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To address global water security issues, it is important to understand the evolving global water
system and its natural and anthropogenic influencing factors [1]. The emerging remote sensing
technologies enable relatively long-term consistent observations of the key variables of the terrestrial
water cycle with unprecedented spatial coverage, providing precious data to broaden our understanding
of the causes and consequences of change in the terrestrial water cycle [2]. The data-rich environment
largely created by advances in remote sensing has boosted research in global change hydrology [3].

In this Special Issue, most studies used data acquired by various satellite and/or ground-based
sensors to characterize the change in the terrestrial water cycle. The key hydrologic variables
such as evapotranspiration (ET) and precipitation were derived and evaluated at varying spatial
and temporal resolutions. Wang et al. [4] proposed a latent heat flux (LE) algorithm based on a novel
microwave vegetation index (EDVI) instead of the optical vegetation index that was commonly used
in previous studies. This algorithm was driven by multiple-sensor satellite products of vegetation
water content index, solar radiation, and cloud properties, with some aid from a reanalysis dataset.
The result showed that the performance of the proposed algorithm was very promising with correlation
coefficients of 0.56–0.88 and a mean bias of 16% (23.0 W/m2) for instantaneous LE estimations, and with
correlations of 0.84–0.95 and a mean bias of less than 14.3% for monthly LE estimations based on in
situ measurements at three Chinese Terrestrial Ecosystem Flux Research Network (ChinaFLUX) forest
sites. Due to the insensitivity of microwave data to clouds, this algorithm shows great potential for
estimating ET under both clear and cloudy skies on a global scale. Zhong et al. [5] estimated the ET of
major exorheic catchments in China with a water balance method using Gravity Recovery and Climate
Experiment (GRACE) data. Although the method has been demonstrated in previous studies [6],
the authors addressed a potential approach for understanding the model performance associated with
the errors in precipitation input. This study further highlights the unique ability of gravity satellites to
capture the response of total water storage changes to both natural and anthropogenic causes, as well
as its additional values of closing the water budget. Xu et al. [7] applied various statistical indicators to
evaluate the main current satellite-based quantitative precipitation estimate (QPE) products over China.
They found that the Chinese Fengyun (FY)-2G QPE and the Integrated Multi-satellitE Retrievals for
Global Precipitation Measurement (IMERG) products performed significantly better than FY-2E QPE.
The IMERG product agreed well with rain gauge data at the monthly scale, but it performed worse
than FY-2G QPE at hourly and daily scales. The FY-2G QPE underestimated precipitation in summer,
and the FY-2E QPE and IMERG QPE generally overestimated precipitation. The authors also found
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both FY and GPM-based products performed worse during 06:00 to 10:00 UTC than other periods.
Their findings can provide valuable references for improving satellite-based QPE retrieval algorithms.
Qiu et al. [8] evaluated the performance of three “radar-gauge” merging algorithms. Their results
show that the radar-gauge integration method performs better than the others. quality of the blending
QPE product is not only related to the blending algorithm, but also related to radar QPE and gauge
observations. In order to further evaluate the merging QPE product, the authors applied the merging
QPE product for flood forecasting and found that a higher quality of the merging products indicates
a better agreement between the observed and the simulated runoff. Yang et al. [9] used a machine
learning algorithm, K-nearest neighbor (KNN), to classify precipitation types. The authors used six
Doppler radar data sources from China as training and classification samples, and used the 2A23
product of the Tropical Precipitation Measurement Mission (TRMM) to obtain the training labels
and evaluate the classification performance. Three types of cases, namely the squall line, embedded
convective and stratiform cases, were classified by KNN. The results show that the KNN method
can accurately classify the location and area of stratiform and convective systems and suggest that
the KNN method has great potential for classifying precipitation types.

Some studies used remote sensing techniques to detect anthropogenic impacts on the water cycle,
providing valuable knowledge of the interrelations between humans and water. Zhang and Gao [10]
combined the water surface area estimated from Moderate Resolution Imaging Spectroradiometer
(MODIS) images and the reservoir Area–Elevation (A-H) relationship derived from the Digital Elevation
Model (DEM) data collected by the Shuttle Radar Topography Mission (SRTM) to monitor water storage
variation. The water storage variation data estimated from the proposed methodology cover reservoirs
with 46.6% of the overall reservoir storage capacity in South Asia, providing valuable information
for flood monitoring and water resource management in this region. Xu et al. [11] demonstrated
an interesting attempt to distinguish irrigated fields from rainfed fields using higher-resolution images
(30 m) from Landsat together with hydroclimatic data. It is a challenge to detect the difference in
humid and sub-humid areas as these fields have similar land surface characteristics. Efforts have been
made to enhance the contrast between neighboring rainfed and irrigated fields, and a machine learning
method was adopted to generate maps of irrigated areas in southwestern Michigan. The success
of mapping suggested that the subtle difference of land surface characteristics caused by water
management practice is detectable from space. The maps also showed that the irrigated area in
southwestern Michigan tripled during 2001–2016. Information on the change in irrigated areas
would be highly relevant for water and food management. Hao et al. [12] developed a method
to detect the irrigation signal (frequency, timing and area) based on multisource time-series data
including soil moisture active passive (SMAP), MODIS-normalized difference vegetation index (NDVI)
and evapotranspiration (ET), and precipitation from the meteorological stations. The detection result
showed that irrigation signals can be effectively detected by removing the precipitation effect and setting
the soil moisture change threshold with an overall accuracy of 77.08% in a typical crop-producing
region in China. To solve the problem of the coarse resolution of SMAP pixels, a downscaling method
was proposed by combing the winter wheat area extracted from MODIS NDVI, and the proposed
method can indicate the true winter wheat irrigation timing, area and frequency with an 82.72%
growth consistency in the surface water irrigation period. Zou et al. [13] measured the ET rate
and quantified the cooling effects of urban hedges using the “three-temperature model and infrared
remote sensing (3T+IR)”—a fetch-free and high-spatiotemporal-resolution method—in the urban
area of Shenzhen in China. The study discovered that the “3T+IR” technique was a reasonable
method for measuring the ET of urban hedges. The hedges could consume 68.44% and 60.81% of
the net radiation through the latent heat of ET on a summer day, while their cooling rates for air
temperature were 1.29 ◦C min−1 m−2 and 1.13 ◦C min−1 m−2, respectively. In addition, urban hedges
could also significantly cool the underlying surface, and the surface temperatures of the two hedges
were 19 ◦C lower than that of the asphalt pavement on the summer day. The findings provide new
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insights in understanding the process of ET in urban hedges and the vegetation cooling effect in
the urban environment.

A few studies leveraged remotely sensed hydrologic information to understand the causes
and consequences of changes in the terrestrial water cycle. Liu et al. [14] investigated the transition
characteristics of the dry–wet regime and vegetation dynamic responses over the Yarlung Zangbo
River (YZR) Basin, using NDVI data from the Global Inventory Modeling and Mapping Studies
(GIMMS)-NDVI3g dataset together with the Standardized Precipitation Evapotranspiration Index
(SPEI) from the Noah land surface model simulations in the Global Land Data Assimilation System
(GLDAS). The widely-used remote sensing datasets helped find that the spatiotemporal characteristics
of the dry–wet regime exhibited a reversal phenomenon before and after 2000, and the soil water
content was an important indicator to identify the dry–wet transition in the YZR basin. This provided
another solid demonstration of the value of widely available remote-sensing datasets in helping us
to better understand the hydrological responses to global changes in space and time. Yao et al. [15]
investigated the impacts of land cover change on the hydrologic regime in Northwestern, Northern,
and Northeastern China. The Global Land Surface Satellite (GLASS) leaf area index (LAI) data retrieved
from the MODIS reflectance data (MOD-09A1) were used as a primary parameter to reflect land
cover change in a hydrological model. The hydrological simulations showed that in relatively humid
areas, urbanization increases runoff and the consequent flood risk, whereas in arid and semi-arid
regions, the increase of greenness resulting from the Three-North Forest Shelterbelt (TNFS) ecological
restoration program increased evapotranspiration and reduced runoff and soil moisture. The study
suggested that land cover change would heighten the risk of dryland expansion and flooding more than
climate change alone in the future, providing new insights into global change impacts on the terrestrial
water cycle. Chen et al. [16] investigated the area dynamics of two closed lakes in the semi-arid
areas of the Inner Mongolian Plateau by using Landsat images and found that it expanded in dry
seasons and degraded in wet seasons. Such an unexpected phenomenon was believed to be related
to the external groundwater recharge from the leakage of the fault zone in this area and provided
valuable information for understanding the impact of human activities on lake shrinkage in this area.
Although the deep groundwater recharge is being debated, this study provided an easy way of using
satellite images to infer interactions between surface water and groundwater.

The articles published in this Special Issue cover a wide range of innovative remote sensing
methods to meet the needs of hydrologic practices and remote sensing applications to detect the changes
in the terrestrial water cycle and to understand the causes and consequences of the changes. It highlights
the potential of remote sensing in addressing global water issues under a changing environment.
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Abstract: Latent heat flux (LE) and the corresponding water vapor lost from the Earth’s surface to
the atmosphere, which is called Evapotranspiration (ET), is one of the key processes in the water
cycle and energy balance of the global climate system. Satellite remote sensing is the only feasible
technique to estimate LE over a large-scale region. While most of the previous satellite LE methods
are based on the optical vegetation index (VI), here we propose a microwave-VI (EDVI) based LE
algorithm which can work for both day and night time, and under clear or non-raining conditions.
This algorithm is totally driven by multiple-sensor satellite products of vegetation water content index,
solar radiation, and cloud properties, with some aid from a reanalysis dataset. The satellite inputs and
the performance of this algorithm are validated with in situ measurements at three ChinaFLUX forest
sites. Our results show that the selected satellite observations can indeed serve as the inputs for the
purpose of estimating ET. The instantaneous estimations of LE (LEcal) from this algorithm show strong
positive temporal correlations with the in situ measured LE (LEobs) with the correlation coefficients
(R) of 0.56–0.88 in the study years. The mean bias is kept within 16.0% (23.0 W/m2) across the three
sites. At the monthly scale, the correlations between the retrieval and the in situ measurements are
further improved to an R of 0.84–0.95 and the bias is less than 14.3%. The validation results also
indicate that EDVI-based LE method can produce stable LEcal under different cloudy skies with good
accuracy. Being independent of any in situ measurements as inputs, this algorithm shows great
potential for estimating ET under both clear and cloudy skies on a global scale for climate study.

Keywords: Microwave emissivity difference vegetation index (EDVI); evapotranspiration (ET);
satellite remote sensing; cloudy sky; clouds and earth’s radiation energy system (CERES); ChinaFLUX

1. Introduction

The process of latent heat flux (LE) and evapotranspiration (ET) is associated with the exchange of
water and energy between the land surface and the atmosphere [1,2]. As a major component of the land
surface energy budget, LE consumes about three-fifths of net radiation income, ranging from 48% to
88% based on different models [3,4]. Over 80% of terrestrial ET is from plant transpiration [5]. Globally,
the ET from forests account for about 45% of the total ET [6]. Therefore, the accurate and real-time
estimation of forest LE is critical to improve our understanding of water resource management,

Remote Sens. 2019, 11, 1359; doi:10.3390/rs11111359 www.mdpi.com/journal/remotesensing5
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the hydrological cycle and the associated energy balance between the terrestrial ecosystem and
the atmosphere.

The conventional ground-based flux tower methods (Bowen ratio and eddy covariance) can
provide relatively accurate estimates of LE within a small footprint area (200–500 m2 radius depending
on the height of tower) around flux towers at local scales with an uncertainty of about 10%–30% [5].
However, the spatial representativeness of point LE estimates is limited to the regional scale. Large
uncertainties will appear if point measurements are extended to regional scales because of the
heterogeneity of land surfaces.

Satellite remote sensing has become the only feasible technique for scaling the point LE estimates
from flux towers to mean LE over a large-scale area. Most of the current remote sensing approaches to
estimate LE are based on optical vegetation indices (VIs) such as the normalized difference vegetation
index (NDVI) and the enhanced vegetation index (EVI) [7]. Researchers utilize these optical VIs in
order to estimate foliage density and to predict ET over a vegetated surface [8]. A number of satellite
optical VI methods have been successfully proposed to estimate ET for multiple landscape types from
the site to regional scale [9–16]. Among these methods, the resistance-based Penman-Monteith (PM)
model is considered as the preferred method due to its precise physical mechanism. VIs are typically
used for the estimation of canopy resistance (or conductance) in the PM model [8]. Previous studies
have shown that optical VI-based resistance and LE estimation show good performances at the 8-day
or 16-day time scale and under clear or less cloudy sky conditions [11,17–19]. However, since the
optical VIs are retrieved based on the visible, near-infrared and shortwave-infrared bands [19] which
are very sensitive to clouds and aerosols, their applicability under cloudy and overcast skies is limited.

When compared with land surface reflection at visible and infrared channels, the microwave
radiative properties of land surface are less affected by atmospheric conditions such as cloud and
aerosol, and the passive microwave signal is independent of solar radiation and is thus available at
both the daytime and the nighttime. Microwave-based VIs thus have the advantage of being used
under all sky conditions. Several microwave VIs have been proposed for monitoring vegetation, such
as the frequency index (FI) [20], microwave polarization difference index (MPDI) [21] and microwave
vegetation index (MVI) [22]. Most of those microwave vegetation indexes are derived under clear sky
only and are designed for short vegetation. It is currently still a challenge to use these microwave VIs
to quantify LE with a physical scheme due to their complexities.

Barraza et al. [23,24] used the combined empirical method of microwave and optical VIs to
estimate conductance and LE over forest and savanna ecosystems. They illustrated the superiority
of such combinations from multiple sensors for LE estimation. However, such an empirical method
between canopy conductance and VIs [17–19,23,24] is insufficient to reflect the fast dynamics of
conductance and LE affected by local environments during short-term periods (e.g., diurnal and daily
scale). Furthermore, most of the validations of estimated LE are conducted at the 8-day (or 16-day)
time scale and under clear or less cloudy sky since optical VIs are easily contaminated by cloud cover.
In practice, the LE under cloudy sky differs significantly from that under clear sky. Thus, LE estimation
under cloudy and overcast sky is equally important, particularly for the study of short-term interaction
of vegetation-cloud. However, few studies have conducted ET or LE estimations under such sky
conditions [25].

Min and Lin [26,27] proposed a new satellite remote-sensed microwave emissivity difference
vegetation index (EDVI) at a mid-latitude forest (Harvard forest). The EDVI is defined as
(MLSE19-MLSE37)/(MLSE19+MLSE37), where MLSE19 and MLSE37 are the microwave land surface
emissivities at 19 and 37 GHz. EDVI was found closely related to vegetation water content based
on in-situ measured leave amount and their analysis on microwave radiative transfer [26,27]. In
addition, a stronger relationship between the EDVI and evaporative fraction (EF) than that between
NDVI and EF was found [26,27]. EDVI retrievals became available at the regional scale over a long
time period [28]. Based on the above work, a quantitative algorithm was developed on the basis of
satellite EDVI and local measurements in order to estimate EF and ET fluxes at the Harvard forest [29].
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By using observations from multiple satellites, they even observed the diurnal variations of ET at the
site as well. However, in their study, several in situ measurements were required as inputs, namely:
net radiation, air temperature, photosynthetically active radiation, etc [29]. Consequently, the method
of Li et al. [29] was limited to sites where the above inputs are measured.

For most applications in modeling and climate study, ET and LE estimation at large scale and
over a long term is required [30–32]. A satellite-based ET retrieval algorithm independent of in situ
measurements is thus required.

With the rapid progression of remote sensing technology, an increasing number of geophysical
parameters are available from satellites. It is promising to develop an LE algorithm independent of in
situ measurements that is driven only by satellite observations and reanalysis datasets. In this study,
we tested this hypothesis and applicability of the LE method over dense vegetation in combination with
the EDVI from advanced microwave scanning radiometer for EOS (AMSR-E), the net radiation flux
from the clouds and earth’s radiation energy system (CERES), the vegetation fraction information from
moderate-resolution imaging spectroradiometer (MODIS) and the associated meteorology parameters
from the reanalysis dataset of European Centre for Medium-Range Weather Forecasts (ECMWF).
The results of this method were validated against the in situ measurements at selected ChinaFLUX
forests sites.

In ChinaFLUX, part of a “network of regional networks” (FLUXNET), the eddy covariance
(EC) technique was used to measure the H2O, CO2, and heat fluxes between the atmosphere and
the ecosystems in China [33]. Because the concept of EDVI was originally developed in forest, we
selected three typical forest ecosystems for the validation study. These sites are the Dinghushan (DHS)
subtropical evergreen broad-leaved forest, Qianyanzhou (QYZ) subtropical plantation forest, and
Changbaishan (CBS) temperate deciduous mixed forest. More information is provided in Section 2.1.

2. Data and Method

2.1. Site Descriptions

The three selected forest towers in this study are shown in Figure 1. Three years of in-situ
measurements (2003–2005) at these sites are available in this study. And at each site, we split the
measurements into different time periods for calibration and validation study. These sites are in
different latitude zones and cover a wide range of temperature and precipitation. The annual mean
precipitation is 1956 mm, 1485 mm and 695 mm, while the annual mean temperature is 21 ◦C, 17.9 ◦C
and 3.6 ◦C at DHS, QYZ and CBS, respectively. The terrain is also complex among the forest sites: DHS
is on a steep 30◦ slope, QYZ is on slightly choppy terrain, and CBS is on flat terrain [34]. Previous
studies have indicated that forest sites of ChinaFLUX network achieve 57%–73% energy balance closure
during the daytime [33,35]. More information about these sites are provided in Table 1. ChinaFLUX
data in this study is available from the website: http://159.226.110.139/pingtai/LoginRe/opendata.jsp.
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Figure 1. Locations of three ChinaFLUX forests sites. More information regarding these pictures is
available at: http://www.chinaflux.org/.

Table 1. The background of three ChinaFLUX forest sites [33]. Precipitation and temperature are
annual mean values (http://www.chinaflux.org/).

Sites and
Period

Locations and
Altitude

Precipitation
and

Temperature
Vegetation

Canopy
Height

Measuring
Height

LAI

Dinghushan
(DHS)

2003–2005

112◦34′E,23◦10′N;
300 m

1956 mm,
21 ◦C

subtropical
evergreen

broad-leaved forest
20 m 27 m 4

Qianyanzhou
(QYZ)

2003–2005

115◦03′E,26◦44′N;
102 m

1485 mm,
17.9 ◦C

subtropical
monsoon plantation

forest
12 m 39.6 m 3.5

Changbaishan
(CBS)

2003–2005

128◦05′E,42◦24′N;
738 m

695 mm,
3.6 ◦C

Temperate
deciduous

broad-leaved mixed
forest

26 m 40 m 6.1

Carbon and water fluxes of the three forests are measured using open-path eddy covariance (EC)
system. The system consists of an open-path infrared gas analyser (Li-7500, Licor Inc., Lincoln, NB,
USA) and a 3-D sonic anemometer (CSAT3, Campbell Scientific Ltd., USA). The signals of fluxes with
10Hz sampling frequency are recorded by system and 30-min averaged fluxes are derived from black
averaging within 30-min step. Other meteorological variables are measured simultaneously with
30-min temporal resolution. Solar radiation is measured using radiometers (Model CM11 and Model
CNR-1, Kipp & Zonnen, Delft, Netherlands). Photosynthetic active radiation (PAR) is measured using
a quantum sensor (Model LI190SB, LICOR Inc.), air temperature (Ta) is measured using shielded and
aspirated probes (Model HMP45C, Campbell Scientific Inc.). Precipitation is recorded using a rain
gauge above the canopy (Model 52203, Rm Young, Traverse City, MI, USA). More detailed information
can be found in previous studies [33,34,36] and the references therein.

The 30-min in situ measurements of LE (LEobs), solar radiation, photosynthetic active radiation
(PAR), air temperature (Ta), and precipitation from 2003 to 2005 are used for validation in this study.
To compare with satellite observations and retrievals obtained around 13:30 local time, the averaged
in-situ measurements from 12:30–14:30 are used. Temperature is a key factor affecting vegetation
activity at higher latitudes. Low Ta will induce weak metabolism and suppress the LE of vegetation.
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Therefore, the days with midday Ta lower than 0 degrees are excluded from the validation study at
CBS. This makes no impact on the samples in DHS and QYZ.

2.2. Satellite Inputs of EDVI-based LE Method

Table 2 provides the basic information of the employed satellite products and reanalysis datasets
and variables in this study. EDVI plays a fundamental role in the current LE algorithm as it determines
the spatial and temporal variations of vegetation resistance to evapotranspiration process. The satellite
EDVI retrievals during 2003-2005 over China were derived from a similar method to Min et al. [28]
using multiple channel microwave measurements from the AMSR-E on the Aqua satellite with a spatial
resolution of ~20 km at local time 13:30 each day. It should note that the instantaneous retrievals
of EDVI are conducted under no rain conditions which are identified by AMSR-E rain rate/type
product [28]. Since snow on the ground could significantly affect the value of EDVI, at the CBS site we
only retrieve LE during the growing season from April to October, based on the study of Li et al. [37].

Table 2. Multiple data sources used in EDVI-based LE method.

Variables Units For Datasets Type Resolution

EDVI -
f3(VPD)f4(Ψ)f5(CO2),

Minimal canopy
resistance (rcmin)

EDVI Satellite Daily, ~20 km

Downward
shortwave
radiation

(dSW)

W/m2
Photosynthetically

active radiation
(PAR), f2(PAR)

CERES SSF Satellite Daily, ~20 km

Net shortwave
radiation

(nSW)
W/m2 Net radiation (Rn) CERES SSF Satellite Daily, ~20 km

Net longwave
radiation

(nLW)
W/m2 Net radiation (Rn) CERES SSF Satellite Daily, ~20 km

NDVI -

Vegetation
fractional coverage

(VFC), Ground
heat flux (G),

MYD13C1 Satellite 16 day, 0.05◦

2 m
temperature

(t2m)
K

Slope of saturated
vapor pressure (Δ),

f1(Ta)
ERA-20C Reanalysis Daily, 0.125◦

Wind speed at
10 and 100 m
(U10, U100)

m/s Aerodynamic
resistance (ra) ERA-20C Reanalysis Daily, 0.125◦

The product of single scanner footprint toa/surface fluxes and clouds (SSF) of CERES provides
the estimates of instantaneous daytime net and downward shortwave (nSW and dSW) and longwave
(nLW and dLW) radiation fluxes at surface at ~20 km resolution (Table 2) [38]. Those fluxes are
estimated based on the NASA Langley parameterized shortwave/longwave algorithm (LPSA/LPLA)
methods [39,40]. The CERES SSF datasets are available at https://eosweb.larc.nasa.gov/project/ceres/
ssf_aqua-fm3_ed4a_table.

NDVI, derived from the observations of MODIS on the Aqua satellite, is also an optical VI
which is highly correlated to the green foliage of vegetation. We use NDVI to estimate the vegetation
fractional coverage. To do this, 16-day MODIS NDVI product (MYD13C1) with 0.05◦ resolution was
used. To estimate the temporal variation of vegetation fraction, the 16-day NDVI was further linearly
interpolated to achieve daily NDVI. MYD13C1 is available from the Land Processes Distributed Active
Archive Center (LPDAAC; https://lpdaac.usgs.gov/).

ERA-20C reanalysis dataset of ECMWF provides estimations of air temperature at 2 m (t2m) and
wind at 10 and 100 m (U10m, U10m) required by the ET algorithm. ERA-20C has a temporal resolution
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of 3 h and 0.125◦ × 0.125◦ spatial resolution (Table 2), and the values at 6:00 UTC (14:00 local time
in China) were used in this study. The dataset is available on the ECMWF public datasets website
(http://apps.ecmwf.int/datasets/).

2.3. Description of EDVI-based LE Algorithm

The primary driving force of LE is the available energy at the surface: the received net radiation
Rn minus the energy transport to ground (G). An evaporative fraction (EF) is used to define the ratio of
ET to the total available energy (Rn-G). This idea is often used to estimate instantaneous ET at the time
of a satellite overpass [41–45].

In forest ecosystems, transpiration generally dominates evapotranspiration and accounts for
80-90% of the ET amount [46,47]. We therefore scale the available energy in given satellite footprint to
vegetation part (with the subscript veg) by the vegetation fraction coverage (VFC) and only take into
account the ET from vegetation using the following formula.

ETveg = EFveg·(Rn−G)veg = EFveg·(Rn−G)·VFC (1)

2.3.1. Estimation of Available Energy for Vegetation

Radiation fluxes under all sky conditions are required in our algorithm. CERES SSF directly
provides the all-sky surface net shortwave radiation (nSW) and surface long-wave radiation (nLW)
(Table 2). Therefore, we use the sum of nSW and nLW as the input of Rn in our ET algorithm.
Validations of CERES surface radiation flux with in-situ measurements are conducted in results.

Surface ground heat flux can be estimated in combination with vegetation cover and net radiation.
We use the model of Su [48] to calculate G, such that:

G = Rn
[
fveg + (1−VFC)

(
fsoil − fveg

)]
(2)

where fveg (set as 0.05) and fsoil (set as 0.315) are the ratios of G to Rn over full vegetation and bare soil,
respectively [48]. VFC is the vegetation fractional coverage which can be obtained based on NDVI
according to the method of Gutman and Ignatov [49]:

VFC =
NDVI−NDVI0

NDVI∞ −NDVI0
(3)

where NDVI∞ and NDVI0 are the NDVI of full vegetation (i.e., when VFC = 1) and bare soil (i.e.,
when VFC = 0), respectively. The values of NDVI∞ depend on different vegetation types, but they are
relatively stable over forest types [50]. Values of NDVI0 have very small variations when VFC = 0 [51].
Following Li and Zhang [50] and Zeng et al. [51], we adopt 0.90 and 0.1 as the values of NDVI∞ and
NDVI0, respectively. When the calculated VFC is less than 0, VFC is set to 0, and when the calculated
VFC is larger than 1, VFC is set to 1. In this equation, the interpolated daily NDVI from 16-day values
is used to calculate daily VFC under the assumption that vegetation foliage or greenness changes
slowly and linearly within each 16-day period. We provide the variations of 16-day NDVI in Figure 2
in Section 3.1.

10



Remote Sens. 2019, 11, 1359

 
Figure 2. Time series of EDVI, in-situ measured LE (averaged over 2 h around the satellite overpass),
and 16-day NDVI from 2003 to 2005 at three forest sites of ChinaFLUX. QYZ forest site had a serious
imbalance of energy in 2005.

2.3.2. Estimation of Evaporative Fraction of Forest

The estimation of EFveg is from the same method of Nishida et al. [52] and Li et al. [29]:

EFveg =
αΔ

Δ + γ(1 + rc/2ra)
(4)

where α is the Priestley-Taylor’s parameter (1.26), Δ is the slope of saturated vapor pressure at air
temperature (hPa/K), γ is the psychometric constant (Pa/K) (66.5 Pa/K), ra is the aerodynamic resistance
(s/m), and rc is the canopy resistance (s/m) which is highly related to EDVI in this study.

We calculate Δ based on the formula in study of Murray [53]:

Δ =
26, 297.76

(Ta− 29.65)2 exp
(

17.67(Ta− 273.15)
Ta− 29.65

)
(5)

where Ta is the air temperature at 2 m (t2m) from ERA-20C.
The aerodynamic resistance ra is determined by wind. Kondo [54,55] proposed two empirical

formulas for forest canopy and grasslands. The formulas have been used for the estimation of ET in
other studies [52,56]. We thus follow their study and use equation (6) to calculate the ra of forests:

ra =

⎧⎪⎪⎨⎪⎪⎩
1

0.008U50m
forest types

1
0.003U1m

grass and crops
(6)
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where U50m is the wind speed at 50 m (ms−1) which is calculated by averaging the mean values of
10-m wind (U10m) and 100-m wind (U100m) from ERA-20C.

The canopy resistance rc can be parameterized by the use of Jarvis-type equation.

rc =

[
f1(Ta)f2(PAR)f3(VPD)f4(Ψ)f5(CO2)

rcmin
+

1
rcuticle

]−1

(7)

where rc has two components: the stomatal resistance (rstomatal) and the cuticle resistance (rcuticle).
rcuticle was set to be 105 ms−1 based on other studies [11].

The stomatal resistance rstomatal consists of five stress functions and the minimum canopy resistance
(rcmin). The five stress functions are used to quantify the impacts on rc imposed by environmental
conditions. The functions of air temperature (f1(Ta)) and photosynthetically active radiation (f2(PAR))
were adopted from Jarvis [57] and Kosugi [58], respectively. The day-to-day variation of EDVI (dEDVI)
represents the response of canopy leaves to environmental factors such as water vapor pressure
deficit (VPD), water potential (Ψ) and ambient carbon dioxide concentration (CO2). In this study, we
parameterize their stress functions (i.e., f3f4f5) as a whole by using their fair correlation with dEDVI
based on Li et al. [29]:

f3(VPD)f4(Ψ)f5(CO2) = [a− b× dEDVI]−1 (8)

where a and b are the coefficients. It is worth noting that the accurate determination of a and b require
the field measurements of stomatal and canopy resistance. Li et al. [29] used the field measurements of
resistances and developed the relationship at forest. Since such field measurements are unavailable
in this study, we thus follow their study and adopt 1.186 and 105.755 as the values of a and b for
these forests.

To describe the mean seasonal variation of EDVI associated with the different stages in the growing
season of the forest, we define the normalized EDVI (NEDVI) as (EDVI-EDVImin)/(EDVImax-EDVImin),
where EDVImin and EDVImax are respectively the minimum and maximum EDVI values during
growing seasons at each site [27,29]. The seasonal variation of EDVI (i.e., NEDVI) represents the slow
change of VWC which is highly correlated to the vegetation resistance of LE. NEDVI is thus used to
determine rcmin which is the key parameter for the estimation of rstomatal. Li et al. [29] found that there
was a general anti-correlation between NEDVI and canopy resistance. The minimum canopy resistance
can be parameterized as:

rcmin = rcmin0/NEDVI (9)

The canopy resistance will decrease when the plant leaves develop. In the case of Li et al. [29], the
measurements of canopy resistance at Harvard forest were available to determine the rcmin0. Based on
the field studies of Kelliher et al. [59], the maximum vegetation conductance ranges from 13.0 mm/s
(tropical rainforest) to 32.5 mm/s (cereals), while the corresponding rcmin (G−1

smax) ranges from 76.9 s/m
to 30.8 s/m. On the basis of this, rcmin0 was set to be a reference value, 50 s/m, for all three forest types
in our study.

3. Results

Since our objective of this study is to improve the EDVI-based LE method driven by satellite and
reanalysis data under all sky conditions, the inputs of the method are crucial and were first investigated
in this section. Section 3.1 shows the consistency between LEobs and two vegetation indices. Section 3.2
provides the validation of accuracy of satellite and reanalysis data. The estimated instantaneous LE
(LEcal) under all skies are validate in Section 3.3. Then the accuracy of LEcal under different cloudy sky
conditions are further investigated in Section 3.4.
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3.1. Time Series of EDVI, NDVI and In-Situ Measured LE

The time series of midday in situ measured LEobs, satellite-based EDVI and NDVI at the three
forest sites in this study are shown in Figure 2. The EDVI and NDVI show the consistent seasonal
cycles with the LEobs at all forests (maximum in summer and minimum in winter). EDVI vary from
-0.015 to 0.02 during growing seasons when NDVI vary from 0.3 to 0.9. The LEobs of forest ecosystems
can have significant variations during the short-term period due to environmental and weather effects
(e.g., precipitation and solar radiation). Daily EDVI can indicate such fast changes of vegetation status
and show the similar day-to-day variations to the LEobs at all sites (Figure 2), which suggests that
EDVI can be potentially used to retrieve LE over the three forests. As an indicator of vegetation foliage,
16-day NDVI are found to have the small and relatively slow changes within each 16-day interval,
suggesting that the use of interpolated daily NDVI from 16-day NDVI for the calculation of VFC may
introduce small errors.

3.2. Validation of Satellite Radiation Flux and Air Temperature Inputs

Studies have been conducted to validate the CERES surface fluxes over different surface types (i.e.,
island, coastal, polar, continental, and desert) and have found good accuracies of the data [38,60]. In
this study, since there is no in-situ measurements of net radiation (Rn) available, we therefore conduct
the validation of downward shortwave radiation fluxes (dSW) between satellite observations and
in-situ measurements instead.

Figure 3 shows the comparison of all-sky CERES dSW and in situ measured downward solar
radiation flux at midday from 2003 to 2005. Over all forest sites, CERES dSW agrees well with the
in-situ measured solar radiation, with high positive correlation coefficients (R) of 0.81, 0.95, and 0.90 at
DHS, QYZ, and CBS, respectively. The relative biases of all sites are less than 9%. Because dSW is the
dominant term of Rn, we therefore conclude that CERES SSF estimated Rn is suitable for estimating
the real net radiation for calculating ET.

 
Figure 3. Time series and scatter plots of in-situ measured solar radiation (averaged over 2 h around
the satellite overpass) and matched surface downward shortwave radiative fluxes (dSW) from CERES
SSF under all-sky conditions.

Photosynthetically active radiation (PAR) is required in the estimation of EDVI-based canopy
resistance. Studies have reported that PAR is linearly related to incident solar radiation [61–63]. In our
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study, all-sky CERES dSW is used to estimate PAR by multiplying it by a constant of 1.70 μmol/W. The
results in Figure 4 indicate these estimations agree well with in-situ observations across three sites.
Correlation coefficients strongly vary from 0.81 to 0.95 with a small bias of no more than 11%.

 
Figure 4. Comparisons between in-situ measured PAR and estimated PAR (dSW*1.70). dSW is surface
downward shortwave radiative fluxes from CERES SSF in all sky conditions.

Air temperature is an important parameter for estimating forest ET. We compare the 2-m air
temperature (t2m) from ERA-20C (t2m-ECMWF) and from NCEP FNL (t2m-NCEP) with in-situ
measurements. As shown in Figure 5, both t2m-ECMWF and t2m-NCEP have a high correlation with
in-situ measured temperature. However, t2m-NCEP estimations are systematically lower by 3–5 K than
in-situ measurements. In contrast, t2m-ECMWF are in better agreement with in situ measurements
with a smaller bias (0.1–2.7 K). The overall biases of t2m-ECMWF for all sites are within 3K. Therefore,
we determine to use ERA-20C rather than NCEP FNL to provide complementary parameters to the
satellite observations.

 
Figure 5. Time series and scatter plots of in-situ measured air temperature (Ta), 2-meter temperature
from ECMWF reanalysis (t2m-ECMWF) and 2-meter temperature from NCEP reanalysis (t2m-NCEP).
In-situ measurements at DHS, QYZ, and CBS are at 20 m, 23 m, and 26 m, respectively. In scatterplots,
t2m-ECMWF and t2m-NCEP are marked by black and blue color, respectively. R1 represents the
correlation coefficient (R) of in-situ Ta and t2m-ECMWF. R2 represents the R of in-situ Ta and t2m-NCEP.
BIAS1 represents the difference between mean t2m-ECMWF and in-situ Ta. BIAS2 represents the
difference between mean t2m-NCEP and in-situ Ta.
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3.3. The EDVI-Based LE Estimation

The time series of EDVI-based LEcal, in situ LEobs, and their differences at the three forest sites
are shown in Figure 6. Statistic results are shown in Table 3. Generally, LEcal has the capability to
capture the seasonality of forest LEobs from 2003 to 2005 correctly. Both of them reach maximums
in the mature stage of growing seasons in mid-summer due to the ample water and solar radiation
for evapotranspiration (Figure 6). There is a strong correlation between LEcal and LEobs with the
overall R being 0.56–0.88. In terms of magnitude, LEcal, ranging from 0 to 500 Wm−2 at DHS and
QYZ in southern China, and from 0 to 400 Wm−2 at CBS in northeastern China, matches LEobs well.
Large discrepancies occur at QYZ in 2005 due to the serious imbalance of energy, which leads to a
significant underestimation of in situ LEobs [64,65] and should be responsible for the large bias in this
year (Table 3). Because of this, we exclude the result of 2005 in QYZ in the following discussion.

Figure 6. Time series of in-situ LE (LEobs), estimated LE (LEcal), and their differences at three forest
sites from 2003 to 2005. LEobs was averaged over 2 h around the satellite overpass. The dashed lines
are ±150 Wm−2.
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Table 3. Summary of comprehensive metrics for the results of three forest sites. LEcal is the mean value
of all estimations. LEobs is the mean value of all in-situ measurements. BIAS = LEcal − LEobs.

Sites Year

LEobs = k * LEcal
+ b

LEobs LEcal RMSE R BIAS Bias/LEobs

k b W/m2 W/m2 W/m2 W/m2 (%)

DHS
2003 0.97 26.90 143.60 176.38 90.90 0.58 32.78 22.83
2004 0.70 63.60 157.97 177.04 79.10 0.56 19.06 12.07
2005 1.01 6.09 132.65 150.06 73.10 0.73 17.40 13.12
mean 0.89 32.20 144.74 167.83 81.03 0.62 23.08 16.00

QYZ
2003 0.99 4.58 179.28 182.32 74.20 0.82 3.04 1.70
2004 1.00 −21.90 200.35 176.48 74.30 0.85 −23.87 −11.92
2005 1.68 −28.90 119.39 172.30 83.50 0.79 52.90 44.31
mean 1.22 −15.41 166.34 177.03 77.33 0.82 10.69 11.36

CBS
2003 1.06 −46.80 165.59 134.85 74.01 0.81 −30.74 −18.56
2004 1.10 −42.04 146.64 123.95 56.00 0.88 −22.69 −15.48
2005 1.29 −31.20 130.54 137.26 73.70 0.80 6.72 5.15
mean 1.15 −40.01 147.59 132.02 67.90 0.83 −15.57 −9.63

The samples with the differences between LEcal and LEobs less than 150 Wm−2 account for 94%,
93%, and 92% of total samples at DHS, QYZ, and CBS, respectively (Figure 6). Our algorithm tends to
underestimate the LE during transient periods with about 30–100 Wm−2 (particularly in non-snowy
wintertime and early spring). In spite of this, results in Table 3 show that the method can produce
the small bias varying from −30.7 to 32.8 Wm−2 with the RMSE from 56.0 to 90.9 Wm−2, respectively.
The relative bias at three forests was kept within 23% for most of the years and range from −18.6% to
22.8%. The regression lines between LEcal and LEobs are well close to a 1:1 line at all sites with slopes
of 0.70–1.29 (Figure 7, Table 3).

 
Figure 7. Comparisons between daily LEobs and LEcal at three sites from 2003 to 2005. The two dashed
lines are the 1:1 line±RMSE. Solid circles are samples severely contaminated by precipitation.
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The algorithm performs better at QYZ and CBS in terms of R (0.80–0.88) and RMSE (56–83.5 Wm−2).
CBS has the smallest mean RMSE (67.9 Wm−2), highest R (0.83) and lowest relative bias (−9.6%) for
all study years (Table 3). The best LE estimations at DHS, QYZ, and CBS occur in 2005 (R = 0.73,
bias = 17.4 Wm−2, RMSE = 73.1 Wm−2), 2003 (R = 0.82, bias = 3.0 Wm−2, RMSE = 74.2 Wm−2), and 2004
(R = 0.88, bias = −22.7 Wm−2, RMSE = 56.0 Wm−2), respectively. However, the estimation performed
relatively poorly at DHS in 2003 (R = 0.58, bias = 32.8 Wm−2, RMSE = 90.9 Wm−2) (Figure 7, Table 3).

Our algorithm could be affected by heavily rainy events occurring before or after when Aqua
satellite overpasses. For these rainy days, our retrieval algorithm is expected to underestimate the
LE because of the reduced microwave EDVI over wet surfaces and the omission of interception
evaporation. Some rainy samples severely contaminated by such precipitation are marked by solid
circles in Figure 7. If we excluded these samples, the performances would be generally improved at all
sites, particularly for R and RMSE. This comparison results are shown in Figure 8. The R would be
improved to 0.66–0.91 for all years and the RMSE would be reduced to 48.2–84.5 Wm−2.

Figure 8. Comparison results of all LE estimations (white bars) and the LE estimations after removing
the heavily rain-contaminated days (black bars).

Additionally, a few samples with much larger LEcal than LEobs occurred during growing seasons,
such as 2003 at DHS (mainly in summer with less precipitation). A possible explanation is that under
high temperature and less precipitation conditions, the plant water deficit will induce leaf stomatal
closure to prevent excessive water deficits in the plants during summer time [66]. As a result, the
real plant physiological activities, such as leaf transpiration, carbon gain, and growth, are remarkably
suppressed [66].

The comparison results between LEcal and LEobs at monthly scale show the better performance
(Figure 9). R can reach 0.84, 0.88, and 0.95 for DHS, QYZ, and CBS with the bias of 14.3%, 0.3%, and
−12.9%, respectively. The standard deviations of monthly mean LEcal and LEobs are comparable. As
discussed, the results can be improved after removing the heavily rain-contaminated days (Figure 9).
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Figure 9. Comparisons between monthly mean LEobs and LEcal at DHS, QYZ, and CBS. Horizontal
and vertical error bars stand for the standard deviations of LEobs and LEcal. Numbers in the brackets
are the statistic results after removing the heavily rain-contaminated samples.

3.4. Validation of EDVI-based LE under Different Cloudy Sky

Since EDVI is able to indicate vegetation hydrological states under both clear and cloudy sky [26,27],
EDVI-based LE method combined with all-sky satellite-retrieved radiation also has the capability of
estimating LE under different cloud covers (Frc). Figure 10 shows the comparison of LEcal and LEobs

under a partly cloudy sky (Frc< 40%), cloudy sky (Frc>= 40%) and all cloudy sky (0% <= Frc <= 100%).
Their corresponding statistical metrics are shown in Figure 11. In general, our method has good
performance at three sites. The slopes of fit lines are all close to 1.0 with the range of 0.88 to 1.16
(Figures 10 and 11), suggesting that the method can produce small systematic bias in the estimation of
instantaneous forest LE under different cloud covers. The capability is also illustrated in the results of
bias and relative bias in Figure 11. For all three sites, the method produces bias less than 35 W/m2 (26%)
at instantaneous scale when compared with in-situ measurements. These biases vary from −34.2 W/m2

to 25.1 W/m2 with the relative values from −25.9% to 16.7% (Figure 11), respectively. The mean bias
(relative bias) under Frc < 40%, Frc ≥ 40% and all cloudy sky are well kept within 11 W/m2 with the
values of 10.6 W/m2 (6.3%), 0.32 W/m2 (0.8%) and 7.7 W/m2 (5%), respectively. In addition, a good
correlation between LEcal and LEobs under different cloudy skies are also found at three sites with
the R of 0.62–0.80, which suggests that the seasonal dynamics of forest LE under cloud cover can be
well recaptured by the EDVI-based method. Because of the relatively coarse spatial resolution (see
the related discussion in Section 4), the method could produce relatively large RMSE (59 to 90 W/m2)
illustrated by the scattering of samples in Figure 10.

Most importantly, it can be found that the EDVI-based method is able to produce stable statistic
metrics under different cloud cover conditions for three typical forests. These results indicate that the
developed EDVI-based method in this study, completely driven by satellite and reanalysis datasets,
can be used to estimate forest LE effectively from clear sky to cloudy sky.
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Figure 10. Validation of EDVI-based LEcal under different cloud cover (Frc). Partly cloudy sky (Frc <
40%), Cloudy sky (Frc >= 40%) and all cloudy sky (0% <= Frc <= 100%).

Figure 11. Statistical metrics at three sites under different cloud cover. Slope is the slope of fit line
between LEcal and LEobs.
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4. Discussion

4.1. Summary of the Method

The above results suggest that the new EDVI-based LE algorithm can effectively estimate
instantaneous LE during midday at three different forests. Compared with the early EDVI method
of Li et al. [29] based on in situ measurements as inputs, the developed method in this study was
completely driven by all-sky satellite-retrieved radiation fluxes and reanalysis-based meteorological
data. Therefore, this method has the potential capability to estimate LE in unfrequented places, such as
area in the deep forests and high mountains.

Which is central to our method is using microwave EDVI to quantify the stomatal and canopy
resistance under both clear sky and cloudy sky. Most of previous resistance-based LE methods are
based on optic VIs [17–19] which cannot be effectively implemented under cloudy sky. Their validations
are thus limited to under clear or partly cloudy sky. Barraza et al. [23,24] compared the estimated
surface conductance based on the different regression models of microwave and optical VIs in forest
and savanna ecosystems. Although they concluded that the combined microwave-optical VIs method
produced the best conductance and LE estimation at the 8-day mean scale, the performances under
different sky conditions were not investigated at finer temporal resolution. EDVI-based LE method is
designed for the instantaneous all-sky LE. The validations under different cloudy skies show that our
method can produce stable forest LE from clear to cloudy sky with good accuracy, which could be
important for the study of EF and LE under cloudy sky.

4.2. Uncertainties in the Results

In spite of these, some uncertainties in our EDVI-based LE method should be noted.
The retrieved EDVI (EDVI) over a landscape is the integration of EDVI from vegetation (EDVIveg)

and bare soil (EDVIsoil). During growing seasons, EDVI is dominated by EDVIveg and can be used
as a good indicator of vegetation states. Thus, the LE estimated from EDVI approximates the in-situ
measured LE. However, for some vegetation regions such as deciduous forests, EDVI can be affected
by soil signals to different extent during transient periods.

Since the EDVI-based LE method is implemented over forests in this study, the evaporation of
intercepted water and bare soil are simply omitted in the forest LE estimation. This simplification could
result in some underestimation, particularly during the non-growing seasons of deciduous forests
when soil evaporation may dominate the total LE. Further, as we discussed in Section 3.3, the algorithm
could be affected by heavily rainy events occurring near the time when Aqua satellite overpasses. The
wet canopy surface can reduce EDVI and thus result in the underestimation of LE in our method. In
spite of these, results in this study (Table 3) indicate that our current method for instantaneous LE
estimation at forests with the overall mean bias of 16% (DHS), 11.4% (QYZ) and −9.6% (CBS) (Table 3)
is well within the typical error range of 30% for satellite VI-based LE method [8].

As the surrogates for in situ measurements, the quality of the satellite remotely sensed and
reanalyzed data, which are the inputs of our algorithm, particularly net radiation, which is the direct
driving force for evapotranspiration, would highly affect the accuracy of the LE estimate, and the effect
of this would vary at different sites (Figure 3). Yan et al. [60] compared CERES surface radiation fluxes
with in situ measurements over Loess Plateau and found CERES surface downward radiation fluxes
have higher accuracies in clear sky than those in cloudy sky. The standard deviations of the dSW
differences rise from ~30 W m−2 to ~130 W m−2 when cloud coverage increases from 5% to 80%. The
errors of CERES estimated net radiation will be directly transferred to the results of EDVI-based LEcal.

Due to the inhomogeneity of vegetation coverage on the ground and the inconsistency of spatial
resolution among the input datasets (Table 2), the matching of these data over the selected area
(0.15º × 0.15º) around each forest flux tower may introduce errors. In addition, spatial mismatch of the
geolocation between satellite field of view to the forest sites also can result in some poor performances
in validations. For example, the flux tower at DHS is on a steep 30◦ slope and is close to a city, and
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there is a river located in the southeast. However, in our algorithm, the input data averaged over
the 0.15º × 0.15º area surrounding the flux tower are used to estimate the regional mean LE. This
certainly introduced additional discrepancies between the satellite EDVI-based LEcal and the in situ
measured LEobs.

In addition, it should be noted that the validation results are also affected by the accuracies of the
in situ measurements. The EC method may produce potential errors or uncertainty of 10%–30% [5].
Also, the EC flux towers frequently suffer energy closure errors. In this study, the three ChinaFLUX
forest sites achieve approximately only 70% energy balance closure during daytime, with about 30% of
variation unexplained [35].

Although affected by the above uncertainties, the accuracies of instantaneous LE estimations in
this study are comparable with those in Li et al. [29] which utilized both local in-situ measurements
and satellite retrieved EDVI as data input. The results of this study demonstrate that it is feasible to
operate the EDVI-based LE algorithm under both clear and cloudy skies with all satellite observations
as data input.

4.3. Pros and Cons of this method

In comparison to Li et al. [29], the biggest improvement of this method is that its inputs do not
depend on any in-situ measurements. This feature makes it applicable to any places with available
satellite observations. Further, with proper calibration and validation, it can be developed to be a
global algorithm in the future.

Compared to other optical VIs-based methods, the most significant advantage of this method is
its capability for estimating ET related LE under cloudy sky. As shown in Section 3.4, no matter in
what cloud fraction condition, the retrieved LE keeps small bias and good consistency with the in situ
measurements. The most serious disadvantage of this method could be its poor spatial resolution, i.e.,
~20 km. It is certain that the vegetation states and the evapotranspiration rate can vary significantly
over this scale since the heterogeneous surfaces. This shortcoming may offset its merit of being useful
under all weather conditions. A study of downscaling this method to the finer spatial resolution of
optical VI is undergoing in our lab.

It should be noted that some parameterization schemes in our EDVI-based ET method need
to be further improved in the future, especially for those resistance estimations based on EDVI and
dEDVI. Since the selected three forests are similar to the Harvard forest where the initial method was
developed [29], EDVI-based resistance schemes (e.g., a and b in Equation (8)) are thus assumed to be
the same in this study. In addition, this method is recommended in flat or moderate terrain due to the
associated errors with large scale satellite imagery of steep slope and LE estimation.

The real LE in the forest can be significantly affected by heavy rainfall due to the enhanced
evaporation from interception water on the leaves. However, such an effect cannot be captured by the
current method because it only takes into account one evapotranspiration source from inner vegetation
water. In contrast, the plant water deficit will induce leaf stomatal closure to prevent excessive water
deficits. However, this response is not described in the current model. A further study to consider
more ET sources and the phenology response of vegetation to drought should be conducted to improve
the retrieving performance.

Besides EDVI, there are several other vegetation water content related indexes that have been
developed. For example, the normalized difference water index (NDWI) [67] and land surface water
index (LSWI) [68]. Due to the differences in their physical connections to vegetation water and their
distinct spatial and temporal resolution, they may be used to estimate ET and LE with particular
advantages and disadvantages, respectively. A comprehensive comparison study among them will be
valuable for improving the satellite based global estimation of evapotranspiration and latent heat flux.
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5. Conclusions

The microwave-based vegetation water content index, Emissivity Difference Vegetation Index
(EDVI) has a close connection to the evapotranspiration process in forests [26–29] and responses to
precipitation process dynamically [69]. In this study, we designed an algorithm for forest LE estimation
driven by EDVI from an advanced microwave scanning radiometer for EOS (AMSR-E), vegetation
fraction information derived from a moderate-resolution imaging spectroradiometer (MODIS), net
radiation flux derived from clouds and earth’s radiation energy system (CERES), which are all on
the Aqua satellite, and the associated parameters of atmospheric states from the European Centre for
Medium-Range Weather Forecasts (ECMWF).

The satellite inputs and the results of this algorithm are validated against the in situ measurements at
three ChinaFLUX sites located at the Dinghushan (DHS) covered by subtropical evergreen broad-leaved
forest, Qianyanzhou (QYZ) covered by subtropical plantation forest, and Changbaishan (CBS) covered
by temperate deciduous mixed forest from 2003 to 2005. Validation results show that the mean
correlation coefficients (R) between instantaneous LEcal and LEobs in the study years of DHS, QYZ and
CBS are 0.62, 0.82 and 0.83 with small bias errors of +23.08 Wm−2, +10.69 Wm−2 and −15.57 Wm−2,
respectively. These biases were well kept within 16% of the in situ measurements for three sites. At a
monthly scale, the R between LEcal and LEobs can reach 0.84, 0.88, and 0.95 at DHS, QYZ, and CBS,
with bias of +14.3%, −0.3%, and −12.9%, respectively. Validation results can be further improved after
removing the samples in severely rainy days.

Our method is also validated under different cloudy sky conditions. The results indicate that
EDVI-based LEcal have stable performances with good accuracy under cloudy sky for all three forests.
Slopes of fit lines are close to 1.0 and the bias are less than 35 Wm−2 (26%) for different cloud cover.
A good temporal correlation between LEcal and LEobs under clear and cloudy skies is indicated by
the R of 0.62–0.80. These results indicate that this EDVI-based LE algorithm, using only satellite and
reanalysis datasets as inputs, has great potential for estimating LE at large scale in forest areas under
cloudy sky in China.

The extensive application and improvement of our algorithm is warranted in more different biome
types. Potential improvements can be achieved by (i) taking into account the evaporation components
from bare soil and canopy-intercepted water, (ii) considering the inhomogeneity within the satellite
field of view at microwave regions and (iii) extending the current LE estimation from one point to the
regional scale.
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Abstract: Evapotranspiration (ET) is usually difficult to estimate at the regional scale due to scarce
direct measurements. This study uses the water balance equation to calculate the regional ET with
observations of precipitation, runoff, and terrestrial water storage changes (TWSC) in nine exorheic
catchments of China. We compared the regional ET estimates from a water balance perspective with
and without considering TWSC (ETWB: ET estimates with considering TWSC, and ETPQ: ET estimates
from precipitation minus runoff without considering TWSC). Results show that the regional annual
ET ranges from 417.7 mm/yr to 831.5 mm/yr in the nine exorheic catchments based on the water
balance equation. The impact of ignoring TWSC on calculating ET is notable, as the root mean square
errors (RMSEs) of annual ET between ETWB and ETPQ range from 12.0–105.8 mm/yr (2.6–12.7% in
corresponding annual ET) among the exorheic catchments. We also compared the estimated regional
ET with other ET products. Different precipitation products are assessed to explain the inconsistency
between different ET products and regional ET from a water balance perspective. The RMSEs between
ET estimates from Gravity Recovery and Climate Experiment (GRACE) and ET from land surface
models can be reduced if the deviation of precipitation forcing data is considered. ET estimates from
Global Land Evaporation Amsterdam Model (GLEAM) can be improved by reducing the uncertainty
of precipitation forcing data in three semiarid catchments. This study emphasizes the importance of
considering TWSC when calculating the regional ET using a water balance equation and provides
more accurate ET estimates to help improve modeled ET results.

Keywords: evapotranspiration; China; exorheic catchments; water balance; GRACE; terrestrial water
storage changes

1. Introduction

Evapotranspiration (ET) is one of the most important components of the climate system connecting
the water, energy, and carbon cycle [1,2]. ET changes can be used as an indicator of climate change,
especially in areas where the water cycle is accelerated [3,4]. However, regional ET is often difficult
to estimate. The flux tower observing station network can provide accurate ET observations at each
site [5], but it often has too sparse sites for basin scale study. Remote sensing provides an opportunity to
monitor spatial-temporal changes in ET [6,7], but regional calibration and uncertainty from vegetation
cover data will also lead to large uncertainty in ET [8]. Land surface models (LSMs) can also provide
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grid-to-regional scale ET estimates, such as the multiple LSMs simulations using the global land data
assimilation system (GLDAS) issued by NASA [9]. Regional ET can be derived from the terrestrial
water budget, namely the residual between precipitation (P) and the sum of runoff (Q) and terrestrial
water storage change (ds/dt), which have been regarded as benchmark estimates for validating ET
products or estimates on a regional scale [10,11].

The Gravity Recovery and Climate Experiment (GRACE) satellites mission launched in March
2002 has provided a unique way to monitor terrestrial water storage (TWS) changes on the monthly
scale with a ~300 km footprint [12]. As for a given basin, the time series of TWS changes (TWSC) in the
basin can be obtained from the differential of TWS anomalies (TWSA) observed by GRACE [1,13,14].
The regional ET can be estimated from TWSC, regional precipitation, and runoff data based on the
water balance equation. Rodell et al. [4] discussed the method of calculating ET from GRACE TWSA
and suggested that the ET based on the GRACE water balance method can be used to evaluate the
ET of the model simulations. Ramillien et al. [15] estimated the ET of 16 globally distributed basins
based on the GRACE water balance method, and they are compared to outputs of four global LSMs,
which shows good overall agreement. A few studies have applied this method to estimate the regional
ET in several global basins, e.g., the Lake Chad basin, Africa [16], continental USA [17], and Amazon
Basin [18]. However, the differences among different ET estimates are usually ignored or ascribed
to the uncertainty of estimates during data processing [13,15]. Castle et al. [19] and Pan et al. [13]
estimated the human-induced ET in the Colorado River Basin (USA) and Haihe River Basin (China)
and attributed the differences between GRACE water balance ET and GLDAS ET to the influence of
human activities. However, the quality of input precipitation also has a great influence on the ET
outputs [10,20]. Badgley et al. [21] emphasized the significant uncertainty of the regional ET estimate
from the choice of input forcing dataset. Liu et al. [11] used a bias-corrected water balance method to
calculate annual reference ET from 1983–2006 and evaluated nine ET products in 35 global river basins
on the interannual and long-term scale. They determined that different performances among the ET
products may result from different forcing datasets. Given the uncertainty of ET products caused
by the precipitation forcing data, in this study, we seek to explain the difference among different ET
estimates by considering uncertainty from the different precipitation forcing data and modeled runoff
from a water balance perspective.

The water balance equation is the classic method to calculate the ET on a regional scale. In China,
Mao et al. [22] emphasized the significant impact of water storage due to reservoir construction on
calculating ET trends. However, they did not consider other factors that cause the water storage
changes, e.g., water withdrawal, lakes change, and glaciers melting [22,23]. Jiang et al. [24] took
basin water balance as a benchmark to evaluate the MODIS MOD16 ET products in several exorheic
basins. However, the assessment on the uncertainty of GRACE-derived TWSC was limited and was
restricted to the Yangtze River Basin (YRB), Yellow River Basin (YeRB), and Songhuajiang River Basin
(SRB) on monthly scale. Li et al. [25] used the revised Remote Sensing–Penman Monteith (RS-PM)
model [26,27] to produce an ET map in China and derived an estimate of mean annual land–surface ET
to 500 mm/yr. The revised RS-PM model predictions did not show a significant systematic error, but
they only explained 61% of the ET variations at all the validation sites, which showed the uncertainty
of the ET model in the regional estimation. Bai and Liu [10] used water balance-based ET estimates to
evaluate the Global Land Evaporation Amsterdam Model (GLEAM), GLDAS and MODIS MOD16
ET products for 22 river basins in China, but the selected basins are restricted in wet basins, most of
which are located in the YRB. ET calculated from the water balance equation for some exorheic basins
of China are estimated by the above studies. However, little attention is paid to uncertainties from
TWSC and precipitation forcing data. Therefore, we conduct a systematic assessment for the ET of
exorheic basins from a water balance perspective.

Several studies assume TWSC to be zero on the annual scale due to the lack of data [22], and ET is
obtained by precipitation minus runoff directly, as in the studies by Zhang et al. [28], Senay et al. [29]
and Xue et al. [30]. However, TWSA can have large variability on seasonal and interannual scales
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due to human water consumption [31,32] and the building of reservoirs [22,23]. Zeng et al. [33] also
acknowledged that ignoring TWSC would bring much bias into ET estimation, especially in regions
with low ET. Wang [34] points out the importance of considering interannual TWSC in the estimation
of ET. Hence, we compare the difference of ET estimates by considering and not considering TWSC
in the water balance equation to explore the impact of TWSC on the ET estimate on interannual and
monthly scales.

This study aims to (1) estimate the regional ET of nine exorheic catchments in China using the
water balance equation considering TWSC; (2) analyze the impact of not considering TWSC and
different TWSC products on the ET estimates; (3) explain the inconsistency between different ET
products and regional ET from a water balance perspective. The flowchart of this study is shown in
Figure 1.

Figure 1. Flowchart of this study. It includes the used data and process of calculation and analysis in
this study.

2. Materials and Methods

2.1. Study Area

Nine exorheic catchments were divided from eleven hydrological gauge stations from River
Sediment Bulletin of China (RSBC) [35]. The catchment boundaries are derived from the location
of gauge stations, Shuttle Radar Topography Mission (SRTM) elevation data (https://www2.jpl.
nasa.gov/srtm/), and processed in ArcGIS with Soil and Water Assessment Tool (ArcSWAT) plugin
(https://swat.tamu.edu/software/arcswat/). The ArcSWAT is an ArcGIS-ArcView extension and a
graphical user input interface for the SWAT (Soil and Water Assessment Tool) model. The Gaoyao,
Shijiao, and Boluo hydrological gauge stations are all in the Pearl River Basin (PRB), we merge them
into one catchment (Figure 2). The YRB is divided into two sub-basins, based on its two hydrological
gauge stations: Yichang and Datong. The information of the nine catchments is listed in Table 1, and
the catchments are also presented in Figure 2.
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Figure 2. Map of exorheic catchments of China. The black curves show the boundaries of the nine
exorheic catchments, the black texts with a white background are the abbreviation of catchments names.
The magenta stars show the locations of eleven hydrological gauge stations, and the magenta texts
present the name of hydrological gauge stations. Their descriptions can be further found in Table 1.
The blue curves represent the main rivers and tributaries in China. The country boundary is shown
with the dash line.

Table 1. Descriptions for the nine exorheic catchments of China (sorted by areas and location).
The climate categories are based on annual precipitation and dryness [36].

Catchments ID Name
Hydrological Gauge

Stations
Area

(× 104 km2)
Climate

Categories

1 Upper Yangtze River Basin (UYRB) Yichang 100.55 Humid
2 Middle Yangtze River Basin (MYRB) Datong-Yichang 69.99 Humid
3 Yellow River Basin (YeRB) Huayuankou 73.00 Semiarid
4 Songhuajiang River Basin (SRB) Jiamusi 52.83 Semihumid
5 Pearl River Basin (PRB) Gaoyao + Shijiao + Boluo 41.52 Humid
6 Liaohe River Basin (LRB) Liujianfang 18.58 Semiarid
7 Haihe River Basin (HRB) Haihezha 14.28 Semiarid
8 Huaihe River Basin (HuRB) Bengbu 12.13 Humid
9 Minjiang River Basin (MRB) Zhuqi 5.45 Humid

2.2. Water Balance Equation

The ET can be estimated from surface water balance on the basin or continental scales, which
usually serves as a benchmark for other products. The equation is as follows:

ETWB = P − Q − ds/dt (1)

where ETWB is calculated ET, P is precipitation, Q is river discharge, and ds/dt is the change in terrestrial
water storage for a specific time period [4,11,15]. TWSC is estimated as the temporal derivative of
TWSA from the GRACE products [37,38]. ET, P, and Q are the cumulated amount in a full month [4,39].
Then ds/dt (TWSC) is the differential of two consecutive months of TWSA at the beginning of a month.
To obtain the time point of every beginning of a month of TWSA time series, we interpolate TWSA
by an interpolation method. A similar process of calculation can be found in Li et al. [40]. Firstly,
seasonal and trend signals are estimated using unweighted least squares and then interpolated for every
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beginning of a month. Secondly, the residuals removed by TWSA time series subtracting seasonal and
trend signals are then interpolated by linear interpolation. Finally, the sum of interpolated residuals,
seasonal, and trend signals are the interpolated TWSA time series.

Root mean square error (RMSE) is used to evaluate the deviation between ETWB and other types
of ETs. The equation is as follows:

RMSE =

√√√
1
N

N∑
i=1

(Xi −Yi)
2. (2)

where N is the data length (time series), Xi is the ith estimated ET results from other methods, Yi is the
ith ETWB result.

2.3. Data

An overview of the datasets can be found in Table 2. This table lists relevant information
about the datasets used in this study, such as the TWSC, precipitation, runoff, ET, spatial resolution,
and corresponding links of data access. A detailed description of these data is provided below.

Table 2. Summary of the datasets used in this study.

Type Data Name Data Version/Source Spatial Resolution Data Access

Satellite TWSC

CSR-M 0.5◦ × 0.5◦ http://www2.csr.utexas.edu/grace
JPL-M 0.5◦ × 0.5◦ https://grace.jpl.nasa.gov/data/get-data/

CSRT-GSH 1◦ × 1◦ https://grace.jpl.nasa.gov/data/get-data/
CSR-DDK4 1◦ × 1◦ http://icgem.gfz-potsdam.de/home

In situ
Precipitation CMDC v2.0 0.5◦ × 0.5◦ http://data.cma.cn/

Runoff RSBC Station http://www.mwr.gov.cn/sj/tjgb/zghlnsgb/

Model
ET

GLDAS-1 Noah 1◦ × 1◦ https://ldas.gsfc.nasa.gov/gldas/
GLDAS-2.1 Noah 1◦ × 1◦

GLEAM v3.2a 0.25◦ × 0.25◦ https://www.gleam.eu/

Runoff
GLDAS-1 Noah 1◦ × 1◦

https://ldas.gsfc.nasa.gov/gldas/GLDAS-2.1 Noah 1◦ × 1◦

Forcing data Precipitation
GLDAS-1 Noah 1◦ × 1◦

GLDAS-2.1 Noah 1◦ × 1◦
MSWEP 0.5◦ × 0.5◦ http://www.gloh2o.org/

2.3.1. GRACE–Derived TWSC Data

We used the Center for Space Research (CSR) GRACE RL05 Mascons data to estimate the TWSC.
The mascon solutions are global and can be better applied to hydrology, oceanography, and the
cryosphere without any post–processing and without applying any empirical scaling factors [41].
The data can be downloaded from http://www2.csr.utexas.edu/grace. The Mascons data is represented
at a 0.5-degree lon-lat grid and is estimated with the same standards as the CSR RL05 spherical
harmonics solutions using GRACE Level-1 observations. C20 coefficients were replaced, degree-1
coefficients (Geocenter) and glacial isostatic adjustment (GIA) corrections were applied. More details
about the CSR GRACE RL05 Mascons (CSR-M) can be found in Save et al. [41]. With the development of
post-processing GRACE satellite data, several GRACE solutions can be used for hydrology applications.
However, different solutions would lead to different TWSC estimates.

To evaluate the impact of TWSC from different GRACE solutions on the estimate of ET, we also
take JPL Mascons [42], CSR GRCTellus Land data [43], and CSR RL05 spherical harmonics solutions
with the DDK4 filter applied (CSR-DDK4) [44] as a comparison. All of these above solutions are
processed with the same C20 coefficients replaced, the same degree-1 coefficients, and GIA corrections.

