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Preface to "An Overview of Topological
Groups: Yesterday, Today, Tomorrow"
Sidney A. Morris

Reprinted from Axioms. Cite as: Morris, S.A. An Overview of Topological Groups:
Yesterday, Today, Tomorrow. Axioms 2016, 5, 11.

It was in 1969 that I began my graduate studies on topological group theory and
I often dived into one of the following five books. My favourite book “Abstract
Harmonic Analysis” [1] by Ed Hewitt and Ken Ross contains both a proof of
the Pontryagin-van Kampen Duality Theorem for locally compact abelian groups
and the structure theory of locally compact abelian groups. Walter Rudin’s book
“Fourier Analysis on Groups” [2] includes an elegant proof of the Pontryagin-van
Kampen Duality Theorem. Much gentler than these is “Introduction to Topological
Groups” [3] by Taqdir Husain which has an introduction to topological group theory,
Haar measure, the Peter-Weyl Theorem and Duality Theory.

Of course the book “Topological Groups” [4] by Lev Semyonovich Pontryagin
himself was a tour de force for its time. P. S. Aleksandrov, V.G. Boltyanskii, R.V.
Gamkrelidze and E.F. Mishchenko described this book in glowing terms: “This book
belongs to that rare category of mathematical works that can truly be called classical
- books which retain their significance for decades and exert a formative influence on
the scientific outlook of whole generations of mathematicians”.

The final book I mention from my graduate studies days is “Topological
Transformation Groups” [5] by Deane Montgomery and Leo Zippin which contains a
solution of Hilbert’s fifth problem as well as a structure theory for locally compact
non-abelian groups. These five books gave me a good feeling for the most significant
research on locally compact group theory in the first 60 years of the twentieth century.
My own contribution to understanding the structure of locally compact abelian
groups was a small book “Pontryagin Duality and the Structure of Locally Compact
Abelian Groups” [6] which was translated into Russian and served to introduce a
generation of young Soviet mathematicians to this topic.

Far from locally compact groups, A.A. Markov [7,8] introduced the study of free
topological groups. This was followed up by M.I. Graev in 1948 [9] with a slightly
more general concept. Free topological groups are an analogue of free groups in
abstract group theory. Markov gave a very long construction of the free topological
group on a Tychonoff space and also proved its uniqueness. Graev’s proof is also
long. Shorter proofs appeared after a few years. Today one derives the existence
of Markov and Graev free topological groups from the Adjoint Functor Theorem.
Free topological groups have been an active area of research to this day, especially by
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Alexander Vladimirovich Arhangel’skii of Moscow State University and his former
doctoral students and they have produced a wealth of deep and interesting results.

Now let me turn to this volume. My aim for “Topological Groups: Yesterday,
Today, Tomorrow” is for these articles to describe significant topics in topological
group theory in the 20th century and the early 21st century as well as providing some
guidance to the future directions topological group theory might take by including
some interesting open questions.

‘’In 1900 David Hilbert presented a seminal address to the International
Congress of Mathematicians in Paris. In this address, he initiated a program
by formulating 23 problems, which influenced a vast amount of research of the
20th century. The fifth of these problems asked whether every locally-Euclidean
topological group admits a Lie group structure. This motivated an enormous
volume of work on locally-compact groups during the first half of the 20th century.
It culminated in the work of Gleason, Iwasawa, Montgomery, Yamabe and Zippin,
yielding a positive answer to Hilbert’s fifth problem and exposing the structure of
almost connected locally-compact groups [5]. (Recall that a topological group G
is called almost connected [10] if the quotient group G/G0, modulo the connected
component G0 of the identity, is compact. The class of almost connected groups
includes all compact groups and all connected locally-compact groups.). The
advances in the second half of the 20th century shed much light on the structure and
representation theory of locally compact groups” is how Karl Heinrich Hofmann and
Sidney A. Morris began their article Pro-Lie Groups: A Survey with Open Problems in
this volume.

While the class of locally compact abelian groups has the beautiful
Pontryagin-van Kampen Duality from which the structure of locally compact abelian
groups can be described (see [6]), the structure theory of compact groups has not
been derived from any of the various Duality Theorems for compact groups. This
led Hofmann and Morris to establish and use a Lie Theory for compact groups to
provide a complete description of the structure of compact groups in [11]. They
then used in [10] the same Lie Theory approach to establish the structure theory of
(almost) connected locally compact groups. As the class of locally compact groups is
not closed even under infinite products, they introduced the class of pro-Lie Groups
which is a natural extension of the classes of finite-dimensional Lie groups, locally
compact abelian groups, compact groups and connected locally compact groups
and used the Lie Theory to describe completely the structure of almost connected
pro-Lie groups. Their article Pro-Lie Groups: A Survey with Open Problems provides an
up-to-date summary of pro-Lie groups and lists 12 interesting questions. Probably
the most interesting of these is

Question 2. Let G be a pro-Lie group with identity component G0. Is G/G0

complete (and therefore, prodiscrete)?
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Over the last 50 years there has been a steady development of the theory of
pseudocompact topological groups. In their article Non-abelian Pseudocompact Groups
in this volume Wis Comfort and Dieter Remus survey the historical development
of the theory of pseudocompact topological groups. They report that “Many of
the results we cite, especially the older results, require an abelian hypothesis; some
questions, definitions and results make sense and are correct without that hypothesis,
however, and we emphasize these. Thus, this paper has two goals: (1) to provide an
overview of the (by now substantial) literature on pseudocompact groups; and (2) to
offer several new results about non-abelian pseudocompact groups.”

In particular Comfort and Remus examine “three recently-established theorems
from the literature:

(A) (2006) Every non-metrizable compact abelian group K has 2|K|-many proper
dense pseudocompact subgroups.

(B) (2003) Every non-metrizable compact abelian group K admits 22|K| -many strictly
finer pseudocompact topological group refinements.

(C) (2007) Every non-metrizable pseudocompact abelian group has a proper dense
pseudocompact subgroup and a strictly finer pseudocompact topological group
refinement.

(Theorems (A), (B) and (C) become false if the non-metrizable hypothesis is
omitted.)”. The authors ask: What happens to (A), (B), (C) and to similar known
facts about pseudocompact abelian groups if the abelian hypothesis is omitted? Are
the resulting statements true, false, true under certain natural additional hypotheses,
etc.? Several new results responding in part to these questions are given, and several
specific additional questions are posed. One conjecture they mention is due to
Comfort and van Mill.

Conjecture 5.4.1. Let G be an abelian group which admits a pseudocompact
group topology. Then the supremum of the pseudocompact group topologies
on G coincides with the largest totally bounded group topology on G (that is,
the topology induced on G by Hom(G,T).

We mention two of the questions they ask:

Problem 5.7.2. Does every infinite compact group K have 2|K|-many
non-measurable subgroups (of cardinality |K|)?
Problem 8.2.11. ∗Let (K, T ) be a profinite group of uncountable weight.
(a) Does T admit a proper pseudocompact refinement of maximal weight 2|K|?
(b) Are there 22|K| -many pseudocompact group topologies on K which are finer
than T ?
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The next paper we discuss here is Free Boolean Topological Groups by Ol’ga
Sipacheva. She introduces her paper as follows: “In the very early 1940s,
A. A. Markov [7,8] introduced the free topological group F(X) and the free Abelian
topological group A(X) on an arbitrary completely regular Hausdorff topological
space X as a topological-algebraic counterpart of the abstract free and free Abelian
groups on a set; he also proved the existence and uniqueness of these groups.
During the next decade, Graev [9,12], Nakayama [13], and Kakutani [14] simplified
the proofs of the main statements of Markov’s theory of free topological groups,
generalized Markov’s construction, and proved a number of important theorems on
free topological groups. In particular, Graev generalized the notions of the free and
the free Abelian topological group on a space X by identifying the identity element
of the free group with an (arbitrary) point of X (the free topological group on X
in the sense of Markov coincides with Graev’s group on X plus an isolated point),
described the topology of free topological groups on compact spaces, and extended
any continuous pseudometric on X to a continuous invariant pseudometric on F(X)

(and on A(X)) which is maximal among all such extensions [9].
This study stimulated Mal’tsev, who believed that the most appropriate place

of the theory of abstract free groups was in the framework of the general theory of
algebraic systems, to introduce general free topological algebraic systems. In 1957,
he published the large paper [15], where the basics of the theory of free topological
universal algebras were presented.

Yet another decade later, Morris initiated the study of free topological groups
in the most general aspect. Namely, he introduced the notion of a variety of
topological groups (A definition of a variety of topological groups (determined
by a so-called varietal free topological group) was also proposed in 1951 by
Higman [16]; however, it is Morris’ definition which has proved viable and
developed into a rich theory.) and a full variety of topological groups and studied
free objects of these varieties [17–19] (see also [20]). Varieties of topological
groups and their free objects were also considered by Porst [21], Comfort and
van Mill [22], Kopperman, Mislove, Morris, Nickolas, Pestov, and Svetlichny [23],
and other authors. Special mention should be made of Dikranjan and Tkachenko’s
detailed study of varieties of Abelian topological groups with properties related to
compactness [24].

The varieties of topological groups in which free objects have been studied best
are, naturally, the varieties of general and Abelian topological groups; free and free
Abelian precompact groups have also been considered (see, e.g., [25]). However,
there is yet another natural variety—Boolean topological groups. Free objects in this
variety and its subvarieties have been investigated much less extensively, although
they arise fairly often in various studies (especially in the set-theoretic context). The
author is aware of only two published papers considering free Boolean topological
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groups from a general point of view: [26], where the topology of the free Boolean
topological group on a compact metric space was explicitly described, and [27],
where the free Boolean topological groups on compact initial segments of ordinals
were classified (see also [28]). The purpose of this paper is to draw attention to these
very interesting groups and give a general impression of them. We collect some
(known and new) results on free Boolean topological groups, which describe both
properties which these groups share with free or free Abelian topological groups and
properties specific of free Boolean groups.

We mention here Theorem 8: If dimX = 0, then indB(X) = 0, which
can be proved much more easily than the analogous result for free topological
groups. By contrast, Proposition 9 says: The free Abelian topological group on
any connected space has infinitely many connected components, however the free
Boolean topological group on any connected space has two connected components.
We record here a few of Sipacheva’s questions:

Problem 3. Does there exist a space X such that B(X) is normal, but X2 is not?
Problem 4. Describe spaces X for which B(X) is Lindelöf. Does there exist a
space X such that B(X) is Lindelöf, but X is not?
Problem 5. Does there exist a space X for which B(X) is normal (Lindelöf, ccc),
but F(X) or A(X) is not?
Problem 6. Is it true that B(X) is Weil complete for any Dieudonné complete
space X?
Problem 7. Is it true that the free (free Boolean) topological group of any
stratifiable space is stratifiable?

The article On T-Characterized Subgroups of Compact Abelian Groups by Saak
Gabriyelyan addresses T-sequences in compact abelian groups. A sequence {un} in
an Abelian group G is called a T-sequence if there is a Hausdorff group topology
on G relative to which limn un = 0. A subgroup H of an infinite compact Abelian
group X is said to be T-characterized if there is a T-sequence u = {un} in the dual
group of X such that H = {x ∈ X : (un, x)→ 1}. The author summarizes the results
in this paper as follows: “We show that a closed subgroup H of X is T-characterized
if and only if H is a Gδ-subgroup of X and the annihilator of H admits a Hausdorff
minimally almost periodic group topology. All closed subgroups of an infinite
compact Abelian group X are T-characterized if and only if X is metrizable and
connected. We prove that every compact Abelian group X of infinite exponent has a
T-characterized subgroup which is not an Fσ-subgroup of X, that gives a negative
answer to Problem 3.3 in [29]”.

The next paper we introduce is Characterized Subgroups of Topological Abelian
Groups by Dikran Dikranjan, Anna Giordano Bruno and Danele Impieri. Historically,
characterized subgroups were studied excusively in the case of the circle group
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T in the context of Diophantine approximation, dynamical systems and ergodic
theory, see for example [30]. A subgroup H of an abelian topological group
X is said to be characterized by a sequence v = (vn) of characters of X if
H = {x ∈ X : vn(x)→ 0 in T}. The authors say “we introduce the relevant class of
auto-characterized groups (namely, the groups that are characterized subgroups of
themselves by means of a sequence of non-null characters); in the case of locally
compact abelian groups, these are proven to be exactly the non-compact ones. As
a by-product of our results, we find a complete description of the characterized
subgroups of discrete abelian groups”. Amongst the questions presented in the
paper, we mention:

Question 5. Are the closed Gδ-subgroups of a precompact abelian always
N-characterized? (This is equivalent to asking if there exists a continuous
injection from X/F into Tn for every closed Gδ-subgroup F of a precompact
abelian group X.)

In the paper Fixed Points of Local Actions of Lie Groups on Real and Complex
2-Manifolds, Morris W. Hirsch surveys “old and new results on fixed points of
local actions by Lie groups G on real and complex 2-manifolds. The theme is to
find conditions guaranteeing that a compact set of fixed points of a 1-parameter
subgroup contains a fixed point of G.” The classical results of Poincaré (1885) [31],
Hopf (1925) [32] and Lefschetz (1937) [33] yield.

Theorem. Every flow on a compact manifold of nonzero Euler characteristic
has a fixed point.

The earliest papers I’ve found on fixed points for actions of other nondiscrete
Lie group are those of P. A. Smith [34] (1942) and H. Wang [35], (1952). Then came
Borel [36] with

Theorem. If H is a solvable, irreducible algebraic group over an algebraically
closed field K, every algebraic action of H on a complete algebraic variety over
K has a fixed point.”

In this paper Hirsch, in particular, puts into context the results of Sommese
(1973) [37], Lima (1964) [38], Plante (1986) [39], Bonatti (1992 ) [40], Hirsch (2001) [41],
Hirsch (2010) [42], Hirsch (2013) [43] and Hirsch (2014) [44].

Next we turn to the survey paper Open and Dense Topological Transitivity of
Extensions by Non-compact Fiber of Hyperbolic Systems – a Review by Viorel Nitica and
Andrei Török. They summarize their paper as follows: “Currently there is great
renewed interest in proving topological transitivity of various classes of continuous
dynamical systems. Even though this is one of the most basic dynamical properties
that can be investigated, the tools used by various authors are quite diverse and are
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strongly related to the class of dynamical systems under consideration. The goal of
this survey article is to present the state of art for the class of Hölder extensions of
hyperbolic systems with non-compact connected Lie group fiber. The hyperbolic
systems we consider are mostly discrete time. In particular, we address the stability
and genericity of topological transitivity in large classes of such transformations.
The paper lists several open problems, conjectures and tries to place this topic of
research in the general context of hyperbolic and topological dynamics”. The Main
Conjecture is:

Conjecture 6. Assume that X is a hyperbolic basic set for f : X → X and
Γ is a finite-dimensional connected Lie group. Among the Hölder cocycles
β : X → X with subexponential growth that are not cohomologous to a cocycle
with values in a maximal subsemigroup of Γ with non-empty interior, there is
a Hölder open and dense set for which the extension fβ is transitive.

The conjecture is proved for various classes of Lie groups. The techniques used
so far are quite diverse and seem to depend heavily on the particular properties of
the group that appears in the fiber.

The next paper we discuss is Locally Quasi-Convex Compatible Topologies on a
Topological group by Lydia Außenhofer, Dikran Dikranjan and Elena Martín-Peinador.

“Varopoulos posed the question of the description of the group topologies on an
abelian group G having a given character group H, and called them compatible
topologies for the duality (G; H), [45]. As the author explains, the question is
motivated by Mackey’s Theorem, which holds in the framework of locally convex
spaces. He treated the question within the class of locally precompact abelian groups.
Later on, this problem was set in a bigger generality in [46]; namely, within the class
of locally quasi-convex groups. This is a class of abelian topological groups which
properly contains the class of locally convex spaces, a fact which makes the attempt
to generalize the Mackey-Arens Theorem more natural”.

The authors summarize their results as follows: “For a locally quasi-convex
topological abelian group (G, τ) we study the poset C(G, τ) of all locally quasi-convex
topologies on G that are compatible with τ (i.e., have the same dual as (G, τ) ordered
by inclusion. Obviously, this poset has always a bottom element, namely the weak
topology σ(G, Ĝ). Whether it has also a top element is an open question. We
study both quantitative aspects of this poset (its size) and its qualitative aspects,
e.g., its chains and anti-chains. Since we are mostly interested in estimates ‘from
below’, our strategy consists in finding appropriate subgroups H of G that are easier
to handle and show that C(H) and C(G/H)) are large and embed, as a poset, in
C(G, τ). Important special results are: (i) If K is a compact subgroup of a locally
quasi-convex group G, then C(G) and C(G/K) are quasi-isomorphic; (ii) If D is a
discrete abelian group of infinite rank, then C(D) is quasi-isomorphic to the poset
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FD of filters on D. Combining both results, we prove that for a LCA (locally compact
abelian) group G with an open subgroup of infinite co-rank (this class includes,
among others, all non σ-compact LCA groups), the poset C(G) is as big as the
underlying topological structure of (G, τ) (and set theory) allow. For a metrizable
connected compact group X the group of null-sequences G = c0(X) with the topology
of uniform convergence is studied. We prove that C (G) is quasi-isomorphic to P(R).”
Three questions are recorded below:

Question 7.3. Let G be a non-precompact second countable Mackey group.
Is it true that |C(G)| ≥ c.
Problem 7.4. Find sufficient conditions for a metrizable precompact group G
to be Mackey (i.e., have |C(G)| = 1.)
Conjecture 7.6. [Mackey dichotomy] For a locally compact group G, one
has either |C(G)| = 1 or |C(G)| ≥ c.

Last, but certainly not least, we mention Lindelöf Σ-Spaces and R-Factorizable
Paratopological Groups by Mikhail Tkachenko. He summarizes the results as follows:
“We prove that if a paratopological group G is a continuous image of an arbitrary
product of regular Lindelöf Σ-spaces, then it is R-factorizable and has countable
cellularity. If in addition G is regular, then it is totally ω-narrow, and satisfies
celω(G) ≤ ω, and the Hewitt-Nachbin completion of G is again an R-factorizable
paratopological group”. A curious consequence of the above is Corollary 14: The
Sorgenfrey line is not a continuous of any product of regular Lindelöf Σ-spaces. We
conclude by mentioning three questions in this paper:

Problem 15. Let a (Hausdorff) paratopological group G be a continuous
image of a product of a family of Lindelöf Σ-spaces. Does G have the Knaster
property? Is it ω-narrow?
Problem 17. Let a Hausdorff (regular) paratopological group G be a
continuous image of a dense subspace of a product of separable metrizable
spaces. Is G perfectly κ-normal or R-factorizable?
Problem 18. Does every upper quasi-uniformly continuous quasi-pseudometric
on an arbitrary product of Lindelöf Σ-spaces depend at most on countably many
coordinates?

In conclusion, the collection of articles in this volume should give the reader an
overview of topological group theory as it developed over the last 115 years, as well
as the richness of current research. In this Editorial I have listed some of the open
questions in these papers which interested me, but the papers themselves contain
many more. My hope is that you, the reader, will solve some of these problems and
contribute to the future development of topological group theory.
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Pro-Lie Groups: A Survey with
Open Problems
Karl H. Hofmann and Sidney A. Morris

Abstract: A topological group is called a pro-Lie group if it is isomorphic to a
closed subgroup of a product of finite-dimensional real Lie groups. This class of
groups is closed under the formation of arbitrary products and closed subgroups
and forms a complete category. It includes each finite-dimensional Lie group,
each locally-compact group that has a compact quotient group modulo its identity
component and, thus, in particular, each compact and each connected locally-compact
group; it also includes all locally-compact Abelian groups. This paper provides an
overview of the structure theory and the Lie theory of pro-Lie groups, including
results more recent than those in the authors’ reference book on pro-Lie groups.
Significantly, it also includes a review of the recent insight that weakly-complete
unital algebras provide a natural habitat for both pro-Lie algebras and pro-Lie groups,
indeed for the exponential function that links the two. (A topological vector space
is weakly complete if it is isomorphic to a power RX of an arbitrary set of copies of
R. This class of real vector spaces is at the basis of the Lie theory of pro-Lie groups.)
The article also lists 12 open questions connected to pro-Lie groups.

Reprinted from Axioms. Cite as: Hofmann, K.H.; Morris, S.A. Pro-Lie Groups:
A Survey with Open Problems. Axioms 2016, 4, 294–312.

1. Introduction

In 1900, David Hilbert presented a seminal address to the International Congress
of Mathematicians in Paris. In this address, he initiated a program by formulating
23 problems, which influenced a vast amount of research of the 20th century. The
fifth of these problems asked whether every locally-Euclidean topological group
admits a Lie group structure, see [1]. This motivated an enormous volume of work
on locally-compact groups during the first half of the 20th century. It culminated in
the work of Gleason, Iwasawa, Montgomery, Yamabe and Zippin, yielding a positive
answer to Hilbert’s fifth problem and exposing the structure of almost connected
locally-compact groups. (Recall that a topological group G is called almost connected
if the quotient group G/G0, modulo the connected component G0 of the identity,
is compact. The class of almost connected groups includes all compact groups
and all connected locally-compact groups.) The advances in the second half of the
20th century shed much light on the structure and representation theory of locally
compact groups.
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Notwithstanding this, it was recognized that the class of locally-compact groups
is obviously deficient in that it is not even closed under the formation of arbitrary
products. It was unclear which class of topological groups would most appropriately
extend the class of finite-dimensional Lie groups and avoid this defect.

At the beginning of the 21st century, the authors of this survey introduced the
class of pro-Lie groups [2–4]. This class contains all finite-dimensional Lie groups,
all compact groups, all locally-compact Abelian groups and all almost connected
locally-compact groups. It is characterized as the class of all closed subgroups of
arbitrary products of finite-dimensional Lie groups. Obviously, it is closed under the
formation of arbitrary products and even the passage to closed subgroups.

This notion of pro-Lie group differs from that used in the late 20th century, where
a group G is called a pro-Lie group if it is locally compact and contains arbitrarily
small compact normal subgroups N, such that G/N is a finite-dimensional Lie group.

In order to understand the structure of pro-Lie groups in our sense, we
developed a highly infinite-dimensional Lie theory of considerable complexity
(see [5] and subsequent publications [6–8]). This Lie theory assigns to each pro-Lie
group G a pro-Lie algebra g and an exponential function exp : g → G. This
approach was exploited very successfully in [9] for compact groups and was found
to be an eminently useful extension of the classical theory of real Lie groups of
finite dimension.

The theory of an n-dimensional real Lie group is based on the fact that open
subsets of Rn have a rich differentiable structure that is transported to the group,
allowing a differentiable multiplication and inversion in the group. It has been
an ongoing effort to replace Rn by more general, possibly infinite-dimensional,
topological vector spaces supporting differentiable structures. The most advanced
such theory is the theory of Lie groups on differentiable or smooth manifolds
modeled on open subsets of locally-convex vector spaces and their real analysis as
used by Helge Glöckner and Karl-Hermann Neeb (see [10–12]). One may justifiably
ask how the theory of pro-Lie groups and the theory of infinite-dimensional
differentiable Lie groups in their spirit are related. It was shown in [13] that a pro-Lie
group is a smooth Lie group in their sense if and only if it is locally contractible.

The theory of pro-Lie groups has been described in detail in the 678-page
book [5] in 2007 and in later papers. An endeavor to summarize that work would
therefore be futile. Rather, in this survey, we highlight central results and explain
some key open problems.

The purely theoretical foundation of, and motivation for, the theory of pro-Lie
groups, however, must be complemented by an outlook to areas in which they
emerge naturally and by necessity. Section 8 therefore deals with the appearance of
pro-Lie groups in the so-called character theory of Hopf algebras, which received
attention in recent publications [14].
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2. The Topology of Pro-Lie Groups

It has become a standard result in the literature that every connected
locally-compact Abelian group is homeomorphic to Rn × K where K is a compact
connected Abelian group (see, e.g., [9], Theorem 7.57). The non-Abelian version of
this (see [15], p. 188f) says that a connected locally-compact group is homeomorphic
to Rn × K, where K is a compact connected group. We shall see in this section that
a connected pro-Lie group is homeomorphic to Rm × K where m is an arbitrary
cardinal and K is a compact connected group. This is convincing evidence that
connected pro-Lie groups represent a natural extension of connected locally-compact
groups. We also see from this observation that the pro-Lie group RI , for an arbitrary
set I, is a critical example of a pro-Lie group. We shall return to this theme repeatedly
in this text.

We shall give now a complete description of the topological structure of an
almost connected pro-Lie group [16]. We present it here because it is perhaps easily
understood without too much background information. A complete proof of the
result is far from elementary or short.

A compact connected group S is said to be semisimple if its algebraic
commutator subgroup is the whole group. Let us preface the main result by the
remark that we know very explicitly the structure of compact connected semisimple
groups from [9], Theorem 9.19. It is also a fact that in such a group, every element is
itself a commutator.

Likewise, the structure of a compact connected Abelian group A is well
understood. Indeed, a compact Abelian group A is connected if and only if its
Pontryagin dual is a torsion-free Abelian group (see [9], Corollary 8.5). This allows
the determination of details of the structure of such a group, as is expounded in [9],
Chapter 8.

We denote by Z(n) the n-element group Z/nZ.
With this notation and information at hand, one can appreciate the power of the

following result:

Theorem 1. ([7], Corollary 8.9, p. 381) An almost connected pro-Lie group G contains a
compact connected semisimple subgroup S and a compact connected Abelian subgroup A,
such that for suitable sets I and J, the topological group G is homeomorphic to the topological
group RI × S× A× ∆, where:

∆ =

{
Z(n), if G has finitely many components,

Z(2)J , otherwise.

This result allows several immediate corollaries, which are of interest for the
topology of pro-Lie groups.
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Corollary 1. The space underlying an almost connected pro-Lie group is a Baire space.

This follows from Theorem 1 and Oxtoby’s results in [17].

Corollary 2. Every almost connected pro-Lie group is homotopy equivalent to a
compact group.

Indeed, RI is homotopy equivalent to a singleton. The algebraic topology of an
almost connected pro-Lie group therefore is that of a compact group (cf. [9]).

Corollary 3. An almost connected pro-Lie group is locally compact if and only if in
Theorem 1, the set I is finite.

At the root of Theorem 1 is the following main theorem generalizing the
Theorem on p. 188ff in [15].

Theorem 2. ([7], Main Theorem 8.1, p. 379) Every almost connected pro-Lie group G has
a maximal compact subgroup M, and any other compact subgroup is conjugate to a subgroup
of M. Moreover,

(1) G = G0M,
(2) M0 = G0 ∩M, and
(3) M0 is a maximal compact subgroup of G0.

We record that the results of Theorem 2 enter into a proof of Theorem 1 in an
essential way. In the process of proving Theorem 1, one also establishes the following
theorem, which is more concise than Theorem 1 if one assumes the structure theory
of compact groups as presented in [9].

Theorem 3. ([7], Theorem 8.4) Let G be an almost connected pro-Lie group, and M a
maximal compact subgroup of G. Then, G contains a subspace E homeomorphic to RI ,
for a set I, such that (m, e) 7→ me : M × E → G is a homeomorphism. Thus, G is
homeomorphic to RI ×M.

3. Pro-Lie Groups as Projective Limits of Lie Groups

We have defined pro-Lie groups as closed subgroups of products of
finite-dimensional real Lie groups. In fact, they can be equivalently defined as special
closed subgroups of such products, namely projective limits of finite-dimensional
Lie groups.

At first pass, this is surprising, and its proof requires some effort.
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Definition 1. A family { f jk : Gj → Gk|j, k ∈ J} of morphisms of topological groups is
called a projective system if J is a directed set satisfying the conditions:

(a) for all j ∈ J, f jj is the identity map of Gjj, and
(b) for i, j, k ∈ J with i ≤ j ≤ k, we have fik = fij ◦ f jk.

Given a projective system of morphisms of topological groups, we define a closed
subgroup G of the product ∏j∈J Gj to be the set {(gi)i∈J : gj = f jk(gk) for all j ≤ k in J}.
This group G is called the projective limit (of the projective system), denoted by limj∈J Gj.

When we say in the following that a subgroup N of a topological group G is a
co-Lie subgroup, we mean that N is a normal closed subgroup, such that the factor
group G/N is a Lie group.

Theorem 4. ([5,18], Theorem 3.39 on p. 161, [6,19]) For a topological group G, the
following conditions are equivalent.

(1) G is complete, and every identity neighborhood contains a co-Lie subgroup.
(2) G is a projective limit of Lie groups.
(3) G is a pro-Lie group.

This theorem, by the way, explains the choice of the name “pro-Lie group.”
(See also [20].) There is a considerable literature on the projective limits of finite
discrete groups, called profinite groups (see [21,22]). Furthermore, amongst the
pro-Lie groups, there are the prodiscrete groups, namely projective limits of discrete
groups or, equivalently, closed subgroups of products of discrete groups. There is not
much literature on prodiscrete groups. We formulate the following open question
Question 1: Is there a satisfactory structure theory for non-discrete prodiscrete
groups? More particularly, is there a satisfactory structure theory even for Abelian
non-discrete prodiscrete groups?

We do know that a quotient group of a pro-Lie group modulo a closed subgroup
is a pro-Lie group if the quotient group is complete (see [5], Theorem 4.1.(i), p.170).
One may reasonably ask whether, for a pro-Lie group G and a closed normal
subgroup N, we have sufficient conditions for G/N to be complete and therefore a
pro-Lie group (cf. [23]).

Theorem 5. ([5], Theorem 4.28, p. 202) Let G be a pro-Lie group and N a closed normal
subgroup of G. Each of the following condition suffices for G/N to be a pro-Lie group:

(i) N is almost connected, and G/G0 is complete.
(ii) N satisfies the first axiom of countability.

(iii) N is locally compact.
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The answer to following question is unknown:
Question 2: Let G be a pro-Lie group with identity component G0. Is G/G0 complete
(and therefore, prodiscrete)?

Indeed, this is the case when G is Abelian; see Theorem 6(iii) below.

4. Weakly-Complete Vector Groups

In this section, we discuss the previously mentioned connected pro-Lie groups
RI , for a set I. For infinite sets I, these are the simplest connected pro-Lie groups
outside the class of locally-compact groups. However they will appear many times
in the Lie theory we shall present. In particular, they feature in the structure theory
of Abelian pro-Lie groups.

All vector spaces considered here are understood to be vector spaces over R.
For a vector space E, let Hom(E,R) denote the set of all linear functionals on E with
the vector space structure and topology it inherits from RE, the vector space of all
functions E→ R with the product topology.

Proposition 1. For a topological vector space V, the following conditions are equivalent:

(1) There is a vector space E, such that the topological vector spaces Hom(E,R) and V
are isomorphic as topological groups.

(2) There is some set I, such that V is isomorphic to RI with the product topology.

Definition 2. A topological vector space V is called weakly complete if it satisfies the
equivalent conditions of Proposition 1.

Every weakly-complete vector space is a nuclear locally-convex space (see [24],
p. 100, Corollary to Theorem 7.4, p. 103). The vector space E in Proposition 1 is
obtained as the vector space of all continuous linear maps V → R. In fact, the
category of all weakly-complete vector spaces and continuous linear maps between
them is dual to the category of all vector spaces and linear maps between them in a
fashion analogous to the Pontryagin duality between compact Abelian groups and
discrete Abelian groups (see [9], Theorem 7.30, [5], Appendix 2: Weakly Complete
Topological Vector Spaces, pp. 629–650).

Theorem 6. ([5], Theorem 5.20, p. 230) For any Abelian pro-Lie group G, there is a
weakly-complete vector subgroup V and a closed subgroup H, such that (in additive notation):

(i) (v, h) 7→ v + h : V × H → G is an isomorphism of topological groups.
(ii) H0 is a compact connected Abelian group, and every compact subgroup of G is

contained in H.
(iii) H/H0 ∼= G/G0, and, thus, G/G0 is prodiscrete.
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(iv) If Ga and Ha are the arc components of the identity of G and H, respectively, then
Ga = V ⊕ Ha.

We note that in the present circumstances, the positive answer to Question 2
expressed in Conclusion (iii) follows from the compactness of H0 via Theorem 5.

We have seen that products of pro-Lie groups are pro-Lie groups and that closed
subgroups of pro-Lie groups are pro-Lie groups. As a consequence, projective limits
of pro-Lie groups are pro-Lie groups.

In Section 7 of [25], Banaszczyk introduced nuclear Abelian groups. Since
all Abelian Lie groups are nuclear and the class of nuclear groups is closed under
projective limits, all Abelian pro-Lie groups are nuclear. (See also [26].)

In these circumstances, it is somewhat surprising that quotient groups of pro-Lie
groups may fail to be pro-Lie groups. Indeed, as we shall see in the next Proposition 2,
there is a quotient group of a very simple Abelian pro-Lie group, namely of R2ℵ0 ,
which is an Abelian topological group that is not complete and, therefore, is not
a pro-Lie group. However, this situation is not as concerning as it might first
appear, because every quotient group of a pro-Lie group has a completion, and
the completion is a pro-Lie group.

We consider the unit interval I = [0, 1] as representative for the sets of continuum
cardinality 2ℵ0 . Let δn ∈ Z(N) be defined by:

δn = (emn)m∈N, emn =

{
1 if m = n,

0 otherwise.

Then, B = {δn : n ∈ N} generates the free Abelian group Z(N) algebraically.

Proposition 2. ([5], Proposition 5.2, p. 214) The free Abelian group Z(N) of
countably-infinite rank has a non-discrete topology making it a prodiscrete group F, so
that the following conditions are satisfied:

(i) F is a countable non-discrete non-metrizable pro-Lie group, which therefore is not a
Baire space.

(ii) F can be considered as a closed subgroup of V = RI with dense R-linear span in V,
so that V/F is an incomplete group whose completion is a compact-connected and
locally-connected, but not arcwise-connected group.

(iii) Every compact subset of F is contained in a finite rank subgroup.

The structure theory results we discussed permit us to derive results on the
duality of Abelian pro-Lie groups. Recall that this class contains the class of all
locally-compact Abelian groups properly and is contained in the class of all Abelian
nuclear groups.
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For any Abelian topological group G, we let Ĝ = Hom(G,T) denote its dual
with the compact open topology, where T = R/Z (see e.g., [9], Chapter 7). There

is a natural morphism of Abelian groups ηG : G → ̂̂G given by ηG(g)(χ) = χ(g),
which may or may not be continuous; information regarding this issue is to be found
for instance in [9], notably in Theorem 7.7. We shall call an Abelian topological

group semireflexive if ηG : G → ̂̂G is bijective and reflexive if ηG is an isomorphism
of topological groups; in the latter case, G is also said to have duality (see [9],
Definition 7.8).

There is an example of a non-discrete, but prodiscrete Abelian torsion group
due to Banaszczyk (see [25], p. 159, Example 17.11), which is semireflexive, but not
reflexive (see also [5], Chapter 14, p. 595, Example 14.15; attention: in Line 2 of the
text of this example, read Nα = Z(2)({ν: ν≥α}), not ν < α). Therefore, we know that
the category of Abelian pro-Lie groups is not self-dual under Pontryagin duality.

Theorem 7. ([5] Theorem 5.36, p. 239) Every almost connected Abelian pro-Lie group is
reflexive, and its character group is a direct sum of the additive topological group of a real
vector space endowed with the finest locally-convex topology and a discrete Abelian group.
Pontryagin duality establishes a contravariant functorial bijection between the categories of
almost connected Abelian pro-Lie groups and the full subcategory of the category of topological
Abelian groups containing all direct sums of vector groups with the finest locally-convex
topology and discrete Abelian groups.

By this theorem, duality applies to almost connected Abelian Lie groups. In
particular, we recall that weakly-complete topological vector spaces have a good
Pontryagin duality. By Theorem 7 above, the issue of duality of Abelian pro-Lie
groups is reduced to groups with a compact identity component. Amongst this class
there are all prodiscrete groups. In particular, nothing is known about the duality of
prodiscrete Abelian groups. As all Abelian pro-Lie groups are nuclear, whatever is
known on the duality of nuclear Abelian groups applies to pro-Lie groups.
Question 3: Which Abelian pro-Lie groups are reflexive?
Question 4: Which Abelian pro-Lie groups are strongly reflexive in the sense that all
of their subgroups and Hausdorff quotient groups are reflexive?

5. The Open Mapping Theorem

We have just dealt with the question of whether a quotient group of a pro-Lie
group is a pro-Lie groups, and we have seen that the answer is negative sometimes.
We now deal with the question when a surjective morphism of pro-Lie groups
is a quotient morphism. Specifically, let f : G → H be a surjective morphism
of pro-Lie groups. Does this imply that f is an open mapping? This question
is answered negatively in any first course on topological groups by the example
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of G = Rd, the additive group of reals with the discrete topology and H = R
with its natural topology. The quest for sufficient conditions that would secure
the openness is answered by any of the so-called “open mapping theorems” in the
classical literature in functional analysis and in the theory of topological groups.
These impose countability conditions on G and a Baire space hypothesis on H. The
latter is provided by such properties as complete metrizability, local compactness
or the pro-Lie group property. If σ-compactness is taken as a countability condition
on G, then the Baire space property of H will force local compactness upon G/ ker f .
The induced bijection G/ ker f → H is an isomorphism if and only if f is open.
Therefore, settling the issue for bijective f cannot be much of a restriction, assuming
that the properties envisaged for G are preserved by passing to quotients.

Whichever way the issue is looked at, the proof of an open mapping theorem for
pro-Lie groups [27,28] is quite different from all other open mapping theorems
we know.

Once more, we encounter the class of almost connected pro-Lie groups as that
class on which our methods, notably a Lie theory, which we have yet to discuss,
yields an expected result.

Theorem 8. ([5], 9.60, p.409f) [6,19]) Let G and H be pro-Lie groups, and let f : G → H
be a surjective continuous homomorphism. Then, f is an open mapping if G is almost
connected. In particular, the natural bijective morphism G/ ker f → H is an isomorphism
of topological groups.

The last conclusion yields another instance of a quotient group of a pro-Lie
group, which is again a pro-Lie group, giving us a sufficient condition not included
in Theorem 5 above, namely G is almost connected, and N is the kernel of a morphism
onto a pro-Lie group.

A further corollary of our open mapping theorem is the following form of the
second isomorphism theorem for pro-Lie groups:

Corollary 4. Assume that N and H are two closed almost connected subgroups of a
topological group with N being normal, and assume that NH is a pro-Lie group. Then,
H/(N ∩ H) ∼= NH/N. Moreover, the natural morphism µ : N o H → NH, mu(n, h) =
nh is a quotient morphism (where H is acting as an automorphism group on N via inner
automorphisms.

Noting that ZI is a pro-Lie group, but is not Polish, unless I is countable (see [5],
pp. 235, 236, notably Lemma 5.30), we ask:
Question 5: Is a surjective morphism f : ZI → K onto a compact group open for
every set I?
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The results in Theorem 8 and in Chapter 5 of [5] do not answer this question. If
I is countable, then ZI is a Polish group, and an open mapping theorem applies in
this case and gives an affirmative answer. The open mapping theorem for Pro-Lie
groups does not apply, since ZI is never almost connected for I nonempty.

Added in Proof: Saak Gabriyelyan and the second author have recently
announced a positive answer to Question 5.

6. Lie Theory

We started our discussion with a presentation of some remarkable structure
theorems on almost connected pro-Lie groups. It is not surprising that the proofs of
such results require some powerful tools. The crucial tool for a structure theory of
pro-Lie groups is their Lie theory. It is a challenge to explain what we mean by “Lie
theory.” Minimally, one wants to attach to each pro-Lie group G a Lie algebra L(G)

with characteristics making it suitable for an exploitation of its topological algebraic
structure for the topological group structure of the pro-Lie group G. Guided by
our knowledge of classical Lie group theory, we shall link the group G with its Lie
algebra L(G) by an exponential function exp : L(G)→ G, which mediates between
Lie algebra theoretical properties of L(G) and group theoretical properties of G.

As a start, for each X ∈ L(G), the function t 7→ exp(t.X) : R→ G is a morphism
of topological groups. Tradition calls a morphism f : R→ G of topological groups a
one-parameter subgroup of G (admittedly, a misnomer). In classical Lie theory, every
one-parameter subgroup is obtained via the exponential function in this fashion. In
other words, however one defines a Lie algebra and an exponential function, it must
establish a bijection β from the elements of the Lie algebra L(G) to the set Hom(R, G)

of one-parameter subgroups of G, so that the following diagram commutes:

L(G)
exp−−−−→ G

β

y yidG

Hom(R, G) −−−−→
f 7→ f (1)

G

Therefore, if we are given a topological group G, as a first step, we may think
of L(G) as Hom(R, G) with a scalar multiplication, such that r.X(s) = X(sr) for
X ∈ L(G) and r, s ∈ R. If G has an additional structure, such as that of a pro-Lie
group, we will obtain the additional structure on L(G). Therefore, if G is a closed
subgroup of a product P = ∏i∈I Gi of finite-dimensional Lie groups, then an element
X ∈ L(P) may be identified with an element (Xi)i∈I of ∏i∈I L(Gi), and an element
X of this kind is in L(G) simply if X(R) ⊆ G. As Gi is a finite-dimensional Lie
group, each L(Gi) has the structure of a Lie algebra, L(P) is both a weakly-complete
topological vector space and a topological Lie algebra. Since G is a closed subgroup
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of P, it is elementary that L(G) is closed in L(P), both topologically and in the sense
of Lie algebras.

Definition 3. A pro-Lie algebra g is a topological real Lie algebra isomorphic to a closed
subalgebra of a product of finite-dimensional Lie algebras.

Clearly, every pro-Lie algebra has a weakly-complete topological vector space
as the underlying topological vector space. In complete analogy to Theorem 4, we
have the following characterization [29]:

Theorem 9. ([5], p. 138ff) For a topological Lie algebra g, the following conditions
are equivalent:

(1) g is complete, and every neighborhood of zero contains a closed ideal i, such that the
Lie algebra g/i is finite-dimensional.

(2) g is a projective limit of finite-dimensional Lie algebras.
(3) g is a pro-Lie algebra.

One notes that our procedure of identifying L(G) = Hom(R, G) for a pro-Lie
group G with the structure of a pro-Lie algebra yields an exponential function
exp : L(G) → G by exp X = X(1) for X : R → G in L(G). The implementation of
this setup is secured in [5], summarized in the following:

Theorem 10. To each pro-Lie group, there is uniquely and functorially assigned a pro-Lie
algebra L(G) together with an exponential function expG : L(G) → G, such that every
one-parameter subgroup of G is of the form t 7→ exp t.X : L(G)→ G with a unique element
X ∈ L(G) and that the subgroup 〈expL(G)〉 generated by all one parameter subgroups is
dense in the identity component G0 of the identity in G.

To each pro-Lie algebra g there is a uniquely- and functorially-assigned connected
pro-Lie group Γ(g) with Lie algebra g, and for each pro-Lie group G with Lie algebra L(G)

permitting an isomorphism f : g→ L(G) of pro-Lie algebras, there is a unique isomorphism
of pro-Lie groups fΓ : Γ(g)→ G, such that the following diagram is commutative with exp
denoting the exponential function of Γ(g):

g
exp−−−−→ Γ(g)

f
y y fΓ

L(G) −−−−→
expG

G

A pro-Lie group G is prodiscrete if and only if it is totally disconnected if and only if
L(G) = {0}. Further, Γ(g) is always simply connected.
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Sophus Lie’s third theorem applies and is perfectly coded into the existence of
the functor Γ. The exactness properties of the functor L are well understood (see [5],
Theorem 4.20, p. 188). Structural results, such as we discussed at the beginning
of our survey, are all based on a thorough application of the Lie theory of pro-Lie
groups. Since L(G) = L(G0) from the very definition of L(G), in the strictest sense
it applies to connected pro-Lie groups, we saw that the essential facts reach out to
almost connected pro-Lie groups.

Of course, since every locally-compact group has an open subgroup that is an
almost connected pro-Lie group, this Lie theory applies to all locally-compact groups.

In classical Lie theory, Lie algebras are more directly amenable to structural
analysis than Lie groups, as they are purely algebraic. While pro-Lie algebras are
both topological and algebraic, they are nevertheless more easily analyzed than
pro-Lie groups, as well.

Let us look as some characteristic features of pro-Lie algebras.

Definition 4. A pro-Lie algebra g is called:

(i) reductive if every closed ideal is algebraically and topologically a direct summand,
(ii) prosolvable if every finite-dimensional quotient algebra is solvable,

(iii) pronilpotent if every finite-dimensional quotient algebra is nilpotent.

The center of g is denoted z(g). A pro-Lie algebra is called semisimple if it is reductive
and satisfies z(g) = {0}.

Theorem 11. ([5] Theorem 7.27, p. 283) A reductive pro-Lie algebra g is a product of
finite-dimensional ideals, each of which is either simple or else is isomorphic to R.

The algebraic commutator algebra [g,g] is closed and a product of simple ideals.
Furthermore,

g = z(g)⊕ [g,g],

algebraically and topologically.

If a maximal prosolvable (respectively, pronilpotent) ideal of a pro-Lie algebra
g exists, it is called the (solvable) radical r(g) (respectively, the nilradical n(g)). If
there is a smallest closed ideal i of g, such that g/i is reductive, then we call it the
co-reductive radical ncored(g) of g.

Theorem 12. ([5], Chapter 7) Every pro-Lie algebra has a radical, a nilradical and a
co-reductive radical, and:

ncored(g) ⊆ n(g) ⊆ r(g).
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Moreover,
ncored(g) = [g,g] ∩ r(g) = [g, r(g)].

There is a closed semisimple subalgebra s, such that g = r(g)⊕ s, where (r, s) 7→
r + s : r(g) × s → g is an isomorphism of weakly-complete topological vector spaces
(Levi–Mal’cev decomposition). Moreover,

[g,g] = ncored(g)⊕ s.

All of this fine structure can be translated to the group level with due
circumspection and ensuing complications. One can get an idea of this translation
from the process of Lie’s third theorem. Among other things, Theorem 10 yields for
each of the pro-Lie algebras g a pro-Lie group Γ(g) with an exponential function
exp : g→ Γ(g).

If g is pronilpotent, then exp is a homeomorphism. In fact, the Baker–Campbell–
Hausdorff series is summable on the weakly-complete topological vector space g
yielding a binary operation ?, so that for Γ(g), we may take (g, ?) and for exp the
identity map. This applies, in particular, to the co-reductive radical ncored(g), for
which g/ncored(g) is reductive.

For reductive g, however, the product structure of g expressed in Theorem 10
carries over to a clean product structure:

Γ(g) ∼= RI ×∏
j∈J

Sj

for a family of simply-connected simple real Lie groups Sj, producing, in fact,
a simply-connected reductive group Γ(g).

These observations show again how far connected pro-Lie groups reach outside
the domain of locally-compact connected groups while their structure remains close
to that which is familiar from finite-dimensional Lie groups due to a fairly lucid
topological-algebraic structure of pro-Lie algebras. We note that for every connected
pro-Lie group G withL(G) ∼= g, one has a morphism f : Γ(g)→ G with a prodiscrete
kernel and a dense image, such that the following diagram is commutative:

g
expΓ(g)
−−−−→ Γ(g)

∼=
y y f

L(G) −−−−→
expG

G

In [5], it is demonstrated that this tool allows a structural analysis of G.
For instance, the existence of the various radicals of a pro-Lie algebra has its

correspondence in respective radicals in any connected pro-Lie group. For example,
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every connected pro-Lie group G has a unique largest normal connected solvable
subgroup R(G), called its (solvable) radical. If G is any topological group whose
identity component G0 is a pro-Lie group, then one writes R(G) = R(G0) and also
calls R(G) the radical of G.

The volume of additional details of the theory of pro-Lie algebras and connected
pro-Lie groups presented in [5] is immense. It cannot be expected that a survey such
as this can do complete justice to it.

7. Later Developments

In this section, we report on some developments in the theory of pro-Lie groups
since the appearance of [5]. Of course, we have already included some important
material, which appeared subsequent to [5], namely [7,13].

The article [7] contributed the insight that some essential structure theorems
on connected pro-Lie groups could be formulated so as to include almost connected
pro-Lie groups. This provided a common generalization of the structure theories of
connected pro-Lie groups and compact groups. This generalization is both significant
and satisfying. In this survey, this was illustrated by Theorem 1 and its corollaries
and Theorems 2 and 3.

Hofmann-Morris [7] contains another interesting result, which we think has yet
to be exploited in the literature.

Theorem 13. Let G be an arbitrary topological group whose identity component G0 is a
pro-Lie group. Then, there is a closed subgroup G1 whose identity component is the radical
R(G), such that the following conditions hold:

(i) G = G0G1 and G0 ∩ G1 = R(G).
(ii) The factor group G/R(G) is the semidirect product of the connected normal subgroup

G0/R(G) and the totally disconnected closed subgroup G1/R(G).
(iii) In particular,

G
G0
∼=

G/R(G)

G0/R(G)
=

G/R(G0)

G0/R(G0)
∼=

G1

(G1)0

with a prosolvable pro-Lie group (G1)0.

The significance of Theorem 13 emerges even when it is specialized to the case
that G is a pro-Lie group. As was emphasized by formulating Question 2, we do
not know whether the component factor group G/G0 is complete and, therefore, is
a prodiscrete group. Theorem 13 reduces the problem to the case that the identity
component of G is prosolvable. For instance, we obtain a positive answer to
Question 2 if we know that the radical R(G) is locally compact or first countable (see
Theorem 5 above).
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In the process of extending the structure theory of pro-Lie groups from
connected ones to almost connected ones, G. Michael, A.A. has proven the following
structure theorem guaranteeing a local splitting, provided the nilradical is not too
big on the Lie algebra side.

Theorem 14. ([8,30]) Assume that G is an almost connected pro-Lie group G whose Lie
algebra g has a finite-dimensional co-reductive radical ncored(g). Then, there are arbitrarily
small closed normal subgroups N, such that there exists a simply-connected Lie group LN
and a morphism α : LN → G, such that the morphism:

(n, x) 7→ nα(x) : N × LN → G

is open and has a discrete kernel. In particular, G and N × LN are locally isomorphic.

Let us recall Iwasawa’s local splitting theorem for locally-compact groups as it
is reported in [9], Theorem 10.89.

Theorem 15. Let G be a locally-compact group. Then, there exists an open almost connected
subgroup A, such that for each identity neighborhood U, there is:

— a compact normal subgroup N of A contained in U,
— a simply-connected Lie group L, and
— an open and continuous surjective morphism φ : N × L→ A with a discrete kernel,

such that φ(n, 1) = n for all n ∈ N.

The way to compare the two preceding theorems is to look at the Lie algebra g
of G in Theorem 15. We notice that g = L(N)⊕ l, l = L(L). As the Lie algebra of a
compact group N of the first direct summand is of the form L(N) = c⊕ s1 with a
central ideal c and a compact semisimple ideal s1, the finite-dimensional Lie algebra
l has a Levi–Mal’cev decomposition r⊕ s2 with its radical r and a finite-dimensional
semisimple subalgebra s2, so that we have:

g = (c⊕ s1)⊕ (r+sdir s2) = (r⊕ c) +sdir (s1 + s2).

We observe that the radical r(g) is r ⊕ c and that the co-reductive radical
ncored(g) of g are contained in the finite-dimensional subalgebra r and are, therefore,
finite-dimensional. The hypothesis that was imposed in Theorem 14, namely that
the Lie algebra dimension of the co-reductive radical is finite, thus emerges as a
necessary condition in the more classical Iwasawa local decomposition theorem of
locally-compact groups. Additional comments on the local decomposition of pro-Lie
groups may be found in [31].
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8. A Natural Occurrence of Pro-Lie Groups and Pro-Lie Algebras

We emphasized that weakly-complete topological vector spaces play an essential
role in the theory of pro-Lie groups and pro-Lie algebras. Now, we record that they
are crucial in describing a mathematical environment where they occur naturally;
this was pointed out recently in [14]. Each of the categories of real vector spaces and
of their dual category of weakly-complete topological vector spaces (see Section 3,
Definition 3.2ff) in fact has a tensor product (see [14], Appendix C, notably C4,
and [32]), making each of them a commutative monoidal category (see, e.g., [9],
Appendix 3, Definition A3.62 ff). Let us denote by V the category of (real) vector
spaces E, F . . . , and of linear maps, equipped with the usual tensor product E⊗ F,
and let us callW the category of weakly-complete vector spaces V, W, . . . , etc., with
continuous linear maps, equipped with the (completed) tensor product V⊗̃W. Then,
a monoid in W (see [9] Appendix 3, the discussion preceding Definition A3.64)
is a weakly-complete topological (associative) algebra with identity, specifically, a
morphism m : A⊗̃A → A plus a morphism R → A representing the identity (see

also [32]). Its dual E def
= A′ = Hom(A,R) then is an (associative unital) coalgebra

m′ : E→ E⊗ E with a coidentity (augmentation) u : E→ R. The theory of coalgebras
(see [33]) culminates in one theorem holding without any further hypotheses:

Theorem 16. (The fundamental theorem of coalgebras [33], 4.12, p. 742) Each
associative unitary coalgebra is the directed union of its finite-dimensional unitary
sub-coalgebras.

By duality this implies at once Rafael Dahmen’s fundamental theorem of
weakly-complete algebras.

Theorem 17. (Fundamental theorem of weakly-complete algebras [14]) For every
weakly-complete associative unital algebra A, there is a projective system of surjective linear
morphisms f jk : Ak → Aj, j ≤ k, j, k ∈ J of finite-dimensional associative unital algebras
and a natural isomorphism φA : A→ limj∈J Aj onto the projective limit of this system.

Conversely, by definition, every projective limit of finite-dimensional real unital
associative algebras is a weakly-complete associative unital algebra.

Every associative algebra A becomes a Lie algebra ALie when it is equipped

with the commutator bracket (x, y) 7→ [x, y] def
= xy− yx. Each of the Lie algebras

(Aj)Lie with j ∈ J is finite-dimensional. From Theorem 17 and the Definition 3 plus
Theorem 9, we thus have:

Corollary 5. For every weakly-complete associative unital algebra A, the Lie algebra ALie

is a pro-Lie algebra, and φA : ALie → limj∈J(Aj)Lie is an isomorphism of pro-Lie algebras.
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Each of the morphisms f jk maps the group A−1
k of units, that is invertible

elements, into the group of units A−1
j , and so, we obtain a natural isomorphism:

φA|A−1 : A−1 → lim
j∈J

A−1
j .

Now, every A−1
j is a (linear) Lie group (see [5], Chapter 5, 5.1–5.32) with exponential

function expAj
: (Aj)Lie → A−1

j . By Theorem 4, as a consequence, we have
Dahmen’s corollary.

Corollary 6. ([14], Proposition 5.4) The group A−1 of units of every weakly-complete
associative unital algebra A is a pro-Lie group with Lie algebra ALie and exponential function:

expA : ALie → A−1, exp(x) = 1 + x +
1
2!

x2 +
1
3!

x3 + · · · .

What we have exposed here is the basis of a theory that applies to group
objects in the commutative monoidal category W as defined in [9], Definition
A3.64(ii). These objects are commonly called Hopf algebras, and so, we shall fix the
following definition.

Definition 5. A weakly-complete Hopf algebra is a group object in W according to
Definition A3.64(ii) of [9].

In particular, the multiplicative structure of a weakly-complete Hopf algebra A
is a weakly-complete associative unital algebra. It also has a comultiplication c : A→
A⊗̃A linked with the multiplication m : A⊗̃A → A through several commutative
diagrams, for which we refer to [9], A3.63(ii), and which express the fact that c is
indeed a morphism of algebras.

Definition 6. Let A be a weakly-complete Hopf algebra with a comultiplication c. An
element x ∈ A is called group-like if it satisfies c(x) = x⊗̃x and u(x) = 1, and it is called
primitive if it satisfies c(x) = x⊗̃1 + 1⊗̃x. The set of group-like (respectively, primitive)
elements will be denoted by G(A) (respectively, P(A)).

One shows the following fact:

Theorem 18. G(A) is a closed subgroup of A−1, the group of units of the underlying
algebra, and P(A) is a closed Lie subalgebra of ALie.

The link to the previous remarks is provided by the following theorem:
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Theorem 19. Let A be a weakly-complete Hopf algebra. Then, the set of group-like elements
G(A) is a pro-Lie group, and the set of primitive elements P(A) is a pro-Lie algebra and is
the Lie algebra of G(A) with the exponential function:

expA |P(A) : P(A)→ G(A)

with the restriction of the exponential function of Corollary 5.

A proof is based on the fact that for the algebra morphism c, we have
expA ◦c = c ◦ (expA ⊗̃ expA). If x is primitive, then c(x) = (x⊗̃1) + (1⊗̃x), and
thus, c(exp x) = exp(c(x)) = exp((x⊗̃1) + (1⊗̃x)) = (exp x⊗̃1)(1⊗̃ exp x) =

exp x⊗̃ exp x. Therefore, exp maps P(A) into G(A). To see the converse, let
t 7→ exp t·x : R → G(A) be a one-parameter subgroup. Then, exp t·x is group-like
for all t, i.e.,

exp t·c(x) = exp c(t·x) = c(exp t·x) = (exp t·x)⊗̃(exp t·x)
=
(
(exp t·x)⊗̃1

)(
1⊗̃(exp t·x)

)
= exp(t·x⊗̃1) exp(1⊗̃t·x) = exp((t·x⊗̃1) + (1⊗̃t·x))
= exp t·(x⊗̃1 + 1⊗̃x), for all t ∈ R,

and this implies:
c(x) = x⊗̃1 + 1⊗̃x

which means x ∈ P(A).
If the weakly-complete Hopf algebra A arises as the dual of an (abstract) Hopf

algebra H (i.e., a group object in V), then the members of G(A) are multiplicative
linear functionals on H, the so-called characters of H. Thus, Theorem 19 may be
interpreted as saying that the character group of a Hopf algebra is a pro-Lie group
(see also Theorem 5.6 in [14]).

The simplest example is A = R[[x]], the algebra of formal power series in
one variable. As a vector space, A is isomorphic to R{1,x,x2,... }, and this is weakly
complete. Then, A⊗̃A is isomorphic to R[[y, z]], the formal power series algebra
in two commuting variables y and z. The algebra morphism R[[x]] → R[[y, z]]
generated by x 7→ y + z gives a comultiplication c : A → A⊗̃A making A into a
weakly-complete Hopf algebra. The multiplicative subgroup G(A) = {exp t·x : t ∈ R}
is a Lie group isomorphic to (R,+), and P(A) ∼= R·x is (trivially) a Lie algebra
mapped by exp onto G(A).
Question 6: (i) Is there a more elaborate duality theory of real Hopf algebras and
weakly-complete Hopf algebras in which these facts on pro-Lie group and pro-Lie
algebra theory play a role?
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(ii) Does the existence of weakly-complete enveloping algebras of weakly-
complete Lie algebras secure for each pro-Lie algebra L, an associative weakly-
complete Hopf Algebra U(L), such that L is isomorphic to a closed Lie subalgebra of
P(U(L))?

9. Further Open Questions

In this last section, we record a few additional questions on pro-Lie groups that
do not fit naturally with the material previously discussed in this paper, but that are
of some significance to pro-Lie group theory. In so doing, we rely on definitions and
concepts defined and discussed in [5].
Question 7: Is an Abelian prodiscrete compactly-generated group without
nondegenerate compact subgroups a discrete group?

For a a definition and discussion of compactly-generated groups, see [5],
Definition 5.6, pp. 218ff. For a discussion of Abelian compactly generated pro-Lie
groups, see [5], Theorem 5.32, p. 236.
Question 8: Is a compactly-generated Abelian prodiscrete compact-free group a
finitely-generated-free Abelian group?

Note that by compact free we mean the group has no nontrivial compact subgroups.
See [5], Theorem 5.32, the Compact Generation Theorem for Abelian Pro-Lie

Groups, p. 236.
In the proof of the structure of reductive pro-Lie algebras in Theorem 11 ([5],

Theorem 7.27), one uses the lemma that in every finite-dimensional real semisimple
Lie algebra every element is a sum of at most two Lie brackets. For brackets in
semisimple Lie algebras, see [5], Appendix 3, p. 651ff.
Question 9: Is every element in an arbitrary real semisimple Lie algebra a bracket?

For the concept of transfinitely-solvable pro-Lie algebras and pro-Lie groups,
see [5], Definition 7.32, pp. 285ff, respectively pp. 420ff. For the concept of
transfinitely-nilpotent pro-Lie algebras and pro-Lie groups, see [5], pp. 296ff,
respectively, pp. 443 ff.
Question 10: Is a transfinitely-nilpotent connected pro-Lie group pronilpotent?

In Question 10, such a group has to be prosolvable, since it is transfinitely
solvable, and then, the Equivalence Theorem for Solvability of Connected Pro-Lie
Groups 10.18 of [5] applies. The impediment to a proof is the failure of transfinite
nilpotency to be preserved by passing to quotients. Free topological groups are free
groups in the algebraic sense and, thus, are countably nilpotent; but, every topological
group is a quotient of a free topological group and, thus, of a transfinitely-countably
nilpotent topological group.

