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Preface to “Applied Artificial  
Neural Networks” 

Since their re-popularisation in the mid-1980s, artificial neural networks have 
seen an explosion of research across a diverse spectrum of areas. While an 
immense amount of research has been undertaken in artificial neural networks 
themselves—in terms of training, topologies, types, etc.—a similar amount of 
work has examined their application to a whole host of real-world problems. Such 
problems are usually difficult to define and hard to solve using conventional 
techniques. Examples include computer vision, speech recognition, financial 
applications, medicine, meteorology, robotics, hydrology, etc. 

This Special Issue focuses on the second of these two research themes, that of 
the application of neural networks to a diverse range of fields and problems. It 
collates contributions concerning neural network applications in areas such as 
engineering, hydrology and medicine. 

Christian Dawson 
Guest Editor 





Comparative Study on Theoretical and
Machine Learning Methods for Acquiring
Compressed Liquid Densities of
1,1,1,2,3,3,3-Heptafluoropropane (R227ea) via
Song and Mason Equation, Support Vector
Machine, and Artificial Neural Networks
Hao Li, Xindong Tang, Run Wang, Fan Lin, Zhijian Liu and Kewei Cheng

Abstract: 1,1,1,2,3,3,3-Heptafluoropropane (R227ea) is a good refrigerant that reduces
greenhouse effects and ozone depletion. In practical applications, we usually have
to know the compressed liquid densities at different temperatures and pressures.
However, the measurement requires a series of complex apparatus and operations,
wasting too much manpower and resources. To solve these problems, here, Song
and Mason equation, support vector machine (SVM), and artificial neural networks
(ANNs) were used to develop theoretical and machine learning models, respectively,
in order to predict the compressed liquid densities of R227ea with only the inputs of
temperatures and pressures. Results show that compared with the Song and Mason
equation, appropriate machine learning models trained with precise experimental
samples have better predicted results, with lower root mean square errors (RMSEs)
(e.g., the RMSE of the SVM trained with data provided by Fedele et al. [1] is 0.11,
while the RMSE of the Song and Mason equation is 196.26). Compared to advanced
conventional measurements, knowledge-based machine learning models are proved
to be more time-saving and user-friendly.

Reprinted from Appl. Sci. Cite as: Li, H.; Tang, X.; Wang, R.; Lin, F.; Liu, Z.; Cheng, K.
Comparative Study on Theoretical and Machine Learning Methods for Acquiring
Compressed Liquid Densities of 1,1,1,2,3,3,3-Heptafluoropropane (R227ea) via Song
and Mason Equation, Support Vector Machine, and Artificial Neural Networks.
Appl. Sci. 2016, 6, 25.

1. Introduction

The increasing problems of greenhouse effect and ozone depletion have drawn
people’s great attentions during the past decades [2–5]. In the field of heating,
ventilation, air conditioning, and refrigeration (HVAC and R) [6–8], scientists started
to use 1,1,1,2,3,3,3-heptafluoropropane (R227ea) [9–11] as a substitute in order to
replace other refrigerants that are harmful to the ozone (like R114, R12, and R12B1),
because R227ea has a zero ozone depletion potential (ODP) [12]. Other applications of

1



R227ea include the production of rigid polyurethane foams and aerosol sprays [11,13].
R227ea has been shown to be crucial in industrial fields and scientific research.

In practical applications, the use of R227ea requires the exact values of the
compressed liquid densities under certain values of temperatures and pressures.
However, due to the complexity and uncertainty of the density measurement of
R227ea, precise values of the density are usually difficult to acquire. To solve
this problem, molecular dynamic (MD) simulation methods [14–16] have been
used for predicting related thermophysical properties of refrigerants. Nevertheless,
these simulation methods have high requirements for computers and require long
computational times. Additionally, they need accurate forms of potential energy
functions. Motivated by these issues, here, as a typical case study, we aim at finding
out alternative modeling methods to help acquire precise values of the densities
of R227ea.

Acquiring the density by theoretical conclusion is an alternative approach to
replace the MD methods. Equation of state is one of the most popular descriptions of
theoretical studies that illustrates the relationship between temperature, pressure,
and volume for substances. Based on the recognition that the structure of a
liquid is determined primarily by the inner repulsive forces, the Song and Mason
equation [17] was developed in the 1990s based on the statistical-mechanics
perturbation theories [18,19] and proved to be available in calculating the densities
of various refrigerants recently [20]. However, limitations of the theoretical methods
are also apparent. Firstly, the calculated results of refrigerants are not precise
enough. Secondly, previous studies only discussed the single result with a given
temperature and pressure [20], neglecting the overall change regulation of the density
with the changes of temperature and pressure. To find out a better approach that
can precisely acquire the density values of R227ea, here, we first illustrate the
three-dimensional change regulation of the density of R227ea with the changes
of temperature and pressure using the Song and Mason equation, and also use novel
machine learning techniques [21–23] to predict the densities of R227ea based on
three groups of previous experimental data [1,24,25]. To define the best machine
learning methods for the prediction of the densities of R227ea, different models
should be evaluated respectively, which is a necessary comparison process in
environmental science. In this case study, support vector machine (SVM) and
artificial neural networks (ANNs) were developed, respectively, in order to find
out the best model for density prediction. ANNs are powerful non-linear fitting
methods that developed during decades, which have good prediction results in
many environmental related fields [26–30]. However, although ANNs usually give
effective prediction performances, there is a risk of over-fitting phenomenon [26]
if the best number of hidden nodes are not defined, which also indicates that the
data size for model training should be large enough. Additionally, the training of

2



ANNs may require relatively long training times if the numbers of hidden nodes
are high or the data size is large. Alternatively, SVM, a new machine learning
technique developed during these years, has been proved to be effective in numerical
predictions for environmental fields [26,27]. The SVM is usually considered to
have better generalization performance, leading to better predicted results in many
scientific cases [26]. Furthermore, a proper training of SVM has fewer requirements to
the data size, ensuring that it can be used for dealing with many complicated issues.
Despite the advantages of ANNs and SVM, for the prediction of compressed liquid
density of R227ea, it is hard to define the best models without studies. Therefore,
here, ANNs (with different numbers of hidden nodes) and SVM were developed
respectively. Comparisons were made among different methodologies in order to
find the best models for practical applications.

2. Experimental Section

2.1. Theoretical Equation of State

Based on statistical-mechanical perturbation theories [18,19], Song and
Mason [17] developed a theoretical equation of state to analyze convex-molecular
fluids, which is shown in Equation (1):

P
ρkBT

“ 1` B2pTqρ` αpTqρrGpηq ´ 1s (1)

where T is the temperature (K), P is the pressure (bar), ρ is the molar density
(kg¨m´3), kB is the Boltzmann constant, B2(T) is the second virial coefficient, α(T) is
the contribution of the repulsive forces to the second virial coefficient, Gpηq is the
average pair distribution function at contact for equivalent hard convex bodies [20],
η is the packing fraction. To the convex bodies, Gpηq can be adopted as follows [17,20]:

Gpηq “
1´ γ1η ` γ2η2

p1´ ηq3
(2)

where γ1 and γ2 are values to reproduce the precise third and fourth virial coefficients,
which can be estimated as [17,20]:

γ1 “ 3´
1` 6γ` 3γ2

1` 3γ
(3)

and

γ2 “ 3´
2` 2.64γ` 7γ2

1` 3γ
(4)
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In terms of η, it holds that

η “
bpTqρ
1` 3γ

(5)

where b is the van der Waals convolume, which can be shown with α [17,20]:

bpTq “ αpTq ` T
dαpTq

dT
(6)

B2(T), α(T) and b(T) can be described in with the temperature of normal boiling
point (Tnb) and the density at normal boiling point (ρnb) [17,20]:

B2pTqρnb “ 1.033´ 3.0069p
Tnb
T
q ´ 10.588p

Tnb
T
q

2
` 13.096p

Tnb
T
q

3
´ 9.8968p

Tnb
T
q

4
(7)

and

αpTqρnb “ a1

"

exp
„

´c1p
T

Tnb
q

*

` a2

#

1´ exp

«

´c2

ˆ

T
Tnb

˙´0.25
ff+

(8)

and

bpTqρnb “ a1

„

1´ c1

ˆ

T
Tnb

˙

exp
„

´c1

ˆ

T
Tnb

˙

` a2

#

1´

«

1` 0.25c2

ˆ

Tnb
T

˙0.25
ff

exp

«

´c2

ˆ

T
Tnb

˙´0.25
ff+

(9)

where α1 = ´0.086, α2 = 2.3988, c1 “ 0.5624, and c2 “ 1.4267.
Now that we have Equations (1)–(9) above, the last values we should know are γ,

Tnb, and ρnb. γ can be obtained from fitting the experimental results, and Tnb and ρnb
can be obtained from standard experimental data. According to previous studies,
for R227ea, γ is 0.760 [20], Tnb is 256.65 K [31] and ρnb is 1535.0 kg¨m´3 [31]. Now
we can only input the values of T (K) and P (bar) to Equation (1) and the calculated
density of R227ea can be acquired.

2.2. Support Vector Machine (SVM)

SVM is a powerful machine learning method based on statistical learning theory.
On the basis of the limited information of samples, SVM has an extraordinary ability
of optimization for improving generalization. The main principle of SVM is to
find the optimal hyperplane, a plane that separates all samples with the maximum
margin [32,33]. The plane helps improve the predictive ability of the model and
reduce the error which occurs occasionally when predicting and classifying. Figure 1
shows the main structure of a SVM [34,35]. The letter “K” represents kernels [36].
As we can see from Figure 1, it is a small subset extracted from the training data
by relevant algorithm that consists of the SVM. For practical applications, choosing
appropriate kernels and parameters are important for us to acquire better prediction
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accuracies. However, there is still no existing standard for scientists to choose these
parameters. In most cases, the comparison of experimental results, the experiences
from copious calculating, and the use of cross-validation that is available in software
packages can help us address this problem [34,37,38].
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2.3. Artificial Neural Networks (ANNs)

ANNs [39–41] are machine learning algorithms with the functions of estimation
and approximation based on inputs, which are inspired from the biological neural
networks of human brains. Being different from networks with only one or two
layers of single direction logic, they use algorithms in control determining and
function organizing. The interconnected networks usually consist of neurons that
can calculate values from inputs and adapt to different circumstances. Thus, ANNs
have powerful capacities in numeric prediction and pattern recognition, which have
obtained wide popularity in inferring a function from observation, especially when
the object is too complicated to be dealt with by human brains. Figure 2 presents a
schematic structure of an ANN for the prediction of compressed liquid density of
R227ea, which contains the input layer, hidden layer, and output layer. The input
layer consists of two nodes, representing the inputted temperature and pressure,
respectively. The output layer is made up of the neuron that represents the density
of R227ea.
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Figure 2. Schematic structure of an artificial neural network (ANN) for the prediction
of compressed liquid densities of 1,1,1,2,3,3,3-heptafluoropropane (R227ea).

3. Results and Discussion

3.1. Model Development

3.1.1. Theoretical Model of the Song and Mason Equation

With the Equations (1)–(9) and related constants, the three-dimensional
calculated surface of the compressed liquid density of R227ea can be obtained
(Figure 3). To make sufficient comparisons between theoretical calculated values
and experimental values, previous experimental results provided by Fedele et al.
(with 300 experimental data groups) [1], Ihmels et al. (with 261 experimental data
groups) [24], and Klomfar et al. (with 83 experimental data groups) [25], were used
for making comparisons in Figure 3. It can be seen that though the experimental
data is close to the calculated theoretical surface, the theoretical surface does not
highly coincide with all the experimental data. We can see that experimental results
provided by Fedele et al. [1] and Ihmels et al. [24] are generally higher than the
calculated surface, while the experimental results provided by Klomfar et al. [25]
have both higher and lower values than the calculated surface. The root mean square
errors (RMSEs) of the theoretical calculated results with the three experimental
results are 196.26, 372.54, and 158.54, respectively, which are relatively high and
not acceptable to practical applications. However, it should be mentioned that the
tendency of the surface is in good agreement with the tendency of the experimental
data provided by Fedele et al. [1] and Ihmels et al. [24]. Interestingly, it is obvious
to find that when the temperature is close to 100 K, the density would become
increasingly high, which has not been reported by experimental results so far.

6



Appl. Sci. 2016, 6, 25 5 of 13 

 

between theoretical calculated values and experimental values, previous experimental results 
provided by Fedele et al. (with 300 experimental data groups) [1], Ihmels et al. (with 261 experimental 
data groups) [24], and Klomfar et al. (with 83 experimental data groups) [25], were used for making 
comparisons in Figure 3. It can be seen that though the experimental data is close to the calculated 
theoretical surface, the theoretical surface does not highly coincide with all the experimental data. 
We can see that experimental results provided by Fedele et al. [1] and Ihmels et al. [24] are generally 
higher than the calculated surface, while the experimental results provided by Klomfar et al. [25] have 
both higher and lower values than the calculated surface. The root mean square errors (RMSEs) of 
the theoretical calculated results with the three experimental results are 196.26, 372.54, and 158.54, 
respectively, which are relatively high and not acceptable to practical applications. However, it 
should be mentioned that the tendency of the surface is in good agreement with the tendency of the 
experimental data provided by Fedele et al. [1] and Ihmels et al. [24]. Interestingly, it is obvious to find 
that when the temperature is close to 100 K, the density would become increasingly high, which has 
not been reported by experimental results so far. 

 

Figure 3. Theoretical calculated surface and experimental densities of R227ea. The surface represents 
the theoretical calculated results by Equations (1)–(9); black points represent the experimental results 
from Fedele et al. [1]; red crosses represent the experimental results from Ihmels et al. [24]; blue 
asterisks represent the experimental results from Klomfar et al. [25]. 

3.1.2. Machine Learning Models 

To develop predictive models via machine learning, we should first define the independent 
variables and the dependent variable. With the experimental fact during the practical measurements, 
the temperature and pressure of R227ea are easy to obtain. Here, we define the temperature (K) and 
pressure (bar) of the determinant as the independent variables, while the density (kg·m−3) is set as 
the dependent variable. With the design that users can only input the values of the temperature and 
pressure to a developed model, we let the machine learning models in our study “learn” the existing 
data and make precise predictions. The experimental data of Fedele et al. [1], Ihmels et al. [24], and 
Klomfar et al. [25] were used for model developments respectively. In each model, 80% of the data 
were set as the training set, while 20% of the data were set as the testing set. The SVMs were 
developed by Matlab software (Libsvm package [42]) and the ANNs were developed by 
NeuralTools® software (trial version, Palisade Corporation, NY, USA). General regression neural 
network (GRNN) [43–45] and multilayer feed-forward neural networks (MLFNs) [46–48] were 
chosen as the learning algorithms of ANNs. Numbers of nodes in the hidden layer of MLFNs were 
set from 2 to 35. In this case study, the number of hidden layer was set as one. Trials of all ANNs 
were set as 10,000. All these settings of ANNs were set directly in the NeuralTools® software. Linear 
regression models were also developed for comparisons. To measure the performance of the model 
and make suitable comparisons, RMSE (for testing), training time, and prediction accuracy (under the 
tolerance of 30%) were used as indicators that evaluate the models. Model results using experimental 

Figure 3. Theoretical calculated surface and experimental densities of R227ea.
The surface represents the theoretical calculated results by Equations (1)–(9);
black points represent the experimental results from Fedele et al. [1]; red crosses
represent the experimental results from Ihmels et al. [24]; blue asterisks represent
the experimental results from Klomfar et al. [25].

3.1.2. Machine Learning Models

To develop predictive models via machine learning, we should first define
the independent variables and the dependent variable. With the experimental fact
during the practical measurements, the temperature and pressure of R227ea are easy
to obtain. Here, we define the temperature (K) and pressure (bar) of the determinant
as the independent variables, while the density (kg¨m´3) is set as the dependent
variable. With the design that users can only input the values of the temperature
and pressure to a developed model, we let the machine learning models in our
study “learn” the existing data and make precise predictions. The experimental data
of Fedele et al. [1], Ihmels et al. [24], and Klomfar et al. [25] were used for model
developments respectively. In each model, 80% of the data were set as the training set,
while 20% of the data were set as the testing set. The SVMs were developed by Matlab
software (Libsvm package [42]) and the ANNs were developed by NeuralTools®

software (trial version, Palisade Corporation, NY, USA). General regression neural
network (GRNN) [43–45] and multilayer feed-forward neural networks (MLFNs) [46–48]
were chosen as the learning algorithms of ANNs. Numbers of nodes in the hidden
layer of MLFNs were set from 2 to 35. In this case study, the number of hidden
layer was set as one. Trials of all ANNs were set as 10,000. All these settings of
ANNs were set directly in the NeuralTools® software. Linear regression models
were also developed for comparisons. To measure the performance of the model
and make suitable comparisons, RMSE (for testing), training time, and prediction
accuracy (under the tolerance of 30%) were used as indicators that evaluate the
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models. Model results using experimental data from Fedele et al. [1], Ihmels et al. [24],
and Klomfar et al. [25] are shown in Tables 1–4 respectively. Error analysis results are
shown in Figure 4.
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Table 1. Prediction models using experimental data by Fedele et al. [1].

Model Type RMSE (for Testing) Training Time Prediction Accuracy

Linear Regression 10.90 0:00:01 85.0%
SVM 0.11 0:00:01 100%

GRNN 1.62 0:00:01 100%
MLFN 2 Nodes 1.13 0:03:46 100%
MLFN 3 Nodes 0.40 0:04:52 100%
MLFN 4 Nodes 0.25 0:06:33 100%
MLFN 5 Nodes 0.37 0:07:25 100%
MLFN 6 Nodes 0.59 0:10:38 100%
MLFN 7 Nodes 0.47 0:13:14 100%
MLFN 8 Nodes 0.32 0:14:10 100%

. . . . . . . . . . . .
MLFN 29 Nodes 0.13 2:00:00 100%
MLFN 30 Nodes 0.16 2:00:00 100%
MLFN 31 Nodes 0.10 2:00:00 100%
MLFN 32 Nodes 0.15 2:00:00 100%
MLFN 33 Nodes 0.13 2:00:00 100%
MLFN 34 Nodes 0.12 2:00:00 100%
MLFN 35 Nodes 0.13 2:00:00 100%

Root mean square error (RMSE); Support vector machine (SVM); General regression
neural network (GRNN); Multilayer feed-forward neural network (MLFN).

Table 2. Prediction models using experimental data by Ihmels et al. [24].

Model Type RMSE (for Testing) Training Time Prediction Accuracy

Linear Regression 86.33 0:00:01 63.4%
SVM 6.09 0:00:01 100%

GRNN 14.77 0:00:02 96.2%
MLFN 2 Nodes 35.41 0:02:18 82.7%
MLFN 3 Nodes 16.84 0:02:55 96.2%
MLFN 4 Nodes 12.14 0:03:38 96.2%
MLFN 5 Nodes 10.67 0:04:33 96.2%
MLFN 6 Nodes 8.35 0:04:54 98.1%
MLFN 7 Nodes 14.77 0:06:06 96.2%
MLFN 8 Nodes 13.06 3:19:52 96.2%

. . . . . . . . . . . .
MLFN 29 Nodes 25.46 0:31:00 90.4%
MLFN 30 Nodes 24.25 0:34:31 90.4%
MLFN 31 Nodes 21.23 0:42:16 90.4%
MLFN 32 Nodes 13.40 3:38:17 96.2%
MLFN 33 Nodes 24.84 0:47:06 90.4%
MLFN 34 Nodes 20.65 0:53:14 90.4%
MLFN 35 Nodes 22.46 0:58:16 90.4%
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Table 3. Prediction models using experimental data by Klomfar et al. [25].

Model Type RMSE (for Testing) Training Time Prediction Accuracy

Linear Regression 15.87 0:00:01 94.1%
SVM 13.93 0:00:01 94.1%

GRNN 9.53 0:00:01 100%
MLFN 2 Nodes 2.72 0:01:13 100%
MLFN 3 Nodes 5.10 0:01:19 100%
MLFN 4 Nodes 14.05 0:01:36 94.1%
MLFN 5 Nodes 2.77 0:02:25 100%
MLFN 6 Nodes 2.85 0:02:31 100%
MLFN 7 Nodes 15.72 0:03:15 94.1%
MLFN 8 Nodes 3.46 0:03:40 100%

. . . . . . . . . . . .
MLFN 29 Nodes 68.34 0:15:03 82.4%
MLFN 30 Nodes 47.09 0:17:58 82.4%
MLFN 31 Nodes 52.60 0:22:01 82.4%
MLFN 32 Nodes 40.03 0:27:46 82.4%
MLFN 33 Nodes 20.69 0:39:27 94.1%
MLFN 34 Nodes 352.01 0:56:26 11.8%
MLFN 35 Nodes 145.61 5:01:57 11.8%

Table 1 and Figure 4a show that the prediction results of machine learning
models are generally acceptable, with lower RMSEs than that of linear regression.
The SVM and MLFN with 31 nodes (MLFN-31) have the lowest RMSEs (0.11 and
0.10 respectively) and both having the prediction accuracy of 100% (under the
tolerance of 30%). However, in our machines, the MLFN-31 requires 2 h for model
training, while the SVM only needs about one second, which is also the shortest
training time among the results in Table 1. Therefore, the SVM can be defined as the
most suitable model for the prediction using the data provided by Fedele et al. [1].

The RMSEs shown in Table 2 and Figure 4b are comparatively higher than those
in Table 1. Additionally, in Table 2, the RMSEs and training times of ANNs are
comparatively higher than those of the SVM (RMSE: 6.09; training time: 0:00:01). The
linear regression has the highest RMSE when testing (86.33). It can be apparently seen
that the SVM is the most suitable model for the prediction using the data provided
by Ihmels et al. [24].

In Table 3 and Figure 4c, the RMSE of the SVM is relatively higher than those
of GRNN and MLFNs with low numbers of nodes. The MLFN with two nodes
(MLFN-2) has the lowest RMSE (2.72) and a comparatively good prediction accuracy
(100%, under the tolerance of 30%) among all models in Table 3 and, also, the training
time of the MLFN-2 is comparatively short (0:01:13). Interestingly, when the numbers
of nodes increase to 34 and 35, their corresponding prediction accuracies decrease to
only 11.8%. This is because of the over-fitting phenomenon during the training of
ANNs when the number of hidden nodes is relatively too high. Therefore, we can
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define that the MLFN-2 is the most suitable model for the prediction using the data
provided by Klomfar et al. [25].

Table 4. Prediction models using experimental data by all the three experiment
reports [1,24,25].

Model Type RMSE (for Testing) Training Time Prediction Accuracy

Linear Regression 96.42 0:00:01 93.0%
SVM 15.79 0:00:02 99.2%

GRNN 92.33 0:00:02 93.0%
MLFN 2 Nodes 39.70 0:06:50 96.1%
MLFN 3 Nodes 25.03 0:08:36 97.7%
MLFN 4 Nodes 22.65 0:10:06 99.2%
MLFN 5 Nodes 73.84 0:13:49 93.0%
MLFN 6 Nodes 23.64 0:17:26 99.2%
MLFN 7 Nodes 65.74 0:14:39 93.8%
MLFN 8 Nodes 55.32 0:16:18 93.8%

. . . . . . . . . . . .
MLFN 29 Nodes 164.54 0:52:29 89.1%
MLFN 30 Nodes 136.96 0:37:38 89.8%
MLFN 31 Nodes 168.13 0:41:35 89.1%
MLFN 32 Nodes 88.25 0:50:43 93.0%
MLFN 33 Nodes 143.65 2:30:12 89.8%
MLFN 34 Nodes 163.78 1:00:17 89.1%
MLFN 35 Nodes 166.92 0:44:16 89.1%

Table 4 and Figure 4d show that the SVM has the lowest RMSE (15.79), shortest
training time (2 s), and highest prediction accuracy (99.2%). However, it is significant
that the best predicted result presented in Table 4 and Figure 4d has a higher
RMSE than those in Tables 1–3. A possible explanation of this phenomenon is
that experimental details in different experiments may generate different deviations
when acquiring the compressed liquid density of R227ea because the three groups of
data come from three different research groups in different years [1,24,25]. Therefore,
the combination of three groups of experimental data may generate additional
noise, leading to deviations in training processes and, hence, the tested results have
higher RMSEs. However, it should be noted that although the results of the best
model here have higher RMSE than those in Tables 1–3 these testing results are still
acceptable and it is also far more precise than the RMSEs generated by the theoretical
equation of state.
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3.2. Evaluation of Models

3.2.1. Comparison between Machine Learning Models and the Equation of State

To make comparisons among machine learning models and the theoretical
model, we should first compare the RMSEs of different models (Table 5). Results
show that the best machine learning models we have chosen in the four experimental
groups are all apparently more precise than those results calculated by the Song and
Mason equation, with lower RMSEs. The predicted values in the testing sets are
generally highly close to their actual values in all the four machine learning models
(Figure 5). It should be noted that experimental results provided by Fedele et al. [1]
are generally more precise than the other two groups of experimental results [24,25],
according to the generalized Tait equation [1,49]. Additionally, the testing RMSE of
the SVM for the data provided by Fedele et al. [1] is the lowest during Table 5. One
possible reason is that data provided by Fedele et al. [1] may have less experimental
errors due to a well-developed measurement method, leading to better training
effects, which indicates that data provided by Fedele et al. [1] is a good sample for
training in practical predictions.

Table 5. RMSEs of different models.

Item RMSE in
Training

RMSE in
Testing

SVM for data provided by Fedele et al. [1] N/A 0.11
SVM for data provided by Ihmels et al. [24] N/A 6.09

MLFN-2 for data provided by Klomfar et al. [25] 11.81 2.72
SVM for all data [1,24,25] N/A 15.79

Theoretical calculation for data provided by Fedele et al. [1] N/A 196.26
Theoretical calculation for data provided by Ihmels et al. [24] N/A 372.54

Theoretical calculation for data provided by Klomfar et al. [25] N/A 158.54

3.2.2. Comparison between Conventional Measurement Methods and
Machine Learning

Advanced conventional approach for measuring the compressed liquid density
of R227ea requires a series of apparatus connecting to be an entire system
(Figure 6) [1]. However, the measurement requires time and a series of complex
operations, which constraints its applicability. Additionally, the purchase and
installation of the apparatus of conventional methods require too much manpower
and resources, which indicates that it can only be used for acquiring extremely precise
values. In contrast, machine learning models can make precise predictions based on
the trained data set and give robust responses with a large number of trained data.
Users can only input the new measured data of temperature and pressure and the
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precise predicted results can be automatically outputted by an appropriate machine
learning model. Once the models are developed, new predicted data can be acquired
in a very quick way, saving time and manpower. More importantly, it only needs a
decent computer and no other apparatus is required anymore.
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Figure 5. Predicted values versus actual values in testing processes using machine
learning models. (a) The SVM for data provided by Fedele et al. [1]; (b) the SVM
for data provided by Ihmels et al. [24]; (c) the MLFN-2 for data provided by
Klomfar et al. [25]; and (d) the SVM for data provided by all the three experimental
reports [1,24,25].
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Figure 6. Apparatus scheme of density measuring for R227ea [1]. VTD represents
the vibrating tube densimeter; PM represents the frequency meter; DAC represents
the data acquisition and control; MT represents the temperature measurement
sensor; M represents the multi-meter; LTB represents the liquid thermostatic bath;
HR represents the heating resistance; SB represents the sample bottle; PG represents
the pressure gauge; VP represents the vacuum pump; SP represents the syringe
pump; NC represents the cylinder.

4. Conclusions

This study is a case study on the prediction of compressed liquid density of
refrigerants, using R227ea as a typical example. To precisely acquire the densities of
R227ea under different temperatures and pressures, existing measurements require
complex apparatus and operations, wasting too much manpower and resources.
Therefore, finding a method to predict the compressed liquid density directly is
a good way to estimate the numerical values without tedious experiments. To
provide a convenient methodology for predictions, a comparative study among
different possible models is necessary [26,27,34,35]. Here, we used the Song and
Mason equation, SVM, and ANNs to develop theoretical and machine learning
models, respectively, for predicting the compressed liquid densities of R227ea.
Results show that, compared to the Song and Mason equation, machine learning
methods can better generate precise predicted results based on the experimental
data. The SVMs are shown to be the best models for predicting the experimental
results given by Fedele et al. [1], Ihmels et al. [24], and the combination of all the
three experimental results [1,24,25]. The MLFN-2 is shown to be the best model
for predicting the experimental results reported by Klomfar et al. [25]. It is also
recommended that practical predictions can refer to the model developed with the
training of experimental results reported by Fedele et al. [1] due to its more precise
experimental results using advanced apparatus. Once a proper model is defined after
model training and error analysis (such as the SVM for data provided by Fedele et al.
in this case study), we can only input the easily-measured temperature and pressure,
and then acquire the compressed liquid density of R227ea directly. Compared to
experimental methods, machine learning can “put things right once and for all” with
proper experimental data for model training. This study successfully shows that, in
practical applications, users can only acquire the temperature and pressure of the
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measured R227ea and the density can be outputted by the developed appropriate
model without additional operations. It should be noted that the target of this
study is not to replace the traditional experimental works, but to give an alternative
method for scientists and technicians to estimate the values as precise as possible in
a limited time.
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Determination of Optimal Initial Weights of
an Artificial Neural Network by Using the
Harmony Search Algorithm: Application to
Breakwater Armor Stones
Anzy Lee, Zong Woo Geem and Kyung-Duck Suh

Abstract: In this study, an artificial neural network (ANN) model is developed to
predict the stability number of breakwater armor stones based on the experimental
data reported by Van der Meer in 1988. The harmony search (HS) algorithm is used
to determine the near-global optimal initial weights in the training of the model.
The stratified sampling is used to sample the training data. A total of 25 HS-ANN
hybrid models are tested with different combinations of HS algorithm parameters.
The HS-ANN models are compared with the conventional ANN model, which uses a
Monte Carlo simulation to determine the initial weights. Each model is run 50 times
and the statistical analyses are conducted for the model results. The present models
using stratified sampling are shown to be more accurate than those of previous
studies. The statistical analyses for the model results show that the HS-ANN model
with proper values of HS algorithm parameters can give much better and more stable
prediction than the conventional ANN model.

Reprinted from Appl. Sci. Cite as: Lee, A.; Geem, Z.W.; Suh, K.-D. Determination
of Optimal Initial Weights of an Artificial Neural Network by Using the Harmony
Search Algorithm: Application to Breakwater Armor Stones. Appl. Sci. 2016, 6, 164.

1. Introduction

Artificial neural network (ANN) models have been widely used for prediction
and forecast in various areas including finance, medicine, power generation, water
resources and environmental sciences. Although the basic concept of artificial
neurons was first proposed in 1943 [1], applications of ANNs have blossomed after
the introduction of the back-propagation (BP) training algorithm for feedforward
ANNs in 1986 [2], and the explosion in the capabilities of computers accelerated the
employment of ANNs. The ANN models have also been used in various coastal and
nearshore research [3–10].

An ANN model is a data-driven model aiming to mimic the systematic
relationship between input and output data by training the network based on a
large amount of data [11]. It is composed of the information-processing units called
neurons, which are fully connected with different weights indicating the strength
of the relationships between input and output data. Biases are also necessary to
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increase or decrease the net input of the neurons [12]. With the randomly selected
initial weights and biases, the neural network cannot accurately estimate the required
output. Therefore, the weights and biases are continuously modified by the so-called
training so that the difference between the model output and target (observed)
value becomes small. To train the network, the error function is defined as the sum
of the squares of the differences. To minimize the error function, the BP training
approach generally uses a gradient descent algorithm [11]. However, it can give a
local minimum value of the error function as shown in Figure 1, and it is sensitive to
the initial weights and biases. In other words, the gradient descent method is prone
to giving a local minimum or maximum value [13,14]. If the initial weights and
biases are fortunately selected to be close to the values that give the global minimum
of the error function, the global minimum would be found by the gradient method.
On the other hand, as expected in most cases, if they are selected to be far from
the optimal values as shown by ‘Start’ in Figure 1, the final destination would be
the local minimum that is marked by ‘End’ in the figure. As a consequence of local
minimization, most ANNs provide erroneous results.
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To find the optimal initial weights and biases that lead into the global minimum
of the error function, a Monte-Carlo simulation is often used, which, however, takes
a long computation time. Moreover, even if we find the global optimal weights and
biases by the simulation, they cannot be reproduced by the general users of the ANN
model. Research has been performed to reveal and overcome the problem of local
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minimization in the ANN model. Kolen and Pollack [15] demonstrated that the
BP training algorithm has large dependency on the initial weights by performing
a Monte Carlo simulation. Yam and Chow [16] proposed an algorithm based on
least-squares methods to determine the optimal initial weights, showing that the
algorithm can reduce the model’s dependency on the initial weights. Recently,
genetic algorithms have been applied to find the optimal initial weights of ANNs
and to improve the model accuracy [17–19]. Ensemble methods have also been
implemented to enhance the accuracy of the model. They are also shown to overcome
the dependency of the ANN model not only on the initial weights but also on training
algorithms and data structure [20–23].

In this study, we employ the harmony search (HS) algorithm to find the
near-global optimal initial weights of ANNs. It is a music-based metaheuristic
optimization algorithm developed by Geem et al. [24] and has been applied to many
different optimization problems such as function optimization, design of water
distribution networks, engineering optimization, groundwater modeling, model
parameter calibration, etc. The structure of the HS algorithm is much simpler than
other metaheuristic algorithms. In addition, the intensification procedure conducted
by the HS algorithm encourages speeding up the convergence by exploiting the
history and experience in the search process. Thus, the HS algorithm in this study
is expected to efficiently find the near-global optimal initial weights of the ANN.
We develop an HS-ANN hybrid model to predict the stability number of armor
stones of a rubble mound structure, for which a great amount of experimental data is
available and thus several pieces of research using ANN models have been performed
previously. The developed HS-ANN model is compared with the conventional ANN
model without the HS algorithm in terms of the capability to find the global minimum
of an error function. In the following section, previous studies for estimation of
stability number are described; then, the HS-ANN model is developed in Section 3;
the performance of the developed model is described in Section 4; and, finally, major
conclusions are drawn in Section 5.

2. Previous Studies for Estimation of Stability Number

A breakwater is a port structure that is constructed to provide a calm basin for
ships and to protect port facilities from rough seas. It is also used to protect the port
area from intrusion of littoral drift. There are two basic types of breakwater: rubble
mound breakwater and vertical breakwater. The cross section of a typical rubble
mound breakwater is illustrated in Figure 2. To protect the rubble mound structure
from severe erosion due to wave attack, an armor layer is placed on the seaward
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side of the structure. The stability of the armor units is measured by a dimensionless
number, so-called stability number, which is defined as

Ns ”
Hs

∆Dn50
, (1)

where Hs is the significant wave height in front of the structure, ∆ “ ρs{ρw ´ 1 is
the relative mass density, ρs and ρw are the mass densities of armor unit and water,
respectively, and Dn50 is the nominal size of the armor unit. As shown in Equation (1),
the stability number is defined as the ratio of the significant wave height to the size
of armor units. A larger stability number, therefore, signifies that the armor unit with
that size is stable against higher waves, that is, the larger the stability number, the
more stable the armor units against waves.
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To estimate the stability number, it is required to determine the relationship
between the stability number and other variables which would describe the
characteristics of waves and structure. Hudson [25] proposed an empirical formula:

Ns “ pKDcotαq1{3, (2)

where α is the angle of structure slope measured from horizontal, and KD is the
stability coefficient which depends on the shape of the armor unit, the location at
the structure (i.e., trunk or head), placement method, and whether the structure is
subject to breaking wave or non-breaking wave. The Hudson formula is simple, but
it has been found to have a lot of shortcomings.

To solve the problems of the Hudson formula, Van der Meer [26] conducted
an extensive series of experiments including the parameters which have significant
effects on armor stability. Based on the experimental data, empirical formulas were
proposed by Van der Meer [26,27] as follows:
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Ns “
1
?
ξm

«

6.2P0.18
ˆ

S
?

Nw

˙0.2
ff

for ξm ă ξc, (3a)

Ns “ 1.0P´0.13
ˆ

S
?

Nw

˙0.2?
cotαξm

P for ξm ě ξc, (3b)

where ξm “ tanα{
b

2πHs{gTm
2 is the surf similarity parameter based on the

average wave period, Tm, ξc “
`

6.2P0.31?tanα
˘1{pP`0.5q is the critical surf similarity

parameter indicating the transition from plunging waves to surging waves, P is the
permeability of the core of the structure, Nw is the number of waves during a storm,
and S “ A{D2

n50 (where A is the eroded cross-sectional area of the armor layer) is
the damage level which is given depending on the degree of damage, e.g., onset of
damage or failure.

On the other hand, with the developments in machine learning, various
data-driven models have been developed based on the experimental data of Van der
Meer [26]. A brief summary is given here only for the ANN models. Mase et al. [3]
constructed an ANN by using randomly selected 100 experimental data of Van der
Meer [26] for training the network. The total number of experimental data excluding
the data of low-crested structures was 579. In the test of the ANN, they additionally
used the 30 data of Smith et al. [28]. They employed six input variables: P, Nw, S, ξm,
h{Hs, and the spectral shape parameter SS, where h is the water depth in front of
the structure. Kim and Park [6] followed the approach of Mase et al. [3] except that
they used 641 data including low-crested structures. Since, in general, the predictive
ability of an ANN is improved as the dimension of input variables increases, they
split the surf similarity parameter into structure slope and wave steepness, and the
wave steepness further into wave height and period. Note that the surf similarity
parameter ξm consists of structure slope, wave height and period as shown in its
definition below Equation (3), where Hs{Lm “ Hs{pgT2

m{2πq is the wave steepness.
They showed that the ANN gives better performance as the input dimension is
increased. On the other hand, Balas et al. [9] used principal component analysis
(PCA) based on 554 data of Van der Meer [26] to develop hybrid ANN models. They
created four different models by reducing the data from 544 to 166 by using PCA or
by using the principal components as the input variables of the ANN. Table 1 shows
the correlation coefficients of previous studies, which will be compared with those of
the present study later.
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Table 1. Correlation coefficients of different empirical formula or ANN models.

Author Correlation
Coefficient Number of Data Remarks

Van der Meer [27] 0.92 (Mase et al. [3]) 579 Empirical formula, Equation (3)
in this paper

Mase et al. [3] 0.91 609 Including data of Smith et al. [28]

Kim and Park [6] 0.902 to 0.952 641 Including data of
low-crested structures

Balas et al. [9] 0.906 to 0.936 554 ANN-PCA hybrid models

3. Development of an HS-ANN Hybrid Model

3.1. Sampling of Training Data of ANN Model

The data used for developing an ANN model is divided into two parts: the
training data for training the model and the test data for verifying or testing the
performance of the trained model. The training data should be sampled to represent
the characteristics of the population. Otherwise, the model would not perform well
for the cases that had not been encountered during the training. For example, if
a variable of the training data consists of only relatively small values, the model
would not perform well for large values of the variable because the model has not
experienced the large values and vice versa. Therefore, in general, the size of the
training data is taken to be larger than that of the test data. In the previous studies
of Mase et al. [3] and Kim and Park [6], however, only 100 randomly sampled data
were used for training the models, which is much smaller than the total number of
data, 579 or 641. This might be one of the reasons why the ANN models do not show
superior performance compared with the empirical formula (see Table 1).

To overcome this problem, the stratified sampling method is used in this study
to sample 100 training data as in the previous studies while using the remaining
479 data to test the model. The key idea of stratified sampling is to divide the
whole range of a variable into many sub-ranges and to sample the data so that the
probability mass in each sub-range becomes similar between sample and population.
Since a number of variables are involved in this study, the sampling was done
manually. There are two kinds of statistical tests to evaluate the performance of
stratified sampling, i.e., parametric and non-parametric tests. Since the probability
mass function of each variable in this study does not follow the normal distribution,
the chi-square (χ2) test is used, which is one of the non-parametric tests. The test is
fundamentally based on the error between the assumed and observed probability
densities [29]. In the test, each of the range of the n observed data is divided into
m sub-ranges. In addition, the number of frequencies (ni) of the variable in the ith
sub-range is counted. Furthermore, the observed frequencies (ni, i “ 1 to m) and
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the corresponding theoretical frequencies (ei, i “ 1 to m) of an assumed distribution
are compared. As the total sample points n tends to8, it can be shown [30] that the
quantity,

řm
i“1 pni ´ eiq

2
{ei, approaches the χ2 distribution with f “ m´ 1´ k degree

of freedom, where k is the number of parameters in the assumed distribution. k is
set to zero for non-normal distribution. The observed distribution is considered to
follow the assumed distribution with the level of significance σ if

m
ÿ

i“1

pni ´ eiq
2

ei
ă c1´σ, f , (4)

where c1´σ, f indicates the value of the χ2 distribution with f degree of freedom at
the cumulative mass of 1´ σ. In this study, a 5% level of significance is used.

Table 2 shows the input and output variables in the ANN model. The surf
similarity parameter was split into cotα, Hs, and Tp as done by Kim and Park [6].
The peak period, Tp, was used instead of Tm because it contains the information
about spectral peak as well as mean wave period. The neural network can deal
with qualitative data by assigning the values to them. The permeability coefficients
of impermeable core, permeable core, and homogeneous structure are assigned to
0.1, 0.5, and 0.6, respectively, as done by Van der Meer [27]. On the other hand, the
spectral shapes of narrowband, medium-band (i.e., Pierson-Moskowitz spectrum),
and wideband are assigned to 1.0, 0.5, and 0, as done by Mase et al. [3]. To perform
the chi-square test, the range of each variable was divided into eight to 11 sub-ranges.
The details of the test can be found in the thesis of Lee [31]. Here, only the residual
chart calculated based on Equation (4) is presented in Table 3. Some variables are
well distributed over the whole range, whereas some varies among a few sub-ranges
(e.g., P “ 0.1, 0.5, or 0.6). Table 3 shows that Equation (4) is satisfied for all the
variables, indicating that the probability mass function of each variable of the training
data is significant at a 5% level of significance. As an example, the probability mass
functions of the training data and population of the damage level S are compared in
Figure 3, showing that they are in good agreement.

Table 2. Input and output variables.

Input Variables Output Variable

P, Nw, S, cotα, Hs, Tp, h{Hs, SS Ns
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Table 3. Residual chart of chi-square tests.

Range Ns P Nw S cotα Hs Tp h{Hs SS

1 0.09 0.26 0.03 0.42 0.13 0.06 - - 0.31
2 0.00 - - 0.03 - 0.00 - 1.74 -
3 0.00 - - 0.01 0.00 1.24 - 0.00 -
4 0.00 - - 0.01 - 0.14 0.84 0.17 -
5 0.05 - - 0.12 0.47 0.11 0.00 0.08 0.00
6 0.10 - - 0.14 - 0.02 0.02 0.02 -
7 0.04 - - 0.11 - 1.24 0.00 0.06 -
8 0.07 0.35 - 0.06 - - 0.02 0.00 -
9 0.14 - - 0.90 - - 0.38 - -
10 1.50 0.04 0.03 0.45 0.08 - - 0.14 0.37
11 - - - 0.43 - - 0.52 - -

ř

pni ´ eiq
2
{ei 1.99 0.64 0.06 2.67 0.68 2.81 1.77 2.20 0.69

f 9 2 1 10 3 6 6 7 2
c1´σ, f 16.8 5.99 3.84 18.3 7.86 12.6 12.6 14.1 5.99
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3.2. ANN Model

The multi-perceptron is considered as an attractive alternative to an empirical
formula in that it imitates the nonlinear relationship between input and output
variables in a more simplified way. The model aims to obtain the optimized weights
of the network using a training algorithm designed to minimize the error between
the output and target variables by modifying the mutually connected weights. In this
study, the multi-perceptron with one hidden layer is used as shown in Figure 4,
where i is the number of input variables.

25



Appl. Sci. 2016, 6, 164 8 of 18 

 
(b) 

Figure 3. Probability mass functions of damage level S: (a) population; (b) training data. 

3.2. ANN Model 

The multi-perceptron is considered as an attractive alternative to an empirical formula in that it 
imitates the nonlinear relationship between input and output variables in a more simplified way. The 
model aims to obtain the optimized weights of the network using a training algorithm designed to 
minimize the error between the output and target variables by modifying the mutually connected 
weights. In this study, the multi-perceptron with one hidden layer is used as shown in Figure 4, 
where i  is the number of input variables.  

1p

2p

3p

4p







1,1
hw

,
h
S iw

1
hn

2
hn

h
Sn

∑

∑

∑

∑

hf

hf

hf

of

1,1
ow

1,
o

Sw

1
ha

2
ha

h
Sa

1
oa

1
on

1
hb

2
hb

h
Sb

Inputs Hidden Layer Output Layer

( )h h h h= +a f w p b ( )o o o h o= +a f w a b

1
ob

Multi-layer Perceptron

ip

Feed Forward

Back Propagation  
Figure 4. Network topography of ANN. 

0 3 6 9 12 15 18 21 24 27 30
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

S

Pr
ob

ab
ilit

y

Probability Mass Function of Training Data (Sample)

Figure 4. Network topography of ANN.

Firstly, for each of the input and output variables, the data are normalized so that
all of the data are distributed in the range of [min, max] = [–1, 1]. This can be done
by subtracting the average from the data values and rescaling the resulting values
in such a way that the smallest and largest values become ´1 and 1, respectively.
Secondly, the initial weights in the hidden layer are set to have random values
between´1 and 1, and the initial biases are all set to zero. The next step is to multiply
the weight matrix by the input data, p, and add the bias so that

nh
k “

J
ÿ

j“1

wh
kj pj ` bh

k , k “ 1 to K, (5)

where J and K are the number of input variables and hidden neurons, respectively,
and p, bh and wh are the input variable, bias, and weight in the hidden layer,
respectively. The subscripts of the weight wh

kj are written in such a manner that
the first subscript denotes the neuron in question and the second one indicates the
input variable to which the weight refers. The nh

k calculated by Equation (5) is fed

26



into an activation function, f h, to calculate ah
k . Hyperbolic tangent sigmoid function

is used as the activation function so that

ah
k “

enh
k ´ e´nh

k

enh
k ` e´nh

k
. (6)

In the output layer, the same procedure as that in the hidden layer is used except
that only one neuron is used so that

no
1 “

K
ÿ

j“1

wo
1ja

h
j ` bo

1, (7)

and the linear activation function is used to calculate ao
1 so that

ao
1 “ no

1. (8)

The neural network with the randomly assigned initial weights and biases
cannot accurately estimate the required output. Therefore, the weights and biases
are modified by the training to minimize the difference between the model output
and target (observed) values. To train the network, the error function is defined as

ε “ ||τ´ ao
1||2, (9)

where || || denotes a norm, and τ is the target value vector to be sought.
To minimize the error function, the Levenberg-Marquardt algorithm is used,
which is the standard algorithm of nonlinear least-squares problems. Like other
numeric minimization algorithms, the Levenberg-Marquardt algorithm is an iterative
procedure. It necessitates a damping parameter µ, and a factor θ that is greater than
one. In this study, µ “ 0.001 and θ “ 10 were used. If the squared error increases,
then the damping is increased by successive multiplication by θ until the error
decreases with a new damping parameter of µθk for some k. If the error decreases,
the damping parameter is divided by θ in the next step. The training was stopped
when the epoch reached 5000 or the damping parameter was too large for more
training to be performed.

3.3. HS-ANN Hybrid Model

To find the initial weights of the ANN model that lead into the global minimum
of the error function, in general, a Monte Carlo simulation is performed, that is, the
training is repeated many times with different initial weights. The Monte Carlo
simulation, however, takes a great computational time. In this section, we develop
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an HS-ANN model in which the near-global optimal initial weights are found by the
HS algorithm.

The HS algorithm consists of five steps as follows [32].

Step 1. Initialization of the algorithm parameters

Generally, the problem of global optimization can be written as

Minimize f pxq
subject to xi P Xi, i “ 1, 2, ..., N,

(10)

where f pxq is an objective function, x is the set of decision variables, and Xi is
the set of possible ranges of the values of each decision variable, which can be
denoted as Xi “ txip1q, xip2q, ..., xipKqu for discrete decision variables satisfying
xip1q ă xip2q ă ¨ ¨ ¨ ă xipKq or for continuous decision variables. In addition,
N is the number of decision variables and K is the number of possible values for the
discrete variables. In addition, HS algorithm parameters exist that are required to
solve the optimization problems: harmony memory size (HMS, number of solution
vectors), harmony memory considering rate (HMCR), pitch adjusting rate (PAR) and
termination criterion (maximum number of improvisation). HMCR and PAR are the
parameters used to improve the solution vector.

