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Analyzing Spinal Shape Changes During Posture Training Using a Wearable Device
Reprinted from: Sensors 2019, 19, 3625, doi:10.3390/s19163625 . . . . . . . . . . . . . . . . . . . . 117

Mario Vega-Barbas, Jose A. Diaz-Olivares, Ke Lu, Mikael Forsman, Fernando Seoane and

Farhad Abtahi

P-Ergonomics Platform: Toward Precise, Pervasive, and Personalized Ergonomics using
Wearable Sensors and Edge Computing
Reprinted from: Sensors 2019, 19, 1225, doi:10.3390/s19051225 . . . . . . . . . . . . . . . . . . . . 139

v



Wen-Yen Lin, Hong-Lin Ke, Wen-Cheng Chou, Po-Cheng Chang, Tsai-Hsuan Tsai and

Ming-Yih Lee

Realization and Technology Acceptance Test of a Wearable Cardiac Health Monitoring and
Early Warning System with Multi-Channel MCGs and ECG
Reprinted from: Sensors 2018, 18, 3538, doi:10.3390/s18103538 . . . . . . . . . . . . . . . . . . . . 157

Se-Min Lim, Hyeong-Cheol Oh, Jaein Kim, Juwon Lee and Jooyoung Park

LSTM-Guided Coaching Assistant for Table Tennis Practice
Reprinted from: Sensors 2018, 18, 4112, doi:10.3390/s18124112 . . . . . . . . . . . . . . . . . . . . 179

Ke Lu, Liyun Yang, Fernando Seoane, Farhad Abtahi, Mikael Forsman and Kaj Lindecrantz

Fusion of Heart Rate, Respiration and Motion Measurements from a Wearable Sensor System
to Enhance Energy Expenditure Estimation
Reprinted from: Sensors 2018, 18, 3092, doi:10.3390/s18093092 . . . . . . . . . . . . . . . . . . . . 193

Andreas Ejupi and Carlo Menon

Detection of Talking in Respiratory Signals: A Feasibility Study Using Machine Learning
and Wearable Textile-Based Sensors
Reprinted from: Sensors 2018, 18, 2474, doi:10.3390/s18082474 . . . . . . . . . . . . . . . . . . . . 205

Ambra Cesareo, Ylenia Previtali, Emilia Biffi and Andrea Aliverti

Assessment of Breathing Parameters Using an Inertial Measurement Unit (IMU)-Based System
Reprinted from: Sensors 2019, 19, 88, doi:10.3390/s19010088 . . . . . . . . . . . . . . . . . . . . . . 217

Jose Manjarres, Pedro Narvaez, Kelly Gasser, Winston Percybrooks and Mauricio Pardo

Physical Workload Tracking Using Human Activity Recognition with Wearable Devices
Reprinted from: Sensors 2020, 20, 39, doi:10.3390/s20010039 . . . . . . . . . . . . . . . . . . . . . 241

Hyung Seok Nam, Woo Hyung Lee, Han Gil Seo, Yoon Jae Kim, Moon Suk Bang and

Sungwan Kim

Inertial Measurement Unit Based Upper Extremity Motion Characterization for Action Research
Arm Test and Activities of Daily Living
Reprinted from: Sensors 2019, 19, 1782, doi:10.3390/s19081782 . . . . . . . . . . . . . . . . . . . . 259

Wei Zhang, Michael Schwenk, Sabato Mellone, Anisoara Paraschiv-Ionescu, Beatrix 
Vereijken, Mirjam Pijnappels, A. Stefanie Mikolaizak, Elisabeth Boulton, Nini H. Jonkman, 
Andrea B. Maier, Jochen Klenk, Jorunn Helbostad, Kristin Taraldsen and Kamiar Aminian 
Complexity of Daily Physical Activity Is More Sensitive Than Conventional Metrics to Assess 
Functional Change in Younger Older Adults
Reprinted from: Sensors 2018, 18, 2032, doi:10.3390/s18072032 . . . . . . . . . . . . . . . . . . . . 269

Chien-Chin Hsu, Bor-Shing Lin, Ke-Yi He and Bor-Shyh Lin

Design of a Wearable 12-Lead Noncontact Electrocardiogram Monitoring System
Reprinted from: Sensors 2019, 19, 1509, doi:10.3390/s19071509 . . . . . . . . . . . . . . . . . . . . 281

Udeni Jayasinghe and William S. Harwin, Faustina Hwang

Comparing Clothing-Mounted Sensors with Wearable Sensors for Movement Analysis and
Activity Classification
Reprinted from: Sensors 2020, 20, 82, doi:10.3390/s20010082 . . . . . . . . . . . . . . . . . . . . . . 295

Hoda Allahbakhshi, Lindsey Conrow, Babak Naimi and Robert Weibel

Using Accelerometer and GPS Data for Real-Life Physical Activity Type Detection
Reprinted from: Sensors 2020, 20, 588, doi:10.3390/s20030588 . . . . . . . . . . . . . . . . . . . . . 309

vi



Ying Kuen Cheung, Pei-Yun Sabrina Hsueh, Ipek Ensari, Joshua Z. Willey and Keith M. Diaz

Quantile Coarsening Analysis of High-Volume Wearable Activity Data in a Longitudinal
Observational Study
Reprinted from: Sensors 2018, 18, 3056, doi:10.3390/s18093056 . . . . . . . . . . . . . . . . . . . . 331

Yashodhan Athavale and Sridhar Krishnan

A Device-Independent Efficient Actigraphy Signal-Encoding System for Applications
in Monitoring Daily Human Activities and Health
Reprinted from: Sensors 2018, 18, 2966, doi:10.3390/s18092966 . . . . . . . . . . . . . . . . . . . . 343

Luis A. Trejo and Ari Yair Barrera-Animas

Towards an Efficient One-Class Classifier for Mobile Devices and Wearable Sensors on the
Context of Personal Risk Detection
Reprinted from: Sensors 2018, 18, 2857, doi:10.3390/s18092857 . . . . . . . . . . . . . . . . . . . . 359

Aras Yurtman, Billur Barshan,* and Barış Fidan
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1. Introduction

Improving health and lives of people is undoubtedly one of the prime goals of healthcare
organizations, policy-makers, and leaders around the world. The need of ageing, disability, long-term
care, and palliative care in our current society pose formidable challenges for disease burden and
healthcare systems that must be addressed [1]. In order to tackle the leading causes of morbidity and
mortality that may result from infections to chronic conditions especially in older adults and ageing
population, the accessibility and provision of long-term care and palliative care, when and where
needed by them, is crucial. With the continuous challenges and rising demands of the elderly, remote
and home-based care, the technological innovations in the fields of digital health and health information
and communication technologies, such as mobile health, wearable technologies, telemedicine and
personalized medicine have transformed the ways of practice and delivery of healthcare in the
recent decades [2]. Wearable technologies have been extensively used in the healthcare sector with
multi-purpose applications ranging from patient care to personal health. In clinical and remote
care, the applications of wearable devices/sensors, mobile applications, and tracking technologies
are of immense importance for the diagnosis, prevention, monitoring, and management of chronic
diseases and conditions [3]. The data generated from the wearable devices/sensors are a cornerstone
for healthcare data analytics, especially when it is utilized by latest technologies, such as Artificial
Intelligence (AI), Machine Learning (ML), Big Data Intelligence, and Internet of Things (IoT) Systems.
The literature has many successful examples of utilization of these data in various branches of medicine,
such as oncology, radiology, surgery, geriatrics, rheumatology, neurology, hematology, and cardiology.
With the regular ongoing updates, the outcomes of data analytics and their applications are already
making a huge impact in transforming and revolutionizing the healthcare industry.

In this special issue, we aim to provide new insights on research data analytics and applications of
wearable devices/sensors in healthcare by covering wide range of related topics. This issue represents
the latest research that spans across 19 countries, 37 institutions and is covered by a total of 28 articles.
To make better understanding of the research articles, we have arranged them in an order to show
various covered aspects in this field, such as technology integration research, prediction systems,
rehabilitation studies, prototype systems, community health studies, detection systems, ergonomics
studies, technology acceptance studies, monitoring systems, warning systems, sports studies, clinical
systems, feasibility studies, parameters measurement systems, design studies, location based systems,
tracking systems, observational studies, risk assessment studies, activity recognition systems, impact
measurement systems and systematic review.

Sensors 2020, 20, 1379; doi:10.3390/s20051379 www.mdpi.com/journal/sensors1
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2. Summary of Special Issue Papers

In order to provide a basic overview, we will go through and provide brief summary of all the
articles of wearable devices/sensors covered in this issue one by one. Bayo-Monton et al. [4] provided
an implementation of new portable system for remote management of chronic diseases by presenting
and evaluating an embedded and scalable distributed system using wearable sensors for the connection
of cheap health devices based on prototyping eHealth platforms. The results of their analysis showed
that portable devices (p << 0.01) are suitable for supporting the transmission and analysis of biometric
signals into scalable telemedicine systems. In an observational study, Thakur et al. [5] presented a
supervised ML-based model for predicting the clinical events during dialysis sessions using data
from a non-contact sensor device. The authors found the findings and performance of the ML model
quite encouraging and suggested the use of non-contact sensors in clinical settings for monitoring
patients’ vital parameters and in early warning solutions for predicting the clinical events. In a study
involving patients that recently had knee replacement surgery, Argent et al. [6] explored and evaluated
the feasibility, usability, impact and user experience of an exemplar exercise biofeedback system
for orthopedic rehabilitation at home. In order to maximize the engagement and impact, the study
incorporated user-centered design approaches by incorporating participants’ evaluation during the
design of the system. The findings of the study support the ongoing development and evaluation
of sensor-based biofeedback systems, and authors found the system highly usable and effective for
patient support and engagement. In a community health study, Martinez et al. [7] developed a
new unsupervised exploratory method for characterizing feature extraction and detecting movement
similarity in sleep by using actigraphy signals. The results of statistical analysis showed the potentials
of this method for sleep disorders and their link with other conditions. The authors suggested the
possible application of proposed approach for the extraction and comparison of sleep movements’
patterns in the field of medicine. Based on a previous work of a Wearable Heat stroke Detection Device
(WHDD) [8] that was used for heat stroke prediction capability for any activity or exercise. Lin et al. [9]
investigated the detailed information analysis and performed static and dynamic experiments for
verifying the availability and effectiveness of WHDD experimental subjects. The results of their work
demonstrated the superior applicability of the WHDD for predicting the occurrence of heat stroke
effectively and ensuring the safety of runners. Using recurrent neural networks (RNNs)-based deep
learning models, Luna-Perejon [10] presented a feasibility study of implementing a wearable system
for the detection of falls and its associated risks/hazards in real time through accelerometer signals.
Based on the results of the study, the authors recommended RNNs models as an effective method
for creation of autonomous wearable fall detection systems in real time. Using a large real-world
database of posture data, Stollenwerk et al. [11] analyzed the postural changes that are induced under
postural training in three different positions, sitting, standing, and hip hinging, and compared the
snapshots of unguided-guided posture pair based on features resulted from 2D spine curve geometry.
The results showed the novelty of the work in the field of wearable-sensor-based evaluation of spine
curves. Vega-Barbas et al. [12] proposed a precise and pervasive ergonomic platform for accurate
assessment of continuous risk and personalized automated coaching by utilizing in-house developed
garments and a mobile application. The results of the study demonstrating a good usability score
proved the acceptable usability of the platform. The authors expected that wearable technology
in the field of ergonomics can have cost effective risk assessment and economical solutions in the
future. The study from Lin et al. [13] presented the design of a wearable cardiac health monitoring
platform, implemented it as wearable smart clothing system with multi-channel mechanocardiograms
and electrocardiograms measurements, and evaluated the usability of the system using technology
acceptance model. The analysis and the results of the study showed the positive attitude of subjects for
using this wearable system in providing early risk warnings. Based on deep learning, Lim et al. [14]
presented a coaching assistant method to provide useful information for table tennis practice, and used
long short-term memory (LSTM) recurrent neural networks (RNNs) with deep state space model and
probabilistic inference to support practice. The promising results provided by this method showed its

2



Sensors 2020, 20, 1379

capability in characterizing high-dimensional time series patterns and providing useful information
with wearable sensors in table tennis coaching. Lu et al. [15] developed and tested a new method
that combined information from heart rate, respiration, and accelerations measurements to estimate
energy expenditure. These data measurements were taken from wearable sensor system and were
integrated by neural network based model. The results of the proposed method showed improved
accuracy over two existing established methods. The authors suggested that this model along with
wearable system could be utilized in both occupational as well as general health applications. Ejupi [16]
investigated the feasibility of wearable textile-based sensors to accurately monitor breathing patterns,
develop algorithm to detect talking using ML algorithm, and evaluate the model’s performance
with the study participants. The evaluation showed random forest classifier as the best performer
in the dataset. The authors suggested that this approach could be used to quantify talking through
social interaction and prevent social isolation and loneliness. Using a previously developed inertial
measurement unit device based on three sensor [17], Cesareo et al. [18] presented an automatic
and position-independent algorithm to derive the respiration-induced movement and determine the
respiratory rate accurately. The results showed that principal component analysis (PCA) fusion method
obtained overall highest performance in terms of breathing frequency estimation, in both supine as
well as seated position. The authors suggested that PAC fusion, as dimension-reduction method,
can be used to analyze further data in the future. Using wearable technology and ML algorithms,
Manjarres et al. [19] developed a smart physical workload tracking system in real time for simultaneous
remote monitoring of people. The established framework was based on the concept of ergonomics
to facilitate the work of health professionals and fitness experts. The results of two case studies in
real time showed good accuracy and reliability of the system. The authors recommended the future
developments by combining ergonomics and ML to predict the physical effort of activities and for
injury prevention environments. Nam et al. [20] used an inertial measurement unit-based motion
capture and analysis system to access arm movements. The study provided an important database
on the dimensions of workspace and range of motions for arm movements. The validation results
showed high accuracy and reliability of the system and emphasized on the importance of designing
new exoskeletons for neurorehabilitation purposes. Zhang et al. [21] examined the relevance of
different conventional physical activity metrics and complexity in the assessment of functional change
after exercise intervention in younger and older adults. The findings of the study demonstrated
the potential and usefulness of physical activity complexity metrics as compared to conventional
metrics in assessment of functional changes for younger and older adults, and recommended them
for the feasibility and effectiveness of risk identification and interventions. Hsu et al. [22] proposed
a wearable 12-lead electrocardiogram monitoring system to measure the electrocardiogram (ECG)
signals of patients with myocardial ischemia and arrhythmia. The experimental results of the study
provided a good ECG signal quality even while walking and detected ECG features of the mentioned
patients. The authors suggested the possible usefulness of the proposed system in future mobile
ECG monitoring applications. Jayasinghe et al. [23] investigated and quantified the data received
from sensors in different types of clothing in order to characterize the activities as compared to the
body worn sensors’ data. The case study analysis indicated that clothing sensors data correlated well
with the body worn sensors data, and classification results from clothing sensors were also promising
compared to body-worn sensors. The results of the study showed potentials of this approach in daily
monitoring. Allahbakhshi et al. [24] examined the role of Global Positioning System (GPS) sensors
data for detection of physical activity in semi-structured and real-life protocols using participants with
wearable devices in a study. The results provided insights in assisting physical activity for future
study designs and guidance related to detection of posture and transport related motion activities.
Cheung et al. [25] proposed a novel quantile coarsening analysis (QCA) for reducing the dimension
of data from wearable devices and demonstrated the feasibility of this approach in a small cohort of
relatively healthy individuals. Because of the versatility of the QCA approach, the authors suggested
that it can provide useful analytical tools for data in multi-modal monitoring. By explaining the role of
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actigraphs in personalized health, fitness monitoring and Internet of Medical Things (IoMT) paradigm,
Athavale [26] presented a study utilizing wearable devices to capture and analyze physiological data
at home-based health monitoring in an IoMT environment, and proposed a low level encoding scheme
to improve actigraphy analysis. In order to ensure that there was no loss of information in encoding
process, ML approach was used for the study validation. Based on the dataset Personal RIsk DEtection
(PRIDE) [27], a study by Trejo [28] first explored the impact of using dimension reduction techniques
and frequency domain features for personal risk detection through correlation matrix and principal
component analysis, and then efficiently accelerated the training and classification process of a given
classifier for mobile devices. The results of the study were encouraging for timely detection of risk prone
situations that can threaten a person’s physical integrity. Yurtman et al. [29] proposed a methodology
to transform the recorded motion sensor sequences to sensor unit orientation unchangeably and
incorporated it in pre-processing stage of the standard activity recognition scheme. The results from
comparative evaluation of proposed method with the existing state-of-the-art classifiers showed its
substantially better output in classifying stationary activities and hence its possible application in
various wearable systems. Dutta et al. [30] used a novel framework to classify and model the physical
activities performed by different participants in a supervised lab-based protocol and then utilized it to
identify the physical activities in a free-living setting using the data from wrist worn accelerometers.
The positive results of the study demonstrated its application for estimating physical activities in
future cohort or intervention studies. In a study, Rosati et al. [31] compared two different feature sets
for real-time human activity recognition (HAR) applications; one comprising time, frequency, and
time-frequency related parameters used in the literature and the other containing only time-related
variables linked with biomechanical meaning of acquired signals. The results showed that both
set of features can reach high accuracy with support vector machine (SVM) classifier, but the new
proposed variables can be easily interpreted and employed for better understanding of the alterations
of biomechanical behavior in complex situations. In a study focusing on healthy subjects having normal
heart activity, Morelli et al. [32] investigated the effects of interpolation on time and duration with
increasing missing values to assess the interpolation strategy for better results during the estimation
of heart rate variability (HRV) features. The results concluded that interpolation in time is the most
favorable method for producing better HRV features estimation as compared to interpolation on
duration. Fortin-Cote et al. [33] presented a graphical software for the visualization and preprocessing
of raw data received from accelerometer for human posture tracking and assessment. This tool was
aimed to provide support for calibration of orientation estimate of inertial measurement units (IMUs)
that are used for joint angle measurement. Two case studies were used to demonstrate the usefulness of
this open source software. Broadley et al. [34] presented a systematic review to assess existing methods
of evaluating fall detection systems, identify their limitations, and propose improved evaluation
methods in the literature. The search results of articles that met the inclusion criteria identified few
issues, such as use of small population datasets and inconsistency for performance quantification for
these systems. Sensitivity, precision, and F-measures were derived as the most appropriate and robust
measures for their realistic performance evaluation.
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Abstract: Health and sociological indicators alert that life expectancy is increasing, hence so are
the years that patients have to live with chronic diseases and co-morbidities. With the advancement
in ICT, new tools and paradigms are been explored to provide effective and efficient health care.
Telemedicine and health sensors stand as indispensable tools for promoting patient engagement,
self-management of diseases and assist doctors to remotely follow up patients. In this paper,
we evaluate a rapid prototyping solution for information merging based on five health sensors
and two low-cost ubiquitous computing components: Arduino and Raspberry Pi. Our study, which is
entirely described with the purpose of reproducibility, aimed to evaluate the extent to which portable
technologies are capable of integrating wearable sensors by comparing two deployment scenarios:
Raspberry Pi 3 and Personal Computer. The integration is implemented using a choreography engine
to transmit data from sensors to a display unit using web services and a simple communication
protocol with two modes of data retrieval. Performance of the two set-ups is compared by means
of the latency in the wearable data transmission and data loss. PC has a delay of 0.051 ± 0.0035 s
(max = 0.2504 s), whereas the Raspberry Pi yields a delay of 0.0175 ± 0.149 s (max = 0.294 s) for
N = 300. Our analysis confirms that portable devices (p << 0.01) are suitable to support the
transmission and analysis of biometric signals into scalable telemedicine systems.

Keywords: eHealth; wearable; monitoring; services; integration; IoT; Telemedicine

1. Introduction

Internet of Things (IoT) is a framework in which sensors, devices and actuators can be managed
in an ubiquitous and distributed way [1]. The health sector is not outside of the IoT revolution and
there already exist multiple applications and services for improving health care quality [2].

Within this context, telemedicine is an ideal scenario for the expansion and improvement of health
IoT technologies [3]. Remote monitoring using accessible and easy-to-use sensors are the avant-garde
of the application of these type of technologies [4].

Distributed systems for remote monitoring have been presented elsewhere [5,6] describing two
main types of architectures. On the one hand, the first type of system allows storing biometric,
behavior and context variables from commercial sensors into devices (mobile phones, tablets and
computers) thereafter to generate comprehensive reports to support health-related decision making [7].
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On the other hand, the second type of systems automatically forwards the acquired data (without
storing it) with Bluetooth or WiFi wireless transmissions [8,9].