For the definition of an analytic subgroup, see [5], Definition 9.5 on p. 360.
Question 11: Let h be a closed subalgebra of the Lie algebra g of a connected pro-Lie
group G. Let A(h) denote the analytic group generated by h. Is A(h)/A(h) Abelian?
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(See [5], Theorem 9.32.)
Question 12: Is there a satisfactory theory of Polish pro-Lie groups (respectively,
separable pro-Lie groups, or compactly-generated pro-Lie groups), notably in the
connected case?

For information in [5] on the Abelian case, see pp. 235ff.
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Non-Abelian Pseudocompact Groups
W. W. Comfort and Dieter Remus

Abstract: Here are three recently-established theorems from the literature. (A) (2006)
Every non-metrizable compact abelian group K has 2|K|-many proper dense
pseudocompact subgroups. (B) (2003) Every non-metrizable compact abelian group
K admits 22|K| -many strictly finer pseudocompact topological group refinements.
(C) (2007) Every non-metrizable pseudocompact abelian group has a proper dense
pseudocompact subgroup and a strictly finer pseudocompact topological group
refinement. (Theorems (A), (B) and (C) become false if the non-metrizable hypothesis
is omitted.) With a detailed view toward the relevant literature, the present authors
ask: What happens to (A), (B), (C) and to similar known facts about pseudocompact
abelian groups if the abelian hypothesis is omitted? Are the resulting statements
true, false, true under certain natural additional hypotheses, etc.? Several new results
responding in part to these questions are given, and several specific additional
questions are posed.

Reprinted from Axioms. Cite as: Comfort, W.W.; Remus, D. Non-Abelian
Pseudocompact Groups. Axioms 2016, 5, 2.

1. Introduction

Specific references to the literature concerning Theorems (A), (B) and (C) of
the Abstract are given in 5.7(d), 8.2.2 and 4(l), respectively. Every metrizable
pseudocompact group, abelian or not, is compact, hence admits neither a proper
dense pseudocompact subgroup nor a proper pseudocompact group refinement
(see 4(a)); thus, (A), (B) and (C) all become false when the non-metrizability
hypothesis is omitted.

All hypothesized topological spaces and topological groups in this paper are
assumed to be Tychonoff spaces.

1.1. Brief Outline of the Paper

As our Title and Abstract indicate, our goal in this survey is to describe the
historical development of the theory of pseudocompact topological groups. Many of
the results we cite, especially the older results, require an abelian hypothesis; some
questions, definitions and results make sense and are correct without that hypothesis,
however, and we emphasize these. Thus, this paper has two goals: (1) to provide an
overview of the (by now substantial) literature on pseudocompact groups; and (2) to
offer several new results about non-abelian pseudocompact groups.
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As an aid to the reader and to avoid uncertainty, algebraic statements and results
known to hold also for non-abelian groups carry the symbol ∗.

We proceed as follows. Subsection 1.2 establishes the notation and terminology,
and Subsection 1.3 reviews early works.

Section 2 describes several criteria, some algebraic and some cardinality-related,
which are necessary or sufficient that a group admits a pseudocompact group
topology. With a focus on compact groups, Section 3 describes the availability
of proper dense subgroups. Section 4 recounts the principal incremental steps in
the literature which led finally to a positive solution to these questions: Does every
non-metrizable pseudocompact abelian group admit a proper dense subgroup and
a strictly finer pseudocompact group topology? Section 5 considers briefly several
miscellaneous issues and questions which concern pseudocompact groups.

Several workers have noted that those compact groups which admit a
continuous epimorphism onto a product of the form Fκ (|F| > 1, κ > ω) or of the
form Πi∈I Ki (|Ki| > 1, |I| > ω) admit (sometimes large) families of dense subgroups
with special properties. Section 6 describes several instances in the literature.

Sections 7 and 8 concern respectively free compact (abelian and non-abelian)
groups over a Tychonoff space and new results concerning non-abelian
pseudocompact groups.

Insofar as expository clarity permits, we use the symbol K to denote a topological
group known or assumed to be compact; and we use the symbol G for other groups
and topological groups.

1.2. Notation and Terminology

As to notation and terminology, we generally follow Engelking [1] and Hewitt
and Ross [2]. Here we record some supplemental definitions, notation and
conventions.

(a) Given a cardinal number α = α0 ≥ ω, the cardinal iω(α) is defined as
follows: αn+1 := 2αn for n < ω, and iω(α0) := Σn αn = supn αn.

(b) ∗For topological groups G0 and G1, we write G0 ' G1 if some bijection
from G0 onto G1 is simultaneously an algebraic isomorphism and a topological
homeomorphism.

(c) ∗A topological group G = (G, T ) is totally bounded (alternatively,
precompact) if for every non-empty U ∈ T there is finite F ⊆ G such that G = FU.
We denote by TB(G) the set of totally bounded group topologies on a group G.

(d) (Hewitt [3]) A space X is pseudocompact if each continuous function f :
X → R is bounded.

(e) A space is countably compact if each of its infinite subsets has an accumulation
point (equivalently ([1]) if each countable open cover admits a finite subcover).
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(f) A space is ω-bounded if each of its countably-infinite subsets has
compact closure.

(g) A space X is a Baire space if every intersection of countably many dense
open subsets of X is again dense in X.

(h) ∗A cardinal κ is admissible if there is a pseudocompact group of cardinality
κ. And κ is λ-admissible if there is a pseudocompact group such that |G| = κ

and wG = λ.
(i) ∗Given a topological group G, we write
P(G) := {H : |H| is a dense pseudocompact subgroup of G},

and, following [4], for a compact group K we write
m(K) := min{|H| : H ∈ P(K)}.
(j) ∗For a topological space X = (X, T ), we denote by PX, or by (X, PT ), the

set X with the smallest topology in which each Gδ-subset of (X, T ) is open.
It is clear from the definitions of PK and m(K) that ∗m(K) = d(PK); hence
∗cf(m(K)) > ω, for each infinite compact group K.

(k) It is well known [2] (7.7) that a compact group K is totally disconnected
(equivalently: zero-dimensional) if and only if each neighborhood of 1K contains
a compact open normal subgroup. In this paper we follow many workers and call
such compact groups K profinite.

1.3. Basic Early Works

Here we offer a brief history of the principal concepts and objects we deal with
in this paper.

(a) Hewitt [3] showed inter alia that a space X is pseudocompact if and only if it
is Gδ-dense in its Stone–Čech compactification βX, hence in every (Tychonoff) space
in which it is densely embedded. Later, Glicksberg [5] characterized pseudocompact
spaces as those in which each locally finite family of open subsets is finite. For a
detailed treatment and extrapolation of Hewitt’s work, including the many other
fruitful concepts introduced there, see [6].

(b) It is a fundamental theorem of Weil [7] that ∗the totally bounded groups are
exactly the topological groups G which embed as a dense topological subgroup of a
compact group. Further, this compactification of G, called the Weil completion of G
and here denoted G, is unique in the obvious sense.

(c) It is easy to see ([8] (1.1)) that ∗every pseudocompact group is totally
bounded. Identifying those totally bounded groups which are pseudocompact,
Comfort and Ross [8] (1.2, 4.1) showed that ∗for a totally bounded group G, these
conditions are equivalent: (1) G is pseudocompact; (2) G is Gδ-dense in G; and
(3) G = βG.
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(d) From the equivalence (c) ((1)⇔(3)) and Mycielski’s theorem [9] that every
compact divisible group is connected, Wilcox [10] deduced a useful consequence:
∗every divisible pseudocompact group is connected (we note in passing, as remarked
by Wilcox [10] (p. 579), that a connected pseudocompact abelian group need not
be divisible).

(e) From (c) and the uniqueness aspect of Weil’s theorem it follows that ∗a dense
subgroup H of a pseudocompact group G is itself pseudocompact if and only if H
is Gδ-dense in G – in which case necessarily H = G; further, as in [8] (1.4), ∗the
product of any set of pseudocompact groups is again pseudocompact. Those two
statements have been vastly generalized by subsequent workers. We give some
examples. In (1) and (2), G = Πi∈I Gi with each Gi an arbitrary (not necessarily
abelian or pseudocompact) topological group, Fi ⊆ Gi and F := Πi∈I Fi. (1) [11] ∗If Fi
is functionally bounded in Gi in the sense that each continuous f : Gi → R is bounded
on Fi, then F is functionally bounded in G; (2) [12] ∗If Fi ⊆ Gi is pseudocompact and
either each Fi is a Gδ-set in Gi or each Fi is a retract of Gi, then F is pseudocompact;
(3) [13] ∗If K is compact and X is Gδ-dense in K, then X is pseudocompact and
K = βX; (4) [14] ∗If G is pseudocompact and X is dense in G, then X is C-embedded
in clPG X.

(f) The equivalences of (c) were established in [8] using earlier theorems of
Kakutani and Kodaira [15], Halmos [16] (§64) and Ross and Stromberg [17]. A more
direct approach, avoiding reference to those works, was given subsequently by
de Vries [18]. See also Hušek [19] and Tkachenko [11,20] for alternative approaches.

(g) ∗Many of the results cited above have been extended and generalized into
the context of locally pseudocompact groups; see, for example, [21,22] and the
references given there.

2. Pseudocompactifiability Criteria: Elementary Constraints

(a) Every pseudocompact space is a Baire space [1] (3.10.F(e)), so in particular
∗every pseudocompact group is a Baire space (alternatively one may argue as
in [4] (2.4(b)): a Gδ-dense subspace of a Baire space is itself a Baire space, so a
pseudocompact group G, being Gδ-dense in the compact space G, is necessarily a
Baire space).

(b) Using (a), several workers (e.g., [4,23], [24] (2.5), [25]) made elementary
cardinality observations like these, valid for infinite pseudocompact groups G.
(1) ∗|G| ≥ c; (2) ∗d(PG) ≥ c; (3) ∗cf(d(PG)) > ω; (4) ∗if |G| is a strong limit cardinal,
then cf(|G|) > ω; (5) if G is abelian, then either r0(G) ≥ c or G is torsion; (6) if G is a
torsion abelian group, then G is of bounded order.

Concerning (b): Van Douwen [23], arguing in a more general context, proved
|X| ≥ c and other inequalities of cardinality type for every infinite pseudocompact
space X with no isolated point.
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(c) We remark in passing that the relation ω = cf(|G|) does occur for some
pseudocompact abelian groups in some models of ZFC . For example, if c = ℵ1 <

ℵω < 2c, then, as noted below in 3(e), the group K = Tc contains a proper dense
countably compact subgroup H with |H| = c, and then any group G such that
H ⊆ G ⊆ K, say with |G| = ℵω, is necessarily pseudocompact by 1.3(c) ((2)⇒(1))
(with K = H = G).

(d) The remarks in (b) are useful, but they are largely negative in flavor. Here
are some simple examples. (1) ∗There is no countably infinite pseudocompact group;
(2) ∗A compact group K such that wK = iω(α), satisfies dK = iω(α); (3) ∗If [CH]
fails, no infinite pseudocompact group satisfies |G| = ℵ1.

3. Dense Subgroups: Scattered Results

Some topological groups do, and some do not, have proper dense subgroups.
Here we cite some representative results from the literature.

(a) ∗The relations dK ≤ wK < 2wK = |K|, valid for every infinite compact group
K ([26] (28.58(c))), make it clear that each such K admits a (proper) dense subset D
with |D| < |K|, which then in turn generates a proper dense subgroup of the same
cardinality. For emphasis: ∗every infinite compact group K admits a proper dense
subgroup G with |G| < |K|. Similarly it follows easily, as in [4] (2.2(b)), that ∗for K a
compact group with w(K) = α ≥ ω, one has m(K) ≤ (log(α))ω.

(b) [4] (2.7(a)) ∗Infinite compact groups K, K′ with w(K) = w(K′) satisfy
m(K) = m(K′). Hence ∗m(K) is determined fully by w(K) and is not affected by
algebraic properties of the group K. Following [4], we define m(α) := m(K) for
(arbitrary) compact K with w(K) = α. Note: for α ≥ ω, the cardinal m({0, 1}α),
which is m(α), is denoted ∆(α, ω) in [27].

(c) ([27]) If the Singular Cardinals Hypothesis is assumed (that is: κλ ≤ 2λ · κ+
for all infinite κ, λ), then m(α) = (log(α))ω.

(d) Every infinite pseudocompact group∗, and every infinite connected abelian
group, has a proper dense subgroup [28] (4.1, 4.2).

(e) For compact groups K with w(K) of the form w(K) = 2α, it was shown by
Itzkowitz [29] (the abelian case) and by Wilcox [30] in general that ∗K contains a
(necessarily proper) dense pseudocompact subgroup H such that |H| ≤ αω ≤ 2α <

22α
= |K|. It was noted later [31] that ∗H may be chosen countably compact.

(f) Negating the tempting conjecture that parallel results might hold for locally
compact groups, Rajagopalan and Soundrarajan [32] show that for each infinite
cardinal κ there is on the group Tκ a locally compact group topology which admits
no proper dense subgroup. In the same vein, there are many infinite totally bounded
abelian groups which admit no proper dense subgroup [28].
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(g) In fact, given an abelian group G, the topology induced on G by Hom(G,T)
is a totally bounded group topology [33] (1.5) in which every subgroup is
closed [31] (2.1).

4. Extremal Phenomena

We adopt terminology introduced tentatively and partially in [34] (5.1) and
finally fully formalized in [35] (4.1): ∗a pseudocompact group (G, T ) is r-extremal
(resp., s-extremal) if no pseudocompact group topology on G strictly contains T
(resp., (G, T ) admits no proper dense pseudocompact subgroup). Note: the letters r
and s here are intended to invoke the words refinement and subgroup, respectively.

(a) Since a pseudocompact normal space is countably compact ([1] (3.10.21), [6]
(3.D.2)) and a countably compact metric space is compact [1] (4.1.17), we have,
as noted frequently in the literature ([36] (4.5(a)), [37] (3.1), [34] (2.4, 3.6)): ∗every
pseudocompact group G with w(G) ≤ ω is both r- and s-extremal. This explains the
occurrence of the hypothesis “w(G) > ω” (equivalently: “G is non-metrizable”) in
many of the theorems cited below.

It was conjectured in [34] (5.1ff.) that no non-metrizable pseudocompact abelian
group is r- or s-extremal (see also Question 2.B.1 in [38]). In the earliest days of
investigation, the non-abelian case seemed totally inaccessible; but some fragmentary
non-abelian results have emerged serendipitously by now (see below). Concerning
the abelian question, the reader interested not in preliminary or incremental stages
but only in the dénouement may safely ignore (b)–(k) below and skip directly to (l).
For a more leisurely treatment of the historical development of this theorem, and for
the statement of several related unsolved problems, see [39].

(b) A non-metrizable compact abelian group is not r-extremal [37] (3.4).
(c) A non-metrizable compact totally disconnected abelian group is neither r-

nor s-extremal [36] (4.3, 4.4).
(d) A non-metrizable compact abelian group is neither r- nor s-extremal; indeed,

the witnessing dense subgroup may be chosen ω-bounded [34] (3.4).
(e) ∗A non-metrizable compact connected group is not r-extremal [40] (6.7).
(f) A non-metrizable zero-dimensional pseudocompact abelian group is neither

r- nor s-extremal [34] (7.3).
(g) A pseudocompact abelian group G such that |G| > c or ω1 ≤ w(G) ≤ c is

not s-extremal [41] (1.3).
(h) A pseudocompact abelian group G such that r0(G) > c or ω1 ≤ w(G) ≤ c

is not r-extremal [42] (5.10).
(i) A pseudocompact connected non-divisible abelian group is neither

s-extremal [25] (7.1) nor r-extremal [43] (6.1), [42] (4.5(b)).
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(j) A pseudocompact abelian group G with a closed Gδ-subgroup H (1) is
r-extremal if H is r-extremal, and (2) is s-extremal if H is s-extremal ([42] (2.1)).

(k) If H is a closed pseudocompact subgroup of a pseudocompact abelian group
G, then (1) G is not r-extremal if G/H is not r-extremal, and (2) G is not s-extremal if
G/H is not s-extremal [43] (4.5), [42] (5.3).

(l) (See (C) of the Abstract.) Fully familiar with the sources cited in (b)–(k), and
drawing on some of the arguments cited there, Comfort and van Mill showed [44,45]
that no non-metrizable abelian pseudocompact group is r-extremal or s-extremal.

As suggested above and as our title indicates, we are interested in the
present paper primarily in comparable and parallel results concerning non-abelian
pseudocompact groups. See in this connection especially Sections 6 and 8.

4.1. Extremality Questions

As indicated in 4(l), the following two questions have been answered
affirmatively [44,45] in the context of abelian groups. However, they remain unsettled
in the general (possibly non-abelian) case.

Problem 4.1.1. (a) ∗Is every non-metrizable pseudocompact group not r-extremal?
(b) ∗Is every non-metrizable pseudocompact group not s-extremal?
(c) ∗Are those properties (r- extremal, s-extremal) equivalent?

5. Related Concepts

It was natural that workers thinking about the issues raised in Section 4 might
be drawn simultaneously to different but related questions. Here, with no pretense
to completeness, we mention some of these.

5.1. Refinements of Maximal Weight

When a pseudocompact group G admits a proper pseudocompact refinement,
can that be chosen of maximal weight (that is, of weight 2|G|)? Comfort and
Remus [40] (5.5) responded positively for many (non-metrizable) compact abelian
groups K, including for example those which are connected, or torsion, or which
satisfy cf(w(K)) > ω. Later Comfort and Galindo [46] gave a positive answer for
all non-metrizable compact abelian groups G [46] (5.1), also for non-metrizable
pseudocompact abelian groups G which are torsion-free with wG ≤ |G| = |G|ω [46]
(5.3) or (assuming [GCH]) which are torsion-free [46] (5.4(b)). Indeed ([46] (5.2)), in
the compact abelian case K with w(K) = α > ω, there are 222α

-many pseudocompact
group refinements of weight 2α.
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5.2. The Poset of Pseudocompact Refinements

Given a pseudocompact group (G, T ) with w(G, T ) = α, let Ps(G, T )
(respectively, CPs(G, T )) be the partially-ordered set of group topologies U on G
such that U ⊇ T and U is pseudocompact (respectively, U is pseudocompact and
connected). For each cardinal number γ set

Psγ = {U ∈ Ps(G, T ) : w(G,U ) = γ} and
CPsγ = {U ∈ CPs(G, T ) : w(G,U ) = γ}.
From [47] (3.11) it follows that each U ∈ CPsγ(G, T ) satisfies α ≤

w(G,U ) ≤ 2|G|.
We have shown [40] (6.6):

Theorem 5.2.1. ∗Let K = (K, T ) be a compact, connected group such that w(K) = α > ω,
and let A be the connected component of the center of K. Then:

(a) if ω < β < α, then K admits a pseudocompact group topology U such that U ⊇ T ,
U 6= T , and w(K,U ) = α + 22β

; and
(b) if w(A) = α or cf(α)> ω, then K admits a pseudocompact group topology U with

U ⊇ T , U 6= T , and w(K,U ) = 22α
.

As usual the (a) width, the (b) height and the (c) depth of a partially ordered set
P are defined to be the supremum of the cardinality of those subsets of P which are
respectively (a) an anti-chain, (b) well ordered, and (c) anti-well ordered. If there is
an anti-chain A ⊆ P such that |A|=width(P), then we say that width(P) is assumed,
and similarly for height(P) and depth(P).

Comfort and Remus [47] (6.7) proved the following

Theorem 5.2.2. ∗Let (K, T ) be a compact, connected group, such that w(K, T ) = α with
cf(α)> ω, and let α ≤ γ ≤ 2|K|. Define γ̄ = min{γ+, 2|K|}. Then:

(a) |Ps(K, T )| = |CPs(K, T )| = 22|K| ;
(b) |Psγ(K, T )| = |CPsγ(K, T )| = 2γ·|K|;
(c) width(Psγ(K, T )) = width(CPsγ(K, T )) = 2γ·|K|, and these widths are

assumed;
(d) height(Psγ(K, T )) = height(CPsγ(K, T )) = γ̄, and these heights are

assumed; and
(e) depth(Psγ(K, T )) = depth(CPsγ(K, T )) = γ, and these depths are assumed.

In the proof of Theorem 5.2.2 the main tools are Theorem 5.2.1 and the following
theorem ([47] (6.4)).

Theorem 5.2.3. ∗Let (K, T1) be a totally bounded topological group such that w(K, T1) =

α1 > ω and the Weil completion is connected. Then every totally bounded group topology
T0 on K such that T0 ⊆ T1 and w(K, T0) = α0 < α1 satisfies | [T0, T1] | = 2α1 .

39



In the absence of the connectivity hypothesis, we proved this result [48] (2.6(a)).

Theorem 5.2.4. ∗Let G be a group, and let Ti ∈ TB(G) (i = 0, 1) with w(G, Ti) = αi ≥ ω.
If α0 < α1 and T0 ⊆ T1, then | [T0, T1] | ≥ α1.

Corollary 5.2.5. ∗Let (G, T ) be a pseudocompact group with w(G, T ) = α > |G|. Then
there are at least α-many pseudocompact group topologies on G which are coarser than T .

Proof. Using the technique of the proof of [49] (2.9), we obtain U ∈ TB(G) with
w(G,U ) ≤ |G| < α = w(G, T ) such that U ⊆ T . Then |[U , T ]| ≥ α by
Theorem 5.2.4, and (G,V) is pseudocompact for each V ∈ [U , T ] (since (G, T )
is pseudocompact).

In [47] (6.9), one finds

Problem 5.2.6. ∗Let G be a group, and let Ti ∈ TB(G) (i = 0, 1) with w(G, Ti) = αi ≥ ω.
If α0 < α1 and T0 ⊆ T1, must |[T0, T1]| = 2α1 ?

We add the following

Problem 5.2.7. ∗Let (K, T ) be a non-metrizable compact, connected group.
(a) Does T admit a proper (connected) pseudocompact refinement of maximal

weight 2|K|?
(b) Are there 22|K| -many (connected) pseudocompact group topologies on K which are

finer than T ?

We note in passing in connection with Problem 5.2.7, as remarked in [47]
(pp. 277–278) and in contrast with [47] (6.11), that a pseudocompact refinement of a
connected (abelian) pseudocompact group need not itself be connected. We note also
that when the non-metrizability hypothesis is omitted in Problem 5.2.7, the resulting
Questions (a) and (b) have negative answers. See in this connection 4(a) above.

5.3. Totally Dense Subgroups

As usual, a subgroup D of a topological group G is totally dense in G if D ∩ H
is dense in H for every closed normal subgroup H of G. Several workers have
turned attention to the question of the existence of totally dense pseudocompact
subgroups of a given (usually compact) group. Since this topic is a bit removed from
our central focus here, for details in this direction we simply refer the reader to the
relevant papers known to us: [50,51], [36] (5.3), [4] (5.8), [52–55]. We note explicitly
that, building upon and extending results from her thesis [56], Giordano Bruno and
Dikranjan [57] characterized those compact abelian groups with a proper totally
dense pseudocompact subgroup as those with no closed torsion Gδ-subgroup.
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5.4. Concerning the Group Topologies supTB(G) and supPs(G, T )

It is easily seen that ∗the supremum of any nonempty set of totally bounded
group topologies on a fixed group G is another such topology. In particular, then
∗each group G which admits a totally bounded group topology admits the largest
such topology. As noted [33] (1.6, 1.7) above, for abelian groups G this is the topology
induced on G by Hom(G,T). It is shown in [31] (2.2) that when G is infinite abelian,
that topology on G is never pseudocompact; that is obvious now, in view of the result
cited above in 4(l).

Concerning that supremum, we record here a conjecture of Comfort and
van Mill [58].

Conjecture 5.4.1. Let G be an abelian group which admits a pseudocompact group topology.
Then the supremum of the pseudocompact group topologies on G coincides with the largest
totally bounded group topology on G (that is, the topology induced on G by Hom(G,T)).

Conjecture 5.4.1 was established in [58] for abelian groups G which satisfy any of
these (overlapping) conditions: (1) G is torsion; (2) |G| ≤ 2c; (3) r0(G) = |G| = |G|ω ;
(4) |G| is a strong limit cardinal with r0(G) = |G|; (5) some pseudocompact group
topology T on G satisfies w(G, T ) ≤ c; (6) G admits a compact group topology.
However, the conjecture remains unsettled in full generality.

While neither the present authors nor the authors of [58] attempted to find
the optimal non-abelian version of the theorems and conjecture just given, we
note that the most naive non-abelian analogue, namely that the supremum of all
pseudocompact group topologies on a (possibly non-abelian) group G which admits
such a topology coincides with the largest totally bounded group topology, fails
dramatically, even in the metrizable case. The following result is taken from [47].

Theorem 5.4.2. ∗Let K be a compact, connected Lie group with trivial center, and let T be
the usual product topology on Kω. Then T is the only pseudocompact group topology on
Kω [47] (7.4(a)), but T admits 22c -many totally bounded finer group topologies [47] (7.4(b)).

5.5. Additional Extremality Theorems

The techniques used in the papers cited in Section 4 were adapted and extended
by Giordano Bruno [56,59] to achieve parallel extremality results for pseudocompact
abelian groups G which are even α-pseudocompact in the sense that G meets every
non-empty intersection of α-many open subsets of G = βG.

Prior to the appearance of [44,45], researchers in Udine, Italy, considered
conditions weaker than metrizability which suffice to guarantee that a pseudocompact
abelian group G is both r- and s-extremal [56,57,60,61]. Here is a sample result.
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Theorem 5.5.1. If some closed Gδ-subgroup N of G admits a dense pseudocompact subgroup
H such that r0(N/H) ≥ c, then G itself has such a subgroup (hence is neither r-
nor s-extremal).

5.6. Closed Subgroups of Pseudocompact Groups

Since every subgroup of a totally bounded group is totally bounded and
every closed subspace of a countably compact space is countably compact, it is
reasonable (though perhaps naive) to inquire whether every closed subgroup of a
pseudocompact group is necessarily pseudocompact. To the authors’ knowledge,
this question was first addressed in [31] (2.4), where a straightforward abelian
counterexample is offered. Later this fact was noted (see [62] (2.1), [63] (2.9)):

Theorem 5.6.1. ∗Every totally bounded group H embeds as a closed subgroup of a
pseudocompact group G. If H is abelian, G may be chosen as abelian.

The construction of [62] (2.1) shows, though the authors did not record the
fact explicitly, that, ∗when H as in Theorem 5.6.1 is non-metrizable (that is, when
w(H) > ω), one may choose G so that w(G) = w(H).

In the abelian case, the correct locally bounded analogue of Theorem 5.6.1 has
been recorded by Ursul [64]:

Theorem 5.6.2. Every locally bounded abelian group is a closed subgroup of a locally
pseudocompact group.

More recently, Leiderman, Morris and Tkachenko [65] have focused on closed
embeddings into pseudocompact groups of small density character. For example,
they have shown this.

Theorem 5.6.3. ∗Every totally bounded group H such that w(H) ≤ c embeds as a closed
subgroup of a separable pseudocompact group.

Since there are many totally bounded non-separable pseudocompact groups of
weight c, for example the ω-bounded group H := {x ∈ Tc : |{η < c : xη 6= 1T}| ≤
ω}, it follows from Theorem 5.6.3, as is remarked in [65], that a closed subgroup of a
separable pseudocompact abelian group can be non-separable.

5.7. Miscellaneous Investigations

(a) ∗Dikranjan and Shakhmatov [66] (3.7) extended an important result of
Zel′manov [67] (the compact case) to prove: every pseudocompact torsion group is
locally finite.

(b) ∗The same authors investigated the following problem: Which infinite
groups admit a pseudocompact group topology? We restrict attention here to
non-abelian groups. A variety V of groups is said to be precompact if each V-free
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group admits a precompact (totally bounded) group topology. An example is the
variety of all groups. Here, we quote verbatim from [66] (1.3) ∗“a free group F in a
variety V admits a non-discrete pseudocompact group topology if and only if V is
precompact and |F| is admissible”. For further results see [66] (Chapter 5).

(c) Dikranjan [68] proved (among other interesting theorems concerning
pseudocompact abelian groups) this statement: ∗Let F be a free group in a variety,
and let α ≥ ω. If |F| is α-admissible, then the poset of all pseudocompact group
topologies of weight α on F contains a copy of the power set of α.

(d) (See (A) of the Abstract.) ∗Comfort, Raczkowski and Trigos-Arrieta noted [69]
(3.1) that in a compact group, every proper, Gδ-dense subgroup (that is, every proper
dense pseudocompact subgroup) is non-measurable (in the sense of Haar). They
showed that every infinite abelian group K of uncountable weight has 2|K|-many
dense pseudocompact subgroups of cardinality |K| [69] (3.2); hence such K admits
2|K|-many dense non-measurable subgroups of cardinality |K| [69] (3.4). In the same
vein, Itzkowitz [70] (2.1) showed that every non-metrizable product-like group,
defined as in Section 6.1, satisfies |P(K)| = 2|K| (the witnessing elements of P(K)
being necessarily non-measurable). For further related results see [70].

Problem 5.7.1. Let K be a non-metrizable compact group. Does |P(K)| = 2|K| hold?

By [71] (3.4) a strongly complete group is a profinite group in which every
finite index subgroup is open. An infinite group is almost perfect if |G/G′| is
finite for the algebraic commutator subgroup G′ of G. Hernández, Hofmann and
Morris [71] (3.5) proved: an infinite group in which every subgroup is measurable is
a strongly complete almost perfect group. More recently Brian and Mislove [72]
showed that it is consistent with ZFC that every infinite compact group has a
non-measurable subgroup.

Problem 5.7.2. Does every infinite compact group K have 2|K|-many non-measurable
subgroups (of cardinality |K|)?

6. Epimorphisms onto Products

Comfort and Robertson [37] (3.2(b)) showed that each non-metrizable compact
abelian group K maps by a continuous epimorphism onto a group of the form M(ω+)

with M a compact subgroup of T. From this they determined [37] (3.4) that such K is
not r-extremal.

6.1. Product-Like Groups

According to a definition of Itzkowitz and Shakhmatov ([70,73–75]) ∗a compact
group K with κ = w(K) is product-like if there is a continuous epimorphism h : K �
Πξ<κ Mξ with each Mξ a non-trivial (compact) metrizable group. A similar class

43



was introduced by Varopoulos [76] (§3): a compact group K is called a ∏-group if
K ' Πi∈I Mi, where all Mi are (compact) metrizable groups. Not every ∏-group
K is product-like: take for example for K an algebraically simple compact group.
In [76] it is proved that if K is a connected, compact group with center Z, then K/Z
is a ∏-group. Comfort and Robertson [4] (4.2) showed that (for non-trivial K) the
group K/Z(K) is a product of compact, connected, non-abelian Lie groups which are
algebraically simple.

It is known that every non-metrizable compact group K which is either abelian
or connected is product-like (see for example [40] (5.4) or [74] (1.11) for the abelian
case, [40] (proof of 6.5) or [73] for the connected case). This allowed the authors
of [70,73–75] to conclude that for every such group K the set Ω(K) of dense
ω-bounded subgroups of K satisfies |Ω(K)| ≥ |K|. They asked whether that
inequality may be improved to |Ω(K)| = 2|K|; the question was answered
affirmatively in [77] for those K which in addition satisfy w(K) = (w(K))ω.

In this connection this question, raised in [77], appears still to be unsettled:

Problem 6.1.1. ∗Does |Ω(K)| = 2|K| hold for every non-metrizable compact group K?
What if K is product-like? What if cf(wK) > ω?

∗Itzkowitz [70] (p. 23) cites from [74,75] the statement that all non-metrizable
compact groups which are connected or abelian are product-like. In the proof for
connected groups ([75] (5)) the authors used [4] ((4.2), (4.3)). The paper [40] was cited
in [74] (2.5), but not in [75]. The authors of [70,74,75] inadvertently failed to note that
already in [40] (proof of (6.5)) the following more detailed result had been obtained
in a more direct way (see also [40] (5.4) for a relevant result in the abelian context):

Lemma 6.1.2. ∗Let K be an infinite compact, connected group, and let A be the connected
component of the center of K. Then:

(a) if w(A) = w(K), then there is a continuous epimorphism h : K � Tw(K); and
(b) if w(A) < w(K), then there is a continuous epimorphism h : K � Πi∈I (Hi/Ci)

with |I| = w(K).

In the statement of Lemma 6.1.2(b), each Hi is a compact, simply connected,
simple Lie group with finite center Ci. By a result of van der Waerden [78] all groups
Hi/Ci are algebraically simple.

Lemma 6.1.2 is fundamental for the following theorem, which is a main tool in
the proof of Theorem 5.2.1.

Theorem 6.1.3 ([40] (6.5)). ∗Let K be a compact, connected group such that w(K) = α > ω,
and let A be the connected component of the center of K. Then:

(a) if ω < β < α, then there are a compact group F with |F| > 1 and a continuous
epimorphism from K onto Fβ; and
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(b) if w(A) = α or cf(α) > ω, then there are a compact group F with |F| > 1 and a
continuous epimorphism from K onto Fα.

The proof of Theorem 5.2.1 depends crucially on the following result.

Theorem 6.1.4 ([40] (5.2)). ∗Let κ > ω, let K = (K, T ) be a compact group, and let
h : K � Fκ be a continuous epimorphism with F a compact group, |F| > 1. Then K admits a
pseudocompact group topology U such that U ⊇ T , U 6= T , and w(K,U) = w(K, T )+ 22κ

.

Remarks 6.1.5. (a) By no means is every compact group product-like. It is shown
in [34] (4.10(d)) that ∗for every cardinal κ ≥ ω there is a compact (non-abelian)
group K with wK = κ such that no homomorphism h : K � H0 × H1 with |Hi| > 1
is surjective.

(b) It is shown in [46] (6.2) that when α := iω(α0) (α0 ≥ ω), then with K :=
Πn<ω (Z(pn))αn we have: every continuous surjective epimorphism h : K � Fκ with
|F| > 1 satisfies κ < α = w(K) (indeed 22κ

< 22α
). Seeking a non-abelian result with

a similar flavor, we have formulated (but not proved) several reasonable conjectures.
Of these, Conjecture 6.1.6 below seems particularly attractive and accessible. Here
we say as usual that a topological group K is topologically simple if the only closed
normal subgroups of K are {1K} and K itself, and we recall this characterization of
compact topologically simple groups, due to Yu [79] (1.8).

Every compact topologically simple group is either a finite simple group or a
compact, algebraically simple, connected Lie group.

In particular, then, each such group K is metrizable, i.e., satisfies wK ≤ ω.
We recall also, for example from [80] (7.3.11), that for K as hypothesized below,

every closed normal subgroup N of K (in particular the subgroup N = ker(h)),
has the form N = Πn∈I Kβn

n × {1ω\I} for suitable I ⊆ ω and for suitable cardinals
βn ≤ αn.

Conjecture 6.1.6. ∗Let (αn)n<ω be a strictly increasing sequence of infinite cardinals with
each cf(αn) > ω, and set α := supn αn = Σn αn. Let {Kn : n < ω} be a sequence of
pairwise non-isomorphic, non-abelian, topologically simple compact groups, and set K :=
Πn Kαn

n . Then:
(a) every continuous epimorphism h : K � Fκ with |F| > 1 satisfies κ < α = wK; and
(b) if αn+1 = 2αn for all n, so that α = iω(α0), then κβ < wK for all β < α.

Of course (b) follows from (a), since for such κ and β there is n < ω such that
κ < αn and β < αn, and then κβ ≤ ααn

n = 2αn = αn+1 < α.
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7. Concerning Free Compact Topological Groups

7.1. Characterizations of FX and FAX

Here we follow generally the conventions of Hofmann and Morris [81] (Chapter 11).
See also [2] (8.8) for a less extensive, more constructive approach to free
topological groups.

(a) For every space X there is a compact group FX, the free compact group on
X, such that

(1) X ⊆ 〈X〉 ⊆ FX with X closed in 〈X〉 and 〈X〉 dense in FX;
(2) algebraically, 〈X〉 is the free group on the set X; and
(3) for every continuous f : X → K with K a compact group there is a (unique)

continuous homomorphism f : FX → K such that f |X = f .
The free compact abelian group FAX has analogous properties, with f ⊇ f :

X → K with K a compact abelian group.
(b) The role of 1FX is played in FX by the empty word. In contrast, some

workers prefer to work with pointed spaces (X, p), then with the identification
p→ 1 · p = 1FX ∈ 〈X〉 ⊆ FX.

The theorem cited in (a) is rooted in the work of Markov [82,83] and Graev [84,85]
concerning free topological groups. Alternate latter-day constructions abound, some
achieved independently of [82–85] and some based on those works, some with
algebraic emphasis [86,87], [2] (8.8,8.9), [24] (2.3–2.5), some topological [88–90], some
functorial or categorical [91]. See [92] (§4) for a comprehensive introduction to the
groups FX and FAX, and see [62] for generalizations to “free P-spaces” for some
other classes P.

The reader will note that in our present convention, the “free compact group
FX” is a compact group which is not algebraically the free group on X. In the sources
about free topological groups cited above, that is reversed: “the free topological
group over a space X” is itself not compact, it is algebraically the free group on
X. Note that FX is the Bohr compactification (see [93] (Chapter 5.4)) of the free
topological group over the space X.

7.2. Basic Properties of FX and FAX

(a) We list four basic facts about the free groups FX and FAX.
(i) ([92] (4.2.2)) ∗For each space X the free compact group FX is naturally

isomorphic to the free compact group FβX, where βX is the Stone–Čech
compactification of X.

(ii) ∗FX is connected if and only if X is connected; similarly for FAX.
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(iii) ([81] (1.4), [92] (4.2.4)) ∗With X given and with FX in hand, the group
FAX may be “realized” in concrete form by the rule FAX = FX/(FX)′), with (FX)′

denoting the commutator subgroup of FX;
(iv) ([92] (4.2.1(i), [81] (11.6)) ∗For X compact and infinite one has w(FX) =

w(FAX) = (wX)ω; hence cf(w(FX)) = cf(w(FAX)) > ω.
It follows from (ii), (iii) and (iv) that the free compact groups FX and FAX for X

compact and connected satisfy the conditions of Theorem 5.2.1(b) of Section 5. By
applying Theorem 8.2.3 of Section 8 below we have this result.

Theorem 7.2.1. ∗Let FX = (FX, T ) be the free compact group over the compact space X
with |X| > 1 and w(FX) = w(FAX) = α > ω. Then with κ := 222α

there are κ-many
pseudocompact group topologies Uη (η < κ) on FX such that Uη ⊇ T , Uη 6= T , and
w(FX,Uη) = 2|FX|.

8. New Results, Non-Abelian Emphasis

8.1. Three Preliminary Lemmas

It is shown in [46] (5.1) that every non-metrizable compact abelian group K
admits a pseudocompact group refinement of maximal weight (that is, of weight
2|K|). With a view toward generalizing that statement and its corollaries from [46]
into the non-abelian context, we begin this section (making no claim for novelty in
either case) with two simple lemmas.

Lemma 8.1.1. ∗Let H be a closed normal subgroup of an infinite totally bounded group G.
Then wG = wH + w(G/H).

Proof. The result is well known (see for example [40] (6.1)) when G, hence also
H, is compact. Denoting as in 1.3(b) by G the Weil completion of (an arbitrary)
totally bounded group G, we have in the present case G/H = G/H (see also in this
connection [93] (5.4.3) and [94] (2.6)), and hence

wG = wG = wH + w(G/H) = wH + w(G/H).

Lemma 8.1.2. [47] (3.11) ∗Let S and U be totally bounded group topologies on a group G
such that S ⊇ U . Then w(G,S) ≥ w(G,U).

Proof. The continuous map id : (G,S) � (G,U) extends continuously to id :
(G,S) � (G,U), and a continuous surjection between compact spaces cannot raise
weight [1] (3.1.22), so we have

w(G,S) = w(G,S) ≥ w(G,U) = w(G,U).

Now for an arbitrary totally bounded group (G, T ) we denote byM(T ) the
set of totally bounded group topologies on G which contain T . Further, given a
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closed normal subgroup H of G, we denote by φ the usual quotient map from G onto
G/H and by Tq the quotient topology on G/H. We note that for a group topology S
on G/H, the initial topology φ−1(S) induced on G by φ and S is a group topology
which is not in general a Hausdorff topology.

Lemma 8.1.3. ∗Let K = (K, T ) be a compact group with a closed normal subgroup H. Then:
(a) S ∈ M(Tq)⇒ T ∨ φ−1(S) ∈ M(T );
(b) the mapM(Tq)→M(T ) given in (a) is injective; and
(c) if S ∈ M(Tq) is pseudocompact, then T ∨ φ−1(S) is pseudocompact.

Proof. With only notational changes, the proof follows the argument of our work
with Szambien [95] (3.5).

8.2. Refinements of Large Weight (the Non-abelian Case)

The following theorem is a generalization of [40] (6.2).

Theorem 8.2.1. ∗Let K = (K, T ) be a compact group such that w(K) = α > ω. Let
K′ be the closure in (K, T ) of the commutator subgroup of K. If w(K/K′, Tq) = β > ω,
then there is a pseudocompact group topology U on K such that U ⊇ T , U 6= T , and
w(K,U) = α + 22β

.

Proof. From [46] (5.1) applied to the compact group (K/K′, Tq) we have: there is a
pseudocompact group topology S ∈ M(Tq) such that S 6= Tq and w(K/K′,S) = 22β

.
The topology U := T ∨ φ−1(S) on K is pseudocompact by Lemma 8.1.3(c).

Lemma 8.1.1 implies w(K,U) = w(K′,U0) + w(K/K′,S), because S is the
quotient topology of U ; here U0 denotes the topology induced by U on K′. This
topology coincides with the topology induced by T on K′, so w(K,U) ≤ α + 22β

.
For the reverse equality we note that w(K,U) ≥ w(K/K′,S) = 22β

. Lemma 8.1.2
gives w(K,U) ≥ α. Hence w(K,U) ≥ α + 22β

.

In preparation for Theorem 8.2.3 we recall this result from [46] (5.2) (see (B) of
the Abstract).

Lemma 8.2.2. For every compact abelian group K = (K, T ) with wK = α > ω there
are 22|K| -many pseudocompact group topologies U on K such that U ⊇ T , U 6= T , and
w(K,U) = 2|K|.

Theorem 8.2.3. ∗Let K = (K, T ) be a compact group such that w(K, T ) = w(K/K′, Tq) =

α > ω. Then with κ := 222α

there are κ-many pseudocompact group topologies Uη (η < κ)

on K such that Uη ⊇ T , Uη 6= T , and w(K,Uη) = 2|K|.

Proof. In view of Lemma 8.1.1 and Lemma 8.1.3, it is enough to know that there
are κ-many pseudocompact group topologies Sη (η < κ) on the abelian group K/K′

such that Sη ⊇ Tq, Sη 6= Tq, and w(K/K′,Sη) = 2|K/K′| = 2|K|. This is given by
Lemma 8.2.2 (with K there replaced by K/K′ here).
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Remark 8.2.4. We adopt this definition from [81] (9.92). Given a group G, the set F
of all elements whose conjugacy class is finite is called the FC-center of G. If F = G,
then G is an FC-group. Hofmann and Morris [81] (9.99) proved this theorem:

∗Let K be a compact group. Then the following three statements are equivalent:
(i) K is an FC-group;
(ii) K/Z(K) is finite; and
(iii) the commutator subgroup of K is finite.

From the implication (i) ⇒ (iii) it is clear that every FC-group K = (K, T ) with
w(K) = α > ω satisfies the condition w(K) = w(K/K′) = α, so from Theorem 8.2.3
we have this consequence for such K: with κ := 222α

there are κ-many pseudocompact
group topologies Uη (η < κ) on K such that Uη ⊇ T , Uη 6= T , and w(K,Uη) = 2|K|.

Theorem 8.2.5. ∗Let K = (K, T ) be a compact group, such that w(K) = α > ω, and
let Z0(K) be the connected component of the center Z(K) of K. If w(Z0(K)) = β > ω,
then there is a pseudocompact group topology U on K such that U ⊇ T , U 6= T , and
w(K,U) ≥ α + 22β

.

Proof. Let K′ be the closure of the commutator subgroup of K. By [81] (9.23(iii)) the
connected component C0 of K/K′ is topologically isomorphic to Z0(K)/H, where H is
the intersection of Z0(K) and K′. The group H is totally disconnected, since Z(K)∩K′

is totally disconnected by [81] (9.23(i)). Thus [96] (3.2) implies w(Z0(K)) = w(C0).
Hence β ≤ w(K/K′). Now apply Theorem 8.2.1 to complete the proof.

LetR denote a set of representatives for the isomorphism classes of the class of
all compact simple groups. It was noted by Hofmann and Morris [97] (p. 412) thatR
is an infinite countable set. In [97] (2.2), a compact group is called strictly reductive if
it is isomorphic to a Cartesian product of compact algebraically simple groups. For
a compact group K and S ∈ R, the smallest closed subgroup KS of K containing all
closed normal subgroups isomorphic to S is called in [97] the S-socle of K.

Theorem 8.2.6 ([97] (2.3)). ∗Let K be a strictly reductive compact group, and let (KS)S∈R
denote the sequence of S-socles of K. Then there is a sequence of cardinals (J(K, S))S∈R such
that K ' ΠS∈R KS, with KS ' SJ(K,S) for each S ∈ R.

Theorem 8.2.7. ∗Let (K, T ) be a strictly reductive compact group with w(K, T ) = α > ω.
Then:

(a) if ω < β < α, then K admits a pseudocompact group topology U such that U ⊇ T ,
U 6= T , and w(K,U) = α + 22β

; and
(b) if cf(α)> ω, then K admits a pseudocompact group topology U with U ⊇ T ,

U 6= T , and w(K,U) = 22α
.

Proof. By Theorem 8.2.6 there is a sequence of cardinals (J(K, S))S∈R such that
K ' ΠS∈R KS, KS ' SJ(K,S). Hofmann and Morris [97](2.7) showed w(K, T ) =

max{ω, sup{J(K, S) : S ∈ R}}. Then Theorem 6.1.4 completes the proof.
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Corollary 8.2.8. ∗Let (K, T ) be a strictly reductive compact group with w(K, T ) = α > ω.
Then K admits a pseudocompact group topology U with U ⊇ T , U 6= T .

Proof. If α > ω+, use Theorem 8.2.7(a). If α = ω+, use Theorem 8.2.7(b).

Corollary 8.2.9. ∗Let (K, T ) be a strictly reductive compact group with w(K, T ) = α. If
cf(α) > ω, then K admits a pseudocompact group topology U with U ⊇ T , U 6= T , and
|[T ,U ]| ≥ 2|K|.

Proof. Use Theorem 5.2.4 and Theorem 8.2.7(b).

Remus considered in [98] uncountable powers of a non-abelian, compact,
topologically simple group.

Theorem 8.2.10 ([98] (3.40)). ∗Let F be a non-abelian, compact, topologically simple group,
and let α > ω. Let K = Fα endowed with the product topology T . Then:

(a) there is a pseudocompact group topology U on K with w(K,U) = 2|K| and T ⊂ U
such that there is an order-isomorphism f of the power set P(2|K|), ordered by the inclusion,
onto a subset of [T ,U ]. The compact Weil completion of (K,U) is topologically isomorphic
to F22α

; and
(b) for each cardinal γ such that α ≤ γ ≤ 2|K| and for every M ∈ P(2|K|) with

|M| = γ, one has w(K, f (M)) = γ.

From the proof of [98] (3.36) this statement follows: let (K, T ) be a profinite
group with w(K, T ) = α. If cf(α) > ω, there is a subnormal series H1 ⊂ H2 . . . ⊂
Hk = K of open subgroups of K such that there is a pseudocompact group topology
U on H1, finer than the topology induced by T on H1, such that w(H1,U) = 2|G|.
By [98] ((3.36)(b)) there is a linear totally bounded group topology V of weight 2|G| on
K which is finer than T (this is constructed using the topology U and the subnormal
series). It remains open if V can be chosen pseudocompact. It is natural to pose
the following

Problem 8.2.11. ∗Let (K, T ) be a profinite group of uncountable weight.
(a) Does T admit a proper pseudocompact refinement of maximal weight 2|K|?
(b) Are there 22|K| -many pseudocompact group topologies on K which are finer than T ?
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Fixed Points of Local Actions of Lie Groups
on Real and Complex 2-Manifolds
Morris W. Hirsch

Abstract: I discuss old and new results on fixed points of local actions by Lie groups
G on real and complex 2-manifolds, and zero sets of Lie algebras of vector fields.
Results of E. Lima, J. Plante and C. Bonatti are reviewed.

Reprinted from Axioms. Cite as: Hirsch, M.W. Fixed Points of Local Actions of Lie
Groups on Real and Complex 2-Manifolds. Axioms 2016, 4, 313–320.

1. Introduction

Classical results of Poincaré [1] (1885), Hopf [2] (1925) and Lefschetz [3] (1937)
yield the archetypal fixed point theorem for Lie group actions:

Theorem 1. Every flow on a compact manifold of non-zero Euler characteristic has
a fixed point.

Here the Lie group is the group R of real numbers.
The earliest papers I have found on fixed points for actions of other non-discrete

Lie group are those of P. A. Smith [4] (1942) and H. Wang [5] (1952). Then came
Armand Borel’s landmark paper of 1956:

Theorem 2 (Borel [6]). If H is a solvable, irreducible affine algebraic group over an
algebraically closed field K, every algebraic action of H on a complete algebraic variety
over K has a fixed point.

Over the field of complex numbers, completeness is equivalent to compactness
in the classical topology, and complete nonsingular varieties are compact Kähler
manifolds.

In 1973, A. Sommese [7] extended Borel’s theorem to solvable holomorphic
actions on compact Kähler manifolds with first Betti number 0. In contrast
to the results below, these have no explicit restrictions on dimensions or Euler
characteristics.

2. Actions and Local Actions

If f : A→ B denotes a map, its domain is D f := A and its range isR f := f (A).
Let g, f denote maps. Regardless of their domains and ranges, the composition

g ◦ f is defined as the map x 7→ g( f (x)) whose domain, perhaps empty, is f−1(Dg).
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The associative law holds for these compositions: The maps (h ◦ g) ◦ f and h ◦ (g ◦ f )
have the same domain

D := {x ∈ D f : f (x) ∈ Dg, g( f (x)) ∈ D f },

and
x ∈ D =⇒ (h ◦ g)( f (x)) = h((g ◦ f )(x)).

Henceforth M denotes a manifold with boundary ∂M, and G denotes a
connected Lie group with Lie algebra g.

A local homeomorphism f on M is a homeomorphism between open subsets of M.
The set of these homeomorphisms is denoted by LH(M).

A local action of G on M is a triple (α, G, M), where α : G → LH(M) is a function
having the following properties:

• The set Ω(α) :=
{
(g, p) ∈ G ×M : p ∈ Dα(g)

}
is an open neighborhood of

{eG} ×M.
• The evaluation map

evff : Ω(α)→ M, (g, p) 7→ α(g) · p

is continuous.
• α(eG) is the identity map of M.
• The maps α( f g) ◦ α(h) and α( f ) ◦ α(gh) agree on the intersection of their

domains.
• α(g−1) = α(g)−1.

Notation of α may be omitted.
When Ω(α) = G×M the local action is a global action. If G is simply connected

and M is compact, every local action extends to a unique global action.
When α has been specified, we define the fixed-point sets

Fix(g) := {x ∈ Dg : g(x) = x},
Fix(G) :=

⋂
g∈G

Fix(g)

The local action is effective if Fix(g) 6= M for all g 6= eG.
A local flow is a local action (Ψ,R, M). In this case we set Ψt := Ψ(t) and identify

Ψ with the indexed family of {Ψt}t∈R of local maps in M. If (α, G, M) is a local action,
to every X ∈ g there corresponds a local flow (α∗Ψ,R, M) defined in the following.
Consider X as a 1-parameter subgroup of G, i.e., a homomorphism X : R→ G, and
set α∗Ψ = {α(X(t))}t∈R. The local flow induced by a C1 vector field X on M tangent
to ∂M is denoted by ΦX := {ΦX

t }t∈R.
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A block for a local flow Ψ (a Ψ-block) is a compact K ⊂ Fix(Ψ) having a
precompact open neighborhood U ⊂ M, termed isolating, such that Fix(Ψ) ∩U = K.
When this holds, the index i(Ψ, U) of Ψ in U is defined as the fixed point index
of Ψt|U : U → M for sufficiently small t > 0, as defined by Dold [8] (see also
Brown [9] and Granas and Dugundji [10]). This integer depends only on K, and we
set iK(Ψ) := i(Ψ, U). When iK(Ψ) 6= 0 then K is essential. If K is a block for the local
flow ΦX of a vector field X, an equivalent definition of iK(ΦX) as the Poincaré–Hopf
index of X at K is given in Section 4.

3. Fixed Points of Local Actions on Surfaces

In the rest of this section M denotes a real closed surface (compact with empty
boundary) and G is a connected Lie group acting continuously on M.

An important role is played by the group ST◦(n,R), the solvable group of real,
upper triangulable n× n matrices with positive diagonal entries. In his pioneering
1964 paper, E. Lima [11] constructed fixed-point free actions of ST◦(2,R) on the
compact 2-cell and the 2-sphere, but he also showed that every abelian Lie group
action on a compact surface M of nonzero Euler characteristic χ(M) has a fixed point.
These results were extended in 1986 by Plante:

Theorem 3 (Plante [12]). Let M be a compact surface whose boundary may be nonempty.

(i) ST◦(2,R) has a fixed-point free action on M.
(ii) If χ(M) 6= 0, every action on M by a connected nilpotent Lie group has a fixed point.

Many facts about existence of fixed points for continuous actions on closed
surfaces can be derived from the results of M. Belliart summarized in the following
theorem. If H ⊂ GL(n,F) denotes a group of matrices, PH denotes the quotient of
H by its center.

Theorem 4 (Belliart [13]). There is a fixed-point free action of G on M iff one of the
following conditions (a), (b), (c) holds:

(a) χ(M) > 0 and G is solvable but not nilpotent.
(b) χ(M) < 0 and G has ST◦(2,R) as a quotient.
(c) χ(M) ≥ 0, G is semisimple, and either:

(i) G has PSL(2,R) as a quotient, or
(ii) χ(M) > 0, ∂M = ∅, and G has as a quotient one of the groups

PSL(3,R), PSL(2,C) or PSO(3).

A Lie algebra is supersolvable if it is faithfully represented as upper triangular
real matrices. A Lie group is supersolvable if its Lie algebra is.
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Theorem 5.

(i) ST◦(3,R) has an effective analytic action on M.
(ii) If G has an effective, fixed-point free analytic action on M, then χ(M) ≥ 0, with equality

when G is a supersolvable and ∂M = ∅.

Part (i) and the first conclusion in (ii) are due to Turiel [14]. The second
conclusion in (ii) is due to Hirsch and Weinstein [15].

The following result gives upper and lower bounds on the number of fixed
points of analytic actions of ST◦(3,R):

Proposition 1 (Hirsch [16], Cor. 17, Thm 22).

(i) Let M have genus g. For every k ∈ N there is an effective analytic action β of ST◦(3,R)
on M such that:

#Fix(β) =

{
2(g + k + 1) if M is orientable,

g + k if M is nonorientable and g ≥ 1.
(1)

(ii) If G is not supersolvable and has an effective analytic action on M,

0 ≤ #Fix(G) ≤ χ(M) ≤ 2.

Question. Can the right hand side of Equation (1) can be lowered?

4. Indices of Vector Fields

Let V(M) denote the vector space of vector fields (continuous sections of the
tangent bundle) on a smooth manifold M, endowed with the compact open topology.

The zero set of X ∈ V(M) is

Z(X) := {p ∈ M : Xp = 0}.

A block for X (an X-block) is a compact, relatively open set K ⊂ Z(X). Every
sufficiently small open neighborhood U ⊂ M of K is isolating for X, meaning its
closure U is compact and Z(X) ∩U = K. This implies that U is isolating for every
vector field Y sufficiently close to X.

Let K be an X-block. When K is finite, the Poincaré–Hopf index of X at K, and in
U, is the integer iPH

K (X) = iPH(X, U) defined as follows. For each p ∈ K choose an
open set W ⊂ U meeting K only at p, such that W is the domain of a C1 chart

φ : W ≈W ′ ⊂ Rn, φ(p) = p′.
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The transform of X by φ is

X′ := Tφ ◦ X ◦ φ−1 ∈ V(W ′).

There is a unique map of pairs

Fp : (W ′, 0)→ Rn, 0)

that expresses X′ by the formula

X′x =
(

x, Fp(x)
)
∈ {x} ×Rn, (x ∈W ′).

Noting that F−1(0) = p, we define iPH
p (X) ∈ Z as the degree of the map defined

for any sufficiently small ε > 0 as

Sn−1 → Sn−1, u 7→
Fp(εu)
‖Fp(εu)‖

where ‖ · ‖ is the norm defined by any Riemannian metric on M. This degree is
independent of ε and the chart φ, by standard properties of the degree function.
Therefore the integer

iPH
K (X) = iPH(X, U) :=

{
∑p∈K iPH

p (X) if K 6= ∅,

0 if K = .

is well defined and depends only on X and K.
The index of an arbitrary X-block K is the integer iK(X) := i(X, U) defined as

the Poincaré–Hopf index of any sufficiently close approximation to X having only
finitely many zeros in U [17].

This number is independent of U and is stable under perturbations of X. The
X-block K is essential when iK(X) 6= 0. This implies Z(X) ∩ K 6= ∅ because every
isolating neighborhood of K meets Z(X).

Theorem 6 (Poincaré–Hopf). If M is compact, i(X, M) = χ(M) for all continuous vector
fields X on M.

For calculations of the index in more general settings see Morse [18], Pugh [19],
Gottlieb [20], Jubin [21].

Theorem 7 (Bonatti [22]). Assume M is a real manifold of dimension ≤ 4 with empty
boundary, and X, Y are analytic vector fields on M such that [X, Y] = 0. Then Z(Y) meets
every essential X-block [23].
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This implies certain local actions of 2-dimensional abelian Lie groups have fixed
points. The results below are analogs for local actions of nonabelian Lie groups.

Theorem 8 (Hirsch [24]). Let M be a real surface, perhaps non-compact or having
non-empty boundary. Let G be a connected nilpotent Lie group and (α, G, M) an effective
local action. Assume given a continuous local action of G on M, and let K be an essential
block for the local flow induced by a 1-parameter subgroup. Then Fix(G) ∩ K 6= ∅.

This implies Plante’s result, Theorem 3(ii).

Corollary 1. Let G, M and X be as in Theorem 8.

(i) If Γ ⊂ M is a compact attractor for ΦX and χ(Γ) 6= 0, then Fix(G) ∩ Γ 6= ∅.
(ii) If ΦX has n essential blocks, then Fix(G) has n components.

The counter-example in Theorem 3(i) show that fixed point results for broader
classes of Lie groups, including supersolvable groups, need stronger hypotheses.

Henceforth M denotes either a real or complex 2-manifold, the corresponding
ground field being F = R or C. Let Vω(M) denote the Lie algebra of vector fields on
M that are analytic over F. If Y ∈ Vω(M), TΦY denotes the induced local flow on
the tangent vector bundle of M.

Assume X, Y ∈ Vω(M). We say that Y tracks X if there exists a continuous map

f : M→ F, f−1(0) = Z(X), [Y, X] = f X.

Equivalently: if p ∈ M and t ∈ R there exists g(t, p) ∈ F such that:

ΦY
t (p) = q(t) =⇒ TΦY

t (Xp) = g(t, p)Xq(t).

For real M this means ΦY
t sends orbits of X|DΦY

t to orbits of X|RΦY
t .

Let G ⊂ Vω(M) denote a Lie algebra of vector fields. We say that G tracks X
provided each Y ∈ G tracks X.

Example 1. If X spans an ideal in G then G tracks X, and the converse holds if G is
finite dimensional.

Example 2. The set {Y ∈ Vω(M) : Y tracks X} is a Lie algebra that tracks X.

The following result will be proved in a forthcoming paper [25]; a preliminary
version is in [26].

Theorem 9. Assume X ∈ Vω(M), K is an essential X-bloc, and G ⊂ Vω(M) tracks X.
Let one of the following conditions hold:
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(a) M is complex,
(b) M is real and G is supersolvable.

Then Z(G) ∩ K 6= ∅.

