population can be calculated. (2) Whether the iteration termination condition for
the minimum fitness function is satisfied should be determined. If not, multiple steps of selection,
crossover, and mutation should be carried out to generate a new population of individuals, after which
the fitness function value will be calculated again. If it is satisfied, the generated individual genes
will be selected as the final estimated parameter. (3) As mentioned in [34], the simplex method can
improve the precision of the results generated by the genetic algorithm; thus, we introduce it into our
experiment to optimize the searching results. The parameters obtained by the genetic algorithm are
taken as the input initial value of the simplex method, and the output optimized searching results are
determined as the final solutions.
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3. Simulated Experiment

In order to verify the feasibility and accuracy for solving the aforementioned models, a simulated
experiment was designed and implemented. The elastic modulus coefficient was set up by investigating
the design materials and the structural morphology of the test highway. It was controlled within
the interval [0, 50] MPa. The v iscosity η was set within the interval [0, 8] × 106 Mpa. The linear
deformation velocity v was within the range of [−0.2, 0.1] m/y. The real parameter fields of elastic
modulus, viscosity, and linear velocity were simulated by a two-dimensional Gaussian function model.
The elevation correction ΔZ was simulated through a Gaussian random simulator, with the value
controlled within the range of [−50, 50] m. Linear velocity was simulated using the Matlab peaks
function, which can satisfy both positive and negative distribution characteristics of displacement [35].
There were 200 high coherence points and 10 interferograms generated in the simulation. With the
known SAR sensor parameters (TerraSAR-X Stripmap data with descent orbital mode was used),
including spatial and temporal baselines of each interferometric pair, values of all the parameters
for over 200 high coherence pixels could be detected from the simulated field as true values in the
following validation.

With the initial estimation of the unknown parameters obtained by the genetic algorithm,
the simplex method was used to determine the final solutions. Compared with the real values detected
from the simulated field, the accuracy of the model and algorithm were evaluated. Figure 2 shows
the comparison between the estimated value of rheological parameters and the real values (the noise
level here was 0.5 rad). From Figure 2, we can see that the red and blue broken lines show good
consistency, indicating that the estimated parameters were in good agreement with the true values.
Table 1 shows the quantitative comparisons of RMSE (root mean square error) for each unknown
parameter in Figure 2. For the four unknown parameters, the magnitude of errors accounted for
lower than 6% of the mean parameter estimations. The comparative results imply the feasibility and
reliability of the aforementioned model and parameter estimation method.

Figure 2. Estimated rheological parameters compared with real values in the simulation (the noise
level is 0.5 rad).

234



Sensors 2019, 19, 3073

Table 1. Comparison of root mean square error (RMSE) for each parameter in the simulated experiment.

Rheological
Parameters

E (Mpa) η (106 Mpa s.) v (mm/y) ΔZ (m)

RMSE ±1.5870
(3.5%)

±0.1741
(0.8%)

±3.5
(1.3%)

±0.29
(5.4%)

4. Real Data Analysis

4.1. Geological Background of Study Area

The test area selected in this paper was a stretch of a highway; namely, the Lungui Highway,
located in Shunde district, Foshan city, Guangdong province, China. The construction of the Lungui
road started in March 2011. It was opened to traffic segmentally during the construction process, and
the whole route officially opened to traffic in January 2015. The Lungui Highway connects Longzhou
Road, Nanguo Road, and Hengjiu Road northward, becoming one of the most important connection
channels between the Shunde west district and the three main routes (from south to north) in Shunde
Central City. Figure 3a shows the study area, featured at different scales. As Figure 3a shows, the red
rectangle outlines the spatial coverage of the selected TerraSAR-X images, while the green rectangle
shows the subset for generating the interferometric results. Figure 3b shows the location of the Lungui
Highway with the average intensity map as background. As shown in Figure 3b, the Lungui Highway
is located close to three hydrological systems: the Xi River and the Rongui and Shunde Branch Rivers.
Plenty of ponds and a large amount of silt are distributed along the route.

Figure 3. (a) Regional scale in China; (b) an amplified image of the area within the highway region of
interest (outlined in the yellow rectangle); and (c) location of the study area in China.

According to the design criteria of the test highway, the permissible vertical post-construction
settlement is 30 cm/y for regular road segments, 20 cm/y for culverts, and 10 cm/y for bridge connections.
According to the statistics of the Fuoshan Transportation Bureau, the passenger flow volume in 2014 of
the Shunde District, where the highways are located, was up to 2018.31 million people per kilometer,
whereas the freight flow on the test highways was approximately 654.64 million tons per kilometer.
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This huge traffic flow indicates the significant traffic situation of the Lungui Highway. According
to our collected geological material, with a developed surface water system and extensive aquifers,
the soft soil covering the upper layer is extremely soft and has high compressibility. Delta alluvial and
silt plain dominates the topography of the area. Due to these geological characteristics, the subgrade
of the highway is extremely prone to liquefaction and seismic subsidence. For this reason, long-term
stability monitoring of this area is critically necessary. The yellow rectangle in Figure 3b defines the
test stretch of Lungui road of interest in our experiment. Two major bridges, namely the Rongguite
and Anlite Bridges, are contained in the test highway. Figure 3c shows the corresponding location of
the test area on the China map.

Figure 4 shows the transversal profile of section LL’ in the test area (see the red solid line at the
bottom of Figure 3b), where 2% and 0.82% represent the gradient, and the average thickness of the
soft soil layer in this cross-section is 4.5 m. From the transversal distribution along the test highway,
the main distribution characteristics of the geotechnical layer are as follows: ground layer distribution
is pseudo-viscosity plain fill and a quaternary system of brand-new sea-land cross stratum. The surface
quaternary is mainly composed of silty soil and mealy sand, deposited by sea and land, including
mucky clay, silty soil, and mealy sand. The underground strata below the Rongguite and Anlite Bridges
are mainly argillaceous siltstone and silty mudstone. From the longitudinal distribution characteristics
of the route, the soft soil layer in the north of Rongguite Bridge is mainly composed of continuously
distributed mucky clay, with a thickness of 12.93–19.50 m. In the section between Ronguite Bridge and
Xiti Fouth Road, the main components of the soft soil are mucky clay and silty clay, with a thickness of
6.46–9.90 m. In the section between Xiti Fouth Road and Zhongxinhe Road, mucky clay and mealy sand
dominate the soft clay layer, with a thickness of 5.57–11.62 m. In the last section, south of Zhongxinhe
Road, the soft layer is mainly mealy sand, with a thickness of 3.57–7.62 m (as shown in Figure 4b).

Figure 4. (a) Transversal profile at LL’ in Figure 3a and (b) geological distribution of the soft soil along
the longitudinal direction of the Lungui Highway.
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4.2. SAR Acquisition and Data Processing

A total of 17 repeat-pass TerraSAR X-band Stripmap images were collected (orbit no. 119, descending),
with a spatial resolution of 3 m (3.29 m along azimuth, 2.64 m along range, average incidence angle of
26.4◦). These acquisitions covered the period from 17 June 2014 to 27 November 2015. The parameters
of these TerraSAR-X images are listed in Table 2. In the processing of the two-pass differential
interferometry, a subset of 18 × 15 km was selected, covering about a quarter of the total area
(see Figure 3a). SBAS processing was used to generate the unwrapped interferograms for the test area.
Due to the narrow ribbon characteristics of our observed object, the multi-look ratio along range and
azimuth directions was set as 1:1 to ensure the original resolution of the test highway. The thresholds
for the temporal-spatial baseline of the interferometric combination were empirically set to 130 m and
300 days, respectively. SARScape 5.2 and Envi 5.3 were used in our experiment to generate a total
of 57 small baseline interferometric pairs. Figure 5 shows the spatial and temporal baseline for all
the interferometric combinations in our experiment. The numbers 0–16 in Figure 5 correspond to
each SAR image, and number 7 represents the index of the selected super master image (acquired on
14 February 2015). In the two-pass D-InSAR processing, all the rest of the images were registered
and resampled to the super master image. In order to remove the topographic phase, a 1-arc-second
Shuttle Radar Topography Mission digital elevation model (SRTM DEM, ~30 m spacing) provided by
NASA was utilized. In addition, a Gaussian filter was selected to suppress the phase noise. After the
flat earth phase removal and phase filtering processing, a polynomial fitting method was used to
remove the orbital error and, then, the commonly used minimum cost flow (MCF) method was utilized
to unwrap the wrapped interferometric deformation phases [36]. Finally, a total of 57 unwrapped
interferometric images were generated. Figure 6 shows the selected interferometric images and the
average coherence map.

Table 2. List of the interferometric pairs and their parameters with image number 7 as the master (orbit
no. 119, descending).

Image No. Acquisition Date (yyyy/mm/dd) Normal Baseline (m) Temporal Baseline (Days)

1 2014/06/17 −71.50 198
2 2014/08/22 −137.97 132
3 2014/09/13 −286.33 110
4 2014/10/05 −110.85 88
5 2014/10/27 −249.06 66
6 2014/11/18 −74.56 44
7 2015/01/01 0 0
8 2015/02/14 −133.14 44
9 2015/03/08 −106.99 66

10 2015/05/13 −271.51 132
11 2015/06/26 −122.85 176
12 2015/08/09 −149.22 220
13 2015/08/31 −65.63 242
14 2015/09/22 −253.29 264
15 2015/10/14 −159.34 286
16 2015/11/05 −233.83 308
17 2015/11/27 −11.87 330
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Figure 5. Temporal and perpendicular baselines of the available pairs.

Figure 6. Selected interferometric images and the average coherence map (the last picture, bottom right)
of the area shown in Figure 3a.

During processing, high coherence candidates were selected, based on a coherence threshold of
0.6. In order to ensure that the most coherent points were distributed over the highway among the
57 total interferometric pairs, we selected the interferograms carefully and deleted those with bad
coherence and less points along the route. Consequently, only 25 high-quality pairs with densely
distributed coherence pixels over the highway region were selected. The subsequent experiments,
including rheological parameter estimation and time-series deformation inversion, were carried out
using MATLAB. Due to the large amount of densely distributed coherent points, the search operation
of the genetic algorithm was extremely time consuming; thus, we masked the targets distributed along
the route as our observed pixels. According to our in situ investigation and the design materials
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collected from the highway construction company, Fuoshan, China, we found a section of the test
highway which was still under road surfacing from November 2014 to December 2014, and the whole
route was opened to traffic in January 2015. We also downloaded the corresponding Google Earth
maps covering the test area, which are shown as Figure 7. As shown in Figure 7, from November
2014 to December 2014 the area located in the yellow rectangle was without a road surface, whereas,
in the map acquired on January 2015, the surfacing was finished; thus, the highway was opened to
traffic entirely at that time. In order to ensure the accuracy of our deformation results, we deleted the
coherent points located in the yellow rectangle (due to their low coherence, the number of coherent
candidates in the highlighted area was actually significantly lower than those in the other stretches of
the highway). Finally, 6657 highly coherent points were selected.

Figure 7. Study area on multi-temporal google maps. The area within the yellow rectangle was still
under construction until December 2015.

The phase model of Equation (8) was established for each high coherence point, and the unknown
parameters (v, E, η, and ΔZ) were obtained by the methods discussed in Section 2.4. Based on the
investigation of geological data and rock structure characteristics in the test area, the initial individual
gene range was set as follows: the elastic modulus coefficient E was set within the range of [0, 50]
MPa, the viscosity η within the range of [0, 8] × 106 Mpa·s, the linear velocity v was in the interval
[−0.5, 0.2] m, and the elevation correction ΔZ was in the interval [−50, 50]m. In the process of the genetic
algorithm search, the upper threshold for the genetic population was set to 700 generations, with 1000
individuals in each population and a crossover probability of 0.7. The crossover mode was two-point
crossover, and a Gaussian function was selected as the mutation function. The termination condition
for the program iterations was minimization of the average fitness function value, which indicated a
stable fitness value. Finally, the individual genes of population satisfying the fitness function value
condition were selected as the estimated unknown parameters for the coherent point. Substituting the
obtained final solutions of the unknowns into Equation (5), the low-pass (LP) component of time-series
deformation (LP-deformation) could be acquired. Subsequently, in order to obtain the high-pass (HP)
deformation component (HP-deformation), the residual phase in Equation (8) was processed with
temporal high-pass filtering and spatial low-pass filtering [31]. The final time-series of the deformation
were obtained through the sum of HP- and LP-deformation components on each pixel.
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4.3. Experimental Results

Figure 8 shows the results of the four unknowns, for all coherent points, in Equation (8). All images
were in the slant-range projection. It can be seen, from Figure 8a,b that the elastic modulus was generally
distributed within the range of [1.5, 5] Mpa, whereas the viscosity was distributed in [2, 6] × 106 Mpa.
From the color distribution, both rheological parameters gradually varied near Xiti Fourth Road,
whereas a clear color change boundary appeared next to Zhongxinhe Road. According to the field
investigation of the area, from Xiti Fourth Road to Anlite Bridge along the route, breeding ponds
(see the little black rectangles in Figure 8) and villages were densely distributed, and few typical urban
buildings could be found near this stretch. The soil along this segment was mainly mucky clay and
silty clay, as mentioned in Section 4.1. In contrast, the area below Zhongxinhe Road was generally
urban districts, with densely distributed residential constructions including banks, office buildings,
and other urban infrastructure. Correspondingly, the mucky content in the soil along this stretch was
relatively low. Figure 8c shows the linear velocities in Equation (8), with an overall distribution of
−50 to 20 mm/y. Similar color distribution characteristics can be found in the figure, with Zhongxinhe
Road as an obvious boundary. The detected subsidence rate in the upper region was relatively obvious,
with maximum value of 67 mm/y, whereas the area below Zhongxinhe Road was more stable, with the
deformation velocity generally lower than 10 mm/y. Figure 8d shows the overall distribution of height
corrections, and the results are generally within the interval of [−50, 40] m, with a maximum DEM
error of 95 m.

Figure 8. Estimated model parameters: (a) elasticity, E; (b) viscocity, η; (c): linear velocity, v; and (d)
height correction, ΔZ.

Figure 9 shows the overall time-series deformation results obtained for the test highway. From
the spatial characteristics of the color distribution, we can see that Zhongxinhe Road is still the obvious
dividing line in the images (with a dark orange color in the upper area), and that the maximum
subsidence was 124 mm (on 27 November 2015). The deformation was significantly weaker in the
bottom part (generally blue-green), with a maximum subsidence of only 48 mm. It can also be seen,
from the temporal color variation in Figure 9, that the deformation was rapid subsidence from the
initial time to May 2015, with the subsidence velocity decreasing slowly. However, from June 2015,
the deformation showed a relatively stable performance, and even a slight uplift.
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Figure 9. Time-series deformation over the tested area (with reference to 17 June 2014).
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5. Discussions

5.1. Potential Reasons for the Deformation

According to the above analysis, the spatial characteristics of subsidence were related to the
following:

(1). The magnitude of the obtained elastic modulus and viscosity parameters reflect the aforementioned
deformation characteristics. It can be obviously seen, from Figures 8 and 9, that the bottom area
was under a relatively stable deformation, with higher elastic modulus and viscosity values.
Under the condition of unidirectional stress, the elastic modulus equals the stress divided by
the strain along the direction [37]. As Equation (4) shows, deformation can be understood as a
temporal integration of strain. Therefore, when the external load is constant, the stress can be
considered a constant, and the higher the elastic modulus is, the lower the deformation performs.
The physical parameter viscosity (also known as the viscosity coefficient) is a measure to describe
the viscosity of a fluid, which is a demonstration of the fluid flow dynamics for its internal friction
phenomenon [38]. Higher viscosity reflects greater friction in fluid. In this paper, viscosity is
treated as the parameter that reflects the internal friction property of soil mass and its ability
to resist deformation. The higher the value of the viscosity, the greater the friction resistance
between the soil mass is and, thus, less strain and deformation. This is the key reason why the
areas with low deformation showed a higher magnitude of elastic modulus and viscosity.

(2). As described in Section 4.1, with densely distributed ponds around the upper stretch of the
highway, mucky clay and silt dominated the geological content of the clay, and the soft soil layer
of the upper segment was relatively thicker (with a thickness of 12.93–19.50 m). In addition,
the water system around this stretch was well-developed and, thus, the ground subsidence was
more obvious. In contrast, the areas below Zhongxinhe Road in the image were mainly urban
districts, where the silt content in the soil of the road foundation was lower, with mealy sand
and silty clay as the dominant geotechnical content. Furthermore, compared to the upper stretch
of the highway, the average thickness of the soft soil layer was only 3.57–7.62 m, with a lower
water discharge flow under the surface and an advanced drainage system in the urban areas.
As a result, the settlement was much weaker.

5.2. Temporal Deformation Characteristics over Feature Points

In order to further investigate the temporal variation characteristics of deformation, two feature
points (CT1 and CT2) were selected for analysis (the locations are shown in the first image of Figure 9),
with comparison to the results obtained through the pure linear model (see Figure 10). CT1 was
located in the bottom area of the image, where the subsidence was quite obvious (with an accumulated
subsidence up to 185 mm), whereas the maximum subsidence in the linear velocity model was only
47 mm. The deformation difference between the two models was mainly due to the large rheological
component of the deformation obtained at point CT1. According to the estimation of Equation (8), the
linear component at CT1 only accounted for 24% of the total deformation; in contrast, the rheological
component accounted for 71%, and the residual deformation isolated from the residual phase accounted
for 5%. As shown in the results of the pure linear velocity model, the linear deformation component
accounted for 84% of the total deformation, and the non-linear part of the residual phase accounted
for 16%. This indicates that a majority of the non-linear deformation may not be reflected in the
residual phase of the linear velocity model when a substantial real non-linear deformation has occurred.
Therefore, the obtained non-linear deformation result, isolated from the residual phase of the linear
model, may have a large deviation from the real value; thus, it shows a significant difference from
the rheological model. As shown in Figure 10, the overall deformation sequences obtained by the
rheological model displayed an obvious non-linear trend, whereas temporally continuous linear
subsidence characteristics were displayed by the linear model. As shown in Figure 9, CT2 was located
in the bottom, relatively stable area, and the corresponding time-series deformation obtained through
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both models are shown in Figure 10b. Due to the relatively low residual phase component in the linear
model and the low rheological deformation component estimated in the rheological model, the results
for the two models at CT2 were consistent during the period of June 2014 to August 2015, with a
maximum difference of only 7 mm, and a maximum subsidence of 32 mm for the rheological model.

Figure 10. Time-series results on two feature points: (a) CT1 and (b) CT2 (with reference to 2014/6/17).

It can also be seen, from Figure 10b, that the rheological model results showed a slow subsidence
recovery from August 2015, with a magnitude of 14 mm at CT1 and 15 mm at CT2. The reasons for
this are proposed to be related to the following:

(1). Soft clay has the property of mellow soil, large natural water content, and high compressibility.
During the period of June 2014 to June 2015, under the conditions of constant external load,
the void between the soil mass was being compressed and the inner water was being released;
thus, the deformation during this period was characterized as obvious subsidence with a
decreasing velocity.

(2). Second, as discussed in Section 4.2, a stretch in the middle of the test highway was still undergoing
road surfacing from June 2014 to November 2014, and compaction of the soft soil layer in the
middle section may have accelerated the subsidence phenomena in nearby stretches.

(3). With the passage of time, when the natural compression of the soil reaches its limit and the
porosity ratio drops to the minimum, the deformation caused by the early external load and
extravasation of the inner water in the soft soil ceases. Consequently, the subsequent deformation
was mainly affected by external environmental factors. According to precipitation data provided
by the Fuoshan Meteorological Bureau, the annual precipitation in 2015 was 2055.2 mm, 20%
higher than previous years. The spatial and temporal distributions of annual precipitation were
extremely asymmetric, being three or four times higher in October and December. Extreme
weather events, such as thunderstorms, wind, hail, and tornadoes occurred frequently, and
disasters induced by rainstorms and typhoons were obvious. Under the combined influence of
high trough and low vortex, continuous precipitation had occurred in the city from 27 August
2015. The average rainfall amount was 127.3 mm in Fuoshan city, with 100–250 mm recorded at
65% of the automatic stations, and 250 mm at Shunde automatic station [39]. Due to the increase
of rainfall, both water content and discharge in the water system correspondingly increased.
With accelerated flow speed, perched ground water in the upper layer of the subgrade increased
due to the impact of rainfall and the supply from the surrounding water system. This is the key
reason we suppose as the cause of the subsidence recovery that occurred from August 2015.
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5.3. Comparative Analysis with other Non-Linear Time-Series Models

We also conducted an experiment based on a polynomial model to generate the time-series
deformation over this route, according to [25]. The temporal displacement over the two feature
points are shown in Figure 11 (we only showed the LP-deformation component). As Figure 11 shows,
we can see that in the early stage (the period from June 2014 to February 2015) the temporal variation
characteristic was a stable deformation velocity, whereas an obvious significant increase in deformation
velocity was present in the later stage (the period from March 2015 to November 2015). As discussed
above, the subsidence velocity should more reasonably follow a temporally gradual decrease for soft
clay, which indicates that the polynomial model is not suitable here. Additionally, the accumulated
displacements over both points were close to 300 mm over the test period, which exceeds the critical
permissible maximum subsidence for a highway area (according to the design materials for the test
road, the permissible subsidence is 20 cm). Our suggested reason for this incorrect result is related
to the polynomial model itself. A polynomial model is a certain mathematical empirical modeling
function with the significant advantage of spatial approximation. However, when the real temporal
displacement variation does not follow the characteristics of a polynomial function, the estimated
deformation results may be incorrect. Similar unexpected results may occur in other, similar time-series
models (e.g., the logistic and hyperbolic models).

