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1. Introduction

Robotics and control are both research and application domains that have been frequently
engineered with the use of interdisciplinary approaches like cybernetics [1]. Cognition is a particular
concept of this approach, abstracted from the context of living organisms to that of artificial devices,
about knowledge acquisition and understanding through thought, experience, and the senses [2].
Cognitive robotics and control refer to knowledge processing as much as knowledge generation from
problem understanding, leading to special forms of architectures enabling systems to behave in an
autonomous way [3–5].

The main aim of this special issue is to highlight emerging applications and address recent
breakthroughs in the domain of cognitive robotics and control and related areas. Procedures,
algorithms, architectures and implementations for reasoning, problem solving or decision making in
the domain of robotics and control are elements under consideration.

2. The Present Issue

This special issue consists of eight papers covering important topics in the field of cognitive
robotics and control, including robotic platforms in interactive scenarios such as operating rooms,
trajectories learning and optimisation from nature-inspired and computational cognition approaches,
and hardware developments for motor control. The contents of these papers are introduced here.

Robotic platforms are taking their place in the operating room, providing stability and accuracy
during surgery. Most of these platforms are tele-operated, as in Reference [6], where the learning from
demonstration (LfD) approach is extended for object tele-manipulation. The method is experimentally
verified in a tele-operated task using a lightweight robot remotely controlled with a haptic device.
In the same domain, research is also being carried out to design collaborative platforms, reducing
surgeon workload. The automation of auxiliary tasks would benefit both surgeons and patients by
facilitating the surgery and reducing the operation time. A novel autonomous camera guidance
approach for laparoscopic surgery is proposed in Reference [7], using LfD as well as being validated
using an experimental surgical robotic platform. Moving forward, an important step towards a more
natural and user-friendly manner of physical human-robot interaction in scenarios where humans and
robots collaborate in the accomplishment of a task is presented in Reference [8]. A robotic system is
introduced that is able to identify different humans’ intentions and to adapt its behaviour consequently,
only employing force data.

Nature-inspired solutions, like particle swarm optimisation (PSO) and artificial bee colony
(ABC), are employed in Reference [9] as meta-heuristic optimisation techniques to tune a
proportional-integral-derivative (PID) controller for an upper limb rehabilitation robotic arm
exoskeleton RAX-1. In a different way, computational solutions are based on ontologies and knowledge
representation. Aiming to represent the knowledge in robot task planning, the Robot Task Planning
Ontology (RTPO) is first designed and implemented in Reference [10], so that robots can understand
and know how to carry out task planning to reach the goal state. Experimental results demonstrate

Electronics 2020, 9, 760; doi:10.3390/electronics9050760 www.mdpi.com/journal/electronics1
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good performance in scalability and responsiveness. In Reference [11], the authors focus on the
challenging problem of trajectory optimisation for an automatic spraying robot. Using the Bézier
surface approach, an automatic solution is provided in the form of an initial trajectory, establishing the
appropriate spraying model, planing the appropriate space path, and finally planing the trajectory
optimisation along the specified painting path.

Field-Programmable Gate Arrays (FPGA) are considered in Reference [12] as a balanced approach
to develop computing in technological low-cost applications empowered with the flexibility of software
and the high-speed operation of hardware. A robotics application to control an inverted pendulum
robot is designed, built, and programmed using open FPGA tools. In Reference [13], the rate of change
in acceleration value is used to develop an S-curve velocity profile for motion control, which presents
smoother movements to avoid high stress in the motor than in the trapezoidal velocity profile. The new
methodology is developed applying an open source architecture in a hybrid electronic platform
compounded by a system on a chip (SoC) Raspberry Pi 3 and a FPGA.

3. Future Research

Socio-technical system (STSs) are those considering requirements spanning hardware, software,
personal, and community aspects [14–16]. Some examples were shown in our special issue, from
operating rooms and exoskeletons to industrial robots for automatic spraying and motion control using
edge computing. In this kind of environment, assistance to skilled users (workers, health professionals,
impaired people) becomes crucial. Beyond ergonomic or safety issues, new qualification and technical
competences with regard to users are needed. Hence, a hot topic of research activity to look at in the
near future for robotics and control is to consider the cognitive or social dimension, by the development
of computational agents, robots or electronic devices in the edge designed for increasing efficiency and
effectiveness in the environment and global organisation [17].
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Abstract: Haptic guidance is a promising method for assisting an operator in solving robotic remote
operation tasks. It can be implemented through different methods, such as virtual fixtures, where
a predefined trajectory is used to generate guidance forces, or interactive guidance, where sensor
measurements are used to assist the operator in real-time. During the last years, the use of learning
from demonstration (LfD) has been proposed to perform interactive guidance based on simple tasks
that are usually composed of a single stage. However, it would be desirable to improve this approach
to solve complex tasks composed of several stages or gestures. This paper extends the LfD approach
for object telemanipulation where the task to be solved is divided into a set of gestures that need
to be detected. Thus, each gesture is previously trained and encoded within a Gaussian mixture
model using LfD, and stored in a gesture library. During telemanipulation, depending on the sensory
information, the gesture that is being carried out is recognized using the same LfD trained model for
haptic guidance. The method was experimentally verified in a teleoperated peg-in-hole insertion
task. A KUKA LWR4+ lightweight robot was remotely controlled with a Sigma.7 haptic device with
LfD-based shared control. Finally, a comparison was carried out to evaluate the performance of
Gaussian mixture models with a well-established gesture recognition method, continuous hidden
Markov models, for the same task. Results show that the Gaussian mixture models (GMM)-based
method slightly improves the success rate, with lower training and recognition processing times.

Keywords: robotics; telemanipulation; haptics; machine learning; gesture recognition

1. Introduction

In telemanipulation, a human operator performs a task in a distant environment by remotely
controlling a robot. To allow efficient operation, the operator needs to receive sensory information from
the remote site. Depending on the received information, telemanipulation can be classified as “direct”
or “uni-lateral” [1], where there is no feedback to the operator, or “bilateral” [2], which enables dual
interaction between the haptic and the operator. Although telemanipulation allows real-time human
remote control, it is still considered to entail a rather high workload [3], at least compared with more
supervisory or autonomous modes of operation. However, only telemanipulation allows reacting to
unknown and unforeseen situations with spontaneous feedback. Therefore, enriching telemanipulation
with additional automatic assistance would allow humans to perform complex tasks more efficiently.

In this sense, haptically guided telemanipulation [4] is shown to be a promising method
that reduces the operator workload and can improve his or her performance. Haptic guidance is

Electronics 2019, 8, 772; doi:10.3390/electronics8070772 www.mdpi.com/journal/electronics5
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usually implemented by adding virtual channels into the feedback path (e.g., the force output of a
virtual spring) that generates appropriate forces to constrain the operator input along pre-described
reference trajectories. This method referred to in the literature as virtual fixtures [5] or active
constraints [6]. Increased precision and safety, as well as a reduction in task completion time,
is the promise of this control method. It has been applied to many different fields, such as remote
assembly [7], telesurgery [8], vehicle control [9], and even space-to-ground telemanipulation with long
time-delay [10]. To provide effective guidance feedback, reliable and accurate task position information
is required, along with the trajectories to guide the operator. This is often obtained a priori from images
or markers [5]. However, this approach entails many problems in real environments, where reference
positions or trajectories are often affected by measurement errors [11] or even entirely unknown during
complex manipulation. For instance, during insertion operations, virtual fixtures can hardly help if
the guidance system does not know exactly the insertion point (its position and orientation), which
is difficult to be obtained with any vision system due to occlusions and point-of-view limitations.
To mitigate this problem, van Oosterhout et al. [12] suggested combining force feedback (robot
interaction data) with guidance forces. However, how to derive meaningful, accurate and sufficiently
well-computed guidance trajectories for real-time manipulation such that they augment natural human
manipulation is still to be resolved. This problem was addressed in our previous contribution [13],
which proposed to use a learning from demonstration (LfD) approach to provide real-time haptic
guidance based on the use of interaction forces and torques. This method was successfully tested with
the peg-in-hole insertion task, which is a de facto benchmark test for robotics assembly [14].

The main limitation of the previous approach is that the haptic assistance should be made dependent
on the kind of movements the operator is performing at a given moment. Thus, the guidance trajectories
need to be generated on the fly. For example, a dashboard panel could contain different switches and
connectors. Depending on the task that is being carried out by the operator, e.g., operating an on/off
switch or inserting a connector, different guidance references should be applied to solve the task. In this
sense, Havoutis et al. [15] proposed to create a library of previously trained models that were used to
complete each defined task autonomously. However, this contribution did not take into consideration any
task recognition method.

It can be assumed that a simple task is equivalent to a gesture, and a complex task consists of
several gestures. In this sense, gesture recognition has been widely studied with different methods
and applications [16]. For years, gesture recognition has usually been addressed using a continuous or
discrete hidden Markov model (HMM) [17,18]. An HMM can encode previously trained gestures as
a sequence of states with probabilistic relationships between states and measurements. It has been
commonly used to detect gestures once they have finished using the forward-backward algorithm [19],
i.e., for a peg insertion task, the gesture would only be detected once the operator has already inserted
the peg.

In this sense, learning from demonstration (LfD) is an approach that has been widely used to
generate temporally continuous trajectories by teaching, based on the robot position or interaction.
Indeed, LfD uses Gaussian mixture models (GMM) or continuous hidden Markov model (CHMM) to
encode training trajectories and generate the most likely trajectory through Gaussian mixture regression
(GMR). This approach allows robots to perform previously trained simple human tasks such as pouring
a glass of water using a bimanual robot [20], hit a table tennis ball or feed a robotic doll [21], all of
them using position references. Kronander et al. [22] proposed the use of the robot pose and the
exerted forces to perform automated insertion tasks based on LfD. Moreover, recent contributions
used LfD for different purposes such as learning robot-collaboration skills [23], performing automated
tasks of underwater remotely operated vehicles [15] or doing housework autonomously [24]. In the
field of haptically guided telemanipulation, LfD has been recently used to address different tasks
related to surgical robotics. Chowriappa et al. [8] used LfD to optimize the trocar placement in
minimally invasive surgery (MIS). They collected a set of forces, torques, and trajectories from multiple
demonstrations of the task and encoded them through the LfD approach. Then, a generalization of
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this set of trajectories with its associated parameters was generated using Gaussian mixture regression
(GMR). The trajectory was used to perform haptic guidance through virtual fixtures. This approach
was experimentally tested in laparoscopic surgery, where the excessive load on the environment has
to be avoided during the trocar insertion. Power et al. [17] proposed a LfD based framework for the
position-based haptic guidance in surgical telemanipulation using gesture recognition. In this case,
they used a CHMM to encode previously trained gestures (called primitive movements in the paper).
This was used to solve different surgical tasks, such as needle-passing or peg-transfer. The model
enabled recognition of the gesture that was performed and provided a suitable haptic guidance to the
operator through virtual fixtures. However, this contribution only took the absolute instrument tip
position as the measurement to detect the gesture, without taking into considerations any interaction
measurement as forces or torques.

Summarizing, haptically guided telemanipulation based on interaction forces and torques solves
the limitations of the methods that rely on predefined position-based trajectories. This approach has
been proposed in our previous work [13] using an LfD based method. However, the best method to
recognize the gesture that is being carried out, using the same model to generate the haptic guidance,
remains to be investigated, e.g., some authors used GMM or CHMM to perform LfD without taking
into consideration its performance for gesture recognition and vice versa. Therefore, this work is
focused on a gesture recognition method based on the defined LfD approach, i.e., the use of GMM
and/or CHMM. Thus, a complex task is divided into a set of simple gestures. Then, during the training
stage, a GMM is encoded for each gesture and stored in a library. Hence, the system would be able to
detect the gesture that is being carried out and provide a customized haptic assistance depending on
the task the user is performing. Force-based gesture recognition has the additional advantage that it
can be used for insertion manipulations, where position changes are hardly perceivable if some parts of
a robot and an environment are in contact. Thus, we hypothesize that, for insertion and object assembly
type of manipulations, a desirable guidance system should not encourage following a fixed time or
position based trajectory. Furthermore, a criterion to evaluate how well each gesture has been trained
to be recognized is proposed. A comparison between GMM and CHMM was carried out regarding
CPU processing time and recognition accuracy. The feasibility was demonstrated in an end-to-end
telemanipulation experiment in which several gestures related to the peg-in-hole insertion task were
trained and recognized.

Briefly, the main contributions of this paper are, on the one hand, the use of the LfD approach
to perform gesture detection, comparing the use of GMM instead of CHMM, and, on the other hand,
a criterion, called GMM gesture detection score (GGDS), that can be used to choose the best number of
Gaussians in a GMM, and analyze the difference between the trained gestures.

The paper is structured as follows. The proposed LfD method and the gesture recognition criteria
are described in Section 2. Section 3 describes the reference task and shows the obtained experimental
results. A comparison between CHMM and GMM is carried out in Section 4. Section 5 discusses the
obtained results. Finally, conclusions and future works are reported in Section 6.

2. LfD for Gesture Recognition

Any complex “principle” task (such as inserting a peg in a hole) can be divided into a set of
gestures Ω = ρ1, ..., ρp (e.g., approach, make contact, adjust peg rotation based on force constraints,
move along linear constraint, move up to rigid contact, etc.). Depending on the actual gesture,
the required haptic guidance reference may be different (e.g., to align a peg, torques are predominantly
used, whereas, to linearly guide during insertion, linear forces would be required). To allow such
gesture-based feedback, there is a training stage that encodes the demonstrations of the operator into
a library containing the set of gestures models, and a reproduction stage that recognizes the current
task and provides the corresponding haptic guidance to the operator. Figure 1 shows the training stage,
which is performed offline in a previous phase. During it, each of the gestures ρi is demonstrated
u times using a training platform, e.g., a manipulator with kinesthetic movements, a teleoperated
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device, or a sensorized tool. The training device provides the interaction measurements, usually forces−→
f = ( fx, fy, fz) and/or torques −→τ = (τx, τy, τz). These measurements are encoded as a Gaussian

Mixture Model (GMM-GGDS), the fitness of which is evaluated before storing it within the Library Ω.
Then, this library is used in the reproduction stage, shown in Figure 2, to provide haptic guidance
during the teleoperation of a slave robot using a master haptic device. Interaction of the slave robot
with the environment generates forces

−→
f and torques −→τ that are obtained from the robot sensors.

They are used by the gesture recognizer to output the gesture ρi that is being carried, and it is used to
provide the haptic guidance reference to the operator using the method described in the previous
contribution [18]. Hereafter, details of the gesture recognizer system are described. Table 1 summarizes
the notation used to describe the proposed framework.

Training stage (offline)

Training
Platform

Operator
LibraryLibraryLibraryLibrary

Model 
encoding Evaluation

Demonstrations 
1...u

Figure 1. Training stage for gesture-based haptic guidance assistance. The operator performs a set of
demonstrations for each gesture using a training platform. Then, each gesture is encoded as a Gaussian
mixture models (GMM), evaluated and stored within the library Ω.

Reproduction stage (online)

Slave 
Robot

Operator
LibraryLibraryLibrary

Gesture 
Recognizer

Haptic 
Guidance 
Reference 

(GMR)

Master 
Haptic 
Device

Figure 2. Method for gesture recognition and haptic guidance based on learning from demonstration.
A unique library is used to detect the current gesture and provide the haptic guidance to the operator.

Table 1. Notation.

Symbol Description

ρi Encoded i gesture

Ω Set of encoded gestures−→
f Exerted forces
−→τ Exerted torques

ξ Training tuple

ξ̂(k) Training sequence of k tuples

8
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2.1. Training (Offline)

First, the operator demonstrates each gesture several times using a training device. During the u
demonstration of the gesture i, a training sequence of k tuples is generated as:

ξ̂iu(k) = ξ(1), ..., ξ(k); 1 ≤ i ≤ p, 1 ≤ u ≤ U (1)

where the training tuple is composed of the measured force and torque as:

ξ = (
−→
f ,−→τ ) (2)

Once the training sequences are obtained for each applicable gesture, they are used to encode
a GMM ρ that will be used to recognize the gesture that is being carried out in real-time. A GMM is
a probabilistic model that assumes the training sequences ξ̂i1...U can be included in a set of N Gaussians
distributions, whereas each distribution covers a part of the training sequences. Thus, a GMM can be
defined as:

ρ = {πn, μn, Σn}N
n=1 , (3)

with the following parameters:

• The number of Gaussians N is one of the most important parameters since this number affects
the fitness and performance of the GMM. The gesture detection score, described in Section 2.2,
is used to obtain this parameter.

• The prior probabilities πn represent the weight of each Gaussian on the demonstrations,
i.e., if a nth Gaussian covers more elements of the training sequences compared with another
one, its prior probability will be higher.

• The means μn represent the centroid of each Gaussian of the GMM.
• The covariance matrices Σn define the amplitude of each Gaussian n.

The encoding of a GMM consists of adjusting the parameters of the GMM such that they fit
with the training sequences. In this work, it is solved using the expectation-maximization (EM)
algorithm [25]. The EM is an iterative method that can approximate the Gaussians to the training
sequences, maximizing the likelihood of the training sequences belonging to the encoded GMM. It has
been chosen for this purpose because it provides good results, in terms of accuracy and processing
time, with low dimensions in the data. It is implemented as a function EM in Equation (4), whose input
parameters are the training sequences for the gesture i: ξ̂i1...u with u the number of demonstrations,
and N the number of Gaussians.

ρi = EM(ξ̂i1...u, N) (4)

The algorithm initializes each Gaussian with random parameters and they are adjusted to the
training sequence iteratively as follows:

Expectation step:

P(n|ξi1...u(j))r =
πr

nN (ξi1...u(j); μr
n, Σr

n)

∑N
i=1 πr

i N (ξi1...u(j); μr
i , Σr

i )
(5)

E r
n =

k

∑
j=1

P(n|ξi1...u(j)r) (6)

Maximization step:

πr+1
n =

E r
n

k
(7)

μr+1
n =

∑k
j=1 P(n|ξi1...u(j))rξi1...u(j)

E r
n

(8)
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Σr+1
n =

∑k
j=1 P(n|ξi1...u(j))r(ξi1...u(j)− μr+1

n )(ξi1...u(j)− μr+1
n )T

E r
n

(9)

In these equations, ξi1...u(j) is the tuple that corresponding to the position j on the training
sequences for the gesture with k tuples, and r is the number of iterations. The iteration ends when the
difference in log-likelihoods between the iterations is less than a predefined threshold C:

�(ξ̂i1...U |ρr+1)

�(ξ̂i1...U |ρr)
< C (10)

2.2. Gesture Detection Score

As explained above, the number of Gaussians is an important parameter to be taken into account.
Therefore, it may be selected based on the real-time constraint and evaluating how well every GMM fits
its demonstrations. To perform this evaluation, the Bayesian information criterion (BIC) was previously
used [13]. This method provides a score for different estimated GMMs, and it allows performing
a comparison between them, taking the model fitness and dimension into account. However, in this
paper, the trained GMMs is also used to recognize the gesture that is being carried out, and the BIC
only provides information about the performance of different models for the same “gesture”. It can
be assumed separate gestures would be trained correctly using the BIC criteria. However, BIC does
not provide information about how similar the gestures are. Thus, a GMM Gesture detection score
(GGDS) has been defined in Equation (11) to overcome this issue. The GGDS provides a score for each
gesture ρi that is calculated from the minimum difference between the log-likelihood of detecting other
gestures ρj and the log-likelihood of detecting the gesture that is being evaluated ρi, using the training
sequences obtained from the gesture i. The score provides information about how well the gesture will
be correctly and incorrectly detected, compared with the rest of encoded gestures, with a lower score
signifying a better model fitness.

GGDSρi = min
ρj∈Ω,j �=i

{
�(ξ̂i1...U |ρj)− �(ξ̂i1...U |ρi)

}
(11)

The term �(ξ̂i1...U |ρ) represents the log-likelihood that the training sequences belong to ρ and it is
calculated as:

�(ξ̂i1...U |ρ) =
k

∑
j=1

log(P(ξ(j)|ρ)) (12)

with P(ξ(j)|ρ), the probability that the tuple ξ(j) belongs to ρ, which can be calculated as:

P(ξ|ρ) =
N

∑
n=1

πn ×N (ξ; μn, Σn) (13)

where N (ξ; μn, Σn) is the probability density function of ξ.
The GGDS provides a score that is useful to decide between different parametric GMMs taking

into account they will be used to detect the gesture that is being carried out. Taking into account
that the parameter to be optimized is the number of Gaussians N, several sets of gestures should be
encoded using a different number of Gaussians, i.e., with N = 1 to N = NMAX. For this purpose,
Algorithm 1 performs training of p gestures for different number of Gaussians as follows. Firstly,
every gesture is trained using the number of Gaussian (ranging from 1 to NMAX) and the maximum
GGDS score, comparing the gesture ρi with the rest of gestures, is stored in SCOREn. Thus, the final
number of Gaussians N is obtained from the minimum SCOREn for all the number of Gaussians.
Finally, the trained gestures with the defined N are stored in the gesture library Ω.

10
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Algorithm 1: Algorithm that obtains the best number of Gaussians N for the training sequences
of several gestures using the GGDS criteria.

Data: NMAX , p, ξ̂iu(k)
Result: N Optimal number of Gaussians to train every gesture
for n = 1 to NMAX do

for i = 1 to p do

ρi = EM(ξ̂i1...u, n)
end

SCOREn = max
ρi∈Ω

[
GGDSρi

]
end

N = argmin
1≤n≤NMAX

[SCOREn]

for i = 1 to p do

ρi = EM(ξ̂i1...u, N)

store ρi in Ω
end

2.3. Gesture Recognition (Online)

As stated before, each gesture was encoded into a GMM ρ in Equation (3) using training sequences
that are composed of tuples ξ in Equation (2) that represent the interaction measurements. During the
reproduction stage, the interaction measurements ξ are obtained each instant time from the robot
sensors. Thus, the log-likelihood that the interaction measurements ξ belong to a GMM ρ can be
expressed as: log(P(ξ|ρ)), which can be calculated from Equation (13). Thus, the most likely gesture i
that is being carried out can be obtained from the gesture library as:

i = argmax
1≤i≤p

[log(P(ξ|ρi))] (14)

Analyzing these equations, it should be noted that the computational complexity of this method is
O(pN), which increases linearly with the number of Gaussians N and the number of gestures p. If N is
too high, two cases can occur: (1) the processing time becomes too long for the real-time requirements
during the haptic guidance owing to the large number of Gaussians in the GMM function; and/or (2)
the improvement in the fitness of the GMM with respect to the training sequences is too low.

Once the gesture ρi in Equation (3) that is being carried out has been recognized, the corresponding
model can be used to provide haptic guidance [13].

2.4. Reference Task: Peg-in-Hole Insertion with Tight Tolerance

As a de facto standard benchmark test for robotics assembly, the peg-in-hole insertion task was
chosen to perform the experimental evaluation [14].

The peg-in-hole insertion task, despite being rather trivial when performed manually, has proven
to be relatively challenging by the use of a robot (either teleoperated or performed autonomously) [26],
in particular for long insertion dimension and tight, sub-millimeter tolerances.

As illustrated in Figure 3, we divided the peg-in-hole task into two gestures: surface contact (ρ1)
and lever effect (ρ2), which depend on the actual interactions between the peg and hole during the
execution of the task. At the beginning, during the first gesture, the operator attempts to position the
peg at the entrance of the hole. This gesture is completed with establishing surface contact, still with
negligence on correct orientation. Only in a second step, the operator will adjust alignment and guide
the peg into the free direction for insertion.

11
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Figure 3. Peg-in-hole identified gestures: (a) surface contact gesture, the peg is touching the surface of
the hole with lateral forces; and (b) lever effect gesture, the peg is already inserted in the hole without
a correct orientation. Blue arrows represent the exerted forces.

In Figure 3a, the surface contact gesture is illustrated. The surface is pushed with a lateral force
(
−→
F m). Because the peg is rigid, a reaction force of the same magnitude is transmitted to the base of the

peg as
−→
f . Furthermore, a small torque −→τ is generated on the peg. In this case, the peg tip has to be

moved horizontally to coincide with the hole. On the other hand, if the peg is already at the entrance
of the hole without a correct orientation (in double contact, Figure 3b), the operator has to align the peg
with the hole. In this situation, if the peg were “pushed” down with a force

−→
F m, vertical and opposite

lateral forces
−→
f would arise because the peg is locked in the hole, and torques −→τ occur in the opposite

direction because of the lever effect. Thus, the peg may be rotated to align it with the hole. This is the
lever effect gesture. To summarize,

−→
f and −→τ represent the interaction measurements in which different

magnitudes and directions are expected depending on the gesture that is being carried out. Once the
interaction measurements for both gestures were obtained, the training tuple was defined as:

ξ = ( fx, fy, τx, τy) (15)

where fx, fy, τx and τy were obtained from a F/T sensor placed on the peg base. The parameters fz

and τz were removed from the tuple because they did not provide any relevant information to perform
the guidance (only around peg symmetry axis).

3. Experimental Results

The peg-in-hole insertion task was experimentally validated by means of a telemanipulation
platform located in the Telerobotics and Haptics Laboratory at the European Space Agency research
center ESTEC.

The experimental validation was divided in two stages. The first one was related to the evaluation
of the training stage, where two gesture were trained. The second one demonstrated the proposed
gesture recognition approach and its validity for application in haptic guidance, where it should help
operators to solve a task.

12
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3.1. Experimental Setup

The experiments were carried out using a robotic telemanipulation workcell that is composed
of a KUKA Lightweight Robot (LWR 4+) slave robot [27] and a Sigma.7 haptic master device [28]
(Figure 4). Both devices were connected to the main computer that executed the proposed method,
via the FRI Interface and UDP respectively. Figure 5 provides an experiment setup architectural
overview. The taskboard, on the right-hand side of the figure, was used to research on various generic
manipulation tasks. It contains different holes, pegs, and doors that can be operated on and used
to validate various methods of telemanipulation and supervised autonomy. Here, the interaction
with the taskboard was carried out by the manipulator Kuka LWR. During the telemanipulation,
the manipulator was configured in impedance control mode to avoid any damage because of the
interaction between the peg and the taskboard. During the training, the manipulator was configured
in the gravity-compensated mode to allow an operator to move the robot by hand and position it
freely in space to perform the training stage (hence, teach) certain task elements. This feature was
used during the training stage to perform the peg-in-hole insertions by human-guided kinesthetic
movements in a more direct way (as opposed to using a master device remotely for this stage).

Figure 4. Overview of the Experimental setup used for learning from demonstration (LfD)-based
haptic guidance, with the master device (Sigma.7 haptic master) and the KUKA lightweight slave robot
manipulating a metal peg into a task-board receptacle.

F/T Sensor

DSP

LWR Controller

USB

1kHz
RTI

4kHz

Xenomai
RTLinux

1kHz

1kHz
UDP

LWR

Haptic device Taskboard

Peg & hole

Figure 5. Software and Hardware architecture of the experimental telemanipulation setup as available
at the Telerobotics Laboratory of the European Space Agency.
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A 155 mm long titanium peg (approximate mechanical circumferential tolerance of 150 micrometers
to the diameter of the metal receptacle in task-board) was rigidly mounted on a multiaxial Force/Torque
(F/T) sensor (ATI Net F/T Gamma SI 65-5) attached to the robot’s end-effector. The sensor measures
interaction forces

−→
f = ( fx, fy, fz) and torques −→τ = (τx, τy, τz) on the peg base, providing the necessary

information to the method described above. During task-reproduction, the manipulator was teleoperated
by a force dimension Sigma.7 haptic device. It was used to receive position references from the operator,
but also provided force feedback to the operator to guide him to perform the detected gesture. Forces
were scaled to resist another operator movement during the assisted teleoperation. All of these devices,
except the haptic one, which was connected directly through USB, were communicating with the main
computer using the RTI Data Distribution Service middleware over a dedicated gigabyte LAN network.
The main computer was a PC with a real-time Linux-based operating system (Xenomai). The computer
algorithms were implemented with 1 ms sampling time.

3.2. Training

To obtain the training sequences for both gestures, the LWR was manually guided with its peg
into the hole from eight different and 90◦ offset starting positions, which varied for the two types of
gestures. Figure 6a–d presents the defined initial positions that cover a circle. Figure 6e,f presents
the starting positions of the peg for the lever effect and the surface contact gesture, respectively.
Three movements were performed for each gesture and each initial position, resulting in 12 insertion
movements. They were used to train a model for each gesture. On the other hand, another 12 insertion
movements were carried out using the complete telemanipulation workcell, which were used to
evaluate the proposed approach.

The training insertions were used to encode both GMMs with a different number of Gaussians N,
and they were evaluated through BIC and GGDS using Equation (11). Figure 7 depicts a comparison
of the obtained scores between the different number of Gaussians for both gestures and scores.
It demonstrates how the GGDS score was improved exponentially as the number of Gaussians is
increased (larger negative score). However, the score obtained using the BIC increased almost linearly,
because it does not provide information about how well the gesture would be recognized with respect
the rest. Moreover, GGDS indicates both gestures would be recognized similarly as both of them
received a similar score for an increased number of Gaussians. As stated before, the reproduction stage
processing time increases linearly with the number of Gaussians. A test was performed to determine
the maximum number of Gaussians that the main computer was able to execute within the real-time
constraints of the system used in telemanipulation (characterized by a 1 ms sampling time). For this
purpose, each gesture was trained with the number of Gaussians ranging from 1 to 20. Later on,
the recognition algorithm was executed in the computer for each trained model to evaluate if the
computer was able to execute it within the 1 ms constraint. Finally, N = 14 was chosen to carry out the
experiments on the computer platform.

The EM algorithm in Equation (4) was used to train a GMM for each gesture. Figure 8a,b
illustrates the training sequences and the Gaussians for both gestures. The training sequences ξ̂i1...U
are represented by colored dots, one color for each training sequence. Each dot represents interaction
measurement tuples ξm obtained at every time instant. For simplicity, only forces fx and fy are shown
for the surface contact gesture and torques τx and τy for the lever effect gesture. The reason for choosing
these measurements is because they are the most relevant information for each gesture, as stated above.
Finally, the encoded Gaussians are represented by crosses (means) and ellipses (covariances). Once the
best-encoded GMMs were selected, they were stored in the gesture library.
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(a) (b) (c)

(d) (e) (f)
Figure 6. Initial training positions: (a–d) four different insertion positions to cover a circle over the
hole; (e) initial position of the surface contact gesture; and (f) initial position of the lever effect gesture.
(a) Left; (b) right; (c) up; (d) down; (e) lever effect; and (f) surface contact are shown.
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Figure 7. GMM gesture detection score (GGDS) for both gestures using different number of Gaussians.
The figure shows the GGDS score decreased exponentially as the number of Gaussians was increased.

-10 -8 -6 -4 -2 0 2 4 6 8

f
x
 (N)

-10

-8

-6

-4

-2

0

2

4

6

f y (
N

)

Up-Down
Right-Left
Down-Up
Left-Right
GMM

(a)

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

τ
x
 (Nm)

-3

-2

-1

0

1

2

3

4

τ
y (

N
m

)

Up-Down
Right-Left
Down-Up
Left-Right
GMM

(b)

Figure 8. GMM encoding for the surface contact (a) and lever effect (b) gestures showing the fit
of the training sequences with the generated Gaussians. The colored points represent the training
measurements for each movement.
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3.3. Reproduction

Once populated and evaluated, the gesture library was used during the reproduction stage to
recognize the gesture that was being carried out online, i.e., at the very instant in time. Moreover,
modified models stored in the gesture library could be used to generate the appropriate haptic guidance
reference to assist an operator during the telemanipulation execution [13].

As stated above, the interaction measurements
−→
f and −→τ were used to calculate the most likely

gesture that was being carried out through Equation (14). All evaluation movements were used to
validate the proposed method. Figure 9 illustrates how the surface contact gesture is detected. Here, four
evaluation movements were used, each one starting from different initial positions (see Figure 6a–d).
In Figure 9a–d, the interaction measurements, obtained at each instant time, are represented by colored
lines, i.e., one color for each movement from the various starting points. The trained Gaussian means are
represented by crosses and the covariances by the ellipses. These figures show how the selected motion
sequences enabled the algorithms to recognize the surface contact gestures (Figure 9a,b) and disabled
their ability to recognize the lever effect gesture (Figure 9c,d). Figure 9e represents the log-likelihood of
each evaluation sequence that belongs to the surface contact gesture GMM and Figure 9f represents the
log-likelihood for the lever effect gesture. As shown, the log-likelihood of the evaluation movements for
the surface contact motions was mostly higher for the surface contact gesture (−9 to 6 in the figure) than
for the lever effect one (−90 to −15), which indicates the gesture was correctly recognized.
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Figure 9. Trained surface contact (a) and lever effect (b) GMMs, and their fitnesses with the surface
contact gesture interaction measurements from the evaluation movements. Log-likelihood of the surface
contact gesture interaction measurements for both gestures (c,d). (a) Interaction forces vs. surface
contact gesture GMM; (b) interaction torques vs. surface contact gesture GMM; (c) interaction forces
vs. lever effect gesture GMM; (d) interaction torques vs. lever effect gesture GMM; (e) log-likelihood
that the interaction measurement tuple ξi, obtained each i instant time, belongs to the surface contact
GMM ρ1; and (f) log-likelihood that the interaction measurement tuple ξi, obtained each i instant time,
belongs to the lever effect GMM ρ2.

4. Comparison between GMM and CHMM

Taking into consideration that CHMM has been widely used for gesture recognition, GMM arises as
an alternative for haptically guided telemanipulation tasks. Indeed, the main advantages of this method
are the lower computer complexity for training and reproduction. The CHMM computer complexity for
gesture recognition is O(PN2T) where P is the number of gestures, N is the number of states, and T is the
number of measurements. Contrarily, the computer complexity of the GMM based gesture recognition
method is O(PN), i.e., the processing time increases linearly. In the case of the training stage, CHMM
uses the k-means algorithm to define each continuous hidden state, whose computer complexity is:
O(NTK), where K is the number of iterations. Afterwards, the Baum–Welch algorithm is used to train
the HMM itself according to the previously defined hidden states. The computer complexity of this
algorithm is O(NT), resulting in O(NTK) + O(NT) for the CHMM. However, GMM only uses the
k-means algorithm to encode a gesture model.