The processing of JPL Mascons is based on external information provided by near-global
geophysical models to constrain the solution. JPL Mascons use the coarse 3-degree spherical cap
Mascons, and they are downscaled to 0.5◦ × 0.5◦ using downscaling factors (dsf) calculated from
Community Land Model (CLM ver. 4.0) [42], the grid values of JPL Mascons are multiplied by
downscaling factors (JPL-M.dsf). The CSR and JPL mascon solutions can be used directly without
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leakage corrections. CSR GRCTellus Land data is developed by Landerer and Swenson [43] from
CSR data, and scaling factors are provided to account for the signal loss during processing related to
truncation to degree and order 60 and application of a 300 km Gaussian smoothing filter. The grid
values of CSR GRCTellus Land are multiplied by scaling factors (CSRT-GSH.sf). The DDK filter is
proposed by Kusche et al. [44], and the DDK4 filter shows a good performance in the application of
the upper Yellow River [45]. The process of CSR-DDK4 is similar to CSR GRCTellus Land data while
replacing 300 km Gaussian smoothing filter and destriping filter with the DDK4 filter. There is no
leakage correction applied in CSR-DDK4 in this study, as with in Yi et al. [45], and in fact, the results
for CSR-DDK4 are at the same level with the other solutions.

2.3.2. In Situ Precipitation and Runoff Data

Gridded precipitation data was obtained from the China Meteorological Data Service Center
(CMDC, hereafter, PCMDC). The gridded precipitation data was generated by a thin plate spline
spatial interpolation of precipitation observations from 2472 weather stations. It has a monthly
temporal resolution and 0.5◦ × 0.5◦ spatial resolution over all of China [46]. This data is validated
by cross-validation and error analysis with gauge-based precipitation, indicating good quality. This
precipitation data has been used in several studies [13,22,47]. The monthly runoff datasets are
from eleven gauge stations recorded in RSBC (hereafter, QRSBC) (http://www.mwr.gov.cn/sj/tjgb/
zghlnsgb/) [35], which integrates all runoff considering the upstream of the corresponding catchment.
The runoffmeasurements are all from well-gauged rivers in China.

2.3.3. Land Evapotranspiration Products

We use two kinds of land evapotranspiration products for comparison, which included GLDAS
ET and GLEAM ET (Table 2). Two versions of GLDAS LSM data are used for inter-comparison in this
paper, i.e., GLDAS version 1 (GLDAS-1) and GLDAS version 2.1 (GLDAS-2.1) [9]. ET outputs from both
GLDAS versions are driven by Noah LSM [48]. GLDAS-1 datasets cover the time period from 1979 to
the present. GLDAS-2.1 datasets cover the period from 2000 to the present. Their temporal resolutions
used here are monthly. More information and details about the GLDAS-1 and some improvements
and changes about the GLDAS-2.1 are available at https://ldas.gsfc.nasa.gov/gldas/. The ET outputs
from GLDAS-1 and GLDAS-2.1 are expressed as ETGLDAS–1 and ETGLDAS–2.1.

We use GLEAM v3.2a ET products (hereafter, ETGLEAM), which were published jointly by Vrije
Universiteit Amsterdam, Netherlands and Ghent University, Belgium [6]. The data has a spatial
resolution of 0.25◦ × 0.25◦ and daily temporal resolution. We sum them to the monthly results
in this study. GLEAM uses a set of algorithms to separately estimate the different components
(transpiration, bare-soil evaporation, interception loss, open-water evaporation, and sublimation) of
land ET. The Priestley and Taylor equation was used in GLEAM to calculate potential evaporation
based on observations of surface net radiation and near-surface air temperature. The rationale of
GLEAM is to maximize the recovery of information on evaporation contained in current satellite
observations of climatic and environmental variables [6].

2.3.4. Precipitation Forcing Data and Modeled Runoff Data

The precipitation forcing data from the GLDAS-1, GLDAS-2.1 (hereafter, PGLDAS–1 and PGLDAS–2.1),
and the Multi-Source Weighted-Ensemble Precipitation (MSWEP, precipitation forcing data of GLEAM,
hereafter, PMSWEP) datasets [49] are used to explain the difference of ET results. They are also computed
as regional averages. As runoff is another critical variable in the water balance equation, we also
calculate the mean runoff outputs of the nine exorheic catchments from GLDAS-1 and GLDAS-2.1
Noah LSM (hereafter, QGLDAS–1 and QGLDAS–2.1) and compare the results with those for in situ runoff.
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2.4. Methods

In the above-mentioned data sets, which are provided with different spatial resolutions, are used
with regional averages results, the different spatial resolutions have little impact on ET estimates.
The grids in the catchments are used to extract regional averages estimates. Their results are computed
on a monthly scale. The ET results are shown at monthly mean and annual scales, as the amount
of annual ET, interannual changes, and mean annual cycles of ET are the main characteristics of ET.
Besides, the difference between the ET estimates can be clearer at monthly mean and annual scales.

We use the TWSC from GRACE (CSR-M), PCMDC, and QRSBC to derive ETWB. To explore the
impact of TWSC on ET estimate, we also estimate the ET from precipitation minus runoff directly
(expressed as ETPQ) without considering TWSC. The results are shown in Section 3.1.1.

Here we compute TWSC results from different GRACE solutions to evaluate their impact on ET
while keeping all other inputs (P and Q) unchanged (Section 3.1.2). The GRACE products include
CSR-M, JPL-M.dsf, CSRT-GSH.sf, and CSR-DDK4. The TWSC used for ET estimates from JPL-M.dsf,
CSRT-GSH.sf, and CSR-DDK4 are expressed as ETJPL–M.dsf, ETCSRT–GSH.sf, and ETCSR–DDK4, respectively.
They are further discussed in Section 4.1.

We then compare the ET estimates from GLDAS and GLEAM with ETWB (Section 3.2).
The discussion of RMSEs between ETWB and other ET estimates are shown in Section 4.2. We attempt
to analyze the deviation of precipitation and runoff to the regional ET estimate from a water balance
perspective (see Sections 3.3 and 4.3), quantifying the deviations between PCMDC and precipitation
forcing data, QRSBC, and QGLDAS estimates. Previous studies demonstrate that the TWSA (or TWSC)
from GRACE and GLDAS are comparable [50–52]. Hence, we do not compare the TWSC component
in the water balance equation.

We compute the deviations between water balance ET and other ET results, precipitation results,
runoff results, and results of precipitation minus runoff (Section 3.3). We assess the impact of deviation
of precipitation and runoff on the estimate of ET based on RMSE and the change of RMSE (Section 4.3).
The RMSEs are calculated between annual ETWB minus annual PCMDC and other ET estimates minus
their precipitation forcing data (expressed as RMSE (ET-P)) from a water balance perspective. Similarly,
the RMSE (ET-Q) represents the calculated RMSEs between annual ETWB minus QRSBC and ETGLDAS

minus QGLDAS, and the RMSE (ET-(P-Q)) represents the calculated RMSEs between annual ETWB

subtracting the result of PCMDC minus QRSBC and annual ETGLDAS subtracting the result of PGLDAS

minus QGLDAS from 2003–2015. The proportions of RMSEs changed of RMSE (ET-P), RMSE (ET-Q)
and RMSE (ET-(P-Q)) relative to RMSE (ET) are further computed.

2.5. Uncertainty Estimation

The TWSC estimates used in the estimate of ETWB are from CSR-M. Hence, we only estimate
the uncertainty of TWSC based on CSR-M. The uncertainty estimate followed the method used in
Landerer and Swenson [43] and Scanlon et al. [53]. Details about the method can be found in the
supporting information of Scanlon et al. [53]. As the TWSC is the differential of two consecutive
months, the uncertainty of TWSC is

√
2 of the uncertainty of TWSA. The uncertainties of monthly

precipitation and runoff data collected by gauge are estimated to 10% and 5%, respectively [2,4,13].
The uncertainty of monthly ETWB is estimated by uncertainties of TWSC, precipitation, runoff based
on error propagation law.

The monthly mean ET is the mean values of 13 months for the study period of 2003–2015, from
the error propagation law, the uncertainty of monthly mean ET can be calculated as the uncertainty in
monthly ETWB divided by

√
13. The uncertainty of annual ETWB is estimated from the uncertainty of

annual P, Q, and TWSC based on error propagation law. Since the annual TWSC is estimated from
the difference of the TWSA at the beginning month in one year and the next year, we estimate the
uncertainty of annual TWSC equal to monthly TWSC.
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3. Results

3.1. Impact of TWSC on ET Estimate

3.1.1. ET Estimated by Ignoring TWSC

Figure 3 shows the monthly mean of ETWB following Equation 1, ETPQ, P, Q, and TWSC for
2003–2015 in the nine catchments. The negative ETWB values in January and February in the SRB and
December in the Haihe River Basin (HRB) may result from the uncertainties of in situ precipitation and
TWSC [13,40]. The TWSC has a significant impact on ET estimates in most catchments. The deviation
of the monthly mean of ETWB and ETPQ reaches 34.2 mm/month in June (accounting for 52.9% of ETWB)
in the Upper Yangtze River Basin (UYRB). The deviations between ETWB and ETPQ range from 6.7 to
37.2 mm/month for twelve months in the Middle Yangtze River Basin (MYRB), and its RMSE accounts
for 37.1% of variations of ETWB. The RMSEs are computed following Equation 2. In the YeRB and SRB,
the deviations between ETWB and ETPQ are small, with their RMSEs between ETWB and ETPQ reaching
only 6.4 and 8.7 mm/month, respectively. In the MRB, the RMSE between ETWB and ETPQ shows the
maximum value, i.e., 27.2 mm/month, accounts for 33.5% of variations of monthly mean ETWB.

Figure 3. Monthly mean of ETWB (blue curves), ETPQ (red lines), P, Q (purple lines), and TWSC
(green lines) for 2003–2015 in the nine exorheic catchments. The histograms represent the monthly
precipitation (P). The error bars show the uncertainties of monthly mean ETWB. (a)–(i) corresponding
to the nine exorheic catchments in China. (a): UYRB; (b): MYRB; (c) YeRB; (d): SRB; (e): PRB; (f): LRB;
(g) HRB; (h): HuRB; (i): MRB.

The annual ETWB and ETPQ estimates are shown in Figure 4; the mean annual PCMDC, ETWB, and
ETPQ results are shown in Table 3. In the UYRB, the largest deviation of annual ET between ETWB and
ETPQ is only 27.5 mm/yr in 2014, and the RMSE between ETWB and ETPQ only makes up 2.6% of the
mean annual ET. In the SRB, the TWSC has a large impact on annual ET, large deviations between
ETWB and ETPQ occur almost all the years, and the proportion of the RMSE accounting for the mean
annual ETWB reaches 11.5%. In the Minjiang River Basin (MRB), the RMSE represents 12.7% of the
mean annual ET, with the largest deviation (291.8 mm/yr, 39.1% of total ETWB in this year) occurring
in 2003.
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Figure 4. Annual ETWB and ETPQ from 2003–2015. (a)–(i) corresponding to the nine exorheic catchments
in China.

Table 3. The mean annual precipitation from CMDC, mean annual ETWB and ETPQ estimation from
GRACE in the exorheic catchments of China from 2003–2015, with one standard deviation (unit:
mm/yr).

Catchments ID Name PCMDC ETWB ETPQ

1 UYRB 864.7 ± 56.2 461.9 ± 20.3 466.4 ± 21.4
2 MYRB 1331.4 ± 149.7 689.7 ± 50.3 698.0 ± 83.2
3 YeRB 473.0 ± 45.2 437.5 ± 28.1 435.6 ± 43.4
4 SRB 545.3 ± 80.0 439.6 ± 34.3 445.0 ± 53.4
5 PRB 1411.6 ± 183.1 778.3 ± 50.4 784.9 ± 77.6
6 LRB 426.5 ± 72.4 417.7 ± 46.5 413.1 ± 66.1
7 HRB 486.9 ± 49.3 494.2 ± 37.2 484.2 ± 48.9
8 HuRB 944.1 ± 168.5 726.4 ± 37.8 727.6 ± 50.8
9 MRB 1786.3 ± 391.7 831.5 ± 53.3 833.9 ± 146.6

3.1.2. Impact of Different GRACE Solutions on ET Estimate

The monthly mean TWSC from different GRACE solutions is shown in Figure A1, where their
mean TWSC is the arithmetical mean from all TWSC estimates for the corresponding calendar month.
Note that the TWSC derived from CSR-M compare favorably with the mean TWSC (Figure A1), thus
the CSR-M TWSC is used for the estimate of ETWB in this study. The TWSC from CSRT-GSH.sf show
significant differences among the four TWSC results, as they exaggerate the monthly mean TWSC
in the UYRB, MYRB, YeRB, SRB, and PRB, and the differences may result from the scaling factor
derived from CLM4.5 [43]. The spatial distribution of scaling factors is checked in our study (not
shown), and the spatial variability of scaling factors varies greatly in the basins, indicating exaggerated
TWSC. The maximum deviations are calculated between each two monthly mean TWSC estimates,
which range from 10.7 to 35.6 mm/month, the deviations occur in the YeRB (10.7 mm/month) and
MRB (35.6 mm/month) (Figure A1c,i), respectively. As the area of MRB is the smallest, and with the
most abundant precipitation, it is understandable that the MRB shows the largest deviation of TWSC.
The large deviation of TWSC between JPL-M.dsf and other GRACE solutions in the HRB and MRB
(Figure A1g,i) may result from the processing strategy and coarse resolution in the spatial of JPL-M
since the areas of the two basins are small [54].

The annual ET estimates based on different GRACE solutions are shown in Figure A2. The RMSEs
among ETCSR–M (=ETWB), ETJPL–M.dsf, ETCSRT–GSH.sf, and ETCSR–DDK4 are understandably less than
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those RMSEs between ETWB and ETPQ, and their interannual fluctuations are more consistent than that
of ETPQ. We compute the standard deviations (STDs) between the four ET estimates from different
GRACE solutions for every single year, and the results show that the max STD is only 51.2 mm/yr,
occurring in the MRB. The mean STD for the years from 2003–2015 in the corresponding catchment is
also computed, ranging from 9.7 to 27.1 mm/yr (accounting for 1.8–3.9% of annual ETWB), with the
least occurring in the YeRB and the largest occurring in the MRB. In three catchments, the max STDs
occur in 2003 in the PRB, the Huaihe River Basin (HuRB), and the MRB, which are located in Southeast
China. In the other three catchments, the max STDs appear in 2011, which are the YeRB, SRB, and
Liaohe River Basin (LRB), in North China.

3.2. Comparison of Different ET Products

Figure 5 shows the monthly mean of ET estimates from different ET products. Their mean annual
cycles are similar among all the catchments. In the humid catchments: in the UYRB, the other three ET
products overestimate the ET compared with ETWB for all months except December, the maximum
deviation exists in July, which has the most precipitation (Figure 5a). In the MYRB, other ET estimates
are bigger than ETWB estimates for all months except November when the ETWB increases to respond
to increased precipitation. In the PRB, the mean of ETWB in July is less than that in June and August,
and the mean of ETWB in October is also less than September and November (Figure 5e). In the HuRB,
ETWB shows a rapid increase response for sharply increased precipitation in July (Figure 5h), while
the three other ET results do not catch it. The ETWB also can capture the irregular monthly mean
precipitation changes from June to December in the MRB (Figure 5i). In the semihumid and semiarid
catchments: the two versions of GLDAS both show the maximum deviation in September with ETWB

in the YeRB. Most months of ETGLDAS–2.1 are more than other ET estimates in the LRB. During the
intense irrigation period of April and May, the ETWB is significantly greater than other ET estimates in
the HRB. From the above, these ET results all show similar annual cycles, while ETWB can capture
some irregular variations in monthly precipitation.

Figure 5. Monthly mean of ET estimates in the exorheic catchments of China. The error bars show the
uncertainties of monthly mean ETWB. (a)–(i) corresponding to the nine exorheic catchments in China.

The maximum RMSEs between the monthly mean of ETWB and other ET results are in the MRB,
which are 27.5 (vs ETGLDAS–1), 26.3 (vs ETGLDAS–2.1), and 24.7 (vs ETGLEAM) mm/month (Table A1).
In the YeRB, the RMSEs are the least, which are 7.2, 7.5, and 13.0 mm/month. We also compute the
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proportion of the RMSEs accounting for an average of the monthly mean of ETWB. The proportions
in the UYRB show the maximum values, which are 50.5% (vs ETGLDAS–1), 43.3% (vs ETGLDAS–2.1),
and 43.1% (vs ETGLEAM). The HuRB experienced the minimum proportions, which are 20.4%, 22.3%,
and 25.9%, respectively.

The annual ET from different sources is illustrated in Figure 6, which shows huge gaps among
different ET estimates. In terms of the humid catchments: In the UYRB and MYRB, it is obvious that
other annual ET estimates are all larger than ETWB. Their mean deviations between ETWB and ETGLEAM

reaching 144.7 mm/yr (31.3% in mean annual ETWB) and 88.0 mm/yr (12.8% in mean annual ETWB) in
the two catchments (Figure 6a,b). In the PRB, ETGLDAS–1 and ETGLEAM both overestimate the annual
ET, and ETGLDAS–2.1 shows different interannual variations with respect to ETWB (Figure 6e). In the
HuRB, all the ET estimates capture the drop of ET in 2011 due to reduced precipitation (Figure A3h),
but there is some discrepancy among mean annual ET. In the MRB, the ET results show large differences
in the interannual variations. The ETGLDAS–1 even verges on 1100 mm/yr after 2012. Concerning the
semihumid and semiarid catchments: In the YeRB, the ETWB is consistent with ETGLDAS–2.1 except
for the years 2006 and 2009, while ETGLEAM underestimates the annual ET for all the years. In the
SRB, the ETGLDAS–2.1 is significantly greater than the other annual ET. Nevertheless, the ETGLEAM is
close to ETWB. In the LRB, the ETGLDAS–1 is close to ETWB in mean annual ET, and their interannual
variations are similar. In the HRB, ETGLDAS–2.1 is closest to ETWB. ETGLEAM somewhat underestimates
the annual ET for the other three results. For the two catchments in Northeast China (i.e., SRB and LRB,
Figure 6d,f), both ETGLDAS–2.1 results overestimate the annual ET. Additionally, the four ET results
show consistent interannual changes in most catchments.

Figure 6. Annual ET from different products in the exorheic catchments of China. The dotted lines
with different colors corresponding to their mean annual ET. (a)–(i) corresponding to the nine exorheic
catchments in China.

3.3. Comparison of Different Precipitation and Runoff Inputs for ET Estimation

In all the catchments, the interannual fluctuations of precipitation from different sources show
similar patterns (Figure A3), while the mean annual precipitation shows some differences (Figure 7).
In the MYRB and YeRB, the PCMDC is higher than PGLDAS–1, which is similar to the comparison
from Lv et al. [55] in corresponding regions. In the SRB and LRB (Northeast China), PGLDAS–2.1 is
prominently larger than the other three precipitation sources (Figure A3d,f, and Figure 7b). Caution
should be taken when using the PGLDAS–2.1 in the two catchments. It should be noted that the annual
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PMSWEP is the least for all the catchments (Figure A3), and mean PGLDAS–1 are all less than those of
PCMDC (Figure 7a).

Figure 7. Deviations of annual ET, precipitation, and runoff between (a): WB and GLDAS–1; (b): WB
and GLDAS–2.1; (c): WB and GLEAM. The blue curves with triangles represent the deviations between
annual ET and other ET estimates. The red curves with dots represent the deviations between PCMDC

minus QRSBC and PGLDAS minus the QGLDAS. The purple lines with rhombus points represent the
deviations between PCMDC and other precipitation forcing data. The green lines with square points
represent the deviations of runoff between QRSBC and two versions of QGLDAS.

QRSBC, QGLDAS–1, and QGLDAS–2.1 show larger discrepancies than that for precipitation.
The comparison of annual runoff from 2003–2015 can be found in Figure A4. Since the runoff
is modeled results, it faces more uncertainties than precipitation. As the similar results showed in
YRB (UYRB and MYRB) and YeRB in Lv et al. [55], the in situ runoff was significantly larger than that
from QGLDAS–1. The interannual variations of runoff from different sources show similar patterns in
most catchments except in the YeRB and HRB, which experienced small amounts of runoff. In all
the catchments, QGLDAS–2.1 is larger than that from QGLDAS–1, and they are closer to QRSBC in most
catchments, presumably due to some modification for GLDAS-2.1 [56].

To explore the impact of precipitation and modeled runoff (GLDAS Noah LSM outputs) on ET
estimates, we analyze the difference in both sides of the water balance equation. We first compute the
deviation between mean annual ET, precipitation, runoff, and precipitation minus runoff for 2003–2015
(Figure 7). In the UYRB, the mean annual deviation between ETWB and ETGLDAS–1 reaches 200.9
mm/yr, the mean annual deviation between PCMDC minus QRSBC (expressed as P-Q) and PGLDAS–1

minus QGLDAS–1 are close to the deviation of ET (Figure 7a). This deviation is mostly contributed
by the deviation of runoff (−241.6 mm/yr). As Figure 7a shows, the deviations of P-Q are close to
the deviations of ET in all the catchments. For the water balance (WB) with GLDAS-2.1 (Figure 7b),
the deviations of P-Q are close to the deviations of ET in all the catchments except PRB. In the PRB,
the deviation of mean annual ET is only 5.3 mm/yr, while the deviation of mean annual precipitation
reaches −27.9 mm/yr, and the deviation of mean annual runoff is −4.34 mm/yr (Figure 7b). Based on
the water balance method, we only assess the precipitation forcing data variable for GLEAM ET. As
Figure 7c shows, in the YeRB, LRB, and HRB, the deviation of precipitation may explain the most
differences between annual ETWB and ETGLEAM. In other catchments, it is somewhat opposite between
the deviation of annual precipitation and ET.
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3.4. Uncertainty Estimation Results

Uncertainties of TWSC, PCMDC, QRSBC, and ETWB are shown in Table 4. Large uncertainties of
TWSC appear in the PRB, HuRB, and MRB, which are more than 30 mm/month. The large uncertainties
of TWSC may result from the small study area (HuRB and MRB) and large variations of TWSC caused
by abundant precipitation (PRB and MRB). In three catchments (MYRB, PRB, and MRB), their annual
precipitation is more than 1300 mm/yr, and their uncertainties of precipitation are also more than
11 mm/month. The uncertainties of runoff are similar to those of precipitation except the YeRB, LRB,
and HRB, where the water use is intense and the runoff is little.

Table 4. The uncertainties of monthly TWSC, precipitation, runoff, ET, monthly mean ET and annual
ET from 2003–2015 (unit: mm/month and mm/yr).

Name TWSC PCMDC QRSBC ETWB Monthly Mean ETWB Annual ETWB

UYRB ± 14.1 ± 7.2 ± 1.7 ± 15.9 ± 4.4 ± 89.9
MYRB ± 26.0 ± 11.1 ± 5.0 ± 28.8 ± 8.0 ± 149.8
YeRB ± 14.1 ± 3.9 ± 0.2 ± 14.7 ± 4.1 ± 49.4
SRB ± 18.8 ± 4.5 ± 0.4 ± 19.3 ± 5.4 ± 57.9
PRB ± 33.8 ± 11.8 ± 2.6 ± 35.9 ± 10.0 ± 148.5
LRB ± 17.4 ± 3.6 ± 0.1 ± 17.8 ± 4.9 ± 46.1
HRB ± 22.0 ± 4.1 ± 0.0 ± 22.4 ± 6.2 ± 53.4

HuRB ± 33.8 ± 7.9 ± 0.9 ± 34.7 ± 9.6 ± 100.8
MRB ± 35.3 ± 14.9 ± 4.0 ± 38.5 ± 10.7 ± 188.2

From Table 4, we can conclude that the uncertainties of monthly ET are mainly from TWSC,
which is similar to the conclusions in Long et al. [1] and Pan et al. [13]. Almost in all the catchments,
the uncertainties of TWSC are two times or even three times larger than the uncertainties of PCMDC,
and they are also much larger than the uncertainties of QRSBC. The uncertainties of annual ET are all
larger than 45 mm/yr, while the uncertainties are mainly from the uncertainties of annual precipitation.

4. Discussions

4.1. Impact of TWSC on ET Estimates in Local Catchments

As we can see, in the UYRB, MYRB, PRB, LRB, and HuRB, the ETWB is typically smaller than ETPQ

in the wet season from May to July (Figure 3). Meanwhile, from September to December, the ETWB

is larger than ETPQ. From the water balance equation, it is because, during the wet season, TWSA
usually increases, and TWSC (ds/dt) is greater than 0 (Figure 3). In contrast, in the dry season with less
precipitation, TWSA generally decreases, and TWSC (ds/dt) is smaller than 0, then ETWB is larger than
ETPQ (Figure 3).

It should be noted that the impacts of TWSC on ET estimates are region–specific. On the monthly
scale, ETWB is obviously larger than ETPQ from March to May in the HRB (Figure 3g), which is caused
by the spring irrigation of wheat [13]. The ETWB is larger than ETPQ from March to May, which is 14.4,
22.1, and 21.5 (sum: 57.9) mm/month, respectively. This result is similar to the human-induced ET
(60.0 ± 24.2 mm) estimated by Pan et al. [13] for the same months. While for the SRB and LRB, ETWB is
obviously larger than ETPQ from August to October. Since the main crop is corn in this region, the
water consumption of the growth period is ongoing in the corresponding period. Meanwhile, there is
a significant reduction in PCMDC (−40.3 mm/month) in September relative to August (Figure 3f), which
is different from the HRB. As the different water consumption in agriculture, the monthly TWSC are
region-specific, then the deviations between ETWB and ETPQ are region-specific.

On the other hand, in the MYRB, PRB, and MRB, the RMSEs between the monthly mean of ETWB

and ETPQ is significantly larger than those for other catchments. As Figure A2 shows, the amplitudes
of monthly mean TWSC are stronger than other catchments. These catchments are all located in South
China, with abundant precipitation [57]. During the rainy season, as the water is stored and TWSC is
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positive, the monthly ETWB is smaller than ETPQ in all the catchments. As the corresponding months of
the rainy season are different with respect to different catchments, these catchments also show regional
heterogeneities. However, the region-specific impacts of TWSC on ET deserves more research.

On the annual scale, the sizeable variations between annual ETWB and ETPQ can mostly be
explained by large precipitation anomalies (Figure A3), such as the first year in the Figure 4c (YeRB)
and 4i (MRB) and year 2012 in the Figure 4f (LRB). Their variations correspond to the lowest or highest
precipitation during the whole study period in the corresponding catchment.

It is interesting that all the STDs of mean annual ETWB are less than those for ETPQ (see Table 3),
indicating smaller interannual ETWB fluctuations. In the year with more precipitation, such as the
years 2008 and 2014 in the UYRB, 2012 and 2013 in the SRB, based on the water balance equation,
as the TWSA increases, TWSC is greater than 0, then ETWB should be less than ETPQ in the given
year. On the contrary, in the years with precipitation deficit, as the TWSA usually decreases, the ETWB

would be higher than ETPQ. We would deem that the TWSA plays a role as a reservoir in the terrestrial
water cycle, impounding water and reducing the amount of water that returns to the atmosphere
through evapotranspiration or other forms in the wet years, but discharging water in the dry years.
We can conclude that estimating annual ET simply by subtracting runoff from precipitation would
overestimate the interannual fluctuations of ET.

The difference between mean annual ETWB and ETPQ reflects the long-term rate of TWSA in a
catchment. The ETWB is significantly higher than ETPQ in the HRB, where the water depletion (mainly
from groundwater) is fast [58]. In the LRB and YeRB, the mean annual ETWB is also larger than ETPQ,
which also indicates the water depletion there [58]. Conversely, TWSA increases in the UYRB, MYRB,
SRB, and PRB, and therefore the mean annual ETWB is typically less than that for ETPQ.

4.2. The Differences between ETWB and other ET Estimates

On the monthly scale, the RMSEs between ETWB and ET from different GRACE solutions are
smaller, and the ETCSR–DDK4 is closest to ETWB among the three GRACE solutions (Table A1). In the
YeRB, SRB, and LRB, the maximum RMSEs are between ETWB and ETGLEAM, and all of these catchments
are located in North China and are semiarid catchments. In the UYRB and MRB, the RMSEs between
ETWB and ETGLDAS–1 show the maximum values. In the MYRB, PRB, HRB, and HuRB, the RMSEs
between ETWB and ETPQ show the maximum values, which indicates that impacts of ignoring TWSC
on the ET estimate is the most, and it should be noted that all of these catchments are humid catchments
except HRB with intense water consumption.

On the annual scale, the RMSEs between ETWB and ET from the three GRACE solutions show
small values, while ETCSRT–GSH.sf is closest to ETWB among the three solutions (Table A2). It indicates
some differences in the TWSC estimate on the monthly and annual scales. The RMSEs between ETWB

and ET from other products markedly exceed those between ETWB and ET from other GRACE solutions.
In the UYRB, MYRB, PRB, and MRB, the RMSEs between ETWB and ETGLDAS–1 show the maximum
values, which are all in humid regions. It should be noted that in the UYRB, the RMSE between ETWB

and ETPQ is even less than the RMSEs between ETWB and ET from other GRACE solutions, which
indicates that the interannual variations of TWSC are very small in this catchment. ET estimates from
different GRACE solutions generally show relatively small deviations in all the catchments, and ET
estimates from different products are generally relatively large deviations in the humid catchments.

4.3. Impact of Precipitation and Modeled Runoff from a Water Balance Perspective

The RMSEs between annual ETWB and other ET results are further analyzed. Their results are
shown in Table A3 (WB – GLDAS-1), Table A4 (WB – GLDAS-2.1), and Table A5 (WB – GLEAM). For
Table A3, in the UYRB, MYRB, SRB, PRB, and MRB, the RMSEs between ETWB and ETGLDAS–1 can be
markedly reduced if the deviation of PGLDAS–1 and QGLDAS–1 can both be taken into consideration.
Generally speaking, though GLDAS ET outputs are not computed based on the water balance
method [9,59]. If the accuracy of PGLDAS–1 and QGLDAS–1 can be improved in China, e.g., modeled
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QGLDAS–1 verified by in situ runoff. Then the ET estimate would also benefit from improved runoff
outputs based on the water balance equation during the simulation process. In the YeRB, LRB, HRB,
and HuRB, the RMSEs are also reduced, with smaller proportions reduced than above catchments.
In the YeRB and LRB, if we only consider the difference of runoff, the RMSEs would even increase,
and in the HRB, the RMSE is also slightly reduced. Since the outflows are much smaller in these three
catchments than other catchments, the deviation of runoff is small itself (Figure 7a). Unlike the other
humid catchments, in the three semiarid catchments (YeRB, LRB, and HRB), the proportions of the
RMSEs of ET–P as opposed to ET are reduced, which indicates that deviations of precipitation forcing
data indeed contribute to deviations of ET.

In Table A4, the RMSEs between ETWB and ETGLDAS–2.1 reduced in all the catchments except HRB
when the deviations of precipitation and runoff can be considered. In the YRB (UYRB and MYRB),
the RMSEs between QRSBC and QGLDAS–2.1 account for most of the deviations. In the HRB and MRB,
the deviations between ETWB and ETGLDAS–2.1 do not result from the precipitation difference. It should
be noted that in the LRB, if the precipitation inconsistency is considered (Figure A3f), the RMSE
between ETWB and ETGLDAS–2.1 is dramatically reduced, which can explain the cause of overestimation
of the annual ET for ETGLDAS–2.1. In the HRB, with the deviation of precipitation and modeled runoff
considered, the proportion of the RMSE increased (Table A4). Since the HRB is heavily influenced by
human activities [13,31], the RMSE between mean annual ETWB and GLDAS ET outputs is mainly
contributed by anthropogenic activities [13].

As for the RMSEs between ETWB and ETGLEAM, we only compute their precipitation difference
(Table A5). In the YeRB, LRB, HRB, and HuRB, if the precipitation difference can be taken into
consideration, the RMSEs between ETWB and ETGLEAM would be reduced, the YeRB, LRB, and HRB
are semiarid catchments. Figure A3 also shows a large deviation between PCMDC and PMSWEP. The
proportion of the RMSE reduced in the YeRB reaches 72.8%. In the UYRB, MYRB, SRB, PRB, and MRB,
the RMSEs would even increase, which indicates that the deviations of precipitation do not contribute
or contribute little to the deviation between ETGLEAM and ETWB. The RMSE between ET and ET–P
rapidly increases from 86.9 to 228.7 mm/yr in the MRB, there is a small difference between their annual
precipitation actually (Figure A3i).

Here we try to explore the deviation between ETWB and GLDAS or GLEAM ET based on the
water balance equation. The RMSE (ET) would decrease if the deviation of PGLDAS and modeled
QGLDAS in the GLDAS LSM can be taken into consideration. In four catchments (YeRB, LRB, HRB, and
HuRB), precipitation differences contribute to the deviation between ETWB and ETGLEAM. However,
the increased RMSE (ET-P), RMSE (ET-Q) and RMSE (ET-(P-Q)) relative to RMSE (ET) should be
further explored. We do not investigate other forcing variables except precipitation to derive ET, e.g.,
radiation, air temperature, and snow water equivalent [6,9,60]. Therefore, a future intercomparison
can be performed to identify the impact of these variables on ET estimates.

4.4. Impact of Groundwater Baseflow and Water Diversion on ET Estimates

Based on the water balance equation, the groundwater inflow and outflow across the basin
boundary would also affect the estimate of ET. As an example, in the LRB, according to the estimate
of groundwater outflow from Zhang and Li [61], the outflow is 0.61 × 108 m3/yr, and its impact on
the annual ET is only ~0.3 mm/yr. Therefore, it can be negligible relative to the annual ET (417.7 ±
46.5 mm/yr).

Water diversion in the basin inside and outside is also a part of basin water balance. In China,
there is South-to-North water diversion, which includes the east route, the middle route, and the west
route projects (http://nsbd.mwr.gov.cn/). The west route project has not been built yet. The starting
point of the east route is in the mainstream of Lower Yangtze River, transporting water to Shandong
Province, which is not in our study area. The middle route transports water from the MYRB to the
HRB, is going through the HuRB and the YeRB. It transported water to the North in October 2014 for
the first time, with a water volume of 21.67 × 108 m3 in the first year. The impact on the ET estimate is
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3.1 mm/yr for the MYRB, which is relatively small compared to annual ET (689.7 ± 50.3 mm/yr). If the
water is totally supplied to the HRB, the impact on the ET estimate will reach 15.18 mm/yr, exerting a
certain influence on the ET estimate in the HRB (494.2 ± 37.2 mm/yr). If we estimate the ET after 2015
in this region, it is necessary to account for the water diversion.

4.5. Impact of Spatial Scale on ET Estimate

The area of the MRB is only 5.45 × 104 km2, which is less than the typical GRACE footprint
(20 × 104 km2). However, some studies have demonstrated that GRACE is capable of detecting
TWSA in local regions with an area smaller than GRACE resolution if the signal amplitude is large
enough [44,62,63]. As the MYRB receives the most abundant precipitation among these catchments
(Table 3), TWSA should have higher SNR (Signal to Noise Ratio), and TWSC tends to have higher
reliability. On the other hand, the maximum uncertainty of monthly ET estimate is indeed in the MRB,
where the uncertainties of monthly TWSC, precipitation, and runoff are also large (Table 3). Thus, we
recommend that caution should be exercised when using TWSA estimates in regions with a small area.

5. Conclusions

In this study, the ET was calculated based on the water balance equation in nine exorheic
catchments of China. The impacts of ignoring terrestrial water storage changes and different terrestrial
water storage changes from GRACE solutions on ET estimates were analyzed. The intercomparison
between ETWB and ET estimates from GLEAM, and GLDAS land surface models was also conducted.
The comparison was carried out on the monthly and annual scales.

We found that the impact of ignoring terrestrial water storage changes on the estimate of ET
is noteworthy. The RMSEs of between monthly mean ETWB and ETPQ range from 6.4–27.2 mm/yr
(17.5–45.2% in corresponding mean monthly ET). The annual RMSEs between ETWB and ETPQ in the
estimate of ET range from 12.0–105.8 mm/yr (2.6–12.7% in corresponding annual ET) among these
catchments. The STDs of annual ETWB for study periods are all less than those from ETPQ, which simply
estimate the annual ET by subtracting runoff from precipitation would overestimate the interannual
variations of ET. Thus, TWSC should not be ignored in the estimate of ET.

The ET estimates from different GRACE solutions show relatively small deviations. The RMSEs
among different GRACE solutions in most catchments are less than 10 mm/month on the monthly
scale and 30 mm/yr on the annual scale. In all the catchments except the HRB and MRB, CSR-GSH.sf
solutions exaggerate the monthly mean TWSC, and caution should be taken when applying this
solution to derive TWSC.

Different precipitation products are assessed to explain the inconsistency between different ET
products and regional ET from a water balance perspective. The difference between ETWB and ET
from GLDAS land surface model results can be partly explained from deviation from precipitation
forcing data in several catchments, especially in the LRB. Furthermore, the ET estimates would
also benefit from improved runoff outputs during the simulation process. In the three semiarid
catchments and the HuRB, the RMSEs between ETWB and ETGLEAM can be reduced, provided that
the difference of precipitation can be taken into consideration. However, the increased RMSEs with
deviations of precipitation forcing data and modeled runoff considering in the estimate of ET deserves
further exploration.

The ET estimates show some arresting interannual fluctuations, which warrants further study.
In the SRB and MRB, there may exist some positive trends, which are likely resulting from increased
precipitation or other effects. The trends are also worthy of further research. In summary, our study
emphasizes the capability of GRACE in estimating the ET on the basin scale. The ET estimate based on
water balance can be a benchmark to other ET products, which would benefit the GLDAS LSMs and
remote sensing ET estimates.
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Appendix A

Figure A1. Monthly mean TWSC from different GRACE solutions and products in the exorheic
catchments of China from 2003–2015. (a)–(i) corresponding to the nine exorheic catchments in China.

Figure A2. Annual ET based on different GRACE solutions and products in the exorheic catchments of
China from 2003 to 2015. (a)–(i) corresponding to the nine exorheic catchments in China.
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Figure A3. Annual precipitation from CMDC, and the forcing data of two versions of GLDAS and
GLEAM from 2003–2015. (a)–(i) corresponding to the nine exorheic catchments in China.

Figure A4. Annual runoff from RSBC, GLDAS–1 Noah LSM and GLDAS–2.1 Noah LSM for 2003–2015.
(a)–(i) corresponding to the nine exorheic catchments in China.

Table A1. The root mean square errors (RMSEs) between monthly mean ETWB and other ET estimations
from 2003–2015 (unit: mm/month).

Name
RMSEs between ETWB and other ET Results

ETPQ ETJPL–M.dsf ETCSRT–GSH.sf ETCSR–DDK4 ETGLDAS–1 ETGLDAS–2.1 ETGLEAM

UYRB 17.4 3.1 8.3 2.3 19.5 16.7 16.6
MYRB 24.9 6.9 14.8 4.8 21.4 13.2 13.8
YeRB 6.4 3.0 5.2 2.3 7.2 7.5 13.0
SRB 8.7 3.5 7.5 4.1 9.0 14 16.5
PRB 26.4 4.7 16.3 3.3 15.3 11.5 17.5
LRB 10.6 6.4 8.2 3.9 7.2 11.1 14.1
HRB 13.0 7.6 3.2 4.6 8.0 7.7 12.1

HuRB 17.8 7.2 9.9 5.4 12.3 13.5 15.7
MRB 27.2 17.5 8.8 8.1 27.5 26.3 24.7
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Table A2. The RMSEs between annual ETWB and other ET estimations from 2003–2015 (unit: mm/yr).

Name
RMSEs between ETWB and other ET Results

ETPQ ETJPL–M.dsf ETCSRT–GSH.sf ETCSR–DDK4 ETGLDAS–1 ETGLDAS–2.1 ETGLEAM

UYRB 12.0 21.2 15.0 18.5 203.5 169.3 145.9
MYRB 46.5 19.5 18.5 18.2 222.8 113.3 100.0
YeRB 29.6 15 12.5 19.7 23.9 17.2 69.8
SRB 50.5 19.1 17.7 18.9 73.4 146 19.6
PRB 71.2 23.9 29.4 31.9 131.2 49.1 95.2
LRB 35.4 18.9 20.1 25.6 31.7 99.8 76.1
HRB 37.7 22.5 15.0 24.0 35.4 20.5 106.9

HuRB 54.7 26.9 20.1 43.2 60.3 86.3 82.7
MRB 105.8 37.2 35.5 33.7 168.4 52.9 86.9

Table A3. The RMSEs between mean annual ETWB and ETGLDAS–1 (expressed as RMSE(ET)). The RMSEs
between annual ETWB minus PCMDC and annual ETGLDAS–1 minus PGLDAS–1 (expressed as RMSE(ET–P)).
The RMSEs between annual ETWB minus QRSBC and annual ETGLDAS–1 minus QGLDAS–1 (expressed
as RMSE(ET–Q)). The RMSEs between annual ETWB subtracting the result of PCMDC minus QRSBC

and annual ETGLDAS–1 subtracting the result of PGLDAS–1 minus QGLDAS–1 from 2003–2015 (expressed
as RMSE(ET–(P–Q))). The proportion of RMSE changed of RMSE(ET–P) as opposed to RMSE (ET),
RMSE(ET–Q) as opposed to RMSE (ET) and RMSE(ET–(P–Q)) as opposed to RMSE (ET).

Name
RMSE (mm/yr) Proportion of RMSE Changed (%)

ET ET-P ET-Q ET-(P-Q) ET-P ET-Q ET-(P-Q)

UYRB 203.5 247.3 55.6 22.0 21.5 −72.7 −89.2
MYRB 222.8 258.4 51.6 31.7 16 −76.8 −85.8
YeRB 23.9 17.0 34.2 13.1 −29 43 −45
SRB 73.4 98.1 28.5 13.1 33.6 −61.2 −82.2
PRB 131.2 188.7 79.0 33.8 43.9 −39.8 −74.3
LRB 31.7 18.2 36.3 22.2 −42.6 14.6 −30.1
HRB 35.4 30.8 32.0 27.9 −12.9 −9.5 −21.2

HuRB 60.3 91.3 37.9 32.8 51.4 −37.2 −45.6
MRB 168.4 244.3 100.2 35.1 45.1 −40.5 −79.1

Table A4. The RMSEs between mean annual ETWB and ETGLDAS–2.1 (expressed as RMSE(ET)).
The RMSEs between annual ETWB minus PCMDC and annual ETGLDAS–2.1 minus PGLDAS–2.1 (expressed
as RMSE(ET–P)). The RMSEs between annual ETWB minus QRSBC and annual ETGLDAS–2.1 minus
QGLDAS–2.1 (expressed as RMSE(ET–Q)). The RMSEs between annual ETWB subtracting the result of
PCMDC minus QRSBC and annual ETGLDAS–2.1 subtracting the result of PGLDAS–2.1 minus QGLDAS–2.1

from 2003–2015 (expressed as RMSE(ET–(P–Q))). The proportion of RMSE changed of RMSE(ET–P) as
opposed to RMSE (ET), RMSE(ET–Q) as opposed to RMSE (ET) and RMSE(ET–(P–Q)) as opposed to
RMSE (ET).

Name
RMSE (mm/yr) Proportion of RMSE Changed (%)

ET ET-P ET-Q ET-(P-Q) ET-P ET-Q ET-(P-Q)

UYRB 169.3 139.8 45.9 15.1 −17.5 −72.9 −91.1
MYRB 113.3 165.8 59.4 32.7 46.4 −47.6 −71.1
YeRB 17.2 14.9 16.4 14.4 −13.6 −4.4 −16.3
SRB 146.0 76.3 86.3 22.9 −47.7 −40.9 −84.3
PRB 49.1 37.7 61.9 35.2 −23.4 25.9 −28.3
LRB 99.8 28.0 105.6 28.9 −71.9 5.8 −71
HRB 20.5 38.0 30.8 30.1 84.9 50.2 46.4

HuRB 86.3 75.3 64.3 33.3 −12.7 −25.5 −61.4
MRB 52.9 120.7 117.5 36.9 128.1 122.1 −30.2
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Table A5. The RMSEs between mean annual ETWB and ETGLEAM (expressed as RMSE(ET)), RMSEs
between annual ETWB minus PCMDC and annual ETGLEAM minus PMSWEP from 2003–2015 (expressed
as RMSE(ET–P)).

Name
RMSE (mm/yr) Proportion of RMSE Changed (%)

ET ET-P ET-P

UYRB 145.9 192.8 32.1
MYRB 100.0 212.6 112.6
YeRB 69.8 19.0 −72.8
SRB 19.6 45.2 130.5
PRB 95.2 152.5 60.3
LRB 76.1 35.2 −53.8
HRB 106.9 34.3 −67.9

HuRB 82.7 51.3 −37.9
MRB 86.9 228.7 163.0

References

1. Long, D.; Longuevergne, L.; Scanlon, B.R. Uncertainty in evapotranspiration from land surface modeling,
remote sensing, and GRACE satellites. Water Resour. Res. 2014, 50, 1131–1151. [CrossRef]

2. Wang, K.C.; Dickinson, R.E. A review of global terrestrial evapotranspiration: observation, modeling,
climatology, and climatic variability. Rev. Geophys. 2012, 50. [CrossRef]

3. Miralles, D.G.; van den Berg, M.J.; Gash, J.H.; Parinussa, R.M.; de Jeu, R.A.M.; Beck, H.E.; Holmes, T.R.H.;
Jiménez, C.; Verhoest, N.E.C.; Dorigo, W.A.; et al. El Niño–La Niña cycle and recent trends in continental
evaporation. Nat. Clim. Change 2013, 4, 122–126. [CrossRef]

4. Rodell, M.; Famiglietti, J.S.; Chen, J.; Seneviratne, S.I.; Viterbo, P.; Holl, S.; Wilson, C.R. Basin scale estimates
of evapotranspiration using GRACE and other observations. Geophys. Res. Lett. 2004, 31, 1–4. [CrossRef]

5. Yu, G.R.; Wen, X.F.; Sun, X.M.; Tanner, B.D.; Lee, X.H.; Chen, J.Y. Overview of ChinaFLUX and evaluation of
its eddy covariance measurement. Agric. For. Meteorol. 2006, 137, 125–137. [CrossRef]

6. Martens, B.; Miralles, D.G.; Lievens, H.; van der Schalie, R.; de Jeu, R.A.M.; Fernandez–Prieto, D.; Beck, H.E.;
Dorigo, W.A.; Verhoest, N.E.C. GLEAM v3: satellite–based land evaporation and root–zone soil moisture.
Geosci. Model Dev. 2017, 10, 1903–1925. [CrossRef]

7. Mu, Q.Z.; Zhao, M.S.; Running, S.W. Improvements to a MODIS global terrestrial evapotranspiration
algorithm. Remote Sens. Environ. 2011, 115, 1781–1800. [CrossRef]

8. Yang, Y.T.; Long, D.; Shang, S.H. Remote estimation of terrestrial evapotranspiration without using
meteorological data. Geophys. Res. Lett. 2013, 40, 3026–3030. [CrossRef]

9. Rodell, M.; Houser, P.R.; Jambor, U.; Gottschalck, J.; Mitchell, K.; Meng, C.J.; Arsenault, K.; Cosgrove, B.;
Radakovich, J.; Bosilovich, M.; et al. The global land data assimilation system. Bull. Am. Meteorol. Soc. 2004,
85, 381–394. [CrossRef]

10. Bai, P.; Liu, X.M. Intercomparison and evaluation of three global high–resolution evapotranspiration products
across China. J. Hydrol. 2018, 566, 743–755. [CrossRef]

11. Liu, W.B.; Wang, L.; Zhou, J.; Li, Y.Z.; Sun, F.B.; Fu, G.B.; Li, X.P.; Sang, Y.F. A worldwide evaluation of
basin–scale evapotranspiration estimates against the water balance method. J. Hydrol. 2016, 538, 82–95.
[CrossRef]

12. Tapley, B.D.; Bettadpur, S.; Ries, J.C.; Thompson, P.F.; Watkins, M.M. GRACE measurements of mass
variability in the Earth system. Science 2004, 305, 503–505. [CrossRef] [PubMed]

13. Pan, Y.; Zhang, C.; Gong, H.L.; Yeh, P.J.F.; Shen, Y.J.; Guo, Y.; Huang, Z.Y.; Li, X.J. Detection of human–induced
evapotranspiration using GRACE satellite observations in the Haihe River basin of China. Geophys. Res. Lett.
2017, 44, 190–199. [CrossRef]

14. Eicker, A.; Forootan, E.; Springer, A.; Longuevergne, L.; Kusche, J. Does GRACE see the terrestrial water
cycle “intensifying”? J. Geophys. Res. Atmos. 2016, 121, 733–745. [CrossRef]

15. Ramillien, G.; Frappart, F.; Guntner, A.; Ngo–Duc, T.; Cazenave, A.; Laval, K. Time variations of the regional
evapotranspiration rate from Gravity Recovery and Climate Experiment (GRACE) satellite gravimetry. Water
Resour. Res. 2006, 42, 1–8. [CrossRef]

46



Remote Sens. 2020, 12, 511

16. Boronina, A.; Ramillien, G. Application of AVHRR imagery and GRACE measurements for calculation of
actual evapotranspiration over the Quaternary aquifer (Lake Chad basin) and validation of groundwater
models. J. Hydrol. 2008, 348, 98–109. [CrossRef]

17. Ferguson, C.R.; Sheffield, J.; Wood, E.F.; Gao, H.L. Quantifying uncertainty in a remote sensing–based
estimate of evapotranspiration over continental USA. Int. J. Remote Sens. 2010, 31, 3821–3865. [CrossRef]

18. Swann, A.L.S.; Koven, C.D. A Direct Estimate of the Seasonal Cycle of Evapotranspiration over the Amazon
Basin. J. Hydrometeorol. 2017, 18, 2173–2185. [CrossRef]

19. Castle, S.L.; Reager, J.T.; Thomas, B.F.; Purdy, A.J.; Lo, M.H.; Famiglietti, J.S.; Tang, Q.H. Remote detection of
water management impacts on evapotranspiration in the Colorado River Basin. Geophys. Res. Lett. 2016, 43,
5089–5097. [CrossRef]

20. Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.;
Balsamo, G.; Bauer, P. The ERA–Interim reanalysis: configuration and performance of the data assimilation
system. Q. J. R. Meteorolog. Soc. 2011, 137, 553–597. [CrossRef]

21. Badgley, G.; Fisher, J.B.; Jimenez, C.; Tu, K.P.; Vinukollu, R. On Uncertainty in Global Terrestrial
Evapotranspiration Estimates from Choice of Input Forcing Datasets. J. Hydrometeorol. 2015, 16, 1449–1455.
[CrossRef]

22. Mao, Y.N.; Wang, K.C.; Liu, X.M.; Liu, C.M. Water storage in reservoirs built from 1997 to 2014 significantly
altered the calculated evapotranspiration trends over China. J. Geophys. Res. Atmos. 2016, 121, 10097–10112.
[CrossRef]

23. Mao, Y.N.; Wang, K.C. Comparison of evapotranspiration estimates based on the surface water balance,
modified Penman–Monteith model, and reanalysis data sets for continental China. J. Geophys. Res. Atmos.
2017, 122, 3228–3244. [CrossRef]

24. Jiang, Y.Y.; Wang, W.; Zhou, Z.H. Evaluation of MODIS MOD16 Evapotranspiration Product in Chinese
River Basins. J. Nat. Resour. 2017, 32, 517–528. [CrossRef]

25. Li, X.L.; Liang, S.L.; Yuan, W.P.; Yu, G.R.; Cheng, X.; Chen, Y.; Zhao, T.B.; Feng, J.M.; Ma, Z.G.; Ma, M.G.; et al.
Estimation of evapotranspiration over the terrestrial ecosystems in China. Ecohydrology 2014, 7, 139–149.
[CrossRef]

26. Mu, Q.Z.; Heinsch, F.A.; Zhao, M.; Running, S.W. Development of a global evapotranspiration algorithm
based on MODIS and global meteorology data. Remote Sens. Environ. 2007, 111, 519–536. [CrossRef]

27. Cleugh, H.A.; Leuning, R.; Mu, Q.Z.; Running, S.W. Regional evaporation estimates from flux tower and
MODIS satellite data. Remote Sens. Environ. 2007, 106, 285–304. [CrossRef]

28. Zhang, Y.Q.; Leuning, R.; Chiew, F.H.S.; Wang, E.L.; Zhang, L.; Liu, C.M.; Sun, F.B.; Peel, M.C.; Shen, Y.J.;
Jung, M. Decadal Trends in Evaporation from Global Energy and Water Balances. J. Hydrometeorol. 2012, 13,
379–391. [CrossRef]

29. Senay, G.B.; Leake, S.; Nagler, P.L.; Artan, G.; Dickinson, J.; Cordova, J.T.; Glenn, E.P. Estimating basin scale
evapotranspiration (ET) by water balance and remote sensing methods. Hydrol. Process. 2011, 25, 4037–4049.
[CrossRef]

30. Xue, B.L.; Wang, L.; Li, X.P.; Yang, K.; Chen, D.L.; Sun, L.T. Evaluation of evapotranspiration estimates for
two river basins on the Tibetan Plateau by a water balance method. J. Hydrol. 2013, 492, 290–297. [CrossRef]

31. Feng, W.; Zhong, M.; Lemoine, J.M.; Biancale, R.; Hsu, H.T.; Xia, J. Evaluation of groundwater depletion
in North China using the Gravity Recovery and Climate Experiment (GRACE) data and ground–based
measurements. Water Resour. Res. 2013, 49, 2110–2118. [CrossRef]

32. Scanlon, B.R.; Longuevergne, L.; Long, D. Ground referencing GRACE satellite estimates of groundwater
storage changes in the California Central Valley, USA. Water Resour. Res. 2012, 48. [CrossRef]

33. Zeng, Z.Z.; Piao, S.L.; Lin, X.; Yin, G.D.; Peng, S.S.; Ciais, P.; Myneni, R.B. Global evapotranspiration over
the past three decades: estimation based on the water balance equation combined with empirical models.
Environ. Res. Lett. 2012, 7, 014026. [CrossRef]

34. Wang, D.B. Evaluating interannual water storage changes at watersheds in Illinois based on long–term soil
moisture and groundwater level data. Water Resour. Res. 2012, 48. [CrossRef]

35. Ministry of Water Resources of the People’s Republic of China (MWR). River Sediment Bulletin of China;
Ministry of Water Resour. of the PRC, Ed.; China Water Power Press: Beijing, China, 2013; p. 85.

36. Tan, Y.J. Alternation of Dry and Wet Climate Zone and its Cause Analysis in China in Last 50 Years; Nanjing
University of Information Technology: Nanjing, China, 2016.

47



Remote Sens. 2020, 12, 511

37. Forootan, E.; Safari, A.; Mostafaie, A.; Schumacher, M.; Delavar, M.; Awange, J.L. Large–Scale Total Water
Storage and Water Flux Changes over the Arid and Semiarid Parts of the Middle East from GRACE and
Reanalysis Products. Surv. Geophys. 2016, 38, 591–615. [CrossRef]

38. Long, D.; Shen, Y.J.; Sun, A.; Hong, Y.; Longuevergne, L.; Yang, Y.T.; Li, B.; Chen, L. Drought and flood
monitoring for a large karst plateau in Southwest China using extended GRACE data. Remote Sens. Environ.
2014, 155, 145–160. [CrossRef]

39. Li, Q.; Luo, Z.C.; Zhong, B.; Zhou, H. An Improved Approach for Evapotranspiration Estimation Using
Water Balance Equation: Case Study of Yangtze River Basin. Water 2018, 10, 812. [CrossRef]

40. Li, X.Y.; Long, D.; Han, Z.Y.; Scanlon, B.R.; Sun, Z.L.; Han, P.F.; Hou, A.Z. Evapotranspiration Estimation for
Tibetan Plateau Headwaters Using Conjoint Terrestrial and Atmospheric Water Balances and Multisource
Remote Sensing. Water Resour. Res. 2019, 55, 8608–8630. [CrossRef]

41. Save, H.; Bettadpur, S.; Tapley, B.D. High–resolution CSR GRACE RL05 mascons. J. Geophys. Res. Solid Earth
2016, 121, 7547–7569. [CrossRef]

42. Wiese, D.N.; Landerer, F.W.; Watkins, M.M. Quantifying and reducing leakage errors in the JPL RL05M
GRACE mascon solution. Water Resour. Res. 2016, 52, 7490–7502. [CrossRef]

43. Landerer, F.W.; Swenson, S.C. Accuracy of scaled GRACE terrestrial water storage estimates. Water Resour.
Res. 2012, 48. [CrossRef]

44. Kusche, J.; Schmidt, R.; Petrovic, S.; Rietbroek, R. Decorrelated GRACE time–variable gravity solutions by
GFZ, and their validation using a hydrological model. J. Geod. 2009, 83, 903–913. [CrossRef]

45. Yi, S.; Song, C.Q.; Wang, Q.Y.; Wang, L.S.; Heki, K.; Sun, W.K. The potential of GRACE gravimetry to detect
the heavy rainfall–induced impoundment of a small reservoir in the upper Yellow River. Water Resour. Res.
2017, 53, 6562–6578. [CrossRef]

46. Zhao, Y.; Zhu, J.; Xu, Y. Establishment and assessment of the grid precipitation datasets in China for recent
50 years. J. Meteorol. Sci 2014, 34, 414–420. [CrossRef]

47. Ren, Z.G.; Zhang, M.J.; Wang, S.J.; Qiang, F.; Zhu, X.F.; Dong, L. Changes in daily extreme precipitation
events in South China from 1961 to 2011. J. Geog. Sci. 2015, 25, 58–68. [CrossRef]

48. Ek, M.B.; Mitchell, K.E.; Lin, Y.; Rogers, E.; Grunmann, P.; Koren, V.; Gayno, G.; Tarpley, J.D. Implementation
of Noah land surface model advances in the National Centers for Environmental Prediction operational
mesoscale Eta model. J. Geophys. Res. Atmos. 2003, 108. [CrossRef]

49. Beck, H.E.; van Dijk, A.I.J.M.; Levizzani, V.; Schellekens, J.; Miralles, D.G.; Martens, B.; de Roo, A. MSWEP:
3–hourly 0.25 degrees global gridded precipitation (1979–2015) by merging gauge, satellite, and reanalysis
data. Hydrol. Earth Syst. Sci. 2017, 21, 589–615. [CrossRef]

50. Zhang, Z.Z.; Chao, B.F.; Chen, J.L.; Wilson, C.R. Terrestrial water storage anomalies of Yangtze River Basin
droughts observed by GRACE and connections with ENSO. Global Planet. Change 2015, 126, 35–45. [CrossRef]

51. Zhong, Y.L.; Zhong, M.; Feng, W.; Zhang, Z.Z.; Shen, Y.C.; Wu, D.C. Groundwater Depletion in the West
Liaohe River Basin, China and Its Implications Revealed by GRACE and In Situ Measurements. Remote Sens.
2018, 10, 493. [CrossRef]

52. Syed, T.H.; Famiglietti, J.S.; Rodell, M.; Chen, J.; Wilson, C.R. Analysis of terrestrial water storage changes
from GRACE and GLDAS. Water Resour. Res. 2008, 44. [CrossRef]

53. Scanlon, B.R.; Zhang, Z.Z.; Save, H.; Wiese, D.N.; Landerer, F.W.; Long, D.; Longuevergne, L.; Chen, J.L.
Global evaluation of new GRACE mascon products for hydrologic applications. Water Resour. Res. 2016, 52,
9412–9429. [CrossRef]

54. Ran, J.; Ditmar, P.; Klees, R.; Farahani, H.H. Statistically optimal estimation of Greenland Ice Sheet mass
variations from GRACE monthly solutions using an improved mascon approach. J. Geod. 2018, 92, 299–319.
[CrossRef] [PubMed]

55. Lv, M.X.; Ma, Z.G.; Yuan, X.; Lv, M.Z.; Li, M.X.; Zheng, Z.Y. Water budget closure based on GRACE
measurements and reconstructed evapotranspiration using GLDAS and water use data for two large
densely–populated mid–latitude basins. J. Hydrol. 2017, 547, 585–599. [CrossRef]

56. Rodell, M.; Beaudoing, H.K. GLDAS Noah Land Surface Model L4 monthly 1 x 1 degree V2.1; NASA/GSFC/HSL,
Ed.; Goddard Space Flight Center Earth Sciences Data and Information Services Center (GES DISC): Greenbelt,
MD, USA, 2016. [CrossRef]

57. Zhang, Q.; Singh, V.P.; Sun, P.; Chen, X.; Zhang, Z.X.; Li, J.F. Precipitation and streamflow changes in China:
changing patterns, causes and implications. J. Hydrol. 2011, 410, 204–216. [CrossRef]

48



Remote Sens. 2020, 12, 511

58. Feng, W.; Shum, C.K.; Zhong, M.; Pan, Y. Groundwater Storage Changes in China from Satellite Gravity:
An Overview. Remote Sens. 2018, 10, 674. [CrossRef]

59. Rui, H.; Beaudoing, H. Readme Document for Global Land Data Assimilation System Version 2 (GLDAS–2)
Products; DISC/HSL Group, Ed.; Goddard Space Flight Center Earth Sciences Data and Information Services
Center (GES DISC): Greenbelt, MD, USA, 2011.

60. Wang, M.M.; He, G.J.; Zhang, Z.M.; Wang, G.Z.; Zhang, Z.J.; Cao, X.J.; Wu, Z.J.; Liu, X.G. Comparison
of Spatial Interpolation and Regression Analysis Models for an Estimation of Monthly Near Surface Air
Temperature in China. Remote Sens. 2017, 9, 1278. [CrossRef]

61. Zhang, Z.H.; Li, L.R. Groundwater Resources of China (Liaoning Volume); China Cartographic Publishing House:
Beijing, China, 2005; p. 111.

62. Longuevergne, L.; Wilson, C.R.; Scanlon, B.R.; Cretaux, J.F. GRACE water storage estimates for the Middle
East and other regions with significant reservoir and lake storage. Hydrol. Earth Syst. Sci. 2013, 17, 4817–4830.
[CrossRef]

63. Wang, X.W.; de Linage, C.; Famiglietti, J.; Zender, C.S. Gravity Recovery and Climate Experiment (GRACE)
detection of water storage changes in the Three Gorges Reservoir of China and comparison with in situ
measurements. Water Resour. Res. 2011, 47. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

49





remote sensing 

Article

Quantitative Evaluations and Error Source Analysis
of Fengyun-2-Based and GPM-Based Precipitation
Products over Mainland China in Summer, 2018

Jintao Xu 1, Ziqiang Ma 2,3, Guoqiang Tang 4,5, Qingwen Ji 2, Xiaoxiao Min 1, Wei Wan 2

and Zhou Shi 1,*

1 Institute of Agricultural Remote Sensing and Information Technology Application, College of Environmental
and Resource Sciences, Zhejiang University, Hangzhou 310058, China; jintaox@zju.edu.cn (J.X.);
xiaoxiaom@zju.edu.cn (X.M.)

2 Institute of Remote Sensing and Geographical Information Systems, School of Earth and Space Sciences,
Peking University, Beijing 100871, China; ziqma@pku.edu.cn (Z.M.); qwenji@pku.edu.cn (Q.J.);
w.wan@pku.edu.cn (W.W.)

3 State Key Laboratory of Resources and Environmental Information System, Institute of Geographical
Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China

4 University of Saskatchewan Coldwater Lab, Canmore, AB T1W 3G1, Canada; guoqiang.tang@usask.ca
5 Centre for Hydrology, University of Saskatchewan, Saskatoon, SK S7N 1K2, Canada
* Correspondence: shizhou@zju.edu.cn; Tel.: +86-188-5818-6616

Received: 13 November 2019; Accepted: 10 December 2019; Published: 12 December 2019

Abstract: Satellite-based quantitative precipitation estimates (QPE) with a fine quality are of
great importance to global water cycle and matter and energy exchange research. In this study,
we firstly apply various statistical indicators to evaluate and compare the main current satellite-based
precipitation products from Chinese Fengyun (FY)-2 and the Global Precipitation Measurement
(GPM), respectively, over mainland China in summer, 2018. We find that (1) FY-2G QPE and Integrated
Multi-satellitE Retrievals for GPM (IMERG) perform significantly better than FY-2E QPE, using rain
gauge data, with correlation coefficients (CC) varying from 0.65 to 0.90, 0.80 to 0.90, and 0.40 to 0.53,
respectively; (2) IMERG agrees well with rain gauge data at monthly scale, while it performs worse
than FY-2G QPE at hourly and daily scales, which may be caused by its algorithms; (3) FY-2G QPE
underestimates the precipitation in summer, while FY-2E QPE and IMERG generally overestimate
the precipitation; (4) there is an interesting error phenomenon in that both FY-based and GPM-based
precipitation products perform more poorly during the period from 06:00 to 10:00 UTC than other
periods at diurnal scale; and (5) FY-2G QPE agrees well with IMERG in terms of spatial patterns and
consistency (CC of ~0.81). These findings can provide valuable preliminary references for improving
next generation satellite-based QPE retrieval algorithms and instructions for applying these data
in various practical fields.

Keywords: precipitation; evaluation; error analysis; Fengyun; quantitative precipitation estimates;
GPM; IMERG

1. Introduction

As one of the most active variables in atmospheric circulation, precipitation is a critical linkage
between global water and energy cycles. Obtaining spatiotemporal information on precipitation
is of great importance for water resource management, climatological modeling, and many other
applications [1–3]. Therefore, reliable precipitation datasets gathered from different sources, including
ground stations, ground-based weather radars, and satellites, are essential [4,5].
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Collecting precipitation information from ground rain gauge stations is the traditional and
common method of measurement. However, the limitations are obvious due to the uneven spatial
distribution of the stations. The measurements of ground stations are usually very sparse over
some regions of the earth (e.g., the Tibetan plateau), which are meteorologically important [6,7].
As for ground-based weather radars, they have certain superiorities when observing precipitation
in local areas. Nevertheless, due to the limitations of the scope of observation and the huge cost of
equipment acquisition and maintenance, ground-based weather radars are not the first choice for
large-scale precipitation observations.

However, precipitation information obtained from satellites does not meet such limitations.
Satellite-based precipitation datasets can depict the spatial and temporal variability of precipitation
with a considerable accuracy over regions that have few ground stations [5,8]. Over the last four
decades, the progress of meteorological satellites has made it possible for scientists to acquire reliable
and cost-effective precipitation datasets through a variety of sensors and inversion algorithms [9–13].
Therefore, obtaining high-resolution and accurate precipitation estimates derived from sensors on
satellites at a regional or global scale has become a highly-efficient research method at present [4,14,15].