Figure 11. Low pass (LP)-deformation of the two feature points, derived from a polynomial model:
(a) CT1 and (b) CT2 (with reference to 17 June 2014).

5.4. Accuracy Evaluation

According to [25], the fitting accuracy of a deformation model can be reflected by the
HP-deformation component. The smaller the HP-deformation is, the higher the accuracy of the
selected model. The HP-deformation of each interferogram obtained through the rheological model
was compared with that of the linear velocity model. Figure 12 shows a comparison of the average
residual deformation over all high coherence points for each interferogram. It can be seen from the
figure that all deformation was within 8 mm, where the deformation in the 2nd, 4th, 12th, and 18th
interferograms was obviously higher, indicating that the residual phases of these images were large.
For those images, the HP-deformation of the rheological model was obviously smaller than that of the
linear model. For the rheological model, the variance of HP-deformation over all the interferograms
was 1.6 mm, whereas that of the linear model was 2.4 mm, indicating an accuracy increase of 33% in
the rheological model.
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Figure 12. RMS of residual deformation of a 25-interferogram comparison for two models.

In addition, ground measurements of two leveling points in the test area were collected
(the locations of the leveling points are shown in Figure 3a, close to Anlite Bridge). The temporal
span of leveling measurement was from June 2014 to February 2015. In order to carry out an accurate
comparison, we transferred the generated Line of Sight (LOS) deformation into vertical displacement
according to the equation SLOS = Svcos θ, and extracted the eight dates of the measurement data
that coincided temporally with our SAR acquisition dates. The total reference point of leveling and
all the SBAS processing methods were the same pixel, which was selected according to our in situ
investigation and registered deformation material collection. The comparison results are shown in
Figure 13, where the blue solid squares represent deformation results obtained by the rheological
model, and the purple solid triangles illustrate the linear model results. It can be clearly seen in
Figure 13 that the rheological model results were closer to the leveling results. Table 3 shows the
quantitative comparison results of the root mean square error (RMSE) on the benchmarks. According
to our calculation, the RMSE of linear model was ±10.7 mm, while the rheological model was ±5.0 mm,
with an improvement of about 53%.

Figure 13. Time-series deformation results compared with leveling measurements on benchmarks:
(a) BMK 4 in Figure 3a, and (b) BMK 5.

Table 3. RMSE comparison on benchmarks (mm).

BMK4 BMK5 RMSE

Linear velocity model ±10.3 ±11.0 ±10.7
Rheological model ±3.4 ±6.5 ±5.0
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6. Conclusions

In this paper, a time-series deformation model considering rheological parameters was proposed,
and the rheological parameters of elastic modulus and viscosity were introduced into a traditional
empirical functional model. Based on the functional relationship between strain and time in the
Kelvin rheological model, the function between LOS deformation and rheological parameters was
established and the original linear deformation model was improved. The genetic algorithm method
was used to solve for the initial values of the model parameters, and the simplex method was used
for subsequent optimization. In order to verify the feasibility and reliability of the model and the
parameter estimation algorithm, a simulated experiment was designed to obtain the RMSE of four
unknown parameters in the model (viscosity, elasticity modulus, linear velocity, and height correction).
In the real data experiment, a stretch of highway in Fuoshan, Guangdong province was selected as
the test area. The SBAS algorithm was used to process 16 TerraSAR X high-resolution images. Four
unknown parameters of the measured area were estimated, and the time-series deformation results of
the measured area were inverted eventually. Through an analysis of the results, we found that the
higher the elastic modulus and viscosity were, the lower the deformation was. It can also be concluded
that the overall temporal characteristics of the time-series deformation showed a non-linear trend of
variation, with a gradual decrease of subsidence velocity in the early stage and a small recovery in
the later stage. In order to verify the reliability of the results, the HP-deformation component of the
interferogram was analyzed. Compared with the pure linear velocity model, the HP-deformation
component of the rheological model was reduced by 34%, indicating that the modeling effect was
effectively improved after adding the non-linear rheological component into the model. The external
accuracy was evaluated by ground-level measurements, with an RMSE of ±5.0 mm for the proposed
model, an improvement of 53% compared with the pure linear velocity model.

In our processing, it was very time consuming to carry out a point-wise genetic search algorithm,
so the parameter results for the whole area of Lungui Road and its surroundings were not obtained.
Our future study will be focused on the parameter estimation algorithm, in order to improve efficiency
and accuracy.
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Abstract: In conventional synthetic aperture radar (SAR) working modes, targets are assumed
isotropic because the viewing angle is small. However, most man-made targets are anisotropic.
Therefore, anisotropy should be considered when the viewing angle is large. From another
perspective, anisotropy is also a useful feature. Circular SAR (CSAR) can detect the scattering
variation under different azimuthal look angles by a 360-degree observation. Different targets usually
have varying degrees of anisotropy, which aids in target discrimination. However, there is no
effective method to quantify the degree of anisotropy. In this paper, aspect entropy is presented as
a descriptor of the scattering anisotropy. The range of aspect entropy is from 0 to 1, which corresponds
to anisotropic to isotropic. First, the method proposed extracts aspect entropy at the pixel level.
Since the aspect entropy of pixels can discriminate isotropic and anisotropic scattering, the method
prescreens the target from the isotropic clutters. Next, the method extracts aspect entropy at the
target level. The aspect entropy of targets can discriminate between different types of targets. Then,
the effect of noise on aspect entropy extraction is analyzed and a denoising method is proposed.
The Gotcha public release dataset, an X-band circular SAR data, is used to validate the method and
the discrimination capability of aspect entropy.

Keywords: CSAR; anisotropy; aspect entropy; discrimination

1. Introduction

Synthetic aperture radar (SAR) is a high-resolution imaging radar that works all-weather and
all-day [1]. SAR is widely used in military and civil fields because it assists in target analysis [2–4].
Scattering of a target is aspect-dependent. Therefore, targets are divided into two categories according to
their scattering characteristic across azimuth: isotropic targets and anisotropic targets. In conventional
SAR working modes, such as strip-map mode and spotlight mode, targets are assumed isotropic because
the view angle is small. However, scattering variation cannot be ignored in some new SAR working
modes. For example, circular SAR (CSAR) has a circular trajectory in order to observe the target at
360 degrees [5–7]. The aperture is so long that scattering differences in azimuth must be considered.
The anisotropic scattering behavior is also a useful feature that can be obtained via CSAR. It can be used
for target discrimination as man-made targets are usually anisotropic, while natural targets are usually
isotropic. Additionally, different types of targets usually have varying degrees of anisotropy.

Because anisotropic behavior has many uses, it has been widely studied in recent years [8–10].
Most of the studies are based on a polarimetric SAR system. Ferro-Famil et al. analyze the responses
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of anisotropic targets under different azimuth look angles [11,12]. Some researchers use polarimetric
CSAR to obtain complete scattering information of targets. Xue et al. use polarimetric scattering
entropy to analyze the anisotropic scattering [13]. Li et al. propose an anisotropic scattering detection
method to characterize targets [14]. However, these methods all require the use of full-polarization data.
In addition to the polarization characteristic, the scattering intensity is also aspect-dependent. Therefore,
we can obtain the scattering behavior by using single-polarization CSAR data. Stojanovic et al. use the
sub-aperture method to extract the curve of the radar cross section (RCS) amplitude of pixels versus
aspect angles using single-polarization CSAR data [15]. The curve intuitively shows whether a target is
anisotropic or isotropic. However, the curve is a high-dimensional feature that is not easy to use and the
degree of anisotropy cannot be quantified by the curve.

In this paper, we define aspect entropy as a descriptor of scattering anisotropy. Aspect entropy
ranges from 0 to 1, which corresponds to anisotropic to isotropic. Our simulation results show the
effectiveness of aspect entropy in quantifying the degree of anisotropy. As a result, we propose the
extraction method of aspect entropy using real CSAR data. First, we propose the aspect entropy
extraction method at the pixel level based on the sub-aperture method. Using the result of pixel-wise
aspect entropy extraction, anisotropic pixels that belong to targets can be discriminated from isotropic
clutters by thresholding. Next, we propose the aspect entropy extraction method at the target level.
Thus, aspect entropy of targets can be extracted. The result can be used to analyze the scattering
anisotropy of different targets and it has the capability of discrimination. During the aspect entropy
extraction by using the real data, the RCS curve will have noise. Therefore, the effect of noise on aspect
entropy extraction is studied. The simulation result shows that the aspect entropy is more accurate in
high signal-to-noise ratio. Only high scatterings in the RCS curve is important on anisotropic target
discrimination. Therefore, we proposed a RCS curve denoising method and it is shown effective by
the simulation.

The Gotcha public release dataset is used to verify our aspect entropy extraction methods at
the pixel and target levels. The result shows that the aspect entropy of pixels and targets can be
extracted from CSAR data. Aspect entropy of pixels can be used to discriminate between isotropic and
anisotropic scattering. The proposed RCS curve denoising method can remove the noise from the RCS
curve extracted from the real data. It makes the result of aspect entropy extraction more accurate. Since
the aspect entropy of different types of targets falls into different ranges, targets can be discriminated
from each other by the aspect entropy value.

2. Concept of Aspect Entropy

Because the scattering of a target is aspect dependent, CSAR is helpful in detecting the anisotropic
scattering behavior of a target. Radar cross section (RCS) is a measure representing the scattering ability
of the incident electromagnetic wave [16]. RCS is related to the physical characteristics of the target
and the parameters of the electromagnetic wave. Therefore, if the curve of the RCS amplitude versus
the aspect angle (hereafter referred to as RCS curve) is known, we can see the scattering behavior of
the target and judge whether a target is isotropic or anisotropic.

We can simulate the RCS curve for the selected shapes. The simulation is conducted at 10 GHz
using vertical polarization with a 45◦ look-down angle. Four canonical shapes of the same size
were used: a square plate dihedral set horizontally (named dihedral A), a square plate dihedral
set vertically (named dihedral B), a triangular trihedral and a top-hat. The size is approximately
10 times longer than wavelength. They are all made of both perfect electric conductor and perfect
magnetic conductor. The simulation is aimed at showing the ideal scattering mechanisms of these
shapes. Therefore, these models are placed in the free space, whose relative permittivity is 1 and
dielectric loss tangent is 0. The condition of the simulation is a more ideal than an anechoic chamber
experiment. Figure 1 shows the models of the four canonical shapes. The results of the simulation
are shown in Figure 2. The results show that the curve of the top-hat is smooth because it is isotropic.
Since the dihedral and trihedral are both anisotropic, the high scatterings are concentrated in a limited
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range. However, we can discriminate between them by the degree of anisotropy, suggesting that
different targets usually have different degrees of anisotropy. The scattering mechanism of dihedral A
is very different from the trihedral. The scattering mechanism of dihedral B and trihedral are close
but still discrepant. Targets can be discriminated if we find a method to quantify the anisotropy by a
calculation. The calculation should be concerned with the scattering mechanism from different angles
of view and not the RCS amplitude.

p

 
  

 

(a)  (b) (c) (d) 

Figure 1. Models of canonical shapes. (a) Dihedral A. (b) Dihedral B. (c) Trihedral. (d) Top-hat.

Figure 2. Radar cross section (RCS) curves of canonical shapes.

Early physicists defined entropy as a measure of disorder. Entropy was introduced later in many
other fields according to its application in physics. Shannon presented information entropy to describe the
uncertainty of the information source [17]. Electromagnetism is the concept of polarization entropy, which
quantifies the disorder of scattering [18]. Polarization entropy ranges from 0 to 1, which corresponds to
zero scattering to perfect depolarizing. It is widely used in SAR image analysis [19,20]. The scattering in
different aspect angles is similar to the scattering in different polarization types. Therefore, we present
aspect entropy as a descriptor of scattering anisotropy. We can obtain the RCS amplitudes R(k) follow
the angle θ(k) from curves as shown in Figure 2, where k = 1, 2, · · · , n. The pseudo-probability P(k) of
scattering in θ(k) can be calculated by

P(k) =
R(k)

∑n
k=1 R(k)

. (1)

Then, aspect entropy is defined as

Ha = −
n

∑
k=1

P(k) logn P(k). (2)
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Ha ranges from 0 to 1. As shown in equation (2), Ha is normalized by the sum of P(k) and is not
concerned with RCS amplitude. Aspect entropy is inversely proportional to the pseudo-probability
P(k). If the scattering is strong in some angles, the aspect entropy will be lower. Consequently,
the aspect entropy of an anisotropic target is lower because the scattering of an anisotropic target
at certain angles is much stronger than at other angles. The aspect entropy for an isotropic target is
higher because the scattering is stable in all azimuth angles. We calculate the aspect entropy of the four
models mentioned above and the results are listed in Table 1. The results show that aspect entropy
can indicate the anisotropy diversity of the four shapes, and therefore can be used as a descriptor of
anisotropy. The aspect entropy value of dihedral A and the top-hat have a large difference between
these shapes. The scattering mechanisms of dihedral B and the trihedral are similar. It seems that the
values are closed but the difference is big enough to discriminate them. The aspect entropy can still
discriminate these two kinds of shapes by using the real data and the result is shown in Section 4.

Table 1. The aspect entropy of canonical shapes.

Shape Aspect Entropy

Dihedral A 0.3823
Dihedral B 0.7131
Trihedral 0.7625
Top-hat 0.9999

3. Aspect Entropy Extraction

In this section, aspect entropy extraction methods at the pixel level and the target level are
proposed respectively. Since the smallest unit of a CSAR image is a pixel, it is convenient to obtain
the RCS curve of a pixel by using the sub-aperture method. Extracting the aspect entropy from pixels
can help us analyze the scattering characteristics for the structure of a target and offer an overview
of full-scene anisotropy. At the application level, targets are usually the object of analysis. Therefore,
we propose the aspect entropy extraction method at the target level based on the aspect entropy of
the pixels. The RCS curve of the target must be defined to calculate the aspect entropy. Targets of
the same type are supposed to have similar aspect entropy, while the aspect entropy of different
types of targets are diverse. Thus, targets can be discriminated from each other by using the aspect
entropy value.

In addition, we study the effects of noise on aspect entropy extraction. Aspect entropy is more
accurate in a high signal-to-noise ratio (SNR). Only high scatterings are interested in the RCS curve of
the anisotropic target. Therefore, we can remove the noise out of the RCS curve. Then we propose
a denoising method for the RCS curve. The result of simulations shows that aspect entropy is more
accurate after denoising.

3.1. Aspect Entropy Extraction Method at the Pixel Level

In the SAR image, a pixel is the smallest unit, so it is reasonable to analyze the scattering anisotropy
at the pixel level. The aspect entropy of pixels can be extracted by the method described below.
A flowchart of the process is shown in Figure 3. First, the full-aperture is divided into sub-apertures.
Second, the coherent complex image of each sub-aperture is obtained. Third, the absolute value of each
pixel as the RCS amplitude is used to obtain the RCS curve of each pixel. Finally, the aspect entropy of
each pixel is calculated. Details of the procedure are explained in the text below.

The first and second step establish the process for the sub-aperture method. The full-aperture is
divided into k(k = 1, 2, · · · , n.) sub-apertures with the same width θw. There is a trade-off when we
choose the width θw. The width must be large enough to obtain a high azimuth resolution. However,
if the width is too large, the RCS amplitude will be inaccurate because the sub-aperture method uses
the mean value of RCS amplitudes in θw as the RCS amplitude in the central angle θ(k). The coherent
complex image of each sub-aperture is obtained by using the back projection (BP) algorithm [21,22].
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When using the BP algorithm, the pixel size should be small enough to ensure that the scattering
characteristic of each pixel is accurate. If the pixel size is too small, it will cause a substantial amount
of computation. The pixel size can be set according to the theoretical resolution of the system. Then,
we obtain the RCS curve through the 360◦ observation of each pixel. The coherent complex image
In(i, j) of each sub-aperture is the imaging result by using the BP algorithm. For each sub-aperture,
the absolute pixel value of pixel (i, j) is used as the RCS amplitude Rij(k) in angle θ(k). For each pixel
(i, j), the pseudo-probability Pij(k) of scattering in θ(k) can be obtained by Equation (1). The aspect
entropy Ha(i, j) of each pixel (i, j) can be calculated by Equation (2).

Figure 3. Flowchart of aspect entropy extraction at the pixel level.

3.2. Aspect Entropy Extraction Method at the Target Level

Target discrimination and classification are important applications of SAR. The capability of
aspect entropy on target discrimination is shown in Section 2. The aspect entropy of the target must be
extracted to enable it to have a broader range of application. Usually, targets of interest are anisotropic
because they contain many dihedral and trihedral structures. Natural clutters and man-made clutters
such as lawns, trees, and roads are usually isotropic. Therefore, pixels from these clutters have a lower
aspect entropy while pixels from the targets have a higher aspect entropy. Anisotropic pixels can be
discriminated from isotropic pixels according to the aspect entropy value. We analyzed the scattering
anisotropy of the targets by using the anisotropy of the pixels. To accomplish this, we propose the
extraction method of aspect entropy at the target level. The process contains four steps and is described
in Figure 4. First, the images of targets are extracted and the aspect entropy of the pixels is obtained.
Second, the binary image is obtained by thresholding. Third, the RCS curves of the targets are obtained.
Finally, the aspect entropy of each target is calculated.

The constant false-alarm rate (CFAR) or generalized likelihood ratio test (GLRT) [23,24] methods
can be used to extract the targets from the image. For our purposes, the image of the target is extracted
manually in this paper. The aspect entropy can be obtained using the same method described in
subsection A. After thresholding according to the aspect entropy value, we can obtain a binary image.
The value 1 represents anisotropic pixels, and 0 represents isotropic pixels. In the Circular SAR image,
the pixel size is much smaller than the target size. A whole target or a structure of a target consists of
many pixels. In the binary image, the targets consist of anisotropic pixels. Different types of targets
are expected to have different aspect entropy. Therefore, we can analyze the scattering anisotropy of
different types of targets using aspect entropy. Aspect entropy is calculated using the RCS curve as
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mentioned above. In subsection A, the RCS curve is associated with the pixel. Therefore, it is necessary
to obtain the RCS curve of the target. If a target contains N anisotropic pixels after discrimination and
the RCS curves of the pixels are Rm(k) respectively, where m = 1, 2, · · · , N, we define the RCS curve
of the target as

R(k) =
N

∑
m=1

Rm(k). (3)

Figure 4. Flowchart of aspect entropy extraction at the target level.

Scattering of the target at a certain angle is accomplished by the scattering of each pixel at this angle.
Thus, the RCS curve of a target can be obtained by accumulation. This is equivalent to using a single
pixel to represent the whole target. Next, we can calculate the aspect entropy of the target using (1)
and (2). The aspect entropy is now applicable to the scattering anisotropy analysis at the target level.

3.3. Denoising of the RCS curve

When we extract the RCS curve by using the real data, the amplitudes are not 0 in angles which
do not scatter the waves. These RCS amplitudes are regarded as noise in the RCS curves of targets.
The noise mainly comes from the side lobes of clutters. During the coherent imaging process of a CSAR
image, the value of a pixel from the image is actually affected by the side lobes of pixels around it.
For example, a target pixel scatters the wave around θ and some clutters around this pixel scatter
the wave in other angles. The RCS amplitude of this pixel is combined with its main lobe and the
side lobes of the clutters. Consequently, isotropic targets are not influenced by the noise and clutters
because these are isotropic too. While for an anisotropic target, the RCS amplitudes in other angles are
not 0 in the RCS curve extracted by our method. The aspect entropy will become higher and inaccurate.
Therefore, we have to denoise for the RCS curve of the anisotropic target.