To evaluate the performance of GMM versus CHMM experimentally, previous measurements for
training and evaluation were used to encode and evaluate a CHMM with the same parameters as the
previously encoded GMM. The results obtained for the CPU processing time are shown in Figure 10,
where it can be seen that GMM achieved slightly better results than CHMM. As regards the recognition
rate, each model was used to recognize the performed gesture that was being carried out in real-time,
i.e., every sampling period (1 ms) the gesture was recognized. As shown in Figure 11, for the lever
effect gesture, CHMM was slightly better than GMM, but, in the case of the surface contact one, GMM
was better than CHMM.

On the other hand, the detection of the gesture can be seen as a multi-objective optimization
problem, where there are a cost function and an objective one, i.e., the CPU processing time and the
log-likelihood of the detected gesture. Therefore, the objective is to minimize the CPU processing time
and maximize the log-likelihood. Figure 12 represents the cost and objective for both methods and
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gestures. Every evaluation movement was trained using a different number of Gaussians or states,
obtaining different values as it was increased. The log-likelihood represented in this figure has been
calculated according to Equation (12). Results show that GMM provides better results using the same
CPU processing time than CHMM, which required approximately double the processing time to obtain
equal log-likelihood for the same movement.

Finally, an evaluation of training the gestures using a different number of Gaussians or states
was carried out. Figure 13 represents the CPU processing time to train both gestures using GMM and
CHMM. As shown, the needed processing time for GMM was much lower than CHMM as the number
of Gaussians was increased.

Figure 10. Average CPU processing time during the recognition of each evaluation movement using
both continuous hidden Markov model (CHMM) and GMM methods.

Figure 11. Percentage of real-time recognition using the evaluation movement of both gestures,
and both CHMM and GMM methods.
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Figure 12. Pareto frontier for GMM and CHMM using the log-likelihood and processing time of each
evaluation movement for both gestures: (a) surface contact gesture; and (b) lever effect gesture.
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Figure 13. Training time using GMM and CHMM for different number of Gaussians/states.

5. Discussion

The above results show that it is feasible to recognize, in real-time, the gesture that is being carried
out with a high success rate. The presented method was validated with the peg-in-hole insertion
task under sub-millimeter tolerances. During the training stage, two gestures were defined through
24 demonstrations that generated two GMMs, composed of 14 Gaussians each. Although the presented
work was focused on two manually predefined gestures (i.e., surface contact and lever effect) the
proposed method could be used with recently proposed segmentation of movements techniques [29].

The defined GMM gesture detection score (GGDS) was used to analyze the GMM performance
taking into account the number of Gaussians, which demonstrates that the performance gets better
when the number of Gaussians is increased for the peg-in-hole insertion task. Therefore, the main
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limitation to choose the maximum number of Gaussians was the real-time constraint of 1 ms. However,
this method has a limitation: as it has been defined, the same number of Gaussians is used to train
every gesture, which would not optimize the right number of Gaussians if there are simple and
complex gestures. It is worth mentioning the GGDS is also useful to detect how different the gestures
to be trained are, which would provide information about two or more similar gestures. In this case,
the GGDS would help to decide the best number of Gaussians.

During the gesture recognition, the GMM-based method achieved a success rate of 94.91% and
95.81% for each gesture. The CHMM-based method provided a success rate of 99.7% and 78.6% for
the same training and evaluation sequences. Although the lever effect gesture was better recognized
by CHMM, the recognition of the surface contact was significantly worse. The authors consider that
CHMM is intended to detect the gesture once it has ended, and it is assumed that this is the reason
because GMMs provide better results than CHMM during real-time gesture recognition. Moreover,
another drawback of CHMM is that the method is able to detect a gesture by a motion sequence, due to
the use of hidden states. However, GMMs detect the gesture for the motion data every instant time,
i.e., an incorrect detection at the beginning of the motion would not affect the entire recognition of
the gesture.

Safety of the method, in terms of gesture recognition accuracy, should be taken into consideration
to avoid a wrong guidance. Although this paper does not provide any solution, a good approach would
be to take into consideration a log-likelihood threshold to enable the haptic guidance for the detected
gesture. Depending on it, the system would be more or less conservative providing haptic guidance.

On the other hand, a Pareto analysis was carried out, which shows that GMM provides better
performance than CHMM during gesture detection, by providing comparable result in half the
processing time. During the training stage, both models were trained with the number of Gaussians
between 1 and 10. The required processing time for GMM ranged between 0.00257 s and 0.020997 s and
between 0.141 s and 67.980 s for CHMM. Such a large difference in the training stage can be especially
advantageous in certain applications, for example when used in future reinforcement learning methods.

6. Conclusions

This work shows the use of a method based on LfD for real-time gesture recognition during
telemanipulation. The developed method performs sufficiently well to allow gesture recognition in
real-time with a one-millisecond sampling-time constraint. Moreover, it is shown that a 14 Gaussians
GMM approach is sufficient to adequately recognize the gestures of a peg-in-hole insertion task (that is
here characterized by two individual gestures: “establishing of surface contact” and “levering the peg
into the hole”). The new “interaction-force” based method proposed in this paper provides a viable
way to encode and reconstruct contact tasks in robotic assembly to guide human operators whenever
either visual information is limited or when positional or time-based indexed guidance data are not
available or difficult to achieve. The LfD-based framework proposed by us earlier [18] for haptic
shared control is extended by an LfD-based gesture recognition module, which allows application in
real-time, due to its linear increase of computational complexity with the number of Gaussian Models
used to encode any gesture. We consider the proposed approach to be extendable to other complex
manipulation tasks involving contact operations, such as operation on knobs, doors, hinges, and
levers, and, therefore, we assume that the method can significantly improve remotely operated robotic
manipulation in a variety of contexts. Moreover, a further comparison among GMM, CHMM and
other recognition methods would be useful to analyze suitability in specific situations. These issues
are proposed to be addressed as future work.
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GMM Gaussian Mixture Models
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EM Expectation-Maximization
BIC Bayesian Information Criterion
GGDS Gesture Detection Score
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Abstract: Robotic platforms are taking their place in the operating room because they provide more
stability and accuracy during surgery. Although most of these platforms are teleoperated, a lot of
research is currently being carried out to design collaborative platforms. The objective is to reduce
the surgeon workload through the automation of secondary or auxiliary tasks, which would benefit
both surgeons and patients by facilitating the surgery and reducing the operation time. One of
the most important secondary tasks is the endoscopic camera guidance, whose automation would
allow the surgeon to be concentrated on handling the surgical instruments. This paper proposes a
novel autonomous camera guidance approach for laparoscopic surgery. It is based on learning from
demonstration (LfD), which has demonstrated its feasibility to transfer knowledge from humans
to robots by means of multiple expert showings. The proposed approach has been validated using
an experimental surgical robotic platform to perform peg transferring, a typical task that is used
to train human skills in laparoscopic surgery. The results show that camera guidance can be easily
trained by a surgeon for a particular task. Later, it can be autonomously reproduced in a similar
way to one carried out by a human. Therefore, the results demonstrate that the use of learning from
demonstration is a suitable method to perform autonomous camera guidance in collaborative surgical
robotic platforms.

Keywords: surgical robotics; human–machine interaction; autonomous guidance

1. Introduction

In the last decades, surgical robotics has spread to the operating rooms as a daily reality. The Da
Vinci surgical system (Intuitive Surgical, Inc.), the most used commercial surgical robot, has distributed
more than 4000 units in hospitals around the world that have been used to perform more than five
million procedures. This platform is composed of a slave side that replicates the motions, and a
surgeon who performs in a master console [1]. Although this kind of robot enhances the surgeon’s
abilities, providing more stability and accuracy to the surgical instruments, their assistance is limited
to imitating the movements performed on the master console. However, all the cognitive load lies on
the surgeon, who has to perform every single motion of the endoscopic tools. The implementation of
collaborative strategies to perform autonomous auxiliary tasks would reduce the surgeon’s workload
during the interventions, letting she or he concentrate on the important surgical task.

Camera guidance is a particularly interesting task to be automated, as it is a relatively simple
but crucial task that may significantly help the surgeons. Most robotic surgeries are performed by a
single surgeon who controls both the instruments and the camera, switching the control between them
through a pedal interface. Omote et al. [2] addressed the use of a self-guided robotic laparoscopic
camera based on a color tracking method to follow the instruments. In this work, they compared this
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method with human camera control and demonstrated that autonomous camera guidance slightly
reduces the surgery time, and the camera corrections and lens cleaning frequency were drastically
improved. Therefore, this approach helps the surgeon to be more concentrated on the surgery.

Current camera guidance strategies can be divided into three approaches; direct control interfaces,
instruments tracking, and cognitive approaches. Direct control interfaces, such as voice commands [3],
head movements [4], or gaze-contingent camera control [5], have succeeded in substituting medical
staff for moving the camera. However, these methods require very specific instructions and extraneous
devices that may distract the surgeon. On the other hand, camera guidance through instrument tracking
gives the robot more autonomy and does not require continuous surgeon supervision [6–8]. The earliest
works employed color markers to identify the tip of the tools, but the current trend is to use deep learning
techniques to identify the tools in raw endoscopic images [9–11]. Reference [12] improves traditional
tracking methods with the long-term prediction of the surgical tools motion using Markov chains.

The main problem of these strategies is that they follow simple and rigid rules, such as tracking
only one tool, or the middle point of both tools [13], but they do not consider other important factors
that affect the behavior of the camera such as the knowledge of what task the surgeon is performing at
a given time or particular camera view preferences.

Hence, cognitive approaches emerge to provide more flexibility to the camera behavior, making
the guidance strategy dependent on the current state of the task. Reference [14] proposes a
human–robot interaction architecture that sets a particular camera view depending on the surgical
stage. The camera view may be tracking the instruments or pointing at a particular anatomical
structure. In our previous work [15], we propose a cognitive architecture based on a long-term memory
that stores the robot’s knowledge to provide the best camera view for each stage of the task. This work
also included an episodic memory that takes into account particular preferences of different users.
This work was improved in [16] with a navigation strategy that merges the advantages of a reactive
instrument tracking with a proactive control based on a predefined camera behavior for each task stage.
A reinforcement learning algorithm was used to learn the weight of each kind of control to the global
behavior of the camera. This work revealed that this autonomous navigation of the camera improved
the surgeon performance and did not require the interaction of the surgeon. However, this strategy
requires an exhaustive hand-crafted model of the control strategy.

To solve this issue, learning from demonstration (LfD) arises as a natural means to transfer human
knowledge to a robot that avoids the conventional manual programming. Essentially, a robot observes
how a human performs a task (i.e., the demonstration) and then it autonomously reproduces the human
behavior to complete the same task (i.e., the imitation). This approach is used in a wide variety of
applications like rehabilitation and assistive robots [17], motion planning [18], intelligent autopilot
systems [19], learning and reproduction gestures [20], or haptic guidance assistance for shared control
applications [21,22]. In the field of surgical robotics, LfD has been used for different purposes. Reiley
et al. [23] proposed the use of this method to train and reproduce robot trajectories from previous
expert demonstrations, which were obtained using the Da Vinci surgical system. These trajectories
were used to evaluate different surgeon skill levels (expert, intermediate and novice). On the other
hand, van den Berg et al. [24] proposed the use of LfD to allow surgical robotic assistants to execute
specific tasks with superhuman performance in terms of speed and smoothness. Using this approach,
the Berkeley Surgical Robot was trained to tie a knot in a thread around a ring following a three-stage
procedure. The results of this experiment demonstrated that the robot was able to successfully execute
this task up to 7x faster than the demonstration. Recently, Chen et al. [25] propose the use of LfD
combined with reinforcement learning methods to learn the inverse kinematics of a flexible manipulator
from human demonstrations. Two surgical tasks were carried out to demonstrate the effectiveness of the
proposed method.

This paper explores the use of LfD to guide the camera during laparoscopic surgery. A new
approach to transfer human know-how from previous demonstrations is defined. It uses Gaussian
mixture models (GMM) to generate a model of the task, which is later used to generate the camera
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motions by means of Gaussian mixture regression (GMR). This approach has been experimentally
validated through a surgical robotic platform that is composed of three manipulators, which holds
two instruments and the endoscopic camera. This platform has been used to train different behaviors
of the camera during a peg transferring task, which is commonly used to train surgeons skill. The
information provided by the training was used to create a GMM for this task. Later on, the same
robotic platform was used to reproduce the task and provide the autonomous camera guidance from
the GMM. Training and reproduction were evaluated in order to validate the proposed approach to be
applied in surgical robotics.

This paper is organized as follows. Section 2 describes the autonomous camera guidance method
based on a LfD approach. The experiments performed to validate the proposal are detailed in Section 3,
and Section 4 presents the discussion and the future work.

2. Autonomous Camera Guidance

Figure 1 shows the general scenario of an abdominal laparoscopic surgery, with two surgical
instruments and the camera, which tip positions are defined as −→p1 = (p1x, p1y, p1z),

−→p2 = (p2x, p2y, p2z),
and −→c = (cx, cy, cz), respectively. The idea of the guidance approach is to teach the system how the
camera moves depending on the surgical instrument positions at a given time, as they are the main
reference to establish the viewpoint. Thus, we have to set a common reference frame to relate the
instruments and the camera measures, which is represented as {O} in the figure. The most natural
choice is to set a global frame associated with an important location within the particular task for
which the system is going to be trained, e.g., if we are training the system to move the camera in
a cholecystectomy, then a natural reference would be the gallbladder, but if the task is a kidney
transplantation then it is more reasonable to take the kidney as the reference. Hence, the global frame
{O} was chosen for each particular task, and it was set in an initial calibration process at the beginning
of each set of demonstrations and reproductions of the task.

Figure 1. General scenario of an abdominal laparoscopic surgery.

The autonomous camera guidance method proposed in this paper followed the LfD approach
shown in Figure 2, which was based on two stages: the first one, the off-line stage, created the robot
knowledge base from human expert demonstrations; and the second one, the on-line stage, used that
knowledge to generate the camera motion. During the off-line stage, an expert surgeon performed a
set of demonstrations of the camera motion for a particular task, and the system stored the camera
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position and its relation to the current position of the surgical instruments, i.e., the camera position−→c for each tuple of instrument positions (−→p1 ,−→p2). The demonstrations can be carried out with the
surgical robotic platform used in the experiments, or using other devices, such as joysticks. Moreover,
conventional surgical tools could also be employed, using a tracking position sensor as it was done
in [26] for surgical manoeuvre recognition purposes. The objective of this process, called know-how
transferring, was to create a knowledge base that stores the behavioral model of the camera (ρ). Then,
during the on-line stage, the motion generation module took the previously trained model ρ and the
current position of the surgical instruments, −→p1 and −→p2 , to update the camera location, c. To ensure the
safety of the patient in a real surgery, the system must include a human–machine interface (HMI) that
allows the surgeon to take control of the camera in case of an undesirable motion, and a supervisor
system that guarantees that the camera moves inside a safety region.

Figure 2. Learning for demonstration approach for autonomous camera guidance.

2.1. Know-How Transferring

Know-how transferring is the process through which an expert surgeon demonstrates the camera
motion for a particular surgical task. Starting from a data tuple that contains the position of the
instruments and camera, which can be defined as follows,

ξ = (p1x, p1y, p1z, p2x, p2y, p2z, cx, cy, cz) (1)

each demonstration i generated a training sequence of k data tuples as:

ξ̂i(k) = ξ(1), ..., ξ(k), 1 ≤ i ≤ u. (2)
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Once the demonstrations were performed, the generated training sequences were encoded into a
GMM ρ. A GMM is a probabilistic model that is able to include the training sequences in a set of N
Gaussians, whose mixture covers the training sequences. So, a GMM can be defined as:

ρ = {πn, μn, Σn}N
n=1 , (3)

where a Gaussian n is represented by πn, which is the weight of each n Gaussian on the GMM, and μn

and Σn are the mean and covariance matrix of the Gaussian, respectively.
The training of a GMM was carried out by means of the expectation-maximization (EM)

algorithm [27]. The EM is an iterative algorithm that estimates the values of the N Gaussians of
the training sequences, maximizing the likelihood of the training sequences belonging to the encoded
GMM. The EM algorithm can be defined as follows, where the inputs are all the u training sequences
and the number of Gaussians N:

ρ = EM(ξ̂1...u, N). (4)

Once the model has been trained, it can be evaluated through the Bayesian information criterion
(BIC) as follows:

BIC = −L((k)) +
np

2
log(k) (5)

where L is defined as:

L(ξ̂(k)) =
k

∑
j=1

log (P (ξ (j))) (6)

with:

P(ξ) =
N

∑
n=1

P(n)P(ξ|n) (7)

In this equations, P(n) is the prior probability and P(ξ|n) is the conditional probability density
function, both defined as:

P(n) = πn, (8)

P(ξ|n) = N(ξ, μn, Σn). (9)

Finally, in Equation (5), np is a variable used to penalize the score taking into consideration the
dimension of the tuple, D, and the number of Gaussians, N, as follows:

np = (N − 1) + N(D + 1
2 D(D + 1)). (10)

This method provided a score that was used to choose the best number of Gaussians N. The
lower the score, the better the model fitness was [28].

2.2. Motion Generation

Once the model has been trained within ρ (Equation (3)) and evaluated, the camera motion could
be extracted through GMR [27]. For this purpose, the parameters of ρ can be represented as:

μn =

[
μ

p
n

μc
n

]
, Σn =

[
Σp

n Σpc
n

Σcp
n Σc

n

]
. (11)

These parameters were used to obtain the camera position using GMR as stated in Equation (12),
where c = (cx, cy, cz) is the camera position generated for a particular position of the instruments−→p1 = (p1x, p1y, p1z) and −→p2 = (p2x, p2y, p2z):
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c =
N

∑
n=1

P(n|(p1x, p1y, p1z, p2x, p2y, p2z)

[
μc

n +
Σpc

n

Σp
n
((p1x, p1y, p1z, p2x, p2y, p2z) + μ

p
n)

]
, (12)

where

P(n|(p1x, p1y, p1z, p2x, p2y, p2z)) =
P(n)P((p1x, p1y, p1z, p2x, p2y, p2z)|n)

∑N
j=1 P(j)P((p1x, p1y, p1z, p2x, p2y, p2z)|j)

. (13)

These equations can be used every sample time to generate the camera position c and send it to
the surgical robotic platform in order to autonomously move the camera to the corresponding position.

3. Experimental Results

The autonomous camera guidance method, proposed in the previous section, has been validated
through two experiments, each one for each stage of training and task reproduction. The training
stage showed how a surgical task could be trained using GMM, and the second one, task reproduction,
showed the camera behavior based on the previously learned knowledge to perform autonomous
camera motions. These experiments have been carried out using the surgical robotic platform described
below.

3.1. Experimental Scenario

Figure 3 shows the experimental scenario used to perform the validation of this work. The surgical
robotic platform was composed of three arms; two of them that make up the CISOBOT platform,
in charge of the teleoperation of the surgical instruments, and a UR3 robot, from Universal Robots, with
a commercial 2D endoscope attached at its end-effector. The CISOBOT is an experimental platform
developed at the University of Malaga, which is composed of two customized six degrees-of-freedom
manipulators with a laparoscopic grasper tool attached at their end-effectors [29]. These robots are
teleoperated using the master console that is shown in Figure 3, which is composed of two haptic
devices and a monitor that displays the image of the camera. The surgeon used two commercial haptic
devices, without force feedback, to teleoperate the robots (Phantom Omni, Sensable Technologies),
and during the training stage, an additional haptic was used to move the camera. The master console
was placed in the same room as the robotic platform, but the surgeon did not have direct vision of the
task, so the only visual feedback he/she had is the image of the camera.

The instruments were inserted in an abdomen simulator with the experimental board shown in
Figure 4 inside. It was a commercial pick-and-place pegboard developed by Medical Simulator used to
train basic laparoscopic skills. This pegboard was 125 mm × 125 mm, and it had six cylindrical rubber
rings, which the user (usually a novice surgeon) had to transfer from one peg to another. This was
one of the five tasks described in the SAGES manual of skills in laparoscopic surgery [30] to measure
technical skills during basic laparoscopic surgical maneuvers. The main purpose of this task was to
exercise depth perception in a 2D environment, where the only visual feedback we had was the image
of the camera. Thus, this was a suitable task to evaluate the autonomous camera guidance method
proposed in this work, as the camera view was crucial for the successful performance of the task.
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Figure 3. Experimental surgical robotic platform. It was composed of a teleoperation master console,
an endoscope that was handled by a UR3 robot, and the CISOBOT platform.

Figure 4. Experimental board. It had 12 pegs and the objective was to move cylindrical rubber rings
from one peg to another.

For this task, the global frame {O} was set at the top left peg of the pegboard, as shown in Figure 4.
The global frame calibration process comprised of two steps: first, the user touched the top left peg
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with the tip of the right surgical tool to establish the relation between the pegboard and the CISOBOT;
and second, the user touched the tip of the camera with the same tool to relate the CISOBOT and the
UR3 robot. Afterward, these relations were stored in the system, and all the data measured during the
performance of the experiments was transformed to the global frame {O}.

3.2. Data Acquisition

The implementation of the method for autonomous camera guidance in laparoscopic surgery
follows the software/hardware architecture shown in Figure 5. It was based on the open-source
framework ROS [31], which allows easy communication between the different components of the
system. The two main nodes of the software architecture are the tool teleoperation node and the UR3 robot
node, both running at 125 Hz. The CISOBOT platform was controlled by real-time hardware (NI-PXI,
http://www.ni.com/en-nz/shop/pxi.html) that provided natural teleoperation of the surgical tools.
This control was integrated into a ROS node that published the position of the tools to the rest of the
system. On the other hand, the camera had two ways of operating; during the off-line stage, the camera
was teleoperated using ROS to communicate the Phantom Omni with the UR3 robot; and during the
on-line stage, the camera followed an autonomous guidance according to the motion generated by the
GMR model, which was implemented in a MATLAB environment.

Figure 5. SW/HW architecture for the autonomous camera guidance method.

Finally, during the know-how transferral process, the training data was stored in a bag file format,
which allowed recording synchronized data published by different ROS nodes for off-line analysis.
Hence, the bag files recorded the surgical tool positions from the CISOBOT node and the camera
position from the UR3 node. Then, that data was encoded in MATLAB to generate the knowledge base
containing the GMM of the camera behavior.

The training and reproduction data, as well as the source code, implemented to perform
this work have been published as an open repository in github (https://github.com/spaceuma/
LfDCameraGuidance).

3.3. Training

The training stage of the autonomous camera guidance approach consisted of teaching the system
how to move the camera during the pick-and-place task described above. Hence, the training needed
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two people: the main surgeon that moved the tools and a surgeon assistant that handled the camera.
The task consisted of picking the rings with one of the tools, transferring it to the other tool, and
placing it in another peg of the pegboard. As the objective was to learn a general behavior of the
camera, there was no predefined order to pick-and-place the rings. The task began with the six rings
placed in the positions shown in Figure 4. Then the surgeon can freely choose both which ring to pick
up and the peg to place them. When a ring falls, the surgeon can pick it again with one of the tools,
unless it falls out of the workspace of the robots. When finished, the rings were placed back to the
original position by hand, and the task was repeated again. In total, the training dataset contained k =
2616.34 s · 125 Hz = 327.043 tuples ξ, which corresponded to the duration of the training multiplied by
the recording rate.

Before starting the training of the system, the surgeon and the assistant agreed on the behavior of
the camera depending on the instruments relative position. This behavior had been defined so that
the method was as general as possible, trying to minimize the effect of the particular preferences of
different surgeons. Therefore, after this a priori conversation, the surgeon was asked to not provide
additional on-line instructions to the assistant to modify the camera view. This way, the behavior of
the camera followed the general guidelines independently of the surgeon’s preferences. The agreed
qualitative behavioral model of the camera can be divided into the following guidelines:

• Instruments tracking: in the horizontal plane (xy plane), the camera must follow the tools trying
to keep always both instruments in the field of view but focusing on the active tool in case only
one of them is moving. In the vertical plane (z plane), the camera should follow the tools from
a certain distance that provides a suitable trade-off between field of view and zoom. Particular
grades of zoom are performed by following the inward trajectories of the instruments.

• Zoom-out: in a typical laparoscopic procedure, surgeons operate in very specific areas and they
need the camera to focus in that particular zone. However, sometimes they need to have a global
vision of the operating area, i.e., to zoom-out the camera from the surgical tools. As this fact
depends on the needs of the surgeon at a particular time, the surgeon and the assistant need a
non-verbal signal to teach the system when to zoom-out the camera. For this task, the system has
been trained to zoom-out when both tools make a synchronized outwards motion.

Figure 6 shows an example of the training trajectories and the GMM fitness for the xy plane with
respect to the reference frame {O} for both instruments. The trajectories are represented with blue
lines and the Gaussians within the GMM are represented with green ellipses. Finally, the pegboard
area is represented by a grey square. As shown, the Gaussians covered the trained trajectories correctly.
Comparing Figure 6a,b, it can be appreciated how the left tool covered a greater part of the left area
of the pegboard, while the right reached the zone further to the right. Trajectories out of the pegboard
correspond with failure situations, in which one ring has fallen out of the tools outside the pegboard
limits.

Similarly, Figure 6c shows the trained camera trajectories and the learned GMM model. In this
figure, the fulcrum point of the camera is represented by a red circle. This point has been chosen so that
the camera view covers all the pegboard from its outer position. As the camera does not enter into the
abdomen as much as the surgical tools, it does not reach as far as x and y positions as the instruments.

The number of Gaussians N is an important parameter within a GMM, so its appropriate choice
is critical for the system training. Indeed, a low N would provide a poorly trained model and a high
N would increase the CPU time, which would affect the real-time constraints. To decide the best
number of Gaussians, the BIC score was defined in Equation (5). Figure 7 represents the BIC score
for 1 ≤ N ≤ 30. As shown, the score decreases as N increases, which means that the model better fits
the training sequence as the number of Gaussians is increased. Therefore, the main limitation was the
CPU processing time for real-time constraints. Using the proposed architecture (Figure 5), which used
MATLAB Simulink Desktop Real-Time and ROS, a value N = 20 was reached. Higher values than this
one made it impossible to be executed on the platform.
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Figure 6. Trajectories and Gaussian mixture models (GMM) model in the xy plane during the training
stage: (a) left tool; (b) right tool; and (c) camera.
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Figure 7. Bayesian information criterion (BIC) score for the generated GMM using the training sequence.
The score is decreased (improved) as the number of gaussians are increased.
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3.4. Task Reproduction

To validate the autonomous camera guidance method, the main surgeon has repeated the
pick-and-place task described above during a period of 10 min, recording a total of 78.712 data
tuples. The reproduction of the task began with the rings placed in the same positions as at the
beginning of the training, i.e., as shown in Figure 4. Then, during the task reproduction, the surgeon
can freely choose which ring to pick and the location to place it. This way, it is assured that the training
and the reproduction tasks were not performed in the same order. During this experiment, the camera
robot followed autonomously the previously trained behavior. Figure 8 shows the tools and the camera
trajectories during this validation experiment. As it can be seen, the tools moved within the pegboard
area, and the camera moved according to the trained positions of Figure 6c. During the whole task
reproduction, the system provided a camera view that allowed the surgeon to perform the task without
the necessity to manually change the camera position. A video showing a representational part of this
task reproduction can be found in the Supplementary Materials.

Figure 8. Tools and camera trajectories during the pick-and-place task reproduction.

Figure 9 shows a comparison of the instrument tracking behavior during the training stage of
the system and the task reproduction. The results are divided in the trajectories in the horizontal xy
plane (Figure 9a) and in the vertical z plane (Figure 9b). In the horizontal plane, it can be seen that
the camera moved within the trained area. This figure also shows that during the reproduction, the
left tool reached an area on the lower-left of the pegboard that was not trained during the off-line
stage. This is due to a failure during a ring transfer in which the ring fells out of the pegboard. As a
consequence, the camera moved to an area further in the left than the trained behavior, which allowed
it to keep the instruments within the camera view.

Regarding the vertical tracking, Figure 9b shows that there were two behaviors that are clearly
identifiable: the zoom-out gesture described in the previous section, in which the camera got to the
highest z positions, and the tracking in the z-axis during the normal performance of the task. Figure 10
shows examples of the zoom-out gesture during the training (Figure 10a) and the reproduction
(Figure 10b) of the task. In both figures, a time window of the experiments are represented, and the
particular instants of time in which the zoom-out gesture occurs are marked with shaded areas.
At these instants, it can be appreciated how both tools raise in the z-axis, and the camera makes an
outwards motion in response. Comparing the behavior during the training and the reproduction, it can
be noted that during the training, the camera zooms out at a mean z position of 292 mm, while during
the reproduction the camera gets a mean z value of 260 mm, around 30 mm less than the trained
behavior. This has to do with the motion of the tools during both experiments. Analyzing the data,
during the training stage, the tools reached a higher position than during the reproduction, which is
the reason why the camera had a lower position in the latter case. However, Figure 10 shows how the
zoom-out gesture is correctly detected by the system, and the trained behavior is performed.

33



Electronics 2019, 8, 224

(a)

(b)
Figure 9. Comparison between the training and the reproduction experiments for the instruments tracking
behavior: (a) tracking of the instruments in the horizontal plane, and (b) tracking in the vertical plane.

(a)
Figure 10. Cont.

34



Electronics 2019, 8, 224

(b)

Figure 10. Zoom-out gesture during the (a) training and the (b) reproduction experiments. The shadow
areas represent the moment in time in which the gesture occurs.

4. Discussion

This paper shows the feasibility of using learning from demonstration for autonomous camera
guidance in laparoscopic surgery. Peg transferring was selected as a suitable task that demonstrated
the surgeon skills. Around 43 min were spent to generate enough information to train a GMM with
20 Gaussians, which was considered enough to perform camera guidance with a 125 Hz real-time
system. During the training stage, two behaviors were considered: instrument tracking and zoom-out.
They were evaluated by repeating the same task for a period of 10 min. Both the attached video and
figures, show that the previously defined behaviors were accomplished during the task reproduction
stage, demonstrating that camera guidance is a suitable task to be carried out autonomously. However,
there are several issues that remain to be investigated. The first one is related to the global frame pose
for the task. In the experimental scenario, a well known global reference was used, i.e., the top left
cylindrical rubber ring. However, in real surgery, the global reference frame would be difficult to
choose, as it must be something fixed inside the abdominal cavity, and also, the position and dimension
of the organs are different depending on the patient. The second issue is related to the task recognition.
As stated in Section 1, there is a lot of work related to the detection of the surgical procedure stage
in order to fix some parameters. It would be desirable to use these methods to detect the task that is
being carried out by the surgeon, and therefore, apply the correct camera guidance model. Finally,
the autonomous camera guidance method proposed in this work should be tested in a more complex
task performed by expert surgeons. Moreover, in order to include it in a real surgery, the system
must include a supervisor system that guarantees the patient’s safety. The solution to these issues is
proposed as future works.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-9292/8/2/224/s1,
Video S1: Representational part of the task reproduction.
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Abstract: Inferring human operators’ actions in shared collaborative tasks plays a crucial role in
enhancing the cognitive capabilities of industrial robots. In all these incipient collaborative robotic
applications, humans and robots not only should share space, but also forces and the execution of
a task. In this article, we present a robotic system that is able to identify different human’s intentions
and to adapt its behavior consequently, only employing force data. In order to accomplish this
aim, three major contributions are presented: (a) a force based operator’s intention recognition
system based on data from only two users; (b) a force based dataset of physical human–robot
interaction; and (c) validation of the whole system with 15 people in a scenario inspired by a realistic
industrial application. This work is an important step towards a more natural and user-friendly
manner of physical human–robot interaction in scenarios where humans and robots collaborate in
the accomplishment of a task.

Keywords: industrial collaborative robots; shared robotic tasks; physical human–robot interaction;
human intention recognition; time series classification

1. Introduction

Currently, there is a rising trend towards smart factories where all the involved entities cooperate
and communicate with each other. This is often referred to as Industry 4.0 or the fourth industrial
revolution. Settling this aim for the industrial robotics sector would require freeing robots from
their current work cells, closer to operators, compromising human safety [1,2]. In the interest
of overcoming those safety issues, over the last few years, collaborative robots or cobots have
emerged [3–5]. These robots are specifically designed for direct interaction with a human within
a defined collaborative workspace [6]. Collaborative robots have meant great progress towards a safer
coexistence of operators and industrial robots. Nevertheless, scenarios where humans and robots
exchange forces and share the execution of a task require the use of robots equipped with complex
cognitive capabilities [7]. Bauer et al. [8] proposed five levels of cooperation between robots and
humans (see Figure 1). The authors stated that most of the current real applications of industrial
robots are based on the cooperation levels coexistence and synchronized [9,10]. Driven by the lack of
applications where more complex levels of cooperation are addressed, we propose a scenario based
on the fifth level, collaboration. Figure 2 depicts the proposed setup, where a human and a robot
exchange forces while sharing the execution of a task inspired by a realistic industrial scenario.

Electronics 2019, 8, 1306; doi:10.3390/electronics8111306 www.mdpi.com/journal/electronics39
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(a) Cell. (b) Coexistence. (c) Synchronized.

(d) Cooperation. (e) Collaboration.
Figure 1. Human–robot cooperation levels in industrial environments. (a) The level cell involves
no collaboration at all; the robot remains held inside a work cell. (b) Coexistence removes the cell,
but humans and robots do not share the workspace yet. (c) Synchronized allows the sharing of
the workspace, but never at the same time; humans and robots operate in a synchronized manner.
(d) At the level cooperation, the task and the workspace are shared, but humans and robots do not
physically interact. (e) The level collaboration considers full collaboration where operators and robots
exchange forces.

(a) Robot hardware components. (b) User’s pose with respect to the robot.
Figure 2. Proposed scenario inspired by an industrial collaborative robotic task in which the robot
adapts its state to the human’s intention. (a) The force sensor is used to infer the human’s intention;
the armband is used to inform the user about the robot’s internal state; and the piece adapter eases the
grasping of the object. (b) While the robot holds the object, the human performs a frontal polishing
of it.

In a real industrial environment, operators tend to suffer from injuries related to the usual
repetitive tasks involved in their daily duties. In our scenario, it is important to reduce as much as
possible very mechanical movements and let the users interact with the robot through more natural
kinds of gestures. Moreover, the cooperation between the human and the robot during repetitive
physical human–robot interactions should be fluent [1,6]. Based on our experience, one second is
the maximum amount of time for an efficiently responsive human–robot collaboration. In industrial
surroundings, there is much heterogeneous contextual information that can have an effect on or
modify the progress of a task. In future work, we would like to benefit from using that contextual
information. Therefore, it would be desirable that our machine learning approach be able to cope with
not only temporal sequences, but also other types of environmental variables. To sum up, natural
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interaction, fast prediction, and contextual variables will play a relevant role for the data gathering
and the selection of the most appropriate approach.