Example 3. Here is a simple example in which the hypotheses hold. For M take
complex projective 3-space. Let G be the solvable complex Lie group of unimodular
4× 4 upper triangular complex matrices. The natural action of G on C4 induces an
effective holomorphic action of G on M, mapping the Lie algebra of G isomorphically
onto a Lie algebra G ⊂ Vω(M). Let X ∈ G have the block

[
0 1
0 0
]

in its upper right
hand corner and all other elements equal to zero. X spans an ideal, the triple
commutator subalgebra G ′′′. The X-block K := Z(X), a copy of CP1, is essential
because χ(M) = 3; and Z(G) is a singleton in Z(X).
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Abstract: Known and new results on free Boolean topological groups are collected.
An account of the properties that these groups share with free or free Abelian
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emphasis is placed on the application of set-theoretic methods to the study of Boolean
topological groups.
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1. Introduction

In the very early 1940s, Markov [1,2] introduced the free topological group F(X)

and the free Abelian topological group A(X) on an arbitrary completely regular
Hausdorff topological space X as a topological-algebraic counterpart of the abstract
free and free Abelian groups on a set, respectively; he also proved the existence and
uniqueness of these groups. During the next decade, Graev [3,4], Nakayama [5]
and Kakutani [6] simplified the proofs of the main statements of Markov’s theory of
free topological groups, generalized Markov’s construction and proved a number
of important theorems on free topological groups. In particular, Graev generalized
the notions of the free and the free Abelian topological group on a space X by
identifying the identity element of the free group with an (arbitrary) point of X (the
free topological group on X in the sense of Markov coincides with Graev’s group
on X plus an isolated point), described the topology of free topological groups on
compact spaces and extended any continuous pseudometric on X to a continuous
invariant pseudometric on F(X) (and on A(X)) which is maximal among all such
extensions [3].

This study stimulated Mal’tsev, who believed that the most appropriate place
of the theory of abstract free groups was in the framework of the general theory of
algebraic systems, to introduce general free topological algebraic systems. In 1957,
he published the large paper [7], where the basics of the theory of free topological
universal algebras were presented.

Yet another decade later, Morris initiated the study of free topological groups in
the most general aspect. Namely, he introduced the notion of a variety of topological
groups and a full variety of topological groups and studied the free objects of these
varieties [8–10] (see also [11]). (A definition of a variety of topological groups
(determined by a so-called varietal free topological group) was also proposed in
1951 by Higman [12]; however, it is Morris’ definition that has proven viable and
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developed into a rich theory.) Varieties of topological groups and their free objects
were also considered by Porst [13], Comfort and van Mill [14], Kopperman, Mislove,
Morris, Nickolas, Pestov and Svetlichny [15], and other authors. Special mention
should be made of Dikranjan and Tkachenko’s detailed study of varieties of Abelian
topological groups with properties related to compactness [16].

The varieties of topological groups in which free objects have been studied best
are, naturally, the varieties of general and Abelian topological groups; free and free
Abelian precompact groups have also been considered (see, e.g., [17]). However,
there is yet another natural variety: Boolean topological groups. Free objects in this
variety and its subvarieties have been investigated much less extensively, although
they arise fairly often in various studies (especially in the set-theoretic context). The
author is aware of only three published papers considering free Boolean topological
groups from a general point of view: [18], where free Boolean topological groups
on compact spaces were studied fairly thoroughly; [19], where the topology of the
free Boolean topological group on a compact metric space was explicitly described;
and [20], where the free Boolean topological groups on compact initial segments of
ordinals were classified (see also [21]). The purpose of this paper is to draw attention
to these very interesting groups and to give a general impression of them. We collect
some (known and new) results on free Boolean topological groups, which describe
both properties that these groups share with free or free Abelian topological groups
and properties specific to free Boolean groups.

2. Preliminaries and a General Description of Free Boolean Topological Groups

All topological spaces and groups considered in this paper are assumed to be
completely regular and Hausdorff.

The notation ω is used for the set of all nonnegative integers and N for the set of
all positive integers. By Z2, we denote the group of order two. The cardinality of a
set A is denoted by |A| and the closure of a set A in an ambient topological space by
A. We denote the disjoint union of spaces X and Y by X⊕Y.

By a zero-dimensional space, we mean a space X with ind X = 0 and by a
strongly zero-dimensional space a space X with dim X = 0.

A Boolean group is a group in which all elements are of order two. Clearly, all
Boolean groups are Abelian. Algebraically, all Boolean groups are free, because any
Boolean group is a linear space over the field F2 = {0, 1} and must have a basis
(a maximal linearly independent set) by Zorn’s lemma. This basis freely generates
the given Boolean group. Moreover, any Boolean group (linear space) with basis
X is isomorphic to the direct sum

⊕|X| Z2 of |X| copies of Z2, i.e., the set of finitely
supported maps g : X → Z2 with pointwise addition (in the field F2). Of course, such
an isomorphic representation depends on the choice of the basis.
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A variety of topological groups is a class of topological groups closed with
respect to taking topological subgroups, topological quotient groups and Cartesian
products of groups with the product topology. Thus, the abstract groups G̃
underlying the topological groups G in a variety V of topological groups (that
is, all groups G ∈ V without topology) form a usual variety Ṽ of groups. A variety V
of topological groups is full if any topological group G for which G̃ ∈ Ṽ belongs to
V. The notions of a variety and a full variety of topological groups were introduced
by Morris in [8,9], who also proved the existence of the free group of any full variety
on any completely regular Hausdorff space X.

Free objects of varieties of topological groups are characterized by the
corresponding universality properties (we give a somewhat specific meaning to
the word “universality,” but we use this word only in this meaning here). Thus,
the free topological group F(X) on a space X admits the following description:
X is topologically embedded in F(X) and, for any continuous map f of X to
a topological group G, there exists a continuous homomorphism f̂ : F(X) → G
for which f = f̂ � X. As an abstract group, F(X) is the free group on the set X. The
topology of F(X) can be defined as the strongest group topology inducing the initial
topology on X. On the other hand, the free topological group F(X) is the abstract free
group generated by the set X (which means that any map of the set X to any abstract
group can be extended to a homomorphism of F(X)) endowed with the weakest
topology with respect to which all homomorphic extensions of continuous maps
from X to topological groups are continuous. The free Abelian topological group
A(X) on X, the free Boolean topological group B(X) on X and free (free Abelian, free
Boolean) precompact groups are defined similarly; instead of continuous maps to
any topological groups, continuous maps to topological Abelian groups, topological
Boolean groups and precompact (Abelian precompact, Boolean precompact) groups
should be considered.

There is yet another family of interesting varieties of topological groups.
Following Malykhin (see also [17]), we say that a topological group is linear if it has
a base of neighborhoods of the identity element which consists of open subgroups.
The classes of all linear groups, all Abelian linear groups and all Boolean linear
groups are varieties of topological groups. These varieties are not full, but for any
zero-dimensional space X, there exist free groups of all of these three varieties on
X. Indeed, Morris proved that a free group of a variety of topological groups on a
given space exists if this space can be embedded as a subspace in a group from this
variety ([8], Theorem 2.6). Thus, it suffices to embed any zero-dimensional X in a
Boolean linear topological group (which belongs to all of the three varieties under
consideration). We do this below, but first we introduce more notation.

Whenever X algebraically generates a group G, we can set the length of the
identity element to zero, define the length of any non-identity g ∈ G with respect
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to X as the least (positive) integer n such that g = xε1
1 xε2

2 . . . xεn
n for some xi ∈ X and

εi = ±1, i = 1, 2, . . . , n, and denote the set of elements of length at most k by Gk for
k ∈ ω; then, G =

⋃
Gk. Thus, we use Fk(X), Ak(X) and Bk(X) to denote the sets of

words of length at most k in F(X), A(X) and B(X), respectively.
Now, we can describe the promised embedding.

Lemma 1. (i) For any space X with ind X = 0, there exists a Hausdorff linear
topological group F′(X) such that F′(X) is an algebraically free group on X, X
is a closed subspace of F′(X), and all sets Fn(X) of words of length at most n are
closed in F′(X).

(ii) For any space X with ind X = 0, there exists a Hausdorff Abelian linear topological
group A′(X) such that A′(X) is an algebraically free Abelian group on X, X is a
closed subspace of A′(X), and all sets An(X) of words of length at most n are closed
in A′(X).

(iii) For any space X with ind X = 0, there exists a Hausdorff Boolean linear topological
group B′(X) such that B′(X) is an algebraically free Boolean group on X, X is a
closed subspace of B′(X), and all sets Bn(X) of words of length at most n are closed
in B′(X).

Proof. Assertion (i) was proven in [22], Theorem 10.5. Let us prove (ii). Given a
disjoint open cover γ of X, we set:
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Lemma 1. (i) For any space X with indX = 0, there exists a Hausdorff linear topological group
F ′(X) such that F ′(X) is an algebraically free group on X , X is a closed subspace of F ′(X),
and all sets Fn(X) of words of length at most n are closed in F ′(X).

(ii) For any spaceX with indX = 0, there exists a Hausdorff Abelian linear topological group A′(X)

such that A′(X) is an algebraically free Abelian group on X , X is a closed subspace of A′(X),
and all sets An(X) of words of length at most n are closed in A′(X).

(iii) For any spaceX with indX = 0, there exists a Hausdorff Boolean linear topological groupB′(X)

such that B′(X) is an algebraically free Boolean group on X , X is a closed subspace of B′(X),
and all sets Bn(X) of words of length at most n are closed in B′(X).

Proof. Assertion (i) was proven in [22], Theorem 10.5. Let us prove (ii). Given a disjoint open cover γ
of X , we set:

H(γ) =
{ n∑

i=1

(xi − yi) : n ∈ N and for each i ≤ n, there exists an Ui ∈ γ for which xi, yi ∈ Ui
}

;

this is a subgroup of the free Abelian group on X . We can assume that all words in H(γ) are reduced
(if xi is canceled with yj , then Ui = Uj , because Ui ∩ Uj 3 xi = yj and γ is disjoint, and we can
replace xi − yi + xj − yj by xj − yi). All such subgroups generate a group topology on the free Abelian
group on X; we denote the free Abelian group with this topology by A′(X) (we might as well take only
finite covers).

The space X is indeed embedded in A′(X): given any clopen neighborhood U of any point x ∈ X ,
we have x+H({U,X \ U}) ∩X = U .

Let us show that An(X) is closed in A′(X) for any n ∈ ω. Take any reduced word g = ε1x1 + ε2x2 +

· · ·+ εkxk with k > n, where εi = ±1 and xi ∈ X for i ≤ k. Let Ui be clopen neighborhoods of xi such
that Ui and Uj are disjoint if xj 6= xi and coincide if xj = xj . We set:

γ =
{
U1, . . . , Uk, X \

⋃

i≤k
Ui

}
.

Take any reduced word h =
∑m

i=1(yi − zi) in H(γ) and consider g + h. If, for some i ≤ m, both yi and
−zi are canceled in g + h with some xj and xl, then, first, xj = xl (because any different letters in g are
separated by the cover γ, while yi and zi must belong to the same element of this cover), and secondly,
εj = −εl (because yi and zi occur in h with opposite signs). Hence, εjxj = −εlxl, which contradicts g
being reduced. Thus, among any two letters yi and −zi in h, only one can be canceled in g + h, so that
g + h cannot be shorter than g. In other words, g +H(γ) ∩ A′n(X) = ∅.

The proof that X is closed in A′(X) is similar: given any g /∈ X , we construct precisely the same γ
as above (if g /∈ −X) or set γ = {X} (if g ∈ −X) and show that g + H(γ) must contain at least one
negative letter.

The Hausdorffness of A′(X) is equivalent to the closedness of A0(X).
The proof of (iii) is similar.

This lemma and Morris’ theorem cited above ([8], Theorem 2.6) immediately imply the
following theorem.

this is a subgroup of the free Abelian group on X. We can assume that all words in
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of any point x ∈ X, we have x + H({U, X \U}) ∩ X = U.

Let us show that An(X) is closed in A′(X) for any n ∈ ω. Take any reduced
word g = ε1x1 + ε2x2 + · · ·+ εkxk with k > n, where εi = ±1 and xi ∈ X for i ≤ k.
Let Ui be clopen neighborhoods of xi such that Ui and Uj are disjoint if xj 6= xi and
coincide if xj = xj. We set:

γ =
{

U1, . . . , Uk, X \
⋃

i≤k

Ui

}
.

Take any reduced word h = ∑m
i=1(yi − zi) in H(γ) and consider g + h. If, for some

i ≤ m, both yi and −zi are canceled in g + h with some xj and xl , then, first, xj = xl
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(because any different letters in g are separated by the cover γ, while yi and zi must
belong to the same element of this cover), and secondly, ε j = −ε l (because yi and
zi occur in h with opposite signs). Hence, ε jxj = −ε l xl , which contradicts g being
reduced. Thus, among any two letters yi and −zi in h, only one can be canceled in
g + h, so that g + h cannot be shorter than g. In other words, g + H(γ)∩ A′n(X) = ∅.

The proof that X is closed in A′(X) is similar: given any g /∈ X, we construct
precisely the same γ as above (if g /∈ −X) or set γ = {X} (if g ∈ −X) and show that
g + H(γ) must contain at least one negative letter.

The Hausdorffness of A′(X) is equivalent to the closedness of A0(X).
The proof of (iii) is similar.

This lemma and Morris’ theorem cited above ([8], Theorem 2.6) immediately
imply the following theorem.

Theorem 2. For any space X with ind X = 0, the free, free Abelian and free Boolean
linear topological groups Flin(X), Alin(X) and Blin(X) are defined. They are Hausdorff
and contain X as a closed subspace, and all sets Fn(X), An(X) and Bn(X) are closed in the
respective groups.

By definition, the free linear groups of a zero-dimensional space X have the
strongest linear group topologies inducing the topology of X, that is, any continuous
map from X to a linear topological group (Abelian linear topological group, Boolean
linear topological group) extends to a continuous homomorphism from Flin(X)

(Alin(X), Blin(X)) to this group.
Let X be a space, and let Xn, n ∈ ω, be its subspaces such that X =

⋃
Xn.

Suppose that any Y ⊂ X is open in X if and only if each Y ∩ Xn is open in Xn

(replacing “open” by “closed,” we obtain an equivalent condition). Then, X is said
to have the inductive limit topology (with respect to the decomposition X =

⋃
Xn).

When talking about inductive limit topologies on F(X), A(X) and B(X), we always
mean the decompositions F(X) =

⋃
Fk(X), A(X) =

⋃
Ak(X) and B(X) =

⋃
Bk(X)

and assume the sets Fk(X), Ak(X) and Bk(X) to be endowed with the topology
induced by the respective free topological groups.

For any space X, the free Abelian topological group A(X) is the quotient
topological group of F(X) by the commutator subgroup, and the free Boolean
topological group B(X) is the quotient of A(X) by the subgroup of squares A(2X)

(which is generated by all words of the form 2x, x ∈ X) (the universality of free objects
in varieties of topological groups implies that the corresponding homomorphisms
are continuous and open). Thus, B(X) is the image of A(X) (and of F(X)) under a
continuous open homomorphism.

The topology of free groups can be described explicitly. The first descriptions
were given for free topological groups on compact spaces and free Abelian topological
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groups by Graev [3,4]; Tkachenko [23,24] and Pestov [25] gave explicit descriptions of
the topology of general free topological groups. There are also descriptions due to the
author (see, e.g., [26,27]). Mal’tsev proposed a universal approach to describing the
topology of free topological algebras, which is not quite constructive, but looks very
promising [7]. All descriptions of the topology of free and free Abelian topological
groups of which the author is aware are given in [22]. The descriptions of the free
topological group topology are very complex (except in a few special cases); the
topologies of free Abelian and Boolean topological groups look much simpler. Thanks
to the fact that B(X) = A(X)/A(2X), the descriptions of the free Abelian topological
group topology given in [22] immediately imply the following descriptions of the
free topology of B(X).

I For each n ∈ N, we fix an arbitrary entourage Wn ∈ U of the diagonal of
X× X in the universal uniformity of X and set:

W̃ = {Wn}n∈N,

U(Wn) = {x + y : (x, y) ∈Wn},
U(W̃) =

⋃

n∈N
(U(W1) + U(W2) + · · ·+ U(Wn)).

The sets U(W̃), where W̃ ranges over all sequences of uniform entourages of the
diagonal, form a neighborhood base at zero for the topology of the free Boolean
topological group B(X).

II For each n ∈ N, we fix an arbitrary normal (or merely open) cover γn of the
space X and set:

Γ = {γn}n∈N,

U(γn) = {x + y : (x, y) ∈ U ∈ γn},
U(Γ) =

⋃

n∈N
(U(γ1) + U(γ2) + · · ·+ U(γn)).

The sets U(Γ), where Γ ranges over all sequences of normal (or arbitrary open) covers,
form a neighborhood base at zero for the topology of B(X).

III For an arbitrary continuous pseudometric d on X, we set:

U(d) =
{

x1 + y1 + x2 + y2 + · · ·+ xn + yn : n ∈ N, xi, yi ∈ X,
n

∑
i=1

d(xi, yi) < 1
}

.

The sets U(d), where d ranges over all continuous pseudometrics on X, form a
neighborhood base at zero for the topology of B(X).

It follows directly from the second description that the base of neighborhoods
of zero in Blin(X) (for zero-dimensional X) is formed by the subgroups:
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〈U(γ)〉 =
{ n

∑
i=1

(xi + yi) : n ∈ N, (xi, yi) ∈ Ui ∈ γ for i ≤ n
}

generated by the sets U(γ) with γ ranging over all normal covers of X. By
definition, any normal cover of a strongly zero-dimensional space has a disjoint open
refinement. Therefore, for X with dim X = 0, the covers γ can be assumed to be
disjoint, and for disjoint γ, we have:
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III For an arbitrary continuous pseudometric d on X , we set:

U(d) =
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x1 + y1 + x2 + y2 + · · ·+ xn + yn : n ∈ N, xi, yi ∈ X,

n∑

i=1

d(xi, yi) < 1
}
.

The sets U(d), where d ranges over all continuous pseudometrics on X , form a neighborhood base at
zero for the topology of B(X).

It follows directly from the second description that the base of neighborhoods of zero in Blin(X) (for
zero-dimensional X) is formed by the subgroups:

〈U(γ)〉 =
{ n∑

i=1

(xi + yi) : n ∈ N, (xi, yi) ∈ Ui ∈ γ for i ≤ n
}

generated by the sets U(γ) with γ ranging over all normal covers of X . By definition, any normal cover
of a strongly zero-dimensional space has a disjoint open refinement. Therefore, for X with dimX = 0,
the covers γ can be assumed to be disjoint, and for disjoint γ, we have:

〈U(γ)〉 =
{ n∑

i=1

(xi + yi) : n ∈ N, (xi, yi) ∈ Ui ∈ γ for i ≤ n, the word
n∑

i=1

(xi + yi) is reduced
}

(see the proof of Lemma 1). A similar description is valid for the Abelian groups Alin(X) (the pluses
must be replaced by minuses). This leads to the following statement.

Proposition 3. For any strongly zero-dimensional space X and any n ∈ ω, the topology induced on
An(X) (on Bn(X)) by Alin(X) (by Blin(X)) coincides with that induced by A(X) (by B(X)).

Proof. We can assume without loss of generality that n is even. Given any neighborhood U of zero in
A(X) (in B(X)), it suffices to take a sequence Γ = {γk}k∈N of disjoint covers such that n

2
· U(Γ) ⊂ U

and note that 〈U(γ1)〉 ∩ An(X) ⊂ n
2
· U(γ1) ⊂ U .

Graev’s procedure for extending any continuous pseudometric d on X to a maximal invariant
pseudometric d̂ on F (X) is easy to adapt to the Boolean case. Following Graev, we first consider
free topological groups in the sense of Graev, in which the identity element is identified with a point
of the generating space and the universality property is slightly different: only continuous maps of the
generating space to topological groups G that take the distinguished point to the identity elements of
G must extend to continuous homomorphisms [3]. Graev showed that the free topological and Abelian
topological groups FG(X) and AG(X) in the sense of Graev are unique (up to topological isomorphism)

(see the proof of Lemma 1). A similar description is valid for the Abelian groups Alin(X)

(the pluses must be replaced by minuses). This leads to the following statement.

Proposition 3. For any strongly zero-dimensional space X and any n ∈ ω, the topology
induced on An(X) (on Bn(X)) by Alin(X) (by Blin(X)) coincides with that induced by A(X)

(by B(X)).

Proof. We can assume without loss of generality that n is even. Given any
neighborhood U of zero in A(X) (in B(X)), it suffices to take a sequence Γ = {γk}k∈N
of disjoint covers such that n

2 · U(Γ) ⊂ U and note that 〈U(γ1)〉 ∩ An(X) ⊂
n
2 ·U(γ1) ⊂ U.

Graev’s procedure for extending any continuous pseudometric d on X to a
maximal invariant pseudometric d̂ on F(X) is easy to adapt to the Boolean case.
Following Graev, we first consider free topological groups in the sense of Graev,
in which the identity element is identified with a point of the generating space
and the universality property is slightly different: only continuous maps of the
generating space to topological groups G that take the distinguished point to the
identity elements of G must extend to continuous homomorphisms [3]. Graev
showed that the free topological and Abelian topological groups FG(X) and AG(X)

in the sense of Graev are unique (up to topological isomorphism) and do not depend
on the choice of the distinguished point; moreover, the free topological group in the
sense of Markov is nothing but the Graev free topological group on the same space
to which an isolated point is added (and identified with the identity element).

The extension of a continuous pseudometric d on X to a maximal invariant
continuous pseudometric d̂ on the Graev free Boolean topological group BG(X) is
defined by setting:

d̂(g, h) = inf
{ n

∑
i=1

d(xi, yi) : n ∈ N, xi, yi ∈ X, g =
n

∑
i=1

xi, h =
n

∑
i=1

yi

}
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for any g, h ∈ BG(X). The infimum is taken over all representations of g and h
as (reducible) words of equal lengths. The corresponding Graev seminorm ‖ · ‖d
(defined by ‖g‖d = d̂(g, 0) for g ∈ BG(X), where 0 is the zero element of BG(X)) is
given by:

‖g‖d = inf
{ n

∑
i=1

d(xi, yi) : g =
n

∑
i=1

(xi + yi), xi, yi ∈ X
}

.

The infimum is attained at a word representing g which may contain one zero
(if the length of g is odd) and is otherwise reduced. Indeed, if the sum representing g
contains terms of the form x + z and z + y, then these terms can be replaced by one
term x + y; the sum ∑n

i=1 d(xi, yi) does not increase under such a change thanks to
the triangle inequality.

For the usual (Markov’s) free Boolean topological group B(X), which is the same
as BG(X⊕ {0}) (where 0 is an isolated point identified with zero), the Graev metric
depends on the distances from the points of X to the isolated point (they can be set
to 1 for all x ∈ X). The corresponding seminorm ‖ · ‖d on the subgroup Beven(X) of
B(X) consisting of words of even length does not change. The subgroup Beven(X) is
open and closed in B(X), because this is the kernel of the continuous homomorphism
f̂ : B(X)→ {0, 1} extending the constant continuous map f : X → {0, 1} taking all
x ∈ X to 1. Thus, in fact, it does not matter how to extend ‖ · ‖d to B(X) \ Beven(X);
for convenience, we set:
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d(xi, yi) : n ∈ N, xi, yi ∈ X, g =
n∑

i=1

xi, h =
n∑

i=1

yi

}

for any g, h ∈ BG(X). The infimum is taken over all representations of g and h as (reducible) words of
equal lengths. The corresponding Graev seminorm ‖ · ‖d (defined by ‖g‖d = d̂(g, 0) for g ∈ BG(X),
where 0 is the zero element of BG(X)) is given by:

‖g‖d = inf
{ n∑

i=1

d(xi, yi) : g =
n∑

i=1

(xi + yi), xi, yi ∈ X
}
.

The infimum is attained at a word representing g which may contain one zero (if the length of g is
odd) and is otherwise reduced. Indeed, if the sum representing g contains terms of the form x + z and
z + y, then these terms can be replaced by one term x + y; the sum

∑n
i=1 d(xi, yi) does not increase

under such a change thanks to the triangle inequality.
For the usual (Markov’s) free Boolean topological group B(X), which is the same as BG(X ⊕ {0})

(where 0 is an isolated point identified with zero), the Graev metric depends on the distances from the
points of X to the isolated point (they can be set to 1 for all x ∈ X). The corresponding seminorm ‖ · ‖d
on the subgroup Beven(X) of B(X) consisting of words of even length does not change. The subgroup
Beven(X) is open and closed in B(X), because this is the kernel of the continuous homomorphism
f̂ : B(X) → {0, 1} extending the constant continuous map f : X → {0, 1} taking all x ∈ X to 1.
Thus, in fact, it does not matter how to extend ‖ · ‖d to B(X) \Beven(X); for convenience, we set:

‖g‖d =





min
{∑n

i=1 d(xi, yi) : g =
∑n

i=1(xi + yi), xi, yi ∈ X ,
the word

∑n
i=1(xi + yi) is reduced

} if g ∈ Beven(X),

1 if g ∈ B(X) \Beven(X).

All open balls (as well as all open balls of any fixed radius not exceeding one) in all seminorms ‖ · ‖d
for d ranging over all continuous pseudometrics on X form a base of open neighborhoods of zero in
B(X).

Topological spaces X and Y are said to be M -equivalent (A-equivalent) if their free (free Abelian)
topological groups are topologically isomorphic. We shall say that X and Y are B-equivalent if B(X)

and B(Y ) are topologically isomorphic.
Given X ⊃ Y , we use B(Y |X) to denote the topological subgroup of B(X) generated by Y .
A special role in the theory of topological groups and in set-theoretic topology is played by Boolean

topological groups generated by almost discrete spaces, that is, spaces having only one non-isolated
point. With each free filter F on any set X , we associate the almost discrete space XF = X ∪ {∗} (∗
is a point not belonging to X); all points of X are isolated, and the neighborhoods of ∗ are {∗} ∪ A,
A ∈ F . For a space with infinitely many isolated points, there is no difference between the canonical
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generated by Y.
A special role in the theory of topological groups and in set-theoretic topology

is played by Boolean topological groups generated by almost discrete spaces, that is,
spaces having only one non-isolated point. With each free filter F on any set X, we
associate the almost discrete space XF = X ∪ {∗} (∗ is a point not belonging to X); all
points of X are isolated, and the neighborhoods of ∗ are {∗} ∪ A, A ∈ F . For a space
with infinitely many isolated points, there is no difference between the canonical
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definition of the groups F(X), A(X) and B(X) and Graev’s generalizations FG(X),
AG(X) and BG(X). Indeed, Graev showed that FG(X) and AG(X) are unique (up
to topological isomorphism) and do not depend on the choice of the distinguished
point. Graev’s argument, which uses only the universality property, carries over word
for word to free Boolean topological groups. Thus, when dealing with spaces XF
associated with filters, we can identify B(XF ) with BG(XF ) and assume that the only
non-isolated point of XF is the zero of B(XF ); the descriptions of the neighborhoods
of zero and the Graev seminorm are altered accordingly. To understand how they
change, take the new (but in fact, the same) space X̃F = XF ∪ {0}, where 0 is one
more isolated point, represent B(XF ) as the Graev free Boolean topological group
BG(X̃F ) with distinguished point (zero of BG(X̃F )) 0, and consider the topological
isomorphism g 7→ g+ 0 between this group and the similar group with distinguished
point (zero) ∗.

For example, since any open cover of XF can be assumed to consist of a
neighborhood of ∗ and singletons, Description II reads as follows in this case: For
each n ∈ N, we fix an arbitrary neighborhood Vn of ∗, that is, An ∪ {∗}, where
An ∈ F , and set:
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free Boolean topological group BG(X̃F) with distinguished point (zero of BG(X̃F)) 0, and consider
the topological isomorphism g 7→ g + 0 between this group and the similar group with distinguished
point (zero) ∗.

For example, since any open cover of XF can be assumed to consist of a neighborhood of ∗
and singletons, Description II reads as follows in this case: For each n ∈ N, we fix an arbitrary
neighborhood Vn of ∗, that is, An ∪ {∗}, where An ∈ F , and set:

W = {Vn}n∈N,
U(Vn) = {x+ ∗ : x ∈ Vn} = {x : x ∈ An} (∗ is zero),

U(W ) =
⋃

n∈N
(U(V1) + U(V2) + · · ·+ U(Vn)) =

⋃

n∈N
{x1 + · · ·+ xn : xi ∈ Ai for i ≤ n}.

The sets U(W ), where the W range over all sequences of neighborhoods of ∗, form a neighborhood
base at zero for the topology of B(XF). Strictly speaking, to obtain a full analogy with Description II of
the Markov free group topology, we should set:

U(W ) =
⋃

n∈N
(2U(V1) + 2U(V2) + · · ·+ 2U(Vn)) =

⋃

n∈N
{x1 + y1 · · ·+ xn + yn : xi, yi ∈ Vi for i ≤ n},

but this would not affect the topology: the former U(W ) equals the latter for a sequence of smaller
neighborhoods, say V ′n =

⋂
i≤2n Vi (remember that some of the xi and yi in the expression for U(W )

may equal ∗, that is, vanish).
Similarly, the base neighborhoods of zero in Description III take the form:

U(d) =
{
x1 + x2 + · · ·+ xn : n ∈ N, x1, . . . , xn ∈ X,

n∑

i=1

d(xi, ∗) < 1
}
,

where d ranges over continuous pseudometrics onXF (again, we should set U(d) =
{
x1+y1+x2+y2+

· · ·+ xn + yn : n ∈ N, xi, yi ∈ X ∪ {∗},
∑n

i=1 d(xi, yi) < 1
}

, but this would not make any difference).

It is also easy to see that the isomorphism between BG(X̃F) (with distinguished point ∗) and B(XF)

does not essentially affect the sets of words of length at most n; in particular, they remain closed, and
BG(X̃F) is the inductive limit of these sets with the induced topology if and only if B(XF) has the
inductive limit topology. In what follows, by B(XF), we shall usually mean the Graev free Boolean
topological group with zero ∗.

Thus,B(XF) is naturally identified with the group [X]<ω of all finite subsets ofX under the operation
4 of symmetric difference (A4B = (A \ B) ∪ (B \ A)). The point ∗, which is the zero element of

The sets U(W), where the W range over all sequences of neighborhoods of ∗,
form a neighborhood base at zero for the topology of B(XF ). Strictly speaking, to
obtain a full analogy with Description II of the Markov free group topology, we
should set:
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where d ranges over continuous pseudometrics on XF (again, we should set U(d) ={
x1 + y1 + x2 + y2 + · · ·+ xn + yn : n ∈ N, xi, yi ∈ X ∪ {∗}, ∑n

i=1 d(xi, yi) < 1
}

, but
this would not make any difference).

It is also easy to see that the isomorphism between BG(X̃F ) (with distinguished
point ∗) and B(XF ) does not essentially affect the sets of words of length at most n;
in particular, they remain closed, and BG(X̃F ) is the inductive limit of these sets with
the induced topology if and only if B(XF ) has the inductive limit topology. In what
follows, by B(XF ), we shall usually mean the Graev free Boolean topological group
with zero ∗.

Thus, B(XF ) is naturally identified with the group [X]<ω of all finite subsets of
X under the operation4 of symmetric difference (A4 B = (A \ B) ∪ (B \ A)). The
point ∗, which is the zero element of B(XF ), is identified with the empty set ∅, which
belongs to [X]<ω as the zero element. In the context of free Boolean groups on almost
discrete spaces, we also identify each x ∈ X with the one-point set {x} ∈ [X]<ω.

Sets of the form [X]<ω often arise in set-theoretic topology and in forcing.
The role of X is often played by ω, and the filter F is usually an ultrafilter with
certain properties.

We assume all filters F on ω to be free, i.e., to contain the Fréchet filter (of all
cofinite sets).

A filter F on ω is said to be a P-filter if, for any family of Ai ∈ F , i ∈ ω, the
filter F contains a pseudo-intersection of this family, i.e., a set A ⊂ ω such that
|A \ Ai| < ω for all i ∈ ω. For ultrafilters, this property is equivalent to being a
P-point, or weakly selective, ultrafilter. A filter F on ω is said to be a Ramsey filter if,
for any family of Ai ∈ F , i ∈ ω, the filter F contains a diagonal of this family, i.e., a
set D ⊂ ω such that, whenever i, j ∈ D and i < j, we have j ∈ Ai. Ultrafilters with
this property are known as Ramsey, or selective, ultrafilters.

We use the standard notation [ω]<ω for the set of all finite subsets of ω and ω<ω

for the set of all finite sequences of elements of ω. Given s, t ∈ [ω]<ω, s @ t means
that s is an initial segment of t, i.e., s ⊂ t and all elements of t \ s are greater than all
elements of s. For s ∈ [ω]<ω \ {∅}, by max s, we mean the greatest element of s in
the ordering of ω. We also set max ∅ = −1.

3. A Comparison of Free, Free Abelian and Free Boolean Topological Groups

3.1. Similarity

There are a number of known properties of free and free Abelian topological
groups that automatically carry over to free Boolean topological groups simply
because they are preserved by taking topological quotient groups or, more generally,
by continuous maps. Thus, if F(X) (and A(X)) is separable, Lindelöf, ccc, and so on,
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then so is B(X). It is also quite obvious that X is discrete if and only if so are F(X),
A(X) and B(X).

Let X be a space, and let Y be its subspace. The topological subgroup B(Y|X)

of B(X) generated by Y is not always the free Boolean topological group on
Y (the induced topology of B(Y|X) may be weaker). Looking at Description I
of the free group topology on B(X), we see that X and Y equipped with the
universal uniformities UX and UY are uniform subspaces of B(X) and B(Y) with
their group uniformities WB(X) and WB(Y) (generated by entourages of the form
W(U) = {(g, h) : h ∈ g + U}, where U ranges over all neighborhoods of zero in the
corresponding group), which completely determine the topologies of B(X) and B(Y).
Thus, if the topology of B(Y|X) coincides with that of B(Y), then, like in the case of
free and free Abelian topological groups [28,29], (Y,UY) must be a uniform subspace
of (X,UX), which means that any bounded continuous pseudometric on Y can be
extended to a continuous pseudometric on X (in this case, Y is said to be P-embedded
in X [30]). The converse has been proven to be true for free Abelian (presented in [28]
with an incomplete proof and completely proven in [29]) and even free [27] (see
also [22], where a minor misprint in the condition 3◦ on p. 186 of [27] is corrected)
topological groups. Since B(X) and B(Y) are the topological quotients of A(X) and
A(Y) by the subgroups of squares A(2X) and A(2Y) and A(2Y) = A(2X) ∩ A(Y),
we immediately obtain the following theorem.

Theorem 4. Let X be a space, and let Y be its subspace. The topological subgroup of the free
Boolean groups B(X) generated by Y is the free topological group B(Y) if and only if each
bounded continuous pseudometric on Y can be extended to a continuous pseudometric on X.

Any space X is closed in its free Boolean topological group B(X) (see, e.g., ([9],
Theorems 2.1 and 2.2)), as well as in F(X) and A(X) [1,2]. Moreover, all Fn(X), An(X)

and Bn(X) (the sets of words of length at most n) are closed in their respective groups,
as well. The most elegant proof of this fact was first proposed by Arkhangel’skii
in the unavailable book [31] (for F(X), but the argument works for A(X) and B(X)

without any changes): Note that all Fn(βX) ⊂ F(βX) are compact, since these are
the continuous images of (X⊕ {e} ⊕ X−1)n under the natural multiplication maps
in : (xε1

1 , . . . , xεn
n ) 7→ xε1

1 . . . xεn
n (here, e denotes the identity element of F(X), εi = ±1,

and the word xε1
1 . . . xεn

n may be reducible, i.e., have length shorter than n). Therefore,
the Fn(βX) are closed in F(βX), and hence, the sets Fn(X) = Fn(βX) ∩ F(X|βX) are
closed in F(X|βX). It follows that these sets are also closed in F(X), which is the
same group as F(X|βX), but has stronger topology.

The topological structure of a free group becomes much clearer when this group
has the inductive limit topology (or, equivalently, when the inductive limit topology
is a group topology). The problem of describing all spaces for which F(X) (or
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A(X)) possesses this property has proven extremely difficult (and is still unsolved).
Apparently, the problem was first stated explicitly by Pestov and Tkachenko in
1985 [32], but it was tackled as early as in 1948 by Graev [3], who proved that the
free topological group of a compact space has the inductive limit topology. Then,
Mack, Morris and Ordman [33] proved the same for kω-spaces. The strongest (to the
author’s knowledge) result in this direction was obtained by Tkachenko [34], who
proved that if X is a P-space or a Cω-space (the latter means X is the inductive limit
of an increasing sequence {Xn} of its closed subsets such that all finite powers of
each Xn are countably compact and strictly collection-wise normal), then F(X) has
the inductive limit topology. All of these sufficient conditions are also valid for A(X)

and B(X) by virtue of the following simple observation.

Proposition 5. Suppose that X =
⋃

n∈N Xn, Y =
⋃

n∈N Yn, X is the inductive limit of its
subspaces Xn, n ∈ N, and f : X → Y is a quotient map such that f (Xn) = Yn for each
n ∈ N. Then, Y is the inductive limit of its subspaces Yn.

Proof. Let U ⊂ Y be such that all Un = U ∩Yn are open in Yn. Consider V = f−1(U)

and Vn = f−1(Un) ∩ Xn for n ∈ ω. Each Vn is open in Xn, because the restriction of
f to Xn is continuous and f (Xn) = Yn. On the other hand,

Vn = f−1(U ∩Yn) ∩ Xn = ( f−1(U) ∩ f−1(Yn)) ∩ Xn = V ∩ Xn;

therefore, V is open in X. Since the map f is quotient, it follows that U = f (V) is an
open set.

For X of the form ωF (where F is a filter on ω), not only the sufficient conditions
mentioned above, but also a necessary and sufficient condition for F(X) and A(X) to
have the inductive limit topology is known. This condition is also valid for B(X).

Theorem 6. Given a filter F on ω, B(ωF ) has the inductive limit topology if and only if F
is a P-filter.

Proof. This theorem is true for free and free Abelian topological groups [35].
Therefore, by Proposition 5, B(ωF ) has the inductive limit topology for any P-filter.
It remains to prove that if B(ωF ) is the inductive limit of the Bn(ωF ), then F is a
P-filter.

Thus, suppose that B(ωF ) is the inductive limit of the Bn(ωF ), but F is not a
P-filter, that is, there exists a decreasing sequence of An ∈ F , n ∈ ω, such that, for
any A ∈ F , there is an i for which the intersection A ∩ Ai is infinite. As usual, we
assume that the zero element of B(ωF ) is the non-isolated point ∗ of ωF .
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Without loss of generality, we can assume that A0 = ω and all sets An \ An+1

are infinite. We enumerate these sets as:

An \ An+1 = {xni : i ∈ ω}

and put:
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exists a decreasing sequence of An ∈ F , n ∈ ω, such that, for any A ∈ F , there is an i for which the
intersection A ∩ Ai is infinite. As usual, we assume that the zero element of B(ωF) is the non-isolated
point ∗ of ωF .

Without loss of generality, we can assume that A0 = ω and all sets An \ An+1 are infinite. We
enumerate these sets as:

An \ An+1 = {xni : i ∈ ω}
and put:

Dn = {xnm + xi1j1 + xi2j2 + · · ·+ xinjn : n < i1 < i2 < · · · < in < j1 < j2 < · · · < jn < m}

for all n ∈ ω. Let us show that each Dn is a closed discrete subset of B(ωF). Fix n and consider
X = {∗} ∪ {xni : i ∈ ω} and the retraction r : ωF → X that takes ωF \ X to {∗}. Clearly, X is
discrete, and the map r is continuous. Let r̂ : B(ωF)→ B(X) be the homomorphic extension of r; then,
r̂ continuously maps B(ωF) onto the discrete group B(X). For any g ∈ B(X), the set r̂−1(g) ∩ Dn

is finite: if r̂−1(g) ∩ Dn is nonempty, then we have g = r̂(xnm0 + xi01j01 + xi02j02 + · · · + xi0nj0n ) for
some m0, i0k , j0k ∈ ω such that n < i01 < i02 < · · · < i0n < j01 < j02 < · · · < j0n < m0, whence
g = xnm0 and:

r̂−1(g) ∩Dn = {xnm0 + xi1j1 + xi2j2 + · · ·+ xinjn :

n < i1 < i2 < · · · < im < j1 < j2 < · · · < jn < m0}.

Since the sets r̂−1(g), g ∈ B(X), form an open cover of B(ωF), it follows that Dn is a closed discrete
subspace of B(ωF).

The length of each word in Dn equals n + 1. Therefore, D =
⋃
nDn is closed in the inductive limit

topology. It remains to show that ∗ (the zero of B(ωF)) belongs to the closure of D in the free group
topology, i.e., that U(d) ∩ D 6= ∅ for any continuous pseudometric d on ωF (see Description III of the
topology of B(ωF)).

Take an arbitrary (continuous) pseudometric d on ωF . In ωF , the ball Bd(∗, 12) of radius 1
2

centered
at ∗ with respect to d is a neighborhood of ∗; that is, the punctured ball (with ∗ removed) belongs
to F . By assumption, there is an n ∈ ω for which the set M = {i ∈ ω : d(∗, xni) < 1

2
)} is

infinite. Since Bd(∗, 1
2n

) ∩ An+1 is a punctured neighborhood of ∗ and hence belongs to F , it follows
by assumption that the sets Ji = {j ∈ ω : d(∗, xij) < 1

2n
} are infinite for infinitely many i. Choose

i1 < i2 < · · · < in greater than n so that all Jik are infinite, then choose jk ∈ Jik , k ≤ n, so that in <
j1 < · · · < jn, and take m ∈M such that m > jn. We have g = xnm + xi1j1 + xi2j2 + · · ·+ xinjn ∈ Dn.
We also have g ∈ U(d), because:

d(∗, xnm) +
n∑

k=1

d(∗, xikjk) <
1

2
+ n

1

2n
= 1.

Therefore, g ∈ Dn ∩ U(d).

for all n ∈ ω. Let us show that each Dn is a closed discrete subset of B(ωF ). Fix n and
consider X = {∗} ∪ {xni : i ∈ ω} and the retraction r : ωF → X that takes ωF \ X
to {∗}. Clearly, X is discrete, and the map r is continuous. Let r̂ : B(ωF ) → B(X)

be the homomorphic extension of r; then, r̂ continuously maps B(ωF ) onto the
discrete group B(X). For any g ∈ B(X), the set r̂−1(g) ∩ Dn is finite: if r̂−1(g) ∩ Dn

is nonempty, then we have g = r̂(xnm0 + xi01 j01
+ xi02 j02

+ · · · + xi0n j0n
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whence g = xnm0 and:

r̂−1(g) ∩ Dn = {xnm0 + xi1 j1 + xi2 j2 + · · ·+ xin jn :

n < i1 < i2 < · · · < im < j1 < j2 < · · · < jn < m0}.

Since the sets r̂−1(g), g ∈ B(X), form an open cover of B(ωF ), it follows that
Dn is a closed discrete subspace of B(ωF ).

The length of each word in Dn equals n + 1. Therefore, D =
⋃

n Dn is closed in
the inductive limit topology. It remains to show that ∗ (the zero of B(ωF )) belongs to
the closure of D in the free group topology, i.e., that U(d)∩D 6= ∅ for any continuous
pseudometric d on ωF (see Description III of the topology of B(ωF )).

Take an arbitrary (continuous) pseudometric d on ωF . In ωF , the ball Bd(∗, 1
2 )

of radius 1
2 centered at ∗ with respect to d is a neighborhood of ∗; that is, the

punctured ball (with ∗ removed) belongs to F . By assumption, there is an n ∈ ω

for which the set M = {i ∈ ω : d(∗, xni) <
1
2 )} is infinite. Since Bd(∗, 1

2n ) ∩ An+1 is
a punctured neighborhood of ∗ and hence belongs to F , it follows by assumption
that the sets Ji = {j ∈ ω : d(∗, xij) <

1
2n} are infinite for infinitely many i. Choose

i1 < i2 < · · · < in greater than n so that all Jik are infinite, then choose jk ∈ Jik ,
k ≤ n, so that in < j1 < · · · < jn, and take m ∈ M such that m > jn. We have
g = xnm + xi1 j1 + xi2 j2 + · · ·+ xin jn ∈ Dn. We also have g ∈ U(d), because:

d(∗, xnm) +
n

∑
k=1

d(∗, xik jk ) <
1
2
+ n

1
2n

= 1.
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Therefore, g ∈ Dn ∩U(d).

In [36] Tkachuk proved that the free Abelian topological group of a disjoint
union of two spaces X and Y is topologically isomorphic to the direct sum
A(X)

⊕
A(Y) = A(X)× A(Y). His argument carries over to varieties of Abelian

topological groups closed under direct sums (or, in topological terminology,
σ-products with respect to the zero elements of factors) with the box topology. We
denote such sums by σ�.

Proposition 7. For any family {Xα : α ∈ A} of spaces,

A
(⊕

α∈A
Xα

)
∼= σ�α∈A A(Xα) and B

(⊕

α∈A
Xα

)
∼= σ�α∈AB(Xα).

If all Xα are zero-dimensional, then:

Alin
(⊕

α∈A
Xα

)
∼= σ�α∈A Alin(Xα) and Blin

(⊕

α∈A
Xα

)
∼= σ�α∈ABlin(Xα).

Proof. Let T stand for A, B, Alim or Blim, and let 0α denote the zero element of T(Xα).
For each α ∈ A, we set X′α = σ�β∈AYβ, where Yα = Xα and Yβ = {0β} for β 6= α.
Every X′α is embedded in the group T′α(Xα) defined accordingly as a product of T(Xα)

and zeros. Clearly, the union
⋃

α∈A X′α algebraically generates σ�α∈AT(Xα) and is
homeomorphic to

⊕
α∈A Xα. It remains to show that the homomorphic extension of

any continuous map of this union to any topological group from the corresponding
variety is continuous. Let f :

⋃
α∈A X′α → G be such a map. For each α ∈ A, the

homomorphic extension f̂α : T′α(Xα)→ G of the restriction of f to X′α is continuous.
We define f̂ : σ�α∈AT(Xα) → G by setting f̂

(
(gα)α∈A

)
= ∑α∈A f̂α(gα) for each

(gα)α∈A ∈ σ�α∈AT(Xα); the sum is defined, because any element of σ�α∈AT(Xα) has
only finitely many nonzero components. Let us show that f̂ is continuous. It suffices
to check continuity at the zero element of σ�α∈AT(Xα). Take any neighborhood U of
zero in G. Its preimages Vα under the component maps f̂α are open neighborhoods
of zero in T′α(Xα). The product σ�αVα is the preimage of U under f̂ , and it is open in
the box topology.

The free Boolean topological group of a non-discrete space is never metrizable
(as well as the free and free Abelian topological groups). Indeed, if B(X) is metrizable
and X is non-discrete, then X contains a convergent sequence S with limit point ∗, and
B(S) = B(S|X) (see Theorem 4); thus, it suffices to show that B(S) is non-metrizable.
Suppose that it is metrizable. Then, the topology of B(S) is generated by a continuous
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norm ‖ · ‖. For all pairs of positive integers n and m ≤ n, choose different snm ∈ S so
that ‖snm + ∗‖ < 1

n2 . Clearly, the set:

D = {(sn1 + ∗) + (sn2 + ∗) + . . . (snn + ∗) : n ≥ 0}

has finite intersection with each Bk(S); hence, it must be discrete, because B(S) has
the inductive limit topology. On the other hand, D is a sequence convergent to
zero, since:

‖(sn1 + ∗) + (sn2 + ∗) + . . . (snn + ∗)‖ ≤
n

∑
i=1

(sni + ∗) < n · 1
n2 =

1
n

.

The list of properties shared by free, free Abelian and free Boolean topological
groups that can be proven without much effort is very long. Many of these properties
are proven for Boolean groups by analogy, but sometimes, their proofs are drastically
simplified. We conclude our brief excursion by one such examples. The proof of the
following theorem for free topological groups given in [27] is extremely complicated
(it is based on a more general construction). The proof given in [22] is much shorter,
but still very cumbersome. In the Boolean case, the proof becomes almost trivial.

Theorem 8. If dim X = 0, then ind B(X) = 0.

Proof. Any continuous pseudometric d on X is majorized by a non-Archimedean
pseudometric ρ (a pseudometric ρ is said to be non-Archimedean if ρ(x, z) ≤
max{ρ(x, y), ρ(y, z)} for any x, y, z ∈ X) taking only values of the form 1

2n . To see this,
it suffices to consider the elements V0, V1, . . . of the universal uniformity on X which
are determined by decreasing disjoint open refinements γ0, γ1, . . . of the covers of X
by balls of radii 1

21 , 1
22 , . . . with respect to d and apply the construction in the proof of

Theorem 8.1.10 of [37] (see also [38]). Since the covers γn determining the entourages
Vn are disjoint and each γi+1 is a refinement of γi, it follows that the function f in
this construction has the property f (x, z) ≤ max{ f (x, y), f (y, z)}, and therefore, the
pseudometric ρ constructed there from f is non-Archimedean and takes the values
1

2n . Clearly, it majorizes d.
Each value ‖g‖ρ, g ∈ B(X), of the Graev extension ‖ · ‖ρ of ρ is either one or

a finite sum of values of d (recall that the minimum in the expression for ‖g‖ρ is
attained at an irreducible representation of g). Hence, ‖ · ‖ρ takes only rational values,
and the balls with irrational radii centered at zero in this norm are open and closed.
They form a base of neighborhoods of zero, and their translates form a base of the
entire topology on B(X).
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3.2. Difference

Pestov gave an example of a space X for which F(X) is not homeomorphic to
A(X) [39]. Spaces for which A(X) is not homeomorphic to B(X) exist, too.

Proposition 9. The free Abelian topological group of any connected space has infinitely
many connected components. The free Boolean topological group of any connected space has
two connected components.

Proof. Consider a connected space X. The connected component of zero in A(X)

is the subgroup Ac(X) consisting of all words ∑n
i=1 xεi

i with ∑n
i=1 εi = 0 (see ([17],

Lemma 7.10.2)). Clearly, all words in this subgroup are of even length, and the
canonical homomorphism A(X) → B(X) takes Ac(X) to the subgroup Bc(X) of
B(X) consisting of all words of even length. Since the canonical homomorphism
is continuous and open, the subgroup Bc(X) is connected and open (and hence,
closed), and it has index two in B(X). Thus, B(X) has two connected components,
while A(X) has infinitely many connected components, because A(X)/Ac(X) ∼= Z
(see ([17], Lemma 7.10.2)).

There is a fundamental difference in the very topological-algebraic nature of free,
free Abelian and free Boolean groups. Thus, nontrivial free and free Abelian groups
admit no compact group topologies (see [40]); this follows from the well-known
algebraic description of infinite compact Abelian groups ([41], Theorem 25.25). On
the other hand, for any infinite cardinal κ, the direct sum

⊕
2κ Z2 of 2κ copies of Z2

(that is, the free Boolean group of rank 2κ) is algebraically isomorphic to the Cartesian
product (Z2)

κ ([42], Lemma 4.5) and, therefore, admits compact group topologies
(e.g., the product topology).

The free and free Abelian groups are never finite, while the free Boolean group
of any finite set is finite.

The free and free Abelian topological groups of any completely regular
Hausdorff topological space X contain all finite powers Xn of X as closed subspaces.
Thus, each Xn is homeomorphic to the closed subset {x1 . . . xn : xi ∈ X for i = 1 ≤ n}
of F(X) [43] and to the closed subset {x1 + 2x2 + · · ·+ nxn : xi ∈ X for i = 1 ≤ n} of
A(X) [44]. (Arkhangel’skii announced the result for F(X) in [43] and proved it in [31]
by considering the Stone–Čech compactification of X and its free topological group;
details can be found in Theorem 7.1.13 of [17]. Unfortunately, the book [31], which is
a rotaprint edition of a lecture course, is (and always was) virtually unavailable, even
in Russia. Thus, the result was rediscovered by Joiner [45] and the idea of proof by
Morris [9] (see also [46]). In fact, both Arkhangel’skii and Joiner proved a stronger
statement; namely, they gave the same complete description of the topological
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structure of all Fn(X), although obtained by different methods (Arkhangel’skii proof
is much shorter).)

However, the situation with free Boolean topological groups is much more
complicated. For example, consider extremally disconnected free topological groups.

Extremally disconnected groups are discussed in the next section. Here, we only
mention that non-discrete F(X) and A(X) are never extremally disconnected, while
B(X) may be non-discrete and extremally disconnected under certain set-theoretic
assumptions (e.g., under CH), even for countable X of the form ωF , and that
any hereditarily normal, in particular, countable, extremally disconnected space,
is hereditarily extremally disconnected (this is shown in the next section). It follows
that if X is a non-discrete countable space for which B(X) is extremally disconnected,
then B(X) does not contain X2 as a subspace. Indeed, otherwise, X2 is extremally
disconnected (and non-discrete), and the existence of such spaces is prohibited by
the following simple observation; it must be known, although the author failed to
find a reference.

Proposition 10. If X× X is extremally disconnected, then X is discrete.

This immediately follows from Frolík’s general theorem that the fixed-point
set of any surjective self-homeomorphism of an extremally disconnected space is
clopen [47]: it suffices to consider the self-homeomorphism of X × X defined by
(x, y) 7→ (y, x). (Frolík proved this theorem for compact extremally disconnected
spaces and not necessarily surjective self-homeomorphisms; in the surjective
case, the theorem is extended to non-compact spaces by considering their
Stone–Čech compactifications, which are always extremally disconnected for
extremally disconnected spaces (this and other fundamental properties of extremally
disconnected spaces can be found in the book [48]).)

Thus, there exist (under CH) filters F on ω for which (ωF )2 is not contained
in B(ωF ) as a subspace. However, in the simplest case where F is the Fréchet
filter (i.e., ωF is a convergent sequence), B(ωF ) not merely contains (ωF )n, but is
topologically isomorphic to B(ωF )n for all n by virtue of Proposition 7 and the fact
that a convergent sequence is B-equivalent to the disjoint union of two convergent
sequences, which can be demonstrated as follows.

Any M-equivalent spaces are A-equivalent, and any A-equivalent spaces are
B-equivalent, because A(X) (B(X)) is the quotient of F(X) (A(X)) by an algebraically
determined subgroup not depending on X. Therefore, all known sufficient conditions
for M- and A-equivalence (see, e.g., [3,4,49–51]) remain valid for B-equivalence. In
particular, if X0 is a space, K is a retract of X0, X is the space obtained by adding
an isolated point to X0 and Y = X0/K ⊕ K, then X and Y are M-equivalent ([50],
Theorem 2.4). This immediately implies the required B-equivalence of a convergent
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sequence S and the disjoint union S⊕ S of two convergent sequences: it suffices to
take S⊕ S for X0 and X and the two-point set of the two limit points in S⊕ S for K.

However, there exist B-equivalent spaces, which are neither F- nor A-equivalent.
Genze, Gul’ko and Khmyleva obtained necessary and sufficient conditions for infinite
initial segments of ordinals to be F-, A- and B-equivalent [20] (see also [21]). It turned
out that the criteria for F- and A-equivalence are the same, and the criterion for
B-equivalence differs from them; see [20] for details.

Finally, the following theorem shows that there is also a fundamental difference
between free groups of the varieties of Abelian and Boolean linear topological groups.

Theorem 11. The free Boolean linear topological group of any strongly zero-dimensional
pseudocompact space is precompact.

Proof. Let X be a strongly zero-dimensional pseudocompact space. As mentioned
in the preceding section, a base of neighborhoods of zero in Blim(X) is formed by
subgroups of the form:

〈U(γ)〉 =
{ n

∑
i=1

(xi + yi) : n ∈ ω, (xi, yi) ∈ Ui ∈ γ for i ≤ n
}

,

where γ in a disjoint open cover of X; note that all such covers are finite. Clearly,

〈U(γ)〉 =
{ 2n

∑
i=1

xi : n ∈ ω, |{i ≤ 2n : xi ∈ U}| is even for each U ∈ γ
}

.

Every such subgroup has finite index. Therefore, B(X) is precompact.

This theorem is not true for Abelian groups; moreover, free Abelian linear groups

are never precompact. Indeed, the group Ac(X) =
{

∑n
i=1 xεi

i : n ∈ N, ∑n
i=1 εi = 1

}

considered above is always open, being the preimage of the isolated point zero
under the homomorphism A(X) → Z2 = {0, 1}, which extends the constant map
X → {0, 1} taking everything to one. As already mentioned, Ac(X) has infinite index
in A(X).

4. Extremally Disconnected Groups

There is an old problem of Arkhangel’skii on the existence in ZFC of a
non-discrete Hausdorff extremally disconnected topological group; it was posed
in 1967 [52] and has been extensively studied since then. The problem is still
open even for countable groups, although several consistent examples have been
constructed [53–58]. An impression of the state-of-the-art in this area can be
gained from Zelenyuk’s book [59] and the author’s papers [60] and [61]. The
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most recent result (presented in [61]) asserts that, under additional set-theoretic
assumptions, a countable extremally disconnected group cannot contain a sequence
of open subgroups whose intersection has an empty interior; in other words, if
there exists in ZFC a non-discrete countable extremally disconnected group, then
there must exist such a group without open subgroups (note in this connection
that any extremally disconnected space is strongly zero-dimensional, and any
zero-dimensional free Boolean topological group contains a family of open subgroups
with trivial intersection (see Theorem 2)). Here, we present a new observation closely
related to free Boolean topological groups.

A space X is said to be extremally disconnected if the closure of each open set in
this space is open or, equivalently, if any two disjoint open sets have disjoint closures.
In particular, the space XF associated with a filter F is extremally disconnected
if and only if F is an ultrafilter. The most fundamental properties of extremally
disconnected spaces can be found in the book [48]. Much useful information
(especially in the topological-algebraic context) is contained in [62]. The central
place in the theory of extremally disconnected topological groups is occupied by
Boolean topological groups because of the following theorem of Malykhin.

Theorem 12 (Malykhin [54]). Any extremally disconnected group contains an open (and
therefore closed) Boolean subgroup.

This theorem follows from Frolík’s fixed-point theorem mentioned at the end of
the preceding section. In [54], Malykhin reproved Frolík’s theorem for the particular
self-homeomorphism g 7→ g−1; its fixed-point set U is an open neighborhood of the
identity element, and the subgroup generated by an open neighborhood V of the
identity for which V2 ⊂ U is as required.

Thus, in the theory of extremally disconnected groups, only Boolean groups
matter. As is known, the existence of a non-discrete extremally disconnected free
Boolean topological group implies the existence of either measurable cardinals or
Ramsey ultrafilters [60] (this is proven by reduction to the free Boolean topological
group on a countable space with one non-isolated point); it is also known that
the simultaneous nonexistence of measurable cardinals and Ramsey ultrafilters
is consistent with ZFC (see [63]). The following two theorems have a stronger
consequence.

Theorem 13. Any hereditarily normal extremally disconnected space is hereditarily
extremally disconnected.

Proof. Let X be a hereditarily normal extremally disconnected space. We must prove
that any Y ⊂ X is extremally disconnected. We can assume that Y is closed in
X, because, obviously, any dense subspace of an extremally disconnected space is
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extremally disconnected. We must show that the closures in Y of any disjoint sets U
and V which are open in Y are disjoint. Note that such sets U and V are separated
(in Y and, therefore, in X), that is, U ∩ V = U ∩ V = ∅. Since X is hereditarily
normal, there exist disjoint open (in X) sets U′ ⊃ U and V′ ⊃ V ([37], Theorem 2.1.7).
Their closures in X cannot intersect, because X is extremally disconnected; thus, the
closures in Y of the smaller sets U and V do not intersect either.

Theorem 14. If G is a hereditarily normal extremally disconnected Boolean group, then any
closed linearly independent subset of G contains at most one non-isolated point.

Proof. Let A ⊂ G be a closed linearly-independent subset of G. Suppose that a ∈ A
and b ∈ A are distinct limit points of A. Take their disjoint closed neighborhoods
U 3 a and V 3 b. Since A is linearly independent and closed, it follows that
a + (V ∩ A) ∩ b + (U ∩ A) = {a + b}, and the sets a + (V ∩ A) and b + (U ∩ A) are
closed. Therefore, the sets a + ((V \ {b}) ∩ A) and b + ((U \ {a}) ∩ A) are closed in
the normal subspace (a + (V ∩ A) ∪ b + (U ∩ A)) \ {a + b} of G and, hence, can be
separated by disjoint open neighborhoods in this subspace. These neighborhoods
remain open in a + (V ∩ A) ∪ b + (U ∩ A); obviously, a + b belongs to the closure of
each of them, which contradicts the hereditary extremal disconnectedness of G.

Corollary 15. If X is a non-discrete countable space for which B(X) is extremally
disconnected, then X is almost discrete.

We shall see in the next section that, in fact, the space X in Corollary 15 must be
associated with a Ramsey ultrafilter.

5. Free Boolean Groups on Filters on ω

We have already seen in the preceding sections that free Boolean groups on
almost discrete countable spaces (associated with filters on ω) exhibit interesting
behavior. Moreover, they are encountered more often than it may seem at first glance.