To date, one of the largest systems for remote monitoring was deployed and piloted in the Whole
System Demonstrator Programme (WSD) [10]. This program was promoted by the National Health System
of the United Kingdom to stimulate the adoption of telecare. The main purpose was to provide more
than 6000 patients with tools to manage their chronic conditions with a tight supervision of clinical staff
(up to 238 physicians) through the use of sensors for monitoring physiological signals integrated into a
complex communication system. The WSD consisted of three deployments with different technological
choices, but the architecture was the same: a base unit to visualize data and questionnaires and
peripheral health monitoring devices. Each deployment site used different protocols for allocating
sensors: a pulse-oximeter, a glucometer, weighing scales, etc. Data were transmitted from the base
unit to a monitoring centre via a secure server Internet connection. These sensors were capable of
monitoring very important variables such as blood glucose, body weight, blood oxygenation, pulse
and blood pressure, among others, However, these were not integrated with the base unit and mobile
devices in every case. The interim results report pilot study was able to show some improvements,
but the final report concluded that the intervention group was not benefiting from the use of remote
care [11].

Authors of WSD suggest that the impact of remote care interventions are dependent on
the architecture and the performance of the system, as other authors confirmed recently [12].
There are qualitative and quantitative tools to measure the user response to a telemedicine
system [13]; however, more details about the technical implementation and the technical assessment
should be reported to put the results into a context of significance. Clinical outcomes may be distorted
by transmission errors, data duplication and missing data due to timeouts.

The Personal Connected Health Alliance (PCHA) (http://www.pchalliance.org/continua/)
has gathered more than 200 manufacturers of health sensors and software companies to boost
inter-operable eHealth devices and build fully integrated solutions. PCHA was established as a
non-profit organization to promote the adoption of medical devices (hardware or software) standards as
a way to build complex solutions based on the IoT paradigm. The International Standard Organization
(ISO) and the Institute of Electrical and Electronic Engineers (IEEE) launched the 11,073 Communication
Standard compendium which describes the behavior, information exchange, nomenclature and
connection rules for the health and wellness devices to be integrated into different operational scenarios:
from Body Area Networks to location-distributed systems.

However, the complexity of this standard has limited the widespread adoption in the wearable
and medical device ecosystem [14]. PCHA certified products are often more expensive than the same
product without the communication standard, and, moreover, the adoption of it into commercial
sensors is testimonial [15].

Connecting health sensors into the IoT paradigm could be an easy and fast way to deploy complex
telemedicine intervention, as these do not need implementing complex connection rules and deep
nomenclatures and they put a special focus on the simplicity, interoperability and traceability as the
basement for the integration of sensors into a health management system. Health Level 7 Association
(HL7) has recently launched Fast Health Interoperability Resources (FHIR) protocol [16], a lite version
of HL7 Control Protocol and the Reference Information model aiming to attract developers to build
efficient inter-operable solutions [17]. Bluetooth Low Energy (BLE) defines a special profile for
Health and Fitness devices, but it has shown several implementation constraints that may reduce BLE
performance in a real scenario, in comparison with the theoretically expected [18,19].

Considering the contributions from BLE and FHIR, main shortcomings for prototyping new
eHealth solutions under the IoT paradigm are the unnecessary overload of data exchange and
difficulties to build demonstration scenarios [20]. At the sensor–device communication level (for
instance, electrocardiography sensor to a mobile device), there are a huge amount of headers and
data descriptors which are only useful for high communication layers. Although messages should be
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controlled by standard quality metrics and procedures, adding unnecessary data to wireless physical
interfaces may cause more problems than what they actually tend to solve. Moreover, when moving
towards a real user case in which patients and health professionals exchange data, there are needs of
deploying a Graphical User Interface (GUI), for instance a webpage running on a specific webserver
(or even a mobile application), which adds hurdles to the potential and strengths of the interconnection
of distributed systems.

In this paper, we present and evaluate an embedded distributed system with a custom lite
protocol for the connection of cheap health devices based on prototyping eHealth solutions (Arduino,
Raspberry Pi, and biosignals kit). All components are interconnected using the process choreography
paradigm [21,22]. To evaluate the extent to which portable devices can be compared with fix systems,
the overall deployment has been configured into two different deployment scenarios: (1) Desktop
Computer with Windows 10 Operating System; and (2) Raspberry Pi with Windows 10 Core IoT
Operating System. The same functionalities for requesting and retrieving data from health sensors
and hosting an HTLM5 webpage were embedded into the two systems to compare a key performance
indicator: the time delay between acquiring and displaying the bio-signal. Our experiments confirm
the expected hypothesis, that is: portable components have an increased latency in the communications,
but this latency is negligible. Portable devices are suitable to support the transmission and analysis
of biometric signals into scalable telemedicine systems. Our conclusion is that portable computing
fosters new opportunities to expand the use of wearables in health care research. Strengths of the
proposed system are the open specification of the protocol, the open-communications method using
standard communication structures (based on XML) and choreography, and the direct connection to
open-source hardware components. These results make it possible to enhance the system for other
domains, such as Ambient Assisted Living (AAL) and smart-home sensors.

2. Material and Methods

In this section, we describe the materials and methodology we used to test the two deployment
scenarios for a remote health management system. We first describe the hardware to sense biometric
signals using the eHealth Sensors kit and Arduino. Second, we describe the integration paradigm
based on service choreography. Third, we describe the communication protocol. Finally, we describe
the experimental setup.

2.1. eHealth Sensors Kit

Arduino is an open-specification platform based on an ATmega328P micro-controller with the
minimum capacity to execute simple programs (sketches). Arduino provides an easy but effective
hardware to connect and use many electronic components with a wide variety of applications [23,24].
The official website of Arduino [25] has a comprehensive collection of information, downloads,
tutorials and examples about how to use the platform.

Arduino provides an excellent platform to test and prototype solutions by adding supplemental
modules (Bluetooth, WiFi boards, LEDs, and servo-motors) and other hardware. In this research, we
have set up the eHealth Biometric Sensor Platform created by Libelium [26]. This kit allows users to
acquire a set of physiological signals such as ECG, EMG, breathing rate, surface temperature, GSR,
blood glucose and SpO2 (Table 1). eHealth kit has been used in wearable sensors research [27,28].

The Libelium kit is not a certified medical device. We used this platform as a virtual medical
device because it implements the same physical interfaces and monitoring circuits as certified and
commercial sensors do. Moreover, it prevents us from developing manufacturer protocols to retrieve
raw physiological signals to test our principal hypothesis.
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Table 1. eHealth sensors.

Sensor Name Description

Temperature
Sensor

Body temperature depends upon the place in the
body in which the measurement is made, and
the time of day and the level of activity of the subject.
Different parts of the body have different temperatures.

Discrete data

Airflow Sensor

Respiratory rate is a broad indicator of major
physiological instability. The sensor measures the
breathing flow of a person in the up airways (nose).
Airflow sensor can also provide an early
warning of hypoxemia and apnea.

Continuous data

Galvanic Skin
Response Sensor (GSR)

It can be used to measure the electrical conductance
of the skin, which varies with its moisture level. Skin
conductance is used as an indication of psychological
or physiological arousal. GSR measures the
electrical conductance between
2 points, and is essentially a type of ohmmeter.

Continuous data

Electrocardiography
Sensor (ECG)

A diagnostic tool that is routinely used to assess
the electrical and muscular functions of the heart.
ECG has grown to be one of the most commonly
used medical tests in modern medicine.
Some diseases have no modifications on ECG
waveform.

Continuous data

Electromyogram
Sensor (EMG)

It can be used as a diagnostic tool to evaluate
and record the electrical activity produced by skeletal
muscles by measuring the electrical activity
of muscles at rest and during contraction. EMG
is used for identifying neuromuscular
diseases, assessing low-back pain,
kinesiology, and disorders of motor control.

Continuous data

The whole sensing information detection part for biometric information relies on the Arduino
eHealth Sensor Kit (Figure 1).

Figure 1. eHealth shield input/output pins [26].
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These sensors can be used as diagnostic tools in clinical settings and also used to remotely monitor
the state of a patient in real time. Some of the sensors which use the electro-physiological techniques
(e.g., ECG, EMG, and GSR) require a time series to make a sense of them. All biometric sensors should
be integrated on one Arduino board to collect comprehensive biometric information at the same time.

2.2. Choreography Integration

One of the objectives to improve health care services is to provide reliable remote access to the
data retrieved by the sensors of the eHealth kit. A Service Oriented Architecture (SOA) involves
the use of weakly coupled services to support such processes in a high inter-operable way. In an
SOA environment, network resources are available through services which can be accessed through
standard methods. Masking such resources with services allows accessing them without the needs of
knowing how they were implemented internally.

The software enabling communication between the sensors and the displaying interfaces was
implemented using a choreography engine [12], a semantic engine capable of connecting registered
services and functions. The Choreographer dispatches messages among the modules using a specific
eXtensible Markup Language (XML) message protocol called eXtensible MeSsaGe (XMSG) [21].
XMSG is based on the Foundation for Intelligent Physical Agents (FIPA) recommendations [29]
and Simple Object Access Protocol (SOAP) [30] headers to route and characterize messages. The XMSG
protocol allows broad-/multi-cast, as well as Peer to Peer (P2P) message calls, using custom symbols
in the destination address. XMSG can be serialized and transmitted over any transport protocol such
as REST and HTTP.

Services are designed to fit into three categories: serial communication, data translation and
web-client. The client part is defined as a web service to deliver an interactive interface in a web
browser. Serial communication service establishes the connection with the Arduino hardware to read
data from wearable sensors. The translator service verifies data packets and translates information
according to a predefined communication protocol. After extracting data from the packets, a new
message is generated and sent to the client service to be displayed in web interface. These services
also allow controlling the sensors (turn on/off, change sampling frequency, etc.). Figure 2 draws
the information flow between the hardware and the interactive interface. Figure 3 shows a schema
of the physical connection of the components, enhancing the information flow of Figure 2. In this
schema, we show how the wearable sensors are connected to the Arduino + eHealth shield and
how this component enables the communication to the Choreographer software (blue cross) in the
Raspberry and other applications in the Pebble smart watch. In this paper, we have analyzed the
flow of information through the serial communication port to the Choreographer, and then, from the
Choreographer to the webpage by using WiFi interface. The webpage is a front-end which can be
executed in a browser on any computer/tablet.

Figure 2. Choreography integration.
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Figure 3. System architecture including health wearable sensors.

2.3. Communication Protocol

Once the sensors have been connected to the eHealth shield, the most important issue is to
define a communication protocol to ensure correct data transmission. As illustrated in Figure 3,
information should be handled between the webpage and the Arduino board through a distributed
system (Sensors + Arduino in Location A and the Webpage in Location B). This type of information
involves sensor data (type of measurement, value, units, time stamp, etc.) and the control commands
that manage the sensors. Besides, error detection mechanism should also be added since the messages
may be corrupted during the transmission.

Two operational modes are defined for operating with sensors. This first is the Active mode,
through which sensors can automatically collect and send measurements to the software at every
time interval according to their individual settings. Thus, data from all sensors can be displayed in
real-time. The second is the passive mode, which implies that users can send different commands from
the webpage to a specific sensor to request its data or change acquisition parameters. Users should be
capable of interacting and operating with sensors: to request the current value of a sensor, to stop
data retrieval, to set the time interval, etc. The structure of the commands is described in Tables 2
and 3. Therefore, the protocol should consider the following descriptors: Kit Type: Type of the sensor
kit used for extensions to other type of sensing environments such as smart homes. Destination:
Name of the sensor which identifies the destination of the command. Command: Different commands
which can be used to ask for the sensor data or change some default settings. Parameter: This field
corresponds to the Command field for changing some settings (e.g. transmit the parameter of the time
interval in active mode). Checksum: The checksum field is the 16 bit sum of all bytes of the command
packet. It can be used to detect command error which might be introduced during the transmission.
Sensor Type: Name of the sensor which sends data or response. Response To: This field indicates
which command the sensor is responding to, so the communication can be asynchronous. Data: This
is the data part measured by the sensors or the answer of the command. Unit: This field corresponds
to the Data field and it is the unit of the data.
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Table 2. Text-based Command format.

Header Data Tail

Kit Type Destination Command Parameter Checksum

Field Delimiter ‘|’

The format of the sensor data packet and response packet is shown in Table 3.

Table 3. Sensor data and response format.

Header Data Tail

Kit Type Sensor Type Response To Data Unit Checksum

Field Delimiter ‘|’

2.4. Portable Embedded System

Raspberry Pi was introduced in 2012 [31] and has been extensively used in home monitoring
environments [32,33]. It integrates a computer board with support for many input and output
peripherals through standard interfaces (Serial, Bluetooth and Wi-Fi) and allows the installation
of several operative systems. Dimensions of the device are 85.60 mm × 53.98 mm × 17 mm, with
a weight of approximately 45 grams. The device is cased and mounted inside a plastic box with a
7 inch touchscreen and powered with a battery. Raspberry Pi 3 is a platform suitable for embedding
high level applications which allow the interaction with different devices and users in a wide range
of applications. In this study, we used the Raspberry Pi 3 with the operating system from Microsoft
Windows 10 IoT Core [34]. Windows 10 IoT Core is an optimized version of Windows 10 for small
portable ARM and ×86/×64 devices. One of the aims of this paper is to evaluate the extent to which
portable systems are ready to substitute computers in the way they connect and process information
coming from several eHealth sensors. To this end, we will evaluate the Raspberry Pi 3 in comparison
to a desktop computer.

2.5. Design of Experiments

The proposed system must provide a record track of the executed services, their results, time
stamp and other audit information. A track component should be in charge of recording the trace of all
the activities that take place during the performance of the system. The records must be standardized
(or even normalized), understandable and ready to be parsed and mined. Therefore, this component
will record all interaction events among the modules and components.

The experiments assessed the communication delay between distributed physical components
among service request and service response for all integrated sensors. The main key performance
indicator is the latency, which is defined as the difference of time between the start of the transmission of
the first message and the end of the correct reception of the last message [18]. The latency wasmeasured
and compared in two environments using the same choreography software:

• Raspberry Pi 3 device with a Windows 10 IoT Core Operating System. Processor ARMv8 at
1.2 GHz and 1 GB of RAM.

• Desktop computer with a Windows 10 Operating System. Processor Dual Core at 2.6 GHz and
4 GB of RAM.

Due to the skewed distribution of the latency parameters, a Wilcoxon signed-rank test at 95%
C.I. was used to assess the independence of intra and inter schema differences. Significance was
assumed for p < 0.05. Statistical and graphical analysis was done using Matlab 2016R version using
Academic License.
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3. Results

The choreography engine uses SOA and implements a Windows Presentation Foundation
GUI [35] application with several services declared and running in the background. Each service
represents a specific functionality and different services interact with each other by passing messages.

3.1. Choreographer Functions to Manage eHealth Sensors

The services for accessing eHealth sensors are managed by the choreography engine (Table 4).
As shown in Section 2.2, the Arduino board communicates with the serial communication service,
and, analogously, users interacts with the web dashboard to request data from sensors. The translator
service performs as a middleware by connecting the web service and serial communication service
while data are exchanged between entities. Figures 4 and 5 show the sequence diagram of the
three services.

Table 4. Classification and list of services in the Serial Communication and the RS232 Communication components.

Serial Communication Service RS232 Communication Service

Translator Services

Airflow Translator
Body Temperature Translator
ECG Translator
EMG Translator
GSR Conductance Translator
GSR Resistance Translator
GSR Conductance Voltage Translator

Web Services

Airflow Web Service
Body Temperature Web Service
ECG Web Service
EMG Web Service
GSR Conductance Web Service
GSR Resistance Web Service
GSR Conductance Voltage Web Service

Figure 4. Passive mode.
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Figure 5. Active mode.

Illustrated by the sequential diagram in Figure 5 and Table 5, the translator service is one of
the most crucial parts of the overall architecture since it is the only service which implements the
communication protocol. Each sensor has one translator and different methods are used to parse the
information coming from the serial communication service or encapsulate various commands received
from web service into command packets.

Table 5. Methods implemented for the information exchange between the communication services and
their description.

Web Service → Serial Communication Service

getData() Request for the sensor data one
real-time.

SetActiveMode(onOff)

If the parameter is on, start active mode
of the target sensor and request for the
continuous data. If the parameter is off,
stop active mode.

ChecksumCalculate(command)
Calculate the checksum of the full
command and append it at the end of
the packet.

Serial Communication Service → Service

sendData(figure, unit) Send the sensor data and unit

sendActiveMode(figure) Send the response of the SetActiveMode
command

ChecksumCheck(old_cks, new_cks) Calculate the checksum of the
received data

packet and compared it with the one in the packet.
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Each sensor has an individual webpage to control and display biometric signals. Therefore,
for passive mode, once a user taps a button on the webpage to request data or set up operational
modes, the web service sends a command to the corresponding translator. The translator service
identifies the intent of the request and translates it into the predefined format, adding header and
checksum to the command, and then sends the restructured new message to serial communication
service. When the Arduino board receives the message from serial communication service, it retrieves
Destination and Command information to effectively execute the command (e.g., read ECG).

After executing the command, the Arduino board generates a response packet for answering
the request. The serial communication service transmits the packet to all translator services and each
translator has to verify and parse it if it is a valid message. Translator service is able to distinguish
which request this packet answers by means of Response To field. The Data part and Units part are
then extracted and transmitted to the target web service by referring to Sensor Type part of the packet.
Finally, data are shown on the webpage using a time series chart.

To illustrate the operation in detail, we can take body temperature data request as an example.
When the user clicks the button on the webpage to request body temperature, the Body Temperature
Web Service calls getData method in Body Temperature Translator Service and the translator
starts to construct a command packet. It sets the Kit Type field as EHEALTH, Destination field as
BODYTEMPERATURE, Command field as GETDATA, no Parameter and uses delimiter ‘|’ to concatenate
each individual field. After calculating the checksum of the whole command, it is appended as the
tail of the packet and the resulting command packet stands as “EHEALTH|BODYTEMPERATURE|
GETDATA||2657”.

Similarly, when the Arduino board finishes reading the command, it creates a data
packet and sends it to the serial communication service. The data packet could look like
“EHEALTH|BODYTEMPERATURE|GETDATA |36.5|C|3052”. Later, it will be transmitted to Body
Temperature Translator Service, where the checksum of this packet will be calculated again and
compared with the original one. If there is a match, the packet is validated.

For the active mode, the web service should send a setActiveMode command with parameter
on. Once the active mode has been configured, the Arduino board will send the specific sensor
data at a predefined rate. This behavior will not stop until another setActiveMode off command is
triggered. When it comes to sensors such as the ECG, Airflow and GSR, the active mode can be
extremely important. These continuous data are collected and utilized to generate a biometric signal
for real-time monitoring.

3.2. Track Component

The Choreographer included a service to keep track of all the exchanged messages across
components. As the limitations on the time resolution deserved special attention and open a brand
new study field, all the interactions on the webpage were recorded in a special format and placed
in a basic Comma-Separated Values file (to make easy the access for the information). A file named
choreo_track was automatically generated upon first launch of the system (see Figure 6). A main class
controlled the interaction events during a session and tracked them in that file. Each interaction event
was written in a line with the following format:

<Timestamp>, <sender>, <receiver>, <message>

• Time stamp: dd/mm/yyyy hh:mm:ss.sssss.
• Sender: The module who triggered or controlled the action (see Figure 2).
• Destination: The module who was receiving the service request.
• Method: To indicate whether it was a request or an inform method.
• Message: The data exchanged, for instance the packets described in previous sections.
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Figure 6. Choreographer track service.

3.3. Raspberry Pi for Hosting and Serving a Webpage

Web service representation for both scenarios are based on RESTful (Representational State
Transfer) service. A service in the Choreographer is in charge of serving a webpage based on
JavaScript and HTML5. The implementation is based on the .NET v4.5 framework for webservers and
implementation of RESTful services. As Figure 7 shows, in the case of the computer implementation,
libraries are directly used from Windows Communication Foundation (WCF), whereas, for the
Raspberry, the use of RESTUP libraries was needed [36]. RESTUP maps web service libraries from
WCF to be compatible with Windows 10 IoT Core operating system. Other studies have shown good
results by implementing this architecture based on Apache Server [37].

Figure 7. Services for hosting and serving the webpage. The schema shows how the Choreographer is
connected to the sensors through the Arduino module and the needed libraries to self host and serve
the webpage, which is based on HTML5 + Java Script + CSS.
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3.4. Deployment

Figure 8 illustrates the final system. The picture shows the first term the Arduino Uno mounted
with the eHealth shield and the health sensors kit. Different sensors should be connected to the eHealth
shield. The EMG sensor and the ECG cannot work simultaneously since a jumper should be switched
in the board to use one adaptation circuit or another. The Arduino is connected through a USB interface
to the Raspberry Pi or the PC, in which an instance of the Choreographer is installed.