The main contributions presented within this work are:

• Force based operator’s intention inference. We implemented two different approaches, and both
were thoroughly evaluated and compared. Finally, one of them was selected and used during the
validation with users. Inference time and the possibility of including contextual information were
considered for the comparison. The first approach consisted of a k-nearest neighbor classifier,
which uses as the metric dynamic time warping. In this case, the time series data are directly
fed to the classifier. The second approach was based on dimensionality reduction together with
a support vector machine classifier. The reduction was performed over the concatenation of all
force axes of the raw time series.

• Force based dataset of physical human–robot interaction. Due to the lack of similar existent
datasets, we present a novel dataset containing force based information extracted from natural
human–robot interactions. Geared towards the inference of operators’ intentions, the dataset
comprises labeled signals from a force sensor. We aimed to generalize from a few users to several.
Therefore, our dataset was only recorded with two users. Indeed, this is compliant with industrial
environments in which the system should be used by new operators, preferably with no need
for retraining.

• Validation in a use-case inspired by a realistic industrial collaborative robotic scenario. The performance
of the selected approach was evaluated in an experiment with fifteen users, who received a short
explanation of the collaborative task to execute. The goal of the shared task was to inspect and polish
a manufacturing piece where the robot adapted to the operator’s actions. To generalize, recall that the
model was trained with data from only two users, while it was evaluated against other fifteen users.

The remaining content of the paper is structured as follows. Section 2 provides an analysis of the
current state-of-the-art related to the topic covered in this document. The data acquisition process
and dataset specifications are introduced in Section 3. In Section 4, we explain the implementation,
evaluation, and comparison of the two approaches to the force based operator’s intent inference.
The validation of the proposed system is presented in Section 5, and the conclusions and future work
are discussed in Section 6.

2. Related Work

In this work, we are primarily interested in exploring force based industrial collaborative robotic
tasks, that is those in which the physical interaction plays an essential role in the accomplishment of
the task. In particular, it is of great interest for us to carry out a twofold research of: (a) applications
where humans physically interact with robots; and (b) datasets containing force based information
extracted from human–robot interaction scenarios.

In the literature, several works have presented applications where humans and robots physically
interact. However, it is difficult to find recent works where, as in ours, the physical interaction
plays a major role in the execution of a shared task. Indeed, in most of the cases, the force exchange
between humans and robots is ignored or undesired. Hence, we analyzed two groups of works:
(a) those in which the physical interaction is ignored or undesired; and (b) those in which the
robot uses the force based information to adapt its state. Regarding the first group of works,
Cherubini et al. [11] discussed a collaborative scenario where a human and a robot shared the task of
Rzeppa homokinetic joint insertion. In this case, even though there was an exchange of force, unlike in
our work, the robot just remained stiff and did not use the force based information to adapt its state.
Maurtua et al. [12] described a set of experiments aimed at measuring the trust of workers on fenceless
human–robot industrial collaborative applications. In all the experiments, the force was undesired;
thus, the robot stopped when an external force was detected. De Gea Fernández et al. [13] described
another industrial situation in which two robotic arms collaborated with an operator. The robots
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avoided the physical interaction with the human as long as possible, and when a physical interaction
occurred, they remained in a compliant mode so that the force was ignored. Raiola et al. [14]
addressed the problem of learning virtual guiding fixtures, analogous to the use of a rule when
drawing, in human–robot collaboration. Even though there was physical interaction during the
task execution, the robot did not use the force based information while guiding the human. In the
work presented by Munzer et al. [15], a human and a robot performed sub-tasks of a shared task:
wooden box assembling. The robot and the human shared forces, and the robot was able to adapt
to the situation, but not using the force, just using vision, or being explicitly asked to do it by
voice commands or instructions using a graphical interface. Some recent works presented cases
in which robots adapted their behavior based on the physical interaction between humans and
robots. Peternel et al. [16] proposed to estimate human fatigue to adapt how much a robot is helping
in human–robot collaborative manipulation tasks: sawing and surface polishing. Rozo et al. [17]
proposed a framework for a user to teach a robot collaborative skills from demonstrations. Specifically,
they presented an approach that combined probabilistic learning, dynamical systems, and stiffness
estimation, to encode the robot behavior along with the task. Hence, the method allowed a robot to
learn not only trajectory following skills, but also impedance behaviors. Unlike in our work, in these
two works, the adaptation was done at the low-level control of the robot by a hybrid force/impedance
controller, while we did it at the symbolic level of the task. A scenario where a human and a robot
physically interact through a handover of an object was discussed by Mazhar et al. [18]. Force
signals were used to identify different phases of the sequence of actions. When a force threshold
was exceeded, the system interpreted that the robotic hand should close to grasp the object during
the handover. Zhao et al. [19] presented an operator’s intention recognition approach inspired by
a collaborative sealant task. The intentions, rather similar to ours, were also used to adapt the state
of the robot, just as in our work. However, the interactions they proposed were simplistic as the
classes could be discriminated between them with thresholds in the force. In our work, we recorded
two different datasets, one that was similar to theirs, containing simpler mechanical movements,
and another one that included more natural human–robot interactions. The latter was used during
the experiments. Gaz et al. [20] presented a new robot control algorithm aimed at being used in
a scenario where a robot grasps a piece while the operator polishes it. The proposed collaborative
task was the same we used, but they considered only two robot modes: (a) stiffness, while the user
polishes’ and (b) compliance, while the user modifies the orientation of the end effector. Unlike in our
work, there was no classification of the user’s intentions; the force was directly applied to different
parts of the robot: (a) a force sensor fastened to the robot’s wrist; and (b) the rest of the robot’s joints.
Losey et al. [21] presented a comprehensive review of intent detection and other aspects within the
context of shared control for physical human–robot interaction. Especially interesting was how this
paper was structured, talking about three aspects covered in our work: (a) user intent recognition;
(b) shared control between humans and robots; and (c) methods to inform the human operator about
the robot’s state.

In the literature, there are datasets extracted from robotics scenarios in which either
the human–robot interaction is not physical or the force based tasks do not include interaction
with humans. The former correspond to social robotics scenarios, where the most common means
of interaction is not physical, but verbal. Those datasets usually contain video, speech (audio
and transcripts), robot joint-sate, physiological data (e.g., bio-signals), or subjective data in the
form of questionnaires [22–26]. On the other hand, it is possible to find some datasets containing
force/torque data extracted from robotic scenarios in which robots and humans do not interact.
Yu et al. [27] presented a dataset in the context of pushing tasks where a robot pushed an object along
a specific surface. For each combination of an object’s shape and a surface’s material, these data
contained forces in the pusher and poses of both the object and the pusher. Another interesting dataset
involving forces was introduced by De Magistris et al. [28], where the authors presented a force-signal
dataset used to learn peg-in-hole robot tasks. The dataset comprised force/torque and pose information
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for multiple variations of convex-shaped pegs. It was used to train a robot to insert polyhedral pegs
into holes. Huang et al. [29] presented a dataset containing force/torque signals and poses of an end
effector tool. Data were recorded from humans performing a set of different motions making use of
the same tool that the robot would use, enabling the transference of knowledge. Datasets containing
information about physical and force based human–robot interaction would be useful for collaborative
robots to learn different task-dependent knowledge. Nevertheless, to the best of our knowledge,
there is no available dataset containing force/torque data that comes from the physical human–robot
interaction during a shared task.

3. Force Based Dataset of Physical Human–Robot Interaction

In this section, we provide all the relevant information related to the dataset (http://doi.org/10.
5281/zenodo.3522205) used along the evaluations presented in this work. The dataset consisted of
force/torque signals resulting from the physical human–robot interaction during the performance of
a collaborative task, polishing a piece. The dataset was geared to teach robots to identify and predict
humans’ intentions during the proposed shared task. In the upcoming paragraphs, we first introduce
the industrial collaborative scenario in which we used the dataset. Then, we explain the different sorts
of operator intents we wanted to infer. Finally, we analyze the specifications of the dataset and how
the data was collected. Note that we assume that the dataset was properly gathered and that it does
not contain any outliers.

3.1. The Industrial Collaborative Robotic Scenario

In this work, we consider a realistic industrial scenario inspired by a manufacturing line of
car emblems. We focus on one sub-process where the emblems are to be coated, and they must be
totally clean and polished. Currently, the plant operator picks, inspects, and polishes the emblems,
to finally place them into another location where they are coated. The objective is that a robot and
the human share the task collaboratively. We have redesigned the process so the robot is in charge
of the picking and placing tasks, while the operator still inspects and polishes the emblem. Once the
robot posed the piece in front of the operator, the human could perform different actions over the
emblem while the robot should infer those actions and adapt to them. In this scenario, the principle
means of human–robot interaction was force based. The interaction should be natural for the human,
and the reaction time of the robot should ensure a fluent and efficient collaboration. Note that it was
not within the scope of this work to tackle how the robot grasps and places the emblems. Instead, we
focused on how the robot, while offering the emblem, can infer the operator’s intent and adapt its
state appropriately.

3.2. Types of Operator Intents

Once the robot was offering the emblem to the user, we considered three different operator’s
intents: (a) polishing, (b) moving the robot, and (c) grabbing the object. Analogously, there were three
different states of the robot w.r.t. them: (a) increasing stiffness (named “hold”), (b) decreasing stiffness
(“move”), and (c) releasing the object (“open gripper”). In the first action, the operator should be able
to do the main objective of the task, polishing the emblem. When applying this sort of force, the robot
should be stiff. Otherwise, the polishing action would not succeed. The second operator’s intent was
regarding ergonomics in industrial scenarios. The operator could get tired of polishing the pieces in
the same pose or there could be another operator with different corporal dimensions and/or abilities.
Hence, this time, the force should be done to move the robot to a more comfortable pose. Finally, we
also contemplated the case in which the human wanted to grab the object (emblem), pulling it from
the robot’s gripper. In this case, the robot should open the gripper to release the piece. These three
actions should be performed naturally, and since they have a fundamental effect on the progress of the
shared task, the robot should be able to react to them. It is worth mentioning that they were chosen
considering the shared task from the scenario proposed in Section 3.1.
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3.3. Dataset Specifications

The dataset was recorded using an ATI Multi-Axis Force/Torque Sensor Mini40 SI-20-1, which was
fastened to the wrist of the robot, the basis of the end effector (see Figure 2a). We used the default
configuration of the sensor, and the measurements were taken at a frequency of 500 Hz.

Every sample contained a single sort of interaction, from the beginning to the end of the physical
contact. It is worth mentioning that the gathered data samples were not of the same length, ranging
from half a second to three seconds long. In the dataset, the shorter samples were padded with zero
values at the end of the temporal sequences so that all of them had the same length. The dataset
contained six different files per each of the three classes, which corresponded to the six axes of the
force sensor. Each file was named using the force/torque axis and the class label; hence, users could
read the samples included in each file and label them appropriately.

Although we aimed to infer force based human intentions from natural and therefore ambiguous
human–robot interactions, we first evaluated our method with less human based intentions, but more
distinguishable mechanical interactions. The mechanical dataset was used as a baseline to check if
the machine learning algorithms we studied could solve a simplified version of the problem we faced.
Meanwhile, the natural dataset was employed to evaluate (see Section 4) and validate (see Section 5)
the proposed approach to infer humans’ intentions. In the mechanical dataset, each class followed
distinct movement patterns, which produced completely different force signals. Therefore, the samples
of each of the intentions/classes were distinguishable from each other. On the contrary, in the natural
dataset, the movement patterns between classes were much more similar to each other; meaning there
was more ambiguity among samples of different classes, which made classifying more complicated.
In Section 4.5, we evaluate how the chosen machine learning approach (see Section 4.4) performed
when it was individually trained and tested with each of the datasets.

Since it was expected to be easier to classify, the mechanical dataset only contained 600 samples.
Recall that we had three classes, and we used two users; thus, each user performed 100 samples of
each class. The physical contact was always done following restricted patterns for each intention/class.
Figure 3 depicts both, the different axes in which the operator was supposed to apply the force and
the corresponding force signals we detected using the sensor. For the polishing intention, we moved
periodically only in the axis Y, and we pushed towards the robot, the negative Z-axis (Figure 3a).
In order to move the robot, we moved just in one direction for each sample and only in the Y-axis
(Figure 3b). Finally, to grab the object, we pulled the robot’s end-effector towards ourselves, the positive
Z-axis (Figure 3c).

Unlike with the mechanical dataset, the natural dataset contained more samples, 900. Recall that
we had three classes, and we used two users; thus, each user performed 150 samples of each class.
In this case, the physical contact for each intention/class could be done following several natural
patterns, which increased the ambiguity between classes. In Figure 4, it is possible to see the different
axes in which the operator was supposed to apply the force and the corresponding force signals we
detected using the sensor. For instance, the intention of polishing could now be done by describing
circles and also using the X-axis (Figure 4a). The patterns to move the robot now included any of the
directions of the three spatial axes (Figure 4b). Finally, the operator could now try to grab the object
pulling, but not only towards the exact direction of the Z-axis (Figure 4c).
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(a) Polish

(b) Move

(c) Grab

Figure 3. Mechanical dataset. Human movement patterns (left side) and appearance of the force signals
produced by those patterns (right side). Observe how each class (a–c) is quite distinguishable from the
rest even after only 0.4 s. Making use of this dataset to train a model would allow predicting fast with
enough confidence. Nevertheless, the movement patterns of the user would be too restricted, and the
human–robot interaction would not be natural.

(a) Polish

(b) Move

(c) Grab

Figure 4. Natural dataset. Human movement patterns (left side) and appearance of the force signals
produced by those patterns (right side). Observe how each class (a–c) is still similar to the rest even
after 0.4 s. Due to the richness in movements, a model trained with this dataset would allow a natural
human–robot interaction.
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It is worth discussing the visual differences between the signals of both datasets. In the mechanical
dataset, signal forces looked different when we considered the entire time series, but also after 0.4 s
of signals. Forces occurred in isolated axes for each of the operator’s actions/intents, and ambiguity
between classes was kept to a minimum. Hence, it was possible to discriminate between classes with
a reduced amount of force information. This was not the case for the natural dataset. Of course, signals
from different classes were still distinct if we considered the whole temporal sequence. Nevertheless,
unlike with the mechanical dataset, we could not be so sure about the label of each of the signals
after only 0.4 s. Please, recall that, although for illustrative purposes, the figures only show the linear
forces, our classification process used both torque and linear signals. Together with the dataset, we also
provide some Python code to run our proposed approaches and use the data (http://doi.org/10.5281/
zenodo.3522205). Therefore, other people can learn how to use the dataset on their own.

4. Force Based Operator’s Intention Inference

In order to infer humans’ intents, we have evaluated the performance of two approaches using
the natural dataset. We compared them and chose one, which was used during the validation carried
out in Section 5. Finally, the chosen approach was also used to analyze the differences between the
natural and mechanic datasets. These results are part of the experimental findings presented in our
work. One of the approaches, kNN + DTW, was based on a classifier that directly used the raw sensor
data to perform the inference, whereas the other one, GPLVM + SVM, used a lower dimensional
representation of the data. Recall that we sought a natural human–robot interaction, a fast reaction of
the robot, and if possible, an approach that dealt with heterogeneous industrial contextual data.

4.1. Evaluation Setup for the Proposed Approaches

The performance of the proposed approaches was evaluated following the considerations
explained in this section. Cross-validation without replacement was applied ten times, and the data
were randomly split into training (75%) and test (25%) sets. The chosen metric to evaluate the
performance was the F1-score, which captures both the precision and the recall of the test.

In order to fulfill the requirement of a profitable robot reaction, the prediction time should be
short enough so that the proposed methods apply to our realistic scenario. For that reason, we did
not consider all the samples, but smaller portions of them (windows), which contained only their
initial information. In total, five different window’s sizes were evaluated: 0.1, 0.2, 0.5, 0.7, and 1 s
(see Figure 5). The intuition is that the larger the sampling window, the higher would be the chances to
classify the human’s intention properly, but the longer the operator would need to wait until the robot
reacts to the interaction. Therefore, we aimed to find a trade-off between the prediction time and the
classification performance. Our experience said that 1 s was a convenient amount of prediction time for
an efficient and feasible human–robot collaboration. Thus, longer inference time would be undesirable.
Note that the total prediction time would include both the sampling window’s size and the time the
approach needs to infer the label of the sample.

Figure 5. Sampling windows evaluated to find an optimal classification-reaction time ratio. The windows
correspond to: 0.1 s (cyan), 0.2 s (red), 0.5 s (green), 0.7 s (purple), and 1 s (orange). Recall that one second is
our task limit time for achieving a suitable human–robot interaction.

4.2. Raw Data Based Classification

In this approach, using the data obtained from the sensor directly, the classification was done
utilizing a k-Nearest Neighbors (kNN) classifier with Dynamic Time Warping (DTW) [30] as the metric.
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In particular, we used k = 1. While being a simple method, 1NN + DTW’s performance seems to be
hard to beat by other approaches in time series classification problems [31].

4.2.1. Implementation Details of the Raw Data Based Classification

Dynamic time warping is a time dependent algorithm used to measure similarity between
two temporal sequences that may vary in speed. For instance, similarities in polishing could be
detected using DTW, even if the operator polishes faster or slower than on other occasions. DTW is
a computationally-intense technique, with quadratic time and memory complexity. However, there
are some ways to accelerate computation. In our case, we used the library Fast DTW [32]. DTW is
meant to be utilized for univariate time series, which was not our case since we had six sensor axes.
From the literature, we know at least two obvious approaches to tackle this and generalize DTW
for multi-dimensional time series: dependent and independent DTW (see Figure 6) [33]. The kNN
classifier was taken from the scikit learn library [34]. Since default implementations of both kNN and
Fast DTW do not allow working with multi-dimensional time series, it was necessary to adapt the
libraries we used. Apart from those modifications, we used the values set by default.

Figure 6. Dynamic Time Warping (DTW) for multi-dimensional time series: dependent (a) and
independent (b) DTW. The former consists of computing the DTW similarity path of both dimensions
(axis) at the same time. The latter is much simpler; normal DTW is computed separately on each
dimension and their results added subsequently.

4.2.2. Evaluation of the Raw Data Based Classification

The proposed method, 1NN + DTW, was evaluated for each of the window sizes previously
defined, concerning the classification performance and the inference time per sample. Recall that two
different implementations of multi-variate DTW were used, dependent and independent, DTWd and
DTWi, respectively. Due to the lazy learning nature of the kNN classifier, we also evaluated how the
length of the samples fed to the classifier affected the inference time. In particular, we sub-sampled the
measurements of the windows to smaller portions. We considered five different lengths, which were
expressed as the percentage of the window’s length that remained after the sub-sampling: 100%
(no sub-sampling), 8%, 6%, 4%, and 2%. Figures 7 and 8 show the results of the evaluation.

There are many conclusions that could be drawn by analyzing the information shown in Figures 7
and 8. In the first place, the bigger the window, the better the performance; see the evolution of
F1-score in Figure 7. It is also true that the growth of the window’s size resulted in an increment of
the inference time per sample (see Figure 8). This is reasonable since the kNN algorithm is a lazy
learner. Any time a new sample is to be classified, the similarity between that sample and the rest of
the training samples is computed. Hence, the longer the samples, the more time it takes to compute
the similarity, prolonging the whole inference process.

The best F1-score result (99.24%) was obtained for the case of using DTWd with the window size
of one second and sub-sampling of 6% of the total window’s size (see the orange bar in Figure 7).
The inference time per sample for this same case was above half a second (0.7 s), which can be seen
looking at the same bar in Figure 8. Therefore, the total operator’s intent inference time would be
around 1.7 s, which is above the one second we sought, so this was not a valid alternative.
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Figure 7. F1-score values for the different types of raw data based classification (dependent
and independent DTW), sampling window’s size (0.1, 0.2, 0.5, 0.7, and 1.0 s), and percentage of
sub-sampling (where 100 means non-sub-sampling). The longer the sampling window, the better the
classification performance. Observe how, for our task, a 0.5 s sampling window already provided
a very good F1-score.

Figure 8. Graphical representation of the values of the inference time per sample for the different
types of raw data based classification (dependent and independent DTW), sampling window’s size
(0.1, 0.2, 0.5, 0.7, and 1.0 s) and percentage of sub-sampling (where 100 means non-sub-sampling).
The longer the window of data we consider, the longer the inference time. The total time to recognize
the operator’s intent is the addition of the window’s size (horizontal axis) plus the inference time per
sample (vertical axis).
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Fortunately, reducing the window’s size, while helping to reduce the inference time, did not
decrement the performance too much. As can be seen in Figure 7, from windows bigger than 0.5 s,
the value of the F1-score was always above 95%. The best F1-score value for that window was
around 97.5%, which was a really good result. It corresponded to the case of using all the data within
the window’s size together with DTWi (red bar). Nevertheless, if we used that configuration for
the approach, the time needed to infer the operator’s intent would be above seven seconds, once
again undesirable.

We needed to find the most convenient combination of: the DTW version, sampling window
size, and whether sub-sampling was needed or not. Indubitably, we discarded the case in which
sub-sampling was not applied, since the inference time (blue and red bars in Figure 8) was always
above the desired one. Any case that used the one second window could also be dismissed, since the
performance was not much better than for the case of using 0.5 or 0.7 s windows. Hence, we focused on
the 0.5 and 0.7 s windows, in which there was not any combination that, at the same time, performed
better and faster than the rest. Nonetheless, should we choose one case, we would select a case in
which the trade-off between inference time (0.8 s) and performance (97.99%) was rather good. This
case corresponded to DTWi, a window of 0.7 s, and sub-sampling of the data to 2% of the window’s
size (pink bar in Figure 7).

4.3. Feature Based Classification

In this section, we propose a twofold machine learning approach to infer the human operator’s
intentions. First, we reduced the dimensionality of the data using an unsupervised method: Gaussian
Process Latent Variable Model (GPLVM) [35]. Then, we used a Support Vector Machine (SVM) classifier,
which was trained using the lower dimensional representation of the data. GPLVM is a non-linear
dimensionality reduction method that can be considered as a multiple-output GP regression model
where only the output data are given. The inputs are unobserved and treated as latent variables;
however, instead of integrating out the latent variables, they are optimized. By doing this, the model
gets more tractable, and some theoretical grounding for the approach is given by the fact that the model
can be seen as a non-linear extension of the linear Probabilistic PCA (PPCA) [36]. Note that in this
case, the temporal sequences are just considered as long feature vectors, so that the temporal relation
between subsequent signal measurements is not explicitly considered. However, dimensionality
reduction has proven to be an effective technique in time series analysis, in which data are remarkably
high dimensional [37–39].

4.3.1. Implementation Details of the Feature Based Classification

The implementation of the proposed method, GPLVM + SVM, relied on two existing libraries: the
GPy library [40] for the dimensionality reduction and the scikit learn library for the SVM classifier [41].
In the case of the latter, we used the default values for all the parameters. However, concerning GPLVM,
it was necessary to set some parameters: kernel, optimizer, and the maximum number of optimization steps.
Firstly, we chose a kernel that was a combination of the Radial Basis Function (RBF) kernel together with
a bias kernel. The RBF kernel was selected because it is one of the most well known kernels for non-linear
problems. We added the bias kernel to enable the kernel function to be computed not only in the origin of
coordinates. Secondly, for the optimization process, we used one of the optimizers already implemented in
GPy, limited-memory Broyden–Fletcher–Goldfarb–Shannon (BFGS) [42]. We chose this optimizer because,
unlike others included in the library, it was quite stable concerning the number of optimization steps needed
to converge. Finally, the maximum number of optimization steps was set to 5000, which in most cases was
enough for the optimization to converge.

The implementation of the GPLVM algorithm allowed us to use two different types of latent
variable inference: with the optimization step (GPLVM-op) and without the optimization step (GPLVM).
For us, the most relevant difference between them was that the inference with optimization took more
time, but it would be more correct in theory and would lead to more accurate results. Nevertheless,
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as we will see in Section 4.3.2, the inference with optimization did not always ensure better performance.
Once an already optimized GPLVM received a new sample to infer its latent variables, the global
inference process was divided into three steps. The first step, nearest neighbor search, was focused
on finding which of the training samples was the most similar to the new sample. This was done
by computing the similarity between the new sample and all the training samples employing the
Euclidean distance. The second step, latent variables’ initialization, consisted of setting the value of
the inferred latent variables to the values of the latent variables of the nearest neighbor found in the
previous step. Finally, during the third step, latent variables’ optimization, the value of the initialized
latent variables was refined through optimization. Figure 9 depicts the global pipeline of the inference
process detailed above.

Figure 9. Global GPLVM inference process of the latent variables given a new sample in the higher
dimensional space. First, the most similar training sample to the new sample is found using Euclidean
distance. Second, the value of the latent variables of the most similar training sample (black dot in the
first step) is used to initialize the inferred value (see the white dot in the second step). Third, the GPLVM
model is optimized considering the new sample, which results in a refinement of the inferred latent
variables. GPLVM with optimization includes the three steps; GPLVM without optimization stops after
the second.

4.3.2. Evaluation of the Feature Based Classification

The proposed method, GPLVM + SVM, was evaluated for all the different already mentioned
window sizes about both the classification performance and the inference time per sample. A priori,
we did not know which size of the latent space would produce a good performance. Therefore, different
sizes of latent space were also evaluated: 2, 3, 5, 10, and 20 latent variables. Besides, the two types of
GPLVM were evaluated as well: optimized (GPLVM-op) and non-optimized (GPLVM). Figure 9 depicts
the global modular structure of the GPLVM inference process. Figures 10 and 11 show respectively the
results of both the F1-score and the inference time with respect to the different window sizes and the
GPLVM methods used.
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Figure 10. F1-score values for the different types of feature based classification (optimized (op) and
non-optimized GPLVM inference), sampling window’s size (0.1, 0.2, 0.5, 0.7, and 1.0 s), and number of
latent variables (2, 3, 5, 10, and 20). Note that the bigger the number of latent variables, the better is
the result, which also happens with the window size. Furthermore, observe that in some cases where
the window’s size is very small (0.1 and 0.2 s), the shorter window outperforms the longer one by a
small amount. This behavior is counter-intuitive, but possible due to the still negligible information
contained within those small samples and the random selection of the training set.

Figure 11. Graphical representation of the inference time per sample for the different types of feature
based classification (optimized and non-optimized GPLVM inference), sampling window’s size (0.1,
0.2, 0.5, 0.7, and 1.0 s), and number of latent variables (2, 3, 5, 10, and 20). GPLVM-op leads to longer
inference time than GPLVM, which also applies when the number of latent variables grows.

Evaluating in detail the results depicted in such figures, probably, the most evident conclusion is
the effect of the optimization during the inference step in the GPLVM. The inference time per sample
was always longer when GPLVM inference was optimized. Indeed, that time grew accordingly to the
number of latent variables (see Figure 11). Another interesting finding was that the inference time per
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sample, when there was no optimization, remained quite short and stable no matter the window’s size
nor the number of latent variables (see Figure 11). Hence, in terms of inference time, GPLVM without
optimization was preferred. Moreover, as can be seen in Figure 10, the performance score between both
optimized and not optimized versions was negligible. This fact reinforced the previous result, allowing
us to conclude that the non-optimized version of GPLVM was the most convenient alternative.

Focusing on Figure 10, it is observable that the more latent variables we used, the better was
the result. Specifically, for the cases in which we used two and three latent variables (specially
two), the performance (F1-score) was usually much poorer. The best result in terms of performance,
an F1-score of 99.33%, corresponded to the GPLVM version without optimization, the window of 1 s,
and 20 latent variables. The inference time per sample was around 0.15 s, so the total inference time
was 1.15 s, slightly superior to the one second we set as desirable. Thus, we decided to reduce the
window’s size to 0.7 s. In this case, the best alternative was to use 10 latent variables and, again, the
non-optimized GPLVM. This resulted in losing a bit of quality in the performance, from 99.33% to
98.14%, not noteworthy, but decreasing the time from 1.15 to 0.85 s, fulfilling our requirements.

4.4. Raw Data Based vs. Feature Based Classification

In this section, we compare only the best combination of parameters for each of the two studied
methods. Finally, we selected one of them to be used during the experimental validation proposed
in Section 5. Recall that at the beginning of this work, we stated some requirements that the selected
approach should fulfill. The human and the robot should interact naturally, and the robot adaptation
should last one second at most. Furthermore, in the future, we aim to consider the contextual
information of the industrial processes surrounding the proposed collaborative task. Hence, it would
be desirable that the method to infer the human’s intention could deal with heterogeneous data, not
only temporal sequences.

The selected combination in the case of 1NN + DTW ensured an inference time of 0.8 s and
a performance score of 97.99%, which was rather good. It corresponded to using independent DTW,
a window of 0.7 s, and sub-sampling of the data to 2% of the window’s size (see Section 4.2.2 for more
detail). When using GPLVM + SVM, the selection was GPLVM without optimization, a window of
0.7 s, and 10 latent variables. This approach resulted in an F1-score of 98.14% and an inference time of
0.85 s (see Section 4.3.2 for more detail). As we can see, the quantitative differences between the two
alternatives were negligible. Therefore, to provide more useful insights into the comparison between
1NN + DTW and GPLVM + SVM, we analyzed them using more qualitative measures. They were
extracted from the hands-on experience acquired along the developed work and were meant to ease
the selection procedure.

• Ease of implementation: Both methods were relatively simple to implement and use. Conceptually
and algorithmically, 1NN + DTW was a simple machine learning technique; only the versions of
DTW for multivariate data presented a bit of difficulty. GPLVM was theoretically more complex,
and reaching a profound understanding of the mathematical background of this technique would
require effort. However, the GPy library eased the use of GPLVM without the need to dig too
much into the theoretical details.

• Data visualization: GPLVM allowed us to project the sequential data samples into just a few latent
variables and then visualize the data distribution in either 2D or 3D. This can be useful to analyze
the dataset easily, and it was something that could not be done using 1NN + DTW.

• Generalization to other scenarios: This aspect is rather important for us because in the future,
we would like to include heterogeneous environmental variables in the learning pipeline.
Examples of contextual variables are: if the grasped object is heavy or not and if the user is
inside the workspace or not. In this case, these two variables are binary and could be added to
the feature vector of each sample to learn some environmental aspects related to safety. GPLVM
could be used to reduce the dimensionality of temporal sequences to just a few features. Then,
other contextual variables could be concatenated to the resulted feature vector, and SVM would
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be used to learn not only the physical interactions but also the contextual information. 1NN +
DTW, however, cannot deal with other data apart from sequential. It would be necessary to use
a second kNN model with another metric (e.g., Euclidean) and then apply ensemble learning
techniques.

Based on the previous analysis, we selected GPLVM + SVM. In particular, we proposed to use
GPLVM without optimization during the inference, a sampling window of 0.7 s, and 10 latent variables.
The first reason was that we thought GPLVM’s generalization capabilities could help us in future
works. In robotics, especially in industrial environments, data are presented in heterogeneous ways:
sequential data, digital, etc. Let us consider one of the examples proposed in the generalization
paragraph. If the object the robot grasps is too heavy, we could just add a “1” to the feature vector
of latent variables and train the SVM classifier with the new extended vector. Therefore, it could be
learned that even when the inferred human’s intention is grabbing the object, the robot must never
open the gripper if the object is too heavy. Of course, if we consider only one environmental variable,
the easiest way to tackle this event would be to add a conditional statement to the control code of the
robot. However, if the number of those variables increases, machine learning methods could help.
Furthermore, GPLVM allowed us to visualize the distribution of the data we worked with, which could
be especially useful if the dataset were enlarged by other people, and we wanted to see how the
different datasets related to each other.

4.5. Comparison of Natural and Mechanical Datasets

In this section, we evaluate and compare the performance of the chosen approach, GPLVM +
SVM, using both datasets, the natural and the mechanical. We assumed that the mechanical dataset
would show a good performance even with a small sampling window sizes. Given that, we wanted to
analyze if the proposed method, for the sampling window of 0.7 s, could work similarly well, not only
with the mechanical, but also with the natural dataset. Recall that we chose to use the non-optimized
GPLVM inference and 10 latent variables. Although the selected sampling window’s size was 0.7,
during this section, we tested the approach against the usual five sizes we used along the rest of the
document. As was done previously, we used cross-validation without replacement ten times, and the
data were randomly split into training (75%) and test (25%) sets.

Figure 12 depicts the F1-score values obtained from the evaluation of GPLVM + SVM against both
datasets. This bar diagram shows that indeed, our previous assumption was true. In general, using
the mechanical dataset, we obtained better results than with the natural data. Specifically, when the
window’s size was 0.2 s, the F1-score was even close to 95%. However, we also observed that for the
window chosen for our validation with users, 0.7 s, the differences between the performance using any
of the datasets were minimal. Therefore, the proposed approach worked quite well even when the
dataset contained more natural samples of physical human–robot interaction.
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Figure 12. Evaluation of the natural (blue) and the mechanical (red) datasets of the approach GPLVM +
SVM without optimization and 10 latent variables. The mechanical data need less force information to
classify with good quality. However, if the window of the force signal is large enough (more than 0.5 s),
the model behaves similarly no matter whether the data are mechanical or natural.

5. Validation: Inferring Operator’s Intent in a Realistic Scenario

To validate the selected approach, GPLVM + SVM, we set up an experiment in which several
users individually collaborated with a robotic arm according to the industrial scenario of polishing
car emblems. The validation was conducted using fifteen healthy individuals within an age range of
18 to 35. Users were selected among people who had knowledge about the robotics domain and had
been in contact with robots before. We did not include people with reduced mobility or any cognitive
disability, which could affect the perception of the robot’s behavior, endangering the users’ integrity.
Each of the users received an individual explanation, no more than five minutes, about how they were
expected to interact with the robot. This included both general information about the system and
particular notions about the expected movements for each of the three classes/intentions. Nevertheless,
the users were not allowed to train before the evaluation began, because we wanted to evaluate if
there was an adaptation of the user to how the system inferred the different intentions. Users were
also informed about their rights, possible risks, and were asked to sign an ethical approval specifically
designed for this experiment. Note that we followed CSIC (Spanish National Research Council) ethical
procedures and asked for ethical consent from the Human Subject Research Committee of CSIC before
the validation was conducted.