Satellite-based precipitation products provided by several institutions and organizations from
all over the world are different in terms of their spatial and temporal resolution, data coverage, data
continuity, and latency [16]. The products mentioned above can only be used for practical applications if
there is a consistency in terms of both the spatial and temporal scales with ground-based measurements.
Therefore, the validation of satellite-based precipitation products is necessary to ensure the reliability
of the products. In addition, in order to provide product users with a reliable error structure and
instructions for satellite precipitation products, as well as a reasonable advancement of retrieval
algorithms, validation is indispensable for satellite-based data applications [17].

There have been numerous studies evaluating the performance of satellite-based precipitation
products. Datasets such as Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation
Analysis (TMPA), Integrated Multi-satellitE Retrievals for Global Precipitation Measurement (IMERG),
Climate Hazards Group InfraRed Precipitation with Stations (CHIRPS), the Climate Prediction
Center (CPC) MORPHing technique (CMORPH), Precipitation Estimation from Remotely Sensed
Information using Artificial Neural Networks–Climate Data Record (PERSIANN-CDR), Multi-Source
Weighted-Ensemble Precipitation (MSWEP), H-SAF (EUMETSAT Satellite Application Facility on
Support to Operational Hydrology and Water Management) have been validated in various regions of
the world [18–23]. Chen et al. [24] analyzed the similarities and differences between TMPA V6 and V7
over China, and determined that 3B42 RT V7 overestimated precipitation over the Qinghai–Tibet Plateau
by approximately 139.5%. Teng et al. [25] identified overestimates outside the 95% prediction interval
in TMPA data for the Xin’anjiang Reservoir, which is the largest artificial water body in southeast China.
Prakash et al. [26] evaluated the accuracy of IMERG data with TMPA and Global Satellite Mapping of
Precipitation (GSMaP) data in southeast India. The results showed that IMERG represented large-scale
monsoon rainfall features and their variability more realistically. Tang et al. [22] evaluated IMERG
from April to December 2014 at hourly scale over mainland China and found that IMERG performed
with a small correlation coefficient (CC) of ~0.40 and slight overestimates by an average of ~9%.
Katiraie-Boroujerdy et al. [27] found that PERSIANN-CDR agreed well with gauge-based datasets at
monthly scales over Iran, with a CC of ~0.88. Rivera et al. [18] demonstrated the systematic errors that
could be attributed to the varying performance of CHIRPS in different seasons over Argentina, such as
the significant bias of ~65.8% over the north Patagonia region.

Although there are a large number of evaluation studies on satellite-based precipitation products,
few investigations have been conducted to assess the quality of the precipitation products from
Chinese Fengyun (FY) series satellites. FY series satellites are the major operational meteorological
satellites of China. Currently, there are eight on-orbit FY satellites in operation, including three polar
orbit satellites and five geostationary satellites, in order to provide global meteorological observation
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services. With the increasing influences of FY series satellites, evaluating the performance and usability
of their precipitation products has become increasingly necessary.

Compared with the data obtained from polar orbit satellites, precipitation information from
geostationary satellites has a fixed observation area and stable observation intervals, which can better
reflect the spatial distribution of precipitation and its changes at hourly and other temporal scales
in the study areas. In other words, geostationary satellites have not only the spatial continuity of most
other satellites, but also the temporal continuity of ground stations. Therefore, we selected two of
the main current satellite-based precipitation products from two geostationary satellites in different
batches of the FY-2 series to evaluate their quality in this study. The main objects of this study are
as follows: (1) To firstly evaluate and compare the precipitation products from FY-2 and GPM at
meteorological scales (hourly, daily) and a climatological scale (monthly), respectively, and (2) to
analyze the potential error sources of the main current satellite-based precipitation products over
mainland China in summer, 2018.

2. Study Area and Datasets

2.1. Study Area

The study area is the region of mainland China with the longitude and latitude range between
73–135◦E and 18–53◦N, respectively (Figure 1). The spatial distribution of the Digital Elevation
Model (DEM) in mainland China is also shown in Figure 1, which demonstrates that the terrain of
mainland China is low in the southeast and high in the northwest, forming a three-ladder pattern.
Due to the dramatic changes in terrain, the climate in mainland China is of great complexity and
is mainly regulated by the monsoon system [28]. The precipitation in China shows conspicuous
variability at both temporal and spatial scales.

Figure 1. Spatial distributions of DEM and ground-based rain gauges used in this study across
mainland China.

53



Remote Sens. 2019, 11, 2992

In this study, we chose the northern hemisphere summer (from June to August) of 2018 as
the research period. The China Climate Bulletin in 2018 published by the China Meteorological
Administration (CMA) shows that the annual average precipitation in China was 673.8 mm/year,
which was 7% more than in other years. In particular, the average precipitation in summer was
356.4 mm/year, which was 10% above that of previous summers. Intensive typhoons and heavy
rain occurred frequently in the summer of 2018. The East Asian subtropical summer monsoon was
significantly stronger than usual in 2018, being the strongest since 1951.

2.2. Gauge Precipitation Measurements

The hourly rain gauge datasets from 2163 national ground stations used in this study were collected
from the National Meteorological Information Center (NMIC) of CMA (http://data.cma.cn). The spatial
distribution of ground stations in mainland China is shown in Figure 1. Hourly datasets from national
ground stations usually include observations of air temperature, air pressure, precipitation, relative
humidity, water vapor pressure, wind, and precipitation, etc. Meanwhile, the ground station datasets
are quality controlled with the actual rate of each factor over 99.9%, and the accuracy of the datasets
was close to 100% [29].

2.3. Satellite Precipitation Estimates

2.3.1. FY-2E Quantitative Precipitation Estimates (QPE)

The FY-2 series satellites are the principle observational platforms for covering dynamic weather
events and the near-earth space environments in China. FY-2E is the third operational stationary
satellite in the FY series, and was launched on 23 December 2008. Its sub-satellite point was 105◦E
before 1 July 2015 and has been 86.5◦E over the equator to date. FY-2E is the last satellite in the first
generation of Chinese operational meteorological satellites. The satellite is equipped with a five-channel
(one visible channel and four infrared channels) scanning radiometer named the Visible and Infrared
Spin Scan Radiometer (VISSR). The FY-2E satellite performs much better in terms of the accuracy
of the inversion results of geophysical parameters, for example, precipitation, due to technical
improvements, such as a reduction of the overlap of infrared spectral channels, compared with
previous satellites of the FY-2 series.

FY-2E QPE data, generated by the fusion of FY-2E satellite estimate results and precipitation
measurements from rain gauges, was used in this study. The QPE products have four categories at
different temporal scales—hourly, three-hourly, six-hourly, and daily—with a spatial resolution of
0.1◦ × 0.1◦. The latency of QPE products yielded by FY-2 series satellites is approximately one hour.

2.3.2. FY-2G QPE

FY-2G is one of the third batches of operational geostationary satellites in the FY-2 series, and
was launched on 31 December 2014. The sub-satellite point of FY-2G changed from 99.5◦E to 105◦E,
and finally became 99.2◦E over the equator in April, 2018. FY-2G is the latest satellite to have Level
2 and Level 3 products since 2015. FY-2G has carried the radiometer with the best performance
in operational satellites in the FY-2 series to date. Compared with satellites in the second batch, such as
FY-2E, FY-2G has the ability to scan specific areas with a more flexible and higher temporal resolution.
It plays a significant role in China’s meteorological disaster monitoring, early warning, prevention,
and reduction.

The QPE products in FY-2E and FY-2G have the same temporal scale and spatial resolution.
However, the differences in the onboard sensors and fusion algorithms of FY-2E and FY-2G satellites
lead to differences not only in the accuracy of precipitation estimates, but also in the numerical range
and distribution. The QPE products can be downloaded from the National Satellite Meteorological
Centre (NSMC, www.nsmc.org.cn).
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2.3.3. IMERG

GPM is an international satellite mission. Its core observatory was launched by the National
Aeronautics and Space Administration (NASA) and the Japanese Aerospace Exploration Agency
(JAXA) on 27 February 2014. The first space-borne Ku/Ka-band Dual-frequency Precipitation Radar
(DPR) was carried on the GPM Core Observatory, making it more sensitive to light rain rates and
snowfall. IMERG is designed to intercalibrate, merge, and interpolate “all” data from satellites
in the GPM constellation at fine temporal and special scales over the entire globe [11]. The version
06 IMERG Final run products were used in this study. The spatial resolution of IMERG is 0.1◦ × 0.1◦,
which is the same as FY-2 QPE products. The temporal resolution is half an hour, and the hourly data
used in this study was obtained by averaging the two datafiles in the same hour.

Considering the fact that FY-2 QPE datasets merge precipitation information from ground
observations, we applied the IMERG Final run dataset (V06B), which is calibrated with ground station
data with a latency of about 3.5 months, as another precipitation estimate product, in this study.
IMERG data could be downloaded from the Precipitation Measurement Mission’s (PMM) website
(https://pmm.nasa.gov/data-access/downloads/gpm).

3. Methods

3.1. Contingency Statistical Indices

Four indices are used to assess the contingency of satellite precipitation estimates. The probability
of detection (POD) represents the proportion of correctly detected precipitation occurrences to the total
number of events detected by satellites. The false alarm ratio (FAR) indicates the ratio of rainfall
events that are falsely alarmed among the total number of satellite-detected precipitation occurrences.
The frequency bias index (FBI) shows the degree of precipitation occurrence estimates from satellites.
In other words, it indicates the overestimated or underestimated tendency in satellite-detected
precipitation occurrences. The critical success index (CSI) denotes the fraction of rainfall events
detected by satellites correctly to the total number of observed or detected rainfall events [30].
The indices mentioned above have no consideration of random assignments [31]. The equations of
these indicators are given in Table 1. To discriminate between wet and dry samples, the thresholds of
1 mm day-1 for daily rain events and 0.1 mm hour-1 for hourly ones were used. [6].

Table 1. Equations and the best values of four contingency statistical indices.

Index Equation 1 Best Value

POD
H

H+M 1

FAR
F

H+F 0

CSI
H

H+M+F 1

FBI
H+F
H+M 1

1 H(Hit) means that the precipitation occurrence is observed by a ground station as well as a satellite; M(Miss)
denotes that the ground station observes the occurrence, while the satellite dose not detect it; F(False) indicates that
the unobserved precipitation event is falsely detected by the satellite.

3.2. Statistical Indices

Four commonly used diagnostic statistics, including the correlation coefficient (CC), root mean
square error (RMSE), relative bias (bias), and mean absolute error (MAE), were applied in this study
to quantify the consistency between satellite precipitation products and rain gauge measurements.
The four indices were also used to cross-evaluate satellite precipitation products without rain gauge
measurements. The equations of these four statistical indices are shown in Table 2.
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Table 2. Equations and the best values of four statistical indices.

Index Equation 1 Best Value

CC

√ ∑n
i=1(Gi−G)

2
(Pi−P)

2

∑n
i=1(Gi−G)

2 ∑n
i=1(Pi−P)

2 1

RMSE

√
1
n

n∑
i=1

(Pi −Gi)
2

0

bias
∑n

i=1(Pi−Gi)∑n
i=1 Gi

× 100% 0

MAE 1
n

n∑
i=1
|Pi −Gi| 0

1 n means the number of precipitation pairs in the analysis; Gi means ground-based precipitation measurements;
G means the average ground-based precipitation measurements; Pi and P represent satellite precipitation products
and their average, respectively.

4. Results

4.1. Spatial Distributions of Precipitation Estimates from FY-2E, FY-2G, and IMERG

The spatial distributions of FY-2E QPE, FY-2G QPE, and IMERG data in the summer of 2018
over mainland China are shown in Figure 2b–d, respectively, while Figure 2a displays the spatial
distribution of precipitation obtained by inverse distance weighted (IDW) interpolation based on ground
observations. All three satellite-based precipitation products present a distinct decreasing spatial
variation of precipitation from the southeast to the northwest, which is consistent with that presented
by ground observations. The spatial patterns of FY-2G QPE and IMERG are consistent with the patterns
of interpolated results based on rain gauge data. However, both FY-2E and FY-2G products show
an absence of data over the Tibetan Plateau and Qaidam Basin in northwest China. Moreover, both
products do not provide precipitation estimates over northern parts of Heilongjiang Province, China,
which exceed the extent of 50◦N. Conversely, IMERG products provide full coverage precipitation
estimates over mainland China.

Figure 2. Spatial patterns of precipitation products estimated by (a) interpolated results based on
rain gauge data, (b) Fengyun (FY)-2E quantitative precipitation estimates (QPE), (c) FY-2G QPE,
and (d) Integrated Multi-satellitE Retrievals for GPM (IMERG) over mainland China in summer, 2018.
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4.2. Validations of the Three Precipitation Products in the Summer, 2018

To evaluate the performances of FY-2E, FY-2G, and IMERG products, the three satellite-based
precipitation products were validated separately against rain gauge data. Figure 3a–c show
the validation results of FY-2E, FY-2G, and IMERG against ground observations in June (first row),
July (second row), and August (third row) 2018, respectively. In general, according to the validation
results, FY-2G QPE and IMERG outperform FY-2E QPE at monthly scale, with a CC of 0.65, 0.87,
and 0.90 (0.90, 0.80, and 0.82) and bias of−8.13%,−3.97%, and−6.36% (8.40%, 7.84%, and 2.77%), in June,
July, and August, respectively. In terms of RMSE and MAE, the results of FY-2G QPE are also lower
than those of FY-2E QPE and IMERG for the entire summer of 2018, except for the worse performance
compared with IMERG in June. In addition, IMERG shows small degrees of overestimation (bias of
less than 10%). On the contrary, FY-2E QPE shows significant overestimation compared with ground
observations, with bias of more than 30% in June and July, while FY-2G QPE also underestimated
precipitation, but to a lesser degree (bias of more than −10%), for the entire summer of 2018.

Figure 3. Validations of (a) FY-2E QPE, (b) FY-2G QPE, and (c) IMERG data against ground observations
at monthly scale over mainland China in summer, 2018.

Figure 4a–d show Taylor diagrams of the performances of FY-2E QPE, FY-2G QPE, and
IMERG against gauge precipitation measurements, in summer, June, July, and August, respectively.
Taylor diagrams provide a graphical way to comprehensively evaluate the similarities between sets of
patterns and observations [32]. Three classical indicators, namely, the CC, centered root-mean-square
difference (CRMSD), and standard deviation (STD), are presented in a single 2D diagram, which
reflect how closely the various patterns in satellite-based precipitation products match those in ground
observations. If the estimated pattern is closer to the observations than other patterns in the diagram,
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then it means that the accuracy of the estimates is better than those of others. Taylor diagrams can
convey more information more clearly than an ordinary table. They are useful because the strengths
and weaknesses of the three statistical indexes are shown in the same diagram, and are thus less
ambiguous [33,34].

We can conclude from the Taylor diagrams that the precipitation patterns of FY-2G QPE are
the most similar to those of ground observations, since FY-2G QPE exhibits the best performances,
with an RMSD value of around 48.63 mm and CC value of around 0.87 in July (Figure 4c), and an RMSD
value of around 48.94 mm and CC value of around 0.90 in August (Figure 4d). In June, IMERG has
the best similarity to ground observations, with RMSD and CC values of around 48.12 mm and 0.89,
respectively (Figure 4b). Meanwhile, FY-2E QPE displays the largest values of RMSD, meaning that
it has the lowest similarity to ground observations in all the four periods.

Figure 4. Taylor diagrams of performances of FY-2E QPE, FY-2G QPE, and IMERG against ground
observations in terms of the centered root-mean-square difference, correlation coefficient, and standard
deviation in (a) summer, (b) June, (c) July, and (d) August, 2018.

4.3. Validations of the Three Precipitation Products Based on Statistical Indices at Hourly Scale

Figure 5a–d illustrate the spatial patterns of CC, RMSE, bias, and MAE of FY-2E QPE (first column),
FY-2G QPE (second column), and IMERG (third column), respectively, against ground observations
at hourly scale, over mainland China in summer, 2018. It is obvious that FY-2G QPE outperforms
FY-2E QPE and IMERG, with the best spatial patterns and numerical ranges of all the four indices,
while IMERG performs better than FY-2E QPE. The CC of FY-2E QPE in mainland China is generally
lower than 0.3, while the CC values of IMERG vary from 0 to 0.5, and are rarely larger than 0.5.
Among the IMERG data, the best performing CC values are mainly distributed in the middle part of
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mainland China. As for FY-2G QPE, the CC values are larger than 0.6 over more than half of the area
of China, especially in the eastern and central parts of mainland China. All three satellite-based
precipitation products perform poorly in the southern and northwestern provinces of China. In terms
of bias, FY-2G QPE also has the best performance, with the lowest bias over the majority of mainland
China. The bias values of IMERG are greater than 10% over half of mainland China, especially
in northwestern China, where the bias values are generally more than 50%.

Figure 5. Spatial patterns of performances for FY-2E QPE, FY-2G QPE, and IMERG in terms of
(a) the correlation coefficient (CC), (b) root mean square error (RMSE), (c) bias, and (d) mean absolute
error (MAE) against ground observations at hourly scale, respectively.

Averaged values of the four statistical indices of the three products at hourly scale in June, July,
August, and summer are displayed in Table 3. FY-2G QPE has the largest values of CC of 0.45, 0.66, 0.66,
and 0.59 in June, July, August, and summer, respectively. The averaged RMSE and MAE values of all
the three products are nearly smaller than 1.80 and 0.40 mm, respectively. IMERG shows overestimation
in June (14.59%), July (11.34%), and August (10.07%), while FY-2G QPE underestimates the precipitation
in all three months (−7.45% in June, −2.28% in July, and −4.34% in August, respectively). The averaged
bias values of FY-2E QPE show significant variation. FY-2E QPE greatly overestimates precipitation
in June (35.35%) and July (36.07%), while underestimates precipitation in August (−25.42%).
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Table 3. Averaged statistical indices for FY-2E QPE, FY-2G QPE, and IMERG at hourly scale over
mainland China in summer, 2018.

Data Type Index June July August Summer

FY-2E QPE

CC 0.23 0.25 0.23 0.24
RMSE (mm) 1.51 1.84 1.70 1.69

bias (%) 35.35 36.07 −25.42 15.76
MAE (mm) 0.33 0.40 0.31 0.35

FY-2G QPE

CC 0.45 0.66 0.66 0.59
RMSE (mm) 1.14 1.13 1.21 1.16

bias (%) −7.45 −2.28 −4.34 −4.66
MAE (mm) 0.20 0.18 0.19 0.19

IMERG

CC 0.36 0.36 0.37 0.36
RMSE (mm) 1.26 1.54 1.62 1.48

bias (%) 14.59 11.34 10.07 12.00
MAE (mm) 0.25 0.31 0.32 0.29

Figure 6 displays the temporal patterns of performances at hourly scale for the three types of
products compared to ground measurements. The statistical indices were calculated by the following
steps: firstly, the gauge-based data and satellite-based data were extracted for 24 h; secondly,
the statistical indices were calculated for each hour; and finally, the results from all stations across
the country were averaged. Generally, both the performances of FY-based and GPM-based precipitation
products are poorer during the period from 06:00 to 10:00 Coordinated Universal Time (UTC) than
other periods in one day. Specifically, in Figure 6a, CC reaches its highest value during the periods of
00:00–3:00 and 18:00–24:00, and obtains its lowest value at about 09:00 (meant 9:00–10:00 UTC, which
is the same as below), during the entire day. At about 15:00–17:00, the CC values of IMERG exhibit
a decreasing trend, which does not appear in either FY-2E or FY-2G products. The variation of RMSE
is contrary to that of CC, which means that a higher CC value always indicates a lower RMSE value
(Figure 6b). It is clear that the RMSE of IMERG at 03:00 is the lowest in the 24-h period, at which time
the curves of RMSE for FY-2E QPE and FY-2G QPE are smoother. As for the variations of bias (Figure 6c),
FY-2E QPE and IMERG show overestimates (i.e., bias greater than 0%) in most of the periods, while
FY-2G QPE generally underestimates precipitation for the entire day. Regarding the variations in MAE
(Figure 6d), all three precipitation products show similar trends.

Figure 6. Cont.
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Figure 6. Temporal patterns of performances of FY-2E QPE, FY-2G QPE, and IMERG in terms of (a)
the CC, (b) RMSE, (c) bias, and (d) MAE against ground observations, respectively.

4.4. Contingency Indices of the Three Precipitation Products at Hourly and Daily Scales

Figure 7a–d display the spatial distributions of the contingency indices (POD, FAR, CSI, and FBI,
respectively), generated by IDW interpolation based on validation results of corresponding rain gauge
data, over mainland China during summer, 2018. Generally, the POD values of FY-2G QPE (>0.70)
are much better than those of FY-2E QPE and IMERG, across mainland China. The POD values of
IMERG are around 0.4 to 0.7 over most areas, while the POD values of FY-2E QPE are the smallest
in most parts of mainland China (<0.5), especially in the northwest (<0.3) (Figure 7a). The FAR values
of FY-2E QPE are above 0.5 over most regions and are larger than 0.8 in northwestern China, which
is similar to the case of the IMERG products. As for FY-2G QPE, the FAR values (<0.6) are smaller
than both values of FY-2E QPE and IMERG. Regarding the distributions of CSI (Figure 7c), FY-2G
QPE shows a better performance than FY-2E QPE and IMERG, with values of around 0.4 to 0.7 over
mainland China. The CSI values of FY-2E QPE and IMERG show similar spatial distributions. Both
CSI values of FY-2E QPE and IMERG are lower than 0.4 overall, and lower than 0.2 in northwestern
China. The FBI values of IMERG are higher than 1.8 in more than half of the areas, which indicates high
overestimates in precipitation over such regions. The FBI values of FY-2G QPE are also greater than
1.2 over most parts of mainland China, reflecting overestimates in these areas, but to a lower degree
compared with estimates of IMERG data. FY-2E QPE tends to overestimate precipitation in south,
northeast, and northwest China, with FBI values larger than 1.6, and underestimate precipitation
in the west and east coast regions of China, with values smaller than 1.
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Figure 7. Spatial patterns of the performance of FY-2E QPE, FY-2G QPE, and IMERG in terms of
the (a) probability of detection (POD), (b) (false alarm ratio) FAR, (c) critical success index (CSI), and
(d) frequency bias index (FBI) compared to ground observations at hourly scale, respectively.

Averaged values of contingency indicators of the three products at hourly scale in June, July,
August, and summer are exhibited in Table 4. FY-2G QPE shows the best values of POD in all the four
periods compared with the other two products (around 0.61 in June, 0.84 in July, 0.84 in August, and
0.77 in summer). FY-2E QPE and IMERG have higher averaged values of FAR than those of FY-2G
QPE, which are relevant to the lower values of CSI of both FY-2E QPE and IMERG. The values of CSI
of FY-2E QPE are the lowest in each month, as well as for the entire summer. The averaged FBI values
of all three precipitation products are much greater than one, which indicates that each of the three
products show a larger proportion of false alarms than false negatives.

62



Remote Sens. 2019, 11, 2992

Table 4. Averaged contingency indices for the FY-2E QPE, FY-2G QPE, and IMERG at hourly scale over
mainland China in summer, 2018.

Data Type Index June July August Summer

FY-2E QPE

POD 0.49 0.53 0.47 0.50
FAR 0.70 0.65 0.62 0.66
CSI 0.23 0.26 0.26 0.25
FBI 1.79 1.61 1.28 1.56

FY-2G QPE

POD 0.61 0.84 0.84 0.77
FAR 0.56 0.46 0.44 0.48
CSI 0.36 0.49 0.51 0.45
FBI 1.39 1.59 1.54 1.51

IMERG

POD 0.59 0.63 0.61 0.61
FAR 0.60 0.61 0.59 0.60
CSI 0.31 0.31 0.32 0.31
FBI 1.60 1.70 1.64 1.64

Figure 8a displays the temporal variations of POD of FY-2E QPE, FY-2G QPE, and IMERG.
The values of POD of FY-2G QPE are the largest during the entire day, with values ranging from
0.75 to 0.80. The values of POD of IMERG are smaller than those of FY-2G QPE at each hour, with
values varying from 0.55 to 0.70. The temporal variations of POD of IMERG are not smooth. IMERG
shows a peak around 09:00 and valleys at 02:00, 13:00, and 17:00. FY-2E QPE shows the smallest
values of POD (<0.57) compared with those of FY-2G QPE and IMERG, which suggests that FY-2E
QPE could not detect rainfall events reasonably and effectively during the summer. Figure 8b shows
the temporal variations of FAR. In general, FY-2G QPE shows the lowest FAR values at each time
during the entire day, while the FAR values of IMERG are smaller than those of FY-2E QPE overall.
As for the performances of FY-2G QPE, the FAR values exceed 0.50 from 05:00 to 14:00. Generally,
the variations of CSI (Figure 8c) still demonstrate that FY-2G QPE outperforms IMERG and FY-2E QPE,
with the largest CSI values during the entire day, while the CSI values of FY-2E QPE are the smallest.
All of the three satellite-based precipitation products have values of FBI larger than one (Figure 8d),
which indicates that all products tend to overestimate precipitation occurrences over the study area.
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Figure 8. Temporal patterns of performances of FY-2E QPE, FY-2G QPE, and IMERG in terms of
(a) POD, (b) FAR, (c) CSI, and (d) FBI against ground observations, respectively.

Figure 9 illustrates the numerical distributions of contingency statistical indices for FY-2E QPE,
FY-2G QPE, and IMERG, at daily scale. In terms of POD (Figure 9a), the performance of FY-2G QPE
is close to that of IMERG, with mean values of around 0.87 and 0.82, respectively, while the mean
value of POD for FY-2E QPE is around 0.62. For the distributions of FAR (Figure 9b), the mean value
of FY-2G QPE is the smallest (around 0.25), while the mean values of IMERG and FY-2E QPE are
both around 0.4. In spite of the well-performing median, FY-2E QPE shows the worst POD and FAR
distributions, since the range of whiskers is too large compared with that of the other two products.
Regarding CSI (Figure 9c), it shows similar distributions and numerical characteristics to those of
POD, which indicates that FY-2G QPE outperforms IMERG and FY-2E QPE, with the largest mean
value of around 0.6. For FBI (Figure 9d), the mean values of all three precipitation products are larger
than 1, which indicates that each of the three products shows a tendency to overestimate precipitation
occurrences at diurnal scale. The mean values of FBI of the FY-2 series satellite precipitation products
are closer to one than IMERG, indicating a smaller degree of overestimation. Note that some FBI values
of FY-2G QPE are smaller than one, which indicates that FY-2G QPE underestimates precipitation
occurrences in some areas.
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Figure 9. The numerical distributions of contingency statistics for FY-2E QPE, FY-2G QPE, and IMERG
in terms of (a) POD, (b) FAR, (c) CSI, and (d) FBI, respectively.

4.5. Cross-Evaluation of FY-2 Precipitation Products Based on IMERG

Figure 10a–c demonstrate the inter-comparison results for FY-2E, FY-2G precipitation products,
and IMERG, in terms of the total precipitation in summer, 2018. The number of pixels involved in cross
evaluation between FY-2E QPE and IMERG is different from the number between FY-2G QPE and
IMERG, which is mainly caused by the different ratios of data absence of FY-2E QPE and FY-2G QPE
in northwestern mainland China. It is obvious that the correlations between FY-2G QPE and IMERG
(CC of ~0.81) are much larger than those between FY-2E QPE and IMERG (CC of ~0.29), which is
mainly caused by some significant overestimates of FY-2E QPE for the total precipitation in summer,
when the precipitation is relatively small, compared with IMERG data. Additionally, the values of
CC and other indicators between FY-2E QPE and FY-2G QPE are relatively poor, which indicates
that the estimates of FY-2E are somewhat unreliable. Overall, according to the inter-comparisons
displayed in Figure 10, FY-2G QPE agreed better with IMERG than FY-2E QPE in terms of spatial
patterns and consistency.
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Figure 10. The inter-comparisons of (a) FY-2E QPE and IMERG, (b) FY-2G QPE and IMERG, and (c) FY-2G
QPE and FY-2E QPE in terms of total precipitation in summer, 2018.

5. Discussion

5.1. The Advantages and Disadvantages of FY-2E QPE, FY-2G QPE, and IMERG

As mentioned above, we found that FY-2G QPE generally outperformed IMERG in terms of
the statistical metrics over mainland China in summer, 2018. One of the possible reasons for this could
be the different correction strategies; for example, the fusion method of FY-2 QPE considers not only
the intensity, but also the directionality, of precipitation in the estimate fields. The FY-2 QPE fusion
methods assume that the error field of the satellite-based precipitation estimate is related to not only
the distance to the ground stations, but also the directionality of precipitation.

The unsatisfying performances of FY-2E QPE are significant, and may be related to the service life
designed for FY-2E. FY-2E was launched in 2008 and was discontinued in early 2019, with a running
time of about 11 years [35]. Therefore, the summer of 2018 coincides with the late stage of its
operation. This could also explain the fact that there are some striped textures of precipitation spatial
distributions derived from FY-2E in southern China in Figure 2b, which shows the spatial discontinuity
of the satellite-based precipitation products. With the inevitable degradation of the sensors aboard
the satellite, performance degradation is understandable.

According to the results demonstrated above, we found that FY-2 series satellites QPE and
IMERG have advantages and disadvantages across the study area (Table 5). In mainland China, FY-2G
QPE is more suitable in operational applications than IMERG, not only in terms of data accuracy,
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but also for the latency of the products (1 h for FY, 4 h for IMERG Early-run, 14 h for IMERG Late-run,
and 3.5 months for IMERG Final-run), although there is no data coverage in the northern part of
Heilongjiang Province (>50◦N), while the time span of FY-2 series satellites is not long enough.
In contrast, the IMERG Final-run precipitation product has been calculated back to 2000. Therefore, it is
appropriate for IMERG to be used for long-term studies related to precipitation with fine spatiotemporal
resolutions. Regarding the spatial coverage of these precipitation products, IMERG is more applicable
for global-scale research due to the wide coverage of its products. Nonetheless, users should still pay
great attention to the not so satisfying performance of IMERG at hourly and diurnal scales. Furthermore,
some algorithms and methods, such as downscaling and retrospective studies, could be applied to
yield long-term precipitation estimates with finer spatiotemporal resolutions in the future [36–39].

Table 5. Summary of advances and weaknesses of the three products over mainland China.

Data Type Advances Weaknesses

FY-2E QPE Low latency
Poor data quality
Short time span

Limited coverage

FY-2G QPE Best data quality
Low latency

Short time span
Limited coverage

IMERG Final-run

Fine data quality
High temporal resolution

Long time span
Wide coverage

High latency
Not so satisfying performance at

hourly and diurnal scales

5.2. Possible Error Source Analysis of the GPM IMERG Product

For decades, numerous researchers have focused on the errors of satellite-based precipitation
products at multiple scales all over the world, leading to the continuous improvement of these products
to [40–45]. In this study, we have proposed some possible error sources of the GPM IMERG product,
hoping to provide preliminary references for improving satellite-based QPE for the next generation.
As can be seen from Figures 5 and 7, the large FAR (>0.7) of IMERG is mainly distributed in northwestern
China, where the values of CC are relatively small compared with the other regions over mainland
China. Additionally, the bias is generally greater than 50%. The dominant arid and semi-arid climate
means that the area exhibits little precipitation over the entire year. The small amount of rainfall
in summer makes it difficult to obtain correct detections [46,47]. Moreover, the ground observations
obtained from meteorological stations for calibrating the satellite-based precipitation estimates are
limited. These two issues may lead to a high false alarm ratio and significant overestimates over
northwestern China.

In spite of the good performance compared with ground observations at monthly scale, the hourly
and daily performance of IMERG shown by various indicators is not so satisfying. The characteristics
of IMERG algorithms, including calibration algorithms and retrieval algorithms, might be related
to this phenomenon. We know from the Algorithm Theoretical Basis Document (V06) of IMERG
that the calibration strategy of IMERG Final-run products still has much room to improve [12].
The half-hourly precipitation estimates are simply multiplied by the monthly calibration ratios
against monthly ground observations to yield half-hourly Final-run products. Although this will
result in monthly estimates matching the gauge values more closely, IMERG Final-run datasets
show an unsatisfying performance at meteorological scales (e.g., hourly or daily scale). We could
assume that by using gauge calibrations at finer temporal resolutions, such as a daily scale, IMERG
would likely yield satisfying performances at meteorological scales in terms of diagnostic indicators,
with decreasing proportions of false negatives and false alarms. As for the retrieval algorithms of
IMERG, the databases, including the a-priori database of cloud and precipitation profiles for inverting
the passive microwave-based satellite precipitation estimates and the cloud feature database for
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inverting the infrared-based satellite precipitation estimates, might not be robust enough in China,
considering the complex terrains and climatic factors [12,48–51]. In Figure 9, the POD patterns of
IMERG are similar to those of FY-2G QPE, while the performances of its FAR and CSI patterns are
not good. The phenomenon is caused by the larger proportion of false alarms of IMERG than those
of FY-2G QPE. The high probability of false alarm occurrence indicated that the ability of IMERG
in detecting the precipitation clouds at meteorological scales is comparatively weak, which may be
related to the not well-matched feature database for precipitation retrieval algorithms over mainland
China. In addition, significant overestimates and false alarms of IMERG in some areas may also result
in large surrounding values for IMERG products. Meanwhile, the inconsistency between IMERG and
FY-2G QPE would be significantly aggravated, as shown in Figure 10b.

6. Conclusions

Evaluations of satellite-based quantitative precipitation estimates are of great importance when
applying these datasets in related fields, such as hydrology, meteorology, and agriculture. In this study,
we firstly evaluated and compared the main current satellite-based precipitation products from Chinese
Fengyun (FY)-2 and the Global Precipitation Mission (GPM), respectively, over mainland China
in summer, 2018. The main conclusions are as follows:

(1) The three products (FY-2E QPE, FY-2G QPE, and IMERG) demonstrate similar spatial
precipitation patterns; for example, a general decreasing trend from the southeast to northwest
over mainland China;

(2) Compared with rain gauge measurements, FY-2G QPE and IMERG perform better among
the three products, with the CC varying from 0.65 to 0.90 and 0.80 to 0.90 in summer, 2018, followed by
FY-2E QPE (CC of ~0.40 to 0.53);

(3) IMERG agrees well with rain gauge data at monthly scale, while it performs worse than FY-2G
QPE at hourly and daily scales, which might be caused by the algorithm characteristics of IMERG
Final-run products;

(4) Compared with ground observations, FY-2G QPE exhibits underestimates in capturing
the precipitation at both a monthly and hourly scale, while FY-2E QPE and IMERG generally tend to
overestimate the precipitation in summer, 2018;

(5) The performances of both FY-based and GPM-based precipitation products are poorer during
the period from 06:00 to 10:00 UTC than other periods at diurnal scale, which might have resulted
from the satellite-based precipitation retrieval algorithms and the impact of regional meteorological
and climatological influences. Further study is required to investigate the underlying reasons for
this phenomenon;

(6) FY-2G QPE agrees well with IMERG in terms of spatial patterns and consistency (CC of ~0.81),
which means that these two products have similar capacities to capture the spatial patterns of
precipitation events.

The findings presented in this study could provide valuable preliminary references for improving
the current satellite-based QPE retrieval algorithms for the next generation.
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Abstract: Radar-rain gauge merging methods have been widely used to produce high-quality
precipitation with fine spatial resolution by combing the advantages of the rain gauge observation
and the radar quantitative precipitation estimation (QPE). Different merging methods imply a specific
choice on the treatment of radar and rain gauge data. In order to improve their applicability,
significant studies have focused on evaluating the performances of the merging methods. In this
study, a categorization of the radar-rain gauge merging methods was proposed as: (1) Radar bias
adjustment category, (2) radar-rain gauge integration category, and (3) rain gauge interpolation
category for a total of six commonly used merging methods, i.e., mean field bias (MFB), regression
inverse distance weighting (RIDW), collocated co-kriging (CCok), fast Bayesian regression kriging
(FBRK), regression kriging (RK), and kriging with external drift (KED). Eight different storm events
were chosen from semi-humid and semi-arid areas of Northern China to test the performance of the
six methods. Based on the leave-one-out cross validation (LOOCV), conclusions were obtained that
the integration category always performs the best, the bias adjustment category performs the worst,
and the interpolation category ranks between them. The quality of the merging products can be a
function of the merging method that is affected by both the quality of radar QPE and the ability of the
rain gauge to capture small-scale rainfall features. In order to further evaluate the applicability of the
merging products, they were then used as the input to a rainfall-runoff model, the Hybrid-Hebei
model, for flood forecasting. It is revealed that a higher quality of the merging products indicates a
better agreement between the observed and the simulated runoff.

Keywords: weather radar quantitative precipitation estimation; rain gauge; radar-rain gauge merging;
leave-one-out cross validation; verification

1. Introduction

Precipitation is a key driving component for hydrological water cycle processes at regional and
global scales. A catchment reacts very specifically to intense rainfall due to its steep slopes and shallow
soils, and precipitation data with a high spatial and temporal distribution is critical for forecasting
flash flooding events [1]. These events invariably have the characteristics of high intensity and sudden
occurrence, and under climate change, the needs for high resolution and accurate rainfall data have
increased, particularly because effective hydrological forecasting depends greatly on precipitation
accuracy [2–4]. Rain gauges can measure precipitation very accurately at a point scale, but we would
need a dense network of instruments to ascertain the rainfall intensity at local/regional scales because
of its high variability. In a short-time flash flood simulation, the spatial representatives of the rain
gauge and the accurate representation of spatial rainfall variability in the surrounding area need to be
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considered [5,6]. High-resolution precipitation based on rain gauge data are usually geometrically
interpolated from a limited number of observation points using geographic information systems (GIS).

Compared with a rain gauge, a quantitative precipitation estimation (QPE), based on the weather
radar, has a primary advantage because it provides very high spatial and temporal resolution rainfall
information, making it very suitable for hydrological modeling [7,8]. With the development of weather
radar over the past 60 years, QPE, with its very high spatial and temporal resolutions, can accurately
detect the location of precipitation, and can be applied to practical hydrological operations such as
flood forecasting [9,10]. However, an error-free radar QPE is not possible due to various sources of
error, such as indirect precipitation measurement, the Z-R relationship, being above the ground, beam
shielding, and ground clutter, which result in range degradation [8,11,12]. Preserving the high spatial
accuracy of rainfall in radar QPEs remains a challenge for meteorologists. This has been the case since
the 1940s, when the potential for measuring precipitation with high spatial and temporal distributions
based on weather radar was realized [13]. With the advantage of radar to estimate the spatial pattern
and rain gauge data to obtain the correct point value, a combined product based on radar QPE and
rain gauge data has significant potential for achieving superior rainfall estimations [14,15].

The concept of achieving high-resolution precipitation estimations by merging QPE and rain gauge
data has resulted in proposals of numerous merging methods, and different ways of categorizing these
methods have been applied [16]. An additional correction factor is the most commonly investigated
and is currently being used by many national meteorological services due to its simplicity [17]. With
the development of these interpolation methods, some studies have attempted to interpolate point
rain gauge values with a variogram, which represents the spatial association of radar fields [18].
Sharon et al. (2015) found a clear difference between geostatistical and non-geostatistical methods,
where the geostatistical methods attempt to use the variogram to represent the spatial bias and
error variance of the rainfall field [19]. In a review, McKee (2015) adopted a viewpoint proposed
by Wang (2013) that such merging methods generally achieve merging precipitation through either
bias minimization methods or error variance reduction methods [20,21]. An integration method was
recently proposed with the aim of minimizing data uncertainty [22]. When considering these merging
methods, a better, application-oriented categorization is necessary.

Despite the research on this study, most of the studies have focused on evaluating the feasibility
of the applied merging techniques and measuring the performance of the merged rainfall estimates
against the rain gauge observation and radar estimates. Few studies have attempted to compare the
results from various merging categories and have instead focused on large scale applications [23,24].
Although the impact of limited rain gauge data cannot be neglected in the merging performance
when using rain gauge data for ground truthing, many studies have shown that more rain gauges
across the catchment can increase the chances of capturing rainfall features, while fewer rain gauges
may miss small convective cells [25]. To identify the commonly used merging techniques with better
performances, many inter-comparison studies have focused on the performances of these methods,
including the applied merging details of the type of method, spatiotemporal resolutions, and the
better performance methods identified in previous work. Generally, the performances of different
merging methods in most studies are assessed based on accuracy measures by comparing merged
estimates against rain gauge observation through cross validation [26], but recently, some studies
have attempted to evaluate the radar-rain gauge merging methods by comparing the hydrological
performances resulting from these methods [27].

High-resolution precipitation data have been used in various types of hydrological studies, and the
improvement of simulated hydrological dynamics using radar-based QPE has been highlighted [28–30].
It should be noted that in spite of the residual errors often remaining, these merging products have
significant uses in hydrological applications, particularly when forecasting flash floods or extreme
events [31]. When merging for flood forecasting, the application of high resolution and accurate
precipitation at fine spatiotemporal scales presents some challenges, such as (1) preserving small-scale
features (e.g., convective), (2) density of rain gauges across mountain basins, and (3) fitness of the
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hydrology model for the local catchment. With regard to applying flood forecasting at piedmont plain
scales, it is therefore critical to consider these factors when examining the performances of different
interpolated precipitation models and their ability to deal with challenges in flood forecasting [32].

In this study, the potential of flood forecasting with high-resolution precipitation was described,
including its variability and uncertainty regarding less clarity. For hourly precipitation, few studies have
focused on different interpolations regarding possible covariates over the catchments in semi-humid
and semi-arid climates. Evaluating the performance of both radar-based and rain-gauge-based
precipitation produced in the hydrological model can thus not only help to understand its physical
processes, but also its function as an indirect measure to assess the accuracy of the rainfall input.

Although many merging methods of different categories are available, little research has been
conducted to compare their performances and the applications driving hydrological models. In
addition to choosing a reliable radar-rain gauge merging method to obtain high resolution and
accurate precipitation data for the study area, the objective of this research was also to assess the
detailed performances of different quality merging data in flash flood forecasting. In this study, we
aimed to assess how different rain gauge observations, merged with radar data, leads to both better
high-resolution precipitation resolutions and improved hydrological applications, thereby further
enhancing the potential benefit of flash flood forecasting.

2. Methods

2.1. Radar-Rain Gauge Merging Methods

The potential of high spatial and temporal resolution precipitation based on weather radar is
known. Hence, different merging methods have been proposed, and are generally classified as bias
reduction and error variance minimization [33]. Identifying the spatial correlation in the error structure
model is the most important step in the merging process. A categorization similar to a starting point
and refined based upon a theoretical categorization was adopted by Wang et al. (2013), who also
proposed the following (Table 1): First, a radar bias adjustment methods focusing on bias adjustment of
radar estimates; second, radar-rain gauge integration methods, undertaking a true integration of both
radar precipitation and rain gauge data; and, third, rain gauge interpolation methods using different
interpolation methods with the radar spatial association as additional information [21].

Table 1. Categories of radar-rain gauge merging, the merging methods, and their abbreviations used to
derive the data.

Category Merging Method Abbreviation

Radar bias adjustment category Mean field bias MFB
Regression inverse distance weighting RIDW

Radar-rain gauge integration category Collocated co-kriging CCoK
Fast Bayesian regression kriging FBRK

Rain gauge interpolation category Regression kriging RK
Kriging with external drift KED

2.1.1. Radar Bias Adjustment Category

The methods in this category attempt to predict the ungauged location value by the bias that
computes radar accumulation and the rain gauge accumulation. In this category, the rain gauge
observation is assumed as the true rainfall value, the radar precipitation is used as the entire background,
and the radar values at the gauged locations are used to compare with the bias adjustment [34,35]. The
ungauged locations value is adjusted by multiplying or adding the gauge-radar comparison correction
factor, which is given over a long or short time period [36].

(1) Mean field bias QPE (MFB)
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Mean field bias (MFB) adjustment is the simplest method in this category and assumes that the
radar estimates are affected by a spatially uniform multiplicative error, which can be a bad electronic
calibration or an offset in the Z-R relation used to convert radar reflectivity to rainfall value [13,34]. It is
acknowledged that MFB adjustment is the most common and simplest technique in radar meteorology
and the correction factor is simply obtained by comparing a spatially averaged ratio of rain gauge
with the radar accumulations at gauged locations over the given time period. In this method, a simple
multiplicative factor is used to correct the radar domain uniformly. In the current study, the adjustment
factor is estimated as

CMFB =

∑N
i=1 Gi∑N
i=1 Ri

(1)

where N is the number of valid rain gauge, Gi is the rain gauge observations, and Ri is the radar
estimated values at the rain gauge located pixel.

(2) Regression inverse distance weighting (RIDW)
In this method, the rain gauge observations are used as the true rainfall value to correct the entire

radar background field by multiplying a dynamic adjustment correction factor. In geostatistics, a
random process R(s, t) consists of two parts, where the first deterministic part D(s, t) corresponds to
the trend component, and the other stochastic residual part ε(s, t) corresponds to local fluctuations of
the trend. In this study, in addition to the observation vector g(s, t) measured by the rain gauge, the
radar-based QPE at rain gauge locations over the whole period were also considered and used at each
interpolation point. In this context, the radar external variable was used as a linear function to model
the trend D(s, t) [23], so that

R(s, t) = D(s, t) + ε(s, t) (2)

D(s, t) = a(t)r(s, t) (3)

where s is the location of a given point at time t. r(s, t) is the radar value at location s and time t. The
coefficient is computed as the slope of a linear regression of all pairs of points composed of the gauge
values on the y-axis and the values of the radar pixel on the x-axis. a(t) is assumed to be constant
spatially.

ε(s, t) = g(s, t) −D(s, t) = g(s, t) − a(t)r(s, t) (4)

R̂RIDW(s, t) = Dp(s, t) + ε̂RIDW (5)

2.1.2. Radar-Rain Gauge Integration Category

The methods in this category aim to minimize the estimation uncertainty by conducting an actual
integration of both rain gauge and radar data. As well as differing with some local bias adjustment
aiming at reducing local biases between radar and rain gauge observation, the integration category
also attempts to minimize overall estimation uncertainty [22]. The merging methods in this category
do not simply retain the radar as background or impact the local magnitude at the rain gauge location,
but depend on their relative uncertainties and estimate the rainfall value at given location grid in the
weighted average of both resources [37]. Two main methods in this category are applied to obtain a
minimum uncertainty estimation in different ways, which are:

(1) Collocated co-kriging (CCoK)
To achieve the final aim of reducing uncertainty as much as possible, this method integrates

both data instead of using only radar or rain gauge precipitation as the background. The co-kriging
(CoK) belongs to this category because it minimizes the variance of estimation by solving a single
kriging system, including both radar and rain gauge data. Although CoK can be seen as a radar-based
interpolation, it is a liner combination of a multivariate variant, merging radar and rain gauge data [38].
These results, however, from several full forms of CoK with different secondary variables, show a
significantly larger kriging system and always lead to a numerically unstable co-kriging matrix, with a
significant difference between the primary and secondary data. To avoid these uncertainties, collocated
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co-kriging (CCoK) has been proposed as a reduced form of CoK and applied in merging rainfall with
this variation [39,40]. Compared with CoK, CCoK employs the radar value at the rain gauge location
and only incorporates the cross-covariance between the radar value and observation at the rain gauge
location. Consequently, the kriging system has been efficiently reduced.

The CCoK estimates rainfall and can be defined as

RCCoK(s0, t) =
∑n

i=1
λCCoK

i Rg(si, t) + λ′2Rr(s0, t) (6)

where Rg(si, t) are the rainfall values of the n known rain gauges at time t, λCCoK
i are the weights of the

rain gauges, Rr(s0, t) is the radar QPE value at the target point, and λ′2 is the weight of related to the
radar field.

In this method, the constraint of both data weight can be defined as∑n

i=1
λCCoK

i + λ′2 = 1 (7)

The full radar covariance is, hence, not required. Instead, the covariance of rain gauges and
the cross-covariance between radar and gauges are necessary. In this paper, we used rain gauge
data and radar data as the primary variable and the secondary variable, respectively, to integrate
the precipitation estimation, and approximate the cross-correlation from the radar spatial correlation
using the alternative Markov approach [41]. Instead of the multiple (cross-) spatial correlation and
large equations using the full COK, for this study, the CCoK used a simplified approximation with its
advantage easily applied [40].∑n

i=1
λCCoK

i CGG(xi, x0) + λ
′
2CGR(xi, xo) = CGG(xi, xo) (8)

∑n

i=1
λCCoK

ki CRG(x0, xi) + λ
′
2CRR(0) = CRG(0) (9)

where CGG(h) is the covariance of the rain gauges, CRG(h) is the cross-covariance between radar and
rain gauges, and CRR(0) is the radar covariance at h = 0.

(2) Fast Bayesian regression kriging (FBRK)
In this category, we integrated both rainfall data with the purpose of obtaining the estimation at

the minimum uncertainty. For this purpose, methods in a Bayesian framework are widely used, and
we applied the fast Bayesian regression kriging (FBRK), method, as proposed by Yang and Ng [42],
to merge different data types [42]. We explicitly considered the difference in the errors from the raw
input data and aimed to estimate an accurate rainfall field and obtain better precipitation data. Unlike
most other existing kriging-based merging methods, the likelihood function in the FBRK is modified.
Further accounting for the differences, Yang and Ng [42] applied the FBRK in three different data
types, i.e., the residuals of the regression model were used to regress radar estimations, and rain gauge
observations were interpolated by the ordinary kriging.

Î0 = arR0 + βr + e0 (10)

where Î0 is the FBRK interpolated rainfall intensity at x0, R0 is the radar measured intensity at the
same location, ar and βr are the regression coefficients, and e0 is a random error term whose mean and
standard deviation are computed following the kriging equations below:

ue0 =
∑M

i=1
λiei (11)

σ2
o =

(
1−

∑M

i=1
λi

)
γ∞ +

∑M

i=1
λir0,i (12)
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ri, j = τ
2 + s2

⎡⎢⎢⎢⎢⎣1− exp

⎛⎜⎜⎜⎜⎝−
∣∣∣xi, xj

∣∣∣
d∞

⎞⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎦ (13)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
r1,1 · · · rM,1

...
. . .

...
r1,M . . . rM,M

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
λ1
...
λM

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

r0,1
...

r0,M

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (14)

where ue0 and σo are the expected value and standard deviation of e0, respectively, ei is the residual of
the ith of the M rain gauge and crowdsourced observations, and λi is its associated weight.

2.1.3. Rain Gauge Interpolation Category Using the Spatial Association of Radar as an Addition

Unlike the bias adjustment methods using the entire radar field as background with these
integration methods integrating both data sources, the methods in this category simply used the
spatial association as an external drift to interpolate the rain gauge values. Ochoa-Rodriguez et al.
proposed that the merging methods in this category are all geostatistical and kriging-based [33]. The
kriging-based interpolation approaches predict the ungauged located values with the linear weights of
observations at gauged locations by minimizing the variance of the error. As such, the main component
of the methods is that the rainfall filed can be characterized as a Gaussian random variable, and because
of this, the methods predict ungauged values with the liner combination of gauged value by deriving
the weights through minimizing the variance. This differs to the classical geostatistics by assuming a
Gaussian distribution and stationarity of the spatial covariance, with the distribution of precipitation
skewed over the domain [43]. The transformation of applying both rain gauge and radar data into
a more Gaussian distribution is termed trans-gaussian kriging [44]. It is based on the quantitative
spatial variability of both data, and a more Gaussian distribution always has a better Gaussianity in
the residuals. Two widely used methods of this category were applied in this study, which are:

(1) Regression kriging (RK)
As one of the kriging family hybrid interpolation methods, regression kriging (RK) is a spatial

interpolation technique that integrates a linear regression and the regression residuals with simple
kriging. The advantage of this method is that all points are used to interpolate the residual with a
global neighborhood, which can extend to a broader range. RK uses arbitrarily complex regression on
auxiliary information (radar data) and chooses simple kriging to interpolate the residuals acquired
from the regression model. In this study, we defined the following successive steps to implement
this method: (a) The linear regression step, (b) the residuals variogram computation step, and (c) the
kriging-based interpolation of the residual steps.

For steps a and b, the trend and residuals computation based on Equation (3) are also valid for
RK. At the beginning of step c, the covariance matrix Caa of computing the covariance of the residuals
at the target location is:

Caa =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C2
Z C12

C21 C2
Z

· · · C1N
· · · C2N

...
...

CN2 CN2

. . .
...

· · · C2
Z

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(15)

where element Caa of the matrix is computed by the covariance between the observation locations I
and j, where C2

Z is the variance of the observations. In this method, the square-root transformation of
the data is used in the process of applying kriging. This transformation shows a trending increase on
the Gaussianity of the overall residuals, although some analysis of the effect sometimes show a few
that are limited. Based on the linear kriging and linear combination, the weights used to compute
residuals at the target location could thus be given as:

ε̂RK(s0, t) =
∑N

i=1
λi ∈ (s, t) (16)
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which is then added to the trend mp(S0, t) to obtain the expected value of the precipitation depth.
Finally, the expected precipitation value at the interpolation location can be computed as:

p̂RK(so, t) = mp(s0, t) + ε̂RK(s0, t) (17)

(2) Kriging with external drift (KED)
Kriging with external drift (KED) is an extension of universal kriging interpolation, in which

the interpolated variable, in this case, is computed as the sum of stochastic term and a deterministic
term. Kriging with external drifts allows the incorporation of several additional variables that are
used as background information to interpolate the primary variable [45]. In this study, we focused on
merging rain gauge and radar data, and therefore, radar data were considered as the only additional
information in this method. The basic assumption of KED is that the expected value of the estimated
variable G(x) has a linear relationship with an additional variable R(x):

G(x) = a + b ·R(x) (18)

where G(x) is the rain gauge value at location x, R(x) is the radar rainfall estimate at the gauged
location x, and a and b are linear coefficients that are determined.

The external drift can clearly indicate the full spatial variability of the radar QPE data, especially
in the events that the rain gauge-radar consistency is high. Thus, the estimation at given location x0 is
derived from a linear estimator, and the weights are computed as follows:∑n

i=1
λKED

i = 1 (19)

∑n

i=1
λKED

i R(xi) = R(x0) (20)

As mentioned above, data transformation is used to deal with the rainfall showing non-Gaussian
features and the problematic cases that lack enough rain gauges to obtain a reliable variogram [46].
In this method, normal score transformation, which can associate every given probability quantile to
the corresponding quantiles of a standard normal probability distribution, is used to transform the
data to obtain a continuous, strictly cumulative distribution [44].

2.2. Meteorological Evaluation

2.2.1. Leave-One-Out Cross Validation (LOOCV)

No independent precipitation observations exist at a high resolution. Hence, to validate the
merging methods, a leave-one-out cross validation (LOOCV) was used to assess the performance of
the rainfall-merged techniques. In this method, the rain gauge point observations are assumed to be
directly measured as true values, which are used to access the performance by a comparison with other
given grid point rainfall products that are computed by different rainfall-merged methods. For the
scale mismatch between rain gauge and merging grid cell, the gauged location value is substituted
by merged rainfall data from the nearest grid center. It is notable that LOOCV only assesses the
accuracy of estimations at the rain gauge locations, but the LOOCV statistics allow us to compare the
performance of different merging methods systematically.

In this study, we undertook the evaluation on an hourly basis for each rain gauge location and for
each of the merging methods.

The following indicators were used to quantitatively compare the different radar-rain gauge
merged products and the rain gauge observations for each time step:
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Bias: The systematic errors assessment is calculated from the mean of difference between the
observed and predicted rainfall values.

Bias =
1
n

∑n

i=1

(
Ri − R̂i

)
(21)

RMSE: The root mean square (RMSE) represents the standard deviation of the differences between
the observed and predicted rainfall values and is widely used in verification.

RMSE =

√
1
n

∑n

i=1

(
Ri − R̂i

)2
(22)

MRTE: The mean-root-transformed error (MRTE) can mitigate the dominant of errors from large
precipitation amounts for the given lower weight:

MRTE =
1
n

∑n

i=1

(√
Ri −

√
R̂i

)2

(23)

where Ri is the rain gauge observed value, n is the number of the rain gauges, and R̂i is the estimated
value at the rain gauge location. For each whole event, the bias was computed as an average of the
entire period and entire spatial range. The bias value can range from −∞ to +∞, with optimal value
equal to 0. The RMSE and MRTE can range from 0 to +∞, with optimal value equal to 0.

Finally, the assessment of individual rain gauges only provides a performance at the point scale.
For the catchment that has fewer rain gauges to validate the performance, the evaluation over the
whole catchment is necessary. Thus, in order to assess the performance of the merging methods at
larger areas, a hydrological application approach was implemented.

2.2.2. Hybrid Hydrological Model (Hybrid-Hebei Model)

In this study, all the rainfall runoff forecasts were produced with the semi-distributed rainfall-runoff
Hybrid-Hebei model. This model is a semi-distributed model with a lumped conceptual from the
Hebei model and a spatially distributed feature based on GIS [47]. The model is in operational use in
semi-arid and semi-humid regions. The runoff of the semi-distributed Hebei model is divided into
surface runoff and underground runoff in each 1-km2 grid cell. When the precipitation intensity is
greater than the infiltration intensity, the landmark runoff confluence is generated and, conversely, the
infiltration component generates underground runoff after considering the soil water demand. Finally
the confluence generates the outlet flow of the basin. The structure of the Hebei model in each 1-km2

grid cell is shown in Figure 1.

Figure 1. Structure of the Hybrid-Hebei model in each grid cell.

In semi-humid and semi-arid areas, the middle zone of the soil vadose zone is relatively thick, the
infiltration rate generated by precipitation often fails to reach the diving surface, and the infiltration rate
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gradually decreases during the infiltration process. Therefore, the main factor affecting the infiltration
rate is the water content of the surface soil. In the semi-distributed Hebei model, considering the
complex changes of the underlying surface and the significant difference in infiltration capacity in the
semi-arid and semi-humid areas, the infiltration curve in the model is a parabolic infiltration curve
controlled by surface soil moisture. This is based on measured data of the Tuanshan gully in northern
Shaanxi, China.

The model’s infiltration curve within the grid is:

fg =

(
pg − i(1+n)

(1 + n) f n
m

)
e−um + fc (24)

where fg is infiltration rate within the grid, unit: mm/h; pg is rainfall intensity within the grid, mm/h; n
is the index; fc is stable infiltration rate, mm/h; u is the index; m is the surface soil moisture, mm; and
f n
m is the infiltration capacity within the grid, mm/h.

The structure of the lumped Hebei model was described in a previous study [47]. Compared to the
original lumped Hebei model, the Hybrid-Hebei model provides improved hydrograph simulations.
It can be coupled with high-resolution precipitation to achieve a superior runoff simulation. In this
study, the Nash efficiency coefficient (NSE) was used to evaluate the ensemble runoff simulation.

NSE = 1−
∑T

t=1

(
Qt

0 −Qt
m

)2

∑T
t=1

(
Qt

0 −Qo

)2 (25)

where Qt
0 is the observation at time t, Qt

m is the estimated value at time t, and Q̂o is the mean value of
the whole time T.

For floods in mountainous catchments, the peak flow is an important index, and the relative error
(RE) of the peak flow is adopted:

RE =
Qm −Qp

Qp
(26)

where Qp is the observed peak flow and Qm is the estimated peak flow.

3. Study Area and Data

3.1. Study Area and Events

The two river catchments of Fuping and Zijinguan were selected as the study areas. These
catchments belong to the south and north reaches of the Daqinghe catchment located in Northern
China and have semi-humid and semi-arid climatic conditions. The drainage area of Fuping (from
latitude 39◦22′ to latitude 38◦47′N and from longitude 113◦40′ to longitude 114◦18′E) is 2210 km2, and
the area of Zijingguan (from latitude 39◦13′ to latitude 39◦40′N and from longitude 114◦28′ to longitude
115◦11′E) is 1760 km2. The elevation above sea level in the Fuping and Zijingguan catchments varies
from 254 m to approximately 2456 m and 519 m to 2105 m, respectively (Figure 2). Both catchments
react very specifically to intense rainfall for the steep terrain and the low vegetation coverage, and
the rivers of the two catchments flow from west to east. The river flow is measured at the catchment
outlets. There are eight rain gauges in the Fuping catchment and eleven rain gauges in the Zijingguan
catchment. An S-band Doppler weather radar with a scan radius of 250 km is located in Shijiazhuang
city, which is approximately 100 km to the southeast of the two catchments and both catchments can
be completely covered by the radar. In this study, four storm events from the Zijingguan catchment
and four storm events from the Fuping catchment were selected to assess the performance of different
merging methods. When we chose the storm events, a 24-h time window was used. Within the 24-h
window, the storms which showed representative rainfall evenness in space and time were chosen,
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which then formed the eight storm events. The start times, durations, and peak flows of these events
are shown in Table 2.

Figure 2. The information of the Zijingguan and Fuping catchments.

Table 2. Durations and rainfall totals for the eight selected storm events.

Catchment Event ID Date Start Time Duration
Rain

Gauges
Accumulated
Rainfall (mm)

Peak Flow
(m3s−1)

Zijingguan

Z1 22/05/2007 00:00 17 h

11

39.52 6.8
Z2 10/08/2008 00:00 10 h 45.53 2.5
Z3 21/07/2012 04:00 14 h 155.43 2580.0
Z4 19/07/2016 05:00 19 h 74.29 53.4

Fuping

F1 29/07/2007 20:00 24 h

8

63.38 29.7
F2 30/07/2012 08:00 24 h 50.48 70.7
F3 01/09/2012 08:00 18 h 40.30 13.7
F4 25/07/2016 00:00 11 h 10.8 2020

3.2. Weather Radar and Data

The radar data used in this study were retrieved from the S-band single-polarization Doppler
weather radar located at Shijiazhuang city in Northern China (Figure 1). The detailed information of
this radar can be seen in Table 3. The radar is operated by the China Meteorological Administration
(CMA) and has an optimal detection range of 230 km. The radar obtains per base reflectivity data on
every six-minute volume scan and completely covers the two study areas [48]. A radar QPE Group
System (QPEGS) was developed by the CMA, providing hourly QPE data at a high spatial resolution.
For different sources of errors, such as radar calibration, variation of the vertical reflectivity profile,
attenuation, and anomalies, quality control of radar data, such as the removal of ground clutter, is
necessary and carried out by the OPEGS. A maximum-pixel-value method was also used to generate
the “mixed height radar reflectivity” in each volume gridded value, as in the hybrid scan reflectivity
proposed by the National Severe Storms Laboratory (NSSL). For the location of the selected radar in this
study, a threshold value (38 dBZ) of radar reflectivity was set to differentiate between the convective
and stratiform rainfall types considering the rainfall features in eastern China [49]. The accumulated
clutter was always magnified during the hourly accumulated rainfall collection period, so a simple
clutter filter was used to remove the static clutter. The power law Marshall–Palmer relationship
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converted the radar reflectivity (Z) to rain rata (R), and a Z-R relationship calculated the accumulated
rainfall for convective and stratiform rainfall types [50]. In the QPEGS, the common definition of “a”
and “b” is shown in Equations (25) and (26) [48]. To ensure that the spatial resolution of radar data
can reflect the precipitation, a higher radar precipitation, rather than a low threshold of 0.1 mm, was
considered for the estimation of a 1 km × 1 km radar grid.

For convective:
Z = 300R1.4 (27)

For stratiform:
Z = 200R1.6 (28)

Table 3. The parameters and hardware functions of the Shijiazhuang SA Doppler Radar.

Radar
Name

Name of
Radar Site

Frequency
(GHz)

Beam
Width (◦)

Antenna
Diameter (m)

Pulse
Width (μs)

Antenna
Gain (db)

Peak Power
(kw)

Shijiazhuang SA 2.7~3.0 1 11.8 * 1.57 ≥44 650

* The antenna diameter includes the radome.

4. Results and Discussion

We produced a series of sets of radar-rain gauge merged data by combining the radar and rain
gauge precipitation using different merging methods. During the computing period with these merging
methods, some applications were defined. For example, a value of 2 (common default value) was
given in the RIDW method, and a minimum of three stations were used in the kriging-based methods.
Spherical-model semivariograms defined the variograms that were ill defined, with an insufficient
number of points. The last previously computed valid variogram was instead used when the present
condition was not valid, and the regression and integration were computed on stations only located in
the basins [51,52]. The evaluation of the quality and the reliability of the merged data in this study
was assessed in two stages: The quantitative evaluation of radar-rain gauge merging methods based
on LOOCV and the hydrological model performance driven from the merged data as Hybrid-Hebei
model input.

4.1. Evaluation of Radar-Rain Gauge Merging Methods

To assess the performance of the different merging methods, we computed the present performance
indicators for the eight events. For each indicator, hourly rainfall values were averaged for each event
(Table 4, Figure 3), and the calculated weight of each rain gauge was determined by the area weight
divided by the Thiessen polygon. As indicated, the QPE-only-based radar data (OR) clearly showed
the weakest performance in all performance indicators, which confirms the necessity of bias correction
using rain gauge observations. For the BIAS indicator, the median of BIAS should be close to zero
with minimum dispersion because the cross-validation errors of a good estimator should be unbiased.
The results shown in Figure 3 indicate that all merging methods were relatively unbiased (median
errors were close to zero in all events), but the range of BIAS varied between the different methods.
The main difference between these methods can be seen in the range of the indicators, whereby the
integration category has the smallest range of BIAS rather than the interpolation category and bias
adjustment category [53]. The results show that the kriging-based methods all performed well, with the
bias reduced. A comparison of the results of the three categories on the RMSE and MRTE (Figure 3) is
noticeable. Irrespective of the two merging methods chosen in the integration or interpolation category,
one of these had a clear improvement over the bias adjustment and another has a slight improvement.
The performance and added value of the associated merging methods generally increase with the
improvement of correlation between rain gauge and radar estimation for medium or large geographic
domains, but is invisible for the smaller domains for the limited rain gauges observation and the
uncertainty of precipitation under rapid spatial transformation [33].
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Figure 3. Boxplots of the indicators BIAS, root mean square error (RMSE), and mean-root-transformed
error (MRTE) of the chosen two basins. For each method, the central bar is the median, the bounds of
the box are the first and third quartiles, and the whiskers include 1.5-times the interquartile range from
the box. Note that only the hourly rainfall values in the domain >0.1 mm are provided in this figure.

Table 4. The indicators performance based on leave-one-out cross validation (LOOCV) in the
two catchments.