Step 2. Initialization of harmony memory

The harmony memory (HM) matrix is composed of as many randomly
generated solution vectors as the size of the HM, as shown in Equation (11). They
are stored with the values of the objective function, f pxq, ascendingly:

HM “

»

—

—

—

—

–

x1

x2

...
xHMS

fi

ffi

ffi

ffi

ffi

fl

. (11)

Step 3. Improvise a new harmony from the HM

A new harmony vector, x1 “
`

x11, x12, ..., x1N
˘

, is created from the HM based
on assigned HMCR, PAR, and randomization. For example, the value of the first
decision variable

`

x11
˘

for the new vector can be selected from any value in the
designated HM range, x1

1 „ xHMS
1 . In the same way, the values of other decision
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variables can be selected. The HMCR parameter, which varies between 0 and 1, is a
possibility that the new value is selected from the HM as follows:

x1i Ð

#

x1i P
 

x1
i , x2

i , ..., xHMS
i

(

with probability of HMCR
x1i P Xi with probability of p1´HMCR),

(12)

The HMCR is the probability of selecting one value from the historic values
stored in the HM, and the value (1-HMCR) is the probability of randomly taking one
value from the possible range of values. This procedure is analogous to the mutation
operator in genetic algorithms. For instance, if a HMCR is 0.95, the HS algorithm
would pick the decision variable value from the HM including historically stored
values with a 95% of probability. Otherwise, with a 5% of probability, it takes the
value from the entire possible range. A low memory considering rate selects only a
few of the best harmonies, and it may converge too slowly. If this rate is near 1, most
of the pitches in the harmony memory are used, and other ones are not exploited
well, which does not lead to good solutions. Therefore, typically HMCR “ 0.7´ 0.95
is recommended.

On the other hand, the HS algorithm would examine every component of
the new harmony vector, x1 “

`

x11, x12, ..., x1N
˘

, to decide whether it has to be
pitch-adjusted or not. In this procedure, the PAR parameter which sets the probability
of adjustment for the pitch from the HM is used as follows:

Pitch adjusting decision for x1i Ð

#

Yes with probability of PAR
No with probability of p1´ PAR).

(13)

The pitch adjusting procedure is conducted only after a value is selected from
the HM. The value (1´PAR) is the probability of doing nothing. To be specific, if the
value of PAR is 0.1, the algorithm will take a neighboring value with 0.1ˆHMCR
probability. For example, if the decision for x1i in the pitch adjustment process is
Yes, and x1i is considered to be xipkq, then the kth element in Xi, or the pitch-adjusted
value of xipkq, is changed into

x1i Ð xipk`mq for discrete decision variables
x1i Ð x1i `α for continuous decision variables,

(14)

where m is the neighboring index, m P t ..., ´2, ´1, 1, 2, ...u, α is the value of
bwˆ up´1, 1q, bw is an arbitrarily chosen distance bandwidth or fret width for the
continuous variable, and up´1, 1q is a random number from uniform distribution
with the range of r´1, 1s. If the pitch-adjusting rate is very low, because of the
limitation in the exploration of a small subspace of the whole search space, it slows
down the convergence of HS. On the contrary, if the rate is very high, it may cause
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the solution to scatter around some potential optima. Therefore, PAR “ 0.1´ 0.5 is
used in most applications. The parameters HMCR and PAR help the HS algorithm
to search globally and locally, respectively, to improve the solution.

Step 4. Evaluate new harmony and update the HM

This step is to evaluate the new harmony and update the HM if necessary.
Evaluating a new harmony means that the new harmony (or solution vector) is
used in the objective function and the resulting functional value is compared with
the solution vector in the existing HM. If the new harmony vector gives better
performance than the worst harmony in the HM, evaluated in terms of the value of
objective function, the new harmony would be included in the harmony memory
and the existing worst harmony is eliminated from the harmony memory. In this
study, the mean square error function is used as the objective function for both HS
optimization and ANN training.

Step 5. Repeat Steps 3 and 4 until the termination criterion is satisfied

The iterations are terminated if the stop criterion is satisfied. If not, Steps 3 and
4 would be repeated. The pseudo-code of the HS algorithm is given in Figure 5. The
initial weights optimized by the HS algorithm are then further trained by a gradient
descent algorithm. This method is denoted as an HS-ANN model, and it can be
expressed as the flow chart in Figure 6.
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4. Result and Discussion

4.1. Assessment of Accuracy and Stability of the Models

In this section, the accuracy and stability are compared between the conventional
ANN model without using the HS algorithm and the HS-ANN hybrid model. Both
models were run 50 times, and the statistical analyses were conducted for the model
results. Each of the HMCR and PAR of the HS algorithm were chosen to vary from
0.1 to 0.9 at intervals of 0.2, so a total of 25 HS-ANN models were tested. The models
were used to estimate the stability number of rock armor for the experimental data
of Van der Meer [26] for which the input and output variables are given as in Table 2.
The 579 experimental data excluding the data of low-crested structures were used,
as done by Mase et al. [3]. As described in Section 3.1, a hundred data sampled by
the stratified sampling method were used to train the ANN, whereas the remaining
479 data were used to test the model.Appl. Sci. 2016, 6, 164 12 of 18 
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The correlation coefficient (r) and index of agreement (Ia) between model output
values and target values of the 479 test data are used to evaluate the performance of
the models. First, to compare the accuracy of the developed models with those of
previous studies (see Table 1), the maximum value of correlation coefficient among
50 runs of each model is presented in Table 4. For the results of the HS-ANN models,
the rank is indicated by a superscript, and the largest two values are shaded. The
largest correlation coefficient of the HS-ANN model is only slightly larger than that
of the ANN model, but both of them are much greater than those of previous studies
(see Table 1), probably because the stratified sampling was used in the present study.

Table 4. Maximum values of correlation coefficient.

HS-ANN

HMCRzPAR 0.1 0.3 0.5 0.7 0.9

0.1 0.957 0.971 0.961 0.9731 0.964
0.3 0.959 0.967 0.970 0.9723 0.960
0.5 0.961 0.954 0.961 0.957 0.968
0.7 0.968 0.9732 0.959 0.967 0.970
0.9 0.9715 0.970 0.9724 0.970 0.960

ANN 0.971

Even though we used the correlation coefficient to compare the accuracy of
our model results with those of previous studies, it is not a good indicator for
model accuracy because it merely evaluates the linearity between observation and
prediction but not the agreement between them. Hereinafter, we use the index of
agreement introduced by Willmott [34] as a measure of the degree to which a model’s
predictions are error-free but not a measure of correlation between the observed and
predicted variates. The index of agreement is given as

Ia “ 1´
řN

i“1 ppi ´ oiq
2

řN
i“1 r|pi ´ o|`|oi ´ o|s2

, (15)

where pi and oi denote the predicted and observed variates, and o is the mean of the
observed variates. The values for Ia vary between 0 and 1.0, where 1.0 indicates
perfect agreement between observations and predictions, and 0 connotes complete
disagreement.

The statistical parameters used to measure the predictive ability and stability
of the models are the average, standard deviation, and the minimum value of Ia.
The larger the average, the better the overall predictive ability of the model. The
smaller the standard deviation, the higher the stability of the model, that is, the
less variability among the model outputs from different runs of the model. Lastly,
the larger the minimum value of Ia, the larger the lower threshold of the predictive
ability of the model. In summary, a large average and large minimum value of Ia
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signify that the predictive ability of the model is excellent. On the other hand, a small
standard deviation signifies that the model is stable.

The statistical parameters for the index of agreement are presented in Table 5.
Again, for the results of the HS-ANN models, the rank is indicated by a superscript,
and the largest (or smallest) two values are shaded. Even though the maximum
values of Ia are also given, they are not discussed further because their variation is
not so large to explain the difference of predictive ability or stability depending on
the models. It is shown that the HS-ANN model gives the most excellent predictive
ability and stability with HMCR = 0.7 and PAR = 0.5 or HMCR = 0.9 and PAR = 0.1.
This result corresponds to Geem [33] who suggested that the optimal ranges of
HMCR = 0.7–0.95 and PAR = 0.1–0.5. Comparing the statistical parameters between
the best HS-ANN model and the ANN model, the HS-ANN model with proper
values of HMCR and PAR can give much better and stable prediction than the
conventional ANN model. In particular, the small value of standard deviation of the
HS-ANN model indicates that the model is excellent in finding the global minimum
of the error function.

4.2. Aspect of Transition of Weights

There are two major components in metaheuristic algorithms: diversification
and intensification [33]. These two components seem to be contradicting each
other, but balancing their combination is crucial and important to the success of
a metaheuristic algorithm. In the HS algorithm, diversification is controlled by the
pitch adjustment and randomization, whereas intensification is represented by the
harmony memory considering rate. Therefore, in this section, the results of training
of neural networks for two different cases are compared and examined, i.e., the
best combination and worst combination of HMCR and PAR. The case of the HS
optimization with HMCR of 0.7 and PAR of 0.5 is chosen to be the best case (Case 1)
since it has the largest average and smallest standard deviation of Ia. The worst case
(Case 2) is the case of HMCR of 0.1 and PAR of 0.5, which has the smallest average
and largest standard deviation of Ia. The optimization process of the HS algorithm
regarding the weights of neural network is illustrated in Figures 7 and 8 for each case
of parameter combination. Note that the results shown in these figures are those from
one of the fifty runs described in the previous section. In the figures, each scatter
plot indicates the relationship between calculated and observed stability numbers
using (a) randomly selected initial weights; (b) optimal initial weights determined
by HS algorithm; and (c) further trained weights after BP algorithm. The correlation
coefficients and indices of agreement are also given.
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Table 5. Statistical parameters for index of agreement.

Average

HS-ANN

HMCRzPAR 0.1 0.3 0.5 0.7 0.9
0.1 0.885 0.926 0.872 0.843 0.905
0.3 0.934 0.910 0.913 0.914 0.912
0.5 0.913 0.929 0.929 0.934 0.929
0.7 0.881 0.929 0.9481 0.9443 0.9404

0.9 0.9482 0.935 0.913 0.9375 0.892

ANN 0.804

Standard Deviation

HS-ANN

HMCRzPAR 0.1 0.3 0.5 0.7 0.9
0.1 0.205 0.120 0.245 0.277 0.158
0.3 0.137 0.175 0.155 0.183 0.189
0.5 0.178 0.101 0.104 0.073 0.138
0.7 0.224 0.130 0.0211 0.0313 0.0425

0.9 0.0232 0.110 0.168 0.0314 0.200

ANN 0.317

Minimum Value

HS-ANN

HMCRzPAR 0.1 0.3 0.5 0.7 0.9
0.1 0.001 0.216 0.001 0.001 0.002
0.3 0.002 0.001 0.029 0.004 0.002
0.5 0.003 0.319 0.254 0.468 0.003
0.7 0.001 0.051 0.8891 0.8523 0.7105

0.9 0.8852 0.196 0.013 0.8014 0.005

ANN 0.001

Maximum Value

HS-ANN

HMCRzPAR 0.1 0.3 0.5 0.7 0.9
0.1 0.978 0.985 0.980 0.9871 0.981
0.3 0.979 0.983 0.985 0.986 0.979
0.5 0.980 0.977 0.980 0.978 0.984
0.7 0.984 0.9862 0.979 0.983 0.985
0.9 0.985 0.985 0.986 0.985 0.980

ANN 0.985
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the model, whereas the HS-ANN model needs computational time for finding the optimal initial 
weights using the HS algorithm and then for finding the global minimum of the error function by the 
BP training. Lee [31] compared the computational time between the conventional ANN model and 
the HS-ANN models with various combinations of HMCR and PAR. Since the statistical 
characteristics of computational time do not show a big difference among different combinations of 
HMCR and PAR, here we only present the case of HMCR = 0.7 and PAR = 0.5 for which the HS-ANN 
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Figure 8. Same as Figure 7 but for Case 2 (HMCR = 0.1; PAR = 0.5).

The first graphs in Figures 7 and 8 show that the stability numbers calculated
by using the randomly selected initial weights are distributed in a wide range from
large negative values to large positive values and have very weak and negative
correlation with the observed stability numbers. The second graphs show that the
stability numbers calculated by using the optimal initial weights determined by the
HS algorithm are distributed within the range of 0 to 5 as they are in the observation.
Case 1 shows much better correlation between calculation and observation than
the Case 2, whereas the index of agreement of Case 1 is only slightly better than
that of Case 2. The calculated stability numbers in Case 1 show strong correlation
with the observed ones, but they are underestimated as a whole. The third graphs
after further training by the BP algorithm show very strong correlation and good
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agreement between calculation and observation. Even Case 2 (the worst case) shows
quite high value of index of agreement compared with the values for HMCR = 0.1
and PAR = 0.5 in Table 5. Note that the results in Figures 7 and 8 are for training data,
whereas those in Table 5 are for test data.

4.3. Computational Time

Most of the computational time of the conventional ANN model is used for the
BP training of the model, whereas the HS-ANN model needs computational time
for finding the optimal initial weights using the HS algorithm and then for finding
the global minimum of the error function by the BP training. Lee [31] compared the
computational time between the conventional ANN model and the HS-ANN models
with various combinations of HMCR and PAR. Since the statistical characteristics of
computational time do not show a big difference among different combinations of
HMCR and PAR, here we only present the case of HMCR = 0.7 and PAR = 0.5 for
which the HS-ANN model gives the most excellent predictive ability and stability.
Table 6 shows the average and standard deviation (SD) of the computational times
of the 50 runs of each model. The total computational time of the HS-ANN model
is five to six times greater than that of the conventional ANN model. In spite of the
greater computing time, it is worthwhile to use the HS-ANN model because it gives
much more accurate and stable prediction than the conventional ANN model with
a small number of simulations. It is interesting to note that the computing time for
the BP training of the HS-ANN model is greater than that of the conventional ANN
model probably because it takes a longer time to reach the global minimum which
is smaller than the local minimums as shown in Figure 1. On the other hand, the
standard deviation of the BP training of the HS-ANN model is smaller than that of
the conventional ANN model because the HS-ANN model starts the BP training from
the optimal initial weights whose variation is not so large. The standard deviation of
the HS algorithm is very small because the maximum number of improvisation was
set to 100,000.

Table 6. Statistical characteristics of computational time (unit = s).

Algorithm HS-ANN Model Conventional ANN Model

Average SD Average SD

HS 285.6 7.8 - -
BP 102.9 55.2 68.6 95.0

Total 385.5 55.7 68.6 95.0
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5. Conclusion

In this study, an HS-ANN hybrid model was developed to predict the stability
number of breakwater armor stones based on the experimental data of Van der
Meer [26]. The HS algorithm was used to find the near-global optimal initial weights,
which were then used in the BP training to find the true global minimum of the error
function by the Levenberg-Marquardt algorithm. The stratified sampling was used
to sample the training data. A total of 25 HS-ANN models were tested with five
different values for both HMCR and PAR varying from 0.1 to 0.9 at intervals of 0.2.
The HS-ANN models were compared with the conventional ANN model which uses
a Monte Carlo simulation to determine the initial weights. The correlation coefficient
and index of agreement were calculated to evaluate the performance of the models.
Each model was run 50 times and the statistical analyses were conducted for the
model results. The major findings are as follows:

1. The correlation coefficients of the present study were greater than those of
previous studies probably because of the use of stratified sampling.

2. In terms of the index of agreement, the HS-ANN model gave the most excellent
predictive ability and stability with HMCR = 0.7 and PAR = 0.5 or HMCR = 0.9
and PAR = 0.1, which correspond to Geem [33] who suggested the optimal
ranges of HMCR = 0.7–0.95 and PAR = 0.1–0.5 for the HS algorithm.

3. The statistical analyses showed that the HS-ANN model with proper values
of HMCR and PAR can give much better and more stable prediction than the
conventional ANN model.

4. The HS algorithm was found to be excellent in finding the global minimum of
an error function. Therefore, the HS-ANN hybrid model would solve the local
minimization problem of the conventional ANN model using a Monte Carlo
simulation, and thus could be used as a robust and reliable ANN model not
only in coastal engineering but also other research areas.

In the future, the present HS-ANN model could be compared with other hybrid
ANN models using different heuristic algorithms such as genetic algorithm (GA),
particle swarm optimization (PSO), and Cuckoo Search (CS). Not only GA [18,35,36]
but also PSO [37,38] and CS [39] have been applied for neural network training.
Analyzing and comparing those hybrid ANN models would provide a way to find
the most suitable heuristic algorithm for determining the optimal initial weights
for ANN.
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Network Modeling and Assessment of
Ecosystem Health by a Multi-Population
Swarm Optimized Neural
Network Ensemble
Rong Shan, Zeng-Shun Zhao, Pan-Fei Chen, Wei-Jian Liu, Shu-Yi Xiao,
Yu-Han Hou, Mao-Yong Cao, Fa-Liang Chang and Zhigang Wang

Abstract: Society is more and more interested in developing mathematical models
to assess and forecast the environmental and biological health conditions of our
planet. However, most existing models cannot determine the long-range impacts
of potential policies without considering the complex global factors and their cross
effects in biological systems. In this paper, the Markov property and Neural Network
Ensemble (NNE) are utilized to construct an estimated matrix that combines the
interaction of the different local factors. With such an estimation matrix, we could
obtain estimated variables that could reflect the global influence. The ensemble
weights are trained by multiple population algorithms. Our prediction could fit the
real trend of the two predicted measures, namely Morbidity Rate and Gross Domestic
Product (GDP). It could be an effective method of reflecting the relationship between
input factors and predicted measures of the health of ecosystems. The method can
perform a sensitivity analysis, which could help determine the critical factors that
could be adjusted to move the ecosystem in a sustainable direction.

Reprinted from Appl. Sci. Cite as: Shan, R.; Zhao, Z.-S.; Chen, P.-F.; Liu, W.-J.;
Xiao, S.-Y.; Hou, Y.-H.; Cao, M.-Y.; Chang, F.-L.; Wang, Z. Network Modeling and
Assessment of Ecosystem Health by a Multi-Population Swarm Optimized Neural
Network Ensemble. Appl. Sci. 2016, 6, 175.

1. Introduction

Historical ecology research is increasingly valuable in assessing long-term
baselines and understanding long-term ecological changes, and is increasingly
applicable to management, decision-making, and conservation. When ecological
survey data are lacking, historical data can be exploited to build mathematical models
to supply scientifically meaningful information despite limitations in precision.

Soaring demands for food, fresh water, fuel, and timber have contributed
to dramatic environmental changes. Nearly two-thirds of Earth’s life-supporting
ecosystems—including clean water, pure air, and a stable climate—are being
degraded by unsustainable use. Many scientific studies have come to the conclusion
that there is growing stress on Earth’s biological systems. More and more warning
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signs are appearing. Is Planet Earth truly nearing a global tipping point? Is such
an extreme state inevitable? Very few global models are proposed to address those
claims and questions. As a result, society is more and more interested in developing
mathematical models to assess and forecast the environmental and biological health
conditions of our planet.

In Reference [1], the article presents two specific quantitative modeling
challenges in their call for better predictive models:

(1) To improve bio-forecasting through global models that embrace the
complexity of Earth’s interrelated systems and include the effects of local conditions
on the global system and vice versa.

(2) To identify factors that could produce unhealthy global state shifts and
to show how to use effective ecosystem management to prevent or limit these
impending state changes.

Determining whether global models can be built using local or regional
components of the Earth’s health that predict potential state changes is a huge
challenge. Then, based on the potential impact on Earth’s health, how can the global
models help decision-makers design effective policies?

The “Nature” article [1] and many others point out that there are several
important elements at work in the Earth’s ecosystem (e.g., local factors, global
impacts, multi-dimensional factors and relationships, varying time and spatial scales).
There are also many other factors that can be included in a predictive model—human
population, resource and habitat stress, habitat transformation, energy consumption,
climate change, land use patterns, pollution, atmospheric chemistry, ocean chemistry,
biodiversity, and political patterns such as social unrest and economic instability.
Paleontologists have studied and modeled ecosystem behavior and response during
previous cataclysmic state shifts and thus historic-based qualitative and quantitative
information can provide background for future predictive models. However, it
should be noted that human effects have increased significantly in our current
biosphere situation.

Reference [2] introduced the “WORLD3” model, which is based on system
dynamics—a method for studying the world that deals with understanding how
complex systems change over time. Internal feedback loops within the structure
of the system influence the entire system’s behavior. However, the model does not
make the prediction; rather, it is a tool for understanding the broad sweeps and the
behavioral tendencies of the system.

Scientists realize that it is very important to assess and predict the potential
state changes of the planetary health systems. Nowadays, there is considerable
research [3–8] being conducted that takes local habitats and regional factors into
account. However, since the article [1] published in “Nature” called for better
predictive models in 2012, there have been few models addressing the problem of
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predicting long-range and global impacts based only on local factors. Using current
models, decision-makers cannot be adequately informed about how their provincial
polices may impact the overall health of the planet. Many existing models cannot
determine the long-range impacts of potential policies without considering the
complex global factors, the complex relationships, and the cross effects in biological
systems. The system complexities are manifested in multiple interactions, feedback
loops, emergent behaviors, and impending state changes or tipping points. As is well
known, suggesting suitable potential policies is very important for the sustainable
ecological development of our planet. However, the first step should be to determine
those critical factors that affect the global state. Based on the idea above, this paper
aims at proposing a framework to model and assess the interactive roles of the local
factors, to determine the critical factors and to suggest potential management for the
ecosystem’s health.

2. Problem Definition and Model Design

2.1. Defining the Problem

With the rapid economic development, the level of energy demand is rapidly
increasing, which results in a series of environmental problems. Both urban and
rural ecosystems have to carry out environmental performance evaluation in energy
utilization to reconcile economic growth with ecological preservation. We focus on
the following considerations:

(1) How to construct a dynamic global network model that includes dynamic
elements to predict future states of ecological health.

(2) How to determine the critical factors that reflect the relationship between the
model and the predictive measure.

(3) How to determine a feedback policy that reflects the influence of human factors.

2.2. Basic Assumptions

There are so many elements that could be included in the ecological modeling.
For simplicity, we make the following assumptions:

(1) The state changes over the years and we can observe these state changes.
(2) The k – th factor at the t moment is influenced by the same factor at the t ´ 1

moment and interactive factors in neighborhood at the t moment; we ignore
the influence between the different factors at the t ´ 1 moment. There has been
Markov property.

(3) The relative influence between one factor and another factor just reflects the
ratio of two value changes.

(4) To simplify the model, we select several typical factors.
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(5) Outside factors such as “universe perishing”, a destructive earthquake, and a
volcanic eruption will not be considered.

(6) Each factor has affected other factors and vice versa. The influence is regarded
as directive.

(7) The CO2 content could reflect environmental changes.
(8) The oil consumption could reflect the source consumption.
(9) The population would reflect the bearing capacity of the ecosystem.

(10) The electricity would reflect the power consumption.
(11) The morbidity rate would reflect threats to life.
(12) The Gross Domestic Product (GDP) would reflect the level of wellbeing.

2.3. Symbol Lists

In the concrete implementation of the proposed framework, only four typical
factors are utilized in the ecological modeling, as denoted in Table 1 and Figure 1.
As we adopt the Markov model to predict the dynamic elements, there are also four
corresponding symbols to represent their respective predictions.

Table 1. The symbol lists.

Variables Items in Figure 1 Meaning of Variables

α ptq Local input factor 1 at the t moment The CO2 Content
α̂ ptq Estimated input factor 1 at the t moment The estimated CO2 content
β ptq Local input factor 2 at the t moment The oil consumption
β̂ ptq Estimated input factor 2 at the t moment The estimated oil consumption
γ ptq Local input factor 3 at the t moment The population
γ̂ ptq Estimated input factor 3 at the t moment The estimated population
δ ptq Local input factor 4 at the t moment The power consumption
δ̂ ptq Estimated input factor 4 at the t moment The estimated power consumption
φ ptq Predicted measurement 1 at the t moment The morbidity rate
µ ptq Predicted measurement 2 at the t moment The Gross Domestic Product (GDP)
∆ p q The change between two continual times for each factor The change between two continual times for each factor

2.4. Model Design

Our model is composed of three segments: the first estimates the global dynamic
influence of factors via the local interacting factors. The second predicts the measured
values for the ecosystem that could reflect the whole ecosystem’s state. The third
determines the critical factors and loop control to adjust the ecosystem. In Figure 1,
we present the schematic diagram as follows.

In the colorful block, the white double arrow denotes the interacting influence
between two local factors. From t´ 1 moment to t moment, it is a dynamic alignment
that incorporates the Markov property. The flow arrows mean the prediction of the
neural networks. A, B, and C denote the different government policies. The blue
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Figure 1. The model schematic diagram (for example: factor 1 denotes CO2 content,
factor 2 denotes oil consumption, factor 3 denotes population, and factor 4 denotes
the power consumption).

3. Model Solution

3.1. Estimating the Dynamic Factors

In the first sub-section, we presented the Markov chain to reflect the influence
between the t moment and t ´ 1 moment. We assumed that the k – th factor at the
t moment is influenced by the same factor at the t ´ 1 moment and the interacting
factors in neighborhood at the t moment, and ignore the influence between different
factors at the t ´ 1 moment, which is reasonable in order to simplify the model
by the Markov property. Thus we could construct an estimation matrix M that
incorporates the interactive relationship of different dynamic factors. In Table 2, we
list the estimated Markov impacting matrix M.
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Table 2. The estimated Markov impacting matrix M.

Local Factors α β γ δ

α
αptq´αpt´1q

αptq ` 1 γptq´γpt´1q
αptq´αpt´1q

γptq´γpt´1q
αptq´αpt´1q

δptq´δpt´1q
αptq´αpt´1q

β
αptq´αpt´1q
βptq´βpt´1q

βptq´βpt´1q
βptq ` 1 γptq´γpt´1q

βptq´βpt´1q
δptq´δpt´1q
βptq´βpt´1q

γ
αptq´αpt´1q
γptq´γpt´1q

βptq´βpt´1q
γptq´γpt´1q

γptq´γpt´1q
γptq ` 1 δptq´δpt´1q

γptq´γpt´1q

δ
αptq´αpt´1q
δptq´δpt´1q

βptq´βpt´1q
δptq´δpt´1q

γptq´γpt´1q
δptq´δpt´1q

δptq´δpt´1q
δptq ` 1

The elements in the leading diagonal denote a continuous effects on the same
factor over time (t ´ 1 & t). The other elements in the matrix present the effect on
different factors at the same t moment. The difference between the k – th factor and
the m – th factor reflects on characteristic variations of industrial and agricultural
production, consumption, and populations at the same time period.

We could obtain the estimated dynamic factors using the following formula:

rα̂ptqβ̂ptqγ̂ptqδ̂ptqs “ rαptqβptqγptqδptqs¨

»

—

—

—

–

M11 M12 M13 M14

M21 M22 M23 M24

M31 M32 M33 M34

M41 M42 M43 M44

fi

ffi

ffi

ffi

fl

(1)

We regard
“

α̂ptqβ̂ptqγ̂ptqδ̂ptq
‰

as the dynamic factors of the Neural Network
Ensemble (NNE). Via all these input factors above, we could predict the
output measure.

3.2. Predicting the Output Measure

Having obtained the estimated dynamic factors, the output measure of the
ecological modeling can be predicted using our previously proposed Evolved
Neural Network Ensemble (NNE), improved by Multiple Heterogeneous Swarm
Intelligence [9]. Compared to the ordinary NNE, to improve the prediction
precision, we incorporate the Particle Swarm Optimization (PSO) [10,11] and Back
Propagation (BP) algorithms to train each component Forward Neural Network
(FNN). Meanwhile, we apply logistic chaos mapping to enhance the local searching
ability. At the same time, the ensemble weights are trained by multi-population
algorithms (PSO and Differential Evolution (DE) [9] cooperative algorithms are used
in this case). By the NNE algorithms, we could remove the disturbance in the data.
A more detailed description is given in [9]. In Figure 2, we summarize the schematic
diagram of the improved NNE as follows:
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Figure 2. The Neural Network Ensemble (NNE) schematic diagram. FNN: Forward
Neural Network; PSO: Particle Swarm Optimization; BP: Back Propagation; DE:
Differential Evolution.

We could divide this sub-section into two parts: one is how to train and
optimize the component neural networks; the other is how to optimize the NNE by
multi-population algorithms.

3.2.1. Optimization by Particle Swarm Optimization (PSO) Algorithm, Chaotic
Mapping, and Back Propagation (BP) Algorithm

The PSO could be described as a swarm of birds hovering in the sky for food.
Xi = (xi1, xi2, . . . , xin) and Vi = (vi1, vi2, . . . , vin), where Xi and Vi are the position and
velocity of the i – th particle in n dimensional space. Pi = (pi1, pi2, . . . , pin) represents
the previous best value of the i – th particle up to the current step. Gi = (gi1, gi2, . . . ,
gin) represents the best value of all particles in the population. Having obtained
the two best values, each particle updates its position and velocity according to the
following equations:

vk`1
i,d “ w¨ vk

i,d ` c1¨ randpq¨
´

pbestk
i,d ´ xk

i,d

¯

` c2¨ randpq¨
´

gbestk
d ´ xk

i,d

¯

(2)

xk`1
i,d “ xk

i,d ` vk`1
i,d (3)

c1 and c2 are learning actors. wt is the inertial weight. The flow chart depicting the
general PSO Algorithm is given in Figure 3. A more detailed description is given
in [9–11].

In addition, with the purpose of enhancing the local searching ability and
diversity of the particle swarm, we incorporate the chaos mechanism [12] into the
updating iteration. We take the logistic mapping as the chaos producer.

The well-known idea of BP is to make the error back propagate to update the
parameters of FNN, and the parameters include two steps: one is between the input
layer and hidden layer; the other is between the hidden layer and the output layer.
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A detailed description of the procedures of the PSO (combined logistic
mapping)–BP coupled algorithm is presented is in [9,10].
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3.2.2. Optimization by Multi-Population Cooperative Algorithm

The principle of the NNE has been described in detail in [9,13,14]. Having
obtained each refined component FNN, we would concentrate on how to combine
the output of each component FNN.

f pxq “
n
ÿ

i“1

wi fi pxq (4)

wi “
wi

řn
i“1 wi

, 0 ă wi ă 1 (5)
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where f i (x) represents the output of the i – th FNN and wi represents the importance
of the i – th FNN. Our idea is to obtain the most appropriate prediction of wi for
each sub-network, which corresponds to the solution of the optimization problem
of the particles. DE is also a floating, point-encoded evolutionary algorithm for
global optimization over continuous spaces, but it creates new candidate solutions
by combining the parent individual and several other individuals of the same
population. It consists of selection, crossover, and mutation [15].

The procedure for NNE multi-population algorithm could be summarized
as follows:

Step 1: Initialize the weight of each FNN, which has been optimized by PSO
(combined logistic mapping) and BP.

Step 2: Each particle represents a set of weights, which means that each
dimension represents one weight of each component FNN. The population is
duplicated into two identical swarms.

Step 3: One swarm is optimized by PSO and the other is optimized by DE.
Step 4: Update the gbest_PSO and gbest_DE.
Step 5: Do the Steps 3–4 loop until the Max-iteration is reached.
Step 6: Output the predicted measures.

3.3. Optimization and Management

In the third sub-section, we could determine the critical factors by sensitivity
analysis and determine the measurement standards that could evaluate the state
change. The local state change could influence the global state and vice versa. Via a
different management mechanism, government policy could be established and the
ecosystem could be developed according to the sustainable direction.

3.3.1. Sensitivity Design

Having obtained the dynamic predicted measures, we could calculate the
sensitivity between the input factors and the predicted measures.

We determined ∆ ptq, which denotes a change of input or output state, and
obtained the values using the following formulae:

∆α̂ptq “ α̂ptq ´ α̂pt´ 1q (6)

∆β̂ptq “ β̂ptq ´ β̂pt´ 1q (7)

∆γ̂ptq “ γ̂ptq ´ γ̂pt´ 1q (8)

∆δ̂ptq “ δ̂ptq ´ δ̂pt´ 1q (9)

∆ϕptq “ ϕptq ´ϕpt´ 1q (10)
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∆µptq “ µptq ´ µpt´ 1q. (11)

We could calculate the sensitivity between the predicted measure and the
estimated input factors using the following formula:

Spy, xq “ dy
dx ˆ

x
y , which could take the approximated format:

Spy, xq “
∆y
∆x
ˆ

x
y

(12)

We would get the following results:

Spϕptq,αptqq “
∆ϕptq
∆αptq

ˆ
αptq
ϕptq

(13)

Spϕptq,βptqq “
∆ϕptq
∆βptq

ˆ
βptq
ϕptq

(14)

Spϕptq,γptqq “
∆ϕptq
∆γptq

ˆ
γptq
ϕptq

(15)

Spϕptq, δptqq “
∆ϕptq
∆δptq

ˆ
δptq
ϕptq

(16)

Spµptq,αptqq “
∆µptq
∆αptq

ˆ
αptq
µptq

(17)

Spµptq,βptqq “
∆µptq
∆βptq

ˆ
βptq
µptq

(18)

Spµptq,γptqq “
∆µptq
∆γptq

ˆ
γptq
µptq

(19)

Spµptq, δptqq “
∆µptq
∆δptq

ˆ
δptq
µptq

. (20)

If Sp¨, ¨q ă 0, it denotes a negative influence. The predicted measures would
decrease, with the input factor increasing.

If Sp¨, ¨q ą 0, it means a positive influence. With the input factor increasing, the
predicted measures would increase.

The bigger the absolute value of Sp¨, ¨q is, the more powerful the influence
between the input factor and the predicted measures would be. By this means we
could obtain the critical factor, which acts on the global influence.

3.3.2. Management and Policy

We take the fuzzy rules to determine the measure standard, and we also take
the last 5th year as the comparison. With several values as thresholds, the rules can
be described as follows:
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If ϕptq´ϕpt´1q
ϕptq´ϕpt´5q ą 3%, it means that the state has changed slightly. We could

adopt policy A, which acts on the critical factor of ϕ.
Otherwise, if ϕptq´ϕpt´1q

ϕptq´ϕpt´5q ą 5%, it means that the state has changed moderately.
Alternatively, we could adopt policy B, which acts on the critical factor of ϕ.
Otherwise, if ϕptq´ϕpt´1q

ϕptq´ϕpt´5q ą 8%, it means that the state has seriously changed.
Lastly, we could adopt policy C, which acts on the critical factor of ϕ.
End If.
In Figure 4, we present the management diagram as follows:
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Figure 4. The management diagram.

We choose the suitable policy to control the critical factor of each predicted
value. We also make a rule table as follows. By this means we could obtain a suitable
policy for overall prediction of ϕ,µ. In Table 3, we give the rules table.

Table 3. The rules table.

Items Values

Predicted measurement-1 0 A A B B A B C
Predicted measurement-2 0 0 A A B C C C

The final policy 0 A A B B C C C

We could make a brief policy mechanism with the pseudo-code description
given in Table 4.
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Table 4. The pseudo-code description of the decision-making strategy.

For the two predicted values:
If there are more than one policy Cs

We would apply policy C to all the input factors.
If there are more than one policy Bs

We would apply policy B to all the input-factors.
If there are more than one policy As

We would apply policy A to all the input-factors.
Otherwise do not intervene.

End If.

Based on the predicted measures, we could suggest that the government draft
detailed policies. For example:

Policy A: Increase public awareness of (1) the damage caused by increasing CO2;
(2) the damage caused by logging; (3) the dangers linked to an increasing population;
and (4) strategies for economizing on electricity.

Policy B: Limit (1) car exhaust; (2) large-scale logging; (3) population by slight
measures; (4) electrical consumption in certain areas or certain time periods; and
(5) develop novel technologies to tackle the problem.

Policy C: (1) Make laws to limit CO2 and fuel consumption and (2) advocate
forest planting.

4. Data Testing and Analysis

4.1. Data Design

The dataset for ecological modeling is collected from references [8,16–18]
(unfortunately, we cannot access all the fields of the dataset for 2007–2015). The local
factor data and the real measured data are shown in the Tables 5 and 6, respectively.

Table 5. The local factor data. 1e3 means ten to the power of 3.

Year CO2 (1e3 Billion Ton) Oil Consumption Population (10 Billion) Power Consumption (1e5 kw h)

1996 0.36236 0.429 0.57962 0.136714
1997 0.36347 0.445 0.5878 0.139623
1998 0.3665 0.455 0.5959 0.143186
1999 0.36814 0.46 0.60386 0.147216
2000 0.3694 0.475 0.61181 0.154169
2001 0.37107 0.48 0.61957 0.155235
2002 0.37317 0.482 0.62725 0.161266
2003 0.37578 0.483 0.63492 0.167138
2004 0.37752 0.49 0.64261 0.175049
2005 0.37976 0.51 0.65032 0.182721
2006 0.38185 0.515 0.65805 0.189788
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Table 6. The real, measured data.

The Real, Measured Data

Year Morbidity Rate (100%) GDP (10 per Unit)

1996 0.406 0.4520
1997 0.411 0.4660
1998 0.438 0.4750
1999 0.454 0.4811
2000 0.442 0.4950
2001 0.437 0.5031
2002 0.435 0.5061
2003 0.433 0.5062
2004 0.411 0.5063
2005 0.407 0.5151
2006 0.405 0.5280

Factors such as CO2 content, oil consumption, population, and power consumption
are regarded as the input factors. Using the Markov estimation, we could get the
estimated input factors.

4.2. Training and Analysis

We adopt the data from 1996 to 2001 to train our neural networks. The input
variables include CO2, oil consumption, population, and power consumption, and
the predicted measures include the morbidity rate and GDP. A sensitivity analysis is
conducted to determine the critical factors and put forward advice that would help
the government to establish policy. In Table 7, we list the sensitivity of the input
factors and predicted measures from 1997 to 2001.

From Table 7, we could draw a conclusion that the CO2 content has been the
critical factor. In our model, CO2 stands for the environmental change.

In 1997, CO2 was the main factor behind the rapid increase of GDP, and also
strengthened the morbidity rate. This means that the GDP increasing is based on
environmental deterioration. Meanwhile, the deteriorating environment has caused
an increase in the morbidity rate.

From 1998 to 1999, CO2 has also been the prominent factor in the rapid
increasing of GDP, and exacerbated the morbidity rate. However, the increase has
plateaued, which means that the government has recognized the problem and taken
slight measures to tackle it.

In 2000, CO2 shifted from a positive role to a negative factor in relation to
the morbidity rate, but meanwhile it strengthened the GDP. This means that the
government has taken measures to prevent some diseases. However, GDP increasing
is also based on environmental deterioration.
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Table 7. The sensitivity of the local factors and predicted measures. The bold words
show the maxmimum absolute value about the sensitivity analysis.

Analysis of Sensitivity CO2 Content Oil Consumption Population Power Consumption

1997
Morbidity rate 3.9836 0.3384 0.8742 0.5839

The GDP 9.8376 0.8305 2.1947 1.4557

1998
Morbidity rate 7.4563 2.8048 4.5350 2.4771

The GDP 2.2918 0.8621 1.3939 0.7614

1999
Morbidity rate 7.9110 3.2423 2.6735 1.2875

The GDP 2.8001 1.1476 0.9463 0.4557

2000
Morbidity rate ´7.9595 ´0.8597 ´2.0893 ´0.6020

The GDP 8.2918 0.8956 2.2108 0.6163

2001
Morbidity rate ´2.5423 ´1.0984 ´0.9135 ´1.6662

The GDP ´3.5340 1.5268 1.2698 2.3161

In 2001, CO2 was a negative factor in relation to the GDP and morbidity rate. By
a sensitivity analysis of morbidity rate, we found that environmental deterioration
has alleviated the positive influence of the government policies that prevent some
diseases. Even more, the environmental deterioration has hindered the increasing
of GDP.

4.3. Testing and Analysis

We use data from 2001–2006 to test our model. We could draw the conclusion
that our model could fit the approximating trend of the two predicted measures.
In Table 8, we list the sensitivity of the input factors and predicted measures from
2002 to 2006.

Table 8. The sensitivity of the local factors and predicted measures of the test data.
The bold words show the maxmimum absolute value about the sensitivity analysis.

Analysis of Sensitivity CO2 Oil Consumption Population Power Consumption

2002
Morbidity rate ´0.8170 ´1.1080 ´0.3755 ´0.1229

GDP 1.0885 1.4762 0.5003 0.1638

2003
Morbidity rate ´0.6650 ´2.2309 ´0.3824 ´0.1315

GDP 0.0284 0.0954 0.0164 0.0056

2004
Morbidity rate ´11.6137 ´3.7470 ´4.4730 ´1.1744

GDP 0.0429 0.0138 0.0165 0.0044

2005
Morbidity rate ´1.6662 ´0.2506 ´0.8290 ´0.2341

GDP 2.8640 0.4308 1.4249 0.4023

2006
Morbidity rate ´0.9022 ´0.5086 ´0.4204 ´0.1326

GDP 4.4984 2.5360 2.0960 0.6612

From Table 8, we could draw a conclusion that in 2002–2003 the oil consumption
was the critical factor and in 2004–2006 CO2 content was the critical factor. In our
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model, CO2 denotes environmental change and oil consumption could represent
resource consumption.

In 2002, oil consumption was a positive factor in relation to the rapid increasing
of GDP, but strengthened the morbidity rate. In the last five years, the government has
adopted several policies to tackle environmental deterioration. However, it must be
noticed that GDP increasing is also based on resource consumption. In the meantime,
excessive resource consumption has brought about an increase in the morbidity
rate. The system must be monitored for both intended and unintended changes. The
government should take measures to optimize the resource consumption mechanism.

Compared with the sensitivity of 2002, we could see that excessive resource
consumption has further strengthened the morbidity rate, and also limited the
increase of GDP. However, by 2002, the government had not taken effective measures.

In 2004–2006, the morbidity rate was alleviated by government policy. The GDP
improved from 2004 to 2006. The government adopted some beneficial environmental
policies but, over time, overconsumption of resources always negatively affects the
environment. For some accumulated reasons, the CO2 content could not be decreased
but could be controlled to some extent.

5. Conclusions and Discussion

Our predictive model could fit the real trends. It could be an effective method
to reflect the relationship between input factors and predicted measurements;
in addition, the model helps to determine critical factors and measurement standards.
By referring to this model, the government could make a detailed policy for adjusting
the ecosystem. However, it must be noticed that when a large number of factors
are considered, we have to construct a complicated matrix to reflect the dynamic
relationship; so the simulation would be heavy, so a prominent component analysis
would be considered.

Our method has the following strengths:
Firstly, our model can incorporate the relationships between different local state

factors, taking into account different changing variables.
Secondly, the Neural Network Ensemble (NNE) is used to predict the global

state. The predicting of single neural networks would be sensitive to disturbance.
However, NNE could improve the stability of the model. In addition, PSO with
logistic chaotic mapping could optimize the parameters in the networks and improve
precision. The multi-population cooperative algorithm could enhance the stability
of the NNE.

Lastly, by the analysis of sensitivity, our model could confirm the critical factors
that affect the global state. Moreover, our model could determine the measurement
standards used to select a policy.
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Simulation of Reservoir Sediment Flushing
of the Three Gorges Reservoir Using an
Artificial Neural Network
Xueying Li, Jun Qiu, Qianqian Shang and Fangfang Li

Abstract: Reservoir sedimentation and its effect on the environment are the most
serious world-wide problems in water resources development and utilization today.
As one of the largest water conservancy projects, the Three Gorges Reservoir (TGR)
has been controversial since its demonstration period, and sedimentation is the major
concern. Due to the complex physical mechanisms of water and sediment transport,
this study adopts the Error Back Propagation Training Artificial Neural Network
(BP-ANN) to analyze the relationship between the sediment flushing efficiency of
the TGR and its influencing factors. The factors are determined by the analysis on
1D unsteady flow and sediment mathematical model, mainly including reservoir
inflow, incoming sediment concentration, reservoir water level, and reservoir release.
Considering the distinguishing features of reservoir sediment delivery in different
seasons, the monthly average data from 2003, when the TGR was put into operation,
to 2011 are used to train, validate, and test the BP-ANN model. The results indicate
that, although the sample space is quite limited, the whole sediment delivery process
can be schematized by the established BP-ANN model, which can be used to help
sediment flushing and thus decrease the reservoir sedimentation.

Reprinted from Appl. Sci. Cite as: Li, X.; Qiu, J.; Shang, Q.; Li, F. Simulation of
Reservoir Sediment Flushing of the Three Gorges Reservoir Using an Artificial
Neural Network. Appl. Sci. 2016, 6, 148.

1. Introduction

Building reservoirs on rivers, especially sandy rivers, breaks the natural
equilibrium state of flow and sediment conditions, as well as riverbed morphology.
The lifting of the water level increases water depth, slows down the current velocity,
and thus reduces the sediment carrying capacity of water, leading to a large number
of sediment deposits in the reservoir.

The global capacity loss of reservoirs takes up to 0.5%–1% of the total reservoir
storage every year, approximately 45 km3 [1]. In addition to capacity loss, which
disables the design function of reservoirs such as flood control, power generation,
irrigation, and water supply, reservoir sedimentation also shortens the serve life of
the reservoir, enlarges the flooded and submerged area upstream, threatens the safety
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upstream, and impacts navigation. The reduction of outflow sediment also results in
erosion of riverbeds downstream, and brings about a series of new problems.

There are plenty of sandy rivers in China. According to incomplete statistics,
the annual sediment runoff of 11 main rivers in China is about 16.9 ˆ 108 t [2]. The
annual sediment runoff at the Cuntan hydrometric station of the Yangtze River is up
to 2.10ˆ 108 t in the year 2012 [3]. With the construction of more and more large-scale
reservoirs, the sedimentation problem has become prominent. The world-renowned
Three Gorges Reservoir (TGR) is large multi-objective comprehensive water control
project with functions of flood control, power generation, navigation, water supply,
and so on. Ever since its design and demonstration phase, the sedimentation problem
has been one of the principal concerns. Particle size of both the inflow and outflow
sediment of the TGR presents a decreasing tendency, especially after the construction
of TGR as well as other large-scale reservoirs upstream. The median particle diameter
of the inflow sediment into the TGR is around 0.01–0.011 mm, while that of the
outflow sediment is about 0.007–0.009 mm [3]. More than 85% of the inflow sediment
particles are within 0.062 mm, and only 3%–7% are larger than 0.125mm. Thus,
flushing is believed to be an effective way to transport sediment.

In order to make better use of reservoir release to flush sediment, the relationship
between the amount of flushed sediment and its influence factors needs to be studied.
However, sedimentation affected by geographical location, topography, geology,
climate, and other natural factors, as well as human activities, is a very complex
and cross-disciplinary subject. It involves river dynamics, geology, geography and
other subjects with immature development. Both the complexity and the immaturity
lead to the difficulties of solving the reservoir sedimentation problem. Calculation
of sediment erosion and deposition can adopt the mathematical model of flow and
sediment. There have been a range of mathematical models presented in previous
publications [4–9], the theoretical foundation of which are mainly composed of: flow
continuity equation, flow motion equation, sediment continuity equation, riverbed
deformation equation, and sediment-carrying capacity equation. Establishing and
solving a comprehensive set of equations for flow and sediment mathematical models
is a complex task with requirements of extensive data to get closed conditions.
Currently, many important aspects of the sediment transportation rely on experience
and subjective judgment, which is not conducive to close the mathematical model.
Furthermore, reservoir sedimentation cannot be generalized with a simple 1D
mathematical model, while the 2D and 3D models for sediment transport are only
available for short river reach or partial fluvial process issues due to their complex
structure, the large number of nodes, and time-consuming computation [10–12].

The artificial neural network (ANN) model has the characteristics of parallelism,
robustness, and nonlinear mapping. In recent years, ANN has been applied and
developed to a certain extent in the simulation of river flow and the calculation of 2D
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plane flow fields. Dibike et al. [13] combined the ANN theory and the hydrodynamic
model; the hydrodynamic model is used to provide learning samples for the ANN
model, and the trained ANN is then adopted to predict the navigation depth, and
flow motion in some important areas of the 2D flow field, such as water level,
flow velocity, flow direction and flow rate. Yang et al. [14] generalized the whole
basin into several reservoirs and used the reservoir water balance principle and
ANN to simulate the runoff of the Irwell River. The model shows a preferable
simulation effect for the daily and monthly runoff time series. The ANN is also
adopted to derive operating policies of a reservoir, such as [15–18]. Neelakantan
and Pundarikanthan [19] presented a planning model for reservoir operation using
a combined backpropagation neural network simulation–optimization (Hooke and
Jeeves nonlinear optimization method) process. The combined approach was used
for screening the operation policies. Chandramouli and Deka [20] developed a
decision support model (DSM) combining a rule based expert system and ANN
models to derive operating policies of a reservoir in southern India, and the authors
concluded that DSM based on ANN outperforms regression based approaches.

Although some studies of ANN have been published in both hydrodynamics
and reservoir operations, respectively, its research and application on reservoir
sediment erosion and deposition is still deficient.

In this study, the BP-ANN model is used to determine the complex non-linear
relationship between reservoir sediment flushing efficiency and its influencing factors.
On the basis of analysis of 1D unsteady flow and sediment mathematical models, four
factors composed of reservoir inflow, incoming sediment concentration, reservoir
water level, and reservoir release were selected as the input of the model. As the
output of the model, sediment flushing efficiency is used to estimate the simulative
and predicting accuracy of the model, which should be as close to the desired values
as possible. The historical data of the TGR from 2003 to 2010 are used to train
the network, and the data in the year of 2011 is adopted for testing. The results
indicate that the established model is able to capture the main feature of the reservoir
sediment flushing, especially in the flood season, when the majority of the annual
sediment is produced. Although the model can be improved with a larger number of
samples, the method is proven to be valid and effective.