The computer screen shows the welcome page of the web application, which shows access to
analyze data from the five sensors (the three buttons are for the three variables of the GSR sensor).
After clicking on each button, the user can access individual pages for each sensor where different
operations can be executed. For sensors such as ECG, EMG, GSR and Airflow sensor, single datum
seems meaningless, thus users can start active mode to monitor and graph real-time sensor data.
Besides, it is also feasible for users to set a time interval to retrieve past values from the sensors.
Once these values are prepared, a chart would be plotted for each different set of data. The chart is
real-time updated (see time delays in Figures 9 and 10), and it is refreshed every 250 ms. For body
temperature sensor, apart from the above functions, users can access current body temperature data by
clicking GETDATA button.

The Raspberry Pi (below the screen) shows the control Graphical User Interface of the
Choreographer. The Choreographer was created similar to a tab in our window, containing graphical
services which can be used to manage the five sensors in the system. By doing so, users can interact
with the sensors without the needs of accessing the webpage.

Figure 8. Sensor deployment.

3.5. Experiments

Sensors that support the active mode (ECG, EMG, Airflow and GSR) have a default sampling rate
set to 20 Hz (20 Samples per second); this means that the interval between two samples is 50 ms for
both PC and Raspberry Pi. Besides, the webpage is set to request data every 250 ms. The experiment
shows that the PC deployment generated less latency in the communication segment between the
Arduino and the Choreographer (Figure 9). Our measurements correspond to the theoretical sample
period, which is 50 ms. Nonetheless, we do not see this behavior in the Raspberry Pi: The mean value
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of the time delay is around 50 ms, but the standard deviation is greater than the standard deviation of
the PC. These points are distributed sparsely but showed the pattern of an arithmetic series. The gap
between two corresponding points is approximately 10 ms to 20 ms.

The communication of the active mode between Choreographer and webpage (Figure 10) shows a
similar situation. The PC shows a good result with all the measurements concentrated around 250 ms.
We see a different pattern in the Raspberry PI with all the measurements with a fixed interval (mean
value is 250 ms and the gap is about 10 ms to 20 ms).

We compared the communication segment between the Arduino and the Choreographer for the
two deployments (Raspberry and PC). This segment is composed of the Serial Communication Service
and the Translator service. Results show that Raspberry Pi has a statistically significant increased delay
(p << 0.01) for all the five sensors, whereas, for the segment between the Choreographer and the
web service, all sensors except ECG showed a not statistically significant increased delay (for ECG
p << 0.01, and p > 0.5 for the rest ).

Figures 9 and 10 show the cumulative scatter plots for the delays tracked with the tracker
component (Figure 6). Even though the results are scattered, it is notorious that the delay experimented
for the Raspberry Pi shows a clear pattern (especially for ECG, EMG and GSR in Figure 10). This pattern
may be caused by the internal delay of the Arduino for acquiring measurements (10 ms–20 ms), and the
reason of not having it on the PC may depend of the communication stack, which is bigger in the
PC. In this case, the Choreographer can fill the memory stack with more measurements which will be
delivered faster to the web interface.
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Figure 9. Comparison of the delay in the communications for the system deployed on a desktop
computer and a Raspberry Pi for the segment between the Arduino and the Choreographer for the
active communication mode.

Another finding involves the precision of time intervals. The PC shows a bigger reliability by
means of a lower standard deviation and a lower range. As an example, for the EMG communication
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between the Arduino and the Choreographer (Figure 9), the PC has a delay of 0.051 ± 0.0035 s and a
range of 0.2504 s (N = 300), whereas the Raspberry has a delay of 0.0175± 0.149 s and a range of 0.294 s
(N = 300). Therefore, the Choreographer achieves a higher reliability for acquiring measurements
if deployed in a PC.
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Figure 10. Comparison of the delay in the communications for the system deployed on a desktop
computer and a Raspberry Pi for the segment between the Choreographer and the webpage with the
active communication mode.

4. Discussion

In this paper, we present an integration of two innovative paradigms: Health Sensors and IoT
focused on simple deployments. These two streams, which are widely accepted by the scientific
community, are seen as the future of how information and communication technologies can make
health care system sustainable. Moreover, the connection of these two paradigms with new ubiquitous
computing and artificial intelligence models can promote the crucial step-forward for the adoption
and spread use of health sensors for the management of chronic conditions.

In this context, forecasts on the increment of the population over 60 years old in developed
countries and the pandemic dimension some diseases are reaching deserves special attention.
Health care systems are not prepared to sustain these numbers and there is increased demand for
better and personalized care services. This is the main reason that pushes us to propose cheap and
scalable solutions that allow users to plug and play them without the need of understanding complex
standards or programming frameworks.

One of the flagship projects on the evaluation of remote care presented in Section 1 (Whole
System Demonstrator Programme) has demonstrated favorable results on the management of
patients with chronic conditions, but stating that the technology is not yet ready for scaling-up [11].
The system proposed and evaluated in this study is based on a Service Oriented Architecture with a
central component (Choreographer). The Choreographer works as a message dispatcher that allows
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connecting different modules (health sensors, webpages, etc.). The simplicity of the Choreographer
prevents us from using another type of complex integration solutions like Enterprise Serial Bus (ESB),
which provides a gain on the performance of its execution and fault tolerance [20].

The Choreographer relies on existing libraries and communication stacks of Microsoft .NET v4.5
framework, a key element for ensuring its reutilization and the compatibility with legacy systems
in hospitals and health care infrastructures. The Choreographer implements a protocol based
on a custom formatting message exchange language, XMGS. XMSG is based on SOAP and not
REST to achieve a minimum level of standardization of information exchange across the system.
Nevertheless, as reported in Section 3, REST stands as a proper methodology for describing the
interfaces of the system by simply serializing XSMG. The proposed architecture can be adapted
to a RESTful architecture with JSON messages, but due to the complexity of the distributed system,
the number of sensors and client applications, it is needed to ensure a minimum set of information
into the exchanged messages.

The eHealth sensing platform has been built on purpose using the Arduino Libellium kit,
a low-cost solution that allows the integration of a wide range of physiological sensors. Even
though these sensors are for prototyping, they are useful to work with on the design, development
and evaluation of possible solutions to record, store and transmit biometric signals (ECG, EMG,
Airflow, etc.). This technology was chosen over other commercial health sensors because of the cost as
well as the integration simplicity: Arduino provides serial communication over wired and wireless
physical interfaces, whereas the majority of sensors only provide wired communication, and, most
of the time, the protocols to retrieve measurements are not available for third parties or are based on
complex standards as the ISO/IEEE 11073 [14].

The proposed system is capable of hosting and serving a website as a regular web service. This is
an extremely important feature that allows certifying the system as plug-and-play. With the proposed
architecture of communications, health sensors may be configured to be subscribed to a specific website
to perform a real-time broadcasting of the measurements, at the same time that these measurements
may be stored in cloud services or analyzed by complex algorithms.

The deployment of this system is feasible on either a PC or a Raspberry Pi. According to our
experiments (Figures 9 and 10), there is a statistically significant increased delay on the Raspberry
Pi with respect the PC, which is understandable considering the unbalanced set of computational
resources. However, for some specific cases, this delay is not relevant for the medical and monitoring
purpose; (in the case of ECG, latency difference is below 0.030 s).

The significantly increased delay of Raspberry Pi may be related to the processor technical
features, which has fewer capabilities than the personal Computer processor (ARMv8 @1.2 GHz and 1
GB RAM versus Dual Core @2.6 GHz and 4 GB RAM). Future work should consider experimental
verification of the causes of the delay. Our results show that the latency experimented from side-to-side
(meaning from sensors to the webpage) has not a big difference (even though significant), and the delay
introduced by the Raspberry Pi is assumable. The low costs and requirements of a Raspberry Pi are not
comparable with the high costs and requirements of a personal computer. Therefore, our experiments
suggest that the new architectures for monitoring bio-signals could rely on the implementation of
networks based on the Raspberry Pi without compromising the latency.

5. Conclusions

In this manuscript, we present and evaluate a scalable system based on five wearable sensors that
allow the plug-and-play deployment on different use scenarios (on Raspberry and desktop computer).
Raspberry pi yields a significant increased delay with respect to the same implementation in a personal
computer. However, the measured delay is negligible and acceptable in real-time remote monitoring.
Implementation of health web sensor node as a part of the Internet of Things using a Raspberry Pi has
benefits with respect the use of a desktop computer, which paves the way to the implementation of
new portable systems for remote management of chronic conditions. Future work will pursue on this
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line, finding out the percent of missing packets and the throughput in terms of other KPIs, such as the
error rate, memory use, power consumption and influence of the network load (4 G/5 G). Moreover,
future research should implement large amounts of traffic (several users and longer periods) to reflect
the performance differences in commercial environments.
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Abstract: Non-contact sensors are gaining popularity in clinical settings to monitor the vital
parameters of patients. In this study, we used a non-contact sensor device to monitor vital parameters
like the heart rate, respiration rate, and heart rate variability of hemodialysis (HD) patients for
a period of 23 weeks during their HD sessions. During these 23 weeks, a total number of 3237 HD
sessions were observed. Out of 109 patients enrolled in the study, 78 patients reported clinical events
such as muscle spasms, inpatient stays, emergency visits or even death during the study period.
We analyzed the sensor data of these two groups of patients, namely an event and no-event group.
We found a statistically significant difference in the heart rates, respiration rates, and some heart
rate variability parameters among the two groups of patients when their means were compared
using an independent sample t-test. We further developed a supervised machine-learning-based
prediction model to predict event or no-event based on the sensor data and demographic information.
A mean area under curve (ROC AUC) of 90.16% with 96.21% mean precision, and 88.47% mean
recall was achieved. Our findings point towards the novel use of non-contact sensors in clinical
settings to monitor the vital parameters of patients and the further development of early warning
solutions using artificial intelligence (AI) for the prediction of clinical events. These models could
assist healthcare professionals in taking decisions and designing better care plans for patients by
early detecting changes to vital parameters.

Keywords: artificial intelligence; supervised machine learning; predictive analytics; hemodialysis;
non-contact sensor; heart rate; respiration rate; heart rate variability

1. Introduction

Hemodialysis (HD) has been one treatment of choice for renal replacement therapy among patients
with possible renal dysfunction [1]. Hemodialysis uses an apparatus to filter blood that can be carried
out either in a dialysis center or at home. By doing so, it replaces the natural function of the kidneys to
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remove waste and maintain blood pressure among renal failure patients [2]. Hemodialysis has proved to
prolong survival of end-stage renal disease patients aged more than 75 with multiple comorbidities [3].
Typically, HD consists of three sessions per week and each session lasts around 4 h [4,5].

Despite its function in terms of prolonging patients’ life expectancy and increasing the quality of
life, patients may undergo several clinical events during HD. Among them are infection, cardiovascular
events, muscle spasm, and even death [6]. Research by Han [7] successfully predicted cardiovascular
events using echocardiographic parameters, but not other non-cardiovascular and cerebrovascular
events. Similarly, some studies have been conducted to predict cardiovascular events in liver
transplant patients [8,9].

Ambient intelligence (AmI) is an evolving research area that attempts to bring intelligence to our
environment and make it much sensitive to our day-to-day life [10]. Various technologies like sensors,
sensor networks, pervasive computing, and artificial intelligence (AI) are used in AmI to make our
environment more sensitive to living. AmI attempts to make our life easier and safer and is being
deployed in many areas that affect human life. It is becoming more significant in healthcare in both
clinical and non-clinical settings like telemedicine, home automation, health behavior informatics and
patient monitoring [11–17]. For instance, AmI interacts with humans (e.g., patients) using sensors and
might be able to predict upcoming events before they occur.

Research has been done in the past into which sensors can be used to monitor or detect some
health conditions or parameters. However, the use of artificial intelligence using sensor data to
predict an upcoming event is rarely found. Research has been carried out by Tereul et al. [18] utilizing
an ultrasonic sensor to measure blood flow during dialysis sessions. Trebbels et al. [19] measured
hematocrit levels by designing impedance-spectroscopy-based sensors for dialysis apparatus. Yi-Chun
Du et al. [20] proposed a wearable device to monitor blood leakage during HD using an array sensing
patch. However, these studies did not embed the technology with an artificial intelligence feature.
Artificial intelligence has been used to improve anemia management during dialysis treatment [21].

Methods or devices using physical contact with patients during their clinical care do not offer
round-the-clock monitoring of their vital signs. On the other hand, data on vital signs, like blood
pressure, heart rate, respiration rate, and body temperature are very important factors when a decision
is being taken by the physician and healthcare professional. Nowadays, non-contact sensor devices are
available that offer round-the-clock monitoring of the various vital signs of patients [22,23]. Further,
this data can also be useful in predicting clinical events in patients for several clinical processes like
HD, liver transplants, kidney transplants, etc. Various studies predicting cardiovascular events in
liver transplant patients have been carried out in the past using contact or non-contact sensor data.
However, there have been very few studies conducted to predict clinical events in HD patients using
non-contact sensors.

In this study, a prediction model was developed based on supervised machine learning (ML)
algorithms to predict clinical events during dialysis sessions. We used the data from a non-contact
sensor device [24] that records vital signs like the heart rate, respiration rate, and heart rate variability.
In the following sections, we present our methodology, results, discussion, limitations and conclusion.

2. Materials and Methods

2.1. Study Details

In this observational study, we included 109 patients who were undergoing HD at Taipei
Medical University (TMU) hospital, Taipei, Taiwan. To conduct this study, ethical clearance was
taken from the Joint Institutional Review Board (JIRB) of Taipei Medical University, Taipei, Taiwan
(JIRB No. N201512031). During the period of HD, some patients experienced clinical events of certain
types and a few patients did not report any clinical event. A clinical event can be defined as any
medical problem experienced and reported by the patient. The clinical events suffered by the patients
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and considered in this study were sudden death (SD), emergency visit (ER), muscle spasm (MS),
inpatient (IP), emergency visit and inpatient (ERIP).

2.2. Data Collection

Patient data were collected using a piezo-electric non-contact sensor system that measured
respiration rate (RR), heart rate (HR), and body movement data (MD). These vital parameters of the
patients were captured during the HD sessions for a period of 23 weeks from March 2016 to August
2016. The sensor unit was placed under the mattress and had no direct contact with the patient.
The sensor system used in this study was developed by EarlySense Ltd., Ramat Gan, Israel [24].
When this sensor is kept under the mattress, a force is applied to the sensor that comes from three
sources. These sources are gross body movement, chest wall movement, and recoil of the body due to
the cardio-ballistic effect. The latter two are related to respiration effort and stroke volume. The signals
generated by the sensor can be separated into motion, respiration and ballistocardiogram (BCG)
waveforms, from which MD, RR and HR can be obtained, respectively [24]. The sensor system for
patient monitoring in hospital settings has been validated and used in many clinical studies [22,25–27].
Similarly, the heart rate variability parameters like high frequency (HF), low frequency (LF),
the ratio of HF–LF (HF/LF), and very low frequency (VLF) were also obtained from the raw BCG
waveforms [28,29]. The heart rate variability (HRV) parameters including HR, RR, and MD were
processed from the raw data and provided to us by a data scientist from EarlySense Ltd. The final
dataset we received contained the mean of every 30 s for HR, RR, MD, and all the HRV parameters along
with the date and patient ID (without revealing the personal identity of the patient). The demographic
data like gender, age, height, and weight of the patients was also obtained during the study using
a predesigned form.

2.3. Data Cleaning and Feature Extraction

There were some errors, missing values, and duplicate data files in the raw dataset. The raw
data was cleaned to remove all the errors, missing values, and duplicate data files. This was done
programmatically in the Python programming language and using the library pandas. The errors were
the presence of the values 0 and −1 or missing values in some data fields. The entire row was deleted
if it had either of these errors in any of its data fields. In the case of duplicate data files for the same
HD session, the file which had the lesser number of data readings was ignored and that with data
readings was selected. We had the following data variables after data cleaning and arranging the data
from different files into a single data file:

Patient ID, date of session, RR, MD, HR, and HRV parameters like HF, LF, HF/LF, VLF,
and (VLF+LF)/HF. We also had demographic details of the patients like the gender, age, height,
and weight of the patients.

Since HRV parameters will be accurate only when the patient is relaxed and stable, we considered
only those data samples in the analysis when the patient was in a stable and non-moving condition [30].
Therefore, we utilized the body movement data and further shortlisted only those data samples where
the value of MD was less than a threshold of 30 amplitudes. Further, we extracted data samples for
the vital parameters from the first five minutes (FFM) and last five minutes (LFM) of HD sessions.
The reason for extracting FFM and LFM was to see the change in the vital parameters as the HD
session progresses. The FFM data was extracted from the early period of the HD session and LFM was
extracted from the end period of the session, since the short-term recording (5 min) of HRV is sufficient
for monitoring the autonomic nervous system [31]. Therefore, in this study, instead of considering
HRV and other recorded vital parameters for a complete length of the HD session, only 5 min of data
samples from the beginning and end of the HD session were considered. We also extracted the total
number of HD sessions a patient had attended and the total number of clinical events reported by
a patient. In addition, the body mass index (BMI) of each patient was calculated from the height,
weight and gender data information of the patient. Finally, we had the following variables:
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Patient ID, Number of Sessions, Number of Events, Time_FFM, HR_FFM, RR_FFM, MD_FFM,
HF_FFM, LF_FFM, HF/LF_FFM, VLF_FFM, (VLF+LF)/HF_FFM, Time_LFM, HR_LFM, RR_LFM,
MD_LFM, HF_LFM, LF_LFM, HF/LF_LFM, VLF_LFM, (VLF+LF)/HF_LFM, Gender, Age, Weight,
Height, BMI, and Class. Here, the variable “Class” represents the two categories of patients, one in
which the patient had reported any of the five mentioned clinical events and the other in which patient
had not reported any clinical event. We selected a subset of features from the above-mentioned features
as input variables. The backward elimination method was used to select an optimal subset of features.

2.4. Model Development

In this work, we developed three predictive models. In each model, we tested five supervised
machine-learning-based classification algorithms. We will call these classification algorithms classifiers.
The classifiers used in each model were logistic regression (LR) [32,33], k-nearest neighbor
(kNN) [34,35], adaptive boosting (AdaBoost) [36,37], random forest (RF) [38,39], and support vector
machine (SVM) [40]. The results of the performance of the various classifiers are reported in the
next section. To develop these classifiers, we used the Python distribution Anaconda of version 5.1.0
and various libraries of scikit-learn 0.19.1 [41]. Each parameter recorded was sampled at the period
of 30 s i.e., and for each 30 s we have one reading for all the vital parameters recorded by sensor.
The basic difference between the three models being discussed in this study is the number of samples
selected in each model. In model 1, we considered all the data samples selected for FFM and LFM.
For each five-minute data we had 10 readings of all the vital parameters at the rate of 30 s. In model
2, we considered one sample for each HD session from each patient. The considered sample was the
mean of all samples of FFM and LFM for that HD session. In this model, we also added more input
features. These features are the variance of FFM and LFM of all the vital parameters. In model 3,
we considered only one data sample corresponding to each patient by further taking out the mean of
all the input features present in model 2. A block diagram of the predictive model is shown in Figure 1.

Figure 1. Prediction model for event class prediction. HR: Heart Rate; RR: Respiration Rate; HRV:
Heart Rate Variability; SMOTE: Synthetic Minority Oversampling Technique.
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The models developed in this study are being trained and tested on two datasets. Since,
the number of HD sessions undergone by each patient was different, there were chances of overfitting
the classifiers. As some patients had a greater number of HD sessions, they had more data samples in
comparison with other patients. Therefore, we selected data samples from 15 recent HD sessions for
each patient. In this process, data samples of 105 patients who had undergone at least 15 HD sessions
were selected and we discarded the data samples of the remaining four patients. Of these 105 patients,
76 had reported an event during the study period and 29 had not reported any event. In this way,
we separated two datasets, one with data samples from all the HD sessions for all the patients and one
with data samples taken only from the most-recent 15 HD sessions.

The dataset in which data samples from all HD sessions was considered had 109 patients who
underwent a total number of 3237 HD sessions. Therefore, for this dataset, model 1 had a total number
of 32,370 data samples. Model 2 had 3237 data samples and model 3 had 109 data samples. The data set
in which data samples from the 15 recent HD sessions were selected had a total number of 105 patients
with 1575 HD sessions. Therefore, model 1 had 15,750 data samples, model 2 had 1575 data samples
and model 3 had 105 data samples.