Basin Indicator OR MFB RIDW CCoK FBRK RK KED

Zijingguan
BIAS −2.84 −1.69 1.61 0.58 0.24 −0.71 0.34
RMSE 4.84 4.49 3.28 3.3 1.31 2.92 1.41
MRTE 1.86 1.22 1.03 0.55 0.21 0.78 0.22

Fuping
BIAS −1.08 −0.36 0.33 0.20 −0.08 −0.28 −0.11
RMSE 3.78 2.14 1.64 2.22 1.18 2.72 1.21
MRTE 1.63 0.98 0.49 0.57 0.19 0.73 0.22

Figure 3 provides a graphical representation of the results of the different merging methods on
the two basins and indicates that the FBRK results performed best, followed by the KED, CCoK, RK,
RIDW, and MFB. The improvement of the FBRK data over the KED, however, was relatively minor
compared to their improvements over other merging methods. The two methods that performed
best were the FBRK and KED, which belong to the integration category and interpolation category,
respectively. It has been pointed out in previous studies that the methods in the bias adjustment
category were not found to have a better performance in any inter-comparison studies [32,54]. The
results of these methods make us consider that correction can be used to estimate all points inside
the study area and can deal with anisotropy and the spatial evolution of precipitation with assuming
translation invariance and small basins. The results are not clear, however, for partial methods and
indicators. For example, the RIDW performed better overall than the CCoK and RK when applied in
Fuping. In terms of the BIAS, the RIDW showed a similar performance with the FBRK or KED and had
a better performance than CCoK or RK in terms of RMSE and MTRE indicators. This is due to the fact
that the quality of the kriging-based methods and bias adjustment methods depend significantly on
the geometry of the rain gauge network distribution and, in particular, on the low-density rain gauge
network [32].
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Through the overall comparison of the performance of the two basins using different merging
methods, we found that different merging methods not only produced similar results, but also showed
different performances. This is because there is an information gap, such as the area of the basin, the
distribution information of the rain gauges, and the distance from the radar. Therefore, we need to
analyze and discuss each basin in order to determine suitable merging methods that suit different basins
and the reasons for their suitability, as well as the reasons why other methods do not perform well.

In Table 5, the indicator performances of the merging methods for the four storm events of
Zijingguan are shown. Figures 4 and 5 show the boxplot of the three indicators for the four events in
different merging methods and the scatterplot of the rain gauge observations with the predicted rainfall
values from the six merging methods. The merging methods generally outperformed the radar-only
estimations and the quality of radar data determined the quality of the merging products. The BIAS
shows a clear underestimation when comparing the radar QPE with the rain gauge observation and
confirms the need for correction of the radar QPE using rain gauges. The results for the BIAS show that
for the performance of the rainfall data compared with the gauge observation, OR and MFB showed
a strong negative value and the RIDW had a strong positive value. The other methods had a bias
value of approximately 0. Furthermore, the values of the RMSE and MRTE strengthen the observation.
It can also be seen that the interpolation methods and integration methods performed better than
the bias adjustment methods. This could be due to the simplicity of bias adjustment methods and
the complex formulation of the other two methods. It seems that a more complex implementation of
merging methods always achieves a better result.

The FBRK method and the KED method provided the best performance and second-best
performance, respectively, for the three indicators, whereby they provided the best and second-best
values over all four events in the Zijingguan catchment. The scatter diagram (Figure 5) demonstrates
that the FBRK and KED had a significant relationship between the merging data and rain gauge data,
thereby indicating the high potential of merging skills in the applications. To the authors’ knowledge,
in all merging methods studied, the BAY-based method and the KED are the most popular merging
methods that generally perform best [32], and this is in concordance with our results. The overall
indicators and events show that the FBRK has a slightly better performance than KED. The third
and fourth best performing methods were the CCoK and the RK methods. It is noted that the BIAS
value-based RK had a slightly negative bias. In terms of all indicators, CCoK outperformed for three
events, but for the Z3 event, the RK performed better than CCoK. The RK preserved the relative
spatial rainfall resolution of the radar data, but its value estimates tended to be under the range of
the gauge observations. We highlight that the RIDW method was applied with the default value of
2 [52]. The parameter, however, is often applied across large areas (particularly including a degree of
spatial varying of rain gauge-radar biases), along with small-scale features that are spatially variable.
This means that a default value may fail to quantitatively correct the rainfall data. An adjustment of
the parameter may achieve a better performance of the RIDW method. The MFB performed worst in
all methods and events. The MFB is, however, the most commonly used and investigated method
among all merging methods, and it scales the original radar data to match the rainfall accumulations
recorded by rain gauges. Considering this, the MFB can potentially provide a better representation of
small-rainfall features compared with the other five merging methods [33]. The simple use and way in
which the radar QPE is employed throughout the merging process, however, suggests that the MFB
may fail to satisfactorily correct the rainfall features.
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Table 5. The indicator performance based on LOOCV in Zijingguan.

Event Indicator OR MFB RIDW CCoK FBRK RK KED

Z1
BIAS −0.84 −0.49 0.25 0.12 0.07 −0.16 −0.10
RMSE 2.33 1.05 1.08 0.87 0.41 1.05 0.53
MRTE 0.73 0.34 0.23 0.16 0.04 0.18 0.06

Z2
BIAS −1.195 −0.78 0.61 −0.14 −0.06 −0.31 0.09
RMSE 5.69 2.26 2.15 1.86 0.85 1.97 1.07
MRTE 1.87 0.67 0.52 0.34 0.09 0.40 0.14

Z3
BIAS −4.40 −2.36 2.34 1.17 0.54 −1.01 0.76
RMSE 9.11 7.97 5.35 6.17 2.96 5.78 3.23
MRTE 2.69 1.90 1.27 1.53 0.50 1.34 0.69

Z4
BIAS −2.68 −1.01 0.71 −0.33 −0.16 −0.66 0.21
RMSE 6.61 4.12 3.12 1.31 0.97 2.10 0.99
MRTE 2.12 1.68 1.11 0.66 0.20 0.87 0.31

 

Figure 4. Boxplot for the radar only and six merging methods values of three indicators in four events.
For each method, the central bar is the median, the bounds of the box are the first and third quartiles,
and the whiskers include 1.5-times the interquartile range from the box. Note that only the hourly
rainfall values in the domain >0.1 mm are provided in this figure.
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Figure 5. Scatterplots of data between the rain gauge observations and the radar-rain gauge merged
products (the mean field bias (MFB), regression inverse distance weighting (RIDW), collocated co-kriging
(CCok), fast Bayesian regression kriging (FBRK), regression kriging (RK), and kriging with external drift
(KED)) of the Zijingguan basin. Continuous 1/1 slope lines are shown for the purpose of visualization
when comparing different merging methods. In this figure, (a) the scatter distribution of the chosen
merging methods in Z1 event; (b) the scatter distribution of the chosen merging methods in Z2 event;
(c) the scatter distribution of the chosen merging methods in Z3 event; (d) the scatter distribution of the
chosen merging methods in Z4 event.

Table 6 shows the indicator performances of the merging methods for the four storm events of
Fuping. Figures 6 and 7 show detailed information regarding the six merging methods applied in
Fuping. The results of the performances for the three categories are the same as those of the Zijingguan
events. When comparing the indicator performances of the two basins, the OR performed better
in Fuping, inferring that there was a better QPE for close to the radar station. As expected, the
methods belonging to the bias adjustment category had a better performance than their applications in
Zijingguan. In contrast to the results of the chosen methods applied in Zijingguan, it is clear that the
RIDW belonging to the bias adjustment category outperformed the CCoK belonging to the integration
category and the RK belonging to the interpolation category. It is well known that the smaller the value
in the indicators and the smaller the range in the boxplot, the better the scatter correction. The better
QPE is the main reason leading to the superior performance of the RIDW, and with a better QPE, the
RIDW can preserve the original structure of the radar rainfall, especially the small-scale features. The
RK method is highly reliant upon rain gauge numbers because it simply utilizes the spatial information
of the radar field at the rain gauge locations to interpolate. As well as the ability of RK to reproduce
rainfall features, it is highly dependent upon the density of rain gauges at the small scale. The RK
method is likely to be used more in the limited rain gauges, with the variogram generation based on
the point rain gauge value. The relatively poor performance of the CCoK and RK results (Figure 6)
were likely due to the assumption that the Gaussian distribution in dynamic merging methods would
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compute results that may be limited in simulating rainfall values [43]. For CCoK, the method takes
spatial information from the radar in the basin. According to the performance results (Table 6), the
better QPE and limited rain gauges combined to produce a satisfactory performance.

Table 6. The indicator performance based on LOOCV in Fuping.

Event Indicator OR MFB RIDW CCoK FBRK RK KED

F1
BIAS −1.87 −0.93 0.41 0.76 −0.23 −0.68 −0.31
RMSE 5.43 3.33 2.35 2.12 1.42 2.67 1.66
MRTE 3.27 1.40 1.06 0.73 0.19 1.28 0.43

F2
BIAS −0.93 −0.53 0.17 0.21 0.08 −0.24 0.09
RMSE 2.79 1.89 1.36 1.84 0.61 1.45 0.96
MRTE 1.55 0.62 0.33 0.45 0.11 0.34 0.20

F3
BIAS −0.95 −0.53 0.21 0.26 0.03 −0.26 0.07
RMSE 2.71 1.32 0.89 1.01 0.51 0.92 0.65
MRTE 0.71 0.47 0.18 0.28 0.06 0.19 0.12

F4
BIAS −0.59 −0.25 0.17 0.24 −0.04 0.28 0.05
RMSE 4.18 2.02 1.68 1.87 0.43 1.78 0.64
MRTE 0.88 0.36 0.21 0.26 0.06 0.26 0.11

Figure 6. Boxplot for the radar only and six merging methods values of three indicators in four events.
For each method, the central bar is the median, the bounds of the box are the first and third quartiles,
and the whiskers include 1.5-times the interquartile range from the box. Note that only the hourly
rainfall values in the domain >0.1 mm are shown in this figure.
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Figure 7. Scatterplots of data between the rain gauge observations and the radar-rain gauge merged
products (the MFB, RIDW, CCoK, FBRK, RK, and KED) of the Fuping basin. Continuous 1/1 slope lines
are shown for the purpose of visualization when comparing different merging methods. In this figure,
(a) the scatter distribution of the chosen merging methods in F1 event; (b) the scatter distribution of the
chosen merging methods in F2 event; (c) the scatter distribution of the chosen merging methods in F3
event; (d) the scatter distribution of the chosen merging methods in F4 event.

Through the comparison of the three evaluation indicators with the two basins, the two
classical approaches (FBRK and KED), based on inotropic and variograms, are the best suited of the
merging methods, which work well with the high spatial and temporal variability of precipitation.
The performance of the different merging methods is clearly shown in this section. Multiple factors,
which affect the application of radar-rain gauge merging methods used in the basins, were identified
in this study. Obviously, the most important single factor affecting the performance is the quality
of QPE that indicates the ability of radar to sample the rainfall conditions [55]. As the application
in the Fuping shows, the RIDW, based a better QPE, outperformed the CCoK and RK, although
the limited rain gauges significantly affected the performances of these methods. The lack of rain
gauges created a lack of consistency provided by radar and rain gauges. As some studies have found,
merging performance generally improves with increasing consistency between radar and rain gauge
measurements, particularly in the integration and interpolation categories [19].

For small-scale basins, the preservation of small-scale rainfall features is critical to apply the
methods. Different merging methods mean different choices regarding how the radar and rain gauge
data are treated and applied during the merging process [56]. In this study, methodological choices
focused on improving the quality of radar and rain gauge estimates through different methods. For
small-scale basins, the radar QPE was the main data source, providing spatial details of the rainfall.
Thus, the ability of these merging methods to preserve local rainfall features was highly dependent
on the proportion of, and way of, employing radar data through the merging process. As described
in Section 2.1.1, the bias adjustment category scaled the original radar estimation by multiplying the
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QPE accumulations with factors to match the rain gauge record. As such, the original structure of
the radar rainfall field was essentially preserved. However, the MFB did not achieve a satisfactory
performance in the rainfall rates correction associated with small-scale features. Because MFB is usually
applied uniformly to large areas, it often ignores the spatial variability in radar QPEs when applied
at the small scale [57]. As Table 6 demonstrates, RIDW achieved a satisfactory performance with a
high-quality radar QPE. As discussed in the previous section, a local regression of the radar data on the
rain gauge data could contribute positively to the RIDW performance. The methods in the integration
category combine the two datasets based on their relative uncertainty (see Section 2.1.2). As such,
with limited rain gauges or high spatial rainfall variability, integration methods take more information
from the radar data. This means that it is possible for integration methods to obtain a satisfactory
reproduction of small-scale features, as in the assessment result of FBRK (Table 5). To a certain extent,
however, CCoK prefers the interpolation category, in both the performance of comparison from the
results and the Gaussian assumption. Unlike the other two categories, the methods in the interpolation
category are highly reliant on rain gauge observations, simply considering the gauged radar data
in the interpolation process. As per the result comparison discussed in the previous sections, the
performance of interpolation-based methods is clearly associated with the density of rain gauges,
which decide the ability to capture the small-scale rainfall features. Conversely, interpolation methods
with Gaussian assumptions always smooth the high nonlinearities in small-scale features [58]. This is
why the error of the RK prediction value is more obvious when the precipitation is large. For KED, the
spatial details are reconstructed after the merging process. The density of rain gauges employed in
radar-rain gauge merging has an impact on the performance of the merging methods. The impact
of limited rain gauge availability on merging performance is closely linked to the reliance of a given
merging method upon rain gauge data, as well as to the way in which radar data is employed in the
merging process. Having a sufficient number of rain gauges in the study area may increase the ability
of the rain gauges to capture the relevant precipitation features. However, the two catchments in this
manuscript had a limited number of rain gauges due to the lack of monitoring network. With the
increasing of monitoring stations, a further work should be implemented to study the influence of the
rain gauge density on the merging performance.

In the six chosen merging method performances, we conclude the strengths and weaknesses
of the three categories. The bias adjustment category has the advantage of ease of use, which leads
to its wide application. For the methods in this category, small-scale rainfall features are generally
preserved, although the correction may fail to correct the rain rates. The integration category allows for
the consideration of rain gauge and radar uncertainties. The complex computation of the integration
category, such as requiring solving matrix systems, leads to it being applied and tested the least. The
interpolation category ranks between the other two categories in both complexity and performance,
which is why the methods in the interpolation category are becoming increasingly popular [19].

4.2. Hydrological Model Performance Evaluation

The LOOCV analysis result does not allow a direct comparison because the left rain gauge is
just used to compare and not used to compute the product [52]. Some authors have proposed that
a higher quality of the merging products can be indicated from agreements between the simulated
and observed runoff using the merging products as the input [53]. All authors, however, pointed out
that the calibration of a hydrological model is a demanding task and subject to various uncertainties,
particularly for mountain flood simulations, whereby it is not easy to find the adequate parameters for
considering uncertainties in the model structure and parameterization. In this study, a set of calibrated
and validated model parameters were, therefore, used with the Hybrid-Hebei rainfall-runoffmodel in
the same two basins [47].

Table 7 shows the performance of merging methods in the runoff simulation. As expected, the
merging methods performed a different goodness-of-fit with the runoff simulation. For the NSE, all
merging methods performed normally, and the extent of failure was revealed more clearly in RE. The
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values of NSE were increased from 0.21 (the MFB in F4) to 0.62 (the KED in F2). Concerning peak flows,
the values of MFB and RK were negative overall, indicating a general tendency of underestimation
together with the performance of rainfall estimates in the previous section. All the other methods
showed a higher estimate. It can be noticed that the RK method seemed to have a better performance
for the peak flows than FBRK and KED methods for the Z3, F2, F3, and F4 storm events. In this study,
the purpose of inputting the QPEs to the hydrological model was not to rank the merging methods, but
to test the applicability of the merging rainfall products for flood forecasting. The performance of the
rainfall-runoffmodel is subject to its parameter calibration. Since only one certain set of parameters
was used for the Hybrid-Hebei model, the differences of QPEs from different merging methods may be
obscured in the runoff simulations. As indicated in Table 7, the MFB performed worse than any of the
methods chosen. The best results were the FBRK and KED methods. The performance of the FBRK
and KED methods were almost identical when considering the simulation of NSE and RE in the entire
events. This may be because the model calibration seems to have compensated for the differences in
the rainfall garnering in the merging process. Compared with the CCoK and RK, the CCoK showed
a better performance in most events, and therefore, the result indicates that the performance of the
hydrological output is highly dependent on the accuracy of the rainfall product. The RIDW method
ranked between the RK and MFB in both Fuping and Zijingguan. With one exception (Z3), however,
the performances of these merging methods were different from other events.

Table 7. The indicator performance based on the Hybrid-Hebei model in two catchments.

Event Indicator MFB RIDW CCoK FBRK RK KED

Z1
NSE 0.37 0.44 0.51 0.57 0.46 0.60
RE −0.47 0.57 0.24 0.21 −0.38 0.26

Z2
NSE 0.47 0.41 0.55 0.59 0.46 0.61
RE −0.38 0.33 0.36 0.28 −0.29 0.24

Z3
NSE 0.36 0.52 0.42 0.53 0.41 0.49
RE −0.52 0.54 0.35 0.28 −0.16 0.41

Z4
NSE 0.26 0.37 0.41 0.52 0.38 0.50
RE −0.68 0.61 0.55 0.38 −0.69 0.28

F1
NSE 0.32 0.38 0.48 0.58 0.42 0.55
RE −0.47 0.68 0.56 0.42 −0.48 0.38

F2
NSE 0.41 0.49 0.51 0.61 0.49 0.62
RE −0.55 0.95 0.77 0.55 −0.48 0.48

F3
NSE 0.36 0.42 0.46 0.54 0.40 0.51
RE −0.49 0.78 0.63 0.37 −0.33 0.65

F4
NSE 0.21 0.38 0.41 0.53 0.35 0.55
RE −0.68 0.44 0.36 0.68 −0.57 0.48

Figure 8 shows the 24-h accumulated rainfall in the Zijingguan catchment based on different
merging methods in the Z3 event. Figure 9 shows the hourly precipitation distribution and simulated
stream flow hydrograph of all merging methods in this event, and the hydrograph flood process
was extended to 36 h. As indicated in Figure 9, the entire runoff simulation process lines of merging
methods had the same trend as the measured flow process line. The runoff hydrograph indicates that
the catchment in the study area was relatively fast. The occurrence time of flood peak was the same in
all simulation processes, and the peak staggering time was no more than a maximum of one hour. This
indicates that the Hybrid-Hebei model can successfully simulate runoff under different precipitation
products. For all merging methods, it is can be seen from Table 7 and Figure 9 that FBRK continued
to rank highest in the hydrological verification. The RIDW outperformed at NSE because the runoff
simulation hydrograph of RIDW was the only one with a double-peak flow as the measured runoff
streamline. RIDW, however, was evaluated as only better than the MFB in LOOCV. KED performed the
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third best in the NSE, however, the extent of failure was found in the peak flow. The CCoK performed
worse, and a one-hour peak flow lag was found (Figure 9). RK and MFB both showed an average
performance in NSE and RE, and both showed a clear underestimation in peak flow.

 
Figure 8. Twenty-four-hour accumulated rainfall based on different merging methods (mm).

 

Figure 9. Hydrographs showing simulated stream discharge at the discharge station in Zijingguan.

Based on the result of NSE (Table 7), the results of runoff simulations were normal. This is
particularly because these merging methods do not have a large difference in accumulated precipitation
and temporal distribution in Z3 (Figure 9). When considering the peak flow, however, the discrepancy
was pronounced in both value and occurrence time. Furthermore, for RIDW and CCoK, the peak flow
occurrence time of the other four methods was consistent with the measurement, and the difference
between them was the value of peak flow. The lagged phase of the double peak flows in RIDW and
peak flow in CCoK was approximately one hour. Compared to line A and line B, clear rainfall random
errors in RIDW and CCoK were found, and the response of the runoffmodel performed differently.
It is known that the transformation of precipitation to runoff is a smoothing operation in both space
and time. For this catchment, a quick response time leads to a failure in the “smoothing effect.” If the
rainfall accumulation is larger than the response time of catchment, the performance of these methods
will be improved [53].

In this section, the fitness of the simulated flow driven by different merging products was used to
assess the performance of these products. The hydrological performance of the merging methods was
not as good as expected. It is notable that, in runoff simulations, these methods all significantly ranked
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the lowest in the bias adjustment category. This may be because a spatially differentiated correction was
not adopted in this category, and the transformation of rain to runoff is a temporal and spatial process.
If the correlation length of random errors is close to the catchment’s response time, random errors
will be averaged out to a lower extent [53]. For the chosen methods, both FBRK and KED exhibited
a low variation of approximately 0.6. The median ranking of RIDW in LOOCV was different to its
performance in runoff simulations than CCoK and RK. It should be noted that the potential of giving
the merging products as hydrological input is also a function of further multiple factors, including the
methodological choices in the merging process, the climatological conditions in the basins, structural
model errors, and the cross uncertainties in the entire merging and hydrological application [59].
Moreover, in order to assess the performance of hydrological variables while considering spatial
observations, temporal observations must be taken into consideration because products generated
by a distributed hydrological model or semi-distributed model, such as stream flow, are found to be
sensitive to different high-resolution precipitation [60].

5. Conclusions

In this paper, radar-rain gauge merging categories were conducted. Eight different storm events
were chosen from two catchments in semi-humid and semi-arid areas of Northern China to test six
different radar-rain gauge-merging methods that belong to three categories using a LOOCV and
a rainfall-runoff model (Hybrid-Hebei model). We generated six merged radar-rain gauge rainfall
products and compared their performances at gauged location estimations to further their effectiveness
as inputs to a semi-distributed rainfall-runoffmodel of the two study catchments, the Zijingguan and
the Fuping catchments in the Northern China. Their relative performances were assessed based on the
LOOCV and compared. Two main conclusions can be drawn:

(1) The merging methods have significant potential to improve the quality of rainfall estimates.
The integration category performed best in most cases. The bias adjustment category always performed
significantly worse. The interpolation category ranked between the aforementioned. The degree of
improvement can be a function of merging method that is affected by the quality of both the data
and the ability to capture small-scale rainfall features and methodological factors. The total bias of
the merging products is because of components of merging methods or other uncertainties. This
means that the use of merging methods, without considering the small-scale rainfall features, can be
misleading. The quality and representativeness of the radar and rain gauge data should be carefully
considered with refinements to mathematical techniques.

(2) In this study, we assumed that a higher quality of the merging products would be indicated
from agreements between the simulated and observed runoff using the merging products as the
input of the rainfall-runoffmodel. As expected, the results revealed that a higher quality of merging
products indicated a better agreement between the observed and simulated runoff. However, the
precipitation estimation random errors will be averaged out to a lower extent when the correlation
length of random errors is close to the catchment’s response time. Thus, it is hard to know if the
streamflow simulation errors were due to precipitation estimation random errors or the rainfall-runoff
model’s structural errors.

It should be noted that the computational requirements and runtimes are a significant challenge
in the merging process. In general, the bias adjustment methods are the least complex and are easy
to compute. The interpolation methods are computed relying on the solution of the kriging system,
which increases the computational complexity by adding the variables. The integration methods are
the most complex and will continuously increase with radar QPE of higher spatial resolution.

In conclusion, this synthetic study demonstrated the potential benefit of the radar-rain
gauge-merged rainfall precipitation at a high spatial resolution. The performance in gauged locations
evaluation and hydrological application based on the different merging methods was also demonstrated.
It is should be noted that the quality of radar QPE will be improved in the future with the increasing
available of dual-polarization radars [61]. As discussed in Section 4.1, the quality of QPE plays a
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critical role on the performance of different merging methods, in which the spatial information of QPE
is employed in different merging techniques. It is recommended that the three merging categories are
tested in combination with the higher quality QPEs, and it is critical to study how the quality of QPE
affects the performance of these merging methods [44]. Furthermore, with the increasing of monitoring
stations, a further work should be implemented to study the affection of different density of rain gauges
on the merging performance in the future. Notably, the conditions and assumptions of this study,
including the hydrology parameters chosen and the Gaussian assumptions in the kriging, are merely
simplifications of reality. The difference between the theoretical study and simulated data in this study
is that the rainfall observations from radar or rain gauge in reality are even more complicated due to
dynamic spatial changes.
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Abstract: Stratiform and convective rain types are associated with different cloud physical processes,
vertical structures, thermodynamic influences and precipitation types. Distinguishing convective
and stratiform systems is beneficial to meteorology research and weather forecasting. However,
there is no clear boundary between stratiform and convective precipitation. In this study, a machine
learning algorithm, K-nearest neighbor (KNN), is used to classify precipitation types. Six Doppler
radar (WSR-98D/SA) data sets from Jiangsu, Guangzhou and Anhui Provinces in China were used as
training and classification samples, and the 2A23 product of the Tropical Precipitation Measurement
Mission (TRMM) was used to obtain the training labels and evaluate the classification performance.
Classifying precipitation types using KNN requires three steps. First, features are selected from the
radar data by comparing the range of each variable for different precipitation types. Second, the same
unclassified samples are classified with different k values to choose the best-performing k. Finally, the
unclassified samples are put into the KNN algorithm with the best k to classify precipitation types, and
the classification performance is evaluated. Three types of cases, squall line, embedded convective
and stratiform cases, are classified by KNN. The KNN method can accurately classify the location and
area of stratiform and convective systems. For stratiform classifications, KNN has a 95% probability
of detection, 8% false alarm rate, and 87% cumulative success index; for convective classifications,
KNN yields a 78% probability of detection, a 13% false alarm rate, and a 69% cumulative success
index. These results imply that KNN can correctly classify almost all stratiform precipitation and
most convective precipitation types. This result suggests that KNN has great potential in classifying
precipitation types.

Keywords: precipitation classification; K-nearest neighbor; Doppler radar; Tropical Precipitation
Measurement Mission (TRMM)

1. Introduction

Precipitation can be divided into stratiform precipitation and convective precipitation [1].
A convective precipitation system generally has the characteristics of strong upward motion, small areal
coverage and high precipitation intensity, while a stratiform precipitation system has the characteristics
of weak upward motion, large areal coverage and weak precipitation intensity. The classification
of precipitation can be used in meteorological research, weather forecasting and meteorological
disaster prevention. First, there are different precipitation growth mechanisms and different physical
principles between convective and stratiform precipitation. Research on convective and stratiform
classification can provide a better understanding of the physical mechanisms of clouds. Additionally,
convective systems have an important influence on the thermal balance of the atmosphere [2,3],
and thermodynamic differences can lead to different latent heat distributions, moisture cycling, and
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cold rain and warm rain processes, which can have different effects on cloud lifetime and Earth’s
climate [1,4]. The energy of a convective system is often expressed in terms of the apparent heat sources
and apparent moisture sinks. An apparent heat source is difficult to measure but can be estimated by
precipitation [5,6], and different types of precipitation can reflect different thermodynamic structures.
Finally, precipitation estimation plays an important role in understanding the hydrological cycle
reducing uncertainties in global climate change model predictions for future environmental scenarios,
weather forecasting and disaster prevention [7–9]. In the traditional method of precipitation estimation,
a Z-R relationship is adopted, and the estimated precipitation is calculated through the relation between
the radar echo intensity and precipitation. However, different types of clouds have different structures
and precipitation growth mechanisms, and the use of a single Z-R relation cannot provide a good
estimate of precipitation. It is helpful to improve the accuracy of precipitation estimation by classifying
precipitation clouds and adopting different Z-R relations for different types of clouds [10,11]. However,
there is no clear boundary between stratiform precipitation and convective precipitation, and it is
difficult to distinguish one from the other directly from radar data. As a result, a number of methods
have been developed to classify precipitation types.

In an early study, ground rain gauges were used for classification. This method classifies rainfall
as convective when the gauge data exceed some background level by a certain amount [12,13].
The background-exceedance technique (BET) uses radar reflectivity to identify the convective core
in a certain plane and set the radius of influence; the area inside the influence radius is considered
the convective rain zone, and the area outside the influence radius is the stratiform rain zone [14].
Steiner, et al. [15] modified the BET method using a variable radius of influence and a variable
threshold instead of a fixed radius of influence and threshold in the BET method. The authors
proposed the method in 1995, and the method was named SHY95 using the initials of the three
authors and the year that the method was proposed. An extended SHY95 method was applied by
DeMott, et al. [16], who used a two-dimensional BET at each height level within a volume of radar
reflectivity to extend this approach to three dimensions. They suggested that using low-level data
may lead to the misclassification of convective cells that tilted strongly with height and showed that
using three-dimensional data can improve the accuracy of precipitation classification. Biggerstaff and
Listemaa [5] modified the classification results of SHY95 by considering the vertical structure of the
radar reflectivity factor based on the SHY95 method and found that the method yielded higher accuracy
than SHY95. Bringi, et al. [17] classified precipitation types by calculating the standard deviation of the
drop size distribution (DSD). When the standard deviation of the DSD is smaller than a certain standard,
it is classified as stratiform precipitation, and when the standard deviation of the DSD is larger than this
standard, it is classified as convective precipitation. Instead of using the traditional method based on
the BET, Anagnostou [18] proposed an algorithm for classifying stratiform and convective clouds using
an artificial neural network (ANN). The cloud-top height, reflectivity at a height of 2 km and 4 other
features were used in the ANN training. Compared with other traditional algorithms based on the
BET, the ANN exhibited better performance. The DSD has also been used to classify precipitation [19].
Based on a large number of rain events and by computing the Z-R relationship, the average DSD and
the corresponding parameters, microphysical analysis can be performed; the rain distribution and
precipitation type can be adequately characterized by a gamma DSD. Zhang and Qi [20] developed a
method that automatically corrects for large errors due to the bright band in a real-time national radar
quantitative precipitation estimation product, and the performances were good [21–23]. Yang, et al. [24]
applied the fuzzy logic (FL) method for precipitation classification research using the 2-km height echo
reflectivity, vertical integral liquid water content and other characteristics for classification, and the FL
classification results were more natural and realistic than those of other methods. Yang, et al. [25] used
FL to classify precipitation types and estimate precipitation. The results showed that compared with
the Z-R relationship, FL can reduce the underestimation of precipitation and improve the accuracy of
estimating precipitation using radar data.
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Some studies have used satellite data to classify precipitation types. Adler and Negri [26] used
infrared satellite data and applied a variant of the BET to classify convective and stratiform precipitation.
Unlike convective cores denoted by radar reflectivity in the BET, they used the minimum cloud-top
temperatures to identify the convective core area. The radius of influence of each core was dependent
of the magnitude of the infrared brightness temperature of the core [26,27]. Goldenberg, et al. [28] used
an infrared cloud-top temperature method similar to the BET to classify convective and stratiform
precipitation for a tropical cloud cluster. Awaka, et al. [29] used TRMM precipitation radar data. Two
algorithms, the vertical contour mode (V-method) and horizontal contour mode (H-method), were
used in the study to classify precipitation types. If the classification results of the two algorithms are
the same, the classification result is determined, and if the classification results differ, fusion-based
classification results are used. The V-method can be used to detect the bright band. Once the bright
band is detected, the precipitation type is classified as stratiform precipitation. Then, the V-method
continues to detect convective precipitation according to the radar reflectivity. If the precipitation type
is neither stratiform nor convective, it is classified as another type of precipitation. The H-method is
based on Houze’s classification model [15] using the horizontal echo intensity at a height of 2 km to
assess the type of precipitation.

The precipitation process involves complex thermodynamic mechanisms and cloud microphysical
mechanisms during sedimentation. These principles are difficult to fully explore. Thus, it is difficult to
classify precipitation types based on these mechanisms. Machine learning can be used to build models
and capture the characteristics of data such that changes in the data can be predicted and the data
can be classified into different categories based on the relevant characteristics. When using machine
learning to classify precipitation types, it is not necessary to understand the precipitation mechanisms
of convective precipitation or stratiform precipitation, and the representative and appropriate variables
for classification and labeling can be selected to achieve optimal classification. Machine learning is a
discipline that uses experience to improve the performance of a system by means of calculations [30].
In computer systems, experience often exists in the form of data; thus, the main area of machine
learning research involves computer algorithms that generate models from data. The main types of
machine learning include supervised learning, unsupervised learning and semisupervised learning.
Supervised learning is a method of adjusting the parameters of a model with a set of known classes of
samples to achieve the required performance. Supervised learning includes decision trees, boosting
and bagging algorithms, support vector machines, etc. Semisupervised learning refers to the fact that
data sets contain both identified and unidentified data, and unidentified data are obtained using the
identified data. Semisupervised learning usually includes semisupervised Support Vector Machine
(SVM), semisupervised clustering, etc. In unsupervised learning, training samples do not have known
characteristic information. Unsupervised learning reflects the inherent nature and laws of data by
learning unlabeled training samples, providing a basis for further data analysis. This approach is
commonly used in clustering.

The K-nearest neighbor (KNN) method is a type of supervised learning algorithm that has been
widely used in pattern recognition and classification. KNN relies on the nearest k samples instead
of all the samples for classification and is most suitable for classifying samples with overlap and
unclear boundaries. KNN was proposed by Fix and Hodges [31], and Cover and Hart [32] further
developed and improved the algorithm. KNN has fewer tunable parameters and provides faster
calculations for small data sets than other methods. Thus, this approach has advantages in solving
classification problems involving precipitation types. Machine learning is seldom used to classify
precipitation types. KNN is a mature classification algorithm with many advantages and has been used
in many fields, but there is no relevant study to prove the applicability of KNN in the classification of
precipitation types, and the present study attempts to use and explore the applicability of KNN to
classify precipitation types.

This paper consists of the following: Section 2 introduces radar data and satellite data used in this
paper, Section 3 describes the implementation process of the KNN algorithm and the performance of
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the selected variables under different conditions, Section 4 presents the results of the KNN classification
of precipitation type, and the final section provides a summary and conclusion.

2. Data Description

The Doppler radar data used in this study are from the six S-band China Next-Generation Weather
Radars (CINRAD/SA), and the site information and usage period of the radars are shown in Table 1.
The radars are 10-cm wavelength Doppler radars with a 1◦ half-power beam width. The radar data
consist of volume scans of the radar reflectivity, average radial velocity and spectral width. The radars
are operated in 360◦ azimuthal volume scan mode with steps in elevation angles from 0.5◦ to 19.5◦
during periods of precipitation. The number of elevation steps and temporal resolution of the data
depend on the operational mode of each radar. The radial bin spacing is 250 m. The radar data used in
this paper are interpolated by the Barnes interpolation algorithm to a horizontal grid with a resolution
of 1 km × 1 km [33] and a vertical resolution of 500 m over a depth of 18 km in the Cartesian coordinate
system. The origin of the coordinates is the position of the radar. The data are quality controlled.

The precipitation radar (PR) is mounted on the TRMM satellite. The system takes 92.5 min to
scan Earth, and it can scan Earth 16 times a day. The scanning range is from 38◦N to 38◦S and 180◦W
to 180◦E, and the scanning swath width is 247 km. The spatial resolution is 5 km. As TRMM uses a
low-altitude orbit, the PR can provide measurements of 3D rainfall distributions with unprecedented
accuracy in the tropics and subtropics. The products of TRMM have been widely used in a variety of
studies, such as the study of precipitation distribution patterns in tropical and subtropical regions [34],
to improve the accuracy of precipitation prediction [35]. Research on precipitation structure and
properties [36] has demonstrated the reliability of TRMM and its products. In addition to the basic
information provided by the PR, the 2A23 product includes rain characteristics observed by the PR.
Based on the high vertical resolution of the PR data, the 2A23 product can accurately detect the bright
band (BB) occurrence and its height. The following variables are used in this paper: rain flag, which
indicates the possibility of precipitation in a grid, the rain type, which is the classification of the
precipitation type, including stratiform, convective and others, and the height of the bright band,
which indicates whether a BB is detected in a grid and the height of the BB if there is one. As warm and
cold rain precipitation are not directly classified and interpreted in the 2A23 product, the classification
results do not include the classification of cold or warm rain. The precipitation radar has a wavelength
of 2.2 cm, and the ground-based radar used in this paper has a wavelength of 10 cm. Therefore, the
precipitation radar will be subject to more two-way path attenuation. In addition, the scanning angle,
signal frequency and sensitivity of ground-based radar differ from the PR. The main purpose of this
paper is to classify the types of precipitation, taking the 2A23 precipitation classification product of the
PR instead of the echo reflectivity data of the PR as the training sample label for KNN and evaluating
the training results; these differences are not taken into consideration and have no effect on the results.

The 2A23 product has a horizontal resolution of 5 km, and the horizontal resolution of the radar
data is 1 km. To make these two datasets comparable, the interpolation scheme and data selection are
described below.

Instantaneous 2A23 data and ground radar data that are within a time lag with a maximum of
3 min are projected into a Cartesian coordinate with 5 km × 5 km horizontal resolution. Each ray of a
PR swath is projected on the Cartesian grid by the status of the nearest pixel.

There are still steps needed to make the comparisons of two datasets meaningful. These steps are
as follows: (1) a pixel is classified as stratiform by the 2A23 product if a BB is not detected and ref2km
is greater than 40 dBz or if there is a BB detected and ref2km is greater than 42 dBz with a horizontal
gradient greater than 3 dB/km; (2) a pixel is classified as convective by the 2A23 product if no BB is
detected but ref2km is less than 40 dBz; and (3) a pixel is classified as convective by the 2A23 product if
a BB is detected.
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Table 1. Radar site information and data usage time.

Station Date Coordinate Usage Cases Number

Hefei 6 June 2010–10 June 2010 117.258◦E, 31.867◦N Classification 2

Fuyang 25 June 2005–26 June 2005.
7 July 2007–9 July 2007 115.741◦E, 32.879◦N Training and

Classification 4

Lianyungang 1 July 2012–31 July 2012 119.294◦E, 34.651◦N Training and
Classification 7

Nanjing 1 July 2012–31 July 2012 118.698◦E, 32.191◦N Classification 5

Guangzhou 4 June 2008–13 June 2008 120.976◦E, 32.076◦N Training and
Classification 4

Wenzhou 4 June 2008–13 June 2008 117.152◦E, 34.293◦N Classification 2

3. Algorithm and Features

3.1. Overview of the K-Nearest Neighbor Method

KNN is a classification algorithm used to classify precipitation types in this paper. KNN does not
have a display learning process. In the training phase, KNN simply saves the training samples and
processes them after receiving the test samples [37]. Input samples with classification labels are used
as KNN inputs for training samples. To achieve satisfactory classification results, a larger number of
training samples are needed, and the proportion of each classification in the training samples should
be as uniform as possible. In the actual precipitation process, the spatial and temporal extents of
stratiform precipitation are usually larger than those of convective precipitation. In the interpolated
and screened samples, the number of stratiform precipitation grid points is much larger than the
number of convective precipitation grid points. If such data sets are used as KNN training samples,
the classification results will be generally biased toward stratiform precipitation. The number of
different types of precipitation samples in the training sample needs to be adjusted. Samples of different
types of precipitation were randomly selected, and the training sample set was reconstructed according
to stratiform cloud precipitation, convective precipitation and other precipitation with a ratio of 1:1:1.

When there are samples to be classified, to obtain the classification results, the distance between
the sample to be classified and all the training samples is calculated. After calculating the distance,
k training samples with the smallest distances from the sample to be classified are selected. The k
training samples have the same influence factor, and the probability that the sample is classified as
type j is as follows:

Pj =
Nj

k
, (1)

where Pj is the probability that the sample is classified as type j and Nj is the number of training
samples with a classification label of type j among the k-nearest training samples. When the Pj value is
a maximum, type j is the classification result.

3.2. Selection of Features

Using KNN to classify different precipitation types requires that the variables used in the
classification have significant differences for different precipitation types, such as stratiform and
convective precipitation, so that the precipitation types can be well distinguished. Using the 2A23
product as a reference, the variations in the frequency of the variables used for the classification of
different precipitation types is determined and compared horizontally to validate the classification
variable. However, if the bright band is present, the reflectivity will increase significantly, which will
negatively influence the classification results. The bright band is not expected to appear at the time of
classification. An altitude of 2 km is high enough to provide a sufficient amount of radar data out to a
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radius of approximately 150 km, and a 2-km altitude is low enough to avoid serious effects of the bright
band, which usually appears at a height of 2.5 km to 4.5 km in tropical and sub-tropical areas [38].

Feature 1: Horizontal distribution characteristics of radar reflectivity at a height of 2 km
(ref2km) [18]. ref2 km can often reflect the horizontal structural characteristics of convective systems.
For stratiform systems, this height should be adjusted appropriately. In some cases, the temperature
at 2 km in the vertical height layer is close to 0 ◦C, and there is a mixture of liquid and solid phase
water and transitions between the two phases. During the conversion process of solid water to liquid
water, a water-coating film is formed on the surface of melting water, and the difference between
the negative refractive index values of the liquid phase particles and the solid phase particles will
cause the back reflectance measured by the radar to increase, which may result in a flat and strong
echo band. If such strong echo bands are not distinguished, it may cause an erroneous assessment
of that type of precipitation in the area. Figure 1a is the frequency distribution diagram of ref2km.
The frequencies of stratiform precipitation and convective precipitation increase below 30 dBz. In the
range of 30–35 dBz, the frequency of stratiform precipitation reaches a maximum, and then the
frequency decreases gradually with larger reflectivity values. At 40–45 dBz, the frequency drops
to almost zero. The convective precipitation reaches a maximum frequency at 35–40 dBz, and the
frequency decreases gradually with larger reflectivity values. However, when this frequency is above
50 dBz, there is still convective precipitation. The frequency graph of ref2km shows that the value
of ref2km exhibits large differences and can be used to sufficiently discriminate among different
precipitation types. It is reasonable to use ref2 km for the classification of precipitation types.

Feature 2: Vertically integrated liquid-water content (VIL) [39]. The liquid water content M and
radar reflectivity Z can be defined as follows:

M =
ρwπ

6

∫ x

0
n(a)a3da, (2)

Z =

∫ x

0
n(a)a6da, (3)

where x is the maximum drop diameter, and ρw is the density of water. When the Marshall-Palmer
drop size distribution is used in Equations (3) and (4), the error is small if the upper limit of integration,
x, is replaced by∞.

M =
N0ρwπ

6

∫ ∞

0
exp(−ba)a3da =

N0ρwπ

6
Γ(4)

b4
=

N0ρwπ

b4
, (4)

Z = N0

∫ ∞

0
exp(−ba)a3da =

N0Γ(4)
b7 =

720N0

b7 . (5)

Eliminating the parameter b in Equations (5) and (6) yields

M =
N0ρwπ

[720× 1018N0]
4/7

Z4/7. (6)

For N0 = 8 × 106 m−4 and ρw = 106 g/m3,

M = 3.44× 10−3Z4/7, (7)

where the units of M are g/m3 and those of Z are mm6/m3.

M∗ =
∫ htop

hbase

Mdh′ = 3.44× 10−6
∫ htop

hbase

Z
4
7 dh′, (8)
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Here, M* is VIL, which is given in units of kg/m2; Z is radar reflectivity, with units of mm6/m3;
and htop and hbase are the uppermost and lowermost layers of the radar echo, with units of meters.
VIL reflects the overall vertical state of the echo area, and it is possible to filter the effects of false high
echoes caused by bright bands and topographical factors. At the same time, changes in VIL are a good
reflection of changes in a convective system. However, in nonconvective areas, VIL changes little,
and the reference value decreases accordingly. Figure 1b shows the frequency distribution of VIL.
The frequency of stratiform precipitation reaches a maximum for VIL of 2 kg/m2 and then decreases
rapidly. The VIL value of conditions with almost no stratiform precipitation could reach 4 kg/m2.
In contrast, the frequency of convective precipitation reaches a maximum near a VIL value of 4 kg/m2

and then decreases, although convective precipitation exists even if the VIL value reaches 18 kg/m2.
Additionally, VIL considerably varies and sufficiently reflects different precipitation types. Thus, it is
reasonable to use VIL for the classification of precipitation types.

 
Figure 1. The variations in different types of precipitation frequency as a function of (a) Horizontal
distribution characteristics of radar reflectivity at a height of 2 km (ref2km) and (b) Vertically integrated
liquid water content (VIL).

Variables ref2km and VIL have different scales. During precipitation, ref2 km usually has a
minimum of 16 dBz and maximum of 50 dBz, while VIL has a minimum of 0 kg/m2 and maximum of
10 kg/m2. When calculating the Euclidean distance, the effect of VIL on the distance can be significantly
small due to the smaller scale. Thus, the data need to be normalized or standardized before calculating
the distance, which could decease the influence of variables with different scales.

The standardized Euclidean distance can decrease the influence of variables with different scales
by standardizing the data. The standardized Euclidean distance between sample x and sample y is
calculated as follows:

d(x, y) =

√√∑n

i=1

(xi − yi)
2

s2
i

, (9)

where si is the standard deviation of xi and yi over the sample set.
The Euclidean distance, Manhattan distance, and standardized Euclidean distance are used to

classify cases at the same time. Although the scales of ref2 km and VIL are not the same, the classification
results of the standardized Euclidean distance, Euclidean distance and Manhattan distance do not differ
substantially. To remove the possible occurrence of unstandardized adverse effects, the standardized
Euclidean distance is used as the distance in the KNN in this study.
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3.3. Training and Classification

In this paper, two variables, ref2km and VIL, are used as classification variables, and the
corresponding precipitation classification results from the 2A23 product, as classification labels, are put
into the KNN algorithm training process. An appropriate k value is selected, and ref2km and VIL of
the sample to be classified are put into the KNN. The standardized Euclidean distance between the
sample to be classified and each training sample stored in the KNN is calculated. Then, the class with
the largest number of k training samples is taken as the classification result.

4. Results

In this section, typical independent individual cases are selected to determine whether the
classifications are correct. In addition, an overall analysis is used to assess the performance of the
KNN algorithm.

4.1. Evaluation Method

The KNN classification results were compared with the 2A23 product, and the results were
evaluated based on the probability of detection (POD), false alarm rate (FAR), and cumulative success
index (CSI):

POD =
ns

ns + n f
, (10)

FAR =
n f a

ns + n f a
, (11)

CSI =
ns

ns + n f + n f a
, (12)

In the above three formulas, ns, nf and nfa are the numbers of successful classifications, failed classifications
and false alarm classifications, respectively. Success is counted when a method classification is similar to
the PR 2A23 classification, failure is counted when a classification is not similar to the PR 2A23 class, and
false alarm is counted when a pixel is classified opposite the PR 2A23 classification.

The POD can reflect the relationship between the number of successful classification points and
the number of failed classification points; the higher the POD value is, the better the classification
performance. The FAR can explain the proportion of false alarm points in the classification according
to the number of correct points in the classification results. The lower the FAR value is, the better the
classification performance. The CSI reflects the overall classification performance; it can explain the
proportion of correctly classified points among all classified points, and when the CSI reaches a high
value, the classification performance is satisfactory.

4.2. K Value

For a finite set classification, the classification error rate of the KNN tends to converge to a
certain value as k increases [40]. When k is too large, the classification accuracy rate does not increase
significantly, which results in wasted computational resources. When k is too small, the classification
accuracy rate is low. Choosing the right k value helps improve the classification accuracy and reduce
the calculation amount to improve the calculation speed.

Figure 2 shows the classification of an embedded convective process in the Guangzhou area at
05:28 (UTC) on 6 June, 2008, using the standardized Euclidean distance as the calculated distance.
The effect of using different k values on the overall classification results is small. At the junction of
different types of precipitation, the results of different k classifications are slightly different. When k
is equal to 5, the boundary between stratiform and convective precipitation is rough, and when k is
chosen to be 10 or more, the boundary is smooth.
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Figure 2. A case from Guangzhou at 05:28 (UTC) on 6 June, 2008, shows the classification results for
different k values. (a–d) are the results for k = 5, 10, 15, and 20, and (e) is the classification of the 2A23
product. The bold black line represents the boundary of the PR scan range.

Other cases from Anhui, Jiangsu and Wenzhou were selected for analysis. The results are shown
in Table 2. Although the classification result boundary is rough when k is equal to 5, this value yields
the highest POD and CSI and a low FAR among several different k values. When k is equal to 10,
the smallest FAR is observed, although the POD is not high and the CSI is low. When k is greater than
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10, the POD, FAR and CSI differ, although the difference is not obvious. Thus, when k is equal to 5, the
performance is obviously the best, therefore, the value of k is set to 5 in this paper.

Table 2. The POD, FAR and CSI for different k values in the same case.

K POD FAR CSI

5 0.461 0.269 0.394
10 0.385 0.228 0.346
15 0.409 0.244 0.362
20 0.390 0.234 0.349

The classification of precipitation types for different types of weather processes can fully reflect
the KNN classification performance. Squall line cases, embedded convective cases and stratiform cases
are selected for KNN classification analyses.

4.3. Squall Line Case

Figure 3 shows a squall line case. Figure 3a shows the 2A23 product. Two northeast-southwest-
oriented convective belts are classified within the scanning range. There are tiny gaps between the two
band-shaped convective cells. Two northeast-southwest-oriented convective belts are classified within
the scanning range. The cluster of convective cells is independent of the band-shaped cells. Outside
the convective cells, stratiform precipitation covers large area. The southeastern part of Figure 3a is
classified as an unknown type of precipitation. In this case, precipitation may occur, although the
type of precipitation is unknown. Figure 3b shows the results of the KNN classification. There is a
band-shaped northeast-southwest-trending convective cell, which is observed in the 2A23 product.
However, the boundary between the two band-shaped convective cells is not obvious. In the northeast
direction of the band-shaped convective cell, a cluster of convective cells is also classified, and the
cluster shape is similar to that of the 2A23 product. There is also a massive convective cell in the
northeast portion of the cluster of convective cells. In the 2A23 product, due to the sweep coverage,
there are no corresponding data for this area. The northeast corner of the radar corresponds to the area
classified as unknown in the 2A23 product. Because the KNN categorical variable data have no values
in that area, no classification is provided. The southwest corner of Figure 3b is a void area due to the
radar elevation angle.
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Figure 3. A squall line in Lianyungang at 13:25 (UTC) on July 4, 2012: (a) is the classification of the
2A23 product, (b) is the KNN classification, (c) is VIL, and (d) is ref2km. The bold black line represents
the boundary of the PR scan range.

Figure 3c shows the VIL. In Figure 3c, there is a northeast-southwest band-shaped high-value
area. There are multiple independent high-value centers in the high-value area. The values of all these
centers exceed 14 kg/m2. The value near the center also reaches or exceeds 4 kg/m2, and there is a
block-shaped high-value area in the northeast of the band-shaped high-value area, the value of which
exceeds 6 kg/m2. Additionally, in the northeastern part of the high-value area, there is an area with
values exceeding 4 kg/m2. The VIL values in the other areas are less than 2 kg/m2. Figure 3d shows
ref2km. The high-value area in the figure corresponds to the high-value area in Figure 3c, and the
value of each high-value center exceeds 50 dBz. To the northeast of the band-shaped high-value area,
there are also areas exceeding 40 dBz. The two high-value areas in the northeast direction of the
band-shaped high-value area in Figure 3c,d are consistent with the area classified as convective by the
KNN algorithm.
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4.4. Embedded Convective Case

Figure 4 shows the classification results for an embedded convective scenario. In Figure 4a,
an arched area in the center of the figure is classified as convective by the 2A23 product, and a large area
on the west side of the arched convective area is classified as an unknown type of precipitation. There
are small stratiform precipitation areas in the northwest corner and a large stratiform precipitation
area on the east side of the arched convective cell. Due to the scope of the sweeping surface, there
are no data available for the south side. The arched area in the center of Figure 4b is classified as
convective precipitation. There is also a convective precipitation area outside the 2A23 product range,
and there is a clear boundary between the two arched convective cells. There are large stratiform
areas in the northeast portions of the two arched convective cells, and there are stratiform areas in the
northwestern parts of the convective cells. The shape and location of the scattered stratiform areas are
consistent with those in the 2A23 product. Most of the areas classified as unknown precipitation in the
2A23 product are due to missing values for the variables used for the classification. In Figure 4c, there
are two arched high-value areas. The VIL values of the two high-value areas are greater than 4 kg/m2,
and there are obvious gaps between the two arched high-value areas. The VIL of the interval area is
between 2 kg/m2 and 3 kg/m2. On the northeast side of the high-value area, the VIL is above 2 kg/m2,
and in some other areas, the value is more than 3 kg/m2. These areas are classified as stratiform in
the 2A23 product. There are scattered blocks with VIL values exceeding 1 kg/m2 on the west side,
the northwest side and the south side of the arched area, and the remaining VIL values are all below
0.5 kg/m2. In Figure 4d, the radar reflectivity at the corresponding position of the high-value area in
Figure 4c exceeds 36 dBz, and the reflectivity in the northeastern area of the arched high-value area
exceeds 24 dBz. The reflectivity in some of this area exceeds 30 dBz, and in the scattered block area
near this arched area, the reflectivity also reaches or exceeds 24 dBz.
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Figure 4. An embedded convective system in Fuyang at 01:41 (UTC) on 8 July 2007: (a) is the
classification of the 2A23 product, (b) is the KNN classification, (c) is VIL, and (d) is ref2km. The bold
black line represents the boundary of the PR scan range.

4.5. Stratiform Case

Figure 5 shows the classification result of a stratiform case. In Figure 5a, a large northwest-southeast-
trending band-shaped area is classified as a stratiform area by the 2A23 product, and a small stratiform
block is classified on the northwest side of the band-shaped area. In addition, parts of this area are
classified as unknown or no precipitation areas. The southern part of the figure is beyond the PR
scanning range; thus, there are no data in this area for the 2A23 product. The north side of the solid
black line in Figure 5c is within the PR satellite scanning range, and the area and shape of the region
classified as stratiform in this range are consistent with those of the 2A23 product. In Figure 5c, the VIL
value of the northwest-southeast-trending area exceeds 0.5 kg/m2, and the VIL value of the high-value
area exceeds 1 kg/m2. The VIL values of other areas are less than 0.5 kg/m2. The reflectivity of the
areas in Figure 5c,d is greater than 18 dBz, with some areas exceeding 24 dBz.
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Figure 5. A stratiform precipitation system in Fuyang at 13:47 (UTC) on 7 June 2010: (a) is the
classification of the 2A23 product, (b) is the KNN classification, (c) is VIL, and (d) is ref2km. The bold
black line represents the boundary of the PR scan range.

4.6. Stability of the Algorithm

KNN can classify precipitation types well, but the effect of classifying continuous data is unknown.
In fact, continuous data are more widely used and more meaningful. One-month continuous radar
data from Lianyungang from 1 July 2012 to 31 July 2012 are used for continuous analysis, and Table 3
shows the result of the continuous analysis.
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Table 3. Continuous analysis of Lianyungang in July 2012.

Time(UTC) Precipitation POD FAR CSI

0:00–12:00
Stratiform 0.978 0.123 0.860
Convective 0.656 0.077 0.622

12:00–0:00
Stratiform 0.943 0.084 0.868
Convective 0.784 0.153 0.687

Table 3 shows the result of continuous analysis of Lianyungang in July 2012. The time period
of 0:00-12:00(UTC) is daytime in Lianyungang, and the time period of 12:00-0:00(UTC) is evening in
Lianyungang. Table 3 shows that both the stratiform and convective classification results are better in
evening than in daytime; however, the differences between the daytime and evening results are small,
and the classification results are stable in different time periods.

Different geographical conditions may have an impact on the type of precipitation.
The precipitation types of Lianyungang, Fuyang and Guangzhou stations were therefore classified to
analyze the influence of geographical conditions on KNN. Lianyungang and Fuyang are both located in
the subtropical zone, Lianyungang is located near the sea and Fuyang is located inland. The impact of
coastal conditions on classification can also be analyzed. Both Guangzhou and Lianyungang are near
the sea, Lianyungang is located in the subtropical zone, and Guangzhou is located in the tropical zone;
consequently, the influence of latitude conditions on classification can be analyzed. The comparisons
of the three sites are shown in Table 4.

Table 4. Comparison of the classification results of different geographical conditions.

Location Precipitation POD FAR CSI

Lianyungang Stratiform 0.855 0.006 0.850

Convective 0.986 0.270 0.722

Fuyang Stratiform 0.869 0.012 0.859

Convective 0.973 0.252 0.733

Guangzhou Stratiform 0.900 0.004 0.896

Convective 0.990 0.202 0.791

Table 4 shows the classification results under different geographical conditions. The classification
results of Guangzhou have the best performance, and the classification results of Lianyungang have
the worst performance. The POD values of the three sites are nearly the same for both precipitation
types; Guangzhou has the lowest FAR and highest CSI. However, the CSI values of the three sites show
few differences, and the results of classification are stable in different geographical conditions.

4.7. Overall Analysis

Table 5 shows the results of the evaluation of the KNN classification results by combining multiple
cases of different processes for six Doppler radars in Jiangsu in July, 2012. The POD of KNN for
stratiform classification reaches 0.950, the FAR is 0.085, and the CSI is 0.874. From a comprehensive
perspective, it is possible to accurately classify more than 85% of the observed stratiform precipitation
areas. The POD of the convective classification reaches 0.781, the FAR is 0.137, and the CSI is 0.695.
Anagnostou [18] also uses the 2A23 product to classify precipitation types using neural networks,
obtaining values of POD = 0.97, FAR = 0.07, and CSI = 0.90 for stratiform precipitation
classification and POD = 0.52, FAR = 0.29 and CSI = 0.43 for the classification of convective
precipitation. In that paper, the results of SHY95 were also evaluated by 2A23; the stratiform POD,
FAR and CSI values were 0.85, 0.05 and 0.81, respectively, and the convective POD, FAR and CSI values
were 0.72, 0.59 and 0.36. The cases used are not the same, but with the KNN classification, although
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the effectiveness for stratiform precipitation decreased, the classification accuracy of convective
precipitation improved significantly.

Table 5. Comprehensive evaluation of the KNN classification results.

POD FAR CSI

Stratiform 0.950 0.085 0.874
Convective 0.781 0.137 0.695

5. Conclusion

A KNN supervised machine learning algorithm is used in this paper to classify precipitation types
with ground-based radar data. The ground-based radar data are from Anhui, Jiangsu, Guangdong and
Zhejiang Provinces, and the classification results were evaluated using the 2A23 cloud classification
product from the TRMM PR at the same time. The KNN algorithm is characterized by high precision,
insensitivity to abnormal data, no data input assumptions, and a fast computational speed in the case
of small data samples. The method performs well in the classification of precipitation types based
on radar data. The radar reflectivity at a height of 2 km and VIL were selected as the classification
variables. The values of these two variables in the cases of stratiform precipitation and convective
precipitation were compared, and it was found that the two variables differ greatly for the different
precipitation types. These two variables and corresponding precipitation types in the 2A23 product
were input as training samples in the KNN algorithm. The algorithm calculates the distance between
the input samples and the stored training samples (the standardized Euclidean distance was calculated
in this paper). The maximum number of classification labels in the k samples closest to the input
samples was taken as the classification result for the input samples. Samples can be classified into
stratiform precipitation, convective precipitation and other types of precipitation.

Three different precipitation systems (stratiform precipitation, embedded convection, and squall
lines) were analyzed. The KNN method is accurate in classifying the location and range of stratiform
precipitation and can effectively describe the band arrangement pattern of multiple convective units in
squall lines. Moreover, the position and shape of squall lines is well described, and the distribution
of convective precipitation and stratiform precipitation is accurately described in the embedded
convective systems.

The classification results and accuracy of all cases were analyzed, and the performance of the
KNN algorithm in precipitation classification was evaluated. The statistical results confirm the results
of the case analysis. Among the overall classification results of many processes and cases, the KNN
algorithm is the most accurate in the classification of stratiform precipitation, with a POD of 0.950
and an FAR of only 0.085. The CSI, which reflects the overall classification, reaches 0.874. In all cases,
the POD of convective classification is 0.781, the FAR is 0.137, and the CSI is 0.695. The evaluation
results indicate that the KNN algorithm can accurately classify almost all stratiform precipitation, and
most of the convective precipitation can also be classified accurately.

Because the duration of the radar data is insufficient, it is impossible to study the classification of
precipitation types with the KNN algorithm in a certain area over a long period. Although the training
and classification cases are limited, the results of the classification in different years and for different
regional precipitation types could be important. If long-term radar data from a region were selected,
more reliable and accurate classification results could be obtained, and the local climate characteristics
and precipitation distribution could be better studied.
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Abstract: Satellite remote sensing of near real-time reservoir storage variations has important
implications for flood monitoring and water resources management. However, satellite altimetry
data, which are essential for estimating storage variations, are only available for a limited number of
reservoirs. This lack of high-density spatial coverage directly hinders the potential use of remotely
sensed reservoir information for improving the skills of hydrological modeling over highly regulated
river basins. To solve this problem, a reservoir storage dataset with high-density spatial coverage
was developed by combining the water surface area estimated from Moderate Resolution Imaging
Spectroradiometer (MODIS) imageries with the Digital Elevation Model (DEM) data collected by
the Shuttle Radar Topography Mission (SRTM). By including more reservoirs, this reservoir dataset
represents 46.6% of the overall storage capacity in South Asia. The results were validated over
five reservoirs where gauge observations are accessible. The storage estimates agree well with
observations, with coefficients of determination ranging from 0.47 to 0.91 and normalized root mean
square errors (NRMSE) ranging from 15.46% to 37.69%. Given the general availability of MODIS
and SRTM data, this algorithm can be potentially applied for monitoring global reservoirs at a
high density.

Keywords: reservoir storage; MODIS; SRTM

1. Introduction

Human-made reservoirs, which are managed by storing and releasing water under predetermined
operation rules, play an important role in mitigating floods and improving the efficiency of the water
supply for municipal, industrial, and agricultural demands [1–4]. Although most (if not all) human
operated reservoirs are monitored in real-time, reservoir storage information is not commonly available
to the public. Indeed, this directly limits the effectiveness of reservoir flow regulation with regard
to flood control, water supply, and other purposes—especially for those reservoirs located within
transboundary river basins. For instance, the lack of reservoir information for the Mekong River delta
has created challenges with regard to flood forecasting in this region [5,6]. In addition, when assessing
and predicting the impacts of droughts, the lack of reservoir storage information reduces the reliability
of drought analysis systems [7,8].

Due to the limited availability of gauge observations—especially with regard to remote locations,
restricted locations, and/or observations over large geographical areas—remote sensing technology
provides a promising alternative by monitoring reservoirs from space [4,9–12]. With remotely sensed
water surface area and elevation data, reservoir storage information can be inferred. Reservoir surface
area is commonly estimated by classifying optical satellite imageries [13,14] and surface elevation
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values are typically obtained from satellite radar altimetry [15,16]. The Geoscience Laser Altimeter
System (GLAS) onboard the Ice, Cloud, and Land Elevation Satellite (ICESat) and the Advanced
Topographic Laser Altimeter System (ATLAS) onboard ICESat-2 were used to measure the elevation
values of relatively small lakes and reservoirs [4,17–20].

Even though a variety of remote sensing approaches were developed to monitor reservoir storage
from space [21–23], they are still insufficient in terms of spatial and temporal coverage—which hinders
their applications when high-density reservoir network information is required. For radar altimetry,
the restrictions are mainly due to the coarse spatial resolution. With about 3–20 km footprints, it is
difficult to capture water surface level values using radar altimetry over reservoirs that are either not
large enough or do not overlap with the satellite tracks [24]. Even for lakes that are detectable by radar
altimeters, the data may not be accurate enough for applications if the surrounding topography is
complex. Consequently, as of 2015 less than 200 large lakes and reservoirs have been observed using
the past and current set of radar altimeters [24]. Compared with radar altimeters, the ICESat/GLAS
instrument has a distinct advantage with its small footprint (70 m)—but this comes at the cost of a
very long return period (91 days). By combining ICESat elevation values and Moderate Resolution
Imaging Spectroradiometer (MODIS) area estimations, Zhang et al. [25] developed an algorithm which
is partially capable of monitoring South Asian reservoirs at 16-day intervals, with 28% of the total
capacity of in the region covered. Despite such progress, the reservoir observation network is still
too sparse due to the large spaces between satellites tracks. Water surface area from Landsat and
the area-elevation relationship provided by the Shuttle Radar Topography Mission (SRTM) were
combined to infer the water level and reservoir storage variations [26–28]. Landsat can be used to
estimate water surface area for smaller reservoirs and lakes due to its high spatial resolution (30 m).
However, its repeat period of 16 days limits its ability to monitor reservoir storage at high temporal
resolution—especially when cloud coverage is too thick. Therefore, the lack of dense spatial and
temporal representation from satellite altimeters remains a major challenge for collecting reservoir
storage information on a large scale.

South Asia, which contains one of the largest and densest populations, suffers the most from
the dearth of reservoir storage data sharing. The deficient communications with regard to reservoir
storage (and management decisions) further exacerbate the casualties and economic losses from flood
events. According to past statistical records, South Asia experiences one of the highest fatality rates
in the world caused by floods [29]. The available remotely sensed reservoir storage datasets only
sparsely cover the region. For instance, radar altimetry data are only available for six reservoirs in
this region, which accounts for 10.70% of the total capacity in South Asia (according to Hydrology by
altimetry data from Laboratoire d’Etudes en Géophysique et Océanographie Spatiales (LEGOS) [30]
and the Global Reservoir Lake Monitor [31]). Although the use of ICESat elevation data improved the
coverage to around 28% of South Asian reservoirs [25], it still does not meet the strong societal need.
Therefore, acquiring reservoir storage information with large spatial coverage is critical for minimizing
the vulnerabilities and maximizing the benefits to communities in this region through good reservoir
management practices.

To extend the spatial coverage where remote sensing reservoir storage data are available, a
reservoir storage dataset was developed by leveraging the global coverage capability of the Digital
Elevation Model (DEM) collected by SRTM. Although DEMs have been most commonly used for
generating river routing networks [32,33], they have also been adopted in studies to estimate glacier
variations [34,35] and surface water storage change [36]. Due to its high consistency, accuracy, and
global coverage [35,37], the SRTM DEM was used to extract the area-elevation (A-H) relationship for
calculating reservoir storage in this study.

Our overarching goal was to improve the spatial coverage of the remotely sensed reservoir storage
dataset in the South Asia region. To this end, the A-H relationship of a given reservoir was first
derived from MODIS water surface area values and SRTM DEM surface heights, and then combined
with the area time series to estimate storage variations. The results were validated with gauge
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observations. The performance of the generated reservoir dataset was compared with the ICESat based
algorithm reported by Zhang et al. [25]. In addition to the data analysis and the results validation,
storage estimation uncertainties due to reservoir surface area retrieval algorithm parameterization and
elevation measurement errors were also quantified.