Here, we define the SNR of the RCS curve as the ratio between the maximum power of the
target and the power of the noise. To study the effect of the noise on the result of aspect entropy,
we use the models mentioned in Section 2. Varying levels of noise are added into the RCS curve
for the three anisotropic models: dihedral A, dihedral B, and the trihedral. The SNR ranges from
10 dB to 40 dB. As shown in Figure 5a, we choose SNR = 20 dB to illustrate the result of adding noise
to the RCS curve. The percentage error for aspect entropy calculation in different SNR is shown in
Figure 5b. For a certain anisotropic target, the higher the SNR is, the less the error is. With the same
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SNR, the percentage error is greater for targets that have higher degree of anisotropy. When we judge
whether a target is anisotropic or not, we only interested in whether there are any high scatterings in
some angles. Therefore, for anisotropic targets, the noise in other angles can be removed from the RCS
curve. The easiest way to wipe out the noise is by setting a proper threshold value and eliminating as
much noise as possible. The threshold value cannot be set directly. If we simply reset the amplitudes
under a value to 0, lower scatterings belonging to targets would be removed too. Although these low
scatterings are not the main lobe, they reflect the scattering characteristics of the target. Therefore,
they should be protected during the denoising. The threshold value should be as close as possible to
the ceiling of the noise.

(a)  (b)

Figure 5. (a) RCS curves with noise (SNR = 20 dB). (b) Percentage error for aspect entropy calculation
in different SNR.

We proposed a denoising method for the RCS curve and Figure 6 is the diagram of the whole
procedure. The RCS curve of dihedral B with SNR = 20 dB is used as an example. To estimate the noise
level of the RCS curve, the high scatterings should be removed. The energy concentration parameter W
is defined as an approximation for the target high scattering persistence angle by Zhao et al. [25]. It is
calculated by

W =

n
∑

k=1
R(k)

R(k)max
. (4)

First, calculate the energy concentration parameter of the RCS curve and round it up to an integer W.
Sort the RCS amplitudes in descending order and remove the top W amplitudes. Figure 6a shows
the result of sorting and the red line represents W = 67. Second, calculate the mean value μ and the
standard deviation σ for all remaining amplitudes, which are the noise. The red line shown in Figure 6b
is μ = 0.0954. Third, reset the RCS amplitudes under T = μ + 2σ to 0. Here, we use double the standard
deviation σ to ensure that the threshold value is higher than most of the noise. The red line shown in
Figure 6c represents T = μ + 2σ = 0.1362. The result of RCS curve denoising is shown in Figure 6d.

Figure 7 shows the comparison of the percentage error for aspect entropy calculation in different
SNR between with and without denoising. It can be found that the denoising method significantly
improved the accuracy of aspect entropy in low SNR. With the increase of the SNR, the percentage
error after denoising has a small rebound, especially for the dihedral A. This is because the threshold
value we set is higher than the ceiling of the noise to ensure that as much noise as possible can be
removed. The level of the noise is very low when the SNR is high, so the threshold value can be higher
than the low scatterings of the target. Therefore, the aspect entropy will be lower than the truth value.
Although there is a rebound, the percentage error is still lower than it without denoising when the
SNR is high. The simulation result shows that our denoising method is effective.
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(a) (b) 

  
(c) (d) 

Figure 6. Diagram of the denoising procedure. (a) The result of sorting the RCS amplitudes into
descending order and calculation of the energy concentration. (b) The result of mean value calculation
for the noise. (c) The result of threshold value calculation. (d) The result of RCS curve denoising.

Figure 7. Comparison of the percentage error for aspect entropy calculation.

4. Experiment Results and Analysis

The Gotcha public release dataset was used to illustrate our method. Gotcha data consists of
SAR phase history data collected at X-band with a 640 MHz bandwidth with full 360-degree azimuth
coverage and full polarization [26]. There are many targets of interest in the imaging scene, including
civilian vehicles, a top-hat, trihedrals, and dihedrals.
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4.1. Aspect Entropy Extraction at the Pixel Level

Our method uses only one polarization, and thus we select one pass and its’ HH polarization
from the Gotcha data. Figure 8 is the coherent complex image of the full scene obtained by using the
BP algorithm, and the pixel size is 0.025 m.

 

Figure 8. Coherent complex image of the full scene.

When using the sub-aperture method to obtain the RCS curves, we found that using 360
sub-apertures offered a good compromise between the azimuth resolution and the preciseness of the
RCS amplitude. As shown in Figure 8, three pixels were selected to show the result of the RCS curve
extraction. Pixel A represents a pixel from the lawn. Pixel B represents a pixel from the frame of the
vehicle. Pixel C represents a pixel from the edge of the top-hat. Figure 9 shows the optical images
of the three targets. Figure 10 shows the RCS curves of the three pixels. Pixel A from the lawn is
shown as isotropic scattering. Pixel B and pixel C are anisotropic because both are man-made metal
structures. After obtaining the RCS curves of the pixels, the aspect entropy can be calculated. Figure 11
is the aspect entropy image of the full scene. The color bar indicates that darker colors denote a lower
aspect entropy which means the pixels are more anisotropic, while the lighter color denotes a higher
entropy and more isotropic. The result is as we expected. Pixels from vehicles and calibration targets
show up as a dark color because they scatter the wave near a certain angle, which leads to a lower
aspect entropy. Pixels from the lawn and roads show up in light color because they scatter the wave
in all azimuth angles with similar intensity. Therefore, the aspect entropy can quantify the scattering
anisotropy of pixels. Anisotropic scattering and isotropic scattering can be discriminated from each
other in the aspect entropy image.

(a) (b) (c)

Figure 9. Optical images of three pixels. (a) Pixel A of the lawn. (b) Pixel B of a vehicle. (c) Pixel C of
the top-hat.
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Figure 10. RCS curves of three pixels.

 
Figure 11. Aspect entropy image of the full scene.

4.2. Aspect Entropy Extraction at the Target Level

We choose a dihedral, a trihedral, a vehicle, and a top-hat from the scene as examples to illustrate
the procedure of target aspect entropy extraction. Figure 12 shows the aspect entropy images of
the four targets. The results indicate that 0.91 is a suitable threshold value. Figure 13 shows the
binary images of the four targets. According to Figure 13, anisotropic pixels from the targets can be
segmented from isotropic clutters by thresholding. RCS curves of the four targets are obtained by
using Equation (3), and the result is shown in Figure 14a. The RCS curves of the dihedral, trihedral,
and the top-hat are similar to the result of the simulation discussed in Section 2. In addition, we can
judge that the dihedral used in Gotcha experiment is set vertically because the RCS curve of it is the
same as the curve of dihedral B in the simulation. The RCS curve of the vehicle is as expected. The four
sides of the vehicle cause substantial scattering in four directions and barely any scattering in other
directions. Unlike the RCS curves obtained by the simulation in Section 2, these RCS curves have the
noise. Therefore, we use the method mentioned above to denoise the RCS curve. The parameters are
T1 = 0.3, k = 2. Figure 14b shows the RCS curves after denoising. It can be seen that most of the noise
can be moved out and high scatterings are preserved well. The results show that our proposed aspect
entropy extraction method can obtain the RCS curve of the target and extract the aspect entropy of the
target. Our proposed RCS curve denoising method can preserve the useful information and obtain
a good denoising effect.
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(a) (b) (c) (d) 

Figure 12. Aspect entropy images of targets. (a) Dihedral. (b) Trihedral. (c) Vehicle. (d) Top-hat.

    
(a) (b) (c) (d) 

Figure 13. Binary images of the targets. (a) Dihedral. (b) Trihedral. (c) Vehicle. (d) Top-hat.

(a)  (b)

Figure 14. (a) RCS curves of the four targets. (b) RCS curves of the four targets after denoising.

After obtaining the RCS curves of the targets, aspect entropy can be calculated using Equations (1)
and (2). The full scene had a limited number of trihedrals and dihedrals that imaged clearly. To analyze
the scattering anisotropy of the targets, six vehicles, six trihedrals, three dihedrals, and a top-hat were
selected manually, and their aspect entropies were calculated. The locations and aspect entropy with
and without denoising of the targets are listed in Table 2. The lower aspect entropy value represents the
scattering of a target is more concentrated. Targets of the same type have similar aspect entropy values
because they have the same scattering mechanism. The aspect entropy of dihedrals and trihedrals
extracted from the real data without denoising is close to 1, which is much higher than the simulation
results in Section 2. The aspect entropy after denoising is closer to the result of simulation and it
has a greater ability of discrimination and clustering. The aspect entropy of targets of the same type
is concentrated in a limited range. The aspect entropy of vehicles is in the range [0.5567, 0.6418].
The aspect entropy of trihedrals is in the range [0.7878, 0.7918]. The aspect entropy of dihedrals is
in the range [0.6805, 0.7019]. The aspect entropy of the top-hat is 0.9927. In Figure 15, it is clear that
vehicles, dihedrals, trihedrals, and the top-hat are clustered in different ranges. The ranges of different
types are not coincident. The aspect entropy values of dihedral B and the trihedral are close in the
simulation result so it is unclear whether the aspect entropy value can discriminate these two kinds
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of shapes in the real experiment. We set all the dihedrals as dihedral B in the Gotcha experiment.
As can be seen in Figures 2 and 14, the RCS curves of these two kinds of shapes are similar in both the
simulation and the real experiment. The true scattering mechanisms of the targets can be restored well
by the RCS curves after denoising. Thus, the aspect entropy values are close to the true value. In the
experimental results, the aspect entropy values of dihedral are around 0.69 and the aspect entropy
values of trihedral is around 0.79. Each kind of target was clustered well. Therefore, aspect entropy can
discriminate between dihedral B and the trihedral despite their scattering mechanisms being similar.
Therefore, different targets can be discriminated from each other according to the value of the aspect
entropy. Beyond that, the RCS curve denoising greatly enhances the discrimination capabilities of
aspect entropy.

Table 2. The aspect entropy of targets.

Target Location
Aspect Entropy
without Denoising

Aspect Entropy
after Denoising

Chevy Malibu (9.97, −5.22) 0.9469 0.5733
Ford Taurus Wag (12.43, −18.21) 0.9468 0.5567
Toyota Camry (20.66, −18.71) 0.9627 0.6118
Nissan Sentra (31.42, −28.87) 0.9460 0.5753
Hyundai SantaFe (22.68, −28.30) 0.9579 0.6024
Chevy Prizm (35.44, −41.72) 0.9536 0.5639
Trihedral 1 (−24.39, 32.96) 0.8916 0.7918
Trihedral 2 (−32.50, 33.41) 0.8887 0.7895
Trihedral 3 (−32.14, 42.54) 0.8883 0.7915
Trihedral 4 (−28.09, 38.67) 0.8868 0.7878
Trihedral 5 (−13.86, 37.70) 0.8885 0.7918
Trihedral 6 (−5.12, 22.98) 0.9001 0.7907
Dihedral 1 (−15.55, 42.96) 0.8583 0.6805
Dihedral 2 (−18.58, 33.53) 0.8587 0.7019
Dihedral 3 (−26.15, 17.50) 0.8735 0.6841
Top-hat (−17.00, 21.00) 0.9927 0.9927

(a)  

(b) 

Figure 15. Visual result of discrimination. (a) Without denoising. (b) After denoising.

The aspect entropy of the targets is affected by the frequency and polarization of the microwave.
The aspect entropy of the targets is also significantly affected by the posture and size. Thus, the experimental
results prove the capability of target discrimination in this X-band CSAR data and scene.
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5. Conclusions

Scattering anisotropy analysis is important and useful in the field of SAR. Previous studies have
mostly used polarimetric SAR data. In this paper, we use the CSAR data to analyze anisotropic
scattering behavior across the azimuth. Aspect entropy is presented as a descriptor of scattering
anisotropy, ranging from 0 to 1, which corresponds to anisotropic to isotropic. We verify that the aspect
entropy can be the descriptor of scattering anisotropy by simulation. In addition, the effects of noise
on the aspect entropy result is studied and a RCS curve denoising method is proposed. Aspect entropy
extraction methods at the pixel and target level are respectively proposed using single-polarization
CSAR data. The Gotcha public release dataset is used to illustrate our aspect entropy extraction
methods. The results show that the aspect entropy of the pixel and the target can be successfully
extracted by our methods. The value of the aspect entropy helps us to analyze the scattering anisotropy
of the CSAR image. At the pixel level, aspect entropy can discriminate isotropic and anisotropic
scattering. At the target level, it can discriminate different types of targets from each other. Further
research will focus on the practical application of aspect entropy. It can be combined with other
features and used for target detection or classification.
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Abstract: In two-color multiview (2CMV) advanced geospatial information (AGI) products, temporal
changes in synthetic aperture radar (SAR) images acquired at different times are detected, colorized,
and overlaid on an initial image such that new features are represented in cyan, and features that
have disappeared are represented in red. Accurate detection of temporal changes in 2CMV AGI
products can be challenging because of ’speckle noise’ susceptibility and false positives that result
from small orientation differences between objects imaged at different times. Accordingly, 2CMV
products are often dominated by colored pixels when changes are detected via simple pixel-wise
cross-correlation. The state-of-the-art in SAR image processing demonstrates that generating efficient
2CMV products, while accounting for the aforementioned problem cases, has not been well addressed.
We propose a methodology to address the aforementioned two problem cases. Before detecting
temporal changes, speckle and smoothing filters mitigate the effects of speckle noise. To detect
temporal changes, we propose using unsupervised feature learning algorithms in conjunction with
optical flow algorithms that track the motion of objects across time in small regions of interest.
The proposed framework for distinguishing between actual motion and misregistration can lead to
more accurate and meaningful change detection and improve object extraction from an SAR AGI
product.

Keywords: SAR; 2CMV; change detection; optical flow; k-means; K-SVD

1. Introduction

One important use of synthetic aperture radar (SAR) imagery is in detecting changes between
datasets from different imaging passes. Target and coherent change detection in SAR images have
been extensively researched [1–4]. In two-color multiview (2CMV) advanced geospatial information
(AGI) products, the changes are colorized and overlaid on an initial image such that new features are
represented in cyan, and features that have disappeared are represented in red. In order to create the
change maps, images are cross-correlated pixel-by-pixel to detect the changes. 2CMV products show
changes at the pixel level and are often misleadingly dominated with red and cyan colors. Figure 1
shows a portion of a sample 2CMV image. In the sample images, there is an airplane visibly parked
next to a building near the bottom center. It can be seen that many of the pixels in the 2CMV image are
colored either red or cyan even if there is no change in the area.

Useful interpretation of temporal changes represented in 2CMV AGI products can be challenging
because of speckle noise susceptibility and false positives that result from small orientation differences
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between objects imaged at different times. When every small intensity change creates a colored pixel,
it becomes more difficult for operators and/or algorithms to detect meaningful changes and identify
corresponding objects of interest.

Figure 1. (a) reference image; (b) mission image; (c) two-color multiview (2CMV) image. In both
images, there is an airplane visibly parked next to an airport building near the bottom center. In the
second image (b), the airplane seems rotated by a small degree. The sharp edges of the building are
slightly misregistered in the images and these registration errors are false positives in the 2CMV image.

In this work, we introduce a new framework of image processing methods for the efficient
generation of 2CMV products toward extraction of advanced geospatial intelligence. Before false
positive and object detection algorithms are performed, speckle and smoothing filters are used to
mitigate the effects of speckle noise. Then, the number of false positive detections is reduced by
applying: (1) unsupervised feature learning algorithms and (2) optical flow algorithms that track the
motion of objects across time in small regions of interest.

There have been a number of change detection studies using thresholding [5–8], extreme learning
machine [9,10], Markov random fields [11,12] and combinations of feature learning and clustering
algorithms [13–19]. Optical flow fields can be used to distinguish between objects that have actually
moved between frames and those that are in the same location but are slightly misregistered. Both
cases of apparent motion can result in 2CMV detection, but they obviously differ greatly in terms of
meaning. Investigation of the state-of-the-art in SAR image processing indicates that differentiating
between these two general cases is a problem that has not been well addressed. Algorithms that
mitigate speckle noise effects well and distinguishing between actual motion and misregistration can
lead to better change detection. There is a lack of published methods for efficient generation of 2CMV
products from SAR images, which serves as another motivating factor for this work.

The paper is organized in four sections. Following this introduction, Section 2 gives a brief
background on the filtering, unsupervised feature learning, and optical flow techniques that were used
and describes the stages of the proposed framework. Section 3 presents simulation results. Section 4
discusses the results and the contributions of the proposed methods.

2. Materials and Methods

In this section, we describe the key methods and steps of our image processing approach
for generating change maps that drive the 2CMV representation and eliminating false positives
in those maps.

2.1. Speckle Noise Filtering

Speckle noise is an inherent problem in SAR images [20] and causes difficulties for image
interpretation by increasing the mean grey level of a local region. In order to mitigate speckle noise
effects, we tested different speckle filter designs. Filters that were included in the testing were Frost [21],
Enhanced Frost [22], Lee [23], Gamma-MAP [24], SRAD [25] and Non-Local Means [26]. In the end,
Enhanced Frost filter was used in the algorithm due to its relatively straightforward implementation
and comparable performance.
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In [22], it was proposed to divide images into areas of three classes. The first class is comprised
of homogeneous areas. The second class is comprised of heterogeneous areas wherein speckle noise is
to be reduced, while preserving texture. The third class is comprised of areas containing isolated point
targets that filtering should preserve. The Enhanced Frost filter output can be given as:

Î(to) =

⎧⎪⎨⎪⎩
Ī, for Cl(to) < Cu,
IK1 exp [−K(Cl(to)− Cu)/(Cmax − Cl(to))|t|], for Cu ≤ Cl(to) ≤ Cmax,
I for Cl(to) ≥ Cmax,

(1)

where to = (xo, yo) is the spatial coordinate, Ī is the mean intensity value inside the kernel, K is the
filter parameter, K1 is a normalizing constant, and |t| is the absolute value of the pixel distance from
the center of the kernel at to. The rest of the parameters are

Cu =

√
1
L

,

Cl(to) = σ/ Ī, and

Cmax =

√
1 +

2
L

,

where Cu is the speckle coefficient of variation of the image, Cl(to) is the local coefficient of variation
of the filter kernel centered at to, Cmax is the upper speckle coefficient of variation of the image, and L
is the number of looks. In our implementation, instead of L, we used “equivalent number of looks”
(ENL). It can be defined as ENL = μ2/σ2, where μ is the mean and σ is the standard deviation.

2.2. k-Means Clustering

The k-means clustering algorithm attempts to partition p observations into k clusters such that
each observation belongs to the nearest cluster mean (centroid) [27]. The k-means algorithm iteratively
tries to find k centroids for each cluster, while minimizing a within-cluster sum of squares

argmin
k

∑
i=1

∑
xjεS

‖xj − μj‖2,

where xj is the jth observation and μj is the mean point (centroid) in the cluster. The basic steps of the
algorithm are given in Algorithm 1:

Algorithm 1 k-means clustering algorithm

1. Initialize the centroids: Assign k points as the initial group centroids.

2. Calculate the distance of each point to the centroids and assign the point to the cluster that has the closest centroid.

3. After the assignment of all the points, recalculate the new values of the centroids.

4. Repeat Steps 2 and 3 until the centroid locations converge to a fixed value.

2.3. K-SVD

K-SVD is a dictionary learning algorithm that is used for training overcomplete dictionaries for
sparse representations of signals [28,29]. It is an iterative method that is a generalization of the k-means
clustering algorithm. The K-SVD algorithm alternates between two stages: (1) sparse coding stage,
and (2) dictionary update stage. In the first stage, a pursuit algorithm is used to sparsely code the
input data based on the current dictionary. Based on Ref. [29], the Batch Orthogonal Matching Pursuit
(Batch-OMP) algorithm can be used in this step. In the second stage, the dictionary atoms are updated
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to better fit the data via a singular value decomposition (SVD) approach. The basic steps of the K-SVD
algorithm are given in Algorithm 2.

Algorithm 2 K-SVD algorithm
Task: Find the best dictionary to represent the data samples {yi}N

i=1, yiεRN as sparse compositions by solving:

minD,X{‖Y − DX‖2
F} subject to ∀i , ‖xi‖0 ≤ T0.

Initialization: Set the dictionary matrix D(0) ε Rn×K with l2 normalized columns. Set J = 1.

Iterations: Repeat until convergence:

• Sparse coding stage: Use any pursuit algorithm to compute the representation vectors xi for each sample yi by
approximating the solution of

i = 1, 2, ..., N, minxi{‖yi − Dxi‖2
2} subject to ‖xi‖0 ≤ T0.

• Dictionary update stage: For each column k = 1, 2, ..., K in DJ−1,

– Define the group of samples that use this atom, wk = {i |1 ≤ i ≤ N, xk
T(i) �= 0}

– Compute the overall representation error matrix, Ek , by

Ek = Y − ∑
j �=k

djx
j
T

– Restrict Ek by choosing only the columns corresponding to wk , and obtain ER
k .

– Apply SVD decomposition ER
k = UΔVT . Choose the updated dictionary column d̃k to be the first column of U.

Update the coefficient vector xk
R to be the first column of V multiplied by Δ(1, 1).

• Set J = J + 1.

2.4. Optical Flow

Optical flow is the apparent motion of objects in image sequences that results from relative motion
between the objects and the imaging perspective. In one canonical optical flow paper [30], two kinds
of constraints are introduced in order to estimate the optical flow: the smoothness constraint and the
brightness constancy constraint. In this section, we give a brief overview of the optical flow algorithm
we employ in the proposed methodology.