2. Methodology

The nonlinear mapping of ANN is able to reflect the complex relationship
between multiple independent and dependent variables in reservoir sediment
flushing with high simulative accuracy and great feasibility. Considering the
computational efficiency and practicality, this study adopts ANN to simulate
reservoir sedimentation and predict the amount of flushing sediment with different
reservoir operational schedules.
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2.1. Influence Factors of the Sediment Flushing

Sediment flushing efficiency of reservoir λ shown in Equation (1) is chosen as
the indicator of the flushed sediment:

λ “
Sout

Sin
, (1)

where λ is the reservoir sediment flushing efficiency; Sout is the flushed sediment
amount out of the reservoir; and Sin is the sediment inflow into the reservoir.

Referring to the 1D unsteady flow and sediment mathematical model, the major
factors affecting sediment flushing efficiency are selected. The model includes: flow
continuity equation as shown in Equation (2), flow motion equation as shown in
Equation (3), sediment continuity equation as shown in Equation (4), and the riverbed
deformation equation as shown in Equation (5):
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S˚ “ κ
ˆ

U3

gRω
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, (8)

and γ, γs are the volume-weight of water and sediment, respectively; d is the
sediment grain size; A is the cross-sectional area; R is the hydraulic radius; Q is
the flow; B is the cross-sectional width; H is the water head between upstream
and downstream; L is the reservoir water level; T is the tailwater elevation; α is the
coefficient of saturation recovery;ω is the sediment settling velocity; S is the sediment
concentration; S˚ is the sediment-carrying capacity of flow; κ, l are coefficient and
exponent; and ν is the kinematic coefficient of viscosity.

The sediment inflow into a reservoir differs from month to month. A majority
of the sediment comes in flood season with flood, and, in non-flood season, the
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incoming sediment is far less. To improve the simulative accuracy, the sediment
delivery characteristics are studied separately for different time periods in a
year. Thus, the parameters regarding the water and sediment properties, such
as volume-weight, sediment grain size, and kinematic coefficient of viscosity, are
considered to be changeless. For each period, the reservoir operation water level
is relatively fixed by the operation rules. Thus, the geometric parameters in
Equations (2)–(7), including cross-sectional area, width, and hydraulic radius can
also be regarded as constants.

On the basis of the analysis above, it can be seen that the major factors that
impact the sediment flushing efficiency of reservoirs include: inflow, sediment inflow,
release, and water head.

2.2. Artificial Neural Network (ANN)

2.2.1. Outline of ANN

ANN simulates the reaction process of the biological nervous system to
information stimulation. To sum up, information processing of neurons consist
of two phases: in phase one, the neurons receive information and weight them,
known as the integration process; in phase two, the neurons process the integrated
information by linear or nonlinear functions, called the activation process. The whole
process of inputting information and outputting response can be represented by an
activation transfer equation, as shown in Equation (9):

Y “ F

˜

n
ÿ

i“1

XiWi

¸

, (9)

where Y is the output of neuron; F is the response characteristic of the neuron to
input information; Xi is the input information corresponding to the i-th node; and
Wi is the weight of the i-th node.

A neuron is the basic processing unit in neural networks, which is generally a
non-linear element with multiple inputs and a single output. Besides being affected
by external input signals, the output of a neuron is also influenced by other factors
inside the neuron, so an additional input signal θ called bias or threshold is often
added in the modeling of artificial neurons. Figure 1 describes the information
processing of a single neuron mathematically, where j is the index of the neuron.
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Figure 1. Mathematical model of a single neuron.

A neural network is composed of an input layer, several hidden layers and an
output layer, and there are a certain number of neurons in each layer, which are also
called nodes.

Neuron mapping between different layers is realized by the activation transfer
function. The activation transfer function converts the input in an unlimited domain
to output within a limited range. A typical activation transfer function includes:
threshold function, linear function, S-type function, hyperbolic tangent function, and
so on. The domain divided by an S-type activation transfer function is composed of
non-linear hyperplanes, which has a soft, smooth, and arbitrary interface. Thus,
it is more precise and rational than the linear function with better robustness.
Furthermore, since the S-type function is continuously differentiable, it can be strictly
calculated by a gradient method. Equation (10) presents the S-type function:

f pxq “
1

1` e´tx . (10)

2.2.2. Error Back Propagation Training (BP)-ANN

Neural network algorithms can be classified into the Error Back Propagation
Training (BP)-ANN model, the perceptron neural network model, the Radial Basis
Function (RBF) neural network model, the Hopfield feedback neural network model,
the self-organizing neural network model, and so on. Since it successfully solved
the weight adjustment problem of the multilayer feedforward neural network for
non-linear continuous functions, the BP-ANN is widely used. Figure 2 shows a
mathematical model of the BP-ANN, in which j is the index of the nodes.
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Figure 2. Calculation principle diagram of Back Propagation Training Artificial
Neural Network (BP-ANN).

BP-ANN is based on gradient search technology with two processes: forward
propagation process of information and back propagation process of errors. In
forward propagation, the input signal passes through the hidden layers to the output
layer. If desired output appears, the learning algorithm ends; otherwise, it turns to
back propagation. In back propagation, the error transits through the output layer,
and the weights of each layer of neurons are adjusted according to the gradient
descent method to reduce the error. Such loop computation continues to make the
output of the network approach the expected values as close as possible. Due to
its strong nonlinear mapping ability, BP-ANN is used in this study to establish the
relationships between the reservoir flushed sediment and its influence factors, the
calculation steps of which are illustrated below.

Assuming the input vector is u, the number of neurons in input layer is n, the
output vector is y, the number of neurons in the output layer is m, the length of the
input/output sample pair is L, and the steps of the BP-ANN algorithm include:

(1) Setting the initial weight ω p0q, which is relatively small random nonzero value;
(2) Giving the input/output sample pair, and calculating the output of the

neural network:

Assuming the input of the p-th sample is up “
`

u1p, u2p, . . . , unp
˘

, the output of
the p-th sample is dp “

`

d1p, d2p, . . . , dmp
˘

, p = 1, 2, ..., L, the output of node i with
p-th sample is yip:

yip ptq “ f
“

xip ptq
‰

“ f

»

–

ÿ

j

ωij ptq Ijp

fi

fl , (11)
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where Ijp is the j-th input of node i when inputting the p-th sample, and f (‚) is the
activation transfer function as shown in Equation (10);

(3) Calculating the objective function J of the network:

Assuming Ep is the objective function of the network when inputting the p-th
sample, then:

Ep “
1
2

ÿ

k

”

dkp ´ ykp ptq
ı2
“

1
2

ÿ

k

e2
kp ptq , (12)

where ykp is the network output after t times of weight adjustment when inputting
the p-th sample and k is the index of the node in output layer;

The overall objective function of the network is used to estimate the training
level of the network, as shown in Equation (13):

J ptq “
ÿ

p
Ep ptq . (13)

(4) Discriminating whether the algorithm should stop: if J ptq ă ε, it stops;
otherwise, it turns to step (5), where ε ą 0 is preset;

(5) Back propagation calculating:

Starting from the output layer, referring to J, do the calculation according to the
gradient descent algorithm to adjust the value of weight. Assuming the step length is
constant, the (t + 1)-th adjusted weight of the connection from neuron j to neuron i is:

ωij pt` 1q “ ωij ptq ´ η
B J ptq
Bωij ptq

“ ωij ptq ´ η
ÿ

p

BEp ptq
Bωij ptq

“ ωij ptq ` ∆ωij ptq , (14)

where η is the step length, also called the learning operator,

BEp

Bωij
“
BEp

Bxip
¨
Bxip

Bωij
, (15)

δip “
BEp

Bxip
, (16)

where δip is the sensitivity of the status of the i-th node xip to Ep when inputting the
p-th sample. Equation (17) can be derived from Equation (15) to Equation (16):

BEp

Bωij
“ δip Ijp. (17)

Calculating δip in two different conditions:
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1© If i is output node, i.e., i = k, it can be derived from Equations (12) and (16) that

δip “ δkp “
BEp

Bxkp
“
BEp

Bykp
¨
Bykp

Bxkp
“ ´ekp f 1

´

xkp

¯

. (18)

Substitute Equation (18) into Equation (15), then

BEp

Bωij
“ ´ekp f 1

´

xkp

¯

Ijp. (19)

2© If i is not an output node, i.e., i‰k, Equation (16) is:

δip “
BEp

Bxip
“
BEp

Byip
¨
Byip

Bxip
“
BEp

Byip
¨ f 1

`

xip
˘

, (20)

in which

BEp
Byip

“
ř

m1

BEp
Bxm1 p

¨
Bxm1 p
Byip

“
ř

m1

BEp
Bxm1 p

¨
B
ř

j ωm1 j Ijp
Byip

“
ř

m1

BEp
Bxm1 p

¨ωm1i “
ř

m1
δm1 p ¨ωm1i, (21)

where m1 is the m1-th node in the layer after node i; Ijp is the j-th input for node i.
When i = j, yjp “ Ijp. Substitute Equations (20) and (21) into Equation (15), then

BEp

Bωij
“ f

`

xip
˘

Ijp
ÿ

m1

BEp

Bxm1 p
¨ωm1i “ f

`

xip
˘

Ijp
ÿ

m1

δm1 p ¨ωm1i. (22)

Equations (19) and (22) can be used to adjust the weight in Equation (14).
The expression of BP-ANN mapping is a compound of a simple nonlinear

function. Several such compound is able to represent complex functions, and then
describe many complex processes in physical phenomena.

2.2.3. BP-ANN Model of Reservoir Sedimentation

When combining reservoir sedimentation calculation and reservoir operation,
the computational process and constraints are complex, and the time scale is difficult
to match. The nonlinear mapping ability of BP-ANN can reflect such complicated
relationships between multiple independent and dependent variables without
requirements of time-consuming computations.

The sediment flushing efficiency shown in Equation (1) is selected as the output
of the BP-ANN model. Based on the analysis in Section 2.2.1, its main influencing
factors in real time include: inflow upstream Qin, sediment concentration upstream S,
release flow downstream Qout, and reservoir water level L, which are the inputs of
the BP-ANN model. Taking the TGR reservoir as an example, a BP-ANN model to
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simulate and predict the reservoir sediment flushing is established with the observed
data from 2003, when the TGP was put into operation, to 2011.

3. Results and Discussion

Hecht-Nielsen [21] proved that for any mapping G from closed unit cube in
n-dimensional Euclidean space [0,1]n to m-dimensional Euclidean space Rm in L2 (we
say a function belongs to L2 if each of its coordinate functions is square-integrable
on the unit cube), there exists a three-layer BP neural network, which is capable
of approaching G with arbitrary precision. Bourquin et al. [22] believed that the
Multiple Layer Perception (MLP) with only one hidden layer is sufficient in theory,
and, compared to three layers, ANN with four layers is more likely to fall into local
optima and harder to train, both of them are similar in other aspects. Hence, BP-ANN
model with three layers is selected in this study.

In the application of ANN, it is difficult but crucial to determine an appropriate
number of neurons in hidden layer. If the number is too small, the accuracy of the
ANN cannot be guaranteed; while if the number is too large, not only the number of
connection weights in the network increases, but also the generalization performance
of the network is likely to drop. Hence, in this study, the number of neurons in
hidden layer is set to be 10.

Input parameters are firstly normalized to fall into [0,1], as shown in
Equation (23):

xi “
xi ´ xmin,i

xmax,i ´ xmin,i
. (23)

To prevent supersaturation of the neurons, only a certain range r of the S-type
activation transfer function with larger curvature is used for mapping, as illustrated
in Figure 3.
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Figure 3. S-type activation transfer function and its adopted range.

Thus, Equation (23) is converted as:

xi “
xi ´ xmin,i p1` d1q

xmax,i p1` d2q ´ xmin,i p1` d1q
. (24)

67



After several testing trials of calculation, d1 “ 40% and d2 “ 20% in this study.

The four types of observed data (
Ñ

Qin,
Ñ

Qout,
Ñ

L ,
Ñ

S ) and the observed sediment
flushing efficiency of the TGR from the year 2003 to 2010 are used to train the
BP-ANN model, and the data of the year 2011 is used to test it. The simulation and
prediction results of the model are shown in Figure 4.
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Figure 4. (a) simulation result and (b) prediction result of the BP-ANN model.

It can be seen from Figure 4 that the trained BP-ANN model can simulate
the reservoir sediment flushing process with a high accuracy. When it comes to
prediction, the BP-ANN model is able to reflect the relational characteristics of the
reservoir sediment flushing. However, since the TGR has only been in operation for
about 10 years, and the monthly data is available from 2003 to 2011, the samples
used to train the BP-ANN are quite limited, and some deviations still exist. In
addition, the sediment delivery from reservoir is an extremely complex process
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relevant to multiple influencing factors. The reservoir sediment flushing model itself
is approximate with many empirical parameters. The four factors selected in this
study are necessary and dominated but not sufficient. Last but not least, the majority
of the sediment flows into the reservoir in flood season, and very little sediment
comes in non-flood season. The difference between the sediment inflow can be
several orders of magnitude in different seasons. The observed errors of sediment in
the non-flood season itself is not as small as that in flood season. Synthesizing all the
reasons above, the BP-ANN model established in this study is believed to be able
to characterize the relationship between reservoir flushing sediment and its major
influencing factors, especially in flood season, when most of the sediment comes.

Figure 5 shows the goodness of fit between the model output and the observed
data. A satisfying fitting degree can be achieved using only the trained data. For the
test, the actual data distributes on both sides of the fit line. Basically, the predicted
results from the BP-ANN model is a little larger than the actual data, while the gap
is limited.
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(c) tested data of the year 2011.

The statistics of the relative error between the model output and the actual data
are shown in Figure 6. There are 96 output variables of the BP-ANN model in the
training phase and 12 outputs in testing phase, as the output is monthly sediment
flushing efficiency. The blue and green bars in Figure 6 indicate the number of
variables with the error falling into a certain range in the training and testing phase,
respectively. The red line represents 0 errors occuring. It can be seen that most of the
trained outputs stick around the 0 error line. As for the tested outputs, the largest
error is about 20%. However, there are only two tested outputs with the error larger
than 10%, i.e., over 80% of the predicted sediment flushing efficiency is within 10%
difference from the historical data.
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4. Conclusions

Due to the complexity of the reservoir sedimentation process and the immaturity
of the sediment research, the calculation of the reservoir sediment erosion and
deposition has relied on complicated differential equations with abundant empirical
parameters. Since the BP-ANN model has a strong ability to deal with complex
non-linear mapping with simpler calculations, it is adopted in order to study the
relationships between reservoir flushing sediment and its influencing factors. Four
major factors impacting the reservoir sediment flushing efficiency are determined
by the analysis on 1D unsteady flow and sediment mathematical model, which
are reservoir inflow, water level, outflow, and the inflow sediment concentration.
The observed data of the Three Gorges Reservoir from 2003 when it was put into
operation to 2010 are used to train the BP-ANN model, and the data of the year
2011 is used for testing. The results show that the established BP-ANN model
is able to reflect the essential relationship between the sediment flushing and its
influencing factors, especially in flood season, when the majority of the sediment
inflows. To improve the accuracy of the model, more observed data is needed in
the future.
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Prediction of the Hot Compressive
Deformation Behavior for Superalloy
Nimonic 80A by BP-ANN Model
Guo-zheng Quan, Jia Pan and Xuan Wang

Abstract: In order to predict hot deformation behavior of superalloy nimonic 80A,
a back-propagational artificial neural network (BP-ANN) and strain-dependent
Arrhenius-type model were established based on the experimental data from
isothermal compression tests on a Gleeble-3500 thermo-mechanical simulator
at temperatures ranging of 1050–1250 ˝C, strain rates ranging of 0.01–10.0 s´1.
A comparison on a BP-ANN model and modified Arrhenius-type constitutive
equation has been implemented in terms of statistical parameters, involving
mean value of relative (µ), standard deviation (w), correlation coefficient (R) and
average absolute relative error (AARE). The µ-value and w-value of the improved
Arrhenius-type model are 3.0012% and 2.0533%, respectively, while their values of
the BP-ANN model are 0.0714% and 0.2564%, respectively. Meanwhile, the R-value
and ARRE-value for the improved Arrhenius-type model are 0.9899 and 3.06%, while
their values for the BP-ANN model are 0.9998 and 1.20%. The results indicate that
the BP-ANN model can accurately track the experimental data and show a good
generalization capability to predict complex flow behavior. Then, a 3D continuous
interaction space for temperature, strain rate, strain and stress was constructed based
on the expanded data predicted by a well-trained BP-ANN model. The developed 3D
continuous space for hot working parameters articulates the intrinsic relationships
of superalloy nimonic 80A.

Reprinted from Appl. Sci. Cite as: Quan, G.; Pan, J.; Wang, X. Prediction of the Hot
Compressive Deformation Behavior for Superalloy Nimonic 80A by BP-ANN Model.
Appl. Sci. 2016, 6, 66.

1. Introduction

Nimonic 80A, as a nickel-based superalloy, has been widely used in jet engines
for aircraft, gas turbines for power plant and marine diesel engines because of its
high creep strength, superior oxidation resistance and strong resistance to corrosions
at high temperature [1–3]. Generally, the Nimonic 80A is used to fabricate exhausting
valve. The upsetting and closed die forging are traditionally applied to form the
exhausting valve. However, in recent years, the electric upsetting process with
isostatic loading and high heating efficiency is developed to form the exhausting
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valves [4,5]. It is well known that the hot deformation behavior for a specific
material is sensitive to the hot deformation parameters involving strain, strain
rate and temperature, and is highly non-linear during hot deformation. The
flow behavior of materials is often complex due to the comprehensive function
of hardening and softening mechanisms. Consequently, modeling and prediction
of the constitutive stress-strain relationships with a high precision is quite complex
in nature; meanwhile, it is significant to study and understand the hot deformation
behavior and furthermore optimize the deformation process (electric upsetting,
forging and extrusion) by numerical simulations. How to obtain an accurate
strain-stress relationship becomes critical for the correct calculation of the finite
element model [6].

So far, a large amount of research on the characterization for complex non-linear
relationships between true stress and deformed parameters such as strain, strain rate
and temperature at elevated temperatures has been proposed. Numerous efforts
have been made to three types of constitutive models involving the analytical
constitutive model, phenomenological constitutive model and artificial neural
network [7]. In analytical models, constitutive relations are derived based on
physical theories, which require very clear understanding of the processes that
control the deformation of the materials. The phenomenological constitutive model
is an accurate mathematical model and has relatively many coefficients that need
to be calibrated with experimental data. A phenomenological model including the
Arrhenius-type equation with hyperbolic laws was proposed to predict flow stress [8].
Furthermore, an improved Arrhenius-type constitutive model incorporating the
strain effect on the hot deforming parameters, has been developed to describe and
predict the flow behavior for diverse materials or alloys. Lin et al. proposed a
modified hyperbolic sine constitutive equation, in which the influence of strain
was incorporated to predict the flow stress of 42CrMo steel [9]. Later, the modified
Arrhenius-type equation was precise for describing the elevated temperature flow
stress of Aermet100 steel [10], Ti60 titanium alloy [11], Al–Zn–Mg–Er–Zr alloy [12],
etc. Such constitutive equations are typically only applicable to the limited materials
with specific conditions due to the poor adaptability for the new experimental data.
Additionally, the artificial neural network (ANN) model with a back-propagation
learning algorithm has been successfully used to predict the hot working behavior
of material to overcome the gross approximations introduced by the regression
methods [6,13–23]. The back-propagational artificial neural network (BP-ANN) is a
model emulating some functions of biological neural networks with a data-driven
black-box structure [24], thus it merely needs a collection of some typical examples
from the anticipant mapping functions for training regardless of explicit professional
knowledge of deformation mechanisms. The BP-ANN model with a data-driven
black-box provides a novel way to predict the flow stress by learning the complex
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and non-linear relationships of flow stress, strain rate, strain and temperature with
true stress-strain data. Ji et al. applied a feed-forward back-propagation ANN
model to predict the flow stress of Aermet100 steel [13]. Haghdadi et al. developed
a feed-forward back propagation ANN with single hidden layer to predict the
flow behavior of an A356 aluminum alloy [15]. Several such works reveal that
the predicted results are well consistent with experimental results; furthermore,
the neural network is an effective tool to predict the hot deformation behavior of
non-linear characteristic materials.

Accordingly, in this work, the stress-strain data of superalloy nimonic 80A
were obtained from a series of isothermal compression tests carried out in a wide
temperature range of 1050–1250 ˝C and strain rate range of 0.01–10 s´1 on a Gleeble
3500 thermo-mechanical simulator (Dynamic Systems Inc., New York, NY, United
States). A BP-ANN model which takes temperature (T), strain rate (

.
ε) and strain

(ε) as the input variables, and true stress (σ) as the output variable was established
by determining proper network structure and parameters to predict the non-linear
complex flow behaviors. Meanwhile, a strain-dependent Arrhenius-type constitutive
model was constructed to predict the flow stress of nimonic 80A. Subsequently,
a comparative analysis on the performance of two such models has been carried
out by a series of evaluators such as relative error (δ), average absolute relative
error (AARE) and correlation coefficient (R), which predictably indicates that the
former has higher prediction accuracy. In the following, as described previously, a 3D
continuous interaction space within the temperature range of 950–1250 ˝C, strain
rate range of 0.01–10 s´1, and strain range of 0.1–0.9 was constructed.

2. Materials and Experimental Procedure

The chemical compositions (wt. %) of superalloy nimonic 80A used in
this study were as follows: C—0.069, Mn—0.630, Cr—2, Fe—1.260, Ti—2.070,
Al—0.680, Si—0.550, S—0.001. Twenty nimonic 80A specimens with a diameter
of 10 mm and a height of 12 mm were processed from the same extruded billet
by wire-electrode cutting. A thermo-mechanical simulator, Gleeble-3500, with a
high speed heating system, a servo hydraulic system, a digital control system
and a data acquisition system, was used for compression testing. It is common
to be used for simulating both mechanical and thermal process at a wide range
during hot deformation. Twenty specimens were resistance heated to a proposed
deformation temperature with a heating rate of 5 ˝C/s and then held at that
temperature for 180 s by thermo-coupled-feedback-controlled AC current to obtain
a homogeneous temperature field. Afterwards, all twenty-four specimens were
compressed to a true strain 0.9163 (a fixed height reduction of 60%) at five different
temperatures of 1050 ˝C, 1100 ˝C, 1150 ˝C, 1200 ˝C and 1250 ˝C, and four different
strain rates of 0.01 s´1, 0.1 s´1, 1 s´1 and 10 s´1 [25]. After each compression,
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the deformed specimen was immediately quenched into water to retain the high
temperature microstructures.

During the compression process, the variations of strain and stress were
continuously monitored by the computer equipment with the automatic data
acquisition system. Generally, the true stain and true stress were derived from the
nominal stress-strain relationship based on the following formula: σT = σN(1 + εN),
εT = ln(1 + εN), where σT is true stress, σN is nominal stress, εT is true strain and εN

is nominal strain.

3. Flow Behavior Characteristics of Superalloy Nimonic 80A

The true compressive stress-strain curves for nimonic 80A, heat-resisting alloy,
are illustrated in Figure 1a–d, which show that both deformation temperatures
and strain rates have considerable influence on the flow stress of nimonic 80A
heat-resisting alloy.
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Figure 1. The true stress-strain curves of superalloy nimonic 80A under the different
temperatures with strain rates (a) 0.01 s´1; (b) 0.1 s´1; (c) 1 s´1; (d) 10 s´1.

As shown in Figure 1, the strain rate and temperature have a significant effect on
the flow curves. Apparently, the flow stress decreases markedly as the temperature
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increases at a specific strain rate. In contrast, the flow stress increases with the
increasing of the strain rate while for a fixed temperature, which is owing to an
increase of the dislocation multiplication rate and dislocation density [4]. All the
true strain-stress can be summarized in three distinct stages of the stress evolution
with strain [4,6,7]. At the first stage of the forming process, the flow stress rapidly
increases to a critical value, where work hardening (WH) predominates. At the
second stage, where the thermal softening owing to dynamic recrystallization (DRX)
and dynamic recovery (DRV) gets more and more predominant, flow stress slowly
increases to the peak value even exceeds work hardening. At the third stage, the
curves can be divided into two types based on the variation tendency. Evidence of
DRX softening, the flow stress decreases continuously, which corresponds to the
conditions of 0.01 s´1 and 1050–1250 ˝C, 0.1 s´1 and 1050–1200 ˝C and 1–10 s´1 and
1050–1200 ˝C. However, in the parameter domains of 0.1–10 s´1 and 1250 ˝C, the
stress approximately keeps a steady state with significant DRV softening. From the
previous descriptions, the typical form of flow curve with DRX softening involved
a single peak followed by a flow of steady state. The reason lies in the fact that
the highter rate of work hardening slows down the DRX softening rate with lower
temperatures and higher strain rates, therefore, the onset of steady state flow is
shifted to higher levels [4].

4. Development of Constitutive Relationship for Superalloy Nimonic 80A

4.1. BP-ANN Model

BP-ANN has been widely used to process complex non-linear relationships
among several variables [6,20–23,26]. It is a quite efficient computing tool to learn
and predict the hot deformation behavior between inputs and outputs by simulating
the neural networks structure of the biological neurons. The typical artificial neural
network contains three layers, which are input layer, hidden layer and output layer.
The input layer receives outside signals and then the output layer generates output
signals, while the hidden layer provides the complex network architecture to mimic
the non-linear relationship between input signals and output signals [20]. Basically,
a feed forward network, which was trained by the back propagation algorithm, was
used to establish the back-propagation (BP) neural network. Back-propagation (BP)
algorithm adjusts the biases and weights aiming to minimize the target error through
gradient descent during training procedure, while learning the relationships between
input data and output data.

In this investigation, the input variables of BP-ANN include deformation
temperature (T), strain rate (

.
ε) and strain (ε), while the output variable is flow

stress (σ). The schematic representation of the BP-ANN architecture was shown in
Figure 2. All the data from twenty stress-strain curves were divided into training
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dataset and independent test dataset. In order to ensure the efficiency of training,
each continuous stress-strain curve was discretely handled by strain parameter from
0.05 to 0.9 at an interval of 0.01. Hence, a total of 1386 discrete data points from
the eighteen stress-strain curves were defined as the training data of this BP-ANN
work. The testing dataset was determined as the others curves involving the curves
under 0.01 s´1 and 1100 ˝C and 1 s´1 and 1200 ˝C. Among such two curves, the
stress values of 36 points picked out from 0.05 to 0.9 with a strain interval of 0.05,
and 162 points from the other eighteen training curves in a strain range of 0.05 to
0.9 with a strain interval of 0.1 were considered as the test data for the BP-ANN
work performance. The BP-ANN model was trained based on the training dataset,
and generalization property of the trained network was assessed by the test dataset
selected with a fixed strain rate.
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The selected experimental data have been measured in different units, and thus
different data have great differences, which induce the poor convergence speed and
predicted accuracy of a BP-ANN model. From the stress-strain curves, it can be seen
that the input strain data varies from 0.05 to 0.9, strain rate data varies from 0.01
to 10 s´1, and temperature data varies from 1050 to 1250 ˝C, the output flow stress
data varies from 25.93 MPa to 387.63 MPa. Therefore, before training the network,
the input and output datasets have been normalized to avoid value concentrating
on weights and some neurons when the iterative calculation of BP-ANN. The main
reason for normalizing the data matrix is to recast them into the dimensionless units
to remove the arbitrary effect of similarity between the different data. In this research,
the normalization processing was realized by Equation (1) [6,17]. The coefficients
of 0.05 and 0.25 in Equation (1) are regulating parameters for the sake of narrowing
the magnitude of the normalized data within 0.05 to 0.3. Furthermore, it should be
noted that the initial numerical values of true stain rates exhibit great magnitude
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distinction, thereby a logarithm was taken for transforming the true stain rate data
before normalization processing.

xn “ 0.05` 0.25 ˆ
x´ 0.95xmin

1.05xmax ´ 0.95xmin
(1)

where x is the initial data of input or output variables; xmin is the minimum value of
x and xmax is the maximum; xn is the value of x after normalization processing.

The structural parameter settings of the BP-ANN are very complex, which
require an appropriate transfer function and an appropriate number of neurons
for the hidden layers. It has been proved that two hidden layers are necessary to
construct the BP-ANN model to ensure the training accuracy. The determination
of the neurons number for hidden layers has a direct relationship with the number
of training samples which are often settled by the experience of designers and a
trail-and-error procedure. In order to achieve the proposed accuracy, the BP-ANN
model was trained with only two neurons for each hidden layer at the beginning;
afterwards, the neuron number was adjusted continually (three, four, etc.). After
repeated trials by changing the neuron number, two hidden layers and 11 neurons in
each hidden layer are determined for the final network architecture. Here, “trainbr”
function and “learngd” function were empirically chosen as the training function and
learning function respectively. In the meantime, the transfer function of the hidden
layers was assumed as “tansig” function, whereas the output layer adopted “purelin”
function. In addition, an evaluator, sum square error (SSE) between experimental
and predicted values is introduced into this net to check the ability of the ANN
training model. SSE is expressed as Equation (2) [6]. Here, the proposed accuracy, i.e.,
the maximum SSE-value is set as 0.0001. The work was accomplished by the neural
network toolbox available with MATLAB software (R2013b, MathWorks, Natick,
MA, United State, 2013).

SSE “
N
ÿ

i“1

pEi ´ Piq
2 (2)

where, Ei is the sample of experimental value; Pi is the sample of predicted value by
the BP-ANN model; and N is the number of true stress-strain samples.

Based on the well-trained BP-ANN model, the true stress values under
experimental conditions, which include the deformation conditions corresponding
to the previous training points and test points, were predicted. Figure 3 exhibits
the comparisons between the true stresses predicted by BP-ANN model and the
corresponding experimental true stresses for superalloy nimonic 80A. Apparently, the
predicted true stress decreases with temperature increasing or strain rate decreasing,
which is consistent with experimental stress-strain curves. The phenomenon
predictably indicates that the BP-ANN model is able to effectively grasp the
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stress-strain evolution rules, that is, it possesses excellent capability to track the
dynamic softening (including DRX and DRV) and work hardening regions of
superalloy nimonic 80A. Additionally, the test data including the data under 0.01 s´1

and 1100 ˝C and 1 s´1 and 1200 ˝C, are used to assess the generalization property of
the BP-ANN model. The result of comparisons shows that the true stresses predicted
by BP-ANN model has good agreement with experimental stress-strain curves, which
indicates the high generalization property of the BP-ANN model.
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Figure 3. The comparison of the BP-ANN prediction with experimental values at
different temperatures and strain rates (a) 0.01 s´1; (b) 0.1 s´1; (c) 1 s´1; (d) 10 s´1.

4.2. Arrhenius-Type Constitutive Model

Generally, Arrhenius type equation is expressed as Equation (3) [27], which
correlates the flow stress (σ) with temperature (T) and strain rate (

.
ε).

.
ε “ AFpσqexpp´Q{RTq (3)
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where Fpσq “

$

’

&

’

%

σn1
ασ ă 0.8

exppβσq ασ ą 1.2
rsinhpασqsn f or all σ

,

and where
.
ε is the strain rate (s´1), R is the universal gas constant (8.31 J¨mol´1¨K´1),

T is the absolute temperature (K), Q is the activation energy of deformation
(kJ¨mol´1), σ is the flow stress (MPa) for a given stain, A, α, n1 and n are the material
constants, α “ β{n1.

For the low stress level (ασ ă 0.8), taking natural logarithms on both sides of
Equation (3), the following equation can be obtained:

ln
.
ε “ lnA` n1lnσ´Q{RT (4)

For the high stress level (ασ ą 1.2), taking natural logarithms on both sides of
Equation (3) gives:

ln
.
ε “ lnA`βσ´Q{RT (5)

According to Equations (4) and (5), n1 “ dln
.
ε{dlnσ and β “ dln

.
ε{dσ. Then,

the linear relationships of lnσ–ln
.
ε and σ–ln

.
ε for strain of 0.5 at the temperatures

of 1050–1250 ˝C were fitted out as shown in Figure 4. The adjusted coefficient of
determination R2 for each condition was calculated and showed in Figure 4, which
was used to prove the reliability of fitting curves. The inverse of the slopes of straight
lines in lnσ–ln

.
ε and σ–ln

.
ε plots is accepted as the values of material constants n1 and

β at each tested temperature, respectively. Thus the values of n1 and β at strain of
0.5 were obtained by averaging the inverse of slopes under different temperatures,
which were found to be 5.3625 MPa´1 and 0.0336 MPa´1, respectively. Furthermore,
the value of another material constant α “ β{n1 “ 0.0063MPa´1 was also obtained.
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For all the stress level (including low and high-stress levels), Equation (3) can
be rewritten as the following:

.
ε “ Arsinhpaσqsnexpp´Q{RTq (6)

Taking natural logarithms on both sides of Equation (6), the following equation
can be obtained:

ln
.
ε “ tlnA` n rln sinhpασqs ´Qu{RT (7)

For the given deformation temperature (T), the stress exponent (n) is expressed
as Equation (8):

n “
Bln

.
ε

Blnpsinhpασqq
|T (8)

When the strain rate (
.
ε) is a constant, the activation energy (Q) can be expressed

as Equation (9):

Q “ nR
Blnpsinhpασqq

Bp1{Tq
| .
ε (9)

According to Equations (8) and (9), the linear relationship between lnpsinhpασqq
and ln

.
ε and the relationship between lnpsinhpασqq and 1{T were fitted out as shown

in Figure 5 and the determination coefficient R2 have been exhibited in each figure.
Consequently, the value of constant parameter n and the activation energy Q can
be derived from the mean slope of lines in Figure 5a,b respectively, here, n is 3.7806
and Q is 403.81 kJ¨mol´1. In addition, the material constant A can be calculated
as 4.5496 ˆ 1014 s´1.Appl. Sci. 2016, 6, 66  8 of 16 
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However, the effect of temperature and strain rate on flow behavior cannot
be considered in Equation (3). Zener-Hollomon parameter, Z, in an exponent-type
Equation (10) [28] has been introduced to model the comprehensive function of
temperature and strain rate.

Z “
.
εexpp

Q
RT
q (10)

Base on Equations (6) and (10), the stress σ at the strain of 0.5 can be written as
a function of Z parameter:

σ “
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It is well known that the constitutive model is affected not only by the
deformation temperature and strain rate, but also by the strain in the hot deformation
of metal materials [7,10,12,17,29–32]. Therefore, the values of material coefficients
(i.e., α, A, n, Q) of the constitutive equation are calculated under different strains in
a range of 0.05 to 0.9 with the interval of 0.05 by the same method used previously.
These values were then used to fit the polynomial functions (Figure 6), and the
variation of α, lnA, n and Q with true strain ε could be represented by a sixth order
polynomial respectively, as shown in Equation (12). The coefficients of the sixth order
polynomial functions are tabulated in Table 1:

$

’

’

’

&

’

’

’

%

α “ B0 ` B1ε` B2ε
2 ` B3ε

3 ` B4ε
4 ` B5ε

5 ` B6ε
6

lnA “ C0 ` C1ε` C2ε
2 ` C3ε

3 ` C4ε
4 ` C5ε

5 ` C6ε
6

n “ D0 `D1ε`D2ε
2 `D3ε

3 `D4ε
4 `D5ε

5 `D6ε
6

Q “ E0 ` E1ε` E2ε
2 ` E3ε

3 ` E4ε
4 ` E5ε

5 ` E6ε
6

(12)

Table 1. Polynomial fitting results of superalloy nimonic 80A.

α lnA n Q

B0 0.01006 C0 40.29126 D0 7.23447 E0 467.28232
B1 ´0.05783 C1 ´144.12464 D1 ´44.03632 E1 ´1502.21622
B2 0.33009 C2 982.95072 D2 234.75515 E2 10438.62694
B3 ´0.95142 C3 ´3062.36904 D3 ´653.05658 E3 ´32768.83516
B4 1.47519 C4 4851.02761 D4 984.16398 E4 52125.14469
B5 ´1.16554 C5 ´3813.23640 D5 ´756.88970 E5 ´41.091.74522
B6 0.36783 C6 1183.77777 D6 232.91924 E6 12784.92195
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Figure 6. Relationships between: (a) α; (b) lnA; (c) n; and (d) Q and true strain ε by
polynomial fit.

Thus, the improved Arrhenius type model with variable coefficients can be
expressed as Equation (13).

σ “
1

g pεq
lntp

.
εexprjpεq{8.314Ts

f pεq
q

1
L

hpεq

` rp

.
εexppjpεq{8.314Tq

f pεq
q

2
L

hpεq

` 1s1
L

2
u (13)

where g pεq, f pεq, h pεq, j pεq are polynomial functions of strain for α, A, n, Q.
Applying the aforementioned material constants to Equation (13), the true stress

values are calculated for the experimental temperature, strain and strain rate ranges.
Figure 7 shows comparisons between the experimental data and the predicted results
calculated from the developed constitutive equations (considering the compensation
of strain) at the temperatures of 1050 ˝C, 1100 ˝C, 1150 ˝C, 1200 ˝C, and 1250 ˝C, and
the strain rates of 0.01 s´1, 0.1 s´1, 1 s´1 and 10 s´1. It can be seen that the proposed
constitutive equation gives an accurate estimation on the flow stress of superalloy
nimonic 80A in most of the experimental conditions.
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Figure 7. Comparisons between predicted and measured under different
deformation temperatures with strain rates of (a) 0.01 s´1; (b) 0.1 s´1; (c) 1 s´1 and
(d) 10 s´1.

5. Prediction Capability Comparison between the BP-ANN Model and
Arrhenius Type Constitutive Equation

Depending on the improved Arrhenius type constitutive equation, in this study,
the true stresses of 32 points under the conditions of 1100 ˝C and 0.01 s´1 and 1200 ˝C
and 1 s´1 at a strain range of 0.05 to 0.9 with a strain interval of 0.05 were calculated
to compare with the true stress predicted by BP-ANN model and obtained from the
isothermal compression tests. For the sake of the contrast of prediction accuracy
between these two models, the relative error (δ) is introduced, which is expressed by
Equation (14).

δ p%q “
Pi ´ Ei

Ei
ˆ 100% (14)

where Ei is the sample of experimental value and Pi is the sample of predicted value.
The δ-values relative to the experimental true stress was calculated by

Equation (14) and listed in Table 2.
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Table 2. Relative errors of the predicted results by the back-propagational artificial
neural network (BP-ANN) model and constitutive equation to experimental results
under the condition of 1100 ˝C and 0.01 s´1 and 1200 ˝C and 1 s´1.

Strain
Rate (s´1)

Temperature
(˝C) Strain

True Stress (MPa) Equation Relative Error (%)

Experimental BP-ANN BP-ANN Equation

0.01 1100

0.05 65.08 63.59 64.37 ´2.29 ´1.08
0.10 71.80 71.58 71.18 ´0.31 ´0.86
0.15 75.24 74.75 72.79 ´0.64 ´3.25
0.20 76.09 75.31 72.42 ´1.03 ´4.83
0.25 75.35 74.99 72.30 ´0.47 ´4.04
0.30 73.81 74.05 71.59 0.33 ´3.01
0.35 72.06 72.75 71.23 0.96 ´1.15
0.40 70.57 71.31 70.43 1.04 ´0.20
0.45 69.47 69.93 71.33 0.67 2.68
0.50 68.73 68.77 70.15 0.05 2.06
0.55 68.32 67.90 70.40 ´0.62 3.04
0.60 68.17 67.36 70.40 ´1.18 3.28
0.65 68.20 67.13 69.34 ´1.56 1.68
0.70 68.34 67.13 70.24 ´1.78 2.77
0.75 68.54 67.26 69.70 ´1.87 1.69
0.80 68.72 67.39 68.91 ´1.93 0.28
0.85 68.80 67.37 69.76 ´2.08 1.39
0.90 68.73 67.08 67.71 ´2.41 ´1.49

1 1200

0.05 91.67 87.76 90.72 ´4.26 ´1.04
0.10 102.36 105.69 111.12 3.24 8.55
0.15 106.88 108.91 118.77 1.90 11.13
0.20 109.66 110.69 121.14 0.94 10.47
0.25 111.91 112.48 121.60 0.51 8.66
0.30 113.69 114.08 120.83 0.35 6.28
0.35 114.99 115.35 120.39 0.31 4.69
0.40 115.82 116.21 119.02 0.34 2.76
0.45 116.23 116.63 120.40 0.34 3.59
0.50 116.27 116.61 118.44 0.30 1.87
0.55 115.99 116.25 118.69 0.22 2.33
0.60 115.45 115.62 118.07 0.14 2.26
0.65 114.71 114.75 115.69 0.04 0.86
0.70 113.82 113.58 116.16 ´0.20 2.06
0.75 112.83 112.03 114.25 ´0.71 1.26
0.80 111.81 110.07 111.94 ´1.55 0.12
0.85 110.80 107.84 111.96 ´2.67 1.05
0.90 109.86 105.50 107.05 ´3.97 ´2.56

It is found in Table 2 that the relative percentage error obtained from BP-ANN
model varies from ´4.26% to 3.24%, whereas it is in the range from ´4.83% to 11.13%
for the improved Arrhenius-type constitutive model. As shown in Figure 8a,b,
the relative percentage errors have been summarized in which the height of the
histogram expresses the relative frequency of the relative percentage errors. Through
nonlinear curve fitting, the distributions of relative percentage errors obtained from
Arrhenius-type model and BP-ANN model present a typical Gaussian distribution,
which was expressed as in Equation (15). In the function, the two parameters of
µ and w represent the mean value and standard deviation, respectively, which are
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two of the most important indexes in statistical work. The mean value and standard
deviation calculated by Equations (16) and (17) [6], respectively, reflect the central
tendency and discrete degree of a set of data, and smaller value of w and µ close to
0 hint that better errors distribution is achieved. As shown in Figure 8a,b, the mean
value (µ) and the standard deviation (w) of the Arrhenius-type model is 3.0012 and
2.0533, respectively, while the mean value (µ) and the standard deviation (w) of the
BP-ANN model is 0.0714 and 0.2564, respectively, which indicate that the distribution
of relative percentage errors obtained by the BP-ANN model is more centralized.
It suggests that the BP-ANN model has a good generalization capability.

y “ y0 ` Ae
´
pδi ´ µq

2

2w2 (15)

µ “
1
N

N
ÿ

i“1

δi (16)

w “

g

f

f

e

1
N ´ 1

N
ÿ

i“1

pδi ´ µq
2 (17)

where δi is a value of the relative error; µ, w, and y are the mean value, standard
deviation and probability density of δ respectively; y0 and A are constants, and N is
the number of relative errors, here N = 36.Appl. Sci. 2016, 6, 66  12 of 16 
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Figure 8. The relative errors distribution on the true stress points predicted by
(a) the BP-ANN model and (b) the Arrhenius type constitutive equation relative to
the experimental ones.

In addition, two commonly used statistical indicators of the correlation
coefficient (R) and average absolute relative error (AARE) are introduced to check the
ability and the predictability of the BP-ANN model and Arrhenius-type model, which
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are expressed by Equations (18) and (19) [6]. R is a numerical value between ´1 and
1 that expresses the strength of the linear relationship between two variables. A high
R-value close to 1 illustrates that the predicted values conform to the experimental
ones well. A value of 0 indicates that there is no relationship. Value close to
´1 signal a strong negative relationship between the two variables. The average
absolute relative error (AARE) is also computed through a term-by-term comparison
of the relative error and thus is an unbiased statistical parameter to measure the
predictability of a model [6,15]. Meanwhile, a low AARE-value close to 0 indicates
that the sum of the errors between the predicted and experimental values tends
to be 0.

R “
řN

i“1 pEi ´ EqpPi ´ Pq
b

řN
i“1 pEi ´ Eq2

řN
i“1 pPi ´ Pq2

(18)

AARE p%q “
1
N

N
ÿ

i“1

ˇ

ˇ

ˇ

ˇ

Pi ´ Ei
Ei

ˇ

ˇ

ˇ

ˇ

ˆ 100% (19)

where Ei is the sample of experimental value and Pi is the sample of predicted
value. E is the mean value of experimental sample values, P is the mean value of
predicted sample values, and N is the number of data which were employed in
the investigation.

The correlation relationships between the experimental and respectively
predicted true stress by BP-ANN model and modified Arrhenius-type constitutive
equation were illustrated in Figure 9. It is discovered that the points in Figure 9,
which take experimental true stress as horizontal axis and predicted true stress
as vertical axis, lie fairly close to the best linear fitted line, suggesting that the
predicted stress-strain values conform very well to the homologous experimental
ones. Besides, the R-values for the predicted true stress of BP-ANN and modified
Arrhenius are 0.9998 and 0.9899, respectively, from another quantitative perspective
proving the strong linear relationships between the predicted and experimental true
stress. Additionally, the AARE-values relative to the experimental true stress was
calculated by Equation (19) and exhibited in Figure 9. According to the calculation
results, it is manifest that the AARE-value for the BP-ANN model is 1.20%, but, for
the constitutive equation, it reaches a higher level, 3.06%. Lower AARE-value means
a smaller deviation on the whole; therefore, the BP-ANN model has higher accuracy
in predicting the true stress of superalloy nimonic 80A than the constitutive equation.

By several comparison methods, the performance of the two models can be
concluded that the BP-ANN model has higher prediction accuracy than the improved
Arrhenius-type model. It is valuable to note that, in the training stage of the BP-ANN
model, the experimental stress-strain data of two test curves under the conditions
of 1100 ˝C and 0.01 s´1 and 1200 ˝C and 1 s´1 did not participate. However, when
establishing the constitutive equation, they were involved. However, even on this
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premise, the BP-ANN model still shows smaller errors, giving the full proof that
the present BP-ANN model has better prediction capability than the constitutive
equation in the flow characteristics of superalloy nimonic 80A.
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Figure 9. The correlation relationships between the predicted and experimental
true stress for the (a) BP-ANN model and (b) Arrhenius-type model.

6. Prediction Potentiality of BP-ANN Model

There is no doubt that the well-trained BP-ANN model is effective to predict
the flow stress based on the experimental data for the non-linear material. With
the well-trained BP-ANN model, the flow stresses outside of the experimental
conditions including 950 ˝C and 1000 ˝C were predicted for superalloy nimonic
80A. Additionally, based on the data at a temperature range of 950 to 1250 ˝C
under strain rate of 0.01 s´1, 0.1 s´1, 1 s´1 and 10 s´1, an interpolation method was
implemented to densely insert stress-strain data into these data; furthermore, a 3D
continuous response space (illustrated in Figure 10) with flow stress along the V-axis
and deformation temperature, logarithm of strain rate and strain and along the X,
Y and Z axes, respectively, was constructed by a surface fitting process. The values
of V-axis are represented by different colors. Figure 10a shows the 3D continuous
interaction space, which reveals the continuous response relationship between stress
and strain, strain rate and temperature of superalloy nimonic 80A. Figure 10b–d
respectively exhibit the cutting slices of 3D continuous response mapping at diverse
parameters, involving temperature, strain rate and strain. In the 3D continuous
interaction space, all the stress-strain points are digital and can be determined,
since the surface fitting step has transformed the discrete stress-strain points into
continuous stress-strain surface and space. The accuracy of such a 3D continuous
interaction space is strongly guaranteed by the excellent prediction performance
of an optimally-constructed and well-trained BP-ANN model. As is known, the
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stress-strain data are the most fundamental data to predict the deformation behaviors
of the superalloy nimonic 80A during electric upsetting with finite element model It
is realizable to pick out dense stress-strain data from the 3D continuous interaction
space and insert such continuous mapping relationships into commercial software
such as Marc, etc. by program codes. In this way, the accurate simulation of one
certain forming process is able to perform.
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7. Conclusions

(1) A BP-ANN model taking the deformation temperature (T), strain rate (
.
ε) and

strain (ε) as input variables and the true stress (σ) as output variable was
constructed for the compression flow behaviors of superalloy, nimonic 80A,
which presents desired precision and reliability.

(2) A strain-dependent Arrhenius-type model is developed to predict the flow
behavior of superalloy nimonic 80A under the specific deformation conditions.
A sixth order polynomial is adopted to reveal the relationships between
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variable coefficients (including activation energy Q, material constants n, α,
and A) and strain with good correlations.

(3) A series of statistical indexes, involving the relative error (δ), mean value (µ),
standard deviation (w), correlation coefficient (R) and average absolute relative
error (ARRE), were introduced to contrast the prediction accuracy between
the improved Arrhenius type constitutive equation and BP-ANN model. The
mean value (µ) and standard deviation (w) of the improved Arrhenius-type
model are 3.0012% and 2.0533%, respectively, while their values of the
BP-ANN model are 0.0714% and 0.2564%, respectively. Meanwhile, the
correlation coefficient (R) and average absolute relative error (ARRE) for
the improved Arrhenius-type model are 0.9899 and 3.06%, while their values
for the BP-ANN model are 0.9998 and 1.20%, which indicate that the BP-ANN
model has a good generalization capability.