2.5. Model Validation

There is unequal representation of the two classes because the number of patients from the
event class is much higher than the number of patients from the no event class. To overcome this
imbalance in the data we used the synthetic minority over-sampling technique (SMOTE) [42]. In this
technique, the minority class is over-sampled to balance the representation of both the classes.
This is done by “taking each minority class data point and introducing synthetic examples along
the line segments joining any or all of the k-minority class nearest neighbors” [43]. The process is
repeated until the representation of both classes becomes approximately equal. This approach can be
implemented in several open-source software (e.g., the R Programming Language, Python, and Weka).
More information on SMOTE is available in reference [42]. In this study, SMOTE was applied only to
the training dataset and the testing dataset was left unchanged. To validate the model, we used the
stratified k-fold cross-validation method [44]. In stratified cross-validation, the folds are selected such
that the percentage of samples is preserved for each class. In each fold of the validation, the testing
dataset was first balanced using SMOTE and then the classifier was trained.

In this study, the precision, recall, accuracy and receiver operating characteristic area under curve
(ROC AUC) were used as evaluation measures to evaluate the performance of the various classifiers
being developed [45]. A brief description of all these measures are given below:

2.5.1. Precision

Precision (P) is the fraction of true positives (TP) predicted to the total predicted positives i.e., true
positives plus false positives (FP). In some scenarios, it is also called as confidence. Precision is
defined as:

P =
TP

TP + FP
. (1)

2.5.2. Recall

The recall is the fraction of TP predicted from the total of real positives i.e., true positive plus
false negatives. It is also sometimes referred to as sensitivity. The recall is an important measure in the
context of medical or clinical studies because it identifies all real positive cases. It is also important in
ROC analysis in which it is referred to as the true positive rate. It is defined as:

R =
TP

TP + FN
. (2)
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2.5.3. Accuracy

Accuracy is one of the most intuitive and basic performance measures for any ML model. It is
not a good criterion by which to evaluate any model when the dataset is imbalanced. However, it is
a good measure for a balanced dataset where all the classes to be classified are equally represented.
It can be defined as:

Accuracy =
TP + TN

TP + FP + TN + FN
. (3)

2.5.4. Receiver Operating Characteristic

This is one of the most important and widely accepted evaluation criteria. It compares the true
positive rate (TPR) and the false positive rate (FPR). It is created by plotting the TPR against the FPR.
TPR i.e., sensitivity or recall is already defined above and FPR can be defined as follows:

FPR =
FP

FP + TN
. (4)

2.5.5. Descriptive Analyses and Independent t-Test

We used SPSS 22.0 (IBM, Armonk, NY, USA) to carry out basic statistical analyses of the data.
Descriptive analyses were used to examine the baseline characteristics. Differences in the HR, RR and
HRV parameters between the event and no-event groups were examined using the independent
samples t-test. The P value is described in terms of rejecting the null hypothesis when it is true.
The null hypothesis is usually a hypothesis of no difference (i.e., no difference in a variable among
the two groups). The term alpha refers to a pre-chosen probability and the term “p value” is the
calculated probability. The choice of the significance level at which the null hypothesis can be rejected
is subjective. Conventionally, the 5%, 1% and 0.1% (p < 0.05, 0.01 and 0.001) levels have been used.

In this study, the statistical significance (alpha) was set at p < 0.05. We selected the level of
significance i.e., alpha = 0.05 so that the probability of making a wrong decision is at most 5% when
the null hypothesis is true and also to balance the tradeoff between type 1 and type 2 errors. It also
keeps the type 2 errors within acceptable limit and does not reject a null hypothesis (even if there
is a significant difference when it is false). A type I error is the false rejection of the null hypothesis
and a type II error is the false acceptance of the null hypothesis. While testing the hypothesis on
the difference in mean for the event and no-event samples, we had two samples (for the event and
no-event group) with different sizes. However, the differences in sample size have been accounted for
in the computation of t-statistics (that is, in the estimation of the standard error of difference) for the
hypothesis testing.

2.6. Sample Size

Since this study is in the medical domain, we have inherent limitations on our sample size due to
problems associated with data collection from patients. We validated the sample size requirements
for this study statistically. We determined the sample size requirement based on our assumption of
a 50% prevalence rate and an error margin of 10% at the 95% confidence level. The required sample
size turned out to be, n = 96. We used the standard formula for sample size determination used in
cross-sectional studies [46].

3. Results

The baseline characteristics of the data used in this study are presented in Table 1. The values
are presented for both the datasets considered in the study, namely the one that had 109 patients with
data for all HD sessions and the other which had 105 patients with data from the most recent 15 HD
sessions. Of 109 patients, 78 patients suffered from clinical event(s) and 31 patients did not report any
clinical event during the whole period of HD. The total number of clinical events reported by patients
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during the study period was 166 and the frequency of events reported per patient ranged from 1–9.
The distribution of different types of events is presented in Table 2. Patients were 30–89 years old with
mean age 66.3 and standard deviation (std.) ± 12.2. There were 58 (53.2%) male and 51 (46.8%) female
patients in the study. The BMI of patients ranged from 17.4 to 42.3, with a mean of 24.1 and std. ± 12.2.

A descriptive analysis was carried out in which the mean of all the variables was compared
between the event group and the no-event group and are shown in Table 3. This was carried out on
data samples selected from 15 recent HD sessions. A total number of n = 11,400 data samples were
from the event group of patients and n = 4350 were from the no-event group of patients. We found that
the mean heart rate, respiration rate and some HRV parameters were significantly different between
the two groups. The mean heart rate and respiration rate of both the first five minutes and the last five
minutes were different in the two groups with p < 0.0001. The mean heart rate of the first five minutes
and last five minutes in the event group were found to be higher than those in the non-event group
(FFM: 75.58 vs. 70.56 and LFM: 75.85 vs 70.61). Similarly, the respiration rate was also observed to
be different among the two groups. It is also higher in the event group as compared to the no-event
group (FFM: 17.80 vs. 16.48 and LFM: 17.49 vs. 16.11).

A statistically significant difference was found in the mean values of the vital parameters among
event and no-event patients. Therefore, it became the basis for proceeding with further data analytics.
As mentioned in the previous section, three predictive models were developed to predict the clinical
event. The models were validated using the stratified k-fold cross validation method where k = 10.
In model 1 and model 2, the dataset was divided into a training and validation set in each fold at the
observation level, and at the patient level in model 3. In models 1 and 2, a single patient had many
data samples, i.e., observations, therefore data splitting in these models occurred at observation level.
However, each patient had a single corresponding data sample in model 3, therefore the data splitting
occurred at the patient level in this model.

Table 1. Baseline characteristics of the study data (n = number of patients).

Characteristics
Values

(n = 109, All HD Sessions)
Values

(n = 105, 15 HD Sessions)

Number of Male participants (%) 58 (53.2) 54 (51.4)
Number of Female participants (%) 51 (46.8) 51(48.6)

Age Range 30–89 30–89
Mean Age (±std.) 66.3 (±12.2) 66.4 (±12.2)

BMI Range 17.4–42.3 17.4–42.3
Mean BMI (±std.) 24.1 (± 3.6) 24.1 (±3.6)

Total Number of Hemodialysis Sessions 3237 1575
HD Sessions Range 7–52 15

Average No. of Sessions (±std.) 29.69 (±9.97) 15

HD: Hemodialysis; BMI: Body Mass Index.

Table 2. Details of events reported during study period.

Event Details Values

Number of different events 5
Number of sessions with events 166

Number of patients reporting the event 78
Number of patients who did not report the event 31

Number of patients with sudden death 6
Number of patients reporting an ER visit 33

Number of patients reporting inpatient (IP) 32
Number of patients reporting ERIP 28

Number of patients reporting muscle spasm 45

ER: Emergency Room visit; ERIP: Emergency Room visit and Inpatient.
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Table 3. Comparison of mean values of various parameters between the event and no-event class.

Features
Event (n = 11,400) No Event (n = 4350)

p Values
Mean (SD) Mean (SD)

HR_FFM 75.58 11.84 70.56 11.96 <0.0001
HR_LFM 75.86 12.33 70.62 12.01 <0.0001
RR_FFM 17.80 4.28 16.49 3.72 <0.0001
RR_LFM 17.50 4.35 16.12 3.49 <0.0001
HF_FFM 0.42 0.23 0.41 0.22 0.0035
HF_LFM 0.41 0.22 0.40 0.21 0.0803
LF_FFM 0.39 0.16 0.40 0.16 <0.0001
LF_LFM 0.39 0.15 0.40 0.15 <0.0001

LF/HF_FFM 1.30 1.16 1.36 1.23 0.0053
LF/HF_LFM 1.33 1.15 1.38 1.27 0.0187

VLF_FFM 0.35 0.19 0.35 0.17 0.0297
VLF_LFM 0.36 0.18 0.35 0.17 <0.0001

(VLF+LF)/HF_FFM 2.28 1.56 2.31 1.52 0.2177
(VLF+LF)/HF_LFM 2.34 1.55 2.32 1.51 0.4651

Age 66.18 12.45 67.10 11.33 <0.0001
BMI 24.14 3.91 24.32 2.78 0.0056

In each model, we tried and tested various classification methods like kNN, AdaBoost, SVM,
RF and logistic regression (LR). When these classifiers were trained using the dataset in which data
samples from all the HD sessions of patients were considered, the performance of the AdaBoost
classifier which is an ensemble ML technique, was found to be better in all the models. kNN and SVM
also performed well in model 1 and model 2. In model 1, a mean accuracy of 89.48% was achieved
using kNN with 96.21% mean precision and 88.47% mean recall. The mean area under curve (AUC)
was 90.16% in kNN classifier of model 1. Similarily, in AdaBoost the mean accuracy of 83.81% was
achieved with mean precision, recall and AUC at 94.07%, 82.09%, and 83.81% respectively. In model 1,
the mean accuracy of SVM was 76.94% with mean precision and mean recall of 90.19% and 75.28%,
respectively, whereas in random forest and logistic regression the classifier recall was 62.84% and
59.76%, respectively. A decent accuracy with high precision, recall and area under ROC curve were
obtained through the AdaBoost, kNN and SVM classifiers in model 1 and AdaBoost further performed
better in model 2 and model 3 among other classifiers.

When we used data samples from recent 15 HD sessions to train the models, the performance
of the classifiers was in line with those reported using data samples from all HD sessions. The mean
accuracy of the kNN classifier was observed to be 87.95% with 89.01% AUC, 96.35% precision and
86.64% recall. The performance of the AdaBoost classifier in model 1, when this dataset was used,
was also similar. A mean AUC of 85.38% with 81.86% recall and 95.09% precision was observed.
The comparison of all the classifiers under each model considering various evaluation criteria was
shown in Table 4, when data samples from all the HD sessions were considered in developing the
model. In Table 5, evaluations of all the classifiers are shown when the models were developed using
only the data samples from the 15 recent HD sessions. The ROC AUC plots of all the models depicting
the mean area under the curve is presented in Figures 2–7. The ROC AUC plots of each classifier
under each model when the data samples from all the HD sessions were considered are shown in
Figures 2–4, respectively, and the ROC AUC plots when data samples from the 15 recent HD session
were considered are shown in Figures 5–7, respectively.
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Table 4. Validation results of classifiers using stratified 10-fold cross-validation when data samples
from all HD sessions were considered.

Model Classifier
Mean Precision

(±Std.)
Mean Recall

(±Std.)
Mean Accuracy

(±Std.)
Mean AUC

(±Std.)

Model-1

AdaBoost 0.9407
(0.011)

0.8209
(0.015)

0.8381
(0.011)

0.8497
(0.013)

kNN 0.9621
(0.004)

0.8847
(0.007)

0.8948
(0.004)

0.9016
(0.004)

SVM 0.9019
(0.006)

0.7528
(0.011)

0.7694
(0.008)

0.7805
(0.007)

RF 0.8352
(0.009)

0.6284
(0.014)

0.6528
(0.011)

0.6691
(0.012)

LR 0.7908
(0.008)

0.5976
(0.008)

0.6073
(0.008)

0.6138
(0.009)

Model-2

AdaBoost 0.9047
(0.021)

0.8073
(0.026)

0.8051
(0.022)

0.8036
(0.026)

kNN 0.8914
(0.019)

0.7178
(0.022)

0.7408
(0.019)

0.7562
(0.022)

SVM 0.8711
(0.014)

0.7443
(0.025)

0.7436
(0.020)

0.7431
(0.020)

RF 0.8665
(0.026)

0.6235
(0.047)

0.6688
(0.037)

0.6992
(0.035)

LR 0.7928
(0.021)

0.6028
(0.038)

0.6114
(0.030)

0.6172
(0.028)

Model-3

AdaBoost 0.9417
(0.077)

0.8750
(0.125)

0.8618
(0.085)

0.8542
(0.101)

kNN 0.8237
(0.136)

0.5875
(0.194)

0.6147
(0.165)

0.6354
(0.167)

SVM 0.8821
(0.107)

0.6375
(0.221)

0.6594
(0.124)

0.6813
(0.109)

RF 0.8639
(0.104)

0.8482
(0.093)

0.7897
(0.124)

0.7449
(0.167)

LR 0.9437
(0.095)

0.8232
(0.139)

0.8362
(0.140)

0.8491
(0.155)

kNN: k-nearest neighbor; AdaBoost: adaptive boosting; LR: logistic regression; RF: random forest;
SVM: support vector machine.

Table 5. Validation results of classifiers using stratified 10-fold cross-validation when data samples
from the 15 recent HD sessions were considered.

Model Classifier
Mean Precision

(±Std.)
Mean Recall

(±Std.)
Mean Accuracy

(±Std.)
Mean AUC

(±Std.)

Model-1

AdaBoost
0.9509
(0.012)

0.8186
(0.018)

0.8380
(0.016)

0.8538
(0.017)

kNN
0.9635
(0.006)

0.8664
(0.010)

0.8795
(0.009)

0.8901
(0.009)

SVM
0.8982
(0.008)

0.7622
(0.014)

0.7653
(0.012)

0.7679
(0.013)

RF
0.8462
(0.021)

0.7196
(0.019)

0.7021
(0.022)

0.6879
(0.030)

LR
0.8212
(0.012)

0.6216
(0.013)

0.6281
(0.014)

0.6334
(0.016)
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Table 5. Cont.

Model Classifier
Mean Precision

(±Std.)
Mean Recall

(±Std.)
Mean Accuracy

(±Std.)
Mean AUC

(±Std.)

Model-2

AdaBoost
0.8809
(0.023)

0.7886
(0.028)

0.7695
(0.027)

0.7541
(0.033)

kNN
0.8889
(0.029)

0.7035
(0.042)

0.7213
(0.033)

0.7357
(0.036)

SVM
0.8625
(0.043)

0.7404
(0.046)

0.7251
(0.042)

0.7127
(0.059)

RF
0.8295
(0.038)

0.6982
(0.057)

0.6762
(0.039)

0.6583
(0.048)

LR
0.8188
(0.046)

0.6202
(0.028)

0.6248
(0.042)

0.6285
(0.060)

Model-3

AdaBoost
0.7171
(0.094)

0.7464
(0.162)

0.6044
(0.143)

0.4899
(0.164)

kNN
0.7733
(0.131)

0.4054
(0.136)

0.4824
(0.121)

0.5443
(0.127)

SVM
0.7423
(0.117)

0.6071
(0.223)

0.5461
(0.139)

0.4869
(0.146)

RF
0.6680
(0.143)

0.5393
(0.204)

0.4663
(0.152)

0.4113
(0.168)

LR
0.7183
(0.073)

0.5893
(0.088)

0.5308
(0.069)

0.4780
(0.100)

Figure 2. Receiver Operating Characteristics plot showing mean area under curve of all the classifiers
of Model-1 when all HD sessions were considered.

Figure 3. Receiver Operating Characteristics plot showing mean area under curve of all the classifiers
of Model-2 when all HD sessions were considered.
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Figure 4. Receiver Operating Characteristics plot showing mean area under curve of all the classifiers
of Model 3 when all HD sessions were considered.

Figure 5. Receiver Operating Characteristics plot showing mean area under curve of all the classifiers
of Model 1 when the 15 recent HD sessions were considered.

Figure 6. Receiver Operating Characteristics plot showing mean area under curve of all the classifiers
of Model 2 when the 15 recent HD sessions were considered.
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Figure 7. Receiver Operating Characteristics plot showing mean area under curve of all the classifiers
of Model 3 when the 15 recent HD sessions were considered.

4. Discussion

In this study, we presented the novel use of non-contact sensor data in clinical settings during
the process of HD of 109 patients. Hemodialysis is a procedure to purify the blood when the
kidneys stop functioning normally. Hemodialysis may cause certain complications like cardiovascular,
non-cardiovascular, and cerebrovascular issues, and even sudden death. During the 3237 HD sessions
and 23 weeks of this study, we found that 78 patients reported 166 episodes of clinical events.
We compared the differences among the group of patients who reported clinical events to those
who did not report any clinical event. We found a statistically significant difference in the heart rates
and respiration rates (p < 0.0001) recorded by the non-contact sensors among the two groups of patients.
Various HRV parameters also showed significant differences, like high frequency and low frequency.
The heart rate in both the first five minutes and last five minutes was found to be higher in the event
group of patients compared to the no-event group of patients by an almost five-point basis. A similar
pattern was observed for the respiration rate. Our findings suggest that an increased heart rate and
respiration rate indicates the unwellness of the patient and that some kind of clinical event may happen
in the near future that needs attention and care in advance.

It is further observed that the mean heart rate values of the last five minutes (HR_LFM) were
slightly higher than the heart rate values for the first five minutes (HR_FFM). Various studies conducted
in the past also point towards an increase in heart rate during HD [47–50]. This phenomenon is observed
across both groups of patients. It is generally observed that the heart rate increases during HD because
of the removal of excess body water, which triggers a significant increase in the heart rate. This finding
is consistent with those reported in the literature. The mean values of all vital parameters are shown in
Table 3. The basic statistical analysis shows differences in the values of most of the vital parameters
among the two groups of patients that were also found to be statistically significant.

The performance of the developed predictive models was also in line with the statistical findings.
We obtained very high accuracy for our ML-based predictive models. In this study, we demonstrated
the use of non-contact sensors to monitor the vital parameters of patients during HD and in the early
prediction of any clinical event that may occur during the period of hemodialysis-based treatment.
The results of our study show the possibility of accurately and precisely predicting chances in a clinical
event. Although we were dealing with a smaller dataset, the model we developed still performed
extremely well. If we evaluate our dataset in terms of the frequency of data points, we had a reasonable
number of data samples, namely 32,370. However, if we evaluate our dataset in terms of individual
patients, we had only 109 data points, which is very few to train a ML model. Model 1 exploited
the large frequency of our dataset, whereas model 3 relied on the individual patients. In model
1, we achieved 90.16% ROC with a recall rate of 88.47% with a kNN classifier and ROC of 84.97%,
with a recall of 82.09% in the AdaBoost classifier. In model 2, we achieved 80.36% ROC with a recall
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rate of 80.73% with an AdaBoost classifier. Recall or sensitivity analysis was an important measure in
the context of our study. It tells us the rate of predicting true positives. A high recall rate was achieved
in this study, which validates the practicality of an early warning system based predictive analytics
using non-contact sensor data in hospital settings. This type of system can alert the healthcare provider,
physicians, and healthcare professionals so that they provide extra care to the patient and the patient
can be saved from any forthcoming life-threatening clinical events.

In our model, we selected a subset of variables from the available variables. We used heart rate
and respiration rate, two features that had HF and LF from the HRV along with age, gender and BMI as
input features in our models. The rest of the available variables were not considered as input features
for the models. The notion behind selecting HR and RR is that they are the two main vital parameters
used for continuous patient monitoring. The objective of this study was to understand whether we can
make early predictions of clinical events by monitoring these vital parameters. The HRV parameters
are basically variables derived from the heart rate. HRV is related to the autonomic nervous system.
High frequency is linked to the parasympathetic nervous system (PSNS) and LF is linked to the
sympathetic nervous system (SNS), as reported in the literature [51]. The other HRV variables were
not considered as input features because they did not have enough influence on the outcome of the
classifiers. Therefore, we considered these variables as important markers for the prediction of the
physiological health of patients. Further, there are various methods for deciding the best subset of
features [52] reported in the literature, namely the filter method, wrapper method, and embedded
method. We used the backward elimination technique of the wrapper method for feature selection,
which showed optimum performance for the predictive models developed in this study.

We found that under real circumstances the use of non-contact sensors is highly beneficial in two
ways. Firstly, it provides the continuous monitoring of the vital parameters of the patient during the
HD session. It can help the physician or the care provider to take a decision in providing better care
and comfort to the patients. Secondly, this data can be used for analyses and the prediction of any
clinical emergency. It could predict event occurrences based on the increased heart rate and respiration
rate during HD. Although it would be early to say that the proposed supervised ML-based predictive
model could be used in real life, on the basis of the obtained results we suggest that more such studies
are conducted using non-contact sensors in clinical settings. These proposed studies could validate the
findings of this study and further be useful in the development of a more robust predictive application
to predict clinical events in advance.