Optical flow methods estimate the motion between two consecutive image frames that were
acquired at times t and t + δt. A flow vector for every pixel is calculated. The vectors represent
approximations of image motion that are based in large part on local spatial derivatives. Since
the flow velocity has two components, two constraints are needed to solve for it. The brightness
constancy constraint assumes that the brightness of a small area in the image remains constant as
the area moves from image to image. Image brightness at the point (x,y) in the image at time t is
denoted here as I(x, y, t). If the point moves by δx and δy in time δt, then, according to the brightness
constancy constraint:

dI
dt

= 0. (2)

This can also be stated as:
I(r + δr, t + δt) = I(r, t), (3)

where r = (x, y, 1)T and r + δr = (x + δx, y + δy, 1)T . However, the brightness constancy constraint
is restrictive. A less restrictive brightness constraint was chosen to address the intensity changes in
SAR images. In Reference [31], it is proposed that the brightness constancy constraint can be replaced
with a more general constraint that allows a linear transformation between the pixel brightness values.
This way, the brightness change can be non-zero, or:

dI
dt

�= 0.

266



Sensors 2019, 19, 2605

The formulation that allows a linear transformation between the pixel brightness values is less
restrictive, and can be written as:

I(r + δr, t + δt) = M(r, t)I(r, t) + C(r, t). (4)

After using the Taylor series, the revised constraint equation can be obtained:

It + Ir · rt − Imt − ct = 0, (5)

where mt = limδt→0
δm
δt and ct = limδt→0

δc
δt .

The relaxed brightness constraint error is:

εI =
∫∫

(It + Ir · rt − Imt − ct)
2 dx dy. (6)

Equation (6) can be combined with the other constraint errors to produce the final functional to
be minimized:

εtotal = εI + λsεs + λmεm + λcεc, (7)

where λs, λm, and λc are error weighting coefficients. The remaining errors are given as:

εs =
∫∫

||∇rt||22dxdy,

εm =
∫∫

||∇mt||22dxdy,

εc =
∫∫

||∇ct||22dxdy.

Substituting the approximated Laplacians into the Euler–Lagrange equations, a single matrix
equation can be derived:

Af = g(f̄), (8)

where

A =

⎛⎜⎜⎜⎝
I2
x + λs Ix Iy −Ix I −Ix

Ix Iy I2
y + λs −Iy I −Iy

−Ix I −Iy I I2 + λm I
−Ix −Iy I 1 + λc

⎞⎟⎟⎟⎠ , f =

⎛⎜⎜⎜⎝
u
v

mt

ct

⎞⎟⎟⎟⎠ , g(f̄) =

⎛⎜⎜⎜⎝
λsū − Ix It

λsv̄ − Iy It

λmm̄t + It I
λcc̄t + It

⎞⎟⎟⎟⎠ .

These equations have to be solved iteratively. The solution is given by:

f = A−1g(f̄), (9)

where

A−1 =
1
α

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

λcλmλs + λmλs+

I2λcλs + I2
y λcλm

−Ix Iyλcλm Ix Iλcλs Ixλmλs

−Ix Iyλcλm
λcλmλs + λmλs+

I2λcλs + I2
y λcλm

Iy Iλcλs Iyλmλs

−Ix Iλcλs Iy Iλcλs
(I2

x + I2
y )λcλs+

λcλ2
s + λ2

s
−Iλ2

s

Ixλmλs Iyλmλs −Iλ2
s

(I2
x + I2

y )λmλs+

λmλ2
s + I2λ2

s

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
and

α = λmλ2
s + I2λcλ2

s + (I2
x + I2

y + λs)λcλmλs.
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The equations can then be solved iteratively for other pixels with:

fk+1 = A−1g(f̄k), (10)

where k is the iteration number. This way the matrix A−1 need only be computed once. More details
about this optical flow algorithm can be found in Ref. [31].

2.5. Image Processing Steps

In this section, we describe the image processing approach for extracting change maps. The inputs
are two registered SAR images of the same field of view that were taken at different times, i.e.,
“reference” image and “mission” image. Due to the large size of the images, images were divided into
subimages for processing.

In the denoising step, an Enhanced Frost filter, as described in Section 2.1, with a 5 × 5 window
size was first used to mitigate the speckle noise effects. Then, a 9 × 9 low pass filter was used to smooth
the test areas in order to obtain more uniform flow fields in the optical flow processing step. The
remaining steps are grouped in three stages and described in the following subsections. The detailed
flow diagram shown in Figure 2 can be used as a guide for the following descriptions.

Figure 2. Flow diagram of the proposed framework.

2.5.1. First Stage: Generation of Change Maps Using Unsupervised Feature Learning

Two change maps are needed for a 2CMV representation of an SAR image pair. Each change
map represents the changes that exist in the corresponding SAR image. In this stage, we generate a
combined change map and separate it into two change maps. In order to generate the combined change
map, we used an approach similar to that was used in [13]. In the original approach, an eigenvector
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space is created by performing principle component analysis (PCA) on the difference image and
k-means algorithm classifies the projections onto the eigenvector space into two classes: e.g., change
and no-change. The basic steps are given in Algorithm 3. It should be noted that, in our framework,
PCA was replaced with K-SVD because one can adjust the dictionary size and the sparsity constraint
to obtain change maps with different levels of details. Figure 3 shows two change map results with
different dictionary sizes.

Algorithm 3 Generating change maps

• Difference Image:
Xdi f = |Re f erence − Mission|

• Training Data: Divide Xdi f into hxh non-overlapping blocks.

• Dictionary Generation: Use the K-SVD algorithm to generate an overcomplete dictionary.

• Create Feature Space:

– Generate hxh blocks for each pixel in Xdi f where the pixel is in the center of the block.

– Use OMP algorithm to generate the projections of the data onto the dictionary.

• Clustering: Use the k-means algorithm to classify the feature space into two classes, e.g. change and no-change.

• Change maps: Use the two classes to generate the combined change map. Divide the combined change map into two
separate change maps based on the changes that occur in the images.

Figure 3. (a) change map with dictionary size = 30 atoms with 30 non-zero coefficients; (b) change map
with dictionary size = 15 with three non-zero coefficients. Note that a larger dictionary size with more
non-zero coefficients captures more changes.

After the change maps are generated, object properties such as area and location are calculated
and, based on a user-defined area threshold, insignificant change areas are excluded from the change
maps. The remaining change areas are then overlaid onto the reference image. In the 2CMV image,
the areas that exist only in the reference image are colored in cyan and the areas that exist only in the
mission image are colored in red. A sample 2CMV image after this stage is shown in Figure 4.

Figure 4. (a) original 2CMV image; (b) 2CMV image after Stage 1. Note that there are several false
positives around the ridges of the building. In the second image, change colors (red and cyan) were
made more pronounced to highlight the false positives.
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In a previous work, this stage was replaced by adaptive thresholding [32].

2.5.2. Second Stage: Optical Flow

Figure 4 displays a 2CMV image after the first stage wherein it is clear that additional processing is
needed to improve results because the ridges of the building in both images are slightly misregistered
and they are shown as changes in both images. The primary improvement that is targeted with
additional processing is reducing the number of false positives in the image. This goal can be
accomplished with the use of the optical flow (OF) method described in Section 2.4. To manage
computational complexity, the optical flow algorithm is performed on 256 × 256 pixel image blocks.
Note that optical flow is calculated based on the original reference and mission images.

After obtaining the flow vectors, the direction of the majority of flow vectors is determined.
The flow vectors that are in this direction are applied to the two first stage change maps to find matches.
In the reference image, OF vectors are used to move the detected change areas in the flow direction.
The destination of an area is then compared with the same location in the mission image. If there is a
matching area based on location and size, then the two change areas are excluded from the change
maps. The same process is performed in the opposite direction to match mission image change areas
in the reference image. Figure 5 illustrates this step.

Figure 5. Elimination of false positives using optical flow. Change areas are moved along the flow
direction in the reference image change map. Moved areas (shown in red) from the reference image are
overlaid onto the mission image change map. The overlapped areas are then removed.

2.5.3. Third Stage: OF Assisted Object Extraction

This stage has two main parts: extraction and elimination. Extraction is performed by an adaptive
thresholding method that is similar to the one used in [32]. In this stage, the thresholding is performed
on the original images to extract/label objects. The resulting two thresholded images are processed in
two ways. First, OF vectors are used on the images to match the objects. The main difference from the
second stage is that the flow vectors are used on the original thresholded images, not on the change
maps. Change maps do not necessarily contain objects, and the goal is to find objects that moved
between the two images. Objects with possibility of movement are labeled and compared against the
areas in the change maps. It should also be noted that only some parts of an object can be detected as a
change, and these detected changes can be used as a guide to extract the full object.

After this process, the labeled areas in the change maps are overlaid on the reference image and
checked whether they are a part of a larger object in the image. If the labeled area is found to be a part
of a larger object, then the same location in the mission image is checked for the same object. In the
case of two similar objects around the same location, it can be assumed that the detected object is a
false negative and excluded from the difference map. After these two methods are performed, the
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output of this stage is generated by simply taking the intersection of the two results. Figure 6 shows
how this process converts the reference image in (a) to the final output in (e).

Figure 6. (a) reference image; (b) mission image; (c) original 2CMV image; (d) 2CMV image after using
dictionary learning and clustering (Stage 1); (e) final 2CMV image. False positives are reduced.

3. Results

The proposed algorithm was compared against three change detection methods: PCAKM [13],
GaborTLC [18], and NR-ELM [10]. All three methods are implemented with their default parameters
by using the publicly available code provided by the authors. The first dataset consisted of 1024 × 1024
regions from an SAR image pair provided by Lockheed Martin (Bethesda, MD, USA). The data were
acquired with various Lockheed Martin SAR units, one example of which is an airborne long range,
all weather, day/night, X-band SAR unit with a resolution of 1 m. The selected regions contained
speckle noise and false positives that resulted from registration and perspective problems. 2CMV
images were generated for each method. The visual results are shown in Figure 7. NR-ELM was
more susceptible to noise compared to the other methods. It was noted that unsupervised dictionary
learning and clustering algorithms were effective at removing false positives that did not match object
profiles. Optical flow was effective for removing difficult false positives that resulted from registration
and perspective problems.

Figure 7. Results by (a) manual ground truth; (b) NR-ELM; (c) GaborTLC; (d) PCAKM;
(e) proposed method.
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From the ground truth map, the actual number of pixels belonging to the unchanged class and
changed class are calculated, denoted as Nu and Nc, respectively. With this information, five objective
metrics are adopted for quantitative evaluation. False positive (FP) is the number of pixels belonging
to the unchanged class but falsely classified as changed class. False negative (FN) is the number
of pixels belonging to the changed class but falsely classified as unchanged class. The overall error
(OE) is calculated by FP + FN. Percentage correct classification (PCC) and Kappa coefficient (KC) are
as follows:

PCC =
(Nc − FN) + (Nu − FP)

Nu + Nc
× 100%,

KC =
PCC − PRE

1 − PRE
,

where proportional reduction in error (PRE) is defined as

PRE =
(Nc − FN + FP) · Nc + (Nu − FP + FN) · Nu

(Nu + Nc)2 .

The results of the quantitative metrics are given in Table 1.

Table 1. Results for the SAR dataset.

Methods FP FN OE PCC (%) KC (%) Time (s)

NR-ELM 97377 4276 101653 0.9031 0.2993 202.1
GaborTLC 20160 8449 28609 0.9727 0.5809 74.6
PCAKM 35135 6251 41386 0.9605 0.51 6.4

Proposed method 3865 12852 16717 0.9841 0.6569 199.1

In addition to these results, the proposed framework was tested on an ensemble of 1024 × 1024
regions from the same SAR dataset. In many representative image regions where registration errors
were prevalent, false positive detections were reduced by over 60%. Filtering of speckle noise and
adaptive thresholds improved the quality of the object extraction and helped identify false positives.
Establishing false positive motion/error thresholds, in accordance with initial image registration, can
be key for continued improvement. It is also a challenge to extract only regions with intensity value
changes. It is possible that wavelet based methods might be more successful with such a task.

For the second test, a more standard dataset was used. The San Francisco dataset has been used
in change detection studies and its ground truth change map was provided in [33]. It consists of two
SAR images over the city of San Francisco that were acquired by ERS-2 C-band SAR sensor with VV
polarization. The images were provided by the European Space Agency with a resolution of 25-m.
These two images were captured in August 2003 and May 2004, respectively. The size of the images
were 256 × 256 for this test. The change maps of the methods can be seen in Figure 8.

The results of the quantitative metrics are given in Table 2. The proposed framework performed
comparable to PCAKM as a change detection algorithm. The San Francisco dataset doesn’t contain
registration and perspective errors with speckle noise.

Figure 8. (a,b) San Francisco dataset; (c) ground truth; (d) NR-ELM; (e) GaborTLC; (f) PCAKM;
(g) proposed method.
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Table 2. Results for the San Francisco dataset.

Methods FP FN OE PCC (%) KC (%)

NR-ELM 328 440 768 0.9883 0.9107
GaborTLC 1376 60 1436 0.9781 0.8539
PCAKM 1855 73 1928 0.9706 0.8115

Proposed method 836 685 1521 0.9768 0.8277

It should be noted that the proposed framework provided better results compared to the other
methods when the datasets contain registration and perspective errors with speckle noise. Otherwise,
the performance of the proposed method is comparable to PCAKM as a change detection algorithm
since the optical flow processing stage cannot provide matching regions in the images.

Even though the computational complexity was not an issue during the course of this work,
the speckle filtering, optical flow processing and merging are computationally expensive processes.
On a dual core computer (Intel Core i7 6500U, Santa Clara, CA, USA) with 16 GB of memory, it takes
slightly less than 3.5 min to process one region. There are many factors that are contributing to this
time. Code was written in the MATLAB environment (R2016a, MathWorks, Natick, MA, USA) and not
optimized for performance.

4. Conclusions

It was shown that unsupervised feature learning algorithms can be effectively used in conjunction
with optical flow methods to generate 2CMV AGI products. Other image processing methods like
noise reduction and adaptive thresholding were used to improve object extraction in the proposed
methodology. Results demonstrated the ability of the techniques to reduce false positives by up to 60%
in the provided SAR image pairs. However, there is still room for further improvement. For example,
it was noticed that optical flow object matches close to image block borders can be overlooked due to
the inaccuracy of flow vectors near the block borders. This problem can be addressed with a multigrid
approach that leverages overlapping image blocks. Using this approach, if an object pair is close to
the border in one block, then it will be near the center of an overlapping block. It has also been noted
that only some parts of an object can be detected as a change, and the detected parts can be used as
a guide to segment the full object. Objects that are close to one another can be merged to provide a
more holistic analysis of the scene and further reduce the number of false positive object detections.
However, it must be concurrently ensured that false positive reduction is not overly aggressive to the
point that false negatives are generated. More recent optical flow or motion estimation algorithms
can be investigated as an alternative to the one utilized in this work. The chosen optical flow method
is suitable for the tested dataset and performs adequately as expected since it takes into account
the intensity changes between images. The choice of K-SVD over PCA increased the computational
complexity while allowing flexibility over the details of the change maps by changing the dictionary
size and the number of non-zero coefficients. Dictionaries with higher number of non-zero coefficients
provided more detailed change maps. For future work, investigating the correlation between the
quantitative metrics and the parameters in the framework (e.g., dictionary size, etc.) can provide
insight into tuning the framework for different types of datasets. Other methods can be researched as
alternatives to the K-SVD method in the framework.
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Abstract: Moving ship targets appear blurred and defocused in synthetic aperture radar (SAR) images
due to the translation motion during the coherent processing. Motion compensation is required
for refocusing moving ship targets in SAR scenes. A novel refocusing method for moving ship is
developed in this paper. The method is exploiting inverse synthetic aperture radar (ISAR) technique
to refocus the ship target in SAR image. Generally, most cases of refocusing are for raw echo data,
not for SAR image. Taking into account the advantages of processing in SAR image, the processing
data are SAR image rather than raw echo data in this paper. The ISAR processing is based on fast
minimum entropy phase compensation method, an iterative approach to obtain the phase error.
The proposed method has been tested using Spaceborne TerraSAR-X, Gaofeng-3 images and airborne
SAR images of maritime targets.

Keywords: synthetic aperture radar (SAR); inverse synthetic aperture radar (ISAR); moving ship;
refocusing; fast minimum entropy

1. Introduction

Synthetic aperture radar (SAR) is widely employed in military surveillance, geography mapping
and resource surveying. High-resolution SAR image is of great significance for homeland and military
security [1–4]. A moving ship is not a static target during image formation, and the SAR imaging results
are blurred and defocused [5–7]. It is necessary to refocus the defocused ship for ship recognition,
and precise motion compensation becomes a key element of refocusing.

The motion between the moving target and the radar contains translation and rotation
motions [8,9]. Translation motion is the main cause of image defocusing. Motion compensation
can eliminate the translation motion affection on image. It is a significant step of inverse synthetic
aperture radar (ISAR) processing for refocusing moving target. Motion compensation commonly
includes two steps. The first is range alignment which is coarse compensation [10,11]. The second
is phase compensation which compensates the Doppler frequency shift caused by movement [1,5].
Range alignment and phase compensation are also referred to as autofocusing. Due to imperfection of
coarse compensation, this paper focuses on phase compensation.

Methods for phase compensation may be divided into three categories. The first category is
scatter-based algorithms, such as dominant scatter processing (DSP) method [12,13], phase gradient
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autofocus (PGA) method [14–16]. The DSP method is intuitive in concept and easy to implement,
but it needs high-quality prominent point in echo, otherwise the image is inferior [13]. The PGA
method estimates phase error with part of data selected by isolating defocused targets via center
shifting and window operations. The disadvantage of PGA is that the imaging is sensitive to
the selection of the dominant scatters, window length, and the iteration times [15]. The second
category is optimization algorithms, including Doppler centroid tracking (DCT) method [17,18],
maximum contrast (MC) method [19,20], maximum likelihood (ML) method [21,22] and minimum
entropy (ME) method [23,24]. DCT is a classical autofocus method with good robustness and a small
amount of computation. However, only the rotational motion is ignored, the DCT approach can
provide the maximum likelihood estimation of the phase error. When one scatter or multiple scatters
are located in a range bin, the motion compensation accuracy will decrease [18]. The MC method
assumes a mathematical model for the received signal. The model parameters (target radial velocity,
acceleration) are achieved by the maximum contrast criterion of the image. It should be pointed out
that the method requires two-dimensional search parameters at the same time and the computation is
large [19]. The ME method which is based on the overall information of image takes the entropy as
the cost function. The focused image can be achieved by numerical iterative until minimum entropy
are acquired. It has well performance under low signal noise ratio (SNR), while the efficiency is
lower and the computation time is large [23]. The last category is other algorithms, such as spare
representation (SR) method [25]. A sparse metric is defined to iteratively estimate the sparse scatterer
coefficients and phase errors, while the SR method is proposed to only deal with autofocus issues and
cannot simultaneously obtain high-resolution images. The scatter-based algorithms are based on the
processing of dominant scatter center and pay attention to the phase history of isolated scatter center.
The optimization algorithms obtain phase error via image quality evaluation. The image contrast and
entropy are maximal and minimum respectively when the image are well-focused. The scatter-based
algorithms are higher computational efficiency than optimization algorithms, but the image quality
constructed with former algorithms are worse than latter algorithms results. The previous methods all
have some drawbacks and are mainly applied in raw echo data.

There are two issues involved in processing raw echo data. One is that the aforementioned
methods are often applied to raw echo data, while the moving ship’s position is hard to ascertain in raw
data [6]. Hence those methods may have to cope with the entire raw dataset. The invalid data would
occupy a massive amount of computation time when processing all the raw data. The other is that there
may be a few ship targets with different motions in the raw data. Raw data is repeatedly processed
for specific parameters of different moving ship, and the computation cost greatly increases [6].
The processing data are sub-images selected from ordinary SAR images, not raw data, and the
sub-images are converted into the raw echo data domain by an inversion algorithm. The sub-images
in the raw echo data domain are refocused with the ISAR technique, and the moving ships can then be
well-focused. This thought has the advantage of easily locating moving ships in SAR images and the
data size of sub-image is also smaller than the entire raw data.

To deal with these problems, a refocusing method for moving ships based on fast minimum
entropy phase compensation is proposed in this paper. The processing data are sub-images containing
moving ships rather than the raw echo data, and the ISAR technique is based on fast minimum entropy
phase compensation. The refocusing method has three advantages, the first is that the computational
burden is low, due to the smaller data size of the sub-image than the raw echo data. The second is
the procedures of the inversion algorithm and image reconstruction are simple. The last is that the
ISAR technique based on fast minimum entropy phase compensation has good image quality and
computational efficiency.
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The remainder of this paper is organized as follows: in Section 2, basic procedures of moving
ship refocusing in SAR images is presented; ISAR processing based on fast minimum entropy phase
compensation is elaborated in Section 3. In Section 4, experiments based on real SAR images are
performed and the conclusions are presented in Section 5.