(4) The true stress data within the temperature range of 950–1250 ˝C, the strain
rate range of 0.01–10 s´1, and the strain range of 0.1–0.9 were predicted
densely. According to these abundant data, a 3D continuous interaction space
was constructed by interpolation and surface fitting methods. It significantly
contributes to all the research requesting abundant and accurate stress-strain
data of superalloy nimonic 80A.
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Classifying Four Carbon Fiber Fabrics via
Machine Learning: A Comparative Study
Using ANNs and SVM
Min Zhao, Zijun Li and Wanfei He

Abstract: Carbon fiber fabrics are important engineering materials. However, it is
confusing to classify different carbon fiber fabrics, leading to risks in engineering
processes. Here, a classification method for four types of carbon fiber fabrics is
proposed using artificial neural networks (ANNs) and support vector machine
(SVM) based on 229 experimental data groups. Sample width, breaking strength
and breaking tenacity were set as independent variables. Quantified numbers for
the four carbon fiber fabrics were set as dependent variables. Results show that a
multilayer feed-forward neural network with 21 hidden nodes (MLFN-21) has the
best performance for classification, with the lowest root mean square error (RMSE)
in the testing set.

Reprinted from Appl. Sci. Cite as: Zhao, M.; Li, Z.; He, W. Classifying Four Carbon
Fiber Fabrics via Machine Learning: A Comparative Study Using ANNs and SVM.
Appl. Sci. 2016, 6, 209.

1. Introduction

Carbon fiber is a new engineering material, which has become popular in
aerospace, missile and rocket development [1–5]. In recent years, these materials have
been developed rapidly in the field of civil construction, including in architecture
and sports [6,7]. The resin composite sheet of carbon fiber fabrics is an enhanced
product with unidirectional (UD) carbon fiber, which is frequently used because of
its excellent mechanical properties and easy repairability [8]. Due to these superior
properties, it is currently becoming a promising material in construction industries.

However, because the appearances of different carbon fiber fabrics have no
significant difference, different types of carbon fabric fibers are very easy to confuse
during productions [9,10], causing a large number of issues related to applications
and construction. Also, there is a huge potential risk of compromised security in
engineering processes using the resin composite sheet of carbon fiber fabrics without
an exact classification [9]. So far, a direct classification approach for different fabrics
is to measure the density [10]. However, this measurement is complicated and has
high requirements with relevant instruments. Thus, there is still no study that reports
an effective solution.
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To classify different types of resin composite sheets of carbon fiber fabrics
in a simpler way, we should firstly note that differences in density may lead to
differences in tensile strength and relevant properties, which can be easily measured
by fabric strength machines. Therefore, we can rationally assume that measuring the
fabric of carbon fiber using a fabric strength machine can help us obtain a method
for classification. Then the question becomes simpler: how do we find out the
relationship between the properties acquired from the fabric strength machine and
the classification result? Theoretical studies have offered several equations that
describe relevant testing processes. Nevertheless, there is still a lack of an available
method that can quantify different carbon fiber fabrics. Here, we successfully classify
four different carbon fiber fabrics using a simple, defined quantification method with
the strong classification capacity of machine learning techniques. Knowledge-based
machine learning models were developed after the training process based on a large
number of experimental data groups. To acquire enough experimental results, tensile
stress and strain performances of four different types of carbon fiber fabrics were
tested. All experimental data were measured from 231 samples in four different
sample sizes. Based on the experimental data, novel machine learning techniques
including artificial neural networks (ANNs) and support vector machine (SVM)
were developed, respectively, for the classification of the four types of carbon fiber
fabrics. This study, as an application research, aims at using user-friendly modeling
techniques to help people classify different fabrics quickly based on the experimental
data of tensile tests in research and practical applications. Therefore, the requirements
of tensile strength can influence the selection of carbon fabrics by using our modeling
techniques in practical applications.

2. Materials and Methods

2.1. Experimental

2.1.1. Preparation of a Resin Composite Sheet of Carbon Fiber Fabrics

To acquire an experimental database for model training, four typical carbon
fiber fabrics were used during the experiments (Table 1). It can be apparently seen
that the significant difference among the four fabrics is the density, ranging from
24 to 27.

To prepare resin composite materials, carbon fiber fabrics were impregnated
with epoxy resin for 72 h. Specifications of epoxy resin were in accordance with
the practical applications of the four kinds of carbon fiber fabrics respectively [9].
Afterwards, 30 cm of the carbon fiber fabric was extracted from the samples. The
glass pane, polyester resin sheet and related tools were cleaned by absolute ethyl
alcohol and dried. A polyester resin sheet was placed on a 10-cm-thick glass plane.
Four-fifths of uniform epoxy resin was poured out and shaved to the polyester resin
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sheet. Carbon fiber laminates were placed on the uniform epoxy resin and rolled
by a metal drum. The fiber should be kept being straight and epoxy resin should
be kept transferring from the bottom to the surface of the fiber. Then the remaining
one-fifth of epoxy resin was poured out to the surface of fiber uniformly. Afterwards,
the samples were covered with polyester resin sheets. Bubbles and redundant resin
were shaved away by a blade. A 5-mm-thick glass sheet was covered and all the
samples were dried for seven days.

Table 1. Specifications of the four carbon fiber fabrics.

No. Specification of Carbon
Fiber Multifilament a (K)

Mean Fabric
Density b

Grammes per
Square Meter (g/m2)

1 12 25 200
2 12 24 200
3 10 27 200
4 18 25.7 300

a Carbon fiber multifilament consists of a certain number of monofilament yarns; b Fabric
density: number of carbon fiber multifilament in every 10 cm length of carbon fiber fabric.

2.1.2. Sampling

In order to avoid data distortion caused by uneven fabric of carbon fiber itself
and to ensure the randomness of samples, the central fabrics of carbon fiber were
selected randomly from the whole width of 2~2.5 m. Then 30 cm of the fabric being
perpendicular to the edge was cut from the distance of the first 5 cm of the end of the
fabric. The fabric defect and the joints of the carbon fiber were avoided.

After being stuck during impregnations, the end of the reinforced sheet of
fabrics could be drawn by testing machines. The shapes of all tested samples were
long rectangular (Figure 1).
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Figure 1. Schematic diagram of a tested sample. B: Sample wide; P: Length of
carbon fiber reinforced sheet.

The lengths of the tested samples referred to the standards of both China and
Japan [11–13], which were 230 mm. The widths of samples were designed as four
specifications at the interval of 5 mm, including 15, 20, 25 and 30 mm.
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2.1.3. Measurement

All samples were tested by the electronic universal testing machine (Shimadzu
Co. Ltd., Kyoto, Japan, AG-10TA) for acquiring the breaking strengths and breaking
tenacities. The environmental temperature was 14 ˝C and the humidity was 76%.
The stretching speed was 5 m/min, which is in accordance with the standard
GB/T1447–1983 [13].

2.2. Machine Learning Models

2.2.1. ANNs

ANNs are statistical learning tools for predictions and classifications in practical
applications [14–19], which were invented from the inspiration of human brains.
In an ANN, neurons in one layer are connected with all neurons in the next layer.
Inter-connected neurons can tune the weight values combining the inputs in order to
approximate the actual outputs. Therefore, ANNs are able to classify different objects
with the same types of independent variables. Figure 2 is a schematic structure of
a typical ANN for the classification of four carbon fiber fabrics, which contains the
input, hidden and output layers.
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Figure 2. Schematic structure of an ANN (artificial neural network) for classifying
the four carbon fiber fabrics.

2.2.2. SVM

SVM is a powerful machine learning method based on the statistical learning
theory [20–22]. With limited information of samples between the complexity and
learning ability of models, this theory is capacity of global optimization. In the basic
principle of SVM, the target of a SVM is to find the optimal hyper-plane, a plane that
separates all samples with the maximum margin [16,17,19,20]. This plane not only
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helps improve the predictive ability of the model, but also helps reduce the error
which occurs occasionally when classifying. Figure 3 is the main structure of a typical
SVM [16,22]. The letter “K” represents kernels. Small subsets extracted from the
training data by relevant algorithm help develop the SVM. For applications, choosing
suitable kernels and parameters is of great crucial to get a good classification result.
With the development of programming, the use of software packages is able to help
us solve this problem in a relatively reliable way [21].
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Figure 3. Schematic structure of an SVM (support vector machine) [22].

3. Results and Discussion

3.1. Model Development

Since machine learning models are developed based on the existing database
acquired from experiments, here all the experimental results were used for the model
training and testing. Statistical descriptions of the experimental results are shown in
Table 2.

Table 2. Statistical descriptions of the experimental results.

Statistical
Item

Sample Width
(mm)

Breaking Strength
(N)

Breaking Tenacity
(MPa)

Minimum 15 3867.3 1621
Maximum 30 22,618 5988

Range 15 1875.7 4367
Average 239 110,662 3087.61
Standard
deviation 5.39 4011.17 1020.92

Due to the powerful learning capacity of ANNs and SVM, we can define the
corresponding quantified values by ourselves to classify the four different carbon
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fiber fabrics, respectively. Here, we define the samples numbers 1–4 as 200, 400,
600 and 800, respectively. Sample width, breaking strength and breaking tenacity
were set as the independent variables, while the defined quantified classification
for the four kinds of typical samples were set as the dependent values. Then, 85%
of the data groups were set as the training set, while the remaining 15% were set
as the testing set. ANNs were developed by NeuralTools® software (trial version,
Palisade Corporation, Ithaca, NY, USA) [22,23]. A general regression neural network
(GRNN) [24,25] and multilayer feed-forward neural networks (MLFNs) [26,27] were
used from the software. The SVM model was developed by Matlab software (Libsvm
package [21]). The computer for model development was a Lenovo G480 (laptop). To
find out the best results of the MLFNs, the nodes in the hidden layer were set from
2 to 50. To measure the performance of different machine learning models, root mean
square error (RMSE) and required training time were used as indicators that could
help us define the most suitable model. Model development results are shown in
Table 3. Results show that the MLFN with 21 nodes (MLFN-21) has the lowest RMSE
for the testing process (36.03), while the SVM and other ANNs have comparatively
higher RMSEs and lower classification accuracies. The change regulation of MLFNs
with different numbers of nodes (Figure 4) also shows that with the increase of the
node numbers, the required training times of the MLFNs gradually increase with a
fluctuation. Though the training time of MLFN-21 is slightly longer than those of
SVM, GRNN and other MLFNs with lower numbers of nodes, it is still acceptable
because the training time will decrease with a high-performance computer. Therefore,
the MLFN-21 can be rationally considered as the best model for classifying the four
different carbon fiber fabrics in our experiments.Appl. Sci. 2016, 6, 209  6 of 10 
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Table 3. Best net search in different models. SVM: support vector machine; GRNN:
general regression neural network; MLFN: multilayer feed-forward neural network.

Model RMSE (for Testing) Required Training Time

SVM 157.18 0:00:01
GRNN 154.79 0:00:01

MLFN 2 Nodes 116.51 0:01:45
MLFN 3 Nodes 81.92 0:01:58
MLFN 4 Nodes 94.38 0:02:30
MLFN 5 Nodes 107.45 0:02:52
MLFN 6 Nodes 98.24 0:03:27
MLFN 7 Nodes 65.92 0:04:11
MLFN 8 Nodes 79.64 0:05:01
MLFN 9 Nodes 66.09 0:05:09
MLFN 10 Nodes 109.95 0:06:02
MLFN 11 Nodes 78.88 0:06:13
MLFN 12 Nodes 83.69 0:06:28
MLFN 13 Nodes 78.48 0:06:59
MLFN 14 Nodes 90.54 0:07:09
MLFN 15 Nodes 174.10 0:07:42
MLFN 16 Nodes 100.59 0:08:21
MLFN 17 Nodes 98.58 0:09:19
MLFN 18 Nodes 62.81 0:09:17
MLFN 19 Nodes 165.28 0:09:15
MLFN 20 Nodes 43.10 0:09:40
MLFN 21 Nodes 36.03 0:10:11
MLFN 22 Nodes 101.73 0:10:51
MLFN 23 Nodes 114.28 0:12:06
MLFN 24 Nodes 138.72 0:13:26
MLFN 25 Nodes 266.98 0:13:27
MLFN 50 Nodes 246.41 0:28:23

3.2. Model Analysis

To analyze the performance of MLFN-21, its non-linear fitting process should be
firstly discussed. In the model training process (Figure 5), the predicted values are
generally close to the actual values (Figure 5a). Residual values are generally close
to zero except for several discrete points (Figure 5b,c). The results of the training
process show that the non-linear fitting process of MLFN-21 for classifying the four
carbon fiber fabrics is decent. In terms of the model testing process (Figure 6), the
predicted values in the testing set are very close to the actual values (Figure 6a), with
comparatively low residual values (Figure 6b,c). The results of the testing process
show that the MLFN-21 has a strong capacity for classifying the four carbon fiber
fabrics, with the use of the four quantified dependent values: 200, 400, 600 and 800.

To evaluate the reproducibility of the ANNs, it should be firstly noted that
the initial values of the weights are chosen randomly at the beginning of training.
Then the initial weights are tuned according to the errors between the actual and
desired outputs. Therefore, the training results of each single model development
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with the same component of the training and testing sets are always different, which
is reflected in the fluctuation of RMSEs in the testing set. To prove that an ANN
has good reproducibility, repeated experiments should be done in order to evaluate
whether the RMSEs in the dependent training process have a stable fluctuation.
To test the reproducibility of the MLFN-21 of this study, we repeated the training
100 times using the same component of the training and testing sets (Figure 7).
It shows that MLFN-21 has a very stable fluctuation in the RMSE in testing during
all repeated experiments. All RMSEs in testing are in the range between 21.1 and 41.
The repeated experiments show that MLFN-21 has very good reproducibility for
classifying the four carbon fiber fabrics.
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4. Conclusions

Here, ANNs and SVM are developed for classifying four types of carbon fiber
fabrics. Results show that using four different numbers to represent the outputs of
the four different fabrics with the use of the MLFN-21 model can help us classify
different carbon fiber fabrics in real applications. With the inputs of sample width,
breaking strength and breaking tenacity, this study successfully shows that machine
learning methods, such as the MLFN-21, can effectively help us classify different
carbon fiber fabrics based on the training of experimental data. It can be seen that
ANNs are powerful tools to make good classification results due to their strong
non-linear data-learning capacity. Also, it should be noted that in this study, the
most important thing we were concerned with was the classification of carbon fiber
fabrics, not the production. For classification, according to the principle, the ANN
model is a “black box” non-linear training model. Thus, the determination of weights
between different neuron layers was trained according to the iterations, not the exact
correlations between independent and dependent variables. Therefore, it is uncertain
to say which production factor will greatly affect the results in this study. Further
research can be undertaken to develop a wider model for the determination of the
correlation between the production factor and the types of carbon fabric fibers.
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A Selective Dynamic Sampling
Back-Propagation Approach for Handling
the Two-Class Imbalance Problem
Roberto Alejo, Juan Monroy-de-Jesús, Juan H. Pacheco-Sánchez,
Erika López-González and Juan A. Antonio-Velázquez

Abstract: In this work, we developed a Selective Dynamic Sampling Approach
(SDSA) to deal with the class imbalance problem. It is based on the idea of
using only the most appropriate samples during the neural network training stage.
The “average samples”are the best to train the neural network, they are neither
hard, nor easy to learn, and they could improve the classifier performance. The
experimental results show that the proposed method is a successful method to
deal with the two-class imbalance problem. It is very competitive with respect to
well-known over-sampling approaches and dynamic sampling approaches, even
often outperforming the under-sampling and standard back-propagation methods.
SDSA is a very simple method for automatically selecting the most appropriate
samples (average samples) during the training of the back-propagation, and it is
very efficient. In the training stage, SDSA uses significantly fewer samples than the
popular over-sampling approaches and even than the standard back-propagation
trained with the original dataset.

Reprinted from Appl. Sci. Cite as: Alejo, R.; Monroy-de-Jesús, J.; Pacheco-Sánchez, J.H.;
López-González, E.; Antonio-Velázquez, J.A. A Selective Dynamic Sampling
Back-Propagation Approach for Handling the Two-Class Imbalance Problem.
Appl. Sci. 2016, 6, 200.

1. Introduction

In recent years, the class imbalance problem has been a hot topic in machine
learning and data-mining [1,2]. It appears when the classifier is trained with a dataset
where the number of samples in one class is lower than the samples in the other class,
this and produces an important deterioration in the classifier performance [3,4].

The common methods handled with the class imbalance problem have been
the re-sampling methods (under-sampling and over-sampling) [2,5,6], mainly due
to the independence of the underlying classifier [7]. One of the most well-known
over-sampling methods is the Synthetic Minority Over-sampling Technique (SMOTE).
This generates artificial samples of the minority class by interpolating existing
instances that lie close together [8]. The development of other samplings has been
motivated: borderline-SMOTE, Adaptive Synthetic Sampling (ADASYN), SMOTE
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editing nearest neighbor, safe-level-SMOTE, Density-Based Synthetic Minority
Over-sampling TEchnique (DBSMOTE), SMOTE + Tomek’s Links [9], among others
(see [1,7,10]).

An interest has been observed for finding the best samples to build the
classifiers. For example, borderline-SMOTE has been proposed to over-sample only
the minority samples near the class decision borderline [11]. Accordingly, in [12], the
safe-level-SMOTE is proposed, to select minority class instances from the safe level
region, and then, these samples are used to generate synthetic instances. ADASYN
has been developed to generate more synthetic data from minority class samples
that are harder to learn than those from minority class samples, which are easy to
learn [13]. In a similar way, SPIDER approaches (framework that integrates a selective
data pre-processing with the Ivotes ensemble method) over-sampling locally only
for those minority class samples that are difficult to learn and includes a removing
or relabeling process of noisy samples from the majority class [14,15]. The above
discussed approaches have in common that they use the K nearest neighbors rule as
the basis, and they are applied before the classifier training stage.

On the other hand, the under-sampling methods have shown effectiveness
to deal with the class imbalance problem (see [7,8,10,16–19]). One of the most
successful under-sampling methods has been the random under-sampling, which
eliminates random samples from the original dataset (usually from the majority
class) to decrease the class imbalance, however, this method loses effectiveness
when removing significant samples [7]. Other important under-sampling methods
including a heuristic mechanism are: the neighborhood cleaning rule, from Wilson
editing [20], one-sided selection [21], Tomek links [22] and the Condensed Nearest
Neighbor rule (CNN) [23]. Basically, the aim of the cleaning mechanism is:
(i) to eliminate samples with a high likelihood of being noise or atypical samples or
(ii) to eliminate redundant samples in CNN methods. In the same way as the above
approaches, we apply these methods before the training process. They employ the K
nearest neighbors rule (except the Tomek links methods) as the basis.

Another important alternative to face the class imbalance has been the Cost
Sensitive (CS) approach, which has become one of the most relevant topics in
machine learning research in recent years [24]. They consider the costs associated
with misclassifying samples, i.e., CS methods use different cost matrices describing
the costs for misclassifying any particular data sample [10]. The over- and
under-sampling could be a special case of the CS techniques [25]. Anther CS method
is threshold-moving, which moves the output threshold toward inexpensive classes,
such that samples with higher costs become hard to misclassify. It is applied in the
test phase and does not affect the training phase [24].

Ensemble learning is an effective method that has increasingly been adopted
to combine multiple classifiers and class imbalance approaches to improve the
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classification performance [2,4,5]. In order to combine the multiple classifiers, it
is common to use the hard and soft ensemble. The former uses binary votes, while
the latter uses real-valued votes [26].

Recently, dynamic sampling methods have become an interesting way to deal
with the class imbalance problem. They are attractive, because they automatically
find the proper sampling amount for each class in the training stage (different from
conventional strategies as over- and/or under-sampling techniques). In addition,
some dynamic sampling methods also identify the “best samples” for classifier
training. For example, Lin et al. [27] propose a dynamic sampling method with
the ability to identify samples with a high probability to be misclassified. The idea
is that the classifier trained with these samples may produce better classification
results. Other methods that can be considered as dynamic sampling are: (i) the
snowball method (proposed in [28] and used as a dynamic training method in [29,30]);
(ii) the genetic dynamic training technique [31,32]; in it, the authors employ a genetic
algorithm to find the best over-sampling ratio; (iii) the mean square error (MSE)
dynamic over-sampling method [19], which is based on the MSE back-propagation
for automatically identifying the over-sampling rate. Chawla et al. [33] present a
WRAPPER paradigm (for which the search is guided by the classification goodness
measure as score) to discover the amount of the under-sampling and over-sampling
rate for a dataset. Debowski et al. [34] show a very similar work.

The dynamic sampling approaches are a special case of the sampling techniques.
The main difference of these methods with respect to the conventional sampling
strategies is in the time when they sample the data or when they select the examples
to be sampled (see [19,27,28,31,32]).

In this paper, a Selective Dynamic Sampling Approach (SDSA) to deal with the
two-class imbalance problem is presented. This method is useful to find automatically
the appropriate sampling amount for each class through the selection of the “best
samples” to train the multilayer perceptron with the back-propagation algorithm [35].
The proposed method was tested over thirty five real datasets and compared to some
state-of-the-art class imbalance approaches.

2. Selective Dynamic Sampling Approach

Researchers in the class imbalance problem have shown their interest in finding
the best samples to build the classifiers, for example eliminating those samples with
a high probability to be noise or overlapped samples [18,36–40], or focusing on those
close to the borderline decision [11,13,41] (the latter has been less explored).

In accordance with the above discussion, three categories of samples can be
basically identified in the class imbalance literature:
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• Noise and rare or outlier samples. The first ones are instances with error in their
labels [7] or erroneous values in the features that describe them, and the last
ones are the minority and rare samples located inside the majority class [42].

• Border or overlapped samples are those samples located where the decision
boundary regions intersect [18,38].

• Safe samples are those with a high probability of being correctly labeled by the
classifier, and they are surrounded by samples of the same class [42].

Nevertheless, those samples situated close to the borderline decision and far
from the safe samples might be of interest; in other words, those that are neither hard
nor easy to learn. These samples are called “average samples” [35].

In this section, a Selective Dynamic Sampling Approach (SDSA) to train the
multilayer perceptron is presented. The aim of this proposal is to deal with the
two-class imbalance problem, i.e., this method only works with two-class imbalanced
datasets. This SDSA is based on a modification of the “stochastic” back-propagation
algorithm and derived from the idea of using average samples to train Arificial
Neural Networks (ANN), in order to try to improve the classifier performance. The
proposed method consists of two steps, and it is described below:

1. Before training: The training dataset is balanced 100% through an effective
over-sampling technique. In this work, we use the SMOTE [8] (SDSAS) and
random over-sampling (SDSAO) [16].

2. During training: The proposed method selects the average samples to update
the neural network weights. From the balanced training dataset, it chooses
average samples to use in the neural network training. With the aim to identify
the average samples, we propose the next function:

γ(∆q) = exp(−||∆
q − µ||2
2σ2 ) (1)

Variable ∆q is the normalized difference amongst the real neural network
outputs for a sample q,

∆q =
zq

0√
(zq

0 − zq
1)

2
−

zq
1√

(zq
0 − zq

1)
2

(2)

where zq
0 and zq

1 are respectively the real neural network outputs corresponding
to a q sample. The ANN only has two neural network outputs (zq

0 and zq
1),

because it has been designed to work with datasets of two classes [43].

The Selective Dynamic Sampling Approach (SDSA) is detailed in Algorithm 1,
where t(q)j and z(q)j are the desired and real neural network outputs for a sample
q, respectively.
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Algorithm 1 The Selective Dynamic Sampling Approach (SDSA) based on the
stochastic back-propagation multilayer perceptron.

Input: X (input dataset), N (number of features in X), K (number of classes
in X), Q (number of samples in X), M (number of middle neurodes), J
(number output neurodes), I number of iterations and learning rate η.
Output: the weights w = (w11, w21, ..., wNM) u = (u11, u21, ..., wMJ).
INIT( ):

1: Read MLP file (X, N, M, J, Q, I and η);
2: Generate initial weights randomly between −0.5 and 0.5;

LEARNING( ):
3: while i < I or E > 0.001 do
4: xq ← randomly chose a sample from X
5: FORWARD(xq);
6: ∆q = (zq

0/
√
(zq

0 − zq
1)

2)− (zq
1/

√
(zq

0 − zq
1)

2);

7: γ(∆q) = exp(−||∆q − µ||2/2σ2);
8: if Random( ) <= γ(∆q) then
9: UPDATE(xq);

10: end if
11: i ++;
12: end while

FORWARD(xq):
13: for m = 0 to m < M do
14: for n = 0 to n < N do
15: ym ← ym + xq

n ∗ wnm;
16: end for
17: ym = net(ym);
18: end for
19: for j = 0 to j < J do
20: for m = 0 to m < M do
21: zj ← zj + umj ∗ ym;
22: end for
23: zj ← net(zj);
24: end for

UPDATE(xq):
25: for m = 1 to M do
26: for j = 1 to J do

27: ur+1
mj ← ur

mj + η{(t(q)j − z(q)j )[z(q)j (1− z(q)j )]y(q)m };
28: end for
29: for n = 1 to N do
30: wr+1

nm ←
wr

nm + η{∑j=1,J(t
(q)
j − z(q)j )[z(q)j (1− z(q)j )]u(r)

mj }xn[y
(q)
m (1− y(q)m )][x(q)n ];

31: end for
32: end for
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2.1. Selecting µ Values

The appropriate selection of the variable µ is critical to select the average samples
or other kind of samples (border or safe samples [42]). Variable µ is computed under
the following consideration: the target ANN outputs (tj) are usually codified in zero
and one values [43]. For example, for a two-class problem (Class A and Class B), the
desired ANN outputs are codified as (1, 0) and (0, 1) for Classes A and B, respectively.
These values are the target ANN outputs (tj), i.e., the desired final values emitted
by the ANN after training. In accordance with this understanding, the expected µ

values are:

• µ ≈ 1.0 for safe samples. It is expected that ANN classifies with a high accuracy
level, i.e., it is expected that the real ANN outputs for all neurons (zj) will be
values close to (1, 0) and (0, 1) for Classes A and B, respectively. Whether we
apply Equation (2), the expected value is 1.0, at which the γ function has its
maximum value.

• µ ≈ 0.0 for border samples. It is expected that the classifier misclassifies.
The expected ANN outputs for all neurons are values close to (0.5, 0.5), then
the ∆ is approximately 0.0, at which the γ function has its maximum value for
these samples.

• µ ≈ 0.5 for average samples. It is expected that ANN classifies correctly, but
with less accuracy. In addition, the average samples are between safe (µ ≈ 1.0)
and border (µ ≈ 0.0) samples.

The recommended µ values to select the average samples are those around 0.5.
An independent validation set to find the most appropriate µ value is proposed to
avoid any bias in the testing process.

For this independent validation, a minimal subset from the training data is used.
Firstly, the ten-fold cross-validation for each dataset is applied (Section 5.1); next,
only 10% of samples are randomly taken from each training fold (TF10), then TF10 is
split into two disjoints folds of the same size (TF5

train and TF5
test, respectively). Next,

the proposed method (SDSA) is applied over the TF5
train and TF5

test to find the best
µ value. The tested values for µ were 0.25, 0.375, 0.5, 0.625 and 0.75. Finally, the
µ value, for which the best Area Under the Curve (AUC) [44] rank was obtained,
is chosen by SDSA on TF10.

Note that this independent validation does not imply an important
computational cost, because it only uses 10% of the training data to find the most
appropriate µ value. This independent validation unbiased the performance on the
testing data process, due to the test data not being used.
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3. State-of-the-Art of the Class Imbalance Approaches

In the state-of-the-art class imbalance problem, the over- and under-sampling
methods are very popular and successful approaches to deal with this problem
(see [7,8,10,16–19]). Over-sampling replicates samples in the minority-class,
and under-sampling eliminates samples from the majority-class, biasing the
discrimination process to compensate for the class imbalance.

This section describes some well-known sampling approaches that have been
effectively applied to deal with the class imbalance problem. These approaches are
used with the aim to compare the classification performance of the proposed method
with respect to the state-of-the-art of class imbalance approaches.

3.1. Under-Sampling Approaches

TL Tomek links are pairs of samples a and b from different classes, and there
does not exist a sample c, such that d(a, c) < d(a, b) or d(b, c) < d(a, b), where d is
the distance between pairs of samples [22]. Samples in TL are noisy or lie in the
decision border. This method removes those majority class samples belonging to
TL [9].

CNN The main goal of the condensed nearest neighbor algorithm is the
reduction of the size of the stored dataset of training samples while trying to maintain
(or even improve) generalization accuracy. In this method, every member of X (the
original training dataset) must be closer to a member of S (the pruned set) of the
same class than any other member of S from a different class [23].

CNNTL combines the CNN with TL [9].
NCL The Neighborhood Cleaning Rule uses the Editing Nearest Neighbor

(ENN) rule, but only eliminates the majority class samples. ENN uses the k− NN
(k > 1) classifier to estimate the class label of every sample in the dataset and discards
those samples whose class labels disagree with the class associated with the majority
of the k neighbors [20].

OSS The One-Sided Selection method performs TL, then CNN on the training
dataset [21].

RUS The Random Under-Sampling randomly eliminates samples from the majority
class and biases the discrimination process to compensate for the class imbalance.

3.2. Over-Sampling Approaches

ADASYN is an extension of SMOTE, creating more samples in the vicinity of
the boundary among the two classes than in the interior of the minority class [13].

ADOMS The Adjusting the Direction Of the synthetic Minority clasS method,
setting the direction of the synthetic minority class samples, this works like SMOTE,
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but it generates synthetic examples along the first component of the main axis of the
local data distribution [45].

ROS The Random Over-Sampling duplicates samples randomly from the
minority class, biasing the discrimination process to compensate for the class imbalance.

SMOTE [8] generates artificial samples of the minority class by interpolating
existing instances that lie close together. It finds the k intra-class nearest neighbors
for each minority sample, and then, synthetic samples are generated in the direction
of some or all of those nearest neighbors.

B-SMOTE Borderline-SMOTE [11] selects samples from the minority class
that are on the borderline (of the minority decision region, in the feature space)
and only performs SMOTE on those samples, instead of over-sampling all or taking
a random subset.

SMOTE-ENN This technique consists of applying the SMOTE and then
applying the ENN rule [9].

SMOTE-TL is the combination of SMOTE and TL [9].
SL -SMOTE Safe-Level SMOTE is based on the SMOTE, but it generates

synthetic minority class samples positioned closer to the largest safe level; then,
all synthetic samples are only generated in safe regions [12].

SPIDER-1 is an approach that combines a local over-sampling of those minority
class samples that are difficult to learn with removing or relabeling noisy samples
from the majority class [14].

SPIDER-2 The major difference between this method and SPIDER-1 is that
it divides into two stages the pre-processing of the majority and minority class
samples, i.e., first pre-processing the majority class samples and next the minority
class samples (considering the changes introduced in the first stage) [15].

4. Dynamic Sampling Techniques to Train Artificial Neural Networks

Dynamic sampling techniques have become an interesting way to deal with the
class imbalance problem on the Multilayer Perceptron (MLP) trained with stochastic
back-propagation [19,27,28,31,32]. Different from conventional strategies as over-
and/or under-sampling techniques, the dynamic sampling finds automatically in the
training stage the properly sampling amount for each class for dealing with the class
imbalance problem. In this section, we present some details and the main features of
two dynamic sampling methods.

4.1. Method 1. Dynamic Sampling

The basic idea of the Dynamic Sampling (DyS) method, proposed in [27],
is to design a simple DyS that dynamically selects samples during the training
process. In this method, a pre-deletion of any sample to prevent information loss, to
dynamically select the samples (hard to classify) to train the ANN and to make the
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best use of the dataset does not exist. According to this main idea, the general steps
in each epoch can be described as follows.

1. Randomly fetch a sample q from the training dataset.
2. Estimate the probability p that the example should be used for the training.

p =

{
1, if δ ≤ 0
exp(−δ · rj/min{ri}), otherwise,

(3)

where δ = zq
j −maxi 6=c{z

q
i }. zq

i is the i-th real ANN output of the sample q and
j is the class label to which q belongs. rc = Qc/Q is the class ratio; Qc is the
number of samples belonging to class c; and Q is the sample number.

3. Generate a uniform random real number µ between zero and one.
4. If µ < p, then use the sample q to update the weights by the back-propagation rules.
5. Repeat Steps 1–4 on all samples of the training dataset in each training epoch.

In addition, the authors of the paper [27] use an over-sampling method based on
a heuristic technique to avoid bias for the class imbalance problem. Beginning with
the first epoch, the process consists of the samples of all classes, except the largest
classes over-sampled to make the dataset balanced. As the training process goes on,
the over-sampling ratio (ρ) is attenuated in each epoch (ep) by a heuristic technique
(Equation (4)). It is calculated as:

ρ = (rmax/rj)/ln(ep) (4)

where ep (> 2) and max represent the largest majority class.

4.2. Method 2. Dynamic Over-Sampling

In [19], a Dynamic Over-Sampling (DOS) technique to deal with the class
imbalance problem was proposed. The main idea of DOS is to balance the MSE
on the training stage (when a multi-class imbalanced dataset is used) through an
over-sampling technique. Basically, the DOS method consists of two steps:

1. Before training: The training dataset is balanced at 100% through an effective
over-sampling technique. In this work, SMOTE [8] is utilized.

2. During training: The MSE by class Ej is used to determine the number of samples
by class (or class ratio) in order to forward it to the ANN. The equation employed
to obtain the class ratio is defined as:

ratioj =
Emax

Ej
×

Qj

Qmax
; for j = 1, 2, ..., J (5)
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where J is the number of classes in the dataset and max identifies the largest
majority class. Equation (5) allows balancing the MSE by class, reducing the
impact of the class imbalance problem on the ANN.

The DOS method only uses the necessary samples for dealing with the
class imbalance problem and, in this way, to avoid getting a poor classifications
performance as a result of training the ANN with imbalanced datasets.

5. Experimental Set-Up

In this section, the techniques, datasets and experimental framework used in
this paper are to be described.

5.1. Database Description

Firstly, for the experimental stage, five real-world remote sensing databases are
chosen: Cayo, Feltwell, Satimage, Segment and 92AV3C.The Cayo dataset comes
from a particular region in the Gulf of Mexico [18]. The Feltwell dataset represents
an agricultural area near the village of Feltwell (UK) [46]. The Satimage and Segment
datasets are from the UCI (University of California, Irvine) Machine Learning
Database Repository [47]. The 92AV3C dataset [48] corresponds to a hyperspectral
image (145 × 145 pixels, 220 bands, 17 classes) taken over the Northwestern Indiana
Indian Pines by the AVIRIS (Airborne Visible / Infrared Imaging Spectrometer)
sensor. In this work, we employed a reduced version of this dataset with six classes
(2, 3, 4, 6, 7 and 8) and thirty eight attributes as in [18].

The two-class imbalance problem is only studied. We decompose the multi-class
problems into multiple two-class imbalanced problems. This proceeds as follows:
one class (cj) is taken from the original database (DB) to integrate the minority class
(c+), and the rest of classes were joined to shape the majority class (c−). Then, we
integrate the two-class database DBj (j = 1, 2, ..., J, and J is the number of classes
in DB). In other words, DBj = c+ ∪ c−. Therefore, for each database, J two-class
imbalanced datasets were obtained. The main characteristics of the new produced
benchmarking datasets are shown in Table 1. This table shows that the datasets
used in this work have several class imbalance levels (see the class imbalance ratio),
ranging from a low to a high class imbalance ratio (for example, see 92A3 and
CAY4 datasets). In addition, the ten-fold cross-validation method was applied on all
datasets shown in this table.
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Table 1. A brief summary of the main characteristics of the new produced
benchmarking dataset.

Dataset # of Features # of Minority Classes Samples # of Majority Class Samples Imbalance Ratio

CAY0 4 838 5181 6.18
CAY1 4 293 5726 19.54
CAY2 4 624 5395 8.65
CAY3 4 322 5697 17.69
CAY4 4 133 5886 44.26
CAY5 4 369 5650 15.31
CAY6 4 324 5695 17.58
CAY7 4 722 5297 7.34
CAY8 4 789 5230 6.63
CAY9 4 833 5186 6.23
CAY10 4 772 5247 6.80
FELT0 15 3531 7413 2.10
FELT1 15 2441 8503 3.48
FELT2 15 896 10,048 11.21
FELT3 15 2295 8649 3.77
FELT4 15 1781 9163 5.14
SAT0 36 1508 4927 3.27
SAT1 36 1533 4902 3.20
SAT2 36 703 5732 8.15
SAT3 36 1358 5077 3.74
SAT4 36 626 5809 9.28
SAT5 36 707 5728 8.10
SEG0 19 330 1140 3.45
SEG1 19 50 1420 28.40
SEG2 19 330 1140 3.45
SEG3 19 330 1140 3.45
SEG4 19 50 1420 28.40
SEG5 19 50 1420 28.40
SEG6 19 330 1140 3.45
92A0 38 190 4872 25.64
92A1 38 117 4945 42.26
92A2 38 1434 3628 2.53
92A3 38 2468 2594 1.05
92A4 38 747 4315 5.78
92A5 38 106 4956 46.75

5.2. Parameter Specification for the Algorithms Employed in the Experimentation

The stochastic back-propagation algorithm was used in this work (the source
code of back-propagation algorithm and the approaches (dynamic sampling methods)
and the datasets used in this work are available at Ref. [49]), and for each training
process, the weights were ten times randomly initialized. The learning rate (η) was
set to 0.1, and we established the stopping criterion at 500 epochs or if the MSE value
is lower than 0.001. A single hidden layer was used. The number of neurons in the
hidden layer was set to four for every experiment.

All sampling methods (except ENN, SPIDER-1 and SPIDER-2, which employ
three) use five nearest neighbors (if applicable) and sampling the training dataset to
reach to relative class distribution balance (if applicable). ADASYN and ADOMS use
the Euclidean distance, and the rest of the methods employ the Heterogeneous Value
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Difference Metric (HVDM) [50], if applicable. SPIDER-1 applies a weak amplification
pre-processing option, and SPIDER-2 employs relabeling of noisy samples from the
majority class and an amplification option. The sampling methods have been done
using the KEEL [51].

In order to identify the most suitable value for the variable µ, an independent
validation set to avoid any bias in the performance on the testing data is considered,
meaning that the testing data for this validation are not used (see Section 2.1).
Thereafter, the most appropriate value for the variable µ obtained for the datasets
used in this work (Table 1) is 0.375. The results presented in this paper were obtained
with µ = 0.375. In addition, for this independent validation, only 200 epochs are used
in the neural network training stage and about 8% of the samples of each dataset.
This does not imply an important additional computational effort. The SDSAO and
SDSAS methods are the proposed methods using ROS and SMOTE, respectively (see
Section 4).

5.3. Classifier Performance and Significant Statistical Test

The Area Under the receiver operating characteristic Curve (AUC) [44] was
used as the criteria of measure for the classifiers performance. It is one of the most
widely-used and accepted techniques for the evaluation of binary classifiers in class
imbalance domains [10].

Additionally, in order to strengthen the results analysis, a non-parametric
statistical test is achieved. The Friedman test is a non-parametric method in which
the first step is to rank the algorithms for each dataset separately; the best performing
algorithm should have rank as 1, the second best rank as 2, etc. In case of ties, average
ranks are computed. The Friedman test uses the average rankings to calculate the
Friedman statistic, which can be computed as,

χ2
F =

12N
K(K + 1)

(∑
j

R2
j −

K(K + 1)2

4
) (6)

K denotes the number of methods; N is the number of data sets; and Rj is the average
rank of method j on all datasets.

On the other hand, Iman and Davenport [52] demonstrated that χ2
F has a

conservative behavior. They proposed a better statistic (Equation (7)) distributed
according to the F−distribution with K− 1 and (K− 1)(N − 1) degrees of freedom,

FF =
(N − 1)χ2

F
N(K− 1)− χ2

F
(7)

In this work, the Friedman and Iman–Davenport tests are employed with the
γ = 0.05 level of confidence, and KEEL software [51] is utilized.
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In addition, when the null-hypothesis was rejected, a post-hoc test is
used in order to find the particular pairwise method comparisons producing
statistically-significant differences. The Holm–Shaffer post-hoc tests are applied
in order to report any significant difference between individual methods. The Holm
procedure rejects the hypotheses (Hi) one at a time until no further rejections can
be done [53]. To accomplish this, the Holm method ordains the p-values from the
smallest to the largest, i.e., p1 ≤ p2 ≤ pk−1, corresponding to the hypothesis sequence
H1, H2, ..., Hk−1. Then, the Holm procedure rejects H1 to Hi−1 if i is the smallest
integer, such that pi ≤ α/(k − i). This procedure starts with the most significant
p-value. As soon as a certain null-hypothesis cannot be rejected, all of the remaining
hypotheses are retained, as well [54]. The Shaffer method follows a very similar
procedure to that proposed by Holm, but instead of rejecting Hi if pi ≤ α/(k− i),
it rejects Hi if pi ≤ α/ti, where ti is the maximum number of hypotheses that can be
true given that any (i− 1) hypotheses are false [55].

6. Experimental Results and Discussion

In order to assess the performance of the proposed methods (SDSAO and
SDSAS), a set of experiments has been carried out, over thirty five two-class datasets
(Table 1) with ten well-known over-sampling approaches (ADASYN, ADOMS,
B-SMOTE, ROS, SMOTE, SMOTE-ENN, SMOTE-TL, SPIDER-1, SPIDER-2 and
SL-SMOTE), six popular under-sampling methods (TL, CNN, CNNTL, NCL, OSS
and RUS) (for more detail about these re-sampling techniques, see Section 3) and
two dynamic sampling approaches (DyS and DOS).

This section is organized as follows: First, the AUC values are shown, and the
Friedman ranks are used to analyze the classification results (Table 2). Second, a
statistical test is presented in order to strengthen the results discussion (Figure 1).
Finally, the relationship between the training dataset size and the tested methods
performance is studied (Figure 2).

The results presented in Table 2 are the AUC values obtained in the classifying
stage, and they are averaged values between ten folds and ten different initialization
weights of the neural network (see Section 5).

In accordance with the averaged ranks shown in Table 2, all over-sampling
methods and dynamic sampling approaches (SDSAO, SDSAS, DyS and DOS) can
improve the standard back-propagation (BP) performance, and the worst approaches
with respect to standard BP are the under-sampling techniques, except by RUS, NCL
and TL, which show a better performance than the standard BP. This table also
shows that only the ROS technique presents a better performance than the proposed
methods. SDSAO and DyS show a slight advantage over SDSAS.
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Figure 1. Results of the non-parametric statistical Holm and Shaffer post-hoc test.
The fill circles mean that for these particular pairs of classifiers, the null hypothesis
was rejected by both test. The color of the circles is the darkest at p-values close to
zero, i.e., when the statistical difference is the most significant.
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value). We previously used the ten-fold cross-validation method. The number
shown in the y axis corresponds to the average training fold size.

119



In addition, Table 2 indicates that the class Imbalance Ratio (IR) is not determinant
in order to get high AUC values, for example CAY7, SAT2, SEG1, SEG5 and 92A5
datasets present high values of AUC no matter their IR; also in these datasets, most
over-sampling methods and dynamic sampling approaches are very competitive.

Other datasets support this fact, i.e., IR is not critical in the classification
performance, for example the SEG4 and SEG5 datasets have the same IR, but the
classification performance (using the standard BP) is very different (values of AUC of
0.999 and 0.630, respectively). This confirms was was presented in other works, in that
other features of the data might become a strong problem for the class imbalance [2].
For example: (i) the class overlapping or noisy data [39,42,56,57]; (ii) the small disjuncts;
(iii) the lack of density and information in the training data [58]; (iv) the significance
of the borderline instances [13,59] and their relationship with noisy samples; and
(v) the possible differences in the data distribution for the training and testing data,
also known as the dataset shift [7].

In order to strengthen the result analysis, a non-parametrical statistical and
post-hoc tests are applied (see Section 5.3): Friedman and Iman–Davenport tests
report that considering reduction performance distributed according to chi-square
with 20 degrees of freedom, the Friedman statistic is set at 329.474, and the p-value
computed by the Friedman test is 1.690 × 10−10. However, considering reduction
performance distributed according to the F-distribution with 20 and 680 degrees of
freedom, the Iman and Davenport statistic is 30.233, and the p-value computed by
their test is 2.588× 10−80. Then, the null hypothesis is rejected, i.e., the Friedman and
Iman–Davenport tests indicate the existence of significant differences in the results.
Due to these results, a post-hoc statistical analysis is required.

Figure 1 shows the results of the non-parametric statistical Holm and Shaffer
post-hoc tests. The rows and columns constitute the studied methods; as a
consequence, it represents all C × C pairwise classifier comparisons. The filled
circles mean that for these particular pairwise methods (for Ci × Cj; i = 1, 2, ..., C and
i 6= j), the null hypothesis was reject by the Holm–Shaffer post-hoc tests. Therefore,
the color of circles is the darkest when the p-values are close to zero; this means that
the statistical difference is significant.
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In accordance with Table 2 and Figure 1, most methods of over-sampling present
a better classification performance than the standard BP with statistical significance.
The under-sampling methods do not present a statistical difference with respect
to standard BP performance, and all dynamic sampling approaches improve the
standard BP performance with statistical differences.

ADASYIN, SPIDER-1 and SPIDER-2 (over-sampling methods) and RUS, NCL
and TL (under-sampling methods) show the trend of improving the classification
results, but they do not significantly improve the standard BP performance. Then,
the OSS, CNN and CNNTL classify worse than standard BP; this notwithstanding,
these approaches do not show a statistical difference with it.

SDSAO, SDSAS and DyS are statistically better than ADASYIN, SPIDER-1 and
SPIDER-2 (over-sampling methods) and also than all under-sampling approaches
studied in this work. With a statistical difference, the DOS performance is better than
CNN, CNNTL, OSS and TL.

Table 2 shows that the trend is that ROS presents a better performance than
the proposed method (SDSAO and SDSAS), and that DyS shows a slight advantage
over SDSAS; however, in accordance with the Holm–Shaffer post-hoc tests, statistical
difference in the classification performance does not exist among these methods
(see Figure 1).

In general terms, most over-sampling methods and dynamic sampling
approaches are successful methods to deal with the class imbalance problem, but
with respect to the training dataset size, SDSAS, SDSAO and DyS use significantly
fewer samples than the over-sampling approaches. They employed about 78% less
samples than most over-sampling methods; in addition, SDSAS, SDSAO and DyS
still use fewer samples than the standard BP trained with the original training dataset.
They use about 60% less samples; these facts stand out in Figure 2. However, the DyS
method applies the ROS in each epoch or iteration (see Section 4), whereas SDSA
only applies the ROS or SMOTE one time before ANN training (see Section 2).

Figure 2 shows that the under-sampling methods employ significantly fewer
samples than the rest of the techniques (except dynamic sampling approaches with
respect to RUS, NCL and TL); however, their classification performance in most of
the cases is worse than the standard BP (without statistical significant) or is not better
(with statistical significant) than the standard BP.

On the other hand, the worst methods studied in this paper (in agreement with
Table 2) are those based on the CNN technique (OSS, CNN and CNNTL), i.e., those
that use a k − NN rule as the basis and achieving an important size reduction of
the training dataset. In contrast, NCL, which is of the k− NN family, also improves
the classification performance of the back-propagation; however, the dataset size
reduction reached for this method is not of CNN’s magnitude; in addition, it only
eliminates majority samples. The use of TL (TL and SMOTE-TL) seems to increase
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the classification performance, but it does not eliminate too many samples (see
Figure 2), except by CNNTL, which we consider to cancel the positive effect of TL by
the important training dataset reduction. SMOTE-ENN does not seem to improve
the classification performance of SMOTE in spite of including a cleaning step that
removes both majority and minority samples. The methods that have achieved the
enhancing of the classifier performance are those that only eliminate samples from
the majority class.

Furthermore, analyzing only the selective samples methods (SL-SMOTE,
B-SMOTE, ADASYN, SPIDER-1 and SPIDER-2), those are the ones in which the
more appropriate samples are selected to be over-sampled. It is considered that in
the result presented in Figure 2, SL-SMOTE and B-SMOTE obtain the best results,
whereas the advantages of ADASYN, SPIDER-1 and SPIDER-2 are not clear (RUS
often outperforms these approaches, but without statistical significance; Figure 1).
SL-SMOTE, B-SMOTE and the proposed method do not show statistical significance
in their classification results, but the number of samples used by SDSA in the training
stage is fewer than employed for SL-SMOTE and B-SMOTE (see Figure 2).

Focusing on the dynamic sampling approaches’ analysis, SDSAO presents a
slight advantage in performance than DyS and SDSAS, whereas DOS does not
seem to be an attractive method. However, the aim of DOS is to identify a suitable
over-sampling rate, whilst reducing the processing time and storage requirements,
as well as keeping or increasing the ANN performance, to obtain a trade-off between
classification performance and computational cost.

SDSA and DyS improve the classification performance, including a selective
process, but while DyS tries to reduce the oversampling ratio during the training
(i.e., it applies the ROS method in each epoch with different class imbalance ratios;
see Section 4), the SDSA only tries to use the “best samples” to train the ANN.

Dynamic sampling approaches are a very attractive way to deal with a class
imbalance problem. They face two important topics: (i) improving the classification
performance; and (ii) reducing the classifier computational cost.

7. Conclusions and Future Work

We propose a new Selective Dynamic Sampling Approach (SDSA) to deal with
the class imbalance problem. It is attractive because it automatically selects the
best samples to train the multilayer perceptron neural network with the stochastic
back-propagation. The SDSA identifies the most appropriate samples (“average
samples”) to train the neural network. The average samples are the most adequate
samples to train the neural network; they are neither hard nor easy to learn. These
are between the safe and border areas in the training space. SDSA employs a
Gaussian function to give priority to the average samples during the neural network
training stage.
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The experimental results in this paper point out that SDSA is a successful
method to deal with the class imbalance problem, and its performance is statistically
equivalent to other well-known over-sampling and dynamic sampling approaches.
It is statistically better than the under-sampling methods compared to this work and
also than the standard back-propagation. In addition, in the neural network training
stage, SDSA uses significantly fewer samples than the over-sampling methods, even
than the standard back-propagation trained with the original dataset.