5. Limitations of This Study

We had certain limitations in this study in terms of the clinical variables available for analysis.
We had only three critical parameters in our dataset to build our model, i.e., heart rate, respiration
rate, and HRV parameters. The inclusion of other vital parameters like blood pressure and patient’s
medical history could add more weight to such predictive modeling approaches. One of the major
issues observed in HD is the sudden death of patients, including various other events like ER visits or
inpatient stays due to cardiovascular problems, infection, renal problems, etc. During this study, six
people suffered sudden death. It was one of our objectives to develop a multi-class prediction model
that is able to predict chances of different events occurring in advance. We had details of the medical
issues reported during the clinical event in the form of International Classification of Diseases (ICD)
codes, but the number of cases reported was very low. Therefore, in this study we limited our analysis
to a binary classification model instead of building a multi-class classification model.

6. Conclusions

The initial findings and the performance of the predictive model developed using this data are
highly encouraging. It is also a novel application for non-contact sensors in clinical settings, especially
for HD patients. The authors found very few studies that used AI for the prediction of events in liver
transplant patients, but could not find any study using AI on sensor data to predict clinical events in
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HD patients. On the basis of our findings, we recommend further studies using non-contact sensors
to monitor the vital parameters of chronic kidney disease (CKD) patients during HD. This can be
utilized to predict the possibility of medical problems in HD patients in advance. In addition, as a part
of future work, we are further interested in analyzing this data more specifically using the available
ICD code information reported during clinical events. This will enable us to identify whether there is
any difference in the recordings when the event is reported as compared to when it is not reported.
Furthermore, a patient might have reported several issues during the reporting of clinical events.
It will be intriguing to learn whether there is any association between the different types of medical
issues reported by the patients and the trends between different patients as far as the association of
different medical issues are concerned. We also plan to check the importance of each feature variable
used in the ML models. It will be intriguing to learn which feature variable has greater impact on the
efficiency of the developed predictive ML models.
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Abstract: The majority of wearable sensor-based biofeedback systems used in exercise rehabilitation
lack end-user evaluation as part of the development process. This study sought to evaluate
an exemplar sensor-based biofeedback system, investigating the feasibility, usability, perceived
impact and user experience of using the platform. Fifteen patients participated in the study having
recently undergone knee replacement surgery. Participants were provided with the system for
two weeks at home, completing a semi-structured interview alongside the System Usability Scale
(SUS) and user version of the Mobile Application Rating Scale (uMARS). The analysis from the
SUS (mean = 90.8 [SD = 7.8]) suggests a high degree of usability, supported by qualitative findings.
The mean adherence rate was 79% with participants reporting a largely positive user experience,
suggesting it offers additional support with the rehabilitation regime. Overall quality from the
mean uMARS score was 4.1 out of 5 (SD = 0.39), however a number of bugs and inaccuracies were
highlighted along with suggestions for additional features to enhance engagement. This study has
shown that patients perceive value in the use of wearable sensor-based biofeedback systems and
has highlighted the benefit of user-evaluation during the design process, illustrated the need for
real-world accuracy validation, and supports the ongoing development of such systems.

Keywords: biofeedback; biomedical technology; exercise therapy; orthopedics; mobile health;
qualitative; human factors; wearables; inertial measurement unit

1. Introduction

In response to changing global health economics, connected health solutions have the potential to
improve the outcomes and accessibility of healthcare [1]. Within rehabilitation, remotely collating and
aggregating data from patients has been suggested to have numerous benefits in terms of cost, clinical
outcome and patient satisfaction, and can encourage self-management of long-term conditions [2,3].
These connected health solutions can include a biofeedback system which not only gathers data,
but also offers the user meaningful information in real-time that is otherwise unavailable to them.
This can consist of measurements from the neuromuscular system, or biomechanical variances such
as strength or exercise technique [4]. This has led to the development of a number of biofeedback
systems utilising a variety of technologies including cameras and wearable sensors [5–8]. The use of
wearable inertial measurement units (IMUs) is one such method of measuring biomechanical variance
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during exercise and providing feedback to the patient [4,9,10]. The portability of IMUs means that
they provide an easy and cost-effective method of capturing human movement data [4,11], and they
have been shown to be an accurate method of assessing exercise technique in numerous rehabilitation
exercises [11–14].

IMU based biofeedback systems are particularly suited to the orthopaedic rehabilitation pathway,
with an increasing prevalence of surgery and a clearly defined rehabilitation regime. The demand
for primary total knee replacement (TKR) for example is estimated to grow 673% in the United States
between 2005 to 2030, to almost 3.5 million procedures performed annually [15]. Exercise rehabilitation
is the cornerstone of the post-acute recovery process, yet patients report a lack of confidence and
vulnerability in the post-operative period [16]. Combine this with the advancement of value-based
care, and there is a clear need for interventions to support self-management whilst maximising clinical
and cost effectiveness.

Usability is one of the main barriers to widespread uptake of most connected health
interventions [17], however there is a distinct lack of both technical and usability validation of
sensor-based systems in the peer-reviewed literature [10,18]. To encourage engagement, it is important
that the design of biofeedback systems adopts a user-centred iterative process [19], where developers
consult end-users to evaluate the system, identify their usability criteria, and understand the
perceived benefits and challenges of its implementation in the real-world [20]. To further promote
user-engagement, it is also possible to include interventions aiming to increase adherence to exercise
within the design of these solutions [21,22].

Thus, this study sought to explore the feasibility, usability, perceived impact, and user experience
of an exemplar exercise biofeedback system for orthopaedic rehabilitation in the home. In addition,
it was desirable to incorporate user-centred design approaches by encouraging participants to highlight
potential refinements or issues in implementation, and to express the criteria they would require in
order to maximise engagement and impact.

2. Materials and Methods

2.1. Participants

A total of 15 patients volunteered to participate in the study (nine females, six males; age: 63
[standard deviation (SD): 8.32]). Participants were recruited from a private hospital in Dublin, Ireland
and had recently undergone knee replacement surgery (TKR or unicompartmental knee replacement
(UKR)). Participants were required to live within 30 km of the hospital, have no history of cognitive
dysfunction, and no difficulty understanding English. The study received ethical approval from the
Beacon Hospital Research Ethics Committee (BEA0065), and written informed consent was obtained
from all participants prior to commencing the study.

The participants were split into two groups for pragmatic reasons. Group 1 consisted of
five participants (Post-Acute) who had all undergone knee replacement surgery at least six weeks
previously, and were approaching the end of the acute rehabilitation regime. This group were tested
first in order to establish any significant shortcomings in the system that may increase risk of harm to
the acute patient group. The second group of 10 participants (Acute) were introduced to the study
prior to surgery and then recruited directly from the ward between 2 to 3 days following the operation.
This group represents the target user for such a system designed to be implemented in support of
discharge home from hospital.

2.2. Prototype Exercise Biofeedback System

The prototype system evaluated by all participants consisted of a single wearable IMU (Shimmer,
Dublin, Ireland) [9], and a tablet computer with a custom-built Android application. The Shimmer3
IMU, utilising a tri-axial low-noise accelerometer (±2 g) and tri-axial gyroscope (500 ◦/s) configured
to sample at 102.4 Hz, was placed at the midpoint of the anterior aspect of the shin in a neoprene
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sleeve, and streamed data via Bluetooth to the tablet whilst the user was guided through their exercises
(Figure 1). An avatar mirrored the movements of the user in real-time, the repetitions were counted
(Figure 2), and at the end of each exercise, the user was given advice on their technique based on
supervised machine learning.

 

Figure 1. User setup and IMU orientation of the biofeedback system consisting of a single IMU and
associated Android tablet application (figure adapted from [23]).

Figure 2. Screenshot of the Android tablet application during the straight leg raise exercise.

These methods allow for segmentation and classification of sensor data using support vector
machine and random forest techniques described in further detail elsewhere [11,14]. The application
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also captures patient reported outcomes such as pain and perceived exercise difficulty, and provides
all the relevant educational material from the healthcare provider in interactive formats. The user
is able to track their progress by viewing their adherence statistics and results of previous patient
reported outcome measures such as the Oxford Knee Score or the Western Ontario and McMaster
Universities osteoarthritis index [24]. A video of the system can be viewed in the Supplementary
Materials (Supplementary File 1).

2.3. Experimental Procedure

A mixed methods approach consisting of both quantitative and qualitative data was collected
to provide greater insight into the performance of the system, and reduce the weaknesses in using
each method in isolation [17,25]. Once signed informed consent was provided, the investigator met
participants in their home or at the hospital, whichever was more convenient. Demographic data
including age, gender, education, and ownership of mobile technology devices were first collected
by self-report. Participants then partook in a user-training session of the biofeedback system lasting
approximately 30 minutes, which included completing a full set of the rehabilitation exercises as
prescribed in the post-operative protocol. They were then provided with the system and asked to use it
at home for the following two weeks to complete the exercises as prescribed by their Physiotherapist.

The investigator met each participant on two additional occasions in their own home during the
testing period. During each session, the participant completed a set of the rehabilitation exercises
using the biofeedback system, with the investigator observing and making notes on system crashes
or user-errors as the participant used the system. After the final session, a semi-structured interview
was completed with each participant. Open ended questions were used to establish the perceived
impact, usability and user experience of the system, and to explore their opinions on how the prototype
could be improved. A Dictaphone was used to record all interview data, and to ensure consistency in
questioning, an interview topic guide was constructed based on the aims of the study and the main
research questions [26] (Supplementary File 2).

Prior to the final interview, and to provide quantitative data to support the system evaluation,
participants also completed two questionnaires; the System Usability Scale (SUS) [27] and the
“user version of the Mobile Application Rating Scale” (uMARS) [28]. The SUS is a 10-item questionnaire
that has been used to quickly and reliably assess the usability of a system across a number of
sectors [27,29]. The output from each user is a score out of 100 which can be used to compare to
a growing body of literature to find percentile rankings of a system’s usability performance [30].

The uMARS is designed to be completed by the end-user of mobile applications, rather than the
more expert-driven “Mobile Application Ratings Scale” [31]. The application is assessed under the
categories of aesthetics, functionality, engagement and information to produce a score out of 5, as well
as separate measures to assess the perceived impact of the system and subjective app quality. Similar
to previous work [25], this perceived impact section was tailored to identify the perceived impact of
the person “exercising with their best technique”.

2.4. Data Analysis

All audio data from interviews was transcribed and anonymised. The transcripts were analysed
thematically with a grounded theory approach [26]. An early coding template was created based
on the interview topic guide which was refined and finalised as themes emerged throughout the
analysis [32] by RA (research physiotherapist) and PS (anthropologist). Regular cross-checking was
undertaken in a constant-comparison approach ensuring correlation between researchers and reliability
of sub-themes [33]. Discrepancies were discussed until agreement was reached, and data saturation
was agreed when no further themes and no new data were occurring [26].

The SUS and uMARS scores were calculated following the standard scoring procedure, with the
SUS mean and standard deviation (SD) of scores across all participants calculated [27,28,30]. For each
participant, a uMARS score out of 5 was calculated under the sections of engagement, functionality,
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aesthetics and information. The mean of these scores produced an overall score for each participant,
perceived impact and subjective app quality were also calculated out of 5 for each user. The means
and SDs for the uMARS scores were then calculated across all participants. Estimated adherence rates
were also calculated for each user in the acute group. The number of times each participant finished
an exercise session was logged within the system and compared with the prescribed number, in order
to provide an understanding of the participant’s compliance to the exercise programme.

3. Results

All 15 participants completed the semi-structured interview and surveys following two-weeks of
using the exemplar biofeedback system. Table 1 illustrates the demographics of participants, including
their current access to mobile technology. A summary of the results from interview data are reported
in this section, with additional quotations available in Supplementary File 3.

Table 1. Participant demographics and technology ownership.

Demographic Details n = 15

Marital Status

Married 86.6%
Single 0%

Widowed 6.6%
Other 6.6%

Lives with
Spouse 46.6%
Family 40%
Alone 13.3%

Education
Degree Educated 73.3%

Completed Secondary 20%
Completed Primary 6.6%

Technology Ownership

Mobile Phone 100%
Smart Phone 86.6%

Tablet 66.6%
WiFi 93.3%

Health/Fitness App 26.6%

3.1. Usability, Functionality and User Experience

The system achieved a mean SUS score of 90.8 (SD 7.8). This places the system above the 95th
percentile when compared with published results using this scale [29]. Table 2 displays the results from
the uMARS scores, subjective app quality and perceived impact. The results from the functionality
section of this survey support this high usability rating with a mean score of 4.2 out of 5 (SD 0.34).

Table 2. Results from the user version of the Mobile Application Rating Scale (uMARS). Overall
uMARS quality score shown in bold.

uMARS Section (score out of five) Mean (SD)

Engagement 3.5 (0.69)
Functionality 4.2 (0.34)

Aesthetics 4.2 (0.45)
Information 4.4 (0.34)

Overall Quality 4.1 (0.39)
Perceived Impact 4.4 (0.83)

Subjective App Quality 4.2 (0.86)

Whilst these scores suggest a high degree of usability for the system evaluated, the qualitative data
from interview transcripts provided a greater context and support as to the reason that participants
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scored the system this way. Specifically, almost all participants commented on how they found the
system easy to use, regardless of their perceived literacy with technology:

It’s very simple to use, very simple. And it flows through on a good progression. [Acute 2]

Initially I said to you I wasn’t very computer literate but it’s very simple to use. Once you do it once
or twice you can do it with your eyes closed essentially. [Acute 9]

Participants reported positively on their user experience, finding that the system gave them
an added incentive to complete their exercises, and provided them with support once they were
at home:

I think it set me on a routine very, very quickly and a routine that I actually got to enjoy in a certain
way. It was not like holding a sheet of paper . . . you became involved in it and so user friendly that I
really think it was a great aid to me. [Acute 5]

It’s very helpful, it’s much better than leafing through static illustrations. It’s 3D real time. It made
what are otherwise boring exercises more interesting. [Acute 9]

Some usability issues were highlighted by participants however, with many reporting
inconsistencies in the repetition counter and the technique feedback. Participants also noted that
the information presented in the progress section was not displayed intuitively and, on a number of
occasions, a bug led to the exercises not being recorded correctly:

There is a bit of problem with the counting in it . . . Yeah sometimes it misses a few you do . . . it just
runs away with itself. [Post-Acute 1]

Some of the technique feedback seems to be quite inconsistent. [Acute 9]

On the graph I don’t know what the interpretation is supposed to be. [Acute 6]

We had just the one where it says unusual behaviour, unexpected behaviour, please repeat the exercise.
I think I was saying to you that on two occasions I actually repeated the exercise . . . I just said there
was a glitch and it didn’t really bother me. [Acute 5]

These issues consequently had a negative impact on user experience. Despite the above participant
saying it did not trouble them, other users reported frustration with this, as the exercises are not easy
to do and therefore this bug reduced their trust in the system.

It’s just very frustrating as I say it’s on the three that are really painful to do, and you struggle through
them and you think well I think I have done them fairly well and then it says unexplained behaviour
do them again and you just can’t. [Post-Acute 4]

3.2. Perceived Impact

Almost all participants made a reference to the system improving their adherence to the
rehabilitation programme, whether that was in the quantity of exercises performed, or the quality with
which they completed them:

It kept me doing physio when I might not have done it at home, especially with various things that have
been happening at home. So it kept me doing physio and made sure I did it every day. [Post-Acute 3]

Well I can 100% tell you that I had a previous knee operation and I didn’t have an app and I did the
exercises as diligently and frequently as I could, but I certainly didn’t do them with the thoroughness
and regularity that I’ve done them this time [Acute 3]
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One of the main reasons reported for this perceived improvement in adherence largely related to
the monitoring provided by such a system provides, be that self-monitoring via the progress graphs or
remote monitoring by the clinician:

I found it, I have to say, it made me do the exercises when I didn’t really want to do them, knowing I
was being monitored, I do think it helped me a lot. [Acute 2]

I kind of felt that that app now made me do my exercises, the three times a day, and secondly at least it
was recording it and you could see, that’s what I liked, you could see the progress from, I’m sure you
have the record there of the beginning ones weren’t great. [Acute 4]

Participants reported a motivation for using the system, whether as a result of the monitoring
aspect, or from the enjoyment they achieved from using it and improving their self-efficacy:

Oh yes it made a huge difference, that was a great motivation . . . It just meant that I was in control of
my situation and I didn’t feel the days were endless. I was looking forward to doing it to see how well
I was doing. [Acute 7]

A huge incentive and even if you try it and say, I’m too tired tonight and then you say no, no I have
to do it and I have to try and improve on it. [Acute 6]

Users were keen to point out the importance of the technique classification and felt this was an
integral part of the support the system provided:

That’s the important bit about it that it tells you straight away, you need feedback, there is no point
in having the app if it doesn’t give you feedback . . . Because if you are waiting for someone to come
in and check it out for you, that’s two to three weeks, but it’s two to three weeks of doing it wrong.
[Post-Acute 2]

It’s ideal for somebody that’s coming straight out of hospital and they have to do the exercises on their
own, because if you are not doing it correctly why are you bothering doing them in the first place.
So that as a tool in itself is worth a hell of a lot. [Post-Acute 3]

Only one participant responded negatively when asked about their overall experience of using
such a system. Whilst many others summed up their experience positively, reporting benefits to their
confidence and their health literacy regarding the procedure and rehabilitation:

Yes first couple of days that was very interesting and I liked the idea of looking at the little cartoon.
But after 2 or 3 days it was for me, I thought it was unnecessary . . . I have no interest because I know
very well if I’m doing better or not. So I find it unnecessary. [Acute 1]

I think the fact that I was almost keen for the next session, it led to a regularity and I think that has
paid huge dividends in the exercises and in the result of the exercises on the leg. I really think it was
extremely beneficial. [Acute 5]

It was so positive. It was just brilliant. It just meant that I was in control whereas normally I would
be coming home and in the hospital it would be altogether different because there’s so much support
there, but when you come home its gone except that I had that. [Acute 7]

These comments were supported by the quantitative findings listed in Table 1. Specifically,
the high result seen within the perceived impact subsection of the uMARS (4.4/5), which focused
on the change in awareness, knowledge and behaviour regarding exercising with the best technique.
The subjective app quality scored 4.2/5, with particularly high ratings for when participants were
asked if they would recommend the system to others who might benefit (4.6).
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3.3. Refinements

Participants offered a number of suggestions for refinements or additional features they would
like to see to further maximise potential impact in such a system. A large number of participants (n = 9)
requested that additional exercises were included in the system, including progressions beyond the
basic regime:

I think if you gave me progression on the exercises, well done, try this one now, I’d like that.
[Post-Acute 5]

Participants also felt that given the specific outcomes and targets following knee replacement
surgery, a measurement of their joint angle would be beneficial:

This is probably not possible, but to get the angle of that knee bend, if you knew that . . . for me that is
where I’m really stuck so just to know that . . . I know it counts it and it said you did it right, but I’m
not sure what the angle of the bend is, and I’m rather obsessed with that. [Post-Acute 4]

The other one thing that I’d love to be able to see is you know when you do the knee bends, I’d love to
be able to see what angle you got . . . Now it just you know then the way at least you could say well
I’ve gone from a 50 to a 75 rather than just ok it looks like I am doing it ok. [Acute 4]

Other suggestions were based on some of the usability issues discussed previously, with requests
for greater clarity in the progress reports, a quality score after each exercise session and improving the
graphical interfaces within the system:

And you know the way your Fitbit would have the circle that you have to fill the circle and obviously
this system is basic bar charts . . . Yes that (the Fitbit) does make more sense. [Post-Acute 3]

It would be very difficult to rate it from the previous time, there is no linkage from the previous
repetitions . . . So in a way you don’t know if you are doing better today than you did yesterday . . .
The quality of how I’m doing them. [Acute 2]

I suppose it’s nice to see it really, but she needs to undergo a great makeover . . . Just a bit more human
the graphics . . . I mean even if it was more a cartoon figure or something it doesn’t really matter.
[Post-Acute 4]

Finally, a small number of participants talked about gamification ideas, yet there were mixed
opinions on the relevance and the benefit of incorporating gamified features and customisation within
the system:

If there was a games element to it you know you have unlocked the next level . . . or a medal or
something. [Acute 4]

I think that’d be a mistake because then you are going to end up turning it into playtime rather than
exercise time. I think it’ll lose the point of it. I don’t think you should be able to manipulate too much
unless it is information gathering or correcting the programme. For me this is a medical instruction
for exercise to improve your health... you’d end up wasting time and not doing the exercise. [Acute 9]

In summary, the SUS and uMARS results, in combination with the interview data, suggest that
the system had a high degree of usability and functionality, however there are programming issues
causing inaccuracies in feedback that can be improved upon in future iterations to further enhance
the user experience of the system. Participants in the acute group demonstrated a mean adherence
rate of 79% (range 42%–100%) compared to the recommended number of exercise sessions in their
rehabilitation programme. The results suggest that such a system may provide additional support
and motivation in the rehabilitation process and improve adherence to the exercise programme,
with patients highlighting features such as an extended exercise library and a joint angle measurement
tool to further improve engagement and potential impact.
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4. Discussions

This study investigated patient perceptions of using a custom-built interactive exercise
biofeedback system with wearable technology during orthopaedic rehabilitation. Few studies have
explored the opinions of the end-user in this population despite the increasing commercial prevalence
of such systems [25], therefore this study adds to the current base of literature. Patients largely showed
a positive reaction to the use of such a system, with numerous perceived benefits reported, a view that
has been shared by clinicians [23]. The results offer fresh insights that can be used to inform the
design of such systems, with suggestions to encourage user-engagement, improve usability and
optimise impact.