Recall that the parameter combination for the chosen approach was: GPLVM without optimization,
a sampling window of 0.7 s, and 10 latent variables. In this section, we give the flavor of the validation
setup, and we evaluate and discuss the obtained results.

5.1. Setup

The validation setup was aimed at fulfilling the needs required by a human and a robot to
collaborate on an industrial task in which the force exchange is not only present, but fundamental
for the accomplishment of the task. Using the force based information, the robot should be able
to identify the intent of the operator (Section 3.2) and to adapt its state/behavior to it. In order
to provide a bi-directional communication, we equipped the robot with a force sensor, used to
measure the interaction from the human to the robot, and an armband made of LEDs through
which the robot informed the user of its internal state. The latter allowed us to display different
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patterns (see Figure 13). The finite state machine of the control of robot during the validation
experiment is shown in Algorithm 1.

(a) Ready. (b) Not confident. (c) Hold. (d) Move. (e) Open.
Figure 13. LED patterns used by the robot to communicate with the user using the robot’s armband.
(a) Green pattern used to indicate when the robot is ready for physical interaction. (b) Red pattern
indicating low classification confidence (<70%). Textual patterns showing the state of the robot when
user intents are identified with high confidence: (c) “hold” (polish intent), (d) “move” (move intent),
and (e) “open” (grab intent). The character “e” could not be expressed due to the four row armband
matrix restriction.

Algorithm 1: Finite state machine of the control of the robot during the validation.
Data: Force sensor’s signals
Result: Robot’s state adaptation

1 initialization;
2 while true do

3 robot in initial pose;
4 inform operator: robot is ready for interaction;
5 wait for physical contact;
6 if detected physical contact then

7 prepare sample from raw sensor data;
8 infer operator’s intention;
9 if inference’s confidence ≥ 0.7 then

10 inform operator: next robot’s state;
11 adapt robot’s state to the inferred intention;
12 else

13 inform operator: the inference’s confidence was low;
14 end

15 else

16 do nothing;
17 end

18 end

Recall that this scenario was inspired by a real industrial case in which an operator was meant to
inspect and polish car emblems. Please refer to Figure 2a to see the different parts of the robot setup
used. We can only show the adapter where the emblem is attached since emblems contain private
commercial brand logos and cannot be shown due to confidentiality agreements. Another important
aspect related to the setup is how the user is located with respect to the robot. We chose to pose the
operator in front of the robot so that the physical interaction was comfortable. During the experiment,
the operator will have a rag that would be used to polish. Figure 2b shows an example of the pose of
a user while polishing. A video of the validation with users can be found at www.iri.upc.edu/groups/
perception/SIMBIOTS.

5.2. Evaluation

Each user was asked to perform thirty trials randomly selected from the three operator’s
intent/actions explained in Section 3.2. We made sure that among the thirty trials, ten corresponded to
each of the three classes/intentions. Note that since trials were randomly arranged for each person,
there could not be any bias in our evaluation due to the order of the trials. Both the ground truth
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and the inferred value were annotated for each user’s trial. In this section, we analyze the overall
performance of the system (confusion matrix) and the overall adaptation of the users throughout the
experimental validation.

A confusion matrix of the performance of the system for each user was computed, then we
calculated the final mean confusion matrix shown in Figure 14, which contained the average result
for all users. The most obvious observation one can make is that the “move” intent was the easiest to
identify. Indeed, the confusion matrix was not symmetric, and this class showed a large percentage
of false positives, which was a symptom of a clear bias of the model in favor of this class. This can
be better understood by looking at Figure 15. This figure shows the sample distribution in the
three-dimensional space defined by the most significant/discriminating latent variables among the
ten used. We can observe how the samples from the “move” class fell in the middle of the other
two classes, which explains why there were many false positives, shared with the other two classes.
However, given the bias in favor of this class and the higher proximity to the “grab” class, this latter
was the class with the biggest number of false positives.

As stated before, we also studied if there was an adaptation of the users to the system,
which would be observable in the performance of the system along the validation experiments. Recall
that users only received a short explanation of the three classes and in which axes they could perform
the movements for each action. There was ambiguity among classes, and users had a particular way
to move for each action. Because of this, during the first trials, the system’s performance was poorer.
When we talk of adaptation, we mean that the users understand which movements for each class
ensure a better performance of the system. Note that this is possible because users could see the result
of the inference.

Figure 14. Normalized confusion matrix of the performance of the system during the validation with
all users and trials. The matrix is non-symmetric, and the biggest portion of misclassified samples of
the classes “grab” and “polish” are inferred as “move”, which indicates the existence of some bias in
favor of the class “move”.

Figure 15. Single perspective of the data visualization using the three most discriminating latent
variables from the original ten. The distribution of the data in this lower space shows that the samples
of the class “move” are rather close to the other two classes, which could be the reason why the model
seems to be a bit biased in favor of this class.

We computed the average performance of the system for all the trials and users, and the result
showed a positive slope of the trend line for the F1-score (Figure 16). We considered that once the
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trend line was above 0.8, users had already adapted. In our case, this corresponded to the last five
trials of the experiment.

Figure 16. Average F1-score of the system for all the users along with the experiment’s trials.
The positive slope of the trend line for the F1-score is an indicator of the adaptation of the users
to the system. Please recall that none of the users followed the same sequential trial set since they were
randomly generated.

6. Conclusions

In this article, we presented our work on inferring operators’ intent throughout the execution of
an industrial collaborative task in which a robot and an operator exchanged forces while sharing the
accomplishment of the task. This work consisted of three major contributions: (a) force based operator’s
intention inference; (b) force based dataset of physical human–robot interaction; and (c) validation of
the whole system in a scenario inspired by a realistic industrial application. In our work, the physical
interaction between the robot and the human not only existed, but also played a major role since it
was the main source of information for the robot to infer the human’s intent. Were humans and robots
to collaborate in industrial environments in the factories of the future, the main interaction would be
physical. Hence, our work means a step forward to enhance humans’ and robots’ collaboration in real
case studies with more natural and user-friendly interaction. In the future, we will consider exploring
other model based representations of the inherent contextual knowledge of collaborative shared tasks,
to extend our current system to a wider range of more complicated scenarios.
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Abstract: This paper proposes a nature inspired, meta-heuristic optimization technique to tune a
proportional-integral-derivative (PID) controller for a robotic arm exoskeleton RAX-1. The RAX-1 is a
two-degrees-of-freedom (2-DOFs) upper limb rehabilitation robotic system comprising two joints to
facilitate shoulder joint movements. The conventional tuning of PID controllers using Ziegler-Nichols
produces large overshoots which is not desirable for rehabilitation applications. To address this issue,
nature inspired algorithms have recently been proposed to improve the performance of PID controllers.
In this study, a 2-DOF PID control system is optimized offline using particle swarm optimization (PSO)
and artificial bee colony (ABC). To validate the effectiveness of the proposed ABC-PID method, several
simulations were carried out comparing the ABC-PID controller with the PSO-PID and a classical
PID controller tuned using the Zeigler-Nichols method. Various investigations, such as determining
system performance with respect to maximum overshoot, rise and settling time and using maximum
sensitivity function under disturbance, were carried out. The results of the investigations show that
the ABC-PID is more robust and outperforms other tuning techniques, and demonstrate the effective
response of the proposed technique for a robotic manipulator. Furthermore, the ABC-PID controller
is implemented on the hardware setup of RAX-1 and the response during exercise showed minute
overshoot with lower rise and settling times compared to PSO and Zeigler-Nichols-based controllers.

Keywords: upper limb rehabilitation robot; particle swam optimization (PSO); artificial bee colony
(ABC); Ziegler Nichols; Maximum sensitivity

1. Introduction

The life expectancy of people, and hence, the number of older adults, is increasing. Elderly
people are most vulnerable to strokes. Stroke is among the main causes of limb disabilities and can
be fatal [1,2]. According to statistics [3], more than 10 million people suffer from a stroke annually.
Consequently, patients become dependent on others for their basic life activities. Physical therapy
under the supervision of physiotherapists can help stroke patients to restore the functionality of their
disabled limbs. However, traditional physical therapy involves manpower and is highly expensive
as the number of patients increases. Rehabilitation robots have been introduced recently to reduce
the burden on physiotherapists and increase the number of exercises performed during a therapy
session. These robots can provide a more reliable service as they do not face monotony and fatigue
failures due to the repetitive nature of the exercises. One of the most widely used control mechanisms
employed in such robots is a proportional–integral–derivative (PID) controller. This mechanism is
famous for its simple structure and robust performance in a wide range of operating conditions [4].
However, it is quite difficult to select and determine the PID controller parameters for the system.
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The control parameters are tuned to achieve stable closed-loop response of the system and reach
desired positions within a certain time. Several approaches have been proposed to optimize the PID
controller parameters, such as Zeigler-Nichols, a classical method to tune PID control parameters [5],
fuzzy logic controller [6,7] and evolutionary algorithms such as genetic algorithm (GA) [8], and
swarm optimization algorithms such as ant colony algorithm (ACO) [9], particle swarm optimization
(PSO) [10] and artificial bee colony (ABC) algorithm [11].

The Zeigler-Nichols is a heuristic algorithm based on increasing proportional gain until it reaches
the ultimate gain at which output of a control loop system has consistent oscillations. The parameters
Ku and oscillation period Tu are used to parametrize PID gains. Using such a controller produces
oscillations which introduce large overshoot, higher rise times and lower settling time in the response.

GA is based on the theory of biological operations and optimizes parameters using mutations
and crossover operations [12]. ACO is an evolutionary algorithm inspired by the social behavior
of ants searching for food using the shortest path. The success rate of ACO is lower than that of
PSO [13]. Fuzzy logic is another technique to optimize the parameters of PID. The rehabilitation robot
is controlled by PID and the parameters of PID are optimized using fuzzy logic. Every parameter of the
PID controller is characterized by different sets of fuzzy rules, and triangular membership functions
are used. Experimental results showed that fuzzy PID offers improved and more effective trajectory
tracking performance compared to conventional PID controllers [14,15].

PSO algorithm is an evolutionary computation technique inspired by the social behavior of
swarms and fish schools. It was first introduced by Eberhart and Kennedy in 1995. Later Eberhart
and Shi introduced inertial weights for PSO to provide the global and local exploration balance. PSO
has been found to be robust in optimizing nonlinear problems. The PSO technique evaluates the
particle position and velocity, which are updated on every iteration with the aim to reach a global
best position of the swarm. Every particle in PSO is treated as a volume-less particle in the search
space. PSO requires fewer computational resources than GA, which is prone to premature convergence,
while its convergence rate is slower than PSO and ABC [16]. PSO is widely used in many engineering
applications because of its advancements. Previously, a PSO based optimized PID controller was used
to control a multi fingered robotic hand. Comparison of PSO and conventional PID with fuzzy PID is
also presented in the work which shows the better results of PSO-PID [17].

ABC is a heuristic technique which is inspired by the intelligent foraging behavior of honeybees.
It was proposed by Karaboga in 2005 [11], and is a simple, robust and population based stochastic
optimization algorithm [16,18]. The following three categories of bees make the algorithm unique as
compared to other swarm algorithms: employed, onlookers and scout bees [19]. In particular, this
meta-heuristic algorithm replicates the foraging behavior of honey bees, where a foraging bee evaluates
several characteristics of a food source, such as richness of nectar and the complexity of extracting the
energy, and communicates the position of the food source to unemployed bees. The communicated
information includes the direction and distance to the food source and its profitability; it is regularly
updated so that the best food source can be determined. In a recent study, a comparison reported that
by using integral square error (ISE) as the objective function to optimize PID, better performance was
obtained using PSO than ABC [14]. However, in terms of transient time response that overshoots in
the response of system, the rise and settling times of ABC is better than PSO. Although the rise time of
PSO is faster than ABC, in rehabilitation, high speed is not recommended, so the slow rise times of
ABC eventually offer the benefit of safe movement of the robot and avoid abrupt movements. Also, the
ABC algorithm outputs high quality solutions in terms of fitness value with fewer function evaluations
in comparison to PSO. It was found that ABC is more robust than PSO optimized controller [20].

This paper presents a comparative analysis of Zeigler-Nichols, ABC and PSO to determine the
tuning parameters of a two-degree-of-freedom (2-DOF) PID controller for robotic arm exoskeleton
RAX-1. The objective of applying the mentioned optimization algorithms is to establish the optimal
control parameters of the 2-DOF PID by minimizing cost, and to meet the prescribed performance
criteria. Four different objective functions, i.e., integral square error (ISE), integral time square error
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(ITSE), integral absolute error (IAE) and integral time absolute error (ITAE), have been investigated
to find the controller with optimal or near optimal load disturbance response subject to robustness
and maximum sensitivity constraints. Maximum sensitivity represents the inverse of the minimum
distance on the Nyquist plot between critical point and loop transfer function. Such a method for
tuning the controller parameters has proven to be effective for robust performance [21]. Furthermore,
performance parameters such as overshoot, rise time, settling time and maximum sensitivity are
normalized and the least average error (LAE) is evaluated. The optimal solution found for 2-DOF PID
for RAX-1 is then implemented with the RAX-1 hardware for trials with three healthy subjects. The
rest of the paper is organized as follows. Section 2 explains the controller design, Section 3 presents the
simulation results, Section 4 provides the comparative analysis and discussion. Section 5 concludes
the paper.

2. Methodology

RAX-1 is an exoskeleton device meant to be used for rehabilitation of upper limb extremities.
Operating alongside the human arm, exoskeleton devices are required to produce movements similar
to those performed by the upper limb. There are nine DOFs in the upper limb, excluding finger joints.
This study focuses on the glenohumeral joint in the shoulder, which is a complex ball-and-socket joint
that enables the shoulder to perform movements in three DOFs. These movements are commonly
referred to as shoulder extension/flexion, abduction/adduction and medial/lateral rotation, also known
as internal/external rotation. Figure 1 represents the three movements that can be performed with the
shoulder joint. The ranges of motion for the shoulder joint movements performed by a healthy subject
are listed in Table 1 [22]. These movement protocols are then implemented on RAX-1.

  
(a) (b) 

 
(c) 

Figure 1. (a) Shoulder abduction and adduction, (b) Shoulder Extension/Flexion, (c) Shoulder External
and Internal rotation [22].

Table 1. Standard ranges of motion of Upper Limb.

Limb Therapeutic Exercise ROM of Limb

Shoulder
Flexion/extension 0◦/180◦

External/internal rotation 50◦/90◦

Abduction/adduction 0◦/180◦

2.1. System Design

The robotic manipulator in the present study comprises two shoulder joints. The DOF of the
manipulator can be calculated by the numbers of links and joints. The 3D model of the robot is
illustrated in Figure 2.
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Figure 2. 3D CAD Model of Robot.

A robot in the planner configuration is defined with three parameters (x, y, θ). However, robots
are three dimensional in real-world applications; hence, there is a need for six parameters (x, y, z, yaw,
pitch, roll) to describe the position and orientation of a robot in space.

Figure 3 represents the direct kinematics of the robotic arm. Every rigid body in a serial chain has
a label: Link 1 is the rigid body attached to the shoulder joint 1, Link 2 is the rigid body attached to
Link 1 and so on. A joint is present between each link. Hence, Joint 1 attaches Link 1 to Link 0 and
Joint 2 attaches Link 2 to Link 1. Frame of reference is numbered according to the respective links they
are attached to, e.g. Frame 1 is attached to Link1. Eventually, the aim is to calculate the position of
Frame 2 relative to that of Frame 0.

 
 

(a) (b) 

Figure 3. (a) DH convention for frame assignment, (b) Kinematics of the Robotic Arm.

Figure 3a shows a pair of adjacent links which are link (i− 1), and link (i) with their associated
joints, joint (i− 1), and joint (i). A frame (i) is assigned to link (i) as follows.

1. The zi− 1 lies along the axis of motion of the ith joint.
2. The xi axis is normal to the zi− 1 axis and pointing away from it.

The Denavit-Hartenberg (DH) parameters of a rigid link depends on four geometric parameters
(ai, αi, di, θi) [23]. The four parameters describe any revolute joint as follows:

1. ai (Link length) is a distance measured along the xi axis from the point of intersection of xi axis
with zi− 1 axis to the origin of frame (i).
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2. αi (Link Twist) is the angle between the joint axes zi− 1 and zi axes measured about xi axis in the
right-hand orientation.

3. di (offset) is the distance measured along zi− 1 axis from the origin of frame (i− 1) to the intersection
of xi axis with zi− 1 axis.

4. θi (Joint angle) is the angle between xi− 1 and xi axes measured about the zi− 1 axis in the
right-hand sense.

The 2-DOF upper limb robotic manipulator can be calculated from Figure 3b. The transformation
matrix from Frame 0 to the end-effector can be defined as:

Te
0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c12 c1s2 −s1 a2c12 + a1c1

s1c2 −s12 c1 a2s1c2 + a1s1

−s2 −c2 0 a2s2 + d1

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
where a1 = 59.4 cm, a2 = 105.8 cm and d1 = 20 cm. The transformations can be used to determine
kinematic measurements of the joints. For any joint angle, the position of the end effector can be
derived from the transformation matrix.

2.2. Dynamic Model

In this study, Euler-Lagrangian approach was applied to calculate the dynamics of the robot
manipulator. This approach uses the joint velocities and position to determine the kinetic and potential
energies of a system. It generalizes Newtonian mechanics for systems that are subject to a specific class
of constraints. These constraints are often expressed in terms of the position or variables describing the
system in question.

The Lagrangian equation of motion defined in (1) is written as:

d
dt

⎛⎜⎜⎜⎜⎝ ∂L∂ .
qj

⎞⎟⎟⎟⎟⎠− ∂L∂qj
= τ j (1)

where τ j denotes the required torque, L = K − P (Kinetic and potential energies) is the Lagrangian and
qj is the generalized coordinate of the jth joint of robot.

The inertial matrix D(q) can be determined as follows:

D(q) = m1 JT
vc1 Jvc1 + m2 JT

vc2 Jvc2 +

[
I1 + I2 0

0 I2

]
, (2)

where m1 = 1.5 kg, m2 = 0.5 kg. Simplifying (2), one can obtain the following (3).

d11 = m1a2
c1 + 2m2a1ac2c2 − 2ac2d1m2s2 + a2

1m2 + a2
c2m2 + d2

1m2 + I1 + I2

d12 = m2a1ac2c2 −m2d1ac2s2 + m2a2
c2

d21 = m2a1ac2c2 −m2d1ac2s2 + m2a2
c2

d22 = m2a2
c2 + I2

(3)

The correction term Christoffel symbols ensures that when the derivatives of the vector field lying
in a tangent plane of the configuration manifold are computed, they stay in the same tangent space.
The Christoffel symbols in (4) are defined as
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c111 = ∂d11
∂q1

= 0

c121 = c121 = 1
2 .∂d11
∂q2

= −m2a1ac2s2 −m2d1ac2c2 = h

c221 = ∂d12
∂q2
− 1

2 .∂d22
∂q1

= h

c112 = ∂d21
∂q1
− 1

2 .∂d11
∂q2

= −h

c122 = c212 = 1
2 .∂d22
∂q1

= 0

c222 = 1
2 .∂d22
∂q2

= 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4)

The potential energy of each joint Pi, is the product of the mass of that link mi, position vector to
the centre of mass rci and acceleration due to gravity g:

Pi = migrci; i = 1, 2 (5)

The term φk is a function of generalized coordinates that does not depend on their derivatives.
It is given by the partial derivative of potential energy of the system with respect to the generalized
coordinates as follows:

φk =
∂P
∂qk

(6)

Finally, the dynamic equations of the system after substituting various quantities and omitting
zero can be expressed as

d11
..
q1 + d12

..
q2 + c121

.
q1

.
q2 + c211

.
q2

.
q1 + c211

.
q2

2 + φ1 = τ1

d21
..
q1 + d22

..
q2 + c112

.
q1

2 + φ2 = τ2

}
(7)

which, in general can be written in matrix form as:

D(q)
..
q + C

(
q,

.
q
) .
q + g(q) = τ (8)

Here, D(q) denotes the inertia matrix of the system and C
(
q,

.
q
)

gives the Christoffel symbols and
g(q) is actually φk which is determined by taking partial derivative of potential energy with generalized
coordinates. τ is a 2 × 1 matrix representing the generalized active forces.

2.3. Linearized Model

The linearized state space model for robot exoskeleton (RAX-1) is expressed as follows.

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −5.5510e− 13 0 0
1 0 0 0
0 0 0 −25.8600
0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0
0 0
0 1
0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
C =

[
0 31.66 0 0
0 0 0 6.3760

]
, D =

[
0 0
0 0

] (9)

2.4. Motor Model

The robot manipulator requires actuators to provide the desired amount of torque at the joints.
The actuators convert electrical energy into rotational mechanical energy. DC motors are widely used
in robotics as actuators due to their high torque, speed controllability and portability [24]. The internal
model of DC motor is illustrated in Figure 4 and can be expressed as follows.

θ(s)
Ea(s)

=
Kτ

(Las + Ra)(Js + Bm) + KbKτ
≈ Kτ

Ra(Js + Bm) + KbKτ
(10)
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Figure 4. Internal model of DC motor.

Here,’J’ is the motor inertia, ‘Bm’ motor damper, ‘Kτ’ is the motor constant, ‘Kb’ is the proportionality
constant between angular velocity of the motor and back emf, whereas ‘La’ and ‘Ra’ inductance and
resistance of the armature. If La � Ra then, an approximated transfer function of motor is obtained by
setting La = 0. This converts motor model from a second order system to 1st order system. DC motors
with harmonic gears are used in this system. Table 2 lists the motor parameters.

Table 2. Motor Parameters.

Parameters Joint 1 Joint 2

Kτ (mN-m/A) 70.5 70.5
La (mH) 0.264 0.264

Ra (Ohm) 0.343 0.343
Kb (V-s/rad) 0.023 0.023

J (g·cm2) 306 × 10−6 306 × 10−6

Bm (N.sec/m) 0.03 0.03
Gear Ratio (Nm/Nl) 1/160 1/150

3. The Exoskeleton Platform

In this section, the hardware design for the upper limb extremity rehabilitation is described. The
platform consists of the design and manufacturing of the mechanical structure, actuators and sensors
with hardware implementation of the control algorithm.

3.1. Mechanical Structure

The 2-DOF mechanical platform is built using aluminum grade 6061 alloy and weighs
approximately 15 kg. The structure is specifically designed to focus on specific exercises for rehabilitation
of the shoulder joint (Figure 5).

The upper extremity exoskeleton device consists mainly of a support frame, height adjustment
mechanism and shoulder actuation mechanism. The support frame is attached to wheels enabling
the platform to be remote. The manually controlled height regulation mechanism is attached to the
support frame. The actuation mechanism is attached to the height regulation mechanism; it adjusts the
mechanical frame fixed to human arm to match requirements to the subject height. The human arm is
fixed to the exoskeleton with soft wraps both on the forearm and bicep. Other relevant adjustments are
made during gait training. Joints at the wrist and elbow are passive and their orientations are fixed.
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Figure 5. RAX-1 Mechanical design.

3.2. Actuators and Sensors

The two-revolute joint system is equipped with the MAXON EC-90 motor (Maxon Motor, Sachseln,
Switzerland) attached to the gear. A brushless flat motor has the maximum angular velocity of 2590 rpm
and power rating of 90W which can generate maximum torque of 444 mNm. It is equipped with three
Hall effect sensors to measure current and velocity and an internal encoder generating 2040 pulses
per rotation. The reducers (harmonic drives) combined with flat motor have speed ratio of 160:1 for
the first shoulder joint responsible for the internal/ external movement, while the ratio is 150:1 for the
other joint responsible for the extension/ flexion movement. The detailed specification of other motor
parameters and gear ratio is provided in Table 2. A force sensor is attached to the wrist handle of the
robot, from which external disturbance exerted by the subject is measured while the exoskeleton is
working in passive mode. The electrical setup of the system involves an ESCON 50/5 module which
acts like a closed-loop speed or current controller for the motor.

3.3. Control Implementation

In the control system, a host computer is used as a graphical user interface. The software is
written in visual C#; it allows the user to select one of the possible working modes of the exoskeleton
(passive, active or semi-active). The software enables uploading and downloading subject’s history
over a cloud specifically designed for this device. The user can also define the range of motion at
which the exoskeleton should work for several repetitions.

A master/slave network is designed to interconnect the user with the system, where each joint
in the system is a slave. CC3200 from Texas Instrument is used as a peripheral device that controls
the angular movement. The master is instructed by the user to select an exercise and the number
repetitions, as well as set an angular movement via an interface. This information is then communicated
to the slaves for further implementation of the task [25] as depicted in Figure 6a,b. The overall system
block diagram is illustrated in Figure 6c.
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(a) 

 
(b) 

 
(c) 

Figure 6. (a) HMI displaying rehabilitation training modes, (b) HMI displaying selection for shoulder
exercise, (c) System Block Diagram.
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Figure 7 represents the controller card used for RAX-1; it consists of master-slave network and
drivers used for motors.

 

Figure 7. Controller Board.

4. The Control Algorithm

4.1. Proportional Integrator Derivative (PID) Controller

One of the most widely used controllers is the PID controller, which has a very simple structure
and is robust in under wide range of operating conditions. The PID error signal, which is the difference
between setpoint and measured variable, is calculated and fed back into the system continuously to
change the proportional, integral and derivative gains accordingly [26].

PID is one of the most used control algorithms in industrial control systems. The response of a
system is categorized by the rise time, overshoot, settling time and steady state error. In this study,
a 2-DOF PID controller is used, and is represented mathematically according to Equation (11). The
controller is capable of rejecting disturbances without significant increase of overshoot in setpoint
tracking. It includes setpoint weighting on the proportional and derivative terms. A typical 2-DOF
PID is composed of feed-forward and feedback compensators. The feed-forward compensator consists
of a PD component while the feedback compensator includes PID component as shown in Figure 8.

u = Kp(b.r− y) + Ki(r− y)s−1 + Kd
N

1 + Ns−1
(c.r− y) (11)

where u denotes the input given to the plant or system, while Kp, Kd, Ki, denotes the proportional,
derivative and integral gains. In this study, 2-DOF PID in MATLAB is used, which has three more
parameters to tune; b, c and N, where; b and c denote the setpoint weights, while N denotes a
filter coefficient.

 

r d 
y 

Figure 8. 2-DOF PID block diagram.
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4.2. Particle Swam Optimization (PSO)

PSO is an optimization technique inspired by the social behavior found in nature, such as flocking
of birds and fish schooling. In the PSO search space, each solution acts like a flying bird in the search
of food, known as a particle. PSO works based on the social behavior of particles in a swarm. This
algorithm locates and finds the global best solution by adjusting an objective function. At the end of
the process, best solution based on objective function is found for 2-dof pid controller parameters.

First, PSO chooses random solutions to initialize the population. Then, it updates its performance
to obtain optimum value. Every particle is characterized by its position and velocity in the swarm.
The velocity of a moving particle depends upon the change in position or direction [27]. Each particle
updates its new position based on two components, pbest and gbest, where pbest is the best position
attained by a particle, while gbest is the global best position of the entire swarm. The velocity and
position of the particle can be expressed according to Equations (10) and (11), respectively.

vij(t + 1) = wvij(t) + r1c1
(
pij(t) − xij(t)

)
+ r2c2

(
gj(t) − xij(t)

)
(12)

xij(t + 1) = xij(t) + vij(t + 1) (13)

where; vij(t) denotes the particle velocity, xij(t) denotes the particle position, vij(t + 1) denotes the
particle updated velocity, xij(t + 1) denotes the particle updated position; pij(t) denotes the particle
best position; gj(t) denotes the global best position of the swarm; w , (w = wmax −wmin) denotes the
inertia term; r1 and r2 are two uniformly distributed random numbers ranging from 0 to 1 and c1 and
c2 are the acceleration coefficients. The important steps of the PSO are summarized in Figure 9.

According to the PSO algorithm, the swarm size, position, velocity and the constants w, c1 and
c2 are initialized first. Then, the fitness value of each particle is calculated, Pbest and gbest are defined
and the position and velocity of each particle are updated. The algorithm stops when the stopping
criterion is met. The optimal solution is chosen according to the latest gbest. The PSO parameters and
their values used in our study are provided in Table 3.

Table 3. PSO Parameters.

Parameter Value

Number of particles 20
Number of iterations 150

wmin 0.4
wmax 0.9

c1 2
c2 2

4.3. Artificial Bee Colony (ABC)

ABC is an optimization technique based on the smart behavior of honey bees [16], which are
famous for their intelligence and ability to perform complex tasks such as collecting nectar and building
nests with a high degree precision [28]. Information about the quality of a food source is communicated
within the colony by a particular dance language. The precision of the foraging range of honeybees
allows an efficient exploitation of food sources and concentration of foraging on the best patches.
There are two main concepts that describe swarm intelligence, namely self-organization and labor
division [29]. The self-organizing behavior represents the complex collective behavior that rises from
the local interaction between the agents showing a simple self-directed behavior. The mechanism of
labor division assigns specific tasks to the agents performing simultaneous activities, which results in a
more efficient and time-saving performance.
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Figure 9. PSO Optimization Flow.

There are three categories of artificial bees in ABC algorithm: employed, scout and onlooker bees.
The employed bees go to the food source that has already been visited by them, while unemployed
bees look for further sources of food. The number of employed bees is equal to that of food sources.
Searching for new sources is performed by the scout bees, whereas the onlooker bees wait for the
information about the discovered food sources provided by employed bees via their waggle dance. If
the position of a food source does not improve within a number of attempts known as limits, then the
employed bees become scout bees. In this manner, the exploitation process is performed by employed
and onlooker bees, whereas the scout bees explore the existing solutions. The details of different ABC
phases are described in the following subsections.

a. Initialization Phase
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Random initialization of the locations of food sources is performed according to the
following equation:

xij = xmax
j + rand(0, 1)

(
xmax

j − xmin
j

)
; i = 1, . . . , SN, j = 1, . . . , D (14)

where SN is the number of food sources taken as half of the bee colony, D is the dimension of the
problem, xij denotes the ith employed bee on jth dimension, wjile xmax

j and xmin
j denotes its upper and

lower bounds.
b. Employed Bee Phase
Every other employed bee is allocated with the food source for further exploitation. Equation (11)

represents the process of generating a food source.

vij = xij + φ
(
xij − xkj

)
(15)

where φ = a × rand(0, 1) is a random variable denoting the acceleration coefficients ranging in the
interval [−1,1] and vij is the new solution or a food source. The fitness f iti of the new food source is
calculated according to the following equation:

f iti =

⎧⎪⎪⎨⎪⎪⎩
1

1+ fi
, fi ≥ 0

1 + abs( fi), fi < 0
(16)

where, fi is the objective function of each food source. A selection is made between the original and
new food sources to choose the better one by keeping the fitness value in accordance.

c. Probabilistic Selection Phase
An onlooker bee selects a food source with a certain probability calculates as

pi =
f iti∑N

j=1 f itj
(17)

where pi denotes the probability of selecting the ith solution.
d. Onlooker Bee Phase
The employed bees share the information about food sources with the onlooker bees, who select

a food source to exploit better solutions according to its selection probability. The fitness values of
each exploited food sources is calculated. A greedy selection between original and new food sources is
made similar to the employed bees phase.

e. Scout Bee Phase
If a food source does not yield better results within the limits L, where L = 0.6 ×

(Number o f optimization parameters) × (colony size), then this food source is abandoned and the bee
associated with it becomes a scout bee. In this case, a new source of food is randomly generated
according to Equation (15). All phases will continue until the termination criterion is met. The output
is the best food source solution. Figure 10 shows the flowchart of the ABC algorithm which depicts the
process of 2-dof pid controller optimization.

According to the ABC algorithm, the colony size, position and the constants L and a are initialized
first. Then, the fitness value is calculated, and the best food source is defined. The algorithm stops
when the stopping criterion is met. The optimal solution is chosen according to the latest gbest. The
ABC parameters and their values used in our study are provided in Table 4.
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Figure 10. ABC Optimization Flow.

Table 4. ABC Parameters.

Parameter Value

Colony Size 20
Number of iterations 150

L (Abandonment Limit) 72
a (Acceleration coefficient) 1
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5. Results and Discussions

Based on the simulation, the system is divided into two linearized sub systems representing Joint
1 and Joint 2 [30]. Independent controls for both joints with saturation limits are implemented. A step
input is given to the model of the robot and the response is observed. A schematic of the proposed
controller’s tuning method based on PSO and ABC is shown in Figure 11.

Figure 11. General Structure of the proposed control System Diagram.

For this research, a comparative study was carried out with four different cost functions to gauge
the appropriate objective function for this study. A well-chosen objective function leads to better
performance of the system and meets control design expectations. These objective functions include
the integral squared error (ISE), integral time squared error (ITSE), integral absolute error (IAE) and
integral time absolute error (ITAE), and are defined as follows:

ISE =

∫
e2dt (18)

IAE =

∫
|e|dt (19)

ITSE =

∫
t.e2dt (20)

ITAE =

∫
t.|e|dt (21)

5.1. Robustness Consideration

Focus on the tuning procedure requires some robustness considerations in the design. This is
achieved by using the maximum sensitivity function as a measure of robustness and is given by

Ms = max
ω

∣∣∣S( jω)
∣∣∣ = max

ω

1∣∣∣1− Cy( jω)P( jω)
∣∣∣ (22)

where
∣∣∣S( jω)

∣∣∣ ≤Ms. The sensitivity function shows the effect of feedback on the output. Disturbances
are attenuated if

∣∣∣S( jω)
∣∣∣ < 1 and are amplified if

∣∣∣S( jω)
∣∣∣ > 1. The robustness of the closed loop increases

with the decrease in Ms. The values for Ms ranging from 1.2 to 2.0 provides reasonable robustness [27].

5.2. Simulation Setup

Before implementing ABC-PID [11] on hardware, simulations are carried out to validate and verify
the control algorithm. In this section, a comparative analysis of the PID controller optimized with ABC,
PSO, and conventional tuning method based on Zeigler-Nichols is presented. The parametric bounds
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are provided in Table 5. The Zeigler-Nichols PID parameters and PID parameters tuned using ABC
and PSO used for simulation are provided in Tables 6 and 7. The simulations presented here are for
internal/external rotation, extension/flexion and abduction/adduction of the shoulder joint.