Future work will extend this study. The interest is: to explore the effectiveness
of the SDSA in multi-class and high imbalanced problems and to find a mechanism
to automatically identify the most suitable µ value for each dataset. The appropriate
selection of µ value might significantly improve the proposed method. In addition, it
is important to explore the possibility to use the SDSA to obtain optimal subsets to
train other classifiers like support vector machines or to compare its effectiveness
with the other kinds of class imbalance approaches using other learning models.
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NHL and RCGA Based Multi-Relational
Fuzzy Cognitive Map Modeling for
Complex Systems
Zhen Peng, Lifeng Wu and Zhenguo Chen

Abstract: In order to model multi-dimensions and multi-granularities oriented
complex systems, this paper firstly proposes a kind of multi-relational Fuzzy
Cognitive Map (FCM) to simulate the multi-relational system and its auto construct
algorithm integrating Nonlinear Hebbian Learning (NHL) and Real Code Genetic
Algorithm (RCGA). The multi-relational FCM fits to model the complex system with
multi-dimensions and multi-granularities. The auto construct algorithm can learn
the multi-relational FCM from multi-relational data resources to eliminate human
intervention. The Multi-Relational Data Mining (MRDM) algorithm integrates
multi-instance oriented NHL and RCGA of FCM. NHL is extended to mine the
causal relationships between coarse-granularity concept and its fined-granularity
concepts driven by multi-instances in the multi-relational system. RCGA is used to
establish high-quality high-level FCM driven by data. The multi-relational FCM and
the integrating algorithm have been applied in complex system of Mutagenesis. The
experiment demonstrates not only that they get better classification accuracy, but it
also shows the causal relationships among the concepts of the system.

Reprinted from Appl. Sci.. Cite as: Peng, Z.; Wu, L.; Chen, Z. NHL and RCGA Based
Multi-Relational Fuzzy Cognitive Map Modeling for Complex Systems. Appl. Sci.
2015, 5, 1399–1411.

1. Introduction

The aim of the paper is to auto simulate complex systems with multi-dimensions
and multi-granularities driven by multi-relational data resources for better
classification and causal relationships of a system.

Multi-Relational Data Mining (MRDM) [1,2] is able to discover knowledge
directly from multi-relational data tables, not through connection and aggregation
of multiple relational data into a single data. Multi-relationship data mining
can effectively prevent the problems of information loss, statistical deviation and
low efficiency, etc. These methods [3–5] such as CrossMine, MI-MRNBC and
Graph-NB are fitting for multi-relational data mining, but cannot obtain causality in
a multi-relational system.

In 1986, FCM [6–8] is introduced by Kosko, suggesting the use of fuzzy causal
functions taking numbers in [–1, 1] in concept maps. FCM, as a kind of graph model,
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combines some aspects from fuzzy logic, neural networks and other techniques, and
is fitting for modeling system from data resources. Compared to other techniques,
FCM exhibits a number of highly appealing properties. In particular, FCM can
directly show the multi-relationships between different concepts and the inference
is easy and intuitive. FCM learning algorithms use learning algorithms to establish
models from historical data (simulations of concept values), which have been
widely used applied to various fields [9–13] of society, engineering, medicine,
environmental science, etc. However, none of them consider the data characteristics
of multi-relationships.

Multi-relational FCM discussed in the paper refers to two-levels FCM. There
is one FCM of each dimension in low-level. There is only one FCM in high-level.
The state value of each concept in high-level actually is a summary evaluation of
low-level FCM in the dimension, which is inferred based on the weight vector,
obtained by multi-instances oriented NHL, in low-level FCM. RCGA of high-level
FCM aims to mine high-level FCM based on summary evaluations of low-level FCMs
for high-quality classification and causality. Thus, the proposed multi-relational
FCM and the integrating algorithm seem a rather realistic approach to solve the
complex model.

The remainder of this paper is organized as follows. Section 2 describes FCM,
existing learning algorithms of FCM, and problems to solve. Then, Section 3 proposes
the multi-relational FCM and integrating NHL and RCGA based multi-relational
FCM learning algorithm. In Section 4, the experiment and its results are represented
and analyzed. Finally, we briefly conclude this paper in Section 5.

2. Backgrounds

2.1. Fuzzy Cognitive Map (FCM)

A Fuzzy Cognitive Map F in Figure 1 shows a relationship system, which is a
4-tuple (C, W, A, f ) mathematically, where

• C = {C1,C2, . . . ,CN} is a set of N concepts forming the nodes of a graph.
• W: (Ci,Cj)→wij is a function associating wij with a pair of concepts, with wij equal

to the weight of edge directed from Ci to Cj, where wijε[−1, 1]. Thus, W(NN) is
a connection matrix.

If there is positive causality between concepts Ci and Cj, then wij > 0, which
means an increase of the value of concept Ci will cause an increase of the value of
concept Cj and a decrease of the value of Ci will lead to a decrease of the value of Cj.

If there is inverse causality between the two concepts, then wij < 0, which
represents an increase of the value of concept Ci will cause a decrease of the value of
the second concept and a decrease of the value of concept Ci will cause an increase of
the value of the concept Cj.
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If there is no relationship between the two concepts, then wij = 0.
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Figure 1. A simple fuzzy cognitive map.

• A: Ci → Ai(t) is a function that associates each concept Ci with the sequence of
its activation degrees such as for tεT, Ai(t)εL given its activation degree at the
moment t. A(0)εLT indicates the initial vector and specifies initial values of all
concept nodes and A(t)εLT is a state vector at certain iteration t.

• f is a transformation or activation function, which includes recurring relationship
on t ≥ 0 between A(t + 1) and A(t).

Aj (t + 1) = f (Aj (t) + ∑
i 6= j
i ∈ S

Ai (t)wij) (1)

The transformation function of FCM is with memory at previous moment shown
as Equation (1), which is used to infer the state values of concepts in FCM. It limits
the weighted sum to the range [0, 1] or [−1, 1]. The three most commonly used
transformation (bivalent, trivalent, logistic) functions are shown below.

i Bivalent

f (x) =

{
0, x ≤ 0
1, x > 0

ii Trivalent

f (x) =


−1, x ≤ −0.5

0, −0.5 ≤ x ≤ 0.5
1, x ≥ 0.5

iii Logistic

f (x) =
1

1 + e−Cx

131



FCM can be used to perform simulation of an interconnected system. The vector
A(t) in FCM specifies state values of all concepts (nodes) in the t iteration. An FCM
has a number of successive state iterations. The state value of a concept is calculated
by the preceding iteration of concepts states, which exert influence on the given node.

2.2. FCM Learning Algorithms

FCM learning algorithm is a kind of automated learning method to establish
FCM model from data resources. There are two classes of FCM learning algorithms,
Hebbian based learning and evolved based learning. The former are Hebbian based
algorithms [14–16], mainly including NHL (Nonlinear Hebbian Learning), DD-NHL
(Data-Driven Nonlinear Hebbian Learning) and AHL (Active Hebbian Learning).
The differences of these algorithms are in the way of adjusting the edge weights.
The latter are evolve based algorithms [17–20], which are composed of PSO (Particle
Swarm Optimization), RCGA (Real Coded Genetic Algorithm), etc.

2.2.1. Nonlinear Hebbian Learning (NHL)

NHL is on the basis of the well-known Hebb’s learning law, which is a kind
of unsupervised learning algorithm. Considering the nonlinear output unit, given
random pre-synaptic an input vector x, weight vector w, and output z = f (wT x).
The nonlinear activation function f is a sigmoid function. The criterion function J
maximized by Hebb’s rule may be written as Equation (2).

J = E[z2] (2)

An additional constraint such as ||w|| = 1 is necessary to stabilize the learning
rule. A stochastic approximation solution is employed to the following nonlinear
Hebbian learning rule as Equation (3).

∆wji = ηkz
dz
dy

(xj − wjiyi) (3)

Note that the nonlinear learning rules are seeking a set of weight parameters
such that the outputs of the unit have the largest variance. The nonlinear unit
constrains the output, ensuring it remains within a bounded range.

2.2.2. Real-Coded Genetic Algorithm (RCGA)

RCGA is a real-coded genetic algorithm to develop FCM connection matrix
based on data resource. RCGA defines each chromosome as a floating-point vector.
Each element in the vector is called gene. In case of the learning FCM with N node,
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each chromosome consists of N(N−1) genes, which are floating point numbers from
the range [−1, 1], defined as follows.

E = [w12, w13, . . . , w1N, w21, w23, . . . , w2N, . . . , wNN-1]
T (4)

where wij is a weight value for an edge from ith to jth concept node. Each chromosome
has to be decoded back into a candidate FCM. The number of chromosomes
in a population is constant for each generation and it is specified by the
population_size parameter.

The fitness function is calculated for each chromosome by computing the difference
between system response generated using a FCM weights and a corresponding
system response, which is known directly from the data resource. The difference
is computed across all M−1 initial vector/system response pairs, and for the same
initial state vector. The measure of error is shown as Equation (5).

Error_Lp = α
M−1

∑
t=1

N

∑
n=1

∣∣∣∣∣An (t)− Ân(t)

∣∣∣∣∣
p

(5)

The parameter of α is used to normalize error rate, and p is 1, 2 or ∞. N is the
number of concepts in FCM, and M is the number of iterations. The error measure
can be used as the core of fitness function as Equation (6).

Fitness function =
1

a× Error_Lp + 1
(6)

The fitness function is normalized to the (0, 1]. The parameter a can be set
different value in different p condition.

The stopping condition of RCGA takes into consideration two possible scenarios
of the learning process. One is the learning should be terminated when the fitness
function value reaches a threshold value called max_fitness; the other is a maximum
number of generations, named max_generation, has been reached. If the stopping
conditions have not been reached, evolutionary operators and selection strategy need
to be applied.

2.3. Problem Statements

In real world, a complex system has to have multi-dimensional groups with
direct or indirect relationships, which generates multi-relational data. Moreover, each
dimension maybe contains many concepts with different granularity relationships.
For example, in a Mutagenesis system, there are three dimensions of atom,
molecule and another atom, which are coarse-grained concepts; atype and charge are
fine-grained concepts in the atom dimension; lumo, logp, indl and inda are fine-grained
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concepts in the molecule dimension. In two granularities, fine-grained concepts are
on behalf of nodes in low-level and coarse-grained concepts represent hyper nodes.
The coarse-grained concept of a dimension can be seen as a summary expression of
its fine-grained concepts with multi-instances in low-level of the dimension.

Thus, problem to solve are: how to get summary evaluations in a dimension
based on low-level data with multi-instances and how to mine high-level FCM from
summary evaluations in dimensions for high-quality classification and causality.

3. Materials and Methods

3.1. Multi-Relational FCM

In order to better model the multi-relationships and coarse-grained concepts in
the complex system, undoubtedly, a multi-relational FCM (Definition 1), extended
from FCM, can represent the multi-relationship system. The multi-relational FCM
can be divided into different groups and different levels. A group means a dimension.
A level is a granularity. Coarse-grained concepts are upper-level nodes. Fine-grained
concepts are low-level nodes. A coarse-grained concept in a dimension represents a
FCM composed of fine-grained concepts, and is related with other coarse-grained
concepts in other dimensions.

Definition 1. A multi-relational FCM with two-levels and n-dimensions is Un
2 = (Cn

2,
Wn

2, An
2, f ).

• Cn
2: {{C1i} . . . ,{Cji}, . . . {Cni}} is a set of concepts, {Cji} is on behalf of a

coarse-grained concept in j dimension, and Cji is ith fine-grained concept in
bottom-level of jth dimension.

• Wn
2: {{Wj}, {Wij}}. <{Cji}>→Wj is a function associating Wj among jth dimension,

Wj:{wij}; (<{C1i}> . . . , <{Cji}>, . . . <{Cni}>) → {Wij} is function associating
between coarse-grained concepts.

• An
2: Cji → Aji(t), {Cji}→ Aj(t). Aj(t) is a function f at iteration t.

• f is a transformation function, which includes recurring relationship on t ≥ 0
among Aj(t + 1), Aji(t) and Ai(t), where Aj(0) is referred out based on the weight
vector Wj, got by multi-instances oriented NHL, in low-level FCM.

3.2. Multi-Instances Oriented NHL

In the multi-relational FCM, each concept represents a useful field name in
data resource. In the multi-relationship, one field in main table corresponding
to another table has some sub fields. The field in the main table points to a
coarse-grained concept in low-level FCM and the fields in another table indicate the
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fine-grained concepts in the FCM. Thus, the low-level FCM can be used to model
the multi-relationship.

One coarse-grained concept (Cj) in jth dimension corresponds to some
fine-grained concepts (Cj1, Cj2, . . . , Cjn). It becomes the key to the state value of
get the weights between the coarse-grained concept and some fine-grained concepts
in the low-level FCM. The weights express the causality relationship between
fine-gain concepts and coarse-grained concept. The weights need to be learned
from multi-instances. NHL can be extended to multi-instances oriented mining for
the optimistic of the nonlinear units’ weights in Figure 2. In the prerequisite, the
state states of coarse-grained concepts in high-level FCM can be inferred.

Multi-instances oriented NHL has two constraints. First constraint is that it
maximizes the mathematical expectation of A2

j of all multi-instances as Equation (7).

maxmize J = E[∑
r

A2
j ] (7)

subject to ||w||= 1 (8)
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Second constraint is that the weight vector w has to be limited to stabilize the
learning rule as Equation (8), which generates the following nonlinear Hebbian
learning rule as Equation (9).

∆wij(t + 1) = ηAj(Aji − wij(t)Aj) (9)

Accordingly, multi-instances oriented NHL is presented in the function of
M_NHL. The execution phase of multi-instances oriented NHL (M_NHL) is consisted
of the following steps:
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Step 1: Random initialize the weight vector wj(t), t = 0, p = 0 and input all
instance {Aji}

Step 2: Calculate the mathematical expectation of Aj
2 of all {Aji}

Step 3: Set t = t + 1, repeat for each iteration step t:

3.1 Set p = p + 1, to the pth instance:
3.1.1 Adjust wj(t) matrix to {Aji}p by Equation (9)

3.2 Calculate the Aj
2 to all {Aji} by Equation (10)

3.3 Determine whether Aj
2 is maximum or not at present

3.4 If Aj
2 is maximum, output the optimal wj(t)

Step 4: Return the final weight vector wj(t)
According to the literature [21], whether NHL clusters better or not is closely

related to the activation function f. It means that if cumulative normal distribution
function or approximate cumulative logic distribution function is chosen as activation
function, output results will show a U-distribution and easily achieve better NHL
clustering. In order to avoid integral calculation, the cumulative logic distribution,
shown as Equation (11), is selected. The output values (nonlinear unit outputs)
can be inferred by Equation (10), where Aij is the input and wji is mined by
M_NHL algorithm.

Aj(t) = f (∑
i 6=j

Aij(t− 1)wji(t− 1)) (10)

f (x) =
1− e−x

1 + e−x (11)

3.3. NHL and RCGA Based Integrated Algorithm

RCGA is used to get the weight matrix of high-level FCM for high-quality
classification and causality based on initial state values of coarse-grained concepts,
which are got by M_NHL in Section 3.2.

W = [W12, W13, . . . , W1M, ..., WM1, . . . , WM(M-1)] (12)

Each chromosome consists of M(M−1) genes (see Equation (12)). M is the total
number of hyper concepts or dimensions. The gene is a floating point number from
the range [−1, 1]. Wij specifies the weight between coarse-grained concept in ith

dimension and it in jth dimension. Each chromosome can be decoded back into a
high-level FCM.
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When the fitness is more than max_fitness specified or the generation is more
than max_generation specified, the procedure ends. The fitness function of RCGA is
as follows (see Equation (13)).

f itness =
1

aΣT
t=0ΣM

j=1

(
Aj(t)− Âj

)2
+ 1

(13)

where T is the number of iterations, Âj is the actual output of jth concept of system,
Aj(t) is simulated output at t iteration by computing.

In the procedure, the algorithm needs to call function M_NHL. Moreover, if
the fitness and the number of iterations are not satisfied with the max, the next
chromosome is created by select method, mutation method and recombination
method. In our experiments, a simple one-point crossover, random mutation and
roulette wheel selection are applied. The parameters are chosen and set as Table 1.

Table 1. The parameters in the integrated algorithm.

Parameters Values Meanings

probability of recombination 0.9 probability of single-point crossover
probability of mutation 0.5 probability of random mutation

population_size 50 the number of chromosomes
max_generation 500,000 a maximum number of generations

max_fitness [0.6, 0.9] fitness thresholds
a 1000 a parameter in Equation (13)

The execution procedure of the algorithm integrating RCGA and NHL consisted
of the following steps:

Step 1: Initialize the parameters by the Table 1
Step 2: Randomly initialize population_size chromosomes, g = 0, t = 0
Step 3: Repeat for each dimension j:

3.1 Calculate Aj(t) by Equation (11) and wj based on M_NHL
Step 4: Repeat for each chromosome:

4.1 Calculate the fitness by Aj(t) and Equation (13)

Step 5: Get max of the fitness and the W
Step 6: if max of fitness not more than max_fitness and g not more than max_generation

6.1 Select chromosomes by roulette wheel selection
6.2 Recombination the chromosomes by single-point crossover
6.3 Random mutation to the chromosomes by the probability
6.4 Set t = i + 1, Repeat for each chromosome:
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6.4.1 Calculate Aj(t) by Equation (1)

6.5 Set g = g + 1, go to Step 5

Step 7: The W is the optimal chromosome.

The criterion in Equation (14) is defined as a normalized average error between
corresponding concept values at each iteration between the two states. The error is
used to define the accuracy of the algorithm simulating FCM.

error =
1

M× T

T

∑
t=0

M

∑
j=1
|Aj(t)− Âj| (14)

4. Results and Discussion

Experiments have been carried out using Mutagenesis describing molecular
structure, which is a multi-relational dataset. The multi-relational system consists
of five tables (relationships). They are Atom, Bond, Atom_1, Molatm and Mole,
where Bond and Molatm play associations among other three tables. The class
label is in Mole table. The Mutagenesis data describes 188 molecules falling in two
classes, mutagenic (active) and non-mutagenic (inactive); 125 of these molecules
are mutagenic.

A molecule is associated with multi-atoms through Molatm. An atom is
associated with several atoms through Bond. So Mutagenesis can be expressed as a
multi-relationship of three dimensions: Atom, Atom_1, and Mole. Each dimension has
many fine-grained concepts, such as indl, inda, lumo, logp of molecular dimension.

There are three backgrounds of Mutagenesis shown in Table 2. The three
multi-relational FCM structures as shown in Figures 3–5 are different in three different
backgrounds. The dotted lines show high-level FCMs.
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Table 2. Three kinds of background of Mutagenesis. 

Background Description 

BK0 Each compound includes the attributes of bond types, atom types, and partial charges on atoms
BK1 Each compound includes indl and inda of mole besides those in BK0 
BK2 Each compound includes all attributes that are logp and lumo of mole besides those in BK1

The experiment is implemented for the class of molecular and the association weights among the 
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Table 2. Three kinds of background of Mutagenesis.

Background Description

BK0
Each compound includes the attributes of bond types,

atom types, and partial charges on atoms
BK1 Each compound includes indl and inda of mole besides those in BK0

BK2
Each compound includes all attributes that are logp

and lumo of mole besides those in BK1

The experiment is implemented for the class of molecular and the association
weights among the three concepts (Atom, Atom_1 and Molecular) in the Mutagenesis.
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For better operation efficiency in shorter runtime, an experiment, based on
multi-relationship FCM and the integrated algorithm, has been carried out in the
different fitness thresholds under three kinds of background. The learning runtimes
are shown in the fitness thresholds from 0.6 to 0.9. From Figure 6, we can see that the
changes of the runtime are not big under three kinds of background. The runtimes
spent is changed. When the fitness threshold is at the interval of (0.65, 0.76], the
operation takes less time.
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The classification results are compared in the max_fitness = 0.7 under three
backgrounds. From the Table 3, the classification runtime of the integrated method is
longer. The main reason for this is the costs in database access and FCM inference.
The integrated method has better classification accuracy according to the label in
Mole in three kinds of background knowledge; in particular, the accuracy rate is
best in BK1.

Table 3. Classification efficiency in different backgrounds.

Backgrounds Runtime(s) Accuracy (%)

BK0 0.78 82.3%
BK1 0.8 82.9%
BK2 0.8 82.7%

And the method not only gets better classification, but also the association
weights or causality for causal analysis of system, which is more than other methods.
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For example, the association matrix of high-level FCM of Mutagenesis in BK2 is
shown in Figure 7.
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5. Conclusions

We construct a kind of multi-levels and multi-dimensions FCM to automatic model
complex systems directly from multi-relational data resources. The multi-relational
FCM include two levels and some dimensions. In the FCM, one concept in high-level
has a summary evaluation in a dimension, which is inferred by the transformation
function of low-level FCM. It has been solved that the weight vector in low-level
FCM is learned by extended NHL from multi-instances for the inference. For getting
better classification and causality, RCGA has been used in learning the association
weights in high-level FCM. Moreover, the integrating algorithm of NHL and RCGA
has been applied in the compounds of molecular of Mutagenesis, which obtains
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Dual-Tree Complex Wavelet Transform
and Twin Support Vector Machine for
Pathological Brain Detection
Shuihua Wang, Siyuan Lu, Zhengchao Dong, Jiquan Yang, Ming Yang
and Yudong Zhang

Abstract: (Aim) Classification of brain images as pathological or healthy case is a
key pre-clinical step for potential patients. Manual classification is irreproducible
and unreliable. In this study, we aim to develop an automatic classification system of
brain images in magnetic resonance imaging (MRI). (Method) Three datasets were
downloaded from the Internet. Those images are of T2-weighted along axial plane
with size of 256 ˆ 256. We utilized an s-level decomposition on the basis of dual-tree
complex wavelet transform (DTCWT), in order to obtain 12s “variance and entropy
(VE)” features from each subband. Afterwards, we used support vector machine
(SVM) and its two variants: the generalized eigenvalue proximal SVM (GEPSVM) and
the twin SVM (TSVM), as the classifiers. In all, we proposed three novel approaches:
DTCWT + VE + SVM, DTCWT + VE + GEPSVM, and DTCWT + VE + TSVM.
(Results) The results showed that our “DTCWT + VE + TSVM” obtained an average
accuracy of 99.57%, which was not only better than the two other proposed methods,
but also superior to 12 state-of-the-art approaches. In addition, parameter estimation
showed the classification accuracy achieved the largest when the decomposition level
s was assigned with a value of 1. Further, we used 100 slices from real subjects, and we
found our proposed method was superior to human reports from neuroradiologists.
(Conclusions) This proposed system is effective and feasible.

Reprinted from Appl. Sci. Cite as: Wang, S.; Lu, S.; Dong, Z.; Yang, J.; Yang, M.;
Zhang, Y. Dual-Tree Complex Wavelet Transform and Twin Support Vector Machine
for Pathological Brain Detection. Appl. Sci. 2016, 6, 169.

1. Introduction

Stroke, brain tumors, neurodegenerative diseases, and inflammatory/infectious
diseases are the four main types of brain diseases. Stroke is also called vascular
disease of cerebral circulation. Brain tumors occur when abnormal cells form
inside the brain. Neurodegenerative diseases occur when neurons lose structure or
function progressively. Inflammatory/infectious disease suffers from inflammation
or infection in or around the brain tissues. All diseases cause serious problems for
both patients and the society. Hence, it is important to make early diagnosis system,
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with the aim of providing more opportunities for better clinical trials. This type of
task is commonly named as “pathological brain detection (PBD)”.

Magnetic resonance imaging (MRI) offers the best diagnostic information in the
brain; however, to make a diagnosis usually needs human manual interpretation.
Existing manual methods are costly, tedious, lengthy, and irreproducible, because of
the huge volume data of MRI. Those shortcomings lead to the necessity to develop
automatic tools such as computer-aided diagnosis (CAD) systems [1,2]. Due to
the better performance provided by magnetic resonance (MR) images, many CAD
systems are based on MR images [3].

Existing methods over brain CAD systems could be divided into two types
according to the data dimension. One type is for three-dimensional (3D) image,
but it needs to scan the whole brain. The other type is based on a single-slice that
contains the disease related areas, which is cheap and commonly used in Chinese
hospitals. El-Dahshan et al. [4] employed a 3-level discrete wavelet transform (DWT),
followed by principal component analysis (PCA) to reduce features. Finally, they
used K-nearest neighbor (KNN) for classification. Patnaik et al. [5] utilized DWT to
extract the approximation coefficients. Then, they employed support vector machine
(SVM) for classification. Dong et al. [6] further suggested to train feedforward
neural network (FNN) with a novel scaled conjugate gradient (SCG) approach.
Their proposed classification method achieved good results in MRI classification.
Wu [7] proposed to use kernel SVM (KSVM), and suggested three new kernels:
Gaussian radial basis, homogeneous polynomial, and inhomogeneous polynomial.
Das et al. [8] proposed to combine Ripplet transform (RT) and PCA and least
square SVM (LS-SVM), and the 5 ˆ 5 cross validation test showed high classification
accuracies. El-Dahshan et al. [9] used the feedback pulse-coupled neural network to
preprocess the MR images, the DWT and PCA for features extraction and reduction,
and the FBPNN to detect pathological brains from normal brains. Dong et al. [10]
combined discrete wavelet packet transform (DWPT) and Tsallis entropy (TE). In
order to segment and classify malignant and benign brain tumor slices in Alzheimer’s
disease (AD), Wang et al. [11] employed stationary wavelet transform (abbreviated
as SWT) to replace the common used DWT. Besides, they proposed a hybridization
of Particle swarm optimization and Artificial bee colony (HPA) algorithm to obtain
the optimal weights and biases of FNN. Nazir et al. [12] implemented denoising at
first. Their method achieved an overall accuracy of 91.8%. Sun et al. [13] combined
wavelet entropy (WE) and Hu moment invariant (HMI) as features.

After analyzing the above methods, we found all literatures treated the PBD
problem as a classification problem and their studies aimed at improving the
classification accuracy. As we know, a standard classification task is composed
of two steps: feature extraction and classifier training.
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The former step “feature extraction” in PBD usually employed discrete wavelet
transform (DWT) [5]. The reason is DWT can provide multiresolution analysis
at any desired scale for a particular brain image. Besides, the abundant texture
features in various brain regions are coherent with wavelet analysis [14,15]. However,
DWT is shift variant, i.e., a slight shift in the image degrades the performance of
DWT-based classification. Our study chose a variant of DWT, viz., the dual-tree
complex wavelet transform (DTCWT). Scholars have proven that the DTCWT offers
“more directional selectivity” than canonical DWT, with merely 2n redundancy for data
of n-dimensional [16–18].

Although stationary wavelet transform (SWT) can also deal with the shift
variance problem, it will lead to more redundancy than DTCWT. Then, we need to
extract features from the DTCWT results. In this paper, we proposed to use variance
and entropy (VE) [19] from all the subbands of DTCWT. Although energy is also a
common feature extracted from the wavelet subbands, scholars have proven it is not
as efficient as entropy in MR image classification [20,21]. Besides, variance with the
form of E[(x ´ µ)2] (E, expectation; x, random variable; µ, the mean) indicates how
data points be close to the mean value, while energy with the form of E[x2] does not
consider the mean value. Hence, it is self-explanatory that variance will perform
better than energy even if the expected mean value has a slight shift.

The latter step “classifier training” usually employed support vector machines
(SVMs) or artificial neural network. Compared with other conventional classification
methods, SVMs have significant advantages of elegant mathematical tractability [22],
direct geometric interpretation [23], high accuracy [24], etc. Hence, we continued to
choose SVM. Besides, two variants of SVM were introduced in this study: generalized
eigenvalue proximal SVM (GEPSVM) and twin SVM (TSVM), with the aim of
augmenting the classification performance further.

The contribution of our study is three-fold: We applied DTCWT to pathological
brain detection. We applied both variance and entropy to extract features. We
applied TSVM for classification. The structure of the paper is organized as follows:
Section 2 contains the materials used in this study. Section 3 presents the dual-tree
complex wavelet transform, and offers the mathematical fundamental of SVM and
its two variants. Section 4 designs the experiment and gives the evaluation measures.
Section 5 contains the experimental results and offers the discussions. Section 6 is
devoted to conclusions. The abbreviations used in this work are listed in the end of
this paper.

2. Materials

At present, there are three benchmark datasets as Dataset66, Dataset160, and
Dataset255, of different sizes of 66-, 160-, and 255-images, respectively. All datasets
contain T2-weighted MR brain images obtained along axial plane with size of

145



256 ˆ 256. We downloaded all the slices of subjects from the website of Medical
School of Harvard University (Boston, MA, USA) [25]. Then, we selected five slices
from each subject. The selection criterion is that for healthy subjects, these slices were
selected at random. For pathological subjects, the slices should contain the lesions by
confirmation of thee radiologists with ten years of experiences.

The former two datasets (Dataset66 & Dataset160) consisted of 7 types of
diseases (meningioma, AD, AD plus visual agnosia, sarcoma, Pick’s disease,
Huntington’s disease, and glioma) along with normal brain images. The last dataset
“Dataset255” contains all 7 types of diseases as mentioned before, and 4 new diseases
(multiple sclerosis, chronic subdural hematoma, herpes encephalitis, and cerebral
toxoplasmosis).

Figure 1 shows samples of brain MR images. Our method is for hospital other
than research. In Chinese hospitals, we usually scanned one slice that is closest to the
potential focus, other than the whole brain. Hence, one slice was obtained from one
subject. Each slice in Figure 1 is selected from regions related to the foci of diseases
(in total 26 axial slices).

Note that we treated all different diseased brains as pathological, so our task
is a two-class classification problem, that is, to detect pathological brains from
healthy brains. The whole image is treated as the input. We did not choose local
characteristics like point and edge, and we extract global image characteristics
that are further learned by the CAD system. Note that our method is different
from the way neuroradiologists do. They usually select local features and compare
with standard template to check whether focuses exist, such as shrink, expansion,
bleeding, inflammation, etc. While our method is like AlphaGo [26], the computer
scientists give the machine enough data, and then the machine can learn how to
classify automatically.

Including subjects’ information (age, gender, handedness, memory test, etc.)
can add more information, and thus may help us to improve the classification
performance. Nevertheless, this CAD system in our study is only based on the
imaging data. Besides, the imaging data from the website does not contain the
subjects’ information.

The cost of predicting pathological to healthy is severe; because the patients may
be told that, she/he is healthy and thus ignore the mild symptoms displayed. The
treatments of patients may be deferred. Nevertheless, the cost of misclassification
of healthy to pathological is low, since correct remedy can be given by other
diagnosis means.

This cost-sensitivity (CS) problem was solved by changing the class distribution
at the beginning state, since original data was accessible. That means, we intentionally
picked up more pathological brains than healthy ones into the dataset, with the aim
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of making the classifier biased to pathological brains, to solve the CS problem [27].
The overfitting problem would be monitored by cross validation technique.
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Figure 1. Sample of pathological brains. (a) Normal brain; (b) Alzheimer’s disease (AD) with visual 
agnosia; (c) Meningioma; (d) AD; (e) Glioma; (f) Huntington’s disease; (g) Herpes encephalitis; (h) 
Pick’s disease; (i) Multiple sclerosis; (j) Cerebral toxoplasmosis; (k) Sarcoma; (l) Subdural hematoma. 
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Figure 1. Sample of pathological brains. (a) Normal brain; (b) Alzheimer’s disease
(AD) with visual agnosia; (c) Meningioma; (d) AD; (e) Glioma; (f) Huntington’s
disease; (g) Herpes encephalitis; (h) Pick’s disease; (i) Multiple sclerosis; (j) Cerebral
toxoplasmosis; (k) Sarcoma; (l) Subdural hematoma.

3. Methodology

The proposed method consists of three decisive steps: wavelet analysis by
dual-tree complex wavelet transform (DTCWT), feature extraction by “Variance &
Entropy (VE)”, and classification by three independent classifiers (SVM, GEPSVM,
and TSVM). Figure 2 illustrates our modular framework. The output of DTCWT is
wavelet subband coefficients, which are then submitted to VE block.
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Figure 2. Modular framework of the proposed system for magnetic resonance (MR)
brain classification (K may be 5 or 6 according to the dataset).

3.1. Discrete Wavelet Transform

The discrete wavelet transform (DWT) is an image processing method [28] that
provides multi-scale representation of a given signal or image [29]. Standard DWT is
vulnerable to shift variance problem, and only has horizontal and vertical directional
selectivity [30]. Suppose s represents a particular signal, n represents the sampling
point, h and g represents a high-pass filter and low-pass filter, respectively, H and L
represents the coefficients of high-pass and low-pass subbands. We have

Hpnq “
ÿ

m
hp2n´mqspmq (1)

Lpnq “
ÿ

m
gp2n´mqspmq (2)

Figure 3 shows the directional selectivity of DWT. The LH denotes a low-pass
filter along x-axis and high-pass filter along y-axis. HL denotes a high-pass filter
along x-axis followed by a low-pass filter along y-axis. The LL denotes low-pass
filters along both directions, and HH denotes high-pass filters along both directions.
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Here the HL and LH have well-defined for both vertical and horizontal
orientations. For the HH, it mixes directions of both ´45 and +45 degrees together,
which stems from the use of real-valued filters in DWT. This mixing also impedes
the direction check [31].

3.2. Dual-Tree Complex Wavelet Transform

To help improve the directional selectivity impaired by DWT, we proposed
a dual-tree DWT, which was implemented by two separate two-channel filter
banks. Note that the scaling and wavelet filters in the dual-tree cannot be selected
arbitrarily [32]. In one tree, the wavelet and scaling filters should produce a wavelet
and scaling function, which are approximate Hilbert transforms of those generated
by another tree [33]. In this way, the wavelet generated from both trees and
the complexed-valued scaling function are approximately analytic, and are called
dual-tree complex wavelet transform (DTCWT).

DTCWT obtained directional selectivity by using approximately analytic
wavelets, i.e., they have support on only one half of the whole frequency domain [34].
At each scale of a 2D DTCWT, it produces in total six directionally selective subbands
(˘15˝, ˘45˝, ˘75˝) for both real (R) and imaginary (I) parts [35]. Figure 4 shows the
directional selectivity of DTCWT. The first row depicts the 6 directional wavelets
of the real oriented DTCWT, and the second row shows the imaginary counterpart.
The R and I parts are oriented in the same direction, and they together form the
DTCWT as

M “
a

R2 ` I2 (3)

where M represents the magnitude of the DTCWT coefficients.
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3.3. Comparison between DWT and DTCWT

To compare the directional selectivity ability between DWT and DTCWT, we
performed a simulation experiment. Two simulation images (a pentagon and a
heptagon) were generated. We decomposed both images to 4-level by DWT and
DTCWT, respectively. Then, we reconstructed them to obtain an approximation to
original images by a 4-th level detail subband. The results were shown in Figure 5.
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The first column in Figure 5 shows the simulation images, the second column
shows the DWT reconstruction results, and the last column shows the DTCWT
reconstruction results. Both DWT and DTCWT can extract edges from detail
subbands, which are abundant in brain tissues.

Those edges are discriminant features that are different in pathological brains
and healthy brains. The reason is all the focus-related areas contain either shrink, or
expand, or bleed, or become inflamed. Those that will yield structural alternations
that are associated with edges. We find from the last column in Figure 5 that the edges
detected by DTCWT have a clear contour, so DTCWT can detect nearly all directions
clearly and perfectly. Nevertheless, the edges detected by DWT (See Figure 5) are
discontinued, stemming from that DWT can only detect horizontal and vertical edges.
The results fall in line with Figure 3.
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3.4. Variance and Entropy (VE)

Based on the coefficients of DTCWT, we extract variance and entropy (VE)
features for each decomposition level s and each direction d. Suppose (x, y) is the
spatial coordinate of the corresponding subband, and (L, W) is the length and width
of the corresponding subband, we can define the variance V(s, d) as

Vps,dq “
1

LW

L
ř

x“1

W
ř

y“1

´

Mps,dqpx, yq ´ µps,dq

¯

µps,dq “
1

LW

L
ř

x“1

W
ř

y“1
Mps,dqpx, yq

(4)

here µ denotes the mathematical expectation of M. The variance V measures the
spread of grey-level distribution of the subbands. The larger the value of V is,
the more widely the gray-levels of the image vary. V also reflect the contrast of
the texture.

Another indicator is the entropy E, which measures the randomness of the
gray-level distribution [36]. The larger the value of V is, the more randomly the
gray-level distribution spreads [37]. The entropy E is defined in following form:

Eps,dq “ ´
1

LW

L
ÿ

x“1

W
ÿ

y“1

P
´

Mps,dqpx, yq
¯

logP
´

Mps,dqpx, yq
¯

(5)

Here, P denotes the probability function. Both variance and entropy are
sufficient to produce a good performance. All directional subbands of those two
kinds of features are combined to form a new feature set Vs and Es as

Vs “
rVps,´15q, Vps,15q, Vps,´45q, Vps,45q, Vps,´75q, Vps,75qs

b

V2
ps,´15q `V2

ps,15q `V2
ps,´45q `V2

ps,45q `V2
ps,´75q `V2

ps,75q

(6)

Es “
rEps,´15q, Eps,15q, Eps,´45q, Eps,45q, Eps,´75q, Eps,75qs

b

E2
ps,´15q ` E2

ps,15q ` E2
ps,´45q ` E2

ps,45q ` E2
ps,´75q ` E2

ps,75q

(7)

Hence, we extract 12 features for each scale, among which 6 is for Vs and 6 for
Es. For an s-level decomposition, we totally obtain 12s features VE as

VE “ rV1,V2,...,Vs,E1,E2,...,Ess (8)

The 12s VEs were then submitted into classifiers. SVM is now probably
treated as one of the most excellent classification approach in small-size (less
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than one-thousand samples) problem [7]. To further enhance the classification
performance, two new variants of SVM were introduced:

3.5. Generalized Eigenvalue Proximal SVM

Mangasarian and Wild [38] proposed the generalized eigenvalue proximal SVM
(GEPSVM). It drops the parallelism condition on the two hyperplanes (remember
the parallelism is necessary in original SVM). Latest literatures showed that
GEPSVM yielded superior classification performance to canonical support vector
machines [39,40].

Suppose samples are from either class 1 (denote by symbol X1) or class 2 (denoted
by symbol X2), respectively. The GEPSVM finds the two optimal nonparallel planes
with the form of (w and b denotes the weight and bias of the classifier, respectively)

wT
1 x´ b1 “ 0 and wT

2 x´ b2 “ 0 (9)

To obtain the first plane, we deduce from Equation (9) and get the
following solution

pw1, b1q “ arg min
pw,bq‰0

||wTX1 ´ oTb||2
{||z||2

||wTX2 ´ oTb||2
{||z||2

(10)

z Ð

«

w
b

ff

(11)

where o is a vector of ones of appropriate dimensions. Simplifying formula (10) gives

min
pw,bq‰0

||wTX1 ´ oTb||2

||wTX2 ´ oTb||2 (12)

We include the Tikhonov regularization to decrease the norm of z, which
corresponds to the first hyperplane. The new equation including Tikhonov
regularization term is:

min
pw,bq‰0

||wTX1 ´ oTb||2
` t||z||2

||wTX2 ´ oTb||2 (13)

where t is a positive (or zero) Tikhonov factor. Formula (13) turns to the “Rayleigh
Quotient (RQ)” in the following form of

z1 “ arg min
z‰0

zT Pz
zTQz

(14)
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where P and Q are symmetric matrices in Rpp`1qˆpp`1q in the forms of

P Ð
”

X1 ´o
ıT ”

X1 ´o
ı

` tI (15)

Q Ð

”

X2 ´o
ıT ”

X2 ´o
ı

(16)

Solution of (14) is deduced by solving a generalized eigenvalue problem, after
using the stationarity and boundedness characteristics of RQ.

Pz “ λQz, z ‰ 0 (17)

Here the optimal minimum of (14) is obtained at an eigenvector z1 corresponding
to the smallest eigenvalue λmin of formula (17). Therefore, w1 and b1 can be obtained
through formula (11), and used to determine the plane in formula (9). Afterwards, a
similar optimization problem is generated that is analogous to (12) by exchanging
the symbols of X1 and X2. z2* can be obtained in a similar way.

3.6. Twin Support Vector Machine

In 2007, Jayadeva et al. [41] presented a novel classifier as twin support vector
machine (TSVM). The TSVM is similar to GEPSVM in the way that both obtain
non-parallel hyperplanes. The difference lies in that GEPSVM and TSVM are
formulated entirely different. Both quadratic programming (QP) problems in TSVM
pair are formulated as a typical SVM. Reports have shown that TSVM is better than
both SVM and GEPSVM [42–44]. Mathematically, the TSVM is constructed by solving
the two QP problems

min
w1,b1,q

1
2 pX1w1 ` o1b1q

T
pX1w1 ` o1b1q ` c1oT

2 q

s.t. ´ pX2w1 ` o2b1q ` q ě o2, q ě 0
(18)

min
w2,b2,q

1
2 pX2w2 ` o2b2q

T
pX2w2 ` o2b2q ` c2oT

1 q

s.t. ´ pX1w2 ` o1b2q ` q ě o1, q ě 0
(19)

here q is a nonnegative slack variance. ci (i = 1,2) are positive parameters, and
oi (i = 1,2) is the same as in formula (10). By this mean, the TSVM constructed
two hyperplanes [45]. The first term in equations of (18) and (19) is the sum of
squared distances. The second one represents the sum of error variables. Therefore,
minimizing Equations (18) and (19) will force the hyperplanes approximate to data
in each class, and minimize the misclassification rate [46]. Finally, the constraint
requires the hyperplane to be at a distance of more than one from points of the other
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class. Another advantage of TSVM is that its convergence rate is four times faster
than conventional SVM [47].

3.7. Pseudocode of the Whole System

The implementation covers two phases: offline learning and online prediction,
with the goal of training the classifier and prediction of new instances, respectively.
Table 1 offers the pseudocode of proposed methods.

Table 1. Pseudocode of our system.

Phase I: Offline learning

Step A Wavelet
Analysis

Perform s-level dual-tree complex wavelet transform
(DTCWT) on every image in the ground-truth dataset

Step B Feature
Extraction

Obtain 12 ˆ s features (6 ˆ s Variances and 6s Entropies, and s
represents the decomposition level) from the subbands of DTCWT

Step C Training Submit the set of features together with the class labels
to the classifier, in order to train its weights/biases.

Step D Evaluation Record the classification performance based on a
10 ˆ K - fold stratified cross validation.

Phase II: Online prediction

Step A Wavelet
Analysis

Perform s-level DTCWT on the real query
image (independent from training images)

Step B Feature
Extraction Obtain VE feature set

Step C Prediction Feed the VE feature set into the trained classifier, and obtain the output.

4. Experiment Design

4.1. Statistical Setting

In order to carry out a strict statistical analysis, stratified cross validation (SCV)
was used since it is a model validation technique for small-size data [48]. 6-fold
SCV was employed for Dataset66, and 5-fold SCV was employed for Dataset160 and
Dataset255. The SCV setting was listed in Table 2.

Table 2. Stratified cross validation (SCV) setting of all datasets.

Dataset No. of Fold
Training Validation Total

H P H P H P

Dataset66 6 15 40 3 8 18 48
Dataset160 5 16 112 4 28 20 140
Dataset255 5 28 176 7 44 35 220

(H = Healthy, P = Pathological).
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The 10-fold is not used because of two reasons: One is that past literatures used
the same setting as Table 2. Another is for stratification, viz., we expect to guarantee
each fold covers the same class numbers. If we divide the dataset into 10-folds, then
the stratification will be breached.

Figure 6 illustrates an example of K-fold SCV, by which the dataset is partitioned
into K folds with the same class distributions. The (K-1) folds are used for training,
and the rest fold for test, i.e., query images come from the rest fold. The evaluation is
based on test images. This above process repeats K times so that each fold is used as
test once. The final accuracy of K-fold SCV is obtained by averaging the K results.
The K-fold SCV repeats 10 times to further remove randomness (See Section 5.4).
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Figure 6. A K-fold SCV.

4.2. Parameter Estimation for s

It remains an issue of finding the optimal value of decomposition level s. From
the view of information provided, a smaller s offers less information and a larger
s offers more information to the classifier. From the view of avoiding overfit, a
smaller s may prevent overfitting in greater degree than a larger s. This study used
grid-search [49] method to find the optimal value of s, i.e., we vary the value of s
from 1 to 5 with increment of 1, and check the corresponding average accuracies. The
one associated with the largest accuracy is the optimal value of s.

4.3. Evaluation

The pathological brains are treated as positive, while the healthy brains as
negative. To evaluate the performance, we first calculated overall confusion matrix of
10 runs, then calculate the TP (True Positive), TN (True Negative), FP (False Positive),
and FN (False Negative). The pathological brains were set to true and healthy ones to
false, following common convention. The classification accuracy (Acc) is defined as:

Acc “
TP` TN

TP` TN ` FP` FN
(20)
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5. Results and Discussions

The algorithms were in-house developed based on 64 bit Matlab 2015a (The
Mathworks ©, Natick, MA, USA). Figure 7 shows the graphical user interface
(GUI). The simulation experiments were implemented on the platform of P4 IBM
with 3.2 GHz processor, and 8 GB random access memory (RAM), running under
Windows 7 operating system.Appl. Sci. 2016, 6, 169  11 of 19 
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5.1. Classifier Comparison

In the second experiment, we compared three classifiers: SVM, GEPSVM, and
TSVM. All three datasets are tested. A 10 runs of k-fold SCV was carried out.
Accuracy was used for evaluation. The results are listed in Table 3. The SVM
achieved 100.00%, 99.69%, and 98.43% accuracy for Dataset66, Dataset160, and
Dataset255, respectively. The GEPSVM achieved accuracy of 100.00%, 99.75%, and
99.25% for three datasets. The TSVM yielded accuracy of 100.00%, 100.00%, and
99.57%, respectively.

Table 3. Accuracy Comparison based on 10 runs of k-fold SCV (Unit: %).

Our Methods Dataset66 Dataset160 Dataset255

DTCWT + VE + SVM 100.00 99.69 98.43
DTCWT + VE + GEPSVM 100.00 99.75 99.25

DTCWT + VE + TSVM 100.00 100.00 99.57

Data in Table 3 indicate that GEPSVM is superior to standard SVM. For
Dataset160, the acc of GEPSVM is higher than that of SVM by 0.06%. For Dataset255,
the acc of GEPSVM is higher than that of SVM by 0.82%. Meanwhile, TSVM is

156



superior to GEPSVM. For Dataset160, the acc of TSVM is 0.25 higher than that of
GEPSVM. For Dataset255, the acc of TSVM is 0.32% higher than that of GEPSVM.

The parallel hyperplane setting restrains standard SVM to generate complicated
and flexible hyperplanes. GEPSVM and TSVM discard this setting, so their
performances are much better than SVM. TSVM is similar to GEPSVM in spirit,
since both use non-parallel hyperplanes. The difference between them is TSVM uses
simpler formulation than GEPSVM, and the former can be solved by merely two QP
problems. Our results align with the finding in Kumar and Gopal [50], which says
“generalization performance of TSVM is better than GEPSVM and conventional SVM”.
In following experiments, TSVM is the default classifier

5.2. Optimal Decomposition Level Selection

The value of decomposition level s was set in the range of (1, 2, 3, 4, 5). We
chose the TSVM. All datasets were tested. A 10 runs of k-fold SCV was implemented
with varying s. The curve of average accuracy versus against decomposition level is
shown in Figure 8.Appl. Sci. 2016, 6, 169  12 of 19 
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Figure 8. Classification Accuracy versus Decomposition Level (s).

Remember for s = 1, only 12 features are used. For s = 2, in total 24 features are
used. The number of employed features is 12 times of the value of s. Figure 8 shows
the relationship between Acc versus s. Here we find the acc has a tendency of decrease
when the decomposition level s increases. The reason is more features will attenuate
the classification performance [51]. Reducing the number of features can simplify the
model, cost shorter training time, and augment generalization performance through
reduction of variance [52].
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5.3. Comparison to State-of-the-Art Approaches

We have already compared the SVM with its variants in Section 5.1. In this
section, we compared the best of the proposed methods (DTCWT + VE + TSVM) with
12 state-of-the-art methods: DWT + PCA + KNN [4], DWT + SVM + RBF [5], DWT +
PCA + SCG-FNN [6], DWT + PCA + SVM + RBF [7], RT + PCA + LS-SVM [8], PCNN +
DWT + PCA + BPNN [9], DWPT + TE + GEPSVM [10], SWT + PCA + HPA-FNN [11],
WE + HMI + GEPSVM [13], SWT + PCA + GEPSVM [53], FRFE + WTT + SVM [54],
and SWT + PCA + SVM + RBF [55]. The meaning of these abbreviations can be found
in the Abbreviations Section. The accuracy results were extracted directly from above
literatures. The comparison is based on results obtained in each individual study.