2. Data

2.1. Remote Sensing Data

In this study, the two primary remote sensing datasets were the STRM DEM and the MODIS
imageries. The DEM was used for inferring the A-H relationship. The DEM data were collected
by SRTM during an 11-day mission in February 2000, covering a near-global domain from 56◦ S to
60◦ N [38]. The relative vertical accuracy was ~6m, and the absolute accuracy was ~16 m [37]. The
NASA SRTM V3.0 dataset provides land surface elevation values at a 30-m spatial resolution globally.
Here, the global SRTM DEM dataset was obtained from the U.S. Geological Survey’s Long Term
Archive [39].

For each given reservoir, MODIS imageries were used to derive surface area estimations, which
were then applied to the A-H relationship to generate a long-term time series of reservoir storage.
The reservoir surface area was calculated from the MODIS/Terra 16-day, 250-m resolution vegetation
indices product (MOD13Q1). Specifically, an image classification algorithm (Section 3.2.1) was applied
to the Normalized Difference Vegetation Index (NDVI) imageries to extract the reservoir area. From
2000 to 2015, a total of 365 imageries were processed for each reservoir.

2.2. Data for Validations

Gauge observations released by the Indian Central Electricity Authority (CEA, [40]) were used to
validate the remotely sensed reservoir storage dataset. This gauge data contained daily reservoir water
level and storage information for 30 hydropower reservoirs. We downloaded the record from 2008 to
2011 and from 2013 to 2016 in May 2016.

Additionally, the reservoir storage results derived from MODIS and SRTM were compared against
the previous results from MODIS and ICESat [25]. Because the Zhang dataset contains results from 21
South Asian reservoirs, this cross-validation helped us to better understand the overall performance of
this new dataset on a regional scale.

3. Reservoir Selection and Methodology

3.1. Reservoir Selection

Two criteria were used to identify the reservoirs included in this study: First, the reservoir
maximum area at capacity needed to be larger than 55 km2. The threshold of 55 km2 was based on a
comprehensive consideration of both estimation accuracy and spatial coverage. This would guarantee
that the surface area could be estimated with high accuracy using medium-resolution MODIS imageries.
Reservoirs larger than 55 km2 account for ~46.6% of the total South Asian reservoir capacity. Second,
the surface area according to the SRTM DEM for a reservoir of interest should not reach its maximum
surface area (estimated from MODIS). Otherwise, the respective ranges of area and elevation detected
by SRTM DEM would have been too small to infer the A-H relationship accurately. Following the above
criteria, a total of 28 reservoirs were chosen from the Global Reservoir and Dam (GRanD) database [41].
Figure 1 shows the locations of these reservoirs, and compares the reservoirs from this study with
those in Zhang et al. [25], with details shown in Table 1.
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Figure 1. Locations of 28 reservoirs that can be monitored using a remote sensing approach.
Yellow dots represent reservoirs that can only be monitored by the Moderate Resolution Imaging
Spectroradiometer-Ice, Cloud, and Land Elevation Satellite (MODIS-ICESat). Green dots are reservoirs
that can only be monitored through the MODIS-Shuttle Radar Topography Mission (STRM). Red points
are reservoirs that can be monitored by both approaches. For each reservoir, detailed information is
provided in Table 1.

Table 1. Detailed information for the 28 reservoirs.

I.D. Reservoir Country
Location
(◦N, ◦E)

Area at
Capacity

(km2)

Capacity
(km3)

Purpose a A-H Relationship b

01 Almatti India 16.33, 75.89 424 2.63 E y = 0.026 x + 507.17
02 Bango India 22.61, 82.60 104 3.41 I,E y = 0.201 x + 332.57
03 Bansagar India 24.19, 81.29 384 5.41 I,E y = 0.713 x + 315.71
04 Bargi India 22.95, 79.93 268 3.92 I,E y = 0.104 x + 400.28
05 Chandil India 22.98, 86.02 139 1.96 I,E y = 0.166 x + 170.15
06 Gandhi Sagar India 24.71, 75.55 578 5.60 E y= 0.034 x + 378.24
07 Hirakud India 21.52, 83.85 603 4.08 I,E y = 0.270 x + 174.48
08 Karnafuli Bangladesh 22.5, 92.23 777 6.48 I,E,F y = 0.024 x + 23.375
09 Krisharaja Sagar India 12.42, 76.57 100 1.37 I,E,W y = 0.134 x + 736.91
10 Linganamakki India 14.18, 74.85 316 4.18 E y = 0.079 x + 542.95
11 Mangla Pakistan 33.13, 73.64 251 7.30 I,E,F y = 0.166 x + 319.61
12 Malaprabha India 15.82, 75.09 130 1.07 I,E y = 0.136 x + 619.53
13 Matatila India 25.10, 78.37 139 1.13 I,E y = 0.095 x + 292.84
14 N. J. Sagar India 16.57, 79.31 240 6.54 I,E y = 0.270 x + 118.8
15 Narayanapura India 16.22, 76.35 102 1.07 I y = 0.105 x + 482.91
16 Pong India 31.97, 75.95 260 6.95 I,E y = 0.212 x + 366.98
17 Rajghat India 24.76, 78.23 224 2.17 I,E y = 0.070 x + 350.35
18 Ranjit Sagar India 32.44, 75.73 56 2.20 E y = 1.284 x + 441.10
19 Rengali India 21.28,85.03 392 3.17 I y = 0.070 x + 100.88
20 Rihand India 24.20, 83.01 485 5.85 I,E y = 0.083 x + 232.99
21 R. P. Sagar India 24.92, 75.58 210 1.57 I,E y = 0.123 x + 325.49
22 Singur India 17.75, 77.93 129 0.85 W y = 0.053 x + 517.21
23 Srisailam India 16.09, 78.90 560 7.11 I,E y = 0.042 x + 254.05
24 Supa India 15.28, 74.53 120 4.18 E y = 0.460 x + 506.89
25 Tawa India 22.56, 77.98 200 2.31 I y = 0.117 x + 338.36
26 Tungabhadra India 15.27, 76.33 390 3.76 I,E y = 0.052 x + 483.92
27 Ukai India 21.25, 73.59 512 6.20 I,E,F y = 0.042 x + 81.364
28 Yeldari India 19.72, 76.73 82 0.93 I,E y = 0.223 x + 443.45

a I, irrigation; E, electricity generation; W, water supply; F, flood control; b y, water surface height; x, area.
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3.2. Methodology for Reservoir Storage Estimation

The MODIS-SRTM-based reservoir storage estimation algorithm—referred to as the
“MODIS-SRTM algorithm” hereafter—is illustrated using the flowchart in Figure 2. It mainly contains
three step: First, the water surface area was estimated from MODIS NDVI imageries via an enhanced
classification procedure; second, the A–H relationship was generated from the DEM information
by regressing the cumulative area values against their corresponding elevation values (within the
delineated reservoir maximum domain; and third, by applying the water surface area estimations to
the A–H relationship, the reservoir storage variations were calculated. Further details of these steps
are provided as below.

Figure 2. Flowchart of the MODIS-SRTM based reservoir storage estimation algorithm.

3.2.1. Surface Area Estimation

For each given reservoir, the water surface area was estimated using the enhanced K-means
classification approach developed by Zhang et al. [25]. First, a threshold of 0.1 was applied to each
16-day MODIS NDVI image from 2000 to 2015, where pixels with NDVI values less than 0.1 were
considered water. Based on these simplified classifications, a mask image was created to represent the
water coverage percentile and to delineate the domain of the reservoir. Then, the K-means clustering
algorithm [42] was used to identify all water pixels within the masked area of the MODIS NDVI images.
Finally, a classification enhancement procedure was applied to finetune the results from the K-means
clustering. The main purpose of the enhancement was to use the water occurrence map as a reference
to correct misclassified pixels and/or to assign an appropriate class to the unclassified pixels [25].

3.2.2. Area-Elevation (A-H) Relationship Development

The SRTM DEM data were used to develop the A-H relationship for each reservoir. As a valid
approximation, the relationships for all reservoirs were assumed to be linear (H = kA + b, where k
is the slope of the A-H relationship, and b is the intercept) [43]. To capture the relationship, we first
delineated the water surface area from the DEM for each reservoir of interest. For a given reservoir, the
water surface area during the SRTM acquisition time was expanded to include its surrounding pixels
by gradually increasing the surface elevation threshold, with the water surface elevation corresponding
to the DEM area as the initial value. During this process, all pixels that were not directly connected
to the increasing water area were discarded as noise. This expansion continued until the new area
on this DEM reached the maximum reservoir area estimated from the MODIS images (from 2000 to
2015). This maximum reservoir area was then delineated from the SRTM DEM. A simplified example
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of a delineated reservoir is shown in Figure 3a. After delineating the maximum coverage of the
reservoir from the DEM, the cumulative area (e.g., A3) at any given elevation value (e g., H3) could be
estimated by counting the number of pixels with elevations equal to or smaller than that value (i.e.,
H3). By regressing the cumulative area values against the elevation values, the A-H relationship for the
reservoir of interest was established (Figure 3b). A real example of the A-H relationship development
for the Pong reservoir is provided in Figure 3c,d.

Figure 3. (a) A simplified example of a delineated reservoir from the SRTM Digital Elevation Model
(DEM), where H1 > H2 > H3 > H4; (b) the corresponding A-H relationship inferred from a simplified
example; (c) real example of a delineated reservoir from the SRTM DEM over the Pong reservoir; (d) the
corresponding A-H relationship inferred from the Pong reservoir.

An example of the A-H relationship over the Hirakud reservoir is shown in Figure 4a. This A-H
relationship was also compared with that derived from MODIS area values and ICESat elevations for
cross-validation purposes. The MODIS-ICESat-based A-H relationship was adopted from Zhang et al.
[2014]. The A-H relationship from the MODIS-ICESat algorithm is capable of capturing a larger
range of water surface elevation values due to its longer temporal coverage period (seven years). The
range of elevation values associated with the SRTM based A-H relationship depends on how full the
reservoir was during the SRTM flight time—the fuller the reservoir at the overpass time, the smaller
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the elevation range above the water. The slopes for the two relationships are fairly similar with only
with a small bias.

Figure 4. (a) The A-H relationship developed from SRTM compared with the relationship derived from
ICESat, (b) time series of the storage estimation values for the Hirakud reservoir from both the SRTM-
and the ICESat-based approaches.

3.2.3. Storage Estimation

Reservoir storage can be estimated based on the remotely sensed water surface area and elevation
using Equation (1):

VRS = VC− (AC + ARS)(HC− HRS)/2 (1)

where VC, AC, and HC represent the storage, area, and water elevation at capacity, respectively. VRS,
ARS, and HRS are the remotely sensed storage, area, and water height at the monitoring time.

In this MODIS-SRTM algorithm, since HRS can be calculated by applying the A-H relationship to
the MODIS area estimation (i.e., ARS), the reservoir storage is calculated through Equation (2) (which
was transformed from Equation (1)).

VRS = VC − (AC + ARS)(AC − ARS)k/2 (2)

Using the methods explained in this section, the reservoir storage was calculated for the 28 selected
reservoirs in South Asia from 2000 to 2015. Using the Hirakud reservoir as an example, Figure 4b
compares the time series of reservoir storage from this MODIS-SRTM algorithm with that from the
MODIS-ICESat algorithm by Zhang et al. [25]. Results suggest that these two sets of storage estimations
are in good agreement. However, compared with the MODIS-ICESat-based algorithm, the storage
values from this study tend to be underestimated (due to the different A-H relationships). To better
understand the error statistics of these two approaches, validations using gauge data were conducted
and are reported on in Section 4.1.

4. Results

The MODIS-SRTM-based reservoir storage dataset was examined comprehensively from three
perspectives: First, the reliability of the dataset was tested by validating the MODIS-SRTM based
reservoir storage results with both in situ gauge data and the MODIS-ICESat based results. Second,
the enhanced spatial coverage from this new dataset was compared with the existing reservoir storage
dataset in South Asia. Third, the uncertainties associated with the algorithm and dataset were analyzed.
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4.1. Validation Results

The MODIS-SRTM-based reservoir storage was validated over 11 reservoirs (Table 2) where gauge
observation data were available. The performance of the results was evaluated using Equations (3)–(5),
which represent three statistical criteria: the coefficient of determination (R2), the relative bias (B), and
the normalized root mean square error (NRMSE):

R2 =

∑n
i=1

(
RSi −RSi

)(
OBSi −Obs

)
√∑n

i=1

(
RSi −RSi

)2
√∑n

i=1

(
Obsi −Obs

)2
(3)

B =
RS−Obs

Obs
× 100% (4)

NRMSE =

√∑n
i=1

(RSi−Obsi)
2

n

Obs
× 100% (5)

where RS represents the remotely sensed results, Obs is the gauge data, i denotes the ith record, n is the
total number of data points, and RS and Obs are the average values of the remote sensing results and
the gauge data, respectively.

Table 2. Statistical validation results for the remotely sensed reservoir storage data obtained from the
MODIS-SRTM approach.

ID Reservoir Name R2 Bias (%) NRMSE (%)

01 Almatti 0.84 12.40 35.87
05 Gabdhi Sagar 0.69 6.25 15.46
06 Hirakud 0.88 −11.07 18.44
14 N. J. Sagar 0.82 2.80 27.95
15 Pong 0.88 19.25 24.52
17 Ranjit Sagar 0.47 17.77 37.69
18 Rengali 0.79 −13.43 23.81
19 Rihand 0.84 −16.22 28.69
20 R. P. Sagar 0.91 −1.79 15.00
22 Srisailam 0.90 −31.7 32.75
26 Ukai 0.81 −14.76 15.93

As shown in Table 2, most of these results were highly correlated with CEA gauge observations.
The R2 values ranged from 0.47 to 0.91, with a mean of 0.8. The lowest R2 was found over the Ranjit
Sagar reservoir. This reservoir has a relatively small area (56 km2 at capacity) and is very meandering
with a high shoreline to area ratio, complicating the accurate estimation of the surface area from the
medium spatial resolution MODIS data [9]. This multicriteria evaluation provided a comprehensive
understanding of the results. Using the Srisailam reservoir as an example, its R2 value was the second
highest among all of the validated reservoirs, but its NRMSE was relatively large. Because the slope of
the A-H relationship (k, in Equation (2)) is constant, a high R2 value suggests that the area estimations
are accurate. Thus, the large NRMSE was mainly caused by errors associated with the slope of the A-H
relationship. Because the area error was proven to be small as indicated by the large R2, the SRTM
DEM was thus the primary error source for the storage results for this reservoir. Another example is
the Ranjit Sagar reservoir. Although it had an extremely low R2 value due to the large amount of error
in the surface area estimations, the storage bias was close to those of the Pong and Rihand reservoirs,
which indicates a relatively more accurate A-H relationship over this reservoir.

The performance of this algorithm was also compared with the MODIS-ICESat algorithm by
Zhang et al. [25] (Table 3). The remotely sensed reservoir storage data from these two algorithms
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were validated over five reservoirs (Hirakud, N. J. Sagar, Pong, Rengali, and R. P. Sagar) where gauge
observations and A-H values were available (from both MODIS-ICESat and SRTM).

Table 3. Comparison of the validation results between the MODIS-SRTM and MODIS-ICESat approaches.

Hirakud N.J. Sagar Pong Rengali R.P. Sagar

NRSME (%) ICESat 14.58 26.50 15.21 19.69 18.18

SRTM 18.44 27.95 24.52 23.81 15.00

Relative Bias (%) ICESat −1.88 4.13 0.41 −2.63 −8.97

SRTM −11.07 2.80 19.25 −13.43 −1.79

R2 ICESat 0.94 0.85 0.98 0.85 0.92

SRTM 0.88 0.82 0.88 0.79 0.91

As shown in Figure 5a, both the MODIS-SRTM and MODIS-ICESat-based approaches performed
well overall. The time series from these two algorithms closely matched the gauge values for reservoir
storage. To highlight the differences between the DEM and ICESat based algorithms, Figure 5b
compares the storage errors against the gauge observations from these two datasets. The error statistics
are provided in Table 3. Among each of the five reservoirs, the NRMSE of the MODIS-SRTM algorithm
ranged from 18.14% to 27.95%, with a mean value of 21.94%. The relative bias values ranged from
−11.07% to 19.25%. The NRMSE of the MODIS-ICESat algorithm ranged from 14.58% to 26.50%, with
a mean value of 18.83%. The bias values ranged from −8.97% to 4.41%. In terms of accuracy, the two
approaches performed relatively similarly, with the MODIS-ICESat algorithm slightly better than the
DEM based algorithm. For the N. J. Sagar reservoir, the NRMSE was 27.95% for the MODIS-SRTM
algorithm and 26.50% for the ICESat-based algorithm. For this reservoir, the DEM results were more
accurate than the ICESat results. The NRMSE was 15.00%, which was 3.18% better than the ICESat
based algorithm. For the Hirakud, Pong, and R. P. Sagar reservoirs, the MODIS-ICESat algorithm
showed a superior accuracy when validated against the gauge data. The higher accuracy of the
MODIS-ICESat algorithm at these three reservoirs may be attributed to the higher vertical accuracy of
the ICESat elevation values, and/or the longer observation period of ICESat (than the DEM, which
results in a more representative A-H relationship). Because the ICESat and SRTM approaches both
use the same MODIS water area values, the larger bias of storage from the SRTM DEM implies that
the lower accuracy of SRTM could reduce the quality of the reservoir storage product. As stated
by the authors of [44], the components of the SRTM error include baseline roll error, phase error,
beam differential errors, and timing and position errors. However, the SRTM DEM errors related to
terrain, timing, and position—along with the low vertical resolution (1-m intervals)—still influenced
the accuracy of the A-H relationship, which led to a higher bias of the storage calculation. Overall, the
MODIS-SRTM algorithm performed reasonably well.

4.2. Spatial Coverage of the Reservoir Storage Dataset

With full-coverage of two-dimensional elevation data at a fine spatial resolution (30 m), the
MODIS-DEM algorithm generated storage time series for the 28 reservoirs in South Asia from 2000 to
2015 (Figure 6). These reservoirs had an integrated capacity of 124.17 km3 (46.6% of the region’s total
capacity). Compared with the MODIS-ICESat algorithm, the MODIS-SRTM algorithm enabled the
monitoring of eight additional reservoirs (Figure 1), which represented a 18.6% increase of the overall
storage capacity. Sriram Sagar, which was almost at its maximum level during the SRTM flight time,
was the only reservoir for which the A-H relationship could be generated by MODIS-ICESat but not by
the DEM.
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Figure 5. Validation results by comparing the remotely sensed storage values with gauge observations:
(a) Comparison among absolute storage values; (b) comparison of storage difference (remotely sensed
storage minus gauge data).

Figure 6. Combined remotely sensed storage time series of the South Asian reservoirs analyzed in
this study.

The new dataset contains the storage variation information over multiple reservoirs at the basin
scale, which is essential for regional water management purposes. For instance, with two additional
reservoirs included in the dataset, the total storage of the monitored reservoirs in the Krishna river
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basin (KRB) increased from 33.4% to 67.0% (i.e., from 9.70 to 19.44 km3) of the basin’s capacity
(29 km3). The Krishna River is the fourth largest river in India, with its basin extending over an area of
259,948 km2 (about 8% of India). Most of the KRB is relatively flat, with about 76% of the basin covered
by agricultural land. Many hydroelectric power stations are distributed along the Krishna River,
providing clean energy to a large area of India. Therefore, the improved spatial representativeness of
reservoirs in this river basin is essential for hydrologic modeling and water management. The Ukai
Dam across the Tapti River was constructed for the purposes of irrigation, hydropower generation,
and flood control. The Tapti River basin accounts for nearly two percent of the total area of India.
However, before this study, no reservoir in this basin had remotely sensed elevation or storage data
from space. In 2000, a severe drought occurred in the Tapti basin, causing drinking water scarcity in
some villages [45]. In 2009, many districts in this basin were declared to be under drought conditions
due to the deficiency of rainfall from June to September [46]. The low storage values around 2000 and
2009 (Figure 6) reflect this water scarcity. Figure 6 also shows an increase of maximum storage in the
Mangla Reservoir after 2012. This is attributed to the enhanced storage capacity, that was used to
increase the reservoir’s irrigation capability [47]. Another example is the Yeldari reservoir. According
to media reports, two severe drought events occurred in the region in 2004 and from 2012 to 2015—and,
in both cases, the Yeldari reservoir almost dried up [48,49].

4.3. Uncertainty Analysis

The storage uncertainty associated with the A-H relationship is primarily attributed to the use of
partial bathymetry information to represent the A-H relationship for the entire reservoir. Because the
DEM dataset only represents the part of the bathymetry that was above the water surface when the
SRTM measurements were collected, it assumes that the unmeasured part below the water surface
shares the same A-H relationship. To quantify the uncertainty associated with this assumption, we
compared the storage estimations from three different scenarios (Figure 7). In each case, a simplified
cross-sectional view of the reservoir was used—with the water surface area collected by the SRTM (in
2000) indicated as A1, and the area of the reservoir bottom indicated as A2. Under all scenarios, the
storage volume below the DEM water surface was preserved. The first scenario (Figure 7a) follows
the algorithm used in this study, which assumes that the A-H relationship remains the same across
the entire profile. The second scenario (Figure 7b) assumes that the area of the reservoir bottom is
zero, and thus the A-H relationship of the unknown part below the water surface has the smallest
possible slope of kmin. The third scenario (Figure 7c) assumes that the minimum area from the MODIS
estimations is the area of the reservoir bottom, and thus the A-H relationship of the unknown part
below the water surface has the largest possible slope of kmax.

Figure 7. Illustration of the process for quantifying the uncertainty associated with the extrapolation of
the A-H relationship: (a) an example of a simplified reservoir cross section, with a bottom area of A2

identified by assuming the unmeasured portion shares the same A-H relationship, (b) the reservoir
cross section by assuming the bottom area A2 is 0, (c) the reservoir cross section by assuming the
reservoir bottom area A2 equals ARS_min.
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Using the slope of the upper portion (i.e., k) as estimated from the DEM, the reservoir storage
value when the DEM was constructed (i.e., V2) can be calculated using Equation (6):

V2 = Vc −V1 = Vc − (Ac + A1)(Ac −A1)k/2 (6)

As shown in Figure 7b, the minimum value of A2—which is 0—can be used to estimate kmin via
Equation (7):

kmin =
2V2

(A1 + A2)(A1 −A2)
=

2V2

A2
1

(7)

Similarly, the maximum value of A2—which is equal to the minimum water surface area from
MODIS during the research period (Figure 7c)—can be used to estimate kmax after Equation (8):

kmax =
2V2

(A1 + A2)(A1 −A2)
=

2V2(
A1 + Amin

RS

)(
A1 −Amin

RS

) (8)

Thus, for any MODIS remotely sensed area (ARS) that is less than A1, the storage can range between
a minimum possible value of VRS

min (Equation (9)) and a maximum value of VRS
max (Equation (10)):

Vmin
RS = V2 − (A1 + ARS)(A1 −ARS)kmin/2 (9)

Vmax
RS = V2 − (A1 + ARS)(A1 −ARS)kmax/2 (10)

Therefore, the uncertainties associated with the constant slope assumption can be represented by
the difference between the two storage estimates described below using Equation (11):

ΔV = (A1 + ARS)(A1 −ARS)(kmax − kmin)/2 (11)

The uncertainties associated with this source are illustrated in Figure 8. For all 28 reservoirs, the
absolute uncertainty due to the unmeasured A-H relationship ranged from 0 km3 to 0.54 km3, with an
average of 0.23 km3. Among these reservoirs, the Rihand reservoir had the largest absolute uncertainty
(0.54 km3), primarily because this large reservoir was at a relatively high level when the DEM data
were collected. The surface area of the Rihand reservoir—as measured by DEM—was 388.96 km2,
whereas its surface area at full capacity is 485 km2. Considering all of the reservoirs, we found a
significant increasing trend of the absolute uncertainty as the reservoir capacity increased. For every
1 km3 increase in reservoir capacity, the uncertainty increased by 0.034 km3 (p < 0.01). The averaged
relative uncertainty caused by the unmeasured A-H relationship was 4.68%. However, we observed no
significant relationship between the relative uncertainty and the capacity.

The uncertainties from the area estimation algorithm were quantified thoroughly by Zhang et al.
[2014]. From this source, the absolute uncertainties were also found to be highly correlated with the
storage at capacity, where the absolute uncertainties had an average value of 3.90%. This is a similar
uncertainty range but lightly larger than the unmeasured A-H relationship.

The vertical error of SRTM DEM could be another source of uncertainty. This was not analyzed
in this study because the storage calculation (in this study) was based on the slope of the A-H
relationship and area estimations, rather than using the absolute elevation value from the SRTM DEM
directly. Since the slope of the A-H relationship is determined by the elevation difference of reservoir
pixels, the absolute vertical DEM error can be offset during the process, reducing its influence on the
storage estimation.
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Figure 8. Uncertainty analysis results: (a) Absolute uncertainty; (b) relative uncertainty due to the
unmeasured A-H relationship of SRTM DEM.

5. Conclusions

In this study, an algorithm that leverages the SRTM DEM data was developed to improve the
spatial coverage of the reservoir monitoring network in South Asia. By combining water surface area
from MODIS for reservoir storage estimations, we were able to take the advantage of high temporal
resolution of MODIS and large spatial coverage of SRTM. Furthermore, validation results against
gauge observations over 11 reservoirs in South Asia suggested that the storage estimations had a good
level of accuracy (with R2 values ranging from 0.47 to 0.91). The integrated storage capacity of these
reservoirs was 118.76 km3, which represents 46.6% of the overall storage in the region.

This algorithm still has some limitations that need to be noted. First, the accuracy of the proposed
algorithm depends on the water level at the time the DEM data were collected. For certain reservoirs
that were almost full during the SRTM acquisition time, this approach did not work. Due to the
assumption that the A-H relationship derived from the DEM above the water surface represented
the full bathymetry, uncertainties in storage estimations were introduced in addition to those from
the area retrieval algorithm. Second, the low vertical resolution of SRTM DEM and the errors from
different sources may reduce the accuracy of the storage estimation [44]. Therefore, examining the
DEM errors with respect to the terrain of the reservoirs could help us to better understand the error
characteristics of the storage estimation bias. Third, due to the medium resolution of MODIS, the
accuracy of reservoir storage estimation decreased for the reservoir with the smallest surface area
(56 km2). Nonetheless, the benefits of the extended number of reservoirs outweigh the constraints.

The algorithm proposed in this study can provide reservoir storage products that support water
management on a large scale. For instance, given the long-term availability of high spatial resolution
sensors, this approach could be used to monitor much smaller sized reservoirs than possible using
existing techniques. This algorithm may also contribute to future satellite missions such as the Surface
Water Ocean Topography (SWOT) mission, which will provide a direct water surface measurement
for about two-thirds of global lakes and reservoirs, including those with an individual water area >
0.06 km2.
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Abstract: High-resolution mapping of irrigated fields is needed to better estimate water and nutrient
fluxes in the landscape, food production, and local to regional climate. However, this remains a
challenge in humid to subhumid regions, where irrigation has been expanding into what was largely
rainfed agriculture due to trends in climate, crop prices, technologies and practices. One such region is
southwestern Michigan, USA, where groundwater is the main source of irrigation water for row crops
(primarily corn and soybeans). Remote sensing of irrigated areas can be difficult in these regions
as rainfed areas have similar characteristics. We present methods to address this challenge and
enhance the contrast between neighboring rainfed and irrigated areas, including weather-sensitive
scene selection, applying recently developed composite indices and calculating spatial anomalies.
We create annual, 30m-resolution maps of irrigated corn and soybeans for southwestern Michigan
from 2001 to 2016 using a machine learning method (random forest). The irrigation maps reasonably
capture the spatial and temporal pattern of irrigation, with accuracies that exceed available products.
Analysis of the irrigation maps showed that the irrigated area in southwestern Michigan tripled
in the last 16 years. We also discuss the remaining challenges for irrigation mapping in humid to
subhumid areas.

Keywords: irrigation mapping; remote sensing; random forest; subhumid region

1. Introduction

Agriculture is the sector with the largest consumptive use of water across the globe. While crop
water demand is largely met by irrigation in arid to semiarid regions, farmers in humid regions
traditionally rely on rainfall. However, irrigation has become more common in humid to subhumid
regions [1], driven by the growth of demand for corn grain bioethanol, the need to increase yield given
current low prices of corns and soybeans [2], the ready availability of more water and energy efficient
irrigation technologies, and increasing climate variability.

The rapid expansion of irrigation has important implications for terrestrial water balances, food
production, and local to regional climate [3–6]. Land surface models have been increasingly used as
quantitative tools to estimate the effects of land use change and other human activities on terrestrial
water and energy cycles. However, these models require high-resolution observations at the model
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scale to fully vet the irrigated area [7,8]. Thus, detailed depiction of spatiotemporal patterns of
irrigation is needed for modelers and decision makers [9]. However, accurate monitoring of irrigated
area can be difficult in humid to subhumid regions (hereafter humid regions), primarily because of the
similarity of signals from rainfed and irrigated areas in such regions [10].

Remote sensing provides valuable information to delineate irrigated areas. Within the U.S.,
the Moderate Resolution Imaging Spectroradiometer (MODIS) Irrigated Agriculture Dataset for the
United States (MIrAD-US) national irrigation dataset was developed by the U.S. Geological Survey
(USGS) by integrating U.S. Department of Agriculture (USDA) county statistics, MODIS satellite
imagery and a national land cover map [11]. The MIrAD-US product has 250-m resolution and is
available in 2002, 2007 and 2012. MIrAD-US revealed significant temporal variability and suggests the
need for regular periodic mapping of irrigated areas [12]. Later studies have used higher resolution
imagery (10–30 m) from Landsat and Sentinel-1 satellites to develop more detailed irrigation maps
for local to regional studies [13–15]. In particular, annual irrigation maps were developed for the
Republican River Basin from 1999 to 2016 (AIM-RRB), leveraging recent advances in cloud computing,
machine learning, and increasingly accessible Landsat data [13].

In southwestern Michigan, a subhumid region in the midwestern U.S., water consumption by
agriculture has rapidly increased over the past two decades. Irrigation of row crops (primarily corn and
soybean) was once practiced only on a small fraction of the total crop land across the upper Midwest.
However, in the last two decades there has been a dramatic expansion in irrigation use [2], mostly
from groundwater pumping [16]. Large acreages of fields in southwestern Michigan are devoted
to producing seed corn, commercial corn, and soybeans [16]. The prevailing sandy soils [17] and
shallow depths to groundwater [18] in this region allows adoption of central pivot irrigation systems
with limited operation costs. Given the strong connection between groundwater and surface water,
irrigation in southwestern Michigan has the potential to reduce the health of some local surface water
ecosystems [19].

Remote sensing methods are able to map irrigated fields in arid and semi-arid environments with
satisfactory accuracy, however the accuracy of satellite-based irrigation mapping techniques in more
humid regions is still unknown [11]. The objective of this study was to create high-resolution, annual
maps of irrigated fields in a sub-humid region by integrating remote sensing imagery with climate
and land surface modeling data. We identified three methods to increase remote sensing accuracy:
(1) use weather-sensitive selection of imagery timing, (2) test the transferability of recently-developed
composite indices for detecting irrigation in arid areas [13] to humid regions, and (3) calculate spatial
anomaly indices. We demonstrated this approach in southwestern Michigan (SW MI) where corn and
soybeans are the two principal irrigated crops. We also evaluated the accuracy of irrigation mapping
under various climate conditions in this region, which provided insights into the applicability to other
humid regions.

2. Materials and Methods

2.1. Study Area

In this study, we considered ten counties (Allegan, Barry, Eaton, van Buren, Kalamazoo,
Calhoun, Berrien, Cass, St. Joseph and Branch) covering 28,281 km2 in southwestern Michigan
(Figure 1a). The study area is part of the US Corn Belt with a subhumid climate [20], with annual
precipitation ranging from 590 mm (in the 2012 drought) to 858 mm during the study period
2001–2016 (Figure 1b, [21]). Short term droughts, common in this region, induce plant water stress and
reduce grain yields of corn and soybeans, which account for 45% and 32% of total agricultural area,
respectively [22]. During extended drought periods, the sandy soils prevalent in this region cannot
store sufficient soil water to allow crops to reach full yield potential.

134



Remote Sens. 2019, 11, 370

Figure 1. (a). The location (inset) and remotely sensed crop types (CDL, [22]) of the study area,
including ten southwestern Michigan counties. (b) Precipitation from 15 June to 31 July (blue), and the
remainder of year (gray) in the study area.

2.2. Basic Remotely Sensed, Land Surface Model, and Climate Input Data

We used a variety of time-varying and static input data for the random forest (RF) classification
model (summarized in Tables 1 and 2). The static input variables describe terrain, soil, and geographic
location. Dynamic inputs are derived from remote sensing and climate data, as well as land surface
model output. For most time varying data, we focus on the June 15th to July 31st period, which is the
time before canopy closure occurs in corn and soybeans to avoid reflectance saturation. Data were
either obtained from, or uploaded to, the Google Earth Engine (GEE) cloud computing platform [23]
for classification.

Table 1. Basic input variables and indices used to calculate derived input variables.

Variable Description Source

EVI Enhanced Vegetation Index Landsat
GI Green Index Landsat

NDWI Normalized Difference Water Index Landsat
NDVI Normalized Difference Vegetation Index Landsat

Thermal Landsat 5 & 7: 10.40–12.50 μm band
Landsat 8: 11.50–12.51 μm band Landsat

Dryspell See text Derived: PRISM
P Precipitation PRISM

VPD Mean daily max. vapor pressure deficit PRISM
GDD Growing degree-day PRISM

Aridity Total precipitation/PET, May–Aug Derived: GRIDMET
PDSI Palmer Drought Severity Index GRIDMET

Soil moisture Root zone soil moisture NLDAS-2 Noah
AWC Available water capacity SSURGO
Ksat Vertical saturated hydraulic conductivity SSURGO

Table 2. Weather-sensitive remote sensing, spatial anomaly and composite indices.

Group Variable Code or Suffix Description

Weather-sensitive remote
sensing indices

VDPMaxGI 3-day average VPD before maximum Landsat GI day

dryspellMaxGI Number of consecutive days with rainfall ≤ 5 mm before
maximum GI day
NDVI, EVI, GI and NDWI calculated using the Landsat
scene after a dry period identified using three criteria

_SM Descending soil moisture
_pdsi Lowest PDSI
_ppt Longest dryspell

Spatial anomaly indices

NDVI, EVI, GI and NDWI statistics subtracted by
neighborhood %

_p40 40%
_p90 90%
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Table 2. Cont.

Group Variable Code or Suffix Description

Composite indices
WGI Maximum GI × mean NDWI (water-adjusted GI, [13]
AGI Maximum GI/aridity (aridity normalized GI, [13]

WGI_ppt, AGI_ppt WGI and AGI calculated using GI from scenes that
immediately follows a dry period

We included five temporally static input variables to account for possible relations between
yield and terrain attributes, soil properties, crop characteristics, and geographic information. These
variables are: (1) slope calculated from 30-m National Elevation Dataset (NED) Digital Elevation
Model (DEM) [24], (2) soil available water capacity (AWC, field capacity minus wilting point), (3)
vertical saturated hydraulic conductivity (kSat), (4) latitude (lat), and (5) longitude (long). The AWC
and kSat are based on the top 25 cm soil properties provided by the USDA Soil Survey Geographic
Dataset (SSURGO) Web Soil Survey [17]. For each SSURGO map unit polygon, we calculated depth-
and component-fraction weighted averages of all soil horizon textures (%sand, %clay) within the top
25 cm. We then used the ROSETTA database [25] to relate these textures to estimates of field capacity,
wilting point, and soil hydraulic conductivity. Vertical hydraulic conductivity was calculated for each
component as the harmonic mean of individual horizontal saturated conductivities.

Climate inputs were derived from daily 4-km resolution PRISM [21] and Gridded Surface
Meteorological dataset (GRIDMET) [26]: (1) precipitation, (2) aridity calculated as the ratio of growing
season rainfall to potential evapotranspiration (PET), (3) average Palmer Drought Severity Index (PDSI),
(4) dryspell (maximum consecutive days with less than 5 mm precipitation), (5) average daily maximum
VPD (vapor pressure deficit), (6) daily mean temperature, (7) heatwave (maximum consecutive days
with daily mean temperature above 25 ◦C, (8) GDD (growing degree days = cumulative degree
obtained from the difference between air temperature and base temperature for corn and soybeans,
25 ◦C in this study), and (9) as a measure of pre- and in season-wetness, we calculated the total
precipitation before June 15th (p_early) and from June 15th to Jul. 31st (p_sum), respectively.

Irrigation decisions are often based on soil water content [8]. Here, we use the root zone soil
water content at noon from NLDAS-Noah with 1/8◦ spatial resolution and hourly time step [27],
which is currently the best readily available product at regional scale that has sufficiently fine temporal
resolution for our application. The NLDAS-Noah product does not implement irrigation, thus its soil
water content data serves as a reference that represents wetness under rainfed conditions.

We used remote sensing data from Landsat Surface Reflectance Products at an 8-day interval in
all years except 2012, when there was a 16-day interval since only Landsat 7 ETM+ was operational.
We included all scenes within 5 days of the June 15th to July 31st key growing season period. The actual
number of available scenes during this period varies spatially and inter-annually as the 8-day (16-day
in 2012) return interval is simultaneously reduced by cloud coverage and augmented by overlapping
scene edges. From 2001 to 2016, the average number of valid observations among pixels in the study
domain varied from 1.67 (2012) to 6.35 (2001) (Table S1, Supplementary Material). All Landsat 7 images
collected after May 31, 2003 have data gaps due to the Scan Line Corrector (SLC) failure, which leads
to significant data shortage in 2012. We used a moving window average method to fill in the gaps
caused by the SLC failure. For every pixel within a gap, we set its value as the average within a five
pixel by one pixel rectangle, oriented perpendicular to the scanline.

After filling the data gaps, we extracted the thermal, near-infrared, short-wave infrared, red,
green, and blue bands from Landsat images between June 10th and August 5th and calculated NDVI,
EVI, GI and NDWI. We then created statistical composites from the available imagery following a best
pixel approach [28] to generate mean, maximum, minimum and range (i.e., maximum subtracted by
minimum) composites for all four indices and the thermal band.
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2.3. Weather-Sensitive Scene Selection, Spatial Anomaly Calculation, and Novel Composite Indices

Initially we applied the methods from previous studies (i.e., [12–14]) to construct a RF classifier
for this region, but found the accuracies were inadequate. We thus developed and tested a variety of
approaches, including several that we deemed unsuccessful because they did not increase the accuracy
of the RF classifier. Ultimately, we implemented three methods to create layers beyond the basic
remotely sensed, land surface model (LSM), and climate indices described in Section 2.2.

First, we calculated two composite indices recently proposed in [13] that adjust GI in an attempt
to account for regional variations in available water. The first composite variable is the product of
maximum GI and growing-season mean NDWI (i.e., water-adjusted green index, WGI); we anticipate
that for irrigated fields GI and NDWI will both be high. A pixel with high GI but low NDWI may be
rainfed (low NDWI) but treated with abundant nutrients (high GI). The other composite variable is
maximum GI divided by seasonal aridity (i.e., aridity-normalized green index, AGI). The rationale
behind AGI is that irrigated fields should have high GI even during relatively dry growing conditions.

Second, we developed weather-sensitive remote sensing indices calculated from Landsat scenes
at the time most favorable for distinguishing irrigated from rainfed fields. We assumed this time
immediately follows a dry period identified based on three separate criteria: (1) maximum consecutive
days with monotonically descending root zone (up to 1-m depth) soil water content, (2) lowest PDSI
of the season, and (3) greatest number of consecutive days with daily precipitation less than 5 mm.
The criteria were calculated using climate and LSM model outputs listed in Table 1. The resulting
input variables are denoted with suffix _SM, _pdsi, _ppt, respectively. Irrigated crops generally exhibit
higher vegetation indices and NDWI than rainfed crops [13,14,27,29,30]; we expect that this difference
is amplified under water stress conditions during dry periods. Further, the three-day average vapor
pressure deficit (VPD) before the day of maximum Landsat GI (VPDMaxGI) and number of consecutive
days with rainfall not exceeding 5 mm before maximum GI day (dryspellMaxGI), were calculated as
rainfed crops are unlikely to exhibit maximum GI when VPD is high or after a dry period.

Third, we calculated spatial anomaly remote sensing indices to better distinguish irrigated from
rainfed fields. We first calculated the neighborhood percentiles (40% and 90%) of the vegetation
indices using a circular kernel with a 10-km radius for every year. This radius was selected based
on the range of a spherical fit to the empirical variogram of the climate and LSM model outputs.
Two percentiles were selected to provide anomalies that would be useful in areas where irrigation
is relatively sparse (where an anomaly relative to the 90%would be more appropriate), and where
irrigation is predominant (similarly, where the 40% might indicate irrigated fields). We then subtract
the neighborhood percentiles from the vegetation indices to produce annual anomaly maps; resulting
input variables are denoted with suffix _p40 and _p90, respectively. A positive value points to a
higher-than-neighbor vegetation index under similar climate conditions, which we expected to be
related to irrigation activity.

All together, the basic remote sensing, climate, and LSM simulated indices (Section 2.2) and the
weather-sensitive remote sensing, spatial anomaly, and composite indices comprise 98 input variables
of the RF classifier. A complete list of these variables is provided in Table S2, Supplementary Material.

Several “failed” attempts to define improved indices were made, and then abandoned based
on lack of improvement in classification accuracy. We provide these here as information for others
seeking to further the work of humid region irrigation remote sensing. A full list of these variables is
included in Table S3, Supplementary Material. Many of these variables were extracted from MODIS
products. Due to short overpass time, MODIS products are less subject to cloud coverage than Landsat
products. We expected that MODIS thermal bands, terrestrial evapotranspiration (ET), and potential
evapotranspiration (PET) estimates [31] would provide valuable information to identify irrigation
activity [32]. We thus used monthly statistics of these products as well as calculated composite indices,
including the difference between precipitation and MODIS ET, and ET divided by VPD. Another
climate index that we tested is temporal anomaly of precipitation (annual precipitation subtracted
by the multi-year average precipitation). We also derived the monthly ratio of vegetation indices
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such as maximum GI in July divided by maximum GI in June, ratio among vegetation indices such
as GI divided by EVI, and GI divided by NLDAS-Noah soil water content. Our preliminary results
suggested that these indices did not improve classification accuracy on our validation points and
were thus not used to generate the final results. Likely reasons include the coarse spatial resolution of
MODIS and climate products as well as possible errors embedded in these products. These may be
useful in areas with larger fields than the pilot study area.

2.4. Random Forest Classifier

We use a random forest (RF) machine learning algorithm to inductively build a classifier of
irrigated versus rainfed areas. We selected RF because the algorithm was successful in various
hydrologic and remote sensing applications (e.g., [13,14,33–35] is robust with relatively large number
of inputs, provides input variable importance measures and probabilistic outputs [36], and is supported
in the GEE cloud computing platform.

A random forest is comprised of an ensemble of decision trees. Given a set of training data
{xi, yi}, i = 1, . . . , n, where xi denotes input variables, and yi is the corresponding output. In this
study, yi is a categorical variable with two classes: irrigated and rainfed. The algorithm randomly
draws n samples with replacements from the training dataset to train a single tree. The process is
repeated N times, resulting in a forest of N trees. Once trained, each tree predicts the class of a
new data point, and the N trees may predict M classes. The RF algorithm outputs the percentage of
trees that provide a prediction of the M classes. The class that receives the highest probability is the
final prediction.

In the mapping process, a composite of images is created for each year as input data layers
(Tables 1 and 2, Table S2, Supplementary Material). For each year since 2007, the composite is masked
using the Cropland Data Layers (CDL, [22]) to keep only corn and soybean fields for this region. For
years before 2007, the composite is masked using the National Land Cover Dataset (NLCD, [37]),
the primary available product for the study region. The NLCD-based crop mask includes all row
crop fields because NLCD does not distinguish among row crops. The trained RF classifier is then
applied to input composites and labels each pixel as either irrigated or rainfed. In this way, we develop
irrigation probability maps for every year from 2001 to 2016. The probability value ranges from 0 to 1,
with higher values suggesting larger likelihood of irrigation activity in the pixel. A pixel is classified
as irrigated if it receives a probability greater than 0.5, and as rainfed otherwise. The resulting binary
maps are postprocessed in two steps. Due to cloud coverage, 2014 and 2015 have 8.2% and 5.7% pixels,
respectively, with no Landsat scene from June 10th to August 5th. The gap pixels in 2014 are labeled
irrigated if it was classified as irrigated in both 2012 and 2013. Similarly, the gap pixels in 2015 are
labeled irrigated if it is classified as irrigated in the 2013 map and gap-filled 2014 map. In the second
step, all pixels that are classified as irrigated only once during 2001–2015 are labeled as rainfed as it is
unlikely that farmers will irrigate only one time due to high infrastructure costs. We then examine the
final irrigation maps to track the spatial extent and the changing irrigation dynamics.

During training, the RF algorithm also calculates a variable importance score based on the total
decrease in node impurities by splitting on the variable, averaged over all trees [38]. The variable
importance scores provide a measure of the relative importance of each input variable for capturing the
spatiotemporal irrigation pattern. In this study, we used all 98 input variables described in Sections 2.2
and 2.3, and used the RF calculated variable importance measure to draw insights into the data worth
of various indices in similar irrigation mapping applications. We note that RF algorithms are robust
with the presence of a large number of inputs. Depending on specific applications, and especially when
using other machine learning algorithms that are less robust to high input number, more sophisticated
feature selection techniques (e.g., [34,39]) can be used to constrain the input space dimension.
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2.5. Manually Labeled Dataset

The RF classifier is built based on a training dataset compiled from high-resolution aerial
photography that was acquired during growing seasons (National Agriculture Imagery Program,
NAIP [40]) from the study area. Approximately half of the training points are sampled in two
representative years, 2012 and 2014. 2012 is known as a dry year in which limited rainfall induced
water stress during the crop growth period. We expect that the irrigated crops are more productive
than rainfed crops in this year, and the difference should be reflected in our selected indices. Therefore,
2012 represents an “easy” irrigation mapping case for the classifier. On the other hand, the 2014
growing season receives plenty of precipitation and thus represents a challenging case for the algorithm.
In addition, we sampled 100 locations across multiple years (2005, 2006, 2009, 2010) to track shifts
between rainfed and irrigated fields. The locations of the data points were randomly sampled after
applying an agriculture land cover mask. From 2001 to 2006 the mask is derived from the NLCD and
included pixels categorized as cultivated crops. Since 2007 when CDL was first available in the study
area, the masks include pixels labeled as corn and soybean fields in CDL.

Through the GEE cloud computing platform, we manually labeled each point as either irrigated or
rainfed based on multiple lines of evidence, including the presence of visible irrigation infrastructure,
high vegetation indices, and limited water supply from remote sensing and climate data. The presence
of irrigation infrastructure, primarily central pivot irrigation systems, is identified from NAIP images.
When such infrastructure is identified, we examine the time series of vegetation indices, NDWI,
precipitation, and NLDAS-Noah root zone soil water content to estimate whether a particular location
is irrigated. As described previously, the vegetation indices and NDWI are derived from available
Landsat scenes, with precipitation data from PRISM. A data point is discarded when a decision cannot
be made. In total, the manually labeled dataset include 1536 data points (locations in Figure 2).

Figure 2. Training points are randomly generated, scattered in crop areas. One-time training points
(green triangles) are generated for 2012 (dry) and 2014 (wet) years. Additional points (red dots) are
generated for 2005, 2006, 2009, 2010, 2012 and 2014.

2.6. Classification Accuracy Assessment

We evaluated the accuracy of irrigation mapping using two validation data sources. First,
we randomly divided the manually labeled dataset into training (80%) and validation (20%). We
trained a random forest on the training dataset, and then tested its performance on the validation
data points. To reduce the effects of random sampling, we repeated this sample-and-train process
20 times. We note that some of the remote sensing and climate information are used both in the
manual labeling of the validation dataset as well as inputs to the random forest classifier. Such
overlap may favorably influence classifier performance evaluation on the manually labeled validation
dataset. However, the manually labeled reference dataset primarily relies upon visual cues in the
NAIP high-resolution imagery, which was not included in the RF classification. Overlapping datasets
provided only supporting evidence for manual labeling. Therefore, the validation points still provide
valuable insights into irrigation mapping accuracy, especially given the lack of ground truth data. As a
second, independent assessment, we calculated the total irrigated area of corn and soybean for each
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county in the study domain. The results are compared with county-wise statistics of the two crops
available through NASS Agricultural Census [2] in the available years (2002, 2007, 2012).

For comparison, we also evaluate the accuracy of MIrAD-US, a national, 250-m resolution
irrigation dataset available in 2002, 2007 and 2012 [12], using the manually labeled dataset.
The MIrAD-US product identifies irrigated pixels when MODIS annual peak NDVI exceeds a threshold,
which is adjusted for each county such that the resulting total irrigated acreage agrees with the USDA
NASS statistics. We compare MIrAD-US label (irrigated versus rainfed) with the manually labeled
dataset (Section 2.5), with error rates reported in Section 3.1. The MIrAD-US error rate is then compared
with RF classification validation error for data points in 2012 (no training data is generated in 2002 and
2007 due to lack of NAIP images), averaged over 20 repeated experiments.

3. Results and Discussions

We developed annual irrigation probability maps for 2001 to 2016 (Figure 3) by integrating
Landsat remote sensing imagery and hydroclimatic variables in a RF analysis as discussed above.
Figure 3 shows the irrigation probability maps for a 2.7 by 3.2 km area in 2012. Comparing the irrigation
maps with NAIP imagery (Figure 3b,c), the RF classifier can identify irrigation with detailed sub-field
spatial pattern, which national products such as MIrAD-US cannot capture due to its coarse resolution
(Figure 3e). This is important, as small fragmented fields are common in the study area. It is important
to note that NAIP imagery was only used to label training points and not included in the input data to
produce the irrigation maps. Figure 3c shows the green indices calculated from the Landsat scene that
immediately follows a dry period (GI_ppt), which is identified as the longest consecutive days with
daily precipitation less than 5 mm (Section 2.4). This variable is the most important input variable
according to RF important score (see Section 3.2 for more details).

Figure 3. (a) Map of fraction of years classified as irrigated since earliest year irrigated according to
the fandom forest (RF)-based annual irrigation maps spanning 2001–2016. For example, a pixel that is
irrigated every year since the start of irrigation in 2012 will receive a fraction of 1.0. 2012 insets of (b)
NAIP aerial image showing irrigated farms with varying sizes, (c) GI calculated from the Landsat scene
that immediately follows the largest dryspell (GI_ppt), (d) random forest-based irrigation probability
map with 30-m resolution and (e) MIrAD-US irrigation map with 250-m resolution. Images (b–e) are
for 2012. Areas not classified as corn or soybeans (USDA-NASS, 2016) are shown in dark.

140



Remote Sens. 2019, 11, 370

3.1. Classification Accuracy

First, we examined the error rate of the RF classifier on the validation points we reserved before
training the classifier, as described in Section 2.5. Accuracies for all years, dry years (6/15 to 7/31
precip. < 2001–2016 mean), and wet years (6/15 to 7/31 precip. > 2001–2016 mean) are 82%, 85% and
78%, respectively (Table 3). It is not surprising that the classification accuracy is lower in wet years
that received plenty of precipitation. In wet years, the input indices describing the crop status may not
be significantly different between rainfed and irrigated fields, inducing higher commission error and
lower omission error than in dry years (Table 3). It is notable that the difference between the accuracies
in dry and wet years is small. This suggests the utility of spatial anomaly and weather-sensitive remote
sensing indices in distinguishing irrigated fields from rainfed even under humid conditions.

Table 3. Irrigation mapping accuracy evaluated using manually labeled data points. Omission error
describes the percentage of irrigated training points that are classified as rainfed (false negative), while
commission error describes the percentage of rainfed training points that were classified as irrigated
(false positive). The accuracies of RF classifier and MIrAD-US [12] are compared for 2012 when both
the manually labeled data points and MIrAD-US map are available.

Year Omission Error Commission Error Overall Accuracy

Dry (2009, 2012) 40% 9% 85%
Wet (2005, 2006, 2010,

2014) 38% 14% 78%

All years 39% 13% 82%
2012 RF (This study) 39% 6% 84%
2012 MIrAD-US [12] 49% 16% 74%

We then compared the county irrigated area classified by RF with NASS Agricultural Census
statistics [2] in 2002, 2007, 2012, as shown in Figure 4. For county statistics, there is a good
overall agreement

(
r2 = 0.69

)
. Figure 5 reports the annual total irrigated area in the study domain.

While spread is noticeable in the county data (Figure 4), the total irrigated area agrees well with
NASS statistics.

Figure 4. County irrigated area for 2002, 2007, 2012 according to the RF-based irrigation maps. Color
encodes different counties. As explained in Section 3.1, RF significantly underestimates irrigated area
in St. Joseph county due to widespread seed corn production in that area.
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Figure 5. Empirical probability density function of green index following maximum dryspell (GI_ppt)
estimated from manually labelled dataset.

Next, we compared the error rate of RF classifier and MIrAD-US using the manually labeled data
(Sections 2.5 and 2.6) in 2012 when both the manually labeled data points and MIrAD-US map are
available. As shown in Table 3, the MIrAD-US error rate (defined as 1—accuracy) is 26%, and the RF
classifier error rate is 16%. In addition, RF irrigation maps have lower omission and commission errors
than MIrAD-US, suggesting a higher accuracy of RF-derived irrigation maps.

The high omission error of the irrigation classification (Table 3) may be due to the agricultural
management practice of deficit irrigation in the study area. Notably from Figure 4, the RF classifier
significantly underestimated irrigated area in St. Joseph county where seed corn is the dominant
crop [18], and deficit irrigation in late season (August) is commonly applied to dry up corn in plots.
These locations would thus exhibit lower vegetation indices. The irrigation maps may underrepresent
locations where a deficit irrigation strategy is applied in the rest part of the study domain.

The accuracy assessed on the validation points is lower than previous study that used a similar
method to map irrigated area in a semi-arid to arid region [13]. In a more arid climate, the vegetation
indices of rainfed crops are distinctively lower than those of irrigated crops. This is not the case in
humid to subhumid climates. As shown in Figure 5, while the mean value of GI_ppt is higher in
irrigated fields, the distributions of the two classes largely overlap. Such mixing also occurs for other
input variables, making separation of the two classes challenging in humid regions.

The accuracy of our irrigation maps is also subject to the uncertainties of the input data.
As described in Section 2.2, the irrigation maps are developed based on crop masks derived from
NLCD and CDL. Thus, misclassification of either product affects the validity of training points and
the accuracy of irrigation maps. For years before 2007, the crop mask based on NLCD includes all
row crop fields, thus the classified irrigated fields likely include irrigated fields other than corn and
soybean. Furthermore, cloud coverage inevitably leads to missing scenes during the critical crop
development phase. For locations with few available Landsat scenes, important information regarding
the crop status may be missing, and resulting classification may be misled. The issue of cloud coverage
may be alleviated using fusion of remote sensing products across recent platforms [41,42] such as
radar imagery [15]. Finally, fields smaller than the 30-m resolution may not be well captured by the
Landsat-based mapping method.

3.2. Important Input Variables

During the training process, the RF classifier calculates the variable importance scores as how
much impurity (i.e., irrigated versus rainfed) can be explained by each input variable. Figure 6
depicts the 30 variables receiving the highest scores. Most of these higher-ranking variables are
weather-sensitive remote sensing indices from Landsat scenes immediately following a dry period
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identified by low soil water content, negative PDSI, or limited precipitation. This finding highlights
the importance of selecting Landsat scenes that provide the most information for separating irrigated
fields from rainfed ones. These critical scenes capture crop performance under a water stress condition;
irrigated crops are expected to exhibit higher vegetation indices than rainfed crops. Such differences
are not captured by peak vegetation indices, as rainfed crops may exhibit vegetation indices as high as
irrigated crops during periods with sufficient precipitation. Simple remote sensing indices such as peak
vegetation indices are not among the variables that explain most of irrigation spatiotemporal variability.
In humid regions, maximum vegetation indices can be biased due to extensive cloud coverage.

Composites and some spatial anomaly indices receive high importance score, suggesting the utility
of these variables to identify irrigated fields. Besides climate and remote sensing data, latitude is among
the most important variables, likely due to the gradient of increasing fraction of seed corn from north
to south. It is common to regularly irrigate seed corn as required in contracts. In addition, water supply
indicators such as PDSI and pre-season precipitation (p_early) receive high ranks because they can
explain the interannual climate variability. Other climate variables received lower importance scores.

We found that soil properties and slope are not important factors for simulating the spatial
distribution of irrigation in this region. This is not surprising because sandy soil with low AWC and
mild terrain are prevalent in the agricultural lands of the study area. Other variables that do not appear
to be important include soil water content, precipitation, aridity and extreme weather condition indices
such as GDD, dryspell and heatwave, likely because the resolution of the meteorological data used
to calculate these indices is too coarse to capture the fine-scale heterogeneity of irrigation. However,
these variables portray large-scale water supply and demand, and we have shown that they can be
used to select Landsat scenes that provide the best information for separating irrigated fields from
rainfed ones. In particular, soil water content is simulated by NLDAS-Noah, which does not account
for irrigation and estimates wetness under rainfed conditions.

Figure 6. Top 30 (of 98) important variables as identified by RF; variables are grouped into six categories
as indicated by different colors (Sections 2.2 and 2.3, Tables 1 and 2, Table S2, Supplementary Material).

3.3. Expansion of Irrigation

From the RF classified irrigation maps we calculated the total irrigated area for the study region
for 2001–2016 (Figure 7) and compared this to NASS statistics. Temporal fluctuation is noticeable, with
limited irrigated area in 2009–2011 and high irrigated area in 2013–2014. The peak in 2014 is likely a
combination of three factors. First, the critical crop development phase in 2014 had 21% higher than
average (Figure 7) and more frequent precipitation (the dryspell of the study area is 13 days in 2014
and 17 averaged over 2001–2016), leading to robust rainfed crops and correspondingly high vegetation
index values across the region. Thus, the RF classifier may overestimate the irrigated area in this year.
Second, as described in Section 2.5, 2014 has 8.2% pixels with no Landsat scenes during the critical crop
development phase. To fill in the gaps, we labeled pixels as irrigated in 2014 if they were classified as
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irrigated in both 2012 and 2013. This may result in commission errors (i.e., classifying rainfed fields
as irrigated) in those pixels. Third, farmers may have switched to irrigated agriculture after the crop
losses in the 2012 drought.

Figure 7. Annual total irrigated area in SW MI according to the random forest-based irrigation
maps (line with squares), NASS Consensus (triangles, [2]). Gray bars show precipitation during the
15 June–31 July period, averaged over the study domain. Linear regression with and without 2014
irrigated area is also shown.

There is a statistically significant (p < 0.05) increasing trend in irrigation in this study region
despite notable interannual variability. Over the 16-year period, irrigated area tripled (increased by
204%), according to the linear regression shown in Figure 7. The estimated slope of 70.8 km2/year is
approximately twice the estimate from NASS statistics in 2002, 2007 and 2012 (slope = 35.6 km2/year).
In order to isolate the likely skewness due to high irrigated area estimated in 2014, we performed
another linear regression excluding 2014 (Figure 7). An increasing trend is statistically significant
(p < 0.05) with estimated slope of 49.1 km2/year.

We also calculated the change in irrigated area for corn and soybeans, respectively, for 2007–2016,
when CDL is available for the study area. The irrigated area fractions for corn and soybeans increased
from 19.1% in 2007 to 24.9% in 2016, and from 9.2% in 2007 to 17.9% in 2016, respectively.

To examine the spatial pattern, irrigation trends are calculated based on linear regression (Figure 8).
To do this, we aggregated the 30-m irrigation maps to a larger grid to perform linear regression on the
irrigated area through time. We chose the 9-km2 grid to examine relatively fine-scale spatial patterns of
irrigation trends across the region (vs. county level, for instance). Slight decreasing trends in lakeshore
area suggests discontinuation of irrigation. The highest increase rate (up to 0.25 km2/year per 9-km2

cell) was found in southern part of the study area. The irrigation expansion is believed to be associated
with the promotion of seed corn in this area [16,18]. Seed corn is usually irrigated because irrigation is
typically required by the contracts between farmers and seed corn companies.
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Figure 8. Rate of change of irrigated area over time based on linear regression calculated for an
aggregated 9 km2 grid. Gray indicates non-significant trend (α > 0.1).

In addition, correlation analyses suggest crop commodity price is another factor affecting irrigation
decisions. The annual irrigated area of the study region is found to be correlated with previous year’s
corn price [2] (Figure 9, r = 0.66, p = 0.009). Irrigation may double corn yields and increase soybean
yields by more than 66% in SW MI [16]. Given the easy accessibility to irrigation water, adoption of
irrigation will likely increase farmers’ revenue. Irrigation expansion may be further encouraged by
devastating crop losses in the 2012 drought in fields without irrigation [43,44].

Figure 9. Commodity price of corn (a) and its correlation with irrigated area (b) 2001–2016.

4. Conclusions

By integrating satellite imagery and hydroclimatic information using a machine learning
algorithm, we created annual irrigation maps for a subhumid area in southwestern Michigan for
2001–2016. The maps capture the spatiotemporal pattern of irrigation at a high spatial resolution (30 m)
and indicate that irrigated area in southwestern Michigan roughly tripled in the last 16 years according
to linear regression.

We demonstrated the utility of novel input variables including weather-sensitive remote sensing,
spatial anomalies, and recently-developed composite indices. In particular, we found that those
vegetation indices following dry periods are the most important to distinguish irrigated fields from
rainfed. This not only reduces the number of scenes (thus memory and computational expense) to
process, but also avoids possible confounding effects of high vegetation indices captured during a
wet period.

The annual irrigation maps are validated using multiple data sources. Reasonable accuracy is
achieved despite the difficulties involved with estimating irrigated area in a region with a subhumid
climate and heterogeneous agricultural management practices (e.g., deficit irrigation strategy for seed
corn). We found that the mapping accuracy in dry years is higher than in wet years with a narrow
margin. The small difference between accuracies may be attributed to the use of spatial anomaly and
weather-sensitive remote sensing indices, which were able to distinguish irrigated from rainfed fields
even under subhumid conditions.
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We identified several challenges and limitations for mapping irrigated areas in subhumid to humid
regions, including the dependency on the quality of input data (e.g., land cover) and cloud coverage,
which is more frequent in such regions. The substantial efforts and difficulty involved in generating
training data are also noteworthy and call for in season high-resolution imagery. Nevertheless, the
promising results underscore the potential of using remote sensing and cloud computing to provide
valuable information for water resources decision makers and hydrologic studies at regional scales.

Supplementary Materials: The annual irrigation maps 2001–2016 can be downloaded at https://doi.org/10.
4211/hs.3766845be72d45969fca21530a67bb2d. In addition, the following are available online at http://www.
mdpi.com/2072-4292/11/3/370/s1, Table S1: The mean and quantiles for the cumulative probabilities 0.025 and
0.975 of number of available scenes for all pixels in the study domain between June 10th and August 5th for each
year in the study period (2001–2016), Table S2: All input variables of the random forest classifier grouped into
seven categories, Table S3. Unsuccessful input variables that were not used in the final random forest classifier.
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Abstract: The southern part of the Hebei Province is one of China’s major crop-producing regions.
Due to the continuous decline in groundwater level, agricultural water use is facing significant
challenges. Precision agricultural irrigation management is undoubtedly an effective way to solve
this problem. Based on multisource data (time series soil moisture active passive (SMAP) data,
Moderate Resolution Imaging Spectroradiometer (MODIS) normalized difference vegetation index
(NDVI) and evapotranspiration (ET), and meteorological station precipitation), the irrigation signal
(frequency, timing and area) is detected in the southern part of the Hebei Province. The SMAP data
was processed by the 5-point moving average method to reduce the error caused by the uncertainty
of the microwave data derived SM. Irrigation signals can be detected by removing the precipitation
effect and setting the SM change threshold. Based on the validation results, the overall accuracy of
the irrigation signal detection is 77.08%. Simultaneously, considering the spatial resolution limitation
of SMAP pixels, the SMAP irrigation area was downscaled using the winter wheat area extracted
from MODIS NDVI. The analytical results of 55 winter wheat samples (5 samples in a group) showed
that winter wheat covered by one SMAP pixel had an 82.72% growth consistency in surface water
irrigation period, which can indicate a downscaling effectiveness. According to the above statistical
analysis, this paper considers that although the spatial resolution of SMAP data is insufficient, it can
reflect the change of SM more sensitively. In areas where the crop pattern is relatively uniform, the
introduction of high-resolution crop pattern distribution can be used not only to detect irrigation
signals but also to validate the effectiveness of irrigation signal detection by analyzing crop growth
consistency. Therefore, the downscaling results can indicate the true winter wheat irrigation timing,
area and frequency in the study area.

Keywords: irrigation signal; SMAP; irrigation intensity; winter wheat

1. Introduction

Winter wheat is the main crop in the North China Plain (NCP). Due to the high irrigation
demand of winter wheat, more than 70% of the irrigated water resources are used for winter wheat
irrigation every year [1]. The increasing population has led to a corresponding increase in the
demand for agricultural, industrial and domestic water in the NCP. The surface water resources are
insufficient, and groundwater has become the main source of water for the NCP [2]. In recent decades,
the overexploitation of groundwater has led to a significant decline in groundwater levels, which
increases not only environmental problems but also the pressure on agricultural food production [3,4].
Groundwater is the main source of water for NCP agriculture irrigation. Long-term dependence on
groundwater for agricultural irrigation has resulted in groundwater over-exploitation, and agricultural
water irrigation needs to be reduced; however, the sustainable of food crop production must also be
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ensured [5,6]. Timely and effective monitoring of irrigation water is of great significance for agricultural
water management and water resources protection. The irrigation signal includes the time, frequency
and area of irrigation. Irrigation time can be used to dynamically correct irrigation schedules, while
irrigation frequency and area can be used for the estimation and dynamic monitoring of agricultural
irrigation water use [7–10]. This study prepares to establish a model that can be used to detect irrigation
signals and dynamically acquire irrigation information. The results of the irrigation signal will be
used for the dynamic monitoring of agricultural irrigation water to achieve refined management of
agricultural irrigation.