Table 5. Parametric Constraints used for PSO and ABC.

Parameters Joint 1 Joint 2

Kp 0.01 < Kp < 10 0.01 < Kp < 20
Ki 0.01 < Ki < 10 0.01 < Ki < 20
Kd 0.01 < Kd < 10 0.01 < Kd < 20
b 0.01 < b < 1 0.01 < b < 1
c 0.01 < c < 1 0.01 < c < 1
N 100 200

Table 6. Optimized PID Parameters for Joint 1.

Controller
Objective
Function

Kp Ki Kd b c

ABC-PID

ISE 7.271 9.7748 10 0.9533 0.9826
IAE 10 9.9485 5.8094 0.9521 0.9198

ITSE 7.003 9.9345 10 0.9401 0.9993
ITAE 7.9219 10 2.339 0.8137 0.6124

PSO-PID

ISE 6.8358 10 10 1 1
IAE 9.9531 8.8488 6.0963 1 0.9535

ITSE 10 10 9.9951 1 1
ITAE 10 10 3.3444 1 1

ZN-PID - 2.7 2.5714 0.7087 1 1

Table 7. Optimized PID Parameters for Joint 2.

Controller
Objective
Function

Kp Ki Kd b c

ABC-PID

ISE 8.7359 10 0.7251 1 0.9717
IAE 7.229 10 0.5594 0.9999 0.7415

ITSE 10 10 0.6289 1 0.6926
ITAE 4.8276 10 0.5214 1 0.8247

PSO-PID

ISE 11.011 20 1.1377 1 1
IAE 6.1177 20 0.5864 1 0.9625

ITSE 4.0505 20 0.4883 0.1 0.8429
ITAE 4.7981 20 0.3883 0.1 0.1

ZN-PID - 1.92 2.7429 0.3360 1 1

To evaluate the fitness of the objective function, normalization of the objective function is carried
out, which scales objective function within a specified range. The following normalization function is
used [31].

f it′i =
f iti −min( f itoverall) × δ

max( f itoverall) −min( f itoverall) × δ
(23)

where f iti represents the objective to be normalized and f itoverall represents the overall fitness. δ is kept
0.99 to avoid any zeros during normalization. Furthermore, normalized average has been evaluated to
determine the significance of the objective function.

Table 8 shows that IAE and ITAE used as objective functions produce minimal overshoots and
suitable rise and settling times for both PSO-PID and ABC-PID. When using ISE and ITSE, the rise time
is small, while larger overshoots are detected. However, it is obvious that the performance parameters
of ABC-PID for Joints 1 and 2 are much better in terms of the six performance parameters mentioned
above compared to that of PSO-PID or Zeigler-Nichols.
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The results plotted in Figure 12 show the response for Joint 1 for PID controller tuned using the
Zeigler-Nichols and optimal parameters found with PSO and ABC for all four-objective functions. The
figure shows that the ZN response is quicker with a higher rise time, higher settling time and larger
overshoot. The results also show a very low percentage of overshoot in the response with a very low
steady state error for all four objective functions. However, the optimal response of the system is found
while using IAE as objective function.

 

 

Figure 12. Step response of Joint 1 using ISE, IAE, ITSE and ITAE.

Figure 13 shows the step response for Joint 2. It is evident from the figure that PID tuned
Zeigler-Nichols produces large overshoot than the PID optimized with ABC or PSO. However, the
overshoot of ABC is 4.4% which is smaller as compared to 22% overshoot of PSO when using IAE. It
was found that PID-ABC has the minimum average of the normalized objective function for Joint 1
and Joint 2. Hence, the ABC-optimized PID controller is found to be robust and stable for practical
implementation on a robotic arm manipulator. The performance and robustness obtained by calculating
the system percent overshoot, rise time, settling time, cost and sensitivity is presented in Table 8.

 

Figure 13. Step response of Joint 2 using ISE, IAE, ITSE and ITAE.

Furthermore, an investigation on closed-loop stability analysis is performed by Nyquist plot of
the controllers tuned with ABC using IAE for the given systems. The plot for Joint 1 and Joint 2 are
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shown in Figure 14. It indicates that the both systems are asymptotically stable as no poles lie in the
right half of the plane.

 

Figure 14. Nyquist plot for closed loop system of joint 1 and joint 2.

5.3. Experimental Evaluation for RAX-1

A preliminary experiment was conducted to test the efficacy and performance of the exoskeleton
controlled using the optimized PID controller. Three healthy male subjects participated in the
experiment and their properties are listed in Table 9. Subjects were bound with soft wraps and their
preliminary tests were performed before and after the exercise. The tests included measuring the body
temperature, heart rate and oxygen levels. The evaluation procedure was approved by the Ethics
committee of the University of Kuala Lumpur (UniKL), Kuala Lumpur, Malaysia. All subjects were
volunteers who signed consent forms before the experiment. The procedure was completed in the
presence of physiotherapists from the Royal College of Medicine Perak, Malaysia. The mechanical
structure used for this experiment was RAX-1 illustrated in Figure 5.

Table 9. Subject properties.

Parameters Subject 1 Subject 2 Subject 3

age 32 31 28
body mass (kg) 74 70 64

Height (foot) 5.74 5.91 5.68

In this experiment, the upper extremity exoskeleton, which is a robot in charge of the rehabilitation
protocol, provides passive assistance for the subjects. The two actuators follow the specific trajectories
of a pre-defined range of motions. The followed trajectory and joint angles can be measured from
the encoders. Figure 15 shows a subject performing the shoulder exercises with the assistance of
exoskeleton device. The angular rotation of the joint can be set via the interface, and its current position
can be observed on the screen.

A ramp/ sinusoidal repetitive input is provided to the shoulder joint to perform three different
exercises, namely shoulder extension/flexion, internal/external rotation and abduction/adduction
(Table 1).

For this experiment, a combined shoulder external/internal rotation was performed by the first
subject; the upper bound movement during external rotation was limited to 90◦ and that during
internal rotation was limited to 0◦. Figure 16a illustrates the motion tracking of the robotic arm where
a minute overshoot was observed in reaching the target reference. The graph also shows the error
representation between the reference and actual response and speed of the motor in terms of rpm.
During the experiment, each subject went through the same gait pattern, i.e. the movement was set to
a frequency of 0.25 Hz for internal/external rotation.
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(a) (b) 

 
(c) 

Figure 15. A subject performing exercise with assistance of exoskeleton device.

 

(a) 

 
(b) 

Figure 16. (a) Shoulder Internal/External Rotation, (b) Current driven from the motor and Disturbance
applied by first subject.
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Figure 16b shows the current required by the motor to move the shoulder to a desired angle. It
also represents the amount of external force exerted by the patient on the system. The external force
acts as an external disturbance to the system and its effect can be seen in the Figure 16b. As the external
force to resist the movement increases, the motor current drastically increases to overcome the effect
of disturbance. The maximum current drawn by the motor is 5.27 A when the maximum external
resisting force of 68 N is applied to the joint.

The second exercise, namely shoulder abduction/adduction, was performed by the second subject;
the bounds are set from 0◦ to 90◦. Figure 17a represents the response of the system during shoulder
abduction and adduction. It also represents the difference between the reference signal and response,
which demonstrates a minute overshoot in the response. The gait pattern for this exercise is similar to
that for the previous exercise, where the movement is set to a frequency of 0.25 Hz.

 
(a) 

 
(b) 

Figure 17. (a) Shoulder Abduction/ Adduction, (b) Current driven from the motor and Disturbance
applied by second subject.
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Figure 17b represents current drawn by the motor to achieve the target angle and the external
force applied by the subject. When external resistance was exerted on the system by the subject, an
unusual activity in the current was detected to overcome the external disturbance. A maximum current
of 5.14 A was observed with 50N of applied force. The impact of this resistance can also be observed in
Figure 17a, where disruption occurs when external force is applied while achieving the reference.

The third exercise, namely, shoulder extension/flexion, was performed by the third subject; the
range of motion was fixed to oscillate between 0◦ to 90◦. In this experiment a pulsating input was fed
as a reference (see Figure 18).

 
(a) 

 
(b) 

Figure 18. (a) Shoulder Extension/Flexion, (b) Current driven from the motor and Disturbance applied
by third subject.
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Figure 18a shows the motion tracking of the shoulder joint while performing extension/flexion. It
also shows the error between reference and actual angle with the speed of the motor. In this exercise,
each subject went through same gait pattern i.e. the exoskeleton is set to move with the frequency
of 0.25 Hz for extension/flexion. Figure 18b shows the current driven by the motor to perform the
exercise and force exerted by the patient to resist the movement. It can be seen that the motor draws
more current than usual where the external force is applied; its impact on the movement can also be
observed in Figure 18a. It is evident from the graph that a small amount of overshoot with no steady
state was observed. The maximum force applied by the subject was recorded at 55N, while 4.5A of
current was drawn by the motor.

5.4. Comparison of the PID Controllers Optimized with ABC and the Zeigler-Nichols Method

An experiment was performed to compare PID tuned controllers tuned with ABC and the
Zeigler-Nichols method under the effect of disturbance. The parameters set for both techniques
are similar to those defined in the simulation setup. The experiment was performed with the
extension/flexion movement and the range of motion for both techniques was the same. The response
of the system using ABC optimization and the Zeigler-Nichols method is shown in Figure 19.

(a) 

(b) 

Figure 19. (a) Response of the system with ABC optimized PID and tuned using Zeigler-Nichols,
(b) Error of the system with ABC optimized PID and tuned using Zeigler-Nichols.
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It can be seen from Figure 19 that PID controller tuned with the Ziegler-Nichols has a low settling
time and quick response. However, the response of the system is not smooth and has a steady state
error. At the same time, ABC-optimized PID response is slower due to a greater settling time. However,
it has a smooth response with virtually no steady-state error. The angular rotation of the arm is set
to move from 0◦ to 90◦. Figure 19a illustrates the response of the system tuned with ABC and the
Zeigler-Nichols method, while the error signal is shown in Figure 19b. It is evident from the graph that
the rise time of ZN-PID is lower than ABC-PID. The overshoot and steady state produced by ZN-PID
are also larger than those of ABC-PID. Zeigler-Nichols based PID produces an angular drift of 3.64◦

while it is 0.63◦ for ABC-PID. A slower response is favorable for the rehabilitation system used in this
study. The presence of large overshoot and steady state in the system is dangerous, as it may cause
dislocation or fracture of the arm. Hence, it can be concluded that PID controller works better when
optimized with ABC compared to PSO or Zeigler-Nichols method as ABC-PID produces very low
overshoot, slower rise time and no steady state.

6. Conclusions

Rehabilitation robotics have been studied for decades, but few researchers have ever considered
using optimization techniques for gait training. This paper presents PSO- and ABC-based tuning
techniques for a 2-DOF PID controller used in the robot controlling trajectories of different exercise
movements performed by the shoulder joints, namely internal/external rotation, abduction/adduction,
and extension/flexion. RAX-1 was used as a mechanical experimental platform. The control parameters
of the PID controller were tuned using the ABC and PSO algorithms as well as the Zeigler-Nichols
method. The simulation results demonstrated better feasibility of the proposed controller in terms
of robustness. An ABC-optimized PID controller was also implemented into the hardware for three
subjects, with each performing different exercises. It was necessary for the robot to perform steady
motion with no steady state error during the process of rehabilitation, as any abrupt movement could
dislocate the shoulder joint. The hardware results showed that the controller could trace the desired
trajectory with a very minute overshoot in the response and significantly low response times, which are
desirable in rehabilitation. Finally, this study compared the performance of PID controllers optimized
with ABC and the Zeigler-Nichols method, respectively. The controller tuned using the Zeigler-Nichols
method demonstrated a decent rise time but large overshoot in the response, which is dangerous for
rehabilitation applications. However, the hardware response of the system had less overshoot and no
steady-state error when the ABC optimizer was used to tune the PID parameters. In summary, this
study focused on finding optimal parameters of the PID controller used in an upper limb rehabilitation
robotic system. In the future, we plan to broaden the spectrum of this study by incorporating various
protocols related to the elbow and wrist rehabilitation with an updated mechanical structure. Analysis
with other notable optimization techniques such as firefly and ant colony algorithms will be further
investigated to compare their parameters and validate their capabilities in rehabilitation applications.
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Abstract: Knowledge can enhance the intelligence of robots’ high-level decision-making.
However, there is no specific domain knowledge base for robot task planning in this field. Aiming to
represent the knowledge in robot task planning, the Robot Task Planning Ontology (RTPO) is first
designed and implemented in this work, so that robots can understand and know how to carry
out task planning to reach the goal state. In this paper, the RTPO is divided into three parts: task
ontology, environment ontology, and robot ontology, followed by a detailed description of these three
types of knowledge, respectively. The OWL (Web Ontology Language) is adopted to represent the
knowledge in robot task planning. Then, the paper proposes a method to evaluate the scalability and
responsiveness of RTPO. Finally, the corresponding task planning algorithm is designed based on
RTPO, and then the paper conducts experiments on the basis of the real robot TurtleBot3 to verify
the usability of RTPO. The experimental results demonstrate that RTPO has good performance in
scalability and responsiveness, and the robot can achieve given high-level tasks based on RTPO.

Keywords: ontology; robot task planning; knowledge base; knowledge representation

1. Introduction

Nowadays, artificial intelligence (AI) has become a growing field in which many theory studies
and practical applications are enjoying a boom. Deep learning, a typical approach to AI, has propelled
its entry into a new stage of development [1]. In the field of robotics, AI technology represented by
deep learning has also grown to be extensive and vital in several applications [2,3]. However, the deep
learning model, a kind of end-to-end learning, helps to achieve uninterpretable and opaque results,
which limits its application in some areas requiring knowledge reasoning. For example, in the field of
robot combat task planning, the plans need to be interpretable, so that the operational commander can
evaluate the advantages and disadvantages of the plans.

Since the 1970s, AI researchers have gradually realized that symbolic knowledge representation
is exerting a key role in more powerful AI systems, believing that knowledge and reasoning is the
core of AI. From then on, ontology has been developing robustly as a form of knowledge base. It can
represent and understand the sophisticated world. Until now, it has been widely employed in various
fields such as AI [4,5], Semantic Web [6,7], Information Science [8], etc. Ontology-based task planning
is essentially a series of relevant queries and reasoning on ontology knowledge [9]. Made up of a large
number of individuals, concepts, and their semantic relations, it can first interpret the elements of
the query and reasoning path of the task planning process on ontology knowledge [10]. Similar to a
human’s thinking mode, a robot can also utilize knowledge and knowledge reasoning to realize smart
high-level decision-making.

The challenge in building RTPO is how to efficiently and reasonably represent the intricate task
knowledge. There is a need for thorough consideration of temporal and spatial information, as well as
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continuous and discrete information. Furthermore, it needs to have good performance in scalability
and responsiveness, so as to guarantee the usability in the task planning algorithm.

The world knowledge, which is categorized into static knowledge, can be easily and feasibly
exhibited, as is said by the previous researches on robot task planning. In this regard, as a result of the
feasibility of representing world knowledge, the problem file of the task planner can be obtained from
the world knowledge efficiently [11,12]. However, comparatively, the causal knowledge [13], is more
represented in the formal language, like the PDDL (Planning Domain Definition Language) [14], HTN
(Hierarchical Task Network) [15], and so on. Correspondingly, as is shown in Figure 1, the domain
file of the task planner is inclined to come from the causal knowledge manually, which makes it
comparatively complex and lacking universality in large-scale applications. Consequently, the paper
proposed a task planning algorithm based on the built RTPO, avoiding the complex process of manual
generation of domain file.

 

Figure 1. Knowledge representation in robot task planning.

The representations of high-level tasks and atomic actions in RTPO are independent from each
other. Then, task planning is realized by matching the execution preconditions of atomic actions and
their effects on the environment from the initial state to the goal state. In this way, with the changing of
input tasks, the task planning module can also be carried out in accordance with the present atomic
action resources. The plans generated by the task planning algorithm will add and update to RTPO,
and will improve the efficiency of task planning if the same task needs to be planned next time.

The research work mainly involves two aspects. Firstly, an ontology knowledge base is built for
robot task planning and a method to evaluate the knowledge base is proposed. Secondly, an experiment
with an indoor study case is carried out to verify the usability of RTPO and the flexibility of the
proposed task planning algorithm. During the real robot experiments, we used the ROS (Robot
Operating System) [16] under Ubuntu as the software system, and adopted TurtleBot3 as the hardware
platform. The experimental results demonstrate that RTPO is of good usability and the task planning
algorithm harbors flexibility to address the unexpected events.

There are some typical study works and applications on robot knowledge base. KnowRob [17–19],
an integrated knowledge management system for autonomous robots, aims at the construction of an
indoor service robot knowledge base. It is composed of ontology, entities, and extensible reasoning
engine in OWL language. However, KnowRob holds the limitation of having less abundant knowledge.
RoboEarth [20–22], based on KnowRob, has already given definition to sub-actions of specific tasks,
along with the definition of the temporal and spatial constraints among different sub-actions. That is,
when a high-level task needs to be planned, the user should request the high-level task to generate its
corresponding plans. As the task planning methods have to rely on specific high-level task instructions,
it is possible that task planning will fail to input other different task instructions.

Besides this, ORO (OpenRobots Common-Sense ontology) [23,24] is built in OWL and stored in
the OpenJena ontology management library. The knowledge information is reasoned by the Pellet
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reasoner. Nonetheless, the ORO knowledge management system highlights the interaction between
robots and humans. SWARMs (Smart and Networking Underwater Robots in Cooperation Meshes)
Ontology [25] is built to represent and understand the knowledge of unmanned underwater robots to
facilitate cooperation between them. The SWARMs ontology in Reference [13] is divided into four
domain-specific ontologies (environmental model, vehicle model, communication model, and mission
model) and a core ontology which connects the four domain-specific ontologies. The Semantic Web
Rule Language (SWRL) is adopted in the SWARMs ontology for the compensation of the inability
of OWL to represent complex rule formations and relations. Reference [26] offers an evaluation of
the SWARMs Ontology and verification of applicability by conducting multiple underwater robots
cooperation experiments. Comparatively, the ontology in SWARMs is merely constructed for the
unmanned underwater robots, so it is hard to extend to other robot application types.

The ontology theory is also applied to other fields, such as industrial production collaboration [27]
and navigation in indoor scenarios [28,29]. The work in References [27,30] portrays the domain
knowledge for the robot task planning in logic language BC [31,32]. However, this approach is
disadvantageous in sharing knowledge and updating the new knowledge inferred. In addition,
the ontology representation language OWL [33,34] is endowed with sharing as its natural advantage,
which can be easily shared on the web.

Currently, the existing robot ontology knowledge bases embrace the complete representation,
which covers each expectation in robot task planning. However, the actual application of the ontology
is lacking in intelligence. Meanwhile, the knowledge is just stored in libraries and queried to get the
output in use. That is, different knowledge and reasoning lacks associations to obtain new knowledge,
like humans’ thinking mode.

The main contributions of this paper can be summarized as follows:

• It contributes a domain knowledge base RTPO for robots to have a better understanding of the
task planning knowledge.

• An evaluation method of knowledge base is proposed and implemented to test scalability and
responsiveness in this paper.

• A task planning algorithm based on RTPO is proposed which has good flexibility and avoids the
shortcoming of manual editing domain knowledge in traditional task planners.

• We carried out the experimental research and applied the proposed approach on the real robot.

The rest of the paper is arranged as follows. Section 2 introduces the purpose and requirements
for the building of RTPO. Section 3 presents the building method of RTPO. Section 4 describes the
knowledge representation in RTPO. In Section 5, we implement a method to test the scalability and
responsiveness of RTPO and an algorithm of robot task planning based on RTPO on a real robot.
Finally, Section 6 summarizes all the work and introduces future work.

2. Building Considerations for Robot Task Planning Ontology (RTPO)

The building considerations for RTPO will be presented in this section. The first part will illustrate
the purpose of RTPO building, and then the requirements for RTPO building will be unfolded.

2.1. Purpose of Robot Task Planning Ontology (RTPO)

It is essential to clarify the purpose of RTPO building. Based on a clear understanding of
the purpose, it is possible to decide the contents to be included in the RTPO, which expectations
they should be divided into, and which tools should be adopted. The RTPO is mainly associated
with knowledge in connection to the robot task planning, including the robot-itself-related concepts,
the concepts of environment, and the task-related concepts. Our RTPO design and building aim to
provide a comprehensive and available knowledge base for the application of robot task planning.
Various heterogeneous robots can query and reason the knowledge from the knowledge base to obtain
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useful information, which helps to improve the efficiency of task planning and increase the intelligence
by reasoning knowledge to plan automatically.

2.2. Requirements of Robot Task Planning Ontology (RTPO)

There are many approaches and forms for building the ontology, but there is no unified standard
pattern. However, the great ontology should harbor the standard features which should not change
with the different approaches and forms. Therefore, the RTPO should meet a set of requirements to
ensure an appropriate outcome. Generally, the paper takes into consideration that the great ontology
in robotics should cover the following characteristics [35]:

• With unambiguous knowledge representation, it is easy to be understood by humans and robots.
• With strong editability, it is easy to be operated and utilized by developers.
• With knowledge representation, it is consistent and free from contradictory knowledge or definitions.

3. The Building of Robot Task Planning Ontology (RTPO)

This section will give a detailed description of the building method of RTPO, composed of the
model, approaches, and knowledge reasoning.

3.1. The Model of Robot Task Planning Ontology (RTPO)

This section starts with a formal definition of the model in RTPO employed for building the RTPO
later on.

Definition 1. A high-level task model is defined as a 5-tuple.

T =
(
Tname, Tattr, Tentity, Ttasker, Tmethods

)
(1)

Consisting of a set of task names Tname , a set of task attributes Tattr, e.g., the start time and initial
state, a set of entities carrying out the tasks Tentity, a set of taskers giving the high-level tasks Ttasker,
and a set of methods to decompose the high-level task Tmethods.

Definition 2. an atomic action model is defined as a 5-tuple.

A =
(
Aname, Aattr, Aentity, Apre, Ae f f ect

)
(2)

Consisting of a set of atomic actions names Aname, a set of atomic actions attributes Aattr, a set of
entities carrying out the atomic actions Aentity, a set of execution preconditions of atomic actions Apre,
and a set of actions effects Ae f f ect.

3.2. The Approaches to Build Robot Task Planning Ontology (RTPO)

Some software editors are available to edit the ontologies, such as Protégé [36], Neon-tool kit,
OntoWiki, and so on [37]. The editor employed for RTPO building is Protégé, equipped with the RDF
(Resource Description Framework) triple, which was developed by Stanford University. Besides this,
Java is applied as the development language of Protégé. With many embedded plugins in Protégé,
the set has been evolved to be one of the essential ontology editors [36]. The Protégé harbors
many conception constraints, which helps to add and update the corresponding inferred knowledge.
In addition, the knowledge of robot task planning can be derived from Internet, books, or manual
editing by humans, just as is shown in Figure 2.

In Figure 2, the query of relevant knowledge from RTPO is realized in the language SWI–Prolog [38].
This logic language, which can be well combined with ROS, can easily and quickly query the relevant
knowledge from RTPO. Also, the rules and knowledge can be edited and stored through SWI–Prolog
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language. The matching query of knowledge in task planning algorithm later can be conducted
through rules.

In the duration of specific implementation, the knowledge is stored in .owl and .pl file formats.
Specifically, the .owl file stores the ontology knowledge in RDF triples and the .pl file stores the rules
knowledge in Prolog language. RTPO harbors the application in which the paper adopts the ROS as
the robot middleware, which is featured by the ROS node and communication through the mechanism
of the topic.

OWL, whose file can be generated by Protégé, is further applied as logic language in our research
work. An OWL file’s generation comes following the ontology building, which holds excellent
portability, and can be well used in other approaches. It also breaks down the knowledge interaction
barrier among different knowledge systems. OWL file can be published in the World Wide Web and
may refer to or be referred from other OWL files [34].

Figure 2. The implementation process of RTPO building.

ROS provides the rosprolog function package, through which the users can conveniently explore
and debug the knowledge in the terminal window. However, if you would like to apply the knowledge
in your robot’s control program, you need a way to send queries from your program. This functionality
is provided by the json_prolog package (http://wiki.ros.org/json_prolog). It provides a service that
exposes a Prolog shell via the ROS node. The ROS Node programs can be written in multiple languages,
such as Python, C++, and Java. Moreover, the ROS provides a number of function packages for
developers. A snapshot of the hierarchy of RTPO is shown in Figure 3.

  

Figure 3. A snapshot of the hierarchy of the Robot Task Planning Ontology (RTPO).
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4. Knowledge Representation in Robot Task Planning Ontology (RTPO)

This section offers the introduction of the knowledge representation in RTPO we have built,
including the knowledge types, knowledge structure, and knowledge reasoning in RTPO.

4.1. The Knowledge in Robot Task Planning Ontology (RTPO)

During the decision process of robots, the task planning module receives the high-level task
and subsequently generates a sequence of atomic actions. The execution of atomic actions sequence
will have an effect on the environment state, changing the environment state until the goal state is
achieved. It is evident that the process of task planning requires knowledge. The knowledge for
robot task planning can be composed of two parts. One is the knowledge related to the initial state of
the world, which also corresponds to the problem file of task planners. The other is the knowledge
relevant to how the given high-level task can be planned from the initial state to the goal state which
is also corresponding to the domain file of task planners. The first kind of knowledge exists in the
form of world knowledge, including information of environment and robots themselves. The second
kind of knowledge is presented in causal knowledge, including the preconditions and the effects
on environment state of atomic actions. Taking the high-level task “DeliveryHandbooktoLeo” as
an example, the robot task planner calls for the location and capability of robots, the location of
humans, the environmental map, and so on, which is defined as world knowledge. Besides this,
what the robot needs to know is how to search the optimal sequence of atomic actions from the
initial state to the goal state. For example, the task decomposition includes the following steps of
“DeliveryHandbooktoLeo”: move to Jack, get the handbook, move to Leo, and give the book to Leo.
That is the causal knowledge [13].

Similar to a human, when a robot wants to complete a task, first of all, it has to know who it is.
That refers to the robot-itself knowledge, including the hardware and software, location information,
dynamics information, and so forth. Secondly, in order to complete the task, it also has to harbor the
familiarity with the surrounding environment, namely environmental knowledge, which consists of
the location and recognition of humans and objects, environment map, information of other robots,
and so on. Finally, following the assignment, it needs to understand how to decompose the given
high-level task into atomic actions and how to re-plan when the environment is changed, which is the
task knowledge.

Therefore, it is easy to understand that nothing else is more important than the three kinds of
knowledge representation in our research work. Thus, the paper classifies the RTPO building into
three parts: robot ontology, environment ontology, and task ontology, respectively. Next, the paper
will describe the structure of RTPO in detail.

4.2. The Structure of Robot Task Planning Ontology (RTPO)

RTPO contains three parts: robot ontology, environment ontology, and task ontology. The task
ontology describes the knowledge connected with robot tasks, such as the task decomposition, task
allocation, and task execution, etc. Then, the robot ontology is designed to portray the knowledge or
concepts corresponding to the robot itself in the hierarchical structure. Finally, environment ontology
gives a description of the knowledge relevant to the environment, such as the environmental map,
environmental objects, and so on. The overall structure diagram of the RTPO is shown in Figure 4.
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Figure 4. The diagram of the whole structure of Robot Task Planning Ontology (RTPO).

4.2.1. Robot Ontology

As shown in Figure 5, the robot ontology contains the following three parts: robots, hardware,
and software, which demonstrate the capability and characteristics of robots. Robots include various
types of robot, like ground robots, underwater robots, and air robots. The concepts of robots can be
installed as individuals in Protégé. The hardware is composed of the components and devices the
various types of robots may have. It can be further divided into perception devices, navigation devices,
and base devices. Navigation devices refer to the hardware devices that robots need to navigate and
locate, such as IMU (Inertial Measurement Unit). Perception devices refer to the hardware devices that
robots need to perceive and understand the environment, such as lidar and camera. Base devices refer
to the hardware devices related to the low-level control of the robot, such as motor, battery, and so on.
Software consists of the functional ROS node, which can publish its specific topic and subscribe to the
other topics. It can also achieve communication among control nodes. A variety of relationships can
be defined by developers to describe the relationship among the robot ontology and other ontologies.
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Figure 5. The robot ontology shown in Protégé.

4.2.2. Environment Ontology

Environment ontology is mainly designed for the detailed description of the indoor environment
where TurtleBot3 moves. According to the experiment environment, it is seen in Figure 6 that the
environment ontology includes the map, obstacles, doors, and other objects in an indoor environment.
Besides this, the research requires that the environment ontology should be instantiated partly,
for instance, the door and the room. The RTPO is capable of adding and updating environment
knowledge after the task planning of robots.

Figure 6. The environment ontology shown in Protégé.
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4.2.3. Task Ontology

As is displayed in Figure 7, the paper extends the task ontology from four typical tasks, which are,
respectively, monitor task, mapping task, delivery task, and charge task. The domain files which most
planners use for decomposition are written manually, which is inefficient and less portable. The task
description structure is similar to the HTN. Thus, we can decompose the given high-level tasks through
ontology for task planning. For better utilizing the hierarchical structures, the representation method of
task ontology is designated to meet the experimental requirements. Going forward, the preconditions
of each task and sub-action are defined, including the robot’s capability and environment state.
Besides this, the atomic actions are defined to have effects (delete and add) on the environment state.

Figure 7. The task ontology shown in Protégé.

Figure 8 interprets the representation method of atomic actions, defined as the smallest granular
actions which can be directly executed by a robot. Atomic actions are made up of execution preconditions
and action effects. The former will have an effect on environment state, such as deleting or adding
some state, as shown in Figure 8.

 

Figure 8. The representation method of atomic actions.
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Generally speaking, for a given high-level task, for example, DeliveryHandbooktoLeo in Figure 9,
its representation information in the ontology is insufficient in the initial state, and lacks the update of
reasoning knowledge, such as the constraints among different atomic actions. The task knowledge is
represented with the insufficient form as follows at the initial state.

Class: DeliveryHandbooktoLeo
SubClassOf:

DeliveryTask
(subAction some GetHandbook)
and (subAction some GiveHandbookToLeo)
and (subAction some MovetoHandbook)
and (subAction some MovetoLeo)

Figure 9. The environment state changes in a simple indoor service DeliveryHandbooktoLeo: the
TurtleBot3 need to get the handbook from Jack and then give the handbook to Leo.

The robot can adopt a specific task planning algorithm on the basis of the initial state of environment.
The task planning algorithm aims to match the preconditions and action effects of atomic actions,
so that the execution order constraints can be generated and added into the task ontology. The system
can further obtain the atomic action sequence of the specific task. At this moment, new knowledge is
obtained and updated based on the reasoning of existing knowledge.

After the task planning algorithm runs, a complete representation of a high-level task
decomposition can be obtained and shown as follows, composed of the parent classes, the subactions,
and the execution order constraints among subactions. When the same specific task requires planning,
the users can query the ontology to obtain the atomic actions sequence of the specific task directly,
which will improve the efficiency of task planning.

Class: DeliveryHandbooktoLeo
SubClassOf:

DeliveryTask
(subAction some GetHandbook)
and (subAction some GiveHandbookToLeo)
and (subAction some MovetoHandbook)
and (subAction some MovetoLeo)
and (orderingConstraints value DeliveryActions12)
and (orderingConstraints value DeliveryActions13)
and (orderingConstraints value DeliveryActions14)
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and (orderingConstraints value DeliveryActions23)
and (orderingConstraints value DeliveryActions24)
and (orderingConstraints value DeliveryActions34)

Relying on the individual class in Protégé, the order constraints among sub-actions is defined as
follows. Assuming that a specific task has n sub-actions, it is easy to know that the total number to
define the specific task is C 2

n, provided that we completely define the execution order of all sub-actions.

Individuals: DeliveryActions12
Types:

PartialOrdering-Strict
Annotations:

occursAfterInOrdering GetHandbook
occursBeforeInOrderingMovetoHandbook

4.2.4. Communications Among the Three Parts

Apart from the contents above, corresponding communications also exist among the three parts
which connect this knowledge with another. These relationships can be defined according to the
developers’ own needs. Taking the indoor service monitor task as an example (Figure 10), the monitor
task is achieved by the mobile wheeled robot TurtleBot3 and in the environmental map of Room2.
The latter is built by the Lidar of TurtleBot1. Accordingly, these three ontology modules can be linked
and added to constraints so that they make up the whole ontology jointly.

 

Figure 10. The communications among three parts in Protégé.

4.3. Knowledge Reasoning

Figure 11 gives an example of the reasoning in the RTPO knowledge base. The left is the
clarification of knowledge and the relationship between the knowledge, but the position of the book
is not indicated. That is, we fail to achieve the position of the handbook just through the existing
ontology knowledge. On the right, after adding the following rule knowledge, we can infer that the
exact location of the handbook is room #1.

In (Book, Room) :-
Has (Human, Book),
In (Human, Room)
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(a) (b) 

Figure 11. Example of knowledge reasoning. (a) Left: the handbook is asserted to be just a book,
and Jack has it. (b) Right: If some rule knowledge is added, the knowledge system can infer the location
of the handbook.

5. Evaluation and Experiments

The evaluation of robot knowledge base is a complicated work. So far, there is neither an
established benchmark nor evaluation methods. In addition, each robot knowledge system has
different coverage and application fields, which brings great challenges to the evaluation of robot
knowledge base. It is difficult to evaluate robot knowledge base with only one or a few indicators.
Therefore, considering the knowledge system and its application field, this section evaluates RTPO
with a combinatorial evaluation method. We adopt a quantitative evaluation method for the scalability
and responsiveness of RTPO. Then, this section conducts an experimental case study to verify the
usability of RTPO and the flexibility of task planning algorithm based on RTPO on TurtleBot3.

5.1. The Evaluation of Robot Task Planning Ontology (RTPO)

The scalability of robot knowledge system lies in the efficiency of knowledge updating and storage.
The addition of new knowledge is the premise of the application expansion of the knowledge base.
The good scalability of knowledge base is the basis of its sustainable development. In order to test
the scalability of RTPO, we designed a test algorithm in the process of knowledge base instantiation.
The process of knowledge base instantiation refers to the update of individual knowledge, such as the
addition of a cabinet and a chair in the indoor environment. Therefore, we designed an algorithm for
writing new knowledge to RTPO, which can automatically generate a large number of individuals in a
single loop statement:

g_individuals (0).
g_individuals (?Num) :-

new_individuals (?Num).
?Num is ?Num−1.
g_individuals (?Num).