2. Basic Procedures of Moving Ship Refocusing in SAR Images

Moving ships are regularly blurred and defocused in SAR images due to the translation motion
with respect to the scene center. ISAR technology is a common method to form well-focused images,
but it has two basic problems. One is that SAR images contain a very large number of ships, each with
its own motion. Hence, it needs sub-images which only contain a single ship target. The other is the
input of the ISAR processor is raw data, not SAR images, so it needs to get input data for the ISAR
system which can serve as raw data. The basic procedures of refocusing moving ship in SAR image
are represented in Figure 1.

Ship 
Detection

 Subimage 
Selection

Subimage 
Inversion

ISAR 
Processing

SAR 
Image

Refocused 
Image

 
Figure 1. Block scheme of defocused target refocusing in SAR image.

The detailed procedures are as follows:

(a) Input a single look complex (SLC) image;
(b) Implement ship detection with software;
(c) Select sub-images, where each sub-image includes only a single defocused ship and has the same

spatial resolution as the original image;
(d) Invert the sub-image to the equivalent raw data domain via an inversion method [26–29];
(e) Exploit ISAR processing to generate a focused image of the ship.

The sub-image needs to be inverted to equivalent raw data-like data containing only the target
echo, background and residual clutter. The common inversion method is known as the range Doppler
inversion [26].

When the angle variation is not too large, and the rotation vector is sufficiently stable during
radar imaging, the range Doppler (RD) algorithm is applied for reforming SAR or ISAR images with
high accuracy after motion compensation. The polar grid in the spatial frequency domain can be taken
as a nearly regularly sampled rectangular grid with no need for interpolations. The main advantage of
this method is the low amount of computation and it is the reason why it has been employed in many
references [26,29]. The disadvantage is that the RD algorithm can only be used on low resolution SAR
images when the spatial resolution is of the order of meters. The RD reformation algorithm is used
when the SAR image is StripMap data. In this paper, the inverse range Doppler (IRD) algorithm is
applied via a two-dimensional fast Fourier transform (FFT). The flowcharts of the RD algorithm and
inverse RD algorithm are shown in Figure 2.
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Figure 2. RD and IRD algorithm flow charts. (a) RD algorithm flowchart; (b) IRD algorithm flowchart.

3. ISAR Processing Based on Fast Minimum Entropy Phase Compensation

We propose an ISAR processing method based on fast minimum entropy phase compensation
to refocus sub-images of moving ship targets. The approach is a RD algorithm exploiting a
Fourier transform to create the image. The fast minimum entropy phase compensation method is a
non-parametric method and can be applied to arbitrary targets, even high-order polynomial models.

3.1. Signal Model

The geometry of the ISAR system is depicted in Figure 3, where the radar is located at r(0, 0,h) in
the (X, Y, Z) coordinates system. The reference coordinates system (z1,z2,z3) is set at the target point
p(x0, y0, 0). The distance between the radar and the target is R0(t). The back-scattering property of the
target is represented by ξ(z) and z is the vector that locates a generic scatter point on the reference
coordinate system. The received signal from the moving target can then be written as follows [30,31]:

SR( f , t) = rect(
t

Tobs
)rect(

f − f0

B
)e−j 4π f

c R0(t)
∫
V

ξ(z)e−j 4π f
c (zT•iR0(t)

)dz (1)

where f0 is the carrier frequency, B the signal bandwidth and Tobs the observation time. iR0(t) is the
unit vector of R0(t) and V is the spatial domain where the reflectivity function zT is defined.

Z

X

Y

p

R t

(x0,y0,0)

z

z

z

Figure 3. Geometry of the ISAR system.
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The radial motion compensation can be achieved by removing the phase term e−j 4π f
c R0(t) and the

received signal after motion compensation can be expressed as follows:

SR( f , t) = rect(
t

Tobs
)rect(

f − f0

B
)
∫
V

ξ(z)e−j 4π f
c (zT•iR0(t)

)dz (2)

The distance R0(t) can be approximated by a polynomial. This can be written as follows:

R0(t) ≈ α + βt +
1
2

γt2 (3)

where α = R0(0), β =
•
R0(0) and γ =

••
R0(0)/2, α = R0(0) cannot cause the defocusing in the image,

the β and γ represent the target radial velocity and acceleration which also are related to the Doppler
frequency parameter in (4): {

fdc =
2 f
c β

fdr =
4 f
c γ

(4)

The quadratic term 1
2 γt2 is the main cause of defocus in SAR images [3,32].

3.2. Phase Compensation Based on Fast Minimum Entropy Method

The features of ship, image entropy and image contrast (IC) are regarded as the evaluation
criteria of image focusing. If the image is well-focused, the entropy and IC attain their minimum and
maximum values, respectively [25]. Because there are no ground truths of ship features compared with
refocused ships, we assume that the geometrical features of the ship are compact for a well-focused
ship. The well-focused ships have smaller geometrical features than defocused ships. The geometrical
features contain the length, width and the areas of ship.

An ISAR image I(k, n) is a two-dimensional complex image, where k is the range sample number,
n is the cross-range number. The entropy of the two-dimensional image is written as follows [33]:

E(I) =
K−1

∑
k=0

N−1

∑
n=0

|I(k, n)|2
S

ln
S

|I(k, n)|2
(5)

where S is the total energy of the image:

S =
K−1

∑
k=0

N−1

∑
n=0

|I(k, n)|2 (6)

The entropy is relatively small when the image is well-focused, and image refocusing is assessed
via Equation (5). The IC denotes the normalized effective power of the image intensity and gives a
measure of the image focus. If the image is well-focused, the IC value of the image is large. IC definition
is considered as the ratio of the standard deviation to the mean of the amplitude. The IC is written as
follows [34]:

IC(I) =

√
E
{
[I(k, n)− E{I(k, n)}]2

}
E{I(k, n)} (7)

where E represents the spatial mean operator.
The motion compensation mainly compensates for the translation motion between the target and

the radar. It contains two steps, one is range alignment, and the other is phase compensation [8,11].
The raw data-like data R(m, n) is inverted from SLC SAR images and range alignment is a coarse
compensation, the raw data-like data R(m, n) no longer implement range alignment and the phase
compensation is the main step of ISAR processing in this paper.
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Phase compensation and ISAR imaging can be written as follows [23,32,35]:

I(k, n) = IFFT2D{R(k, n) · exp(−jφ(m))} (8)

where I(k, n) is the SAR image, φ(m) represents the phase error in Equation (2). m is the number
of samples in the range direction, n is the cross-range samples number. The key step to phase
compensation is estimation of φ(m). The phase error estimation φ̂(m) is obtained by minimizing the
entropy of ISAR image:

φ̂(m) = argminE(I) (9)

It means that the Equation (9) should be satisfied with (10):

∂E
∂φ(m)

= 0 (10)

Since the total energy S is constant, the cost function E can be redefined as:

E′(I) = −
K−1

∑
k=0

N−1

∑
n=0

|I(k, n)|2 ln|I(k, n)|2 (11)

Therefore Equation (10) is equivalent to:

∂E′

∂φ(m)
= 0 (12)

The derivation function of the entropy with respect to φ(m) is obtained from (13):

∂E′

∂φ(m)
= −

K−1

∑
k=0

N−1

∑
n=0

[1 + ln|I(k, n)|2]∂|I(k, n)|2
∂φ(m)

(13)

Since |I(k, n)|2 = I(k, n)I∗(k, n), there are:

∂|I(k, n)|2
∂φ(m)

= 2Re(I∗(k, n)
∂I(k, n)
∂φ(m)

) (14)

Then substituting Equation (14) into Equation (13), we have:

∂E′

∂φ(m)
= −Re

K−1

∑
k=0

N−1

∑
n=0

[1 + ln|I(k, n)|2]I∗(k, n)
∂|I(k, n)|

∂φ(m)
(15)

The derivative of I(k, n) with respect to ∂φ(m) is acquired as follows:

∂I(k, n)
∂φ(m)

= −jR(k, n) exp(−jφ(m)) exp(−j
2π

M
km) (16)

Substituting Equation (16) into (15), one obtains:

∂E′

∂φ(m)
= −2MIm{exp[−jφ(m)]w∗(m)} (17)

where:

w(m) =
K−1

∑
k=0

R∗(k, n)Rl (18)
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Rl =
1
M

M−1

∑
m=0

[1 + ln
∣∣∣I(k, n)2

∣∣∣]I(k, n) exp(j
2π

M
km) (19)

Finally, Equation (17) is equal to zero, and φ̂(m) is obtained:

exp(−jφ̂(m)) =
w(m)

|w(m)| (20)

3.3. The Procedures of Phase Compensation Method

The flowchart of the proposed phase compensation method is shown in Figure 4. The steps of
phase compensation method based on fast minimum-entropy are described as follows:

Step 1: Input the raw data-like data and utilize DCT method [17] to obtain the initial phase error
φ̂(m), l is the number of iterations.

Step 2: Compensate phase error by substituting φ(m) with φ̂(m). Two-dimensional inverse fast
Fourier transform is performed to generate the ISAR image.

Step 3: Calculate entropy of the ISAR image and set tolerance T which is used to stop the iterations.
If El(I)− El−1(I) is greater than the T, the iteration continues; otherwise, the process terminates.

Step 4: Obtain Rl by Fourier transform ln(|I(k, n)|) ·I∗(k, n) and calculate the w(m).
Step 5: Update phase error estimation φ̂(m) and l = l + 1, go back to Step 2.

Update           ,

        Calculate

    Obtain Initial 

Generate ISAR Image

l lE I E I T

w m

ˆ m l l

NO

End

YES

Compensate Phase Error

Calculate Entropy 

ˆ m

Raw Data-like Data

 
Figure 4. The basic flowchart of phase compensation method based on fast minimum-entropy.

283



Sensors 2019, 19, 1154

4. Experimental Results and Discussions

Experimental results based on real SAR images are presented in this section to quantitatively
evaluate the validity of the proposed method. The experimental data include spaceborne and airborne
SAR data. The parameters of the SAR images are presented in Table 1.

Table 1. The parameters of four SAR images.

Image Image01 Image02 Image03 Image04

Product TerraSAR-X Gaofeng-3 Gaofeng-3 Airborne
Mode Strip UFS UFS Strip

Resolution (M) 3 3 3 0.5
PRF (Hz) 3472.134984 2014.078491 1977.984863 500.0000

Band (MHz) 120.00 80.00 80.00 150.00
Polarization VV HH HH HH

Wave Length (m) 0.031040 0.055517 0.055517 0.056564
Slant-Range (km) 629.17 7127.22 7137.52 4.62

Velocity (m/s) 7088.636524 7563.162316 7568.372931 55.599743

The SAR image perform ships detection with software [36] and sub-images containing defocused
ship are selected in advance. The raw data-like data is derived from sub-images with the IRD algorithm.
The number of iterations l is set at 300. The results of the proposed method are compared with the
results of the DCT [17] and PGA [14] methods.

4.1. Spaceborne SAR Data

The spaceborne SAR data contains data from two kinds of satellite system. One is TerraSAR-X
system images, the other is Gaofeng-3 system images. The defocused ship targets of TerraSAR-X
images are depicted in Figure 5. The two ships are numbered as ship01 and ship02. The ships are still
blurred and defocused due to their motion, and need motion compensation.

 
Figure 5. Two defocused ships detected in a TerraSAR-X image (sub-images of ship01 and ship02).
The red rectangles are the zoomed sub-images.

The refocused results of ship01 with the three methods are shown in Figure 6. The original
sub-image, DCT and PGA results are respectively depicted in Figure 6a–c. The result with the
proposed method is shown in Figure 6d. The image quality of the proposed method result is better
than the original image, DCT and PGA results. The cross-range of the image is well-focused and
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blurred regions are reduced in Figure 6d. The refocused results of ship02 are shown in Figure 7.
The image quality of the proposed method result is also superior to the other results.

  
(a) (b) 

  
(c) (d) 

Figure 6. Refocused images of the ship01 sub-image. (a) Sub-image of ship01; (b) Refocused image
with the DCT method; (c) Refocused image with the PGA method; (d) Refocused image with the
proposed method.

  
(a) (b) 

  
(c) (d) 

Figure 7. Refocused images of ship02 sub-image. (a) Sub-image of ship02; (b) Refocused image
with the DCT method; (c) Refocused image with the PGA method; (d) Refocused image with the
proposed method.
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Image entropy and IC value are the two criteria to assess the image quality. The convergences of
the two criteria versus the number of iterations are depicted in Figure 8. As the number of iterations
increases, there has been decrease in entropy and increase in IC. Both criteria of ship01 have been
greatly improved in Figure 8, and the focusing of the ship01 image is enhanced, while the criteria
change of ship02 are not as obvious as for ship01 and the enhancement in refocusing of ship02 is not
as good as for ship01.

  
(a) (b) 

Figure 8. The entropies and IC values convergence of two sub-images versus the number of iterations.
(a) Entropies change of the two sub-images during iteration; (b) IC values change of the two sub-images
during iteration.

The geometrical features of the ships are extracted for further assessment. The features include
the length, width and area. Since there are no ground truths for the ship features, it is impossible
to compare extracted geometrical features with ground truths. The geometrical features of ships in
focused images should be smaller than the defocused images.

The extracted features of ship01 and ship02 are illustrated in Figure 9. It is evident that the
ship lengths extracted from the proposed method results are smaller than other results in Figure 9a.
The widths and areas of proposed method results are also the least of the four results in Figure 9b,c.
These results indicate that the refocusing result of the proposed method is better than that of the
other methods.

  
(a) (b) (c) 

Figure 9. The geometrical features of refocusing ship01 and ship02. (a) Lengths of ships; (b) Widths of
ships. (c) Areas of ships.

The defocused ships detected in two Gaofeng-3 SAR images are illustrated in Figure 10. The two
ships are numbered as ship03 and ship04, respectively. It is obvious that the two ships are blurred and
defocused in the SAR images.
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(a) (b) 

Figure 10. Two defocused ships are detected in Gaofeng-3 images. (a) Sub-image of ship03 located in
the Gaofeng-3 image; (b) Sub-image of ship 04 located in the Gaofeng-3 image. The red rectangles are
the zoomed sub-images.

The refocusing results of ship03 are presented in Figure 11. The result of the proposed method
is better than the DCT and PGA method results in Figure 11d. The left side regions of the ship are
obviously well-focused and become clear in Figure 11d.

  
(a) (b) 

  
(c) (d) 

Figure 11. Refocused images of ship03 sub-image. (a) Sub-image of ship03; (b) Refocused image with
DCT method; (c) Refocused image with PGA method; (d) Refocused image with proposed method.
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The results of ship04 are shown in Figure 12, and the results of DCT, PGA and the proposed
method are presented in Figure 12b–d, respectively. The focusing of DCT and PGA results produce a
certain improvement compared with the original images, but are not well-focused. The blurring in the
cross-range direction is greatly removed in Figure 12d. As stated previously, the image quality of the
proposed method results are superior to the original images, DCT and PGA results from a visual point
of view.

The entropies and IC values during iteration are represented in Figure 13. The entropies are
getting smaller and IC values larger with iteration, showing that the quality of the image is improved.
The entropies and IC values of ship04 are changing greatly, demonstrating that the image quality of
ship04 sub-image processing with the proposed method is good. The geometrical features of ship03
and ship04 are shown in Figure 14. The refocusing feature results with the proposed method are also
smaller than the other method results.

  
(a) (b) 

  
(c) (d) 

Figure 12. Refocused images of ship04 sub-image. (a) Sub-image of ship04; (b) Refocused image with
DCT method; (c) Refocused image with PGA method; (d) Refocused image with proposed method.

 
(a) (b) 

Figure 13. The entropies and IC values convergence of two sub-images versus the number of iterations.
(a) Entropy change of the two sub-images during iteration. (b) IC values change of the two sub-images
during iteration.
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(a) (b) (c) 

Figure 14. The geometrical features of refocusing ship03 and ship04. (a) Lengths of ships; (b) Widths
of ships. (c) Areas of ships.

4.2. Airborne SAR Data

In addition to spaceborne SAR data, an airborne SAR dataset is exploited to further validate the
procedure. The defocused ships are marked in the airborne SAR image in Figure 15. The two ships are
numbered as ship05 and ship06. The resolution of the airborne SAR image is higher than that of the
spaceborne SAR images.

 
Figure 15. Two defocused ships are detected in airborne SAR images. Sub-images of ship05 and ship06
are located in airborne SAR image. The red rectangles are the zoomed sub-images.

The defocusing of moving ship in airborne SAR image is more evident. The Doppler rate shift
induced by target motion in the airborne SAR system is greater than in the spaceborne SAR system.
The Doppler rate has great influence on the image quality and a little error will result in image
defocusing and decreased resolution. The degree of defocusing is directly related to the Doppler rate
shift [5].

The experimental results of ship05 are shown in Figure 16. As can be noted by observing
Figure 16d that the refocused result with the proposed method has some improvement in focusing
compared with the original images, DCT and PGA results. The results of ship06 are illustrated in
Figure 17. The images with ISAR processing all have certain improvement in focusing compared to the
original image. The result of the proposed method is still better than the DCT and PGA method results.
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(a) (b) 

  
(c) (d) 

Figure 16. Refocused images of ship05 sub-image. (a) Sub-image of ship05; (b) Refocused image
with the DCT method; (c) Refocused image with the PGA method; (d) Refocused image with the
proposed method.

  
(a) (b) 

  
(c) (d) 

Figure 17. Refocused images of ship06 sub-image. (a) Sub-image of ship06; (b) Refocused image
with the DCT method; (c) Refocused image with the PGA method; (d) Refocused image with the
proposed method.

The ISAR processing is not able to produce a well-focused target from airborne SAR images
and the refocusing are not as good as for spaceborne SAR sub-images. The reason is that the IRD
inversion is applied in SAR images for which the resolution is of the order of meters, while the
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resolution of airborne SAR images is higher than one meter. The inversion of high-resolution SAR
images (higher than 1 m) would be need a more accurate inversion algorithm.

The entropies and IC values change are illustrated in Figure 18. The entropy and IC value of the
proposed method results have some changes with iteration. This means the image quality shows some
improvement. The features of ship05 and ship06 are shown in Figure 19. The features of the proposed
method result are the least yet.

 
(a) (b) 

Figure 18. The entropies and IC values convergence of two sub-images versus the number of iterations.
(a) Entropies change of the two sub-images during iteration; (b) IC values change of the two sub-images
during iteration.

  
(a) (b) (c) 

Figure 19. The geometrical features of refocusing ship05 and ship06. (a) Lengths of ships; (b) Widths
of ships. (c) Areas of ships.

The entropies and IC values of the original and refocused images are calculated for quantitative
evaluation of the focusing. The performance of the proposed method is compared with the DCT,
and PGA methods and the original images. The entropies of sub-images with different method
processing are presented in Table 2. All entropies of the proposed method results are lower than
others in the table. This means that the focusing of the proposed method result could outperform the
other method results. The IC values of the sub-images are presented in Table 3. The IC values of the
proposed method results are quite larger than the other results, particularly for spaceborne sub-images.

Table 2. The entropies of six sub-images.

Sub-Image ship01 ship02 ship03 ship04 ship05 ship06

Original Image 7.39 6.59 8.72 7.61 6.92 8.92
DCT 7.26 6.54 8.69 7.58 6.89 8.89
PGA 7.05 6.51 8.64 7.50 6.81 8.76

Proposed Method 6.35 6.30 8.32 6.94 6.50 8.45
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Table 3. The IC values of six sub-images.

Sub-Image ship01 ship02 ship03 ship04 ship05 ship06

Original Image 2.97 2.42 2.81 2.44 2.33 1.49
DCT 3.11 2.50 2.85 2.48 2.37 1.50
PGA 3.25 2.54 2.88 2.56 2.38 1.53

Proposed Method 3.80 2.67 3.04 3.07 2.47 1.63

5. Conclusions

By exploiting the ISAR technique based on fast minimum entropy phase compensation,
a refocusing method for moving ships in SAR images is proposed in this paper. The basic procedures
of refocusing in SAR images are built. The processing data are SAR images rather than raw echo data.
The algorithms inverting images to the raw data domain are described. This makes the processing
flow simple and reduces the computational burden. The ISAR processing based on the fast minimum
entropy phase compensation method iteratively obtains the phase error estimation by constructing a
cost function of entropy. The experimental results based on spaceborne and airborne SAR data verify
the effectiveness of the proposed method.