The results indicate that using wearable sensors to offer biofeedback in support of the home-exercise
programme prescribed following orthopaedic surgery improves the patient experience and has
potential benefits to the clinical outcome. This perceived value may be measured in exercise adherence,
patient satisfaction, and clinical effectiveness of the intervention, supporting similar previous
suggestions in the literature [20,34], and advocating the ongoing development and evaluation of
such systems.

Previous research has demonstrated clinician concern that usability would be a significant barrier
to engagement with such systems [23]. However, the results from this study show that, provided
the system is built with a user-centred focus, it may be possible to mitigate these concerns, including
those of reduced digital literacy within the target demographic. The SUS results reinforce the interview
data, as this system scored above the 95th percentile and is comparable to other systems developed
for exercise biofeedback [5,25,30]. However few studies have evaluated the usability of a system
with a mixed-methods approach over a period of several days as is recommended in the current
literature [17].

While usability can be defined as the “effectiveness, efficiency and satisfaction with which
specified users achieve specified goals in particular environments”, it is also important to explore the
user experience, that is “the users’ perceptions and responses that result from the use of a system” [35].
Results suggest that this system can contribute to an increased sense of routine in the patient’s
rehabilitation regime and provide greater levels of enjoyment as they exercise. This in turn may reduce
the perceived burden of, and barriers to, self-management [36], thus facilitating better engagement and
adherence. However, it also shows how technical issues or wording of feedback can negatively impact
user-experience. Particularly given the exercises may be challenging and often painful for patients,
they may have a reduced tolerance for technological flaws in a system such as this than they would in
other contexts.

It is notable that the uMARS score for the ‘engagement’ section demonstrated distinctly lower
mean scores than the other sections. When analysing the individual questions, it is clear that the lack of
customisation of sound, content and notifications (mean 1.9) along with the inability to set reminders
and allow for interactivity (mean 3.2) had a negative impact on engagement. Arguably though the level
of interactivity was misunderstood by participants, as the system will not function without user input
from the sensor data. Additionally, an interesting finding from the uMARS was that the aesthetics of
the prototype were not of concern, despite the clear graphical issues discussed in the interview data,
further highlighting the benefits of the mixed-methods approach.

The usage data would suggest engagement was not as much of an issue as the uMARS would
illustrate. The mean adherence rate to the specified number of exercise sessions was relatively high at
79%, with only one participant, who reported negatively on their overall experience in their interview
data, demonstrating any kind of drop-off in engagement over time. This patient was one of only
three to have received a UKR and was progressed on from these exercises within the study period.
These adherence levels are similar to those reported in the recent evaluation of a camera-based
biofeedback system for joint replacement rehabilitation [5], and are greater than the varying reports
of 35–67% in the wider exercise adherence literature [37,38]. It is also widely documented that there
is currently no valid and reliable measurement tool for exercise adherence [38,39]. The use of IMU
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based biofeedback solutions can therefore not only address factors that affect adherence by providing
feedback, goal-setting and self-monitoring, but also offer a more reliable method of measurement of
adherence rates [22].

The role of feedback was continuously mentioned throughout this study, with results suggesting
it is crucial for habit formation and creating sustained engagement. In current clinical practice there is
no ability to monitor or provide feedback to patients between clinic appointments, with a reliance on
the patient’s own self-management skills [23]. A system such as this therefore has the ability to offer
feedback on exercise technique and clinical progress outside of the clinic setting. This in turn has the
potential to provide added incentive to continue engaging with rehabilitation, increasing adherence,
and maximising clinical outcomes [40]. Users requested additional features for further feedback such as
a joint angle measure, and gamification ideas including unlocking levels of new and more challenging
exercises in order to sustain engagement. This highlights the need for user-centred design approaches,
as designers cannot assume what the user needs or sees as important [41]. Of particular interest was
the role of monitoring and the perceived impact this had, as some patients were motivated by the
ability to self-monitor, while others reported greater engagement and adherence as they were aware
that their behaviours could be tracked by their clinician.

The lack of real-world validation of exercise biofeedback systems consisting of IMU based sensing
platforms in the literature is of concern [10,18]. In this case, users were able to detect what they
considered to be inaccurate feedback which has previously been reported as an important criterion for
users [42]. These results reinforce the need for field evaluations to become a mainstream methodology,
particularly for systems aimed at supporting treatment, where accuracy is key to ensure patient
engagement and successful clinical decisions [10].

This study is not without its limitations however, particularly as the sample was selected
from a single private hospital. This therefore may not be representative of the wider population,
as the majority of patients were degree educated and from more affluent socio-economic backgrounds,
which are determinants of better self-management and health outcomes [43,44]. While a sample size
of 15 participants is standard for usability testing, this does not guarantee the opinions discussed
are generalisable beyond this population. It is important to note that the impact discussed in this
study is based solely on participant perceptions from analysis of interview data and uMARS results,
and further objective investigation of impact is recommended. As the aim of this paper was to
explore user perceptions on usability and perceived impact, there is no reference to the quantitative
performance and accuracy of the system in measuring patient exercise technique in the ‘real-world’.
Therefore, until this validation is completed, the adherence rates stated could only be calculated by the
number of exercise sessions, rather than the exact number of repetitions completed during each session.

Despite these limitations, patients believe exercise biofeedback systems consisting of IMUs and
mobile technology can offer significant value to the rehabilitation experience, potentially maximising
adherence, satisfaction, and therefore clinical outcome. Few other studies have been published that
investigate these perceptions in similar systems, despite the importance of a user-centred focus in the
design process. Further research is required to objectively assess whether these perceived benefits are
demonstrated in clinical practice, and to rigorously validate the technical aspects of any such system.
The development of patient recommended features can also be undertaken to improve the impact
and user-experience in this biofeedback system, including a range of motion measurement, additional
exercises for progression and gamification elements.

5. Conclusions

The emergence of ubiquitous mobile technologies and wearable sensors offer the opportunity to
provide novel and effective methods of supporting patients in exercise rehabilitation. Patients perceive
the use of wearable exercise biofeedback systems such as the prototype evaluated can offer additional
motivation and feedback to enhance adherence, and positively impact patient experience and clinical
outcome. However, there is a need for such systems to demonstrate real-world accuracy validation.
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By involving patients in the development of such systems in a user-centred design manner, it is possible
to maximise engagement and effectiveness, and highlight shortcomings or areas for further research
early in the development cycle. The prototype system can be considered highly usable and the findings
support the ongoing development and evaluation of such sensor-based biofeedback systems.
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Abstract: The aim of this work was to develop a new unsupervised exploratory method of
characterizing feature extraction and detecting similarity of movement during sleep through
actigraphy signals. We here propose some algorithms, based on signal bispectrum and bispectral
entropy, to determine the unique features of independent actigraphy signals. Experiments were
carried out on 20 randomly chosen actigraphy samples of the Hispanic Community Health
Study/Study of Latinos (HCHS/SOL) database, with no information other than their aperiodicity.
The Pearson correlation coefficient matrix and the histogram correlation matrix were computed to
study the similarity of movements during sleep. The results obtained allowed us to explore the
connections between certain sleep actigraphy patterns and certain pathologies.

Keywords: actigraphy; bispectrum; entropy; feature extraction

1. Introduction

Actigraphy is now being increasingly used to explore sleep patterns in sleep laboratories. Its main
advantages include its easy setup, its low cost, and the fact that prolonged records can be obtained
over time, permitting patient activity in ambulatory conditions without interfering with their daily
routines. It is considered to be a valuable tool for controlling and monitoring circadian alterations and
insomnia, as well as avoiding false positives in the assessment of daytime sleepiness tests, such as the
multiple sleep latency test, and the wakefulness maintenance test [1–5].

Many recent studies have validated the practice of actigraphy, for example, in [6] several
wrist-worn sleep assessments, actigraphy devices were compared. A relationship has been found
between sleep disorders and their effects on certain conditions, such as hypertension and obesity [7],
and it is now even possible to analyze sleep depth by actigraphy signals [8].

A review of the current state of higher-order statistics (HOS) and their use in biosignal analysis
can be found in [9]. As most of the biomedical signals are non-linear, non-stationary, and non-Gaussian
in nature, iHOS (Higher Order Statistics) analysis is preferable to second-order correlations and power
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spectra [9]. On this issue, several studies, such as [10] have been published on the screening of pediatric
sleep apnea–hypopnea syndrome, and the automated classification of glaucoma stages in [11].

Concerning the detection of similarity of movements, in [12,13] although classification patterns
were obtained from sleep/awake states according to the characteristics of the actigraphy signal, they
were not based on higher order spectra. In fact, the common approach is to analyze individual
actigraphy records over several days, so that the studies cited above were not focused on the analysis
of the activity signal as a random process that is dependent on the movement of a certain part of
the body.

The present work is based on the bispectral analysis of actigraphy signals and their relationship
with bispectral entropy. The increase of movements as a form of feature extraction measurement,
and the detection of similarities of movements during sleep are shown as features to be considered.
The results obtained indicate the potential of this approach for the study of sleep disorders, and
their connection with other conditions. The work is organized as follows: Materials and Methods
are described in Section 2, the results are given in Section 3, the Discussion in Section 4, and the
Conclusions and future work are outlined in Section 5.

2. Materials and Methods

2.1. Data Acquisition

The experiments were carried out on 20 samples of actigraphy signals obtained from the Hispanic
Community Health Study/Study of Latinos (HCHS/SOL) Database [14–17] chosen at random, through
the use of the “randi” Matlab function. The Sueño Ancillary Study recruited 2252 HCHS/SOL
participants to wear wrist-worn actigraphy devices (Actiwatch Spectrum, Philips Respironics, Royal
Philips, Netherlands,) between 2010 and 2013. The participants were instructed to wear the watch for
a week. Records were scored by a trained technician of the Boston Sleep Reading Center [17].

2.2. Methods

Actigraphy signals have a random nature that can be visualized in terms of uniformity in the
bispectrum. This uniformity depends on the non-impulsive characteristics of the signal, which are
reflected in the spectrum as frequency peaks. Since the bispectrum is a function that presents unique
characteristics for each signal in terms of frequency and phase it can easily be seen in a graph. This led
us to explore an entire methodology based on calculating the bispectrum and the bispectral entropy,
which would be able to detect similar characteristics in movement patterns during sleep. Twenty cases
of actigraphy signals were analyzed to extract their characteristics, which were then used to determine
similarities and differences among the signals.

The activity signals were first normalized to 1, and then segmented to determine the subjects’
daily activity record. The bispectrum of the total sample of the activity signal recorded was seven
days. The experiments were conducted on two age groups between 18 and 44 years old, and 45 and
64 years old.

2.3. Theoretical Foundations: Bispectrum

Let {x(n)}n, n = 0,±1,±2, . . . be a stationary random vector, and let us also suppose that we can
compute its higher order moments [18,19], where:

mx
k (τ1, τ2, . . . , τk−1) = E(x(n)·x(n + τ1) . . . x(n + τk−1)) (1)

represents the moment of order k of that vector. This moment only depends on the different time slots
τ1, . . . , τk−1 where τi = 0,±1, . . . for all i. The cumulants are similar to the moments, but the difference
is that the moments of a random process are derived from the characteristic function of the random
variable, while the cumulant generating function is defined as the logarithm of the characteristic
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function of that random variable. The k-th order cumulant of a stationary random process {x(n)}n can
be written as [20]:

cx
k (τ1, τ2, . . . , τk−1) = mx

k (τ1, τ2, . . . , τk−1)− mG
k (τ1, τ2, . . . , τk−1), (2)

where mG
k (τ1, τ2, . . . , τk−1) is the k-th order moment of a process with an equivalent Gaussian

distribution that presents the same mean value and autocorrelation function as the vector {x(n)}n.
It is evident from (2) that a process following a Gaussian distribution has null cumulants for orders

greater than 2, since mx
k(τ1, τ2, . . . , τk−1) = mG

k (τ1, τ2, . . . , τk−1), and so that cx
k(τ1, τ2, . . . , τk−1) = 0 [20,21].

In practice, we estimate cumulants and polyspectra from a finite amount of data {x(n)}N−1
n=0 .

These estimates are also random and are characterized by their bias and variance [22]. Let {x(n)}n.
denote a zero mean stationary process; we assume that all relevant statistics exist, and that they have
finite values. The third order cumulant sample estimate is given by [21]:

C3(τ1, τ2) =
1
N

N2

∑
n=N1

x(n)·x(n + τ1)·x(n + τ2) (3)

where N1 yand N2 are chosen such that the sums only involve x(n) for n = 0, . . . , N − 1, N being the
number of samples in the cumulant region. Likewise, the bispectrum estimation is defined as the
Fourier Transform of the third-order cumulant sequence [22]:

BN
x ( f1, f2) =

N−1

∑
τ1=−N−1

N−1

∑
τ2=−N−1

C3(τ1, τ2)·e−2π f1τ1 ·e−2π f2τ2 =
1

N2 X∗( f1 + f2)·X( f1)·X( f2) (4)

where f1 and f2 are the spectral frequency vectors of the sequence {x(n)}N−1
n=0 , and X( fi), i = 1, 2, is its

Fourier Transform.

2.4. Bispectral Entropy Analysis

Entropy provides a measure for quantifying the information content of a random variable in terms
of the minimum number of bits per symbol that are required to encode the variable. It is an indicator
of the amount of randomness or uncertainty of a discrete random process [23]. Consider a random
variable Z with M states z1, z2, . . . zM, and state probabilities p1, p2, . . . pM, that is, P(Z = zi) = pi,
the entropy of Z is defined as:

H(Z) = −
M

∑
i=1

pi log2(pi) (5)

The entropy of a discrete-valued random variable attains a maximum value for a uniformly
distributed variable. In order to extend this notion from the spatial to the frequency domain, we
introduce bispectral entropy as a way of measuring the uniformity of the spectrum [21]. The bispectral
entropy is defined as:

EN
bx( f1, f2) = −

N−1

∑
τ1=−N−1

N−1

∑
τ2=−N−1

PN
x ( f1, f2)· log2 PN

x ( f1, f2) (6)

where the energy probability is computed in terms of the bispectrum estimation:

PN
x ( f1, f2) =

BN
x ( f1, f2)

∑N−1
τ1=−N−1 ∑N−1

τ2=−N−1 BN
x ( f1, f2)

(7)
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3. Results

The actigraphy signals that measured the movements of individuals while sleeping were analyzed.
These movements have an intrinsically random nature, since they can occur with non-specific
probabilities and durations. This can be checked by analyzing the frequency spectrum of the
activity signal and comparing it with a noise pattern. The probabilistic distribution function of
the spectral pattern depends on the nature and uniformity of the movements, which may follow a
normal distribution or another, such as a uniform distribution, depending on the random nature of
the process.

3.1. Application of the Bispectrum to the Actigraphy Signal

A spectral analysis based on the one-dimensional Fourier transform is not recommended for
the detection of traits in a random signal, such as the actigraphy signal. For these, this analysis only
provides information relative to the magnitude-frequency or phase-frequency distribution. In other
words, what is visualized in the spectrum is noise, which in our case, is in fact the useful information
from which certain characteristics and features have to be extracted. The frequency spectrum of
two actigraphy signals is shown in Figure 1, where it can be seen that the one-dimensional Fourier
Transform is not able to identify the discriminant features in this type of signal.

 
(a) (b) 

Figure 1. Ilustration of: (a,b) Examples of the frequency spectrum of two actigraphy signals obtained
from their respective one-dimensional Fourier transforms.

Unlike the one-dimensional frequency spectrum, the bispectrum of an activity signal can
provide information on the spatial distribution of the amplitude, and on the frequency components
(see Equation (4)). This information can be represented in a matrix that can be used to obtain the
particular identification features of each signal. The bispectrum of the actigraphy signal was simulated
in MatLab, using the Higher Order Spectra Analysis toolbox. Figures 2 and 3 show the contours of the
bispectrum surface of the actigraphy signal, where f1 and f2 are the normalized spectral frequency
vectors generated from the calculation of the bidimensional Fourier Transform.

We found that the bispectrum can indicate variables that measure specific characteristics of the
movement during sleep, based on the uniformity of the activity data and the disorder of the sample.
Here, a greater frequency disorder at a bispectral level may imply an excess of movement during
the analyzed period, which can even be an identifying feature of sleep, and be linked to patients.
For the sake of completeness, we can see in Figures 2–5 that the bispectrum is a unique variable for
each actigraphy signal.
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(a) (b) 

Figure 2. (a) Bispectrum of the activity record over seven days, and (b) bispectrum of the activity
record on day 1 of the actigraphy data sample hchs-sol-sueno-00163225.

  
(a) (b) 

Figure 3. (a) Bispectrum of the activity record on day 2, and of (b) bispectrum of the activity record on
day 3 of the actigraphy data sample hchs-sol-sueno-00163225.

  
(a) (b) 

Figure 4. (a) Bispectrum of the activity record on day 4, and (b) bispectrum of the activity record on
day 5 of the actigraphy data sample hchs-sol-sueno-00163225.
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(a) (b) 

Figure 5. (a) Bispectrum of the activity record on day 6, and (b) bispectrum of the activity record on
day 7 of the actigraphy data sample hchs-sol-sueno-00163225.

It can also be seen that the daily bispectrum registrations are all different from each other, showing
that all these registers form an identification pattern, which we have named the bispectral pattern of
the activity signal.

A bispectrum analysis was performed on 20 different activity signal records. We tried to identify
each one with a specific spectral sleep pattern per day, and to find a possible relationship between an
individual’s movement patterns during sleep. The results obtained are shown in Figures 6–8, which
give the bispectrum of the actigraphy signal for the first 10 of the 20 analyzed actigraphy signals from
the HCHS/SOL database.

  
(a) (b) 

Figure 6. Bispectrum obtained from the 7-day activity record of the samples (a) hchs-sol-sueno-00163225and
(b) hchs-sol-sueno-00238589.

60



Sensors 2018, 18, 4310

  
(a) (b) 

  
(c) (d) 

Figure 7. Bispectrum obtained from the 7-day activity record of the samples (a) hchs-sol-sueno-00258857,
(b) hchs-sol-sueno-00306064, (c) hchs-sol-sueno-00311734, and (d) hchs-sol-sueno-00329320.

It can be seen that there are unique identifiable characteristic features that can be used to obtain
patterns of movement during sleep. For instance, Figures 5–8 have similar contours. This means
individuals can be divided into groups according to the similarity of their sleep patterns.

  
(a) (b) 

Figure 8. Cont.
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(c) (d) 

Figure 8. Bispectrum obtained from the 7-day activity record of the samples (a) hchs-sol-sueno-00349159
(b) hchs-sol-sueno-00358110 (c) hchs-sol-sueno-00496432 (d) hchs-sol-sueno-00504839.

To further illustrate these results, we correlated the bispectrum of the seven days of signals by
computing the Pearson correlation coefficients for every pair of samples to find similarities between the
two signals. The results are given in the correlation matrix R in Table 1. For example, R1−2 is the Pearson
correlation coefficient between the bispectrum of samples 1 and 2 from hchs-sol-sueno-00163225
and hchs-sol-sueno-00238589.

In order to determine subgroups in the set of samples, and to identify the pairs of signals that
give correlation values closest to 1, we selected the pairs with correlation values of greater than 0.97.
This was done to satisfy the hypothesis of the similarity of the sleep movement patterns of two signals,
since there must be as few differences as possible, and therefore, also minimal differences in their
bispectral patterns. The results of similar pairs are shown in black in Figure 9, in which the values with
the lowest correlation are indicated with red dashed lines to show different activity patterns. For this
latter case, we considered values of below 0.8. Although these values are relatively high in comparison
with other applications, we have considered its use for the search of dissimilar sleep patterns.