With the continuous development of remote sensing technology, more remote sensing data can be
used for irrigation information detection [11–15]. Compared with traditional agricultural statistical
methods, remote sensing has a wide range of multifrequency, high spatial and temporal resolution
advantages and has been widely used in agricultural management [16–18]. Representative data sources
include Moderate Resolution Imaging Spectroradiometer (MODIS), which provides 250 m, 500 m and
1 km resolution daily surface reflectance data. The richness of time series and improvement in remote
sensing data spatial resolution has greatly improved the accuracy of irrigated area identification [19].
In recent research, the Normalized Difference Vegetation Index (NDVI) has been extensively used
as an effective indicator for irrigated area recognition based on optical remote sensing data [19–21].
An analysis of the time-varying pattern of NDVI is the primary method for identifying irrigated and
non-irrigated areas. In particular, wheat and maize are affected by irrigation, and their NDVIs will
appear to be higher than other vegetation [20,22]. Although the identification method for irrigated
areas has been comprehensive, this irrigated area extraction method based on optical remote sensing
data is mostly used for long-term irrigated area monitoring to analyze trends in irrigated areas over
multiple years. Chen et al. [23] proposed a method for detecting irrigation extent, timing and frequency
based on MODIS and Landsat remote sensing data, which is an important irrigation property for
understanding the sustainability of water resources in arid and semiarid regions. The irrigation signal
detection method based on the visible vegetation index must model the daily scale data, and this
method is more suitable for irrigation signal detection in regions with less cloud cover. Remote sensing
images of areas with more clouds are likely to miss the critical period of irrigation signal detection due
to cloud pollution. Moreover, in addition to the influence of image quality, the response of vegetation
to irrigation is lagged, which increases the uncertainty of irrigation timing detection.

In addition to the method of identifying the irrigated area by using vegetation index information,
the change in the wetness index can also be used to identify the irrigation signal [24]. Based on the
SM being higher in the irrigated area than in the non-irrigated area, some researchers have identified
irrigated areas based on different principles. Based on the MODIS enhanced vegetation index (EVI)
and land surface water index (LWSI) ratio method, Peng et al. [25] introduced the variable EVI/LWSI
threshold function to improve the detection ability of this method in different rice crops under mixed
rice crop patterns (single-season rice, early-season rice, and late-season rice). Abuzar et al. [26] used
vegetation and thermal thresholds derived from Landsat and Advanced Spaceborne Thermal Emission
and Reflection Radiometer (ASTER) data to detect the irrigated area in an Australian irrigation district
based on the soil temperature in the irrigated area being lower than that in the non-irrigated area.
Although different researchers use SM information to detect irrigated area information from different
aspects, they do not use SM indicators because optical and thermal infrared remote sensing data cannot
directly obtain SM information.

Active and passive microwave satellites have proven to be effective tools for retrieving soil water
variations at regional and global scales [27–29]. NASA’s Soil Moisture Active Passive (SMAP) satellite,
launched on 31 January 2015, provides a new source of data for near-surface (0–5 cm) soil water
monitoring on a global scale. Colliander et al. [30] validated the SMAP surface SM product through
the core validation site. The results indicate that the SMAP radiometer-based SM data product meets
the expected performance of 0.04 m3/m3 volumetric SM (unbiased root mean square error) and that the
combined radar-radiometer product is close to its expected performance of 0.04 m3/m3. Chan et al. and
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Zhang et al. [11,31] evaluated the results of different SMAP products in different regions and obtained
similar conclusions to those of Colliander. SMAP has more information improvements than previous
SM satellites, which has raised interest in whether SMAP can improve irrigation monitoring [32].
Subsequently, Lawston et al. [33] explored the use of SMAP data in identifying irrigation areas and
timing in the Sacramento Valley, San Luis Valley and Columbia River Valley. However, the study did
not identify the irrigation timing in the irrigated area. Since the detection of the irrigated area is a
combination of changes in SM over a period of time, the time scale is the entire period of the crop.
Compared with optical/thermal infrared methods, SMAP’s method of detecting irrigated areas has
unique advantages in terms of temporal resolution and ability to directly acquire SM [34]. The SMAP
data spatial resolution is a major limiting factor that affects its use.

Obtaining irrigation time, area and frequency will help estimate irrigation water volume and
provide data support for agricultural irrigation management. Despite having the low spatial resolution,
SMAP provides high temporal resolution SM products. To address the spatial resolution issues, this
paper will be studied in the following three aspects: 1) Based on SMAP and meteorological data, the
irrigation signal in the study area was detected, which solved the problem of optical data not being
applicable in cloudy regions; 2) MODIS remote sensing data were used to downscale the detection
results to solve the low spatial resolution problem of SMAP data; and 3) through an analysis of
the consistency of winter wheat growth covered by SMAP pixels, the SMAP data effectiveness in
downscaling the winter wheat irrigation results in this study area was evaluated.

2. Study Area

The region of interest in this paper is located in the southern part of the Hebei Province and
belongs to the NCP. The boundaries of the study area are city administrative boundaries, including
Shi Jiazhuang, Baoding, Langfang, Hengshui, Cangzhou, Xingtai and Handan, with a total area of
8.9 × 104 km2 (as shown in Figure 1). Although precipitation in the study area is not scarce, the
distribution of precipitation during the year is extremely uneven. The study area is dominated by a
temperate monsoon climate with mean annual precipitation of 472.7–889.2 mm, and 70% of the annual
precipitation occurs between June and September [35]. Under the irrigation conditions of the study
area in recent years, the main crop pattern is the winter wheat-summer maize double crop rotation.
Winter wheat and summer maize are also the main irrigated crops in this region [36]. The lower
amount of precipitation in spring is not enough to provide sufficient water for winter wheat growth,
and groundwater irrigation has been the main irrigation method for winter wheat and summer maize
for a long time. Winter wheat is generally irrigated 4–5 times, and precipitation has little effect on the
number of irrigations due to the severe shortage of precipitation during the winter wheat growing
period. Summer maize is usually irrigated before planting, and if effective precipitation has occurred
before planting and the soil moisture meets the sowing requirements, the crop will not be irrigated
during the growing period. The Middle Route of the South-to-North Water Transfer Project (MSWTP)
was launched at the end of 2014, and this project provided a new source of water for agricultural
irrigation in the NCP [37].
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Figure 1. Study area and meteorological sites locations and the spatial distribution of SM stations.

3. Materials and Methods

The flow chart (shown in Figure 2) of this paper includes the processing of collected data
(Section 3.1), selection of samples (Section 3.2.1), the application of algorithms (Section 3.2.2) and
validation of accuracy (Section 3.2.3).

Figure 2. Flow chart for this study. Here, 5-point Mov Avg represents the 5-point moving average and
Avg and Std represent the average and standard deviation, respectively. The irrigation Acc accumulates
as a result of the irrigation signal.

3.1. Data Collection and Pre-Processing

3.1.1. SMAP

SMAP is an orbiting observatory capable of measuring the amount of water in the top 5 cm of soil
at global scales. To meet the various needs of soil moisture monitoring, the SMAP mission uses an
L-band radar and an L-band radiometer for concurrent, coincident measurements integrated into a
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single observational system and ultimately produce a variety of spatial and temporal resolution SM
products [38]. Since the successful launch of SMAP in January 2015, it has provided SM products of
many levels worldwide. After validating the accuracy of SMAP products, the SMAP products meet
the mission requirements and can also be used to assess hydrologic processes [30,31,39]. In this study,
considering the spatial and temporal resolution of the SMAP products required for the study area,
SMAP enhanced L3 radiometer global daily 9 km EASE-grid soil moisture version 1 was used as the
final data source [40]. The study used the SMAP SM datasets from the end of Feb to the end of May
(2015–2018) corresponding to the winter wheat irrigation period in study area. Although the SMAP
dataset can provide daily SM products, due to satellite orbits, SM products do not cover the spatial
extent of the study area every day due to satellite orbits. To select the SMAP data that can completely
cover the study area, 8 control points are used to filter the data that meet the requirements. The eight
control points are evenly distributed at the vertices of the study area boundary, and the judgement
equation is as follows:

Xi =

{
1, 0 < Vi < 1
0, Vi = null

(1)

J =
{

R,
∑8

i X ≥ 6
D,

∑8
i X < 6

. (2)

where X is the judgement result of the SMAP pixel value (V) and null is no-data in this pixel, i is the
number of the control point. If the value of the SMAP pixel is between 0 and 1, X = 1; and if the SMAP
pixel value is null, then X = 0. J is the judgement result of whether the SMAP data are retained, and
R and D represent the retention and deletion of SMAP data, respectively. If the sum of the 8-control
point X ≥ 6, it indicates that SMAP data can cover a large area (more than 75% of the study area is
covered) of the study area and this SMAP data is retained; if it less than 6, the data are deleted. The
programming language for batch filtering, processing and extracting of SMAP data is python 2.7, and
the arcpy function provided by ArcGIS 10.4 (Environmental Systems Research Institute in California) is
also used. Regarding the extraction of pixel values in this paper, the “ExtractValuesToPoints” function
in arcpy is used.

3.1.2. MODIS

MODIS provides researchers with stable, long time series global remote sensing data. Some
global land use/land cover (LULC) datasets based on MODIS data have been generated [41,42].
MOD09GA and MOD16A2 provide daily surface reflectance with a spatial resolution of 500 m and
evapotranspiration of 500 m every 8 days [43,44]. MOD09GA and MOD16A2 were used in this study
for irrigated area downscaling, while the latter is based on 8-day synthetic data and does not require
further processing. MOD09GA is daily surface reflectance data, and cloud pollution has a large impact
on the use of data. First, the NDVI is calculated based on the MOD09GA dataset.

NDVI =
NIR−RED
NIR + RED

(3)

where NIR and RED are the surface reflectance factors for the presented wavelengths. Second, the
8-day maximum value composite (MVC) method was used for the daily NDVI time series dataset, and
the method is to composite a new NDVI image by using the daily maximum value of NDVI within
8 days of each pixel in the image as a valid pixel value [45]. This processing method reduces the impact
of clouds on the dataset and keeps the time resolution of the two MODIS products consistent. The
batch redefinition projection and raster attribute conversion of MODIS data are based on MRT (MODIS
Reprojection Tool supported by NASA, referenced by Dwyer et al. [46]), and the maximum synthesis
of the NDVI is based on MATLAB 2018b.
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3.1.3. Precipitation

The National Meteorological Information Centre of China provides daily precipitation data
(meteorology station) from 1961 to present [47]. There are 2472 meteorology stations in China, and there
are 7 meteorological stations in this study area. Daily precipitation data were collected from March
2015 to December 2018. Since precipitation data must be coordinated with SMAP data for irrigation
information monitoring, the spatiotemporal resolution of the precipitation data must be processed.
The daily precipitation data include statistical results for two periods (20:00–8:00 and 8:00–20:00) in
Beijing time. The current method for the L3_SM product is to use the nearest 6:00 AM local solar
time criterion to perform Level 3 compositing [38]. The precipitation from 8:00–8:00 is summed as the
daily precipitation, and the station data are interpolated into the grid data using the inverse distance
weighting (IDW) method based on python 2.7.

3.1.4. Irrigated Map

A global irrigated area map (GIAM) and global rainfed, irrigated, and paddy cropland (GRIPC)
were also collected in this study for irrigated area validation. Based on the unsupervised classification
method, GIAM provides irrigated area recognition results with a spatial resolution of 1 km in the year
2000 [34]. GRIPC is the result of the decision tree method for the classification of MODIS data and the
spatial resolution is 500 m in year 2005 [17].

3.1.5. In Situ SM Measurement Data and Irrigation Records

There are 135 SM stations in the study area, and SM data are provided every 10 days (1st, 11th and
21st). The SM data measurement (oven-drying method) depths include 10 cm, 20 cm and 40 cm, and
the measurement time is concentrated at 8:00 AM Beijing time. These sites also provide information
on precipitation and irrigation times between measurements. The recorded irrigation data include
areas of agricultural irrigation, irrigation crops, timing and volume. Although the recorded irrigation
information is relatively abundant, the spatial scale is the agricultural irrigation region. The data
collected in this study are shown in Table 1. Since this study only collected information on irrigation
records in 2018, only the SM changes in 2018 were plotted during sample training and validation.

Table 1. Datasets collected in this study.

Data Source
Temporal

Resolution
Spatial

Resolution
Time Period Data Access

SMAP daily 9 km March 2015 to
December 2018

https:
//nsidc.org/data/SPL3SMP_E/versions/2

PRE daily site March 2015 to
December 2018 http://data.cma.cn/

MOD09GA daily 500 m March 2015 to
December 2018 https://ladsweb.modaps.eosdis.nasa.gov/

MOD16A2 8-day 500 m March 2015 to
December 2018 https://ladsweb.modaps.eosdis.nasa.gov/

Irrigated Map year
1 km
and

500 m

http://www.iwmi.cgiar.org/
https//dl.dropboxusercontent.com/u/

12683052/GRIPCmap.zip

Irrigation Records 10-day site January 2018 to
December 2018

PRE: precipitation.

3.2. Methods

3.2.1. Established SMAP Training Samples for Winter Wheat and Rainfed Crops

The selection of training samples is important before establishing a model of irrigation signal
detection. Since the SMAP data have a low spatial resolution, the training samples should be selected
to ensure that the surrounding crops are consistent. In this paper, samples were selected using a
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combination of MODIS NDVI and MODIS ET. Since the winter wheat (WW) NDVI in the NCP was
significantly higher than other crop in March, the spatial distribution of WW can be extracted based on
the March NDVI data. However, this spatial distribution may include other vegetation with a higher
NDVI (such as landscape forest), and ET is needed to improve the extraction accuracy of WW. Since
March to April is the main irrigation period for WW, the cumulative ET value of WW is significantly
higher than that of other vegetation during this period [48]. This indicates that the extraction accuracy
of WW can be improved by adding ET as a limiting condition. Using these two features (NDVI and
ET), the WW pixels can be extracted more accurately. WW and rainfed crop pixels were extracted by
the decision tree model in Figure 3.

Figure 3. Winter wheat and rainfed crops planting area extraction model. Where March NDVI and
Mar-May ET represent the NDVI in March (May NDVI is similar to March NDVI) and cumulative
amount of ET from March to May, respectively; DEM is the elevation information; and T is the threshold
in different conditions. If the pixel value (such as NDVI and ET) satisfies the threshold, the pixel value
is 1, and if it is not satisfied, the pixel value is 0.

The selection of WW samples should be based on SM sites, and more irrigation information can
be obtained. Rainfed crop samples should ensure that there are no irrigated crops nearby as much as
possible, which can reduce the influence of surrounding crop irrigation on SM. Finally, 11 WW samples
and 7 rainfed crop samples were established in the study area, 7 WW samples and 4 rainfed crop
samples were used as training samples, and the remaining samples were used as validation samples.
These samples are distributed from north to south and can reflect the difference in irrigation time of
winter wheat under different latitude conditions.

3.2.2. Irrigation Information Detection and Irrigated Area Downscaling

Extracting the precipitation and SMAP time series data of the meteorological site spatial location
can not only be used to evaluate the sensitivity of the SMAP data to the precipitation response but
also to support the threshold setting of the irrigation signal detection. The irrigation signal detection
is based on the SMAP SM variation. It can be assumed that if the SM of SMAP is increased and
the grid has no significant precipitation, the increase in SMAP SM is caused by irrigation. Since the
amplitude increase in the SMAP original SM signal is significant, it is difficult to detect irrigation
by threshold segmentation and the original signal needs to be processed using the moving average
method. In the original SMAP data, due to the existence of signal noise, the SM is may be suddenly
reduced (previously without precipitation and irrigation), if this value is calculated with the SM at
the latter time, the identified irrigation signal is invalid. SM Value in that time need to be corrected.
To reduce the influence of SMAP SM data amplitude on the irrigation signal detection, a 5-point
moving average method is used to process the SMAP SM original signal. The 5-point moving average
not only ensures the amplitude of the original but also reduces the frequent fluctuations in the original
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signal. Sun et al. [49] compiled the water requirement for different growth stages of WW in the NCP.
In this paper, the daily precipitation of >4 mm was used as the threshold for effective precipitation
(referenced by Sun et al.). In this study, the irrigation identification results of the grid were binarized
(irrigation is 1, no irrigation is 0).

By accumulating the binarized daily irrigation identification results, the frequency of irrigation in
the WW planting region can be obtained. Notably, the irrigation frequency of a grid may be higher
than 6 times because the grid (9 km × 9 km) cannot be completed irrigated in one day. After integrating
the spatial distribution of the irrigation intensity and the WW planting area, the irrigated area with
the irrigation intensity identification was finally obtained. However, the accuracy of the irrigated
area recognition results based on a single SMAP data source does not meet the general application
requirements. By introducing the previously extracted WW spatial distribution, the downscaled results
of irrigation intensity were obtained from the SMAP irrigation intensity results without the influence
of non-irrigation pixels (such as rainfed crops and city). The mathematical expression of the method in
this section is as follows:

ISi, j = SMi, j > T6 and Prei, j < EPre (4)

IIi, j =

∑t
1 ISi, j

max
(∑t

1 ISm,n
) (5)

IIdownscale =

{
IIi, j, WW = 1
0, WW = 0

(6)

where i and j represent the pixels of the ith row and jth column, respectively; IS is the irrigation signal;
SM is the soil moisture derived from SMAP; T6 is the threshold for soil moisture increase; Pre and EPre
represent precipitation and effective precipitation, respectively; II is the irrigation intensity; t is the total
number of days in the study period; max

(∑t
1 ISm,n

)
represents the maximum value of the accumulated

value of the irrigation signal over the entire event range; and IIdownscale is the downscaled irrigation
intensity. In equation 6, the WW spatial distribution and the irrigation intensity image need to be
calculated. If the WW spatial distribution image pixel value is 1, the IIdownscale pixel value is assigned
as the irrigation intensity value. The irrigated area is calculated as the area of the pixel where the
irrigation intensity is greater than zero. The algorithm implementation in this section still needs to use
the arcpy function based on python 2.7.

3.2.3. Validation and Consistency Analysis

The results of the irrigation signal detection have been validated, and the uncertainty in the
irrigated area downscaling has also been analyzed. First, the detection results of the irrigation signal
are based on the irrigation record. Since the SMAP SM time series data in this paper used the 5-point
moving average method, if the detected WW irrigation signal is different from the irrigation record in
three days, the result is correct. Simultaneously, if the non-WW planting area also detects the irrigation
signal, it is necessary to reset the irrigation signal detection threshold according to the irrigation signal
frequency. The equation for the validation of irrigation timing is as follows:

Accuracy =
( CDet

ADet + WRec

)
∗ 100% (7)

OA = avg(Accuracy1 + Accuracy2 + . . .+ Accuracyl) (8)

where Accuracy is the sample validation accuracy; OA is the overall accuracy and l indicates the total
number of validation samples; CDet indicates the number of days that were correctly detected in the
irrigation record; ADet represents the number of days for all irrigation detected results; and WRec is
the number of days that have not been detected in the irrigation record.
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Second, when using the WW data extracted by MODIS to downscale the SMAP irrigation signal
detection results, whether the growth of WW covered by one SMAP pixel is consistent must be
considered. The selection strategy for the consistent analysis of WW growth is to establish samples
in four corners and center points covered by one SMAP pixel as shown in Figure 4. The NDVI daily
signal extracted from the samples was subjected to upper envelope processing [23], and the signal
was divided according to the growth stage of WW and the change in SM. By counting the number of
samples from the consistent growth of WW, the consistency analysis results of WW growth covered by
one SMAP pixel were obtained. The consistency analysis results are calculated as follows:

P =
(RG + J

10

)
∗ 100% (9)

where P is the percentage of growth consistency of WW; RG and J are the number of consistent samples
of WW growth in the returning green and jointing stages, respectively; and 10 is the number of samples
for all these two stages. Five growth consistency samples can be obtained for each growth stage
(corresponding to the red sample point), and 10 consistency analysis samples can be obtained for the
two stages of the returning green and jointing stages.

Figure 4. Sample maps. Red triangles and blue points are used to extract the SMAP SM time series
signals from different crops; red points are used to extract the winter wheat NDVI time series signal
and then compare the consistency of winter wheat growth covered by one SMAP pixel.

4. Results and Validation

4.1. Irrigation Signal Detection

Taking four meteorological stations as examples, the time series of NDVI (8-day maximum
synthesis), ET (8-day), precipitation and SM from 2015 to 2017 were plotted in Figure 5. Comparing
the time series data of the four meteorological stations, it was found that the vegetation coverage of
the Baoding and Nangong stations were rainfed crops and those of the Botou and Raoyang stations
were WW. An analysis of the time series changes of NDVI and ET showed that the meteorological
stations with WW vegetation cover (Botou and Raoyang) not only had more NDVI peaks than rainfed
crop stations (Baoding and Nangong) but also significantly higher ET from March to May. Time series
changes of precipitation and SM provide an important basis for irrigation signal detection. During the
main growth period of WW (March to May), Botou and Raoyang stations were affected by irrigation
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and still maintained high SM without precipitation. Simultaneously, the SM observed in the WW
growing season was more stable and higher than that of the non-irrigated crops.

Figure 5. NDVI (8-day maximum synthesis), ET (8-day), precipitation (daily) and SM (daily) time
series variations. (a) Nangong, (b) Baoding, (c) Botou and (d) Raoyang meteorological stations; and
VSM means volume of soil moisture. The land cover at Nangong and Baoding stations was rainfed
crops, and the land cover at Botou and Raoyang was winter wheat.

Using the 5-point moving average method for statistical time series SM results, which can reduce
the influence of abnormal points on the irrigation signal detection. The smoothed SM results are shown
in Figure 6. Figure 6a Changes in SM (blue lines) and effective precipitation events (green lines) in WW
samples, and the statistical WW irrigation time is also plotted (Triangle point). Figure 6b Changes in
SM and effective precipitation events for rainfed crops. The figure can reflect the response relationship
between SM and precipitation, at the same time, by comparing the SM curves of different crops, it can be
found that show the WW pixels have a more obvious SM increase than rainfed crop pixels. Comparing
WW samples with rainfed crop samples, it was found that both had an increasing trend in SM before
the first recorded irrigation. The slowly increasing trend in SM under no precipitation conditions may
be caused by seasonal and vegetation water content changes [31]. However, the increasing trend in
WW samples with different spatial locations was different before the first irrigation stage. Due to
the difference in temperature, the irrigation time was different. The SM of the WW sample in the
southern region increased significantly compared to the WW samples in the northern region (top
line in Figure 6a is the southern region WW sample, and the bottom is the northern region). Both
WW samples and rainfed crop samples have significant SM increase feedbacks under effective rainfall
events. The difference is that irrigation events will also significantly increase SM without effective
rainfall, which is shown in Figure 6. Setting the threshold for SM increase without an effective rainfall
event can be used to detect irrigation signals in the WW region.
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Figure 6. Training samples of irrigation signal detection. (a) Winter wheat training samples, and
(b) rainfed crop training samples. The irrigation record is a summary of the irrigation records of
the main irrigation region in the study area and used as a reference for the water supply time for
winter wheat.

The irrigation signal detection results of WW and rainfed crops are shown in Figure 7a,b,
respectively. By setting the SM change threshold, the time when the SM was significantly increased
without effective precipitation is detected as the irrigation time (square point in Figure 7). In the
rainfed crop region, only one irrigation signal was detected in this region due to the setting of the SM
increase threshold. By comparing the SM trend of WW and rainfed crops, the SM trend in the WW
region was more obvious, and there was also a significant increase (it is affected by irrigation) in SM
when there was no precipitation. The SM trend in the rainfed crop region is more stable. Under the
same precipitation conditions, the SM increase in the rainfed crop region is lower than that in the WW
region. According to the results of WW irrigation signal detection, the irrigation frequency was higher
from mid-February to mid-March. Due to the high frequency of precipitation in April and May, the
irrigation frequency is lower than in February and March. Additionally, in the early WW growth stage
(turning green and jointing), the main irrigation water source in the study area is surface water, and
the amount of irrigation water will be more than that in the middle and late growth stages of WW.
For different study areas, the setting of effective precipitation can be stricter, which may reduce the
false detection of irrigation signals. Notably, the results of irrigation signal detection in this paper
were large-scale surface water irrigation signals. Due to the small amount of irrigation water and the
dispersion of irrigation areas, SMAP pixels do not easily reflect changes in SM amplitude caused by
groundwater irrigation.
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Figure 7. Irrigation signal detection results. (a) WW sample detection result and (b) RF samples
detection result. The time corresponding to the square mark is the irrigation time, and the time
corresponding to the circle mark is the effective rain time.

4.2. WW Extraction Results and Irrigated Area

In this paper, irrigation signal detection training samples must refer to both WW and rainfed crops.
Figure 8a,b were obtained by daily NDVI using an 8-day maximum synthesis process, and Figure 8c
was the cumulative ET from early March to early May. According to the crop growth phenology
of the study area, only the WW crop in the study area showed obvious vegetation characteristics
in March and early April. Therefore, most of the green areas in Figure 8a characterize the spatial
distribution of WW. Since WW is already irrigated, the cumulative ET is significantly higher than that
of other crops. Combined with the cumulative ET in Figure 8c, WW pixels with higher precision can
be extracted. The vegetation characteristics of rainfed crop pixels appeared later than that of WW, and
the cumulative ET was significantly lower than that of WW.

The normalized results of the cumulative irrigation detection signal are downscaled as shown in
Figure 9a, wherein all blue areas indicate the spatial distribution of irrigated WW and blue shades
indicate the intensity of irrigation. Downscaling normalization results eliminates the effects of
non-irrigated pixels and directly expresses the spatial distribution of WW. Figure 9b,c are the results of
the irrigated area provided by GIAM and GRIPC, respectively. The largest irrigated area is shown
in Figure 9c because the data are classified into only four categories for agricultural areas, and the
irrigation area cannot be effectively distinguished, whereas the irrigation area of the two crop rotations
is shown in Figure 9b, which is close to the irrigation area identified in this paper. In recent years,
due to the problem of overexploitation of groundwater in the NCP, many regions no longer plant
high-water-consumption crops, such as WW, which results in Figure 9a irrigated areas being less than
that of the GIAM data. Compared with the traditional irrigated area identification results, the proposed
method can also reflect the irrigation intensity of the study area.
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Figure 8. Sample selection based on MODIS NDVI and ET: (a) MODIS NDVI of DOY (day of year)
89-97, (b) MODIS NDVI of DOY 116-124, (c) MODIS ET accumulate from DOY 65-129.

Figure 9. Irrigated area distribution in the study area. (a) shows the downscaled irrigated area and
irrigation intensity results, (b) shows the irrigated area from GIAM, and (c) shows the irrigated area
from GRIPC.

4.3. Validation and Growth Consistency Analysis

The detection results of irrigation signals in this paper will be validated from two aspects:
1) Validate the time of irrigation according to irrigation record; 2) count the consistent samples of WW
growth and validate the effectiveness of the irrigation signal detection result.

In Table 2, the timing of the irrigation signal detection is compared to the timing of the irrigation
records. The irrigation detection accuracy of the WW samples WW 1, WW 2, WW 3, and WW 4
used for validation were 50.00%, 100.00%, 75.00%, and 83.33%, respectively. It should be noted this
irrigation record corresponds to two detection dates, with the irrigation record recorded for two
days to calculate the single sample accuracy validation. Irrigation signals were also detected in the
rainfed crop samples, which were added as errors to the calculation of the overall irrigation signal
detection accuracy. The overall accuracy of the irrigation timing detection in this paper was 77.08%.
The calculation of overall accuracy must consider the detection error of the rainfed crop region.

Since WW presents significant NDVI changes in the returning green and jointing stages and less
precipitation during this period, little effect on WW growth is observed. Therefore, the returning
green and jointing stages of WW are selected as the key period of growth consistency analysis. WW
showed more significant growth consistency in the early stage of returning green and jointing than
in other growing stages. The irrigation records show that the irrigation water used in the returning
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green and jointing stages is surface water, and the irrigation water in other growth stages is irrigated
groundwater. Surface water irrigation is a unified supply for water resource management departments,
and groundwater irrigation is privately accessible to farmers. Different irrigation times are the main
reason for the inconsistency in WW growth. WW is irrigated by surface water during these two growth
stages, and surface water irrigation can cover a wide range of WW regions. Irrigation caused an
increase in the SMAP pixel value (SM), which was used to identify an irrigation pixel. Due to the low
spatial resolution of SMAP data, the consistency of WW growth under the coverage of one SMAP
pixel in this study area must be discussed. If most of the WW covered by one SMAP pixel shows a
consistent increase in the NDVI, then the spatial distribution of WW is effective for downscaling the
irrigation signal. Conversely, if the increase in the NDVI for most WW (covered by one SMAP pixel) is
inconsistent, then the irrigation signal identified by the SMAP pixel cannot effectively express WW
growth. In Figure 10, SM, NDVI changes (after upper envelop) and irrigation time for different SMAP
samples were plotted. Figure 10a–d correspond to Validate WW1, Validate WW2, Validate WW3 and
Validate WW4 in Figure 7a, respectively.

Table 2. Overall accuracy of the irrigation timing detection results.

WW 1 WW 2 WW 3 WW 4 RF 1 RF 2 RF 3

Rec Det Rec Det Rec Det Rec Det Rec Det Rec Det Rec Det

Dates

2/26 2/23 2/26 2/26 / 3/3 / / / /
3/13 2/25 3/13 3/14 2/26 2/27 / / / / / /

3/13 3/14
2/24

2/27 4/15 4/16 3/3 / / / / / /
3/26 3/27 3/12 5/10 5/10 3/14 3/14 / / / / / /

3/31 3/13 4/10 4/10 / / / / / /
4/10

3/12
3/14 5/10 5/10 / / / / / /

5/11 5/12 / / / / / /

Accuracy 50.00% 100.00% 75.00% 83.33%

Overall accuracy 77.08%

Det: irrigation detection result. Rec: irrigation records. Units marked in green indicate that the detected irrigation
date matches the recorded irrigation date, and units marked in orange indicate the detection irrigation date does not
match the recorded irrigation date.

Figure 10. SM, NDVI changes (after upper envelop) and irrigation time for different SMAP samples.

According to the NDVI variation treatment method shown in Figure 10, 55 NDVI samples covered
by 11 SMAP WW samples were validated for WW growth consistency. The number of samples with
same increase trend of WW NDVI in the returning green and jointing stages was counted separately.
For example, at the time of the returning green stage, the simultaneous increase in the NDVI indicates

162



Remote Sens. 2019, 11, 2390

consistency among the WW growth samples, and vice versa. By counting the number of consistent
WW samples covered by different SMAP pixels, the percentage of WW growth consistency covered
by SMAP pixels can be calculated, and the results are shown in Table 3. In Table 3, the ratio of the
consistent growth of WW covered by SMAP pixels is greater 70%, and in some regions, it can reach
100%. The overall consistency result reached 83%, and the results show that the irrigated area after
downscaling can effectively express the true WW irrigation situation.

Table 3. Statistical results of the winter wheat sample consistencies.

WW1 WW2 WW3 WW4 WW5 WW6 WW7 WW8 WW9 WW10 WW11

RG 3 5 4 2 3 5 5 4 3 5 4
J 4 4 4 5 5 5 5 4 4 3 5
P 70.00% 90.00% 80.00% 70.00% 80.00% 100.00% 100.00% 80.00% 70.00% 80.00% 90.00%

OA 82.72%

RG: returning green stage; J: jointing stage; P: percentage; OA: overall accuracy.

5. Discussion

5.1. Comparison with Other Studies

Lawston et al. [33] proposed a method for detecting irrigation signals based on SMAP data. In this
method, dates are first selected during the crop growing season and then the characteristics of SM
are compared at irrigated and non-irrigated points. Finally, the method uses time integrated and SM
normalized metrics of SM and precipitation to detect irrigation signals. According to the method, the
precipitation and SM processing results are obtained, as shown in Figure 11a,b. Since this method
does not deduct the effect of precipitation from the SM changes, in the southern part of the study
area, sufficient precipitation affects the detection of irrigation signals. Simultaneously, the detection
results of the proposed method are normalized, which is more conducive to the comparison of the two
methods. In Figure 11, the amplitude change in (c) is more obvious than (d), and some obvious regions
in the calculation results are marked. Region 1 contains two large reservoirs adjacent to the Taihang
Mountains. Region 2 is the southern part of Beijing. Region 4 is a large wetland named Baiyangdian.
The type of underlying surface may affect the monitoring of time series SM changes. Notably, region 3
is the main irrigation area in the southern part of the Hebei Province. However, the irrigation signal
for this irrigated area is not significant in (d). Therefore, the method proposed in this paper is more
suitable for irrigation signal detection in the study area.

The method proposed in this paper can acquire daily irrigation signal detection result, so the
research can describe the irrigated information in the study area in more detail. In order to display
the irrigation details more abundantly, the monthly irrigation signals were accumulated to acquire a
monthly distribution of WW irrigation (as shown in Figure 12). At the end of February, the southern
part of the study area warmed up, and the irrigated area of WW was mainly concentrated in the
southern part. In March, a wide range of WW was irrigated, and irrigation in April and May was
concentrated in the central and western regions. Compared with existing studies, Chen et al. statistically
analyzed the climate distribution characteristics of WW growing season in the NCP for many years,
which is consistent with the monthly spatial distribution of irrigation in this paper [50]. Yang et al.
collected information on crop planting and irrigated area in the NCP for many years, and acquired
crop and irrigation spatial distribution characteristics in this region [51]; the results of Yang’s study
are similar to the results acquired in this paper, but due to the change of crop pattern in the eastern
region, inconsistencies have been caused. Overall, the results of this paper are consistent with existing
research findings.
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Figure 11. Comparison of the method proposed in this paper with the time-integrated and SM
normalized irrigation signal detection methods. (a) Accumulated PRE and normalized result,
(b) accumulated SM and normalized result, (c) irrigation intensity calculated by this paper proposed
method, and (d) time-integrated and SM normalized irrigation signal detection methods. Both
normalized results and irrigation intensity are dimensionless variables.

Figure 12. Spatial distribution of winter wheat irrigated area.

In the study of irrigated area extraction without considering SM changes, most of the research
extraction methods are based on time series vegetation index changes and supervised classification
to identify irrigated areas [13,34,41]. These methods for identifying irrigated areas through optical
remote sensing datasets were based on identifying the type of crop to distinguish whether the area
is irrigated [52]. The common advantage of these methods is that they can obtain a high resolution
crop spatial distribution, and the accuracy can be increased as the spatial resolution of remote sensing
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images increases, and validated in many areas [16]. Based on the SMAP data extraction irrigation
signal, the spatial distribution of crops with high spatial resolution is was introduced as irrigation
reference area, which not only maintain irrigation time and frequency information, but also increases
precision of SMAP data recognition irrigated area.

5.2. A Rational Discussion of the Irrigation Signal Detection Model

The establishment of the irrigation signal detection model in this paper was based on irrigation
records and SMAP SM data. Since the SM change data in the irrigation record is measured every
10 days, the data does not express time-continuous SM variations, so the SMAP SM data is not
compared with the in-situ data. However, validation of SMAP SM data and irrigation-induced SM
increase researches can demonstrate that variations in SMAP SM data can be used to establish irrigation
signal detection models. A validation study of SMAP SM data has been described in the first section,
and this section will discuss the relationship between irrigation and SM variation.

Chen et al. [23] analyzed the continuous variation of SM before using the MODIS Greenness
Index to detect irrigation signals in Gansu Province. Combined with irrigation and precipitation
records, it was found that the sudden increase of SM generally originated from irrigation and effective
precipitation. At the same time, the irrigation time was estimated using the continuous SM variation
data in year 2016. Under the condition of no in-situ SM data, Lawston et al. [33] obtained the SMAP
SM variation of different crop types based on the location information of irrigation and rainfed crops,
and according this, they extracted the irrigated area of many regions in the United States. Is the
phenomenon of SM sudden increase caused by irrigation also obvious in the NCP region? Some studies
based on the effects of different irrigation patterns on WW yield provide a reliable basis. Wang et al. [53]
collected SM variation in different irrigation patterns of winter wheat. The data show that although
the SM (soil depth 0–80 cm) covered by WW in drip irrigation is slightly lower than level-basin, there
is obvious SM increase after WW irrigation. Zia et al. [54] collected more detailed time series SM
variation data (soil depth 10 cm and 40 cm); at the soil depth of 10 cm, irrigation will cause significant
SM increase, while at 40cm, irrigation will maintain a higher level of SM, and the sudden increase is
not significant. In this study, when the in-situ SM data is insufficient, the SMAP SM data can be used
to analyze the SM variation characteristics of WW and rainfed crops. Referring to number of studies
on the relationship between irrigation and SM response, this paper suggests that irrigation records and
SM increase can be used to detect irrigation signals in agricultural areas.

It should be noted that the thresholds in the irrigation signal detection model proposed in this
paper are not universal. For example, in the study area of this paper, there are significant differences in
SM increase caused by different irrigation patterns. In areas with more complicated irrigation patterns,
the irrigation pattern of sample points needs to be considered. In addition, the SMAP SM data of
9 km resolution is acquired by 36 km data downscaling, and the uncertainty of scale conversion may
also affect the application of the model. If necessary, consider using multiple filtering methods for
data optimization.

6. Conclusions

Based on multisource remote sensing data, including SMAP, MODIS, and an irrigation map,
the 5-point moving average method was used to detect irrigation signals in southern Hebei. Then,
irrigation record data were used to validate the accuracy of the irrigation signal detection results.
The accuracies of the four WW samples used for validation are 50.00%, 100.00%, 75.00%, and 83.33%,
and the overall accuracy is 77.08%. The consistency analysis of 55 WW growth samples showed that
the growth consistency of WW reached 82.72% in two large-scale surface water irrigation areas. Based
on a consistency analysis, the downscaling method can be used to downscale the WW irrigation signal
detected by the SMAP data. The proposed irrigation signal detection and downscaling method are
more suitable for the detection of large-scale surface water irrigation signals. Limited by the spatial
resolution of SMAP data and continuous in situ measured SM data, small-scale groundwater irrigation
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signal detection is difficult to establish. In future research, small-scale groundwater irrigation signal
detection will be further studied.
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Abstract: The evapotranspiration (ET) of urban hedges has been assumed to be an important
component of the urban water budget and energy balance for years. However, because it is difficult to
quantify the ET rate of urban hedges through conventional evapotranspiration methods, the ET rate,
characteristics, and the cooling effects of urban hedges remain unclear. This study aims to measure
the ET rate and quantify the cooling effects of urban hedges using the ‘three-temperature model +
infrared remote sensing (3T + IR)’, a fetch-free and high-spatiotemporal-resolution method. An herb
hedge and a shrub hedge were used as field experimental sites in Shenzhen, a subtropical megacity.
After verification, the ‘3T + IR’ technique was proven to be a reasonable method for measuring the ET
of urban hedges. The results are as follows. (1) The ET rate of urban hedges was very high. The daily
average rates of the herb and shrub hedges were 0.38 mm·h−1 and 0.33 mm·h−1, respectively, on the
hot summer day. (2) Urban hedges had a strong ability to reduce the air temperature. The two hedges
could consume 68.44% and 60.81% of the net radiation through latent heat of ET on the summer
day, while their cooling rates on air temperature were 1.29 ◦C min−1 m−2 and 1.13 ◦C min−1 m−2,
respectively. (3) Hedges could also significantly cool the urban underlying surface. On the summer
day, the surface temperatures of the two hedges were 19 ◦C lower than that of the asphalt pavement.
(4) Urban hedges had markedly higher ET rates (0.19 mm·h−1 in the summer day) and cooling
abilities (0.66 ◦C min−1 m−2 for air and 9.14 ◦C for underlying surface, respectively) than the lawn
used for comparison. To the best of our knowledge, this is the first research to quantitatively measure
the ET rate of urban hedges, and our findings provide new insight in understanding the process of
ET in urban hedges. This work may also aid in understanding the ET of urban vegetation.

Keywords: three-temperature model; infrared remote sensing; urban hedges; evapotranspiration;
cooling effects

1. Introduction

Due to rapid urbanization, the urban thermal environment has worsened, and urban heat islands
(UHI) have become a common problem in most cities around the world [1,2]. From 1961 to 2000, air
temperature has increased 0.16 ◦C per decade in large cities in northern China [3]. Among 419 large
cities around the world, the average annual daytime surface urban heat island is 1.500 ± 1.200 ◦C [4].
High temperatures in urban areas not only lead to more energy consumption for cooling [5] but also
affect human health [6–8]. High temperatures and heat waves could even increase the mortality rate.
In 27 European countries, over 28,000 people die every year due to exposure to extreme heat, which
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accounts for 0.61% of all deaths in these regions [9]. Therefore, studying how to efficiently mitigate
urban thermal issues is essential for adaptive strategy under climate change and rapid urbanization.

In recent decades, various methods including changes to underlying surface materials, optimizing
urban planning and designing, and the addition of vegetation have been proposed to mitigate UHI [10–12].
Among them, vegetation is considered one of the most effective mitigating methods [13,14]. Many
studies have been conducted on the cooling effects of urban vegetation. Urban parks, urban forests,
urban lawns, and green roofs can provide different degrees of cooling [15–18]. Research has shown
that just a single tree could save 12–24% of cooling energy for a single-story building [19]. Sixty-three
large Eucalyptus camaldulensis per hectare could reduce air temperature by 1 ◦C in Mexico City, while
24 large Liquidambar styraciflua trees could even reduce the air temperature by 2 ◦C [20]. A 147-hm2

park in Nagoya was also found to reduce the air temperature by 1.9 ◦C on hot days [21]. These
studies showed that vegetation area, vegetation shapes and vegetation compositions could affect the
microclimate [22–25], and the cooling effects of vegetation could be attributed to its shading, reflection,
and evapotranspiration [26,27]. However, most of these studies focused on the cooling effects under
different green space ratios and did not quantitatively estimate their ET rates and energy budget.
Therefore, quantitative evaluation of the cooling effects is still a challenge.

Although ET is believed to be the most robust cooling mechanism, as it can consume large amounts
of latent heat [12], observing the ET characteristics of urban vegetation is especially difficult [28,29].
As the vegetation is segmented by various artificial underlying surfaces in urban settings, it is difficult
to meet the fetch requirements of traditional methods such as the Bowen ratio, eddy covariance
and large aperture scintillometers [30]. ET could be estimated on a large scale by satellite remote
sensing [31], but its resolution is usually too sparse on the street or neighborhoods scale. Moreover,
only one image of an area could be obtained over several days. In contrast, sap flow and lysimeter
data can only directly measure individual or small groups of plants [32,33]. Therefore, a fetch-free,
high-spatiotemporal-resolution ET estimation method is needed to obtain accurate ET characteristics
of urban vegetation.

The three-temperature model was proposed and developed to estimate ET via three temperature
data points, net radiation and ground heat flux [34,35]. The surface temperature data could be obtained
using thermal infrared images, and the meteorological data are easily available. It has been applied in
studies on different scales, including the large catchment scale, the field scale and even on a single
plant in growth chamber. It has been validated by the Penman–Monteith method, weighing lysimeter,
Bowen ratio, eddy covariance, and water budget methods [36–41]. It has also been used to estimate ET
of different vegetation types, such as crops, grass, and shrubs [38,42,43]. In urban area, it was used to
estimate a small urban lawn’s ET and showed great consistency with the Bowen ratio method [30].
These results indicate potential applications for the proposed method to estimate ET of different
urban vegetation.

Hedges are narrow bands of woody vegetation and associated organisms that separate fields
and are generally composed of low dense vegetation including short woody plants, shrubs, and
grasses [44,45]. It is a typical vegetation type in urban areas. During the past several years, attention
has been paid to urban hedges because of their ecological functions, such as air quality purification,
creation of animal habitat, and more [46,47]. However, their ET characteristics and regulation of
the urban microclimate are neglected. Therefore, in this study we aim to (1) investigate the ET
characteristics of two common urban hedges using the ‘3T + IR’ method in a subtropical megacity,
Shenzhen, and then (2) quantify the cooling effects of the urban hedges and quantify the function of ET.
This study could provide a new fetch-free and high-spatiotemporal-resolution method for estimating
urban ET. It may contribute to understanding the ET of urban hedges, and then the species selection
and landscape design in urban planning for urban heat island mitigation.
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2. Material and Methods

2.1. Study Site

The experiment was conducted in Xili University Town, Shenzhen (approximately 22◦35′40”N,
113◦58′20”E, 17 m above the sea). Shenzhen is a typical costal city in southern China and has a
subtropical marine climate affected strongly by the south Asian tropical monsoon. Its mean annual
temperature is 22.3 ◦C. January is the coldest month of the year, while July is the hottest. Its mean
annual precipitation is 1924.7 mm, which mainly occurs from May to September. The mean annual
sunshine duration is 2060 h, and the solar radiation is as high as 5225 MJ/m2.

Our study site located in an open square primarily covered by urban hedges (Figure 1). The two
hedges consisted of an herb, Hymenocallis littoralis (0.4 m high), and a shrub, Ligustrum quihoui (0.5 m
high); both of these greening species are common in Shenzhen. The area of the H. lottoralis hedge and
the L. quihoui hedge were both about 40 m2. A Zoysia matrella lawn was located nearby and used for
comparison with the hedges. The lawn’s area was about 2000 m2.

Figure 1. Location of the study area. The upper left figure is the location of Shenzhen City. The upper
right figure shows the location of the study area in Shenzhen. The bottom figure is a photo of the
studied area by google earth. The studied hedges and lawn are in the red box.

2.2. Three-Temperature Model

The three-temperature model estimates vegetation ET by introducing a reference leaf with no
ET [34,48].

LE = Rn − Rnp
Tc − Ta

Tp − Ta
(1)

where LE is the latent heat consumed by vegetation ET. Rn and Rnp are the net radiation on the
vegetation and reference leaf, respectively (W m−2). Tc and Tp are the surface temperature of the
vegetation and reference leaf (◦C). The surface temperature could be obtained by thermal images, and
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the maximum Tc in the image is regarded as Tp [37,38]. Ta is air temperature (◦C). Rn and Rnp could be
estimated according to [49].

Rn = (1 − αc)Rs + ΔRl (2)

where Rs is solar radiation (W m−2). αc is the albedo of the vegetation canopy. To simplify the
calculation, the empirical coefficient αc = 0.22 was used in this study [37]. ΔRl is the net long-wave
radiation (W m−2), which could be estimated by [50,51]

ΔRl =

(
0.4 + 0.6

Rs

Rso

)(
εaσT4

a − εcσT4
c

)
(3)

where Rso is the clear day solar radiation (W m−2), which is assumed to equal to Rs in this study as
all the experiment were conducted in clear sunny days [41]. εc the canopy emissivity, and empirical
coefficient εc = 0.98 was used here [37]. σ is the Stefan–Boltzman constant (5.67 × 10−8 W m−2 K−4).
εa is the atmospheric emissivity and could be estimated according to [52]

εa = 0.92 × 10−5T2
a (4)

If αc, εc, and Tc are replaced by αcp, εcp and Tcp in Equations (2) and (3), then Rnp could be
estimated. As we use the leaf with the highest surface temperature in the canopy as the reference leaf
in this study, αc, εc are assumed to be same to αcp, εcp.

The analysis procedures were written into a software named “A system to estimate
evapotranspiration by infrared remote sensing and the three-temperature model”, which can be
downloaded and used freely from https://pan.baidu.com/s/19iuz5PIVjZOR96iVObYBqA.

2.3. Field Experiments

The field experiment was carried out over four typical sunny days in four seasons from 2015 to
2016, from 8:00 a.m. to 5:00 p.m. An infrared thermal imager (Fluke Ti55FT, Fluke Corp., Everett, WA,
USA) was used to record the surface temperatures vertically down, at a height of 1.5 m. The measuring
wavelength of the infrared thermal imager was 8–14 μm, and its resolution was 0.05 ◦C. The emissivity
of the hedges and lawn in our study was set up to be 0.98 according to empirical value [37]. The imager
could give out the emissivity-corrected temperature directly. Each thermal infrared image contains
76,800 temperature data points (320 × 240). Three images were taken of each plant at each hour. Before
the measurement, the thermal camera was calibrated against a blackbody measurement.

Air temperature and other meteorological factors were recorded by a Bowen ratio system at
heights of 2 m and 1.5 m. The system was installed in the middle of the lawn. All the data from the
Bowen ratio system were sampled and recorded at intervals of 1 min and 10 min with a Campbell
CR1000 data logger. The sensor information is shown in Table 1.

Table 1. Type of sensor, measurement height, and resolutions of the equipment in the Bowen
ratio system.

Parameter Sensor Type Measuring Height(m) Sensor Resolution

Humidity and Air
Temperature 225-050YA, Novalynx, Grass Valley, CA, USA 2.0; 1.5 ±3%, ±0.6 ◦C

Wind Velocity 200-WS-02, Novalynx, Grass Valley, CA, USA 2.0 ±0.2 m s−1

Solar Radiation PYP-PA, Apogee, Santa Monica, CA, USA 2.0 10–40 μV/W/m2

Net Radiation 240-100, Novalynx, Grass Valley, CA, USA 2.0 <4%
Soil Heat Flux HFP01, Hukseflux, Center Moriches, NY, USA −0.05; −0.02 50 μV/W/m2

2.4. Verification Experiment

The Bowen ratio energy balance (BREB) method was used as the benchmark to verify the ‘3T + IR’
method. The verification experiment was conducted before the field experiments, on three sunny
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days (15 July 2014, 16 August 2014, and 13 November 2014). The ET rates of the studied area were
simultaneously measured by the ‘3T + IR’ method and the BREB method. The ET rates by the BREB
method could be calculated by [53]

ET =
Rn − G

L(1 + β)
(5)

β =
CpΔT
LΔq

(6)

where L is the latent heat of water vaporization (J kg−1), G is the soil heat flux (W m−2), β is the
Bowen ratio, Cp is the specific heat of air at a constant pressure (J kg−1 ◦C−1), and ΔT and Δq are the
temperature and humidity difference between the heights of 2.0 m and 1.5 m, respectively. All these
parameters were obtained by the Bowen ratio system.

3. Results

3.1. Method Verification

The verification experiments showed quite a coincidence between the ET rates measured by the
‘3T + IR’ method and BREB method. The correlation coefficient of the ET rates of the two methods
was 0.958 (significant at the level of 0.01, by SPSS). Moreover, the linear regression demonstrated the
consistency of the two methods (Figure 2). The distribution of the data was close to the 1:1 line and
the regression line was ETB = 1.07ET3 – 0.06 (R2 = 0.92), which means the rates measured by ‘3T + IR’
were always close to the rates measured by BREB methods. The RMSE of the two rates was also just
0.03 mm h−1. This finding indicates that the ‘3T + IR’ method could accurately measure the ET rate of
urban grass and shrubs. Therefore, we applied this method directly in the field experiments on urban
hedges in this study.

Figure 2. Comparison of the ET rates of urban vegetation estimated by the ‘3T + IR’ method and
BREB method. 3T + IR: three-temperature model + infrared remote sensing; BREB: Bowen ratio energy
balance; ET3: ET rate measured by ‘3T + IR’ method; ETB: ET rate measured by the BREB method.

3.2. Characteristics of Meteorological Conditions

Our field experiments were conducted on a sunny day in each season from 2015 to 2016.
The typical days for each season were 22 August 2015 (Summer); 18 December 2015 (Autumn);
4 February 2016 (Winter); and 19 March 2016 (Spring). The season division is according to the
Shenzhen Bureau of Meteorology [54]. The daily average temperature of the summer day was as high
as 32.32 ◦C (Figure 3). The temperatures were still high even in the autumn day (14.55 ◦C) and winter
day (17.92 ◦C). The solar radiation showed an almost single-peak variation in all days. It was the
strongest in the summer day, when the daily average reached 555.98 W m−2. The air was the most
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humid on the spring day (89%) followed by the summer day (72%). The winter day had a low relative
humidity (20%). The wind velocity was not high in any of the four days. The highest was during the
autumn day, when its daily average was 0.78 m s−1.

Figure 3. Characteristics of weather in the typical sunny days during each season in the study area.
(a) the air temperature; (b) the relative humidity; (c) the solar radiation; (d) the wind velocity. Data
were measured by the Bowen ratio system in 22 August 2015 (Summer); 18 December 2015 (Autumn);
4 February 2016 (Winter); and 19 March 2016 (Spring). The air temperature and relative humidity are
the average of the values measured at 1.5 m and 2.0 m.

3.3. ET Characteristics of Urban Hedges

3.3.1. Surface Temperatures of the Urban Hedges

The infrared images of the hedges and the lawn were taken over four days. Subsequently, the ET
rates were calculated by our software (Figure 4).

Figure 4. The surface temperatures (K) and ET rates (mm h−1) of the two hedges at 12:00 p.m. in
22 August 2015. (a) the surface temperature of the L. quihoui hedge; (b) the ET rates of the L. quihoui
hedge; (c) the surface temperature of the H. littoralis hedge; (d) the ET rates of the H. littoralis hedge.
The ET rates were calculated by our software based on the ‘3T + IR’ method and plotted by ArcGIS.
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As depicted in Figure 5, the surface temperatures of the two hedges also showed single-peak
variations in all four days, much like the solar radiation. For most of the time during the four days, the
surface temperature of the L. quihoui hedge was higher than that of the H. littoralis hedge. The daily
average surface temperature of the L. quihoui hedge was 27.43, 34.43, 20.55, and 21.94 ◦C in each
day. At the same time, the surface temperature of the H. littoralis hedge was 26.00, 33.66, 19.77,
and 20.86 ◦C, respectively. The surface temperatures of the hedges were slightly higher than the air
temperature. The L. quihoui hedge was 2.22, 2.11, 6.00, and 4.02 ◦C higher than the air temperature.
The smallest difference between surface and air temperature occurred during the summer day, when
the solar radiation and air temperature were the highest. The surface temperature of the lawn used
for comparison was much warmer than that of the two hedges. The surface temperature differences
between the lawn and the H. littoralis hedge were 4.85, 9.14, 5.83, and 3.65 ◦C over the four days.

g

Figure 5. Surface temperature of the hedges and the lawn for comparison over the four days
(the temperatures were the average values of three images. (a) Spring: 19 March 2016; (b) Summer:
22 August 2015; (c) Autumn: 18 December 2015; (d) Winter: 4 February 2016).

3.3.2. ET Rates of the Urban Hedges

The ET rates of the two hedges showed similar variation trends in the spring, autumn and winter
days (Figure 6). They both increased from the morning and began to decrease after reaching peaks in
the midday. The sudden drop at 11:00 a.m. during the summer day might be the result of the stomatal
closure of the plants due to high surface temperatures. The ET rate was still quite high at 3:00 p.m.
on the summer day. The ET of the H. littoralis hedge usually reached its maximum when the solar
radiation was at its peak (Figure 3). However, the ET of the L. quihoui hedge rates reached their peaks
at a different time compared to the H. littoralis hedge in the spring day. In particular, the ET rate of
the L. quihoui hedge achieved another peak at 1:00 p.m. during the spring day. We also calculated the
vapor pressure deficit (VPD) and found that it increased to its maximum at 1:00 p.m. during that day
(data not shown).
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Figure 6. ET rates of the hedges and the lawn for comparison on the four typical sunny days in four
seasons. (a) Spring: 19 March 2016; (b) Summer: 22 August 2015; (c) Autumn: 18 December 2015;
(d) Winter: 4 February 2016.

Figure 6 also showed that the ET rates of the hedges on the summer day were obviously stronger
than those of the other three days. The daily average ET rate of the H. littoralis hedge was approximately
0.38 mm h−1, while the daily average ET rate of the L. quihoui hedge was 0.33 mm h−1 (Table 2). Despite
a lower level of solar radiation on the winter day, these data showed higher ET rates than on the
autumn day, which may be attributed to the lowest relative humidity during this time. The ET rate
was the lowest on the spring day with the lowest solar radiation and VPD. Meanwhile, we found
that the ET rate of the H. littoralis hedge was higher than that of the L. quihoui hedge over the four
days. The differences were 0.01, 0.05, 0.04, and 0.01 mm h−1. The ET rates of the hedges were always
higher than the lawn, especially on the summer day, when the ET rate of the H. littoralis hedge was
0.20 mm h−1 higher than the lawn. The difference was the smallest on the spring day, when all the
three vegetation types had low ET rates.

Table 2. Average ET rates (mm h−1) of the hedges and the lawn for comparison on the four typical
sunny days in four seasons. Spring: 19 March 2016; Summer: 22 August 2015; Autumn: 18 December
2015; Winter: 4 February 2016.

Seasons H. littoralis Hedge L. quihoui Hedge Z. matrella Lawn

Spring 0.04 0.03 0.02
Summer 0.38 0.33 0.18
Autumn 0.13 0.09 0.06
Winter 0.18 0.17 0.12

3.3.3. The LE/Rn of the Urban Hedges

It is usually understood that green space could cool the surrounding area through latent heat
flux. To reflect the diurnal course of energy exchange, the ratio of latent to net radiation (LE/Rn) was
used to illuminate the cooling effect. As shown in Figure 7, the variation of LE/Rn showed different
characteristics over the four days. The LE/Rn fluctuated through the day. At 8:00 a.m. on the summer
day, the LE/Rn of the two hedges could reach approximately 90%. Their LE/Rn maintained a high
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value during the summer day, indicating that most of the net radiation was consumed by latent heat.
On the autumn and winter day, their LE/Rn had obvious changes in the morning and afternoon
because of low latent heat consumption at the beginning and ending of the day.

During the summer day, the hedges could consume over 60% of the net radiation through latent
heat. The ET rate was the lowest on the spring day, the LE/Rn of the hedges during that day was also
the lowest. Though the LE/Rn of the L. quihoui hedge exceeded 50% at 5:00 p.m. during the spring day,
its cooling effect was still negligible because the latent heat was only 0.63 W m−2. The LE/Rn of the
lawn for comparison had variation trends similar to the LE/Rn of the hedges except for the summer
day, which began with a small LE/Rn and was still high at 5:00 p.m.

Figure 7. Latent heat flux of the hedges and the lawn for comparison on the four typical sunny days
in four seasons. The latent heat flux was figured out directly from the three-temperature model.
The LE/Rn is the proportion of the latent heat to the net radiation. (a) Spring: 19 March 2016;
(b) Summer: 22 August 2015; (c) Autumn: 18 December 2015; (d) Winter: 4 February 2016.

Overall, the daily average LE/Rn of the H. littoralis hedge was still higher than that of the L. quihoui
hedge during all days (Table 3). On the summer day, the H. littoralis hedge consumed 68.44% of the
net radiation while for the L. quihoui hedge it was 60.81%. The LE/Rn of the lawn was lower than
that of the two hedges. The largest differences appeared in the summer day and extended to 28.92%,
suggesting that the hedges have much better cooling potential than the lawn.

Table 3. Daily average LE/Rn of the hedges and the lawn for comparison on the four typical sunny
days in four seasons. Spring: 19 March 2016; Summer: 22 August 2015; Autumn: 18 December 2015;
Winter: 4 February 2016.

Seasons H. littoralis Hedge L. quihoui Hedge Z. matrella Lawn

Spring 37.27% 35.72% 28.23%
Summer 68.44% 60.81% 39.52%
Autumn 56.10% 41.45% 34.06%
Winter 65.71% 61.58% 47.28%
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3.4. Cooling Effects of Urban Hedges

3.4.1. Cooling Effects on Air Temperature of the Urban Hedges

LE/Rn described the cooling effects of the vegetation in an indirect way. The temperature
reduction was also calculated to intuitively evaluate the cooling effect of the hedges henceforth.
The cooling effects of plants on air temperature or surface temperature have been widely studied in
recent years [55–57]. Most studies on this topic were based on comparing the temperature differences
between two sites. However, this method could not divide the cooling effects of the plants and show
how much the ET specifically contributes to cooling. Here, we reference a method to calculate the
cooling effect of the hedges through ET alone [58]. For the unit volume of air

ΔTa = 60 ∗ LE/ρairCV (7)

where ΔTa (◦C min−1 m−2) is the cooling rate by ET of unit area hedges. LE is the latent heat (W·m−2)
and has been analyzed using the ‘3T + IR’ method. C is the specific heat capacity of air, which is
1005 J·kg−1·◦C−1. V is the volume of the air and equals 10 m3 here, following the reference paper [58].
ρair is the air density (kg·m−3), and it is a function of air temperature (Ta),

ρair = 1.2837 − 0.0039Ta (8)

The variation of the cooling rates of the studied hedges always followed the variation of their ET
rates (Figure 8). The hedges could cool the air most effectively when the ET rate and radiation reached
their maximums. The cooling effects of the hedges were the most robust on the summer day and the
weakest on the spring day. Though the cooling effects in the autumn day were stronger than on the
spring day, the hedges had a shorter cooling period due to shorter radiation duration. The cooling
effect of the H. littoralis hedge was slightly stronger than the L. quihoui hedge. The daily average
cooling rates of the H. littoralis hedge were 0.12 ◦C min−1 m−2, 1.29 ◦C min−1 m−2, 0.42 ◦C min−1

m−2, and 0.61 ◦C min−1 m−2 over the four days and were 0.10 ◦C min−1 m−2, 1.13 ◦C min−1 m−2,
0.30 ◦C min−1 m−2, and 0.56 ◦C min−1 m−2 for the L. quihoui hedge. Both hedges had stronger cooling
effects than the lawn, especially on the summer day. The cooling rates of the Z. matrella lawn were
0.05 ◦C min−1 m−2, 0.63 ◦C min−1 m−2, 0.21 ◦C min−1 m−2, and 0.40 ◦C min−1 m−2 over the four days.

Figure 8. The cooling rates of hedges and the lawn for comparison on air temperature on the four
typical sunny days in four seasons. (a) Spring: 19 March 2016; (b) Summer: 22 August 2015; (c) Autumn:
18 December 2015; (d) Winter: 4 February 2016.
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3.4.2. Cooling Effects of the Urban Hedges on Surface Temperature

Surface temperature can easily be obtained using infrared remote sensing techniques and has
therefore become the basis of most studies on the cooling effects of the vegetation. In this study, the
cooling effects of the urban hedges on surface temperature at a small scale is discussed. The thermal
imager simultaneously photographed the surface temperature of an asphalt road near the study site
when the vegetation was photographed. The surface temperature of the asphalt road was always high,
especially during the summer day (Figure 9). On that day, it could be as high as 62.73 ◦C at 3:00 p.m.
and the daily average increased to 53.60 ◦C. The surface temperatures of the asphalt road during the
other three days were similar, while the surface temperature of the hedges showed obvious differences
(Figure 5). The average daily surface temperatures of the road were 30.22, 28.35, and 27.86 ◦C in the
spring, autumn, and winter day.

Figure 9. Surface temperature of the asphalt road in the four typical days in four seasons. Spring:
19 March 2016; Summer: 22 August 2015; Autumn: 18 December 2015; Winter: 4 February 2016.

The surface temperature of the asphalt road was higher than the hedges most of the time
(Figure 10). The cooling effects of the hedges were more evident in the mid-day, when the underlying
surface temperatures were high. During the summer day, the cooling effects on surface temperature
could even be over 20 ◦C between 11:00 a.m. and 4:00 p.m. This means the hedges could significantly
reduce the peak surface temperature in a day. The daily average cooling effects of the two hedges
during the summer day were 19.17–19.94 ◦C. They were much weaker on the other three days,
especially in the spring day, when the two hedges could only cool the underlying surface by
2.80–4.22 ◦C. The surface temperature cooling effects were even negative in the morning of the
spring day. The low ET rate of the L. quihoui hedge restricted its cooling effect at that time. In addition,
the asphalt road dissipated heat in the night before becoming cooler in the morning [59]. As a result,
the surface temperature of the road could be lower than the hedge.

The H. littoralis hedge had better cooling effects on underlying surface temperatures than the
L. quihoui hedge. The H. littoralis hedge cooled the underlying surface temperature by 4.22, 19.94,
8.57, and 7.00 ◦C on the four days, respectively. Simultaneously, the L. quihoui hedge could cool the
surface by 2.80, 19.17, 7.80, and 5.92 ◦C. The hedges always showed better cooling effects than the lawn.
The cooling effects of the lawn were −0.62, 10.81, 2.75, and 3.36 ◦C on the four selected days. The most
distinct differences of cooling effects between the hedges and the lawn were during the summer day.
The hedges could cool the surface by 9 ◦C more than the lawn. The minimum differences occurred on
the winter day, when the two hedges cooled by more 2.56 ◦C and 3.64 ◦C than the lawn.
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Figure 10. Surface temperature differences between the hedges, lawn and asphalt pavement on the
four typical sunny days in four seasons. (a) Spring: 19 March 2016; (b) Summer: 22 August 2015;
(c) Autumn: 18 December 2015; (d) Winter: 4 February 2016.

4. Discussion

4.1. The ET Characteristics of Urban Hedges

The ET rates of two common urban hedges were estimated in this study, and both were found to
be relatively high. The ET rates of the H. littoralis hedge were 0.04, 0.38, 0.13, and 0.18 mm h−1 during
the four typical sunny days from four seasons. The ET rates of the L. quihoui hedge were slightly lower:
on the four days selected, they were 0.03, 0.33, 0.09, and 0.17 mm h−1, respectively. The ET rates of the
two hedges have also been studied in other cities. A study conducted in Hubei, China showed that the
ET rate of H. littoralis (0.04 mm h−1) was higher than that of six other plants in summer [60]. It also
found that the H. littoralis had the highest light utilization efficiency and the third highest water use
efficiency. Another study conducted in Changsha, China showed that the L. quihoui could transport
2576.52 g·m−2·d−1 (approximately 0.11 mm h−1) of water into the air through ET in August [61].
It was the third highest out of the 13 studied shrubs. However, the ET rates in the two studies above
are much lower than our results, as the two previous cities get less solar radiation compared with our
study sites.

The winter in Shenzhen is warm enough to sustain plant growth, so almost all local plants are
evergreen [62]. As a result, the ET rate of the H. littoralis hedge was still high in the winter day.
In addition, with its high light and water utilization efficiency, its ET rate might be slightly higher than
that of the L. quihoui hedge. The ET rates of the two hedges were both higher than the ET rates of the
lawn. LAI might be the predominant reason [63].