Though the experimental results are good, the airborne SAR sub-images (resolution higher than
1 m) are not well focused via ISAR processing. The high-resolution SAR image inversion needs to be
investigated in future work.
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Abstract: Synthetic aperture radar (SAR) as an all-weather method of the remote sensing, now it has
been an important tool in oceanographic observations, object tracking, etc. Due to advances in neural
networks (NN), researchers started to study SAR ship classification problems with deep learning (DL)
in recent years. However, the limited labeled SAR ship data become a bottleneck to train a neural
network. In this paper, convolutional neural networks (CNNs) are applied to ship classification by
using SAR images with the small datasets. To solve the problem of over-fitting which often appeared
in training small dataset, we proposed a new method of data augmentation and combined it with
transfer learning. Based on experiments and tests, the performance is evaluated. The results show
that the types of the ships can be classified in high accuracies and reveal the effectiveness of our
proposed method.

Keywords: synthetic aperture radar (SAR); convolutional neural networks (CNNs); deep learning
(DL); ship classification

1. Introduction

Synthetic aperture radar (SAR) is an active Earth observation system that can be installed on
planes, satellites, spacecraft, etc. It can perform observations on the ground all day and in all weather
conditions. Now we can get more high-resolution SAR images by recent development of SAR
satellites, e.g., RADARSAT-2, TerraSAR-X [1,2], etc. By using these images, lots of applications
can be implemented. Pieralace et at al. [3] presents a new simple and very effective filtering technique,
which is able to process full-resolution SAR images. Gambardella at al. [4] presents a methodological
approach for a fast and repeatable monitoring, which can be applied to higher resolution data. Ship
classification is an important application of SAR images.

Researchers usually used traditional classification methods in ship classification, including image
processing, feature extraction and selection, and classification. Feature extraction is a key step in ship
classification. Researchers widely used geometric features, scattering features in feature extraction [5].
For geometric features, it contains ship area, ship rectangularity, moment of inertia, fractal dimension,
spindle direction angle and ratio of length to width [6], etc. For scattering features, it contains
superstructure scattering features [7], three-dimensional scattering feature [8], radar-cross-section
(RCS) [9], and symmetric scattering characterization (SSCM) [10], etc. As for classifiers, artificial neural
networks (ANNs) [11] can establish a general classification scheme by training, which makes it widely
used in ship classification. Support vector machines (SVM) [12] is also a popular model. Researchers
also proposed some methods to get high-classification accuracy [13–15], these methods have high
requirements for on features and classifiers, so these methods could not applied in other datasets.
With the development in neural networks, researchers now focus on processing SAR images with deep
neural networks (DNNs) [16–18].
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The deep neural network (DNN) is artificial neural network (ANNs)’s promotion, which includes
lots of hidden layers between the input and output layers [19,20]. DNN can give good expression of an
object by its deep architectures and performs well in modeling complex nonlinear relationships [21].
DNN have many popular models, such as recurrent neural networks (RNNs) [22] and convolutional
deep neural networks (CNNs). Nowadays, CNNs [23] are playing an important role in detection
and recognition. One of the most remarkable results was its application in the ImageNet data set.
The ImageNet dataset includes over 15 million images with 22,000 different categories. By using a
model called Alexnet [24], the researchers achieved a remarkable result, which have reduced the error
rates of 8.2% in top-one error rates and 8.7% in top-five error rates than the previous work [24,25].
Furthermore, CNNs have achieved many impressive results in computer the vision area, such as
handwritten digits recognition [26], traffic sign recognition [27], and face recognition [28].

Deep learning applications in SAR images have been gradually used. Zhang et al. [5] showed
an application in ship classification with transfer learning and fine-tuning. Kang et al. [16] used deep
neural networks for SAR ship detection and get good results. Chen et al. [29] presented a method for
classification of 10 categories of SAR images, and showed application in ship target recognition. By
using deep learning methods, SAR images avoid complicated feature extraction, which completed
by deep networks. It can obviously improve the performance of classifiers. However, there are
still many problems. Compared with computer vision, SAR image interpretation has the same
purpose—extracting useful information from images—but the processed SAR image is significantly
different from visible light image, mainly reflected in the band, imaging principle, projection direction,
angle of view, etc. Furthermore, the small dataset may be a problem, too. Therefore, when we use the
method in SAR images, we need to fully consider these problems.

As with ship classification, many issues may arise when training CNNs. One common issue is
over-fitting. Over-fitting can be explained as the neural network models the training data too well and
perform bad in data which is different from training data. If a model learns the most of detail and noise
of training data, it cannot get good performance in new data, then the over-fitting happens. Some
useless information such as noise and random fluctuations have been learned while training as parts
of the models. Then the models cannot have good generalize ability in new data. CNNs are prone to
over-fitting when model have rare dependencies in the training data. To solve this problem, CNNs
often require tens of thousands of examples to train adequately. However, in many cases, we cannot
get enough training data in SAR applications, which may cause severe over-fitting. A popular way to
solve this problem is data augmentation, such as flipping, brightening, and contrast [30]. Another way
to solve this problem is transfer learning, which often been applied in natural images [31].

The application which using deep neural networks in SAR ship images worth paying attention in
improving the performance in SAR ship detection and classification. When dealing with SAR images,
we should take both the data processed method and CNN training method into consideration. To get
good performance, we should retain the important information of the images and get enough images
when we make data augmentation and use some good models for training to reduce the amount
requirement of training set. In this paper, we proposed a new method for SAR ship classification.
First, we proposed a new data augmentation method which can keep important information while
increasing the amount of data and achieve the requirements of the dataset. Then, by coupling transfer
learning with the processed data, we can get good performance in classification. When dealing with
a small training dataset, the method can successfully enlarge the training datasets. With the enlarged
datasets coupled with transfer learning, CNNs can avoid the over-fitting issue and achieve excellent
classification accuracy. Comparison experiments demonstrated the good performance of our method.

The remainder of this paper is organized as follows. Section 2 presents an introduction of the
theory for CNNs, transfer learning and components of our method. The details of the experiments
are described in Section 3, we also present our discussion in this section. Finally, Section 4 offers
the conclusion.
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2. Materials and Methods

2.1. CNN Models

A CNN is composed of an input layer, an output layer, and multiple hidden layers. The hidden
layers can be convolutional layers, pooling layers, activation layers, and fully connected layers [32,33].
The first multilayer CNN is a simple convolutional network consisting of seven levels called LeNet-5
which was proposed by LeCun et al. in 1998 [23]. Authors used it in classifying digits, and it was
applied by several banks to recognize hand-written numbers. The pixels of images were 32 × 32.
With the large developments in GPU, the layers of CNNs had become much deeper. In recent years,
many new models had been proposed, such as Alexnet [24], Resnet [34], VGG16 [22], etc. In this paper,
we mainly use two different models for ship classification in order to do comparative test. For further
study, we also compared our method with other popular models.

• Traditional CNN models

The first model we used is traditional CNN models, as shown in Figure 1a. These models consist
of four convolution layers, four max pooling layers and two fully connected layers. We used Leaky
ReLU as our activation function. To avoid the problem of over-fitting, dropout has been used [35].

 
(a) (b) 

Figure 1. Learning Models. (a) Traditional CNN models. (b) Resnet-34 models.

• Resnet models

Another model we used is transfer learning the Resnet-50 [34] model. Resnet models used
a connection method named shortcut connection, as shown in Figure 2. The models are stacked by
multiple blocks. By using this structure, network can obviously improve its performance.
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Figure 2. Shortcut connection.

Figure 1b presents Resnet-34 models. Table 1 presents Resnet models with different layers.

Table 1. Resnet models

Layer Name Output Size 18-Layer 34-Layer 50-Layer 101-Layer 152-Layer

conv1 112 × 112 7 × 7, 64, stride 2

conv2_x 56 × 56

3 × 3 max pool, stride 2[
3 × 3, 64
3 × 3, 64

]
×2

[
3 × 3, 64
3 × 3, 64

]
×3

⎡⎣ 1 × 1, 64
3 × 3, 64
1 × 1, 256

⎤⎦×3

⎡⎣ 1 × 1, 64
3 × 3, 64
1 × 1, 256

⎤⎦×3

⎡⎣ 1 × 1, 64
3 × 3, 64
1 × 1, 256

⎤⎦×3

conv3_x 28 × 28
[

3 × 3, 128
3 × 3, 128

]
×2

[
3 × 3, 128
3 × 3, 128

]
×4

⎡⎣ 1 × 1, 128
3 × 3, 128
1 × 1, 512

⎤⎦×4

⎡⎣ 1 × 1, 128
3 × 3, 128
1 × 1, 512

⎤⎦×4

⎡⎣ 1 × 1, 128
3 × 3, 128
1 × 1, 512

⎤⎦×8

conv4_x 14 × 14
[

3 × 3, 256
3 × 3, 256

]
×2

[
3 × 3, 256
3 × 3, 256

]
×6

⎡⎣ 1 × 1, 256
3 × 3, 256
1 × 1, 1024

⎤⎦×6

⎡⎣ 1 × 1, 256
3 × 3, 256
1 × 1, 1024

⎤⎦×23

⎡⎣ 1 × 1, 256
3 × 3, 256
1 × 1, 1024

⎤⎦×36

conv5_x 7 × 7
[

3 × 3, 512
3 × 3, 512

]
×2

[
3 × 3, 512
3 × 3, 512

]
×3

⎡⎣ 1 × 1, 512
3 × 3, 512
1 × 1, 2048

⎤⎦×3

⎡⎣ 1 × 1, 512
3 × 3, 512
1 × 1, 2048

⎤⎦×3

⎡⎣ 1 × 1, 512
3 × 3, 512
1 × 1, 2048

⎤⎦×3

1 × 1 average pool, 1000-d fc, softmax

FLOPs 1.8 × 109 3.6 × 109 3.8 × 109 7.6 × 109 11.3 × 109

• Other popular models

In this paper, we also used some popular models to do transfer learning, such as Alexnet, Vgg-16
net, etc. These models are shown in Figure 3.

 
(a) (b) 

Figure 3. Other popular models. (a) Alexnet model. (b) VGG-16 model.
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2.2. Learning of CNNs

2.2.1. Environment

The networks are implemented in Pytorch 0.3.0. All layers were designed to match the size of
images. The input has a dimension of 224 × 224 = 50176. The output was implemented using the
softmax operation and consists of three classes.

2.2.2. Stochastic Gradient Descent with Momentum

Gradient descent is a commonly used optimization algorithm for neural network which can
solve many simple problems. However, when the training dataset is very large, we can find that
using simple gradient descent method may consume much computing resources, and the convergence
process will be slow. At the same time, since all the training data are considered for each calculation in
gradient descent method, it may cause over-fitting. To solve this problem, SGD have been proposed.

In stochastic gradient descent (SGD), each training example x(i) and label y(i) with be updated as

θ = θ−α·∇θ J
(
θ; x(i); y(i)

)
(1)

During training, the network only calculates the loss of one sample per iteration, then gradually
traverse all samples and complete an epoch calculation. By using this method, although it may
produce large fluctuations in a simple, but the result may finally converge successfully. The amount of
calculation is greatly reduced, so the speed can also be improved.

Momentum [36] is a commonly used acceleration technique in gradient descent method. Stochastic
gradient descent with momentum can be expressed as

v = β× v − α·∇θ J
(
θ; x(i); y(i)

)
(2)

θ ← θ+ v (3)

β is momentum coefficient. It can be understood as, if the last momentum (i.e., v) is the same as
the negative gradient direction of this time, then the magnitude of this decline will increase. By using
momentum, we can accelerate the convergence process [29].

2.2.3. Learning Rate

When deal with CNNs training, learning rate is an important parameter. Usually, we expected
to get the result as soon as possible, so the learning rate we used will be large. However, in common
situations, by using large learning rate may cause concussion, and the result may not behave as
expected. The commonly used method is reducing the learning rate during training. The initial
learning rate often takes as 0.01 or 0.001, which is set to decrease the loss function quickly. Then
users should adjust the learning rate by several epochs or iterations according to the accuracy during
training [29]. The learning rate often been reduced by a factor of 0.1 or 0.5.

2.3. Proposed Method with Transfer Learning

2.3.1. Our Method

As mentioned in Section 1, CNNs often require a large amount of data to train adequately.
However, as with the SAR dataset, we do not have enough images for training. Therefore, we must do
something to avoid the problem of over-fitting.

One effective way is data augmentation. There are many methods to achieve our requirement,
including adding noise, changing colors, flipping, etc. Figure 4 illustrates the original SAR ship images
and Figure 5 shows some common ways of data augmentation.
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(a) (b) (c) 

Figure 4. Illustrates the different target classes extracted from SAR images. (a) Bulk Carrier with four
times magnification. (b) Container Ship. (c) Oil Tanker.

  
(a) (b) 

  
(c) (d) 

Figure 5. Image and image with flipping, brightening, and sharpness. (a) An original image. (b) Image
with flipping. (c) Image with brightening. (d) Image with sharpness.

One of the most popular methods is random crop. It can significantly increase the amount of data.
Recently, researchers usually use some fixed frame to do random crop. For example, using a frame of
224 × 224 to do random crop in a picture of 256 × 256. It not only increases the data, but it also retains
the most information of the data.

However, not all traditional ways of data processing can be helpful when dealing with SAR
images. The operation of data processing may loss original information and amplify noise information.
Sometimes, random crop may lose some important information. When the main information of images
diverges of the center, using random crop cannot perform well, as shown in Figure 6, the bow and the
stern of the ship have been cut. In many traditional cases, such as image classification with a cats and
dogs dataset, they usually have tens of thousands images for training and testing. When dealing with
these problems, though using random crop may lose some information, but they could still keep the
main information of images. This information is sufficient for further work. When concerned with
SAR images, this method cannot get good performance as expected.
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Figure 6. Image with random crop.

If we control our crop frame to make sure that the main parts of the pictures haven’t been
cut, as shown in Figure 7, it should be noticed that these pictures can be seen as one image and its
translations. This method may have good performance in some simple models, which can extract most
of the features of the images by training with that data. However, when concerned with deep neural
networks, such as Resnet-50, the repeated images cannot give more contributions for training. Thus
the performance cannot have more improvement.

   
(a) (b) (c) 

Figure 7. Images with random crop. (a–c) are three examples of images with random crop.

Rotating is also a popular way for data augmentation, it can keep main information of images.
However, people generally rotate images in an integer multiple of 90 degrees: 90, 180, 270. If we
rotate the image by a random number of degrees, some problems may appear. As shown in Figure 8,
when we rotate image 20 degrees, the black area may introduce a lot of disturbance into CNN training.

 

Figure 8. Image rotation of 20 degrees.

To solve this problem, we expansion the images in their edges with pixel pads to remove the black
area. The initial image and the image with rotating have been shown in Figure 9.
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(a) (b) 

Figure 9. Rotate image. (a) Original image. (b) Image rotated 256 degrees.

By using the proposed method, we not only increase the number of images, but we can also retain
the important information of the images. Some noise is still in the background, but concerning SAR
images, that noise of the sea surface can be accepted. Because of the characteristics of SAR images,
the angle of pictures may cause a lot of difference in CNN training than simple transposition. The data
augmentation of all images allows the network to produce better feature representations.

2.3.2. Transfer Learning and Fine-Tuning

Transfer learning is a learning technique that apply the known knowledge from one problem
to other related problem [31]. Transfer learning and fine-tune can successfully train a deep model
with small datasets. In this paper, we used some pre-trained models for transfer learning, such as
Resnet-50, Vgg-16, etc. Depending on structure of different models, we also do some fine-tuning in
their layers. The low-level neural layers learned by deep learning models are useful for extracting
features such as corners, edges. So, we make the assumption that the lower level neural layers share
common features. The methods take the weights of the models in the low-level features as the inputs
instead of random weights. Here, we only need to change their fully connected layers and classifiers.
For example, the Alexnet model has three linear layers, one dropout layer, and two ReLU layers in
its classifier, and the number of its output types are 1000. In our dataset, we need three types for
output. So we changed its last layer with output of 3, as shown in Figure 10. The classifier and the
fully connected layers should be changed as required.

Figure 10. Alexnet with fine-tuning.
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3. Results and Discussions

In this section, experiments are carried out to evaluate the performance of the proposed method.
Besides, the comparison with other methods indicates the outperformance of the proposed method.
We will discuss the results after our experiments.

3.1. Datasets

In this part, we will present our datasets. The SAR ship data set is derived from six full-size SAR
images from TerraSAR-X stripmap mode, with a resolution of 2 × 1.5 m in the range and azimuth
directions. Slices of SAR ship image are obtained by target detection. And with the aid of the real
ground information provided by AIS, all vessels are manually annotated by interpretation experts.
The data set includes a total of three types of ships: Bulk Carrier (B), Container Ship (C), and Oil Tanker
(OT). A total of 250 stripmap images were used, which were composed of 150 Bulk Carrier images,
50 Container Ship images, and 50 Oil Tanker images. The data size of Bulk Carrier is 64 × 64, and the
data size of Container Ship and Oil Tanker is 256 × 256. The chips of ships were shown in Figure 4.

These ship chips are split into training, validation dataset, with percentages of 70% and
30%, respectively.

3.2. Hyperparameters

In this paper, the momentum we set is 0.9. The whole network is trained purely supervised using
SGD with a minibatch size [37] of 64 examples, combined with a weight decay parameter of 0.00000001.
We rotated images in every 3 degrees for data augmentation. In this paper, the learning rate is initially
0.001 and is reduced by a factor of 0.1 after 100 epochs.

3.3. Experimental Data

By data augmentation, we have three different datasets, named D1, D2, D3. The D1 classification
data set is processed with traditional ways of flipping, brightening, sharpness, etc. The operation we
did was shown in Table 2. Therefore, we can expand the dataset seven times. The data are divided
into two sets: the training data set Dtrain1 (with 1440 samples) and the validation data set Dval1 (with
560 samples). Samples are shown in Figure 11.

Table 2. Traditional augmentation.

Operation Parameter

Rotate 90,180
Brightening 1.5

Color enhancement 1.5
Contrast 1.5

Sharpness 3.0
Flip Top bottom

   
(a) (b) (c) 

Figure 11. Cont.
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(d) (e) (f) 

   
(g) (h) (i) 

Figure 11. Images with traditional ways. (a–c) Bulk Carrier images with processing. (d,e) Container
Ship images with processing. (g–i) Oil Tanker images with processing.

The D2 classification data set is processed with random crop, divided into two sets: the training
data set Dtrain2 (with 14270 samples) and the validation data set Dval2 (with 8400 samples), as shown
in Figure 12.

   
(a) (b) (c) 

Figure 12. Images with random crop. (a) Bulk Carrier image with random crop. (b) Container ship
image with random crop. (c) Oil Tanker image with random crop.

The D3 classification data set is processed with proposed method, divided into two sets:
the training data set Dtrain3 (with 13,823 samples) and the validation data set Dval3 (with 8127
samples), as shown in Figure 13.

   
(a) (b) (c) 

Figure 13. Images with rotate. (a) Container Ship image with rotate. (b) Oil Tanker image with rotate.
(c) Bulk Carrier image with rotate.
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These three datasets were trained with models as shown in Section 2.1. The image chips of the
dataset are listed in Table 3. To confirm the correctness of our methods, we also use the original image
in validation dataset as our test dataset. The test datasets are listed in Table 4.

Table 3. D1, D2, and D3 dataset.

D1 Dataset D2 Dataset D3 Dataset

Label Train Validation Label Train Validation Label Train Validation

Bulk Carrier 896 304 Bulk Carrier 6110 4560 Bulk Carrier 5595 4255
Container Ship 272 128 Container Ship 4080 1920 Container Ship 4114 1936

Oil Tanker 272 128 Oil Tanker 4080 1920 Oil Tanker 4114 1936

Table 4. Test dataset.

Label Test

Bulk Carrier 38
Container Ship 16

Oil Tanker 16

All of the experiments have been done several times, and we listed the average results of
the experiments.

3.4. First Experiment: Datasets Using Traditional CNN model

In the first experiment, we used the traditional model, as shown in Figure 1a, deal with D1, D2,
and D3 datasets.

The results of the first experiment are summarized in Table 5, where accuracies achieved by
the traditional CNN models on our validation data set are listed for the considered three classes of
maritime targets.

Table 5. Datasets using traditional CNN model.

Dataset Accuracy (%)

D1 91.43
D2 87.49
D3 88.76

From Table 5, we can see that the traditional CNN models have low accuracy in the D2 and D3
datasets, but perform better with D1 dataset. This is expected, as the traditional CNN model we used
have only 10 layers, which is a simple neural network. The D1 dataset has a total of 2000 images for
training, so the simple network can produce features pretty well, while when consider with D2 and
D3 dataset, the simple network cannot give good expression. Therefore, they had lower accuracy.
Furthermore, when using traditional CNN models, it may take more than 1000 epochs when the results
become steady.

3.5. Second Experiment: Datasets Using Resnet-50 Model

In the second experiment, we used the Resnet-50 models deal with D1, D2, and D3 datasets.
The models was shown in Figure 1b.