The g_individuals (?Num) function just calls the new_individuals (?Num) functions Num
times, which then generates Num individuals in RTPO. We used the prolog’s time() that is
?-time(g_individuals (?Num)) to evaluate the performance of g_individuals (?Num). The scalability
of RTPO is tested by changing the number of automatically generated individuals and then counting
the time consumed by each number of individuals. Figure 12 shows how the consumed time changes

98



Electronics 2019, 8, 1105

with the number of generated individuals ((blue square markers). It is easy to see that the consumed
time increases linearly with the number of generated individuals, where it takes about 2.34 s to
generate 55,000 individuals. The maximum generation rate is about 23,500 individuals per second.
As a comparison, KnowRob [18] has a maximum generation rate of 22,000 individuals per second and
ORO [24] has a maximum generation rate of 7245 individuals per second.

 
Figure 12. The consumed time changes with the number of generated instances (blue square
markers) and the response time changes with the number of individual knowledge to query (yellow
circle markers).

The responsiveness of knowledge system is mainly reflected in the knowledge query speed.
The faster the knowledge query speed, the faster the responsiveness of knowledge system and
the better the performance of knowledge system. We choose the Prolog statement “?- time

(findall(?A, owl_individual_of (?A, ‘Obstacles’)))” to calculate the query speed of individuals
knowledge. As shown in Figure 12 (yellow circle markers), the experimental results show that
the response time increases linearly with the increase in the number of individual knowledge to query.
Query 52,000 individuals can be completed within 10 s, which ensures the real-time performance of
RTPO in the application. Compared with the KnowRob [18], both knowledge systems have similar
responsiveness. In a word, RTPO has good scalability and responsiveness.

5.2. Verification Using a Case Study

In this section, we take the indoor delivery task as a case study to study the robot task planning
based on RTPO on TurtleBot3.

5.2.1. Hardware and Software

As is shown in Figure 13, the hardware system in our system is established on TurtleBot3, which is
a new generation of mobile robot platform established on ROS (Robot Operation System). The series of
TurtleBot from TurtleBot1 to TurtleBot3 is becoming more and more powerful with the ROS. Based on
ROS, it is an ideal and essential platform to do research work. Table 1 explains the configuration table
of the burger.
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Figure 13. The TurtleBot3 Burger.

Table 1. The configuration table of burger.

Items Configuration

LIDAR 360-degree laser LIDAR LDS-01 (HLS-LFCD2)
SBC Raspberry PI 3 and Intel Joule 570x
Battery Lithium polymer 11.1 V 1800 mAh

IMU
Gyroscope 3 Axis

Accelerometer 3 Axis

Magnetometer 3 Axis
MCU OpenCR (32-bit ARM Cortex®M7)
Motor DYNAMIXEL(XL430)

Accordingly, the software system is based on ROS, which is the most popular and vital middleware
for robot system development. Figure 14 contributes our software system framework, which illustrates
that the design and development of ROS nodes contributes to the central part of the software system
framework. Based on ROS, the software system framework can be respectively classified into three
control levels: control of actions, control of navigation, and control of velocity, corresponding to the
task planning module, navigation module, and base control module.

Figure 14. The framework of the software system.
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5.2.2. The Experimental Scenario

An assumption is made in the case study that the robot is able to grasp objects. In addition,
it is noteworthy that the adopted TurtleBot3 in the experiment only harbors mobility and obstacles
perception. However, our research attaches importance to the decision-making at the related top level
to the robot task planning and does not focus on such basic-level issues as how to control the movement
and navigation. Therefore, we make a reasonable assumption that the robot is able to grasp objects.

Under the circumstances of the real robot experiment, the robot needs to get the handbook and
then give it to Leo. The built experimental scenario is shown in Figure 15a. The object elements in the
environment are displayed in virtue of the label objects on the ground, for example, persons, books
and bookshelves. The environment map built through the LIDAR LDS–01 is shown in Figure 15b.

  

(a) (b) 

Figure 15. The experimental environment we built: (a) the real experimental scenario; (b) the
corresponding environment map built by TurtleBot3 in Gmapping algorithm.

During the verification experiment, the communication among the devices is made through LAN,
which shares a master computer and topic to realize the communication requirements between devices.
As shown in Figure 16, ontology knowledge is stored in computer PC_2. Besides this, computer
PC_1 undertakes the master computer. It is also the central computer employed to run the master node.
Turtlebot tb_1 commits the program storage of map building, navigation, and path planning. It is
worth noting that the map building algorithm adopts Gmapping; the local path planning algorithm
adopts the DWA (Dynamic Window Approach), the global path planning algorithm adopts the D*,
and the location algorithm adopts the amcl.

Figure 16. The communication among different devices.

5.2.3. The Experiments and Results

The proposed task planning algorithm Algorithm 1 based on RTPO is shown as the pseudo-code
below. Its inputs are the initial state s, the given high-level task t, and the ontology knowledge O. The
output of the algorithm is the sequence of atomic actions, which is also the plan for accomplishing the
t from the initial state.
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Algorithm 1 Task Planning Algorithm Based on Robot Task Planning Ontology (RTPO)

Input: s: the initial state; t: the given high-level task; O: the ontology knowledge
Output: P: A plan for accomplishing the t from the initial state;
1: procedure generate a plan for accomplishing the t
2: P = the empty plan
3: function task_planning (t)
4: if t is a primitive task then
5: modify s by deleting del(t) and adding add(t)
6: append t to P
7: else
8: for all subtask in subtasks(t) do
9: if preconditions(subtask) matches the s then
10: task_planning (subtask)
11: return P
12: end procedure

The specific implementation process of the study case on TurtleBot3 is demonstrated in Figure 17.
The atomic actions sequence can be obtained by the task planning algorithm based on RTPO, as shown
in Figure 18. The given high-level task “DeliveryHandbooktoLeo”, whose initial environment state is
“Leo in Room#2; Jack in Room#1; Jack Has Handbook; tb1 in Room#3; tb1 has_ability DeliveryTask”,
is decomposed into a sequence of atomic actions: MovetoHandbook, GetHandbook, MovetoLeo,
and GiveHandbookToLeo. The corresponding action attributes, such as the target point and the time
constraint of some actions, can be obtained by virtue of the analysis of the atomic action list and
querying the RTPO. The robot then subscribes to the message and performs the corresponding actions
through the navigation and path planning algorithm. Finally, the given high-level task is completed
with achieving the goal environment state: “tb1 in Room#2; Leo in Room#2; Leo has Handbook”.

 
Figure 17. The specific implementation process of study case on TurtleBot3.

 

Figure 18. The snapshot of the query sentence from the ROS terminal.

Figure 19 shows a sequence of snapshots for the real execution of the atomic action sequence
generated by the decomposition of the given high-level task “DeliveryHandbooktoLeo” in a real-world
experimental scenario. A sequence of atomic actions obtained from RTPO is displayed as navigating
across the target points in a proper order according to atomic action’s type. For example, the Moveto
action needs to move to the specific target point. Figure 19a shows that the Turtlebot tb_1 is at the initial
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position. Figure 19b demonstrates that the Turtlebot tb_1 has subscribed the topic of atomic action
MovetoHandbook and then the atomic action MovetoHandbook is executed. Figure 19c shows that the
Turtlebot tb_1 executes the atomic action MovetoLeo. Figure 19d presents that the Turtlebot tb_1 has
arrived at the position of Leo. The experimental video can be watched at the supplementary material
Video S1. The experimental result demonstrates that the robot knowledge base RTPO is of good
usability and can be well used in the robot task planning with the proposed task planning algorithm.

 

Figure 19. The sequence of snapshots for the execution of the task: “PutHandbookonBookshelf”.
(a) The initial position of TurtleBot3; (b) The atomic action of MovetoHandbook. (c) The atomic action
MovetoLeo; (d) The arrival at the position of Leo.

Besides this, another test scenario is further designed and implemented to further validate the
flexibility of task planning algorithm based on RTPO. In this scenario, we suppose that Leo will
ask the TurtleBot3 to put the handbook on the bookshelf in room #2 after the robot completed the
delivery task “DeliveryHandbooktoLeo”. However, in accordance with the topic related to the battery
published by the TurtleBot3, the battery of TurtleBot3 becomes insufficient at this time. In this regard,
the robot makes a flexible plan for this scenario. First, it needs to recharge its battery in Room #3 and
then put the handbook on the bookshelf Room #2, as shown in Figure 20. The given high-level task
“PutHandbookonBookshelf” from Leo is decomposed into a sequence of atomic actions: GetHandbook,
BatteryCharge, MovetoBookshelf, PutonHandbook. Figure 20e shows that the Turtlebot tb_1 moves
to charge point to have a charge and Figure 20f demonstrates that the Turtlebot tb_1 moves to the
target position of Bookshelf carrying the Handbook. The experimental video can be watched at
supplementary material Video S2. The experimental results show that the task planning algorithm
based on RTPO has good flexibility to address the unexpected events, such as the insufficient battery.
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Figure 20. The sequence of snapshots for the execution of the task: “PutHandbookonBookshelf”.
(a) The initial position of TurtleBot3; (b) The atomic action of MovetoHandbook. (c) The atomic action
MovetoLeo; (d) The arrival at the position of Leo; (e) The atomic action of BatteryCharge; (f) The action
of MovetoBookshelf.

6. Conclusions

In conclusion, the paper manages to build a robot ontology called RTPO which is applied to the
robots’ task planning. Then, RTPO is designed and implemented followed by a proposed evaluation
method to test its scalability and responsiveness. The test results show that RTPO has good performance
of scalability and responsiveness compared with the existing knowledge base. Finally, we proposed
a task planning algorithm based on RTPO and conducted the real robot experiments to verify the
usability of RTPO and the flexibility of the proposed algorithm. The experimental results show that
the robot can complete the given high-level task smoothly, and can also address unexpected events
with good flexibility.

Future research work mainly focuses on the following aspects. Firstly, a large number of
available robot ontologies have been constructed, such as KnowRob, ORO, SWARMs, and so on.
In this aspect, it is suggested that more consideration of future research should be taken into
the fusion of different ontologies. Then, multiple heterogeneous robots can cooperatively help
to accomplish some more complex tasks which cannot be accomplished by just a single robot.
Thereby, it is of great significance to study cooperative task planning and application based on
multi-robot task planning. Additionally, the real world is complex and changeable, due to inaccuracy,
randomness, and incompleteness. Therefore, it is necessary to study robot task planning under uncertain
environments. Finally, the application of cloud-based knowledge will reduce robots’ dependence of
specific hardware. It is conducive to the research of multi-agent and swarm intelligence.

Supplementary Materials: The following are available online at https://susy.mdpi.com/user/manuscripts/
displayFile/8ec60ffb629e5ad518f79653d69d980d/supplementary, Video S1: DeliveryHandbooktoLeo,
Video S2: PutHandbookonBookshelf.
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Abstract: The trajectory optimization of automatic spraying robot is still a challenging problem,
which is very important in the whole spraying work. Spray trajectory optimization consists of two
parts: spray space path and end-effector moving speed. A large number of spraying experiments
have proved that it is very important to find the best initial trajectory of spraying. This paper
presents an automatic spray trajectory optimization that is based on the Bézier surface. Spray the
workpiece for Bezier triangular surface modeling and find the best initial trajectory of the spraying
robot, establish the appropriate spraying model, plan the appropriate space path, and finally plan
the trajectory optimization along the specified painting path. The validity and practicability of the
method presented in this paper are proved by an example. This method can also be extended to
other applications.

Keywords: initial trajectory; trajectory optimization; Bézier surface

1. Introduction

With the development of intelligence, multi-intelligence systems have received extensive attention
and application. It can be seen that intelligent automation is widely used in painting robots [1,2].
Surface modeling of the sprayed workpiece is the first step in the trajectory optimization of the spray
painting robot and the key to designing the spray path of the spray painting robot. At present, there
are two main types of surface modeling methods of sprayed workpiece for off-line programming
system of spray painting robot: (1) Surface modeling method based on CAD (Computer Aided Design)
model. The modeling method based on the CAD model is that the CAD model data of the workpiece
have been obtained before the surface modeling, and the spraying path of the spray painting robot can
be planned according to the CAD model of the workpiece. (2) Surface modeling method based on the
workpiece scanning system. If there is no CAD model data for a workpiece, or if the surface shape
of actual workpiece does not match the CAD model data, then the workpiece needs to be scanned to
obtain its new CAD data. The surface of the workpiece is approximated by a simple plane, sphere,
cylinder, or other parametric surface, allowing spray path planning on these parametric surfaces.

In the previous work, we focused on the trajectory optimization of complex curved surface. In the
reference [3], the Surface modeling method based on the CAD model is adopted. The CAD model data
of the workpiece is obtained, and can plan the spraying path of the spraying robot according to the
CAD model of the workpiece. The trajectory optimization of spray painting robot for complex curved
surface based on the exponential mean Bézier method is proposed. The advantage is that it does not
need to split the complex curved surface.

During the off-line programming operation for spray painting robot, after the surface modeling for
the workpiece is finished, the following work is to optimize the trajectory of spray painting robot [4,5].

Electronics 2019, 8, 168; doi:10.3390/electronics8020168 www.mdpi.com/journal/electronics107
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Since the point on the trajectory is a six-dimensional vector in the Cartesian coordinate system, it is
very complicated to express it in mathematical expressions and the solving process is very difficult.
Therefore, the general idea of trajectory optimization for spray painting robot is usually as follows:
First, find the spatial path of the spray painting robot on the workpiece surface, and then find out the
optimal time sequence along the specified spatial path. That is, the consistency of the paint thickness
on the workpiece surface is the highest and the spray painting time is the shortest at what speed the
end effector sprays along the specified spatial path. According to this idea, the optimized trajectory for
spray painting consists of two parts: the spatial path of the spray painting operation and the moving
speed of the end effector.

On the other hand, a large number of spray painting experiments have shown that the uniformity
of the paint thickness can be significantly improved. That is, the spray painting effect can be improved
by optimizing the initial trajectory of the spray painting robot in the initial stage of spray painting [6–8].
In other words, finding the best initial trajectory for spray painting is critical to the further trajectory
optimization. Therefore, the trajectory optimization for spray painting robot can be divided into the
following four steps: (1) Finding the optimal initial trajectory of spray painting robots. (2) According
to the geometric features of sprayed workpiece surface, establish a suitable spray painting model.
(3) Plan an appropriate spatial path for spray painting. (4) Plan trajectory optimization along the
specified painting path.

The initial trajectory selection, the establishment of spraying model and path planning are all the
bases of trajectory optimization. This research is based on the assumption that the workpiece CAD
model was not acquired in advance. The innovation is that the Bézier triangular surface modeling
method is adopted under the CAD model data without the workpiece. Firstly, the Bézier surface is
analyzed and the method for searching the optimal initial trajectory of the spray painting robot is given
according to the features of the Bézier triangular surface. Subsequently, the spray painting model of
Bézier surface is established, and the mathematic expression of paint thickness at a certain point on
the Bézier surface is given. Finally, the optimized trajectory of Bézier surface is obtained by using
the ideal point method in the mathematical programming with the uniformity of paint thickness and
the shortest spray painting time as optimization objectives along the specified spray painting path.
The advantage of this method is that a good initial path of automatic spraying is determined at the
beginning of the spraying process, which can significantly provide uniformity of coating thickness,
that is, improve the spraying effect.

2. Bézier Triangular Surface Modeling Method of Sprayed Workpiece

Since the Bernstein polynomial has many superior properties, it is widely used in parametric
polynomial curve surfaces of many forms. Based on the features of the sprayed workpiece surface, the
Bézier triangular surface is constructed by using the Bernstein polynomial as the basis function.

Definition 1. There is an arbitrary given triangle on the plane whose vertices T1 T2, T3 are in the
counterclockwise direction. Point P is any point in the plane where the triangle T1T2T3 is located.

Subsequently, we define:

u1 =
[PT2T3]

[T1T2T3]
, u2 =

[T1PT3]

[T1T2T3]
, u3 =

[T1T2P]
[T1T2T3]

(1)

In the Equation (1), [T1T2T3] represents the directed area of the triangle T1T2T3; When T1, T2, T3

is counterclockwise, [T1T2T3] represents the area of the triangle T1T2T3, that is [T1T2T3] = S; When
T1, T2, T3 is clockwise, [T1T2T3] represents the opposite number of the area of the triangle, that
is, [T1T2T3] = −S. Afterwards, we call (u1, u2, u3) as the area coordinate of Point P, recorded as
P = (u1, u2, u3). Triangle T1T2T3 is also called as coordinate triangle, as shown in Figure 1.
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Figure 1. The Area Coordinate of Point P on the Coordinate Triangle.

Definition 2. Suppose the area coordinate of point P on the coordinate triangle T is (u1, u2, u3), and then
we define:

Bn
i,j,k(P) =

n!
i!j!k!

ui
1uj

2uk
3 , i + j + k = n (2)

As the Bernstein basis function ((n + 1)(n + 2)/2 in all), They have the following properties:

(1) Non-negative: Bn
i,j,k(P) ≥ 0, P ∈ T, i + j + k = n;

(2) Normative: ∑
i+j+k=n

Bn
i,j,k(P) = 1;

where, according to the triangular theorem we can have:

(a + b + c)n = ∑
i+j+k=n

n!
i!j!k!

aibjck, a, b, c ∈ R, n ∈ N (3)

For any P, u1 + u2 + u3 = 1. Let a = u1, b = u2, c = u3, we can have ∑
i+j+k=n

Bn
i,j,k(P) = 1.

Use the any straight line parallel to one side of the triangle to equate the remaining two sides of the
coordinate triangle T into n segments, then the three parallel lines will divide the triangle into n2 small
congruent triangles, thus we can make the n-time subdivision of the coordinate triangle T, recorded
as Sn(T). Subsequently, we call each small triangle is the sub-triangle of Sn(T). The vertices of the
sub-triangle ((n + 1)(n + 2)/2 in all) are called as the node that subdivides Sn(T). The coordinates of
the sub-nodes are as follows:

(
i
n

,
j
n

,
k
n
), i + j + k = n (4)

Abbreviated as:
Pi,j,k = (

i
n

,
j
n

,
k
n
) (5)

Definition 3. Suppose bi,j,k(i + j + k = n) is any real number, we call

Bn(P) = Bn(u1, u2, u3) = ∑
i+j+k=n

bi,j,kBn
i,j,k(P) (6)

As the n-time Bézier facet on the coordinate triangle T, bi,j,k (i + j + k = n) as the Bernstein
coefficient of the Bézier triangular surface, Pi,j,k = (Pi,j,k; bi,j,k), i + j + k = n as the control vertice
of the Bézier triangular surface. We call the patch linear continuous function, which is linear
on the sub-triangle of Sn(T) and is the value bi,j,k at node Pi,j,k as the control grid of the Bézier
triangular surface.

In particular, for any function f : T → R , the Bernstein coefficient is taken as:

bi,j,k = f (
i
n

,
j
n

,
k
n
) (7)
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Then we call
Bn(P) = Bn(u1, u2, u3) = ∑

i+j+k=n
f (

i
n

,
j
n

,
k
n
)Bn

i,j,k(P) (8)

as the n-time Bernstein triangular polynomial of f on T.
Where, in order to simplify the derivation process, three shift operators E1, E2, E3 are introduced,

which are defined as:
E1bi,j,k = bi+1,j,k (9)

E2bi,j,k = bi,j+1,k (10)

E3bi,j,k = bi,j,k+1 (11)

Subsequently, Ei
1Ej

2Ek
3b0,0,0 = bi,j,k, and we have:

Bn(P) = ∑
i+j+k=n

n!
i!j!k!

ui
1uj

2uk
3(Ei

1Ej
2Ek

3b0,0,0) (12)

With the trinomial expansion, Equation (12) can be expressed as:

Bn(P) = (u1E1 + u2E2 + u3E3)
nb0,0,0 (13)

Accordingly, we have:
Bn(T1) = En

1 b0,0,0 = bn,0,0 (14)

Bn(T2) = En
2 b0,0,0 = b0,n,0 (15)

Bn(T3) = En
3 b0,0,0 = b0,0,n (16)

Here, we call point Pn,0,0 = (1, 0, 0; bn,0,0), P0,n,0 = (0, 1, 0; b0,n,0), P0,0,n = (0, 0, 1; b0,0,n) the corner
points of the triangular surface.

When u1 = 0, u3 = 1 − u2. Substituting into Equation (6), then we have:

Bn
i,j,k(P) =

n!
j!(n − j)!

uj
2(1 − u2)

n−j = Bn
j (u2) (17)

Subsequently,

Bn(0, u2, 1 − u2) =
n

∑
j=0

b0,j,n−jBn
j (u2), 0 ≤ u2 ≤ 1 (18)

The boundary of a triangular surface is the n-time Bézier curve with the boundary of triangular
surface control grid as the control polygons.

According to the definition of Bézier triangular surface modeling, when n = 2, the quadratic
Bézier triangular surface generated by six control vertices is:

B2(P) = ∑
i+j+k=2

bi,j,k
2!

i!j!k! u
i
1uj

2uk
3

= u2
1b200 + u2

2b020 + u2
3b002 + 2u1u2b110 + 2u1u3b101 + 2u2u3b011

(19)

The above Equation (19) can be further expressed as a quadratic form:

B2(P) =
(

u1 u2 u3

)⎛⎜⎝ b200 b110 b101

b110 b020 b011

b101 b011 b002

⎞⎟⎠
⎛⎜⎝ u1

u2

u3

⎞⎟⎠ (20)
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The resulting quadratic Bézier triangular surface and its control network projection are shown in
Figure 2.

When n = 3, the cubic Bézier triangular surface that was generated by ten control vertices is:

B3(P) = ∑
i+j+k=3

bi,j,k
3!

i!j!k! u
i
1uj

2uk
3

= u3
1b300 + u3

2b030 + u3
3b003 + 3u2

1u2b210 + 3u1u2
2b120 + 3u2

1u3b201

+3u1u2
3b102 + 3u2u2

3b012 + 3u2
2u3b021 + 6u1u2u3b111

(21)

The resulting cubic Bézier triangular surface and its control network projection are shown in
Figure 3.

Figure 2. Quadratic Bézier Triangular Surface and Its Control Network Projection.

Figure 3. Cubic Bézier triangular surface and its control network projection.

3. Optimal Initial Trajectory Selection for Automatic Spraying on Bézier Surface

3.1. Bézier Surface Definition and Correlative Properties

In particular, the Bézier surface mainly includes a tensor product surface on a rectangular domain
and a triangular surface on a triangular domain.
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m × n-time Bézier surface can be represented as:

B(u, v) =
m

∑
i=0

n

∑
j=0

Bi,m(u)Bj,n(v)Vi,j (22)

where, Bi,m(u), Bj,n(v) are the u-direction m-time and v-direction n-time Bernstein basis function.
Vi,j(i = 0, 1, · · · , m; j = 0, 1, · · · , n) is the control vertice or Bézier point of the curved surface.
The control vertices form m + 1 and n + 1 control polygons along the v-direction and u-direction,
respectively, which together form a curved control grid or a Bézier grid.

The properties of the Bézier surface are as follows:

(1) The four corner points of the Bézier grid are the four corner points of the Bézier surface:

B(0, 0) = V0,0, B(1, 0) = Vm,0, B(0, 1) = V0,n, B(1, 1) = Vm,n (23)

(2) The outermost vertex of Bézier grid defines the four borders of the Bézier surface and it has the
following characteristics at the boundary, as shown in Table 1:

Table 1. Characteristics at the Boundary of Bézier Grids.

(0,0) (1,0) (0,1) (1,1)

B V0,0 Vm,0 V0,n Vm,n

∂B
∂u mΔ1,0V0,0 mΔ1,0Vn−1,0 mΔ1,0V0,n mΔ1,0Vm−1,n

∂B
∂v nΔ0,1V0,0 nΔ0,1Vm,0 nΔ0,1V0,n−1 nΔ0,1Vm,n−1

(3) Affine invariance: The Bézier surface is not changed under affine transformation.
(4) ’Symmetry’: The control vertices in opposite order define the same Bézier surface.
(5) Convex hull: The Bézier surface is always located in the three-dimensional convex hull generated

by its control vertex.
(6) Move vertice Vi,j, it will have the largest effect on the point B(i/m, j/n), corresponding to

u = i/m, v = j/n.

3.2. Optimal Initial Trajectory Selection

A large number of spray painting practical applications show that in the beginning of the spray
painting operation if we can determine a good initial trajectory of spray painting robot, the uniformity
of paint thickness can be significantly improved. That is to say, the spray painting effect can be
improved. It can also reduce the spray painting time, improve the spray painting efficiency, and
reduce the rate of paint waste at the same time. At present, the optimal initial trajectory selection
method of the existing painting robot is to use the plane cutting method to take the obtained cross
line as the initial trajectory of the painting robot [9–11]. This method can improve the spray painting
effect to a certain extent, but the randomness is large and the spray painting time cannot be optimized.
In this paper, the initial trajectory selection method that is based on geodesic curvature can not only
improve the spray painting effect (paint thickness uniformity), but also can improve the spray painting
efficiency (reduce spray painting time).

The curvature of a certain point on the painting path can be divided into two kinds: The first one
is used to characterize the bending degree of the painting path passing through the point along normal
vector of the surface, which is called the normal vector curvature. The second is used to characterize
the extent to which the spray trajectory bends to the boundary line of the surface, called geodesic
curvature. As shown in Figure 4, Figure 4a is a zero-geometric curvature trajectory. That is, the paint
thickness is uniform on the both side of the painting path. Figure 4b is the spray painting trajectory
whose geodesic curvature is a constant. It is obvious that more paint is accumulated in the direction
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where the trajectory is bumped. Figure 4c shows the painting path of the variable geodesic curvature.
The paint thickness on both sides of the trajectory is not uniform. It can be seen that the changing rate
of the geodesic curvature at each point on the painting path has an influence on the paint thickness.
In order to improve the consistency of the paint thickness, the changes in geodesic curvature at each
point on the trajectory must be taken into account when selecting the initial spray painting trajectory.

(a) (b) (c) 

Figure 4. The Influence of Geodesic Curvature on the Consistency of Paint Thickness.

From the example shown in Figure 4, it can be seen that the zero-geometric curvature curve
should be selected when determining the initial trajectory, and the initial trajectory also determines
the geodesic curvature of the subsequent trajectory. The process of selecting the initial trajectory for
spray painting can be divided into two steps: 1) Determining the relative position of the initial spray
painting trajectory and the boundary of the workpiece surface. 2) Selecting the direction of the initial
spray painting trajectory. As shown in Figure 5a, the initial trajectory is a geodesic, but the geometric
curvature is very high when the offset curve passes the area near the apex of the cube. In Figure 5b,
the initial trajectory is also the geodesic, but the surface is symmetrically bisected into two parts with
the same Gaussian curvature being integral. Thus, in determining the position of the initial trajectory,
it is necessary to select a position that minimizes the geodesic curvature of the offset curve.

(a) (b) 

Figure 5. The Influence of the Relative Position of Geodesic Curve and Surface Boundary on
Subsequent Trajectory.

3.2.1. Determining the Relative Position of Initial Trajectory

As shown in Figure 6, let a segment on the smooth initial trajectory α0 as Cst. We use α0(t0)

and α0(t1) to represent the two endpoints of Cst. The offset curve of line segment Cst is generated by
measuring the distance between the offset curve and the initial trajectory according to the geodesic
lines γt0

and γt1
, which are perpendicular to the initial trajectory at points α0(t0) and α0(t1). Assume

that Co f is the offset curve with a distance Δ of Cst and the offset distance Δ is less than the focal length
of α0. Here, we only need to consider the integration of the geodesic curvature along Co f . Accordingly,
we can assume that the surface is continuous. Subsequently, we can assume that Co f , γt0

, and γt1

are all smooth curves. Assume that φ is a region enclosed by boundaries Cst, Co f , γt0
, and γt1

, and
an arbitrary smooth curve connecting γt0

(Δ) and γt1
(0) is Cdia. Suppose that the region bounded by

Cst, γt0
, and Cdia is φ1, its boundary ∂φ1 contains the curves Cst, γt0

, Cdia, and their corresponding
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directions. Similarly, φ2 denotes the region bounded by Co f , γt1
, and Cdia, and ∂φ2 is the boundary

of φ2.

Figure 6. The Relationship between the Curvature Integral of Geodesic Surface and the Gaussian
Curvature of Surfaces.

By applying the Gauss-Bonnet formula to the triangular regions φ1 and φ2, we can obtain that:

�
φi

Kdσ +
∮

∂φi

kgds =
3

∑
j=1

θi,j − π, i = 1, 2 (24)

In the expression above, K is the Gaussian curvature of the surface φi. kg is the geometric curvature
of the triangle boundary ∂φi. θi,j is the j-th interior angle of the boundary ∂φi. As γt0

and γt1
are

geodesic, so the integrals
∫
γt0

kgds and
∫
γt1

kgds are zero. Subsequently, we have:

∮
∂φ1

kgds +
∮

∂φ2
kgds =(∫

Cst
kgds−∫

γt0
kgds − ∫

Cdia
kgds

)
+

(∫
γt1

kgds +
∫

Cdia
kgds − ∫

Co f
kgds

) (25)

∮
∂φ1

kgds +
∮

∂φ2

kgds =
∫

Cst
kgds−

∫
Co f

kgds (26)

Obviously,
�

φ1
Kdσ +

�
φ2

Kdσ =
�

φ Kdσ, γt0
, and γt1

are perpendicular to the seed curve, so we
have: θ1,1 + θ2,3 = θ1,2 = π

2 , Substituting into expression (26), then we sum the triangular regions φ1

and φ2: ∫
Co f

kgds =
�

φKdσ +
∫

Cst
kgds (27)

Finally, if the initial trajectory is a geodesic, then:∫
Co f

kgds =
�

φKdσ (28)

3.2.2. Selecting the Direction of Initial Path

In order to ensure that the time along the initial trajectory is the least, when selecting the spatial
direction of the initial trajectory, it is necessary to select a curve from numerous geodesic curvature and
Gaussian curvature curve on the surface whose integrals are equal to that of an initial trajectory. We
can give the definition of surface height first, and then determine the direction of the initial trajectory
according to the definition. The surface height is the sum of the longest geodetic curve (straight
geodesic) perpendicular to the initial trajectory that extends from the initial trajectory to both sides, as
shown in Figure 7. The optimal initial trajectory is the initial trajectory corresponding to the minimum
surface height of the surface. With the same spray painting distance, the reciprocating spray painting
time along the optimal initial trajectory is the least (Figure 8). What is more, the paint consistency is
the best and the paint consumption is also the least.
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Figure 7. Surface Height Measurement Method.

Figure 8. Relationship between Surface Height and Reciprocating Spray Time.

4. Automatic Spray Space Path Generation on Bézier Surfaces

Under normal circumstances, using the Bézier method to generate the surface is more complex.
It is more complex if we perform optimization of spraying trajectory directly on Bézier surface. On the
other hand, during the spraying operation, the distance between the end effector and the workpiece
surface is always constant and perpendicular to the workpiece surface. In this case, the end effector
of the spray equipment is essentially reciprocating on the isometric surface of the workpiece surface.
Therefore, according to this idea, we can first find its isometric surface according to the shape of the
surface and then perform optimization of spraying trajectory on the isometric surface. It should be
noted that, strictly speaking, it is the discrete point array of the isometric surface of the Bézier surface
but not the isometric surface of Bézier surface that we will find out according to this method. In the
spatial path planning of the spray painting robot, we only need to find the discrete points on the path
essentially and then fit out the spray path using the corresponding mathematical methods according
to the accuracy requirements.

A U-direction or V-direction Bézier curve on the Bézier surface boundary is used as a benchmark
and it is discretized under a certain precision. Subsequently, specify a constant painting distance h and
find the equidistant point of the discrete points on the Bézier surface in the direction of the normal
vectors of the discrete points along the curve. After connecting these equidistant points with a smooth
curve, we can find an equidistant line of a Bézier curve on the boundary line of the Bézier surface.
By the same token, the Bézier curves with the same distance are specified on the Bézier surface (which
is the distance between two adjacent painting paths). In the same way, the same method can be used
to find the discrete point array of the equidistant surfaces of the Bézier surface. Afterwards, we use the
cubic Cardinal spline curves to connect each discrete point array. The adjacent two segments of cubic
Cardinal spline curve segments are connected by a Hermite spline curve, so that the specified painting
path can be obtained.

5. Trajectory Optimization on the Bézier Surface

In the actual off-line programming process of spray painting robot, the following factors should
be taken into consideration when performing the trajectory optimization for spray painting robot
on curved surface: (1) Mathematical model of surfaces. (2) Spray painting model on curved surface.
(3) The expression of paint thickness at a point on the surface. (4) Mathematical expression of optimized
trajectory on surface and its solution. In essence, the trajectory optimization for spray painting robot is
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actually a multi-objective optimization problem with constraints. There are many constraints in this
problem, such as the error of paint thickness, the path of the end effector, the moving speed, the surface
shape of the sprayed workpiece, parameters of the end effector, air pressure, paint viscosity, and so
on. Accordingly, how to deal with the constraint function effectively in order to guide the algorithm
searching is the key of trajectory optimization problem [12–15]. On the other hand, there are many
optimization objectives, such as minimum spray painting time, smallest variance of paint thickness,
minimum paint consumption, the highest paint utilization rate, the least inflexion of the robot path,
and so on. In these spray painting optimization objectives, the objective function of the trajectory
optimization is not independent of each other. They are often coupled with each other and in a state of
competition. As a result, it is very difficult to obtain the exact solution of the multi-objective trajectory
optimization problem of spray painting robot.

In order to obtain high-efficient painting path, the ideal method is to make certain assumptions.
That is, in the case that the error is allowed, a number of parameters are assumed to remain unchanged
in the process of spray painting. Only the main factors in the spray painting process are taken into
account. Such kind of idea makes the trajectory optimization of spray painting robot greatly simplified
and it also makes the multi-objective optimization of spray painting trajectory with constraints being
easy to be solved.