4.2. Cooling Effect of the Urban Hedges

Three techniques were used to describe the cooling effects of the urban hedges in this study.
Among them, the cooling effects of plants through ET alone was calculated using a reference method.
For 10 cubic meters of air, this H. littoralis hedge could generate cooling at rates of 0.12 ◦C min−1 m−2,
1.29 ◦C min−1 m−2, 0.42 ◦C min−1 m−2, and 0.61 ◦C min−1 m−2 on the four studied days. Meanwhile,
the cooling rates of the L. quihoui hedge were 0.10 ◦C min−1 m−2, 1.13 ◦C min−1 m−2, 0.30 ◦C min−1 m−2,
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and 0.56 ◦C min−1 m−2. In our reference research, a 2885-m2 S. superba forest in Guangzhou, another
subtropical megacity near Shenzhen, could cool a 10-m3 air column at rates of 0.15 ◦C min−1 m−2

and 0.13 ◦C min−1 m−2 in July in 2007 and 2008 [58]. Its cooling rates by per unit area vegetation
were lower than our results, as the ET during the day and night in all kinds of weather were included
in their study. The daily UHIIs around our study sites over four seasons were approximately 0.76,
1.06, 1.04, and 0.80 ◦C [64]. For the whole city, the yearly average UHII of Shenzhen was 2.6 ◦C [65].
Therefore, the urban hedges showed great cooling potential in the mitigation of UHI.

The cooling rate above is the temperature reduction by ET without heat input. The LE/Rn reflects
the proportions of the net radiation that ET dissipates. The greater the proportions of net radiation
that were consumed by latent heat, the smaller proportion of net radiation could heat the environment
through sensible heat. The H. littoralis hedge could consume 37.27%, 68.44%, 56.10%, and 65.71% of the
net radiation as latent heat over the four days, while for the L. quihoui hedge the ratios were 35.72%,
60.81%, 41.45%, and 61.58%. These ratios were significantly higher than artificial underlying surfaces.
It was found that only 123 Wh m−2 out of the 1949 Wh m−2 net radiation reaching to the asphalt roof
was consumed by latent heat [66]. Grimmond et al. reported 23% of the LE/Rn in Marseille, where
the area fraction of vegetation and water was 10–20%. Meanwhile, areas like Me93 and Vl92 that
contained less vegetation had a lower LE/Rn [67]. In Kansas City, the LE/Rn could reach 46–58% in
an exurban residential neighborhood, where the vegetation accounted for 58% of the total area [68].
This phenomenon was also demonstrated in a study conducted in Kugahara, Tokyo, where the LE/Rn
in the daytime was always larger in hot months and smaller in cooler months [69]. According to
LE/Rn, the H. littoralis hedge had better cooling effects than the L. quihoui hedge. The LE/Rn was
larger when the radiation was stronger, which means the cooling effects of ET might be stronger in
hotter days.

The albedo differences may result in the surface temperature differences between hedges and
asphalt pavements [70,71]. Moreover, the hedges could consume much more heat through ET than
artificial underlying surfaces [72]. Compared to the asphalt pavement, the surface temperature of
the studied H. littoralis hedge were 4.22, 19.94, 8.57, and 7.00 ◦C lower on the four days. The surface
temperature of the L. quihoui hedge were 2.80, 19.17, 7.80, and 5.92 ◦C lower at the same time.
The forested land could also cool the surface more than 10 ◦C in November compared with developed
land [73]. Leuzinger et al. found that tree canopies in Basel were 19 ◦C cooler than roofs in July,
and different trees had different canopy temperatures [74]. The land surface temperature differences
between land use types of transportation and green spaces in Shenzhen were approximately 4.8 ◦C in
daytime in October [75]. In comparison with the studies above, the cooling effects of the urban hedges
in our research are remarkable. The amplitudes of the hedges’ surface temperature were also smaller
than those of the asphalt road in the daytime, which means the thermal environment was more stable
in the urban hedge area (Table 4). Similar results have been found in previous studies [76]. They found
that the maximum daily variation of surface temperature was no more than 3 ◦C, and the maximum
surface temperature was only 26.5 ◦C for Raphis palm, while for the hard surface, they were 30 ◦C and
57 ◦C, respectively. Latent heat could significantly reduce the maximum surface temperature in a day
but showed minimal effects on the minimum temperature [77].

Table 4. Standard deviations of the surface temperatures on the four days (◦C).

Underlying Surface Spring Summer Autumn Winter

Asphalt pavement 4.18 7.90 6.65 7.43
H. littoralis hedge 2.22 2.85 2.43 3.46
L. quihoui hedge 2.06 3.14 3.14 3.69
Z. matrella lawn 5.16 4.19 6.71 5.04
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4.3. Applicability of the ‘3T + IR’ Method for the ET Estimation of Urban Hedges

In this study, a new method based on ‘3T + IR’ was applied to accurately estimate urban ET.
The applicability of this method on urban vegetation has been verified in this study by comparison
with the BREB method. The results showed great reliability in this new method. With this method,
the ET rates of the hedges can be calculated by surface temperature, which could be easily obtained by
thermal images. Therefore, this method will not be limited by the complexity of urban underlying
surfaces, which is the main obstacle for traditional methods. It also has a higher temporal and spatial
resolution than traditional satellite remote sensing. Based on accurate ET rates, the specific cooling
effects of ET could be obtained.

In this study, to simplify the calculation and measurement, the emissivity of the hedges and
the lawn were defined as 0.98 and the net radiation was estimated based on the solar radiation
and temperatures. Therefore, there might be some bias of the results. Besides, the leaf with the
highest surface temperature was selected to be the reference leaf. The ET of this leaf actually is larger
than zero, therefore will leading a little overestimation of the actually ET of the vegetation based on
three-temperature model. Though it has been applied and validated in various field experiments out
of the city, this is the first application of this new method in the study of urban hedges. Therefore,
more research is needed. For example, an idealized reference leaf is still hard to select. The shape,
emissivity and albedo of the reference leaf could affect the results. Besides, this method could not be
used in continuous measurement at a high frequency, as we could only photo the thermal images and
measure the net radiation by hand. Automatic imaging technique of infrared remote sensing and net
radiation measurement will be helpful in the future.

5. Conclusions

In this study, the ET characteristics of two urban hedges were measured by a fetch-free method
with high spatiotemporal resolution, namely, the ‘three-temperature model + infrared remote sensing’
method. The method demonstrated high accuracy in the ET estimation for urban vegetation. The results
show that: (1) the ET rates of the two studied urban hedges were high. On the summer day, the daily
average ET rate of the H. littoralis hedge was 0.38 mm h−1, while that of the L. quihoui hedge was
0.33 mm h−1. (2) The latent heat of the hedges accounts for a large part of the net radiation. The two
hedges consumed 68.44% and 60.81% of the net radiation via ET on the summer day. Therefore, the
hedges have great cooling potential in the urban thermal environment. (3) The contribution of ET
to the vegetation cooling effects in urban areas could be identified through more accurate ET rates.
The daily average cooling rates of the two hedges on air temperature through ET alone could reach
1.13–1.29 ◦C min−1 m−2. (4) The hedges could also significantly cool down the underlying urban
surface. The cooling effect was stronger on hotter days. On the hottest day, the cooling effects of the
two hedges on the underlying surface were more than 19 ◦C. (5) The ET rates of the H. littoralis hedge
were slightly higher than those of the L. quihoui hedge and therefore had better cooling effects, while
both had much better cooling effects than the lawn used for comparison. These results may contribute
to the greening design for urban areas.

This study may be the first research that can quantitatively measure the ET rate of urban hedge
and provide a new insight to understand the process of ET in urban hedges, and could also promote
the methodology of urban ET studies.
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Abstract: The dry-wet transition is of great importance for vegetation dynamics, however the response
mechanism of vegetation variations is still unclear due to the complicated effects of climate change.
As a critical ecologically fragile area located in the southeast Qinghai-Tibet Plateau, the Yarlung
Zangbo River (YZR) basin, which was selected as the typical area in this study, is significantly
sensitive and vulnerable to climate change. The standardized precipitation evapotranspiration
index (SPEI) and the normalized difference vegetation index (NDVI) based on the GLDAS-NOAH
products and the GIMMS-NDVI remote sensing data from 1982 to 2015 were employed to investigate
the spatio-temporal characteristics of the dry-wet regime and the vegetation dynamic responses.
The results showed that: (1) The spatio-temporal patterns of the precipitation and temperature
simulated by the GLDAS-NOAH fitted well with those of the in-situ data. (2) During the period of
1982–2015, the whole YZR basin exhibited an overall wetting tendency. However, the spatio-temporal
characteristics of the dry-wet regime exhibited a reversal phenomenon before and after 2000, which
was jointly identified by the SPEI and runoff. That is, the YZR basin showed a wetting trend before
2000 and a drying trend after 2000; the arid areas in the basin showed a tendency of wetting whereas
the humid areas exhibited a trend of drying. (3) The region where NDVI was positively correlated
with SPEI accounted for approximately 70% of the basin area, demonstrating a similar spatio-temporal
reversal phenomenon of the vegetation around 2000, indicating that the dry-wet condition is of
great importance for the evolution of vegetation. (4) The SPEI showed a much more significant
positive correlation with the soil water content which accounted for more than 95% of the basin area,
implying that the soil water content was an important indicator to identify the dry-wet transition in
the YZR basin.

Keywords: dry-wet regime; climate change; vegetation dynamics; GLDAS; GIMMS; Yarlung
Zangbo River

1. Introduction

The current level of global climate change has been unprecedented in the past decades or even
nearly a thousand years. Almost the entire world is experiencing a warming process, which is mainly
characterized by rising temperatures, rising sea levels, retreating glaciers, and so on [1,2]. Global
warming has exacerbated the global water cycle over the past century, causing a significant increase
in the number of extreme weather events, such as storms, heat waves, floods, and droughts [3–9].
Droughts are one of the most threatening natural disasters in the world. They are caused by the
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below-average level of precipitation over a long period of time and are generally characterized by their
high frequency, long duration, and wide range [10,11]. In the context of global warming, the frequency
and intensity of droughts have increased significantly [12,13], which has seriously affected agricultural
production, water resources, and ecosystems, and have led to economic losses, famines, epidemics, and
desertification [14–21]. Because of the complexity of drought variability, it is challenging to objectively
quantify the intensity, duration, and spatial extent of droughts [22–24]. Thus, numerous studies have
attempted to improve drought detection and monitoring; a few objective indices have been developed
on the basis of readily available climate data, such as the Palmer Drought Severity Index (PDSI) [25],
Standard Precipitation Index (SPI) [26], and Standard Precipitation Evapotranspiration Index (SPEI) [27].
Among these indices, the PDSI, which is based on the supply and demand in the water balance, is one
of the most widely used drought indices in the world. However, the PDSI has several deficiencies,
including the strong influence of the calibration period, the limitation in spatial comparability, and the
subjectivity in relating drought conditions to the index values [28]. The SPI can effectively represent the
multiscale characteristics of droughts; however only the precipitation variability is considered in the
SPI calculation, and the role of temperature is ignored. The effect of temperature is evident in initiating
droughts, although droughts are primarily caused by a below-average level of precipitation [29].
Therefore, the SPEI was developed by Vicente-Serrano et al. [27], which not only considered the
effects of temperature on drought severity but also considered the multiscale characteristics that were
incorporated in the SPI. Since it was proposed in 2010, the SPEI has been widely used to monitor and
assess the dry-wet conditions around the world [30–33].

Vegetation, linking the atmosphere, hydrosphere, and biosphere [34], is an important component
in the terrestrial ecological system and has an obvious relationship with climate change through the
physiological responses of plants, such as plant photosynthesis, respiration, and evapotranspiration.
The dynamic changes of vegetation play a predictive role in regional climate change [35,36]. Climate
change can also affect the spatial-temporal pattern of vegetation. Drought is one of the most frequent
natural disasters and the response of vegetation to drought is a considerable scientific problem [37].
In general, an increased frequency of extreme drought was associated with decreased vegetation
growth [19,38,39]. For example, Symeonakis et al. (2004) pointed out that drought was the main factor
resulting in vegetation and soil degradation in sub-Saharan Africa [39]. Ahmadi et al. (2019) indicated
that drought could affect the efficiency of water use in the ecosystem, subsequently disturbing the
composition and functionality of terrestrial ecosystems [19]. In Northern China, drought-induced water
stress caused a reduction in the terrestrial gross primary production [40]. Studies on the Qinghai-Tibet
Plateau (QTP) and the Loess Plateau have revealed that there is a remarkable correlation between
vegetation cover reduction and climate change [41,42]. Nevertheless, the magnitude of the response of
vegetation to dry-wet conditions remains uncertain due to the complexity of the dry-wet transition
and intrinsic drought sensitivity among vegetation types [21,43]. The intensity, duration, and timing of
drought partly determine the effect of drought on vegetation productivity, where moderate drought
with higher temperatures increases the net primary production (NPP), while severe drought causes a
delayed response of NPP to precipitation [22,44]. As a satisfactory indicator of vegetation activities,
the Normalized Difference Vegetation Index (NDVI), which was used in this study, has been widely
and successfully used to detect the vegetation variations [36–44].

The Yarlung Zangbo River (YZR) basin located in the southeast QTP, is the most important river
to understand the water cycle in the QTP because it is not only the largest river system in QTP with the
largest mean annual flow (56% flows from the QTP), but also an important moisture transportation
channel from the Indian Ocean to the inner region of QTP. Owing to great spatial heterogeneities
of climatic conditions and enormous biological diversity, the YZR basin has always been the crucial
area of global diversity and ecological protection [45]. A considerable amount of research on the
impact of climate change on vegetation variations in the YZR basin has been conducted, revealing
that vegetation and precipitation are positively correlated in the whole basin and that the vegetation
cover change is restrained by the dry-wet regime, terrain, and other factors simultaneously [46–48].
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Song et al. (2011) and Li et al. (2015) have demonstrated that the warming rate of the YZR basin was
significantly higher than that of the global average, and the duration and magnitude of the drought
have gradually aggravated [49,50]. The water resources problem would become more severe under
the impact of precipitation and temperature due to the significant warming of the YZR basin in the
future [51]. The rising temperature drives a basin-wide vegetation cover improvement, however it
seems that decreasing precipitation does not inverse the overall vegetation greening trend [51]. Similar
results occurred in Nepal, bounded by the Tibetan highland and the Himalaya, indicating that the
correlation between NDVI and temperature was significantly positive, while NDVI exhibited a negative
relationship with precipitation [52]. To sum up, the dry-wet transition is of great importance for the
vegetation dynamics, whereas the response mechanism of vegetation to dynamic variations is still
unclear. In addition, the special terrain, vulnerable ecological environment, and sensitivity to climate
change make the YZR basin one of the hotspot regions for the studies of water-ecology-environment
sustainable development under global warming. Therefore, it is crucial to investigate the transition
characteristics of the dry-wet regime in the YZR basin and quantify its effect on the vegetation
dynamic variations, which could provide a scientific reference for the sustainable development of the
environment and ecosystem in the Qinghai-Tibet Plateau. The primary objectives of this study are:
(1) to detect the changes of the dry-wet regime in the YZR basin; (2) to quantify the spatial-temporal
variations of vegetation from long-term satellite-based NDVI data; and (3) to investigate the dynamic
responses of vegetation to possible drivers of the dry-wet transition in the YZR basin.

2. Materials and Methods

2.1. Study Area

The Yarlung Zangbo River originates from the Gyama Langdzom Glacier is one of the highest
rivers around the world. It is mainly composed of five tributaries, namely the Duoxiong Zangbo River,
the Nianchu River, the Lhasa River, the Nyang River, and the Parlung Tsangpo River. The YZR basin,
with a latitude of 28◦00 ‘N–31◦16’ N and longitude of 82◦00 ‘E–97◦07’ E, is located in the southeast
QTP (Figure 1), with an area of about 24 km2 and average altitude of more than 4000 m (ranging from
132 m to 7258 m). The climate of the YZR basin is characterized as cold plateau mountain climate with
intense solar radiation and low air temperatures. The amount of precipitation gradually increases from
northwest to southeast in the basin, which is mainly affected by the warm and humid airflow from the
Bay of Bengal and the Indian Ocean. The mean annual precipitation in the basin is 300–500 mm, and
the rate increases with elevation by 10–30 mm/100 m [52]. The total rainfall from June to September
accounts for 60%–90% of the mean annual precipitation in the whole basin, indicating the precipitation
has an uneven distribution within a year. Due to the complex topographical features and high altitude,
the vegetation cover within the area exhibits distinct vertical zonality and varies from mountain forest,
mountain broad-leaved forest, mountain coniferous forest, and subalpine shrub meadow to alpine
meadow along with rising elevation [53].
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Figure 1. Location of the Yarlung Zangbo River basin and distribution of the
hydro-meteorological stations.

2.2. Data

NDVI has been widely applied to detect and quantify the dynamic changes of vegetation in an
extensive range [54]. Currently, various remote sensing satellite instruments can provide NDVI data,
such as MODIS, SPOT/VEGETATION, and NOAA/AVHRR, etc. Compared with other vegetation index
dataset, the GIMMS-NDVI3g, featured by its long time series and wide coverage, has proven to be
one of the best datasets in describing vegetation growth dynamic changes [55]. Previous studies have
shown that GIMMS NDVI dataset is significantly better than that of MODIS NDVI in reflecting dynamic
changes over the Qinghai-Tibet Plateau [56]. In this study, the NOAA/AVHRR GIMMS production
with a spatial resolution of 8 km × 8 km was used to calculate the NDVI. The data from January 1982
to December 2015 was derived from the third generation GIMMS NDV3g dataset, developed by the
Goddard Aerospace Agency (http://ecocast.arc.nasa.gov/data/pub/gimms/3g/). Meanwhile, to further
minimize the impact of clouds, atmosphere, and solar radiation angles on the NDVI values, the GIMMS
NDVI3g data was preprocessed by employing S-G Filtering and Maximum Value Composite techniques
to ensure the reliability of the research data and the accuracy of the results.

The Global Land Data Assimilation System (GLDAS), consisting of four different land surface
models, i.e., CLM, NOAH, MOSAIC, and VIC [57], is a high-resolution land surface data assimilation
system that is jointly managed by the American Goddard Space Flight Center and Environmental
Forecast Center (http://ldas.gsfc.nasa.gov/gldas/GLDASvegetation.php), with two spatial resolutions
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(0.25◦ × 0.25◦ and 0.5◦ × 0.5◦) and two temporal resolutions (3 hours and 1 month). The dataset with
extensive sources is a combination of the surface observed data and the remote sensing satellite data.
Compared to other remote sensing datasets, the GLDAS-NOAH data has a higher spatial and temporal
resolution, a longer time span (1970 to present), and 28 variables (precipitation, air temperature, and
soil moisture content, etc.). In this study, due to the limited number of meteorological gauging stations
in the YZR basin, especially in the upper reaches, the monthly GLDAS-NOAH data at the 0.25◦ × 0.25◦
spatial resolution from 1982 to 2015 were used to analyze the dry-wet transitions of the YZR basin, and
to calculate the SPEI based on the performance evaluation of the GLDAS-NOAH data.

In-situ observations of the precipitation and surface air temperature from twenty meteorological
gauging stations (as shown in Figure 1) in the YZR basin were used to evaluate the performance of the
GLDAS-NOAH data.

2.3. Methods

The SPEI is a drought index based on the probability model, which was constructed by combining
the potential evapotranspiration (PET) with the SPI [58]. Given the input and output of water resources,
the calculation results of the SPEI mainly depicted the excess or deficit of water in an ecosystem within a
certain period. The computational procedure of the SPEI can be divided into the following—calculation
of the potential evapotranspiration (PET) based on the Thornthwaite method; computation of the
difference value D between the precipitation and evapotranspiration, and finally, normalization of the
value D. The specific calculation methods were as follows:

Firstly, the potential evapotranspiration was calculated and the difference between the potential
evapotranspiration and precipitation was defined as:

Di = Pi − PETi (1)

where Di is the difference between monthly precipitation Pi and potential evapotranspiration PETi.
Secondly, the Di data series was normalized—the SPEI, which is similar to SPI, adopts the

log-logistic of three parameters to normalize the cumulative values of the sequence of Di data.
The calculation formula was:

F(x) =

⎡⎢⎢⎢⎢⎣1 +
(
α

x− γ
)β ⎤⎥⎥⎥⎥⎦
−1

(2)

where F(x) is the probability distribution function, α, β, and γ represent the respective ratio, shape and
source parameter, which could all be estimated by the linear distance method.

Finally, the cumulative probability P for a given time scale was derived, and then the normalized
value of SPEI was calculated. The equations were as follows:

P = 1− F(x) (3)

When P<0.5
W =

√
−2ln(p) (4)

SPEI = W − C0 + C1W + C2W2

1 + d1W + d2w2 + d3w3 (5)

When P>0.5
P = 1− P (6)

SPEI = −
(
W − C0 + C1W + C2W2

1 + d1W + d2W2 + d3W3

)
(7)
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The constants included C0 = 2.515517, C1 = 0.802853, C2 = 0.010328, d1 = 1.432788, d2 = 0.189269,
and d3 = 0.001308. A negative SPEI value indicates dryness whereas a positive value represents
wetness. The Table 1 lists the SPEI-based drought index classification criteria [27].

Table 1. SPEI meteorological drought index classification [27].

SPEI Value Classification

[2, +∞] > 2.00 Extremely wet
[1.5, 1.99] Severely wet
[1.0, 1.49] Moderately wet
[0.5, 0.99] Slightly wet

[−0.49, 0.49] Normal
[−0.99, −0.5] Slightly dry
[−1.49, −1.0] Moderately dry
[−1.99, −1.5] Severely dry

[−∞, −2] Extremely dry

One-dimensional linear regression was employed to analyze SPEI and NDVI in the study area to
describe the spatio-temporal trends of SPEI and NDVI between 1982 and 2015 [59]. The calculation
formula was:

slope =
n
∑n

i=1(i×Ci) −∑n
i=1 i×∑n

i=1 Ci

n×∑n
i=1 i2 −

(∑n
i=1 i

)2 (8)

where Slope represents the changing trends of NDVI and SPEI, n is the study temporal interval, n = 34,
and Ci represents SPEI or NDVI for the year i. A significance test was performed on the changing
trends of NDVI and SPEI (P < 0.01 indicates an extremely significant change, P < 0.05 indicates a
significant change, and P > 0. 05 indicated the change is not significant).

The correlation coefficient (R) was used to investigate the linear relationship between NDVI and
SPEI at the pixel scale in this study, which was defined as:

R =

∑n
i=1[(x− x)(y− y)]√∑n

i=1(xi − x)2 ∑n
i=1(yi − y)2

(9)

where xi and yi represent the respective annual SPEI and NDVI values for the year i, x represents the
mean annual SPEI values, and y represents the mean annual NDVI values. The significance test was
used to illustrate the correlation between SPEI and NDVI (P < 0.01 indicates an extremely significant
correlation, P < 0.05 indicates a significant correlation, and P > 0.05 indicates the correlation is not
statistically significant).

Four statistical indicators were used in this study to evaluate the performance of the GLDAS-NOAH
outputs in the YZR basin, which were the Pearson correlation coefficient (R), mean bias (MB),
root-mean-square error (RMSE), and Nash-Sutcliffe efficiency coefficient (NSE). The Pearson correlation
analysis was used to reflect the strength of the linear relationship between the compared datasets.
The MB and RMSE revealed the degree of deviation of the paired data. The MB provided information
on the absolute overestimation or underestimation of the two paired datasets, whereas the RMSE was
a good reflection of the procedural precision. The NSE ranged from [−∞, 1], and the credibility of the
simulation was much higher when it was approaching 1. These statistical indicators were defined as
follows:

MB =
1
n

∑n

i=1
(xi − yi) (10)

RMSE =

√
1
n

∑n

i=1
(xi − yi)

2 (11)
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NSE = 1−

n∑
i=1

(
xi

o − xi
m)

2

n∑
i=1

(
xi

o − xo)2
(12)

where n is the number of the data, and xi nd yi are the observed data and GLDAS-NOAH data,
respectively. In Equation (12), xi

o and xi
m separately represent the observed value and model simulated

value of the variable; xo is the average value of the observed data. Generally, if the monthly NSE > 0.5
and monthly R > 0.77 (corresponding to the determination coefficient R2 > 0.6), the model performance
was considered to be acceptable [60].

As an effective and practical statistical method recommended by the World Meteorological
Organization, the Mann-Kendall nonparametric test was applied to detect the significance of the trend.
The detailed information can be obtained in [61–63]. In this study, the 0.1 significance level was used.

3. Results

3.1. Performance Evaluation of the GLDAS-NOAH Data

Due to the strong heterogeneity of the underlying factors over the YZR basin, such as the vegetation,
soil type, and elevation, etc., it is essential to evaluate the performance of the GLDAS-NOAH data
at both the site scale and the river basin scale. In this study, the observed monthly precipitation and
temperature data from 1982–2015 from the twenty meteorological gauging stations covering the upper,
middle, and lower reaches of the YZR basin (Figure 1) and extracted model outputs of corresponding
grids from the GLDAS-NOAH dataset were utilized to conduct the performance evaluation.

3.1.1. Precipitation Performance at Site Scale

The correlation coefficients between the gridded monthly GLDAS-NOAH precipitation and the
corresponding observed monthly precipitation showed high consistency (R > 0.80), except the Bomi
station, which had a relatively lower R value of 0.57 (Table 2). This can be partly attributed to the
dramatic topographic variations around the Bomi station ranging from 3100 m to 5000 m, whereas the
elevation of the gauging station was 1300 m, which may have insufficiently represented the regional
precipitation within the GLADS-NOAH grid area of approximately 625 km2 (0.25◦ × 0.25◦). Lv et al. [61]
demonstrated a similar conclusion in the study on the performance evaluation of the TRMM satellite
precipitation data in the YZR basin. As shown in Table 2, the MB between the GLDAS-NOAH outputs
and in-situ measurements ranged from −49.95 mm to 22.99 mm (accounting for 0.07%–17.47% of
annual precipitation) and the RMSE ranged from 21.23 mm to 81.45 mm (accounting for 4.20%–29.44%
of annual precipitation), which may be attributed to the mismatch of the point and grid scale.

Table 2. Statistical indicators of precipitation between the GLDAS-NOAH and gauging stations.

Gauging Station R RMSE MB NSE

Bomi 0.57 61.17 22.99 0.20
Jiali 0.86 37.72 21.09 0.69

Tsetang 0.89 51.17 −28.76 −0.24
Shigatse 0.91 52.03 −29.66 0.26
Nyingchi 0.9 29.33 −0.5 0.78

Lhasa 0.94 36.51 −18.96 0.54
Jiangzi 0.87 81.27 −48.23 −4.02

Dangxiong 0.93 23.84 −3.65 0.79
Baingoin 0.9 30.26 −9.83 0.31
Dengqen 0.87 31.2 15.76 0.69

Gyaca 0.88 40.46 −17.95 0.48
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Table 2. Cont.

Gauging Station R RMSE MB NSE

Riwoqe 0.87 30.07 12.97 0.70
Lhunze 0.88 81.45 −49.95 −4.7
Haolong 0.81 30.72 −5.92 0.24

Maltrogangkar 0.94 24.92 −4.20 0.84
Nagqu 0.91 21.23 3.34 0.78

Namling 0.91 46.01 −22.11 0.36
Nyemo 0.90 60.06 −33.43 −0.94
Xainza 0.93 34.65 −14.62 0.25

Sog County 0.81 35.38 15.36 0.58

3.1.2. Temperature Performance at Site Scale

As shown in Table 3, the GLDAS-NOAH data and in-situ measurements showed a high agreement,
i.e., R ≥ 0.81, −0.63 ≤ NSE ≤ 0.97, −1.01 ◦C ≤MB ≤ 6.85 ◦C, and RMSE ≤ 7.25 ◦C. In the Bomi station,
the GLDAS-NOAH surface air temperature showed a larger discrepancy, i.e., the absolute value of
MB = 6.85 ◦C and ≤4.59 ◦C for other stations, and RMSE = 7.25 ◦C and ≤5.37 ◦C for other stations.
Similar to the performance of precipitation, the worse performance of temperature could be partly
attributed to the dramatic topographic variations around the Bomi station, which may have caused
uncertainties in the temperature estimation. Given that the monthly NSE > 0.5 and monthly R > 0.77
implied a good simulation, the high R and NSE from all stations indicates the high representation of
the GLDAS-NOAH surface air temperature over the YZR basin.

Table 3. Statistical indicators of temperature between the GLDAS-NOAH and gauging stations.

Gauging Station R RMSE MB NSE

Bomi 0.92 7.25 6.85 −0.63
Jiali 0.86 3.71 −1.01 0.88

Tsetang 0.96 4.87 4.59 0.29
Shigatse 0.96 2.43 1.60 0.87
Nyingchi 0.97 4.09 3.83 0.40

Lhasa 0.97 3.34 2.95 0.69
Jiangzi 0.96 2.11 1.09 0.90

Dangxiong 0.93 2.53 0.04 0.97
Baingoin 0.90 3.30 0.65 0.73
Dengqen 0.87 4.51 2.85 0.47

Gyaca 0.81 4.94 2.97 0.39
Riwoqe 0.84 5.37 3.87 0.28
Lhunze 0.87 4.44 3.15 0.47
Haolong 0.83 5.37 3.78 0.28

Maltrogangkar 0.84 3.89 1.07 0.59
Nagqu 0.91 3.32 −0.45 0.78

Namling 0.85 4.56 2.82 0.40
Nyemo 0.83 4.20 1.85 0.57
Xainza 0.90 4.12 2.61 0.60

Sog County 0.88 4.06 1.86 0.63

3.1.3. Spatio-Temporal Patterns at River Basin Scale

In this study, the monthly precipitation and temperature in the entire YZR basin were calculated
from 1982–2015 to further investigate the correspondence between the measured and GLDAS-NOAH
data. As shown in Figure 2, the R values of precipitation and temperature of the two datasets reached
0.97 and 0.99 respectively, meaning there were good consistencies between the temporal variation
patterns of precipitation and temperature, while the GLDAS-NOAH precipitation was larger than the
measured precipitation, and the GLDAS-NOAH temperature was smaller than the measured data.
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Although the GLDAS-NOAH overestimates and underestimates the precipitation and temperature
respectively, such inconsistency is not the key issue in this study because of the following two reasons.
Firstly, the observed data were at the point scale, while GLDAS-NOAH data represented the average
performance at the pixel scale, approximately an area of 25 km × 25 km. With the high divergence of
underlying factors, such as vegetation, soil type, and elevation, etc. over the YZR basin, it is rather hard
for the scarce observed data to represent the pixel average features. Th gauge-based precipitation data
showed that the difference in annual precipitation between Jiangzi and Shigatse was as much as 40%,
while their distance was only 80km [64]. Secondly, this study focused on the spatio-temporal variation
trends rather than absolute magnitudes. That is, the systematic overestimation or underestimation
could be reasonably eliminated on a tendency or relationship analysis, if the variation patterns of the
GLDAS-NOAH data fitted well with those of the in-situ data.

Figure 2. GLDAS-NOAH and measured monthly precipitation and temperature from 1982 to 2015.

In order to identify the spatial performance between the observed and the GLDAS-NOAH data,
especially the vertical zonality characteristics, 20 meteorological stations and the corresponding grids
were divided into four bands by elevation, i.e., 0–3500 m, 3500–4000 m, 4000–4500 m, and 4500–5000 m.
As shown in Table 4 and Figure 3, the precipitation and temperature from the GLDAS-NOAH and
in-situ data both decreased with the increase in elevation, implying that the GLDAS-NOAH data
could represent the climate characteristics of the vertical zonality in the YZR basin. In terms of
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precipitation, the mean values of the observed data in 3500–4000 m and 4000–4500 m were 457.6
and 500.4 mm respectively, while those of the GLDAS-NOAH data were 640.4 mm and 619.7 mm
respectively. This discrepancy was owing to the large MB values of the Lhunze and Nyemo stations as
shown in Table 2. However, the variation ranges of the GLDAS-NOAH and in-situ precipitation at the
four elevation bands were similar. Compared to the precipitation, the vertical variation characteristic
of the GLDAS-NOAH temperature at the four elevation bands was much closer to that of the observed
data. Although the observed temperature in the first elevation band seemed much bigger than the
GLDAS-NOAH data, which was mainly ascribed to only three gauging stations in this elevation band,
the GLDAS-NOAH temperature at the other three elevation bands exhibited a high agreement with
the observed data, regardless of whether it was from the perspective of the mean values or from the
perspective of the variation ranges. Similar results of the GLDAS performance in the YZR basin and
QTP were demonstrated by Zhang et al. [65] and Zhang et al. [66].

Table 4. Elevations of the 20 gauging stations.

Gauging Station Elevation/m

Bomi 2926
Jiali 4286

Tsetang 4656
Shigatse 3873
Nyingchi 3006

Lhasa 3794
Jiangzi 4025

Dangxiong 4279
Baingoin 4724
Dengqen 3954

Gyaca 3242
Riwoqe 3810
Lhunze 3922
Haolong 3794

Maltrogangkar 3810
Nagqu 4527

Namling 4001
Nyemo 3813
Xainza 4658

Sog County 4078

Figure 3. Spatial performance of the measured and GLDAS-NOAH precipitation (left) and temperature
(right).
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3.2. Transition Characteristics of the Dry-Wet Regime

The SPEI values at four time scales of 1-month, 3-month, 6-month, and 12-month were calculated
from 1982 to 2015. SPEI 1 represented that when calculating monthly SPEI, the water deficit
condition was taken into account only within the current month. SPEI 3 represented that the water
deficit conditions of both the first two months and the current month were considered, and similar
representations were used for SPEI 6 and SPEI 12. As shown in Figures 4 and 5, the temporal variations
of the SPEI at the four time scales representing the dry-wet conditions in the YZR basin showed that
SPEI 12 exhibited the highest agreement with the NDVI at both the annual and growing seasonal (from
May to September) scales (R ≥ 0.6), indicating that the highest dependency of the present dry-wet
condition was on that of the preceding 12 months. In this study, SPEI 12 was used as the indicator to
analyze the spatio-temporal variations of the dry-wet conditions at the annual and growing season
scales in the YZR basin.

Figure 4. Changes of SPEI at different time scales.

Figure 5. Changes of the annual (left) and growing season (right) SPEI.
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As shown in Figure 5, in terms of the annual time scale, the SPEI showed a significantly increasing
trend with a rate of 0.07/decade from 1982 to 2015 (P < 0.1, n = 34), implying an overall wetting
tendency in the YZR basin. However, Wang (2016) and Liu (2015) demonstrated that the precipitation,
temperature, and potential evapotranspiration, which were closely related to the dry-wet conditions
in the YZR basin, all changed significantly in the late 1990s [67,68]. In order to detect whether there
was a transition from wet to dry during the 1990s in the YZR basin, the year of 2000 was taken as the
turning point to investigate the variation characteristics of SPEI. Interestingly, the two periods divided
by 2000 exhibited the opposite changing trends, i.e., the wetting period was from 1982 to 1999 with a
slightly increasing rate of 0.225/decade (P > 0.1, n = 18), and the drying period was from 2000 to 2015
with a significantly decreasing rate of 0.25/decade (P < 0.1, n = 16). Compared to the variation trend of
the annual SPEI, the growing season SPEI showed a relatively non-significantly increasing trend with
a rate of 0.053/decade from 1982 to 2015 (P > 0.1, n = 34). The opposite changing trend before and after
2000 was also exhibited at the growing season scale, where there was a slightly increasing trend with a
rate of 0.16/decade (P > 0.1, n = 18) from 1982 to 1999 and a slightly decreasing trend with a rate of
0.21/decade (P > 0.1, n = 16) from 2000 to 2015.

In order to explore the spatial evolution characteristics of the dry-wet regime in the YZR basin, the
SPEI was divided into three categories according to Table 1, i.e., SPEI < −0.5 (Dry), −0.5 < SPEI < 0.5
(Normal), and SPEI > 0.5 (Wet). Figure 6 shows the area ratios occupied by the different ranges of SPEI
from 1982 to 2015 in the YZR basin at both the annual and growing season scales. The proportions
of the annual variation pattern of the dry, wet, and normal areas were consistent with those of the
growing season. Unlike the temporal opposite variation trend that occurred before and after 2000,
the spatial reversal phenomenon of the dry-wet regime occurred in the three-year wet period from
1999 to 2001. Before this wet period, the proportion of wet areas showed an increasing trend, while the
proportion of dry areas declined, causing a wetting condition of the YZR basin. The dry-wet regime
reversed after this period, which experienced a drying period as implied by the decrease in wet areas
and the increase in dry areas.

Figure 6. Area proportions of the dry, wet, and normal areas indicated by the annual (left) and growing
season (right) SPEI in different ranges.

The determination of the turning point of the dry-wet regime in the YZR basin was of great
importance to conduct further investigation in this study. As the most direct evidence for the
dry-wet condition at the river basin scale, runoff has been widely used to represent the dry-wet
characteristics [69–71]. The Nuxia hydrological station located downstream of the YZR basin, controls
about 80% of the drainage areas of the YZR basin, and its long-term variation of runoff could be used
to effectively indicate the dry-wet transition in the YZR basin. In this study, time series of runoff from
1982 to 2015 at the Nuxia hydrological station were adopted to further detect the transition point of
the dry-wet regime by using the Mann-Kendall nonparametric test. The results of the Mann-Kendall
significance test showed that the runoff showed a significantly increasing trend from 1982 to 1999
(Zc = 1.89, P < 0.1), while the runoff exhibited a significantly decreasing trend (Zc = −1.76, P < 0.1) from
2000 to 2015. Meanwhile, there was no point detected from 1982 to 2015 that could divide the time
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series into two parts with a significantly increasing and decreasing trend respectively. Combining with
the SPEI spatio-temporal variations, it could be concluded that there was a transition of the dry-wet
regime in the YZR basin, which occurred at the year 2000.

To investigate the spatial variation of the dry-wet regime and given the high spatial heterogeneity
of the climate conditions in the YZR basin, the spatial distributions of the mean annual and growing
season SPEI before and after 2000 were interpolated by using the Kriging method (Figure 7). It could
be seen that the annual spatial distribution of the SPEI showed a high consistency with that of the
growing season during both periods (1982–1999 and 2000–2015). Before 2000, the dry areas were
mainly located in the eastern upstream and midstream regions of the study area, while the western
upstream and southeastern downstream regions were relatively wet. Similar to the temporal reversal
phenomenon at the year of 2000, the spatial pattern of the SPEI also displayed a reversal phenomenon.
The annual and growing season spatial distribution of the SPEI indicated that the spatial distribution
of the dry-wet regime in the YZR basin before and after 2000 was opposite. According to Figures 5
and 7, the overall wetting tendency of the YZR basin was mainly attributed to the remarkable wetting
trend of the midstream region over the past 34 years, while the prominent trend of drying from 2000 to
2015 in the basin was ascribed to the fact that the western upstream and southeastern downstream
turned drier.

Figure 7. Annual (a, b) and growing season (c, d) spatial distributions of SPEI.

To further explore the mechanism of the spatial reversal of the dry-wet regime in the YZR basin
around 2000, the annual and growing season slopes of the SPEI from 1982 to 2015 with the significance
test were analyzed at the pixel scale (Figure 8). It could be found that the western upstream and
southeastern downstream regions in the YZR basin presented a gradually drying trend over the past
34 years, while the eastern upstream and midstream regions became wetter, which was consistent
with characteristics shown in Figure 7. According to Figure 8a, the mean annual SPEI exhibited an
upward trend (slope > 0) accounting for 55.07% of the total basin area, indicating a humidification
process, whereas an opposite trend (slope < 0) occurred in the remainder of the basin. As shown in
Table 5, the results of the significance test at the pixel scale indicated that the areas where the annual
SPEI showed an extremely significant decrease and a significantly decreasing trend accounted for
10.9% and 2.3% of the total basin respectively, while the areas with an extremely significant increase
and a significantly increasing trend of the annual SPEI accounted for 18.05% and 8.25% respectively,
inducing an overall wetting process from 1982 to 2015 in the YZR basin. Similar to the annual SPEI,
the growing season SPEI indicated a wetting trend (slope > 0) across 55.54% of the basin area, while a
drying trend (slope < 0) occurred in the remaining areas. The results of the significance test for the
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growing season SPEI at the pixel scale indicated that the area proportions with an extremely significant
decrease and a significant decrease in SPEI were 8.7% and 2.03% respectively, while the areas with
an extremely significant increase and a significant increase in SPEI occupied 15.21% and 8.87% of the
basin respectively.

Figure 8. Annual (a, b) and growing season (c, d) variation trends of SPEI with the significance test.

Table 5. Area ratios of the SPEI occupied by different trends.

Significance Level
Area Ratio (%)

Annual Growing Season

Extremely significant decrease 10.9 8.7
Significant decrease 2.3 2.03

Non-significant decrease 31.32 33.65
Non-significant increase 29.17 31.54

Significant increase 8.25 8.87
Extremely significant increase 18.05 15.21

Comprehensively taking the results of the temporal variations (Figure 5), spatial distribution
characteristics (Figure 7), and trend analysis with the significance test (Figure 8) of the annual and
growing season SPEI into account, the annual spatio-temporal variation characteristics of the SPEI
were consistent with those of the growth season, which both showed a reversed phenomenon before
and after 2000. In terms of the temporal variation, the YZR basin presented a wetting trend before 2000
and a drying trend after 2000, while from the perspective of the spatial pattern, the arid areas became
wetter and humid areas became drier.

3.3. Spatio-Temporal Characteristics of Vegetation

Regarding 2000 as a turning point indicated by the transition of the dry-wet regime in the YZR
basin, temporal variations of the annual and growing season NDVI were analyzed (Figure 9). The mean
annual NDVI was 0.27, which fluctuated between 0.25 and 0.28 over the past 34 years and significantly
increased at a rate of 0.002/decade (P < 0.1, n = 34), implying a gradual improvement of the vegetation
cover in the YZR basin. However, the NDVI before and after 2000 showed a completely opposite
tendency, that is, the NDVI increased significantly at a rate of 0.01/decade before 2000 (P < 0.1, n = 18),
and decreased significantly at a rate of 0.006/decade after 2000 (P < 0.1, n = 16). With respect to the
variations of the growing season NDVI, the mean NDVI was 0.34, which fluctuated between 0.31
and 0.35 during the past 34 years and increased non-significantly at a rate of 0.002/decade (P > 0.1,
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n = 34). Similar to the changes of the annual NDVI, the growing season NDVI before 2000 showed a
significantly increasing trend at a rate of 0.015/decade (P < 0.1, n = 18), and a significantly decreasing
trend at a rate of 0.009/decade after 2000 (P < 0.1, n = 16). To sum up, the NDVI-indicated vegetation
in the YZR basin gradually improved from the perspective of the annual and growing season NDVI
variations from 1982 to 2015. However, since the beginning of the 21st century, the vegetation cover
has decreased noticeably which corresponds with the simultaneously drying tendency in the whole
basin, demonstrating that the improvement of the vegetation cover before 2000 was mainly induced by
the gradual wetting of the basin while the degradation of the vegetation cover was attributed to the
drying of the basin after 2000.

 
Figure 9. Changes of the annual (left) and growing season (right) NDVI.

The mean annual and growing season spatial distributions of the NDVI from 1982 to 2015 are
portrayed in Figure 10. For the mean annual NDVI, the areas where the NDVI values ranged from
0.1 to 0.3 accounted for approximately 61.08% of the YZR basin, and were mainly located in the upper
and middle reaches and high-altitude areas of the downstream regions. Only 5.59% of the area had an
NDVI value above 0.7, and were largely concentrated in the midstream and southeastern downstream
regions. From the perspective of the whole basin, the mean annual NDVI values gradually increased
from northwest to southeast, implying a consistent improvement of the vegetation cover. The growing
season vegetation cover indicated by the growing season NDVI exhibited a similar spatial distribution
of the mean annual vegetation cover. The spatial variations of the NDVI-indicated vegetation in this
study were similar to the vegetation cover dynamic monitoring results in the YZR basin reported by
Jiang et al. [45].

Figure 10. Annual (left) and growing season (right) spatial distributions of NDVI.

The spatial characteristics of the variation trends for the mean annual and growing season NDVI
indicated by the NDVI slope in the YZR basin from 1982 to 2015 are depicted in Figure 11a,c respectively.
In terms of the mean annual NDVI, approximately 59.4% of the NDVI slope in the basin was greater than
0, denoting an increasing trend of the vegetation cover, while the slope of the NDVI in the remaining
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areas was less than 0, implying a degradation of the vegetation cover. As shown in Figure 11b, d and
Table 6, the results of the significance test showed that the areas with an extremely significant decrease
and significant decrease of NDVI accounted for 7.3% and 4.84% of the whole study area respectively,
while the areas with a non-significant increase and non-significant decrease of NDVI took up 31.24%
and 27.86% respectively, and the areas with an extremely significant increase and significant increase
of NDVI mainly located in the middle reaches occupied 22.76% and 6.1% respectively. The growing
season NDVI showed a similar variation characteristic with that of the annual NDVI, i.e., the areas
with increased vegetation cover had a proportion of 57.13% while the NDVI slope of the other areas
was less than 0, indicating the degraded vegetation cover.

Figure 11. Annual (a, b) and growing season (c, d) spatial variations of NDVI with the significance test.

Table 6. Area ratios of NDVI with different change trends.

Significance Level
Area Ratio (%)

Annual Growing Season

Extremely significant decrease 7.3 8.7
Significant decrease 4.84 3.7

Non-significant decrease 27.86 29.26
Non-significant increase 31.24 31.57

Significant increase 6.1 4.5
Extremely significant increase 22.76 22.28

In terms of the spatial variation characteristics for both the mean annual and growing season
NDVI, it could be found that the vegetation cover upstream of the YZR basin seldom changed, which
could be attributed to the specific land cover types in the upper reaches including the Gobi Desert,
glaciers, and plateau meadows, which were less affected by climate change. However, in the midstream
region, except for the high-altitude areas at the edge of the basin, the vegetation cover showed a
dramatical upward tendency, while in the downstream region, except for the high-altitude areas such
as Bomi, the vegetation cover presented a tendency of extremely significant decrease, which were
consistent with the results obtained by Lv et al. [72]. Combined with the transition characteristics of
the dry-wet regime in the YZR basin, it could be revealed that the vegetation cover increased in the
midstream and eastern upstream regions where the climate became wetter, while the vegetation cover
in the downstream and western upstream regions decreased where the climate turned drier.
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3.4. Response of the Vegetation to the Dry-Wet Transition

Based on the analysis results of the spatio-temporal evolution characteristics of the SPEI and
NDVI, it could be seen that the vegetation cover was closely related to the dry-wet regime in the YZR
basin. To further explore the influence of the dry-wet conditions on vegetation cover, a correlation
analysis between the SPEI and NDVI for both annual and growing season from 1982 to 2015 at the
pixel scale was conducted. As shown in Figure 12, about 71.57% of the basin area showed a positive
correlation between the mean annual SPEI and NDVI, while the remaining areas exhibited no or
negative correlations. The results of the significance test as shown in Table 7 demonstrated that the
areas where the NDVI was extremely significantly negatively correlated and significantly negatively
correlated with the SPEI accounted for 0.85% and 0.95% respectively, and were mainly located in the
eastern midstream and northwestern downstream regions. The areas showing a non-significantly
positive correlation and non-significantly negative correlation between the NDVI and SPEI took up
56.28% and 26.37% of the basin area respectively, and were mainly concentrated in the western upstream
and part of the midstream regions. In addition, the areas where the NDVI was extremely significantly
positive and significantly positively correlated with the SPEI occupied 10.28% and 5.27% of the basin
respectively, and were mostly concentrated in the junctions of the middle and upper reaches and the
southeastern downstream regions. As for the correlation analysis between the growing season NDVI
and SPEI, approximately 65.96% of the total area presented a positive correlation. The results of the
significance test indicated that the areas showing an extremely significantly negative correlation and a
significantly negative correlation between the NDVI and SPEI took up 1.36% and 1.55% respectively,
while the areas where the NDVI showed a non-significantly positive correlation and a non-significantly
negative correlation with the SPEI accounted for 49.62% and 30.98% respectively. The extremely
significantly positive and significantly positive correlation between the NDVI and SPEI accounted for
10.73% and 5.8% of the total area respectively.

Figure 12. Annual (a, b) and growing season (c, d) correlation analysis between the SPEI and NDVI
with the significance test.

By combining the temporal variations (Figures 5 and 9) with the spatial distributions of the
variation trends (Figures 8 and 11) for the SPEI and NDVI, it was unequivocal that the spatio-temporal
variation characteristics of the SPEI were consistent with those of the NDVI in the YZR basin, implying
the important role of the dry-wet conditions on the vegetation dynamic variations. In terms of the
temporal variation, before 2000, the YZR basin exhibited a wetting tendency and simultaneously the
vegetation cover increased, while a tendency of drying was presented after 2000, and the vegetation
cover consistently decreased. Such a synchronization phenomenon was also revealed from the
perspective of the spatial distribution where the western upstream and southeastern downstream
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regions showed a drying trend with decreasing vegetation cover, while the midstream and eastern
upstream regions displayed a wetting trend with increasing vegetation cover.

Table 7. Area ratios of NDVI and SPEI in different correlation degrees.

Significance Level
Area Ratio (%)

Annual Growing Season

Extremely significant negative correlation 0.85 1.36
Significantly negative correlation 0.95 1.55

Non-significantly negative correlation 26.37 30.98
Non-significantly positive correlation 56.28 49.62

Significantly positive correlation 5.27 5.8
Extremely significant positive correlation 10.28 10.73

4. Discussion

4.1. Implication of the Soil Water Content for the Dry-Wet Regime

The soil water content is the link between the water cycle, carbon cycle, and energy cycle [73].
It is also a key factor in associating vegetation growth with precipitation [74]. Although drought is are
caused by the below-average level of precipitation over a long period of time, it is also accompanied by
the rising temperature, decreasing atmospheric humidity, increasing evapotranspiration, and declining
soil water content [75]. Moreover, the soil water content is an important indicator of drought which
could be used to efficiently identify dry-wet conditions, and the acquaintance of the soil water content
variation is of great significance to agricultural production, ecological environment, resource allocation,
and social-economic development in China [76]. To further identify the spatio-temporal characteristics
of the dry-wet transition in the YZR basin, the soil water content variation associated with the SPEI
was investigated in this study. The soil water content was characterized by the sum of soil moisture in
four soil layers (0–10 cm, 10–40 cm, 40–100 cm, and 100–200 cm) extracted from the GLDAS-NOAH
dataset, which was represented by the water depth in millimeters.

4.1.1. Spatio-Temporal Variation of the Soil Water Content

The spatial distributions of the mean annual and growing season soil water content in the YZR
basin are shown in Figure 13. It could be seen that the regions with higher soil water content were
mainly concentrated in the high-altitude areas such as the western upstream and the boundary of the
middle and lower reaches. Except for the above areas, the soil water content decreased gradually from
northwest to southeast. To analyze the spatial variation trend of the soil water, the slope was calculated
at the pixel scale by utilizing the mean annual and growing season soil water content from 1982 to 2015.
As shown in Figure 14, the regions with higher soil water content showed a downward tendency, while
the regions with lower soil water content exhibited an increasing trend, which was consistent with
the spatio-temporal variations of the SPEI. According to the results of the significance test, the areas
showing an extremely significant decrease and significant decrease in soil water content were mostly
distributed in the upstream and southeastern downstream regions. The areas with a non-significant
increase and non-significant decrease in soil water content accounted for a small percentage of the
total basin, and were mainly concentrated in Gongga, Lhasa, and Namling, while the areas where
the soil water content increased significantly and extremely significantly were mainly situated in the
midstream and northern downstream regions.
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Figure 13. Annual (left) and growing season (right) spatial distributions of the soil water content.

Figure 14. Annual (a, b) and growing season (c, d) spatial variation trends of the soil water content
with the significance test.

4.1.2. Relationship Between the Soil Water Content and SPEI

In order to further elaborate on the transition of the dry-wet regime in the YZR basin during
1982–2015, the correlation analysis with the significance test between the annual and growing season
soil water content and SPEI are illustrated in Figure 15. The correlation coefficient between the mean
annual soil water content and the SPEI ranged from −0.204 to 0.923 in the basin, and nearly 99.59% of
the total area showed a positive correlation between the soil water content and the SPEI. According to
the results of the significance test, the area where the soil water content was extremely significantly
positively correlated with the SPEI in the basin accounted for approximately 92.17% of the basin area.
The correlation coefficient between the growing season soil water content and SPEI ranged from −0.206
to 0.938, and the soil water content was positively correlated with the SPEI in nearly 99.65% of the
basin area, among which the areas with an extremely significant positive correlation reached 97.66%.
Such close relationship between the soil water content and SPEI indicates the significantly important
role of the soil moisture for identifying the dry-wet condition in the YZR basin [56,67,76].
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Figure 15. Annual (a, b) and growing season (c, d) correlation analysis between the SPEI and soil water
content with the significance test.

4.2. Possible Climatic Drivers for the Dry-Wet Regime

The dry-wet transition is a comprehensive effect of climate change. Global warming leads to
an increase in the terrestrial temperature, while the rising temperature also generates an increase
in evapotranspiration, which results in drought and other meteorological disasters [77]. To further
investigate the possible physical mechanism of the reversal phenomenon of the dry-wet regime in the
YZR basin before and after 2000, the spatial distributions of variation trends for the mean annual and
growing season precipitation, temperature, and potential evapotranspiration (PET) were comparatively
analyzed. As shown in Figures 16 and 17, the spatial variation trends of the annual and growing season
precipitation, temperature, and PET during 1982–2015 showed identical consistencies in the YZR basin,
i.e., the precipitation in the western upstream and southeastern downstream gradually decreased,
while the temperature and PET exhibited an increasing trend in the same areas; the increasing trends of
the precipitation, temperature, and PET all occurred in the western upstream and eastern midstream;
and a tendency for the increase in precipitation in the eastern midstream appeared, while there was a
declining tendency for temperature and PET. Compared to the spatial variation characteristics of the
SPEI (Figures 7 and 8), in the humid regions within the basin, the precipitation presented an increasing
trend while the temperature and PET showed a decreasing trend, whereas, the reversal phenomenon
occurred in the arid region within the basin, i.e., there was a decreasing trend in the precipitation and
an increasing trend in the temperature and PET. To sum up, the spatial distributions and variation
trends with the significance test of the precipitation, temperature, PET, and soil water content showed
high consistencies with those of the dry-wet regime indicated by the SPEI in the YZR basin, especially
the soil water content.
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Figure 16. Analysis on the spatial variation trends of the annual precipitation (a, b), temperature (c, d),
and PET (e, f) with the significance test.

Figure 17. Analysis on the spatial variation trends of the growing season precipitation (a, b), temperature
(c, d), and PET (e, f) with the significance test.
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5. Conclusions

Based on the performance evaluation of the GLDAS-NOAH data by using the in-situ data from
20 gauging meteorological stations, the transition characteristics of the dry-wet regime in the YZR
basin indicated by the SPEI and runoff were identified, which were combined with the satellite-based
NDVI to investigate the dynamic responses of the vegetation. The hydro-meteorological factors
including the soil water content, precipitation, surface air temperature, and PET were taken into
consideration to explore the possible driving mechanisms of the dry-wet transition from 1982 to 2015
and the comprehensive impacts on vegetation dynamic variations. The conclusions are as follows:

(1) During the period of 1982–2015, the precipitation and surface air temperature simulated by the
GLDAS-NOAH both showed high consistencies with the in-situ observed data in terms of the spatial
and temporal variation patterns, implying a reasonable performance of the GLDAS-NOAH data in the
YZR basin.

(2) The transition characteristics of the dry-wet regime indicated by the SPEI from 1982 to 2015
revealed that the YZR basin presented an overall wetting tendency, while the spatial and temporal
characteristics of the dry-wet conditions reversed before and after 2000, that is, the basin showed a
wetting trend before 2000 and a drying trend after 2000; the arid areas in the basin showed a tendency
of wetting, whereas the humid areas exhibited a trend of drying.

(3) The NDVI-based vegetation in the YZR basin exhibited an overall increasing trend during
1982–2015, implying an improvement in the vegetation cover. However, a simultaneously reversal
phenomenon of the vegetation variation was also detected before and after 2000, i.e., the vegetation
cover in the basin increased before 2000 and decreased after 2000. From the perspective of spatial
distribution, the area with higher NDVI values showed a degrading trend of vegetation cover, while the
areas with lower NDVI values presented a greening trend with the improvement of vegetation cover.

(4) Approximately 70% of the basin area showed a positive correlation between the SPEI and
NDVI, and were mainly located in the middle and lower reaches with high vegetation cover. However,
the proportion of areas showing a negative correlation between SPEI and NDVI was small and not
statistically significant. The high consistencies between the spatial and temporal variation characteristics
of the NDVI and SPEI indicated that the dry-wet conditions played an important role in vegetation
variations in the YZR basin.

(5) The investigation of possible driving factors for the dry-wet regime demonstrated that the
spatial distributions and variation trends with the significance test of the precipitation, temperature,
PET, and soil water content showed high consistencies with those of the dry-wet regime indicated by
the SPEI in the YZR basin, emphasizing a great necessity to explore the physical mechanism of the
dry-wet transition associated with the vegetation dynamics.
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Abstract: The hydrological regime in arid and semi-arid regions is quite sensitive to climate and land
cover changes (LCC). The Three-North region (TNR) in China experiences diverse climate conditions,
from arid to humid zones. In this region, substantial LCC has occurred over the past decades due to
ecological restoration programs and urban expansion. At a regional scale, the hydrological effects
of LCC have been demonstrated to be less observable than the effects of climate change, but it is
unclear whether or not the effects of LCC may be intensified by future climate conditions. In this
study, we employed remote sensing datasets and a macro-scale hydrological modeling to identify
the dependence of the future hydrological regime of the TNR on past LCC. The hydrological effects
over the period from 2020–2099 were evaluated based on a Representative Concentration Pathway
climate scenario. The results indicated that the forest area increased in the northwest (11,691 km2) and
the north (69 km2) of China but declined in the northeast (30,042 km2) over the past three decades.
Moreover, the urban area has expanded by 1.3% in the TNR. Under the future climate condition,
the hydrological regime will be influenced significantly by LCC. Those changes from 1986 to 2015
may alter the future hydrological cycle mainly by promoting runoff (3.24 mm/year) and decreasing
evapotranspiration (3.23 mm/year) over the whole region. The spatial distribution of the effects
may be extremely uneven: the effects in humid areas would be stronger than those in other areas.
Besides, with rising temperatures and precipitation from 2020 to 2099, the LCC may heighten the
risk of dryland expansion and flooding more than climate change alone. Despite uncertainties in the
datasets and methods, the regional-scale hydrological model provides new insights into the extended
impacts of ecological restoration and urbanization on the hydrological regime of the TNR.

Keywords: hydrological cycle; Three-North region; climate change; land cover change; Variable
Infiltration Capacity (VIC) model; evapotranspiration; runoff; soil moisture

1. Introduction

Global climate has changed dramatically over the past few decades as demonstrated by many
studies [1–3]. Mainly due to human activities, land cover also has experienced various and rapid
changes, especially in recent decades [4–7]. Both changes in climate and land cover could greatly
affect the hydrological cycle [8–12] regarding water balance and energy balance processes at various
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scales [13]. These changes are more likely to result in serious consequences, such as droughts and
floods, in arid and semi-arid regions, where the environment is much more vulnerable than in humid
areas [14].

The Three-North region (TNR), which is composed of Northwestern, Northern, and Northeastern
China, covers arid, semi-arid, and humid areas. The TNR is also an ecologically fragile area, where land
degradation has been very serious due to both human activities and changes in natural conditions since
the last century, especially in the Northwestern region [15]. In order to solve this problem, the Chinese
government has launched a series of ecological restoration programs, beginning in 1978, including the
Three-North Forest Shelterbelt (TNFS) program and the restoration of farmland to forest area [15,16].
Meanwhile, other land cover changes (LCC), such as urban expansion and industrialization, have been
accelerating since the population has increased sharply [17]. As a result, land cover in the TNR has
radically changed over the past 40 years.

There have been many studies in which hydrological responses to climate change and LCCs have
been detected through observation or simulation. Based on observation data, the potential evaporation
and actual evaporation in most basins of the TNR, and the resulting annual streamflow, had been
decreasing from the 1960s until the start of this century [18]. From the 1960s to the 2010s, the observed
streamflow showed a negative trend in the Songhua Basin [19], but a positive one in the Tarim River
Basin [20].

Some researchers employed hydrological models, such as the Variable Infiltration Capacity (VIC)
model, to simulate the hydrological cycle over this region. Hydrological models have their advantages
in considering forces from climate, land cover, soil and topography conditions. In the Yellow River
Basin which is in TNR, simulation results of VIC model have indicated that the effects of climate
change were stronger than those of LCC [21,22]. Some studies have also focused on future changes in
the hydrological cycle and applied the VIC model to detect the hydrological response to future climate
change under a Representative Concentration Pathway (RCP8.5) scenario and found that, in Northern
China, the evaporation and runoff will increase, while soil moisture will decline [23].

Since ecological restoration programs first began, a few studies have been performed to determine
whether or not they have had a positive impact. Results show that from 1970s, with the growing
afforestation, windy days and dust storms have declined sharply over a wide range of area.
In Northwest, North and Northeast China, the number of windy days had decreased by nearly
50%, and so did the number of dust storms. However, a few studies also show that the effectiveness of
these programs may have been overestimated [15]. Although they have had some beneficial impacts
on controlling dust storms in arid and semi-arid areas in China, the ecological improvements have
been very limited. The desertification rates (fractions of total area that has undergone desertification)
did not decline after the construction of the afforestation programs, and even rose in some zones.
For example, in northeast China, the rate was more than 40% in early 2000s, which is over four
times that in mid-1970s [15]. Furthermore, some simulation results have suggested changes in the
hydrological conditions of the TNR are mainly due to climate change, especially the redistribution of
precipitation, while the contribution of LCC may be very minimal. From 1989 to 2009, climate change
contributed to a loss of over 25 mm in ET and over 14 mm in R, while LCC only resulted in small
changes no more than 2 mm in these two elements [24].

The majority of studies on the effects of LCC have focused on historical periods, using different
methods, such as observation or stimulation based on historical data. However, in future, the climate
may be different, since there has been a warmer trend globally, and the effects of LCC may be also
influenced by climate change. So, the question remains: will the effects of past LCC on hydrological
cycle be changed under future climate scenario within the TNR? Additionally, the exploration can
be seen as an evaluation of ecological programs, since the LCC over TNR were affected significantly
by those programs, especially in semi-arid and arid areas. The programs have been in place for over
40 years, yet their influence may not be well-recognized due to the short time series.

214



Remote Sens. 2019, 11, 81

In this study, the dependence of the future hydrological regime (2020–2099) on past LCC (from
1986 to 2015) in the TNR was evaluated. A macro-scale hydrological model (i.e., the variable infiltration
capacity (VIC) model [25,26]) was employed to simulate the hydrological processes over the entire
region. Model simulations were performed based on different vegetation parameters generated by
datasets from historical land cover information, and the simulations were forced with climate data sets
from global climate models (GCMs) from the Inter-Sectoral Impact Model Inter-comparison Project
(ISI-MIP) [27]. As this study was aimed at understanding the implications of past LCC on the future
hydrological regime, model simulations were performed using historical land cover data rather than
the projected future land cover information. The work can be seen as an evaluation for the effects
of the ecological restoration programs constructed in past decades, since these programs played a
significant role in altering land cover condition, so it may provide some guidance for the following
construction of the programs.

2. Data and Methods

2.1. Study Area

The TNR located in the north of China, covers more than 50% of the land area in China,
nearly 5.3 million km2 (Figure 1). More than 551 counties across 13 provinces are contained in
this region, including Beijing-Tianjin-Hebei, Harbin-Changchun, and other metropolitan areas, where
the population has risen sharply. The population in TNR has increased from 344.10 million in 2000
to 384.06 million in 2016 (these data are available at the website of National Bureau of Statistics of
China: http://www.stats.gov.cn/). As a result, the urban areas in TNR have been expanding rapidly.
There are five large river basins in this region: The Inland River Basin (IRB), Yellow River Basin (YRB),
Hai River Basin (HRB), Liao River Basin (LRB), and Songhua River Basin (SRB), from west to east.
In fact, the study area is slightly larger than the area of the TNFS because we assess hydrological
responses at close to the basin level.

Figure 1. Distribution of land cover types for the year of 2015 in the Three-North region (TNR),
where five basins, i.e., the Inland River Basin (IRB), Yellow River Basin (YRB), Hai River Basin (HRB),
Liao River Basin (LRB), and Songhua River Basin (SRB), distributed in this region.
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The eastern part of this region is mainly influenced by the East Asian Monsoon, and the western
part exhibits a typical continental climate [28]. According to the historical datasets from 1959–2009,
the climate across the TNR shows great spatial heterogeneity (Figure 2). The annual precipitation
reaches more than 1000 mm/year in the southeast, and gradually declines to less than 50 mm/year
in the northwest, with an obvious gradient between these endpoints. Mean annual temperature also
presents a wide range of spatial variation, from above 12 ◦C in the south of the HRB and YRB to under
0 ◦C in the north of the IRB, but without any apparent gradient over the area as a whole.

Figure 2. Annual mean temperature and annual precipitation from 1959 to 2009 in the TNR, IRB, YRB,
HRB, LRB, and SRB of China.

According to the land cover map for the year 2015 (Figure 1), the land cover over this region
also exhibits distinct spatial variability [29]. In the SRB, forestlands account for nearly 50% of the
land cover, and in the YRB, grasslands cover nearly half of the area. In the SRB and LRB, which are
densely populated, the dominant land cover type is cropland, while in the IRB, over 60% of the area is
unutilized. Additionally, the proportion of urban lands is minute in all basins. In the entire region,
over 35% of the area is unutilized, including bare lands and bodies of water, and the most abundant
vegetative land cover type is grassland, at nearly 30%, with forestland and cropland coverage being
approximately equal at 15%, and the least abundant land cover type is the urban area, at no more
than 2%.

2.2. Hydrological Model

The VIC model is a semi-distributed physically-based hydrological model. It can simulate water
and energy balance. In the model, a study area is divided into grids according to latitudes and
longitudes, and all the calculations are done in each grid separately. In each grid, all elements are
computed based on different land cover types, before being averaged according to their correspondent
fractions [25,26]. Since the model has been proved to perform well over a range of scales [30,31], we
employed it in our study. Here, the spatial resolution of modeling is at 0.5◦ × 0.5◦ to ensure consistency
with the climate forcing data.