Consider any Boolean group B(X) with countable basis X. As mentioned in
Section 2, this group is (algebraically) isomorphic to the direct sum (or, in topological
terminology, σ-product)

⊕ℵ0 Z2 of countably many copies of Z2. There is a familiar
natural topology on this σ-product, namely the usual product topology; let us denote it by
τprod. This topology induces the topology of a convergent sequence on X⊕{0} (where
0 denotes the zero element of B(X)) and is metrizable; therefore, it never coincides
with the topology τfree of the free Boolean topological group on X. Moreover, τprod is
contained in τfree only when X is discrete or has the form ωF for some filter (recall
that we assume all filters to be free, i.e., contain the filter of cofinite sets, and identify
the non-isolated points of the associated spaces with the zeros of their free Boolean
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groups). On the other hand, any countable space is zero-dimensional; therefore, any
countable free Boolean topological group contains a sequence of subgroups with
trivial intersection (see Theorem 2). In [61], the following lemma was proven.

Lemma 16 ([61]). Let G be a countable non-discrete Boolean topological group that contains
a family of open subgroups with trivial intersection. Then, there exists a basis of G such
that the isomorphism G → ⊕ℵ0 Z2 taking this basis to the canonical basis of

⊕ℵ0 Z2 is
continuous with respect to the product topology on

⊕ℵ0 Z2 = σ(Z2)
ℵ0 .

This immediately implies the following assertion.

Theorem 17. Any countable Boolean topological group containing a family of open
subgroups with trivial intersection (in particular, any free Boolean topological or linear
topological group on a countable space) has either a discrete closed basis or a closed basis
homeomorphic to the space ωF associated with a filter F on ω.

Spaces of the form ωF are one of the rare examples where the free Boolean
topological group is naturally embedded in the free and free Abelian topological
groups as a closed subspace. The embedding of B(ωF ) into A(ωF ) is defined simply
by x1 + x2 + · · ·+ xn 7→ x1 + x2 + · · ·+ xn (for the Graev free groups, which are the
same as Markov ones for such spaces), and the embedding into F(ωF ) is x1 + x2 +

· · ·+ xn 7→ x1x2 . . . xn, provided that x1 < x2 < · · · < xn. These embeddings take
B(ωF ) to:
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The topologies induced onA and F byA(ωF) and F (ωF) are easy to describe; the restrictions of base
neighborhoods of the zero (identity) element to these sets are determined by sequences of open covers of
ωF (i.e., of neighborhoods of the non-isolated point ∗) in the same manner as in Description II (see [22]).
A straightforward verification shows that A, B and B(ωF) are homeomorphic. The rigorous proof of
this fact is rather tedious, and we omit it.

As mentioned in the Introduction, for any filter F , the free Boolean group on ωF is simply [ω]<ω.
Any topology on [ω]<ω (as well as on any other set) is a partially ordered (by inclusion) family of subsets.
Partial orderings of subsets of [ω]<ω have been extensively studied in forcing, and countable Boolean
topological groups turn out to be closely related to them. In this section, we shall try to give an intuitive
explanation of this relationship. The basic definitions and facts related to forcing can be found in Jech’s
book [64].

By a notion of forcing, we mean a partially ordered set (briefly, poset) (P,≤). Elements of a notion
of forcing are called conditions; given two conditions p, q ∈ P, we say that p is stronger than q if
p ≤ q. A partially ordered set (P,≤) is separative if, whenever p 6≤ q, there exists an r ≤ p which
is incompatible with q. Thus, any topology is a generally non-separative notion of forcing, and the
family of all regular open sets in a topology is a separative notion of forcing. Any separative forcing
notion (P,≤) is isomorphic to a dense subset of a complete Boolean algebra. Indeed, consider the set
P ↓ p = {q : q ≤ p} for each p ∈ P. The family {X ⊂ P : (P ↓ p) ⊂ X for every p ∈ X} generates
a topology on P. The complete Boolean algebra mentioned above is the algebra RO(P) of regular open
sets in this topology.

Two notions of forcing P and Q are said to be forcing equivalent if the algebras RO(P) and RO(Q)

are isomorphic or, equivalently, if P can be densely embedded in Q and vice versa (which means that P
and Q give the same generic extensions).

Roughly speaking, given a countable transitive model M of set theory, the method of forcing extends
M by adding a so-called generic subset (called also a generic filter) G of P not belonging to M; the
extended model, called a generic extension of M, contains

⋃
G, which has certain desired properties

ensured by the choice of P and G.
In the context of free Boolean groups on filters, most interesting are two well-known notions of

forcing, Mathias forcing and Laver forcing relativized to (usual) filters on ω.
In Mathias forcing relative to a filter F , the forcing poset, denoted M(F), is formed by pairs (s, A)

consisting of a finite set s ⊂ ω and an (infinite) set A ∈ F such that every element of s is less than every

and:

Axioms 2015, 4 509

Spaces of the form ωF are one of the rare examples where the free Boolean topological group is
naturally embedded in the free and free Abelian topological groups as a closed subspace. The embedding
of B(ωF) into A(ωF) is defined simply by x1 + x2 + · · · + xn 7→ x1 + x2 + · · · + xn (for the Graev
free groups, which are the same as Markov ones for such spaces), and the embedding into F (ωF) is
x1 +x2 + · · ·+xn 7→ x1x2 . . . xn, provided that x1 < x2 < · · · < xn. These embeddings take B(ωF) to:

A = {x1 + x2 + · · ·+ xn = (x1 − ∗) + (x2 − ∗) + · · ·+ (xn − ∗) : n ∈ N, xi ∈ ω} ⊂ A(ωF)

and:

F = {x1x2 . . . xn = x1 ∗−1 x2 ∗−1 . . . xn∗−1 : n ∈ N, xi ∈ ω, x1 < x2 < · · · < xn} ⊂ F (ωF).

The topologies induced onA and F byA(ωF) and F (ωF) are easy to describe; the restrictions of base
neighborhoods of the zero (identity) element to these sets are determined by sequences of open covers of
ωF (i.e., of neighborhoods of the non-isolated point ∗) in the same manner as in Description II (see [22]).
A straightforward verification shows that A, B and B(ωF) are homeomorphic. The rigorous proof of
this fact is rather tedious, and we omit it.

As mentioned in the Introduction, for any filter F , the free Boolean group on ωF is simply [ω]<ω.
Any topology on [ω]<ω (as well as on any other set) is a partially ordered (by inclusion) family of subsets.
Partial orderings of subsets of [ω]<ω have been extensively studied in forcing, and countable Boolean
topological groups turn out to be closely related to them. In this section, we shall try to give an intuitive
explanation of this relationship. The basic definitions and facts related to forcing can be found in Jech’s
book [64].

By a notion of forcing, we mean a partially ordered set (briefly, poset) (P,≤). Elements of a notion
of forcing are called conditions; given two conditions p, q ∈ P, we say that p is stronger than q if
p ≤ q. A partially ordered set (P,≤) is separative if, whenever p 6≤ q, there exists an r ≤ p which
is incompatible with q. Thus, any topology is a generally non-separative notion of forcing, and the
family of all regular open sets in a topology is a separative notion of forcing. Any separative forcing
notion (P,≤) is isomorphic to a dense subset of a complete Boolean algebra. Indeed, consider the set
P ↓ p = {q : q ≤ p} for each p ∈ P. The family {X ⊂ P : (P ↓ p) ⊂ X for every p ∈ X} generates
a topology on P. The complete Boolean algebra mentioned above is the algebra RO(P) of regular open
sets in this topology.

Two notions of forcing P and Q are said to be forcing equivalent if the algebras RO(P) and RO(Q)

are isomorphic or, equivalently, if P can be densely embedded in Q and vice versa (which means that P
and Q give the same generic extensions).

Roughly speaking, given a countable transitive model M of set theory, the method of forcing extends
M by adding a so-called generic subset (called also a generic filter) G of P not belonging to M; the
extended model, called a generic extension of M, contains

⋃
G, which has certain desired properties

ensured by the choice of P and G.
In the context of free Boolean groups on filters, most interesting are two well-known notions of

forcing, Mathias forcing and Laver forcing relativized to (usual) filters on ω.
In Mathias forcing relative to a filter F , the forcing poset, denoted M(F), is formed by pairs (s, A)

consisting of a finite set s ⊂ ω and an (infinite) set A ∈ F such that every element of s is less than every

The topologies induced on A and F by A(ωF ) and F(ωF ) are easy to describe;
the restrictions of base neighborhoods of the zero (identity) element to these sets
are determined by sequences of open covers of ωF (i.e., of neighborhoods of
the non-isolated point ∗) in the same manner as in Description II (see [22]). A
straightforward verification shows that A, B and B(ωF ) are homeomorphic. The
rigorous proof of this fact is rather tedious, and we omit it.

As mentioned in the Introduction, for any filterF , the free Boolean group on ωF
is simply [ω]<ω. Any topology on [ω]<ω (as well as on any other set) is a partially
ordered (by inclusion) family of subsets. Partial orderings of subsets of [ω]<ω have
been extensively studied in forcing, and countable Boolean topological groups turn
out to be closely related to them. In this section, we shall try to give an intuitive
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explanation of this relationship. The basic definitions and facts related to forcing can
be found in Jech’s book [64].

By a notion of forcing, we mean a partially ordered set (briefly, poset) (P,≤).
Elements of a notion of forcing are called conditions; given two conditions p, q ∈ P,
we say that p is stronger than q if p ≤ q. A partially ordered set (P,≤) is separative
if, whenever p 6≤ q, there exists an r ≤ p which is incompatible with q. Thus,
any topology is a generally non-separative notion of forcing, and the family of all
regular open sets in a topology is a separative notion of forcing. Any separative
forcing notion (P,≤) is isomorphic to a dense subset of a complete Boolean algebra.
Indeed, consider the set P ↓ p = {q : q ≤ p} for each p ∈ P. The family {X ⊂ P :
(P ↓ p) ⊂ X for every p ∈ X} generates a topology on P. The complete Boolean
algebra mentioned above is the algebra RO(P) of regular open sets in this topology.

Two notions of forcing P and Q are said to be forcing equivalent if the algebras
RO(P) and RO(Q) are isomorphic or, equivalently, if P can be densely embedded in
Q and vice versa (which means that P and Q give the same generic extensions).

Roughly speaking, given a countable transitive model M of set theory, the
method of forcing extends M by adding a so-called generic subset (called also a
generic filter) G of P not belonging to M; the extended model, called a generic
extension of M, contains

⋃
G, which has certain desired properties ensured by the

choice of P and G.
In the context of free Boolean groups on filters, most interesting are two

well-known notions of forcing, Mathias forcing and Laver forcing relativized to
(usual) filters on ω.

In Mathias forcing relative to a filter F , the forcing poset, denoted M(F ), is
formed by pairs (s, A) consisting of a finite set s ⊂ ω and an (infinite) set A ∈ F
such that every element of s is less than every element of A in the ordering of ω. A
condition (t, B) is stronger than (s, A) ((t, B) ≤ (s, A)) if s @ t, B ⊂ A and t \ s ⊂ A.

The poset in Laver forcing consists of subsets of the set ω<ω of ordered finite
sequences in ω. However, it is more convenient for our purposes to consider its
modification consisting of subsets of [ω]<ω . Thus, we restrict the Laver forcing poset
to the set ω↑<ω of strictly increasing finite sequences in ω (this restricted poset is
forcing equivalent to the original one) and note that the latter is naturally identified
with [ω]<ω. Below, we give the definition of the corresponding modification of
Laver forcing.

The definition of Laver forcing uses the notion of a Laver tree. A Laver tree is a
set p of finite subsets of ω such that:

(i) p is a tree (i.e., if t ∈ p, then p contains any initial segment of t),
(ii) p has a stem, i.e., a maximal node s(p) ∈ p, such that s(p) @ t or t @ s(p) for

all t ∈ p and
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(iii) if t ∈ p and s(p) @ t, then the set succ(t) = {n ∈ ω : n > max t, t∪ {n} ∈ p} is
infinite.

In Laver forcing relative to F , the poset, denoted L(F), is the set of Laver trees
p such that succ(t) ∈ F for any t ∈ p with s(p) @ t, ordered by inclusion.

The Mathias and Laver forcings M(F) and L(F) have the special feature that
they diagonalize the filter F (i.e., add its pseudo-intersection). They determine two
natural topologies on [ω]<ω: the Mathias topology τM generated by the base:

{[s, A] : s ∈ [ω]<ω, A ∈ F}, where [s, A] = {t ∈ [ω]<ω : s @ t, t \ s ⊂ A},

and the Laver topology τL generated by all sets U ⊂ [ω]<ω such that:

t ∈ U =⇒ {n > max t : t∪ {n} ∈ U} ∈ F .

It is easy to see that the Mathias topology is nothing but the topology of the
free Boolean linear topological group on ωF (recall that linear groups are those with
topology generated by subgroups): a base of neighborhoods of zero is formed by the
sets [∅, A] with A ∈ F , that is, by all subgroups generated by elements of F .

The neighborhoods of zero in the Laver topology are not so easy to describe
explicitly; their recursive definition immediately follows from that given above
for general open sets (the only condition that must be added is ∅ ∈ U). Thus,
U is an open neighborhood of zero if, first, ∅ ∈ U; by definition, U must also
contain all n ∈ A(∅) for some A(∅) ∈ F (moreover, U may contain no other
elements of size one); for each of these n, there must exist an A(n) ∈ F such that
A(n)∩ {0, 1, . . . , n} = ∅ and U contains all {n, m} with m ∈ A(n) (moreover, U may
contain no other element of size two); for any such {n, m} (m > n), there must exist
an A({n, m}) ∈ F such that A({n, m})∩{0, 1, . . . , m} = ∅ and U contains all {n, m, l}
with l ∈ A({n, m}), and so on. Thus, each neighborhood of zero is determined by a
family {A(s) : s ∈ [ω]<ω} of elements of F . Clearly, the topology τL is invariant with
respect to translation by elements of [ω]<ω; upon a little reflection, it becomes clear
that τL is the maximal invariant topology on [ω]<ω in which the filter F converges
to zero. (An invariant topology is a topology with respect to which the group
operation is separately continuous; groups with an invariant topology are said to be
semi-topological. The convergence of F to zero means that τL induces the initially
given topology on ωF .) Since the free group topology is invariant as well, it is weaker
than τL.

The Mathias topology is, so to speak, the uniform version of the Laver topology:
a neighborhood of zero in the Laver topology determined by a family {A(s) ∈ F : s ∈
[ω]<ω} is open in the Mathias topology if and only if there exists a single A ∈ F such
that A(s) = A \ {0, 1, . . . , max s} for each s. (In [65], the corresponding relationship
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between Mathias and Laver forcings was discussed from a purely set-theoretic point
of view.) Hence, τM ⊂ τL.

The topology of the free Boolean topological group on ωF occupies an
intermediate position between the Mathias and the Laver topology: it is not so
uniform as the former, but more uniform than the latter. A neighborhood of zero is
determined not by a single element of the filter (like in the Mathias topology), but
by a family of elements of F assigned to s ∈ [ω]<ω (like in the Laver topology), but
these elements depend only on the lengths of s.

The following theorem shows that the Laver topology is a group topology only
for special filters. This theorem was proven in 2007 by Egbert Thümmel, who kindly
communicated it, together with a complete proof, to the author. The symbols τfree
and τindlim in its statement denote the topology of the free topological group B(ωF )
and the inductive limit topology of B(ωF ), respectively.

Theorem 18 (Thümmel, 2007 [66]). For any filter on ω, the following conditions
are equivalent:

(i) F is Ramsey;
(ii) τM = τfree = τindlim = τL;

(iii) τL is a group topology;
(iv) for any sequence of Ai ∈ F , i ∈ ω, the set U = {∅} ∪⋃i∈ω[i, Ai] is open in τfree.

This theorem is particularly interesting because its original (Thümmel’s) proof
uses an argument that is simple and still quite typical of the method of forcing. The
proof given below only slightly differs from Thümmel’s and uses this argument,
as well.

Proof. First, note that τM ⊂ τfree ⊂ τindlim ⊂ τL. Indeed, the first two inclusions
are obvious, and the third one follows from Proposition 3 (or from the inclusion
τfree ⊂ τL noted above) and the observation that τL is the inductive limit of its
restrictions to Bn(ωF ).

Thus, to prove the implication (i)⇒ (ii), it suffices to show that τM = τL for any
Ramsey filter. Let U be a neighborhood of ∅ in τL. For each i ∈ ω, we set:

Ai =
⋂{
{n > max s : s∪ {n} ∈ U} : s ∈ U, max s ≤ i

}
.

Since the number of s ∈ [ω]<ω with max s ≤ i is finite, it follows that Ai ∈ F .
Take a diagonal D ∈ F for the family {Ai : i ∈ ω}. We can assume that D ⊂ A0.
Clearly, [∅, D] ⊂ U, whence U ∈ τM.

The implication (ii)⇒ (iii) is trivial.
Let us prove (iii)⇒ (iv). Note that it follows from (iii) that τfree = τL, because

τfree ⊂ τL and τfree is the strongest group topology inducing the initially given
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topology on ωF . It remains to note that any set of the form {∅} ∪⋃i∈ω[i, Ai], where
Ai ∈ F , is open in τL.

We proceed to the last implication (iv)⇒ (i). Take any family {Ai : i ∈ ω} ⊂ F
and consider the set U defined as in (iv). Since this is an open neighborhood of zero
in the group topology τfree, there exists an open neighborhood V of zero (in τfree) such
that V +V ⊂ U. The set D = {i ∈ ω : i ∈ V} belongs to F (because τfree induces the
initially given topology on ωF ) and is a diagonal of {Ai : i ∈ ω}.

This theorem is worth comparing to Judah and Shelah’s proof that if F is a
Ramsey ultrafilter, then M(F) is forcing equivalent to L(F) ([67], Theorem 1.20 (i)).

Thümmel also obtained the following remarkable result as a simple corollary of
Theorem 18.

Theorem 19 (Thümmel, 2007 [66]). Given a filter F on ω, the group B(ωF ) is extremally
disconnected if and only if F is a Ramsey ultrafilter.

Proof. The proof of the if part is essentially contained in Sirota’s construction of
a (consistent) example of an extremally disconnected group [56]. The proof of the
only if part is based on the equivalence (iv) ⇔ (i) of Theorem 18: for any family
{Ai : i ∈ ω} ⊂ F , the set

⋃
i∈ω[i, Ai] is open even in the Mathias topology, and

its closure in τfree, which must be open by virtue of extremal disconnectedness, is
{∅} ∪⋃i∈ω[i, Ai]. The assertion (iv)⇔ (i) implies that F is a Ramsey filter. It remains
to apply Theorem 13 and recall that ωF is extremally disconnected if and only if F is
an ultrafilter.

Thümmel has never published these results, and Theorem 19 was rediscovered
by Zelenyuk, who included it, among other impressive results, in his book [59] (see
Theorem 5.1 in [59]).

Combining Theorem 19 with Corollary 15, we obtain yet another corollary.

Corollary 20. The free Boolean group on a non-discrete countable space X is extremally
disconnected if and only if X is an almost discrete space associated with a Ramsey ultrafilter.

Free Boolean topological and free Boolean linear (that is, Mathias) topological
groups on spaces associated with filters, as well as Boolean groups with other
topologies determined by filters, are the main tool in the study of topological groups
with extreme topological properties (see [59] and the references therein). However,
free Boolean (linear) topological groups on filters arise also in more “conservative”
domains. We conclude with mentioning an instance of this kind.

The most elegant (in the author’s opinion) example of a countable
non-metrizable Fréchet–Urysohn group was constructed by Nyikos in [68] under the
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relatively mild assumption p = b (Hrušák and Ramos-García have recently proven
that such an example cannot be constructed in ZFC [69]).

It is clear from general considerations that test spaces most convenient for
studying convergence properties that can be defined pointwise (such as the
Fréchet–Urysohn property and the related αi-properties) are countable almost
discrete spaces (that is, spaces of the form ωF ), and the most convenient test groups
for studying such properties in topological groups are those generated by such
spaces, simplest among which are free Boolean linear topological groups. Thus, it is
quite natural that Nyikos’ example is Blin(ωF ) for a very cleverly constructed filter F .
In fact, he constructed it on ω×ω (which does not make any difference, of course) as
the set of neighborhoods of the only non-isolated point in a Ψ-like space defined by
using graphs of functions ω→ ω from a special family. In the same paper, Nyikos
proved many interesting convergence properties of groups Blin(ωF ) for arbitrary
filters F on ω. We do not give any more details here: the interested reader will gain
much more benefit and pleasure from reading Nyikos’ original paper.

6. A Few Open Problems

Free Boolean topological groups have not yet been extensively studied, and
related unsolved problems are numerous. Some of the problems most interesting to
the author are suggested below.

Problem 1. Describe those spaces X whose finite powers are embedded in the free
Boolean topological groups B(X). Is it true that if F is a free ultrafilter on ω, then
ωF ×ωF cannot be embedded in B(ωF )?

The following problem is open not only for free Boolean topological groups, but
also for free and free Abelian ones.

Problem 2. Describe those spaces X for which B(X) (F(X), A(X)) is normal.

Of course, if F(X) or A(X) is normal, then so are all finite powers of X, because
they are embedded in F(X) and A(X) as closed subspaces. However, in the Boolean
case, even this has not been proven.

Problem 3. Does there exist a space X such that B(X) is normal, but X2 is not?

Similarly, for Boolean groups, the following problem becomes nontrivial.

Problem 4. Describe spaces X for which B(X) is Lindelöf. Does there exist a space X
such that B(X) is Lindelöf, but X2 is not?
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Problem 5. Does there exist a space X for which B(X) is normal (Lindelöf, ccc), but
F(X) or A(X) is not?

Problem 6. Is it true that B(X) is Weil complete for any Dieudonné complete
space X?

A positive answer to this question in the case where X is a product of metrizable
spaces would imply a positive answer in the general case. Indeed, any Dieudonné
complete space X can be embedded in a product P of metric spaces as a closed
subspace in such a way that every bounded continuous pseudometric on X can be
extended to P. Therefore, by Theorem 4, B(X) is a subgroup of B(P); it is easy to
see that B(X) is closed in B(P), and hence, B(X) is Weil complete if so is B(P). For
free and free Abelian topological groups, Problem 6 has been completely solved:
Tkachenko proved that if X is Dieudonné complete, then A(X) is Weil complete [28];
Uspenskii proved the Weil completeness of F(X) in the case where X is a product
of metrizable spaces [29]; and the author extended Uspenskii’s result to arbitrary
Dieudonné complete spaces [27].

The following problem has been solved only for free Abelian topological
groups [70].

Problem 7. Is it true that the free (Boolean) topological group of any stratifiable
space is stratifiable?

The following two problems have been extensively studied and proven very
difficult for free and free Abelian topological groups. Results related to the inductive
limit topology were mentioned in Section 3.1, and results related to the natural
multiplication maps being quotient can be found, e.g., in [25,34,71–73].

Problem 8. Describe spaces X for which B(X) has the inductive limit topology.

Problem 9. Describe spaces X for which all (or some) of the natural addition maps
in : X ∪ X−1 → B(X) defined by (xε1

1 , xε2
2 , . . . , xεn

n ) 7→ x1 + x2 + · · ·+ xn for n ∈ N,
xi ∈ X and εi = ±1 (i ≤ n) are quotient.

We conclude this short list of problems with a problem closely related to
extremally disconnected groups.

Problem 10. Does there exist a (countable) non-discrete Boolean topological group
in which all linearly independent sets are closed and discrete?
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Lindelöf Σ-Spaces and R-Factorizable
Paratopological Groups
Mikhail Tkachenko

Abstract: We prove that if a paratopological group G is a continuous image of
an arbitrary product of regular Lindelöf Σ-spaces, then it is R-factorizable and
has countable cellularity. If in addition, G is regular, then it is totally ω-narrow
and satisfies celω(G) ≤ ω, and the Hewitt–Nachbin completion of G is again an
R-factorizable paratopological group.

Reprinted from Axioms. Cite as: Tkachenko, M. Lindelöf Σ-Spaces and R-Factorizable
Paratopological Groups. Axioms 2016, 4, 254–267.

1. Introduction

Our main objective is the study of paratopological groups that can be
represented as continuous images of products of Lindelöf Σ-spaces. While the
properties of (para)topological groups that are Lindelöf Σ-spaces (referred to as
Lindelöf Σ-groups) are well-understood [1–4], our knowledge about the former class
of groups is very modest. The lack of the continuity of the inverse in paratopological
groups makes our job more difficult when compared to the case of topological groups.
In fact, most of our technique is essentially asymmetric.

Topological groups representable as continuous images of products of Lindelöf
Σ-spaces were studied in [5], where it was shown that every uncountable regular
cardinal was a weak precaliber for any group G in this class and that G satisfied
celω(G) ≤ ω. According to [2] (Corollary 3.5), a slightly weaker result is valid for
Tychonoff paratopological groups representable as continuous images of products of
Lindelöf Σ-spaces: these groups G satisfy the inequality celω(G) ≤ ω. However, the
justification of this fact given in [2] contains a gap. In a few words, the problem with
the argument in [2] is the existence of a weak σ-lattice of open continuous mappings
of a given completely regular paratopological group G onto Hausdorff spaces with a
Gδ-diagonal (see Definition 6). As far as we know, all other results in [2] are proven
correctly. It is a simple exercise to show that every Hausdorff topological group has
the required lattice of open mappings, while the case of paratopological groups is
much more elusive.

It follows from our lemmas 9 and 11 that every weakly Lindelöf regular
paratopological group has a weak σ-lattice of continuous open mappings onto
Hausdorff spaces with a Gδ-diagonal. Since every space representable as a
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continuous image of a product of Lindelöf Σ-spaces is weakly Lindelöf, these facts
fill in the gap in the proof of [2] (Corollary 3.5) (see our Theorem 13).

It turns out that the paratopological groups G, which are continuous images
of products of Lindelöf Σ-spaces, have several properties that make them look like
Lindelöf Σ-groups. For example, we prove in Theorem 12 that such a group G is
R-factorizable and has countable cellularity. If in addition the group G is regular,
then it is totally ω-narrow and satisfies celω(G) ≤ ω, and the Hewitt–Nachbin
completion of G is again an R-factorizable paratopological group containing G
as a dense subgroup (see Theorem 13). This fact is one of the first results on the
preservation of the paratopological group structure under taking the Hewitt–Nachbin
completion: almost all known results of this kind refer to topological groups, and
their proofs depend essentially on the continuity of the inverse.

Finally, in Section 4, we formulate several open problems regarding
paratopological groups representable as continuous images of products of Lindelöf
Σ-spaces. We are mainly interested in finding out whether the conclusions “G is
totally ω-narrow and satisfies celω(G) ≤ ω” in Theorem 13 can be extended to
Hausdorff paratopological groups G.

The article is organized as follows. In Section 2, we introduce a class LΣ of
Hausdorff spaces that contains the Lindelöf Σ-spaces and shares many properties
with the latter one. The advantage of working with spaces from the class LΣ resides
in the fact that this class is stable with respect to taking Hausdorff continuous
images. We collect several results about the permanence properties of the class LΣ
and present more facts that will be used in Section 3.

Section 3 contains our main results about paratopological groups representable
as continuous images of products of Lindelöf Σ-spaces. A few selected problems
related to the material of Section 3 are given with comments in Section 4.

2. Preliminaries

A space X is weakly Lindelöf if every open cover of X contains a countable
subfamily whose union is dense in X. Every space with a dense Lindelöf subspace or
having countable cellularity is weakly Lindelöf.

According to [6], a Hausdorff space X is called a Lindelöf Σ-space if there exist
a countable family F of closed sets in X and a cover C of X by compact sets, such
that for every C ∈ C and every open neighborhood U of C in X, one can find F ∈ F,
such that C ⊆ F ⊆ U. In fact, K. Nagami defined in [6] the wider class of Σ-spaces,
so the Lindelöf Σ-spaces are simply the Σ-spaces with the Lindelöf property. The
reader can find a detailed discussion of distinct ways to define Lindelöf Σ-spaces
in [7] (Theorem 1).

It is known that the class of Lindelöf Σ-spaces is countably productive and that
an Fσ-subset of a Lindelöf Σ-space is again a Lindelöf Σ-space [6]. This class of spaces
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becomes especially stable when one restricts himself to considering Tychonoff spaces
only. It turns out that every continuous image, say Y of a Lindelöf Σ-space X, is
again a Lindelöf Σ-space, provided that X and Y are Tychonoff [1], (Proposition 5.3.5).
In fact, the same conclusion remains valid if X is Hausdorff and Y is regular [4]
(Lemma 4.5). However, we do not know whether the latter fact can be extended to
the case when both X and Y are Hausdorff. This is why we define here a (possibly)
wider class LΣ of Hausdorff spaces that is countably productive and is closed under
taking continuous images.

Definition 1. A Hausdorff space X is in the class LΣ if there exist a countable family F

of (not necessarily closed) subsets of X and a cover C of X by compact subsets, such that
for every C ∈ C and every open neighborhood U of C in X, one can find F ∈ F, such that
C ⊆ F ⊆ U.

It follows from Definition 1 that every Lindelöf Σ-space is in the class LΣ. It is
also easy to verify that every space X ∈ LΣ is Lindelöf. Therefore, a regular space
in LΣ is normal (hence, Tychonoff), so regular spaces in LΣ are Lindelöf Σ-spaces
according to [7] (Theorem 1).

Proposition 2. The class LΣ is countably productive and closed under taking continuous
images. Further, if Y is an Fσ-subset of a space X ∈ LΣ, then Y ∈ LΣ.

Proof. Let {Xk : k ∈ ω} ⊆ LΣ be a family of spaces. For every k ∈ ω, let Fk and Ck
be families of subsets of Xk witnessing that Xk ∈ LΣ. We can assume that Xk ∈ Fk
for each k ∈ ω. To show that X = ∏k∈ω Xk is in LΣ, we define families F and C of
subsets of X as follows.

Let F be the family of sets of the form ∏k∈ω Fk, where Fk ∈ Fk for each k ∈ ω
and Fk 6= Xk for at most finitely many indices k ∈ ω. Clearly the family F is
countable. Similarly, let C be the family of sets of the form ∏k∈ω Ck, where Ck ∈ Ck
for each k ∈ ω. Then, the family C consists of compact subsets of X. Take an element
C ∈ C and an open neighborhood U of C in X. Then, C = ∏k∈ω Ck, where Ck ∈ Ck
for each k ∈ ω. By Wallace’s Lemma, there exists a finite set A ⊆ ω and open sets
Ok ⊆ Xk with k ∈ A, such that C ⊆ ∏k∈ω Vk ⊆ U, where Vk = Ok if k ∈ A and
Vk = Xk if k ∈ ω \ A. For every k ∈ A, there exists Fk ∈ Fk, such that Ck ⊆ Fk ⊆ Ok.
Let F = ∏k∈ω Ek, where Ek = Fk if k ∈ A and Ek = Xk if k ∈ ω \ A. Then, F ∈ F and
C ⊆ F ⊆ ∏k∈ω Vk ⊆ U. Therefore, the families F and C witness that X ∈ LΣ. This
proves that the class LΣ is countably productive.

Let f : X → Y be a continuous onto mapping of Hausdorff spaces, where
X ∈ LΣ. Take families F and C of subsets of X witnessing that X ∈ LΣ. It is easy to
verify that the families FY = { f (F) : F ∈ F} and CY = { f (C) : C ∈ C} of subsets of
Y witness that Y ∈ LΣ.
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Finally, let Y =
⋃

k∈ω Bk, where each Bk is a closed subset of a space X ∈ LΣ.
Denote by F and C families of subsets of X witnessing that X ∈ LΣ, where F is
countable and each C ∈ C is compact. Let us verify that the families:

FY = {F ∩ Bk : F ∈ F, k ∈ ω}

and:
CY = {C ∩ Bk : C ∈ C, k ∈ ω}

witness that Y ∈ LΣ. It is clear that |FY| ≤ ω and that each element of CY is a
compact subset of Y. Let K = C ∩ Bk be an element of CY, where C ∈ C and k ∈ ω.
Let also V be an open neighborhood of K in Y. Then, there exists an open set O in
X, such that O ∩Y = V. Since the compact set C′ = C \O is disjoint from K and the
space X is Hausdorff, we can find disjoint open in X neighborhoods W1 and W2 of
K and C′, respectively. The set W∗ = W2 \ Bk is open in X and contains C′. Hence,
the set U = O ∪W∗ is an open neighborhood of C in X, so we can find an element
F ∈ F, such that C ⊆ F ⊆ U. Then, F ∩ Bk is an element of FY that satisfies:

K ⊆ F ∩ Bk ⊆ U ∩ Bk = O ∩ Bk ⊆ O ∩Y = V

This completes the proof of the fact that Y ∈ LΣ.

Another important property of the spaces in LΣ is presented in the following
result, which is close to [1] (Proposition 5.3.15). However, our proof of Proposition 3
is quite different from the one given in [1], since we work in the class of Hausdorff
spaces, which is much wider than the class of Tychonoff spaces considered in [1]
(Section 5.3).

Proposition 3. If a space X ∈ LΣ admits a continuous one-to-one mapping onto a
Hausdorff space Y with a countable network, then X itself has a countable network.

Proof. Let f : X → Y be a continuous bijection. It is well known that every Hausdorff
space with a countable network admits a continuous one-to-one mapping onto a
second countable Hausdorff space. Let i : Y → Z be a continuous bijection of Y onto
a second countable Hausdorff space Z. Then, g = i ◦ f is a continuous bijection of X
onto Z. Denote by B a countable base for Z. We can assume that B is closed under
finite intersections and finite unions.

Let families F and C of subsets of X witness that X ∈ LΣ, where |F| ≤ ω and
each C ∈ C is compact. We claim that the countable family:

N = {F ∩ g−1(W) : F ∈ F, W ∈ B}
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is a network for X. Indeed, take a point x ∈ X and an open neighborhood U of x in
X. There exists C ∈ C, such that x ∈ C. Then, K = C \U is a compact subset of X
and x /∈ K. Hence, the compact subset g(K) of Z does not contain the point g(x), and
we can find disjoint elements W, W ′ ∈ B, such that g(x) ∈W and g(K) ⊆W ′. Then,
O = U ∪ g−1(W ′) is an open neighborhood of C in X, so there exists an element
F ∈ F, such that C ⊆ F ⊆ O. It is clear that F ∩ g−1(W) is an element of N, and we
have that:

x ∈ F ∩ g−1(W) ⊆ O ∩ g−1(W) = U ∩ g−1(W) ⊆ U

We have thus proven that N is a countable network for X.

Replacing the family N in the proof of Proposition 3 with the family:

N′ = {F ∩ g−1(W) : F ∈ F, W ∈ B}

we obtain the following version of the proposition:

Proposition 4. If a Lindelöf Σ-space X admits a continuous one-to-one mapping onto a
Hausdorff space with a countable network, then X has a countable network of closed sets.

The following lemma was proven in [2] for regular Lindelöf Σ-spaces. Therefore,
we extend the corresponding result from [2] to the wider class of Hausdorff
LΣ-spaces.

Lemma 5. If a space X ∈ LΣ has a Gδ-diagonal, then it has a countable network.

Proof. Suppose that X ∈ LΣ. Then, Proposition 2 implies that X2 ∈ LΣ, so the space
X2 is Lindelöf. Let {Un : n ∈ ω} be a family of open neighborhoods of the diagonal
∆X in X2 such that ∆X =

⋂
n∈ωUn. It is clear that Fn = X2 \Un is a closed Lindelöf

subspace of X2. Given n ∈ ω and a point (x, y) ∈ Fn, we can find disjoint open
neighborhoods Vn(x, y) and Wn(x, y) of the points x and y, respectively, in X. The
open cover {Vn(x, y)×Wn(x, y) : (x, y) ∈ Fn} of the Lindelöf space Fn contains a
countable subcover, say {Vn(x, y)×Wn(x, y) : (x, y) ∈ Cn}, where Cn is a countable
subset of Fn. Let:

γ = {Vn(x, y) : n ∈ ω, (x, y) ∈ Cn} ∪ {Wn(x, y) : n ∈ ω, (x, y) ∈ Cn}

Then, γ is a countable family of open sets in X. We claim that for every pair
a, b of distinct points in X, there exist disjoint elements V, W ∈ γ, such that a ∈ V
and b ∈W. Indeed, since (a, b) ∈ X2 \ ∆X , there exists n ∈ ω, such that (a, b) /∈ Un,
i.e., (a, b) ∈ Fn. Hence, there exists an element (x, y) ∈ Cn, such that (a, b) ∈
Vn(x, y)×Wn(x, y). This means that V = Vn(x, y) ∈ γ and W = Wn(x, y) ∈ γ are
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disjoint open neighborhoods of the points a and b, respectively. This proves our
claim.

Let B be the family of finite intersections of elements of γ. It is clear that B is a
base for a Hausdorff topology τ on X. Then, the space Y = (X, τ) has a countable
base, and the identity mapping of X onto Y is a continuous bijection. Applying
Proposition 3, we conclude that X has a countable network.

Given continuous mappings g : X → Y and h : X → Z, we will write g ≺ h if
there exists a continuous mapping p : Y → Z satisfying h = p ◦ g.

We will also need the notion of a weak σ-lattice of mappings mentioned in the
Introduction (see also [2], Definition 3.1).

Definition 6. Let Y be a space and L a family of continuous mappings of Y elsewhere. Then,
L is said to be a weak σ-lattice for Y if the following conditions hold:

(1) L generates the original topology of Y;
(2) every finite subfamily of L has a lower bound in (L,≺);
(3) for every decreasing sequence p0 � p1 � p2 � · · · in L, there exists p ∈ L and a

continuous one-to-one mapping φ : p(Y)→ q(Y), such that q = φ ◦ p, where q is the
diagonal product of the family {pn : n ∈ ω}.

A typical example of a weak σ-lattice for a topological group H is the family of
all quotient mappings πN : H → H/N onto left coset spaces, where N is an arbitrary
closed subgroup of type Gδ in H.

Let us recall that a Gδ,Σ-set in a space X is the union of an arbitrary family of
Gδ-sets in X. Further, a space Y is said to beω-cellular or, in symbols, celω(Y) ≤ ω
if every family γ of Gδ-sets in Y contains a countable subfamily λ, such that

⋃
λ is

dense in
⋃
γ. It is clear that everyω-cellular space has countable cellularity. In fact,

the class of ω-cellular spaces is considerably narrower than the class of spaces of
countable cellularity. For example, a space Y of countable pseudo-character satisfies
celω(Y) ≤ ω if and only if it is hereditarily separable.

Our next result is a special case of [2] (Theorem 3.4), which is sufficient for our
purposes. We supply it with a short proof based on another fact from [2].

Theorem 7. Let X = ∏i∈I Xi be a product of regular Lindelöf Σ-spaces and a Tychonoff
space Y be a continuous image of X. If Y has a weak σ-lattice of open mappings onto Hausdorff
spaces with a Gδ-diagonal, then celω(Y) ≤ ω, and the closure of every Gδ,Σ-subset of Y is
a Gδ-set.

Proof. First, we choose a point a ∈ X. For every countable set J ⊆ I, denote by pJ the
projection of X onto the sub-product XJ = ∏i∈J Xi. Then, XJ is a Lindelöf Σ-space,
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and we identify it with a corresponding closed subspace of X multiplying XJ by the
singleton {pJ(a)}. Then, the family:

{pJ : J ⊆ I, |J| ≤ ω}

constitutes a strong σ-lattice of open retractions of X onto Lindelöf Σ-subspaces
(see [2], Definition 3.1).

Let f : X → Y be a continuous onto mapping. Denote by L a weak σ-lattice of
open mappings of Y onto Hausdorff spaces with a Gδ-diagonal. For every ϕ ∈ L,
the composition g = ϕ ◦ f is a continuous mapping of X onto the Hausdorff space
ϕ(Y) with a Gδ-diagonal. By [8] (Theorem 1), g depends at most on countably many
coordinates, so we can find a countable set J ⊆ I and a mapping hJ : XJ → ϕ(Y),
such that g = hJ ◦ pJ . Since pJ is an open continuous mapping, hJ is continuous.
Hence, ϕ(Y) is in the class LΣ as a continuous image of the Lindelöf Σ-space XJ .
By Lemma 5, ϕ(Y) has a countable network for each ϕ ∈ L. It follows that X, f , Y
satisfy the conditions of Theorem 3.3 in [2]; hence, celω(Y) ≤ ω, and the closure of
every Gδ,Σ-subset of Y is a Gδ-set in Y.

We recall that a paratopological group G is called R-factorizable if for every
continuous real-valued function f on G, one can find a continuous homomorphism
p : G → H onto a second countable paratopological group H and a continuous
real-valued function h on H satisfying f = h ◦ p. The original definition of
R-factorizable paratopological groups in [9] involves separation restrictions on the
groups G and H, thus giving rise to the concepts of Ri-factorizability for i = 1, 2, 3.
However, it is shown in [4] that all of these concepts coincide and are equivalent to
the one given above.

The following fact is a special case of [10] (Theorem 2.2) formulated in a form
convenient for applications in Section 3. More precisely, it will be used in the proof of
Theorem 12 to deduce the R-factorizability of paratopological groups representable
as continuous images of products of Lindelöf Σ-spaces.

Proposition 8. Let f : H → M be a continuous mapping of a Hausdorff weakly Lindelöf
paratopological group H to a metrizable space M. Then, one can find a closed subgroup N of
type Gδ in H and a continuous mapping h of the left coset space H/N to M, such that H/N
is Hausdorff and the equality f = h ◦ p holds, where p : G → G/N is the quotient mapping.

3. Continuous Images of Products of Lindelöf Σ-Spaces

In this section we present the proofs of our main results announced in the
Introduction. We start with three auxiliary results, Lemmas 9 to 11.
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Let us recall that a space X is Urysohn if for every pair x, y of distinct points
in X, there exist open neighborhoods Ux and Uy of x and y, respectively, such that
Ux ∩Uy = ∅.

Lemma 9. Let G be a weakly Lindelöf regular paratopological group, λ0 a countable family
of open neighborhoods of the identity element e in G and U0 ∈ λ0. Then, there exists a
closed subgroup N of G satisfying the following conditions, where πl : G → G/N and
πr : G → G\N are quotient mappings of G onto the left and right coset spaces G/N and
G\N, respectively:

(a) N ⊆ ⋂
λ0;

(b l) the space G/N is Urysohn and has a Gδ-diagonal;
(b r) the space G\N is Urysohn and has a Gδ-diagonal;
(c) there exist open neighborhoods Ol and Or of the elements πl(e) and πr(e) in G/N

and G\N, respectively, such that π−1
l (Ol) ⊆ U0 and π−1

r (Or) ⊆ U0.

Proof. Denote by N(e) the family of open neighborhoods of e in G. Since G is weakly
Lindelöf, it follows from [11] (Theorem 10) that the index of regularity of G is
countable. Hence the Hausdorff number of G is also countable [12] (Proposition 3.5),
i.e., for every U ∈ N(e), there exists a countable family λ ⊂ N(e), such that⋂

V∈λ VV−1 ⊂ U.
We introduce a new group multiplication in G by letting x ∗ y = y · x, for all

x, y ∈ G. Let G∗ be the paratopological group (G, ∗, τ), where τ is the topology of
G. In other words, G and G∗ differ only in multiplication. Hence, G∗ is also weakly
Lindelöf and has a countable Hausdorff number. Therefore, for every U ∈ N(e), there
exists a countable family λ ⊂ N(e), such that

⋂
V∈λ V ∗ V−1 ⊂ U or, equivalently,⋂

V∈λ V−1V ⊂ U.
Let γ0 = λ0. Making use of the inequalities Hs(G) ≤ ω and Hs(G∗) ≤ ω, one

can define a sequence {γn : n ∈ ω} of countable subfamilies of N(e) satisfying the
following conditions for each n ∈ ω:

(i) For every V ∈ γn, there exists W ∈ γn+1, such that W2 ⊂ V;
(ii r)

⋂
W∈γn+1

WW−1 ⊂ V, for each V ∈ γn;
(ii l)

⋂
W∈γn+1

W−1W ⊂ V, for each V ∈ γn.

Then, γ =
⋃

n∈ω γn is a countable subfamily of N(e). Let us show that N =
⋂
γ

is as required.
Since λ0 = γ0 ⊆ γ, it follows that N ⊆ ⋂

λ0. This implies the validity of (a) of the
lemma. Condition (ii r) implies that NN−1 ⊆ V for every V ∈ γn and every n ∈ ω,
so NN−1 ⊆ N. Since N contains the identity e of G, we see that N is a subgroup
of G. Let πl : G → G/N and πr : G → G\N be the quotient mappings. By (i), there
exists V ∈ γ1 ⊂ γ, such that V2 ⊂ U0. Then, Ol = πl(V) is an open neighborhood

102



of πl(e) in G/N and π−1
l (Ol) = VN ⊂ V2 ⊂ U0. Similarly, Or = πr(V) is an open

neighborhood of πr(e) in G\N and π−1
r (Or) = NV ⊂ V2 ⊂ U0. Hence, (c) of the

lemma is valid, as well.
Our next step is to show that condition (b l) of the lemma is also fulfilled, i.e.,

the coset space G/N is Urysohn and, hence, Hausdorff. In particular, the subgroup
N = π−1

l πl(e) is closed in G. A similar verification of item (b r) is left to the reader,
since it only requires the use of (ii r) in place of (ii l).

Take an arbitrary element x ∈ G, such that x /∈ N. Since the space G/N is
homogeneous, it suffices to show that the points πl(e) and πl(x) have disjoint closed
neighborhoods in G/N. As x /∈ N, there exists an element U ∈ γn, for some n ∈ ω,
such that x /∈ U. By (ii l), there exists V ∈ γn+1, such that x /∈ V−1V. Applying (i)
twice, we can find W ∈ γn+3, such that W4 ⊆ V. Then, W−2W4 ⊆ W−4W4 63 x,
whence it follows that:

W−1W2 ∩WxW−2 = ∅ (1)

Since the mapping πl of G onto G/N is open and N ⊆ W (and, therefore,
N = N−1 ⊆W−1), we have the following inclusions:

π−1
l (πl(W)) = π−1

l (πl(W)) = WN ⊆W−1WN ⊆W−1W2 (2)

and:
π−1

l (πl(Wx)) = π−1
l (πl(Wx)) = WxN ⊆WxNW−1 ⊆WxW−2 (3)

Combining Equations (1) to (3), we see that the closed subsets πl(W) and πl(Wx)
of G/N are disjoint. Since πl(W) and πl(Wx) are open neighborhoods of πl(e) and
πl(x), respectively, in G/N, the latter space is Urysohn.

Finally we verify that G/N has a Gδ-diagonal. For every U ∈ N(e), let:

OU =
⋃
{πl(xU)× πl(xU) : x ∈ G}

Then, the countable family F = {OU : U ∈ γ} of open entourages of the
diagonal ∆ in G/N × G/N satisfies ∆ =

⋂
F. Indeed, take arbitrary elements

a, b ∈ G, such that πl(a) 6= πl(b). Then, a−1b /∈ N, so we can find an element U ∈ γn,
for some n ∈ ω, such that a−1b /∈ U. By (ii l), there exists V ∈ γn+1, such that
a−1b /∈ V−1V. Now, we apply (i) to take W ∈ γn+2 with W2 ⊆ V. We claim that
(πl(a),πl(b)) /∈ OW . Indeed, otherwise, there exists x ∈ G, such that πl(a) ∈ πl(xW)

and πl(b) ∈ πl(xW). The latter implies that a ∈ xWN and b ∈ xWN, whence:

a−1b ∈ N−1W−1x−1xWN ⊂W−2W2 ⊂ V−1V
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which is a contradiction. Since the family F is countable, we conclude that the coset
space G/N has a Gδ-diagonal. A similar argument shows that the right coset space
G\N has a Gδ-diagonal. This completes the proof.

The next result is almost evident, so we omit its proof.

Lemma 10. The class of spaces with a Gδ-diagonal is countably productive.

Lemma 11. Let G be a weakly Lindelöf regular paratopological group and A the family of
closed subgroups N of G that satisfy conditions (b l) and (b r) of Lemma 9. Then, A is closed
under countable intersections.

Proof. Let {Nk : k ∈ ω} ⊆ A be a sequence of subgroups of G. For every k ∈ ω,
denote by πk the quotient mapping of G onto the left coset space G/Nk. Let also
ϕ be the diagonal product of the family {πk : k ∈ ω}. Then, ϕ is a continuous
mapping of G to the product space Z = ∏k∈ω G/Nk. Each of the factors G/Nk has a
Gδ-diagonal, and so does Z, by Lemma 10. Hence the subspace ϕ(G) of Z also has
a Gδ-diagonal. Similarly, the space Z and its subspace ϕ(G) are Urysohn since the
factors G/Nk are Urysohn.

Put N =
⋂

k∈ω Nk, and let π : G → G/N be the quotient mapping. For every
k ∈ ω, there exists a mapping pk : G/N → G/Nk, such that πk = pk ◦ π. The
mapping pk is continuous and open since so are π and πk. The diagonal product of
the family {pk : k ∈ ω}, say p, is a continuous mapping of G/N to Z = ∏k∈ω G/Nk.
It is clear that p satisfies the equality ϕ = p ◦ π. It is also easy to see that the fibers of
the mappings ϕ and π coincide, i.e., p is a continuous bijection of G/N onto ϕ(G).
Indeed, take arbitrary points x, y ∈ G with ϕ(x) = ϕ(y). We have to show that
π(x) = π(y). It follows from the definition of ϕ that πk(x) = πk(y), for each k ∈ ω.
Hence, x−1y ∈ ⋂

k∈ω Nk = N and π(x) = π(y). Therefore, the equality ϕ = p ◦ π
implies that p : G/N → ϕ(G) is a continuous bijection.

Finally, since the space ϕ(G) is Urysohn and has a Gδ-diagonal and p is
continuous and one-to-one, we infer that the space G/N is also Urysohn and has a
Gδ-diagonal. A similar argument shows that the right coset space G\N has the same
property. This proves that N ∈ A.

In the following theorem, we do not impose any separation restriction on the
paratopological group G.

Theorem 12. Let X = ∏i∈I Xi be a product of regular Lindelöf Σ-spaces and f : X → G a
continuous mapping of X onto a paratopological group G. Then, the group G is R-factorizable
and has countable cellularity.
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Proof. Consider a continuous real-valued function g defined on G. We can
assume the group G is a regular space. Indeed, let ϕr : G → Reg(G) be the
canonical continuous homomorphism, where Reg(G) is the regularization of G
(see [13,14]). Then, Reg(G) is a regular paratopological group, and by the definition
of Reg(G), there exists a continuous real-valued function gr on Reg(G), such that
g = gr ◦ ϕr. Hence, G is R-factorizable if so is the group Reg(G). It also follows
from [15] (Proposition 2.2) that the groups G and Reg(G) have the same cellularity.
Notice that ϕr ◦ f is a continuous mapping of X onto Reg(G). Thus, we can assume
that G itself is regular.

By a recent theorem of Banakh and Ravsky in [16], every regular paratopological
group is completely regular. Each factor Xi, being a regular Lindelöf space, is normal
and, hence, Tychonoff. Therefore, the product space X is Tychonoff, as well. Our
next step is to show that G has a weak σ-lattice of open mappings onto Hausdorff
spaces with a Gδ-diagonal.

Take an arbitrary point x∗ in X and denote by σ(x∗) the subspace of X consisting
of the points x ∈ X that differ from x∗ at most on finitely many coordinates. Clearly
σ(x∗) is dense in X. Since the class of Lindelöf Σ-spaces is finitely productive (this
follows, e.g., from Proposition 2) [1] (Corollary 1.6.45) implies that the subspace σ(x∗)
of X is Lindelöf. Hence, f (σ(x∗)) is a dense Lindelöf subspace of G, so the space
G is weakly Lindelöf. Applying Lemma 9, we see that the topology of the group G
is initial with respect to the family L of quotient mappings of G onto Urysohn left
coset spaces with a Gδ-diagonal, and the same is valid for the family R of quotient
mappings of G onto Urysohn right coset spaces with a Gδ-diagonal. Making use of
Lemma 11, one can easily prove that both L and R are weak σ-lattices of continuous
open mappings for G. A routine verification of this fact is omitted.

Since G is a continuous image of the product space X, Theorem 7 implies that
celω(G) ≤ ω. As c(G) ≤ celω(G), we conclude that G has countable cellularity. It
remains to show that the group G is R-factorizable. This requires several steps.

Following the notation in Lemma 11, we denote by A the family of all closed
subgroups N of G, such that the coset spaces G/N and G\N are Urysohn and have a
Gδ-diagonal.

Claim 1. The coset spaces G/N and G\N have a countable network, for
each N ∈ A.

Let πN,l : G → G/N be the quotient mapping, where N ∈ A. Then,
fN = πN,l ◦ f is a continuous mapping of X onto the left coset space G/N. Notice
that XJ = ∏i∈J Xi is a Lindelöf Σ-space for every countable set J ⊂ I; hence, [8]
(Theorem 1) implies that fN depends on at most countably many coordinates, i.e.,
one can find a countable set J ⊂ I and a continuous mapping h : XJ → G/N, such
that fN = h ◦ pJ , where pJ : X → XJ is the projection. It is clear that h is a surjective
mapping. Applying Proposition 2, we conclude that G/N ∈ LΣ. Hence, by Lemma 5,
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the space G/N has a countable network. The same argument applied to the quotient
mapping πN,r : G → G\N enables us to deduce that the right coset space G\N also
has a countable network. This proves Claim 1.

Claim 2. For every N ∈ A, there exists M ∈ A, such that πM,r ≺ πN,l , and
similarly, for every L ∈ A, there exists K ∈ A, such that πK,l ≺ πL,r.

By the symmetry argument, it suffices to verify the first part of the claim. Let N
be a closed subgroup of G, such that the left coset space G/N is Urysohn and has
a Gδ-diagonal. By Claim 1, the space G/N has a countable network. Denote by Z
the semi-regularization of the space G/N (see [14], p. 204), and let iN : G/N → Z be
the identity mapping. Since G/N is Hausdorff, it follows from [17] (Proposition 1)
that the space Z is regular. It is clear that the mapping iN is continuous, so Z has
a countable network as a continuous image of the space G/N. In particular, Z is
Lindelöf and normal. Since Z has a countable network, we can find a continuous
bijection iZ : Z → Z0 onto a separable metrizable space Z0. Then, p = iZ ◦ iN ◦ πN,l is
a continuous mapping of G onto Z0. By Proposition 8, there exists a closed subgroup
M of type Gδ in G and a continuous mapping q : G\M→ Z0, such that p = q ◦ πM,r,
where πM,r is the quotient mapping of G onto G\M. According to Lemma 9 we can
assume without loss of generality that M ∈ A. Let q0 = i−1

N ◦ i−1
Z ◦ q. The mapping

q0 of G\M to G/N is well defined, since iN and iZ are bijections. Thus, the following
diagram commutes.

G
πN,l //

πM,r !!

G/N
iN // Z

iZ // Z0

G\M

q0

OO

q

77

Since πN,l and πM,r are continuous open mappings, so is q0. This implies that
πM,r ≺ πN,l . Claim 2 is proven.

Claim 3. For every N ∈ A, there exists K ∈ A, such that K ⊆ N and K is
invariant in G.

Indeed, take an arbitrary element N ∈ A, and let N0 = N. By Claim 2, there
exists M0 ∈ A, such that πM0,r ≺ πN0,l . Hence, M0x ⊆ xN0 or, equivalently, M0 ⊆
xN0x−1, for each x ∈ G. Applying Claim 2 once again, we find N1 ∈ A, such that
N1 ⊆ x−1M0x for each x ∈ G. Continuing this way, we define sequences {Nk : k ∈
ω} ⊆ A and {Mk : k ∈ ω} ⊆ A, such that Mk ⊆ xNkx−1 and Nk+1 ⊆ xMkx−1

for each x ∈ G. Then, the subgroup K =
⋂

k∈ω Mk =
⋂

k∈ω Nk of G is as required.
Indeed, it follows from Lemma 11 that K ∈ A, so both coset spaces G/K and G\K
are Urysohn and have a Gδ-diagonal. It also follows from our definition of K that:

x−1Kx ⊆ x−1Mkx ⊆ Nk
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for all x ∈ G and k ∈ ω, so x−1Kx ⊆ ⋂
k∈ω Nk = K. This inclusion is in fact the

equality, so K is a closed invariant subgroup of G. Since K ⊆ N0 = N, this completes
the proof of Claim 3.

We are now in the position to complete our argument. Let us recall that g is an
arbitrary continuous real-valued function on G. Since G is Hausdorff and weakly
Lindelöf, we apply Proposition 8 to find a closed subgroup N of type Gδ in G, such
that g is constant on each left coset of N in G. Therefore, there exists a real-valued
function h on G/N, such that g = h ◦ πN,l , where πN,l : G → G/N is the quotient
mapping. Since πN,l is continuous and open, the function h is also continuous. By
Lemma 9, there exists N1 ∈ A with N1 ⊆ N. Then, Claim 3 implies the existence of an
invariant subgroup K of G, such that K ∈ A and K ⊆ N1. The inclusions K ⊆ N1 ⊆ N
mean that there exists a mapping πK

N : G/K → GN , such that πN,l = πK
N ◦ πK, where

πK : G → G/K is the quotient homomorphism.

G/K

πK
N ##

G

πN,l
��

g //πKoo R

G/N
h

==

Since the mappings πN,l and πK are continuous and open, so is πK
N . Hence,

hK = h ◦ πK
N is a continuous real-valued function on G/K. Notice that G/K is a

paratopological group, by the invariance of K in G, and G/K is Hausdorff by our
choice of K ∈ A. The group G/K has a countable network by Claim 1; hence, we
can apply [9] (Corollary 3.11) according to which G/K is R-factorizable. Therefore,
we can find a continuous homomorphism ϕ : G/K → P onto a second countable
paratopological group P and a continuous real-valued function hP on P, such that
hK = hP ◦ϕ. Therefore, the following diagram commutes.

G
πK //

g
��

G/K

ϕ

��

hK

}}
R P

hPoo

It remains to note that the continuous homomorphism ψ = ϕ ◦ πK and the
function hP satisfy the equality g = hP ◦ψ, which implies the R-factorizability of the
group G.

A topological group G is said to be ω-narrow (see [1], Section 3.4) if it can
be covered by countably many translations of any neighborhood of the identity.
A paratopological group is totally ω-narrow if it is a continuous homomorphic
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image of an ω-narrow topological group or, equivalently, if the topological group G∗

associated with G isω-narrow [12] (Subsection 1.1).
If the paratopological group G in Theorem 12 is regular, we are able to

complement the conclusion of the theorem as follows:

Theorem 13. Let X = ∏i∈I Xi be a product space, where each Xi is a regular Lindelöf
Σ-space and f : X → G a continuous mapping of X onto a regular paratopological group G.
Then, the group G is totally ω-narrow and satisfies celω(G) ≤ ω, and the Hewitt–Nachbin
completion υG of the group G is again a paratopological group containing G as a dense
subgroup. Furthermore, the group υG is R-factorizable.

Proof. Every regular paratopological group is Tychonoff according to [16].
Hence, applying Theorem 12, we conclude that G is a Tychonoff R-factorizable
paratopological group. By [17] (Proposition 3.10), G is totallyω-narrow.

The inequality celω(G) ≤ ω was established in the proof of Theorem 12 under
the assumption of the regularity of G.

Finally, according to [18] (Theorem 2.3), the Hewitt–Nachbin completion
of a Tychonoff R-factorizable paratopological group is again an R-factorizable
paratopological group containing the original group as a dense subgroup.

Since the Sorgenfrey line S is a regular paratopological group that fails to be
totallyω-narrow, Theorem 13 implies the following curious fact:

Corollary 14. The Sorgenfrey line S is not a continuous image of any product of regular
Lindelöf Σ-spaces.

The above corollary also follows from Theorem 12, since the group S is not
R-factorizable according to [1] (Example 8.1.8). We also note that the conclusion of
Corollary 14 is valid for every uncountable subgroup of S.

Remark 1. We present here a direct proof of the fact that the regular group G in Theorem 13 is
totallyω-narrow. We hope that it can help to treat the more general case when G is Hausdorff.