The results of the second experiment are summarized in Table 6.
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Table 6. Datasets using Resnet-50 model.

Dataset Accuracy (%)

D1 94.67
D2 95.43
D3 98.52

As shown in Table 6, these results show that the deep networks with transfer learning have better
performance than the traditional CNN models when dealing with the three datasets. We can achieve
at least 3% higher accuracies for classification when compared with dataset using traditional CNN
model. With deep networks, the images with data augmentation can be trained effectively. These
results in Table 6 suggest that the proposed method is able to give more target details of the input
image for training, it has 3% higher accuracies compared to the method which used random crop
and have almost 4% higher accuracies compared to the method which used traditional ways of data
augmentation. These results proved that our method is partly corrected.

3.6. Third Experiment: Dataset Using Other Models

In the third experiment, we used other models compared with Resnet-50 models in the D3 dataset.
The results are summarized in Table 7.

Table 7. D3 dataset using different models.

Model Accuracy (%)

Resnet-50 98.52
Alexnet 96.31
VGG-16 98.46

Densenet-121 98.96
Resnet-34 97.24

The results in Table 7 show that with our method, many models can get good performance,
and Densenet-121 model have better performance than other popular models, but it may take much
time for training. VGG-16 net also performs well. Because of the good performance in Densenet-121,
we guess that with deeper networks, further improvement may be attained.

3.7. f1-Score and Misclassified Ships

As shown in Figure 4, we can find that the Bulk Carrier images are bright in its edges and have
small length and width. But the Container Ship and Oil Tanker are pertained to be with long length
and short width. Therefore, it can be predicted that we could easily classified Bulk Carrier with its size
characteristics. However, distinguishing between Container Ships and Oil Tankers may be a challenge.

For further study, we also use precision (the ratio of true positives and predicted positives) and
recall (the ratio of true positives and all positives samples) to evaluate our results of D3 dataset,
which was trained with Resnet-50 models. And we use f1-score to combine precision and recall into
one. The f1-score is then given as

f 1score = 2 × Precision ∗ Recall
Precision + Recall

, (4)

The results of the experiment are summarized in Table 8.
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Table 8. D3 dataset with Resnet-50 models.

Label Precision Recall f1-Score

Bulk Carrier 1 1 1
Container Ship 0.9763 0.9355 0.9555

Oil Tanker 0.9381 0.9773 0.9573
Avg. total 0.9715 0.9709 0.9709

Some misclassified samples are shown in Figure 14.

  
(a) (b) 

  
(c) (d) 

Figure 14. Misclassified ships. (a) Container Ship misclassified as Oil Tanker. (b) Oil Tanker
misclassified as Container Ship. (c,d) are probabilities of three categories.

The results in Table 8 show that the classifier has a high f1-score for the classes Bulk Carrier.
Due to Bulk Carrier’s distinct shape and size characteristics, it is easy to classify. As shown in
Table 8, we can entirely classify the Bulk Carrier images. Consider Container Ships and Oil Tankers,
distinguishing between them is a challenge in ship classification, because they have similar shapes and
sizes. However, with our method, we can achieve the scores of 0.9555 and 0.9573, which proves that
our method performs well in all of the three classes.

3.8. Comparison with Other Methods

The good performance has been shown from the results in Tables 2–8. To further confirm the
importance of combing data processing and training, we did a new experiment. We used the original
dataset with no data processing for training and watched the performance with transfer learning and
simple CNN models. The results were shown in Table 9.
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Table 9. Experiment using original dataset.

Method Accuracy (%)

Original dataset with simple CNN models 85.71
Original dataset with transfer learning 94.93

When compared the results with Tables 2–8. we can easily find that with no data processing in
our dataset, the CNNs cannot perform well either using transfer learning or not. The experimental
results confirm that both the data processing and the way in CNN training should be concerned to get
better performance.

To confirm our method is effective, we also compare with other methods. In [5], the authors
used deep neural networks with transfer learning and fine-tuning for SAR ship classification and they
achieved good results. In [17], a multiple input resolution CNN model is proposed and its performance
is evaluated. In [38], authors proposed a novel ship classification model combining kernel extreme
learning machine and dragonfly algorithm in binary space. The result was shown in Table 9. Because
of the dataset and the model, the result may not be exactly correct. When compared our method with
these studies, in [5,38], authors did not do data augmentation but training data with fine-tune and
a new CNN model. In [17], authors processed data with multiple resolution and used random crop for
data augmentation.

The result in Table 10 shows that our method can get better performance compared with other
proposed method by taking a compromise between data processing and CNN training, both in accuracy
and f1-score.

Table 10. Comparison with other method.

Method Accuracy (%) f1-Score

Our Method 98.52 0.9715
Method in [5] 97.62 0.9565

Method in [17] Unknown 0.9443
Method in [38] Unknown 0.9404

3.9. Performance in Test Dataset

We also did an experiment with a test dataset. As shown in Table 4, because the test datasets only
include 70 images, the data may undulate significantly. The results are summarized in Table 11.

Table 11. Experiment with test dataset.

Accuracy (%) Classified/Real

98.57 69/70

The result shows that with our method, we can also get good performance with a test dataset.

4. Conclusions

This paper presented a new method for SAR targets classification on TerraSAR-X high-resolution
images. To verify our method, we take several experiments to compare. The experimental results reveal
that: (1) compared with the dataset trained via random crop, traditional data augmentation, our method
achieve the best performance with regard to classification accuracy. (2) With the proposed method
in our dataset, the Densenet-121 model scored the best classification performance with an accuracy
of 98.96%, other models like VGG-16, Resnet-50 also perform well. (3) When compared with other
researchers’ work, our method can get at least 1% higher accuracies. We also have advantage in
f1-score. (4) Our method also has good generalization ability. Our paper has presented the application
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of our method in ship classification, the point of ship classification is that we cannot get enough
high-resolution SAR ship images. Therefore, if we can solve the data problem, we think we can also
get good results when promoting our method to other SAR fields with more images and details. Other
procedures in the preprocessing step of the images, such as images with GAN, SRCNN, may be the
focus of future work.
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Abstract: Synthetic Aperture Radar (SAR) is widely used in oceanic eddies research. High-resolution
SAR images should be useful in revealing eddy features and investigating the eddy imaging
mechanism. However, SAR imaging is affected by various radar parameters and environmental
factors, which makes it quite difficult to learn directly from SAR eddy images. In order to interpret
and evaluate eddy images, developing a proper simulation method is necessary. However, seldom
has a SAR simulation method for oceanic eddies, especially for shear-wave-generated eddies, been
established. As a step forward, we propose a simulation method for oceanic shear-wave-generated
eddies. The Burgers-Rott vortex model is used to specify the surface current field of the simulated
eddies. Images are then simulated for a range of different radar frequencies, radar look directions,
wind speeds, and wind directions. The results show that the simulated images are consistent with
actual SAR images. The effects of different radar parameters and wind fields on SAR eddy imaging
are analyzed by qualitative and quantitative methods. Overall, the simulated images produce a
surface pattern and brightness variations with characteristics resembling actual SAR images of
oceanic eddies.

Keywords: oceanic eddies; shear-wave-generated eddies; burgers-Rott vortex model; SAR image
simulation

1. Introduction

As an important part of ocean dynamics, the formation, motion, and dissipation of eddies
are significant research issues for oceanographers. The movement of eddies will agitate seawater
and expand the scope of biological organisms, thus affecting the distribution of organics and the
transportation of heat and salt in the ocean. Synthetic Aperture Radar (SAR) is capable of acquiring
high-resolution images all-day and in all weather, and it is sensitive to minor changes of ocean surface
roughness produced by eddies. Therefore, SAR images are advantageous in the identification and
study of oceanic eddies. At present, SAR images are widely used for the detection [1–5] and statistical
research [6–8] of oceanic eddies.

SAR imaging of eddies is mainly determined by four mechanisms. The first one is the shear-wave
mechanism [8–12], which is associated with the wave/current interactions in the zones of current
shear, and the eddy manifests itself in the form of regions of modulated normalized radar cross section
(NRCS) and twisted into spirals in SAR images. The second one is the film mechanism [8–10,13], which
is caused by the suppression of gravity-capillary waves by surface films of natural origin. Such surface
films alter the sea surface tension by smoothing ripples and cause the diminishing of NRCS. The third
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eddy manifestation mechanism is one possible due to variations in the wind field caused by changes in
the atmospheric boundary layer across an oceanic temperature front [8,9,13,14]. The fourth mechanism
contributes to eddy visualization in SAR images by tracing currents with visible particles, e.g., ice
pieces [8–10,15].

Oceanic eddies are captured by SAR, 29% of which are shear-wave-generated; the rest are mostly
film-generated [8]. Film generated eddies, owing to the notable smoothing effect on ocean surface
roughness, are usually obvious and easy to detect. However, shear-wave-generated eddies, appearing
on SAR images through surface roughness modulation from wave-current interaction, are usually
less obvious. Image features of shear-wave-generated eddies are affected by various factors, such as
wind, current, seafloor topography, SAR parameters, etc. Features of shear-wave-generated eddies
are usually the product of several of the above factors, which are sometimes even hard to recognize.
Besides, the imaging conditions of actual SAR images is usually unknown and hard to control, which
makes it quite difficult to conclude feature patterns of eddies directly from SAR images. Thus,
this paper proposes a simulation method whose results may provide guidance for interpreting the
features of the shear-wave-generated eddies in SAR images and facilitate detection and visualization
of shear-wave-generated eddies in future works.

Shear-wave-generated eddies in SAR images will present brightness variations which correspond
to the smoothed and rough region [16]. Ref. [11] presents a schematic diagram of imaging geometry
for an idealized anticyclonic eddy, as shown in Figure 1. A dark line appears on the upper left and
lower right portions of the eddy, and a bright line on the lower left and upper right of the eddy.
This brightness variation of the shear-wave-generated eddy depends on the radar look direction and
wind field. By analyzing two airborne SAR images of the same eddy under two orthogonal flight
tracks, Lyzenga [11] found that under two orthogonal radar look directions, the eddy spirals show the
opposite brightness variation. Johannessen [12] also found that the changes in the radar look direction
result in varying NRCS along eddy spirals. In addition, Ivanov [10] mentioned that wind speed has an
effect on the eddy feature in SAR images. However, the SAR parameters used to observe the eddies
are only a subset of the full parameter set. Thus, the results of these SAR images only represent some
of the possible eddy observations.

Figure 1. Schematic diagram of imaging geometry for idealized anticyclonic eddy [11].

In order to interpret and evaluate the effects of the radar look direction and wind field conditions
on SAR eddy imaging, numerical imaging simulations can serve as an effective tool for the systematical
investigation of brightness variations of shear-wave-generated eddies. Cooper et al. [16] used the
inertial instability model and the Environmental Research Institute of Michigan (ERIM) Ocean Model
to simulate SAR images of film-generated eddies and analyzed the effects of radar parameters and
wind fields on eddy imaging. However, SAR image simulation for shear-wave-generated eddies has
rarely been performed, and the influence of different radar parameters and wind field conditions on
imaging characteristics of these eddies has not been discussed systematically. Therefore, the objective
of the present study is to propose a simulation method to simulate radar backscatter images for
shear-wave-generated eddies and analyze the influence of the radar look direction and wind field
conditions on SAR eddy imaging.
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The remainder of this paper is organized as follows: In Section 2, the simulation method and the
model used is described in detail. Section 3 verifies the correctness of the proposed method based
on ENVISAT-1 ASAR and ERS-2 SAR images. The influence of different radar looks directions, wind
directions and wind speeds on SAR eddy imaging are discussed in Section 4. We conclude with a
discussion of the applicability of our research for future investigations on shear-wave-generated eddies
in Section 5.

2. Simulation Method of SAR Images of Oceanic Shear-Wave-Generated Eddies

The simulation process was divided into two steps: Firstly, the current field of eddy was
established on the basis of the Burgers-Rott vortex model. Then, the established current field of
the eddy and sea surface wind field were inputted into an oceanic SAR imaging simulation model,
and the simulated image was obtained.

2.1. Establishment of Surface Current Field

The features of shear-wave-generated eddies mainly present themselves as spirals in SAR images.
Therefore, the hydrodynamic vortex model which presents the eddy spirals should be used to establish
the eddy current field. Typical vortex models which are qualified include the Rankine vortex [17],
Oseen vortex [18], Burgers-Rott vortex [19–22], and Sullivan vortex [23]. The Rankine vortex model
assumes that the vorticity of its core is discontinuous, which is not the case for shear-wave-generated
eddies. The Oseen vortex model is hypothesized to be a plane flow; however, shear-wave-generated
eddies should be three-dimensional. Therefore, two three-dimensional vortex models with an extra
axial velocity have been proposed, i.e., the Burgers-Rott and the Sullivan vortex models. The Burgers-Rott
vortex model is a spiral vortex instead of a two-cell vortex like that of the Sullivan vortex model.
Due to the fact that the features of shear-wave-generated eddies mainly present as spirals in SAR
images, the Burgers-Rott vortex model which can present the eddy spirals is most qualified to establish
the current field of the shear-wave-generated eddy.

The Burgers-Rott vortex model is actually an exact solution obtained from the Navier-Stokes
equation with the assumption that the vortex is stationary and axisymmetric, and the radial velocity
Vr and the circumferential velocity Vθ are independent of the axial coordinate z [19–22], i.e.,

Vr = Vr(r), Vθ = Vθ(r), Vz = Vz(r, z) (1)

The continuity equation of the incompressible flow is

∂(rVr)

∂r
+

∂(rVz)

∂z
= 0 (2)

The projection of the N-S equation in the circumferential direction can be expressed as

Vr
∂Vθ

∂r
+

VrVθ

r
= υ(

∂2Vθ

∂r2 +
1
r

∂Vθ

∂r
− Vθ

r2 ) (3)

where υ is the kinematic viscosity coefficient of the molecule. Providing the circulation of velocity
Γ = 2πrVθ , Equation (3) can be rewritten as

d2Γ
dr2 = (

1
r
+

Vr

υ
)

dΓ
dr

(4)

Since the radial velocity Vr is only a function of the radial coordinate r, the general solution of
Equation (4) can be expressed as

Γ = c1H(r) + c2 (5)
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where c1 and c1 are constants, and

H(r) =
r∫

0

x exp

⎧⎨⎩
x∫

0

[Vr(s)/υ]ds

⎫⎬⎭dx (6)

Considering r → 0 at the vortex core, Γ → 0 should be ensured. Consequently, we know that
c2 = 0. At r → ∞ , Γ → Γ0 , we can obtain c1 = Γ0/H(∞). Following this, the circumferential velocity
Vθ can be computed as

Vθ =
H(r)

2πrH(∞)
Γ0 (7)

To determine the unknown relationship between the axial velocity Vz, the radial velocity Vr and r,
it is assumed that the Vz is independent of the radial coordinate r and has a linear relationship with
z, i.e.,

Vz = αz, α > 0 (8)

where α is a constant named suction intensity. Substituting Equation (8) into Equation (2), d(rVr)/dr = −αr
can be obtained, and the general solution is Vr = − α

2 r + c/r. Considering r → 0 at the vortex core,
a finite velocity is ensured. Therefore, the integral constant c is zero, and

Vr = −α

2
r (9)

By substituting Equation (9) into Equation (6), H(r) can be obtained. Following this, the
circumferential velocity Vθ can be computed as

Vθ =
Γ0

2πr

[
1 − exp(−αr2

4υ
)

]
(10)

According to the above derivation, the three-dimensional velocity field of the vortex in the
cylindrical coordinate system is given by Equations (8)–(10). Transform Equations (9) and (10) into the
Cartesian rectangular coordinate, and the vortex velocity field can be expressed as

Vx = −α

2
x − Γ0α

8πυ
y

Vy =
Γ0α

8πυ
x − α

2
y

(11)

where Vx is the component of the velocity field in the x direction, and Vy is the component of the
velocity field in the y direction. Therefore, by setting the parameter values of α and Γ0, different
two-dimensional current fields of vortex can be obtained according to Equation (11).

Figure 2 shows the simulated current fields of vortex. The parameters of the simulation are
given in Table 1. Comparing Figure 2a,b, the value of α clearly affects the velocity magnitude of the
vortex current field; the velocity magnitude increases with increasing α values. Moreover, the sign of α

determines the rotation direction of the vortex current field. The rotation direction is clockwise when α

is positive, but anticlockwise when α is negative, as shown in Figure 2b,c. The value of Γ0/υ affects
the shape of the vortex; the larger the value of Γ0/υ, the larger the curvature of the vortex, as shown in
Figure 2b,d.
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(a) (b)

(c) (d)

Figure 2. Simulated current fields of vortex based on the Burgers-Rott model. (a) α = 0.0204,
Γ0/υ = 10π, the maximum velocity of the vortex current field Vmax = 0.68 m/s, and the rotation
direction of the vortex current field is clockwise. (b) α = 0.0272, Γ0/υ = 10π, Vmax = 1 m/s, and
the current field is clockwise. (c) α = −0.0272, Γ0/υ = 10π, Vmax = 1 m/s, and the current field is
anticlockwise. (d) α = 0.0272, Γ0/υ = 12π, Vmax = 1 m/s, and the current field is clockwise.

Table 1. The simulation parameters in Figure 2.

Figure α Γ0/υ Vmax Rotation Direction

(a) 0.0204 10 π 0.68 m/s clockwise
(b) 0.0272 10 π 1 m/s clockwise
(c) −0.0272 10 π 1 m/s anticlockwise
(d) 0.0272 12 π 1 m/s clockwise

2.2. SAR Image Simulation

After the establishment of the eddy current field, an oceanic SAR imaging simulation model was
required for simulating SAR eddy images. For this purpose, we selected M4S,f which was developed
by Roland Romeiser of the University of Hamburg, Germany. M4S is a software toolkit based on
a modified composite surface model for numerical simulations of SAR imaging of oceanic surface
current features [24–26], and it can simulate surface wave spectra modulated by spatially varying
currents. Different wind fields, radar and platform parameters can be set to investigate their impact on
SAR eddy features with the same ocean surface current field induced by eddies.

A flow chart of the simulation process is presented in Figure 3. M4S calculates the NRCS of the sea
surface under given radar parameters by reading the sea surface wind field and current field as input
data. Among them, the hydrodynamic parameters include α and Γ0/υ. The wind field parameters
contain wind speed and direction. The SAR parameters include radar frequency, incidence angle,
polarization, and look direction. The platform parameters are flight height and velocity. With the
input current field established by the Burgers-Rott vortex model, wind field, and radar parameters,
a simulated SAR eddy image is shown in Figure 4. The size of the scene is 20 km × 20 km, and the
platform and radar parameters are given in Table 2. The hydrodynamic parameter α and Γ0/υ was set
to be −0.001486 and 10π, respectively. The wind speed was 5 m/s, and the wind direction was 225◦.
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Figure 3. Flow chart of the simulation method.

Figure 4. Simulated SAR image of an eddy. The size of the scene is 20 km × 20 km.

Table 2. The simulation parameters of Figure 4.

Parameters Values

Radar look direction 180◦
Incidence angle 23◦
Radar frequency C-band

Polarization HH
Platform height 800 km

Platform velocity 7455 m/s

3. Validation of the Simulation Method

In this section, simulated eddy images were compared with actual SAR images to validate the
rationality of the proposed simulation method.
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3.1. Example 1: The Experimental Validation Using ENVISAT-1 ASAR Image

Figure 5 is an ENVISAT-1 ASAR IM image acquired in Luson Strait, on 27 April 2005 at
01:53:42 UTC. The related radar parameters are listed in Table 3. Frame A (20 km × 20 km) highlights
a shear-wave-generated eddy with a diameter of about 11.2 km, which is shown in detail in Figure 6.

Figure 5. ENVISAT-1 ASAR image of the Luson Strait acquired on 27 April 2005 at 01:53:42 UTC.
Frame A (20 km × 20 km) highlights a shear-wave-generated eddy.

Table 3. The related parameters of ENVISAT-1 ASAR.

Platform Polarization Band Boresight Incidence Angle Platform Height Platform Velocity

ENVISAT-1 HH C 23.1◦ 800 km 7455

Figure 6. Enlargement of the shear-wave-generated eddy in Frame A. The flight and look direction of
ENVISAT-1 ASAR are indicated by black arrows. Two wind vectors are shown as red arrows.

In Figure 6, the flight and look direction of ENVISAT-1 ASAR are indicated by black arrows.
Two wind vectors were identified and shown as red arrows. The sea surface wind data was obtained
from QuikSCAT on 27 April 2005 [27]. The grid resolution of the wind field is 25 km × 25 km over the
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ocean surface. The wind speeds and directions from left to right are listed as follows: (a) 5.44 m/s,
159.5◦ and (b) 3.80 m/s, 273.6◦, where the wind direction is defined as the angle clockwise from the
north in degrees. In addition, the corresponding current field reanalysis data was obtained from the
Global Ocean Data Assimilation System (GODAS) with a spatial resolution of (1/3)◦ × 1◦. A five-day
average of the current field data from 25 April 2005 to 29 April 2005 was considered.