Table 4 shows the comparison results between the best proposed method
“DTCWT + VE + TSVM” with the state-of-the-art approaches. The first column lists
the method name, the second column the number of features employed, the third
column the total run times (all algorithms run 10 times, except some old algorithms
ran five times which were reported in literature [8]), and the last three columns the
average acc over three datasets.

Table 4. Classification comparison.

Algorithms Feature # Run #
Acc

Dataset66 Dataset160 Dataset255

DWT + PCA + KNN [4] 7 5 98.00 97.54 96.79
DWT + SVM + RBF [5] 4761 5 98.00 97.33 96.18

DWT + PCA + SCG-FNN [6] 19 5 100.00 99.27 98.82
DWT + PCA + SVM + RBF [7] 19 5 100.00 99.38 98.82

RT + PCA + LS-SVM [8] 9 5 100.00 100.00 99.39
PCNN + DWT + PCA + BPNN [9] 7 10 100.00 98.88 98.24

DWPT + TE + GEPSVM [10] 16 10 100.00 100.00 99.33
SWT + PCA + HPA-FNN [11] 7 10 100.00 100.00 99.45

WE + HMI + GEPSVM [13] 14 10 100.00 99.56 98.63
SWT + PCA + GEPSVM [53] 7 10 100.00 99.62 99.02

FRFE + WTT + SVM [54] 12 10 100.00 99.69 98.98
SWT + PCA + SVM + RBF [55] 7 10 100.00 99.69 99.06

DTCWT + VE + TSVM (Proposed) 12 10 100.00 100.00 99.57

(# represents number)

After investigating the results in Table 4, it is clear that 11 out of 13 methods
achieve perfect classification (100%) over Dataset66, which stems from its small
size. For a larger dataset (Dataset160), only four methods yield perfect classification.
They are RT + PCA + LS-SVM [8], DWPT + TE + GEPSVM [10], SWT + PCA +
HPA-FNN [11], and the proposed “DTCWT + VE + TSVM”. A common point among
the four methods is that they all used advanced feature extraction (RT, DWPT, SWT,
and DTCWT) and classification techniques (LS-SVM, GEPSVM, HPA-FNN, and
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TSVM). This suggests us to learn and apply latest advanced artificial-intelligence and
machine-learning approaches to the field of MR brain classification. For the largest
dataset (Dataset255), no algorithm achieves perfect classification, because there are
relatively various types of diseases. Among all methods, this proposed “DTCWT +
VE + TSVM” achieves the highest accuracy of nearly 99.57%, which demonstrates its
effectiveness and feasibility.

It is reasonable that all methods achieved high accuracy. Retrospect a similar
problem of facial recognition system (FRS), the latest FRS achieved nearly perfect
performance and been applied for banking customers [56], vehicle security [57], etc.
The pathological detection is simpler than face detection, because it does not need
to identify each subject but identify the status (pathological or healthy). Hence, it is
expected that our methods can achieve high classification accuracy.

The difference of accuracy in Table 4 is not significant, however, it is obtained by
strict statistical analysis, viz., 10 runs of K-fold stratified cross validation. Hence, this
slight improvement is reliable and convincing. Even the largest dataset only contains
255 images, so we will try to create a larger dataset that contains more images and
more types of diseases.

The proposed CAD system cannot give physical meanings of particular brain
regions. Nevertheless, after comparing classifier and human brains, we believe
expert systems are similar to declarative memory, while support vector machines
are similar to nondeclarative memory. Thus, it is impossible for SVMs (its variants)
to give physical meanings. In the future, we may try to use expert systems that can
mimic the reasoning process of doctors, but may not give as high accuracies as SVMs.

5.4. Results of Different Runs

The correct classification instance numbers, together with their accuracies, are
listed in Table 5. In the table, each row lists the results of different runs, and each
column lists the results of different folds. The last row averages the results, and the
last column summarizes the results over different folds.

5.5. Computation Time

The computation time of each step of our method was calculated and recorded.
The training time was recorded over Dataset255. The results of offline-learning and
online-prediction are listed in Tables 6 and 7, respectively.

The computation time results in Table 6 provides that DTCWT costs 8.41 s, VE
costs 1.81 s, and TSVM training costs 0.29 s, in the offline-learning procedure. This is
because there are 255 images in the dataset, and the training process need to handle
all images. The total time is 10.51 s.

The online-prediction time only deals with one query image, so the computation
time reduces sharply. Table 7 provides that DTCWT costs 0.037 s, VE costs 0.009 s,
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and TSVM costs 0.003 s for one query image. Its total time is 0.049 s. Therefore, the
proposed system is feasible in practice.

Table 5. Detailed Results of DTCWT + VE + TSVM over Dataset255.

Run F1 F2 F3 F4 F5 Total

1 51(100.00%) 51(100.00%) 51(100.00%) 51(100.00%) 51(100.00%) 255(100.00%)
2 51(100.00%) 50(98.04%) 51(100.00%) 51(100.00%) 51(100.00%) 254(99.61%)
3 50(98.04%) 51(100.00%) 51(100.00%) 51(100.00%) 50(98.04%) 253(99.22%)
4 50(98.04%) 50(98.04%) 51(100.00%) 51(100.00%) 51(100.00%) 253(99.22%)
5 51(100.00%) 51(100.00%) 51(100.00%) 51(100.00%) 50(98.04%) 254(99.61%)
6 51(100.00%) 51(100.00%) 51(100.00%) 50(98.04%) 50(98.04%) 253(99.22%)
7 51(100.00%) 51(100.00%) 51(100.00%) 51(100.00%) 50(98.04%) 254(99.61%)
8 51(100.00%) 50(98.04%) 51(100.00%) 51(100.00%) 51(100.00%) 254(99.61%)
9 51(100.00%) 51(100.00%) 51(100.00%) 51(100.00%) 51(100.00%) 255(100.00%)

10 51(100.00%) 50(98.04%) 51(100.00%) 51(100.00%) 51(100.00%) 254(99.61%)

Average 253.9 (99.57%)

(F = Fold, R = Run).

Table 6. Offline-Learning Computation Time.

Process Time (second)

DTCWT 8.41
VE 1.81

TSVM Training 0.29

Table 7. Online-Prediction Computation Time.

Process Time (second)

DTCWT 0.037
VE 0.009

TSVM Test 0.003

5.6. Comparison to Human Reported Results

In the final experiment, we invited three senior neuroradiologists who have
over ten years of experiences. We scanned 20 subjects (5 healthy and 15 pathological),
and we pick five slices from each subject. For the healthy subjects, the five slices were
selected randomly. For the pathological subjects, the five slices should contain the
lesions by confirmation of all the three senior neuroradiologists.

Afterwards, a double blind test was performed. Four junior neuroradiologists
with less than 1 year of experiences were required to predict the status of the brain
(either pathological or healthy). Each image was assigned with three minutes. Their
diagnosis accuracies were listed in Table 8.
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Table 8. Comparison to human reported results.

Neuroradiologist Accuracy

O1 74%
O2 78%
O3 77%
O4 79%

Our method 96%

(O = Observer).

From Table 8, we see our computer-aided diagnosis method achieves an accuracy
of 96%. Compared to Table 4, the performance of our proposed method is affected in
real-world scenario.

The reasons are complicated. First, the source dataset is downloaded from
Harvard medical school, which is for teaching. Hence, the source dataset itself
highlighted the difference between pathological and healthy brains intentionally,
and the slice positions were selected with care. Second, images from real hospitals
are of poorer quality and of poorer localization of lesions. All these contribute to
the worsen performance of our method. After all, an accuracy of 96% in rea-world
scenario is good and promising.

Another finding is Table 8 is that the four junior neuroradiologists obtained
accuracies of 74%, 78%, 77%, and 79%, respectively. All are below 80%. This validates
the power of computer vision and machine learning, since computers have proven to
deliver better performance in face recognition, video security, etc. Nevertheless, there
are other more visible symptoms suggesting that something may be wrong in the
brain for neuroradiologists. Therefore, this simple test does not reflect the realistic
diagnosis accuracy in real hospitals.

6. Conclusions and Future Research

We proposed a novel CAD system for pathological brain detection (PBD) using
DTCWT, VE, and TSVM. The results show that the proposed method yields better
results than 12 existing methods in terms of classification accuracy.

Our contributions include three points: (1) We investigate the potential use of
dual-tree complex wavelet transform (DTCWT) in MR image classification, and prove
DTCWT is effective; (2) We utilize twin support vector machine (TSVM) and prove it
is better than canonical SVM and GEPSVM; (3) The proposed system “DTCWT + VE +
TSVM” is superior to nineteen state-of-the-art systems.

The limitation of our method is the dataset size is too small. We will try to
re-check our methods by creating a large dataset. Another limitation is the dataset
cannot reflect real-word scenario, thus we need to obtain more data from hospitals
directly in the future. The third limitation is that our data involves only middle and
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late stage of diseases; hence, our method performs not so good for MR images with
diseases in early stage.

In the future, we will consider to validate our method use real clinical
data and use advanced classification methods, such as RBFNN, deep leaning,
least-square techniques. Besides, we will try to apply our method to remote-sensing
related fields or hearing loss detection [58]. The advanced parameter estimation,
case-based reasoning [59], and optimization [60] techniques will be carried out
in a thorough way. Fuzzy method [61] may be applied to remove outliers in the
dataset. Coarse-graining [62] can help extract more efficient entropy that is robust
to the noises. Video-on-demand [63,64] services may be applied to help reduce
computation resources. Particularly, we shall acquire more datasets and compare
our method with human interpretation.
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Abbreviations

The following abbreviations are used in this manuscript:

(A)(BP)(F)(PC)NN (Artificial) (Back-propagation) (Feed-forward) (Pulse-coupled)
neural network

(B)PSO(-MT) (Binary) Particle Swarm Optimization (-Mutation and TVAC)
(D)(S)W(P)T (Discrete) (Stationary) wavelet (packet) transform
(k)(F)(LS)(GEP)SVM (kernel) (Fuzzy) (Least-Squares) (Generalized eigenvalue

proximal) Support vector machine
(W)(P)(T)E (Wavelet) (Packet) (Tsallis) entropy
CAD Computer-aided diagnosis
CS Cost-sensitivity
FRFE Fractional Fourier entropy
HMI Hu moment invariant
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KNN K-nearest neighbors
MR(I) Magnetic resonance (imaging)
PCA Principal Component Analysis
RBF Radial Basis Function
TVAC Time-varying Acceleration Coefficients
WTT Welch’s t-test
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2D Gaze Estimation Based on Pupil-Glint
Vector Using an Artificial Neural Network
Jianzhong Wang, Guangyue Zhang and Jiadong Shi

Abstract: Gaze estimation methods play an important role in a gaze tracking system.
A novel 2D gaze estimation method based on the pupil-glint vector is proposed
in this paper. First, the circular ring rays location (CRRL) method and Gaussian
fitting are utilized for pupil and glint detection, respectively. Then the pupil-glint
vector is calculated through subtraction of pupil and glint center fitting. Second, a
mapping function is established according to the corresponding relationship between
pupil-glint vectors and actual gaze calibration points. In order to solve the mapping
function, an improved artificial neural network (DLSR-ANN) based on direct least
squares regression is proposed. When the mapping function is determined, gaze
estimation can be actualized through calculating gaze point coordinates. Finally,
error compensation is implemented to further enhance accuracy of gaze estimation.
The proposed method can achieve a corresponding accuracy of 1.29˝, 0.89˝, 0.52˝,
and 0.39˝ when a model with four, six, nine, or 16 calibration markers is utilized
for calibration, respectively. Considering error compensation, gaze estimation
accuracy can reach 0.36˝. The experimental results show that gaze estimation
accuracy of the proposed method in this paper is better than that of linear regression
(direct least squares regression) and nonlinear regression (generic artificial neural
network). The proposed method contributes to enhancing the total accuracy of a
gaze tracking system.

Reprinted from Appl. Sci. Cite as: Wang, J.; Zhang, G.; Shi, J. 2D Gaze Estimation
Based on Pupil-Glint Vector Using an Artificial Neural Network. Appl. Sci. 2016,
6, 174.

1. Introduction

Human beings acquire 80%–90% of outside information through the eyes.
Humans’ visual perception of information can be acquired through eye gaze
tracking [1–4]. With the increasing development of computer/machine vision
technology, gaze tracking technology has been more and more widely applied in the
fields of medicine [5], production tests [6], human–machine interaction [7,8], military
aviation [9,10], etc.

According to differences in dimension of gaze direction estimation, gaze tracking
technology can be divided into 2D gaze tracking [11–19] and 3D gaze tracking [20–27];
according to differences in ways of wearing, gaze tracking technology can be classed
as intrusive (head-mounted) [12,28–37] or non-intrusive (head-free) [20,23,38–44].
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For different gaze tracking systems, gaze tracking methods mainly contain Limbus
Tracking [45–47], Pupil Tracking [48–50], Pupil-glint Vector [51–55], Purkinje
Image [24,56,57], etc.

For 2D gaze estimation methods, mapping function between gaze points and
target plane or regions of interest is firstly established. The mapping function solved
is then further utilized to calculate the gaze point on certain targets or regions.
For 3D gaze estimation methods, a human eyeball model is employed to determine
the absolute position of eyes in the test space. On this basis, 3D gaze is calculated to
acquire the specific staring location or fixation targets of human eyes in the space.

The main purpose of this paper is to estimate the gaze point of the human eye
on a monitor screen fixed to the head. The mapping function between gaze points
and fixation targets is from plane to plane. Therefore, a novel 2D gaze estimation
method based on pupil-glint vector is proposed to calculate the gaze direction.

In conventional 2D gaze estimation methods, the most widely utilized
calculation methods can be divided into two groups: linear regression (direct
least squares regression) [58–64] and nonlinear regression (generic artificial neural
network) [65–69]. In [58–61], Morimoto et al. utilize least squares to calculate
the mapping function between calibration markers and corresponding pupil-glint
vectors. Overdetermined linear equations for solving mapping function are
composed by a series of 2nd-order polynomials. The number of polynomials depends
on the number of calibration markers. Corresponding coordinates of calibration
markers, pupil and glint centers are determined through a calibration process. The
pupil-glint vector is calculated through the subtraction of pupil and glint center
coordinates. Cherif et al. [62] propose an adaptive calibration method. A second time
calibration is employed for error correction. A polynomial transformation of higher
order is utilized to model mapping function by applying a mean square error criterion.
The result of single calibration shows that the gaze estimation accuracy will increase
with the enhancement of the polynomial order. However, through experimental
analyses, Cerrolaza et al. [63,64] point out that the gaze estimation accuracy of a gaze
tracking system will not increase with the enhancement of polynomial order owing
to the factors of head motion, number of calibration markers, and calculating method
of pupil-glint vector, etc. When applied for solving mapping function, 2nd-order
linear polynomial is the most widely used linear regression solution method with
the advantages of fewer calibration markers and better approximation effect.

An artificial neural network is the most widely used nonlinear regression
method for solving the mapping function between calibration markers and
corresponding pupil-glint vectors (or pupil centers, eye movements information,
etc.). Early in 1994, Baluja and Pomerleau [65] proposed the method using simple
artificial neural network (ANN) to estimate gaze direction. Multi-group attempts
are conducted to find a training network with optimal performance. In the first

169



attempt, images of only the pupil and cornea are utilized as inputs to ANN. The
output units are organized with horizontal and vertical coordinates of the gaze point.
A single divided layer is used for training in the ANN architecture. In the second
attempt, in order to achieve a better accuracy, the total eye socket (including pupil
and glint position) is utilized as an input to ANN. A single continuous hidden layer
and a single divided hidden layer are used for training in the ANN architecture. The
experimental results show that when the hidden layer units are fewer, the training
accuracy of the divided hidden layer is higher than that of the continuous hidden
layer. In addition, the training time is short. Furthermore, some of the eye images
are employed as training sets and the remainder are employed as testing sets, which
provides more accurate experimental results. However, though a higher accuracy
can be achieved when the total eye socket (including pupil and glint position) is
utilized as an input to ANN, the training sample data is huge and the training time
is long. Piratla et al. [66] developed a network-based gaze tracking system. As an
auxiliary tool, a strip with black and white bands is mounted on the user’s head to
facilitate real-time eye detection. Twelve items, consisting of strip edge coordinates at
lower ends, eyeball centers coordinates, and eyelid distances, are the input features
of the neural network. The X and Y coordinate pair of the point the user is looking
at on the screen is the output of the neural network. A 25-neuron hidden layer is
utilized between the input and output layer. This method requires a large number of
input items and a long detection period. The real-time quality needs to be improved.
Demjen et al. [67] compare the neural network and linear regression method utilized
for estimating gaze direction. The comparison results show that: (1) the calibration
procedure of the neural network method is faster as it requires fewer calibration
markers, and (2) the neural network method provides higher accuracy. The gaze
tracking performance of a neural network is better than that of linear regression.
Multi-layer perceptrons (MLPs) are utilized by Coughlin et al. [68] to calculate gaze
point coordinates based on electro-oculogram (EOG). The number of input nodes
depends on the number of data points chosen to represent the saccadic waveforms.
The output nodes of the network provide the horizontal and vertical 2D spatial
coordinates of the line-of-sight on a particular training or test trial. In order to
determine the number of nodes that can provide the optimal outputs, hidden layers
containing different numbers of nodes are selected to train MLP ANN. Initial weights
trained on another person are referred to in order to reduce training time. The
experimental results show that using MLPs for calibration appears to be able to
overcome some of the disadvantages of the EOG and provides an accuracy not
significantly different from that obtained with the infrared tracker. In addition,
Sesin et al. [69] find that MLPs can produce positive effectives: jitter reduction of gaze
point estimation and enhancing the calculating stability of gaze points. Gneo et al. [70]
utilize multilayer neural feedforward networks (MFNNs) to calculate gaze point
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coordinates based on pupil-glint vectors. Two separate MFNNs (each one having
the same eye features as inputs, with one single output neuron directly estimating
one of the X and Y coordinates of the POG), each containing 10 neurons in the
hidden layer, are employed for training to acquire the outputs. The use of MFNNs
overcomes the drawbacks of the model-based EGTSs and the potential reasons for
their failure, which sometimes give ANNs an undeservedly poor reputation. Zhu
and Ji [71] utilize generalized regression neural networks (GRNNs) to calculate
a mapping function from pupil parameters to screen coordinates in a calibration
procedure. The GRNN topology consists of four layers: input layer, hidden layer,
summation layer, and output layer. Six factors including pupil-glint vector, pupil
ellipse orientation, etc. are chosen as the input parameters of GRNNs. The output
nodes represent the horizontal and vertical coordinates of the gaze point. Though
the use of hierarchical classification schemes simplifies the calibration procedure, the
gaze estimation accuracy of this method is not perfect. Kiat and Ranganath [72] utilize
two single radial basis function neural networks (RBFNNs) to map the complex and
non-linear relationship between the pupil and glint parameters (inputs) to the gaze
point on the screen (outputs). Both of the networks have 11 inputs including x and y
coordinates of left and right pupils, pupil-to-glint vectors of the left and right eyes,
etc. The number of network output nodes depends on the number of calibration
regions in the horizontal and vertical direction. The weights of the network are
stored as calibration data for every subsequent time the user operates the system. As
is the case with GRNNs, the gaze estimation accuracy of RBFNNs is not high enough.
Wu et al. [73] employ the Active Appearance Model (AAM) to represent the eye
image features, which combines the shape and texture information in the eye region.
The support vector machine (SVM) is utilized to classify 36 2D eye feature points set
(including eye contour, iris and pupil parameters, etc.) into eye gazing direction. The
final results show the independence of the classifications and the accurate estimation
of the gazing directions.

In this paper, considering the high speed of direct least squares regression
and the high accuracy of artificial neural network, we propose an improved
artificial neural network based on direct least squares regression (DLSR-ANN) to
calculate the mapping function between pupil-glint vectors and actual gaze points.
Different from general artificial neural networks, coefficient matrix elements of
direct least squares regression are employed as connection coefficients in the input
and hidden layers of DLSR-ANN. The error cost function and continuous-time
learning rule of DLSR-ANN are defined and calculated according to the constraint
condition of solving direct least squares regression. The initial condition of an
integrator associated with the learning rule of DLSR-ANN is acquired through linear
polynomial calculation of direct least squares regression. The learning rate parameter
is limited to a range determined by the maximal eigenvalue of auto-correlation
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matrix composed by input vector of direct least squares regression. The proposed
method contains advantages of both direct least squares regression and artificial
neural network.

The remainder of this paper is organized as follows: Section 2 presents the
proposed neural network method for gaze estimation in detail. Section 3 describes
the experimental system and shows the results. Section 4 concludes the whole work.
The experimental results show that the training process of the proposed method
is stable. The gaze estimation accuracy of the proposed method in this paper is
better than that of conventional linear regression (direct least squares regression)
and nonlinear regression (generic artificial neural network). The proposed method
contributes to enhance the total accuracy of a gaze tracking system.

2. Proposed Methods for Gaze Estimation

According to the respective characteristics of linear and nonlinear regression,
a novel 2D gaze estimation method based on pupil-glint vector is proposed in this
paper. An improved artificial neural network (DLSR-ANN) based on direct least
squares regression is developed to solve the mapping function between pupil-glint
vector and gaze point and then calculate gaze direction. The flow-process of gaze
direction estimation is shown in Figure 1. First, when gazing at the calibration
markers on the screen, corresponding eye images of subjects are acquired through
a camera fixed on the head-mounted gaze tracking system. Second, through
preprocessing such as Otsu optimal threshold binarization and opening-and-closing
operation, pupil and glint centers are detected by utilizing circular ring rays location
(CRRL) method. As inputs of the proposed DLSR-ANN, pupil-glint vector is
calculated through the subtraction of pupil and glint center coordinates. Third,
a three-layer DLSR-ANN (input layer, hidden layer, and output layer) is developed
to calculate the mapping function between pupil-glint vectors and corresponding
gaze points. Finally, gaze points on the screen can be estimated according to the
mapping function determined.
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Figure 1. Flow‐process of gaze direction estimation. 
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Pupil-glint vector is calculated through the subtraction of pupil and glint
center coordinate. 2nd linear gaze mapping function based on pupil-glint vector is
expressed as Equation (1).

#

xci “ a1 ` a2xei ` a3yei ` a4xeiyei ` a5x2
ei ` a6y2

ei
yci “ b1 ` b2xei ` b3yei ` b4xeiyei ` b5x2

ei ` b6y2
ei

, (1)

where i “ 1, 2, ¨ ¨ ¨ , N. N is the number of calibration markers. pxci, yciq is the
coordinate of gaze calibration markers on screen coordinate system. pxei, yeiq is
the coordinate of pupil-glint vector on image coordinate system. Least squares, as
conventional linear methods, is utilized to solve the gaze mapping function shown
in Equation (1). Residual error is defined as:

R2 “
ÿ

N
i“1

”

xci ´
´

a1 ` a2xei ` a3yei ` a4xeiyei ` a5x2
ei ` a6y2

ei

¯ı2
. (2)

By calculating a partial derivative of aj pj “ 1, 2, 3, 4, 5, 6q in Equation (2), the
constraint condition can be obtained as in Equation (3).

BR2
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N
i“1σj
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xci ´
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a1 ` a2xei ` a3yei ` a4xeiyei ` a5x2
ei ` a6y2

ei

¯ı

“ 0, (3)

where σ1 “ 1, σ2 “ xei, σ3 “ yei, σ4 “ xeiyei, σ5 “ x2
ei, σ6 “ y2

ei. The value of aj can
be calculated according to Equation (4).
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(4)

As with aj, the value of bj pj “ 1, 2, 3, 4, 5, 6q can be calculated. In fact, the
relationship between the number of coefficients in mapping function (r) and
polynomial order (s) is as follows:

r “ 1`
ÿ

s
t“1 pt` 1q . (5)
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According to Equation (5), when an s order polynomial is utilized to solve
the gaze mapping function, at least r gaze calibration markers are required. For
a head-mounted (intrusive) gaze tracking system, the relative position of the
monitor screen and the user’s head and eyes remains nearly fixed. In this case,
the higher-order terms in the mapping function are mainly utilized to compensate
for error between the estimated and actual gaze direction. The higher the polynomial
order, the higher the calculation accuracy. However, the number of polynomial
coefficients to be solved will increase at the same time (Equation (5)). In addition,
the number of calibration markers required also increases. This not only makes
the calibration time longer; the cumbersome calibration process also adds to the
user’s burden. Users are prone to be fatigued, thus affecting the calibration accuracy.
In order to further enhance the mapping accuracy and realize precise estimation
of gaze direction, a novel artificial neural network (DLSR-ANN) based on direct
least squares regression is proposed to solve a mapping function between pupil-glint
vectors and calibration markers.

We rewrite the matrix equation in Equation (4) as:

Qa “ p, (6)

where a “
”

a1 a2 a3 a4 a5 a6

ıT
, p “

”

řN
i“1 xci

řN
i“1 xcixei

řN
i“1 xciyei

řN
i“1 xcixeiyei

řN
i“1 xcix2

ei
řN

i“1 xciy2
ei

ıT
, Q is the coefficient matrix.

Figure 2 shows the scheme framework of an improved artificial neural network
based on direct least squares regression. The DLSR-ANN is a three-layer neural
network with input layer, hidden layer, and output layer. Elements of matrix p
including pupil-glint vectors gazing at calibration markers are determined as the
input of a neural network. Elements of matrix a are determined as the output of
a neural network. The input, output, and hidden layers contain one, one, and three
nodes, respectively.

As shown in Figure 2, coefficient matrix elements of direct least squares
regression are employed as connection coefficients in the input and hidden layers of
DLSR-ANN. According to the respective characteristics of input, hidden, and output
layers and the relationship among them, appropriate weighting functions g1 ptq,
g2 ptq, g3 ptq are determined. Derivatives of g1 ptq, g2 ptq, and g3 ptq , respectively, are
calculated ( f1 ptq, f2 ptq, f3 ptq p f ptq “ dg ptq {dtqq as the transfer function of the neuron.
The selection of specific parameters is described in Section 3.4. As a three-layer neural
network, its output layer carries an integrator. The integrator’s initial condition

a p0q “ a0 “
”

a1 p0q a2 p0q a3 p0q a4 p0q a5 p0q a6 p0q
ıT

is calculated through
a linear polynomial solution utilizing direct least squares regression.
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Figure 2. Scheme  framework  of  improved  artificial  neural network  based  on direct  least squares 
regression. 
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small,  the  weights  of  the  neural  network  will  be modified  by  the  learning  rule  slowly. More 
iterations will be needed to reach the error bottom. If  µ  is set too large, the learning rule will show 

Figure 2. Scheme framework of improved artificial neural network based on direct
least squares regression.

In the proposed method, to solve the mapping function in Equation (6), the
steepest gradient descent method [74] is adopted as the training method of the
neural network. To determine the relationship between hidden layer and output
layer, the error cost function and continuous-time learning rule of DLSR-ANN are
defined according to the constraint condition of solving direct least squares regression.
According to the error distribution characteristics of gaze estimation, the Euclid norm
(L2 norm) is selected to acquire the minimal error cost function, which is in the same
form as the error solving criterion of direct least squares regression, as defined in
Equation (7):

ξ paq “
1
2
‖ e ‖2

“
1
2

eTe, (7)

where e “ Qa ´ p is the solution error of Equation (6) in direct least
squares regression.

Equation (7) can be further expressed as follows:

ξ paq “ 1
2 pQa´ pqT pQa´ pq

“ 1
2

´

aTQTQa´ aTQp´ pTQa` pTp
¯

.
(8)

According to an error cost function based on the constraint condition of direct
least squares regression, the learning rule of a continuous-time neural network is
set as Equation (9). The function of the learning rule is to modify the weights of
DLSR-ANN adaptively to acquire the optimal solution.

da
dt
“ ´µ∇aξ paq “ ´µ

Bξ paq
Ba

, (9)
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where µ is the learning rate parameter. As a positive-definite matrix,
µ pµ “ rµvws , υ, w “ 1, 2, ¨ ¨ ¨ , nq is generally selected as a diagonal matrix. In general,
µ is determined by experience. If µ is set too small, the weights of the neural network
will be modified by the learning rule slowly. More iterations will be needed to reach
the error bottom. If µ is set too large, the learning rule will show numerical instability.
To ensure the stability of the differential equation in Equation (9) and the convergence
of its solution, a small enough µ is chosen according to Equation (10):

0 ă µ ă
2

λmax
, (10)

where λmax is the maximal eigenvalue of auto-correlation matrix composed by input
vector p in direct least squares regression. When the eigenvalue is unavailable, the
auto-correlation matrix can replace it.

By calculating a partial derivative of variable a in Equation (8), the learning
rule of a continuous-time neural network for solving matrix equation Qa “ p can be
deduced as:

da
dt “ ´µ

Bξpaq
Ba “ ´µ¨ 1

2

´

2QTQa´ 2QTp
¯

“ ´µ¨QT
´

Qa´ 2QTp
¯

“ ´µQTe. (11)

3. Experimental System and Results

3.1. Experimental System

In this study, we develop a wearable gaze tracking system composed of a
helmet, a monitor, an array of four near-infrared light emitting diodes (NIR LEDs),
and a microspur camera, as shown in Figure 3. The screen size of the monitor is
75 mm ˆ 50 mm. Considering the imaging distance is limited between 3 cm and
7 cm, a microspur camera is adopted to acquire the eye image. The image resolution
is 640 ˆ 480 pixels (CCD sensor). As described in [75], when the wavelength
of NIR LED is located within the range of 760 nm–1400 nm, the pupil absorbs
nearly all the near-infrared light and the iris obviously reflects it. The wavelength
of NIR LED employed in this paper is 850 nm and the power is less than 5 mw.
The experimental system brings no harm to human eyes [76]. An NVIDIA Jetson
TK1 embedded development board (Figure 4) is utilized for image acquiring and
processing (NVIDIA: NVIDIA Corporation (Santa Clara, California, CA, USA). TK1:
Tegra K1. Jetson TK1 is a code of embedded development board manufactured by
NVIDIA Corporation).
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Figure 4. NVIDIA Jetson TK1 embedded development board.

3.2. Pupil and Glint Detection

3.2.1. Pupil Detection

The circular ring rays location (CRRL) method [77] is utilized for pupil center
detection, for the reason that it is more robust and accurate than conventional
detection methods. As shown in Figure 5, in the CRRL method, improved Otsu
optimal threshold binarization is utilized on a gray-scale eye image to eliminate the
influence caused by illumination change. Through an opening-and-closing operation,
rough location of pupil area, and circular ring rays, and pupil boundary points
and center can be detected accurately when interference factors such as eyelashes,
glint, and natural light reflection are located on the pupil contour. The CRRL
method contributes to enhance the stability, accuracy, and real-time quality of a
gaze tracking system.

177



Appl. Sci. 2016, 6, 174  8 of 17 

 
Figure 4. NVIDIA Jetson TK1 embedded development board. 

3.2. Pupil and Glint Detection 

3.2.1. Pupil Detection 

The circular ring rays location (CRRL) method [77] is utilized for pupil center detection, for the 
reason that it is more robust and accurate than conventional detection methods. As shown in Figure 
5, in the CRRL method, improved Otsu optimal threshold binarization is utilized on a gray‐scale eye 
image  to eliminate  the  influence caused by  illumination change. Through an opening‐and‐closing 
operation, rough location of pupil area, and circular ring rays, and pupil boundary points and center 
can  be  detected  accurately when  interference  factors  such  as  eyelashes,  glint,  and  natural  light 
reflection are located on the pupil contour. The CRRL method contributes to enhance the stability, 
accuracy, and real‐time quality of a gaze tracking system. 

   
(a)  (b) (c)

   
(d)  (e) (f)

Figure  5.  Pupil  detection:  (a)  original  eye  image;  (b)  eye  binary  image  utilizing  improved Otsu 
optimal threshold; (c) results of opening‐and‐closing operation; (d) rough location of pupil region; (e) 
extraction of pupil boundary points; (f) pupil contour fitting. 

3.2.2. Glint Detection 

For  the  reason  that  the  glint’s  illumination  intensity  is  suitable  for  Gaussian  distribution, 
Gaussian function deformation solved by improved total least squares [77] is utilized to calculate the 
glint center. The detection result of glint is shown in Figure 6. 

(a) (b)

Figure 6. Glint detection: (a) rough location of glint; (b) glint detection results. 

Figure 5. Pupil detection: (a) original eye image; (b) eye binary image utilizing
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contour fitting.

3.2.2. Glint Detection

For the reason that the glint’s illumination intensity is suitable for Gaussian
distribution, Gaussian function deformation solved by improved total least
squares [77] is utilized to calculate the glint center. The detection result of glint
is shown in Figure 6.
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As a sample, some of the pupil and glint centers detected are shown in Table 1.
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Table 1. A sample of the pupil and glint centers.

Eye Image Pupil Center (x, y) Glint Center (x, y)

1 2 3 4

1 (290.15, 265.34) (265.31,
298.65)

(294.56,
300.87)

(266.41,
310.28)

(296.25,
312.49)

2 (251.42, 255.93) (245.58,
292.36)

(276.54,
295.13)

(246.19,
305.67)

(277.51,
307.26)

3 (203.34, 260.81) (221.95,
297.32)

(252.49,
298.61)

(221.34,
309.17)

(253.65,
310.28)

4 (297.74, 275.62) (271.25,
300.56)

(301.58,
300.67)

(270.91,
315.66)

(300.85,
315.46)

5 (247.31, 277.58) (243.25,
302.62)

(273.55,
303.46)

(242.81,
317.54)

(274.26,
318.19)

3.3. Calibration Model

As expressed in Equation (5), at least three, six, and 10 polynomial coefficients
are required to be calculated, respectively, when a 1st, 2nd, and 3rd order linear
polynomial is utilized for calibration, which means that at least three, six, and
10 calibration markers are required. When the number of calibration markers needed
is too large, unessential input items can be removed according to principal component
analysis to reduce the number of polynomial coefficients to be solved. Generally,
based on an overall consideration of the real-time quality and accuracy of a gaze
tracking system, four- and five-marker calibration models are most widely employed
for 1st order calculation, while six- and nine-marker calibration models are most
widely employed for 2nd order calculation [78,79].

Considering that there is some motion between the wearable gaze tracking
system and the user’s head, error of gaze point data will occur along with a drifting
motion. In this paper, position coordinates of quadrangular NIR LEDs are considered
as inputs of gaze estimation model to compensate for error caused by drifting motion.
As shown in Figure 7, for the purpose of comparison, four-, six-, nine-, and 16-marker
calibration models are employed in the process of calculating mapping function.
Gaze direction is estimated with and without error compensation. The gaze tracking
accuracy of the two cases is compared.

3.4. Gaze Point Estimation

An improved artificial neural network (DLSR-ANN) based on direct least
squares regression is developed to calculate the mapping function between
pupil-glint vectors and calibration markers. For four-, six-, nine-, and 16-marker
calibration models, the number of training samples is selected as 180. The
number of hidden nodes is equal to the number of training samples. The x
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(or y) coordinate is set as the output of the neural network. Two separate
DLSR-ANNs are utilized to estimate the x and y coordinates of the gaze point
on the screen. Each separate neural network has the same inputs. Weighting

function g1 ptq, g2 ptq, g3 ptq is respectively determined as g1 ptq “ 1´e´β1t2

1`e´β1t2
,

g2 ptq “

#

t2

2 , t ď β2

β2 |t| ´
β2

2
2 , t ą β2

, g3 ptq “ β2
3ln

´

cosh t
β3

¯

. The transfer function for

input, hidden, and output layers is selected as the derivative of g1 ptq, g2 ptq, g3 ptq,

which is respectively calculated as f1 ptq, f2 ptq, f3 ptq: f1 ptq “
dg1ptq

dt “
4β1te´β1t2

´

1`e´β1t2
¯2 ,

f2 ptq “
dg2ptq

dt “

$

’

&

’

%

´β2, t ď ´β2
t, |t| ď β2
β2, t ą β2

, f3 ptq “
dg3ptq

dt “ β3tanh t
β3

. Learning rate

parameter µ is determined by µ “ µj “ 0.0025 (when a four-marker calibration
model is employed, j “ 1, 2, 3, 4; when a six-, nine-, or 16-marker calibration model
is employed, j “ 1, 2, 3, 4, 5, 6). In order to acquire optimal learning and training
results, β1,β2,β3 is respectively determined as β1 “ 0.8, β2 “ 0.7, β3 “ 0.7 through
a process of trial and error. The initial condition a p0q of an integrator associated
with learning rules is acquired through linear polynomial calculation in direct least
squares regression.
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Figure 7. Calibration model: (a) four-marker calibration model; (b) six-marker
calibration model; (c) nine-marker calibration model; (d) 16-marker calibration model.

In the developed wearable gaze tracking system, an array of four near-infrared
light emitting diodes (NIR LEDs) is employed instead of the conventional single one.
The NIR LEDs array can form well-distributed illumination around the human eye,
which contributes to extract pupil and glint characteristics more stably and precisely.
In addition the center position coordinates of quadrangular NIR LEDs, considered
as inputs of the neural network, can further compensate for error caused during
the process of gaze point calculation. When a calibration process is accomplished, a
model with 8 ˆ 8 test markers is employed to validate the calculation accuracy of
the gaze point. Figure 8a–d shows the gaze point estimated through the proposed
method with/without considering error compensation, utilizing a four-, six-, nine-,
or 16-marker calibration model, respectively. The cyan “ ” symbols represent actual
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reference gaze points on the monitor screen. The magenta “+” symbols represent
gaze points estimated through the proposed method without considering error
compensation. The blue “*” symbols represent gaze points estimated through the
proposed method considering error compensation.
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Figure 9. Definition of gaze estimation accuracy. 

Angle  θ  can be calculated through Equation (12), where   ܮ is the distance between the human 
eye and the monitor screen: 

Figure 8. Gaze point estimation with/without considering error compensation:
(a) gaze point estimation utilizing a four-marker calibration model; (b) gaze point
estimation utilizing a six-marker calibration model; (c) gaze point estimation
utilizing a nine-marker calibration model; (d) gaze point estimation utilizing a
16-marker calibration model.

3.5. Gaze Estimation Accuracy Comparison of Different Methods

As shown in Figure 9, gaze estimation accuracy is expressed as intersection
angle θ between actual gaze direction (A as gaze point) and estimated gaze direction
(A’ as gaze point).
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Angle θ can be calculated through Equation (12), where L is the distance between
the human eye and the monitor screen:

θ “ arctan

¨

˝

b

pxA ´ xA1q
2
` pyA ´ yA1q

2

L

˛

‚. (12)
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The standard deviation of gaze estimation accuracy θ is defined as Equation (13),
where θ represents the mean value of θj pj “ 1, 2, ¨ ¨ ¨ , Kq and K is the total number of
gaze points estimated:

∆std “

c

1
K

ÿ

K
j“1

`

θj ´ θ
˘2. (13)

3.5.1. Gaze Estimation Accuracy without Considering Error Compensation

Figure 10 shows a comparison of gaze estimation accuracy and standard
deviation calculated through the proposed method and other neural network
methods, respectively, without considering error compensation. The proposed
method can provide an accuracy of 1.29˝, 0.89˝, 0.52˝, and 0.39˝ when a four-,
six-, nine-, or 16-marker calibration model is utilized for calibration, respectively.
The maximum gaze estimation error through the proposed method for a four-, six-,
nine-, or 16-marker calibration model is, respectively, 2.45˝, 1.98˝, 1.21˝, and 0.82˝.
The specific results are shown in Table A1.
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3.5.2. Gaze Estimation Accuracy Considering Error Compensation

Figure 11 shows the comparison of gaze estimation accuracy and standard
deviation calculated respectively through the proposed method and other NN
(Neural Network) methods considering error compensation. The proposed method
can provide an accuracy of 1.17˝, 0.79˝, 0.47˝, and 0.36˝ respectively, when a
four-, six-, nine-, or 16-marker calibration model is utilized for calibration. When
considering error compensation, the improvement percentage of gaze estimation
accuracy for four-, six-, nine-, and 16-marker calibration models is 9.3%, 11.2%, 9.6%,
and 7.6%, respectively. The specific results are shown in Table A2 of the Appendix.Appl. Sci. 2016, 6, 174  12 of 17 
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4. Conclusions

In this paper, a novel 2D gaze estimation method based on pupil-glint vector
is proposed on the basis of conventional gaze tracking methods. In order to realize
the accurate estimation of gaze direction, an improved artificial neural network
(DLSR-ANN) based on direct least squares regression is developed. Learning
rate parameter, weighting function, and corresponding coefficients are determined
according to trial and experience. Detected coordinates of pupil-glint vectors are
applied as inputs to train an improved neural network. The mapping function
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model is solved and then utilized to calculate gaze point coordinates. An array of
four NIR LEDs is employed to form quadrangular glints. The NIR LEDs array can
generate well-distributed illumination around the human eye, which contributes to
extracting pupil and glint characteristics more stably and precisely. In addition, the
center coordinates of quadrangular NIR LEDs, considered as additional inputs of
neural network, can further compensate for the error caused during the process of
calculating the gaze point, which can enhance the accuracy of gaze point coordinates.
When the gaze tracking system is established, calibration models with different
numbers of markers are utilized to validate the proposed method. When a four-,
six-, nine-, or 16-marker calibration model is employed for the calibration process,
the proposed method can achieve an accuracy of 1.29˝, 0.89˝, 0.52˝, and 0.39˝,
respectively. Taking into account error compensation, the proposed method can
achieve an accuracy of 1.17˝, 0.79˝, 0.47˝, and 0.36˝, respectively, when a four-,
six-, nine-, or 16-marker calibration model is employed. When considering error
compensation, the improvement percentage of gaze estimation accuracy for a four-,
six-, nine-, or 16-marker calibration model is 9.3%, 11.2%, 9.6%, and 7.6%, respectively.
The experimental results show that the training process of the proposed method
is stable. The gaze estimation accuracy of the proposed method in this paper is
better than that of conventional linear regression (direct least squares regression)
and nonlinear regression (generic artificial neural network). The proposed method
contributes to enhance the total accuracy of a gaze tracking system.
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Appendix

Table A1. Comparison of gaze estimation accuracy between proposed method and
other NN methods without considering error compensation.

Calibration
Markers Method Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6 Average Err.

4

DLSR [55] 2.32˝ ˘ 0.54˝ 2.41˝ ˘ 0.58˝ 2.48˝ ˘ 0.62˝ 2.24˝ ˘ 0.45˝ 2.29˝ ˘ 0.48˝ 2.37˝ ˘ 0.51˝ 2.35˝ ˘ 0.53˝

MLP [66] 1.71˝ ˘ 0.35˝ 1.74˝ ˘ 0.39˝ 1.64˝ ˘ 0.32˝ 1.72˝ ˘ 0.33˝ 1.76˝ ˘ 0.40˝ 1.62˝ ˘ 0.29˝ 1.70˝ ˘ 0.35˝

MFNN [67] 1.38˝ ˘ 0.27˝ 1.45˝ ˘ 0.30˝ 1.43˝ ˘ 0.24˝ 1.49˝ ˘ 0.29˝ 1.34˝ ˘ 0.22˝ 1.40˝ ˘ 0.25˝ 1.42˝ ˘ 0.26˝

GRNN [68] 1.63˝ ˘ 0.32˝ 1.52˝ ˘ 0.28˝ 1.69˝ ˘ 0.35˝ 1.72˝ ˘ 0.36˝ 1.55˝ ˘ 0.30˝ 1.61˝ ˘ 0.33˝ 1.62˝ ˘ 0.32˝

RBF [69] 1.81˝ ˘ 0.43˝ 1.92˝ ˘ 0.48˝ 1.85˝ ˘ 0.44˝ 1.74˝ ˘ 0.37˝ 1.67˝ ˘ 0.33˝ 1.72˝ ˘ 0.41˝ 1.78˝ ˘ 0.41˝

Proposed 1.36˝ ˘ 0.24˝ 1.28˝ ˘ 0.19˝ 1.26˝ ˘ 0.31˝ 1.31˝ ˘ 0.25˝ 1.21˝ ˘ 0.30˝ 1.32˝ ˘ 0.20˝ 1.29˝ ˘ 0.25˝

6

DLSR [55] 1.68˝ ˘ 0.29˝ 1.62˝ ˘ 0.25˝ 1.64˝ ˘ 0.28˝ 1.72˝ ˘ 0.31˝ 1.71˝ ˘ 0.33˝ 1.74˝ ˘ 0.31˝ 1.69˝ ˘ 0.30˝

MLP [66] 1.15˝ ˘ 0.26˝ 1.23˝ ˘ 0.33˝ 1.17˝ ˘ 0.25˝ 1.06˝ ˘ 0.24˝ 1.10˝ ˘ 0.27˝ 1.26˝ ˘ 0.35˝ 1.16˝ ˘ 0.28˝

MFNN [67] 0.98˝ ˘ 0.22˝ 0.96˝ ˘ 0.20˝ 1.05˝ ˘ 0.27˝ 1.03˝ ˘ 0.25˝ 0.95˝ ˘ 0.18˝ 0.93˝ ˘ 0.19˝ 0.98˝ ˘ 0.22˝

GRNN [68] 1.07˝ ˘ 0.19˝ 1.16˝ ˘ 0.27˝ 1.02˝ ˘ 0.15˝ 1.05˝ ˘ 0.19˝ 1.12˝ ˘ 0.26˝ 1.08˝ ˘ 0.18˝ 1.08˝ ˘ 0.21˝

RBF [69] 1.20˝ ˘ 0.26˝ 1.17˝ ˘ 0.24˝ 1.23˝ ˘ 0.27˝ 1.24˝ ˘ 0.29˝ 1.15˝ ˘ 0.19˝ 1.18˝ ˘ 0.25˝ 1.21˝ ˘ 0.25˝

Proposed 0.88˝ ˘ 0.16˝ 0.94˝ ˘ 0.19˝ 0.78˝ ˘ 0.25˝ 0.86˝ ˘ 0.14˝ 0.92˝ ˘ 0.21˝ 0.95˝ ˘ 0.18˝ 0.89˝ ˘ 0.19˝

9

DLSR [55] 0.91˝ ˘ 0.15˝ 0.89˝ ˘ 0.16˝ 0.97˝ ˘ 0.18˝ 0.96˝ ˘ 0.15˝ 0.86˝ ˘ 0.13˝ 0.94˝ ˘ 0.14˝ 0.92˝ ˘ 0.15˝

MLP [66] 0.73˝ ˘ 0.13˝ 0.78˝ ˘ 0.16˝ 0.74˝ ˘ 0.16˝ 0.67˝ ˘ 0.11˝ 0.64˝ ˘ 0.10˝ 0.75˝ ˘ 0.14˝ 0.72˝ ˘ 0.13˝

MFNN [67] 0.58˝ ˘ 0.09˝ 0.57˝ ˘ 0.12˝ 0.64˝ ˘ 0.11˝ 0.56˝ ˘ 0.14˝ 0.59˝ ˘ 0.09˝ 0.62˝ ˘ 0.13˝ 0.59˝ ˘ 0.11˝

GRNN [68] 0.71˝ ˘ 0.11˝ 0.74˝ ˘ 0.12˝ 0.77˝ ˘ 0.16˝ 0.65˝ ˘ 0.09˝ 0.64˝ ˘ 0.10˝ 0.67˝ ˘ 0.12˝ 0.70˝ ˘ 0.12˝

RBF [69] 0.77˝ ˘ 0.17˝ 0.72˝ ˘ 0.14˝ 0.84˝ ˘ 0.21˝ 0.80˝ ˘ 0.20˝ 0.76˝ ˘ 0.15˝ 0.70˝ ˘ 0.12˝ 0.76˝ ˘ 0.16˝

Proposed 0.51˝ ˘ 0.08˝ 0.49˝ ˘ 0.09˝ 0.48˝ ˘ 0.12˝ 0.56˝ ˘ 0.10˝ 0.51˝ ˘ 0.11˝ 0.47˝ ˘ 0.07˝ 0.52˝ ˘ 0.10˝

16

DLSR [55] 0.50˝ ˘ 0.12˝ 0.47˝ ˘ 0.10˝ 0.49˝ ˘ 0.13˝ 0.48˝ ˘ 0.15˝ 0.49˝ ˘ 0.09˝ 0.51˝ ˘ 0.14˝ 0.48˝ ˘ 0.12˝

MLP [66] 0.44˝ ˘ 0.11˝ 0.48˝ ˘ 0.13˝ 0.49˝ ˘ 0.11˝ 0.46˝ ˘ 0.09˝ 0.44˝ ˘ 0.10˝ 0.46˝ ˘ 0.08˝ 0.45˝ ˘ 0.10˝

MFNN [67] 0.39˝ ˘ 0.09˝ 0.42˝ ˘ 0.08˝ 0.44˝ ˘ 0.12˝ 0.39˝ ˘ 0.07˝ 0.40˝ ˘ 0.07˝ 0.42˝ ˘ 0.08˝ 0.41˝ ˘ 0.08˝

GRNN [68] 0.46˝ ˘ 0.12˝ 0.41˝ ˘ 0.09˝ 0.45˝ ˘ 0.10˝ 0.47˝ ˘ 0.13˝ 0.40˝ ˘ 0.08˝ 0.43˝ ˘ 0.11˝ 0.44˝ ˘ 0.10˝

RBF [69] 0.48˝ ˘ 0.15˝ 0.46˝ ˘ 0.13˝ 0.41˝ ˘ 0.11˝ 0.42˝ ˘ 0.12˝ 0.46˝ ˘ 0.14˝ 0.44˝ ˘ 0.15˝ 0.45˝ ˘ 0.13˝

Proposed 0.36˝ ˘ 0.06˝ 0.42˝ ˘ 0.09˝ 0.38˝ ˘ 0.08˝ 0.40˝ ˘ 0.07˝ 0.43˝ ˘ 0.08˝ 0.37˝ ˘ 0.06˝ 0.39˝ ˘ 0.07˝

Table A2. Comparison of gaze estimation accuracy between proposed method and
other NN methods considering error compensation.