Let τ be the topology of G. Denote by τ−1 the family {U−1 : U ∈ τ}. Then,
G′ = (G, τ−1) is a paratopological group conjugated to G, and the inversion in G
is a homeomorphism of G onto G′. Hence, G′ is also a continuous image of X, so
the groups G and G′ have the same properties. Let ∆ = {(x, x) : x ∈ G} be the
diagonal in the paratopological group G× G′. According to [9] (Lemma 2.2), ∆ is
a closed subgroup of G× G′ topologically isomorphic to the topological group G∗

associated with G. Therefore, it suffices to show that the group ∆ isω-narrow. Let
O be a neighborhood of the identity e∗ in ∆. There exists an open neighborhood
U of the identity e in G, such that ∆ ∩ (U ×U−1) ⊆ O. By Lemma 9 and Claims 1
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and 3 in the proof of Theorem 12, we can find a closed invariant subgroup N of
G, such that the quotient group G/N has a countable network and π−1(V) ⊆ U
for some open neighborhood V of the identity in G/N, where π : G → G/N is the
quotient homomorphism. It is clear that G′/N is a paratopological group conjugated
to G/N and that G′/N has a countable network. Let π′ : G′ → G′/N be the quotient
homomorphism. Then,ϕ = π×π′ is a continuous homomorphism of G×G′ onto the
paratopological group G/N×G′/N with a countable network. Clearly, the subgroup
∆N = {(π(x),π′(x)) : x ∈ G} of G/N × G′/N also has a countable network and,
hence, is Lindelöf. In particular, the group ∆N isω-narrow. Therefore, we can find a
countable subset D of ∆N , such that DW = ∆N = WD, where W = ∆N ∩ (V ×V−1)

(we identify the groups G/N and G′/N algebraically). Let C be a countable subset
of ∆, such that ϕ(C) = D. It easily follows from our choice of the sets V and W that
∆ ∩ϕ−1(W) ⊆ ∆ ∩ (U ×U−1) ⊆ O, so we have the equality CO = ∆ = OC. This
proves that the topological group ∆ ∼= G∗ isω-narrow.

4. Open Problems

A space Y is said to have the Knaster property if every uncountable family γ of
open sets in Y contains an uncountable subfamily λ, such that every two elements of
λ have a non-empty intersection [1] (Section 5.4). It is clear that every space with the
Knaster property has countable cellularity; the converse is valid under MA plus the
negation of CH and fails under CH.

Problem 15. Let a (Hausdorff) paratopological group G be a continuous image of a product
of a family of Lindelöf Σ-spaces. Does G have the Knaster property? Is it ω-narrow?

It is worth mentioning that if G itself is a Lindelöf Σ-space, then it has the
Knaster property and is totally ω-narrow, since the topological group G∗ associated
with G is again a Lindelöf Σ-space (see, e.g., [9], Corollary 2.3, and [1], Theorem 5.4.7).

Problem 16. Let G be as in Problem 15.

(a) Does the topological group G∗ associated with G satisfies c(G∗) ≤ ω?
(b) Is the group G∗ R-factorizable?
(c) Is the group G∗ ω-narrow?

What if, in addition, the group G in (a), (b) or (c) is Hausdorff or regular?

Let us note that Theorem 13 answers (c) of Problem 16 in the affirmative for
a regular paratopological group G. Since every R-factorizable topological group is
ω-narrow, the affirmative answer to (b) of Problem 16 would imply the same answer
to (c) of the problem.
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Let us recall that a space Y is said to be perfectly κ-normal if the closure of every
open set in Y is a Gδ-set. Every metrizable space is evidently perfectly κ-normal; it
is much less evident that arbitrary products of metrizable spaces are also perfectly
κ-normal [19] (Theorem 2).

Problem 17. Let a Hausdorff (regular) paratopological group G be a continuous image
of a dense subspace of a product of separable metrizable spaces. Is G perfectly κ-normal
or R-factorizable?

Every paratopological group G admits the natural left quasi-uniformity LG
whose base consists of the sets:

Ul
V = {(x, y) ∈ G2 : x−1y ∈ V}

where V runs through all open neighborhoods of the identity in G. Since every
quasi-uniformity is generated by a family of upper quasi-uniformly continuous
quasi-pseudometrics, the following problem arises in an attempt to show that the
group G in Theorem 12 isω-narrow independently of whether it is regular or not.

Problem 18. Does every upper quasi-uniformly continuous quasi-pseudometric on an
arbitrary product of Lindelöf Σ-spaces depend at most on countably many coordinates?
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On T-Characterized Subgroups of Compact
Abelian Groups
Saak Gabriyelyan

Abstract: A sequence {un}n∈ω in abstract additively-written Abelian group G is
called a T-sequence if there is a Hausdorff group topology on G relative to which
limn un = 0. We say that a subgroup H of an infinite compact Abelian group X
is T-characterized if there is a T-sequence u = {un} in the dual group of X, such
that H = {x ∈ X : (un, x) → 1}. We show that a closed subgroup H of X is
T-characterized if and only if H is a Gδ-subgroup of X and the annihilator of H admits
a Hausdorff minimally almost periodic group topology. All closed subgroups of an
infinite compact Abelian group X are T-characterized if and only if X is metrizable
and connected. We prove that every compact Abelian group X of infinite exponent
has a T-characterized subgroup, which is not an Fσ-subgroup of X, that gives a
negative answer to Problem 3.3 in Dikranjan and Gabriyelyan (Topol. Appl. 2013, 160,
2427–2442).

Reprinted from Axioms. Cite as: Gabriyelyan, S. On T-Characterized Subgroups of
Compact Abelian Groups. Axioms 2016, 4, 194–212.

1. Introduction

Notation and preliminaries: Let X be an Abelian topological group. We
denote by X̂ the group of all continuous characters on X, and X̂ endowed with
the compact-open topology is denoted by X∧. The homomorphism αX : X → X∧∧,
x 7→ (χ 7→ (χ, x)), is called the canonical homomorphism. Denote by n(X) =

∩χ∈X̂ker(χ) = ker(αX) the von Neumann radical of X. The group X is called
minimally almost periodic (MinAP) if n(X) = X, and X is called maximally almost
periodic (MAP) if n(X) = {0}. Let H be a subgroup of X. The annihilator of H we
denote by H⊥, i.e., H⊥ = {χ ∈ X∧ : (χ, h) = 1 for every h ∈ H}.

Recall that an Abelian group G is of finite exponent or bounded if there exists
a positive integer n, such that ng = 0 for every g ∈ G. The minimal integer n with
this property is called the exponent of G and is denoted by exp(G). When G is not
bounded, we write exp(G) = ∞ and say that G is of infinite exponent or unbounded.
The direct sum of ω copies of an Abelian group G we denote by G(ω).

Let u = {un}n∈ω be a sequence in an Abelian group G. In general, no Hausdroff
topology may exist in which u converges to zero. A very important question of
whether there exists a Hausdorff group topology τ on G, such that un → 0 in
(G, τ), especially for the integers, has been studied by many authors; see Graev [1],
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Nienhuys [2], and others. Protasov and Zelenyuk [3] obtained a criterion that gives a
complete answer to this question. Following [3], we say that a sequence u = {un} in
an Abelian group G is a T-sequence if there is a Hausdorff group topology on G in
which un converges to zero. The finest group topology with this property we denote
by τu.

The counterpart of the above question for precompact group topologies on Z
is studied by Raczkowski [4]. Following [5,6] and motivated by [4], we say that a
sequence u = {un} is a TB-sequence in an Abelian group G if there is a precompact
Hausdorff group topology on G in which un converges to zero. For a TB-sequence u,
we denote by τbu the finest precompact group topology on G in which u converges
to zero. Clearly, every TB-sequence is a T-sequence, but in general, the converse
assertion does not hold.

While it is quite hard to check whether a given sequence is a T-sequence
(see, for example, [3,7–10]), the case of TB-sequences is much simpler. Let X be
an Abelian topological group and u = {un} be a sequence in its dual group X∧.
Following [11], set:

su(X) = {x ∈ X : (un, x)→ 1}.

In [5], the following simple criterion to be a TB-sequence was obtained:

Fact 1 ([5]). A sequence u in a (discrete) Abelian group G is a TB-sequence if and only if
the subgroup su(X) of the (compact) dual X = G∧ is dense.

Motivated by Fact 1, Dikranjan et al. [11] introduced the following notion related
to subgroups of the form su(X) of a compact Abelian group X:

Definition 2 ([11]). Let H be a subgroup of a compact Abelian group X and u = {un}
be a sequence in X̂. If H = su(X), we say that u characterizes H and that H is
characterized (by u).

Note that for the torus T, this notion was already defined in [12]. Characterized
subgroups have been studied by many authors; see, for example, [11–16]. In
particular, the main theorem of [15] (see also [14]) asserts that every countable
subgroup of a compact metrizable Abelian group is characterized. It is natural
to ask whether a closed subgroup of a compact Abelian group is characterized. The
following easy criterion is given in [13]:

Fact 3 ([13]). A closed subgroup H of a compact Abelian group X is characterized if and
only if H is a Gδ-subgroup. In particular, X/H is metrizable, and the annihilator H⊥ of H
is countable.
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The next fact follows easily from Definition 2:

Fact 4 ([17], see also [13]). Every characterized subgroup H of a compact Abelian group X
is an Fσδ-subgroup of X, and hence, H is a Borel subset of X.

Facts 3 and 4 inspired in [13] the study of the Borel hierarchy of characterized
subgroups of compact Abelian groups. For a compact Abelian group X, denote
by Char(X) (respectively, SFσ(X), SFσδ(X) and SGδ(X)) the set of all characterized
subgroups (respectively, Fσ-subgroups, Fσδ-subgroups and Gδ-subgroups) of X. The
next fact is Theorem E in [13]:

Fact 5 ([13]). For every infinite compact Abelian group X, the following inclusions hold:

SGδ(X) $ Char(X) $ SFσδ(X) and SFσ(X) 6⊆ Char(X).

If in addition X has finite exponent, then:

Char(X) $ SFσ(X). (1)

The inclusion Equation (1) inspired the following question:

Question 6 (Problem 3.3 in [13]). Does there exist a compact Abelian group X of infinite
exponent all of whose characterized subgroups are Fσ-subsets of X?

Main results: It is important to emphasize that there is no restriction on the
sequence u in Definition 2. If a characterized subgroup H of a compact Abelian group
X is dense, then, by Fact 1, a characterizing sequence is also a TB-sequence. However,
if H is not dense, we cannot expect in general that a characterizing sequence of H is
a T-sequence. Thus, it is natural to ask:

Question 7. For which characterized subgroups of compact Abelian groups can one find
characterizing sequences that are also T-sequences?

This question is of independent interest, because every T-sequence u naturally
defines the group topology τu satisfying the following dual property:

Fact 8 ([18]). Let H be a subgroup of an infinite compact Abelian group X characterized by
a T-sequence u. Then, (X̂, τu)∧ = H(= su(X)) and n(X̂, τu) = H⊥ algebraically.

This motivates us to introduce the following notion:
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Definition 9. Let H be a subgroup of a compact Abelian group X. We say that H is a
T-characterized subgroup of X if there exists a T-sequence u = {un}n∈ω in X̂, such that
H = su(X).

Denote by CharT(X) the set of all T-characterized subgroups of a compact
Abelian group X. Clearly, CharT(X) ⊆ Char(X). Hence, if a T-characterized
subgroup H of X is closed, it is a Gδ-subgroup of X by Fact 3. Note also that X
is T-characterized by the zero sequence.

The main goal of the article is to obtain a complete description of closed
T-characterized subgroups (see Theorem 10) and to study the Borel hierarchy
of T-characterized subgroups (see Theorem 18) of compact Abelian groups. In
particular, we obtain a complete answer to Question 7 for closed characterized
subgroups and give a negative answer to Question 6.

Note that, if a compact Abelian group X is finite, then every T-sequence u
in X̂ is eventually equal to zero. Hence, su(X) = X. Thus, X is the unique
T-characterized subgroup of X. Therefore, in what follows, we shall consider only
infinite compact groups.

The following theorem describes all closed subgroups of compact Abelian
groups that are T-characterized.

Theorem 10. Let H be a proper closed subgroup of an infinite compact Abelian group X.
Then, the following assertions are equivalent:

(1) H is a T-characterized subgroup of X;
(2) H is a Gδ-subgroup of X, and the countable group H⊥ admits a Hausdorff MinAP

group topology;
(3) H is a Gδ-subgroup of X and one of the following holds:

(a) H⊥ has infinite exponent;
(b) H⊥ has finite exponent and contains a subgroup that is isomorphic to

Z
(
exp(H⊥)

)(ω).

Corollary 11. Let X be an infinite compact metrizable Abelian group. Then, the trivial
subgroup H = {0} is T-characterized if and only if X̂ admits a Hausdorff MinAP
group topology.

As an immediate corollary of Fact 3 and Theorem 10, we obtain a complete
answer to Question 7 for closed characterized subgroups.

Corollary 12. A proper closed characterized subgroup H of an infinite compact Abelian
group X is T-characterized if and only if H⊥ admits a Hausdorff MinAP group topology.
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If H is an open proper subgroup of X, then H⊥ is non-trivial and finite. Thus,
every Hausdorff group topology on H⊥ is discrete. Taking into account Fact 3,
we obtain:

Corollary 13. Every open proper subgroup H of an infinite compact Abelian group X is a
characterized non-T-characterized subgroup of X.

Nevertheless (see Example 1 below), there is a compact metrizable Abelian
group X with a countable T-characterized subgroup H, such that its closure H̄ is
open. Thus, it may happen that the closure of a T-characterized subgroup is not
T-characterized.

It is natural to ask for which compact Abelian groups all of their closed
Gδ-subgroups are T-characterized. The next theorem gives a complete answer to
this question.

Theorem 14. Let X be an infinite compact Abelian group. The following assertions
are equivalent:

(1) All closed Gδ-subgroups of X are T-characterized;
(2) X is connected.

By Corollary 2.8 of [13], the trivial subgroup H = {0} of a compact Abelian
group X is a Gδ-subgroup if and only if X is metrizable. Therefore, we obtain:

Corollary 15. All closed subgroups of an infinite compact Abelian group X are
T-characterized if and only if X is metrizable and connected.

Theorems 10 and 14 are proven in Section 2.
In the next theorem, we give a negative answer to Question 6:

Theorem 16. Every compact Abelian group of infinite exponent has a dense T-characterized
subgroup, which is not an Fσ-subgroup.

As a corollary of the inclusion Equation (1) and Theorem 16, we obtain:

Corollary 17. For an infinite compact Abelian group X, the following assertions
are equivalent:

(i) X has finite exponent;
(ii) every characterized subgroup of X is an Fσ-subgroup;

(iii) every T-characterized subgroup of X is an Fσ-subgroup.

Therefore, Char(X) ⊆ SFσ(X) if and only if X has finite exponent.
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In the next theorem, we summarize the obtained results about the Borel
hierarchy of T-characterized subgroups of compact Abelian groups.

Theorem 18. Let X be an infinite compact Abelian group X. Then:

(1) CharT(X) $ SFσδ(X);
(2) SGδ(X)

⋂
CharT(X) $ CharT(X);

(3) SGδ(X) ⊆ CharT(X) if and only if X is connected;
(4) CharT(X)

⋂
SFσ(X) $ SFσ(X);

(5) CharT(X) ⊆ SFσ(X) if and only if X has finite exponent.

We prove Theorems 16 and 18 in Section 3.
The notions of g-closed and g-dense subgroups of a compact Abelian group X

were defined in [11]. In the last section of the paper, in analogy to these notions,
we define gT-closed and gT-dense subgroups of X. In particular, we show that
every gT-dense subgroup of a compact Abelian group X is dense if and only if X is
connected (see Theorem 37).

2. The Proofs of Theorems 10 and 14

The subgroup of a group G generated by a subset A we denote by 〈A〉.
Recall that a subgroup H of an Abelian topological group X is called dually

closed in X if for every x ∈ X \ H, there exists a character χ ∈ H⊥, such that
(χ, x) 6= 1. H is called dually embedded in X if every character of H can be extended
to a character of X. Every open subgroup of X is dually closed and dually embedded
in X by Lemma 3 of [19].

The next notion generalizes the notion of the maximal extension in the class of
all compact Abelian groups introduced in [20].

Definition 19. Let G be an arbitrary class of topological groups. Let (G, τ) ∈ G and
H be a subgroup of G. The group (G, τ) is called a maximal extension of (H, τ|H)
in the class G if σ ≤ τ for every group topology on G, such that σ|H = τ|H and
(G, σ) ∈ G.

Clearly, the maximal extension is unique if it exists. Note that in Definition 19,
we do not assume that (H, τ|H) belongs to the class G.

If H is a subgroup of an Abelian group G and u is a T-sequence (respectively, a
TB-sequence) in H, we denote by τu(H) (respectively, τbu(H)) the finest (respectively,
precompact) group topology on H generated by u. We use the following easy
corollary of the definition of T-sequences.

Lemma 20. For a sequence u in an Abelian group G, the following assertions are equivalent:
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(1) u is a T-sequence in G;
(2) u is a T-sequence in every subgroup of G containing 〈u〉;
(3) u is a T-sequence in 〈u〉.

In this case, 〈u〉 is open in τu (and hence, 〈u〉 is dually closed and dually embedded
in (G, τu)), and (G, τu) is the maximal extension of (〈u〉, τu(〈u〉) in the class TAG of all
Abelian topological groups.

Proof. Evidently, (1) implies (2) and (2) implies (3). Let u be a T-sequence in 〈u〉. Let
τ be the topology on G whose base is all translationsof τu(〈u〉)-open sets. Clearly, u
converges to zero in τ. Thus, u is a T-sequence in G. Therefore, (3) implies (1).

Let us prove the last assertion. By the definition of τu, we have also τ ≤ τu,
and hence, τ|〈u〉 = τu(〈u〉) ≤ τu|〈u〉. Thus, 〈u〉 is open in τu, and hence, it is dually
closed and dually embedded in (G, τu) by [19] (Lemma 3.3). On the other hand,
τu|〈u〉 ≤ τu(〈u〉) = τ|〈u〉 by the definition of τu(〈u〉). Therefore, τu is an extension of
τu(〈u〉). Now, clearly, τ = τu, and (G, τu) is the maximal extension of (〈u〉, τu(〈u〉)
in the class TAG.

For TB-sequences, we have the following:

Lemma 21. For a sequence u in an Abelian group G, the following assertions are equivalent:

(1) u is a TB-sequence in G;
(2) u is a TB-sequence in every subgroup of G containing 〈u〉;
(3) u is a TB-sequence in 〈u〉.

In this case, the subgroup 〈u〉 is dually closed and dually embedded in (G, τbu),
and (G, τbu) is the maximal extension of (〈u〉, τbu(〈u〉)) in the class of all precompact
Abelian groups.

Proof. Evidently, (1) implies (2) and (2) implies (3). Let u be a TB-sequence in
〈u〉. Then, (〈u〉, τbu(〈u〉))∧ separates the points of 〈u〉. Let τ be the topology on G
whose base is all translations of τbu(〈u〉)-open sets. Then, (〈u〉, τbu(〈u〉)) is an open
subgroup of (G, τ). It is easy to see that (G, τ)∧ separates the points of G. Since u
converges to zero in τ, it also converges to zero in τ+, where τ+ is the Bohr topology
of (G, τ). Thus, u is a TB-sequence in G. Therefore, (3) implies (1).

The last assertion follows from Proposition 1.8 and Lemma 3.6 in [20].

For a sequence u = {un}n∈ω of characters of a compact Abelian group X, set:

Ku =
⋂

n∈ω

ker(un).

The following assertions is proven in [13]:
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Fact 22 (Lemma 2.2(i) of [13]). For every sequence u = {un}n∈ω of characters of a compact
Abelian group X, the subgroup Ku is a closed Gδ-subgroup of X and Ku = 〈u〉⊥.

The next two lemmas are natural analogues of Lemmas 2.2(ii) and 2.6 of [13].

Lemma 23. Let X be a compact Abelian group and u = {un}n∈ω be a T-sequence in X̂.
Then, su(X)/Ku is a T-characterized subgroup of X/Ku.

Proof. Set H := su(X) and K := Ku. Let q : X → X/K be the quotient map. Then,
the adjoint homomorphism q∧ is an isomorphism from (X/K)∧ onto K⊥ in X∧. For
every n ∈ ω, define the character ũn of X/K as follows: (ũn, q(x)) = (un, x) (ũn is
well-defined, since K ⊆ ker(un)). Then, ũ = {ũn}n∈ω is a sequence of characters of
X/K, such that q∧(ũn) = un. Since u ⊂ K⊥, u is a T-sequence in K⊥ by Lemma 20.
Hence, ũ is a T-sequence in (X/K)∧ because q∧ is an isomorphism.

We claim that H/K = sũ(X/K). Indeed, for every h + K ∈ H/K, by definition,
we have (ũn, h + K) = (un, h)→ 1. Thus, H/K ⊆ sũ(X/K). If x + K ∈ sũ(X/K),
then (ũn, x + K) = (un, x)→ 1. This yields x ∈ H. Thus, x + K ∈ H/K.

Let u = {un}n∈ω be a T-sequence in an Abelian group G. For every natural
number m, set um = {un}n≥m. Clearly, um is a T-sequence in G, τu = τum and
su(X) = sum(X) for every natural number m.

Lemma 24. Let K be a closed subgroup of a compact Abelian group X and q : X → X/K
be the quotient map. Then, H̃ is a T-characterized subgroup of X/K if and only if q−1(H̃) is
a T-characterized subgroup of X.

Proof. Let H̃ be a T-characterized subgroup of X/K, and let a T-sequence
ũ = {ũn}n∈ω-characterized H̃. Set H := q−1(H̃). We have to show that H is a
T-characterized subgroup of X.

Note that the adjoint homomorphism q∧ is an isomorphism from (X/K)∧

onto K⊥ in X∧. Set u = {un}n∈ω, where un = q∧(ũn). Since q∧ is injective, u is
a T-sequence in K⊥. By Lemma 20, u is a T-sequence in X̂. Therefore, it is enough
to show that H = su(X). This follows from the following chain of equivalences. By
definition, x ∈ su(X) if and only if:

(un, x)→ 1 ⇔ (ũn, q(x))→ 1 ⇔ q(x) ∈ H̃ = H/K ⇔ x ∈ H.

The last equivalence is due to the inclusion K ⊆ H.
Conversely, let H := q−1(H̃) be a T-characterized subgroup of X and a

T-sequence u = {un}n∈ω-characterized H. Proposition 2.5 of [13] implies that
we can find m ∈ N, such that K ⊆ Kum . Therefore, taking into account that
H = su(X) = sum(X) for every natural number m, without loss of generality, we
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can assume that K ⊆ Ku. By Lemma 23, H/Ku is a T-characterized subgroup
of X/Ku. Denote by qu the quotient homomorphism from X/K onto X/Ku.
Then, H̃ = q−1

u (H/Ku) is T-characterized in X/K by the previous paragraph of
the proof.

The next theorem is an analogue of Theorem B of [13], and it reduces the study of
T-characterized subgroups of compact Abelian groups to the study of T-characterized
ones of compact Abelian metrizable groups:

Theorem 25. A subgroup H of a compact Abelian group X is T-characterized if and only if
H contains a closed Gδ-subgroup K of X, such that H/K is a T-characterized subgroup of
the compact metrizable group X/K.

Proof. Let H be T-characterized in X by a T-sequence u = {un}n∈ω in X̂. Set
K := Ku. Since K is a closed Gδ-subgroup of X by Fact 22, X/K is metrizable. By
Lemma 23, H/K is a T-characterized subgroup of X/K.

Conversely, let H contain a closed Gδ-subgroup K of X, such that H/K is a
T-characterized subgroup of the compact metrizable group X/K. Then, H is a
T-characterized subgroup of X by Lemma 24.

As was noticed in [21] before Definition 2.33, for every T-sequence u in an
infinite Abelian group G, the subgroup 〈u〉 is open in (G, τu) (see also Lemma 20),
and hence, by Lemmas 1.4 and 2.2 of [22], the following sequences are exact:

0→ (〈u〉, τu)→ (G, τu)→ G/〈u〉 → 0,

0→ (G/〈u〉)∧ → (G, τu)
∧ → (〈u〉, τu|〈u〉)∧ → 0,

(2)

where (G/〈u〉)∧ ∼= 〈u〉⊥ is a compact subgroup of (G, τu)∧ and (〈u〉, τu)∧ ∼=
(G, τu)∧/〈u〉⊥.

Let u = {un}n∈ω be a T-sequence in an Abelian group G. It is known [10] that τu

is sequential, and hence, (G, τu) is a k-space. Therefore, the natural homomorphism
α := α(G,τu) : (G, τu) → (G, τu)∧∧ is continuous by [23] (5.12). Let us recall that
(G, τu) is MinAP if and only if (G, τu) = ker(α).

To prove Theorem 10, we need the following:

Fact 26 ([16]). For each T-sequence u in a countably infinite Abelian group G, the group
(G, τu)∧ is Polish.

Now, we are in a position to prove Theorem 10.

Proof of Theorem 10. (1)⇒ (2) Let H be a proper closed T-characterized subgroup
of X and a T-sequence u = {un}n∈ω-characterizedH. Since H is also characterized,
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it is a Gδ-subgroup of X by Fact 3. We have to show that H⊥ admits a MinAP
group topology.

Our idea of the proof is the following. Set G := X̂. By Fact 8, H⊥ is the von
Neumann radical of (G, τu). Now, assume that we found another T-sequence v that
characterizes H and such that 〈v〉 = H⊥ (maybe v = u). By Fact 8, we have n(G, τv) =

H⊥ = 〈v〉. Lemma 20 implies that the subgroup (〈v〉, τv|〈v〉) of (G, τv) is open, and
hence, it is dually closed and dually embedded in (G, τv). Hence, n(〈v〉, τv|〈v〉) =

n(G, τv)(= 〈v〉) by Lemma 4 of [16]. Therefore, (〈v〉, τv|〈v〉) is MinAP. Thus,
H⊥ = 〈v〉 admits a MinAP group topology, as desired.

We find such a T-sequence v in four steps (in fact, we show that v has the form
um for some m ∈ N).

Step 1. Let q : X → X/Ku be the quotient map. For every n ∈ ω, define the
character ũn of X/Ku by the equality un = ũn ◦ q (this is possible since Ku ⊆ ker(un)).
As was shown in the proof of Lemma 23, the sequence ũ = {ũn}n∈ω is a T-sequence,
which characterizes H/Ku in X/Ku. Set X̃ := X/Ku and H̃ := H/Ku. Therefore,
H̃ = sũ(X̃). By [24] (5.34 and 24.11) and since Ku ⊆ H, we have:

H⊥ ∼= (X/H)∧ ∼=
(

X̃/H̃
)∧ ∼= H̃⊥. (3)

By Fact 3, X̃ is metrizable. Hence, H̃ is also compact and metrizable, and G̃ := ̂̃X
is a countable Abelian group by [24] (24.15). Since H is a proper closed subgroup of
X, Equation (3) implies that G̃ is non-zero.

We claim that G̃ is countably infinite. Indeed, suppose for a contradiction that
G̃ is finite. Then, X/Ku = X̃ is also finite. Now, Fact 22 implies that 〈u〉 is a finite
subgroup of G. Since u is a T-sequence, u must be eventually equal to zero. Hence,
H = su(X) = X is not a proper subgroup of X, a contradiction.

Step 2. We claim that there is a natural number m, such that the group
(〈ũm〉, τũ|〈ũm〉) = (〈ũm〉, τũm |〈ũm〉) is MinAP.

Indeed, since G̃ is countably infinite, we can apply Fact 8. Therefore,
H̃ = (G̃, τũ)

∧ algebraically. Since H̃ and (G̃, τũ)
∧ are Polish groups (see Fact 26),

H̃ and (G̃, τũ)
∧ are topologically isomorphic by the uniqueness of the Polish group

topology. Hence (G̃, τũ)
∧∧ = H̃∧ is discrete. As was noticed before the proof, the

natural homomorphism α̃ : (G̃, τũ) → (G̃, τũ)
∧∧ is continuous. Since (G̃, τũ)

∧∧ is
discrete, we obtain that the von Neumann radical ker(α̃) of (G̃, τũ) is open in τũ.
Therefore, there exists a natural number m, such that ũn ∈ ker(α̃) for every n ≥ m.
Hence, 〈ũm〉 ⊆ ker(α̃). Lemma 20 implies that the subgroup 〈ũm〉 is open in (G̃, τũ),
and hence, it is dually closed and dually embedded in (G̃, τũ). Now, Lemma 4 of [16]
yields 〈ũm〉 = ker(α̃), and (〈ũm〉, τũ|〈ũm〉) is MinAP.

Step 3. Set v = {vn}n∈ω, where vn = un+m for every n ∈ ω. Clearly, v is a
T-sequence in G characterizing H, τu = τv and Ku ⊆ Kv. Let t : X → X/Kv and
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r : X/Ku → X/Kv be the quotient maps. Analogously to Step 1 and the proof of
Lemma 23, the sequence ṽ = {ṽn}n∈ω is a T-sequence in X̂/Kv, which characterizes
H/Kv in X/Kv, where vn = ṽn ◦ t. Since t = r ◦ q, we have:

vn = ṽn ◦ t = t∧(ṽn) = q∧
(
r∧(ṽn)

)
,

where t∧, r∧ and q∧ are the adjoint homomorphisms to t, r and q, respectively.
Since q∧ and r∧ are embeddings, we have r∧(ṽn) = ũn+m. In particular,

〈v〉 ∼= 〈ṽ〉 ∼= 〈ũm〉 and :

(〈ũm〉, τũ|〈ũm〉) = (〈ũm〉, τũm |〈ũm〉)
∼= (〈ṽ〉, τ̃v|〈ṽ〉) ∼= (〈v〉, τv|〈v〉).

By Step 2, (〈ũm〉, τũm |〈ũm〉) is MinAP. Hence, (〈v〉, τv|〈v〉) is MinAP, as well.
Step 4. By the second exact sequence in Equation (2) applying to v, Fact 8, and

since (〈v〉, τv|〈v〉) is MinAP (by Step 3), we have H = sv(X) = (G, τv)∧ = (G/〈v〉)∧ =

〈v〉⊥ algebraically. Thus, H⊥ = 〈v〉, and hence, H⊥ admits a MinAP group topology
generated by the T-sequence v.

(2) ⇒ (1): Since H is a Gδ-subgroup of X, H is closed by [13] (Proposition
2.4) and X/H is metrizable (due to the well-known fact that a compact group of
countable pseudo-character is metrizable). Hence, H⊥ = (X/H)∧ is countable. Since
H⊥ admits a MinAP group topology, H⊥ must be countably infinite. By Theorem 3.8
of [9], H⊥ admits a MinAP group topology generated by a T-sequence ũ = {ũn}n∈ω.
By Fact 8, this means that sũ(X/H) = {0}. Let q : X → X/H be the quotient map.
Set un = ũn ◦ q = q∧(ũn). Since q∧ is injective, u is a T-sequence in X̂ by Lemma 20.
We have to show that H = su(X). By definition, x ∈ su(X) if and only if:

(un, x) = (ũn, q(x))→ 1⇔ q(x) ∈ sũ(X/H)⇔ q(x) = 0⇔ x ∈ H.

(2)⇔(3) follows from Theorem 3.8 of [9]. The theorem is proven.

Proof of Theorem 14. (1)⇒ (2): Suppose for a contradiction that X is not connected.
Then, by [24] (24.25), the dual group G = X∧ has a non-zero element g of finite order.
Then, the subgroup H := 〈g〉⊥ of X has finite index. Hence, H is an open subgroup
of X. Thus, H is not T-characterized by Corollary 13. This contradiction shows that
X must be connected.

(2) ⇒ (1): Let H be a proper Gδ-subgroup of X. Then, H is closed by [13]
(Proposition 2.4), and X/H is connected and non-zero. Hence, H⊥ ∼= (X/H)∧ is
countably infinite and torsion free by [24] (24.25). Thus, H⊥ has infinite exponent.
Therefore, by Theorem 10, H is T-characterized.

The next proposition is a simple corollary of Theorem B in [13].
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Proposition 27. The closure H̄ of a characterized (in particular, T-characterized) subgroup
H of a compact Abelian group X is a characterized subgroup of X.

Proof. By Theorem B of [13], H contains a compact Gδ-subgroup K of X. Then, H̄ is
also a Gδ-subgroup of X. Thus, H̄ is a characterized subgroup of X by Theorem B
of [13].

In general, we cannot assert that the closure H̄ of a T-characterized subgroup H
of a compact Abelian group X is also T-characterized, as the next example shows.

Example 1. Let X = Z(2)×T and G = X̂ = Z(2)×Z. It is known (see the end of (1)
in [7]) that there is a T-sequence u in G, such that the von Neumann radical n(G, τu)

of (G, τu) is Z(2)× {0}, the subgroup H := su(X) is countable and H̄ = {0} × T.
Therefore, the closure H̄ of the countable T-characterized subgroup H of X is open.
Thus, H̄ is not T-characterized by Corollary 13.

We do not know the answers to the following questions:

Problem 28. Let H be a characterized subgroup of a compact Abelian group X, such that its
closure H̄ is T-characterized. Is H a T-characterized subgroup of X?

Problem 29. Does there exists a metrizable Abelian compact group that has a countable
non-T-characterized subgroup?

3. The Proofs of Theorems 16 and 18

Recall that a Borel subgroup H of a Polish group X is called polishable if there
exists a Polish group topology τ on H, such that the inclusion map i : (H, τ)→ X is
continuous. Let H be a T-characterized subgroup of a compact metrizable Abelian
group X by a T-sequence u = {un}n∈ω. Then, by [16] (Theorem 1), H is polishable
by the metric:

ρ(x, y) = d(x, y) + sup{|(un, x)− (un, y)|, n ∈ ω}, (4)

where d is the initial metric on X. Clearly, the topology generated by the metric ρ on
H is finer than the induced one from X.

To prove Theorem 16 we need the following three lemmas.
For a real number x, we write [x] for the integral part of x and ‖x‖ for the

distance from x to the nearest integer. We also use the following inequality proven
in [25]:

π|ϕ| ≤ |1− e2πiϕ| ≤ 2π|ϕ|, ϕ ∈
[
−1

2
,

1
2

)
. (5)
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Lemma 30. Let {an}n∈ω ⊂ N be such that an → ∞ and an ≥ 2, n ∈ ω. Set un = ∏k≤n an

for every n ∈ ω. Then, u = {un}n∈ω is a T-sequence in X = T, and the T-characterized
subgroup H = su(T) of T is a dense non-Fσ-subset of T.

Proof. We consider the circle group T as R/Z and write it additively. Therefore,
d(0, x) = ‖x‖ for every x ∈ T. Recall that every x ∈ T has the unique representation
in the form:

x =
∞

∑
n=0

cn

un
, (6)

where 0 ≤ cn < an and cn 6= an − 1 for infinitely many indices n.
It is known [26] (see also (12) in the proof of Lemma 1 of [25]) that x with

representation Equation (6) belongs to H if and only if:

lim
n→∞

cn

an
(mod 1) = 0. (7)

Hence, H is a dense subgroup of T. Thus, u is even a TB-sequence in Z by Fact 1.
We have to show that H is not an Fσ-subset of T. Suppose for a contradiction

that H is an Fσ-subset of T. Then, H = ∪n∈NFn, where Fn is a compact subset of T for
every n ∈ N. Since H is a subgroup of T, without loss of generality, we can assume
that Fn− Fn ⊆ Fn+1. Since all Fn are closed in (H, ρ), as well, the Baire theorem implies
that there are 0 < ε < 0.1 and m ∈ N, such that Fm ⊇ {x : ρ(0, x) ≤ ε}.

Fix arbitrarily l > 0, such that 2
ul−1

< ε
20 . For every natural number k > l, set:

xk :=
k

∑
n=l

1
un
·
[
(an − 1)ε

20

]
.

Then, for every k > l, we have:

xk =
k

∑
n=l

1
un
·
[
(an − 1)ε

20

]
<

k

∑
n=l

1
un−1

· ε

20
<

1
ul−1

k−l

∑
n=0

1
2n <

2
ul−1

<
ε

20
<

1
2

.

This inequality and Equation (5) imply that:

d(0, xk) = ‖xk‖ = xk <
ε

20
, for every k > l. (8)

For every s ∈ ω and every natural number k > l, we estimate |1− (us, xk)|
as follows.
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Case 1. Let s < k. Set q = max{s + 1, l}. By the definition of xk, we have:

2π [(us · xk) (mod 1)] = 2π

[
us

k

∑
n=l

1
un
·
[
(an − 1)ε

20

]
(mod 1)

]
< 2π

k

∑
n=q

us

un
· (an − 1)ε

20

<
πε

10

(
1+

1
as+1

+
1

as+1as+2
+

1
as+1as+2as+3

+ . . .
)

<
πε

10

(
1+

1
2
+

1
22 +

1
23 + . . .

)
=

πε

10
· 2 <

2ε

3
<

1
2

.

This inequality and Equation (5) imply:

|1− (us, xk)| = |1− exp{2πi · [(us · xk) (mod 1)]}| < 2ε

3
. (9)

Case 2. Let s ≥ k. By the definition of xk, we have:

|1− (us, xk)| = 0. (10)

In particular, Equation (10) implies that xk ∈ H for every k > l.
Now, for every k > l, Equations (4) and (8)–(10) imply:

ρ(0, xk) <
ε

20
+

2ε

3
< ε.

Thus, xk ∈ Fm for every natural number k > l. Clearly,

xk → x :=
∞

∑
n=l

1
un
·
[
(an − 1)ε

20

]
in T.

Since Fm is a compact subset of T, we have x ∈ Fm. Hence, x ∈ H. On the other
hand, we have:

lim
n→∞

1
an
·
[
(an − 1)ε

20

]
(mod 1) =

ε

20
6= 0.

Therefore, Equation (7) implies that x 6∈ H. This contradiction shows that
H = su(T) is not an Fσ-subset of T.

For a prime number p, the group Z(p∞) is regarded as the collection of fractions
m/pn ∈ [0, 1). Let ∆p be the compact group of p-adic integers. It is well known
that ∆̂p = Z(p∞).
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Lemma 31. Let X = ∆p. For an increasing sequence of natural numbers 0 < n0 < n1 <

. . . , such that nk+1− nk → ∞, set:

uk =
1

pnk+1 ∈ Z(p∞).

Then, the sequence u = {uk}k∈ω is a T-sequence in Z(p∞), and the T-characterized
subgroup H = su(∆p) is a dense non-Fσ-subset of ∆p.

Proof. Let ω = (an)n∈ω ∈ ∆p, where 0 ≤ an < p for every n ∈ ω. Recall that, for
every k ∈ ω, [24] (25.2) implies:

(uk, ω) = exp
{

2πi
pnk+1

(
a0 + pa1 + · · ·+ pnk ank

)}
. (11)

Further, by [24] (10.4), if ω 6= 0, then d(0, ω) = 2−n, where n is the minimal
index, such that an 6= 0.

Following [27] (2.2), for every ω = (an) ∈ ∆p and every natural number
k > 1, set:

mk = mk(ω) = max{jk, nk−1},

where:
jk = nk if 0 < ank < p− 1,

and otherwise:

jk = min{j : either as = 0 for j < s ≤ nk, or as = p− 1 for j < s ≤ nk}.

In [27] (2.2), it is shown that:

ω ∈ su(∆p) if and only if nk −mk → ∞. (12)

Therefore, H := su(∆p) contains the identity 1 = (1, 0, 0, . . . ) of ∆p. By [24]
(Remark 10.6), 〈1〉 is dense in ∆p. Hence, H is dense in ∆p, as well. Now, Fact 1
implies that u is a T-sequence in Z(p∞).

We have to show that H is not an Fσ-subset of ∆p. Suppose for a contradiction
that H = ∪n∈NFn is an Fσ-subset of ∆p, where Fn is a compact subset of ∆p for every
n ∈ N. Since H is a subgroup of ∆p, without loss of generality, we can assume that
Fn − Fn ⊆ Fn+1. Since all Fn are closed in (H, ρ), as well, the Baire theorem implies
that there are 0 < ε < 0.1 and m ∈ N, such that Fm ⊇ {x : ρ(0, x) ≤ ε}.
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Fix a natural number s, such that 1
2s < ε

20 . Choose a natural number l > s, such
that, for every natural number w ≥ l, we have:

nw+1− nw > s. (13)

For every r ∈ N, set:

ωr := (ar
n), where ar

n =

{
1, if n = nl+i − s for some 1 ≤ i ≤ r,

0, otherwise.

Then, for every r ∈ N, Equation (13) implies that ωr is well defined and:

d(0, ωr) =
1

2nl+1−s <
1

2nl
≤ 1

2l <
1
2s <

ε

20
. (14)

Note that:

1+ p + · · ·+ pk =
pk+1− 1

p− 1
< pk+1. (15)

For every k ∈ ω and every r ∈ N, we estimate |1− (uk, ωr)| as follows.
Case 1. Let k ≤ l. By Equations (11) and (13) and the definition of ωr, we have:

|1− (uk, ωr)| = 0. (16)

Case 2. Let l < k ≤ l + r. Then, Equation (15) yields:

2π

pnk+1

∣∣pnl+1−s + · · ·+ pnk−s∣∣ < 2π

pnk+1 · p
nk−s+1 =

2π

ps ≤
2π

2s <
ε

2
<

1
2

.

This inequality and the inequality Equations (5) and (11) imply:

|1− (uk, ωr)| =
∣∣∣∣1− exp

{
2πi

pnk+1

(
pnl+1−s + · · ·+ pnk−s)}∣∣∣∣ < ε

2
. (17)

Case 3. Let l + r < k. By Equation (15), we have:

2π

pnk+1

∣∣pnl+1−s + · · ·+ pnl+r−s∣∣ < 2π

pnk+1 · p
nl+r−s+1

<
2π

pnk+1 · p
nk−s+1 =

2π

ps ≤
2π

2s <
ε

2
.

These inequalities, Equations (5) and (11) immediately yield:

|1− (uk, ωr)| =
∣∣∣∣1− exp

{
2πi

pnk+1

(
pnl+1−s + · · ·+ pnl+r−s)}∣∣∣∣ < ε

2
, (18)
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and:
|1− (uk, ωr)| <

2π

pnk+1 · p
nl+r−s+1 → 0, as k→ ∞. (19)

Therefore, Equation (19) implies that ωr ∈ H for every r ∈ N.
For every r ∈ N, by Equations (4), (14) and (16)–(18), we have:

ρ(0, ωr) = d(0, ωr) + sup{|1− (uk, ωr)| , k ∈ ω} < ε

20
+

ε

2
< ε.

Thus, ωr ∈ Fm for every r ∈ N. Evidently,

ωr → ω̃ = (ãn) in ∆p, where ãn =

{
1, if n = nl+i − s for some i ∈ N,

0, otherwise.

Since Fm is a compact subset of ∆p, we have ω̃ ∈ Fm. Hence, ω̃ ∈ H. On the other
hand, it is clear that mk(ω̃) = nk − s for every k ≥ l + 1. Thus, for every k ≥ l + 1,
nk −mk(ω̃) = s 6→ ∞. Now, Equation (12) implies that ω̃ 6∈ H. This contradiction
shows that H is not an Fσ-subset of ∆p.

Lemma 32. Let X = ∏n∈ω Z(bn), where 1 < b0 < b1 < . . . and G := X̂ =
⊕

n∈ω Z(bn).
Set u = {un}n∈ω, where un = 1 ∈ Z(bn)∧ ⊂ G for every n ∈ ω. Then, u is a T-sequence
in G, and the T-characterized subgroup H = su(X) is a dense non-Fσ-subset of X.

Proof. Set H := su(X). In [27] (2.3), it is shown that:

ω = (an) ∈ su(X) if and only if
∥∥∥∥ an

bn

∥∥∥∥→ 0. (20)

Therefore,
⊕

n∈ω Z(bn) ⊆ H. Thus, H is dense in X. Now, Fact 1 implies that u
is a T-sequence in G.

We have to show that H is not an Fσ-subset of X. Suppose for a contradiction
that H = ∪n∈NFn is an Fσ-subset of X, where Fn is a compact subset of X for every
n ∈ N. Since H is a subgroup of X, without loss of generality, we can assume that
Fn − Fn ⊆ Fn+1. Since all Fn are closed in (H, ρ), as well, the Baire theorem yields that
there are 0 < ε < 0.1 and m ∈ N, such that Fm ⊇ {ω ∈ X : ρ(0, ω) ≤ ε}.

Note that d(0, ω) = 2−l, where 0 6= ω = (an)n∈ω ∈ X and l is the minimal index,
such that al 6= 0. Choose l, such that 2−l < ε/3. For every natural number k > l, set:

ωk := (ak
n), where ak

n =


[

εbn

20

]
, for every n such that l ≤ n ≤ k,

0, if either 1 ≤ n < l or k < n.
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Since (un, ωk) = 1 for every n > k, we obtain that ωk ∈ H for every k > l.
For every n ∈ ω, we have:

2π · 1
bn

[
εbn

20

]
<

2πε

20
< ε <

1
2

.

This inequality and the inequality Equations (4) and (5) imply:

ρ(0, ωk) = d(0, ωk) + sup{|1− (un, ωk)| , n ∈ ω}

≤ 1
2l +max

{∣∣∣∣1− exp
{

2πi
1
bn

[
εbn

20

]}∣∣∣∣ , l ≤ n ≤ k
}

≤ ε

3
+ 2π ·max

{
1
bn

[
εbn

20

]
, l ≤ n ≤ k

}
<

ε

3
+

2πε

20
< ε.

Thus, ωk ∈ Fm for every natural number k > l. Evidently,

ωk → ω̃ = (ãn)n∈ω in X, where ãn =


0, if 0 ≤ n < l,[

εbn

20

]
, if l ≤ n.

Since Fm is a compact subset of X, we have ω̃ ∈ Fm. Hence, ω̃ ∈ H. On the other
hand, since bn → ∞, we have:

lim
n→∞

∥∥∥∥ ãn

bn

∥∥∥∥ = lim
n→∞

1
bn

[
εbn

20

]
=

ε

20
6= 0.

Thus, ω̃ 6∈ H by Equation (20). This contradiction shows that H is not an
Fσ-subset of X.

Now, we are in a position to prove Theorems 16 and 18.

Proof of Theorem 16. Let X be a compact Abelian group of infinite exponent.
Then, G := X̂ also has infinite exponent. It is well-known that G contains a
countably-infinite subgroup S of one of the following form:

(a) S ∼= Z;
(b) S ∼= Z(p∞);
(c) S ∼=

⊕
n∈ω Z(bn), where 1 < b0 < b1 < . . . .

Fix such a subgroup S. Set K = S⊥ and Y = X/K ∼= S∧d , where Sd denotes the
group S endowed with the discrete topology. Since S is countable, Y is metrizable.
Hence, {0} is a Gδ-subgroup of Y. Thus, K is a Gδ-subgroup of X. Let q : X→ Y be the
quotient map. By Lemmas 30–32, the compact group Y has a dense T-characterized
subgroup H̃, which is not an Fσ-subset of Y. Lemma 24 implies that H := q−1(H̃) is a
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dense T-characterized subgroup of X. Since the continuous image of an Fσ-subset
of a compact group is an Fσ-subset, as well, we obtain that H is not an Fσ-subset of
X. Thus, the subgroup H of X is T-characterized, but it is not an Fσ-subset of X. The
theorem is proven.

Proof of Theorem 18. (1) Follows from Fact 5.
(2) By Lemma 3.6 in [13], every infinite compact Abelian group X contains

a dense characterized subgroup H. By Fact 1, H is T-characterized. Since every
Gδ-subgroup of X is closed in X by Proposition 2.4 of [13], H is not a Gδ-subgroup
of X.

(3) Follows from Theorem 14 and the aforementioned Proposition 2.4 of [13].
(4) Follows from Fact 5.
(5) Follows from Corollary 17.

It is trivial that CharT(X) ⊆ Char(X) for every compact Abelian group X. For
the circle group T, we have:

Proposition 33. CharT(T) = Char(T).

Proof. We have to show only that Char(T) ⊆ CharT(T). Let H = su(T) ∈ Char(T)
for some sequence u in Z.

If H is infinite, then H is dense in T. Therefore, u is a T-sequence in Z by Fact 1.
Thus, H ∈ CharT(T).

If H is finite, then H is closed in T. Clearly, H⊥ has infinite exponent. Thus,
H ∈ CharT(T) by Theorem 10.

Note that, if a compact Abelian group X satisfies the equality CharT(X) =

Char(X), then X is connected by Fact 3 and Theorem 14. This fact and Proposition 33
justify the next problem:

Problem 34. Does there exists a connected compact Abelian group X, such that
CharT(X) 6= Char(X)? Is it true that CharT(X) = Char(X) if and only if X is connected?

For a compact Abelian group X, the set of all subgroups of X that are both
Fσδ- and Gδσ-subsets of X we denote by S∆0

3(X). To complete the study of the Borel
hierarchy of (T-)characterized subgroups of X, we have to answer the next question.

Problem 35. Describe compact Abelian groups X of infinite exponent for which Char(X) ⊆
S∆0

3(X). For which compact Abelian groups X of infinite exponent there exists a
T-characterized subgroup H that does not belong to S∆0

3(X)?
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4. gT-Closed and gT-Dense Subgroups of Compact Abelian Groups

The following closure operator g of the category of Abelian topological groups is
defined in [11]. Let X be an Abelian topological group and H its arbitrary subgroup.
The closure operator g = gX is defined as follows:

gX(H) :=
⋂

u∈X̂N

{su(X) : H ≤ su(X)} ,

and we say that H is g-closed if H = g(H), and H is g-dense if g(H) = X.
The set of all T-sequences in the dual group X̂ of a compact Abelian group X

we denote by Ts(X̂). Clearly, Ts(X̂) $ X̂N. Let H be a subgroup of X. In analogy to
the closure operator g, g-closure and g-density, the operator gT is defined as follows:

gT(H) :=
⋂

u∈Ts(X̂)

{su(X) : H ≤ su(X)} ,

and we say that H is gT-closed if H = gT(H), and H is gT-dense if gT(H) = X.
In this section, we study some properties of gT-closed and gT-dense subgroups

of a compact Abelian group X. Note that every g-dense subgroup of X is dense by
Lemma 2.12 of [11], but for gT-dense subgroups, the situation changes:

Proposition 36. Let X be a compact Abelian group.

(1) If H is a gT-dense subgroup of X, then the closure H̄ of H is an open subgroup of X.
(2) Every open subgroup of a compact Abelian group X is gT-dense.

Proof. (1) Suppose for a contradiction that H̄ is not open in X. Then, X/H̄ is an
infinite compact group. By Lemma 3.6 of [13], X/H̄ has a proper dense characterized
subgroup S. Fact 1 implies that S is a T-characterized subgroup of X/H̄. Let q : X→
X/H̄ be the quotient map. Then, Lemma 24 yields that q−1(S) is a T-characterized
dense subgroup of X containing H. Since q−1(S) 6= X, we obtain that H is not
gT-dense in X, a contradiction.

(2) Let H be an open subgroup of X. If H = X, the assertion is trivial.
Assume that H is a proper subgroup (so X is disconnected). Let u be an
arbitrary T-sequence, such that H ⊆ su(X). Since H is open, su(X) is open,
as well. Now, Corollary 13 implies that su(X) = X. Thus, H is gT-dense
in X.

Proposition 36(2) shows that gT-density may essentially differ from the usual
g-density. In the next theorem, we characterize all compact Abelian groups for which
all gT-dense subgroups are also dense.
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Theorem 37. All gT-dense subgroups of a compact Abelian group X are dense if and only if
X is connected.

Proof. Assume that all gT-dense subgroup of X are dense. Proposition 36(2) implies
that X has no open proper subgroups. Thus, X is connected by [24] (7.9).

Conversely, let X be connected and H be a gT-dense subgroup of X. Proposition
36(1) implies that the closure H̄ of H is an open subgroup of X. Since X is connected,
we obtain that H̄ = X. Thus, H is dense in X.

For gT-closed subgroups, we have:

Proposition 38. Let X be a compact Abelian group.

(1) Every proper open subgroup H of X is a g-closed non-gT-closed subgroup.
(2) If every g-closed subgroup of X is gT-closed, then X is connected.

Proof. (1) The subgroup H is gT-dense in X by Proposition 36. Therefore, H is not
gT-closed. On the other hand, H is g-closed in X by Theorem A of [13].

(2) Item (1) implies that X has no open subgroups. Thus, X is connected
by [24] (7.9).

We do not know whether the converse in Proposition 38(2) holds true:

Problem 39. Let a compact Abelian group X be connected. Is it true that every g-closed
subgroup of X is also gT-closed?
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Characterized Subgroups of Topological
Abelian Groups
Dikran Dikranjan, Anna Giordano Bruno and Daniele Impieri

Abstract: A subgroup H of a topological abelian group X is said to be characterized
by a sequence v = (vn) of characters of X if H = {x ∈ X : vn(x) → 0 in T}.
We study the basic properties of characterized subgroups in the general setting,
extending results known in the compact case. For a better description, we isolate
various types of characterized subgroups. Moreover, we introduce the relevant class
of auto-characterized groups (namely, the groups that are characterized subgroups
of themselves by means of a sequence of non-null characters); in the case of locally
compact abelian groups, these are proven to be exactly the non-compact ones. As
a by-product of our results, we find a complete description of the characterized
subgroups of discrete abelian groups.

Reprinted from Axioms. Cite as: Dikranjan, D.; Bruno, A.G.; Impieri, D. Characterized
Subgroups of Topological Abelian Groups. Axioms 2016, 4, 459–491.

1. Introduction

For a topological abelian group X, we denote by X̂ its dual group, that is the
group of all characters of X (i.e., continuous homomorphisms X → T). Following [1],
for a sequence of characters v = (vn) ∈ X̂N, let:

sv(X) := {x ∈ X : vn(x)→ 0}

which is always a subgroup of X. A subgroup H of X is said to be characterized if
H = sv(X) for some v = (vn) ∈ X̂N.

Historically, characterized subgroups were studied exclusively in the case of
the circle group T = R/Z (see [2–5]), also in relation to Diophantine approximation,
dynamical systems and ergodic theory (see [3,6,7]; one can find more on this topic
in the nice survey [8], as well as in the more recent [9–12]). Some general results
were then obtained in the case of metrizable compact abelian groups; for example,
it is known that every countable subgroup of a metrizable compact abelian group
is characterized (see [13, Theorem 1.4] and [14]), and it was pointed out in [14,15]
that the metrizability is necessary, as a compact abelian group with a countable
characterized subgroup is necessarily metrizable. Only recently, the case of general
compact abelian groups was given full attention in [16], and a reduction theorem (to
the metrizable case) was obtained.
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The few exceptions [8,17,18] only confirm the tendency to study the
characterized subgroups of T or, more recently, of compact abelian groups. To
say the least, even the simplest case of characterized subgroups of discrete abelian
groups has never been considered in the literature to the best of our knowledge.

The aim of these notes is to develop a general approach to characterized
subgroups of arbitrary topological abelian groups, collecting the basic properties so
far established in the compact case.

We isolate three special types of characterized subgroups, namely T-characterized,
K-characterized and N-characterized subgroups (see Definition 3). Of those,
T-characterized subgroups were introduced by Gabriyelyan in [11], K-characterized
subgroups were substantially studied by Kunen and his coauthors in [13,19,20], while
N-characterized subgroups, even if never introduced explicitly, have been frequently
used in the theory of duality in topological abelian groups (being nothing else but
the annihilators of countable sets of the dual group). One of the advantages of this
articulation is the possibility to establish some general permanence properties that
fail to be true in the whole class of characterized subgroups, but hold true in some
of these subclasses. Moreover, we see that each characterized subgroup is either
N-characterized or coincides with the intersection of an N-characterized subgroup
and a K-characterized subgroup (see Corollary 3).

Inspired by the notion of T-characterized subgroup, we introduce also the
stronger one of TB-characterized subgroup (see Definition 4). The following
implications hold, and none of them can be reversed in general (see Section 5):

TB-characterized +3 T-characterized +3 K-characterized +3 characterized

proper dense characterized

KS

N-characterized

(∗)

OO

+3 closed characterized

KS

where (∗) holds under the assumption that the subgroup is closed and has infinite
index (see Corollary 6).

In Section 6, we introduce the prominent class of auto-characterized groups
(see Definition 5). These are the topological abelian groups that are characterized
subgroups of themselves by means of a non-trivial sequence of characters (see (2)).
The fact that compact abelian groups are not auto-characterized is equivalent to the
well-known non-trivial fact that the Bohr topology of an infinite discrete abelian
group has no non-trivial convergent sequences. Here, we generalize this fact by
proving that the property of being non-auto-characterized describes the compact
abelian groups within the class of all locally compact abelian groups (see Theorem 3).
Moreover, in the general case, we describe the auto-characterized groups in terms of
their Bohr compactification (see Theorem 5).
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We study the basic properties of K- and of N-characterized subgroups
respectively in Sections 7 and 8. For the case of discrete abelian groups, which
is considered here for the first time, we give a complete description of characterized
subgroups by showing that these are precisely the subgroups of index at most c and
that a subgroup is characterized precisely when it is K- and N-characterized (see
Corollary 16).

In Section 7, we describe when a closed subgroup of infinite index is both K- and
N-characterized, and we see that this occurs precisely when it is only N-characterized
(see Theorem 6); then, we consider the special case of open subgroups, proving
that proper open subgroups of infinite index (respectively, of finite index) are
K-characterized if and only if they are characterized (respectively, auto-characterized)
(see Theorems 7 and 8). In particular, no proper open subgroup of a compact abelian
group is K-characterized.

In Section 8, extending a criterion for compact abelian groups given in [16],
we show that for locally compact abelian groups one can reduce the study of
characterized subgroups to the metrizable case (see Theorem 11). Moreover, we
describe the closed characterized subgroups of the locally compact abelian groups
by showing that they are precisely the N-characterized subgroups (see Theorem 12).
As a consequence, we add other equivalent conditions to the known fact from [16]
that a closed subgroup of a compact abelian group is characterized if and only if it
is Gδ, namely that the subgroup is K- and N-characterized (see Theorem 13).

Section 9 concerns T-characterized subgroups of compact abelian groups. We
establish a criterion to determine when a characterized subgroup of a compact abelian
group is not T-characterized (see Theorem 15), which extends results from [11]. The
impact on characterized subgroups of connected compact abelian groups is discussed.

The final Section 10 contains various comments and open problems, both general
and specific.

1.1. Notation and Terminology

The symbol c is used to denote the cardinality of continuum. The symbols Z, P,
N and N+ are used for the set of integers, the set of primes, the set of non-negative
integers and the set of positive integers, respectively. The circle group T is identified
with the quotient group R/Z of the reals R and carries its usual compact topology.
Let π : R→ T be the canonical projection; the usual group norm ‖−‖ on T is defined
by ‖π(x)‖ = d(x,Z) for every x ∈ R. We denote by T+ the image of [−1/4, 1/4] in
T. If m is a positive integer, G[m] = {x ∈ G : mx = 0}, and Z(m) is the cyclic group
of order m. Moreover, for p ∈ P, we denote by Z(p∞) and Jp, respectively, the Prüfer
group and the p-adic integers.

We say that an abelian group G is torsion if every element of G is torsion (i.e., for
every x ∈ G, there exists m ∈ N+, such that mx = 0). If M is a subset of G, then 〈M〉
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is the smallest subgroup of G containing M. We denote by Hom(G,T) the group of
the homomorphisms G → T.

For a topological space X = (X, τ), the weight w(X) of X is the minimum
cardinality of a base for τ. For a subset A of X, we denote by Aτ the closure of A in
(X, τ) (we write only A when there is no possibility of confusion).

A topological abelian group X is totally bounded if for every open subset U of 0 in
X, there exists a finite subset F of X, such that U + F = X. If X is totally bounded and
Hausdorff, we say that X is precompact. We denote by X̃ the two-sided completion of
X; in case X is precompact, X̃ coincides with the Weil completion.

For a subset A of X, the annihilator of A in X̂ is A⊥ = {χ ∈ X̂ : χ(A) = {0}}, and
for a subset B of X̂, the annihilator of B in X is B⊥ = {x ∈ X : χ(x) = 0 for every χ ∈ B}.

We say that a sequence v ∈ X̂N is trivially null if there exists n0 ∈ N, such that
vn = 0 for every n ≥ n0, and we say that v is non-trivial if it is not trivially null.

2. Background on Topological Groups

2.1. Basic Definitions

Let G be an abelian group and H a subgroup of Hom(G,T). Let TH be the
weakest group topology on G, such that all elements of H are continuous with
respect to TH; then TH is totally bounded. The other way around, Comfort and Ross
proved that any totally bounded group topology is of this type (see [21, Theorem 1.2]).

Theorem 1. [21, Theorems 1.2, 1.3 and 1.11, Corollary 1.4] Let G be an abelian group and
H a subgroup of Hom(G,T). Then, TH is totally bounded and:

(a) TH is Hausdorff if and only if H separates the points of G;
(b) TH is metrizable if and only if H is countable.

The following two notions will be often used in the paper.

Definition 1. A topological abelian group X is said to be:

(i) maximally almost periodic (MAP) if X̂ separates the points of X;
(ii) minimally almost periodic (MinAP) if X̂ = {0}.