When solving the optimization problem of spray painting trajectory on Bézier surfaces, we will
simplify and solve the problem according to the ideal above. The specific idea is as follows: After the
Bézier triangular surface modeling method is used to obtain the parametric surface, a simple paint
deposition rate model is established. On this basis, a general spray painting model on the Bézier
surface is derived and the mathematical expression of paint thickness at an arbitrary point is also
derived. Finally, the optimal spray painting speed and spray painting time are selected as optimization
objectives. After the multi-objective optimization function of the spray painting robot on Bézier surface
is derived, the appropriate mathematical programming method is used to obtain the solution and the
optimized trajectory of spray painting robot on Bézier surface can also be obtained.

The spatial distribution model of coating, the cumulative rate of coating function diagram and
free surface trajectory optimization method have been described in the previous work [3,16]. After
spraying a curved surface S, assuming that the average thickness of the surface is qd, the coating
thickness at any point s is qs, the deviation of the maximum coating thickness is qw, and then we have:

max
s∈S

(|qd − qs|) ≤ qw (29)

Assuming that the maximum coating thickness is qmax and the minimum coating thickness is qmin,
the maximum deviation angle between the normal vector of all sampling points and the normal vector
of the surface is βth, then the coating thickness at any point s can satisfy the following inequality:

qmin · cos βth ≤ qs ≤ qmax (30)

The coating thickness at any point s satisfies the requirement (29), then we have:

|qs − qd| ≤ qw, s ∈ S (31)

then:
qmax − qd ≤ qw (32)

Further:
qd − qmin · cos βth ≤ qw (33)

If Equation (32) can be satisfied, then the maximum deviation angle βth can be calculated with
Equation (33). That is, for any surface, if the deviation angle β satisfies β ≤ βth, then the coating
thickness at any point on the curved surface can satisfy Equation (29).
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6. Experimental Part

6.1. Experimental Verification

The sprayed workpiece is shown in Figure 9. According to the topology of the spray workpiece,
the workpiece is divided into three parts for processing, which are basin bottom, basin side, and basin
edge, respectively. In the three parts, the basin bottom and the basin edge are all flat, and the surface of
these parts can be directly generated by the control vertice. The basin side needs to be divided into two
patches for processing, which are both arc. Where 10 control vertices are taken at different positions
on each patch, and the cubic Bézier triangular surfaces are generated using the algorithm in Part 2.
The Bézier triangular surface generation software system is written in VC ++ language. The curved
surface modeling diagram of the workpiece is shown in Figure 10.

After the sprayed workpiece is modeled by the Bézier triangular surface technique, the U-direction
spatial path and the V-direction spatial path of the workpiece surface are obtained according to the
method for generating the spatial path of the spray painting robot on the Bézier surface that is presented
in this paper. U-direction Spatial Path and V-direction Spatial Path as shown in Figures 11 and 12.

 

Figure 9. Sprayed Workpiece.

Figure 10. The Curved Surface Modeling Diagram of the Workpiece.
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Figure 11. U-direction Spatial Path.

Figure 12. V-direction Spatial Path.

Assuming that the ideal paint thickness is qd = 50 μm, the error of the maximum paint thickness is
qw = 10 μm, the bottom radius of the conical paint sprayed by the end effector R = 60 mm. According
to the Spatial distribution model of coating, after performing the spray painting experiment on the
plate, the paint deposition rate obtained by the experimental data is:

f (r) =
1
15

(R2 − r2) μm/s (34)

After obtaining the optimized trajectory on the plane, the spray painting rate (at uniform speed)
of the spray painting robot can be obtained as: V = 256 mm/s.

After obtaining the spatial painting path, trajectory optimization is carried out along the specified
painting path according to the trajectory optimization method for spray painting robot on the Bézier
surface in Section 5. At the same time, according to the initial trajectory selection method for spray
painting robot on the Bézier surface in Section 3, the initial trajectory is selected. There are 432 discrete
points in the discrete point array in U-direction, and the path between every two discrete points is
divided into 10 segments. There are 402 discrete points in the discrete point array in the V-direction,
and the path between every two discrete points is divided into 10 segments. The parameters of the
algorithm are as follows: the ideal paint thickness qd = 50 μm, maximum allowable error qw = 10 μm,
painting radius R = 50 mm, painting distance h = 100 mm, numbers of triangular facets N = 1566, the
length of each segment dk = 50 mm, number of the subdivided segments m = 10, and weight vector
ω = (0.5, 0.5)T . When the gun paints at uniform speed, v = 256 mm/s (the optimization speed on the
plane). Take v = 256 mm/s as the initial value of the algorithm iteration when performing optimized
spray painting. The following optimization experiments are carried out in the U-direction path and
the V-direction path, respectively. The process of spray painting experiment in the laboratory is shown
in Figure 13. After the spray painting experiment, the paint thickness is measured by a paint thickness
gauge. The paint thickness curve of the 432 sampling points along the U-direction path is shown in
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Figure 14 and the paint thickness curve of the 402 sampling points along the V-direction path is shown
in Figure 15. The experimental results are shown in Table 2.

After the analysis of the experimental results, we can learn that spray painting along the
U-direction and the V-direction can both meet the spray painting requirement after the optimization of
spray painting trajectory. That is, the error of paint thickness is within the allowable range. However,
it can be seen that the spray painting effect along the U-direction path is better and the spray painting
efficiency is higher for the workpiece. It also can be seen that the shape of the workpiece surface should
be fully considered in the planning of painting path, and the direction of the painting path may have a
certain impact on the spray painting effect and efficiency.

Figure 13. Spray painting Experiment in the Laboratory.

Figure 14. The Paint thickness Curve Spray painting along the U-direction Path.

Table 2. The Experimental Results of Spraying.

Optimized Spray Painting along
U-Direction Path

Optimized Spray Painting along
V-Direction Path

Average (μm) 51.2 52.1

Maximum (μm) 56.2 58.3

Minimum (μm) 45.1 43.0

Painting time (s) 83 95
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Figure 15. The Paint thickness Curve Spray painting along the V-direction Path.

6.2. Spray Painting Experiment

Taking a certain brand of automobile body as the spraying target, the feasibility of automatic
spraying trajectory optimization on the Bézier surface was simulated. As shown in Figure 16, taking
the automotive body of a brand as the paint objective and taking the U direction as the spraying
direction. Four ABB robots are using for painting at the same time. After the painting is completed, the
coating thickness of the sample points on the surface of the car body is measured by the paint drying
and the professional coating thickness tester.

Figure 16. The robotic spray painting experiment.

In the spray experiment, the ideal paint thickness is qd = 50 μm, maximum allowable error
qw = 10 μm, painting radius R = 50 mm, painting distance h = 100 mm, and painting speed
V = 256 mm/s (the optimization speed on the plane) when performing uniform spray painting. We
take 400 discrete points evenly on the workpiece surface after the spray painting operation. The paint
thickness curve is shown in Figure 17 after using a paint thickness gauge to measure the paint thickness
at the discrete points.

Based on the analysis of the experimental results, it can be seen that the average spray thickness is
51.1 μm, the thickness of the maximum coating is 58.1 μm, the minimum coating thickness is 44.2 μm,
and the spray time spent by the robot is about 99 s, which is better than the general spraying robot.
After the spraying trajectory is normalized based on the Bézier surface, the spraying requirements can
be met along the path spraying, that is, the coating thickness deviation is within the allowable range.

120



Electronics 2019, 8, 168

Figure 17. Material Thickness of Random Chosen Points for U-direction Trajectory.

7. Conclusions

In this paper, an automatic spray trajectory optimization method on Bezier surface is proposed.
Firstly, the Bézier surface is analyzed and the method for searching the optimal initial trajectory of the
spray painting robot is given according to the features of the Bézier triangular surface. Subsequently,
the spray painting model of Bézier surface is established, and the mathematic expression of paint
thickness at a certain point on Bézier surface is given. Finally, the optimized trajectory of Bézier surface
is obtained by using the ideal point method in the mathematical programming with the uniformity
of paint thickness and the shortest spray painting time as optimization objectives along the specified
spray painting path. The biggest advantage of this method is that a good initial path of automatic
spraying is determined at the beginning of the spraying process, which can significantly provide
uniformity of coating thickness, that is, improve the spraying effect. Finally, the effectiveness and
practicability of the proposed method are verified by an example verification and spraying experiment.
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Annotation

T1, T2, T3 Clockwise vertex of any given triangle.
P Any point in the plane where the triangle T1T2T3 is located.
[T1T2T3] Represents the directed area of the triangle T1T2T3.
T The interior of the triangle T1T2T3 with the boundary.
Sn(T) Make the n-time subdivision of the coordinate triangle T.
Bi,m(u), Bj,n(v) The u-direction m-time and v-direction n-time Bernstein basis function.
B(0, 0), B(1, 0), B(0, 1), B(1, 1) The four corner points of the Bézier grid.
V0,0, Vm,0, V0,n, Vm,n The four corner points of the Bézier surface.
α0 The smooth initial trajectory.
Cst A segment on the smooth initial trajectory.
α0(t0), α0(t1) The two endpoints of Cst.
γt0

, γt1
The geodesic lines.

Cst The offset curve of line segment.
Δ The offset distance.
Co f The offset curve with a distance Δ of Cst

121



Electronics 2019, 8, 168

φ A region enclosed by boundaries Cst, Co f , γt0
and γt1

Cdia Any smooth curve connecting γt0
(Δ) and γt1

(0)
φ1 The region bounded by Cst, γt0

and Cdia
φ2 The region bounded by Co f , γt1

and Cdia

∂φ1 The boundary of φ1

∂φ2 The boundary of φ2
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Abstract: Computing in technological applications is typically performed with software running on
general-purpose microprocessors, such as the Computer Processing Unit (CPU), or specific ones,
like the Graphical Processing Unit (GPU). Application-Specific Integrated Circuits (ASICs) are an
interesting option when speed and reliability are required, but development costs are usually high.
Field-Programmable Gate Arrays (FPGA) combine the flexibility of software with the high-speed
operation of hardware, and can keep costs low. The dominant FPGA infrastructure is proprietary, but
open tools have greatly improved and are a growing trend, from which robotics can benefit. This
paper presents a robotics application that was fully developed using open FPGA tools. An inverted
pendulum robot was designed, built, and programmed using open FPGA tools, such as IceStudio and
the IceZum Alhambra board, which integrates the iCE40HX4K-TQ144 from Lattice. The perception
from an inertial sensor is used in a PD control algorithm that commands two DC motors. All the
modules were synthesized in an FPGA as a proof of concept. Its experimental validation shows good
behavior and performance.

Keywords: robotics; open FPGAs; robot control

1. Introduction

The most common approach taken for the computing required in technological applications is
using software which writes instructions for a general-purpose circuit, such as a Computer Processing
Unit (CPU) or Graphical Processing Unit (GPU) [1]. Another option is designing a special circuit for
this specific computation, where Application-Specific Integrated Circuits (ASICs) [2] are the traditional
hardware implementation for system design. This last alternative requires more effort and has high
development costs, but when an application requires real-time processing, such as a video, television,
or robotic controller for real-time trajectory generation, the requirements are highly demanding and
better met when implemented in hardware. However, in general, applications are more flexible when
implemented in software rather than in hardware, especially when they are not computationally
demanding or when they are non-critical. The emergence of Programmable Logic Devices (PLD) [3]
and reconfigurable devices, such as Field-Programmable Gate Arrays (FPGAs) [4] have changed this
scenario. The FPGAs are a well-established technology, not only for prototyping and development,
but also as a for ASICs in a growing number of applications, as they offer benefits very similar
to those of ASICs, such as high speed and reliability, but without requiring as much resources or
costs as the custom ASIC design [2]. In addition, these features go far beyond those possible with
microprocessor-based systems, while maintaining similar flexibility thanks to their reconfigurability.
Unlike microprocessors, FPGAs perform different operations in parallel, and it is unnecessary to
compete for the same resources. Thus, incorporation of the FPGA in the industry has been driven
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by the fact that FPGAs are the combination of the best features of ASICs and microprocessor-based
systems. Fields in which FPGAs are currently used include medical imaging, coding and encryption,
aeronautics and defense, voice recognition, artificial vision, and robotics.

Thus, FPGAs are definitively established in the digital systems market, with Lattice Semiconductor
Corp. [5], Xilinx [6], and Intel FPGA [7] as the main private companies. Xilinx, which recently
signed a large collaboration agreement with IBM, and Intel FPGA, the new trade name of Altera
after its acquisition by Intel, are market leaders. FPGA devices generally consist of a regular
matrix of logic blocks and an interconnection network, both configurable, together with multiple
I/Os. The high-end segment [8,9] has also integrated specific resources for digital signal processing,
support for networks, or embedded microprocessors, usually being ARM cores. Thus, synthesized
embedded microprocessors are included in FPGA devices, such as Nios II [10] or MicroBlaze [11]. More
recently, RISC-V [12], a free and open RISC instruction-set type of architecture, has been implemented
within Microsemi FPGA [13,14]. Moreover, FPGAs have a strong presence in the sector of artificial
intelligence [15] providing hardware accelerators in this field that can exceed the performance of GPUs.
Despite these advanced features, it is worth noting that these are proprietary FPGAs, and working
with them requires a large budget that is not always feasible, such as in educational applications.

ISE from Xilinx and Quartus II from Intel FPGA are proprietary software tools offered by these
companies for synthesis and analysis of designs to be implemented into its FPGAs, usually using a
Hardware Description Language (HDL) [16]. These software tools enable the developer to synthesize
or compile their designs, to examine RTL descriptions, to perform timing analysis, to simulate the
designs, and to configure the target device using the programmer [17]. There are currently two industry
standard HDLs: VHDL (very high-speed integrated-circuit Hardware Description Language) [18] and
Verilog [19]. To compare these two, on the one hand, VHDL is strongly typed, it has the ability to
define custom types, it can define multiple signals into one type, and the logical statement endings are
clearly marked. However, it is also extremely verbose, and needs sensitivity lists and type conversions.
On the other hand, Verilog is a compact language, performs logical tests on an entire array of bits
with a single operator, and is adequate for low-level descriptions closer to the actual hardware. But
nevertheless, it is a weakly typed language, it offers no support of custom types, the signal declarations
can be confusing, and it has reduced support for asynchronous signals. This scenario has forced the
search and development of new alternatives, such as SpinalHDL [20], an open-source high-level called
whose goal is to use simple elements (flip-flops, gates, if/case statements) to create a new abstraction
level and help the designers to reuse their code. Among their advantages over VHDL and Verilog are
the evolving capabilities, the reduction of the code size, the easy type conversions, the loop detection,
and that it is free and has a user-friendly IDE.

As mentioned previously, robotics is one of the application fields of FPGA [21–23]. Typically,
the implementation of robot intelligence and controllers in FPGAs provides many advantages, like
reliability and fast operation, which allow for better robot control. However, a large budget is required
to work with proprietary FPGA software tools and it is not affordable for educational applications, such
as educational robotics [24]. This paper presents a novel use of open-source FPGAs for educational
robotics using a new visual language for robot programming. Concretely, an inverted pendulum real
robot was developed. The main characteristics of this implementation and the performed experiments
confirm the feasibility of this proposal.

The rest of the manuscript is organized as follows: Section 2 is devoted to the related works
involved in open FPGA in robotics and the inverted pendulum, while Section 3 describes the design
of the self-balancing robot using open FPGA. Section 4 presents the experiments, where a real
implementation of the self-balancing robot over an open FPGA is carried out, confirming the feasibility
of the presented proposal. Finally, the main conclusions are presented in Section 5.
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2. Related Works

Three areas provide the context for the proposal in this study: the use of FPGAs in robotics, the
open FPGA community, and the robotic application selected as a proof of concept—the self-balancing
robot. Some key works are also reviewed in this section.

2.1. FPGA in Robotics

Robotics is one of the fastest-growing technological areas in recent years [25]. It is based on
systems composed of mechanisms which are able to make movements and execute specific tasks that
are programmable and intelligent. Some implementation solutions for digital control systems for robot
manipulators and mobile robots proposed in the literature use hardware technologies, such as DSPs or
microprocessors [26]. These solutions allow for real-time control, but since the DSP has limited output
ports, applications for control of humanoid robots, for instance, are not suitable. FPGA technology
avoids this limitation, ultimately reducing size and weight, and therefore, costs. In addition, due to
the efficient integration of embedded processors’ intellectual properties (IPs) into a FPGA, the highly
sophisticated algorithms with heavy computations required by robotic controllers can be performed
by software in an FPGA. Thus, many FPGA-based solutions have been implemented in the field of
robotics, such as a static gesture recognition system [21], an algorithm for collision detection between
Oriented-Bounding-Boxes (OBBs) [22], and an embedded, robust adaptive controller for mobile
robotics [23]. Many different works have shown that FPGA implementation of robotic applications is
the best solution for optimum performance. Robotics may generate benefits not only in the industry,
but also in classrooms [24], enabling the emergence of new learning systems. In addition, in a future
world where robots will be used in almost any activity, a learning approach using these systems in the
classroom enables students’ technological development at an early age, facilitating their integration
into the adult world. The following are some of the educational benefits of robotics: they drive
initiative and creativity; promote greater sociability; encourage algorithmic and mathematical thinking;
facilitate teamwork, problem solving, and active learning; and enhance self-esteem. However, in order
to facilitate educational robotics in the classroom, the systems must consider the following elements:

• A high technological integration level is not recommended;
• Robots must be sociable and fun;
• Programming frameworks should not be complex, their functionality should be limited to a

certain extent, and they must attract students’ attention and make them feel comfortable in the
context;

• It is important for the robot to have a series of sensors and actuators, as well as inputs and outputs
so that the results are visual.

A major obstacle to achieving these features in educational robotics is that most commercial
educational robot platforms are closed. Thus, robot vendors do not commonly provide support for old
control units, or when a deprecated robot requires an update or even simple preventive maintenance.
The manufacturer tends to recommend disposing of such a unit and acquiring a new one. It is worth
mentioning the well-known LEGO, PID control [27], and walking robot [28]. Open FPGAs and their
new graphical IDE tools may help to avoid this obstacle, as described in the following section.

2.2. Open FPGAs

Many HDLs, as well as FPGA architectures are linked to important companies, such as Xilinx and
Intel FPGA, and working with them entails high development costs. Hence, not many companies or
individuals can benefit from the advantages of using FPGAs, meaning FPGA technology progresses at
a slower pace. One of the keys to the success of companies like Arduino [29] is the large community of
people that stands behind creating new libraries, components, etc. This is mainly due to the low price
of its products and the possibility of finding all the hardware and software on the web. To understand
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the creation of open FPGA [30], it is important to understand the bitstream that is used to describe the
configuration with which a specific design will be implemented in a FPGA. This detailed bitstream
format for a particular FPGA is typically owned by the FPGA manufacturer. This is why Cliford Wolf
decided to interpret the bitstream of the Lattice iCE40 FPGA devices [5] and developed the IceStorm
tool [31], a translate software from Verilog and bitstream. This translation was possible thanks to the
inverse engineering, meaning that it is not the usual usage that is given, but the inverse. Thus, there is
no longer dependency on any manufacturer, and all knowledge is also available. From these tools, new
interfaces or new applications that were not foreseen by the manufacturer can be created. Nowadays,
the focus of the IceStorm project is on HX1K-TQ144 and HX8K-CT256 devices from Lattice iCE40, but
since it is an open project, a lot of people are increasing their chances. IceZum Alhambra [32] is an
FPGA development board including the open FPGA iCE40HX4K-TQ144 from Lattice. It is an open
hardware that is compatible with the IceStorm toolchain and with Arduino Uno shields. Figure 1
shows the Icezum Alhambra II Board. Important features of this board include the following:

• 12 MHz oscillator;
• On/off switch to enable or disable digital pins;
• 20 Input/Output 5 V pins;
• 8 Input/Output 3.3 V pins;
• Micro-B USB to program FPGA from PC;
• Reset button;
• Eight general-purpose LEDs;
• TX/RX LEDs;
• 4 analog inputs available through i2c;
• 8 K memory;
• Possibility of powering through LIPO battery.

Figure 1. Icezum Alhambra II Board.

This development board can be implemented with new open tools, like IceStudio [33], a graphical
IDE for free FPGAs, built on the IceStorm project. It provides simple tools to analyze and create
bitstream files—that is, the lowest level of implementation for an FPGA. Boards with better features
do exist, but IceZum II Alhambra provides open hardware that can be implemented with free and
open software tools. This board was created with the idea of making digital electronics user-friendly
for young students, allowing for a visual language for programming the FPGA [34], fulfilling the
aforementioned features required for educational robotics.
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2.3. Inverted Pendulum

The inverted pendulum is of one the most famous problems in terms of control theory and systems
dynamics [35,36]. An inverted pendulum is represented in Figure 2, and consists of a pendulum where
the center of mass is located above the balancing axis. Maintaining an upward equilibrium position is
a challenge, as this equilibrium position is unstable (a system is more stable when its center of mass
is closer to the supporting horizontal plane). As the inverted pendulum system is non-linear, it is
well-suited for control by fuzzy logic [37]. The inverted pendulum system has significant theoretical
value since it represents the basis of many complex systems, such as biped robot upright walking
balance control, rocket launch vertical control, spacecraft attitude control, and offshore drilling platform
stability control. Beyond its theoretical interest, the inverted pendulum is also attractive for university
professors of engineering and teachers in secondary education. In this paper, a solution for the inverted
pendulum problem is addressed using an open FPGA in order to correct its instability.

Figure 2. Representation of an inverted pendulum.

3. Self-Balancing Robot

In this section, the proposed solution for the inverted pendulum problem through the use of an
FPGA in coexistence with a micro-controller is described. Several aspects are addressed, such as the
physics of the self-balancing robot used in the experiments, the calculation of its structure, the sensors
and actuators used, the control system, and the design and manufacture of a Printed Circuit Board
(PCB) to solve certain engineering problems.

This section begins with a brief high-level description (Section 3.1) and continues with the details
of the perception element (Section 3.2). Subsequently, the connection between Arduino and FPGA
(Section 3.3), the PD control on FPGA (Section 3.4), and a motor block in IceStudio (Section 3.5) are
also described.

3.1. Design

The hardware design of the inverted pendulum control with FPGA is shown in Figure 3.
The microcontroller obtains the current angle of the system by means of i2c communication with an
Inertial Measurement Unit (IMU) sensor. In the microcontroller, once the current robot vertical angle is
read, a serial-type communication sends it to the FPGA in a binary format of 1 byte for the integral part
and 1 byte for the decimal part. Inside the FPGA, the robot angle is read and the speed commands to
the motors for correction of the angle are calculated by a basic PD controller. A shield with a DC motor
driver is connected to the FPGA, and provides the possibility of varying the speed and the movement
direction of two DC motors that permit the stabilization of the system.

3.2. Perception

Continuous knowledge of the angle is necessary for its analysis and correction. For this purpose,
the MPU6050 sensor was used, and connected to an Arduino Nano by i2c communication. In order to
correct some of the data collection problems such as noise or drift, it incorporates an internal processor
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(Digital Motion Processor, DMP) that executes data fusion algorithms (Motion Fusion) to combine
the measurements of the internal sensors, avoiding the necessity of performing the filters externally
(Figure 4).

Figure 3. Hardware design of the inverted pendulum control with Field-Programmable Gate
Arrays (FPGA).

Figure 4. Advantage in the use of DMP.
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3.3. Arduino-FPGA Connection

An integration between the microcontroller and the FPGA allows sequential and parallel tasks to
be distinguished, assigning each process to the microcontroller if it the task needs to be sequential,
or to the FPGA if the process can be parallelized, thus obtaining certain advantages. More than
one option exists for the microcontroller/FPGA integration. In this work, physical coexistence with
communication between them was chosen. They can also be integrated by means of several types of
communication. Serial communication was selected as the most appropriate type due to the numbers of
pins available in the FPGA. The communication would only be unidirectional, with the microcontroller
sending information to the FPGA about the current angle of the robot in order for the FPGA to analyze
and actuate starting from that angle. There are thus two parts in this serial communication: from
the point of view of the microcontroller, and from the point of view of the FPGA. The sensor reading
acquisition in the microcontroller is described in Section 3.2, while only the communication with the
FPGA is analyzed in this section. The diagram flow on which the C-code of the microcontroller is
based is shown in Figure 5.

Figure 5. Diagram flow to send angle.

For correct and easy understanding by the FPGA, it is necessary to send the represented angle
as several bytes in binary format, not as ASCII codes. The “Serial.println’” Arduino function was
discarded, because it used ASCII codes and would even send the comma character to separate the
integral and the decimal part. Instead, the Arduino function “Serial.print(Angle)” was used, which
sends a binary number through the serial port. The representation and sending of the angle reading
was separated into two bytes, as shown in Figure 5. The first byte is the integer part (from 0 to 255)
and the second byte is the decimal part (from 0 to 100). No comma is sent over the wire. In FPGA, an
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input pin will continuously enter data from the transmission pin so that it can make a correct reading
of the byte. It is necessary to know:

• When a byte transmission starts;
• When a byte transmission ends;
• When a bit can be captured;
• When the necessary bits are saved in a buffer until the byte is complete.

In order to solve the previous problems and features, an intermediate module in IceStudio
(Figure 6) was implemented.

Figure 6. Appearance of Arduino Nano module in IceStudio.

This was implemented in Verilog by two machine states, with their corresponding sensitivity lists
and the diagram flow represented in Figure 7.

Figure 7. Diagram flow for Arduino interface.
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Two distinct processes were used:
Process 1: This process only provides the next system state at the moment at which it can capture

a bit and save it in the buffer. Thus, it is necessary to know the speed of the transmission. The states
are the following:

• IDLE: The process remains in this state until the transmission starts, which will then lead to the
next state (START);

• START: The serial transmission protocol begins with a start condition, and this state will allow
recognition of when this condition ends in order to start saving bits in the buffer;

• DATA: Since the transmission speed is already known and the condition of START in the previous
state has been recognized, in this state a flag will change its value when the bit is ready to be
stored in the buffer, of which Process 2 will be in charge of this storage;

• STOP: In addition to a START condition, the serial transmission protocol used in Arduino has
a STOP condition. This state allows recognition of the time Arduino takes to carry out this last
condition—it will then return to the first state until a new transaction begins.

Process 2: This process is activated by Process 1. When Process 1 determines that a bit is available
on the bus to be captured, it will set a clock flag on, initiating Process 1 through a sensitivity list. An
example flow diagram could be:

• Wait until the sensibility list is activated—this will indicate that a bit can be captured;
• Bits will be stored in a buffer forming a byte, which will represent the integer or decimal part of

the angle at that moment;
• When the byte is prepared to be captured by two consecutive modules, a channel will be on. Both

the outputs and the buffer with the 8 bits and the “byte_ready” channel will be available.

At this point, the FPGA is able to differentiate between when it can capture a byte (BYTE_READY)
and from where it has to capture the data bus (DATA_BUFFER). However, an aspect that is not part of
the communication itself is that it is important to analyze whether a correct operation is required—that
is, if the microcontroller has been previously told to continuously send the integer and decimal part of
the angle. If this data is not correctly interpreted, it is possible that an angle on the FPGA is formed by
a decimal part of an angle n, and the integer part of the angle n + 1. To do this, a module is created
in IceStudio that is capable of ordering these values. The appearance of this module in IceStudio is
shown in Figure 8.

Figure 8. Module to arrange data from Arduino.

The final communication system between Arduino and IceZum Alhambra from a POV of the
FPGA is represented in Figure 9.
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Figure 9. Communication between Arduino and IceZum Alhambra.

3.4. PD Control in FPGA

A PID controller can simply be used to control the stability of the system. One of the facilities
provided by this type of controller is the ease of implementation. The flow diagram of the P controller’s
behavior is shown in Figure 10.

Figure 10. Flow diagram of P control.

The most important features are briefly explained as follows:

• Both the integer part and the decimal part are represented as 8-bit data without a sign. In order to
give greater importance to the integer part, there is the option of dividing the decimal part by
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100 (Figure 10) or of multiplying the integer part by 100. The first option does not provide good
behavior due to the digital treatment of the floating comma. Thus, the second option is preferable.

• The two integer and decimal components are added, and then it is multiplied by a Kp constant,
defined as a parameter which can be dynamically changed.

Referring to the D controller, the flow diagram implemented in Verilog is shown in Figure 11.

Figure 11. Flow diagram of D control.

Its implementation is composed of a state machine with two states, which will change at each
pulse on the data_ready. This means that it will change whenever a new angle is available. The D
controller is based on its operation on the prediction of future errors. The derivative control action
generates a control signal proportional to the derivative of the error signal. A subtraction (derived
from the error in time) is therefore carried out between the current error and the last error. Its result is
multiplied by the constant Kd. Referring to the closed-loop feedback system, Figure 12 shows the final
appearance of the present work developed using IceStudio.
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Figure 12. Final appearance of the self-balancing in IceStudio.

3.5. Motor Block in FPGA

In order to correct the current angle and obtain the stabilization, two DC motors were used. The
speed of the motors was controlled by a PWM connected to the driver motor through the FPGA.
Therefore, a PWM module generator, whose appearance is shown in Figure 13, is needed.

Figure 13. Appearance of PWM module in IceStudio.

Figure 14 shows the block diagram representing its behavior.

Figure 14. Flow diagram of PWM generator in Verilog.
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4. Experiments

In this section, the self-balancing robot will be addressed purely from a hardware perspective
describing the chosen physical model and all its components.

4.1. Physical Robot

4.1.1. IceZum Alhambra Board

The Alhambra board (Figure 1) was used as the main board and open FPGA (Section 2.2) to
implement all the necessary systems that can be parallelized. For this purpose, the PD control, the
calculation of the speed, and the motor control were implemented on this FPGA.

4.1.2. Arduino Nano-Processor

In order to allow a simple implementation of i2c communication with MPU6050 (implementation
with FPGA was tested and is described in Section 4.4) and to avoid complex calculations in the
FPGA, an ATMEGA microcontroller (Figure 15a) was used. Arduino Nano was chosen to develop the
above features.

4.1.3. MPU6050

The MPU6050 (Figure 15b) is an Inertial Measure Unit (IMU) with six degrees of freedom (6DOF)
manufactured by Invensense. It has an accelerometer and gyroscope, and allows communication
by both SPI and i2c bus. To correct some of the data collection problems, it incorporates an internal
processor (Digital Motion Processor, DMP) that executes data fusion algorithms (Motion Fusion) to
combine the measurements of the internal sensors, avoiding having to perform the filters externally.

4.1.4. Motor Driver

For the DC motor control, which allows for robot stabilization, the MC33926 was used. It allows
control of the speed and direction from up to two motors using a PWM signal which is generated by
the module described in Section 3.5. The Figure 15c represents the motor driver.

(a) Arduino Nano board (b) MPU6050 IMU (c) MC33926

Figure 15. Physical components of the Self-Balancing Robot.

4.1.5. PCB Shield

After implementing the entire system and considering the necessary connection diagram between
the microcontroller and FPGA and the motor driver, a printed circuit is advisable to solve some noise
problems, the excessive number of cables, etc. A printed circuit board was developed using Altium
Designer [38] as the design tool.

Figure 16 shows a 3D representation of the final system with all its added components.
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Figure 16. 3D representation of shield for IceZum Alhambra II.

4.2. Inverted Pendulum

Knowing the physics of a self-balancing robot [39] and aiming to solve the classic problem of
the inverted pendulum, the mechanical structure of the Figure 17, designed with SolidWorks [39], is
proposed to integrate and assemble the rest of the components.

Figure 17. Balancing Robot perspective.

Different aspects of the design of this structure are considered, which are directly related to the
physics of a self-balancing robot, and with it, of the inverted pendulum. As mentioned in Section 2.3,
a system at rest is stable when its center of mass is closer to the horizontal plane. If we consider that
the nature of the proposed system is inherently unstable, it is necessary to know the best point to
situate the center of mass in order to provide better stability. According to the mathematical modeling
characterization, it is assumed that, in order to achieve greater ease in stabilization, the center of mass
should be placed above the midpoint of the vertical axis of our system. Therefore, in order to achieve
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this positioning, we must consider the weight of all components. In Figure 18, a SolidWorks calculation
is represented from this center of mass where only the heavier components of the final system are
considered, including DC motors, batteries, mechanical structures, and wheels.

Figure 18. Final system of center of mass.

4.3. Final Results

A set of videos demonstrating the correct behavior in the Self-Balancing robot can be seen
at (https://www.youtube.com/watch?v=u-KACjWmcKw). Also, the process through to the end
can be found in (https://youtu.be/dQg8NQP7CfQ, https://youtu.be/d_1bnjbpQks, https://youtu.
be/mLyxewOVGug). In order to manufacture the mechanical structure, a 3D printer was used
(https://youtu.be/rKoIdgaJU2k). The final system is shown in Figures 19 and 20.

Figure 19. Final system with physical components assembled.

Figure 20. Final results of Self-Balancing Robot.
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4.4. Alternative Design without Arduino

The proposed design before adding the microcontroller is shown in Figure 21.

Figure 21. Hardware design of the inverted pendulum control without microcontroller.

The capture of the angle value was implemented in the FPGA. To do this, an i2c module was
developed—and this presented a challenge, particularly considering the fact that a state machine and
tri-state module were needed. The MPU6050 outputs were reminded without the use of DMP—2 bytes
which corresponded with the accelerometer and gyroscope (12 bits for each one). The bytes had to
be filtered and carefully treated in order to solve the drift problem and noise. Moreover, these values
must be combined to allow reliability in terms of time and to blend the advantages of both sensors.
The above development is not feasible with the number of logic gates or with the need to use sine and
tangent functions. For this reason, a microcontroller with the i2c incorporated and the possibility of
using DMP was clearly the best option.

5. Conclusions

FPGAs are a good intermediate option between microprocessors and ASIC for computing in
many technological fields, as they combine the flexibility of software with the high-speed operation of
hardware, and can keep costs low. However, most of the FPGA tools are currently proprietary and
expensive. The open-source community has developed good FPGA editing and synthesis tools like
IceStorm, IceStudio, and the IceZum Alhambra board. Currently supported FPGAs are not yet the
most advanced models, but they already allow for the development of interesting robotic applications.
A proof-of-concept robotic application was described in the present study—i.e., the inverted pendulum
robot. It was fully developed using open FPGA technologies. It includes a perception module, a control
module, and a motor module. Perception is based on an inertial IMU sensor. It was first developed
with the sensor directly connected to the FPGA board, but there was significant noise in the data from
this sensor. Finally, an intermediate Arduino processor was selected to filter out the noise and to send
the filtered IMU data to the FPGA board through an i2c connection.