Calibration
Markers Method Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6 Average Err.

4

DLSR [55] 2.11˝ ˘ 0.48˝ 2.20˝ ˘ 0.52˝ 2.24˝ ˘ 0.55˝ 2.03˝ ˘ 0.40˝ 2.06˝ ˘ 0.42˝ 2.15˝ ˘ 0.44˝ 2.13˝ ˘ 0.47˝

MLP [66] 1.56˝ ˘ 0.31˝ 1.64˝ ˘ 0.35˝ 1.52˝ ˘ 0.28˝ 1.58˝ ˘ 0.30˝ 1.63˝ ˘ 0.36˝ 1.51˝ ˘ 0.26˝ 1.57˝ ˘ 0.31˝

MFNN [67] 1.23˝ ˘ 0.24˝ 1.21˝ ˘ 0.26˝ 1.28˝ ˘ 0.21˝ 1.26˝ ˘ 0.25˝ 1.18˝ ˘ 0.20˝ 1.25˝ ˘ 0.22˝ 1.24˝ ˘ 0.23˝

GRNN [68] 1.48˝ ˘ 0.29˝ 1.37˝ ˘ 0.22˝ 1.45˝ ˘ 0.31˝ 1.57˝ ˘ 0.28˝ 1.41˝ ˘ 0.26˝ 1.49˝ ˘ 0.28˝ 1.46˝ ˘ 0.27˝

RBF [69] 1.65˝ ˘ 0.39˝ 1.77˝ ˘ 0.43˝ 1.79˝ ˘ 0.40˝ 1.54˝ ˘ 0.34˝ 1.52˝ ˘ 0.29˝ 1.61˝ ˘ 0.36˝ 1.65˝ ˘ 0.37˝

Proposed 1.23˝ ˘ 0.21˝ 1.17˝ ˘ 0.18˝ 1.14˝ ˘ 0.26˝ 1.18˝ ˘ 0.22˝ 1.09˝ ˘ 0.28˝ 1.21˝ ˘ 0.19˝ 1.17˝ ˘ 0.22˝

6

DLSR [55] 1.54˝ ˘ 0.28˝ 1.49˝ ˘ 0.23˝ 1.51˝ ˘ 0.26˝ 1.57˝ ˘ 0.30˝ 1.56˝ ˘ 0.31˝ 1.61˝ ˘ 0.29˝ 1.55˝ ˘ 0.28˝

MLP [66] 1.06˝ ˘ 0.24˝ 1.15˝ ˘ 0.30˝ 1.08˝ ˘ 0.21˝ 1.01˝ ˘ 0.22˝ 1.03˝ ˘ 0.23˝ 1.14˝ ˘ 0.29˝ 1.08˝ ˘ 0.25˝

MFNN [67] 0.87˝ ˘ 0.21˝ 0.88˝ ˘ 0.18˝ 0.96˝ ˘ 0.23˝ 0.94˝ ˘ 0.21˝ 0.86˝ ˘ 0.16˝ 0.84˝ ˘ 0.17˝ 0.89˝ ˘ 0.19˝

GRNN [68] 0.95˝ ˘ 0.19˝ 1.05˝ ˘ 0.24˝ 0.91˝ ˘ 0.15˝ 0.94˝ ˘ 0.19˝ 1.01˝ ˘ 0.23˝ 0.99˝ ˘ 0.18˝ 0.98˝ ˘ 0.20˝

RBF [69] 1.11˝ ˘ 0.23˝ 1.09˝ ˘ 0.21˝ 1.15˝ ˘ 0.25˝ 1.14˝ ˘ 0.27˝ 1.07˝ ˘ 0.18˝ 1.18˝ ˘ 0.22˝ 1.12˝ ˘ 0.23˝

Proposed 0.78˝ ˘ 0.13˝ 0.82˝ ˘ 0.17˝ 0.71˝ ˘ 0.23˝ 0.73˝ ˘ 0.12˝ 0.81˝ ˘ 0.20˝ 0.87˝ ˘ 0.17˝ 0.79˝ ˘ 0.17˝

9

DLSR [55] 0.84˝ ˘ 0.14˝ 0.81˝ ˘ 0.15˝ 0.89˝ ˘ 0.17˝ 0.88˝ ˘ 0.13˝ 0.80˝ ˘ 0.12˝ 0.86˝ ˘ 0.13˝ 0.85˝ ˘ 0.14˝

MLP [66] 0.68˝ ˘ 0.12˝ 0.74˝ ˘ 0.14˝ 0.70˝ ˘ 0.15˝ 0.62˝ ˘ 0.10˝ 0.61˝ ˘ 0.09˝ 0.69˝ ˘ 0.12˝ 0.67˝ ˘ 0.12˝

MFNN [67] 0.53˝ ˘ 0.08˝ 0.52˝ ˘ 0.10˝ 0.60˝ ˘ 0.09˝ 0.51˝ ˘ 0.11˝ 0.54˝ ˘ 0.08˝ 0.56˝ ˘ 0.09˝ 0.54˝ ˘ 0.09˝

GRNN [68] 0.66˝ ˘ 0.09˝ 0.69˝ ˘ 0.11˝ 0.71˝ ˘ 0.15˝ 0.61˝ ˘ 0.08˝ 0.60˝ ˘ 0.09˝ 0.62˝ ˘ 0.10˝ 0.65˝ ˘ 0.10˝

RBF [69] 0.71˝ ˘ 0.16˝ 0.66˝ ˘ 0.13˝ 0.78˝ ˘ 0.18˝ 0.73˝ ˘ 0.19˝ 0.70˝ ˘ 0.14˝ 0.65˝ ˘ 0.11˝ 0.71˝ ˘ 0.15˝

Proposed 0.46˝ ˘ 0.07˝ 0.45˝ ˘ 0.06˝ 0.47˝ ˘ 0.10˝ 0.51˝ ˘ 0.08˝ 0.48˝ ˘ 0.09˝ 0.43˝ ˘ 0.05˝ 0.47˝ ˘ 0.07˝

16

DLSR [55] 0.43˝ ˘ 0.09˝ 0.48˝ ˘ 0.12˝ 0.45˝ ˘ 0.10˝ 0.43˝ ˘ 0.09˝ 0.49˝ ˘ 0.13˝ 0.46˝ ˘ 0.10˝ 0.46˝ ˘ 0.11˝

MLP [66] 0.47˝ ˘ 0.11˝ 0.42˝ ˘ 0.09˝ 0.40˝ ˘ 0.08˝ 0.44˝ ˘ 0.07˝ 0.45˝ ˘ 0.10˝ 0.41˝ ˘ 0.11˝ 0.43˝ ˘ 0.09˝

MFNN [67] 0.36˝ ˘ 0.08˝ 0.41˝ ˘ 0.07˝ 0.38˝ ˘ 0.05˝ 0.40˝ ˘ 0.09˝ 0.41˝ ˘ 0.06˝ 0.38˝ ˘ 0.08˝ 0.39˝ ˘ 0.07˝

GRNN [68] 0.42˝ ˘ 0.11˝ 0.39˝ ˘ 0.07˝ 0.42˝ ˘ 0.10˝ 0.38˝ ˘ 0.06˝ 0.41˝ ˘ 0.06˝ 0.44˝ ˘ 0.10˝ 0.41˝ ˘ 0.08˝

RBF [69] 0.38˝ ˘ 0.09˝ 0.44˝ ˘ 0.12˝ 0.45˝ ˘ 0.13˝ 0.43˝ ˘ 0.09˝ 0.39˝ ˘ 0.08˝ 0.41˝ ˘ 0.11˝ 0.42˝ ˘ 0.10˝

Proposed 0.33˝ ˘ 0.05˝ 0.35˝ ˘ 0.04˝ 0.39˝ ˘ 0.06˝ 0.38˝ ˘ 0.08˝ 0.35˝ ˘ 0.04˝ 0.37˝ ˘ 0.05˝ 0.36˝ ˘ 0.05˝
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A Modified Feature Selection and Artificial
Neural Network-Based Day-Ahead Load
Forecasting Model for a Smart Grid
Ashfaq Ahmad, Nadeem Javaid, Nabil Alrajeh, Zahoor Ali Khan, Umar Qasim
and Abid Khan

Abstract: In the operation of a smart grid (SG), day-ahead load forecasting (DLF)
is an important task. The SG can enhance the management of its conventional
and renewable resources with a more accurate DLF model. However, DLF model
development is highly challenging due to the non-linear characteristics of load time
series in SGs. In the literature, DLF models do exist; however, these models trade off
between execution time and forecast accuracy. The newly-proposed DLF model will
be able to accurately predict the load of the next day with a fair enough execution
time. Our proposed model consists of three modules; the data preparation module,
feature selection and the forecast module. The first module makes the historical load
curve compatible with the feature selection module. The second module removes
redundant and irrelevant features from the input data. The third module, which
consists of an artificial neural network (ANN), predicts future load on the basis
of selected features. Moreover, the forecast module uses a sigmoid function for
activation and a multi-variate auto-regressive model for weight updating during the
training process. Simulations are conducted in MATLAB to validate the performance
of our newly-proposed DLF model in terms of accuracy and execution time. Results
show that our proposed modified feature selection and modified ANN (m(FS +
ANN))-based model for SGs is able to capture the non-linearity(ies) in the history
load curve with 97.11% accuracy. Moreover, this accuracy is achieved at the cost of a
fair enough execution time, i.e., we have decreased the average execution time of the
existing FS + ANN-based model by 38.50%.

Reprinted from Appl. Sci. Cite as: Ahmad, A.; Javaid, N.; Alrajeh, N.;
Khan, Z.A.; Qasim, U.; Khan, A. A Modified Feature Selection and Artificial Neural
Network-Based Day-Ahead Load Forecasting Model for a Smart Grid. Appl. Sci.
2016, 5, 1756–1772.

1. Introduction

On a customer service platform, the physical power system along with
information and communication technology that link together heterogeneous devices
in an automated fashion to improve the parameters of interest is a smart grid (SG)
(refer to Figure 1 [1]). It is more likely that the SG will integrate new communication
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technologies, advanced metering, distributed systems, distributed storage, security
and safety to achieve considerable robustness and reliability [2–4].

Two-way communication is one of the key enablers that turns a traditional
power grid into a smart one, based on which optimal decisions are made by
the energy management unit [2]. In this regard, many demand-side scheduling
techniques are proposed [5–8]. However, there exists sufficient challenges prior to
scheduling techniques in terms of stochastic information schemes to predict the
future load. Thus, with the growing expectation of the adoption of SGs, advanced
techniques and tools are required to optimize the overall operation.

Day-ahead load forecasting (DLF) is one of the fundamental, as well as essential
tasks that is needed for proper operation of the SG. On another note, accurate
load forecasting leads to enhanced management of resources (renewable and
conventional), which in turn directly affects the economies of the energy trade.
However, in terms of DLF, the SG is more difficult to realize due to lower similarities
(high randomness due to more load fluctuations) in the history load curves as
compared to that of long-term load forecasting. In the literature, many attempts
have been made to develop an accurate DLF model for SGs. For example, a bi-level
DLF strategy is presented in [9]; however, this strategy is very complex in terms
of implementation, which leads to a high execution time. Similarly, another load
forecasting model based on a Gaussian process is presented in [10], which is not
complex in terms of implementation; however, this model pays the cost of accuracy
to achieve relatively less execution time. The model proposed in [11] focuses on
day-ahead load forecasting in energy-intensive enterprises; however, this model is
very complex, and thus, its execution time is relatively on the higher side.

As mentioned earlier, the day-ahead load of an SG shows more fluctuations
as compared to its long-term load. Accurate DLF model development with a fair
enough execution time in these SGs is thus a highly challenging task. Alternatively,
DLF accuracy enhancement may be achieved to some extent, however, at the cost
of execution time. Therefore, we focus on the development of an accurate enough
DLF model with a fair enough execution time for SGs. Our proposal consists of three
modules: the data preparation module, the feature selection module and the forecast
module. The first module normalizes and then encodes the input historical load data.
This encoded information is sent to the feature selection module, where redundant
and irrelevant features are removed from the input load data. It is worth mentioning
here that in the feature selection module, we use our modified version of the famous
mutual information technique (a detailed discussion is provided in Section 3.2). The
selected features are sent to the ANN-based forecast module, which uses a sigmoid
function for activation and a multi-variate auto-regressive model for weight updating
during the training process. In simulations, we compare our newly-proposed model
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with an existing one in terms of forecast accuracy and execution time. Results justify
the applicability of our proposition.

Figure 1. A smart grid (SG).

The rest of the paper is organized as follows. Section 2 contains relevant DLF
contributions from the research community. Section 3 provides a brief description of
the proposed ANN-based DLF model for SGs. Section 4 provides the discussion of
the simulation results, and Section 5 ends the research work with conclusions and
future work.

2. Related Work

Since accurate load forecasting is directly related to the economies of the energy
trade, in this regard, we discuss some previous load forecasting attempts in SGs
as follows.
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In [9], the authors study the characteristics of the load time series of an SG and
then compare its differences with that of a traditional power system. In addition, the
authors propose a bi-level (upper and lower) short-term load prediction strategy for
SGs. The lower level is a forecaster that utilizes a neural network and evolutionary
algorithm. The upper level optimizes the performance of the lower level by using
the differential evolution algorithm. In terms of effectiveness, the proposed bi-level
prediction strategy is evaluated via real-time data of a Canadian university. This
work is very effective in terms of accuracy; however, its execution time is very high.
(Note: in the simulations, we have compared [12] with our proposed work. Results
show that our proposed model takes 38.50% less time to execute than the work in [12].
The work in [9] adds an evolutionary algorithm-based module to the work in [12].
This means that [9] will take more time to execute than [12]. That is why we have
stated the very high execution of [9].)

In [10], the authors develop a DLF model that is based on a Gaussian process.
The proposed predictive methodology captures the heteroscedasticity of load in
an efficient manner. In addition, they overcome the computational complexity of
the Gaussian process by using a 1

2 regularizer. A simulation-based study is carried
out to prove the effectiveness of the proposed model. The authors have overcome
the complexity of the Gaussian distribution to some extent; however, the future
predictions are still highly questionable in terms of accuracy.

In [11], a probabilistic approach is presented to generate the energy consumption
profile of household appliances. The proposed approach takes a wide range of
appliances into consideration along with a high degree of flexibility. Moreover, this
approach configures the households between working days and holidays by utilizing
the Gaussian distribution-based methodology. However, due to the absence of a
closed form solution of the Gaussian distribution, the algorithm is very complex.
Moreover, the authors assume a Gaussian distribution not only for the number of
active devices in a home, but also for their power usage. These assumption are
not always true, thereby making future predictions highly questionable in terms
of accuracy.

An artificial neural network-based short-term load forecasting method is
presented in [13]. The proposed methodology is divided into four steps. Step 1
deals with the techniques of data selection. Step 2 is for wavelet transform. Step 3 is
based on ANN-based forecasting. Step 4 takes into consideration the error-correcting
functions. The effectiveness of the proposed methodology is verified by using
practical household load demands. This algorithm has better accuracy than the
aforementioned ones; however, accuracy is achieved at the cost of execution time.

A stochastic model for tackling the load fluctuations of users is presented
in [14], which is robust enough to predict load. This work exploits Markov chains to
capture stochasticity associated with user’s energy consumption in a heterogeneous
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environment. In other words, the authors exploit information associated with the
daily activities of users to predict their future demand. In this scheme, the future
predictions do not depend on past values; that not only makes it robust, but also
relatively less complex, however at the cost of accuracy.

A novel technique for price spike occurrence prediction is presented in [15].
This model is comprised of two modules; wavelet transform for feature selection and
ANNs to predict the future price spikes. Irrelevant and redundant data are discarded
from the input dataset, such that the selected inputs are fed into the probabilistic
neural network-based forecaster. The authors evaluate their proposed method using
real-time data from the PJM and Queensland electricity markets. This technique
is accurate; however, wavelet transform for feature selection makes it relatively
more complex.

In [12], the authors use a combination of a mutual information-based feature
selection technique and a cascaded neuro-evolutionary algorithm to predict the
day-ahead price of electricity markets. They also incorporate an iterative search
procedure to fine-tune the adjustable parameters of both the neuro-evolutionary
algorithm and the feature selection technique. The combination of various
techniques makes this algorithm efficient in terms of accuracy, however at the cost of
execution time.

3. Our Proposed Work

Subject to the complex day-ahead load forecast of SGs, any proposed prediction
strategy should be capable enough to mitigate the non-linear input/output
relationship as efficiently as possible. We choose an ANN-based forecaster for
two reasons; (i) these can capture non-linearity in historical load data; and (ii) the
flexibility and ease in implementation with acceptable accuracy (note: both of these
reasons are justified via simulations). However, prior to ANN-based forecasting,
input load time series must be made compatible. Therefore, our proposed day-ahead
load forecasting model (for SGs) consists of three modules: the data preparation
module, the feature selection module and the forecast module (refer to Figure 2).
The first module performs pre-processing to make the input data compatible with
the feature selection module and the forecast module. The second module removes
irrelevant and redundant features from the input data. The third module consists of
an ANN to forecast the day-ahead load of the SG. The details are as follows.
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Figure 2. Block diagram of the proposed methodology.

3.1. Pre-Processing Module

Suppose that the input load time series is shown by the following matrix:

P =



pd1
h1

pd1
h2

pd1
h3

. . . pd1
hm

pd2
h1

pd2
h2

pd2
h3

. . . pd2
hm

pd3
h1

pd3
h2

pd3
h3

. . . pd3
hm

...
...

...
. . .

...
pdn

h1
pdn

h2
pdn

h3
. . . pdn

hm


(1)

where hm is the m-th hour, dn is the n-th day and pdn
hm

is the historical power
consumption value at the m-th hour of the n-th day. As there are 24 h in a day,
m = 24. The value of n depends on the designer’s choice, i.e., a greater value of n
leads to fine tuning during the training process of the forecast module, because more
lagged samples of input data are available. However, this would lead to greater
execution time.

Prior to feeding the feature selection module with input matrix P, the following
step-wise operations are performed by the data preparation module (refer to
Figure 3):

1. Local maximum: Initially, a local maximum value is calculated for each column
of the P matrix; pci

max = max{pd1
hi

, pd2
hi

, pd3
hi

, . . . , pdn
hi
}, ∀ i ∈ {1, 2, 3, . . . , n}.
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2. Local normalization: In this step, each column of the matrix P is normalized
by its respective local maxima, such that the resultant matrix is represented by
Pnrm. Now, each entry of Pnrm ranges between zero and one.

3. Local median: For each column of the Pnrm matrix, a local median value Medi
is calculated (∀ i ∈ {1, 2, 3, . . . , n}).

4. Binary encoding: Each entry of the Pnrm matrix is compared to its respective
Medi value. If the entry is less than its respective local median value, then it
is encoded with a binary zero; else, it is encoded with a binary one. In this
way, a resultant matrix containing only binary values (zeroes and ones), Pb,
is obtained.

Figure 3. Data preparation module.

Note: the load/consumption pattern is different for different days, i.e., the
load pattern on holidays is different from that on working days. In order to
enhance the accuracy of prediction strategy, the training samples must be relevant.
Similarly, a lesser number of training samples will decrease the execution time of the
prediction strategy. The above two reasons lead us to prefer local normalization over
global normalization.

At this stage, the Pb matrix is compatible with the feature selection module and
is thus fed into it.

3.2. Feature Selection Module

Once the data are binary encoded, not only redundant, but also irrelevant
samples need to be removed from the lagged input data samples. In removing
redundant features, the execution time during the training process is minimized.
On the other hand, removal of irrelevant features leads to improvement in forecast
accuracy, because the outliers are removed.

In order to remove the irrelevant and redundant features from the binary
encoded input data matrix Pb, an entropy-based mutual information technique
is used in [9,12], which defines the mutual information between input Q and target
T by the following formula,
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MI(Q, T) = ∑
i

∑
j

p(Qi, Tj)log2

( p(Qi, Tj)

p(Qi)p(Ti)

)
∀i, j ∈ {0, 1} (2)

In Equation (2), MI(Q, T) = 0 means that Q and T are independent; a high value
of MI(Q, T) means that Q and T are strongly related, and a low value of MI(Q, T)
means that Q and T are loosely related.

Thus, the candidate inputs are ranked with respect to the mutual information
value between input and target values. In [9,12], the target values are chosen as the
last samples for every hour of the day among all of the training samples (for every
hour, only one target value is chosen that is the value of the previous day). The
choice of the last sample seems logical, as it is the closest value to the upcoming
day with respect to time; however, it may lead to serious forecast errors due to the
lack of consideration of the average behaviour. However, consideration of only the
average behaviour is also insufficient, because the last sample has its own importance.
To sum up, we come up with a solution that not only considers the last sample, but
also the average behaviour. Thus, we modify Equation (2) for three discrete random
variables as,

MI(Q, T, M) = ∑
i

∑
j

∑
k

p(Qi, Tj, Mk)log2

( p(Qi, Tj, Mk)

p(Qi)p(Ti)p(Mk)

)
∀i, j ∈ {0, 1} (3)

In expanded form, Equation (3) is written as follows,

MI(Q, T, M) = p(Q = 0, T = 0, M = 0)× log2

(
p(Q = 0, T = 0, M = 0

p(Q = 0)p(T = 0)p(M = 0)

)
+ p(Q = 0, T = 0, M = 1)× log2

(
p(Q = 0, T = 0, M = 1

p(Q = 0)p(T = 0)p(M = 1)

)
+ p(Q = 0, T = 1, M = 0)× log2

(
p(Q = 0, T = 1, M = 0

p(Q = 0)p(T = 1)p(M = 0)

)
+ p(Q = 0, T = 1, M = 1)× log2

(
p(Q = 0, T = 1, M = 1

p(Q = 0)p(T = 1)p(M = 1)

)
+ p(Q = 1, T = 0, M = 0)× log2

(
p(Q = 1, T = 0, M = 0)

p(Q = 1)p(T = 0)p(M = 0)

)
+ p(Q = 1, T = 0, M = 1)× log2

(
p(Q = 1, T = 0, M = 1)

p(Q = 1)p(T = 0)p(M = 1)

)
+ p(Q = 1, T = 1, M = 0)× log2

(
p(Q = 1, T = 1, M = 0)

p(Q = 1)p(T = 1)p(M = 0)

)
+ p(Q = 1, T = 1, M = 1)× log2

(
p(Q = 1, T = 1, M = 1)

p(Q = 1)p(T = 1)p(M = 1)

)

(4)

198



In order to determine the MI value between Q and T, the joint and independent
probabilities need to be determined. For this purpose, an auxiliary variable Av

is introduced.
Av = 4T + 2M + Q ∀T, M, Q ∈ {0, 1} (5)

It is clear from Equation (5) that Av ranges between zero and seven. A0v, A1v, A2v,
A3v, ..., A7v counts the number of sample data points (out of total l data points) for
which Av = 0, Av = 1, Av = 2, Av = 3,..., Av = 7, respectively. In this way, we can
now easily determine the joint and independent probabilities as follows.

p(Q = 0, T = 0, M = 0) =
A0v

l

p(Q = 0, T = 0, M = 1) =
A2v

l

p(Q = 0, T = 1, M = 0) =
A4v

l

p(Q = 0, T = 1, M = 1) =
A6v

l
(6)

p(Q = 1, T = 0, M = 0) =
A1v

l

p(Q = 1, T = 0, M = 1) =
A3v

l

p(Q = 1, T = 1, M = 0) =
A5v

l

p(Q = 1, T = 1, M = 1) =
A7v

l

p(Q = 0) =
A0v + A2v + A4v + A6v

l

p(Q = 1) =
A1v + A3v + A5v + A7v

l

p(T = 0) =
A0v + A1v + A2v + A3v

l

p(T = 1) =
A4v + A4v + A5v + A7v

l
(7)

p(M = 0) =
A0v + A1v + A4v + A5v

l

p(M = 1) =
A2v + A3v + A6v + A7v

l

Based on Equation (4), mutual information between Q and T is calculated, and
thus, redundancy and irrelevancy are removed from the input samples. This mutual
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information-based technique is computed with a reasonable execution time and
acceptable accuracy.

3.3. Forecast Module

By evaluating load variations over several months, or between two consecutive
days, or between consecutive hours over a day, [16] concluded that SG’s load time
series signal exhibits strong volatility and randomness. This result is obvious, because
different users have different energy/power consumption patterns/habits. Thus,
in terms of DLF, realization of an SG is more difficult as compared to its realization
in terms of long-term load forecast. Therefore, the basic requirement of the forecast
module is to forecast the load time series of an SG by taking into consideration its
non-linear characteristics. In this regard, ANNs are widely used for two reasons;
accurate forecast ability and the ability to capture the non-linear characteristics.

Due to the aforementioned reasons, we choose an ANN-based implementation
in our forecast module. Initially, the forecast module receives selected features SF(.)
and then constructs training “TS” and validation samples “VS” from it as follows:

TS = SF(i, j), ∀i ∈ {2, 3, . . . , m}
and ∀j ∈ {1, 2, 3, . . . , n} (8)

VS = SF(1, j), ∀j ∈ {1, 2, 3, . . . , n} (9)

From Equations (8) and (9), it is clear that the ANN is trained by all of the
historical load time series candidates, except the last one, which is used for validation
purpose. This discussion leads us towards the explanation of the training mechanism.
However, prior to the explanation, it is essential to describe the ANN.

An ANN, inspired by the nervous system of humans, is a set of artificial neurons
(ANs) to perform the tasks of interest (note: our task of interest is the DLF of SGs).
Usually, an AN performs a non-linear mapping from RI to [0, 1] that depends on the
activation function used.

f AN
act : RI → [0, 1] (10)

where I is the vector of the input signal to the AN (here, inputs are the
selected features only). Figure 4 illustrates the structure of an AN that receives
I = (I1, I2, . . . , In). In order to either deplete or strengthen the input signal, to each Ii
is associated a weight wi. The ANN computes I and uses f AN

act to compute the output
signal “y”. However, the strength of y is also influenced by a bias value (threshold)
“b”. Therefore, we can compute I as follows:

I =
imax

∑
i=1

Ii wi (11)
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The f AN
act receives I and b to determine y. Generally, f AN

act ’s are mappings that
monotonically increase ( f AN

act (−∞ = 0) and f AN
act (+∞ = 1)). Among the typically

used f AN
act ’s, we use sigmoid f AN

act .

f AN
act (I, b) =

1
1 + e−α(I−b)

(12)

We choose sigmoid f AN
act due for two reasons; f AN

act ∈ (0, 1), and the parameter α has
the ability to control the steepness of the f AN

act . In other words, the sigmoid f AN
act choice

enables the AN to capture the non-linear characteristic of load time series. Since
this work aims at the DLF for SGs, and one day consists of 24 h, the ANN consists
of 24 forecasters (one AN for an hour), where each forecaster predicts the load of
one hour of the next day. In other words, 24 hourly load time series are separately
modelled instead of one complex forecaster. The whole process is repeated every day
to forecast the load of the next day.

Figure 4. An artificial neuron.

The question that now needs to be answered is how to determine wi and b? The
answer is straight forward, i.e., via learning. In our case, prior knowledge of load-time
series exists. Thereby, we use supervised learning; adjusting wi and b values until a
certain termination criterion is satisfied. The basic objective of supervised training is
to adjust wi and b such that the error signal “e(k)” between the target value “ŷ(k)”
and real output of neuron “y(k)” is minimized.

Minimize e(k) = y(k)− ŷ(k),
∀k ∈ {1, 2, 3, . . . , m} (13)
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We use the method of least squares to determine the parameter matrices, which
is given as follows,

Minimize J = ∑m
k=1 eT(k)e(k),

∀k ∈ {1, 2, 3, . . . , m} (14)

Subject to the most feasible solution of Equation (14), we use the multi-variate
auto-regressive model presented in [17], because it solves the objective function
in relatively less time with reasonable accuracy, as compared to the typically used
learning rules, like gradient descent, Widrow–Hoff and delta [18]. According to [17],
the parameter matrices are given as follows,

n

∑
i=1

W(i)R(j− i) = 0, j = {2, 3, . . . , n} (15)

n

∑
i=1

W(i)R(i− j) = 0, j = {2, 3, . . . , n} (16)

where W(1) = ID (ID is the identity matrix), W(1) = ID and R is the cross co-relation
given as:

R(i) =
1
n

n−1−i

∑
k=i

[x(k)−m][x(k− i)−m]T (17)

In Equation (11), m is the mean vector of the observed data,

m =
1
n

n

∑
k=i

x(k) (18)

Based on these equations, [17] defines the following prediction error co-variance
matrices.

Vt = ∑n
k=1 Wt(k)R(−k)

Vt = ∑n
k=1 Wt(k)R(−k)

∆t = ∑n
k=1 Wt(−k)R(t− k + 1)

∆t = ∑n
k=1 Wt(k)R(−t + k− 1)

 (19)

The recursive equations are as follows:

Wt+1(k) = Wt(k)Wt+1(t + 1)Wt(t− k + 1)

Wt+1(k) = Wt(k)Wt+1(t + 1)Wt(t− k + 1)

 (20)
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Wt+1(t + 1) = −∆tV
−1
t

Wt+1(t + 1) = −∆tV−1
t

 (21)

In order to find the weights, Equations (20) and (21) are solved recursively. For
further details about the weight update mechanism, Equations (15)–(21), readers are
suggested to read [17]. Figure 5 is a pictorial representation of the steps involved in
the data forecast module.

Figure 5. Data forecast module.

Once the weights in Equations (20) and (21) are recursively adjusted as per the
objective function in Equation (13), the output matrix is then binary decoded and
de-normalized to get the desired load time series. The stepwise algorithm of the
proposed methodology is shown in Algorithm 1.

Note: our proposed prediction model predicts tomorrow’s load on the basis of
historical load till today. Thus, the prediction model never fails, i.e., for every next
day, the model needs information till the current day. However, the proposed model
is unable to predict the load for more than tomorrow provided the historical load
information till today.
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Algorithm 1 Day-ahead load forecast.

1: Pre-conditions: i =number of days, and j = number of hours per day
2: P ← historical load data
3: Compute Pci

max ∀i ∈ {1, 2, 3, . . . , n}
4: Compute Pnrm
5: Compute Medi ∀i ∈ {1, 2, 3, . . . , n}
6: for all (i ∈ {1, 2, 3, . . . , n}) do

7: for all (j ∈ {1, 2, 3, . . . , m}) do

8: if (P(i,j)
nrm ≤ Medi) then

9: Pi,j
b ← 0

10: else if then

11: Pi,j
b ← 1

12: end if
13: end for
14: end for
15: Remove redundant and irrelevant features using Equation (4)
16: Compute TS and VS using Equations (8) and (9), respectively
17: Compute y(1) by letting W(1) = I and

W(1) = I
18: while Maximum number of iterations not reached do

19: if J(k + 1) ≤ J(k) then

20: y(k)← y(k + 1)
21: else if then

22: Train ANN as per Equations (20) and (21)
23: Compute y(k + 1) and go back to Step (18)
24: end if
25: end while
26: Perform decoding
27: Perform de-normalization

4. Simulation Results

We evaluate our proposed DLF model (m(MI + ANN)) by comparing it with an
existing MI + ANN model in [12]. We choose the existing MI + ANN model in [12] for
comparison, because its architecture has a close resemblance to our proposed model.
In our simulations, historical load time series data from November (2014) to January
(2015) are taken from the publicly-available PJM electricity market for two SGs in
the United States of America; DAYTOWN and EKPC [19]. November to December
(2014) data are used for training and validation purposes, and January (2015) data
are used for testing purposes. Simulation parameters are shown in Table 1, and
their justification can be found in [9,12,17,18]. In this paper, we have considered two
performance metrics; % error and execution time (convergence rate).
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• Error performance: This is the difference between the actual and the forecast
signal/curve and is measured in %.
• Convergence rate or execution time: This is the simulation time taken by

the system to execute a specific forecast model. Forecast models for which
the execution time is small are said to converge quickly as compared to the
opposite case. In this paper, execution time is measured in seconds.

Table 1. Simulation parameters.

Parameter Value

Number of forecasters 24
Number of hidden layers 1
Number of neurons in the hidden unit 5
Number of iterations 100
Momentum 0
Initial weights 0.1
Historical load data 26 days
Bias value 0

Figures 6a and 7a are the graphical illustrations of how well our proposed
ANN-based DALF model predicts the target values of an SG. In these figures,
the proposed m(MI + ANN)-based forecast curve more tightly follows the target
curve as compared to the existing MI + ANN-based forecast curve, which is
justification of the theoretical discussion of our proposed methodology in terms
of non-linear forecast ability. Not only the sigmoid f AN

act (refer to equation), but also
the multivariate auto-regressive training algorithm enable the day-ahead ANN-based
forecast methodology to capture non-linearity(ies) in historical load data.

Figure 6b shows the % forecast error when tests are conducted on the
DAYTOWN grid; our m(MI + ANN) forecasts with 2.9% and the existing MI + ANN
forecasts with 3.84% relative errors, respectively. Similarly, Figure 7b shows the
% forecast error when tests are conducted on the EKPC grid; our m(MI + ANN)
forecasts with 2.88% and the existing MI + ANN forecasts with 3.88% relative
errors, respectively. This improvement in terms of relative % error performance
by our proposed DALF model is due to the following two reasons: (i) the modified
feature selection technique in our proposed DALF model; and (ii) multi-variate
auto-regressive training algorithm. The first reason accounts for the removal of
redundant, as well as irrelevant features from the input data in a more efficient way
as compared to the existing DALF model. By a more efficient way, we mean that as
our proposal considers the average sample in the feature selection process, as well in
addition to the last sample and the target sample. Thus, the margin of outliers that
cause significant relative % error is down-sized. The second reason deals with the
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selection of an efficient training algorithm, as our proposition trains the ANN via
the multi-variate auto-regressive algorithm and the existing DALF model trains the
ANN via Levenberg–Marquardt algorithm.
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Figure 6. DAYTOWN (27 January 2015): m(MI + ANN) forecast vs. MI + ANN
forecast. (a) Actual vs. forecast; (b) error performance; (c) convergence rate analysis.

As discussed in Sections 1, 2 and 3 that there exist a trade-off between forecast
accuracy and execution time. However, Figures 6b,c and 7b,c show that our proposed
DALF model not only results in relatively less % error but also less execution time.
As mentioned earlier, our devised modifications in the feature selection process
and selection of the multi variate training algorithm cause relative improvement
in terms of % error. On the other hand, m(MI + ANN) model converges with a
faster rate (less execution time) as compared to the existing MI + AN model due
to three reasons; (i) exclusion of the local optimization algorithm subject to error
minimization; (ii) modified feature selection process; and (iii) selection of multi
variate auto regressive training algorithm. Quantitatively (Figures 6c and 7c), the
execution time of existing model is 6.54 s for DAYTOWN grid and 6.60 s for EKPC
grid, and that of our proposed model is 2.48 s for DAYTOWN and 2.58 s for EKPC,
respectively. In these figures, the relative improvement in execution time is 37.92% for
DAYTOWN, 39.09% for EKPC. Our proposition selects features from the input data
while considering average sample, last sample and the target sample. This means
that the chances of outliers in selected features have been significantly decreased,
and the local optimization algorithm used by the existing MI + ANN forecast model
is not further needed. Our proposed m(MI + ANN) forecast model does not account
for the execution time taken by the iterative optimization algorithm. As a result,
our proposed DALF model converges with a faster rate as compared to the existing
DALF model.
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Figure 7. EKPC (27 January 2015): m(MI + ANN) forecast vs. MI + ANN forecast.
(a) Actual vs. forecast; (b) Error performance; (c) Convergence rate analysis.

5. Conclusion and Future Work

In SGs, current research work primarily focuses on optimization techniques
of power scheduling. However, prior to scheduling, an accurate load forecasting
model is needed, because accurate load forecasting leads to enhanced management
of resources, which in turn directly affects the economies of the energy trade.
Furthermore, lower similarities (high randomness) and non-linearity in history
load curves make the SG’s DLF more challenging as compared to long-term load
forecasting. Thus, the aforementioned reasons lead us to investigate the SG’s DLF
models. From a literature review, we found that many DLF models are proposed for
SGs; however, these models trade off between accuracy and execution time. Thus,
we focus on the development of an accurate DLF model with reduced execution
time. In this regard, this paper has presented an ANN-based DLF model for SGs.
Simulation results show that the newly-proposed DLF model is able to capture the
non-linearity(ies) in the history load curve, such that its accuracy is approximately
97.11%, such that the average execution time is improved by 38.50%.

As the multi-variate auto-regressive training model minimizes the forecast error
to some extent, so our future directions are focused on either the improvement of
this model or its replacement with a better model.
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Improving Multi-Instance Multi-Label
Learning by Extreme Learning Machine
Ying Yin, Yuhai Zhao, Chengguang Li and Bin Zhang

Abstract: Multi-instance multi-label learning is a learning framework, where every
object is represented by a bag of instances and associated with multiple labels
simultaneously. The existing degeneration strategy-based methods often suffer from
some common drawbacks: (1) the user-specific parameter for the number of clusters
may incur the effective problem; (2) SVM may bring a high computational cost when
utilized as the classifier builder. In this paper, we propose an algorithm, namely
multi-instance multi-label (MIML)-extreme learning machine (ELM), to address the
problems. To our best knowledge, we are the first to utilize ELM in the MIML
problem and to conduct the comparison of ELM and SVM on MIML. Extensive
experiments have been conducted on real datasets and synthetic datasets. The results
show that MIMLELM tends to achieve better generalization performance at a higher
learning speed.

Reprinted from Appl. Sci. Cite as: Yin, Y.; Zhao, Y.; Li, C.; Zhang, B. Improving
Multi-Instance Multi-Label Learning by Extreme Learning Machine. Appl. Sci. 2016,
6, 160.

1. Introduction

When utilizing machine learning to solve practical problems, we often consider
an object as a feature vector. Then, we get an instance of the object. Further,
associating the instance with a specific class label of the object, we obtain an example.
Given a large collection of examples, the task is to get a function mapping from the
instance space to the label space. We expect that the learned function can predict
the labels of unseen instances correctly. However, in some applications, a real-world
object is often ambiguous, which consists of multiple instances and corresponds to
multiple different labels simultaneously.

For example, an image usually contains multiple patches each represented by
an instance, while in image classification, such an image can belong to several classes
simultaneously, e.g., an image can belong to mountains, as well as Africa [1]; another
example is text categorization [1], where a document usually contains multiple
sections each of which can be represented as an instance, and the document can be
regarded as belonging to different categories if it were viewed from different aspects,
e.g., a document can be categorized as a scientific novel, Jules Verne’s writing or even
books on traveling. The MIML (Multi-instance Multi-label) problem also arises in the
protein function prediction task [2]. A domain is a distinct functional and structural
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unit of a protein. A multi-functional protein often consists of several domains, each
fulfilling its own function independently. Taking a protein as an object, a domain as
an instance and each biological function as a label, the protein function prediction
problem exactly matches the MIML learning task.

In this context, multi-instance multi-label learning was proposed [1]. Similar
to the other two multi-learning frameworks, i.e., multi-instance learning (MIL) [3]
and multi-label learning (MLL) [4], the MIML learning framework also results from
the ambiguity in representing the real-world objects. Differently, more difficult than
two other multi-learning frameworks, MIML studies the ambiguity in terms of both
the input space (i.e., instance space) and the output space (i.e., label space), while
MIL just studies the ambiguity in the input space and MLL just the ambiguity
in the output space, respectively. In [1], Zhou et al. proposed a degeneration
strategy-based framework for MIML, which consists of two phases. First, the
MIML problem is degenerated into the single-instance multi-label (SIML) problem
through a specific clustering process; second, the SIML problem is decomposed into a
multiple independent binary classification (i.e., single-instance single-label) problem
using Support Vector Machine (SVM) as the classifiers builder. This two-phase
framework has been successfully applied to many real-world applications and
has been shown to be effective [5]. However, it could be further improved if the
following drawbacks are tackled. On one hand, the clustering process in the first
phase requires a user-specific parameter for the number of clusters. Unfortunately,
it is often difficult to determine the correct number of clusters in advance. The
incorrect number of clusters may affect the accuracy of the learning algorithm; on
the other hand, SIML is degenerated into single-instance single-label learning (SISL)
(i.e., single instance, single label) in the second phase, as this will increase the volume
of data to be handled and thus burden the classifier building. Utilizing SVM as the
classifier builder in this phase may suffer from a high computational cost and require
a number of parameters to be optimized.

In this paper, we propose to enhance the two-phase framework by tackling the
two above issues and make the following contributions: (1) We utilize extreme
learning machine (ELM) [6] instead of SVM to improve the efficiency of the
two-phase framework. To our best knowledge, we are the first to utilize ELM
in the MIML problem and to conduct the comparison of ELM and SVM on MIML.
(2) We design a method of theoretical guarantee to determine the number of clusters
automatically while incorporating it into the improved two-phase framework for
effectiveness.

The remainder of this paper is organized as follows. In Section 2, we give a brief
introduction to MIML and ELM. Section 3 details the improvements of the two-phase
framework. Experimental analysis is given in Section 4. Finally, Section 5 concludes
this paper.
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2. The Preliminaries

This research is related to some previous work on MIML learning and ELM.
In what follows, we briefly review some preliminaries of the two related works in
Sections 2.1 and 2.2, respectively.

2.1. Multi-Instance Multi-Label Learning

In traditional supervised learning, the relationships between an object and its
description and its label are always a one-to-one correspondence. That is, an object is
represented by a single instance and associated with a single class label. In this sense,
we refer to it as single-instance single-label learning (SISL). Formally, let X be the
instance space (or say, feature space) and Y the set of class labels. The goal of SISL is
to learn a function fSISL: X→Y from a given dataset {(x1, y1), (x2, y2), . . . , (xm, ym)},
where xi∈X is an instance and yi∈Y is the label of xi. This formalization is prevailing
and successful. However, as mentioned in Section 1, many real-world objects are
complicated and ambiguous in their semantics. Representing these ambiguous
objects with SISL may lose some important information and make the learning
task problematic [1]. Thus, many real-world complicated objects do not fit in this
framework well.

In order to deal with this problem, several multi-learning frameworks have
been proposed, e.g., multi-instance learning (MIL), multi-label learning (MLL) and
multi-instance multi-label Learning (MIML). MIL studies the problem where a
real-world object described by a number of instances is associated with a single class
label. The training set for MIL is composed of many bags each containing multiple
instances. In particular, a bag is labeled positively if it contains at least one positive
instance and negatively otherwise. The goal is to label unseen bags correctly. Note
that although the training bags are labeled, the labels of their instances are unknown.
This learning framework was formalized by Dietterich et al. [3] when they were
investigating drug activity prediction. Formally, let X be the instance space (or say,
feature space) and Y the set of class labels. The task of MIL is to learn a function fMIL:
2X→{−1,+1} from a given dataset {(X1, y1), (X2, y2), . . . , (Xm, ym)}, where Xi⊆X
is a set of instances {x(i)1 , x(i)2 , . . . , x(i)ni }, x(i)j ∈X(j = 1, 2, . . . , ni), and yi∈{−1,+1} is
the label of Xi. Multi-instance learning techniques have been successfully applied
to diverse applications, including image categorization [7,8], image retrieval [9,10],
text categorization [11,12], web mining [13], spam detection [14], face detection [15],
computer-aided medical diagnosis [16], etc. Differently, MLL studies the problem
where a real-world object is described by one instance, but associated with a number
of class labels. The goal is to learn a function fMLL: X→2Y from a given dataset
{(x1, Y1), (x2, Y2), . . . , (xm, Ym)}, where xi∈X is an instance and Yi⊆Y a set of labels
{y(i)1 , y(i)2 , . . . , y(i)li

}, y(i)k ∈Y(k = 1, 2, . . . , li). The existing work of MLL falls into two
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major categories. One attempts to divide multi-label learning to a number of two class
classification problems [17,18] or to transform it into a label ranking problem [19,20];
the other tries to exploit the correlation between the labels [21,22]. MLL has been
found useful in many tasks, such as text categorization [23], scene classification [24],
image and video annotation [25,26], bioinformatics [27,28] and even association rule
mining [29,30].

MIML is a generalization of traditional supervised learning, multi-instance
learning and multi-label learning, where a real-world object may be associated
with a number of instances and a number of labels simultaneously. In some cases,
transforming single-instance multi-label objects to MIML objects for learning may
be beneficial. Before the explanation, we first introduce how to perform such a
transformation. Let S = {(x1, Y1), (x2, Y2), . . . , (xm, Ym)} be the dataset, where xi∈X
is an instance and Yi⊆Y a set of labels {y(i)1 , y(i)2 , . . . , y(i)li

}, y(i)k ∈Y(k = 1, 2, . . . , li). We
can first obtain a vector vl for each class label l∈Y by averaging all of the training
instances of label l, i.e., vl =

1
|Sl | ∑

xi∈Sl

xi, where Sl is the set of all of the training

instances xi of label l. Then, each instance can be transformed into a bag, Bi, of |Y|
instances by computing Bi = {xi−vl |l∈Y}. As such, the single-instance multi-label
dataset S is transformed into an MIML dataset S′ = {(B1, Y1), (B2, Y2), . . . , (Bm, Ym)}.
The benefits of such a transformation are intuitive. First, for an object associated
with multiple class labels, if it is described by only a single instance, the information
corresponding to these labels is mixed and thus difficult to learn. However, by
breaking the single-instance into a number of instances, each corresponding to one
label, the structure information collapsed in the single-instance representation may
become easier to exploit. Second, for each label, the number of training instances
can be significantly increased. Moreover, when representing the multi-label object
using a set of instances, the relation between the input patterns and the semantic
meanings may become more easily discoverable. In some cases, understanding
why a particular object has a certain class label is even more important than simply
making an accurate prediction while MIML offers a possibility for this purpose.
For example, using MIML, we may discover that one object has label l1 because it
contains instancen; it has label lk because it contains instancei; while the occurrence
of both instance1 and instancei triggers label lj. Formally, the task of MIML is to learn
a function fMIML: 2X → 2Y from a given dataset {(X1, Y1), (X2, Y2), . . . , (Xm, Ym)},
where Xi⊆X is a set of instances {x(i)1 , x(i)2 , . . . , x(i)ni }, x(i)j ∈X(j = 1, 2, . . . , ni) and

Yi⊆Y is a set of labels {y(i)1 , y(i)2 , . . . , y(i)li
}, y(i)k ∈X(k = 1, 2, . . . , li). Figure 1 illustrates

the relationship among the four learning frameworks mentioned above.
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Figure 1. The relationship among these four learning frameworks.

2.2. A Brief Introduction to ELM

Extreme learning machine (ELM) is a generalized single hidden-layer
feedforward network. In ELM, the hidden-layer node parameter is mathematically
calculated instead of being iteratively tuned; thus, it provides good generalization
performance at thousands of times faster speed than traditional popular learning
algorithms for feedforward neural networks [31].

As a powerful classification model, ELM has been widely applied in many
fields. For example, in [32], ELM was applied for plain text classification by
using the one-against-one (OAO) and one-against-all (OAA) decomposition scheme.
In [31], an ELM-based XML document classification framework was proposed
to improve classification accuracy by exploiting two different voting strategies.
A protein secondary prediction framework based on ELM was proposed in [33] to
provide good performance at extremely high speed. The work in [34] implemented
the protein-protein interaction prediction on multi-chain sets and on single-chain
sets using ELM and SVM for a comparable study. In both cases, ELM tends
to obtain higher recall values than SVM and shows a remarkable advantage in
computational speed. The work in [35] evaluated the multi-category classification
performance of ELM on three microarray datasets. The results indicate that ELM
produces comparable or better classification accuracies with reduced training time
and implementation complexity compared to artificial neural network methods and
support vector machine methods. In [36], the use of ELM for multiresolution access
of terrain height information was proposed. The optimization method-based ELM
for classification was studied in [37].

ELM not only tends to reach the smallest training error, but also the smallest
norm of weights [6]. Given a training set D = {(xi, ti)|xi ∈ Rn, ti ∈ Rm, i = 1, . . . , N},
activation function g(x) and hidden node number L, the pseudocode of ELM is
given in Algorithm 1. More detailed introductions to ELM can be found in a series of
published literature [6,37,38].
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Algorithm 1: ELM
Input: DB: dataset; HN: number of hidden layer nodes; AF: activation

function
Output: Results

1 for i = 1 to L do
2 randomly assign input weight wi;
3 randomly assign bias bi;

4 calculate H;
5 calculate β = H†T

3. The Proposed Approach MIMLELM

MIMLSVM is a representative two-phase MIML algorithm successfully applied
in many real-world tasks [2]. It was first proposed by Zhou et al. in [1] and
recently improved by Li et al., in [5]. MIMLSVM solves the MIML problem by
first degenerating it into single-instance multi-label problems through a specific
clustering process and then decomposing the learning of multiple labels into a series
of binary classification tasks using SVM. However, as mentioned, MIMLSVM may
suffer from some drawbacks in either of the two phases. For example, in the first
phase, the user-specific parameter for the number of clusters may incur the effective
problem; in the second phase, utilizing SVM as the classifiers builder may bring high
computational cost and require a great number of parameters to be optimized.