According to the above data, the wind speed near the eddy area is 5.21 m/s, the wind direction
is 223.6◦, and the current velocity is 0.26 m/s. Therefore, α was set to be −0.001486 according to
Equation (11). Γ0/υ was set to be 10π, adjusting the simulated eddy spirals to fit well with the actual
eddy shape. The radar parameters were set with reference to the ENVISAT-1 ASAR parameters listed
in Table 3. The size of the current field is 20 km×20 km, and the spatial resolution is 100 m × 100 m.

The comparison between the simulated and ENVISAT-1 ASAR image is illustrated in Figure 7a,b.
The radar look and wind direction are indicated by black arrows. The eddy shape and brightness
variations along eddy spirals in the simulated image appear to be consistent with the ENVISAT-1 ASAR
image. Under the counterclockwise direction (the cyclonic eddy in the northern hemisphere rotates
counterclockwise), the spirals show brightness variations from the outside to inside. The brightness
variations along the longest spiral line A follow the order bright-dark-bright-dark, while spiral line B
and C follows bright-dark. Such features are explained by changes in the spectral density of Bragg
waves responsible for the backscattering of radar signals [28]. In addition, brightness variations along
eddy spirals are periodic. A change from bright to dark can be defined as one alternation cycle, and the
alternation cycle is related to the scale of the spirals, i.e., the alternation cycle increases as the spirals
become longer.

(a) (b)

Figure 7. Comparison of (a) the simulated SAR eddy image and (b) the ENVISAT-1 ASAR image under
the same radar parameters and wind field conditions. The radar look and wind direction are indicated
by black arrows.

3.2. Example 2: The Experimental Validation Using ERS-2 SAR Image

To further verify the feasibility of the method, we performed a similar simulation experiment of
an ERS-2 SAR image. Figure 8 is an ERS-2 SAR image acquired in the Luson Strait, on 11 June 2010 at
01:25:47 UTC. The related radar parameters are listed in Table 4. Frame B (24 km × 24 km) highlights
a shear-wave-generated eddy with a diameter of about 24 km, which is shown in detail in Figure 9.
In Figure 8, oceanic wakes generated by the island in the upper right corner of the image also exist,
but this is beyond the scope of this paper.
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Figure 8. ERS-2 SAR image of the Luson Strait acquired on 11 June 2010 at 01:25:47 UTC. Frame B
(24 km × 24 km) highlights a shear-wave-generated eddy.

Table 4. The related parameters of ERS-2 Synthetic Aperture Radar (SAR).

Platform Polarization Band Boresight Incidence Angle Platform Height Platform Velocity

ERS-2 VV C 23◦ 780 km 7500 m/s

Figure 9. Enlargement of the shear-wave-generated eddy in Frame B. The flight and look direction of
ERS-2 SAR are indicated by black arrows. The wind vector is shown as a red arrow.

In Figure 9, the flight and look direction of ERS-2 SAR are indicated by black arrows. The wind
vector was identified and shown as a red arrow. The sea surface wind field reanalysis data was
obtained from the Europe Centre for Medium-Range Weather Forecasts (ECMWF) on 11 June 2010.
The grid resolution of the wind field is 0.125◦ × 0.125◦ over the ocean surface. In addition, the
corresponding current field reanalysis data was obtained from GODAS with a spatial resolution of
(1/3)◦ × 1◦. A five-day average of the current field data from 10 June 2010 to 14 June 2010 was
considered. According to the above data, the wind speed near the eddy area is 2.1 m/s, the wind
direction is 45◦, and the current velocity is 0.23 m/s. Therefore, α was set to be 0.000657 according
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to Equation (11). The radar parameters were set in reference to the ERS-2 SAR parameters listed in
Table 4. The size of the current field is 24 km × 24 km, and the spatial resolution is 100 m × 100 m.

The comparison between the simulated and ERS-2 SAR image is illustrated in Figure 10a,b.
The radar look and wind direction are indicated by black arrows. The island wakes are omitted during
the simulation since we only focused on the eddy spiral. The eddy shape and brightness variations
along the eddy spiral in the simulated image appear to be consistent with the ERS-2 SAR image.
Under the clockwise direction (the anticyclonic eddy in the northern hemisphere rotates clockwise),
the brightness variations along the spiral from the outside to the inside follow the order dark-bright.
This result is consistent with the imaging geometry for an idealized anticyclonic eddy in Figure 1.
Figure 10a shows the opposite of brightness variations along the eddy spiral, compared to Figure 1,
since their radar look directions are opposite.

Figure 10. Comparison of (a) the simulated SAR eddy image and (b) the ERS-2 SAR image under the
same radar parameters and wind field conditions. The radar look and wind direction are indicated by
black arrows.

According to the above experimental validations, the proposed simulation method can realize
an SAR image simulation of shear-wave-generated eddies. Nevertheless, some differences still exist
between the simulated and actual SAR images. One of the most distinctive differences is around the
eddy cores, where the NRCS of the simulated eddy should be darker. We believe that this is due to
the incapability of the M4S model to take a three-dimensional current field as input. The altitude
change caused by the eddy will generate a vertical velocity component, and it gets larger near the
eddy core. Though the Burgers-Rott vortex model can generate a three-dimensional current field, M4S
can only recognize the plane components, thus causing the inadequate modulation of NRCS around
the eddy cores.

Some fine structures of the eddies cannot be simulated, although the agreement between the
observed and simulated brightness variations of the eddy spirals is generally good. The radar imaging
model used for this study is still based on a number of simplifying assumptions. For example, it is not
clear whether the actual effect of a spatially varying atmospheric stratification on the surface wave
field is always adequately represented by the effect of the proposed equivalent variations of Vx and
Vy. Furthermore, our surface wave model does not yet account for effects like wave breaking [29] or
feedback between the surface roughness and wind stress [30]. The inclusion of such effects may lead
to changes in the simulated radar signatures. Nevertheless, our proposed method is mainly focused
on the features along the eddy spirals, since fully simulating the eddy features is too complicated;
besides, eddy spirals are usually the only features which are detectable from actual SAR images.
Our conclusions of the eddy spiral features may facilitate eddy detection, such as supervised or
semi-supervised machine learning of shear-wave-generated eddy detection. We believe that the main
results of this study are quite robust and not very sensitive to future model modifications.
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4. Influence of Radar Look Direction and Wind Field on SAR Eddy Imaging

In this section, the images under different radar look directions, wind directions and wind speeds
were generated by the proposed simulation method to analyze their influence on SAR eddy imaging.

Brightness varies not only along the eddy spirals but also throughout the SAR eddy image.
Such brightness variations are, as a matter of fact, a modulation of the normalized radar cross section,
which is also referred to as NRCS. The eddy spiral presents itself due to its higher or lower NRCS than
the background. Along an eddy spiral, whether it gets brighter or darker, can be quantified as the
NRCS contrast between values along the spiral and surrounding it. Therefore, Δσ is defined as the
maximum NRCS contrast, or in other words, it is calculated from the brightest or darkest part of the
eddy spiral to represent its visibility from the simulated image. The larger the value of Δσ, the clearer
the spirals. To avoid the bias that may result from speckles or thermal noises, an average NRCS of
twenty pixels was used for each along or beside the spiral to calculate the difference. In addition, the
NRCS dynamic range of the background can also affect the visibility of the eddy, so Δσr is defined as
the NRCS contrast of the entire background image; it is also calculated from twenty pixels on average
similar to Δσ. The larger the value of Δσr, the larger the NRCS contrast of the overall SAR image.
Fifty simulations under each radar frequency have been conducted; the eddy spiral features and the
calculated Δσ and Δσr are almost the same.

In general, the influence of the radar look direction, wind direction and wind speed on SAR
eddy imaging will be analyzed from four aspects: (1) the brightness variation along eddy spirals and
(2) the brightness variation of the SAR image, which can be directly distinguished from simulated
images; (3) the visibility of eddy spirals and (4) the brightness contrast of the SAR image, which can be
quantified using Δσ and Δσr respectively.

4.1. Influence of Radar Look Direction

During the simulations, the radar look directions are defined as the angle counterclockwise from
the x axis of the current field in degrees, and they were selected as 0◦, 90◦, 180◦, and 270◦ respectively.
The four look directions with respect to the given current field are shown in Figure 11. The red arrows
represent radar look directions. The x axis of the current field and wind direction are indicated by black
arrows. Simulated SAR images under the four look directions are given in Figure 12. The parameters
of the simulations are shown in Table 5.

Figure 11. Four radar look directions with respect to the given current field. The red arrows represent
the four radar look directions. The x axis of the current field and wind direction are indicated by
black arrows.
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(a) (b)

(c) (d)

Figure 12. Simulated SAR eddy images under different radar look directions. (a–d) correspond to the
look directions of 0◦, 90◦, 180◦, and 270◦ respectively. The black arrow represents the wind direction
and the blue arrow indicates the rotation direction of the current field.

Table 5. The simulation parameters of Figure 12.

Parameters Values

Radar look direction 0◦, 90◦, 180◦, 270◦
Incidence angle 25◦
Radar frequency C-band

Polarization HH
Platform height 800 km

Platform velocity 7455 m/s
Wind direction 225◦

Wind speed 6 m/s
Rotation direction of current field counterclockwise

Maximum Current velocity 1 m/s

In Figure 12, the red arrows represent the four different look directions, the black arrow represents
the wind direction and the blue arrow indicates that the rotation direction of the eddy current
field is counterclockwise. As shown in Figure 12a–d, the eddy spirals present different brightness
variations, which are obviously related to the radar look directions. Under the look directions of 0◦

and 180◦, the brightness variations are both dark-bright-dark from the outside to the inside of the
eddy spirals. Meanwhile, under the look directions of 90◦ and 270◦, the brightness variations are
both bright-dark-bright. This indicates that the brightness variations along the eddy spirals are the
same in two parallel look directions. Meanwhile, under two orthogonal look directions, the brightness
variations are opposite. In addition, the results show that the simulated SAR images obtained under
each look direction are darker in the upper left portion, but brighter in the lower right portion, which
is due to the influence of the wind direction, as described in Section 4.2.

In general, the radar look direction determines the brightness variations along the eddy spirals, but
it has a limited effect on the brightness variations of the SAR image. To further analyze the influence of

322



Sensors 2019, 19, 1529

the radar look direction on SAR eddy imaging, Δσ and Δσr of Figure 12a–d were calculated. The results
are shown in Figure 13. To verify the validity of this result under different radar frequencies, L-, S-,
and X-band were also considered.

(a) (b)

Figure 13. (a) Normalized radar cross section (NRCS) contrast of eddy spirals Δσ and (b) NRCS
contrast of SAR image Δσr under different look directions and radar frequencies. Fifty simulations are
averaged to reduce speckle bias.

As shown in Figure 13a, the values of Δσ are the same in two parallel look directions, such as 0◦

and 180◦, which indicates the same visibility of eddy spirals under two parallel look directions.
Moreover, Figure 13a,b shows that there is a considerable value difference of Δσ between two
orthogonal look directions; however, the value difference of Δσr is relatively small. For example,
under the look direction of 0◦ and 180◦ at C-band, the value difference of Δσ is about 0.18 dB, while the
value difference of Δσr is only 0.08 dB. This indicates that the radar look direction has more influence
on the visibility of eddy spirals than the brightness contrast of the overall SAR image. In addition,
when the look direction is 0◦ or 180◦, the values of Δσ are larger, which means that the eddy is relatively
more obvious and conducive to be observed by SAR in this condition. On the other hand, as the radar
frequency increases, the values of Δσ and Δσr increase gradually. It is apparent that the eddy features
in the SAR images become clearer at higher radar frequencies.

In summary, the radar look direction mainly affects brightness variations and the visibility of eddy
spirals. The simulation results of Figure 12a are consistent with the imaging geometry for the idealized
anticyclonic eddy in Figure 1. When the radar look direction is 0◦ and the current field direction is
counterclockwise, the longest spiral of the cyclonic eddy changes from dark to bright and then to dark,
which is opposite to the brightness variations of the idealized anticyclonic eddy. Furthermore, the
conclusion of two orthogonal look directions is in accordance with the analysis of an ERS-1 SAR eddy
image in Ref. [11], thus verifying the effectiveness of the simulation.

4.2. Influence of Wind Direction

During the simulations, the wind directions are defined as the angle counterclockwise from the x
axis of the current field in degrees and were selected as 45◦, 135◦, 225◦, and 315◦ respectively. The radar
look direction was 180◦, and the other parameters were the same as those described in Section 4.1,
as shown in Table 6. The simulated SAR images under the four different wind directions are given in
Figure 14.
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Table 6. The simulation parameters of Figure 14.

Parameters Values

Radar look direction 180◦
Incidence angle 25◦
Radar frequency C-band

Polarization HH
Platform height 800 km

Platform velocity 7455 m/s
Wind direction 45◦, 135◦, 225◦, 315◦

Wind speed 6 m/s
Rotation direction of current field counterclockwise

Maximum Current velocity 1 m/s

(a) (b)

(c) (d)

Figure 14. Simulated SAR images under different wind directions. (a–d) correspond to the wind
directions of 45◦, 135◦, 225◦, and 315◦ respectively. The black arrow represents the radar look direction
and the blue arrow indicates the rotation direction of the current field.

In Figure 14, the red arrows represent four different wind directions, the black arrow represents
the radar look direction, and the blue arrows indicate that the eddy current field rotates in the
counterclockwise direction. Each simulated SAR image is divided into two parts by its diagonal.
As shown in Figure 14a–d, the brightness varies across the image and the brightness variation is
obviously related to the wind directions, that is, half of the image with the current field direction
opposite to the wind direction is brighter, whereas the other half is darker. This phenomenon can also
be observed in Figure 7. The lower right portions of Figure 7a,b are brighter than the other area is.
This indicates that the wind direction determines the brightness variations of the overall SAR image.
Though the brightness variations along the eddy spirals is different under different wind direction,
it is merely caused by the brightness variation of the entire SAR image, since when half of the image is
brighter, so are the eddy spirals in it. To further analyze the influence of wind direction on SAR eddy
imaging, Δσ and Δσr of Figure 14a–d were calculated. The results are shown in Figure 15. L-, S-, and
X-band were also considered.
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(a) (b) 

Figure 15. (a) NRCS contrast of eddy spirals Δσ and (b) NRCS contrast of SAR image Δσr under
different wind directions and radar frequencies. Fifty simulations are averaged to reduce speckle bias.

Figure 15a,b shows that under different wind directions, the values of Δσ and Δσr are slightly
different. This implies that wind direction has minor effect on the visibility of eddy spirals and the
brightness contrast of the overall SAR image. Therefore, wind direction generally affects the brightness
variations of the SAR image, and half of the image with the current field direction opposite to the wind
direction is brighter, whereas the other half is darker. In addition, the same conclusion as in Figure 13
can be obtained. The values of Δσ and Δσr increase as the radar frequency increases.

4.3. Influence of Wind Speed

To analyze the influence of wind speed on SAR eddy imaging, the radar look direction and wind
direction were kept constant, and wind speeds were set to be 4 m/s, 7 m/s and 10 m/s respectively.
The other parameters of simulations are given in Table 7. The simulated SAR images under different
wind speeds are shown in Figure 16.

(a) (b) (c)

Figure 16. Simulated SAR images under different wind speeds. (a–c) correspond to wind speeds
of 4 m/s, 7 m/s, and 10 m/s respectively. The red arrow represents the wind direction, the black
arrow represents the radar look direction, and the blue arrow indicates the rotation direction of the
current field.
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Table 7. The simulation parameters of Figure 16.

Parameters Values

Radar look direction 180◦
Incidence angle 25◦
Radar frequency C-band

Polarization HH
Platform height 800 km

Platform velocity 7455 m/s
Wind direction 225◦

Wind speed 4 m/s, 7 m/s, 10 m/s
Rotation direction of current field counterclockwise

Maximum Current velocity 1 m/s

In Figure 16, the red arrow represents the wind direction, the black arrow represents the radar
look direction, and the blue arrow indicates that the eddy current field rotates in the counterclockwise
direction. As shown in Figure 16a–c, wind speed does not change the brightness variations along the
eddy spirals, but affects the brightness variations of the overall SAR image. With increases in wind
speed, the entire simulated image becomes brighter. To further analyze the influence of wind speed on
SAR eddy imaging, Δσ and Δσr of Figure 16 were calculated. The results are shown in Figure 17. L-, S-,
and X-band were also considered.

 
(a) (b) 

Figure 17. (a) NRCS contrast of eddy spirals Δσ and (b) NRCS contrast of SAR image Δσr under
different wind speeds and radar frequencies. Fifty simulations are averaged to reduce speckle bias.

In Figure 17a, with increasing wind speed, the value of Δσ becomes smaller, indicating that
the eddy spirals become less obvious. Meanwhile, in Figure 17b, the value of Δσr increases with
the increasing wind speed, indicating that the brightness contrast of the entire SAR image increases.
In addition, there is a considerable value difference of Δσr between different wind speeds, but the
value difference of Δσ is relatively small. This suggest that the wind speed has more influence on the
brightness contrast of the overall SAR image than on the visibility of the eddy spirals.

On the other hand, the results indicate that the values of Δσ and Δσr are larger at higher radar
frequencies, which is the same as the conclusion drawn from Figures 13 and 15. Referring to existing
theories, a possible explanation for this conclusion should be the less defocusing effect as the radar
frequency gets higher. According to SAR imaging theory, the high resolution along the flight direction
is realized by synthesizing a large virtual aperture within the synthetic aperture time. However, the
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best resolution along the flight direction is restricted by its actual antenna aperture length, which is
half of the antenna aperture. To achieve the best resolution, the synthetic aperture time should be [31]:

T = 0.886
cR

DVSAR f
(12)

where f is the radar frequency, c is the speed of light, R is the nearest range between the platform
and imaged target, VSAR is the platform velocity, and D is the actual antenna aperture. The synthetic
aperture time, as a matter of fact, is the integrating time for the backscattered energy of a target to
be well focused. For the same set of antennae, a longer integrating time is needed for a higher radar
frequency, according to Equation (12). However, within the integrating time, moving targets will get
defocused, and this is inevitable especially when imaging the ocean surface. Therefore, under a higher
radar frequency, the SAR image of the eddy suffers less from defocusing due to a shorter integrating
time, the spirals are more obvious and the brightness contrast is larger. However, many additional
multi-frequency radar images of shear-wave-generated eddies will be needed for a validation of this
conclusion, in our opinion. This issue needs to be addressed in more detail in future projects and
experiments. We think that an important and solid conclusion can be drawn from our results, despite
some unresolved theoretical problems.

5. Conclusions

Based on the Burgers-Rott vortex model, a SAR image simulation method for oceanic
shear-wave-generated eddies is proposed in this paper. Furthermore, comparative analyses have
proven that the simulated images correspond well to the actual SAR images.

The simulated SAR images indicate that eddy spirals exhibit brightness variations, and the
alternation cycles of brightness variations are related to the scale of eddy spirals. However, the
quantitative relationship between the alternation cycles and the scale of spirals still needs to be
resolved through further statistical comparisons between the simulated and actual SAR images.

SAR images simulated under different radar look directions show that the look direction mainly
affects the SAR imaging of eddy spirals. The brightness variations along eddy spirals remain the same
under two parallel look directions but show opposite trends under two orthogonal look directions.
The visibility of eddy spirals under two parallel look directions is also the same and the spirals are more
obvious under radar look directions of 0◦ or 180◦. SAR images simulated under different wind fields
show that wind direction and wind speed mainly affect the SAR imaging of the whole eddy area. Wind
direction affects the brightness variations throughout the SAR image, and half of the image with the
current field direction opposite to the wind direction is brighter, whereas the other half is darker. Wind
speed affects the brightness variations and the brightness contrast of the SAR image. With an increased
wind speed, the image is brighter and its brightness contrast is higher. Therefore, in future SAR
observations of eddies, brightness features due to different radar look directions and wind field should
be considered while interpreting eddy images. Moreover, radars at higher frequencies also facilitate
the observation of eddy features. To our knowledge, a comparable agreement between observed
and simulated radar signatures of the shear-wave-generated eddies at more than one frequency, look
direction and wind field has never been conducted in previous studies.

SAR imaging of oceanic eddies is affected by radar parameters and environmental factors, and the
simulation method proposed in this paper can facilitate research on eddy features by changing radar
parameters and environmental conditions. The simulation results can interpret and evaluate the effects
of radar look direction and wind field conditions on SAR eddy imaging and provide guidance for
interpreting eddy features in SAR images. Nevertheless, the proposed simulation method and results
in this context are mainly focused on shear-wave-generated eddies. Other SAR imaging mechanisms
of oceanic eddies, including film mechanisms, thermal mechanisms, and ice mechanisms, need to be
resolved through further research.
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