The control module performs a Proportional Derivative (PD) feedback algorithm inside the FPGA
board. It feeds the motor drivers with the proper commands to keep the inverted pendulum robot
raised and standing up even in the presence of disturbances. The FPGAs allow a new hardware
approach to robot programming. Instead of a sequence of instructions, the robot logic is designed
naturally in a parallel way by default. The main decomposition of robot tasks is now spatial in
the FPGA circuit, which is more than sequential in the processor time. All the modules inside the
FPGA hardware run concurrently at a pace of clock frequency. This can be of great use, for instance,
in reactive robot behaviors. The hardware allows for continuous control instead of iteration-based
software. Regarding future research, the authors are working on programming a drone with a camera
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to visually follow colored objects in 3D, fully using open FPGA tools. This includes the support
for image acquisition directly from the FPGA circuit and the communication with common drone
flight controllers (like PX4 or ArduPilot) through PPM encoding. A second consideration to extend
the current work is the development of a library of FPGA blocks which can be reused in further
robotics applications.
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Abstract: The velocity profiles are used in the design of trajectories in motion control systems. It is
necessary to design smoother movements to avoid high stress in the motor. In this paper, the rate
of change in acceleration value is used to develop an S-curve velocity profile which presents an
acceleration and deceleration stage smoother than the trapezoidal velocity profile reducing the error
at the end of the duty-cycle pre-established in one degree of freedom (DoF) application. Furthermore,
a new methodology is developed to generate a seven-segment profile that works with negative
velocity and displacement constraints applying an open source architecture in a hybrid electronic
platform compounded by a system on a chip (SoC) Raspberry Pi 3 and a field programmable gate
array (FPGA). The performance of the motion controller is measured through the comparison of the
error obtained in real-time application with a trapezoidal velocity profile. As a result, a low-cost
platform and an open architecture system are achieved.

Keywords: low-cost platform; FPGA; S-curve; motion control; robotics; SoC

1. Introduction

The velocity profiles have been studied broadly in recent years to design point-to-point trajectories
in robot manipulators, conveyor belts, computer numerical control (CNC) machinery or whatever
system with the use of direct current (DC) and alternating current (AC) motors [1,2]. Velocity
profiles have an essential role in motion control since it is possible to accomplish a target position
reducing the vibrations and the energy consumption, increasing the precision and the durability of
the systems [3,4]. Nowadays, a great variety of velocity profiles exist, but their accuracy depends on
the velocity’s demeanor. Since, if the velocity changes abruptly, the behavior of acceleration could
cause discontinuities in the trajectory [5]. The rate of change in acceleration is denominated as jerk [6],
whether acceleration changes too fast, the vibrations increase their frequency causing damage to the
structure of the mechanical system [7]. Therefore, when something like this happens, it is possible to
deduce that the jerk value is too big, which means that the energy consumption is high.

There are different velocity profiles applied to specific processes, the common ones are
the triangular velocity profile, parabolic velocity profile and the trapezoidal velocity profile [8].
The triangular velocity profile is a piece-wise defined function given by two linear segments
corresponding to the acceleration and deceleration of the actuator, the jerk value is high because
of the acceleration changes radically. On the other hand, the parabolic velocity profile presents a
smoother velocity curve than the triangular, making the jerk value less than triangular profile but
neither of them maintain a velocity constant phase [9,10], it means that they accelerate and decelerate
the actuator immediately. The trapezoidal velocity profile consists of three phases: acceleration,
constant velocity and deceleration phase [10,11]. A constant velocity phase offers less wear on the
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actuator extending its life period, since, the change in acceleration occurs after a period and not
abruptly after to reach the desired velocity [12,13]. The trapezoidal velocity profile is the most used
in the industry, although the jerk value is high-rise [5,14]. A second-degree polynomial describes
the transition of the position making accessible the implementation in an embedded system due to
the low level of processing [15,16]. On the other hand, the seven-segment velocity profile, known
as the S-curve velocity profile, has been studied broadly in recent years obtaining better results
than other profiles because of the jerk value takes a constant amount [17], decreasing the damage
produced by high-frequency vibrations in the structure of the system. The implementation in an
embedded system can need a complex architecture to support the seven position’s equations defined
by a third-degree polynomial.

The controller is fundamental to the application of a motion control system [18,19], the velocity
profile contributes with several points that describe the path, but the controller must follow,
reducing the error significantly, the trajectory [20,21]. According to a comparison presented in [2],
the controller and the profile generator algorithm can be chosen by the designer according to its
experience. For instance, Jeong et al. [22] proposed an algorithm that can determine the coefficients
of jerk limited profiles, but it only works with non-negative velocity and displacement constraints.
Wang Bangji et al. [23] developed a velocity profile algorithm for stepper motor controller in an field
programmable gate array (FPGA) where the characteristics of the stepper motor are introduced by the
user to generate the velocity profile. The algorithm is restricted to other motors. Tou Wai Kei et al. [24]
designed a speed regulator by implementing an S-curve velocity profile in a microcontroller to control
an elevator featuring direct landing. The profile generator only accepts the maximum acceleration,
an initial jerk value, and a maximum velocity. Working with microcontrollers can presents problems
at the moment to migrate the algorithm to a different family of microcontrollers due to the internal
architecture used among them, in the FPGA the code is preserved, it does not change and it can be
migrated in an easy way without altering the algorithm. This paper presents a new methodology to
obtain the S-curve coefficients in real-time, which includes the non-negative velocity and displacements
constraints applied to DC motors using an open architecture based on a Raspberry Pi 3 combined
with an FPGA which is a low-cost platform compared to closed architectures on the market capable
to generate trajectories. Furthermore, the user can introduce the total displacement, the duration of
the movement and the length of the acceleration-deceleration phases. Besides, the profile generator
calculates the acceleration and jerk parameters according to the desired position.

2. Background

2.1. General Model of the Seven-Segment Velocity Profile

The motion planning designer must develop smoother trajectories to avoid discontinuities in the
acceleration and reduce the strain and exertion on the actuators and the mechanical architecture [25,26].
Since a third-degree polynomial models the behavior of the position, the seven-segments velocity
profile offers the possibility to maintain the jerk with a constant value, obtaining a step profile for
the rate of change in acceleration [27]. An important aspect to mention is that, when the degree
of the polynomial is increased or decreased, the profiles tend to shift themselves into a particular
position, adopting a different shape. For instance, in Figure 1c, the acceleration has taken the shape of
a trapezoidal profile allowing linear changes at the acceleration, even the velocity adopts a continuous
shape connected by parabolic-blends in the form of S-curve for the acceleration phase and an inverse
S-curve for the deceleration stage.

It is necessary to analyze Figure 1 to compute the values of the a0, a1, a2 and a3 parameters
of Equation (1), by seven-segments with an interpolation method [1]; each segment represents an
equation depending on the motion profile under analysis. So, it is acceptable to propose a constant
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value for the jerk according to a given acceleration, but it must exist a relationship with the maximum
amount of the speed given by the data-sheet of the actuator.

θd(t) = a0 + a1t + a2t2 + a3t3, (1)

where θd is the aim position. When the maximum values of the jerk, acceleration, and velocity are
known, the Equations (3)–(5) can be applied to generate the wished trajectory with the seven-segments
velocity profile. The total duration of the movement T is also known, and it is provided by the designer.
As mentioned before, the jerk has a step profile because it retains its value as a constant, so that in
Figure 1d one can see how it varies with respect to the time and get (2).

J(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

jmax t ∈ [0, Ts1)

0 t ∈ [Ts1, Ts2)

jmin t ∈ [Ts2, Ts3)

0 t ∈ [Ts3, Ts4)

jmax t ∈ [Ts4, Ts5)

0 t ∈ [Tj5, Ts6)

jmin t ∈ [Ts6, T].

(2)

Assuming that jmin = −jmax in four periods, Tsi is the length of the i-th segment, where
i = 0, 1, 2, ..., 6. The acceleration is calculated after integrating (2), segment by segment. Equation (3)
is the general equation to get acceleration. Equation (4) is the equation of the velocity and (5) is the
equation to obtain the position.

α(t) = α(Tsi) +
∫ T

Tsi

J(τi)dτi (3)

ω(t) = ω(Tsi) +
∫ T

Tsi

α(τi)dτi (4)

θ(t) = θ(Tsi) +
∫ T

Tsi

ω(τi)dτi. (5)

The relative time parameter of the integral is defined as τi = T − Tsi where i = 1, 2, 3, ..., 6
represents the segments of the displacement. The result of the integration of (3) is the acceleration
profile showed in Figure 1c. The acceleration shows a linear variation until reach a constant value,
and then presents a linear deceleration.

In order to draw the acceleration profile with the desired characteristics, it is necessary to substitute
the aacc and the jmax values in (6), which is the result of the integration of (3). Notice that the acceleration
phase goes from the origin to Ts3 in Figure 1c, whereas the deceleration phase (T − Ts4) is compound
by an inverse trapezoid.

α(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

jmaxTs1 t ∈ [0, Ts1)

aacc t ∈ [Ts1, Ts2)

aacc + jmin(Ts3 − Ts2) t ∈ [Ts2, Ts3)

0 t ∈ [Ts3, Ts4)

jmax(Ts5 − Ts4) t ∈ [Ts4, Ts5)

adec t ∈ [Ts5, Ts6)

adec + jmin(T − Ts6) t ∈ [Ts6, T]

(6)
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Figure 1. Motion profiles by given a set-point, (a) position, (b) velocity, (c) acceleration and (d) jerk.

According to (4), it is possible to compute the velocity profile of each segment from the integral of
the acceleration. The seven-segments velocity profile is modeled by (7).

ω(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v1 +
jmax

2 (τ1)
2 t ∈ [0, Ts1)

v1 +
jmax

2 T2
1 + aaccτ2 t ∈ [Ts1, Ts2)

v1 +
jmax

2 T2
1 + aaccT2 + aaccτ3 +

jmin
2 τ2

3 t ∈ [Ts2, Ts3)

vmax t ∈ [Ts3, Ts4)

vmax − jmax
2 (τ5)

2 t ∈ [Ts4, Ts5)

vmax − jmax
2 T2

5 − adecτ6 t ∈ [Ts5, Ts6)

vmax +
jmax

2 T2
5 − adecT6 + adecτ7 +

jmin
2 (τ7)

2 t ∈ [Ts6, T].

(7)

Here, τi−1 = T − Tsi is the relative time of each segment of (7), i = 1, 2, ...7 defines the segment
under analysis and Ti is the duration of the i-th stage. The acceleration, when the maximum speed
vmax is constant, turns to zero. Finally, it is necessary to solve (5), to compute the position profile for
the i-th segment according to Figure 1a. Equation (8) represents the piece-wise behavior of the position
respect the time. Notice that it posses a third-degree polynomial equations that modeled the desired
position in certain segments.

146



Electronics 2019, 8, 652

θ(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q1 + v1τ1 +
jmax

6 (τ1)
3 t ∈ [0, Ts1)

q2 + v2τ2 +
aacc

2 (τ2)
2 t ∈ [Ts1, Ts2)

q3 + v3τ3 +
aacc

2 (τ3)
2 − jmin

6 (τ3)
3 t ∈ [Ts2, Ts3)

q4 + v4τ4 t ∈ [Ts3, Ts4)

q5 + v5τ5 − jmax
6 (τ5)

3 t ∈ [Ts4, Ts5)

q6 + v6τ6 − adec
2 (τ6)

2 t ∈ [Ts5, Ts6)

q7 + v7τ7 +
adec

2 (τ7)
2 − jmin

6 (τ7)
3 t ∈ [Ts6, T],

(8)

where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q2 = q1 + v1T1 +
jmax

6 T3
1

q3 = q2 + v2T2 +
aacc

2 T2

q4 = q3 + v3T3 +
aacc

2 T2
3 − jmin

6 T3
3

q5 = q5 + v5T5 − jmax
6 T3

5

q6 = q5 + v5T5 − jmax
6 T3

5

q7 = q6 + v6T6 − adec
2 T2

6 ,

when the motor has reached the maximum velocity vmax using the desired position θd and duration
of the movement T proposed, it maintains a constant speed and the position in that phase is a
third-degree polynomial.

2.2. Proposed Method to Compute the Desired Jerk

It was necessary to get access to the data-sheet of the actuator to design a point-to-point
trajectory [1], and check for some specific characteristics as torque, minimum and maximum values
for the velocity and acceleration, and so on [28,29]. These parameters can be used by the designer
for solving a determined task using delimiter parameters to prevent damage caused under dynamic
loads initiated by molecular bond separation in the material, and to reduce the vibrations on the
actuator [25,30,31]. The aim of working with a range of velocities was to assign the desired speed and
compute the needed values of the acceleration and the jerk respect to the rate of change in position
parameter proposed. A condition to satisfy is presented as follow.

ωd = ω(Tsi) +
∫ T

Tsi

α(τi)dτi ≤ ωmax, (9)

where ωd and ωmax are scalar of the desired and the maximum speed permitted by the DC motor
respectively and they must satisfy (9). Whether a more significant value is declared for ωd than ωmax,
the actuator is going to try to reach that speed, demanding a higher voltage than the provided by the
manufacturer. Therefore, an approximation for the planning of the seven-segments velocity profile
consists of defining the values for the rate of change of position and acceleration over a function based
on the acceleration-deceleration stage proposed. The total time for acceleration phase is represented
in (10).

Tacc = Ts1 + Ts2 + Ts3 (10)

The phase when the speed is varying respect the time is constituted by three segments, two
parabolic-blends and a linear displacement related to the speed profile. Assuming that the acceleration
phase is symmetric respect the deceleration phase, it is possible to suppose that Tacc = Tdec. In order to
compute Tacc it is necessary to multiply the total time of motion T by a factor γ ∈ R, where 0 ≤ γ ≤ 1

2 .
So, the acceleration time can be calculated using Ta = γT. A value of acceleration and jerk have to be
calculated to use Equations (6)–(8),. The velocity obtained by the desired position can be computed
using (11).
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ωd = ω(Ts3) +
∫ Ts4

Ts3

α(τ3)dτ3 =
θd

(1 − γ)T
. (11)

The result of (12) took the value of the ωd as the maximum velocity computed with the desired
position θd. Therefore, ωd = ωmax in the segment {Ts3, Ts4} over Figure 1b. The parameter θd is an
scalar and its range is (R−, R+). The segment of time when the jerk kept a constant amount Tjerk is less
than the acceleration phase Tacc, it means Tacc ≥ Tjerk. It must exist a relationship between the Tacc and
Tjerk to ensure the continuity of Equations (6)–(8), so that, the length of the acceleration phase has to
be multiplied by a factor ϕ ∈ R. ϕ can take values in the range 0 ≤ ϕ ≤ 1

2 , thus, the constant value
of the jerk should endure Tjerk = ϕTacc. Supposing that the acceleration phase is symmetric to the
deceleration phase, they have the same duration Tacc = Tdec with an opposite magnitude, solving (12)
to determine the acceleration value.

αd = α(Ts1) +
∫ Ts2

Ts1

J(τ1)dτ1 = α(Ts5) +
∫ Ts6

Ts5

J(τ5)dτ5 =
θd

γ(1 − γ)(1 − ϕ)T2 . (12)

where αd is the maximum value reached with the desired position parameter in total duration motion
proposed. The αd is a constant parameter, αd ∈ R. The jerk value can be computed by (13).

Jd =
αd

Tjerk
=

θd
Tjerkγ(1 − γ)(1 − ϕ)T2 . (13)

Here Jd is the constant jerk value, Jd ∈ R. Notice that exists a dependence among the values of the
velocity ωd, acceleration αd and jerk Jd, respect to the total time of the motion an the target position.
Once the jerk is obtained, it can be substituted in (2) to draw the jerk profile. The desired position,
using (8), can be computed with Equation (14).

θd = q6 + v6T6 + v7T − adec
2

T2
6 +

adec
2

(T)2 − jmin
6

(T)3. (14)

The value of θd is calculated from the last stage of (8) and represents the total displacement from
the movement. It is necessary to calculate a negative acceleration and jerk parameters to compute
the negative velocity constraints, using Equations (13) and (14). Jinv = sgn(jsi − Jd) | Jd | indicates if
the sign of the jerk profile is positive or negative. Whether the jerk value is negative, the jerk profile
presented in Figure 1d changes its shape to Figure 2b. On the other hand, inverting the jerk profile,
one can obtain a negative acceleration since the jerk is negative. So, the stage sign for the acceleration
can be obtained using the following constraint αinv = sgn(jsi − Jd) | αd |, where a negative sign for the
acceleration profile correspond to invert the trapezoidal shape of acceleration, see Figure 2a. Using the
negative acceleration, the velocity profile presents an inverted S-curve, Figure 3b.

Equations (2)–(8) are inverted after computing the desired jerk and the maximum acceleration
needed to reach the jerk condition. It is added a new variable denominated as the initial position θ0 to
compensate the total displacement writing in (15). Once the jerk and acceleration are computed for a
negative displacement, in accordance with the actual value, it is possible to use the negative value of
the computed jerk to generate the inverse trajectory.

θd′ = θ0 + θd, (15)

where θd′ is the final displacement if the initial position θ0 is the last movement reached for the shaft
of the motor, it means that the new desired position has moved in an opposite way, and the total
displacement computed from the home point is described in (16):

θd = q0 − q6 − v6T6 − v7T +
adec

2
T2

6 − adec
2

(T)2 +
jmin

6
(T)3 (16)
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Figure 2. (a) Inverse trapezoidal acceleration profile, (b) inverse jerk profile.

The negative position is used to return the shaft of the motor to the initial position or to move it
in an opposite way to the positive axis, the position profile is presented in Figure 3a.
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Figure 3. Inverse S-curve velocity profile (a) position, (b) S-curve velocity profile.

3. Methods and Experimentation

Motion control applications encompass an extensive range of topics related to the control of
electromechanical systems, trajectories design to reduce the error increasing the precision of the
system and handle of vibrations to minimize damage in mechanical structures. A new methodology is
proposed in Figure 4 to reduce the error obtained experimentally applying a motion profile. In order
to design a motion controller using a hybrid system compounded by the interaction of a Raspberry Pi
3 and an FPGA ZYBO-ZYNQ XC7Z010 from the family XILINX.

The idea of designing a motion controller with those architectures arises from the technological
advances in industry. Using a single-board computer reduces the work-space and increases the
possibility about everybody can interact with the system, making interactive the process to the
operator in charge of the mechanical system. The processing and control systems are embedded on the
Raspberry Pi 3. For the power stage, a pulse-width-modulation (PWM) servo drive model 12A8 from
the family advanced motion Control is used [32].
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The seven-segment velocity profile is developed in C programming; the user can set the target
position θd, the total time of displacement T, and the length of the acceleration-deceleration phases to
compute the speed needed to reach the set-point and the jerk value.

Figure 4. Hybrid electronic topology based on field programmable gate array (FPGA)-system on a
chip (SoC).

On the other hand, the FPGA reads the real position of the shaft using a rotary encoder (2000 pulses
per revolution). A quadrature signal was monitored each 20 na and it was stored in a register each 5 ms
to send the data directly to the interface using the universal asynchronous receiver-transmitter (UART)
protocol, Figure 5 shows the sequential logic implemented in the FPGA. DATA_Tx is the data to send,
compounded by 8 bits; for this case, the encoder counts have a bandwidth of 16 bits. Rx and Tx are the
communication lines, BaudRate (bits per second) is the transmission speed, it is important configure
the same speed at 115,200 bauds in the C program of the Raspberry Pi 3. DATA_Rx is a buffer where
the control signal is received, eo_Tx and eo_Rx are flags that indicate the end of transmission and
reception of 1 byte, respectively.

Figure 5. Entities embedded on the FPGA.
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The Raspberry Pi 3 generated the trajectory parameters in real-time, using a sample time
Ts = 5 ms, and sent them to the controller to minimize the error. The control signal was transmitted
through the general purpose input–ouput (GPIO’s) of the Raspberry Pi 3 to the FPGA in the form eight
bits of information, the FPGA receives the data and transforms the control signal into PWM signal in
order to send it to the servo drive to control the position of the motor.

S-Curve Velocity Profile Parameters

The S-curve velocity profile implementation was developed using (2)–(5). There were
several considerations at the moment to define a trajectory such as: (a) total duration for the
acceleration-deceleration must be equal for both stages Tacc = Tdec, (b) the magnitude of the acceleration
αd was obtained by the desired position θd, (c) the jerk value is obtained with the αd magnitude and θd,
all those values are calculated with the total duration of the movement T.

The parameters proposed for the design of the S-curve implementation are θd = 12π rad and
T = 1.8 s, notice that the speed is calculated from the jerk value or using (9). Once the length of
the movement was known, the acceleration-deceleration time was computed. For this application,
the total time of the acceleration is divided by γ = 4

10 , and Tacc = γT in order to have a symmetric
profile. On the other hand, the duration of the jerk stage must be divided by four times the acceleration
phase Tacc to ensure an S-curve velocity profile equal in length of acceleration, maximum velocity and
deceleration stages, the proportional value was ϕ = 1

4 , so that the jerk was going to remain zero for
Tjerk =

2
4 Tacc. The constant velocity stage had a duration of 2

10 T. The total distribution of the duration
is computed in (17).

T =
4

10
T︸︷︷︸

Tacc

+
2

10
T +

4
10

T︸︷︷︸
Tdec

, (17)

where
Tacc = Tdec = 0.72 s.

The acceleration time was compounded by three phases of the jerk time, as presents (18). When
Tacc

2 the jerk value turns to zero, it corresponds to the time interval Ts1 − Ts2 from Figure 1d.

Tacc =
Tacc

4︸︷︷︸
Tjerk

+
Tacc

2
+

Tacc

4︸︷︷︸
T−jerk

, (18)

where
Tjerk = 0.18 s.

The derivative respect the time of speed is calculated using (3). The parameter αd depends on θd,
Tjerk, T, and the proportional constants of time γ and ϕ. The magnitude of the acceleration is obtained
from (12), so, using (19), αd is computed.

αd =
θd

γ(1 − γ)(1 − ϕ)T2 =
12π rad
0.5832 s2 = 64.6418 rad/s2. (19)

To estimate the value of the jerk, Equation (13) was used. Since the acceleration αd has been
obtained and the jerk interval Tjerk is known, it was possible to obtain the rate of change in acceleration
in (20).

Jd =
αd

Tjerk
=

64.6418 rad/s2

0.18 s
= 359.1212 rad/s3. (20)

In Table 1 is presented all the parameters needed to generate the algorithms in order to compute
the trajectory proposed.
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Table 1. S-curve parameters used for implementation.

Parameters Values

Desired position θd 12π
Time of displacement T 1.8 s
Time factor for acceleration time γ 0.4
Time factor for jerk phase ϕ 0.25
Acceleration time Tacc 0.72 s
Deceleration time Tdec 0.18 s
Velocity ωd 34.9065 rad/s
Acceleration αd 64.6418 rad/s2

Jerk Jd 359.1212 rad/s3

4. Simulation and Results

The algorithm proposed in this paper has been compared with the results presented in [33],
where a fourth order polynomial S-curve is developed, the input data has been displayed in Table 2.
For simulation, two lengths of acceleration phase were used. By one hand, a wide stage of acceleration
was chosen with a factor γ = 2

5 ; on the other hand, a short stage of acceleration with a factor γ = 1
5

was used to compare the jerk response of both motion profiles. Besides, two target positions were
chosen and taken from simulation section of [33], θd1 = 2π

3 and θd2 = π
3 .

Table 2. Simulation results compared from the [33] method.

γ = 2
5 γ = 1

5 Yi Fang and Wenhai Liu [33]

Position (rad)
Initial point
Final point

0
2π
3

0
π
6

0
2π
3

0
π
6

0
2π
3

0
π
6

Kinematics
constraints

Velocity (rad/s) 2.319 0.5799 1.736 0.434 8 5
Acceleration (rad/s2) 5.137 1.2834 8.633 2.158 10 8
Jerk (rad/s3) 22.3 8.533 29.36 21.53 30 20

In Figure 6b, one can see the behavior of the velocity. For factor γ = 2
5 , the S-curve profile

maintain symmetric intervals for acceleration-deceleration phases and maximum velocity. For γ = 1
5

the acceleration-deceleration stages are shorter than the velocity phase. The position in Figure 6a
adopts a different shape because of the acceleration-deceleration phase. Evaluating the response of
the velocity profile for both factors, using an execution time of 1.5 s and a desired position of 2π

3 ,
the maximum speed for γ = 2

5 is ωd1 = 2.319 rad/s. On the other hand, the maximum velocity
reached for the motion profile with a factor γ = 1

5 is ωd2 = 1.736 rad/s. The magnitude of the velocity
obtained in [33] is bigger compared with the results obtained with the two factors proposed. The same
occurred when the desired position was changed.

As mentioned before, factors γ = 1
5 and γ = 2

5 affect directly to the acceleration-deceleration
phases. It means, when the length of the acceleration stage was short, the magnitude of the acceleration
increased considerably. Figure 7a shows the behavior of the acceleration respect with each factor. Notice
that, whether the acceleration-deceleration phases are short, the jerk tends to increase in magnitude
as is displayed in Figure 7b. The jerk value was computed with respect to θd and T. The maximum
jerk values were obtained for short acceleration-deceleration using γ = 1

5 and θd = 2π
3 . Unlike the

jerk values obtained with the Yi Fang and Wenhai Liu algorithm Jmax = 30 rad/s3, the proposed
algorithm performed a jerk value Jmax = 29.36 rad/s3. On the other hand, the acceleration stage
in [33] is compounded by seven intervals, while the proposed method in this paper has three phases
showing better simulation results. The length of the acceleration phase allows to reduce or increase
the magnitude of the jerk, for a factor γ < 2

5 the magnitude increases, while for a factor γ = 2
5 the

magnitude decreases, these factors can be chosen by the path planning designer.
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Figure 6. Position θd and S-curve velocity profile simulation with γ = 1
5 and γ = 2

5 factors (a) position,
(b) velocity.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

s

-10

-8

-6

-4

-2

0

2

4

6

8

10

ra
d/

s2
 

Acceleration1 with  = 2/5
Acceleration2 with  = 2/5
Acceleration3 with  = 1/5
Acceleration4 with  = 1/5

(a)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

s

-30

-20

-10

0

10

20

30

ra
d/

s3
 

Jerk1 with  = 2/5
Jerk2 with  = 2/5
Jerk3 with  = 1/5
Jerk4 with  = 1/5

(b)

Figure 7. Acceleration and jerk simulation with γ = 1
5 and γ = 2

5 factors (a) acceleration, (b) jerk.

In this section, trapezoidal and S-curve velocity profiles were implemented to compare the
response in real-time of the behavior of velocity and to measure the error in position of both motion
profiles. A cylindrical load of 0.300 kg with inertia of 0.00011344 kg·m2 was coupled to the shaft of
a DC motor, as shows Figure 8, to obtain the experimental results. The motor has to compensate its
movement even with the load to achieve the desired position θd following the trajectory computed by
the motion profile.

4.1. Trapezoidal Velocity Profile

The trapezoidal velocity profile is the most used in industrial applications due to the ease of
implementation since it consists of two linear equations describing the acceleration-deceleration
phases, and a constant velocity stage [34]. The change in velocity was radical, so, the change in
acceleration tended to infinity, mathematically speaking, but in real-world applications, the jerk
permits an increment in residual vibrations, and damage in motors in certain period.
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Figure 8. Low-cost platform based on FPGA-SoC.

The trapezoidal velocity profile presented in this section must reach a desired position
θd = 12π rad in a total period of T = 1.8 s with a maximum velocity ωdT = 32 rad/s. The trapezoidal
velocity profile experimentally obtained is presented in Figure 9b.
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Figure 9. Trapezoidal velocity profile implementation (a) position, (b) velocity.

As the Figure 9b shows, the velocity follows the shape of the desired trapezoidal velocity profile
with a disturbance when the speed has to be constant. The disturbance increased since the speed
changed all of the sudden, so that the motor can not react instantly to follow the rate of change in
position. The maximum peak of the real velocity goes to 34.3 rad/s although the desired position was
reached, Figure 9a, there exists an error of eT = 0.18 rad when the position should have reached the
set-point in T. The error signal of the trapezoidal velocity is shown in Figure 10a. On the other hand,
the maximum voltage required to achieve the maximum speed is about u(t) = 1.39 V and the control
signal is presented in Figure 10b.
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Figure 10. Error and control signals obtained from the trapezoidal velocity profile implementation
(a) error position and (b) control signal.

4.2. S-Curve Velocity Profile Implementation

The implementation of the S-curve velocity profile was applied in the low-cost platform using the
values presented in Table 1 and the methodology proposed in Section 3. Notice that the parameters
proposed for the S-curve profile were similar to the trapezoidal velocity profile. The S-curve velocity
profile obtained experimentally is presented in Figure 11b.
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Figure 11. S-curve velocity profile implementation (a) position and (b) velocity.

The speed measured by the rotary encoder follows properly the speed computed by the algorithm.
When the velocity reached the constant phase, the seven-segment velocity profile presented a smooth
change in the velocity. Besides, the velocity showed in Figure 9b was lower in magnitude than the
obtained by the S-curve profile. The value of θd was reached in the proposed time T. Figure 11a shows
the behavior of the real position of the shaft of the motor, the real position is pretty similar to the
computed position.

The error signal presented in Figure 12a exhibited an error when the position must be reached the
set-point of es = 0.04 rad. The control signal is presented in Figure 12b, where the maximum voltage
required for all the displacement is u(t) = 1.5 V.
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Figure 12. Error position and control signals obtained from the S-curve velocity profile implementation
(a) error and (b) control signal.

The acceleration behavior is shown in Figure 13a. The acceleration obtained from the trapezoidal
velocity profile shows an aggressive shape due to the acceleration profile is ideally an square signal.
Experimentally, the acceleration value was αT = ±52.3 rad/s2. The shape of the velocity profile was
important to compensate the behavior of the acceleration and avoid discontinuities because of the jerk.
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Figure 13. Acceleration and jerk of trapezoidal and S-curve motion profiles (a) acceleration and (b) jerk.

The S-curve velocity profile displays an smooth response in speed and acceleration.
The acceleration value computed in (19) is αd = 64.6418 rad/s2. The form of the acceleration
computed by the S-curve velocity profile is smoother than the obtained by the trapezoidal. Besides,
it maintains the acceleration value computed mathematically.

The mathematical value for the jerk derived from the trapezoidal velocity profile tended to infinity,
but for experimental results, the rate of change in acceleration produced an increase in vibrations and
the magnitude is relatively high for the acceleration and deceleration phases. For the S-curve velocity
profile, the jerk profile is bounded by the designer in (20), so the computed jerk for the experiment
was Jd = 359.1212 rad/s3. Figure 13b presents the jerk behavior for both velocity profiles. One can
prove that the response presented for the S-curve velocity profile was lower in magnitude than the
trapezoidal velocity profile. This happens because of the third-degree polynomial proposed for the
position profile.
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Two positions desired were proposed to prove the negative velocity and displacement constraints
in implementation. The values used in the algorithm are presented in Table 3.

Table 3. S-curve and inverse S-curve parameters used for implementation.

Parameters Values

First Displacement

Desired position θd1
12π rad

Time of displacement T1 1.8 s
Velocity ωd1

34.9065 rad/s
Acceleration αd1

64.6418 rad/s2

Jerk Jd1
359.1212 rad/s3

Second Displacement

Desired position θd2 0 rad
Time of displacement T2 1.8 s
Velocity ωd2 −34.9065 rad/s
Acceleration αd2 −64.6418 rad/s2

Jerk Jd2 −359.1212 rad/s3

When the actuator has reached the first set-point, θd1 = 12π, the shaft of the motor was maintained
in that point until the new desired position was added. So that, θ0 = θd1 , it means θ0 is the last point
measured by the encoder after T1 = 1.8 s and was the initial position for the next displacement, T1 is the
total duration of the first movement. The new position to reach was θd2 = 0 rad, the aim was to set the
shaft of the motor till the origin using the same period of time T2 = 1.8 s. The magnitude of the velocity
was the same for both trajectories but the direction was different, so ωd2 = −34.9065 rad/s. The S-curve
and the inverse S-curve is presented in Figure 14b. The position profile for both displacements has
the shape of the S-curve profile, the position of Figure 14a is displayed by two different movements.
The set-points are reached properly in the proposed time. The position measured by the encoder
follows the computed position by the algorithm.

0 1 2 3 4 5 6 7 8 9

s

0

5

10

15

20

25

30

35

40

ra
d

Real-pos
Set-point
Profile-pos

(a)

0 1 2 3 4 5 6 7 8 9

s

-40

-30

-20

-10

0

10

20

30

40

ra
d/

s

Real-vel
Sprofile

(b)

Figure 14. S-curve and inverse S-curve velocity profile implementation, (a) position, and (b) velocity.

The error signal is displayed in Figure 15, the first movement has a duration of T1 = 1.8 s. When
t = T1, the error was about es = 0.05 rad, it means the position is near θd1 , after 0.47 s the actual error
has been decreased to es = 0.009 rad.
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Figure 15. Error position signal of the S-curve and inverse S-curve implementation.

The new displacement started in t = 4 s. The length of the second movement was T2 = 1.8 s.
When t = 5.8 s, the present error had a magnitude of eis = 0.049 rad, the error turned to zero (e = 0 rad)
in t = 6.5 s according to the Figure 15.

5. Conclusions

In this paper, an S-curve velocity profile has been presented for motion control applications
implemented in a low-cost platform compounded by a Raspberry Pi 3 and an FPGA. The velocity profile
algorithm can be modified to generate a specific trajectory varying the parameters of implementation,
such as the length of the acceleration and deceleration phases. Besides, given a desired position θd and
the total duration of the movement T, one can obtain the magnitude of the speed ωd, acceleration αd
and the jerk Jd to generate the S-curve velocity profile. The error obtained with the trapezoidal velocity
profile was eT = 0.18 rad when the duration of the movement is T = 1.8 s. The error obtained with the
application of the S-curve velocity profile is about es = 0.05 rad in the same time.

Notice that the magnitude of the speed used in the S-curve was ωd = 34.9065 rad/s and
ωdT = 32 rad/s for the trapezoidal velocity profile. Despite the maximum speed reached for the
trapezoidal profile is less in magnitude than the S-curve profile, the velocity behavior does not
follow properly the computed speed by the algorithm because of the rate of change in acceleration.
The S-curve velocity profile presents a smoother change in the position than the trapezoidal profile
due to the third-degree polynomial proposed in the acceleration-deceleration stages.
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