In this paper, we present another algorithm, namely MIMLELM, to make
MIMLSVM more efficient and effective. In this proposed method: (1) We utilize
ELM instead of SVM to improve the efficiency of the two-phase framework. To
our best knowledge, we are the first to utilize ELM in the MIML problem and to
conduct the comparison of ELM and SVM on MIML. (2) We develop a method of
theoretical guarantee to determine the number of clusters automatically, so that
the transformation from MIML to SIML is more effective. (3) We exploit a genetic
algorithm-based ELM ensemble to further improve the prediction performance.

The MIMLELM algorithm is outlined in Algorithm 2. It consists of four major
elements: (1) determination the number of clusters (Line 2); (2) transformation from
MIML to SIML (Lines 3–12); (3) transformation from SIML to SISL (Lines 13–17);
(4) multi-label learning based on ELM (Lines 18–19). In what follows, we will detail
the four elements in Section 3.1–3.4, respectively.
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Algorithm 2: The MIMLELM algorithm.

Input: DB: dataset; HN: number of hidden layer nodes; AF: activation
function

Output: Results
1 DB = {(X1, Y1), (X2, Y2), . . . , (Xm, Ym)}, Γ = X1, X2, . . . , Xm;
2 determine the number of clusters, k, using AIC;
3 randomly select k elements from Γ to initialize the k medoids
{M1, M2, . . . , Mk};

4 repeat
5 Γt = {Mt}(t = 1, 2, . . . , k);
6 foreach Xu∈(Γ−{Mt}) do
7 index = arg mint∈{1,2,...,k} dH(Xu, Mt);
8 Γindex = Γindex∪{Xu}
9 Mt = arg min

A∈Γt
∑

B∈Γt

dH(A, B)(t = 1, 2, . . . , k);

10 Transform (Xu, Yu) into into an SIML example (zu, Yu), where zu =

(dH(Xu, M1), dH(Xu, M2), . . . , dH(Xu, Mk));
11 until Mt (t = 1, 2, . . . , k) don’t change;
12 foreach zu (u ∈ {1, 2, . . . , m}) do
13 foreach y∈Yu do
14 decompose (zu, Yu) into |Yu| SISL examples

15 Train ELMy for every class y;
16 Integrate all ELMy’s based on GA

3.1. Determination of the Number of Clusters

The primary important task for MIMLELM is to transform MIML into SIML.
Unlike MIMLSVM, which performs the transformation through a clustering process
with a user-specified parameter for the number of clusters, we utilize AIC [39], a
model selection criterion, to automatically determine the number of clusters.

AIC is founded on information theory. It offers a relative estimation of the
information lost when a given model is used to represent the process that generates
the data. For any statistical model, the general form of AIC is AIC = −2ln(L)+2K,
where L is the maximized value of the likelihood function for the model and K is the
number of parameters in the model. Given a set of candidate models, the one of the
minimum AIC value is preferred [39].

Let Mk be the model of the clustering result with k clusters C1, C2, . . ., Ck, where
the number of samples in Ci is mi. Xi denotes a random variable indicating the PD
value between any pair of micro-clusters in Ci. Then, under a general assumption
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commonly used in the clustering community, Xi follows a Gaussian distribution with
(µi, σ2

i ), where µi is the expected PD value between any pair of micro-clusters in Ci,
and σ2

i is the corresponding variance. That is, the probability density of Xi is:

p(Xi) =
mi
m
· 1√

2πσi
exp(− 1

2σ2
i
(Xi − µi)

2) (1)

Let xij (1≤j≤C2
mi

) be an observation of Xi; the corresponding log-likelihood w.r.t
the data in Ci is:

ln L(Ci|µi, σi) = ln
C2

mi

∏
j=1

p(Xi = xij) =

C2
mi

∑
j=1

(ln
1√

2πσi
− 1

2σ2
i
(xij − µi)

2 + ln
mi
m

) (2)

Since the fact that the log-likelihood for all clusters is the sum of the
log-likelihood of the individual clusters, the log-likelihood of the data w.r.t Mk is:

ln L(Mk|µ1, µ2, . . . , µk, σ1, σ2, . . . , σk) =
k

∑
i=1

ln L(Ci|µi, σi) =
k

∑
i=1

C2
mi

∑
j=1

(ln
1√

2πσi
− 1

2σ2
i
(xij − µi)

2 + ln
mi
m

) (3)

Further, take the MLE (maximum likelihood estimate) of σ2
i , i.e.:

σ̂2
i =

1
C2

mi

C2
mi

∑
j=1

(xij − µi)
2, into Equation (3); we obtain that:

ln L(Mk|µ1, µ2, . . . , µk, σ1, σ2, . . . , σk) = −

k
∑

i=1
C2

mi

2
ln(2π)

−

k
∑

i=1
C2

mi
ln(σ̂2

i )

2
−

k
∑

i=1
C2

mi

2
+

k

∑
i=1

C2
mi

ln mi − ln m
k

∑
i=1

C2
mi

(4)

Finally, in our case, the number of independent parameters K is 2k. Thus, AIC
of the model Mk is:

AICMk = ln(2πm2e)
k

∑
i=1

C2
mi

+
k

∑
i=1

C2
mi

ln(σ̂2
i )− 2

k

∑
i=1

C2
mi

ln mi + 4k (5)

3.2. Transformation from MIML to SIML

With the number of clusters computed, we start to transform the MIML learning
task, i.e., learning a function fMIML: 2X→2Y, to a multi-label learning task, i.e.,
learning a function fMLL: Z→2Y.

219



Given an MIML training example, the goal of this step is to get a mapping
function zi = φ(Xi), where φ: 2x→Z, such that for any zi∈Z, fMLL(zi) = fMIML(Xi)

if zi = φ(Xi). As such, the proper labels of a new example Xk can be determined
according to Yk = fMLL(φ(Xk)). Since the proper number of clusters has been
automatically determined in Section 3.1, we implement the mapping function φ() by
performing the following k-medoids clustering process.

Initially, each MIML example (Xu, Yu) (u = 1, 2, . . . , m) is collected and put into
a dataset Γ (Line 1). Then, a k-medoids clustering method is performed. In
this process, we first randomly select k elements from Γ to initialize the k
medoids Mt (t = 1, 2, . . . , k). Note: instead of a user-specified parameter, k is an
automatically-determined value by Equation (6) in Section 3.1. Since each data
item in Γ, i.e., Xu, is an unlabeled multi-instance bag instead of a single instance,
we employ the Hausdorff distance [40] to measure the distance between two
different multi-instance bags. The Hausdorff distance is a famous metric for
measuring the distance between two bags of points, which has often been used
in computer vision tasks. In detail, given two bags A = {a1, a2, . . . , anA} and
B = {b1, b2, . . . , bnB}, the Hausdorff distance dH between A and B is defined as:

dH(A, B) = max{max
a∈A

min
b∈B
||a− b||, max

b∈B
min
a∈A
||b− a||} (6)

where ||a− b|| is used to measure the distance between the instances a and b, which
takes the form of the Euclidean distance; max

a∈A
min
b∈B
||a − b|| and max

b∈B
min
a∈A
||b − a||

denote the maximized minimum distance of every instance in A and all instances
in B and the maximized minimum distance of every instance in B and all instances
in A, respectively. The Hausdorff distance-based k-medoids clustering method
divides the dataset Γ into k partitions, the medoids of which are M1, M2, . . ., Mk,
respectively. With the help of these medoids, every original multi-instance example
Xu can be transformed into a k-dimensional numerical vector zu, where the i-th
(i = 1, 2, . . . , k) component of zu is the Hausdorff distance between Xu and Mi,
i.e., dH(Xu, Mi). In this way, every MIML example (Xu, Yu) (u = 1, 2, . . . , m) is
transformed into an SIML example (zu, Yu) (u = 1, 2, . . . , m) by replacing itself with
its structure information, i.e., the relationship of Xu and the k medoids. Figure 2 is
an illustration of this transformation, where the dataset Γ is divided into three
clusters, and thus, any MIML example Xu is represented as a three-dimensional
numerical vector zu = (d1, d2, d3).

After this process, we obtain the mapping function zi = φ(Xi) such that for any
zi∈Z, fMLL(zi) = fMIML(Xi) if zi = φ(Xi).
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Figure 2. The process of transforming multi-instance examples into single-instance
examples.

3.3. Transformation from SIML to SISL

After transforming the MIML examples (Xi, Yi) to the SIML examples (zi, Yi),
i = 1, 2,. . .m, the SIML learning task can be further transformed into a traditional
supervised learning task SISL, i.e., learning a function fSISL: Z × Y→{−1,+1}.
For this goal, we can implement the transformation from SIML to SISL in such
a way that for any y ∈ Y, fSISL(zi, y) = +1 if y ∈ Yi, and −1 otherwise. That is,
fSISL={y| fSISL(zi, y) = +1}.

Figure 3 gives a simple illustration of this transformation. For a multi-label
dataset, there are some instances that have more than one class label. It is hard for us
to train the classifiers directly over the multi-label datasets. An intuitive solution to
this problem is to use every multi-label data more than once when training. This is
rational because every SIML example could be considered as a set of SISLs, where
each SISL is of the same instance, but with a different label. Concretely, each SIML
example is taken as a positive SISL example of all the classes to which it belongs.
As shown in Figure 3, every circle represents an SIML example. In particular, each
example in area Ais of two class labels “©” and “×”, while the other examples are
of either the “©” label or the “×” label. According to the transformation from SIML
to SISL mentioned above, an SIML example, say (Xu, {©,×}) in area A should be
transformed into two SISL examples, (Xu1 ,©) and (Xu1 ,×). Consequently, when
training the “©” model, (Xu, {©,×}) is considered as (Xu1 ,©); otherwise, it is
considered as (Xu1 ,×). In this way, the SIML examples in area A is ensured to be
used as a positive example both in classes “©” and “×”. This method can more
effectively make full use of the data and make the experiment result closer to the
true one.
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Area A

Figure 3. The example of data processing.

3.4. ELM Ensemble Based on GA

So far, we have decomposed the MIML problem into the SISL problem using
SIML as the bridge. Since an MIML example is often of more than two class labels,
the corresponding SISL problem should be naturally a multi-class problem.

Two commonly-used methods for multi-class classification are one-against-all
(OAA) and one-against-one (OAO) [41]. For the N-class problem, OAA builds N
binary classifiers, one for each class separating the class from the others. Instead, the
OAO strategy involves N(N − 1)/2 binary classifiers. Each classifier is trained to
separate each pair of classes. After all N(N − 1)/2 classifiers are trained, a voting
strategy is used to make the final decision. However, a common drawback of the
two strategies is that they both consider every trained classifier equally important,
although the real performance may vary over different classifiers.

An ensemble classifier was proposed as an effective method to address the
above problem. The output of an ensemble is a weighted average of the outputs of
several classifiers, where the weights should be high for those classifiers performing
well and low for those whose outputs are not reliable. However, finding the optimum
weights is an optimization problem that is hard to exactly solve, especially when the
objective functions do not have “nice” properties, such as continuity, differentiability,
etc. In what follows, we utilize a genetic algorithm (GA)-based method to find the
appropriate weights for each classifier.

The genetic algorithm [42] is a randomized search and optimization technique.
In GA, the parameters of the search space are encoded in the form of strings
called chromosomes. A collection of chromosomes is called a population. Initially, a
random population is created. A fitness function is associated with each string that
represents the degree of goodness of the string. Biologically-inspired operators, such
as selection, crossover and mutation, continue for a fixed number of generations or until
a termination condition is satisfied.
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3.4.1. Fitness Function

Given a training instance x, the expected output of x is d(x) and the actual
output of the i-th individual ELM is oi(x). Moreover, let V be the validation
set and w = [w1, w2, . . . , wN ] a possible weight assignment, i.e., the chromosome
of an individual in the evolving population. According to [43], the estimated
generalization error of the ELM ensemble corresponding to w is:

EV
w =

N

∑
i=1

N

∑
j=1

wiwjCV
ij = wTCVw, (7)

where:

CV
ij =

∑
x∈V

( fi(x)− d(x))( f j(x)− d(x))

|V| (8)

It is obvious that EV
w expresses the goodness of w. The smaller EV

w is, the better
w is. Thus, we use f (w) = 1

EV
w

as the fitness function.

3.4.2. Selection

During each successive generation, a certain selection method is needed to rate
the fitness of each solution and preferentially select the best solution. In this paper, we
use roulette wheel selection. The fitness function associated with each chromosome
is used to associate a probability of selection with each individual chromosome. If fi
is the fitness of individual i in the population, the probability of i being selected is

pi =
fi

N
∑

j=1
f j

(9)

where n is the number of individuals in the population. In this way, chromosomes
with higher fitness values are less likely to be eliminated, but there is still a chance
that they may be.

3.4.3. Crossover

We use the normal single point crossover. A crossover point is selected randomly
between one and l (length of the chromosome). Crossover probabilities are computed
as in [44]. Let fmax be the maximum fitness value of the current population, f̄ be the
average fitness value of the population and f ′ be the larger of the fitness values of
the solutions to be crossed. Then, the probability of crossover, µc, is calculated as:

µc =

k1 × fmax− f ′

fmax− f
, if f ′> f ,

k3, otherwise.
(10)
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where the values of k1 and k3 are kept equal to 1.0 as in [44]. Note that when fmax = f ,
then f ′ = fmax and µc will be equal to k3. The aim behind this adaptation is to achieve
a trade-off between exploration and exploitation in a different manner. The value of
µc is increased when the better of the two chromosomes to be crossed is itself quite
poor. In contrast, when it is a good solution, µc is low so as to reduce the likelihood
of disrupting a good solution by crossover.

Mutation: Each chromosome undergoes mutation with a probability µm.
The mutation probability is also selected adaptively for each chromosome as in [44].
That is, µm is given below:

µm =

k2 × fmax− f
fmax− f

, if f> f ,

k4, otherwise.
(11)

where the values of k2 and k4 are kept equal to 0.5. Each position in a chromosome
is mutated with a probability µm in the following way. The value is replaced with

a random variable drawn from a Laplacian distribution, p(ε)∝e−
|ε−µ|

δ , where the
scaling factor δ sets the magnitude of perturbation and µ is the value at the position
to be perturbed. The scaling factor δ is chosen equal to 0.1. The old value at the
position is replaced with the newly-generated value. By generating a random variable
using a Laplacian distribution, there is a nonzero probability of generating any valid
position from any other valid position, while the probability of generating a value
near the old value is greater.

The above process of fitness computation, selection, crossover and mutation is
executed for a maximum number of generations. The best chromosome seen up to
the last generation provides the solution to the weighted classifier ensemble problem.
Note that sum wi should be kept during the evolving. Therefore, it is necessary to do
normalization on the evolved w. Thus, we use a simple normalization scheme that

replaces wi with wi/
N
∑

i=1
wi in each generation.

4. Performance Evaluation

In this section, we study the performance of the proposed MIMLELM algorithm
in terms of both efficiency and effectiveness. The experiments are conducted on
an HP PC (Lenovo, Shenyang, China) with 2.33 GHz Intel Core 2 CPU, 2 GB main
memory running Windows 7, and all algorithms are implemented in MATLAB 2013.
Both real and synthetic datasets are used in the experiments.
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4.1. Datasets

Four real datasets are utilized in our experiments. The first dataset is Image[1],
which comprises 2000 natural scene images and five classes. The percent of images
of more than one class is over 22%. On average, each image is of 1.24 ± 0.46 class
labels and 1.36 ± 0.54 instances; The second dataset is Test [22], which contains 2000
documents and seven classes. The percent of documents of multiple labels is 15%.
On average, each document is of 1.15 ± 0.37 class labels and 1.64 ± 0.73 instances.
The third and the fourth datasets are from two bacteria genomes, i.e., Geobacter
sulfurreducens and Azotobacter vinelandii [2], respectively. In the two datasets, each
protein is represented as a bag of domains and labeled with a group of GO (Gene
Ontology) molecular function terms. In detail, there are 397 proteins in Geobacter
sulfurreducens with a total of 320 molecular function terms. The average number
of instances per protein (bag) is 3.20 ± 1.21, and the average number of labels per
protein is 3.14 ± 3.33. The Azotobacter vinelandii dataset has 407 proteins with a
total of 320 molecular function terms. The average number of instances per protein
(bag) is 3.07 ± 1.16, and the average number of labels per protein is 4.00 ± 6.97.
Table 1 gives the summarized characteristics of the four datasets, where std. is the
abbreviation of standard deviation.

Table 1. The information of the datasets. std.: standard deviation.

Data Set # of Objects # of Classes Instances per Bag
(Mean± std.)

Labels per Example
(Mean± std.)

Image 2000 5 1.36 ± 0.54 1.24 ± 0.46
Text 2000 7 1.64 ± 0.73 1.15 ± 0.37

Geobacter sulfurreducens 397 320 3.20 ± 1.21 3.14 ± 3.33
Azotobacter vinelandii 407 340 3.07 ± 1.16 4.00 ± 6.97

4.2. Evaluation Criteria

In multi-label learning, each object may have several labels simultaneously.
The commonly-used evaluation criteria, such as accuracy, precision and recall, are
not suitable in this case. In this paper, four popular multi-label learning evaluation
criteria, i.e., one-error (OE), coverage (Co), ranking loss (RL) and average precision
(AP), are used to measure the performance of the proposed algorithm. Given a
test dataset S = {(X1, Y1), (X2, Y2), . . . , (Xp, Yp)}, the four criteria are defined as
below, where h(Xi) returns a set of proper labels of Xi, h(Xi, y) returns a real-value
indicating the confidence for y to be a proper label of Xi and rankh(Xi, y) returns the
rank of y derived from h(Xi, y).

• one-errorS(h) = 1
p

p
∑

i=1

[
[arg max

y∈Y
h(Xi, y)] /∈ Yi

]
. The one-error evaluates how

many times the top-ranked label is not a proper label of the object. The
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performance is perfect when one-errorS(h) = 0; the smaller the value of
one-errorS(h), the better the performance of h.

• coverageS(h) = 1
p

p
∑

i=1
max
y∈Yi

rankh(Xi, y)− 1. The coverage evaluates how far it is

needed, on the average, to go down the list of labels in order to cover all of the
proper labels of the object. It is loosely related to precision at the level of perfect
recall. The smaller the value of coverageS(h), the better the performance of h.

• rlossS(h) = 1
p

p
∑

i=1

1
‖Yi‖‖Yi‖

∣∣{(y1, y2)|h(Xi, y1) ≤ h(Xi, y2), (y1, y2) ∈ Yi ×Yi}
∣∣,

where Yi denotes the complementary set of Yi in Y. The ranking loss evaluates
the average fraction of label pairs that are misordered for the object. The
performance is perfect when rlossS(h) = 0; the smaller the value of rlossS(h),
the better the performance of h.

• avgprecS(h) = 1
p

p
∑

i=1

1
|Yi | ∑

y∈Yi

|{y′ |rankh(Xi ,y′)≤rankh(Xi ,y),y′∈Yi}|
rankh(Xi ,y)

. The average

precision evaluates the average fraction of proper labels ranked above a
particular label y∈Yi. The performance is perfect when avgprecS(h) = 1; the
larger the value of avgprecS(h), the better the performance of h.

4.3. Effectiveness

In this set of experiments, we study the effectiveness of the proposed MIMLELM
on the four real datasets. The four criteria mentioned in Section 4.2 are utilized for
performance evaluation. Particularly, MIMLSVM+ [5], one of the state-of-the-art
algorithms for learning with multi-instance multi-label examples, is utilized as the
competitor. The MIMLSVM+ (Advanced multi-instance multi-label with support
vector machine) algorithm is implemented with a Gaussian kernel, while the penalty
factor cost is set from 10−3, 10−2, . . ., 103. The MIMLELM (multi-instance multi-label
with extreme learning machine) is implemented with the number of hidden layer
nodes set to be 100, 200 and 300, respectively. Specially, for a fair performance
comparison, we modified MIMLSVM+ to include the automatic method for k and the
genetic algorithm-based weights assignment. On each dataset, the data are randomly
partitioned into a training set and a test set according to the ratio of about 1:1. The
training set is used to build a predictive model, and the test set is used to evaluate
its performance.

Experiments are repeated for thirty runs by using random training/test
partitions, and the average results are reported in Tables 2–5, where the best
performance on each criterion is highlighted in boldface, and ‘↓’ indicates “the smaller
the better”, while ‘↑’ indicates “the bigger the better”. As seen from the results in
Tables 2–5, MIMLSVM+ achieves better performance in terms of all cases. Applying
statistical tests (nonparametric ones) to the rankings obtained for each method in
the different datasets according to [45], we find that the differences are significant.
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However, another important observation is that MIMLSVM+ is more sensitive to the
parameter settings than MIMLELM. For example, on the Image dataset, the AP values
of MIMLSVM+ vary in a wider interval [0.3735, 0.5642] while those of MIMLELM
vary in a narrower range [0.4381, 0.5529]; the C values of MIMLSVM+ vary in a
wider interval [1.1201, 2.0000], while those of MIMLELM vary in a narrower range
[1.5700, 2.0000]; the OE values of MIMLSVM+ vary in a wider interval [0.5783, 0.7969],
while those of MIMLELM vary in a narrower range [0.6720, 0.8400]; and the RL values
of MIMLSVM+ vary in a wider interval [0.3511, 0.4513], while those of MIMLELM
vary in a narrower range [0.4109, 0.4750]. In the other three real datasets, we have a
similar observation. Moreover, we observe that in this set of experiments, MIMLELM
works better when HN is set to 200.

Table 2. The effectiveness comparison on the Image data set. AP: average precision;
C: coverage; OE: one-error; RL: ranking loss; MIMLSVM+: multi-instance
multi-label support vector machine; MIMLELM: multi-instance multi-label-extreme
learning machine.

Image Evaluation Criterion
AP ↑ C↓ OE↓ RL↓

MIMLSVM+

Cost = 10−3, γ = 21 0.4999 1.2100 0.6191 0.3779
Cost = 10−2, γ = 22 0.5642 1.1201 0.5783 0.3609
Cost = 10−1, γ = 23 0.5142 1.1262 0.6888 0.3511

Cost = 1, γ = 21 0.4267 1.9808 0.7391 0.3711
Cost = 101, γ = 23 0.4705 1.9999 0.7969 0.3958
Cost = 102, γ = 25 0.3735 1.9799 0.6809 0.4513
Cost = 103, γ = 25 0.4541 2.0000 0.6950 0.3858

MIMLELM
HN = 100 0.4381 2.0000 0.8400 0.4750
HN = 200 0.5529 1.7410 0.6720 0.4109
HN = 300 0.4861 1.5700 0.8400 0.4376

Table 3. The effectiveness comparison on the Text dataset.

Text Evaluation Criterion
AP ↑ C↓ OE ↓ RL ↓

MIMLSVM+

Cost = 10−3, γ = 21 0.7563 1.0295 0.3000 0.2305
Cost = 10−2, γ = 21 0.7675 1.0405 0.2650 0.1968
Cost = 10−1, γ = 21 0.7946 1.0445 0.2650 0.2025

Cost = 1, γ = 21 0.7679 1.0145 0.2600 0.1978
Cost = 101, γ = 21 0.7807 1.0041 0.2400 0.1940
Cost = 102, γ = 21 0.7763 1.0450 0.2450 0.1953
Cost = 103, γ = 21 0.7801 1.0245 0.2350 0.1970

MIMLELM
HN = 100 0.7476 1.0670 0.3540 0.2075
HN = 200 0.7492 1.0928 0.3409 0.2132
HN = 300 0.7554 1.0365 0.3443 0.2023
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Table 4. The effectiveness comparison on the Geobacter sulfurreducens (Geob.) dataset.

Geobacter Sulfurreducens Evaluation Criterion
AP ↑ C↓ OE↓ RL↓

MIMLSVM+

Cost = 10−3, γ = 25 0.6099 1.5122 0.5583 0.2284
Cost = 10−2, γ = 24 0.6529 1.2439 0.5341 0.2488
Cost = 10−1, γ = 22 0.6871 1.0488 0.4585 0.1343

Cost = 1, γ = 25 0.6755 1.0732 0.4609 0.1873
Cost = 101, γ = 23 0.6311 1.1707 0.5097 0.1742
Cost = 102, γ = 25 0.6733 1.1219 0.4854 0.2187
Cost = 103, γ = 21 0.6268 1.2195 0.5097 0.2122

MIMLELM
HN = 100 0.6438 1.3902 0.5707 0.2151
HN = 200 0.6649 1.3720 0.5390 0.2112
HN = 300 0.6495 1.4025 0.5695 0.2142

Table 5. The effectiveness comparison on the Azotobacter vinelandii (Azoto.) dataset.

Azotobacter Vinelandii Evaluation Criterion
AP↑ C↓ OE↓ RL↓

MIMLSVM+

Cost = 10−3, γ = 23 0.5452 1.3171 0.6341 0.2679
Cost = 10−2, γ = 22 0.5652 1.0732 0.6829 0.2312
Cost = 10−1, γ = 23 0.6863 1.1707 0.5854 0.1927

Cost = 1, γ = 21 0.5680 1.0488 0.6097 0.3301
Cost = 101, γ = 24 0.6456 1.0244 0.6160 0.2435
Cost = 102, γ = 25 0.5308 1.9512 0.7317 0.2150
Cost = 103, γ = 24 0.5380 1.9756 0.6829 0.2191

MIMLELM
HN = 100 0.6453 1.4732 0.6414 0.2292
HN = 200 0.6622 1.3610 0.6658 0.2129
HN = 300 0.6574 1.4585 0.6366 0.2318

Moreover, we conduct another set of experiments to gradually evaluate the
effect of each contribution in MIMLELM. That is, we first modify MIMLSVM+
to include the automatic method for k, then use ELM instead of SVM and then
include the genetic algorithm-based weights assignment. The effectiveness of each
option is gradually tested on four real datasets using our evaluation criteria. The
results are shown in Figure 4a–d, where SVM denotes the original MIMLSVM+ [5],
SVM+k denotes the modified MIMLSVM+ including the automatic method for
k, ELM+k denotes the usage of ELM instead of SVM in SVM+k and ELM+k+w
denotes ELM+k, further including the genetic algorithm-based weights assignment.
As seen from Figure 4a–d, the options of including the automatic method for k
and the genetic algorithm-based weights assignment can make the four evaluation
criteria better, while the usage of ELM instead of SVM in SVM+k slightly reduces
the effectiveness. Since ELM can reach a comparable effectiveness as SVM at a much
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faster learning speed, it is the best option to combine the three contributions in terms
of both efficiency and effectiveness.
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Figure 4. Gradual effectiveness evaluation of each contribution in Multi-instance
Multi-label with Extreme Learning Machine (MIMLELM). (a) Gradual evaluation
on average precision (AP); (b) gradual evaluation on converage (C); (c) gradual
evaluation on one-error (OE); (d) gradual evaluation on ranking loss (RL).

As mentioned, we are the first to utilize ELM in the MIML problem. In this sense,
it is more suitable to consider the proposed MIML-ELM as a framework addressing
MIML by ELM. In other words, any better variation of ELM can be integrated into
this framework to improve the effectiveness of the original one. For example, some
recently-proposed methods, RELM [46], MCVELM [47], KELM [48], DropELM [49]
and GEELM [50], can be integrated into this framework to improve the effectiveness
of MIMLELM. In this subsection, we conducted a special set of experiments to
check how the effectiveness of the proposed method could be further improved by
utilizing other ELM learning processes instead of the original one. In particular, we
replaced ELM exploited in our method by RELM [46], MCVELM [47], KELM [48],
DropELM [49] and GEELM [50], respectively. The results of the effectiveness
comparison on four different datasets are shown in Tables 6–9, respectively. As
expected, the results indicates that the effectiveness of our method can be further
improved by utilizing other ELM learning processes instead of the original one.
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As mentioned, we are the first to utilize ELM in the MIML problem. In this sense,
it is more suitable to consider the proposed MIML-ELM as a framework addressing
MIML by ELM. In other words, any better variation of ELM can be integrated into
this framework to improve the effectiveness of the original one. For example, some
recently-proposed methods, RELM [46], MCVELM [47], KELM [48], DropELM [49]
and GEELM [50], can be integrated into this framework to improve the effectiveness
of MIML-ELM. In this subsection, we conducted a special set of experiments to
check how the effectiveness of the proposed method could be further improved by
utilizing other ELM learning processes instead of the original one. In particular, we
replaced ELM exploited in our method by RELM [46], MCVELM [47], KELM [48],
DropELM [49] and GEELM [50], respectively. The results of the effectiveness
comparison on four different datasets are shown in Tables 6–9, respectively. As
expected, the results indicate that the effectiveness of our method can be further
improved by utilizing other ELM learning processes instead of the original one.

Table 6. The effectiveness comparison of Extreme Learning Machine (ELM)and its
variants on the Image dataset.

Image Evaluation Criterion
AP↑ C↓ OE↓ RL↓

ELM 0.5529 1.7410 0.6720 0.4109
RELM 0.7141 1.2325 0.4757 0.2909

MCVELM 0.7150 1.2239 0.4724 0.2885
KELM 0.7757 1.1346 0.4379 0.2678

DropELM 0.7814 1.1261 0.4347 0.2568
GEELM 0.7781 1.1312 0.4362 0.2667

Table 7. The effectiveness comparison of ELM and its variants on the Text dataset.

Text Evaluation Criterion
AP↑ C↓ OE↓ RL↓

ELM 0.7492 1.0928 0.3409 0.2132
RELM 0.7857 1.0420 0.3251 0.2033

MCVELM 0.7959 1.0286 0.3209 0.2007
KELM 0.8019 1.0209 0.3185 0.1992

DropELM 0.8113 1.0091 0.3047 0.1906
GEELM 0.7979 1.0260 0.3198 0.2000
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Table 8. The effectiveness comparison of ELM and its variants on the Geobacter
sulfurreducens dataset.

Geob. Evaluation Criterion
AP↑ C ↓ OE ↓ RL ↓

ELM 0.6649 1.3720 0.5390 0.2112
RELM 0.7818 1.1668 0.4584 0.1796

MCVELM 0.7892 1.1559 0.4150 0.1626
KELM 0.8088 1.1279 0.4049 0.1586

DropELM 0.8107 1.1253 0.4020 0.1582
GEELM 0.7933 1.1499 0.4109 0.1617

Table 9. The effectiveness comparison of ELM and its variants on the Azotobacter
vinelandii dataset.

Azoto. Evaluation Criterion
AP↑ C↓ OE↓ RL↓

ELM 0.6622 1.3610 0.6658 0.2129
RELM 0.7928 1.1368 0.5561 0.1778

MCVELM 0.7968 1.1235 0.5533 0.1757
KELM 0.8346 1.0907 0.5283 0.1617

DropELM 0.8524 1.0679 0.5172 0.1583
GEELM 0.7997 1.1194 0.5513 0.1650

4.4. Efficiency

In this series of experiments, we study the efficiency of MIMLELM by testing
its scalability. That is, each dataset is replicated different numbers of times, and
then, we observe how the training time and the testing time vary with the data
size increasing. Again, MIMLSVM+ is utilized as the competitor. Similarly, the
MIMLSVM+ algorithm is implemented with a Gaussian kernel, while the penalty
factor cost is set from 10−3, 10−2, . . ., 103. The MIMLELM is implemented with the
number of hidden layer nodes set to be 100, 200 and 300, respectively.

The experimental results are given in Figures 5–8. As we observed, when the
data size is small, the efficiency difference between MIMLSVM+ and MIMLELM is
not very significant. However, as the data size increases, the superiority of MIMLELM
becomes more and more significant. This case is particularly evident in terms of the
testing time. In the Image dataset, the dataset is replicated 0.5–2 times with the step
size set to be 0.5. When the number of copies is two, the efficiency improvement
could be up to one 92.5% (from about 41.2 s down to about 21.4 s). In the Text dataset,
the dataset is replicated 0.5–2 times with the step size set to be 0.5. When the number
of copies is two, the efficiency improvement could be even up to 223.3% (from about
23.6 s down to about 7.3 s). In the Geobacter sulfurreducens dataset, the dataset is
replicated 1–5 times with the step size set to be 1. When the number of copies is
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five, the efficiency improvement could be up to 82.4% (from about 3.1 s down to
about 1.7 s). In the Azotobacter vinelandii dataset, the dataset is replicated 1–5 times
with the step size set to be one. When the number of copies is five, the efficiency
improvement could be up to 84.2% (from about 3.5 s down to about 1.9 s).
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Figure 5. The efficiency comparison on the Image dataset. (a) The comparison of
the training time; (b) the comparison of the testing time.
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Figure 6. The efficiency comparison on the Text dataset. (a) The comparison of the
training time; (b) the comparison of the testing time.

232



 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

54321

tra
in

in
g 

tim
e(

s)

data scale

MIMLSVM+ with c=10-3,γ=21

MIMLSVM+ with c=10-2,γ=22

MIMLSVM+ with c=10-1,γ=23

MIMLSVM+ with c=100,γ=21

MIMLSVM+ with c=101,γ=23

MIMLSVM+ with c=102,γ=25

MIMLSVM+ with c=103,γ=25

MIMLELM with HN=10 
MIMLELM with HN=100

MIMLELM with HN=1000 

(a)

 0

 1

 2

 3

 4

 5

 6

54321

te
st

in
g 

tim
e(

s)

data scale

MIMLSVM+ with c=10-3,γ=21

MIMLSVM+ with c=10-2,γ=22

MIMLSVM+ with c=10-1,γ=23

MIMLSVM+ with c=100,γ=21

MIMLSVM+ with c=101,γ=23

MIMLSVM+ with c=102,γ=25

MIMLSVM+ with c=103,γ=25

MIMLELM with HN=10 
MIMLELM with HN=100

MIMLELM with HN=1000 

(b)

Figure 7. The efficiency comparison on the Geobacter sulfurreducens dataset.
(a) The comparison of the training time; (b) the comparison of the testing time.
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Figure 8. The efficiency comparison on the Azotobacter vinelandii dataset. (a) The
comparison of the training time; (b) the comparison of the testing time.

4.5. Statistical Significance of the Results

For the purpose of exploring the statistical significance of the results, we
performed a nonparametric Friedman test followed by a Holm post hoc test, as
advised by Demsar [45] to statistically compare algorithms on multiple datasets.
Thus, the Friedman and the Holm test results are reported, as well.

The Friedman test [51] can be used to compare k algorithms over N datasets
by ranking each algorithm on each dataset separately. The algorithm obtaining the
best performance gets the rank of 1, the second best ranks 2, and so on. In case of
ties, average ranks are assigned. Then, the average ranks of all algorithms on all
datasets is calculated and compared. If the null hypothesis, which is all algorithms
are performing equivalently, is rejected under the Friedman test statistic, post hoc
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tests, such as the Holm test [52], can be used to determine which algorithms perform
statistically different. When all classifiers are compared with a control classifier and
p1≤p2≤. . .≤pk−1, Holm’s step-down procedure starts with the most significant p
value. If p1 is below α/(k − 1), the corresponding hypothesis is rejected, and we
are allowed to compare p2 to α/(k− 2). If the second hypothesis is rejected, the test
proceeds with the third, and so on. As soon as a certain null hypothesis cannot be
rejected, all of the remaining hypotheses are retained, as well.

In Figure 4a–d, we have conducted a set of experiments to gradually evaluate
the effect of each contribution in MIMLELM. That is, we first modify MIMLSVM+ to
include the automatic method for k, then use ELM instead of SVM and then include
the genetic algorithm-based weights assignment. The effectiveness of each option
is gradually tested on four real datasets using four evaluation criteria. In order
to further explore if the improvements are significantly different, we performed
a Friedman test followed by a Holm post hoc test. In particular, Table 10 shows
the rankings of each contribution on each dataset over criterion C. According to
the rankings, we computed χ2

F = 12× 4
4× 5 × [(42 + 2.252 + 2.752 + 12)− 4× 52

4 ] = 11.1
and FF = 3× 11.1

4× 3− 11.1 = 37. With four algorithms and four datasets, FF is distributed
according to the F distribution with 4− 1 = 3 and (4− 1)× (4− 1) = 9 degrees
of freedom. The critical value of F(3, 9) for α = 0.05 is 3.86, so we reject the
null-hypothesis. That is, the Friedman test reports a significant difference among the
four methods. In what follows, we choose ELM+k+w as the control classifier and
proceed with a Holm post hoc test. As shown in Table 11, with SE=

√
4× 5
6× 4 = 0.913,

the Holm procedure rejects the first hypothesis, since the corresponding p value
is smaller than the adjusted α. Thus, it is statically believed that our method, i.e.,
ELM+k+w, has a significant performance improvement of criterion C over SVM.
The similar cases can be found when the tests are conducted on the other three
criteria. Limited by space, we do not show them here.

In Tables 2–5, we compared the effectiveness of MIMLSVM+ and MIMLELM
with different condition settings on four criteria, where, for a fair performance
comparison, MIMLSVM+ is modified to include the automatic method for k and the
genetic algorithm-based weights assignment as MIMLELM does. Table 12 shows the
rankings of 10 classifiers on each dataset over criterion C. According to the rankings,
we computed χ2

F = 12× 4
10× 11 × [(5.52 + 42 + 3.52 + 3.252 + 3.52 + 6.52 + 6.8752 + 8.6252 +

72 + 6.252)− 10× 112

4 ] ≈ 13.43 and FF = 3× 13.43
4× 9− 13.43 ≈ 1.79. With 10 classifiers and

four datasets, FF is distributed according to the F distribution with 10−1 = 9 and
(10− 1) × (4− 1) = 27 degrees of freedom. The critical value of F(9, 27) for α = 0.05
is 2.25. Thus, as expected, we could not reject the null-hypothesis. That is, the
Friedman test reports that there is not a significant difference among the ten methods
on criterion C. This is because what we proposed in this paper is a framework.
Equipped with the framework, the effectiveness of MIML can be improved further
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no matter whether SVM or ELM is explored. Since ELM is comparable to SVM
on effectiveness [6,32,37], MIMLELM is certainly comparable to MIMLSVM+ on
effectiveness. This confirms the general effectiveness of the proposed framework.
Similar cases can be found when the tests are conducted on the other three criteria.
Limited by space, we do not show them here.

Table 10. Friedman test of the gradual effectiveness evaluation on criterion C.

C↓ Image Text Geob. Azoto. average rank

SVM 2.4712(4) 2.235(4) 2.439(4) 2.317(4) 4
SVM + k 1.9257(2) 1.66(2) 1.5833(2) 1.6391(3) 2.25
ELM + k 2.1451(3) 1.7198(3) 1.6247(3) 1.6285(2) 2.75

ELM + k + w 1.741(1) 1.0928(1) 1.372(1) 1.361(1) 1

Table 11. Holm test of the gradual effectiveness evaluation on criterion C.

i Classifier z = (Ri− R0)/SE p α/(k− i)

1 SVM (4 − 1)/0.913 ≈ 3.286 0.0014 0.017
2 ELM + k (2.75 − 1)/0.913 ≈ 1.917 0.0562 0.025
3 SVM + k (2.25 − 1)/0.913 ≈ 1.369 0.1706 0.05

In Figures 5–8, we studied the training time and the testing time of MIMLSVM+
and MIMLELM for the efficiency comparison, respectively. In order to further explore
if the differences are significant, we performed a Friedman test followed by a Holm
post hoc test. In particular, Table 13 shows the rankings of 10 classifiers on each dataset
over training time. According to the rankings, we computed χ2

F = 12× 4
10× 11×[(82 +

5.752 + 6.52 + 7.752 + 5.52 + 7.252 + 8.252 + 1.52 + 2.752 + 1.752)− 10× 112

4 ] ≈ 26.45
and FF = 3× 26.45

4× 9− 26.45 ≈ 8.31. With ten classifiers and four datasets, FF is distributed
according to the F distribution with 10− 1 = 9 and (10− 1)× (4− 1) = 27 degrees
of freedom. The critical value of F(9, 27) for α = 0.05 is 2.25, so we reject the
null-hypothesis. That is, the Friedman test reports a significant difference among
the ten methods. In what follows, we choose ELM with HN = 100 as the control
classifier and proceed with a Holm post hoc test. As shown in Table 14, with

SE =
√

10× 11
6× 4 = 2.141, the Holm procedure rejects the hypotheses from the first to

the fourth since the corresponding p-values are smaller than the adjusted α’s. Thus,
it is statically believed that MIMLELM with HN = 100 has a significant performance
improvement of training over most of the MIMLSVM+ classifiers. Similarly, Table 15
shows the rankings of 10 classifiers on each dataset over testing time. According to
the rankings, we computed χ2

F = 12× 4
10× 11 × [(7.52 + 6.8752 + 6.1252 + 6.252 + 6.52 +

7.52 + 8.252 + 2.1252 + 1.752 + 2.1252)− 10× 112

4 ] ≈ 24.55 and FF = 3× 24.55
4× 9− 24.55 ≈ 6.43.

With ten classifiers and four datasets, FF is distributed according to the F distribution
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with 10− 1 = 9 and (10− 1)× (4− 1) = 27 degrees of freedom. The critical value of
F(9, 27) for α = 0.05 is 2.25, so we reject the null-hypothesis. That is, the Friedman
test reports a significant difference among the ten methods. In what follows, we
choose ELM with HN = 200 as the control classifier and proceed with a Holm post

hoc test. As shown in Table 16, with SE =
√

10× 11
6× 4 = 2.141, the Holm procedure

rejects the hypotheses from the first to the third since the corresponding p-values
are smaller than the adjusted α’s. Thus, it is statically believed that MIMLELM with
HN = 200 has a significant performance improvement of training over two of the
MIMLSVM+ classifiers.

Table 12. Friedman test of the effectiveness comparison in Tables 2–5 on criterion C.

C↓ Image Text Geob. Azoto. average rank

MIMLSVM+

Cost = 10−3, γ = 21 1.2100(3) 1.0295(4) 1.5122(10) 1.3171(5) 5.5
Cost = 10−2, γ = 22 1.1201(1) 1.0405(6) 1.2439(6) 1.0732(3) 4
Cost = 10−1, γ = 23 1.1262(2) 1.0445(7) 1.0488(1) 1.1707(4) 3.5

Cost = 1, γ = 21 1.9808(7) 1.0145(2) 1.0732(2) 1.0488(5) 3.25
Cost = 101, γ = 23 1.9999(8) 1.0041(1) 1.1707(4) 1.0244(5) 5.5
Cost = 102, γ = 25 1.9799(6) 1.0450(8) 1.1219(3) 1.9512(9) 6.5
Cost = 103, γ = 25 2.0000(9.5) 1.0245(3) 1.2195(5) 1.9756(10) 6.875

MIMLELM
HN = 100 2.0000(9.5) 1.0670(9) 1.3902(8) 1.4732(8) 8.625
HN = 200 1.7410(5) 1.0928(10) 1.3720(7) 1.3610(6) 7
HN = 300 1.5700(4) 1.0365(5) 1.4025(9) 1.4585(7) 6.25

Table 13. Friedman test of the training time.

Training Time↓ Image Text Geob. Azoto. average rank

MIMLSVM+

Cost = 10−3, γ = 21 717.6202(10) 284.75(10) 46.582(8) 50.3727(4) 8
Cost = 10−2, γ = 22 690.1484(4) 283.86(7) 46.41(6) 50.6691(6) 5.75
Cost = 10−1, γ = 23 690.2365(5) 284.02(8) 46.27(5) 50.9343(8) 6.5

Cost = 1, γ = 21 706.2458(6) 283.65(6) 46.8(9) 51.0591(10) 7.75
Cost = 101, γ = 23 710.6634(7) 283.21(4) 46.036(4) 50.7315(7) 5.5
Cost = 102, γ = 25 717.3216(8) 283.59(5) 46.4272(7) 50.9344(9) 7.25
Cost = 103, γ = 25 711.5548(9) 284.47(9) 46.8312(10) 50.5936(5) 8.25

MIMLELM
HN = 100 641.3661(1) 210.55(2) 38.657(2) 41.4495(1) 1.5
HN = 200 642.1002(2) 211.29(3) 38.922(3) 41.9643(3) 2.75
HN = 300 644.2047(3) 209.84(1) 38.641(1) 41.9019(2) 1.75

In summary, the proposed framework can significantly improve the effectiveness
of MIML learning. Equipped with the framework, the effectiveness of MIMLELM is
comparable to that of MIMLSVM+, while the efficiency of MIMLELM is significantly
better than that of MIMLSVM+.
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Table 14. Holm test of the training time.

i Classifier z = (Ri− R0)/SE p α/(k− i)

1 cost = 103, γ = 25 (8.25 − 1.5)/2.141 ≈ 3.153 0.00194 0.00556
2 cost = 10−3, γ = 21 (8 − 1.5)/2.141 ≈ 3.036 0.027 0.00625
3 cost = 100, γ = 21 (7.75 − 1.5)/2.141 ≈ 2.919 0.0036 0.00714
4 cost = 102, γ = 25 (7.25 − 1.5)/2.141 ≈ 2.686 0.0074 0.00833
5 cost = 10−1, γ = 23 (6.5 − 1.5)/2.141 ≈ 2.335 0.0198 0.00396
6 cost = 10−2, γ = 22 (5.75 − 1.5)/2.141 ≈ 1.985 0.0478 0.001195
7 cost = 101, γ = 23 (5.5 − 1.5)/2.141 ≈ 1.868 0.0628 0.0167
8 HN = 200 (2.75 − 1.5)/2.141 ≈ 0.584 0.562 0.025
9 HN = 300 (1.75 − 1.5)/2.141 ≈ 0.117 0.912 0.005

Table 15. Friedman test of the testing time.

Testing Time↓ Image Text Geob. Azoto. average rank

MIMLSVM+

Cost = 10−3, γ = 21 41.1999(8) 23.587(7) 3.0732(7.5) 3.4944(7.5) 7.5
Cost = 10−2, γ = 22 39.2343(5) 23.148(5) 3.0888(10) 3.4944(7.5) 6.875
Cost = 10−1, γ = 23 39.1066(4) 23.834(9) 3.042(4) 3.4944(7.5) 6.125

Cost = 1, γ = 21 40.0244(6) 23.615(8) 3.0576(6) 3.4788(5) 6.25
Cost = 101, γ = 23 40.8324(7) 23.012(4) 3.0732(7.5) 3.4944(7.5) 6.5
Cost = 102, γ = 25 41.3534(9) 23.465(6) 3.053(5) 3.4976(10) 7.5
Cost = 103, γ = 25 742.439(10) 23.936(10) 3.0786(9) 3.3634(4) 8.25

MIMLELM
HN = 100 28.5014(3) 7.3164(1) 1.7316(2) 1.9188(2.5) 2.125
HN = 200 26.4258(1) 7.4256(3) 1.7316(2) 1.8876(1) 1.75
HN = 300 27.0154(2) 7.3457(2) 1.7316(2) 1.9188(2.5) 2.125

Table 16. Holm test of the testing time.

i Classifier z = (Ri− R0)/SE p α/(k− i)

1 cost = 103, γ = 25 (8.25 − 1.75)/2.141 ≈ 3.036 0.0027 0.00556
2 cost = 10−3, γ = 21 (7.5 − 1.75)/2.141 ≈ 2.686 0.047 0.00625
3 cost = 102, γ = 25 (7.5 − 1.75)/2.141 ≈ 2.686 0.047 0.00714
4 cost = 10−2, γ = 22 (6.875 − 1.75)/2.141 ≈ 2.394 0.0168 0.00833
5 cost = 101, γ = 23 (6.5 − 1.75)/2.141 ≈ 2.219 0.0272 0.00396
6 cost = 1, γ = 215 (6.25 − 1.75)/2.141 ≈ 2.102 0.0358 0.001195
7 cost = 10−1, γ = 23 (6.125 − 1.75)/2.141 ≈ 2.043 0.0414 0.00167
8 HN = 100 (2.125 − 1.75)/2.141 ≈ 0.175 0.865 0.025
9 HN = 300 (2.125 − 1.75)/2.141 ≈ 0.175 0.865 0.005

5. Conclusions

MIML is a framework for learning with complicated objects and has been
proven to be effective in many applications. However, the existing two-phase MIML
approaches may suffer from the effectiveness problem arising from the user-specific
cluster number and the efficiency problem arising from the high computational cost.
In this paper, we propose the MIMLELM approach to learn with MIML examples
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quickly. On the one hand, the efficiency is highly improved by integrating extreme
learning machine into the MIML learning framework. To our best knowledge, we are
the first to utilize ELM in the MIML problem and to conduct the comparison of
ELM and SVM on MIML. On the other hand, we develop a method of theoretical
guarantee to determine the number of clusters automatically and to exploit a genetic
algorithm-based ELM ensemble to further improve the effectiveness.
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