We recall that two group topologies τ1 and τ2 on an abelian group X are

compatible if they have the same characters, that is (̂X, τ1) = (̂X, τ2).
If X = (X, τ) is a topological abelian group, denote by τ+ its Bohr topology, that

is the finest totally bounded group topology on X coarser than τ (indeed, τ+ = TX̂);
we denote X endowed with its Bohr topology also by X+, and we call τ+ also the
Bohr modification of τ. Clearly, τ and τ+ are compatible. Moreover,
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(i) τ is MAP if and only if τ+ is Hausdorff;
(ii) τ is MinAP if and only if τ+ is indiscrete.

A subgroup H of (X, τ) is:

(a) dually closed if H is τ+-closed (or, equivalently, X/H is MAP);
(b) dually embedded if every χ ∈ Ĥ can be extended to X.

Clearly, dually closed implies closed, since H ≤ Hτ ≤ Hτ+ .

Fact 1. Let X be a locally compact abelian group. Then:

(i) every closed subgroup H of X is dually closed, i.e., X/H is MAP;
(ii) in particular, every locally compact abelian group is MAP;

(iii) X and X+ have the same closed subgroups;
(iv) consequently, X is separable if and only if X+ is separable.

For a topological abelian group X and a subgroup L of X, the weak topology
σ(X̂, L) of the dual X̂ is the totally bounded group topology of X̂ generated by the
elements of L considered as characters of X̂; namely, for every x ∈ L, consider
ξx : X̂ → T defined by ξx(χ) = χ(x) for every χ ∈ X̂. A local base of σ(X̂, L) is
given by the finite intersections of the sets ξ−1

x (U), where x ∈ L and U is an open
neighborhood of 0 in T. Clearly, if L1 ≤ L2, then σ(X̂, L1) ≤ σ(X̂, L2).

Note that the weak topology σ(X̂, X) is coarser than the compact-open topology
on X̂. If L separates the points of X̂ (e.g., when L is dense in X or when L = X), then
σ(X̂, L) is precompact.

Fact 2. If X is a reflexive topological abelian group, then σ(X̂, X) coincides with the Bohr
topology of X̂.

We recall that a sequence v in an abelian group G is a T-sequence (respectively,
TB-sequence) if there exists a Hausdorff (respectively, precompact) group topology τ

on G, such that v is a null sequence in (G, τ).

Lemma 1. Let X be a topological abelian group and v ∈ X̂N. Then:

(i) for a subgroup L of X, vn(x) → 0 in T for every x ∈ L if and only if vn → 0 in
σ(X̂, L);

(ii) if sv(X) is dense in X, then v is a TB-sequence.

Proof. (i) follows from the definition of σ(X̂, L).
(ii) As sv(X) is dense in X, then σ(X̂, sv(X)) is precompact. By item (i), vn → 0

in σ(X̂, sv(X)); hence, v is a TB-sequence.

138



Let G be a discrete abelian group. For a sequence v ∈ GN, the group topology:

σv := Tsv(Ĝ) (1)

is the finest totally bounded group topology on G, such that v is a null sequence in
(G, σv).

Fact 3. [1, Lemma 3.1, Proposition 3.2] Let G be a discrete abelian group and v ∈ GN. The
following conditions are equivalent:

(i) v is a TB-sequence;
(ii) σv is Hausdorff;
(ii) sv(Ĝ) is dense in Ĝ.

2.2. Useful Folklore Results

We recall the following basic properties that will be used in the paper. Although
most of them are well known, we offer proofs for the reader’s convenience.

Lemma 2. Let X be a topological abelian group and H a subgroup of X. Then:

(i) X̂/H is algebraically isomorphic to H⊥;
(ii) X̂/H⊥ is algebraically isomorphic to a subgroup of Ĥ.

Proof. (i) Let ψ : X̂/H → X̂ be defined by χ 7→ χ ◦ π, where π : X → X/H is the
canonical projection. Then, ψ is injective, and its image is H⊥.

(ii) Let ρ : X̂ → Ĥ be defined by χ 7→ χ �H. Then, ker ρ = H⊥, and so, we get
the thesis.

The following fact follows from the equivalence of items (a) and (e)
of [4, Exercise 3.8.25]. Since no proofs are given there, we offer a proof for the
reader’s convenience.

Lemma 3. A compact abelian group K is separable if and only if w(K) ≤ c.

Proof. The inequality w(K) ≤ c holds for every separable regular topological
space K.

Assume that w(K) ≤ c. The discrete abelian group X = K̂ has size |X| =
w(K) ≤ c. Consider the embedding i : X→ D(X), where D(X) is the divisible hull
of X. Then, |D(X)| ≤ c and D(X) =

⊕
i∈I Di, for some countable divisible abelian

groups Di and a set of indices I with |I| ≤ c. Therefore, î : ∏i∈I D̂i → X̂ = K is a
surjective continuous homomorphism, and each D̂i is a metrizable compact abelian
group. By the Hewitt–Marczewski–Pondiczery Theorem, since |I| ≤ c, we have that
∏i∈I D̂i is separable; hence, K is separable, as well.
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Lemma 4. Let X be a precompact abelian group. Then, the singleton {0} is Gδ if and only if
there exists a continuous injection X→ TN.

Proof. If there exists a continuous injection X→ TN, then {0} is Gδ in X, as it is Gδ

in TN.
Assume now that {0} =

⋂
n∈N Un, where each Un is an open subset of X,

and we can assume that Un is in the prebase of the neighborhoods of 0 in X.
Therefore, for every n ∈ N, there exist vn ∈ X̂ and an open neighborhood Vn of
0 in T containing no non-trivial subgroup of T, such that Un = v−1

n (Vn). Then,
{0} = ⋂

n∈N ker vn. Hence, j : X→ TN defined by j(x) = (vn(x))n∈N is a continuous
injective homomorphism.

Theorem 2. Let X be a locally compact abelian group. Then, X is metrizable with |X| ≤ c if
and only if there exists a continuous injective homomorphism X→ TN.

Proof. If there exists a continuous injective homomorphism X→ TN, then clearly X
is metrizable and |X| ≤ |TN| = c.

Suppose now that X is metrizable and has cardinality at most c. It is well
known (for example, see [22]) that X = Rn × X0, where n ∈ N and X0 is a locally
compact abelian group admitting an open compact (metrizable) subgroup K. Clearly,
there exist two continuous injective homomorphisms j1 : Rn ↪→ TN and j2 : K ↪→
TN. Therefore, j3 = (j1, j2) : Rn × K → TN × TN ∼= TN is an injective continuous
homomorphism, too. Since TN is divisible and Rn × K is open in X, j3 extends
continuously to j̃3 : X → TN. Let π : X → X/(Rn × K) be the canonical projection.
Since X/(Rn × K) is discrete, there exists a continuous injective homomorphism
j4 : X/(Rn × K)→ TN. Let ϕ = j4 ◦π : X→ TN.

X
ϕ

%%
π
��

X/(Rn × K)
j4
// TN

Let now j : X → TN × TN ∼= TN be defined by j(x) = (ϕ(x), j̃3(x)) for every
x ∈ X. Then, j is continuous, since ϕ and j̃3 are continuous. Moreover, j is injective,
as j(x) = 0 for some x ∈ X implies ϕ(x) = 0 and j̃3(x) = 0; therefore, x ∈ Rn × K,
and so, since j̃3 �Rn×K= j3 is injective, one has x = 0.

3. General Permanence Properties of Characterized Subgroups

Let X be a topological abelian group, and denote by Char(X) the family of all
subgroups of X that are characterized.
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We start by observing that:

if v ∈ X̂N is trivially null, then X = sv(X) (2)

The following are basic facts on characterized subgroups (see [1,13,16,23]); we
give a proof for the reader’s convenience.

Lemma 5. Let X be a topological abelian group and v ∈ X̂N. Then:

(i) for every subgroup J of X, sv∗(J) = sv(X)∩ J, where v∗n = vn �J for every n ∈ N;
(ii) sv(X) = su(X) if u is any permutation of v;

(iii) Char(X) is stable under taking finite intersections;
(iv) sv(X) is an Fσδ-set (i.e., countable intersection of countable unions of closed subsets).

Proof. Items (i) and (ii) are obvious. To prove (iii), if u, v ∈ X̂N, define w = (wn),
where w2n = un and w2n+1 = vn for every n ∈ N; hence, su(X) ∩ sv(X) =

sw(X). To prove (iv), note that sv(X) =
⋂

m
⋃

k
⋂

n≥k Sn,m, where each Sn,m ={
x ∈ X : ‖vn(x)‖ ≤ 1

m

}
is a closed subset of X.

Now, we prove that, under suitable hypotheses, the relation of being a
characterized subgroup is transitive:

Proposition 1. Let X be a topological abelian group and X0, X1, X2 subgroups of X with
X0 ≤ X1 ≤ X2 and such that X1 is dually embedded in X2. If X0 ∈ Char(X1) and
X1 ∈ Char(X2), then X0 ∈ Char(X2).

Proof. Let v ∈ X̂1
N

, such that X0 = sv(X1), and let w ∈ X̂2
N

, such that X1 = sw(X2).
As X1 is dually embedded in X2, vn extends to a character v∗n of X2 for every n ∈ N;

so, let v∗ = (v∗n) ∈ X̂2
N

. Define w∗ ∈ X̂2
N

by letting w∗2n = v∗n and w∗2n+1 = wn for
every n ∈ N. Then, by Lemma 5(i),

sw∗(X2) = sv∗(X2)∩ sw(X2) = sv∗(X2)∩ X1 = sv(X1) = X0,

so X0 ∈ Char(X2), as required.

Clearly, two compatible group topologies have the same characterized subgroups:

Lemma 6. If τ1 and τ2 are compatible group topologies on an abelian group X, then
Char(X, τ1) = Char(X, τ2).

In particular, for a topological abelian group (X, τ), since τ and its Bohr
modification τ+ are compatible, Char(X, τ) = Char(X, τ+).
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4. The Γ-Radical

Definition 2. Let X be a topological abelian group. For a subset Γ of X̂, define the
Γ-radical of X by:

nΓ(X) :=
⋂

χ∈Γ
ker χ = Γ⊥.

Clearly, nΓ(X) is a closed subgroup of X.

The motivation for the choice of the term Γ-radical is the special case Γ = X̂, when

n(X) := nX̂(X)

is usually called the von Neumann radical of X. Then, n(X) = {0} (respectively,
n(X) = X) precisely when X̂ separates the points of X (respectively, X̂ = {0}); in
other words:

(i) X is MAP if and only if n(X) = {0};
(ii) X is MinAP if and only if n(X) = X.

Remark 1. Let X be a topological abelian group and Γ a subset of X̂.

(i) If Γ = ∅, then nΓ(X) = X.
(ii) If Γ is countable, then nΓ(X) is a characterized subgroup of X (indeed,

nΓ(X) = sv(X) for v ∈ X̂N, such that each character in Γ appears infinitely
many times in v).

For a given sequence v ∈ X̂N, the support Γv = {vn : n ∈ N} of v is the set of all
characters appearing in v. We abbreviate the notation of the Γv-radical by writing:

nv(X) := nΓv(X),

and we call this subgroup the v-radical of X.

Lemma 7. Let X be a topological abelian group and v ∈ X̂N. Then:

(i) nv(X) ≤ sv(X);
(ii) nv(X) is dually closed;

(iii) nv(X) is characterized;
(iv) nv(X) is closed, and {0} is Gδ in X/nv(X) (so, nv(X) is Gδ);
(v) [X : nv(X)] ≤ c.

Proof. (i) and (ii) are clear from the definitions, and (iii) follows from Remark 1(ii).
(iv) Let ϕ : X → TN be defined by ϕ(x) = (v0(x), . . . , vn(x), . . . ) for every

x ∈ X. Since {0} is Gδ in TN, we conclude that {0} is Gδ in X/nv(X). Moreover,
ker ϕ = ϕ−1(0) = nv(X), so nv(X) is Gδ in X.
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(v) Since X/nv(X) is algebraically isomorphic to ϕ(X) ≤ TN and |TN| = c, we
conclude that [X : nv(X)] ≤ c.

Remark 2. Let X be a topological abelian group and v ∈ X̂N. Then, nv(X) is closed
and Gδ in every group topology on X that makes vn continuous for every n ∈ N. In
particular, nv(X) is closed and Gδ in every group topology on X compatible with the
topology of X, so in the Bohr topology of X.

Lemma 7 gives a bound for the index of the characterized subgroups:

Corollary 1. Every characterized subgroup of a topological abelian group X has index
at most c.

Proof. Let v ∈ X̂N. Since nv(X) ≤ sv(X) by Lemma 7(i); hence, [X : sv(X)] ≤ [X :
nv(X)] ≤ c by Lemma 7(v).

The set Γv can be partitioned as

Γv = Γ∞
v ∪̇Γ0

v,

where:

(i) Γ∞
v := {vn ∈ Γv : vn = vm for infinitely many m ∈ N};

(ii) Γ0
v := Γv \ Γ∞

v .

In other words, Γ∞
v is the set of all characters appearing infinitely many times

in v, while each character in its complement Γ0
v appears finitely many times in v.

Clearly, v is a finitely many-to-one sequence if and only if Γ∞
v = ∅.

In case Γ∞
v 6= ∅, let v∞ be the largest subsequence of v with Γv∞ = Γ∞

v . Then,
clearly, sv∞(X) = nv∞(X).

In case Γ0
v is finite, the subsequence v∞ of v is cofinite, so sv(X) = sv∞(X). In

other words, one can safely replace v by v∞. This is why from now on, we shall
always assume that:

either Γ0
v = ∅ or Γ0

v is infinite. (3)

If Γ0
v is infinite, we denote by v0 the subsequence of v such that Γv0 = Γ0

v. If
Γ∞

v 6= ∅, we have the partition
v = v∞∪̇v0

of v in the two subsequences v∞ and v0. Moreover, always Γ∞
v0 = ∅, and so, if Γv0

is infinite (equivalently, Γ0
v 6= ∅ by (3)), v0 is a finitely many-to-one sequence and

sv0(X) = sw(X), where w is a one-to-one subsequence of v0 such that Γw = Γv0 = Γ0
v.
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We see now how we can obtain the subgroup of X characterized by v by
considering separately the v∞-radical of X and the subgroup of X characterized
by v0.

Lemma 8. Let X be a topological abelian group and v ∈ X̂N satisfying (3).

(i) If Γ0
v = ∅, then v∞ = v, so Γ∞

v 6= ∅ and sv(X) = nv∞(X).
(ii) If Γ0

v is infinite and Γ∞
v 6= ∅, then sv(X) = sv0(X)∩ nv∞(X).

Proof. (i) Since Γ0
v = ∅, we have sv(X) = sv∞(X), and as observed above,

sv∞(X) = nv∞(X).
(ii) Since v∞ and v0 are subsequences of v, it follows that sv(X) ≤ sv0(X) ∩

nv∞(X). Let now x ∈ sv0(X) ∩ nv∞(X). Since both v∞(x) → 0 and v0(x) → 0 and
since v = v∞∪̇v0, we conclude that v(x) → 0, that is x ∈ sv(X). This concludes
the proof.

For v = (vn) ∈ X̂N and m ∈ N, let

v(m) := (vn)n≥m. (4)

Note that nv(m)
(X) ≤ nv(m+1)(X) for every m ∈ N.

5. A Hierarchy for Characterized Subgroups

The following definition introduces three specific types of characterized subgroups.

Definition 3. Let X be a topological abelian group. A subgroup H of X is:

(i) T-characterized if H = sv(X) where v ∈ X̂N is a non-trivial T-sequence;
(ii) K-characterized if H = sv(X) for some finitely many-to-one sequence v ∈ X̂N

(i.e., Γ∞
v = ∅);

(iii) N-characterized if H = nv(X) for some v ∈ X̂N.

In analogy to Definition 3(i), we introduce the following smaller class of
characterized subgroups (see also Problem 1).

Definition 4. A subgroup H of a topological abelian group X is TB-characterized if
H = sv(X), where v ∈ X̂N is a non-trivial TB-sequence.

The N-characterized subgroups are clearly closed, and they are always
characterized as noted above. Every TB-characterized subgroup is obviously
T-characterized. Moreover, every T-characterized subgroup is also K-characterized.
Indeed, let H = sv(X), where v ∈ X̂N is a non-trivial T-sequence, and without loss
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of generality, assume that vn 6= 0 for all n ∈ N; then, Γ∞
v = ∅, that is v contains no

constant subsequences, and so, H is K-characterized.
Furthermore, proper dense characterized subgroups are TB-characterized by

Lemma 1(ii), so also T-characterized and, in particular, K-characterized, but they
are not N-characterized (as N-characterized subgroups are necessarily closed). We
shall see below that closed (even open) subgroups need not be K-characterized
in general. Denote by CharK(X) (respectively, CharN(X), CharT(X), CharTB(X))
the family of all K-characterized (respectively, N-characterized, T-characterized,
TB-characterized) subgroups of the topological abelian group X. Then, we have the
following strict inclusions:

CharTB(X) ( CharT(X) ( CharK(X) ( Char(X) ) CharN(X).

We start giving some basic properties that can be proven immediately.

Corollary 2. Let X be a topological abelian group and X0, X1, X2 subgroups of X with
X0 ≤ X1 ≤ X2 and such that X1 is dually embedded in X2.

(i) If X0 ∈ CharK(X1) and X1 ∈ CharK(X2), then X0 ∈ CharK(X2).
(ii) If X0 ∈ CharN(X1) and X1 ∈ CharN(X2), then X0 ∈ CharN(X2).

Proof. (i) It suffices to note that if in the proof of Proposition 1, v is one-to-one and
w is one-to-one, then w∗ is finitely many-to-one.

(ii) It suffices to note that if in the proof of Proposition 1, Γv = Γ∞
v and Γw = Γ∞

w,
then also Γw∗ = Γ∞

w∗ .

By Lemma 8, we have directly the following:

Corollary 3. Every characterized subgroup of a topological abelian group X is either
N-characterized or it is the intersection of an N-characterized subgroup of X and a
K-characterized subgroup of X.

The following stability property is clear for N-characterized subgroups, while it
is not known for characterized subgroups.

Lemma 9. Countable intersections of N-characterized subgroups are N-characterized.

The next correspondence theorem was proven in [16] for characterized
subgroups of compact abelian groups.

Proposition 2. Let X be a topological abelian group and F a closed subgroup of X, and
let π : X → X/F be the canonical projection. If H is a characterized (respectively,
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K-characterized, N-characterized, T-characterized) subgroup of X/F, then π−1(H) is a
characterized (respectively, K-characterized, N-characterized, T-characterized) subgroup
of X.

Proof. Let u = (un) ∈ X̂/F
N

, and consider π̂ : X̂/F → X̂. For every n ∈ N, let
vn = π̂(un) = un ◦ π ∈ F⊥ ≤ X̂ and v = (vn).

(i) Assume that H = su(X/F). Then, π−1(H) = sv(X), as x ∈ sv(X) if and only
if vn(x) = un(π(x))→ 0, and this occurs precisely when π(x) ∈ H.

(ii) Assume now that H is K-characterized, that is assume that H = su(X/F)
and that Γ∞

u = ∅. By (i), π−1(H) = sv(X), and moreover, Γ∞
v = ∅.

(iii) If H is N-characterized, then assume that H = nu(X/F). By (i), π−1(H) =

sv(X), and moreover, π−1(H) = nv(X), since vn(x) = un(π(x)) = 0 for every n ∈ N
precisely when π(x) ∈ H = nu(X/F).

(iv) If H is T-characterized, that is if H = su(X/F) and u is a T-sequence, it
remains to verify that v is a T-sequence, as well, since π−1(H) = sv(X) by (i). Let τ

be a Hausdorff group topology on X̂/F, such that un → 0 in (X̂/F, τ). By Lemma 2(i),
one can identify X̂/F with the subgroup F⊥ of X̂ by the algebraic monomorphism
ψ : X̂/F → X̂ defined by χ 7→ χ ◦ π. Let τ∗ be the group topology on X̂ having as
a local base at 0 the open neighborhoods of 0 in (X̂/F, τ). Then, τ∗ is a Hausdorff
group topology on X̂ and vn → 0 in (X̂, τ∗), as vn = ψ(un) ∈ F⊥ for every n ∈ N
by definition.

Lemma 10. Let X be a topological abelian group and H a subgroup of X, such that
n(X) ≤ H. Then, H is characterized (respectively, K-characterized, N-characterized,
T-characterized) if and only if H/n(X) is characterized (respectively, K-characterized,
N-characterized, T-characterized).

Proof. Let H = sv(X) for some v ∈ X̂N, and denote by π : X → X/n(X) the
canonical projection. For every n ∈ N, since n(X) ≤ ker vn, the character vn factorizes

as vn = un ◦ π, where un ∈ X̂/n(X). Then, H/n(X) = su(X/n(X)). Vice versa, if

H/n(X) = su(X/n(X)) for some u ∈ X̂/n(X)
N

, let vn = un ◦ π for every n ∈ N.
Hence, H = sv(X). Moreover, v is a finitely many-to-one sequence if and only if u
is a finitely many-to-one sequence, so H is K-characterized if and only if H/n(X)

is K-characterized. Similarly, Γ0
u is finite, precisely when Γ0

v is finite; hence, H is
N-characterized if and only if H/n(X) is N-characterized.

It remains to check that v is a T-sequence precisely when u is a T-sequence. This

follows from the fact that the natural homomorphism X̂/n(X) → X̂ sending (the
members of) u to (the members of) v is an isomorphism, so certainly preserving the
property of being a T-sequence.
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The following lemma gives equivalent conditions for a subgroup to be
characterized.

Lemma 11. Let X be a topological abelian group and H a subgroup of X. The following
conditions are equivalent:

(i) H ∈ Char(X);
(ii) there exists a closed subgroup F of X, such that F ≤ H and H/F ∈ Char(X/F);

(iii) there exists v ∈ X̂N, such that for every closed F ≤ nv(X), one has that H/F =

su(X/F), where u = (un), and each un is the factorization of vn through the canonical
projection π : X→ X/F.

Proof. (iii)⇒(ii) Take F = nv(X).
(ii)⇒(i) Since F ≤ H, one has H = π−1(H/F), and one can conclude, by

Proposition 2.
(i)⇒(iii) Let H = sv(X) for some v ∈ X̂N and F ≤ nv(X). Let π : X → X/F be

the canonical projection. For every n ∈ N, let un be the character of X/F defined
by π(x) 7→ vn(x). Then, un is well defined, since F ≤ nv(X) ≤ ker vn. Hence,
un ◦ π = vn for every n ∈ N, and H/F = su(X/F). Indeed, for every h ∈ H, we have
un(π(h)) = vn(h)→ 0, and hence, H/F ≤ su(X/F). Conversely, if π(x) ∈ su(X/F),
then vn(x) = un(π(x))→ 0. Hence, x ∈ H, and so, π(x) ∈ H/F.

6. Auto-Characterized Groups

The following consequence of [16, Proposition 2.5] motivates the introduction
of the notion of auto-characterized group (see Definition 5).

Proposition 3. Let X be a compact abelian group. Then, sv(X) = X for some v ∈ X̂N if
and only if the sequence v is trivially null.

Proof. It is clear from (2) that sv(X) = X if v is trivially null. Assume now that
X = sv(X) for some v ∈ X̂N. By [16, Proposition 2.5], being sv(X) compact, there
exists m ∈ N, such that X = sv(X) = nv(m)

(X), and so, vn = 0 for all n ≥ m.

If one drops the compactness, then the conclusion of Proposition 3 may fail, as
shown in the next example.

Example 1.

(i) Let N be an infinite countable subgroup of T. As mentioned in the
Introduction, N is characterized in T; hence, N = sv(T) for a non-trivial
sequence v ∈ ZN. If u = v �N , then u is non-trivial (since N is dense in T), and
su(N) = N.
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(ii) Let X = R, let π : R→ T be the canonical projection and let v = (vn) ∈ R̂N,
such that v0 = 0 and vn(x) = π( x

n ) ∈ T for every x ∈ R and n ∈ N+.
Obviously, sv(R) = R, even though v is non-trivial.

(iii) Let X = Qp, where p is a prime. For every n ∈ N, let vn = pn ∈ Q̂p. Obviously,
sv(Qp) = Qp, even though v is non-trivial.

Motivated by Proposition 3 and Example 1, we give the following:

Definition 5. A topological abelian group X is auto-characterized if X = sv(X) for
some non-trivial v ∈ X̂N.

Items (ii) and (iii) of Example 1 show that R and Qp are auto-characterized.

Remark 3. (i) Let X be an auto-characterized group, so let v ∈ X̂N be non-trivial
and such that X = sv(X). Then, there exists a one-to-one subsequence u of v,
such that un 6= 0 for every n ∈ N and X = su(X).

Indeed, if χ ∈ Γ∞
v , then X = sv(X) ≤ ker χ, and so, χ = 0; therefore,

Γ∞
v is either empty or {0}. Since v is non-trivial, Γ0

v is infinite; hence,
X = sv(X) = sv0(X) by Lemma 8(ii). Let u be the one-to-one subsequence
of v0, such that Γu = Γv0 ; therefore, X = su(X).

(ii) The above item shows that auto-characterized groups are K-characterized
subgroups of themselves. However, one can prove actually that they
are T-characterized subgroups of themselves (indeed, TB-characterized
subgroups of themselves; see [24]).

6.1. Basic Properties of Auto-Characterized Groups

We start by a direct consequence of Lemma 10:

Lemma 12. Let X be a topological abelian group and H a subgroup of X, such that
n(X) ≤ H. Then, H is auto-characterized if and only if H/n(X) is auto-characterized.

The next proposition, describing an auto-characterized group in terms of the
null sequences of its dual, follows from the definitions and Lemma 1:

Proposition 4. A topological abelian group X is auto-characterized if and only if
(X̂, σ(X̂, X)) has a non-trivial null sequence v (in such a case, X = sv(X)).

In the next lemma, we see when a subgroup of an auto-characterized group is
auto-characterized, and vice versa.

Lemma 13. Let X be a topological abelian group and H a subgroup of X.
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(i) If X is auto-characterized and H is dense in X, then H is auto-characterized.
(ii) If H is auto-characterized and one of the following conditions holds, then X is

auto-characterized:

(a) H is a topological direct summand of X;
(b) H is open and has a finite index.

Proof. (i) Let X = sv(X) for v ∈ X̂ with vn 6= 0 for every n ∈ N, and let un = vn �H∈ Ĥ.
Then, each un is non-zero and H = su(H).

(ii) Let H = sv(H) for some v ∈ ĤN with vn 6= 0 for every n ∈ N.
(a) Let X = H × Z. For every n ∈ N, let un be the unique character of X that

extends vn and such that un vanishes on Z. Then, un 6= 0 for every n ∈ N, and
X = su(X).

(b) Arguing by induction, we can assume without loss of generality that
[X : H] = p is prime. Let X = H + 〈x〉 with x 6∈ H and px ∈ H. If px = 0,
then H is an open direct summand of X, so H is also a topological direct summand
of X; hence, item (a) applies. Assume now that px 6= 0, and let an = vn(px) for every
n ∈ N. If an = 0 for infinitely many n, extend vn to un ∈ X̂N for those n by letting
un(x) = 0. Then, obviously, the sequence u obtained in this way is not trivially null
and X = su(X), so X is auto-characterized. Assume now that an 6= 0 for infinitely
many n ∈ N; for those n, pick an element bn ∈ T with pbn = an, and extend vn by
letting un(h + kx) = vn(h) + kbn. Let wn = pun. Then, wn(x) = an 6= 0, so w is not
trivially null. Moreover, X = su(X) as pX ≤ H.

Lemma 14. Let X be a topological abelian group and v ∈ X̂N. If F is a subgroup of X, such
that F ≤ sv(X) and F is not auto-characterized, then F ≤ nv(m)

(X) for some m ∈ N.

Proof. Let un = vn �F for every n ∈ N and u = (un) ∈ F̂N. Then, F = su(F), so the
sequence u must be trivially null. Let m ∈ N, such that un = 0 for every n ≥ m.
Therefore, F ≤ nv(m)

(X).

The following consequence of Lemma 14 is a generalization of Lemma 2.6 in [16],
where the group X is compact.

Corollary 4. Let X be a topological abelian group, F and H subgroups of X, such that F is
compact and F ≤ H. Then, H/F ∈ Char(X/F) if and only if H ∈ Char(X).

Proof. Denote by π : X → X/F the canonical projection. If H/F is a characterized
subgroup of X/F, then H = π−1(H/F) is a characterized subgroup of X by
Proposition 2. Assume now that H = sv(X) for some v ∈ X̂N. Since F is compact,
Proposition 3 implies that F is not auto-characterized. By Lemma 14, F is contained in
nv(m)

(X) for a sufficiently large m ∈ N. Let π′ : X/F→ X/nv(m)
(X) be the canonical
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projection and q = π′ ◦π, then q−1(H/nv(m)
(X)) = H = sv(X) = sv(m)

(X). Therefore,
one deduces from Lemma 11 that H/nv(m)

(X) is a characterized subgroup of
X/nv(m)

(X). Hence, by Proposition 2, H/F = (π′)−1(H/nv(m)(X)) ∈ Char(X/F).

The argument of the above proof fails in case F is not compact. For example,
take F = H = X = N, where N is as in Example 1; then, one cannot conclude that
v �F is trivially null and, hence, that F is contained in nv(m)

(X).

6.2. Criteria Describing Auto-Characterized Groups

Here, we give two criteria for a group to be auto-characterized. We start below
with a criterion for locally compact abelian groups, while a general one, in terms of
the Bohr compactification, will be given at the end of the section.

We established in Proposition 3 that no compact abelian group is
auto-characterized; now, we prove in Theorem 3 that this property describes the
compact abelian groups within the larger class of all locally compact abelian groups.
This follows easily from Lemma 13(ii) for the locally compact abelian groups that
contain a copy of R, while the general case requires the following deeper argument.

Theorem 3. If X is a locally compact abelian group, then X is auto-characterized if and only
if X is not compact.

Proof. If X is auto-characterized, then X is not compact according to Proposition
3. Assume now that X is not auto-characterized. Then, by Fact 2 and Proposition 4,
the dual X̂ has no non-trivial null sequences in its Bohr topology. However, since
X̂ is locally compact, it has the same null sequences as its Bohr modification X̂+.
Therefore, X̂ is a locally compact group without non-trivial null sequences. We have
to conclude that X is compact.

This follows from the conjunction of several facts. The first one is the deep result
that non-discrete locally compact abelian groups have non-trivial null sequences.
(This follows, in turn, from that fact that a non-discrete locally compact abelian group
either contains a line R or an infinite compact subgroup. Since compact groups are
dyadic compacts, i.e., continuous images of Cantor cubes, they have non-trivial null
sequences.) Now, we can conclude that the locally compact group X̂ is discrete. It is
a well known fact that this implies the compactness of X.

Remark 4. An alternative argument to prove that non-discrete locally compact
abelian groups have non-trivial null sequences is based on a theorem by Hagler,
Gerlits and Efimov (proven independently also by Efimov in [25]). It states that
every infinite compact group K contains a copy of the Cantor cube {0, 1}w(K), which
obviously has plenty of non-trivial null sequences.
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In order to obtain a general criterion describing auto-characterized groups we
need another relevant notion in the theory of characterized subgroups:

Definition 6. [1] Let X be a topological abelian group and H a subgroup of X. Let:

gX(H) =
⋂{

sv(X) : v ∈ X̂N, H ≤ sv(X)
}

.

A subgroup H of X is said to be:

(i) g-dense if gX(H) = X;
(ii) g-closed if gX(H) = H.

We write simply g(H) when there is no possibility of confusion. Clearly, g(H) is a
subgroup of X containing H. Moreover, g({0}) is the intersection of all characterized
subgroups of X and g({0}) ≤ n(X).

Remark 5. Let X = (X, τ) be a topological abelian group and H a subgroup of X.

(i) If X1 is another topological abelian group and φ : X → X1 a continuous
homomorphism, then φ(gX(H)) ≤ gX1

(φ(H)) (see [1, Proposition 2.6]).

(ii) Moreover, gX(H) ≤ Hτ+ . Indeed, Hτ+
=

⋂{ker χ : χ ∈ X̂, H ≤ ker χ}
and ker χ = nv(X) = sv(X) for v ∈ X̂N with Γv = Γ∞

v = {χ} (i.e., v is
the constant sequence given by χ). Item (i) says, in terms of [15,26], that
g is a closure operator in the category of topological abelian groups. The

inclusion gX(H) ≤ Hτ+ says that g is finer than the closure operator defined

by H 7→ Hτ+ .
(iii) If H is dually closed, then H is g-closed by item (ii).
(iv) If (X, τ) is a locally compact abelian group, then every closed subgroup of

(X, τ) is dually closed, and so, (ii) implies that g(H) ≤ Hτ for every subgroup
H of X. Therefore, g-dense subgroups are also dense in this case.

(v) The inclusion g(H) ≤ H may fail if the group H is not MAP (e.g., if X is MinAP,
then g(H) = X for every H, while X may have proper closed subgroups).

The next result shows that the auto-characterized precompact abelian groups
are exactly the dense non-g-dense subgroups of the compact abelian groups.

Theorem 4. Let X be a precompact abelian group. The following conditions are equivalent:

(i) X is auto-characterized;
(ii) X is not g-dense in its completion X̃.

Proof. (ii)⇒(i) Assume that X is not g-dense in K := X̃. Then, there exists a sequence
v ∈ K̂N, such that X ≤ sv(K) < K. By Proposition 3 (see also Remark 3), we may
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assume without loss of generality that vn 6= 0 for every n ∈ N. Let un = vn �X
for every n ∈ N. Since X is dense in K, clearly un 6= 0 for every n ∈ N. Moreover,
X = su(X); hence, X is auto-characterized.

(i)⇒(ii) Suppose that X is auto-characterized, say X = su(X) for u ∈ X̂N, such
that un 6= 0 for every n ∈ N. For every n ∈ N, let vn ∈ K̂ be the extension of un to K.
Then, X ≤ sv(K) < K by Proposition 3, so X is not g-dense in K.

If X is a MAP abelian group, then τ+ is precompact, and the Bohr
compactification of X is rX : X → bX, where bX is the completion of (X, τ+) and
rX is an injective homomorphism. If X is not MAP, then n(X) 6= {0}. Consider
the quotient X/n(X), which is a MAP group. Then, take the Bohr compactification
rX/n(X) : X/n(X) → b(X/n(X)). The Bohr compactification of X is rX : X → bX,
where bX := b(X/n(X)) and rX = rX/n(X) ◦ π, where π : X → X/n(X) is the
canonical projection.

Corollary 5. Let X be a MAP abelian group. The following conditions are equivalent:

(i) X is auto-characterized;
(ii) X is not g-dense in bX.

Proof. Since X is MAP, X embeds in bX. By Lemma 6, X and X+ have the same
characterized subgroups. Moreover, X+ is precompact, and by definition, bX is the
completion of X+. Then, it suffices to apply Theorem 4.

Theorem 5. Let X be a topological abelian group. The following conditions are equivalent:

(i) X is auto-characterized;
(ii) rX(X) is not g-dense in bX.

Proof. Since X is auto-characterized precisely when X/n(X) is auto-characterized
by Lemma 12, apply Corollary 5 to conclude.

7. K-Characterized Subgroups

We start by recalling [23, Lemma 3.19]: if X is a compact abelian group
and v ∈ X̂N is a one-to-one sequence, then sv(X) has Haar measure zero in
X. Since K-characterized subgroups are characterized by finitely many-to-one
sequences (which obviously contain a one-to-one subsequence), this result applies to
K-characterized subgroups and gives the following (formally weaker) result, which
will be necessary and more convenient to apply in the current paper:

Lemma 15. If X is a compact abelian group and H ∈ CharK(X), then H has Haar measure
zero (hence, [X : H] is infinite). In particular, no open subgroup of X is K-characterized.
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Lemma 15 cannot be inverted; take, for example, the constant sequence u = (1)
in T̂N.

Remark 6. If X is a connected compact abelian group, then the conclusion of Lemma
15 holds for all non-trivial sequences in X̂, since every measurable proper subgroup
H of X has measure zero (indeed, X is divisible, so the proper subgroup H of X has
infinite index; hence, the measure of H must be 0, as X has measure 1).

Example 2. Here, we provide examples of non-auto-characterized non-compact
abelian groups.

(i) A relatively simple example can be obtained by taking a dense non-measurable
subgroup X of a connected compact abelian group K. Since we intend to
deduce that X is not auto-characterized by using Theorem 4, we have to check
that X is g-dense in K. Indeed, every measurable proper subgroup of K has
measure zero as noted in Remark 6; therefore, every proper characterized
(hence, every non-g-dense) subgroup of K has measure zero. Therefore, X is
not contained in any proper characterized subgroup of K, i.e., X is g-dense in K.

(ii) More sophisticated examples of g-dense subgroups of metrizable compact
abelian groups were given in [27] (under the assumption of Martin Axiom)
and in [19] (in ZFC). These groups have the additional property of being of
measure zero (so that the above elementary argument cannot be used to verify
the g-density).

7.1. When Closed Subgroups of Infinite Index are K-Characterized

The next theorem gives a sufficient condition (see item (iii)) for a closed subgroup
of infinite index H to be K-characterized. This condition implies, as a by-product,
that H is also N-characterized.

The easier case of open subgroups will be tackled in Theorem 7, by applying
Theorem 6.

Theorem 6. Let X be a topological abelian group and H a closed subgroup of X of infinite
index. The following conditions are equivalent:

(i) H ∈ CharK(X)∩ CharN(X);
(ii) H ∈ CharN(X);

(iii) X/H is MAP, and (X̂/H, σ(X̂/H, X/H)) is separable.

Proof. (i)⇒(ii) is obvious.
(ii)⇒(iii) Since H is N-characterized, then H is dually closed by Lemma 7(ii),

that is X/H is MAP. Let H = nv(X) for some v ∈ X̂N, and let π : X → X/H be the
canonical projection. Since ker π = H ≤ ker vn for every n ∈ N, one can factorize
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vn : X → T through π, i.e., write vn = v̄n ◦ π for appropriate v̄n ∈ X̂/H. It remains
to verify that D = {v̄n : n ∈ N} is dense in (X̂/H, σ(X̂/H, X/H)). To this end, let
ȳ = π(y) ∈ X/H; if ξȳ(D) = {0}, then v̄n(ȳ) = vn(y) = 0, and so, y ∈ H, that
is, ȳ = 0.

(iii)⇒(i) Let Y = X/H, equipped with the quotient topology. By hypotheses, Y
is infinite and MAP, while Ŷ is an infinite topological abelian group with a countably
infinite dense subgroup D. According to Proposition 2 applied to the canonical
projection π : X → Y, it suffices to prove that {0} is a K-characterized subgroup
of Y. Let D = {vn : n ∈ N} be a one-to-one enumeration of D and v = (vn). To
prove that sv(Y) = {0}, we have to show that for every non-zero y ∈ Y, there exists a
neighborhood U of 0 in T, such that vn(y) 6∈ U for infinitely many n ∈ N. Actually,
we show that U = T+ works for all non-zero y ∈ Y. In fact, for every y ∈ Y \ {0},
one has that Ny := {d(y) : d ∈ D} = {vn(y) : n ∈ N} is a non-trivial subgroup of T,
as Y is MAP and y 6= 0.

Let y ∈ Y \ {0}. If Ny is infinite, then Ny is dense in T; so, Ny \U is infinite, and
we are done. Now, consider the case when Ny is finite. As Ny 6= {0} and U contains
no non-trivial subgroups of T, there exists a ∈ Ny, such that a 6∈ U. Then, the map
fy : D → T defined by fy(d) = d(y) is a homomorphism with fy(D) = Ny finite.
Therefore, K := ker fy is a finite-index subgroup of D, so K is infinite. Let a = vm(y)
for some m ∈ N. Then, vm + K = {d ∈ D : d(y) = a} is infinite, as well. This means
that vn(y) = a 6∈ U for infinitely many n (namely, those n for which vn ∈ vm + K).
Therefore, vn(y) 6→ 0, and so, y 6∈ sv(Y).

Finally, let us note that the above argument shows also that H is N-characterized,
as obviously H ≤ nv(X).

The following is an obvious consequence of Theorem 6.

Corollary 6. Let X be a topological abelian group and H a closed subgroup of X of infinite
index. If H ∈ CharN(X), then H ∈ CharK(X).

Next, we rewrite Theorem 6 in the case of locally compact abelian groups.

Corollary 7. Let X be a locally compact abelian group and H a subgroup of X. Then,
H ∈ CharN(X) if and only if H is closed and X̂/H is separable.

Proof. As both conditions imply that H is closed, we assume without loss of
generality that H is closed. Since X/H and X̂/H are locally compact abelian groups,
X/H is MAP, and the Bohr topology on X̂/H coincides with σ(X̂/H, X/H) by Fact 2,

so the separability of X̂/H is equivalent to the separability of X̂/H
+

by Fact 1. If H
has a infinite index in X, apply Theorem 6 to conclude. If H has a finite index in X,
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then the equivalence is trivially satisfied; indeed, H is a finite intersection of kernels
of characters, so it is N-characterized, and X̂/H is finite, so separable.

As a consequence of Theorem 6, we find a sufficient condition for an open
subgroup of infinite index to be K-characterized:

Theorem 7. Let X be a topological abelian group and H an open subgroup of X of infinite
index. Then, the following conditions are equivalent:

(i) H ∈ Char(X);
(ii) H ∈ CharK(X);

(iii) [X : H] ≤ c;
(iv) X̂/H is separable.

Proof. (ii)⇒(i) is clear, and (i)⇒(iii) is Corollary 1.
(iii)⇒(iv) Since X̂/H is a compact abelian group of weight at most c, it is

separable by Lemma 3.
(iv)⇒(ii) As [X : H] is infinite, we can apply Theorem 6 to conclude that H is

K-characterized.

The following is another direct consequence of Theorem 6.

Corollary 8. If X is a metrizable compact abelian group, then every closed non-open
subgroup of X is K-characterized.

7.2. When Closed Subgroups of Finite Index are K-Characterized

We start by giving the following useful technical lemma.

Lemma 16. Let X be a topological abelian group and H an open subgroup of X, such that
X = H + 〈x〉 for some x ∈ X \ H. If H is auto-characterized, then H ∈ CharK(X).

Proof. Let u ∈ ĤN, such that H = su(H). By Remark 3, we can assume that u is
one-to-one and that un 6= 0 for every n ∈ N.

Assume first that H ∩ 〈x〉 = {0}. If o(x) is infinite, then fix an irrational number
α ∈ R, and for every n ∈ N, let vn(x) = α +Z and vn(h) = un(h) for every h ∈ H.
If o(x) = k is finite, then for every n ∈ N, let vn(x) = 1

k +Z and vn(h) = un(h) for
every h ∈ H. In both cases, it is straightforward to prove that H = sv(X). Moreover,
since u is one-to-one, then also v is one-to-one.

Suppose now that H ∩ 〈x〉 = 〈mx〉 for some m ∈ N, with m ≥ 1. As x 6∈ H, one
has m ≥ 2.
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For every n ∈ N, let an = un(mx) ∈ T. Since un(mx)→ 0, there exists n0, such
that ‖an‖ < 1

m2 for every n ≥ n0. As su(n0)
(H) = H, we shall assume for simplicity

that ‖an‖ < 1
m2 every n ∈ N.

Claim 1. For every a ∈ T with ‖a‖ < 1
m2 , there exists b ∈ T, such that

mb = a and ‖kb‖ > 1
m2 for every k ∈ N, 1 ≤ k < m. (5)

Proof. We tackle the problem in R, that is identifying T with [0, 1). First, assume that
0 ≤ a < 1

m2 , and let:

b =
a
m

+
1
m

Then, mb = a + 1 ≡Z a and 1
m ≤ b ≤ 2

m . Let now k ∈ N with 1 ≤ k ≤ m− 1, then:

1
m2 <

k
m
≤ kb = k

a
m

+
k
m

<
m− 1

m2 +
m− 1

m
= 1− 1

m2 (6)

Therefore, ‖kb‖ > 1
m2 . This establishes condition (5) in the current case.

It remains to consider the case m2−1
m2 < a < 1. Let a∗ = 1− a, i.e., a∗ = −a in T.

Then, obviously, ‖a∗‖ < 1
m2 and 0 ≤ a∗ < 1

m2 . Hence, by the above case applied to a∗,
there exists b∗ ∈ T satisfying condition (5) with −a in place of a (i.e., mb∗ = −a). Let
b = −b∗ ∈ T. Then, condition (5) holds true for b and a, as ‖k(−b)‖ = ‖kb‖ for every
k ∈ N with 1 ≤ k < m.

For every n ∈ N, apply Claim 1 to an to get bn as in Equation (5), then define
vn : X→ T by letting vn(x) = bn for every n ∈ N and vn(h) = un(h) for every h ∈ H.
As un(mx) = vn(mx) = mvn(x) = mbn = an, this definition is correct. Moreover,
since H is open in X, vn ∈ X̂. Since u is one-to-one, then v = (vn) is one-to-one, too.

We show that

vn(kx)→ 0 for k ∈ N if and only if k ∈ mZ. (7)

In fact, if k = k′m for some k′ ∈ N,

vn(kx) = k′vn(mx) = k′an → 0.

The other way around, assume that k = k′m+ r, where k′ ∈ N and 1 ≤ r ≤ m− 1.
Then,

vn(kx) = k′vn(mx) + rvn(x) = k′an + rbn 6→ 0

since k′an → 0 and ‖rbn‖ ≥ 1
m2 by Equation (5).
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We deduce finally that H = sv(X). Indeed, H = su(H) ≤ sv(X), so it remains to
prove that sv(X) ≤ H. To this end, let y ∈ X \ H, that is y = h + kx for some h ∈ H
and k ∈ N with 1 ≤ k < m. Then,

vn(y) = vn(h + kx) = un(h) + vn(kx).

Since h ∈ H = su(H), that is, un(h) → 0, while vn(kx) 6→ 0 by condition (7), we
conclude that vn(y) 6→ 0, that is, y 6∈ sv(X). Hence, H = sv(X).

Every open finite-index subgroup is a finite intersection of kernels of characters,
so it is N-characterized. In the next theorem we describe when a proper open
finite-index subgroup is K-characterized.

Theorem 8. Let X be a topological abelian group and H a proper open subgroup of X of
finite index. Then, H ∈ CharK(X) if and only if H is auto-characterized.

Proof. Assume that H ∈ CharK(X). We can write H = su(X) for u ∈ X̂N one-to-one.
Let vn = un �H for every n ∈ N. Then, the map un 7→ vn is finitely many-to-one, as
X/H is finite. Therefore, v = (vn) is finitely many-to-one. Obviously, H = sv(H), so
H is auto-characterized.

Now, assume that H is auto-characterized. Since H has finite index in X, there
exist x1, . . . , xn ∈ X, such that X = H + 〈x1, . . . , xn〉 and that, letting Xi := H +

〈x1, . . . , xi〉 for i = 1, . . . , n and X0 := H, the subgroup Xi−1 is a proper subgroup of
Xi for i = 1, . . . , n. We shall prove by induction on i = 1, . . . , n, that

H ∈ CharK(Xi). (8)

As X = Xn, this will give H ∈ CharK(X), as desired.
Before starting the induction, we note that according to Lemma 13(ii), all

subgroups Xi, for i = 1, . . . , n, are auto-characterized, as each Xi−1 is open in
Xi. For i = 1, the assertion in condition (8) follows from Lemma 16. Assume that
1 < i ≤ n and condition (8) holds true for i− 1, i.e., H ∈ CharK(Xi−1). Since Xi−1 is
open in Xi, again Lemma 16 applied to Xi = Xi−1 + 〈xi〉 gives that Xi−1 ∈ CharK(Xi).
As H ∈ CharK(Xi−1) by our inductive hypothesis, we conclude with Corollary 2(i)
that H ∈ CharK(Xi).

7.3. Further Results on K-Characterized Subgroups

The next corollary resolves an open question from [28]:

Corollary 9. Let X be an infinite discrete abelian group and H a subgroup of X. The
following conditions are equivalent:
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(i) H ∈ Char(X);
(ii) H ∈ CharK(X);

(iii) [X : H] ≤ c.

Proof. (ii)⇒(i) is clear, and (i)⇒(iii) is Corollary 1.
(iii)⇒(ii) If [X : H] is infinite, then H ∈ Char(X) by Theorem 7. Therefore,

assume that [X : H] is finite, then H is infinite, and hence, H is auto-characterized by
Theorem 3; therefore, H ∈ CharK(X) by Theorem 8.

We give now sufficient conditions for a non-closed characterized subgroup to
be K-characterized.

Theorem 9. Let X be a topological abelian group and H ∈ Char(X) a non-closed subgroup
of X, such that:

(i) X/H is MAP, and (X̂/H, σ(X̂/H, X/H)) is separable;
(ii) if 1 < [X : H] < ω, then H is auto-characterized.

Then, H ∈ CharK(X).

Proof. As H 6= H is dense in H and obviously H ∈ Char(H), we deduce that
H ∈ CharK(H), as dense characterized subgroups are TB-characterized by Lemma
1(ii). If H = X, we are done. Therefore, assume that H is proper.

Our aim now is to apply Corollary 2, so we need to check that H ∈ CharK(X).
If H has finite index in X, then H is auto-characterized by hypothesis, and so,
Theorem 8 yields H ∈ CharK(X). If H has infinite index in X, then H ∈ CharK(X) by
Theorem 6.

Corollary 10. Let X be a divisible topological abelian group and H ∈ Char(X) a non-closed

subgroup of X, such that H is dually closed. If (X̂/H, σ(X̂/H, X/H)) is separable, then

H ∈ CharK(X). In particular, H ∈ CharK(X) whenever X̂/H is separable.

Proof. The first part of our hypothesis entails that X/H is MAP. Moreover, divisible
topological abelian groups have no proper closed subgroup of finite index. Therefore,
the first assertion follows directly from Theorem 9.

The topology σ(X̂/H, X/H) of the dual X̂/H is coarser than the compact-open

topology of X̂/H, so that the separability of X̂/H yields the separability of

(X̂/H, σ(X̂/H, X/H)). Hence, the second assertion can be deduced from the
first one.

In the case of connected locally compact abelian groups, one obtains the
following stronger conclusion:
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Corollary 11. Let X be a connected locally compact abelian group. Then:

CharK(X) =

{
Char(X), if X is not compact

Char(X) \ {X}, if X is compact.

Proof. The group X is divisible, as connected locally compact abelian groups
are divisible.

Let H ∈ Char(X). Our next aim will be to check that X̂/H is separable. Indeed,
if H = sv(X) for v ∈ X̂N, then one has the chain of subgroups nv(X) ≤ H ≤ H ≤ X.

If H = X, then X̂/H is trivially separable. Otherwise, H has infinite index in X,

since X/H is divisible, so ̂X/nv(X) is separable by Corollary 7; since H contains

nv(X), the quotient group X/H is a quotient group of X/nv(X). Therefore, X̂/H is

isomorphic to a subgroup of the separable group ̂X/nv(X), so X̂/H is separable, as
well (see [29]). Furthermore, H is dually closed (so X/H is MAP) by Fact 1.

If H is not closed, Corollary 10 gives that H ∈ CharK(X). If H is a proper closed
subgroup of X, then H has infinite index, as X/H is divisible, so H ∈ CharK(X)

by Theorem 6. This proves the inclusion Char(X) \ {X} ⊆ CharK(X) \ {X}, which,
along with the obvious inclusion CharK(X) ⊆ Char(X), proves the equality Char(X) \
{X} = CharK(X) \ {X}.

It remains to consider the (closed) subgroup H = X, which obviously belongs
to Char(X). If X is compact, then X 6∈ CharK(X), by Lemma 15, so CharK(X) =

Char(X) \ {X}. If X is not compact, then H = X ∈ CharK(X) by Theorem 3 and
Remark 3(ii). Hence, CharK(X) = Char(X) in this case.

In particular, the above corollary yields CharK(T) = Char(T) \ {T} and
CharK(R) = Char(R).

Remark 7. As we shall see in Corollary 18, connectedness is necessary in this corollary.

8. N-Characterized Subgroups

The following consequence of Lemma 14 gives a sufficient condition for a
characterized subgroup to be N-characterized:

Corollary 12. Let X be a topological abelian group and H a subgroup of X, which is not
auto-characterized. If H ∈ Char(X), then H ∈ CharN(X).

Proof. Let H = sv(X) for some v ∈ X̂N. Then, H ≤ nv(m)
(X) for some m ∈ N

by Lemma 14. Since H = sv(X) = sv(m)
(X) ≥ nv(m)

(X), we deduce that H =

nv(m)
(X).

Here comes an easy criterion establishing when a subgroup is N-characterized.
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Theorem 10. Let X be a topological abelian group and H a subgroup of X. The following
conditions are equivalent:

(i) H is closed, and there exists a continuous injection X/H → TN;
(ii) H ∈ CharN(X);

(iii) H is closed, and {0} is Gδ in (X/H)+.

Proof. (i)⇒(ii) Suppose that there exists a continuous injection j : X/H → TN. Let
π : X→ X/H be the canonical projection. For every n ∈ N, let pn : TN → T be n-th
projection, and let vn = pn ◦ j ◦ π.

X/H
j // TN

pn

��
X

π

OO

vn
// T

Therefore, vn ∈ X̂N for every n ∈ N and H = nv(X), where v = (vn).
(ii)⇒(i) Let H = nv(X) for v ∈ X̂N. Let π : X → X/nv(X) be the canonical

projection, and define j : X/nv(X) → TN by j(π(x)) = (vn(x))n∈N for every x ∈
X. Since nv(X) =

⋂
n∈N ker vn, then j is well defined and injective. Moreover, j

is continuous.
Finally, (i) and (iii) are obviously equivalent.

The above criterion simplifies in the case of open subgroups:

Corollary 13. Let X be a topological abelian group and H an open subgroup of X. The
following conditions are equivalent:

(i) H ∈ Char(X);
(ii) H ∈ CharN(X);

(iii) [X : H] ≤ c.

Proof. (ii)⇒(i) is obvious, and (i)⇒(iii) is Corollary 1.
(iii)⇒(ii) Since H is open, X/H is discrete. By hypothesis |X/H| ≤ c, so there

exists a continuous injection X/H → TN. Hence, H ∈ CharN(X) by Theorem 10.

The next is another consequence of Theorem 10.

Corollary 14. Let X be a metrizable precompact abelian group and H a subgroup of X. The
following conditions are equivalent:

(i) H is closed;
(ii) H is closed and H ∈ Char(X);
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(iii) H ∈ CharN(X).

Proof. (iii)⇒(ii) and (ii)⇒(i) are clear.
(i)⇒(iii) Since X is metrizable, X/H is metrizable, as well, and so, {0} is Gδ in

X/H. By Lemma 4, there exists a continuous injective homomorphism X/H → TN.
Therefore, H is N-characterized by Theorem 10.

According to Theorem 6, one can add to the equivalent conditions in Corollaries
13 and 14 also “H ∈ CharK(X)”, in case [X : H] ≥ ω.

In the sequel, we consider the case of locally compact abelian groups. The
following theorem was proven in Theorem B of [16] for compact abelian groups.

Theorem 11. Let H be a locally compact abelian group and H a subgroup of X. Then,
H ∈ Char(X) if and only if H contains a closed Gδ-subgroup K of X, such that H/K ∈
Char(X/K), where X/K is a metrizable locally compact abelian group.

Proof. The equivalence follows from Lemma 11, since the subgroup nv(X) is closed
and Gδ for every v ∈ X̂N, by Lemma 7(iv). Since K is closed and Gδ, X/K is a
metrizable locally compact abelian group.

By Lemma 7, nv(X) is always closed and characterized. Theorem 12 describes
the closed characterized subgroups of the locally compact abelian groups X by
showing that these are precisely the N-characterized subgroups of X.

Theorem 12. Let X be a locally compact abelian group and H a subgroup of X. The following
conditions are equivalent:

(i) H is closed and H ∈ Char(X);
(ii) H ∈ CharN(X);

(iii) H is closed and Gδ in the Bohr topology;
(iv) H is closed, Gδ and [X : H] ≤ c.
(v) H is closed, and X̂/H is separable.

Proof. (iii)⇒(ii) follows from Theorem 10, (ii)⇒(i) by Lemma 7, and (ii)⇔(v) is
Corollary 7.

(iv)⇒(iii) The group X/H is locally compact, metrizable and has cardinality at
most c; therefore, by Theorem 2, there exists a continuous injective homomorphism
j : X/H → TN. Then, Theorem 10 gives the thesis.

(i)⇒(iv) Let H = sv(X) for v ∈ X̂N, and let π : X → X/nv(X) be the canonical
projection. By Corollary 1, [X : H] ≤ c. By Lemma 7, nv(X) ≤ sv(X), and nv(X) is
closed and Gδ. Then, X/nv(X) is a metrizable locally compact abelian group, and
by hypothesis, sv(X) is closed. Therefore, sv(X)/nv(X) is closed and, hence, Gδ in
X/nv(X). Therefore, sv(X) = π−1(sv(X)/nv(X)) is closed and Gδ in X.
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We see now the following result from [16] as a consequence of Theorem 12.

Corollary 15. [16, Theorem A] Let X be a compact abelian group and H a closed subgroup
of X. Then, H ∈ Char(X) if and only if H is Gδ.

Proof. If H is characterized, then H is Gδ by Theorem 12. Vice versa, assume that
H is Gδ. Then, X/H is compact and metrizable, hence |X/H| ≤ c. Therefore, again
Theorem 12 implies that H is characterized.

In the following theorem, we use that the Gδ-subgroups of a locally compact
abelian group are always closed (see [28] (Theorem A.2.14)).

Theorem 13. Let X be a compact abelian group and H a subgroup of X. The following
conditions are equivalent:

(i) H ∈ CharK(X) and H is closed;
(ii) H is Gδ and non-open;

(iii) H ∈ CharN(X) and H is non-open;
(iv) H ∈ Char(X) and H is closed and non-open.

Proof. (i)⇒(iv) Since Lemma 15 implies that H is non-open, (iv)⇔(iii) by Theorem
12, and (iv)⇔(ii) by Corollary 15.

(ii)⇒(i) Since X/H is a metrizable compact non-discrete (hence infinite) abelian
group, {0} is closed and non-open in X/H; hence, {0} is K-characterized in X/H by
Corollary 8. Therefore, H is K-characterized by Proposition 2.

This theorem generalizes Corollary 15 as it implies that, for a closed non-open
subgroup H of a compact abelian group X, one has:

H is Gδ ⇔ H ∈ Char(X) ⇔ H ∈ CharN(X) ⇔ H ∈ CharK(X).

The following immediate consequence of Corollaries 13 and 9 shows that for a
discrete abelian group all characterized subgroups are N-characterized.

Corollary 16. Let X be an infinite discrete abelian group and H a subgroup of X. The
following conditions are equivalent:

(i) H ∈ Char(X);
(ii) H ∈ CharN(X);

(iii) H ∈ CharK(X);
(iv) [X : H] ≤ c.
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9. T-Characterized Closed Subgroups of Compact Abelian Groups

In [30, Theorem 4], Gabriyelyan observed that if u is a T-sequence of an infinite
countable abelian group G, then (see formula (1) for the definition of σv)

n(G, σv) ∼= sv(Ĝd)
⊥ algebraically,

where Gd denotes the abelian group G endowed with the discrete topology. Therefore,
the following fact is an immediate corollary of this result.

Fact 4. Let v be a T-sequence of an infinite countable abelian group G. Then:

(i) (G, σv) is MAP if and only if v is a TB-sequence;
(ii) (G, σv) is MinAP if and only if sv(Ĝd) = {0} and G = 〈v〉.

Recall that a topological abelian group X is almost maximally almost periodic
(AMAP) if n(X) is finite.

Remark 8. In relation to Fact 4, Lukács in [31] found a T-sequence in Z(p∞) that
is not a TB-sequence, providing in this way an example of a non-trivial AMAP
group. More precisely, he found a characterizing sequence v for pmJp ≤ Jp for a
fixed m ∈ N+, i.e., sv(Jp) = pmJp. In this way, being Jp/pmJp finite, then

sv(Jp)
⊥ = n(Z(p∞), σv) 6= {0} is finite.

Therefore, (Jp, σv) is AMAP. Further results in this direction were obtained by
Nguyen in [32]. Finally, Gabriyelyan in [33] proved that an abelian group G admits
an AMAP group topology if and only if G has non-trivial torsion elements.

The following theorem, due to Gabriyelyan, links the notions of T-characterized
subgroup and MinAP topology.

Theorem 14. [11] Let X be a compact abelian group and H a closed subgroup of X. Then,
H ∈ CharT(X) if and only if H is Gδ and H⊥ carries a MinAP topology.