Table 1. Correlation matrix obtained from the analysis of the bispectrum comparison of the 7-day
activity signal for the 20 Hispanic Community Health Study/Study of Latinos (HCHS/SOL) database
samples analyzed.

0.898 0.944 0.934 0.965 0.957 0.899 0.899 0.947 0.825 0.966 0.976 0.971 0.950 0.979 0.911 0.972 0.970 0.973 0.945
0.961 0.935 0.875 0.881 0.767 0.860 0.957 0.981 0.823 0.935 0.953 0.949 0.869 0.991 0.884 0.876 0.923 0.919 -
0.965 0.944 0.914 0.837 0.911 0.961 0.909 0.892 0.970 0.976 0.970 0.917 0.970 0.937 0.925 0.959 0.933 - -
0.931 0.886 0.860 0.899 0.949 0.887 0.886 0.949 0.954 0.950 0.895 0.945 0.920 0.916 0.936 0.885 - - -
0.938 0.914 0.926 0.927 0.809 0.962 0.969 0.951 0.945 0.949 0.890 0.973 0.965 0.967 0.913 - - - -
0.847 0.832 0.899 0.817 0.948 0.951 0.936 0.915 0.971 0.896 0.974 0.926 0.945 0.972 - - - - -
0.849 0.844 0.688 0.889 0.892 0.854 0.864 0.870 0.773 0.889 0.888 0.863 0.799 - - - - - -
0.908 0.799 0.887 0.929 0.911 0.904 0.862 0.867 0.881 0.921 0.920 0.849 - - - - - - -
0.913 0.891 0.957 0.976 0.956 0.913 0.965 0.912 0.921 0.955 0.926 - - - - - - - -
0.739 0.871 0.898 0.905 0.791 0.966 0.819 0.810 0.861 0.860 - - - - - - - - -
0.946 0.924 0.892 0.964 0.841 0.960 0.960 0.941 0.922 - - - - - - - - - -
0.977 0.964 0.958 0.942 0.964 0.963 0.976 0.953 - - - - - - - - - - -
0.975 0.953 0.966 0.957 0.954 0.981 0.949 - - - - - - - - - - - -
0.921 0.954 0.952 0.944 0.970 0.906 - - - - - - - - - - - - -
0.888 0.970 0.961 0.960 0.957 - - - - - - - - - - - - - -
0.899 0.886 0.937 0.931 - - - - - - - - - - - - - - -
0.962 0.971 0.937 - - - - - - - - - - - - - - - -
0.967 0.912 - - - - - - - - - - - - - - - - -
0.938 - - - - - - - - - - - - - - - - - -
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Figure 9. Visualization of pairs with Pearson correlation coefficients greater than 0.97 (black line) and
lower than 0.8 (red dashed line).

The correlation values given in Table 1 and Figure 9 show that there may be a similarity in sleep
movement patterns. In Table 1, the maximum distance value is 0.3122 and the minimum is 10−6,
the mean is 0.0538, and the statistical mode (the most frequent value in an array) is 0.001. Figure 10
gives a comparative measurement of the values in Table 1 by rearranging the columns of the matrix
into a vector, and considering it as a time series, in which the x-coordinate is the position in the vector
and the y-coordinate, the corresponding value of the coefficient. In this arrangement, the groups
indicate almost repetitive terms that represent signals with similar characteristics.

Figure 10. Scatter plot of the correlation matrix shown in Table 1.

In order to better distinguish the differences and similarities between the sleep signals, we
performed another analysis using the bispectral entropy as the method of characterizing the
disorder/uniformity of the processed signals.
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3.2. Application of Bispectral Entropy as a Measure of Actigraphy Disorder

The experiment was based on a similarity analysis, analogous to that of the bispectrum.
We calculated the bispectral entropy of each activity sample for the whole period of seven days,
to obtain a measure of the degree of uniformity of the sleep movement pattern, taking the degree of
randomness of the activity signal into account. We considered the maximum value of the bispectral
entropy as a way of describing the degree of uniformity of a random process.

The bispectral entropy of the signals was computed in a minimum window of eight samples,
to represent the temporal displacement index of the signals. The results obtained are shown in
Figure 11, together with the mean value of the bispectral entropy of each actigraphy signal.

Figure 11. Mean bispectral entropy values of the 20 actigraphy signals considered.

It can be seen that signals 8 and 16 have the lowest bispectral entropy values, due to the
non-uniformity of the bispectrum frequency distribution. This can also be identified in some of
the previous graphs; for instance, in Figure 8b, the high-frequency components are characterized by
the outer points (in blue), and the disconnected regions are the lowest frequency values.

In Figure 11 there are also samples with similar values of bispectral entropy of between 0.98 and
0.99, which indicates that they may be related to the hypothesis that activity samples with a similar
correlation at the bispectral level may have the same level of uniformity of their value distributions.
The opposite is also true with the minimum values of bispectral entropy, shown in Figure 11, as are
those of samples 8, 10, 7, and 16, and other visible relationships, whose correlation values are under
0.8 in Table 2, and in Figure 11 are related to different uniformity patterns.

Given the analogy of the activity signal with the random process, the maximum entropy value
would mean a greater uniformity of movement in the subject in the time interval studied, i.e., a high
uniformity in the randomness of the movements. Conversely, occasional movements would be
associated with impulsive noise, which has a non-uniform randomness, and thus, it would be
associated with minimum entropy.

To also visualize the frequency of the maximum uniformity of sleep movements, histograms were
made of the 7-day bispectral entropy of each activity signal. The frequencies of the entropy values for
each processed sample are shown in Figures 12 and 13. These histograms provide information on the
number of repetitions of the entropy values in each sample, i.e., the number of times the value in the
data vector is repeated.
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Figure 12. Histograms of the 7-day bispectral entropy of each activity signal (Signals 1 to 8,
processed samples).

  

 
Figure 13. Histograms of the 7-day bispectral entropy of each activity signal (Signals 9 to 20,
processed samples).
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Although none of the histograms is repeated in Figures 12 and 13, some of them show certain
similarities that could indicate similar sleep patterns. To verify this, the histograms were correlated
to each other, with the criteria for the entropy values as well as for the data repetition frequency.
The results are shown below in Table 2.

Table 2. Correlation matrix obtained from the analysis of the bispectral entropy histograms of the 20
analyzed samples from the HCHS/SOL database.

0.966 0.906 0.908 0.681 0.702 0.791 0.889 0.934 0.957 1.000 0.828 0.928 0.938 0.972 0.931 0.927 0.931 0.957 0.720
0.976 0.973 0.699 0.714 0.880 0.944 0.967 0.948 0.966 0.725 0.842 0.893 0.906 0.865 0.841 0.889 0.985 0.650 -
0.979 0.593 0.623 0.937 0.930 0.943 0.906 0.906 0.583 0.731 0.783 0.840 0.763 0.748 0.827 0.964 0.504 - -
0.715 0.732 0.913 0.979 0.985 0.945 0.908 0.677 0.780 0.845 0.824 0.818 0.740 0.894 0.983 0.621 - - -
0.981 0.514 0.802 0.774 0.711 0.681 0.816 0.706 0.853 0.558 0.730 0.511 0.762 0.703 0.934 - - - -
0.553 0.805 0.790 0.715 0.702 0.793 0.697 0.848 0.575 0.708 0.490 0.773 0.713 0.926 - - - - -
0.886 0.845 0.788 0.791 0.429 0.559 0.665 0.709 0.615 0.589 0.729 0.863 0.430 - - - - - -
0.975 0.929 0.889 0.731 0.786 0.874 0.798 0.834 0.717 0.913 0.958 0.720 - - - - - - -
0.976 0.934 0.779 0.859 0.908 0.855 0.887 0.789 0.947 0.989 0.714 - - - - - - - -
0.957 0.840 0.927 0.925 0.912 0.947 0.878 0.975 0.980 0.708 - - - - - - - - -
0.828 0.928 0.938 0.972 0.931 0.927 0.931 0.957 0.720 - - - - - - - - - -
0.937 0.932 0.796 0.928 0.825 0.898 0.756 0.910 - - - - - - - - - - -
0.955 0.934 0.992 0.931 0.937 0.865 0.800 - - - - - - - - - - - -
0.889 0.962 0.863 0.939 0.897 0.899 - - - - - - - - - - - - -
0.929 0.950 0.887 0.892 0.646 - - - - - - - - - - - - - -
0.924 0.954 0.892 0.802 - - - - - - - - - - - - - - -
0.846 0.845 0.618 - - - - - - - - - - - - - - - -
0.932 0.801 - - - - - - - - - - - - - - - - -
0.657 - - - - - - - - - - - - - - - - - -

Table 2 contains the results based on the histogram of the bispectral entropy of the activity
signals to provide a criterion for the similarity of the data, based on the uniformity of the bispectrum.
This table can be interpreted similarly to Table 1, which was based on the algorithm that describes the
matrix correlation in Figure 9.

According to the previous analysis, the upper threshold was 0.97, and the lower threshold was a
little lower than previously found. We considered 0.7 to distinguish between the similarities and clear
differences among the signals (see Figure 14).

Figure 14. Visualization of pairs with Pearson correlation coefficients greater than 0.97 (black line) and
lower than 0.7 (red dashed line).
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It can thus be seen that several histograms are highly correlated, which indicates that this activity
signal presents a high level of data uniformity, i.e., bispectral entropies with similar values, and also a
high correlation value in terms of the bispectrum comparison. The dispersion graph of the correlation
values obtained from Table 2 is shown in Figure 15. The data with similar values are seen to be grouped.
The maximum value of the distance matrix is 0.6715, and the minimum is 10−5. The mean value of
the distance matrix was 0.1407, and the statistical mode was 10−5, which indicates data groups with
similar characteristics associated with the same type of movement, as can be seen in Figure 15.

 
Figure 15. Scatter plot for the correlation matrix shown in Table 2.

4. Discussion

In order to associate the results with clinical diagnoses, several variables were taken from the
HCHS/SOL database as the clinical characteristics of the 20 actigraphy samples. First, we considered
the following variables:

CDCR_SUENO: self-report of cerebrovascular disease & carotid revascularization.
CHD_SELF_SUENO: combination of self-reports of coronary revascularization or heart attack.
DIABETES_SELF_SUENO: indicates a self-report of diabetes.
DIABETES _SUENO: indicates diabetes.
DM_AWARE_SUENO: describes the awareness of diabetes.
Hypertension_SUENO: indicates hypertension status.
STROKE_SUENO: checks for a self-report of stroke history.
STROKE_TIA_SUENO: checks for medical history of stroke, mini-stroke or TIA (transient

ischemic attack).
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These variables are of the 0/1 type, i.e., ‘0’ for a negative response and ‘1’ for a positive. Their
values for the 20 individuals whose actigraphy signals were processed can be found in Table 3.

Table 3. Clinical characteristics of each individual analyzed for each actigraphy sample.

Samples
CDCR_
SUENO

CHD_
SELF_

SUENO

DIABETES_
SELF_

SUENO

DIABETES_
SUENO

DM_
AWARE_
SUENO

HYPERTENSION_
SUENO

STROKE_
SUENO

STROKE_
TIA_

SUENO

1 0 0 0 0 0 1 0 0
2 1 1 1 1 1 1 0 0
3 0 0 0 0 0 1 0 0
4 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0
7 0 0 0 1 0 1 0 0
8 0 0 0 0 0 1 0 0
9 0 0 0 0 0 0 0 0

10 0 0 0 0 0 1 0 0
11 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0
16 0 0 0 0 0 1 0 0
17 0 0 0 1 0 0 0 0
18 0 1 0 0 0 1 0 0
19 0 0 1 1 1 1 0 0
20 0 0 0 0 0 1 0 0

To relate the clinical characteristics of the patients with the obtained results, the correlation was
first used, which is a measure of the similarity of data. We show these results, although the obtained
correlations are weak, in part, for the limited number of signals used, and for the limitations of the
information content embedded in the used signals database.

We opted to consider the HYPERTENSION_SUENO variable to study relationships within the
actigraphy signals, since its value varies in several samples. First, we saw that 47.62% of the pairs
whose bispectrum correlates with a value greater than 0.97 share the same clinical diagnosis. However,
in Figure 9, it can be seen that the pairs with the same positive or negative diagnosis tend to cluster,
which indicates a stronger hidden relationship that cannot be obtained by simply correlating the
bispectrum of the signals (see Figure 16).

Figure 16. Pairs of bispectrum signals correlated with a coefficient that is greater than 0.97 (black lines)
or lower than 0.7 (red dashed line). The thick black line indicates pairs that share a hypertension
diagnosis, while the dashed black line indicates pairs in which neither has hypertension.
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A similar effect was found in the comparison of the bispectral entropy histograms. Only 41.17%
of the pairs correlated with a coefficient of 0.97 or higher present the same hypertension diagnoses.
However, in the pairs with the same diagnosis in Figure 14 those sharing the hypertension diagnosis
are seen to be connected (see Figure 17).

Figure 17. Pairs of bispectral entropy histograms correlated with a coefficient greater than 0.97
(black lines), and lower than 0.7 (red dashed line). The thick black line indicates pairs with a shared
hypertension diagnosis, while the dashed black line indicates pairs in which neither has hypertension.

Although, the results shown in Figures 16 and 17 are not conclusive, they do suggest a further
in-depth study of the characteristics of bispectrum signals that can contribute most to these similarities.
It is also worth mentioning that the limited number of cases considered in this study advise a more
systematic study of larger database samples.

5. Conclusions

This paper has shown that the application of higher-order statistical analysis to actigraphy signals
can contribute to determining the traits and patterns of movement during sleep. These criteria can be
based on part of the spatial information provided by the bispectrum and the bispectral entropy, both
of which can help us to determine effective criteria for measuring the uniformity of data randomness.

The actigraphy signal experiments suggest the possible application of these criteria for the
extraction and comparison of patterns of sleep movements. This would have a potential use in
medicine, since similar pathologies may have similar associated movement patterns.

In future work we propose to use high-order statistical techniques, as for instance in [23]. We
also want to experiment with data from chest actigraphy or other actigraphy signal measures, to
corroborate the potential use of sleep actigraphy signals for purposes of diagnosis.

Our next step will be to increase the number of cases analyzed to cover the entire HCHS/SOL
database, and also to experiment with other clinical characteristics in patients and pathologies
associated with specific sleep disorders or brain-associated diseases.
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Abstract: When exercising in a high-temperature environment, heat stroke can cause great harm
to the human body. However, runners may ignore important physiological warnings and are
not usually aware that a heat stroke is occurring. To solve this problem, this study evaluates
a runner’s risk of heat stroke injury by using a wearable heat stroke detection device (WHDD),
which we developed previously. Furthermore, some filtering algorithms are designed to correct
the physiological parameters acquired by the WHDD. To verify the effectiveness of the WHDD and
investigate the features of these physiological parameters, several people were chosen to wear the
WHDD while conducting the exercise experiment. The experimental results show that the WHDD
can identify high-risk trends for heat stroke successfully from runner feedback of the uncomfortable
statute and can effectively predict the occurrence of a heat stroke, thus ensuring safety.

Keywords: heat stroke; filtering algorithm; physiological parameters; exercise experiment

1. Introduction

According to the 2017 global climate report published by the National Oceanic and Atmospheric
Administration of the United States [1], the global temperature in 2017 reached the third highest
recorded in history. Moreover, the global temperature was also found to increase 0.07 ◦C every
ten years. These findings indicate an evident trend of global warming occurring in recent decades.
This trend has had a significant impact on Taiwan as well. The main island of Taiwan is located on the
Tropic of Cancer. The northern part of Taiwan falls within the subtropical zone whereas the southern
part is within the tropical climate zone. Nevertheless, both parts of Taiwan are surrounded by a hot
and humid climate. Affected by global warming, heat waves are now becoming increasingly frequent
and intense in Taiwan, which has led to an increasing number of heat-related illnesses, including heat
cramps, heat exhaustion, and heat stroke. Among these illnesses, heat stroke is the most severe, which
often occurs in a high temperature and calm weather.

As sports are becoming a more popular component of daily life, many wearable devices capable
of detecting physiological information, automatically recording physical data, and tracking the
user’s location have been developed to offer convenience and improve safety in sport activities.
The improvement in safety is particularly important because the detection of physiological information
enabled by these wearable devices can monitor the physical condition and predict potential safety
risks for the user, thereby effectively reducing the possibility of getting injured in sports. Table 1
summarizes the pathological features and the corresponding physiological risk factors of heat stroke,
obtained from relevant literature studies [2,3]. These findings can be used to increase the chance of
early detection of heat stroke.
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Table 1. Pathological features and the corresponding physiological risk factors of heat stroke.

Pathological Feature Physiological Risk Factor Use of Sensors

Body temperature is always greater than 40.6 ◦C, heat cannot be
dissipated normally from the body Body temperature Yes

High-temperature and high-humidity environment Environmental temperature
and humidity Yes

Lack of sweating or the opposite behavior for heat stroke during
sport activity Skin conductance Yes

Individuals performing intense exercise Running Experimental scenario

Rapid heartbeat or low systolic blood pressure Heart rate Yes

Individuals with abnormal BMI, obese individuals, and seniors Height, weight, and age Prior investigation

In their heat stroke prevention studies, Naoya Mizota et al. [4] proposed the concept of showing a
heat stroke alert on users’ smartphones based on the environmental temperature—humidity index.
Other studies have also suggested that the change in body temperature for individuals of different
ages is also an indicator of potential heat stroke [5–7]. Many other wearable devices equipped with
physiological information sensors can monitor changes in a patient’s condition using physiological
information signals, such as electrocardiogram, electromyography, and electroencephalogram
signals [8,9]. However, a simple device for assessing heat stroke risk based on pathological features
and their physiological information that can be carried easily by individuals is still lacking. Such a
device can advise the users to take appropriate precautions in case of potential heat stroke risk, and
therefore, prevent heat injury.

Wearable devices have been used widely in everyday life with substantial impact on the way
that we live. By integrating physiological sensors in wearable devices, the physiological information
of an individual exercising (e.g., running) can now be monitored automatically and instantaneously.
This information can be combined with recorded environmental conditions to predict the risk of heat
stroke and further advise the user to take proper precautions. Because ordinary wearable devices
have limited computational power, the physiological information collected by the sensors is usually
first sent back to a paired smartphone through Bluetooth wireless communication and then processed
by the smartphone [10]. Bluetooth wireless communication embedded in smart handheld devices
has the advantage of low power consumption and easy connection [11]. While the operating range
of Bluetooth communication is officially claimed to be 100 m, experiments have shown that the
practical communication range is between 5 and 10 m [12]. Although such a distance can satisfy
the requirements in most conditions [13–18], the ultimate distance between the sensor and the smart
handheld device is still limited by the maximum available wireless communication distance if one
wishes to monitor the physiological information of an outdoor runner instantaneously. For individuals
performing outdoor sports activities, increasing the wireless communication distance of the wearable
device can offer more convenience. A summary of the technical specifications of different wireless
communication systems [19] is provided in Table 2. As shown in the table, LoRa is a promising wireless
technology that can resolve the aforementioned issue owing to its advantageous transmission distance,
transmission power consumption, and standby current. Specifically, it has a longer range of wireless signal
transmission, a lower sensitivity, and a lower power consumption [12] than other wireless communication
technologies. Therefore, it is an ideal candidate for use as a communication module in wearable devices.

In addition, fuzzy logic is different from the traditional binary logic, in which the state can be only
described by 0 or 1. In fuzzy logic, a membership function with output values changing continuously
between 0 and 1 is used to describe the state of a phenomenon [20]. Using binary logic to describe
heat stroke can result in potential danger because heat injury has already occurred when a heat stroke
is detected. Using fuzzy logic to describe the heat stroke can prevent potential heat injury based
on the level of heat stroke derived by the fuzzy rule. Thus, fuzzy logic is suitable for use in heat
stroke prevention.
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Table 2. Comparison of the technical specifications of different low-power wireless
communication systems.

Type of Technology Low-Power WiFi Bluetooth LoRa NB-IoT

Frequency 2.4 GHz
5 GHz 2.4 GHz 868 MHz

915 MHZ 7–900 MHz

Transmission speed 16 Mbps 1 Mbps 12.5 kbps 200 kbps
Transmission power ±17 dBm ±10 dBm ±18 dBm ±23 dBm

Sensitivity −92 dBm −89 dBm −136 dBm −141 dBm
Transmission range 100 m 30 m 3–15 km 2–20 km

Current consumption (during transmission) 350 mA 22 mA 120 mA 120–300 mA
Standby current 58 μA 1.3 μA 1 μA 5 μA

Topology Star shape Star shape Star shape Star shape
Node capacity <30 <30 >10,000 >20,000

In our previous work [21], we developed a wearable heat stroke detection device (WHDD) and
demonstrated its heat stroke prediction capability for running. It should be noted that the usage of
WHDDs is not limited to running alone. The WHDDs can be used to monitor body temperature and
prevent the occurrence of heat stroke in any activity or exercise that carries the risk of heat stroke.
In this study, we perform a more detailed analysis and experimental investigation from the perspective
of information analysis and experimental subjects. Our results further demonstrate the superior
applicability of the WHDD.