2.3. Data Availability

2.3.1. Vegetation and Soil Parameters

To produce the vegetation parameters for VIC, land use maps and the average leaf area index
(LAI) over 12 months are necessary. The two land use maps obtained were created by merging Landsat
Thematic Mapper (TM) images for the periods ranging from 1983–1986 and 2010–2015. In these studies,
land cover conditions were divided into 12 types as in Figure 1. A human–computer interactive
interpretation method of remotely sensed land use cover information was used to interpret these maps,
and the accuracy was over 90% [29,32]. The LAI datasets were available from the Global Land Surface
Satellite (GLASS) products (http://www.bnu-datacenter.com/) that were retrieved from the Moderate
Resolution Imaging Spectroradiometer reflectance data (MOD-09A1) using a general regression neural
network algorithm [33]. The resulting combinations of land use and LAI datasets for the two collection
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periods (1983–1986 and 2010–2015) were referred to as “LC1986” and “LC2015,” respectively. The other
parameters, except for the LAI, in the VIC vegetation library data were set as in the study of a previous
study [24]. We assumed that the differences between the two combination datasets could accurately
represent the progress accomplished by the ecological programs and other factors from 1986 to 2015.
The soil parameters were set according to those of a previous study [24], in which the parameters were
derived based on the Food and Agriculture Organization of the United Nations (FAO) digital soil map
of the world, and they were previously evaluated at a global scale [34,35].

2.3.2. Bias-Corrected Climate Datasets

The climate data sets used in this study are from the Inter-Sectoral Impact Model Inter-comparison
Project (ISI-MIP), and are available at: https://esg.pik-potsdam.de/. This project provides a
framework to compare climate impact projections in different sectors and at different scales, which
enable quantitative synthesis of climate change impacts at different level of global warming [27].
A new bias-correction method was developed within the first stage of this project, which can reduce
the bias between daily or monthly simulated and observed climate data, while maintaining the absolute
or relevant long-term trend much better than previous methods [36]. In this study, bias-corrected
climate data from five GCMs (HadGEM2-ES, GFDL-ESM2M, IPSL-CM5A-LR, MIROC-ESM-CHEM,
and NorESM1-M) with a daily time step were selected in order to lessen the uncertainty of a single
model. Considering that the RCP8.5 scenario, in which the anthropogenic radiative forcing will
approach 8.5W m−2 by 2100 and the concentration of CO2 will be 3–4 times the present value,
estimates extremely severe circumstances in future, evaluation of this scenario was assumed to
be more important than for others scenarios [37]. Five meteorological datasets were provided
under this scenario: precipitation, maximum temperature, minimum temperature, mean wind speed,
and downward shortwave radiation at a 0.5◦ × 0.5◦ spatial resolution, daily time steps from 2006
to 2099 were collected to generate the climate forcing data. These data are accessible at https:
//www.isimip.org/outputdata/caveats-fast-track/. Among these data, precipitation, temperature,
and wind speed are necessary to force the VIC model, and the downward shortwave radiation plays an
important role in detecting the effects of land cover on the hydrological cycle, as it will be redistributed
differently according to the various vegetation types.

2.4. Experimental Design

In this study, the VIC model was run based on climate forcing datasets from the five GCMs, as
described in Section 2.3.2, and the simulation results were averaged to reduce the uncertainties from the
forcing data. Moreover, the model parameters described in Section 2.3 have been extensively validated
by a previous study [24], with 15 stations of streamflow data and 10 stations of evapotranspiration (ET)
data. The model has shown a favorable performance, with an average Nash–Sutcliffe efficiency for
streamflow of 0.55 and a Pearson correlation coefficient for the ET of greater than 0.5 [24]. Therefore,
we did not further validate the model parameters.

To identify the impact of historical LCC on the future hydrological regime in the TNR, the present
land cover state (corresponding to the LC2015 data) was assumed to remain constant throughout
the study period. Thus, two simulation experiments were conducted with different land cover and
vegetation input data. The first experiment involved running the model with the LC2015 data to
explore changes in the hydrological cycle under the influence of climate change alone. We paid the
most attention to the ET, runoff (R), and soil moisture (SM), as these three hydrologic features play
important roles in the water cycle, and their values can reflect the ecological conditions of the area
to some degree. The time series of the climatic (i.e., precipitation and temperature) and the three
hydrological variables were divided into four periods: 2020–2039, 2040–2059, 2060–2079, and 2080–2099
to lessen the uncertainties of a single year in the analysis. The spatial distribution for the four periods,
as well as the annual mean values over the entire region, were analyzed to determine the hydrological
response to climate change across the TNR.
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The second simulation experiment ran the model with the LC1986 data for the same period as in
the first simulation. Therefore, the two experiments differ only with respect to their land cover and
vegetation data, respectively regarded as the land cover conditions after afforestation (LC2015) and
before afforestation (LC1986). Comparison of the two experiments can be used to identify the effects of
past LCC on the future hydrological regime under RCP8.5 scenario. The comparative analyses between
the two experiments were conducted over different basins and periods. The annual differences and
the spatial distribution of the annual mean differences between the two experiments were evaluated to
measure the effects of afforestation on the hydrology across the TNR. We also analyzed the differences
in four seasons, so as to explore the different effects of LCC in different seasons.

3. Results

3.1. Past Changes in Land Cover

We first identified past LCC. According to the data from Liu et al. (2014), we focused on four
primary land cover types: forests, grasslands, croplands, and urban areas. As shown in Table 1, urban
expansion played an important role over the last 30 years in the TNR, leading to a substantial decrease
in the cropland and grassland areas of most basins. In the HRB, the urban area expanded from 2.5% to
9%, resulting in a decrease in cropland areas, and in the LRB, the urban area doubled, which caused
a decline in the other land cover types. In the western three basins, the IRB, YRB, and HRB, due to
afforestation projects, the forest area has slightly increased. The YRB is the basin where the forestland
increased the most, from 12% to 13%, and the increases in the other two basins were under 0.4%.
Meanwhile, in the other two basins, the SRB and LRB, the forest area decreased, especially in the
SRB, where the reduction was greater than 3%. The reason for the reduction in forestlands in these
two basins may be the expansion of croplands and urban areas. For the entire region overall, the
proportion of forestlands, grasslands, croplands, and others land cover types all decreased because of
the expansion of urban areas.

Table 1. Fractions of primary land cover types of the TNR in 1985 and 2015.

Basin Year Urban Forest Grass Crop Others

TNR
1985 0.5% 15.3% 30.5% 15.9% 37.8%
2015 1.8% 14.9% 30.0% 15.9% 37.4%

IRB
1985 0.1% 1.8% 33.4% 3.8% 60.9%
2015 0.5% 2.1% 32.8% 4.4% 60.2%

HRB
1985 2.5% 19.2% 19.8% 56.0% 2.5%
2015 9.0% 19.4% 19.6% 48.7% 3.3%

YRB
1985 0.7% 12.0% 47.7% 29.2% 10.4%
2015 3.0% 13.0% 46.9% 26.2% 10.9%

SRB
1985 0.5% 48.8% 17.5% 24.8% 8.4%
2015 1.8% 45.6% 17.5% 27.0% 8.1%

LRB
1985 1.7% 23.5% 26.7% 39.8% 8.2%
2015 4.6% 23.2% 24.7% 39.0% 8.4%

Due to afforestation programs and favorable climate conditions, the vegetation in the TNR has
grown substantially. We calculated the vegetation index (i.e., the mean LAI from January to December)
across the TNR, and the results are shown in Figure 3. Because of the growth of vegetation, the LAI
peaked from July to August, and exhibited the lowest values from December to February. The average
values between 1983–1986 and 2011–2015 were compared, and the results show that there has been a
great improvement in the LAI over the entire region, especially in July and August when it increased
by over 0.5.
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Figure 3. Mean monthly leaf area index (LAI) of the TNR in 1985 and 2015.

3.2. Future Climate Change

To determine the temperature changes projected for the future under the RCP8.5 scenario, we
averaged the datasets of five models, and averaged the maximum and minimum temperatures as the
mean temperature. In order to correspond to the hydrological changes analyzed, we also selected the
period from 2020–2099 as the experimental interval. The mean annual temperatures (MATs) across
two different periods, 2020–2039 and 2080–2099, are shown in Figure 4. We found that the spatial
pattern across the TNR may not change in future. The HRB will remain the hottest basin, while the SRB
will remain the coldest, and the differences between the two periods were very similar in each area.
The northeast of the SRB and the north and southwest of the IRB are the areas where temperatures
will increase the most, by more than 3.6 ◦C, and in the south of the YRB, the change will be slightly less
at ~3 ◦C. The MAT of the entire region will rise steadily from nearly 5.5 ◦C to over 10 ◦C (Figure 5).

Figure 4. Projected mean annual temperature (MAT) and mean annual precipitation (MAP) over two
periods (2020–2039 and 2080–2099) and their differences (Δ).
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Figure 5. Projected MAT and MAP across the TNR.

The spatial pattern of precipitation also may not exhibit obvious changes obviously; there will
remain an obvious declining gradient from the southeast to northeast. As shown in Figure 3, the south
of the LRB will remain the wettest area, where the annual precipitation will be over 1400 mm from
2080–2099, and the west of the IRB will be the driest, remaining under 50 mm. Additionally, except
in some small zones in the west and north of the IRB, the precipitation will increase from 2020–2039
to 2080–2099 over the entire TNR. The spatial distribution of difference is consistent with that of the
precipitation, with the southwest experiencing the most change (more than 180 mm), and the northeast
experiencing the least, less than 10 mm or even less than 0 mm. The mean annual precipitation (MAP)
of the entire region is shown in Figure 5. There will be a positive, linear trend overall, but the variability
will also rise, which means that the discrepancy between the years will also increase. As for wind
speed and downward shortwave radiation, no remarkable changes were found (the results were
not shown.).

3.3. Hydrological Responses to Future Climate Change

We examined the changes in three hydrological variables, ET, R, and SM, from the VIC model,
based on the input of the LC2015 data. As with the analysis of climate change, all values were averaged
by the five simulations that were driven by data from the five GCMs, as described in Section 2.3.1.
Additionally, we focused on the period from 2020–2099, since the period from 2006–2019 was set as the
warm-up period for the VIC model.

The annual mean ET, R, and SM in two corresponding periods (i.e., 2020–2039 and 2080–2099)
are shown in Figure 6. The distributions of ET and R are similar to that of precipitation. In the period
from 2080–2099, ET decreased from over 1000 mm in the southeast to under 50 mm in the northwest,
and R from more than 400 mm to less than 10 mm. Due to the complex spatial variabilities in climate
and land surface conditions, the distribution of SM differed from those of ET and R. Across the three
eastern basins (i.e., the SR, LR, and HRB), the SM in most areas will be greater than 700 mm, while
over the majority of the other two basins, the SM will remain under 400 mm, and even under 200 mm
in some areas. In each basin, it was obvious that the SM may rise in those areas where the soil was
wetter, but decline in the drier areas.

The three hydrological variables exhibited significant temporal changes. Comparing the results
from the two periods (2020–2039 and 2080–2099), we found that ET will increase over the vast majority
of the TNR because of the increases in precipitation and temperature. This increase may approach over
150 mm in the southeast, especially in those areas with forest cover. As for SM, the changes appeared
closely related to the land cover type. In the entire region, rising temperatures will aggravate the water
loss by ET, especially in the areas with forest cover in the SRB, LRB, and HRB, as well as in the areas
with grassland cover in the IRB and YRB, leading to a decrease in SM, although precipitation will also
greatly increase SM. In other areas, the increase in precipitation will be able to compensate for the loss
by ET, so the SM will increase. The center of the SRB and northwest of the IRB are the areas where SM
will increase the most; in the southwest of the YRB and as the south of the SRB, the SM will decrease
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the most, by over 20 mm. The changes in R will be directly influenced by the changes in precipitation,
ET, and SM. In most areas, the R will increase, while decrease only in some small zones.

Figure 6. Mean annual evapotranspiration (ET), runoff (R), and soil moisture (SM) during two periods,
2020–2039 (left) and 2080–2099 (middle), and their differences (Δ).

The annual mean ET, R, and SM for the entire TNR are shown in Figure 7. As with the changes in
precipitation, the ET and R will both experience a positive and fluctuating trend. Because of rising
temperatures, the trend of ET is more pronounced than that of R, and the fluctuations in R are greater
than those of ET. The SM will increase in the first 20 years and then remain relatively stable at 510 mm
from 2030 onward.

Figure 7. Projected mean annual ET, R, and SM across the TNR.

3.4. Hydrological Effects of Past Land Cover Changes (LCC)

Based on the two simulation experiments performed in this study, we can quantify the contribution
of past LCC on the future hydrological regime. The differences in ET, R, and SM between the two
experiments for the period from 2080–2099 are shown in Figure 8. It is obvious that across nearly all the
TNR, LCC will result in a reduction of ET, as the areas with vegetation cover decreased, as illustrated
in Section 3.1, though the LAI increased to some degree. In particular, the center and the southeast of
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the HRB is the area where the ET decreased most distinctly, by over 40 mm. Only in a few grids, such
as in the center and the east of the SRB and the center of the YRB, where the ET increase within a range
of 40–60 mm. As for the changes in R, the distribution is somewhat complex. Contrary to that of ET, in
a majority of the eastern part of the TNR, R will increase, which is mainly because of the reduction
of ET. The center and southeast of the HRB will be the place where the difference is the greatest, by
over 40 mm. Some grids in the east of the SRB are the areas where R will decrease the most, by more
than 60 mm in 2080–2099. As for the west part of TNR, R will increase in nearly half of the grids and
decrease in the others grids, while the range may not be greater than 20 mm. As SM is very sensitive
to the ET process, its distribution is similar to that of R across the majority of TNR, but the maximum
increase will be in the center and southeast of the HRB, where urban expansion is the most intense,
and will reach over 80 mm. SM will decrease in some areas in the SRB by over 80 mm. In contrast, in
some areas across the northeast of the IRB, SM will decrease by more than 120 mm. Overall, the effects
of LCC on R and SM may be positive in the SRB, LRB, HRB, and YRB, but negative in the IRB.

Figure 8. Shifts in annual ET, R, and SM for 2080–2099 driven by past land cover changes (LCC).

The annual mean changes in ET, R, and SM are shown in Figure 9. Obviously, the changes in land
cover will cause a decrease in ET, as well as increases in R and SM. Similar to the change in annual
precipitation, there is a positive trend in these effects over time, which means that under the RCP8.5
scenario, LCC will more strongly influence the hydrological cycle in the future than at present.

Figure 9. Projected average annual changes in ET (left), R (middle), and SM (right) between the two
results, based on different land cover datasets across the TNR.

The shifts in the hydrological regime due to past LCC also exhibit obvious seasonal variability;
Figure 10 shows the shifts in ET among the four seasons across every basin. Across most of the basins,
the effects in spring, summer, and autumn will be negative, while they will be positive during winter.
For example, across the YRB from 2080–2099, the shift will be nearly 0.1 mm in winter, and −1.9 mm,
−3.1 mm, and −0.4 mm in spring, summer, and autumn, respectively. Moreover, the HRB will be
the most strongly affected, with a change of over 10 mm in the summer; the magnitude of change
observed in the HRB is followed by that for the LRB (~9 mm in the summer), and in the IRB, where
effects are the weakest, there will be a change of no more than 0.5 mm. The effects of LCC on R and
SM across the TNR are shown in Figure 11. In every season, the shifts in R and SM due to LCC will be
positive, and stronger from 2080–2099 than in other periods. Especially in the summer, R and SM may
significantly by ~2 mm. A similar positive pattern will likely appear in each of the five basins despite
different amounts of change.
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Figure 10. Projected changes in ET between the two results (based on different land cover datasets) of
each season and different periods, over the five basins in the TNR.

Figure 11. Projected changes in R and SM between the two results, based on the different vegetation
parameters of each season.

4. Discussion

4.1. Extended Effects on Hydrological Regimes of Climate Change and LCC

In this study, we detected the future hydrological regime based on current land cover condition
(LC2015) at first. In previous studies about the predicted hydrological regime in TNR, especially
under the most extreme scenario, some similar results were obtained. Over the entire region, annual
ET may increase steadily under RCP8.5 scenario, possibly due to the increasing temperature and
precipitation [23]. Other researchers found that annual R would increase in most areas of TNR,
especially in eastern basins [38], which is consistent with our study. Additionally, other study also
found the interannual changes in ET and R may be expanded under RCP8.5 scenario, which means
they may be more fluctuating in future [23], resulting from the fluctuating P. Those studies all predicted
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an uneven distribution in changes of R. In those humid areas, the increase in R may be much more
than that in arid and semi-arid areas, and in some arid areas over Northwest China, the R may
even experience a decrease [23,38]. The reason may be that in humid areas, the increase in P could
compensate for the water loss caused by ET, while in those arid or semi-arid areas it could not.
Many studies based on various scales and time series have summoned a similar result: “Wet get
wetter, dry get drier” [39–41]. In our study, the SM in those areas densely covered by vegetation may
experience a decrease in future, while in other areas the SM would rise in contrary. It can be attributed
to the effects in promoting ET by vegetations, especially driven by increasing temperature. In other
study, researchers predicted that over each basin in TNR, the SM would decline in future [23], which is
inconsistent with our study, and those differences may be caused by the choose in soil depth.

Then we explored the dependence of the future hydrological regime on past LCC. With the
progress of ecological restoration from 1986 to 2015, including afforestation, the forest area increased
in North China (i.e., in the HRB) and in Northwest China (i.e., in the IRB), but decreased in Northeast
China (i.e., in the HRB and LRB). The TNR also showed a significant increase in urban area of ~1.3%
(52,701 km2) due to rapid urbanization. Results show that compared to the effects of climate change,
those of LCC would be far less observable. Based on past climate condition, other study has found
the similar conclusion that the LCC did not obviously alter the hydrological regime at a regional
scale [24]. There was also study that found the afforestation did not help solve, and even aggravate the
desertification in arid and semi-arid areas [15]. However, although the effects may be less observable
than those of climate change, our study found that under the projected climate scenario they may also
be intensified, and could be able to alter the hydrological regime in some areas. Growing temperature
and precipitation may be responsible for the amplification in those effects. We also explored the effects
in different seasons. Most improved R and SM may occur in summer, because P in this season may
be much more than in other seasons and the abundance of water resources could intensify the effects
of LCC.

4.2. Implications

Our results predicted the future hydrological regime under RCP8.5 scenario, and it may bring
some consequences. The increasing ET will likely lead to drier conditions in the TNR, especially
in those arid regions (i.e., the IRB), where the SM may decrease. This finding imply that climate
change may cause dryland expansion and exacerbate the risk of land degradation and desertification.
Moreover, R would also rise in future, particularly in areas with dense population (i.e., the HRB),
which may enhance the risk of flooding. Besides, the fluctuation in R may lead to the amplification
of the inter-annual gap in water resources, so more solutions may need to be done to balance the
temporal distribution.

Land cover change due to urbanization may slowly inhibit the increase of ET to some degree, but
accelerate R in most areas. These effects are much stronger in the eastern basins than in the western
ones. The majority of arid and semi-arid areas are located in the IRB, where effects are limited, while
in the humid areas, such as the SRB, LRB, and HRB, increasing R caused by LCC may increase the risk
of floods in the summer, especially in those places where the cities are densely structured. Considering
that climate change may also have the similar effects, floods in these areas would be severe problems.
Additionally, in arid and semi-arid regions, such as IRB, the ecological restoration programs have
expanded the areas of forest or grass, and such change may increase the ET and decrease the R and
SM, which can further intensify desertification and other forms of environmental degradation, since
the rising temperature may have exacerbated these risks.

Overall, the progress of ecological programs may be unable to help balance neither spatial nor
temporal distribution. In humid areas, the risk of floods may be heightened, especially in summer,
while in arid and semi-arid areas, the desertification and drought could not be solved. Such results
could aggravate the results “dry get drier, wet get wetter”, which are caused by climate change [39–41].
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4.3. Potential Limitations

Potential limitations still exist in this study with respect to the data, the methods, and modeling.
First, there are biases within the projected climate datasets. Our study was focused on detecting
the regularity of hydrological changes in the future, so such biases could be neglected to some
degree. Second, the RCP8.5 scenario that was considered in this study is much more extreme than
others scenarios, and we only explored the hydrological response under this scenario. However,
when only one scenario is considered, it may result in uncertainties, so additional scenarios should
also be considered in future studies. Third, differences in the spatial resolution between the model
and land cover data may induce uncertainties in the simulations. The spatial resolution in this
study was 0.5◦ × 0.5◦, which was limited by the projected climate forcing datasets. Although the
vegetation parameters were generated with 1 km × 1 km land cover maps and LAI datasets, there
were also changes in smaller zones, especially some extreme events that could not be captured.
Perhaps downscaling the forcing data to a finer resolution can be used to ease this problem to some
degree. Finally, in this study we considered climate change and LCC as two independent factors.
However, a great number of studies have suggested that there are links between them [42,43]. We kept
the land cover condition unchanged when simulating, but the climate would change dramatically in
future under RCP8.5 scenario, and the growth of vegetation in some areas may be threatened by the
slightly increasing temperature. In our study, we intend to evaluate the hydrological effects of past
LCC (or the progress that has been achieved by series of ecological restoration programs), rather than
predicting how the hydrological regime would change in future, so this could be acceptable. If we
want to do a more accurate projection in future researches, an improved VIC model which can couple
dynamic vegetation parameters, reliable predicted land cover condition and LAI should be necessary.

5. Conclusions

This study employed remote sensing data and macro-scale hydrological modeling, and
determined the role of past LCC in reshaping the future hydrological regime across the TNR of
China. Land cover change may have imposed minor impacts on the hydrological regime over the past
three decades. In contrast, it was found in this study that LCC may play a more significant role in
altering ET and R in the future. The conclusions are as follows:

(1) There has been a significant change in land cover in the TNR over the past three decades, primarily
due to ecological restoration projects, urban expansion, and industrialization. In most basins
across the TNR, urban areas expanded, leading to the reduction of other land cover types, and
the replaced land cover types vary among basins. Forest areas increased in the south and the
west of the TNR (i.e., in the HRB, YRB, and IRB), but decreased in Northeast China (i.e., in the
HRB and LRB). With afforestation and favorable climate conditions, LAI exhibited a positive
change in all basins, and the most significant changes occurred between July and August.

(2) Climate will experience obvious changes in the TNR under the RCP8.5 scenario. Temperatures
will steadily rise in all basins at the rate of ~0.57◦ per decade from 2020–2099. The spatial pattern
of precipitation will remain unchanged, but the mean annual value will increase, except for in
some small zones in the IRB. The area where the precipitation will increase the most (by over
120 mm) will be the southeast.

(3) Forced by future climate conditions, the hydrological regime will experience various changes.
Similar to precipitation, the ET and R will increase over most of the TNR. However, the changes
in SM will vary. Specifically, over those areas with forest cover in the SRB, LRB, and HRB, and
areas with grassland cover in the IRB and YRB, the SM will decrease due to the excessive increase
in ET. However, over the areas with other land cover types, the SM may increase, mainly due to
increased precipitation. Additionally, in all basins, the SM may increase where the soil is wetter,
while decreasing in drier areas.
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(4) Land cover changes in the TNR will play different roles in influencing ET and R. Specifically, LCC
will likely slow the rate of increasing ET, while promoting increases in R, although the strength of
these effects will vary across different basins. In the SRB, LRB, and HRB, the effects are much
stronger than in other basins, and in the eastern four basins, R and SM will increase due to LCC,
while decrease in the IRB. Additionally, the effects of LCC on ET, R, and SM will all increase over
time, which means that the effects of LCC will increasingly strengthen in the future.

Compared to the hydrological effects over the past decades, the strengthening role of LCC on the
future hydrological regime can be attributed to its long-term, cumulative effects and strengthening
climate change (i.e., the rising temperature and increasing precipitation). However, the future
hydrological regime in the TNR will be primarily driven by climate change. Based on the SM, the arid
region (i.e., the IRB) may become drier and the humid regions (i.e., the east of the YRB and the south of
the HRB) may become wetter, and these effects are consistent with the standard catchphrase, “dry gets
drier, wet gets wetter” [39–41]. LCC may likely intensify these effects, implying dryland expansion
in arid and semi-arid areas and a potentially increased flood risk in humid areas, although it may
diminish ET so as to preserve water resources. Uncertainties may exist in our study, including the
interactions among climate, water, and vegetation. Coupling land use and vegetation dynamics in the
hydrological modeling can improve future hydrological projections.
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Abstract: There are a large number of lakes with beaded distribution in the semi-arid areas of the
Inner Mongolian Plateau, and some of them have degraded or even disappeared during the past
three decades. We studied the reasons of the disappearance of these lakes by determining the way of
replenishment of these lakes and the impact of the natural-social environment of the basin, with the
aim of saving these gradually disappearing lakes. Based on remote sensing image and hydrological
analysis, this paper studied the recharge of Daihai Lake and Huangqihai Lake. The deep learning
method was used to establish the time-series of lake evolution. The same method was combined
with the innovative woodland and farmland extraction method to set up the time-series of ground
classification composition in the basins. Using relevant survey data, combined with soil water
infiltration test, water chemical, and isotopic signature analysis of various water bodies, we found that
the Daihai Lake area is the largest in dry season and the smallest in rainy season and the other lake is
not satisfied with this phenomenon. In addition, we calculated the specific recharge and consumption
of the study basin. These experiments indicated that the exogenous groundwater is recharged directly
through the faults at the bottom of Daihai Lake, while the exogenous groundwater is recharged in
Huangqihai Lake through rivers indirectly. Large-scale exploitation of groundwater for agricultural
irrigation and industrial production is the main cause of lake degradation. Reducing the extraction of
groundwater for agricultural irrigation is an important measure to restore lake ecology.

Keywords: remote sensing; deep learning; Daihai Lake; Huangqihai Lake; lake degradation

1. Introduction

Lakes are generally facing rapid decline in the arid and semi-arid regions of the world [1–4].
The Inner Mongolia Plateau is a semi-arid area with much more evaporation than precipitation [5], but
there are hundreds of lakes with an area of more than 1 km2 distributed on the plateau [6], such as the
Daihai Lake, Huangqihai Lake, Dali Lake, and Wuliangsuhai Lake. These lakes are mainly distributed
in a bead chain shape in the Altun boreal margin of Yinshan mountain fracture, which is one of the two
giant faults in the China zone [7,8]. Although the area of these lakes of the plateau has decreased by
30.3% between 1987 and 2010 [9], the value was even below 35.3% in Central Asia, another typical arid
and semi-arid area, from 1990 to 2007 [6]. In order to figure out this phenomenon, determining the
recharge and discharge relationship of lakes is a key step.

Faced the situation of shrinking lakes, there are two different perspectives on the relationship between
water recharge and emissions. Firstly, local precipitation is the only source of recharge for these lakes.
The supply of lakes receives rivers and groundwater runoff, all of which come from region rainfall in the
basins [10]. Secondly, local precipitation cannot recharge groundwater through soil infiltration basically
and the main source of recharge of lakes comes from exogenous groundwater. External groundwater
recharges lakes through fault zones and other transmission channels of water [11,12]. For the first view,
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researchers calculated the amount of water that recharges into groundwater by precipitation infiltration
into soil based on a hydraulic water balance model [13]. Nevertheless, the second view negated this
opinion. Researchers verified their standpoint depending on isotope and hydrochemistry analysis.
They assumed that groundwater recharge in the basin comes from precipitation, so the weighted
average of hydrogen and oxygen isotopes of precipitation should be the same as that of groundwater.
However, through experimental analysis, the isotopes of these lakes are obviously different from those
of local precipitation and overly high soil salinity in the basin. It has been concluded that precipitation
cannot recharge groundwater and lakes to receive a recharging of external water [14].

The current research methods have some shortcomings. The first method assumed that groundwater
transportation can only be restricted to the basin. This statement is difficult to satisfy for the plateau region
where the basal fault zone develops. In the second method, due to the limited sampling, it is difficult to
collect continuous data on changes of lake water, river water, groundwater, and precipitation. The error
of data analysis results is large and it is hard to quantitatively determine the groundwater recharge.

To overcome the above problems in previous studies, this paper will study the continuous change
of lake area by remote sensing combined with on-site observation data and isotope analysis results to
determine whether these lakes accept an external groundwater supplement. Daihai Lake (the third
largest inland lake [15]) and Huangqihai lake (formerly the fourth largest inland lake in the Inner
Mongolia Plateau [16]) are selected as typical research objects. Moreover, we explored the causes of
lake shrinkage and the impact of lake shrinkage on the surrounding ecological environment through
the surface changes of the basin.

2. Study Region

The Daihai basin and Huangqihai basin are located in Inner Mongolia [17], northwest of China,
which possess arid and semi-arid climate environment Figure 1. Daihai and Huangqihai are ancient
inland tectonic lakes [18], which were born in the early Quaternary and the distance between the
two lakes is about 64 km [19,20]. The main characteristics of this region are a dry climate, sparse
precipitation, low surface wetness, and poor ecological stability. The average precipitation and
evaporation in this area are 350 to 450 mm and 1800 to 2100 mm, respectively [21]. Lakes in this
difficult natural environment often play an extremely important role in the survival of animals and
plants and in human activities.

The area of Daihai basin is about 2312 km2. There are Liangcheng County in the Figure 1 and the
total population of the area was about 249000 as of 2013. Daihai is the third largest inland lake in Inner
closed Mongolia with a maximum depth of 19.1 m [22]. Due to the large number of dams in the Daihai
basin, a small number of surface paths flow into the lake [23]. Therefore, ground surface precipitation
and groundwater are the main water supply for Daihai Lake. The Daihai Lake is almost shrinking
every year, which has become the focus of concern for the local people.

The area of Huangqihai basin is about 4480 km2. There are Ulanchab City, Chaharyouyiqianqi
County and Chaharyouyizhongqi County Figure 1 [23]. The total population of the region was about
720,000 as of 2012. The lake is a closed lake with an average water depth of three meters in 1986 [24].
The main water supply is surface precipitation, seven seasonal rivers, and groundwater. It was dried
out completely in 2006 [16]. The dry Huangqihai Lake has had significant impacts on local biological,
ecological, and human activities.

The surface runoffs flowing into Huangqihai Lake come from spring water. The hydrogen and
oxygen isotope of groundwater of the basin are significantly different from that of precipitation and
spring water. Researchers have stated that the multi-year average value of surface precipitation
isotopes in Daihai basin and Huangqihai basin is δ18O = −5.4%�, δD = −35%�; in addition, they took
44 groundwater samples (including deep well water and spring water) in the study region, with the
average value δ18O = −9.4%�, δD = −74.1%� [14]. It demonstrates that the main source of supply of the
lake is groundwater. The massive exploitation of groundwater for agricultural irrigation is the main
reason for the shrinking, or even disappearing, of the lake.
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In the third section, this paper would explain that we processed the remote sensing images through
deep learning method. In the fourth section, the use of remote sensing data would be combined with
other related data for analysis. Finally, we discussed and summarized the analysis result.

Figure 1. Location and ground observation station distribution map of Daihai basin and Huangqihai
basin, China.

3. Materials and Methods

3.1. Flowchart and Datasets

This study had two fundamental aspects. The processing flowchart is shown in Figure 2. There
are four parts in the article (different background colors are used to distinguish). First, the light orange
part is the data and method of the article. Second, the light blue part is the main evidence of the
analysis. Third, the light yellow part is the main angle of the analysis. Fourth, the light purple part
is the expansion analysis of the conclusion of the article. The first was to explore on time-series of
two different lakes’ surface area. From former study [23], we realized the lakes area had changed
dramatically. In this study, three satellites are applied, namely Landsat-5 TM satellite, Landsat-7
ETM+ satellite, and Landsat-8 OLI_TRIS satellite respectively. All Landsat data used in this study are
obtained from the United States Geological Survey (USGS) website (http://glovis.usgs.gov/) and the
Geospatial Data Cloud, Computer Network Information Center, Chinese Academy of Sciences website
(http://www.gscloud.cn/). The necessary image preprocessing steps include radiation calibration
and atmospheric correction (top-of-atmosphere, TOA) [25], which are carried out through ENVI 5.3
software. In order to observe the variation of lake area in more detail, we selected 22 remote sensing
images about each lake during the past three decades from 1984 to 2018. We selected the images of
production time as far as possible from April to June, because the water storage was relatively stable
during this period. The lake surface data sources in the study are listed in Table 1.
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Figure 2. Processing flowchart of this study.

Table 1. Remote sensing data source of study region

Daihai Lake Huangqihai Lake

Index Time Data Source Index Time Data Source

1 1984/5/26 Landsat 5(TM) 1 1984/5/26 Landsat 5(TM)

2 1986/5/16 Landsat 5(TM) 2 1986/5/16 Landsat 5(TM)

3 1987/9/15 Landsat 5(TM) 3 1987/9/15 Landsat 5(TM)

4 1989/9/29 Landsat 5(TM) 4 1989/9/29 Landsat 5(TM)

5 1990/8/22 Landsat 5(TM) 5 1990/7/14 Landsat 5(TM)

6 1992/6/17 Landsat 5(TM) 6 1992/6/17 Landsat 5(TM)

7 1994/4/4 Landsat 5(TM) 7 1994/4/4 Landsat 5(TM)

8 1996/6/3 Landsat 5(TM) 8 1996/6/3 Landsat 5(TM)

9 1998/5/24 Landsat 5(TM) 9 1998/5/24 Landsat 5(TM)

10 1999/7/14 Landsat7(ETM)
SLC-on 10 1999/7/31 Landsat7(ETM)

SLC-on

11 2000/5/22 Landsat7(ETM)
SLC-on 11 2000/5/22 Landsat 7(ETM)

SLC-on

12 2002/4/10 Landsat7(ETM)
SLC-on 12 2002/4/10 Landsat 7(ETM)

SLC-on

13 2004/6/9 Landsat 5(TM) 13 2004/6/9 Landsat 5(TM)

14 2006/6/15 Landsat 5(TM) 14 2006/6/15 Landsat 5(TM)

15 2008/9/1 Landsat 5(TM) 15 2008/9/1 Landsat 5(TM)

16 2010/5/2 Landsat 5(TM) 16 2010/5/2 Landsat 5(TM)

17 2013/4/15 Landsat 8(OLI) 17 2013/4/15 Landsat 8(OLI)

18 2014/5/20 Landsat 8(OLI) 18 2014/5/20 Landsat 8(OLI)

19 2015/5/16 Landsat 8(OLI) 19 2015/5/16 Landsat 8(OLI)

20 2016/4/23 Landsat 8(OLI) 20 2016/4/23 Landsat 8(OLI)

21 2017/4/3 Landsat 8(OLI) 21 2017/4/3 Landsat 8(OLI)

22 2018/3/5 Landsat 8(OLI) 22 2018/3/5 Landsat 8(OLI)
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The other primary field was to go into the relationship between surface material composition and
lake surface area in basin. Due to the limitations of clouds and available time, we selected eight images
about each basin during three decades from 1986 to 2018. These images are about four to five years
apart. The months of the selected samples were concentrated from May to September because this
part of the time was in a relatively stable state of summer vegetation and the amount of water was
relatively abundant and easy to observe. The surface material composition data sources in the study
are listed in Table 2.

Table 2. Remote sensing data source of study basin

Dahai Basin Huangqihai Basin

Index Time Data Source Index Time Data Source

1 1986.06 Landsat 5(TM) 1 1986.06 Landsat 5(TM)

2 1993.09 Landsat 5(TM) 2 1993.09 Landsat 5(TM)

3 1998.05 Landsat 5(TM) 3 1998.05 Landsat 5(TM)

4 2001.08 Landsat 7(TM)
SLC-on 4 2001.08 Landsat 7(TM)

SLC-on

5 2006.06 Landsat 5(TM) 5 2006.06 Landsat 5(TM)

6 2010.06 Landsat 5(TM) 6 2010.06 Landsat 5(TM)

7 2014.08 Landsat 8(OLI) 7 2014.08 Landsat 8(OLI)

8 2018.05 Landsat 8(OLI) 8 2018.05 Landsat 8(OLI)

3.2. Calculation of the Lakes Area

At present, there are many mature methods for extracting waters from optical images [26]. In this
study, we chose a deep learning approach to process images. Deep learning is a domain that has been
prevalent in recent years, especially in image classification. The continuous development of many
high-quality models has brought higher accuracy to image classification. Considering the multispectral
properties of Landsat images and the accuracy of deep learning models, we decided to use the Pyramid
Scene Parsing Network (PSPNet) [27]. All experiments are conducted on Python with tensorflow-gpu
1.14.0 and the desktop computer we used is equipped with Windows 10, Intel(R) Core (TM) i7-6800K
CPU and NVIDIA GeForce GTX 1080 8G GPU.

The traditional semantic analysis is only to obtain each pixel label of the known object, while
ResNet is based on the semantic segmentation of scene analysis, which is to obtain the category label
of all pixels in the image. Its integrated global features are more conducive to the accurate acquisition
of target pixel tags, and its algorithm effect is better than traditional methods [27]. For this work, it
is necessary to parse all the pixels in the whole image, so this method was adopted. However, this
method has so far been used less in processing optical remote sensing images, so this experiment is a
combination of optical image processing and computer vision methods.

The Pyramid Pooling Module combines features of four different scales Figure 3 [27]. The coarsest
level highlighted in red square frame in the Figure 3 that is a single bin output generated by global
pooling. The remaining three levels divide the input feature map into several different sub-areas, pool
each sub-area, and finally combine the pooled single bins containing the location information. In the
pyramid pooling module, different levels output different levels of feature maps. In order to maintain
the weight of the global features, we employed a 1 × 1 convolution kernel after each pyramid level.
If a level dimension is N, this model can reduce the dimension of context feature to 1 /N of original
feature. Then, the low dimensional feature map is directly upsampled to be the same as the original
feature map by bilinear interpolation. Finally, the feature maps of different levels are stitched into the
final pyramid pooled global features.
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Figure 3. Neural network framework of PSPNet.

Though neural networks can provide good performance through deep pre-training, the increase
of network depth may bring additional optimization difficulties for image classification. As a module
in PSPNet, the ResNet is used to extract the feature map of the input image, and ResNet solves this
problem by using a skip connection in each block. In the deep ResNet, the latter layer mainly learns the
residuals thrown by the previous layer. Based on the original ResNet, PSPNet adds an auxiliary loss
in the fourth stage in addition to the main branch of the final classifier using softmax loss. Finally, it
adds weights to balance the auxiliary loss function. The two losses are then combined, using different
weights to optimize the parameters together.

Therefore, for the input image in Figure 3, we used a pre-trained ResNet model with an extended
network strategy to extract the feature map. The final feature size is 1/8 of the input image, as shown
above Figure 3. This work utilized the pyramid pooling module Figure 3 to obtain context information
for the above feature map. The pyramid pooling module was divided into four levels, and the pooled
kernel size is the whole, half, and small parts of the image. Eventually, they can be merged into global
features. Then, in the final part of the Figure 3 module, this study connects the global features and
the original feature map. Finally, the final prediction map was generated by convolutional layers in
Figure 3.

Created data set is basic step, and we need to make a data set for the pre-processed Landsat
images for training and testing [28]. The pseudo color with the combinations of Band Red, Band
SWIR1, and Band SWIR2 are selected for the training process [29]. We selected eight images for each
lake as training samples, and selected two images for the test sample as water data sets and manually
labeled them. The annotated data set was then cut into 600 sample blocks of size 256 * 256 * 3. There is
no doubt that the number of these samples is too small to train. Therefore, we used the operations of
pan, rotate, zoom, add noise, etc. to expand the number of image samples to 30,000.

Finally, in the experiment, adopt overall accuracy (OA) to assess the accuracy of water extraction
area. The overall accuracy (OA) can be obtained by the equation

OA =
TP + TN

TP + FN + FP + TN
(1)

where TP and TN represent the pixel points whose labels are positive or negative and corresponding
result is predicted to be the same while FN and FP represent the opposite. The OA is about 98.9%.

3.3. Land Surface Classification

Similarly, we employed PSPNet method in land surface classification. OA1 and OA2 represent the
accuracy of land surface classification of Daihai basin and Huangqihai basin respectively. Classification
accuracy of each category is listed in Table 3.
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Table 3. Overall accuracy for ground classification

Construction Farmland Woodland Saline–alkali Nudation Water

OA1 96.33% 67.54% 64.59% 95.99% 96.87% 98.65%

OA2 95.88% 72.31% 69.82% 96.91% 97.02% 97.83%

Obviously, classification accuracy of farmland and woodland is low. We summarized the following
reasons, including low training samples because of the general quality original images and farmland
pixels and woodland pixels with too many similar features. In addition, the most important reason is
over reclamation in forest areas produce complex forest-staggered areas with many error classification
pixels. Thus, we had to establish an innovative means to distinguish between two similar cells.

We found those farmlands are relatively gentle area, while woodlands are relatively rugged
through an investigation into the basin. In other words, the classification of farmland and woodland
can convert to the recognition of land type. Based on this feature, we used ASTER GDEM 30 m data to
look for the relationship between DEM and land type. In this part, the random unclassified pixel is
selected as the central point and then extended around to form a large cell measuring 5 × 5 (Figure 4).

Figure 4. (a): Schematic diagram of unclassified pixel processing; (b) Standard deviation of farmland
(σ1) and woodland (σ2) with DEM.

Taking the central point as the mean value and the peripheral point as the sample value, calculated
the fluctuation of the target pixel and the surrounding pixel by the standard deviation of variation (1).

σ =
1
25

i=4,j=4∑
i=0,j=0

(Xij − μ), (2)

As showed in Figure 4, calculated σ for farmland pixel and woodland pixel with 15 sample
points for each in this work. In this picture, σ1 and σ1 represent farmland and woodland respectively.
We draw the conclusion that the farmland pixel standard deviation value is generally less than two,
and the pixel value of the woodland is the opposite. According to the above method, the OA of
farmland and woodland classification is 93.7%.

4. Results

4.1. Variation for Lake Area

After the above stage, construction of a yearly time-series of the water surface areas on Daihai
Lake and Huangqihai Lake are displayed in Figure 5.
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Figure 5. Time-series for variation of two lakes.

In this experiment, 22 pictures were used and a set of time-series data was made for each lake
during from 1984 to 2018. Overall, the trend of surface area in Daihai Lake is declining. Daihai Lake
area reached a maximum level of 133.5km2 in 1984 and then declined at a rate of about three per cent.
The entire lake area shrank to a staggering 82.05 km2, which accounted for 61.5% of the water surface
in 1984. This shrinkage data is more than 30.3% of the total shrinking area of lakes in Inner Mongolia
for nearly 30 years [6].

If Daihai Lake is a typical example of serious shrinkage of the water surface as considered, then the
complete drying up of the Huangqihai Lake is regrettable. Overall, the water area of the Huangqihai
Lake showed a downward trend until it ran dry completely. The area reached a peak of 71.25 km2 in
1984, but declined sharply in 1989, then rose to a rising trend from 1994 to 1998. After 1999, the lake
fell sharply again until it dried up completely from 2006 to 2013. In the following years, water area has
recovered slightly, but it is limited to the region that was located in the northwest and northeast of
the lake. The recovery of the water area is mainly owing to the inflow of the river. There is a contrast
between the two adjacent lakes. Daihai Lake still maintains a certain water quantity, but Huangqihai
Lake has experienced drying up. This is important evidence that there are other sources of water
supply in Daihai Lake and the decline of Daihai has been alleviated.

In the above paragraphs, we described the changes in the two lakes in terms of time distribution.
Then, we continued to observe the characteristics of water surface changes for each lake from a spatial
perspective. We selected some year images with significant changes and drew diagrammatic sketch of
the water surface change on Daihai Lake and Huangqihai Lake respectively. Figures 6 and 7 show the
spatial changes of each lake.
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Figure 6. Spatial variation of Daihai Lake surface.

Figure 7. Spatial variation of Huangqihai Lake surface.

Figure 6 shows that the whole Daihai Lake mainly shrank from south to north, while the north
and northeast also showed a small shrinkage. Before 1989, the lake shrank mainly in the south, and the
water surface in the north and northeast was stable. During the later 1990s, the south and northeast
of Daihai Lake began to shrink sharply. After 2004, the main shrinking parts of water surface have
gathered around in the south and northeast of the lake.

Compared with the steady shrinkage of Daihai Lake, the water surface of Huangqihai Lake
fluctuates more violently. Before 1994, the surface of the lake shrank only slowly inward along the
shoreline. However, between 1994 and 2002, the southern and northeastern parts of Huangqihai Lake
showed drastic contraction. From 2002 to 2008, the lake dried up for the first time. This result is
basically consistent with the previous results [30]. Although the lake recovered in the northwest region
between 2014 and 2018, as shown in Figure 1, it was just the result of the river flowing into the lake.
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4.2. Ground Composition

Using the above methods, this experiment carries on the ground pixel classification to Daihai
basin and Huangqihai basin. In order to be more suitable for the study of the causes of lake water
changes, the surface categories are divided into six categories. Specific classified data are shown in
Tables 4 and 5.

Table 4. Statistics of ground classification in Daihai basin.

Daihai basin Ground classification (km2)

Date Construction Farmland Woodland Nudation Water Saline–alkali

1986.06 1.39 182.72 72.73 1927.00 138.94 0.00

1993.09 2.66 123.21 95.14 1975.89 116.98 0.00

1998.05 3.06 349.93 222.41 1635.72 103.68 0.00

2001.08 5.90 230.25 19.61 1972.26 84.74 0.00

2006.06 6.54 134.93 102.21 1961.41 99.97 9.48

2010.06 7.19 145.89 115.46 1971.03 75.56 0.00

2014.08 50.89 291.80 64.41 1837.62 70.48 0.00

2018.05 86.99 377.24 145.40 1642.66 59.98 4.65

Table 5. Statistics of ground classification in Huangqihai basin.

Huangqihai Basin Ground classification (km2)

Date Construction Farmland Woodland Nudation Water Saline–alkali

1986.05 40.30 107.45 23.35 4221.00 78.30 0.00

1993.09 53.86 68.04 10.28 4226.29 60.60 47.63

1998.05 67.35 317.75 108.33 3904.10 82.97 0.00

2001.08 76.23 694.73 81.77 3572.57 55.20 0.00

2006.09 79.67 71.15 17.84 4265.09 28.24 2.29

2010.07 89.86 197.69 19.65 4137.20 25.23 11.07

2014.05 123.78 269.59 32.54 3961.07 58.91 0.00

2018.05 234.38 632.50 184.37 3375.68 31.08 50.49

The area of the construction increased in Daihai basin year by year. Before 2010, the area was
stable relatively and expanded 10-fold from 2010 to 2018 (Figure 8). Distribution of the construction
are mainly located at Liangcheng county in southwest of the lake, which began to scatter around the
lake and the county after 2010. The farmland area was stable about 150 km2 until 2010, but the area
of 1998 showed a three times increase compared to 1993. Because the local government adopted the
project of the expansion of planting area in order to increase economic income. The woodland area has
been stable relatively between 50 km2 and 150 km2 except in 1998. The local government’s excessive
afforestation plan gave rise to the burst increase of the water consumption in the basin. Regrettably,
the growth resulted in excessive water consumption in the region, which cannot sustain the growth of
these trees. This is the reason why trees withered in a large area in 2001. The nudation area, accounting
for more than 85% of the whole basin, includes bare mountains and arable land without growing crops,
which is enough to show that the soil and water conservation capacity of the land is low. In addition
to the main Daihai Lake, the water area also includes reservoirs, dams, and some water in the river,
which shows a downward trend. Saline–alkali area are more volatile, mainly around the lake and part
of the dry beach, which is related to direct human production and vegetation cover at that time.
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Figure 8. Ground classification of Daihai basin.

Because there are three larger cities in the Huangqihai basin and the economy is more developed
than Daihai basin (Figure 9). Thus, the construction area is much larger than that in the Daihai basin.
Similarly, the building area also had a huge increase in the Huangqihai basin after 2010. Farmland area
fluctuated before 2010. In 1998, there was still a burst of growth, unlike Daihai basin, which lasted
until 2001, but the area did not drop sharply until 2006. Next, there has been a steady upward trend.
Woodland area has remained at a low level relatively except in 1998, 2001, and 2018. Great fluctuations
are evident in excessive human intervention. Nudation reached previous level again in 2006 after a
decline in 1999. The water area of the basin has been declining because of the gradual drying up of the
Huangqihai Lake. It rebounded in 2014, but fell again in 2018. Saline–alkali land is mainly saline–alkali
land formed by the residual salt of bare land after the removal of lake. With the change of lake water
area and artificial intervention, the area of saline–alkali land is also changing.

Figure 9. Ground classification of Huangqihai basin.
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5. Discussion

5.1. Qualitative Analysis of the Recharge Process

There are two possible sources of groundwater for recharge to lakes. One of them, it comes
from local precipitation. The local precipitation assimilates into the groundwater by soil infiltration.
The other one, groundwater of recharge lakes comes from external water. Because the lakes are located
on the fault zones with transmission channels of water, the exogenous water continuously transports
to the lakes and surrounding aquifers through the fault zones.

Generally, the common lake will expand to a maximum in the annual rainy season and shrink
to a minimum in the dry season. However, we used remote sensing to make an experiment. Here,
the experiment also used the above-mentioned the deep learning method to extract lakes in the target
region. Based on the number of remote sensing images in the same year, the randomly selected sample
year is 2000. Then the work selected one day of observation month as the representative image of the
month, and continued to select the representative image of the next month about one month apart.
This work found that the opposite phenomenon has occurred in the Daihai Lake. The lake area is
smallest in the rainy season (June to September) and largest in the dry season (January to May and
October to December) (Figure 10). In dry season, there was no precipitation to supplement the lake
water while the lake water area increased. This indicates that the evaporation of the lake surface
is greater than the amount of water entering the lake and the main recharge of the lake is derived
from groundwater. The ground water recharge comes from the leakage of the fault zone in this area.
However, the above situation did not occur in the experiment of the Huangqihai Lake. During the
previous dry season, the lake area continued to decline and the arrival of the rainy season eased the
situation. In the next dry season, there was no rainfall and the lake area fell again (Figure 10). This
shows that the water supply of the Huangqihai Lake mainly comes from the precipitation and runoff in
the basin. The recharge method of the Daihai Lake belongs to the second case and this of Huangqihai
Lake is the first case. This is an important evidence to indicate that Daihai Lake receives external water
supply to alleviate the lake shrinkage.

Figure 10. Lake area change in 2000.

In order to further verify our experimental results, a hydrological method was also used. The soil
infiltration test showed that the local precipitation cannot enter the groundwater in Daihai basin,
because the unsaturated soil water does not reach the maximum water-holding capacity of field
(WHCF) and the soil moisture content is in a loss state. In other word, the necessary condition for
precipitation infiltration is above the maximum WHCF [14]. We studied the evapotranspiration (ET) of
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this region is about 395 mm [31] (www.cnern.org.cn), which is basically the equal to the local average
annual precipitation of 384 mm (DH) and 374mm (HQH). That is to say, the precipitation of the basin is
basically evaporated, and cannot form groundwater of the basin through infiltration. We used remote
sensing method to analyze the causes of the lake area change, and we also used soil chemistry and
surface evapotranspiration method to verify the results. These experimental results indicated that
there is exogenous water supply to Daihai Lake (Figure 11).

 

Figure 11. Daihai Lake receives external groundwater recharge.

The above three methods confirm the existence of external groundwater recharge in Daihai Lake,
and whether there will be external water recharge in Huangqihai Lake, which is only 64 km away from
Daihai Lake. If so, why did the Huangqihai Lake eventually dry up in 2008? Hydrological and isotope
experiments showed that the deep underground wells and springs in the Huangqihai basin are the
same as those in the Daihai Basin, and the surface springs eventually converge into rivers to supply
the Huangqihai Lake. However, because of the artificial construction of river dams to intercept water
sources for daily life, economic and agricultural, the lake has lost its recharge.

5.2. Quantitative Analysis of Water Supply and Consumption

The above analysis shows that the Daihai Lake received external groundwater recharge while the
Huangqihai Lake received no external groundwater supply. The quantitative value of groundwater
recharge was calculated along with the balance relationship between recharge and emission, based on
the analysis [32]. If the water content of a basin maintains a dynamic balance, it must be equal to the
water flowing in and out. Since the Daihai basin is a closed watershed, the water volume changes of
the basin can be expressed through the Daihai Lake.

Firstly, we introduced the related indicators in the next work. The region is special and the
crops species are relatively scarce. We use the annual statistical yearbooks of the region to estimate
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the agricultural water consumption (AWC) for the different crop areas in these years [33–35]. Flood
irrigation is the main practice for farmland in Daihai basin, so the water requirement of crops needs
to be converted into the total irrigation water consumption. The irrigation efficiency of this area
is about 62.7% [36]. We used agricultural irrigation consumption (AIC) as one of the groundwater
estimation indicators. Agricultural water consumption in the region accounted for 54.3% of the total
water consumption of human activity (TWCHA) in 2003, which makes us to estimate TWCHA by
AIC (excluding power consumption of power plants). The local government introduced a power
plant that needed to use the lake water for water cooling for economic development after 2005, which
increased the evaporation of the lake water directly. Annual water consumption (PPWC) reached
1.206*107m3 according to the estimation. In this experiment, the annual water volume reduction (WVR)
was estimated using the annual water level relationship and the area obtained by remote sensing.

For the water flowing into the Daihai Lake, external water, precipitation, and runoff are the main
resources. The hypothesis that rainfall infiltrates into groundwater recharge lakes has already been
negated through the special phenomenon of change of the lake area in different seasons by remote
sensing and has proven that this conclusion is a reliable the work of water chemistry. The runoff
volume of the basin is only 6*103m3 yearly [13]. The supply of lake water is less, so it can be ignored.
Therefore, water flowing into the lake can be reduced to surface precipitation and external groundwater
(DGR). The water flowing out of the Daihai Lake, first of all the direct annual evaporation water
consumption (EWC) the lake was calculated by evaporation of the basin, which is need to multiply
conversion coefficient (0.55) [37]. Then, the Daihai Power Plant needs to consume lake water every year.
Finally, there is about 9.12*107m3 of groundwater in the basin itself and this part of the groundwater
has been extracted by people (TWCHA). Although the surface precipitation cannot infiltrate to form
groundwater, the lake replenishes lost water of the basin to maintain the water balance in the basin.
So, this element of artificial consumption is also part of the lake water consumption. The calculation
method of parts of the indicators are more intuitive in Figure 12.

 

Figure 12. Water consumption and recharge in Daihai Basin.

All of these inflows and outflows are change of lake water volume (WVR). The resulting equation is

WVR = PPWC + EWC + TWCHA − DGR. (3)

DGR = PPWC + EWC + TWCHA −WVR. (4)
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The recharge volume of exogenous groundwater is not a fixed value calculated by the water
chemistry method Table 6. At the same time, in order to better observe the proportion of water
consumption and the variation, we presented the whole calculation results in the form of histogram
(Figure 12). The reason of inconsistency is that the calculation method is to use the surface area to
calculate EWC in this paper. The area of the Daihai Lake after 2000 year is about 100 km2 less than
that of 1960s, so the calculation of evaporation loss will also be reduced. However, this value is
maintained range 0.89*108 m3 to 2.68*108 m3 and the average annual replenishment is 1.81*108 m3,
which is close to the 1.8*10 8m3 calculated by the water chemistry method. The method just measured
the recharge amount for one year while our method measured the recharge amount for many years.
The experimental results in this paper are more reliable. Finally, the total annual consumption of
groundwater is calculated to be an average of 2.0*108m3. This work quantitatively calculated the
recharge of groundwater to Daihai Lake, which provided substantial evidence for groundwater to
alleviate the shrinkage of the lake. This annual groundwater consumption is slightly larger than the
average annual external groundwater recharge. This imbalance state indirectly proves that lakes are
shrinking every year.

Table 6. Water consumption and recharge in Daihai Basin (107m3)

Date AWC AIC TWCHA PPWC 1 WVR 2 EWC DGR 3 TGC 4

1986.06 3.1 4.9 9.1 0.0 1.9 8.7 15.9 17.8

1993.09 2.1 3.3 6.1 0.0 2.6 5.3 8.9 11.5

1998.05 5.9 9.4 17.4 0.0 1.3 5.0 21.1 22.4

2001.08 3.9 6.2 11.4 0.0 3.7 2.8 10.6 14.3

2006.06 2.3 3.6 6.7 1.2 -0.3 4.3 23.4 23.1

2010.06 2.5 3.9 7.2 1.2 2.7 3.9 20.5 23.2

2014.08 4.9 7.9 14.5 1.2 1.7 2.0 26.8 28.5

2018.05 6.4 10.2 18.7 1.2 / / / /

1 PPWC: power plant water consumption; 2 WVR: water volume reduction of lake yearly; 3 DGR: direct groundwater
recharge; 4 TGC: total groundwater consumption.

Although, we concluded that the area change of the Huangqihai Lake is mainly related to the huge
evaporation in the region. Next, this result needs further proof. Because of the irregular lake shape
and the lack of the lake water level data, we cannot get the WVR value. So, we can still explain from
other aspects. Based on the agricultural planting data and the classification results of this experiment,
we obtained AWC value. Then, TWCHA was estimated by the proportion of agricultural water usage
in Ulanchab city for many years. Based on the annual runoff data of Jining Hydrological Station of
Bawang River (Figure 1), it is concluded that the average annual runoff of the Bawang River has been
about 6.3*106 m3 in the past 30 years. Due to many dams in the upper reaches of the river, the inflow
of the river into the lake is much lower than this value and other secondary inflow runoff is similar.
Therefore, the runoff into the lake can be neglected.

It can be seen from the Table 7 that the water consumption of human activities has been increasing
since 1993. In 2001, the unexpected planting events accelerated the consumption of groundwater
resources, which prevented the rapid recharge of Huangqihai Lake. In addition, the increase of human
activities has also increased the consumption of groundwater resources. Ultimately, the groundwater
level will decrease. Because the average depth of the lake was only three m [38], the lake cannot be
recharged by groundwater. Besides, saline-alkali land hindered the infiltration of groundwater, which
led to the drying up of the lake eventually in 2008. Due to the rapid decrease of lake surface area in the
lake, it is obviously different from Daihai Lake and there is no direct groundwater to recharge to it.
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Table 7. Water consumption and recharge in Huangqihai Basin (107m3)

Date AWC AIC TWCHA(year) EWC(year) TCG

1986.05 1.1 1.7 2.1 11.4 13.5

1993.09 0.7 1.1 1.3 4.1 5.4

1998.05 3.1 5.0 6.2 8.2 14.4

2001.08 6.8 10.8 13.4 4.0 17.4

2006.09 0.7 1.1 1.5 5.3 6.8

2010.07 1.9 3.1 4.3 3.0 7.3

2014.05 2.6 4.2 6.0 2.9 8.9

2018.05 6.2 9.9 14.1 / /

5.3. Reasons for Lake Degradation

There are two mainstream views on lake shrinkage. The one is that climate change has mainly
led to varying degrees of shrinkage of lakes [39–42], and the other one is excessive human activities
is main reason [43]. As we know from the above, the reasons for the decline of these two lakes are
climate and perceived factors. Using the above experimental data, we calculated the proportion of the
annual human water consumption to the two basins.

Evaporation precipitation difference (EPD) is evaporation minus precipitation (Figure 13). Next,
we replaced Daihai Basin’s EPD and Huangqihai Basin’s EPD with DH EPD and HQH EPD solely.
Through the investigation of evaporation and rainfall data, we can clearly find that the DH and HQH
EPD value are all positive. In other words, the evaporation has always been greater than precipitation
in this area, so the water of lakes is in continuous consumption state. Furthermore, we calculated
the area of lakes and Pearson correlation coefficients of EPD for 0.83(DH) and 0.77(HQH). Therefore,
it is concluded that evaporation is one of the causes of lake water shrinkage. Because the area of
Daihai Lake is not consistent with the trend of broken line of DH EPD before 2000, we thought that the
reduction of the Daihai Lake water is not only related to the evaporation in the basin, but also may have
other factors after 2000. HQH EPD is different from DH EPD. Compared with Daihai Lake, the changes
of the Huangqihai Lake area and the trend of the HQH EPD are more undulate. The evaporation loss
value is huge in Huangqihai basin. Since 1984, the EPD has increased and the lake area has gradually
decreased. In 1990, the EPD value reached the maximum and the lake area presented, correspondingly,
the lowest value in this period. After 1990, the EPD decreased and the lake area gradually increased.
In 1999, the EPD reached its peak again and the lake area responded very closely to the change. Later,
the EPD values remained low, but it seemed that the lake could not stop shrinking and eventually
dried up completely in 2008. Excessive evaporation in the basin was the main reason of the drying up
of the lake before 2001, but other factors may be lead to the changes after 2001.

The recharge period of groundwater determined is about 30 years by tritium [44]. Since the
seasonal variation of recharge flow has been homogenized for 30 years, the recharge flow rate of
external water can be regarded as a constant. Therefore, the source of the lake can be simplified as
precipitation and relatively stable external water. Furthermore, precipitation and groundwater are
stable for recharge source of the lake, and evaporation is stable for consumption source of the lake in
the three decades. So, excluding the above two stabilizing factors, the reduction of two lake area should
have other fluctuation reasons. It should be related to the large amount of groundwater pumped for
agricultural irrigation, industrial production and domestic water.

Before 1998, the climate change in Daihai basin was the main factor leading to the reduction of Daihai
Lake area Table 8. After 1998, with the development of economy and the expansion of population, human
activities have become the main factor affecting the change of Daihai Lake, and the situation is getting
worse and worse. Comparatively speaking, the factors of Huangqihai Lake are more complex. Among
them, human activities consume more water than climate before 2001, and climate consumes more
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water than human activities after 2001 except 2006. This conclusion is consistent with the phenomenon
of EPD, and indicates that human activities have more influence on the lake changes since 2001.
Therefore, on the whole, the shrinkage of the Huangqihai Lake is a combination of human activities
and climate.

 

Figure 13. Area, precipitation, and evaporation of the lakes difference in basin.

Table 8. Proportion of water consumption in two basins (%)

Daihai Basin

Date 1986.06 1993.09 1998.05 2001.08 2006.06 2010.06 2014.08

Human 47.7 40.2 72.7 71.6 77.2 80.8 89.5

Climate 52.3 59.8 27.3 28.4 22.8 19.2 10.5.

Huangqihai Basin

Date 1986.05 1993.09 1998.05 2001.08 2006.09 2010.07 2014.05

Human 15.5 24.6 43.1 76.9 22.4 58.8 67.3

Climate 84.5 75.4 56.9 23.1 77.6 41.2 32.7

5.4. Environment Effects and Measures

The inland closed lake environment is very sensitive to the feedback of climate change [45], we
need to assess the impact of lakes on the surrounding environment. It can be seen Figure 5 that although
both lakes have suffered from different degrees of shrinkage, the feedback from the Daihai Lake area to
the whole basin is positive because the lake can maintain more water (Figure 14). We calculated these
proportions and the proportion of buildings of Daihai basin is 1.19% lower than that of Huangqihai
basin average year. In other words, that is the water consumption of agriculture and industry in Daihai
basin will be lower than that of Huangqihai basin. The proportion of the total water area of Daihai
basin is 2.47% higher than that of Huangqihai basin yearly. That is to say, the Daihai basin has more
abundant water resources than the Huangqihai basin. More water resources directly led to an increase
2.64% and 2.70% of the farmland and woodland of Daihai basin compared to the Huangqihai Basin
average every year. There is more woodland and farmland, so the proportion of nudation of Daihai
basin is 11.80% less than the average of Huangqihai yearly. All in all, more water maintains a better
ecological environment in the basins.
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Figure 14. Proportion of various land types in the basin.

Many lakes are shrinking in arid and semi-arid areas [46]. People try to use various methods
to alleviate and even change the process. It is not clear whether the effect of the method is effective
or ineffective. We found out the reasons for the shrinkage of lakes, in order to implement effective
measures rather than carrying out transformation over rules of nature. Therefore, the behavior of
returning farmland and saving local water usage can alleviate the shrinkage of the lake. Fortunately,
the local government seems to be aware of the crisis of the lake shrinkage and has been carrying out
the whole basin activities of returning farmland and woodland since 2016. We still need to observe
how it works. Although this plan can alleviate the shrinkage of Daihai Lake, it seems that the surface
area of Daihai Lake cannot be restored to former area without more foreign water supply. Hence,
the local government proposed to divert the Yellow River to supply Daihai Lake. Whether this project
will affect the ecological environment of other places once it is implemented deserves our attention.

The results of the above analysis indicated that excessive groundwater extraction for agricultural
irrigation and industrial production is the main reason for the lake decline. Although exogenous
groundwater recharge to Daihai Lake, it cannot maintain such a huge consumption of people. Let alone
Huangqihai Lake, which has no huge amount of exogenous water supplement. Cognac is normal state
for the lake in the future. Therefore, reducing or even stopping the extraction of groundwater is an
important measure to alleviate this trend.

6. Conclusions

In this paper, the recharge resources of two lakes were explored based on remote sensing data
and site data, and we studied to the reason for degradation of the lakes. We found that Daihai Lake is
supplied with external groundwater, which alleviated the decline of the lake in arid areas owing to the
existence of a water diversion structure. Huangqihai Lake lacks recharge of external groundwater
directly, and humans pumped too much groundwater from the basin, resulting in the lake drying up.
Most of the lakes in the Inner Mongolia Plateau are arid or semi-arid climatic conditions, but there
are still many lakes. These lakes are basically dependent on direct or indirect recharge of exogenous
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groundwater. However, these lakes are facing degradation in different degree. Although exogenous
water can alleviate the decline of these lakes, the increasing human demand for water cannot prevent
these lakes from disappearing eventually. These lakes play an extremely important role in semi-arid
fragile ecosystems. People seem to be aware of the urgency of this problem, actions are being taken to
curb the lake shrinkage and even to restore the lake to some extent, which we need to keep watch.
Due to the limitation of the data quantity of remote sensing images, this paper did not calculate
the material around the surface entirely according to the year of the lake area Figure 5 change, but
selected the phenomenon of image observation about every five years, which may bring deviation
to the experimental results. Besides, this paper cannot estimate the annual direct loss volume of the
Huangqihai Lake due to the lack of the lake water level change data, which will make the conclusion
insufficient. In the future, we will continue to monitor the changes of these lakes and whether human
rescue measures can serve as a model for their protection.
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