Following [4, §4], for a topological abelian group X and a prime number p, we
denote by Tp(X) the closure of the subgroup Xp = {x ∈ X : pnx→ 0}. In case X is
compact, one can prove that

Tp(X) = {mX : m ∈ N+, (m, p) = 1}. (9)
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In particular, Tp(X) contains the connected component c(X) of X. More precisely, if
X/c(X) = ∏p∈P(X(c(X))p is the topologically primary decomposition of the totally
disconnected compact abelian group X/c(X), then:

Tp(X)/c(X) ∼= (X/c(X))p = Tp(X/c(X))

Following [34], we say that d ∈ N is a proper divisor of n ∈ N, provided that
d 6∈ {0, n} and dm = n for some m ∈ N. Note that, according to our definition, each
d ∈ N \ {0} is a proper divisor of zero.

Definition 7. Let G be an abelian group.

(i) For n ∈ N the group G is said to be of exponent n (denoted by exp(G)) if
nG = {0}, but dG 6= {0} for every proper divisor d of n. We say that G is
bounded if exp(G) > 0 and, otherwise, that G is unbounded.

(ii) [35] If G is bounded, the essential order eo(G) of G is the smallest n ∈ N+, such
that nG is finite. If G is unbounded, we define eo(G) = 0.

In the next theorem, we aim to give a detailed description of the closed
characterized subgroups H of X that are not T-characterized. As stated in
Corollary 15, a closed subgroup H of a compact abelian group X is characterized
if and only if H is Gδ (i.e., X/H is metrizable). This explains the blanket condition
imposed on H to be a Gδ-subgroup of X.

Theorem 15. For a compact abelian group X and a Gδ-subgroup H of X, the following
conditions are equivalent:

(i) H 6∈ CharT(X);
(ii) H⊥ does not admit a MinAP group topology;

(iii) there exists m ∈ N, such that m(X/H) is finite and non-trivial;
(iv) eo(X/H) < exp(X/H);
(v) there exists a finite set P of primes, so that:

(a) Tq(X) ≤ H for all q ∈ P \ P,
(b) for every p ∈ P there exist kp ∈ N with pkp Tp(X) ≤ H,
(c) there exists p0 ∈ P, such that p

kp0−1
0 Tp0(X) 6≤ H and p

kp0−1
0 Tp0(X) ∩ H

has finite index in p
kp0
0 Tp0(X);

(vi) there exists a finite set P of primes, so that X/H ∼= ∏p∈P Kp, where each Kp is a
compact p-group, and there exist some p0 ∈ P and k ∈ N, such that pk

0Kp0 is finite
and non-trivial.

Proof. (i)⇔(ii) is Theorem 14, and (iii)⇔(iv) is clear from the definition.
(ii)⇔(iii) The main theorem in [36] states that an abelian group G does not admit

a MinAP group topology precisely when there exists m ∈ N+, such that mG is finite
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and non-trivial. In our case, G = H⊥ is topologically isomorphic to X̂/H, so G does

not admit a MinAP group topology if and only if mX̂/H = ̂m(X/H) is finite and
non-trivial, and this occurs precisely when m(X/H) is finite and non-trivial.

(vi)⇒(v) Write X/H ∼= ∏p∈P Kp, where each Kp is a compact p-group. Let
pkp = exp(Kp) for every p ∈ P, and let pk

0Kp0 be finite and non-trivial for p0 ∈ P
and k ∈ N.

Obviously, all q ∈ P \ P are coprime to m = exp(X/H). As mX ≤ H, we deduce
from the equality (9) that

Tq(X) ≤ H, for all q ∈ P \ P. (10)

This proves (a). From (10), we deduce that that c(X) ≤ H.
The quotient groups X′ = X/c(X) and H′ = H/c(X) are totally disconnected;

hence, X′ = ∏p∈P X′p and H′ = ∏p∈P H′p. Here,

X′p = Tp(X)/c(X) and H′p = Tp(H)/c(X) for every p ∈ P. (11)

Furthermore, X′ = ∏p∈P X′p ×∏q∈P\P X′q. From (10), we deduce that X′q ≤ H′q
for all q ∈ P \ P. Therefore, ∏q∈P\P X′q ≤ H′ and H′ = ∏p∈P H′p ×∏q∈P\P X′q.
Hence, X/H = ∏p∈P X′p/H′p, and consequently, X′p/H′p ∼= Kp for all p ∈ P. Thus,
pkp X′p ≤ H′p for all p ∈ P. Equivalently, pkp Tp(X) ≤ H for p ∈ P. This proves (b).

As pk
0Kp0 is finite and non-trivial, we deduce that k < kp0 . Therefore, p

kp0−1
0 Kp0

is still finite and non-trivial. Hence, p
kp0−1
0 X′p0

6≤ H′p0
, and so,

p
kp0−1
0 Tp0(X) 6≤ H.

To prove the second assertion in (c), note that the finiteness of pk
0Kp0 yields that:

p
kp0−1
i (X′p0

/H′p0
) = (p

kp0−1
0 X′p0

+ H′p0
)/H′p0

∼= p
kp0−1
0 X′p0

/(H′p0
∩ p

kp0−1
0 X′p0

)

is finite. Hence, from (11), we deduce that Tp0(H)∩ p
kp0−1
0 Tp0(X) has finite index in

p
kp0−1
0 Tp0(X). Therefore,

H ∩ p
kp0−1
0 Tp0(X) = ∩Tp0(H)∩ p

kp0−1
0 Tp0(X)

has finite index in p
kp0−1
0 Tp0(X).

(v)⇒(iii) Let m′ be the product of all pkp when p runs over P, and let m =

m′/p. Then, an argument similar to the above argument shows that m(X/H) 6= {0}
is finite.
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Corollary 17. Let X be a compact abelian group and H a closed subgroup of X that does
not contain the connected component c(X) of X. Then, H ∈ CharT(X) if and only if
H ∈ Char(X).

Proof. Clearly, H T-characterized implies H characterized. Therefore, assume that
H is characterized. Then, H is Gδ in X by Corollary 15. Let π : X → X/H be the
canonical projection. Then, π(c(G)) is a non-trivial connected subgroup of X/H;
hence, X/H is unbounded, as its connected component c(X/H) is a non-trivial
divisible subgroup. According to Theorem 15, H is T-characterized.

By Corollary 17, for a connected compact abelian group X and H a closed
subgroup of X,

H ∈ CharT(X) ⇔ H ∈ Char(X) \ {X}. (12)

This result was obtained in [11]; actually, the following more precise form holds (the
equivalence (i)⇔(ii) is proven in [11, Theorem 1.14]):

Corollary 18. For a compact abelian group X, the following conditions are equivalent:

(i) X is connected;
(ii) H ∈ CharT(X) ⇔ H ∈ Char(X) \ {X} for every closed subgroup H of G;

(iii) H ∈ CharK(X) ⇔ H ∈ Char(X) \ {X} for every closed subgroup H of G.

Proof. (i)⇒(ii) by (12), and (ii)⇒(iii) is obvious.
(iii)⇒(i) Assume that X is not connected. Then, X has a proper open subgroup

H, as the connected component of X is an intersection of clopen subgroups (see [22]).
Then, H ∈ Char(X) \ {X}, but H 6∈ CharK(X) by Lemma 15.

Obviously, each one of the above equivalent conditions implies that
H ∈ CharT(X) ⇔ H ∈ CharK(X) for every closed subgroup H of a compact
abelian group X. To see that in general the latter property is strictly weaker than
H ∈ CharT(X), consider the group X = Z(3)×Z(2)N. Then, for the closed subgroup
H = {0} of X, one has H ∈ CharK(X) by Theorem 13, while H 6∈ CharT(X) by
Theorem 15, as 3X is finite and non-trivial (moreover, X̂ does not admit any MinAP
group topology, as noticed by Remus; see [37]).

10. Final Comments and Open Questions

In this section, we collect various open questions arising throughout the paper.

For a topological abelian group X and v ∈ X̂N, we defined for each m ∈ N the
closed subgroup nv(m)

(X) in (4). Since these subgroups are contained one in each
other, the increasing union Fv(X) :=

⋃
m∈N nv(m)

(X) is an Fσ-subgroup of X, and it is
contained in sv(X). We do not know whether Fv(X) is characterized or not:

166



Question 1. For a topological abelian group X and v ∈ X̂N, is Fv(X) a characterized
subgroup of X?

This question is motivated by [16, Theorem 1.11], where it is proven that
under some additional restraint, the union of a countably infinite increasing chain
of closed characterized subgroups of a metrizable compact abelian group is still
characterized. On the other hand, it is known that every characterized subgroup is
Fσδ (see Lemma 5(iv)) and that the characterized subgroup need not be Fσ.

In analogy to T-characterized subgroups, we have introduced here the notion
of the TB-characterized subgroup (see Definition 4). In relation to what is
already known for T-characterized subgroups, one could consider the following
general problem.

Problem 1. Study the TB-characterized subgroups of topological abelian groups.

Next comes a more precise question on the properties of T- and TB-characterized
subgroups. In fact, we do not know whether the counterpart of Corollary 2 is true
for T- and TB-characterized subgroups:

Question 2. Let X be a topological abelian group and X0, X1, X2 subgroups of X
with X0 ≤ X1 ≤ X2, such that X1 is dually embedded in X2.

(i) If X0 ∈ CharT(X1) and X1 ∈ CharT(X2), is then X0 ∈ CharT(X2)?
(ii) If X0 ∈ CharTB(X1) and X1 ∈ CharTB(X2), is then X0 ∈ CharTB(X2)?

A full description of open K-characterized subgroups is given in Theorems 7
and 8, while Theorem 6 describes the closed K-characterized subgroups of infinite
index that are also N-characterized. Moreover, N-characterized closed subgroups of
infinite index are K-characterized. This leaves open the following general problem
and question.

Problem 2. For a topological abelian group X, describe CharK(X).

Question 3. Let X be a topological abelian group. Can one add “H ∈ CharK(X)”
as an equivalent condition in Theorem 6? Equivalently, does there exist a closed
subgroup H of X, such that H ∈ CharK(X) \ CharN(X)?

In Theorem 8, we have seen in particular that a proper open finite-index
subgroup H of a topological abelian group X is auto-characterized precisely when
H ∈ CharK(X). We do not know whether also the stronger condition H ∈ CharT(X)

is equivalent:
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Question 4. Let H be a topological abelian group and H an open subgroup of X of
finite index. Does H ∈ CharT(X) whenever H is auto-characterized? What about the
case when H is a topological direct summand of X?

By looking at Theorem 10 and Corollary 14, the following natural question arises:

Question 5. Are the closed Gδ-subgroups of a precompact abelian groups always
N-characterized?

This amounts to asking whether there exists a continuous injection from X/F
into TN for every closed Gδ subgroup F of a precompact abelian group X; in other
words, we are asking for a generalization of Lemma 4.
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Locally Quasi-Convex Compatible
Topologies on a Topological Group
Lydia Außenhofer, Dikran Dikranjan and Elena Martín-Peinador

Abstract: For a locally quasi-convex topological abelian group (G, τ), we study the
poset C (G, τ) of all locally quasi-convex topologies on G that are compatible with τ
(i.e., have the same dual as (G, τ)) ordered by inclusion. Obviously, this poset has
always a bottom element, namely the weak topology σ(G, Ĝ). Whether it has also a
top element is an open question. We study both quantitative aspects of this poset (its
size) and its qualitative aspects, e.g., its chains and anti-chains. Since we are mostly
interested in estimates “from below”, our strategy consists of finding appropriate
subgroups H of G that are easier to handle and show that C (H) and C (G/H) are
large and embed, as a poset, in C (G, τ). Important special results are: (i) if K is a
compact subgroup of a locally quasi-convex group G, then C (G) and C (G/K) are
quasi-isomorphic (3.15); (ii) if D is a discrete abelian group of infinite rank, then
C (D) is quasi-isomorphic to the poset FD of filters on D (4.5). Combining both
results, we prove that for an LCA (locally compact abelian) group G with an open
subgroup of infinite co-rank (this class includes, among others, all non-σ-compact
LCA groups), the poset C (G) is as big as the underlying topological structure of
(G, τ) (and set theory) allows. For a metrizable connected compact group X, the
group of null sequences G = c0(X) with the topology of uniform convergence is
studied. We prove that C (G) is quasi-isomorphic to P(R) (6.9).

Reprinted from Axioms. Cite as: Außenhofer, L.; Dikranjan, D.; Martín-Peinador, E.
Locally Quasi-Convex Compatible Topologies on a Topological Group. Axioms 2016,
4, 436–458.

1. Introduction

All groups in this paper are abelian, and for a group G, we denote by L(G)

(resp., T (G)) the set of all (Hausdorff) group topologies on G.
Varopoulos posed the question of the description of the group topologies on

an abelian group G having a given character group H and called them compatible
topologies for the duality (G, H) [1]. As the author explains, the question is motivated
by Mackey’s theorem, which holds in the framework of locally convex spaces. He
treated the question within the class of locally precompact abelian groups. Later on,
this problem was set in a bigger generality in [2]; namely, within the class of locally
quasi-convex groups. This is a class of abelian topological groups, which properly
contains the class of locally convex spaces, a fact that makes the attempt to generalize
the Mackey–Arens Theorem more natural. We denote by C (G, τ), or simply by C (G)
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if no misunderstanding can arise, the set of all locally quasi-convex group topologies
on G, which are compatible for G∧, the character group of G.

The bottom element of C (G, τ) is the weak topology σ(G, G∧). In [2], it was
asked if the poset C (G, τ) has a top element. We denote the supremum (in L(G)) of
C (G, τ) by S(G, τ). Then, S(G, τ) is a locally quasi-convex topology; nevertheless,
the question of whether S(G, τ) ∈ C (G, τ) is still open. In case S(G, τ) ∈ C (G, τ), it
is called Mackey topology and denoted by µ(G, G∧). Furthermore, if τ = µ(G, G∧),
the group (G, τ) is called a Mackey group. This is a generalization of the notion of a
Mackey locally convex space.

Theorem 1.1. ([2]) If a locally quasi-convex group G is Čech complete (in particular,
complete metrizable or locally compact abelian (LCA)), then G is a Mackey group.

In particular, one has the following immediate corollary concerning the special
case when |C (G, τ)| = 1 (i.e., τ = σ(G, G∧) = µ(G, G∧)):

Corollary 1.2. If G is an LCA group, then |C (G)| = 1 if and only if G is compact.

Further attention to topological groups G with |C (G)| = 1 is paid in [3,4], where
many examples are given, inspired by [5] (in particular, it is proven that this equality
holds for pseudocompact abelian groups).

This paper offers a solution for the following questions from [3] in the case that
G is a non-σ-compact LCA group:

Questions 1.3. Let G be a locally quasi-convex topological group.

(a) [3] (Question 8.92) Compute the cardinality of the poset C (G).
(b) [3] (Problem 8.93) Under which conditions on the group G is the poset C (G)

a chain?

More precisely, in the light of Corollary 1.2, we show that if an LCA group is
sufficiently far from being compact (e.g., non-σ-compact), then the poset C (G) is as
big (and as far from being a chain) as possible (see Section 1.2 for details).

1.1. Measuring Posets of Group Topologies

In order to face Question 1.3, one needs a tool to measure the poset C (G) of
group topologies.

The complete lattice L(G) for a group G and some of its subsets (e.g., T (G),
the subset B(G) of precompact topologies, its subset Psc(G) of pseudocompact
topologies, etc.) have been studied by many authors [6–11]. In particular, many
cardinal invariants of the specific subposets of T (G) have been computed by
using the simple idea of replacing the complicated posets T (G), B(G), Psc(G),
etc., by some naturally-defined simple posets of purely combinatorial nature (e.g.,
the powerset P(G) ordered by inclusion). Since C (G) ∩ B(G) = {σ(G, Ĝ)}
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is a singleton for a locally quasi-convex group G, we cannot make use of the
above-mentioned results where B(G) (and even Psc(G)) were shown to be as big as
possible.

Let us recall that a subset A of a partially-ordered set X is called anti-chain
if its members are pairwise incomparable. The maximal size of an anti-chain in a
partially-ordered set X is called the width of X and denoted by width(X).

In order to measure the size and width of the poset C (G), we introduce the
following notion:

Definition 1.4. Two posets (X,≤) and (Y,≤) are:

• isomorphic (we write X ∼= Y) if there exists a poset isomorphism X −→ Y;
• ([9–11]) quasi-isomorphic (we write X

q.i.∼= Y) if there exist poset embeddings:

(X,≤) ↪→ (Y,≤) and (Y,≤) ↪→ (X,≤)

Clearly, quasi-isomorphic posets share the same monotone cardinal invariants,
e.g., cardinality, width, maximum size of chains, etc. As a “sample” poset of
combinatorial nature will be used, the poset is defined in the following example.

Example 1.5. Let X be an infinite set, and let FilX be the set of all free filters (i.e.,
filters F on X with

⋂
F = ∅) ordered by inclusion. The bottom element ϕ0 of FilX

is known as the Fréchet filter; its elements are the complements of finite sets. A filter
on X is free iff it contains ϕ0. For the sake of completeness, we shall add to FilX also
the power set P(X) of X to obtain the complete lattice:

FX := FilX ∪ {P(X)} ⊆P(P(X))

having as top element P(X) and bottom element ϕ0. We shall denote FX also by Fκ

where κ = |X|, if we do not need to indicate the specific set X and only care about its
size κ. Then:

width(FX) = |FX | = 22|X| (1)

since there are 22|X| ultrafilters on X ([12]) that obviously form an anti-chain; the
reverse inequalities width(FX) ≤ |FX | ≤ 22|X| are obvious, as FX is contained in the
power set P(P(X)) of P(X) having size 22|X| .

Our choice of FX as a sample poset is justified by the following simple fact:

Proposition 1.6. For every infinite group G, there exists a poset embedding T (G)→ F|G|.

Proof. Every Hausdorff group topology τ on G is completely determined by the filter
NG,τ of all τ-neighborhoods of zero. Since τ is Hausdorff, zero is the only common
point of all members of NG,τ. Hence, by restricting this filter to the set X = G \ {0},
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we obtain an element of FX . In other words, we defined an injective monotone map
T (G)→ FX . Note that the discrete topology on X is mapped to P(X).

Let us recall that a poset (X,≤) is called a dcpo (directedly complete poset) if all
directed suprema in X exist ([13] (Definition 2.1.13)). Clearly, a dcpo with a bottom
element is a complete lattice precisely when it is a lattice. The relevant fact that the
poset C (G, τ) is a dcpo was established in [2] (Proposition 1.14):

Fact 1.7. [2] C (G, τ) is a dcpo, i.e., stable under directed suprema taken in the
complete lattice L(G).

According to the above fact, the poset C (G) has maximal elements (actually,
every element of C (G) is contained in a maximal element of C (G)), so it has a top
element precisely when it is a lattice. In such a case, C (G) is a complete lattice, and
G has a Mackey topology.

1.2. Main Results

We give for a large class of LCA groups concrete descriptions of the set of
compatible locally quasi-convex group topologies. More precisely, we first establish
the following.

(a) If G is a locally quasi-convex abelian group and K is a compact subgroup of G,
then C (G) ∼= C (G/K) (Theorem 3.15).

(b) If H is an open subgroup of G, then there exist poset embeddings C (H)
Ψ
↪→

C (G)
Θ←↩ C (G/H) (Theorem 3.6 and Corollary 3.11).

(c) For every discrete group D of infinite rank, the set C (D) is quasi-isomorphic
to the set of filters on D (Lemma 4.5).

Item (a) above gives a precise and useful form of the intuitive understanding
(based on Corollary 1.2) that compact subgroups are “negligible” when C (G) is
computed for a locally quasi-convex group G. In particular, this holds for an LCA
group G and a compact subgroup K. This allows us to reduce the computation of
C (G) to the case of much simpler (e.g., discrete) groups G.

Items (b) and (c) yield the following:

Theorem A. If H is an open subgroup of a locally quasi-convex group (G, T ) with
r(G/H) ≥ ω, then there is a poset embedding:

F|G/H| ↪→ C (G) (2)

so that |C (G)| ≥ width(C (G)) ≥ 22|G/H|
.
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Corollary 1.8. If a locally quasi-convex group (G, T ) has an open subgroup of infinite
co-rank, then:

|C (G)| ≥ width(C (G)) ≥ 2c

so C (G) is not a chain.

This answers Problem 8.93 of [3] (i.e., Question 1.3(b)) in the case of groups that
have a discrete quotient of infinite rank.

Item (b) and Theorem A suggest considering open subgroups H of G with the
highest possible co-rank. Motivated by this, we introduce the following notion.

Definition 1.9. A topological abelian group G is called r-disconnected if G has an
open subgroup H of infinite co-rank.

For example, a non-σ-compact LCA group is r-disconnected (see Section 2 for a
proof, as well as for further details). According to (2), r-disconnected groups G have
a sufficiently large poset C (G). The term r-disconnected is suggested by the fact that
an r-disconnected group G has open subgroups H of infinite co-rank, so its degree
of disconnectedness of G “is measured” by the rank of G/H. Now, we introduce a
cardinal invariant to carry out the measuring of r-disconnectedness in a natural way:

Definition 1.10. For a topological group G define the discrete rank (d-rank) of G by:

$(G) = sup{r(G/H) : H open subgroup of G} (3)

Clearly, r-disconnected groups G have infinite $(G), but a group with $(G) = ω

need not be r-disconnected unless G is LCA. For the properties of this cardinal
invariant and its connection to the compact covering number k(G), see Section 2.

In the case of LCA groups, it is possible to provide an embedding in the opposite
direction of the embedding (2). In fact, we prove the following theorem (see Section 5
for the proof of Theorems A and B).

Theorem B. For every r-disconnected LCA group G, there exist poset embeddings:

F$(G) ↪→ C (G) ↪→ Fc·$(G) (4)

in particular,

22$(G) ≤ |C (G)| ≤ 22c·$(G)
and 22$(G) ≤ width(C (G)) ≤ 22c·$(G)

If G is totally disconnected, then C (G)
q.i.∼= F$(G).

It turns out that the inclusions (4) hold also under a slightly stronger condition
of purely topological flavor
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Corollary C. Let G be a non σ-compact LCA group, then $(G) > ω; so, the
inclusions (4) hold.

The proof of this corollary will be given in Section 5.
Since both sides of the concluding inequality in Theorem B coincide when

2$(G) ≥ 2c, we obtain the equality |C (G)| = 22$(G)
. One can say something more

precise under a stronger assumption:

Corollary 1.11. If an LCA group G has $(G) ≥ c, then C (G)
q.i.∼= F$(G).

Since $(G) ≥ c implies that the group G is r-disconnected, Theorem B applies.
Now, the assertion follows from the inclusions (4).

From Corollary C and Corollary 1.11, one can immediately deduce:

Corollary 1.12. Under the assumption of CH, C (G)
q.i.∼= F$(G) holds for every

non-σ-compact LCA group.

The last section is dedicated to a natural generalization of the metrizable
LCA groups, namely the complete metrizable locally quasi-convex (so, necessarily
Mackey) groups. In Theorem 6.1, we prove that for every non-trivial compact
connected metrizable group X, the group c0(X) of null sequences in X carries a Polish
Mackey topology τ, and C (G) is quasi-isomorphic to P(N), so it contains exactly c

many connected separable metrizable locally quasi-convex non-Mackey topologies
compatible with p0, the topology induced by the product topology c0(X) ↪→ XN.

The paper is organized as follows. Properties of the d-rank and its connection to
the compact covering number are exposed in Section 2. In Section 3, we give general
properties of the compatible topologies and of the poset C (G) (mainly invariance
properties w.r.t. passage to products, subgroups and quotient groups). They enable

us to prove in Section 4 that C (G)
q.i.∼= F|G| for every discrete group G of infinite rank.

Using this fact, we prove Theorems A and B and Corollary C in Section 5. Finally,
in Section 6, we investigate C (G) for G = c0(X), where X is a non-trivial, compact
connected metrizable group, and we show that C (G) is quasi-isomorphic to P(R).
In Section 7, we collect final remarks and open questions.

The main results of the paper were exposed in talks of the second named author
at the Prague TopoSym 2011 and at the Seventh Italian Spanish Conference on
General Topology in Badajoz in September 2010, as well as at a Colloquim talk at
Complutense University of Madrid in 2010.

Notation and preliminaries.

We denote by N = {0, 1, 2, . . .} the natural numbers, by P the prime numbers,
by Z the group of integers, by Q the group of rational numbers, by R the group of
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real numbers and by Zm the cyclic group of order m. Let T denote the quotient group
R/Z. We shall identify it with the interval (−1/2, 1/2] with addition modulo one. It
is isomorphic to the unit circle in the complex plane, with the ordinary product of
complex numbers. Let T+ =: [−1/4, 1/4] ⊆ T. For a topological abelian group G,
the character group or dual group G∧ is the set of all continuous homomorphisms
from G to T, with addition defined pointwise.

For an abelian topological group (G, τ) and its dual G∧, we shall denote the
weak topology σ(G, G∧) also by τ+. An abelian topological group (G, τ) is said to
be maximally almost periodic (MAP), if the continuous characters of G separate the
points of G (i.e., if τ+ is Hausdorff).

In the beginning of the 1950s, Vilenkin defined the notions of locally
quasi-convex subsets and locally quasi-convex groups for abelian Hausdorff groups.
These settings generalize the terms convexity and local convexity in topological vector
spaces. A subset M of an abelian topological group G is said to be quasi-convex if
every element in G \M can be separated from M by means of a continuous character.
More precisely: for any z /∈ M, there exists ξ ∈ G∧, such that ξ(M) ⊆ T+ and
ξ(z) /∈ T+. An abelian topological group is called locally quasi-convex if it has a
neighborhood basis of zero consisting of quasi-convex sets. The most prominent
examples of locally quasi-convex groups are T, R and discrete groups and, more
generally, locally compact abelian groups and locally convex vector spaces (see [14]
for an account of the properties of quasi-convex groups).

For an abelian group G, we shall denote by LQC(G) the poset of all Hausdorff
locally quasi-convex group topologies on G. Then, B(G) ⊆ LQC(G) ⊆ T (G).

We use frequently the fact that the supremum of locally quasi-convex topologies
is again locally quasi-convex.

Consider the mapping:

LQC(G) −→ Hom(G,T), τ 7−→ (G, τ)∧

Its restriction to the set B(G) of all precompact topologies is injective. The
image of this mapping is the set of all dense subgroups of the dual group of the
discrete group G, and the fiber of (G, τ)∧ is precisely C (G, τ). Therefore, {C (G, τ) :
τ ∈ LQC(G)} forms a partition of LQC(G). Since (G, τ)∧ = (G, τ+)∧ and τ+ is a
precompact, we obtain:

LQC(G) =
⋃

τ∈LQC(G)

C (G, τ) =
⋃

τ∈LQC(G)

C (G, τ+) =
⊎

τ∈B(G)

C (G, τ) (5)

One of the aims of this paper is to show that each member of the partition (5)
containing a non-σ-compact LCA group topology has the same size as the whole
LQC(G) and actually the same size as T (G).
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For an abelian group G, we denote by r0(G) the free-rank of G, and for a prime p,
we denote by rp(G) the p-rank of G (namely, dimZp {x ∈ G : px = 0}). Finally, the
rank of G is defined by:

r(G) = r0(G) + sup{rp(G) : p ∈ P}

For a subgroup H of G, the co-rank of H in G is defined to be the rank r(G/H)

of the quotient group.

2. The Connections between the Compact Covering Number and the d-Rank of
Topological Groups

For a topological group G, we denote by k(G) the compact covering number
of G, i.e., the minimum number of compact sets whose union covers G. Clearly, either
k(G) = 1 (precisely when G is compact) or k(G) ≥ ω. If k(G) ≤ ω, the group is
called σ-compact. We shall see below (Theorem 2.7) that there is a close connection
between the cardinal invariants k(G) and $(G).

Clearly, $(G) = 0 precisely when G has no proper open subgroups. This class
of groups (in different, but equivalent terms) was introduced by Enflo [15] under
the name locally generated groups (connected groups are obviously the leading
example of locally generated groups). Therefore, the non-r-disconnected groups G (in
particular, the groups with $(G) < ω) can be considered as a natural generalization
of the locally generated groups introduced by Enflo.

Furthermore, $(G) ≤ ω when G is either σ-compact or separable, since both
conditions imply that all discrete quotients of G are countable (see Theorem 2.7 for
the connection between σ-compactness and countability of the d-rank $).

As the next example shows, the supremum in Equation (3) need not be
attained by any specific open subgroup of G. We shall see in Theorem 2.7 that
for r-disconnected LCA groups, this supremum is always a maximum.

Example 2.1. Consider the group G =
⊕

n Gn, where Gn =
⊕
ℵn Q is discrete and G

carries the product topology. A base of neighborhoods of zero is formed by the open
subgroups Wm =

⊕
n>m Gn, so that G is r-disconnected as r(G/Wm) = ℵm for every

m ∈ N. Moreover, $(G) = |G| = ℵω. On the other hand, every open subgroup H of
G contains some Wm, so r(G/H) ≤ r(G/Wm) = ℵm < $(G).

Generalizing the well-known fact that connected locally compact groups are
σ-compact, we characterize below the LCA groups that are not r-disconnected,
showing that they are σ-compact of a very special form (see Example 2.6). They
will be the object of study in [16], whereas in this paper, we are interested in
r-disconnected groups that may well be σ-compact (an example to this effect is
any discrete countable group of infinite rank).

Let us start with the description of the groups of finite rank.
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Fact 2.2. Let G be an infinite abelian group. Then, the following statements
are equivalent:

(a) r(G) < ∞;
(b) G is isomorphic to a subgroup of a group of the form Qm ×∏k

i=1 Z(p∞
i ), where

m, k ∈ N and p1, . . . , pk are not necessarily distinct primes;
(c) G ∼= L × F ×∏k

i=1 Z(p∞
i ), where k ∈ N, F is a finite abelian group, L is a

subgroup of Qm (m ∈ N) and p1, . . . , pk are not necessarily distinct primes;
(d) G contains no infinite direct sum of non-trivial subgroups;
(e) G contains no subgroup H, which is a direct sum of |G|-many non-trivial

subgroups.

Proof. (a)→ (b). Let D(G) be the divisible hull of G. Then, r(D(G)) = r(G), since
r0(D(G)) = r0(G) and rp(D(G)) = rp(G) by the fact that G is essential in D(G) (see
[17] (Lemma 24.3)). Therefore, (a) implies that r(D(G)) < ∞. Now, (b) follows from
the structure theorem for divisible abelian groups.

(b) → (c) Assume wlogthat G is a subgroup of H = Qm × D, where
D = ∏k

i=1 Z(p∞
i ). Then, the torsion subgroup t(G) of G is a subgroup of D;

hence, t(G) = F × T for subgroup T ∼= ∏t
s=1 Z(p∞

is ) of G and for appropriate
1 ≤ i1 < . . . < it ≤ k and a finite subgroup F of ∏k

i=1 Z(p∞
i ). Since T is a divisible

subgroup of G, it splits in G. Therefore, there exists a subgroup G1 (containing F)
of G, such that G = G1 × T. Note that t(G1) ∼= t(G/T) = t(G)/T ∼= F, since T is
a torsion group. By a theorem of Kulikov [17] (Theorem 27.5), the torsion part of
an abelian group splits when it is finite, so we can write G1 = t(G1)× G2, where
G2 is a torsion-free subgroup of G1 (isomorphic to G1/t(G1) ∼= G/t(G)). Since
r0(G2) ≤ r0(G) ≤ r0(H) = m < ∞, one has D(G2) = Qm2 for some m2 ≤ m, so G2 is
isomorphic to a subgroup of Qm.

(c)→ (d) is obvious and (d)→ (e) is trivial.
To prove the implication of (e)→ (a), assume for a contradiction that r(G) is

infinite. Then, G contains a direct sum of r(G)-many non-trivial subgroups (it will be
isomorphic to (

⊕
r0(G) Z)⊕ (

⊕
p
⊕

rp(G) Zp)). To end the proof, it suffices to note that
|G| = r(G) whenever the latter cardinal is infinite [17].

It is important to note that while the d-rank is obviously monotone with respect
to taking quotients, the rank is not (i.e., a quotient of a group may have a bigger rank
that the group itself, as we shall see in a while).

A group G of finite rank may have infinite $(G) (e.g., r(Q) = 1, while $(Q) = ω,
witnessed by r(Q/Z) = ω). In order to understand better the properties of the d-rank
of rational groups, we introduce some specific rational groups.

Let Qp be the subgroup of Q formed by all rational numbers having only powers
of a given fixed prime number p in the denominator. For a set π of prime numbers,
denote by Qπ the subgroup ∑p∈π Qp of Q, i.e., Qπ consists of those rational numbers
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for which the primes from P \ π are excluded from denominators. For completeness,
let Q∅ = Z.

Example 2.3. For π ⊆ P, one has r(Qπ) = 1 and $(Qπ) = |π|. In particular,
$(Qn

π) < ∞ (for n ∈ N) if and only if π is finite. Actually, a torsion-free group G has
finite d-rank if and only if G is isomorphic to a subgroup of Qn

π for some n ∈ N and
some finite π ⊆ P ([18] (Lemma 10.8)).

One can describe the non-r-disconnected discrete groups as follows:

Fact 2.4. ([18] (Lemma 10.12)) A discrete abelian group G is non-r-disconnected
(i.e., has $(G) < ∞) if and only if G ∼= L× F×∏k

i=1 Z(p∞
i ), where L is a torsion-free

non-r-disconnected group (i.e., isomorphic to a subgroup of Qn
π for some finite π ⊆ P

and n ∈ N), F is a finite abelian group, k ∈ N and p1, . . . , pk are not necessarily
distinct primes.

In order to describe also the non-r-disconnected LCA groups, we need a
fundamental fact from the structure theory of LCA groups.

Fact 2.5. According to the structure theory, an LCA group G is topologically
isomorphic to Rn × H, where n ∈ N and the group H has a compact open subgroup
K ([19]). Therefore, the quotient group D = H/K is discrete.

Example 2.6. Let G be a non-r-disconnected LCA group.
(a) G has a compact subgroup K, such that G/K ∼= Rn × L×∏k

i=1 Z(p∞
i ) for

some n, k ∈ N, a torsion-free discrete non-r-disconnected group L, and not necessarily
distinct primes pi.

(b) The quotient Rn × L×∏k
i=1 Z(p∞

i ) does not depend on the choice of the
compact group K up to isomorphism in the following sense. If K1 is another
compact subgroup of G, such that G/K1

∼= Rn1 × L1 ×∏k1
j=1 Z(q

∞
j ) with n1, k1 ∈ N, a

torsion-free discrete non-r-disconnected group L1, and not necessarily distinct primes
qj, then G/K ∼= G/K1 (so n1 = n, L1

∼= L, k1 = k and pi = qj for all i = 1, 2, . . . , k and
an appropriate permutation of the primes qj).

Proof. (a) Indeed, as we saw above, there exists a closed subgroup H of G with
a compact open subgroup K, such that G = Rn × H, so N = Rn × K is an open
subgroup of G. By our hypothesis, H/K ∼= G/N has finite d-rank. By Fact 2.4,
H/K ∼= L× F×∏k

i=1 Z(p∞
i ), where L is a a torsion-free discrete non-r-disconnected

group, F is a finite group and p1, . . . , pk, with k ∈ N, are not necessarily distinct
primes. Choosing K a bit larger, we can assume without loss of generality that F = 0.
Since G/K ∼= Rn × H/K, we are done.

(b) Since K + K1 is a compact subgroup of G containing K and K1 as open
subgroups, both indexes [(K + K1) : K] and [(K + K1) : K1] are finite. Therefore,
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F = (K + K1)/K is a finite subgroup of G/K, and similarly, F1 = (K + K1)/K1 is a
finite subgroup of G/K1. Moreover,

(G/K)/F ∼= G/(K + K1) ∼= (G/K1)/F1 (6)

Since F is a finite subgroup of t(G/K) ∼= ∏k
i=1 Z(p∞

i ), it is easy to see
that t(G/K)/F ∼= t(G/K). Similarly, t(G/K1)/F1

∼= t(G/K1). This yields
the isomorphisms (G/K)/F ∼= G/K and (G/K1)/F1

∼= G/K1. Now, the
isomorphisms (6) yield the desired isomorphism G/K ∼= G/K1. These isomorphisms
take the connected component c(G/K) ∼= Rn of G/K to the the connected component
c(G/K1) ∼= Rn1 of G/K1; in particular, n1 = n. Moreover, these isomorphisms
takes the torsion subgroup t(G/K) ∼= ∏k

i=1 Z(p∞
i ) of G/K to the torsion subgroup

t(G/K1) ∼= ∏k1
j=1 Z(q

∞
j ) of G/K1. Hence, k1 = k, pi = qj for all i = 1, 2, . . . , k

and an appropriate permutation of the primes qj. Finally, the isomorphism
induces an isomorphism of the quotients (G/K)/(c(G/K) × t(G/K)) ∼= L and
(G/K1)/(c(G/K1)× t(G/K1)) ∼= L1. Therefore, we deduce L1

∼= L.

We need a property of the discrete rank $(G), when the group G is LCA and
r-disconnected. Since it is related to the rank of discrete quotients of G, it has also a
connection to the compact covering number k(G), as Theorem 2.7 shows.

Theorem 2.7. Let G be an r-disconnected group. Then, k(G) ≥ $(G). If G is LCA, then:

(a) G has an open σ-compact subgroup L with r(G/L) = $(G).
(b) every discrete quotient of G has a size at most $(G).
(c) there exists a compact subgroup N of G, such that G/N ∼= Rn ×D for some discrete

abelian group D with |D| = $(G) and n ∈ N.
(d) k(G) = $(G).

Proof. Assume that G =
⋃

i∈I Ki, where each Ki is compact. Then, for every open
subgroup H of G with infinite G/H, the quotient map q : G→ G/H takes each Ki to
a finite subset of G/H. Since G/H is infinite, one has |G/H| ≤ |I|. This proves that
$(G) ≤ k(G).

Now, suppose that G is LCA. We may assume without loss of generality that
G = Rn × H with n, H and K, as in Fact 2.5. Then, the subgroup L = Rn × K of G is
open and σ-compact. Moreover, G/L ∼= H/K is discrete. Every open subgroup of
G contains Rn × {0}, so having the form Rn ×O, for some open subgroup O of H.
Hence, our hypothesis of r-disconnectedness on G implies that H is r-disconnected,
as well, and $(G) = $(H) ≥ r(H/K) = |H/K|.

(a) To see that $(G) = $(H) ≤ r(H/K), take any open subgroup N of H. We can
assume wlog that N is contained in K. Then, the quotient K/N is both discrete and
compact, hence finite. Therefore, r(H/N) = r(H/K) as the quotient K/N is finite,
while r(H/N) and r(H/K) are both infinite.
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(b) Let O ≤ G be an open subgroup. If r(G/O) < ∞, then |G/O| ≤ ω ≤ ρ(G);
otherwise, if r(G/O) = ∞, then |G/O| = r(G/O) ≤ ρ(G).

(c) follows from the above argument.
(d) We only have to check that k(G) ≤ $(G). Since Rn is σ-compact and K is

compact, one has k(G) ≤ ω · |D| = ω · $(G) = $(G).

3. Some General Properties of Compatible Topologies

Let (G, τ) be a topological group. Another group topology ν on G is said to be
compatible for (G, τ) if it has the same character group as the original one, that is if
(G, ν)∧ = (G, τ)∧.

We start with the following general facts providing easy upper bounds
for |C (G, τ)|:

Proposition 3.1. If (G, τ) is Mackey, then:
(a) |C (G, τ)| ≤ 2|τ|; so |C (G, τ)| ≤ 22w(G)

, where w(G) denotes the weight of G;
(b) if Cκ(G) denotes the subset of the compatible topologies of local weight ≤ κ, then

|Cκ(G)| ≤ |τ|κ . In particular, the cardinality of the set of metrizable compatible topologies is
not greater than |τ|ω.

Proof. (a) For the first inequality, it suffices to note that any compatible group
topology is a subset of τ. For the second assertion, note that |τ| ≤ 2w(G).

(b) follows from the fact that a group topology with local weight ≤ κ is
completely determined by the assignment of a family of size ≤ κ that forms its
local base at zero.

In order to understand the structure (in particular, the size) of the poset C (G)

for a topological group G, we relate C (G) to the corresponding posets C (H) and
C (G/H) for convenient subgroups H < G.

Proposition 3.2. Let G = H1 × H2 be a locally quasi-convex group. Then,

C (H1)× C (H2) −→ C (G), (ν1, ν2) 7−→ ν1 × ν2

is a poset embedding.

Proof. This mapping is injective and preserves the order. It remains to show that it
is well defined. Therefore, let τ be the original topology on G and τ1, τ2 the induced
topologies on H1 and H2 respectively. Take ν1 ∈ C (H1, τ1) and ν2 ∈ C (H2, τ2). Then,
ν1 × ν2 is again a locally quasi-convex topology on G = H1 × H2. Clearly,

(H1 × H2, ν1 × ν2)
∧ = (H1, ν1)

∧ × (H2, ν2)
∧ = (H1, τ1)

∧ × (H2, τ2)
∧ = (G, τ)∧

so ν1 × ν2 is compatible. The assertion follows.
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A subgroup H of a topological abelian group G is called:

• dually closed if for every x ∈ G \ H, there exists χ ∈ G∧, such that χ(H) = {0}
and χ(x) 6= 0;

• dually embedded if each continuous character of H can be extended to a
continuous character of G.

Remark 3.3. It is well known that if H is an open subgroup, it is dually closed and
dually embedded, but in general, a closed subgroup need not have these properties.

(a) It is easy to see that a subgroup H of a topological group (G, τ) is dually closed
if and only if H is τ+-closed.

(b) It is straightforward to prove that if G = H1⊕ H2 is equipped with the product
topology, then H1 and H2 are dually embedded in G. Moreover, H1 and H2 are
dually closed in G precisely when H1 and H2 are maximally almost periodic.

(c) It follows from Item (a) that a pair of compatible topologies shares the same
dually-closed subgroups.

Lemma 3.4. Let (G, τ) be a topological abelian group and H a dually-closed and
dually-embedded subgroup. If M ⊆ H is quasi-convex in H, it is also quasi-convex in G.

Proof. We must check that every x ∈ G \M can be separated from M by means of a
continuous character. Consider two cases:

(a) x ∈ H \M. Then, there exists χ ∈ H∧, such that χ(M) ⊆ T+ and χ(x) /∈ T+.
Now, any extension of χ, say χ̃ ∈ G∧, does the job.

(b) x ∈ G \ H. Since H is dually closed, there exists ξ ∈ G∧, such that
ξ(H) = {0} and ξ(x) 6= 0. A suitable multiple of ξ gives a character that separates x
from M.

Proposition 3.5. [20] (1.4) Every compact subgroup of a maximally almost periodic group
is dually embedded and dually closed.

Proposition 3.6. Let (G, τ) be a locally quasi-convex group and H an open subgroup. Then,
there exists a canonical poset embedding:

Ψ : C (H, τ|H) −→ C (G, τ)

Proof. Fix (H, ν) ∈ C (H, τ|H), and let NH,ν(0) be a basis of quasi-convex zero
neighborhoods for ν. If NH,ν(0) is considered as a basis of zero neighborhoods in
G, we obtain a new group topology Ψ(ν) on G, for which H is an open subgroup.
According to 3.4, Ψ(ν) is locally quasi-convex.

Since H is an open subgroup of G both w.r.t. to τ and to Ψ(ν) and since a
homomorphism χ : G → T is continuous iff its restriction to an open subgroup
is continuous, it is sufficient to prove that (H, Ψ(ν)|H) is compatible with (H, τ|H).
Obviously, Ψ(ν)|H = ν ∈ C (H, τ|H); hence, the assertion follows.
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Remark 3.7. In the sequel, we denote by Q(τ) the quotient topology of a topology τ
(the quotient group will always be quite clear from the context).

Let H be a dually-closed subgroup of the Hausdorff abelian group G. By Remark
3.3(c), H is τ closed for every topology τ ∈ C (G). Hence, for τ ∈ C (G), the group
topology Q(τ) is Hausdorff and:

Q : C (G) −→ T (G/H), τ 7−→ Q(τ)

is an order-preserving mapping.
Of course, Q is in general not injective. The situation improves when K

is a compact subgroup and G is a locally quasi-convex Hausdorff group (see
Theorem 3.15).

The next fact is probably known, but hard to find in the literature; hence, we
prefer to give a proof for the reader’s convenience.

Lemma 3.8. Let (G, τ) be a MAP abelian group and H a dually-closed subgroup. Then, for
the quotient G/H, one has Q(τ)+ = Q(τ+), i.e., the Bohr topology of the quotient coincides
with the quotient topology of the Bohr topology τ+.

Proof. Since both Q(τ)+ and Q(τ+) are precompact group topologies on G/H, it is
sufficient to check that they are compatible. To this end, note that Q(τ)+ ≥ Q(τ+),
since Q(τ) ≥ Q(τ+) and Q(τ+) is precompact. To see that they are compatible, take a
Q(τ)+-continuous character χ : G/H → T. Then, it is also Q(τ)-continuous. Hence,
the composition with the canonical projection q : G→ G/H produces a τ-continuous
character ξ = χ ◦ q of G. Since ξ is τ+-continuous, as well, from the factorization
ξ = χ ◦ q, we deduce that χ is also Q(τ+)-continuous. Hence, Q(τ)+ ≤ Q(τ+).

Next, we are interested in embedding C (G/H) into C (G). The following
notation will be used in the sequel:

Notation 3.9. Let H be a closed subgroup of the topological abelian group (G, τ). Denote
by q : G → G/H the canonical projection. Further, for a group topology θ ∈ T (G/H),
we denote by q−1(θ) the initial topology, namely the group topology {q−1(O) : O ∈ θ}.
It is straightforward to prove that whenever θ is locally quasi-convex, then q−1(θ) is locally
quasi-convex, as well.

Theorem 3.10. Let H be a dually-closed subgroup of the locally quasi-convex Hausdorff
group (G, τ). The mapping:

Θ : C (G/H, Q(τ)) −→ C (G, τ), θ −→ q−1(θ) ∨ τ+

is a poset embedding with left inverse Q.
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Proof. According to 3.9, Θ(θ) is a locally quasi-convex group topology on G and
finer than τ+, hence Hausdorff.

Before proving that Θ(θ) is compatible, we show that Q ◦Θ(θ) = θ. This will
imply (once it is shown that Θ is well defined) that Q is a left inverse for Θ, and
hence, Θ is injective. A neighborhood basis of zero in (G, Θ(θ)) is given by sets of
the form V = q−1(U) ∩W where W is a neighborhood of zero in (G, τ+) and U a
neighborhood of zero in (G/H,θ). Observe that q(V) = U ∩ q(W). This implies the
first equality in the following chain of equalities:

Q(Θ(θ))) = θ∨Q(τ+)
3.8
= θ∨Q(τ)+ = θ

(the last equality follows from θ ≥ Q(τ)+).
Let us show now that Θ(θ) is compatible. Since Θ(θ) ≥ τ+, we only need

to show that if χ ∈ (G, Θ(θ))∧, then χ is also continuous with respect to τ. It is
easy to check that Θ(θ)|H = τ+|H . Hence, we obtain that χ|H : (H, τ+|H) → T is
continuous. Thus, χ|H is a continuous character of the precompact group (H, τ+|H),
which is dually embedded in (G, τ+). Hence, there exists a continuous character
χ1 ∈ (G, τ+)∧, which extends χ. Since χ1 ∈ (G, τ+)∧ = (G, τ)∧, it is sufficient to
show that χ− χ1 ∈ (G, τ)∧ or, equivalently, we may suppose that χ ∈ H⊥.

Hence, χ : (G/H, Q(Θ(θ))︸ ︷︷ ︸
=θ

)→ T, x+ H 7→ χ(x) is well defined and continuous.

Since θ is compatible with Q(τ), we deduce that χ : (G/H, Q(τ))→ T is continuous,
and hence, χ = χ ◦ q : (G, τ)→ T is continuous.

This completes the proof.

Since open or compact subgroups are dually closed, the above theorem gives:

Corollary 3.11. Let G be a locally quasi-convex group, and let H be an open or a compact
subgroup of G. Then, Θ : C (G/H)→ C (G) is a poset embedding.

Remark 3.12. Let (G, τ) be a locally quasi-convex group, and let H be an open
subgroup of G. The images Θ(C (G/H)) and Ψ(C (H)) in C (G) of both embeddings,
obtained in Theorem 3.6 and Corollary 3.11, meet in a singleton, namely:

Θ(C (G/H)) ∩Ψ(C (H)) = {T0 ∨ τ+}

where T0 is the topology on G with neighborhood basis {H}.
Indeed, one can see first that if T ∈ Ψ(C (H)), then T ≥ T0 ∨ τ+.

On the other hand, if T ∈ Θ(C (G/H)), then T = Θ(θ) ≤ Θ(δG/H) = T0 ∨ τ+
for some θ ∈ C (G/H), where δG/H denotes the discrete topology on G/H.
Combining both inclusions, we obtain T = T0 ∨ τ+. On the other hand, to see
that the topology T0 ∨ τ+ is an element of the intersection, it suffices to realize that
T0 ∨ τ+ = Ψ(τ+|H) = Θ(δG/H).
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In the proof of the next result, namely that for a locally quasi-convex group G
and a compact subgroup K of G, the posets C (G) and C (G/K) are isomorphic, we
need the following results from [21]:

Theorem 3.13. Let (G, τ) be a locally quasi-convex Hausdorff group, and let K be a
subgroup of G.

(a) [21] (Theorem (3.5)) If (K, τ+|K) is compact, then τ|K = τ+|K, in particular (K, τ|K)
is compact.

(b) [21] (Theorem (2.7)) If K is compact, then G/K is a locally quasi-convex
Hausdorff group.

Further, we need:

Lemma 3.14 (Merzon). Let τ1 ≤ τ2 be group topologies on a group G, and let H be
a subgroup of G. If the subspace topologies τ1|H = τ2|H and the quotient topologies
Q(τ1) = Q(τ2) coincide, then τ1 = τ2.

Theorem 3.15. Let (G, τ) be a locally quasi-convex Hausdorff group and K a compact
subgroup of G. Then:

Θ : C (G/K) −→ C (G) and Q : C (G) −→ C (G/K)

are mutually inverse poset isomorphisms.

Proof. Let us show first that Q : C (G) → C (G/K), θ 7→ Q(θ) is well defined.
According to 3.13(b), Q(θ) is a locally quasi-convex Hausdorff group topology.
In order to show that Q(θ) is compatible for θ ∈ C (G), we fix a continuous
character χ : (G/K, Q(θ)) → T. Let q : G → G/K be the quotient homomorphism.
Then, χ ◦ q : (G, θ) → T is continuous. Since θ is compatible for (G, τ), also
χ ◦ q : (G, τ) → T is continuous, and hence, χ : (G, Q(τ)) → T is continuous. On
the other hand, θ ≥ τ+, and hence, Q(θ) ≥ Q(τ+) = Q(τ)+. Combining both
conclusions, we obtain that Q(θ) is compatible for (G, Q(τ)).

Taking into account 3.10, it is sufficient to prove that Θ ◦Q = idC (G).
Therefore, fix θ ∈ C (G). The topology Θ(Q(θ)) = q−1(Q(θ)) ∨ τ+ is

coarser than θ, so applying Merzon’s Lemma, it is sufficient to show that θ and
q−1(Q(θ)) ∨ τ+ coincide on K and on G/K. Since θ+ = τ+ and since (H, τ+|K) is
compact, we obtain by Theorem 3.13(a) that (K, θ|K) = (K, θ+|K) is compact. Hence:
θ|K ≥ Θ(Q(θ))|K ≥ τ+|K = θ+|K = θ|K imply that Θ(Q(θ))|K = θ|K. For
the quotient topologies, the following holds by Theorem 3.10: Q(Θ(Q(θ))) =

(Q ◦Θ)(Q(θ)) = Q(θ). Combining the partial results, the theorem is proven.

Since every locally compact abelian group is locally quasi-convex, from
Theorem 3.15, we immediately obtain:
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Corollary 3.16. Let G be a locally compact abelian group and K a compact subgroup of G.
Then, C (G) ∼= C (G/K).

Corollary 3.17. Let G be a σ-compact group with an open compact subgroup. Then, there is
a poset embedding C (G) ↪→ Fω; in particular, |C (G)| ≤ 2c.

Proof. Let K be an open compact subgroup of G. Without loss of generality, we may
assume that G is not compact, and hence, G/K is infinite.

As a consequence of the above theorem, Q : C (G) → C (G/K) is a poset
isomorphism. Since G/K is countable and discrete, 1.6 establishes a poset embedding
C (G/K) ↪→ T (G/K) ↪→ Fω.

Note that a group G as in the above corollary is necessarily locally compact. We
shall see in the sequel (see Example 2.6) that unless G has a very special structure, one
has actually a quasi-isomorphism between C (G) and Fω, in particular |C (G)| = 2c.

4. Compatible Topologies for Discrete Abelian Groups

We intend to reduce the study of the poset C (G) for a LCA group G to the
case of infinite direct sums of countable groups. This is why, throughout the first
part of this section, γ will denote an infinite cardinal and Cα will be a non-zero
countable group for every α < γ. Our intention is to show that for the discrete
group G =

⊕
α<γ Cα, the poset C (G) is quasi-isomorphic to Fγ (so, it contains an

anti-chain of the maximal possible size 22γ (note that γ = |G|), in particular C (G)

has width and size 22γ).
In order to get (many) group topologies on G, we need a frequently-used

standard construction based on filters on γ.

Notation 4.1. Every free filter ϕ on γ defines a topology τϕ on G with a base {WB : B ∈ ϕ}
of neighborhoods of zero, where:

WB =
⊕
α∈ B

Cα

(here, we are identifying the direct sum defining WB with a subgroup of G in the obvious way,
by adding zeros in the coordinates α 6∈ B). Using the fact that each WB is a subgroup of G
and WB1 ∩WB2 = WB1∩B2 for B1, B2 ∈ ϕ, one can easily prove that τϕ is a Hausdorff group
topology on G. Moreover, τϕ is locally quasi-convex, since every basic open neighborhood
WB is an open subgroup, hence quasi-convex.

Finally, let us mention the fact (although it will not be used here) that, according to [22],
τϕ is complete when ϕ is an ultrafilter.

Lemma 4.2. Let δ denote the discrete topology on G. The mapping:

Ξ : Fγ −→ C (G), ϕ 7−→ τϕ ∨ δ+
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is a poset embedding.

Proof. Obviously δ+ ≤ τϕ ∨ δ+ ≤ δ, so the topology τϕ ∨ δ+ is compatible. Since
δ+ is precompact, δ+ is also locally quasi-convex. Moreover, τϕ ∨ δ+ is locally
quasi-convex, as proven in Notation 4.1. This shows that Ξ is well defined.

It is obvious that Ξ preserves the order. Let us show that Ξ is injective:
To that end we fix ϕ, ψ ∈ Fγ and assume that τϕ ∨ δ+ = τψ ∨ δ+, in particular
τϕ ∨ δ+ ≤ τψ ∨ δ+, and hence, τϕ ≤ τψ ∨ δ+. Let B ∈ ϕ, then WB ∈ τϕ, so
WB ∈ τψ ∨ δ+ by our hypothesis. Then, there exist B′ ∈ ψ and a finite set
F ⊆ G∧, such that U := WB′ ∩ F/ ⊆ WB. Since U ⊆ WB′ , as well, we conclude
that U ⊆WB ∩WB′ = WB∩B′ . Since U is a neighborhood of zero in the Bohr topology
of the subgroup WB′ , this proves that also WB∩B′ is a neighborhood of zero in the
Bohr topology of WB′ . This means that WB∩B′ is an open subgroup of WB′ equipped
with the Bohr topology. Since every open subgroup in a precompact topology
must have finite index, we deduce that WB∩B′ has finite index in WB′ . Therefore,
WB′/WB∩B′

∼=
⊕
α∈B′\B Cα is finite. Consequently, also the set S = B′ \ B is finite.

Since γ \ S ∈ ψ, we conclude that also B′′ := B′ \ S = B′ ∩ (γ \ S) ∈ ψ. On the other
hand, B′′ \ B = ∅, i.e., B′′ ⊆ B. This proves that B ∈ ψ. Therefore, ϕ ⊆ ψ. The other
inclusion is proven analogously.

Remark 4.3. Observe that Ξ(P(γ)) = δ.

Corollary 4.4. For G as above, the sets C (G) and Fγ are quasi-isomorphic, in particular
width (C (G)) = |C (G)| = 22|G| .

Further, C (G) has chains of size (at least) γ.

Proof. According to 4.2 and 1.6, the sets C (G) and Fγ are quasi-isomorphic.
Since |G| = γ and since there are 22γ different free ultrafilters in Fγ, the first
assertion follows.

Fγ has chains of length γ. Indeed, one can easily produce a chain of length γ in
Fγ by using any partition of γ in γ pairwise disjoint sets of size γ each.

Theorem 4.5. Let G be a discrete abelian group of infinite rank. Then, C (G)
q.i.∼= F|G|

holds. In particular, G admits 22|G| pairwise incomparable compatible group topologies and
|C (G)| = 22|G| .

Proof. Let γ = |G|. According to 1.6, there are poset embeddings:

C (G) −→ T (G) −→ Fγ.

It is easy to see that G has a subgroup H isomorphic to a direct sum
⊕
α<γ Cα,

where each Cα is a non-trivial countable group (actually, it can be taken to be a cyclic
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group). According to Lemma 4.2 and Proposition 3.6, there are poset embeddings

Ξ : Fγ → C (H) and Ψ : C (H)→ C (G). This proves that C (G)
q.i.∼= F|G|. The second

assertion follows from (1).

Corollary 4.6. Suppose that H is a discrete abelian group for which Fω does not embed in
C (H). Then, H has finite d-rank; in particular, H is countable.

Proof. If H has infinite d-rank, then 4.5 implies the existence of a poset embedding
F|H| → C (H). Hence, the hypothesis implies that H has finite rank.

The case of finite rank abelian groups will be considered separately in [16].

5. Proofs of Theorem A, Theorem B and Corollary C

We intend to apply the results obtained so far to describe the poset of
all compatible group topologies for r-disconnected groups (in particular, for
non-σ-compact LCA groups).

Here comes the proof of Theorem A. It shows that for an LCA group G with
large discrete rank $(G), the poset C (G) is quite large (in particular, |C (G)| < 22$(G)

implies, among other things, that G is σ-compact).

Proof of Theorem A. Let H be an open subgroup of the locally quasi-convex group
(G, T ), such that G/H has infinite rank. According to Corollary 3.11 and Theorem
4.5, there is a poset embedding F|G/H| ↪→ C (G). The assertion follows. �

This theorem gives as a by-product a description of the LCA groups G, such
that Fω does not embed in C (G).

Corollary 5.1. If G is an LCA group, such that Fω does not embed in C (G), then G
is non-r-disconnected (so G contains a compact subgroup K, such that G/K ∼= Rn ×
L×∏k

i=1 Z(p∞
i ) for some n, m, k ∈ N, a subgroup L of Qm and not necessarily distinct

primes pi).

Proof. This follows from Example 2.6 and Theorem A.

Proof of Theorem B. First, we have to prove that if G is an r-disconnected LCA group,
then there exist poset embeddings as in formula (4). Since the existence of the first
one was already established in Theorem A, it remains to produce the embedding
C (G) ↪→ Fc·$(G). To this end, we use the isomorphism C (G) ∼= C (Rn ×D) provided
by the above fact. Since |Rn × D| = c · $(G), Proposition 1.6 applies.

Now, assume that G is totally disconnected. We have to prove that

C (G)
q.i.∼= F$(G). According to Fact 2.5, the LCA group G is topologically isomorphic
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to Rn × H, where n ∈ N and the group H has a compact open subgroup K. Since
the quotient group D = H/K is discrete and G/K ∼= Rn × D, Corollary 3.16 gives
C (G) ∼= C (Rn × D). According to our hypothesis, G is totally disconnected, so G
cannot contain subgroups of the form Rn with n > 0. Therefore, G/K = D is discrete.
Now, Corollary 3.16 implies that C (G) ∼= C (G/K). Moreover, r(G/K) is infinite,

since G is r-disconnected. Thus, C (G/K)
q.i.∼= F|G/K| = F$(G) by Theorem 4.5. �

Proof of Corollary C. We have to prove that if G is non-σ-compact, then $(G) > ω,
and there exists a poset embedding F$(G) ↪→ C (G). By Theorem 2.7(d), we have
$(G) = k(G) > ω; so, G is r-disconnected, and Theorem A applies. �

6. Metrizable Separable Mackey Groups with Many Compatible Topologies

For an abelian topological group X, we denote by c0(X) the subgroup of XN

consisting of all (xn) ∈ XN, such that xn → 0 in X. We denote by p and u the product
topology and the uniform topology of XN, respectively. We use p0 and u0 to denote
the topologies induced by p and u, respectively, on c0(X).

Throughout this section, let X be a non-trivial compact connected
metrizable group:

Theorem 6.1. [23] The group G = (c0(X), u0) is a non-compact Polish connected Mackey
group with u+0 = p0.

Observe that both u0 and p0 are metrizable and non-compact. In order to find
more compatible topologies on G, we use the following construction.

Notation 6.2. For a subset B of N and a neighborhood U of 0 in X, let:

P(B, U) = c0(X) ∩
(

UB × XN\B
)

The following properties of these sets will be frequently used in the sequel:

(a)
⋂

i∈I P(Bi, U) = P(
⋃

i∈I Bi, U) for every subset {Bi : i ∈ I} ⊆P(N);
(b) if U 6= X and P(B1, U1) ⊆ P(B, U), then B ⊆ B1.

This follow directly from X(N) ∩ (UB1
1 × X(N\B1)) ⊆ UB × X(N\B).

Definition 6.3. For any A ⊆ N, define a group topology tA on c0(X) having as a
neighborhood basis at zero the family of sets (P(B, U)), where U runs through all
neighborhoods of zero in X and B through all elements of P(N) with finite A∆B.

Obviously, t∅ = p0 and tN = u0; more precisely, tA = p0 (tA = u0) if and only if
A is finite (resp., co-finite).

190



Lemma 6.4. If P(A, U) ∈ tB with U 6= X, then A \ B is finite. Consequently, A \ B is
finite whenever tA ≤ tB.

Proof. By our hypothesis, there exists a subset B′ of N, such that B′∆B is finite and
P(B′, U′) ⊆ P(A, U) for some neighborhood U′ of 0 in X. Then, by Item (b) of
Notation 6.2, A ⊆ B′. Since |B′∆B| < ∞, this proves that A \ B is finite, as well.

Now, assume that tA ≤ tB. Then, P(A, U) ∈ tA, so P(A, U) ∈ tB, as well. Hence,
A \ B is finite by the fist part of the argument.

Proposition 6.5. For the topological group (G, u0) = (c0(X), u0), the mapping:

P(N) −→ C (G), A 7−→ tA (7)

is order preserving. Moreover, tA = tB for A, B ∈ P(N) if and only if the symmetric
difference A∆B is finite.

Proof. The mapping (7) is well defined, since for any A ⊆ N, we have p0 ⊆ tA ⊆ u0.
Since all of the topologies tA are also locally quasi-convex, they belong to C (G).

Assume that tA = tB. Applying twice the second assertion in Lemma 6.4, we
conclude that A∆B is finite.

Define an equivalence relation on P(N) by letting A ∼ B for A, B ∈ P(N)
whenever |A∆B| < ∞. Denote the set of equivalence classes by P(N)∗ and its
elements by A∗; moreover, write A ⊆∗ B (A =∗ B) for subsets of N when |A \ B| < ∞
(resp., A∆B) is finite. In these terms, Proposition 6.5 can be reformulated as follows:

Corollary 6.6. The mapping P(N)∗ → C (G), A∗ 7→ tA is a poset embedding.

Remark 6.7. The above Proposition 6.5 implies that sup{tA, tB} ≤ tA∪B. However,
one can easily check with Notation 6.2(a) that actually, sup{tA, tB} = tA∪B holds true.
In particular, if P(A, U) ∈ sup{tB1 , . . . , tBn} = tB1∪...∪Bn with U 6= X, then A ⊆∗ ⋃i Bi
by Lemma 6.4.

The structure of (P(N)∗,⊆) is very rich, as the following example shows.

Example 6.8. There exists an anti-chain of size c in (P(N)∗,⊆). Although this
fact is well known (see, for example, [24]), we give a brief argument for the
reader’s convenience.

As the poset P(N)∗ is isomorphic to P(Q)∗, it is enough to check that
width(P(Q)∗) = c. For every ρ ∈ R, pick a one-to-one sequence of rational numbers
(rρ

n) converging to ρ. Then, the sets Aρ := {rρ
n : n ∈ N}, ρ ∈ R, form an almost

disjoint family witnessing width(P(Q)∗) = c.

All topologies of the form tA produced so far, including the top and the bottom
element (u0 and p0, resp.) of C (G), are metrizable (so, second countable, since G
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is separable by (3.4) in [23]). This makes it natural to ask whether all compatible
topologies are metrizable. The next theorem and Example 6.10 answer this question
negatively in the strongest possible way.

Theorem 6.9. The poset C (G) is quasi-isomorphic to P(R), so |C (G)| = 2c and C (G)

has chains of length c+.

Proof. According to Proposition 3.1, C (G) embeds into P(R) as (G, u0) is Mackey
and |u0| = c. Therefore, it suffices to show that P(R) embeds into C (G). It is
enough to produce an embedding of P(R) \ {∅} into C (G) \ {p0}. To this end,
we shall replace R by an almost disjoint family A of size c of infinite subsets of N
(see Example 6.8).

For ∅ 6= B ⊆ A, let TB = sup{tA : A ∈ B}. It suffices to prove that
the mapping:

P(A) \ {∅} −→ C (G), B 7−→ TB

is injective. To this end, it suffices to show that TB ≤ TB′ implies B ⊆ B′ for
∅ 6= B,B′ ∈ P(A). Pick A ∈ B and fix a neighborhood U ( X of zero. As
P(A, U) ∈ tA ⊆ TB ⊆ TB′ , there exists a finite subset B′0 ⊆ B′, such that P(A, U) ∈
TB′0 = t⋃B′0 . Then, A ⊆∗ ⋃B′0 by Remark 6.7. Since the finite set {A} ∪ B′0 is a
subfamily of the almost disjoint family A, this may occur only if A = B for some
member B ∈ B′0, i.e., A ∈ B′0 ⊆ B′.

For the last assertion, we need the following notation. For infinite cardinals
κ, λ, we shall write C(κ, λ) if, for a set of size κ, the poset P(κ) has a chain of size λ

(for more details, see [7,25]). In these terms, Sierpinksi has proven that C(2<λ, 2λ)

holds true for every infinite cardinal λ, where 2<λ = sup{2µ : µ < λ}. Now, let λ

be the minimal cardinal, such that 2λ > c. Then, obviously, 2<λ = c, since λ > ω.
As 2λ ≥ c+, C(2<λ, 2λ) implies that C(c, c+) holds true (see also [7] (Corollary 1.6)
for the proof of C(κ, κ+) for arbitrary κ). In other words, P(R) admits chains of
length c+.

By Proposition 3.1, the set of metrizable group topologies in C (G) has
cardinality ≤ cω = c. Hence, the above theorem provides 2c many non-metrizable
topologies in C (G). For the sake of completeness, we provide a short intrinsic proof
of this fact.

Example 6.10. Let A be as in the above proof. We show that TB is not metrizable
whenever B is an uncountable subset of A. Since there are 2c many such sets, this
provides 2c many non-metrizable topologies in C (G).
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Assume that TB is metrizable, and let (Wk)k∈N be a countable neighborhood
basis at zero in TB . For every k, there exists a finite subset Bk of B, such that Wk ∈ TBk .
Hence, there exist a neighborhood Uk of zero in X and Ck ⊆ N with:

Ck =
∗ ⋃Bk and P(Ck, Uk) ⊆Wk. (8)

Since B is uncountable, we can choose A0 ∈ B \
⋃

k∈N Bk. Let U ( X be a
neighborhood of zero. Then, P(A0, U) ∈ tA0 ⊆ TB . Therefore, Wk ⊆ P(A0, U) for
some k ∈ N. Now, the inclusion in (8) yields P(Ck, Uk) ⊆ P(A0, U). Hence, Notation
6.2(b) implies A0 ⊆ Ck =

∗ ⋃Bk. Since these are finitely many members of an almost
disjoint family, we conclude that A0 ∈ Bk, a contradiction.

7. Final Comments and Open Questions

The embedding Fω ↪→ C (G) remains true for many non-compact σ-compact
LCA groups G. Actually, the σ-compact LCA groups G for which our approach
does not ensure an embedding of Fω in C (G) must be non-r-disconnected. Hence,
they must have a very special structure (namely, contain a compact subgroup K,
such that G/K ∼= Rn × L×∏k

i=1 Z(p∞
i ) for some n, m, k ∈ N, a discrete torsion-free

non-r-discrete group L and not necessarily distinct primes pi, see Example 2.6). Still
simpler is this structure in the case when G is supposed additionally to have a
compact open subgroup (this eliminates the vector subgroup Rn). Indeed, in this
case, G must contain an open subgroup of the form K × Zm, for some m ∈ N and
a compact group K, so that G/(K × Zm) ∼= ∏k

i=1 Z(p∞
i ) for some k ∈ N and not

necessarily distinct primes pi.
In the general case, we have proved in [16] that |C (G)| ≥ 3 for every

non-compact LCA group G. In particular, |C (R)| ≥ 3, |C (Z)| ≥ 3 and
|C (Z((p∞))| ≥ 3 for every prime p. Further progress in this direction depends
pretty much on the following:

Questions 7.1. (a) Compute |C (Z)|. Is it infinite? Is it countable? Is it at most c?
At least c?

(b) Compute |C (R)|. Is it infinite? Is it countable? Is it at most c? At least c?
(c) Compute |C (Z(p∞))|, where p is a prime. Is it infinite? Is it countable? Is it at

most c? At least c?

Note that in (a) and (c), the group in question is countable, so that 2c is an
obvious upper bound in both cases.

Any information in the direction of Item (c) will throw light on the poset C (Qπ)

for all π containing p (as Qπ has a quotient isomorphic to Z(p∞), so the poset
C (Z(p∞) embeds into the poset C (Qπ) by Theorem 3.10).
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Clearly, CH is needed in Corollary 1.12 only to eliminate those groups G that
haveω < $(G) < c. We do not know if the assertion from this corollary remains true
without the assumption of CH. In particular, the following question remains open:

Question 7.2. Is C (R⊕⊕ω1
Z2)

q.i.∼= Fω1?

Question 7.3. Let G be a non-precompact second countable Mackey group. Is it true
that |C (G)| ≥ c?

Here comes a somewhat general question:

Problem 7.4. Find sufficient conditions for a metrizable precompact group G to be Mackey
(i.e., have |C (G)| = 1).

Such a sufficient condition was pointed out in [3]: all bounded metrizable
precompact groups are Mackey.

The next question is related to Question 7.3:

Question 7.5. If for a group G, one has |C (G)| > 1, can C (G) be finite? In particular,
can one have a Mackey group G with |C (G)| = 2?

The following conjecture will positively answer Question 7.3 (as well as
Question 7.1) and negatively answer Question 7.5:

Conjecture 7.6. [Mackey dichotomy] For a locally quasi-convex group G, one has either
|C (G)| = 1 or |C (G)| ≥ c.

Positive evidence in the case of bounded groups can be obtained from the recent
results in [26].

Let λ be a non-discrete linear topology on Z. It is easy to see that (Z, λ) is
metrizable and precompact. It is shown in [27] that these groups are not Mackey, i.e.,
|C (Z, λ)| > 1.

Question 7.7. How large can C (Z, λ) be?

Let (G, τ) be infinite torsion subgroup of T equipped with the (precompact
metrizable) topology τ induced by T. It was proven in [28] that (G, τ) is not a Mackey
group, i.e., |C (G, τ)| > 1.

Question 7.8. How large can be C (G, τ) in this case?

Acknowledgments: Dikran Dikranjan was partially supported by Fondazione Cassa di
Risparmio di Padova e Rovigo (Progetto di Eccellenza "Algebraic structures and their
applications"). Elena Martín-Peinador was partially supported by the Spanish Ministerio
de Economía y Competitividad. Project: MTM 2013-42486-P.

Author Contributions: Lydia Außenhofer, Dikran Dikranjan and Elena Martín-Peinador
contributed equally to this work.

194



Conflicts of Interest: The authors declare no conflict of interest.

References

1. Varopoulos, N.T. Studies in harmonic analysis. Proc. Camb. Phil. Soc. 1964, 60, 467–516.
2. Chasco, M.J.; Martín-Peinador, E.; Tarieladze, V. On Mackey topology for groups.

Stud. Math. 1999, 132, 257–284.
3. De Leo, L. Weak and Strong Topologies in Topological Abelian Groups. Ph.D. Thesis,

Universidad Complutense de Madrid, Madrid, Spain, July 2008.
4. De Leo, L.; Dikranjan, D.; Martín-Peinador, E.; Tarieladze, V. Duality Theory for Groups

Revisited: g-barrelled groups, Mackey & Arens Groups. 2015, in preparation.
5. Bonales, G.; Trigos-Arrieta, F.J.; Mendoza, R.V. A Mackey-Arens theorem for topological

Abelian groups. Bol. Soc. Mat. Mex. III 2003, 9, 79–88.
6. Berarducci, A.; Dikranjan, D.; Forti, M.; Watson, S. Cardinal invariants and independence

results in the lattice of precompact group topologies. J. Pure Appl. 1998, 126, 19–49.
7. Comfort, W.; Remus, D. Long chains of Hausdorff topological group topologies. J. Pure

Appl. Algebra 1991, 70, 53–72.
8. Comfort, W.; Remus, D. Long chains of topological group topologies—A continuation.

Topology Appl. 1997, 75, 51–79.
9. Dikranjan, D. The Lattice of Compact Representations of an infinite group. In Proceedings

of Groups 93, Galway/St Andrews Conference, London Math. Soc. Lecture Notes 211;
Cambidge Univ. Press: Cambridge, UK, 1995; pp. 138–155.

10. Dikranjan, D. On the poset of precompact group topologies. In Topology with Applications,
Proceedings of the 1993 Szekszàrd (Hungary) Conference, Bolyai Society Mathematical
Studies; Czászár, Á., Ed.; Elsevier: Amsterdam, The Netherlands, 1995; Volume 4,
pp. 135–149.

11. Dikranjan, D. Chains of pseudocompact group topologies. J. Pure Appl. Algebra 1998, 124,
65–100.

12. Engelking, R. General Topology, (Sigma Series in Pure Mathematics, 6), 2nd ed.;
Heldermann Verlag: Berlin, Germany, 1989.

13. Abramsky, S.; Jung, A. Domain theory. In Handbook of Logic in Computer Science III;
Abramsky, S., Gabbay, D.M., Maibaum, T.S.E., Eds.; Oxford University Press: New York,
NY, USA, 1994; pp. 1–168.

14. Banaszczyk, W. Additive Subgroups of Topological Vector Spaces, Lecture Notes in
Mathematics; Springer Verlag: Berlin, Germany, 1991; Volume 1466.

15. Enflo, P. Uniform structures and square roots in topological groups. Israel J. Math. 1970, 8,
230–252.

16. Außenhofer, L.; Dikranjan, D.; Martín-Peinador, E. Locally quasi-convex compatible
topologies on σ-compact LCA groups. 2015, in preparation.

17. Fuchs, L. Infinite Abelian Groups; Academic Press: New York, NY, USA, 1970.
18. Dikranjan, D.; Shakhmatov, D. Topological groups with many small subgroups. Topology

Appl. 2015, in press.

195



19. Dikranjan, D.; Prodanov, I.; Stojanov, L. Topological Groups (Characters, Dualities, and
Minimal Group Topologies); Marcel Dekker, Inc.: New York, NY, USA, 1990.

20. Bruguera, M.; Martín-Peinador, E. Open subgroups, compact subgroups and
Binz-Butzmann reflexivity. Topology Appl. 1996, 72, 101–111.

21. Außenhofer, L. A note on weakly compact subgroups of locally quasi-convex groups.
Arch. Math. 2013, 101, 531–540.

22. Dikranjan, D.; Protasov, I. Counting maximal topologies on countable groups and rings.
Topology Appl. 2008, 156, 322–325.

23. Dikranjan, D.; Martín-Peinador, E.; Tarieladze, V. Group valued null sequences and
metrizable non-Mackey groups. Forum Math. 2014, 26, 723–757.

24. Sierpinski, W. Cardinal and ordinal numbers; Panstwowe Wydawnictwo Naukowe: Warsaw,
Poland, 1958.

25. Baumgartner, J.E. Almost disjoint sets, the dense set problem and the partition calculus.
Ann. Math. Logic 1976, 10, 401–439.

26. De la Barrera Mayoral, D.; Dikranjan, D.; Martìn Peinador, E. “Varopoulos paradigm":
Mackey property vs. metrizability in topological groups. 2015, in preparation.

27. Außenhofer, L.; de la Barrera Mayoral, D. Linear topologies on Z are not Mackey
topologies. J. Pure Appl. Algebra 2012, 216, 1340–1347.

28. De la Barrera Mayoral, D. Q is not Mackey group. Topology Appl. 2014, 178, 265–275.

196



Open and Dense Topological Transitivity of
Extensions by Non-Compact Fiber of
Hyperbolic Systems: A Review
Viorel Nitica and Andrei Török

Abstract: Currently, there is great renewed interest in proving the topological
transitivity of various classes of continuous dynamical systems. Even though this is
one of the most basic dynamical properties that can be investigated, the tools used by
various authors are quite diverse and are strongly related to the class of dynamical
systems under consideration. The goal of this review article is to present the state of
the art for the class of Hölder extensions of hyperbolic systems with non-compact
connected Lie group fiber. The hyperbolic systems we consider are mostly discrete
time. In particular, we address the stability and genericity of topological transitivity
in large classes of such transformations. The paper lists several open problems and
conjectures and tries to place this topic of research in the general context of hyperbolic
and topological dynamics.

Reprinted from Axioms. Cite as: Nitica, V.; Török, A. Open and Dense Topological
Transitivity of Extensions by Non-Compact Fiber of Hyperbolic Systems: A Review.
Axioms 2016, 4, 84–101.

1. Introduction

A dynamical system is a continuous map f of a topological space X. We
emphasize that in this paper, X will be mostly a non-compact set and f will
be invertible. Given a dynamical system (X, f ), a basic property that one may
study is topological transitivity, that is the existence of a dense forward orbit
x, f (x), f 2(x), . . . . If X is locally compact separable without isolated points, then
(X, f ) is topologically transitive if and only if for any non-empty open subsets
U, V ⊂ X, there exists n ≥ 1, such that f n(U) ∩V 6= ∅. The topological spaces that
we will work with, Riemannian manifolds and phase spaces of shifts of the finite
type, satisfy these conditions. Let us observe that other, sometimes equivalent with
ours, definitions are introduced in the literature for topological transitivity. One
may refer to the survey papers of Blanchard [1] or Kolyada-Snoha [2] for a more
in-depth discussion and other definitions/interpretations of topological transitivity.
This notion is also closely related to the notion of topological chaos introduced
by Devaney [3]. The original definition of topological chaos given by Devaney, in
addition to topological transitivity, requires the existence of a dense set of periodic
points and the sensitive dependence of initial data for the dynamical system. It was

197



later shown by Banks et al. [4] that the sensitivity of the initial data is a consequence
of the other two conditions.

Various examples of topological transitive transformations are constructed in
the literature. In some respects, topological transitivity is the topological counterpart
of ergodicity. We recall that a probability measure µ on a measurable space X
is ergodic with respect to a measurable map f : X → X if and only if the only
f -invariant subsets, up to subsets of measure zero, are X and the empty set. If
X is compact topological space and the continuous map f has an invariant Borel
probability measure µ, which is positive on open sets, then topological transitivity
is implied by ergodicity. It was shown by Oxtoby and Ulam [5] that ergodicity is a
residual property, in the set of homeomorphisms of a manifold X of dimension at
least two, if µ is a nonatomic measure of full support with µ(∂X) = 0. We recall that
a residual property for a complete metric space is one that is valid for a second Baire
category subset.

Examples of topological transitive transformations of the plane are constructed
by Besicovitch [6,7] and Shnirelman [8]. Their work was generalized by Sidorov [9],
who constructed topological transitive extensions of a topologically transitive map
with fiber an arbitrary Banach space.

The class of hyperbolic dynamical systems, introduced in the 1960s–1970s
by Anosov and Sinai [10] in the USSR and by Bowen [11] and Smale [12] in the
USA, provides many examples of ergodic and, in particular, topologically transitive
transformations. Hyperbolic systems have a splitting of the tangent bundle into
two invariant subbundles, one contracting and one expanding. These bundles are
integrable into stable/unstable foliations. A standard reference for the theory of
hyperbolic dynamical systems is the monograph of Katok and Hasselblatt [13].
During our exposition, we will assume as known or already defined many standard
notions discussed there. Similar techniques can be applied to continuous dynamical
systems, such as hyperbolic flows. Building on an argument of Hopf [14], who proved
the ergodicity of the geodesic flow of a surface of negative curvature, Anosov [15]
proved the ergodicity of the geodesic flow of any manifold of negative curvature. A
key ingredient of the proof is the existence of invariant stable and unstable foliations
for the geodesic flow. These foliations are, in general, only transversally Hölder, but
exhibit the absolute continuity of the holonomy maps; this allows the Hopf argument
to be carried out.

Partially hyperbolic diffeomorphisms were introduced in the 1980s by Brin and
Pesin [16] as a generalization of hyperbolic diffeomorphisms. Partially hyperbolic
diffeomorphisms have a splitting of the tangent bundle into three invariant
subbundles, one contracting, one expanding and one, called the center bundle,
for which the expansion/contraction is in-between. The contracting and expanding
subbundles are always integrable into stable/unstable foliations. It was expected that,
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in the presence of a smooth invariant volume, ergodicity with respect to the volume
measure should be true for many of these transformations. Brin and Pesin [16]
proved ergodicity under the assumptions that the stable/unstable foliations are
smooth and form an accessible pair, that is, one can travel from any point in the
manifold to any other point in the manifold via a path built out of segments sitting
inside stable/unstable leaves. The argument was carried forward by Grayson, Pugh
and Shub [17], Pugh and Shub [18] and Burns and Wilkinson [19]. The state of the
art in this direction is that the accessibility of the pair of stable/unstable foliations
implies ergodicity. Nevertheless, accessibility turned out to be difficult to prove.
Some progress was done in the case of a one-dimensional center subbundle; see,
e.g., [20]. Hertz [21] proved the stable ergodicity of certain linear automorphisms of
the torus. Furthermore, Dolgopyat and Wilkinson [22] proved that stable accessibility
is dense in the C1-topology for the class of volume preserving partially hyperbolic
diffeomorphisms. Pugh and Shub conjectured that in C2 and even Cr, r ≥ 2 topology,
accessibility is open and dense.

If the invariant volume does not exist, then even in the presence of partial
hyperbolicity, different tools are needed in order to study topological transitivity.
Given a dynamical system (X, f ), a point x ∈ X is called recurrent if for any
neighborhood U of x, there exists a positive integer n ≥ 1, such that f n(x) ∈ U. In
particular, any periodic point is recurrent. Brin [23] proved that a C1 diffeomorphism
that has an accessible pair of stable/unstable foliations and a dense set of recurrent
points is topologically transitive. This result has, nevertheless, limited applicability
due to the difficulty of proving the accessibility and density of recurrent points.
In particular, it is difficult to exhibit a dense set of periodic points for such
transformations. Open sets of transitive partially hyperbolic diffeomorphisms are
found by Bonatti and Diaz [24], building on previous examples found by Shub [25].

A robust obstruction to topological transitivity is the existence of a trapping
region, i.e., a non-empty open proper subset U ⊂ M, such that f (Ū) ⊆ U. When this
obstruction does not occur, it follows from the work of Bonatti and Crovisier [26]
that a generic C1 diffeomorphism of a compact Riemannian manifold is topologically
transitive. This result relies on the Pugh-Hayashi [27–29] closing lemma, and it is not
available beyond the C1 category.

Another direction currently pursued in the literature is that of linear topological
chaos, that is, the study of topological chaos for infinite dimensional continuous
linear operators [30]. The techniques employed in linear topological chaos are quite
different from those employed in the study of hyperbolic dynamical systems and
will not be discussed in this review.

In the rest of this review paper, we summarize the results about the topological
transitivity for various classes of non-compact Lie group extensions of hyperbolic
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systems. These classes of dynamical systems can be thought of as thin classes of
partially hyperbolic systems.

2. Lie Group Extensions of Hyperbolic Systems: Basic Definitions and the
Main Conjecture

Definition 1. Consider a continuous transformation f : X → X, a Lie group Γ and a
continuous map β : X → Γ called a cocycle. These determine a skew product, or Γ-extension,

fβ : X× Γ→ X× Γ, fβ(x, γ) = ( f x, γβ(x))

It is assumed throughout the rest of the paper that X is a hyperbolic basic set.
Of interest to us is whether non-compact Lie group extensions of a hyperbolic basic
set are typically topologically transitive.

Definition 2. Let (M, dM) be a smooth manifold endowed with a Riemannian metric. Let
f : M → M be a smooth diffeomorphism and X ⊂ M a compact and f -invariant subset
of M. We say that X is hyperbolic if there exists a continuous D f -invariant splitting Es⊕ Eu

of the tangent bundle TX M and constants C1 > 0, 0 < λ < 1, such that for all n ≥ 0 and
x ∈ X, we have:

‖(D f n)xv‖ ≤ C1λn‖v‖, v ∈ Es
x

‖(D f−n)xv‖ ≤ C1λn‖v‖, v ∈ Eu
x

(1)

If X coincides with M, then f is called hyperbolic, or Anosov, diffeomorphism.
We say that X is locally maximal if there exists an open neighborhood U of X, such that

every compact f -invariant set of U is contained in X. A locally maximal hyperbolic set X
is a basic set for f : M → M if f : X → X is transitive and X does not consist of a single
periodic orbit.

We present some motivation for the study of Lie group extensions of hyperbolic
systems. These transformations have many common properties with partially
hyperbolic diffeomorphisms. If the fiber is a compact connected Lie group,
the cocycle β is at least C1 and the hyperbolic basic set (X, f ) is an Anosov
diffeomorphism, then the extension is a partially hyperbolic diffeomorphism. In
general, we will see that if a certain bunching condition for the center direction holds,
then fβ has stable and unstable foliations. If the Lie group Γ is not compact, the
extension fβ acts on a space that does not support an invariant probability measure.
Thus, the class of non-compact Lie group extensions can be considered as a test bed
for the more general class of partially hyperbolic diffeomorphisms that do not have a
nice invariant probability measure.
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Given a connected Lie group Γ and a cocycle β : X → Γ, we consider the
Γ-extension fβ : X× Γ→ X× Γ. We say that the cocycle β is topologically transitive
(for brevity, transitive,) if the corresponding skew product fβ is transitive.

Let LΓ be the Lie algebra of Γ. We denote by eΓ the identity element of Γ. Let
Ad denote the adjoint representation of Γ on LΓ. Let ‖ · ‖ be a norm on LΓ. There is a
metric d on Γ with the following properties (see Pollicott and Walkden [31]):

1. d(γγ1, γγ2) = d(γ1, γ2);
2. d(γ1γ, γ2γ) ≤ ‖Ad(γ)‖d(γ1, γ2);

for any γ, γ1, γ2 ∈ Γ.

Definition 3. Let f : X → X be a map and β : X → Γ a cocycle. For k ≥ 1, we write
f k
β(x, γ) = ( f kx, γβ(k, x)), where:

β(k, x) = β(x)β( f x) · · · β( f k−1x) =
k−1

∏
j=0

β( f jx)

(occasionally, we use the last formula to keep notation simple; its meaning is the ordered
product given by the middle expression).

If Q is a trajectory of f of length k (i.e., Q = {x, f (x), . . . , f k−1(x)} for some x), then
we define the height of β over Q to be β(Q) = β(k, x). In particular, if x is a periodic point
of period `, then the height of the corresponding periodic orbit P is β(P) = β(`, x).

By abuse of notation, we often refer to “the periodic orbit P” instead of “the orbit of the
periodic point x” when x is clear from the context.

Definition 4. Given a cocycle β : X → Γ over f : X → X, define µ ≥ 1 to be:

µ = max
{

lim
n→∞

sup
x∈X
‖Ad(β(n, x))‖1/n, lim

n→∞
sup
x∈X
‖Ad(β(n, x))−1‖1/n

}
For f fixed, we say that the cocycle β has subexponential growth if µ = 1.

Remark 1. The subexponential growth condition is automatically satisfied for any cocycle
if the group Γ is compact, nilpotent or a semidirect product of compact and nilpotent. This
follows from the well-known result that nilpotent Lie groups have polynomial growth [32].

Recall the definition of cohomology:
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Definition 5. Let Γ be a topological group. If β1, β2 : X → Γ are continuous functions and
f : X → X is a continuous map, then β1, β1 are called cohomologous (over f ) if there exists
a continuous map u : X → Γ, such that:

β1 = (u ◦ f )β2u−1

In [33], we proposed a general conjecture about topological transitivity in the
class of Hölder cocycles. We start by observing that if the cocycle β takes values in
a proper closed sub-semigroup S of the fiber Γ, then obviously fβ is not transitive.
An example is the group Γ = R with sub-semigroup S consisting of the set of
non-negative numbers. As IntS 6= ∅, we can construct open sets of nontransitive
R-extensions. Another example is the group Γ = SL(n,R) with sub-semigroup S
consisting of matrices with non-negative entries. Since IntS 6= ∅, again we can
construct open sets of nontransitive SL(n,R)-extensions.

Our conjecture is that this situation is the only essential obstruction
to transitivity.

Conjecture 1 (Main Conjecture). Assume that X is a hyperbolic basic set for f : X → X
and Γ is a finite-dimensional connected Lie group. Among the Hölder cocycles β : X → Γ
with subexponential growth that are not cohomologous to a cocycle with values in a maximal
sub-semigroup of Γ with a non-empty interior, there is a Hölder open and dense set for which
the extension fβ is transitive.

3. Statements of Available Results

The conjecture is proven for various classes of Lie groups. The techniques used
so far are quite diverse and seem to depend heavily on the particular properties of
the group that appears in the fiber.

3.1. Γ Compact Connected Lie Group

We start by observing that in this case, closed sub-semigroups coincide with
closed subgroups and that there are no proper sub-semigroups with a nonempty
interior. It was proven by Brin [23] that if the fiber Γ is a compact connected Lie
group, then topologically transitive extensions of a transitive Anosov diffeomorphism
contain a set that is open and dense in the C2-topology. An extension of Brin’s
general transitivity result is obtained in [34,35], in which accessibility is replaced by
ε-accessibility for any ε > 0. This improvement allows one to consider extensions
with a disconnected base, such as subshifts of the finite type.

As observed in [20], Brin’s result also holds in the Hölder topology. In fact,
over an Anosov diffeomorphism, for any r > 0, the Cr cocycles that are transitive
contain a Hölder-open (meaning Cs-open for any s ∈ (0, 1), s ≤ r) and Cr-dense
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set, and this result generalizes to extensions of a hyperbolic attractor. The latter
result does not hold for extensions of general hyperbolic basic sets when r < 1 (in
particular, the result is false if (X, f ) is topologically conjugate to a subshift of finite
type and Γ is a torus: the interior of the transitive Cr-cocycles contains no cocycle of
higher smoothness). However, for compact group extensions of general hyperbolic
basic sets, Field et al. [36] proved that the transitive extensions contain a set that is:
(i) Hölder open and dense (proving the Main Conjecture 1); and (ii) C2-open, Cr-dense
for all r ≥ 2. See, also, [37–39].

Burns and Wilkinson [40] generalized Brin’s result by showing the stability of
the ergodicity of the extensions with compact fiber for perturbations in the class of
Cr diffeomorphisms.

3.2. Γ = Rn

In this case, the maximal sub-semigroups with non-empty interior are the
half-spaces whose bounding hyperplane contains the origin. Hence, stable
transitivity is certainly not a generic property of Rn-extensions. However, there
are no further obstructions. We recall that a continuous map f of a topological space
X is called weakly topologically mixing if f × f is topologically transitive. We can
associate with each periodic orbit f nx = x a height β(n, x) := ∑n−1

i=0 β( f ix). We
denote by PDβ = {β(n, x) : f nx = x, x ∈ X} the collection of all heights over the
closed orbits of f .

Nitica and Pollicott [41] proved the following result:

Theorem 1. Let X be an infranilmanifold, f : X → X an Anosov diffeomorphism and
β : X → Rn a Hölder cocycle. Then, the following are equivalent:

1. the cocycle β is not cohomologous to a cocycle that takes values in a half-space;
2. the set PDβ is not separated by any hyperplane passing through the origin;
3. the extension fβ is transitive;
4. the extension fβ is C0-stably transitive;
5. the extension fβ is weakly mixing;
6. the extension fβ is C0-stably weakly mixing;
7. for any direction in Rn, there exist orbits of fβ that are unbounded in the positive sense

and orbits that are unbounded in the negative sense (i.e., ∀v ∈ Rn − {0}, ∃x, y ∈ X,
∀N > 0, ∃n, m ≥ 0 such that 〈β(n, x), v〉 ≥ N and 〈β(m, y), v〉 ≤ −N).

Remark 2. We note that, due to a result of Bousch [42], one can check if a cocycle β is
cohomologous to one that takes values in a half-space by looking at the periodic data PDβ.

Therefore, one has a complete dichotomy for an Rn-extension fβ over an infranil
Anosov diffeomorphism: either it is transitive (and, hence, stably transitive), or β is
cohomologous to a cocycle with values in such a half-space. Moreover, the transitive
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Hölder Rn-extensions fβ are actually C0-stably transitive, that is, if β′ is C0-close
enough to β and fβ is transitive, then fβ′ is transitive.

A crucial ingredient in the proof of Theorem 1 is that the induced map in the
first Čech cohomology groups f ∗ : H1(X,Z) → H1(X,Z) does not have one as
an eigenvalue. This is known to be the case for an Anosov diffeomorphism of an
infranilmanifold, and it is an important open question as to whether this is the case
for all Anosov diffeomorphisms (cf. [43]) (indeed, it is an open question as to whether
there are Anosov diffeomorphisms on spaces other than infranilmanifolds).

Moss and Walkden [44] replace the condition about the induced map in
cohomology by the weaker condition that the first Čech cohomology group H1(X,Z)
has finite rank, where X is a hyperbolic basic set. Moreover, the action in the base is
extended to hyperbolic flows. Their proof gives an explicit and global description
of the set of functions β that give rise to transitive skew-products in terms of the
cohomology of the hyperbolic basic set X.

We recall that a continuous map f of a topological space X is called topologically
mixing if for any open subsets U, V ⊆ X, there exists a positive integer N, such that
f n(U) ∩V 6= ∅ for any n ≥ N. The following problem seems to be open.

Problem 1. Find a topologically mixing R-extension of an Anosov diffeomorphism.

For general hyperbolic basic sets, transitive Rn-extensions need not be stably
transitive. However, let S denote the set of cocycles that are not cohomologous to
a cocycle with values in a half-space. For cocycles in S, Field et al. [36] proved a
result identical to that stated above for compact group extensions. Again this proves
the Main Conjecture 1 for Rn-extensions. Similar results hold for general Abelian
finite-dimensional Lie groups Γ = Rn ×Td, where Td is a d-dimensional torus.

3.3. Γ Is a Euclidean-Type Group

An important test case of a Euclidean-type group is the special Euclidean group,
which is the semidirect product Γ = SE(n) = SO(n)nRn with the action of SO(n)
on Rn given by the usual matrix multiplication. In this case, it is easy to see that there
are no proper sub-semigroups with non-empty interior. It is shown in [33,45,46] that
when n is even, the set of cocycles that are transitive is Hölder-open and Cr-dense,
thus solving the conjecture in this case. The conjecture remains open for n ≥ 3 odd.
The difference between the case n odd and n even is due to the different behavior
of a generic element in Γ: if n is even, then for a residual set of elements in Γ, the
closure of the semigroup generated by an element is a compact subgroup of Γ; if n is
odd, then for a residual set of elements in Γ, the closure of the semigroup generated
by an element is an unbounded subset of Γ.

204



Problem 2. For 0 < α < 1, find a Cα-stable transitive SE(3)-extension of an Anosov
diffeomorphism.

In this direction, we show in [47] that for SE(n)-extensions, n ≥ 3 odd, the
transitivity is generic.

Theorem 2. Let X be a basic hyperbolic set for f : X → X. Let r > 0, and let n ≥ 3 be odd.
Amongst the Cr cocycles β : X → SE(n), the transitive cocycles form a residual set.

More generally, one may consider Euclidean-type groups of the form Γ =

G nRn, where G is a compact connected Lie group acting linearly (and orthogonally)
on Rn, and the group multiplication is given by:

(g1, v1)(g2, v2) = (g1g2, v1 + g1v2)

Let Fix G = {v ∈ Rn : gv = v for all g ∈ G}. Set π : Γ → Fix G to be
the projection onto the Rn-component and then orthogonal projection onto Fix G.
If Fix G 6= {0}, then there is an obvious obstruction to transitivity, namely that
πβ : X → Fix G takes values in a half-space. More generally, if πβ is cohomologous
to a cocycle with values in a half space, then fβ is not transitive. This is the only
obstruction in generalizing Theorem 2 to general Euclidean-type groups.

Theorem 3. Let X be a basic hyperbolic set for f : X → X, and let Γ = G nRn be a
Euclidean-type group. Let r > 0. Define S to be the space of Cr cocycles β : X → Γ for
which πβ : X → Fix G is not cohomologous to a cocycle with values in a half-space.

Then, S is an open subset of the space of Cr cocycles, and the transitive cocycles
β : X → Γ form a residual subset of S .

Remark 3. (1) If Fix G = 0, then there is no obstruction to transitivity, so Theorem 2 is a
special case of Theorem 3.

(2) By a standard argument, the set of transitive Cr cocycles can be written as a
countable intersection of Cr-open sets. We include the argument below. Hence, it suffices to
prove the density in Theorems 2 and 3.

Choose a countable basis {Uk}k of the topology on X × Γ and denote by Cr
k,` the Cr

cocycles β ∈ S for which there is a positive integer n, such that f n
β (Uk) ∩U` 6= ∅. Each set

Cr
k,` is clearly Cr-open, and f is transitive if and only if β is in each of the sets Cr

k,`.
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3.4. Γ Is a Nilpotent Lie Group

Definition 6. For n ≥ 1, letHn denote the group consisting of matrices of the form:

(a, b, c) :=

 1 aT c
0 In b
0 0 1

 ∈ Matn+2(R) (2)

where a, b ∈ Rn, c ∈ R and In is the n-dimensional identity matrix.

Remark 4. (1) We can identifyHn with Rn ⊕Rn ⊕R endowed with the multiplication:

(a, b, c)(A, B, C) = (a + A, b + B, c + C + aT B) (3)

where a, b, A, B ∈ Rn, c, C ∈ R
(2)H1 is the standard three-dimensional Heisenberg group.

The center of Hn is [Hn,Hn] = {(0, 0, c)} = R. Denote Ĥn = Hn/R ∼= R2n. If
β : X → Hn is a cocycle, denote by β̂ : X → Ĥn the corresponding quotient cocycle.
There is an obvious obstruction to transitivity, namely that β̂ : X → Ĥn ∼= R2n takes
values in a half-space bounded by a hyperplane passing through the origin (for
brevity, call this a half-space from now on). More generally, if β̂ is cohomologous to a
cocycle with values in a half-space, then fβ is not transitive.

If r > 0, let S r(X,Hn) be the set of Cr cocycles β : X → Hn for which β̂ is
not cohomologous to a cocycle with values in a half-space. The main result in [48],
improving on a weaker result showing only genericity and proven in [49], is:

Theorem 4 ([48, Theorem 1.4]). Assume that X is a hyperbolic basic set for f : X → X.
Let r > 0. Then S r(X,Hn) contains a dense and open set of transitive cocycles.

More precisely, we prove:

Theorem 5 ([48, Theorem 1.5]). Let X be a hyperbolic basic set for f : X → X and
β : X → Hn a Hölder cocycle. If β̂ : X → R2n is transitive, then so is β.

This implies Theorem 4, because, by [36,41]:

Theorem 6 ([48, Theorem 1.6]). For r > 0, there is an open and dense set in S r(X,Rd)

consisting of transitive cocycles.

A new technical tool needed in the proof of Theorem 4, which is of independent
interest, is a diophantine approximation result, which shows the existence of an
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infinite set of approximate positive integer solutions for a diophantine system of
equations consisting of a quadratic indefinite form and several linear equations,
provided exact solutions exist over R. The set of approximate solutions can be chosen
to point in a certain direction; this direction can be chosen from a residual subset of
full measure of the set of real directions solving exactly the system of equations.

Theorem 7 ([48, Theorem 6.2]). For d ≥ 2, assume given in Rd a (homogeneous) quadratic
form Q and k (homogeneous) linear forms L1, L2, . . . , Lk, such that Q|∩Ker Li is indefinite.

Assume that rankQ ≥ 2k + 3. Then, for a residual, full measure set (in the induced
topology/Lebesgue measure) of vectors v 6= 0 in:

{Q = 0} ∩ {Li = 0, 1 ≤ i ≤ k}

for any ε > 0, there are xn ∈ Zd, such that:

(1) ‖xn‖ → ∞,
(2) sup |Q(xn)| < ∞,
(3) dist(xn,R+v) ≤ ε.

In particular,
|Li(xn)| ≤ Cε, for all 1 ≤ i ≤ k and all n

with a constant C > 0 determined by the linear forms.

There is a class of nilpotent groups, analogous to the Heisenberg groups, but
with a compact center, for which we obtain stronger results and for which the proofs
are much simpler.

The normal subgroup ofHn generated by (0, 0, 1) is isomorphic to Z. Denote by
Γn the quotientHn/Z. The center of Γn is R/Z ∼= S1; let Γ̂n = Γn/S1 ∼= R2n.

If β : X → Γn is a cocycle, denote by β̂ : X → R2n the corresponding quotient
cocycle. For r > 0, let S r(X, Γn) be the set of Cr cocycles β : X → Γn for which β̂ is
not cohomologous to a cocycle with values in a half-space.

Theorem 8 ([49, Theorem 1.5]). Assume that X is a basic hyperbolic set for f : X → X.
Let n ≥ 1, r > 0. Then, there is an open and dense set of transitive cocycles in S r(X, Γn).

3.5. Γ Is a Compact and Nilpotent Semidirect Product

In this subsection, we follow [50].

Definition 7. A connected Lie group Γ is called a good semidirect product if it is a semidirect
product Kn N, where N is a nilpotent Lie group, K is a compact Lie group and, in addition, if
T is a maximal torus in K; the only element of N fixed under conjugation by T is the identity.
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Definition 8. A connected Lie group Γ is perfect if its commutator subgroup [Γ, Γ]
coincides with Γ.

Theorem 9 ([50, Theorem 1.1]). Assume that X is a hyperbolic basic set for f : X → X.
Let Γ = K n N be a good semidirect product that is perfect. Then, in the class of Cr-cocycles
β : X → Γ, r > 0, the transitive ones contain an open and dense set.

We describe next a large class of Lie groups that satisfy the assumptions in
Theorem 9.

Definition 9. Let K be R or C. Let n be a positive integer, and let n = n1 + n2 + · · ·+ n`,
where ni, 1 ≤ i ≤ ` are also positive integers. Define G(n1, n2, . . . , n`,K) to be the subgroup
of GL(n,K), which consists of all block matrices:

A1 B1,2 B1,3 . . . B1,`
0 A2 B2,3 . . . B2,`
0 0 A3 · · · B3,`
...

...
...

. . .
...

0 0 0 . . . A`

 (4)

where:

• the block Ai is an arbitrary matrix in the orthogonal group SO(ni) (respectively, the
unitary group U(ni)), 1 ≤ i ≤ `;

• the block Bi,j is an arbitrary matrix in Mat(ni, nj), for 1 ≤ i ≤ `− 1, i + 1 ≤ j ≤ `,
• the blocks below the diagonal are zero.

Remark 5. For n ≥ 3, the partition (n− 1, 1) gives the special Euclidean group SE(n− 1).

Theorem 10 ([50, Theorem 1.2]). Let K be R or C. Let n ≥ 3 be an integer and n1 + n2 +

· · ·+ n` = n a partition of n, where (n1, n2, . . . , n`) are even integers, all greater or equal
to four, except possibly for a single occurrence of one. Then, Γ = G(n1, n2, . . . , n`,K) is a
good semidirect product, which is perfect.

Problem 3. If ni = 2, for some 1 ≤ i ≤ `, and if there is no more than one one among the
ni’s, then the group G(n1, n2, . . . , n`,R) is a good semidirect product that is not perfect. If
there are at least two ones among the ni’s, then the group G(n1, n2, . . . , n`,R) is not a good
semidirect product. With the exception of the case G = SE(2) = G(2, 1,R), solved in [46]
using results about extensions with Abelian fiber, Theorem 10 leaves open the transitivity
conjecture for these cases.
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Definition 10. If Γ is a topological group, we call g ∈ Γ compact if the closure of the
subgroup generated by g is compact. We denote by C(Γ) the set of compact elements in Γ.

Remark 6. The proof of Theorem 9 is based on the existence of an open dense set of compact
elements in Γ. It is shown in [51] that if a connected Lie subgroup H of GL(n,K) contains
an open neighborhood of the identity in which compact elements are dense and is maximal
with this property, then H is conjugate to a group G(n1, n2, . . . , n`,K). This remark shows
the optimality of our results and the limitations of the method. In order to solve Problem 3,
one needs to develop new techniques.

3.6. Γ Is a Non-Compact Semisimple Lie Group

The conjecture is not verified for any non-compact semisimple Lie group.
Nevertheless, for Γ = SL(2,R) and, more generally, for Γ = Sp(n,R), open sets
of transitive extensions are constructed in [33]. Here is a brief description of the
construction. One uses the existence of compact elements in Γ that are stably compact
under small perturbations. No such elements are known in SL(3,R) or many
other non-compact semisimple Lie groups. These compact elements can be chosen
arbitrarily close to the identity. We start with the identity cocycle β. After a small
perturbation, we can arrange for the height of β over the orbit of a fixed periodic
point x0 ∈ X to be a stably compact element. Using the method described in Section 4,
this allows one to construct a set of generators for Γ in the range Lβ(x0) (defined
in Section 4) that are close to the identity. The generating property is stable under
small perturbations due to a classical result of Kuranishi [52]. In conjunction with
Theorem 11 in Section 4, this gives a stably transitive extension with fiber Sp(n,R).

The following problem is left open:

Problem 4. For α ∈ (0, 1), find a Cα-stable transitive SL(3,R)-extension of an Anosov
diffeomorphism.

4. Criterion for Transitivity

In order to prove the topological transitivity of extensions with non-compact
fiber, sometimes we are able to use the methods developed by Brin in the proof of his
general result mentioned in the Introduction. This is due to the existence of the pair
of stable/unstable foliations for the extension and the fact that generic accessibility
for the pair is easy to prove in some cases. The difficult part is to show the density
of recurrent points. The compact factors in Γ are sometimes easy to accommodate,
due to the existence of compact elements. See [46] for the case of Γ = SE(2) and
Γ = K×Rn with K compact.
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We denote by Ws(x) and Wu(x) the stable and unstable leaves of the hyperbolic
dynamical system f through the point x ∈ X. The next lemma is a consequence
of [20, Appendix A]. Detailed proofs can be found in [53].

Lemma 1. Assume that X is a hyperbolic basic set for f : X → X, that Γ is a connected
Lie group and β : X → Γ an α-Hölder cocycle that has subexponential growth. Then, the
Γ-extension fβ : X× Γ→ X× Γ admits stable and unstable foliations, which are α-Hölder
and invariant under right multiplication by elements of Γ. The stable and unstable leaves of
fβ through (x, eΓ) ∈ X× Γ are the graphs of the functions:

γs
x : Ws(x)→ Γ, γs

x(y) = lim
n→∞

β(n, x)β(n, y)−1

γu
x : Wu(x)→ Γ, γu

x(y) = lim
n→∞

β(−n, x)β(−n, y)−1

These functions are α-Hölder and vary continuously with the cocycle β in the following
sense: if βk → β in the C0-topology and βk remains Cα-bounded, then γs

k,x → γs
x and

γu
k,x → γu

x on Ws
loc(x) in the C0-topology.

We call the values of the functions γs
x, γu

x holonomies along stable/
unstable leaves.

A new criterion for topological transitivity applicable to extensions was
developed in [33]. One of the key notions introduced in [33] is:

Definition 11. Let Γ be a connected Lie group, X a basic hyperbolic set for f : X → X,
β : X → Γ a cocycle and fβ : X× Γ→ X× Γ the skew-extension. Given x ∈ X, let:

Lβ(x) = {γ ∈ Γ : there exist xk ∈ X and nk > 0 such that xk → x and f nk
β (xk, eΓ)→ (x, γ)}

We will refer to Lβ(x) as the range of β over x.

That is, the set Lβ(x) consists of the possible limits limk→∞ β(nk, xk), subject to
xk → x and f nk (xk) → x. Note that we do not require that nk → ∞ or that xk 6= x.
Clearly, Lβ(x) is a closed subset of Γ.

The following theorem is [33, Lemma 3.1, Theorem 3.3].

Theorem 11. Assume that X is a hyperbolic basic set for f : X → X, that Γ is a connected
Lie group and β : X → Γ a Hölder cocycle that has subexponential growth. Then:

(1) Lβ(x) is a closed semigroup of Γ for each x ∈ X.
(2) If there exists a point x0 ∈ X, such that Lβ(x0) = Γ, then β is a transitive cocycle.
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The following lemma is [33, Lemma 2.2]. Briefly, it says that the heights of fβ

over two nearby trajectories in the base are close, independent of the lengths of the
trajectories. This result is used in the constructions of elements in Lβ.

Lemma 2. Assume that X is a hyperbolic basic set for f : X → X, that Γ is a connected Lie
group and β : X → Γ an α-Hölder cocycle that has subexponential growth. Then, there is a
constant C5 > 0 with the following property.

For any ε > 0 sufficiently small, any n ≥ 1 and any two trajectories xk = f k(x0),
yk = f k(y0), such that dM(xk, yk) < ε for 0 ≤ k ≤ n− 1,

d(β(n, x0), β(n, y0)) ≤ C5(‖Ad(β(n, x0))‖+ 1)εα

5. Admissible Sequences of Products of Holonomies

We observe that a priori, the set Lβ introduced in the previous section may be
empty. In this section, we describe a method for obtaining elements in Lβ. We follow
closely [47].

Throughout this section, (M, dM) is a Riemannian manifold, X ⊂ M is
a basic hyperbolic set for f : X → X with contraction constant λ ∈ (0, 1)
satisfying (1), Γ a connected Lie group and β : X → Γ an α-Hölder cocycle that
has subexponential growth.

Definition 12. By a periodic heteroclinic cycle, we mean a cycle consisting of points
p1, . . . , pk that are periodic for the map f , have disjoint trajectories, such that pj is transverse
heteroclinic to pj+1 through a point ζ j ∈ Wu(pj) ∩Ws(pj+1), for j = 1, . . . , k (where
pk+1 = p1).

Let P1, . . . , Pk be the corresponding periodic orbits and denote the periods by `1, . . . , `k.
Denote by Oj the heteroclinic trajectory from pj to pj+1 (of the point ζ j chosen above), and
by Hj the holonomy along this heteroclinic connection (that is, along Wu(pj) from pj to ζ j
and then along Ws(pj+1) from ζ j to pj+1).

Replace the heteroclinic orbit Oj from pj to pj+1 by the trajectory Qj of length
`j Mj + `j+1Mj+1 that spends time `j Mj in the first half of Oj and time `j+1Mj+1 in
the second half of Oj; that is, Qj = { f n(ζ j) | −`j Mj ≤ n < 0} ∪ { f n(ζ j) | 0 ≤ n <

`j+1Mj+1}). For the trajectory connecting pk to pk+1, we allow M1 and Mk+1 to be
distinct. The positive integers Mj will be chosen later.

Consider the heights β(Pj) and β(Qj) over the periodic orbits Pj and
trajectories Qj.
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Lemma 3. For j = 1, . . . , k, the limit:

lim
Mj ,Mj+1→∞

β(Pj)
−Mj β(Qj)β(Pj+1)

−Mj+1 = Hj

exists and is the product of the holonomies along the unstable and stable leaves of Oj, from
pj to pj+1.

Proof. This follows from Lemma 1.

Definition 13. Consider a sequence of vectors N(1), N(2) . . . ∈ Nk+1 whose entries are
positive integers. Write N(i) = (M1(i), . . . , Mk+1(i)). The sequence is admissible if there
is a constant C2 ≥ 1, such that Mp(i)/Mq(i) ≤ C2, for all p, q = 1 . . . , k + 1 and all i ≥ 1.

If N = (M1, . . . , Mk+1) is a sequence, we write N → ∞ if Mp → ∞ for
p = 1, . . . , k + 1.

Theorem 12. Let N = (M1, . . . , Mk+1) ∈ Nk+1. Define:

A(N) = β(P1)
M1 H1 β(P2)

2M2 H2 · · · β(Pk)
2Mk Hk β(P1)

Mk+1

If the limit A = limN→∞ A(N) exists along an admissible sequence N(1), N(2), . . . ,
then A ∈ Lβ(p1).

In the remainder of this section, we prove Theorem 12. From now on, we assume
for notational simplicity that Pj = pj are fixed points (so, `j = 1).

Given N = (M1, . . . , Mk+1) ∈ Nk+1, define:

|N| = (M1 + Mk+1)/2 + ∑k
j=2 Mj, min N = min{M1, . . . , Mk+1}, max N = max{M1, . . . , Mk+1}

Note that for an admissible sequence N, we have max N ≤ C2 min N. Define:

Hj(N) = β(Pj)
−Mj β(Qj)β(Pj+1)

−Mj+1 .

By Lemma 3, limN→∞ Hj(N) = Hj (independent of the sequence N). Moreover,
by [20, proof of Theorem 4.3(g)], there is δ0 ∈ (0, 1), such that:

d(Hj(N), Hj) = O(δmin N
0 ) (5)

Recall that Qj is a trajectory of length Mj + Mj+1 that shadows the heteroclinic
connection from pj to pj+1. Concatenate these trajectories to form a periodic
pseudo-orbit Q = Q1 . . . Qk of length 2|N|. Then, Q is a δ-pseudo-orbit with
δ ≤ C3λmin N , where C3 > 0 is a constant (depending on f : X → X) and λ is
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the contraction constant. By the hyperbolicity of X, there is a periodic orbit Q̃
of length 2|N| that ε-shadows Q with ε ≤ C4λmin N , where C4 > 0 is a constant.
See [54, page 74] for standard shadowing techniques.

Proposition 1.

(1) β(Q) = β(P1)
M1 H1(N) β(P2)

2M2 H2(N) · · · β(Pk)
2Mk Hk(N) β(P1)

Mk+1 .
(2) limN→∞ d(β(Q), β(Q̃)) = 0 along admissible sequences N.
(3) limN→∞ d(β(Q), A(N)) = 0 along admissible sequences N.

Proof. Part (1) is a direct calculation, namely:

β(Q) =
k

∏
j=1

β(Qj) =
k

∏
j=1

β(Pj)
Mj Hj(N)β(Pj+1)

Mj+1

Next, write Q̃ = Q̃1 . . . Q̃k where Q̃j has length Mj + Mj+1. Define γj = β(Qj),
γ̃j = β(Q̃j). Note that Qj and Q̃j have a length of at most 2 max N and that
Q̃j ε-shadows Qj with ε ≤ C4λmin N . It follows from Lemma 2 that d(γi, γ̃i) ≤
Cλα min N(‖Ad(γi)‖+ 1) where C = Cα

4 C5. Hence, using the properties of the metric
on Γ and the fact that β has subexponential growth, we have:
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Next, write Q̃ = Q̃1 . . . Q̃k where Q̃j has length Mj + Mj+1. Define γj = β(Qj), γ̃j = β(Q̃j). Note
thatQj and Q̃j have a length of at most 2 maxN and that Q̃j ε-shadowsQj with ε ≤ C4λ

minN . It follows
from Lemma 2 that d(γi, γ̃i) ≤ CλαminN(‖Ad(γi)‖+ 1) where C = Cα

4 C5. Hence, using the properties
of the metric on Γ and the fact that β has subexponential growth, we have:

d(β(Q), β(Q̃)) = d(γ1γ2 · · · γk, γ̃1γ̃2 · · · γ̃k)
≤ d(γ1γ2 · · · γk, γ̃1γ2 · · · γk) + d(γ̃1γ2γ3 · · · γk, γ̃1γ̃2γ3 · · · γk)+
· · ·+ d(γ̃1γ̃2 · · · γ̃k−1γk, γ̃1γ̃2 · · · γ̃k−1γ̃k)

≤ d(γ1, γ̃1)‖Ad(γ2 . . . γk)‖+ d(γ2, γ̃2)‖Ad(γ3 . . . γk)‖+ · · ·+ d(γk, γ̃k)

≤ CλαminN [(1 + η)2 maxN + 1][(1 + η)2 maxN + · · ·+ (1 + η)2(k−1) maxN ]

where η > 0 can be chosen arbitrarily small and ‖Ad(β(n, x))‖ ≤ (1 + η)n for n large enough.
Restricting to admissible sequences, minN and maxN are comparable, and Part (2) follows. The proof
of Part (3) is similar using (5).

Proof of Theorem 12. By assumption, A(N) → A. Hence, by Proposition 1, Part (2,3), β(Q̃) → A.
We conclude that A ∈ Lβ(p1) by definition of Lβ(p1).

Remark 7. Proving that the limit A = limN→∞A(N) exists is challenging. The proof depends on the
group that appears in the fiber. If Γ is the Heisenberg group, the components of A(N) are a quadratic
and several linear polynomials. In order to extract a convergent subsequence, we need to show that a
diophantine system of a quadratic and several linear equations has approximate solutions. A difficulty
is that, even though we can prescribe the leading coefficients in these equations, we cannot control all of
the coefficients. Lower order coefficients depend on the holonomy factors in A(N), which are difficult to
control generically. This is the place where the diophantine approximation results, such as Theorem 7,
come into play.

6. Semigroup Problem

For many Lie groups Γ, it is not hard to show that, for an integer p > 0 big enough, there is a large
open set U ⊂ Γp, such that if F ∈ U , then the family F generates Γ, that is the group generated by
F is dense in Γ. The proof of transitivity of an extension fβ is based on showing that the set Lβ(x) of
“heights” of β over a (periodic) point x is the whole fiber Γ. See Theorem 11. To obtain the condition
Lβ(x) = Γ, we have to prove that for a typical family F ∈ Γp that generates Γ as a group, if F is not
contained in a maximal sub-semigroup with a non-empty interior, then F generates Γ as a semigroup, as
well. We refer to this question as the semigroup problem. For example, if Γ = R, the problem states that
if a set S contains both positive and negative numbers, then the closure of the semigroup generated by S
is a group.

The semigroup problem was solved for Γ = Rn [41] and more generally for groups of the
form Γ = K × Rn, where K is a compact Lie group [33, Theorem 5.10]. It is also solved for
Γ = SE(n) [33, Theorem 6.8], for certain solvable groups that are semidirect products of Rn with
Rm, such as Aff+ in [55], and for the Heisenberg group in [48].

where η > 0 can be chosen arbitrarily small and ‖Ad(β(n, x))‖ ≤ (1+ η)n for n large
enough. Restricting to admissible sequences, min N and max N are comparable, and
Part (2) follows. The proof of Part (3) is similar using (5).

Proof of Theorem 12. By assumption, A(N) → A. Hence, by Proposition 1,
Part (2,3), β(Q̃)→ A. We conclude that A ∈ Lβ(p1) by definition of Lβ(p1).

Remark 7. Proving that the limit A = limN→∞ A(N) exists is challenging. The proof
depends on the group that appears in the fiber. If Γ is the Heisenberg group, the components
of A(N) are a quadratic and several linear polynomials. In order to extract a convergent
subsequence, we need to show that a diophantine system of a quadratic and several linear
equations has approximate solutions. A difficulty is that, even though we can prescribe
the leading coefficients in these equations, we cannot control all of the coefficients. Lower
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order coefficients depend on the holonomy factors in A(N), which are difficult to control
generically. This is the place where the diophantine approximation results, such as Theorem 7,
come into play.

6. Semigroup Problem

For many Lie groups Γ, it is not hard to show that, for an integer p > 0 big
enough, there is a large open set U ⊂ Γp, such that if F ∈ U, then the family F
generates Γ, that is the group generated by F is dense in Γ. The proof of transitivity
of an extension fβ is based on showing that the set Lβ(x) of “heights” of β over
a (periodic) point x is the whole fiber Γ. See Theorem 11. To obtain the condition
Lβ(x) = Γ, we have to prove that for a typical family F ∈ Γp that generates Γ as a
group, if F is not contained in a maximal sub-semigroup with a non-empty interior,
then F generates Γ as a semigroup, as well. We refer to this question as the semigroup
problem. For example, if Γ = R, the problem states that if a set S contains both
positive and negative numbers, then the closure of the semigroup generated by S
is a group.

The semigroup problem was solved for Γ = Rn [41] and more generally for
groups of the form Γ = K×Rn, where K is a compact Lie group [33, Theorem 5.10].
It is also solved for Γ = SE(n) [33, Theorem 6.8], for certain solvable groups that
are semidirect products of Rn with Rm, such as Aff+ in [55], and for the Heisenberg
group in [48].
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