2. Materials and Methods

2.1. System Description

As shown in Figure 1, the architecture of the WHDD comprises three main parts: a wearable
device, a wireless transmission module, and a back-end monitoring system. The complete WHDD is
shown in Figure 2. Detailed descriptions of the different components of the device can be found in our
previous work [21].

 

Figure 1. Architecture of the system.
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Figure 2. Photograph of the wearable heat stroke detection device (WHDD) on a human body.

2.1.1. Wearable Device

The wearable device is further composed of three parts: the microcontroller, the sensor module,
and the alert module. The microcontroller, based on an Arduino Nano board, is responsible for
performing basic processing of the front-end data collected by the sensors, data filtering, and signal
filtering. Subsequently, the microcontroller packs the data and passes them to the LoRa wireless
transmission module, from where they are transmitted to the back-end monitoring system. The sensor
module comprises four individual sensors that measure heart rate (World Famous Electronic), body
temperature (MLX90614), environmental temperature and humidity (SHT75), and skin resistance
(Grove-GSR) separately. The sensor module captures the main physiological information from the
user’s body. This information is then transmitted to the back-end monitoring system by the wireless
transmission module. Once the back-end system evaluates the risk of heatstroke from the received
data, based on the risk level, the control buzzer warns the runner as follows: no alert means Safe
situation, the LED turns on without the buzzer in Attention mode, the LED blinks and the buzzer
beeps smoothly in Warning status, and the LED blinks and the buzzer beeps rapidly in Interdiction
mode. The system suggests to the runner to ensure that appropriate measures are immediately taken
in a dangerous situation to avoid heat stroke. The details of these procedures can be found in our
previous work [21].

2.1.2. Wireless Transmission Module

To achieve a large-distance, low-power, and low-cost design target, the LoRa module developed
by iFrogLab is used in the wireless transmission module of our device. The LoRa transmission module
enables transmission of the information collected by the sensors from the wearable device to a terminal
device. The wireless transmission module employs universal asynchronous receiver/transmitter
(UART) for signal communication. Control of the data transmission is achieved using the attention
(AT) command system. These approaches facilitate the integration of different components to construct
the device.

2.1.3. Back-End Monitoring System

After collecting and transmitting the physiological information using the sensors and LoRa,
respectively, this information is received by the back-end monitoring system, where the heat stroke
risk is analyzed. The primary functions of the back-end monitoring system include recording the
user’s physiological information, physical status, and environmental information, as well as setting
the parameters for LoRa.

2.2. Planning and Design of Heat Stroke Detection Workflow

After introducing the system architecture of the WHDD, we define the desired operation of the
device as well as the associated techniques and hardware required. In this section, we discuss the
design of the workflow for heat stroke detection and for the specific functions associated with each
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of the three architectures (the wearable device, the wireless transmission module, and the back-end
monitoring system). Figure 3 shows the workflow of the entire system.

W
earable device end

M
onitoring system

 end
W

ireless 
transm

ission

 
Figure 3. Workflow of the WHDD.

2.2.1. Wearable Device

This section describes the workflow for the target function of the WHDD. The overall workflow
can be divided into two stages, namely, the stage before running and during running. The workflow
for each section is described in detail below.

During the first stage (before running), the physiological information of the user is recorded.
This information will be compared with the physiological information of the user during running.
The change in the physiological information before and during running is an important factor for
predicting heat stroke risk. Two physiological features, the heart rate and the skin resistance, of the
user are recorded by the sensors during this stage. The overall workflow is shown in Figure 4.

Figure 4. Workflow for collecting physiological information before running.

This workflow comprises the following steps:

1. Initialization of all the sensors.
2. The heart rate sensor monitors the user’s heart rate for 1 min with a sampling frequency of 2 Hz

(one sample every 0.5 s). After 1 min, a total of 120 measurement points are obtained, whose
average value is considered as the user’s heart rate before running.
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3. Determine whether the heart rate is normal. The heart rate of a normal adult ranges from 50
to 90 bpm [22]. If the heart rate cannot be detected by the sensor, equals zero, or falls within
the range associated with an adult in a non-resting condition, then an abnormal phenomenon is
identified, and the heart rate is measured again.

4. The user’s skin resistance is measured through the galvanic skin response for 1 min with a
sampling frequency of 2 Hz (one sample every 0.5 s). A total of 120 measurement points are
obtained and the average value is used as the user’s skin resistance before running.

5. Determine whether the user’s skin resistance falls within the normal range. The skin resistance of
an adult under resting conditions is approximately 10–50 μS [23]. If the skin resistance cannot be
measured, equals zero, or falls within the range associated with an adult in non-resting conditions,
then an abnormal phenomenon is identified and the skin resistance is measured again.

In the second stage (during running), the wearable device mainly captures information about the
surrounding environment and the user’s physiological condition. Subsequently, this information is
packaged and transmitted to the monitoring end by the LoRa wireless transmission module. The main
workflow is shown in Figure 5.

 
Figure 5. Workflow for extracting information on the surrounding environment and the user’s
physiological condition (main program).

This workflow comprises the following steps:

1. Initial timer interruption program and external interruption program. The timer interruption
program allows the wearable device to receive the heat stroke risk level from the monitoring
system on a regular basis. The external interruption program enables the user to ask for help by
pressing a button on the device. In this case, the device immediately sends the physiological and
environmental information back to the monitoring end.

2. Determine whether the device must be turned off, namely, by removing the battery from the
device and shutting down the program.

3. Collection of the user’s physiological and environmental information by the sensors (e.g.,
temperature and humidity sensor). The information is collected in the following order:
environmental temperature and humidity, skin resistance, heart rate, and body temperature. This
information is collected at intervals of 3 ms. Therefore, 15 ms are required to complete an entire
cycle of information collection.

4. The heart rate and body temperature signals are preprocessed, first by a threshold-filtering
algorithm, then by an error-filtering algorithm, and finally by a moving-average algorithm. When
the number of samples reaches 60, all the filtered information is packaged and transmitted to
the monitoring system by LoRa. The interval between each data transmission is approximately
15 ms × 60 = 900 ms (approximately 1 s)
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5. When the number of samples is less than 60 or the data transmission is finished, the device
continues executing the workflow from step 2.

The detailed signal processing workflows for the two most important indices for evaluating the
heat stroke risk, i.e., the heart rate and body temperature, are discussed below.

Because the heart rate sensor is designed to be positioned on the user’s wrist, the movement of
the arms while running can potentially induce errors in the heart rate measurements. To resolve this
issue, a threshold-filtering, error-filtering, and moving-average strategy is adopted to preprocess the
heart rate signal and mitigate measurement errors. The code of the program is shown in Algorithm 1.

Algorithm 1 Heart rate filtering

1: Global Variables:
2: TrueHR �TrueHR is the final filtered value of user’s heart rate
3: count = 0, mincount = 0, maxcount = 0
4: Let HR[60] to be a new array
5: HR[0] = RelaxHR �RelaxHR is the user’s relax heart rate
6: function HRThresholdFilter(Value) �Value comes from HR sensor
7: count + +
8: if 50  value  190 then

9: HR[count] = Value
10: else

11: HR[count] = HR[count − 1]
12: end if

13: Call function HRErrorFilter(HR[count])
14: if count = 59 then

15: Call function HRMovingAverage()
16: end if

17: end function

18: function HRErrorFilter(Value)
19: Error = Value − HR[count − 1]
20: if Error < −10 then

21: mincount + +
22: if mincount  6 then

23: HR[count] = Value − Round(Error ∗ 1.05)
24: else

25: HR[count] = HR[count − 1]
26: mincount = 0
27: end if

28: else if Error > 25 then

29: maxcount + +
30: if ( thenmaxcount  2)
31: HR[count] = Value − Round(Error × 0.6)
32: else

33: HR[count] = HR[count − 1]
34: maxcount = 0
35: end if

36: else

37: Keep HR[count]
38: end if

39: end function
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In the heart rate threshold-filtering program, heart rate signals falling outside the range of 50
to 190 bpm are filtered out. This is because the heart rate of an adult at rest ranges between 50 and
90 bpm [22]. Therefore, 50 bpm is selected as the lower limit of the heart rate. The upper limit is
selected based on the study by Tanaka et al. [24], who proposed in 2001 that the maximum heart rate
(HRMax) of an individual during exercise should be calculated based on the age instead of the gender.
Roy et al. [25] in 2015 reviewed all the existing equations for calculating the maximum heart rate
during exercise. They found that the equation proposed by Tanaka is rather accurate. This equation is
given by

HRMax = 208 − 0.7 × age (1)

Here, we assume the age to be 26 and derive the maximum heart rate to be approximately 190.
Therefore, the upper limit of the heart rate is selected to be 190.

In the heart rate error-filtering program, each measured heart rate (HRt) is compared with the
heart rate recorded in the previous cycle. The error between neighboring measurements is given by

Error = HRt − HRt−1 (2)

This difference is used to revise the heart rate measurement based on a comparison between
the performance of the heart rate sensor used in this study and that of a commercial heart rate belt.
A fixed equation is derived to convert the measured heart rate to the actual value based on the
difference between neighboring heart rate measurements. The revised heart rate is given by the
following equation {

HR f ix = HRt − Error × 1.05, Error < −10
HR f ix = HRt − Error × 0.6, Error > 25

(3)

Finally, when the number of heart rate measurements reaches 60, a heart rate moving-average
program is executed to obtain the average value of the heart rate measurements obtained over 60 cycles.
The final value is used as the anticipated heart rate (HRTrue), which is given by

HRTrue =
∑t

0 HRt

60
, t = 1 . . . 60 (4)

The sensor used for measuring body temperature in this study is a non-intrusive sensor. First,
it measures the human skin temperature using an infrared sensor and then it converts that to the
adult body temperature using a conversion equation. This temperature sensor is placed on the inner
side of the user’s wrist. Owing to the low thickness of the skin, this location is the most suitable
place for measuring body temperature. According to a study by John Gammel [26], the following
equation, together with the parameters (α) listed in Table 3, are used to convert skin temperature to
core temperature.

TCore = TSkin + α × (TSkin − TAmbient) (5)

Table 3. Parameter α for different body parts.

Body Part α

Rectal 0.0699
Head 0.3094
Torso 0.5067
Hand 0.7665
Foot 2.1807

However, we found that the sweat generated during exercise reduces the surface temperature
of the skin, and therefore, results in a lower body temperature. This impact also varies significantly
with different levels of sweating for different people. Specifically, the measured skin temperature
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is increasingly smaller than the actual skin temperature for those generating a larger amount of
sweat during exercise and vice versa. Therefore, the error of the core temperature obtained using
the conversion equation is greater with increasing exercise time. To reduce the error induced by this
physical phenomenon, the temperature data are filtered and processed using the program code shown
in Algorithm 2.

Algorithm 2 Body Temperature filtering

1: Global Variables:
2: BodyTemp �BodyTemp is the final filtered value of user’s body temperature
3: TempDiff = 0
4: Let Temp[60] to be a new array
5: function TempThresholdFilter(Value) �Value comes from MLX90614 sensor
6: if 28 <= Value <= 35 then

7: Temp = 35 − Value
8: if Temp ! = TempDiff then

9: TempDiff = Temp
10: Temp[count] = Value + TempDiff × 1.5
11: else

12: Temp[count] = Temp[count − 1]
13: end if
14: else if 35 < Value < 40 then

15: Temp[count] = Value
16: else

17: Temp[count] = 36
18: end if

19: if count = 59 then

20: Call function TempMovingAverage()
21: end if

22: end function

After converting the skin temperature to the core temperature (TCore), the core temperature is
processed by a temperature-threshold filter to yield a reasonable body temperature. This revision
is based on a comparison between the body temperature measured using the system developed in
this study and the value measured using an ear thermometer. A compensation equation is derived
from this comparison to revise the core temperature measured by our device. The equation and the
applicable temperature ranges are given by⎧⎪⎨

⎪⎩
TFix = TCore + (35 − TCore)× 1.5, 31 ≤ TCore ≤ 35

TFix = TCore, 35 < TCore < 40
TFix = 36, else abnormal condition

(6)

When the measured core temperature (TCore) is in the range 31–35 ◦C, the real body temperature
is obtained by compensating the difference between the core temperature and 35 ◦C proportionally.
When the measured core temperature is 35–40 ◦C, no further revision is required. If the measured core
temperature is outside the above ranges, it is assigned with a constant value of 36.0 ◦C, as explained
below. According to Reference [27], humans are warm-blooded animals, and the normal body
temperature (no disease) of an adult human range between 35.0 and 37.0 ◦C based on forehead
temperature measured by an infrared temperature gun. Therefore, all abnormal body temperatures
were converted to the average human body temperature of 36.0 ◦C in this study.
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Finally, similar to the process used for the heart rate and skin resistance signals, the body
temperature data are also processed by a moving-average program that calculates the average value of
60 temperature measurements. Equations (3) and (4) are used to yield the final body temperature of
the user (TBody).

2.2.2. Monitoring System End

After the user’s information is transmitted from the wearable device to the monitoring system, it
is imported by the monitoring system to the fuzzy controller designed in this study. The physiological
information measured by the sensors and collected by the microcontroller, such as skin resistance,
safety factor, human body temperature, and heart rates, is used as input variables for performing
fuzzy inference based on a fuzzy rule database, after these input variables are fuzzified. The final
results are defuzzified to yield the instantaneous risk level of the user automatically. The details of this
process can be found in our previous work [21]. Additionally, a human–machine user interface (UI)
was developed by combining the back-end monitoring system with a C# program. This UI is used to
display the physiological information of the user.

2.3. Experiment

This section discusses the experimental process and compares data measured in static conditions
(before exercising) and dynamic conditions (during exercise) to confirm the applicability of the WHDD.

2.3.1. Static Experiment

Heart rate and body temperature are the two most important indices for detecting heat stroke [28,29].
To validate the accuracy of these two indices, as measured using the proposed device, we performed
a 90-s static experiment. The original heart rate and body temperature measured by the sensors
were compared with the results obtained after applying the numerical-filtering algorithm and the
conversion formula proposed in this paper. Such a comparison allows us to evaluate the stability of
the sensor and the performance of the filtering algorithm. Additionally, the values recorded by the
heart rate and body temperature sensors every 10 s were also compared with measurements obtained
with existing commercial products to verify the accuracy of our device. Specifically, the CK-102S [30]
instrument, purchased from CHANG KUN, was used to measure the heart rate with a ±5% accuracy.
The UE-0042 [31] instrument, purchased from nac nac, was used to measure the ear temperature with
a ±0.2% accuracy. The deviation between the raw values detected by each sensor and those obtained
from the commercial instruments were explored by experiments.

2.3.2. Dynamic Experiment

Four adults between the ages of 25–37 participated in the dynamic experiment, as shown in Table 4.
The participants were required to wear the WHDDs and run on a treadmill for 15 min in an indoor
environment with a temperature of 28.9 ◦C and a humidity of 68.2%. The participants performed the
exercise at different intensities. The entire test comprised three stages, including warm-up (running
at 8 km/h for 10 min), accelerating (running at 10 km/h for 2 min), and intense exercise (running at
12 km/h for 3 min). Increases in running intensities will increase the discomfort of the runners, but
the amount of discomfort felt by each individual will be different because they have different levels
of fitness. Therefore, the users could press the button on the device to send feedback when they felt
uncomfortable while running. This feedback was used for experimental data analysis and validation.

Additionally, when the user was running, the movement of the arm caused the wearable device to
loosen, which resulted in errors in the sensor measurements. Although such a scenario was inevitable,
the filtering algorithm could detect and remove these abnormal signals. Particularly, because the heart
rate and body temperature were measured by non-intrusive methods, their values suffered from the
greatest errors. Furthermore, because the heart rate and temperature sensors were only fixed on the
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skin surface, they could be affected substantially by the user’s motion. Therefore, the commercial
product HRM-Ru [32] was used to obtain the heart rate under exercise conditions, as shown in Figure 6.
A FLIR ONE [33] thermal camera was used together with a smartphone application to obtain the
instantaneous body temperature, as shown in Figure 7. These measurements were compared with
those obtained by the WHDD.

Table 4. Physiological differences between users.

User User 1 User 2 User 3 User 4

Age 25 37 23 23

BMI 22.9 (normal) 27.3 (mildly obese) 23.2 (upper limit of
normal weight) 25 (overweight)

Exercising habits Twice per week Three times per week Irregular Irregular

Remark No exercise before test Exercise before test Warm-up before test Warm-up before test

 

Figure 6. Heart rate data measured with the commercial heart rate belt.

 
Figure 7. Thermal camera and measured dynamic body temperature map.

To probe the effectiveness of the WHDD in outdoor exercises, an outdoor running test was
conducted with five adults in the evening. The test environment was a standard 400 m track, and
the ambient temperature and humidity were 23.5 ◦C and 80%, respectively, which is equivalent to an
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environmental danger coefficient of 31.5. The test was carried out by having the test subjects run five
continuous laps (2 km) around this track within their individual limits. The physiological differences
between the test subjects are shown in Table 5.

Table 5. Physiological differences between users for outdoor experiment.

User User 1 User 2 User 3 User 4 User 5

Age 37 36 24 24 24

BMI 27.3 (mildly obese) 22.8 (normal) 24.0 (upper limit of
normal weight) 31 (mildly obese) 23.2 (normal)

Exercising habits Four times per week Twice per week Irregular Irregular Irregular

3. Results

3.1. Static Experiment

3.1.1. Heart Rate

As shown in Figure 8, all the original heart rate values fall within the normal range
(50–90 bpm) [22] when the user is at rest. The data obtained after filtering by the microcontroller
were found to overlap with the original data. This finding suggests that the sensor can measure the
heart rate accurately when the user is at rest. Additionally, no significant measurement fluctuation
was observed during the test and there was almost no difference between the original data and the
filtered data.
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Figure 8. Comparison between original and filtered heart rate when the user was at rest.

Additionally, the average heart rate measured using the commercial wrist sphygmomanometer
was approximately 56 bpm. The differences between the data measured using the commercial
instrument and the data measured using the WHDD after filtering are summarized in Table 6. These
results show that the average difference between the measurement obtained using the commercially
available sphygmomanometer and the device developed in this study is approximately 0.1. Therefore,
the sensor integrated in the WHDD can be used to measure the heart rate.

3.1.2. Body Temperature

As shown in Figure 9, no significant difference was observed between the original data measured
by the sensor and the filtered data when the user was at rest. This is primarily because all of the body
temperatures obtained after conversion are within a reasonable range (between 35 ◦C and 40 ◦C),
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with an average value of approximately 36.5 ◦C. Additionally, we see in the figure that the sensor
measurement is rather stable when the user is at rest. The maximum error was less than 1 ◦C, which
confirms that the sensor integrated in our device can be used to measure body temperature.

Table 6. Errors of the heart rates measured in this experiment with respect to data measured using a
commercially available sphygmomanometer.

Experimental Runs Heart Rate (After Filtering) Average Heart Rate (Commercial Instrument) Error

1 74 81 −7
2 80 78 2
3 75 80 −5
4 77 75 2
5 73 80 −7
6 91 88 3
7 93 91 2
8 85 78 7
9 84 81 3
10 81 80 1

Average 0.1
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Figure 9. Comparison between the original and filtered body temperature when the user was at rest.

Next, a commercial infrared ear thermometer was used to measure the body temperature when
the user was at rest. The average body temperature measured by the commercial instrument varied by
0.14 ◦C from the temperature measured by the proposed device. The error comparison is shown in
Table 7.

Table 7. Difference between the body temperature measured in this experiment and that measured
using a commercially available infrared temperature gun.

Experimental Runs
Body Temperature (◦C)

(After Filtering)
Body Temperature (◦C)

(Commercial Instrument)
Error (◦C)

1 36.89 36.3 0.59
2 36.75 36.4 0.35
3 36.33 36.4 −0.07
4 36.85 36.4 0.45
5 36.19 36.5 −0.31
6 36.41 37 −0.59
7 36.59 36.4 0.19
8 36.61 36.5 0.11
9 36.71 36.4 0.31
10 36.81 36.4 0.41

Average 0.14
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3.2. Dynamic Experiment

3.2.1. Heart Rate and Body Temperature

The heart rate and body temperature exhibited the greatest errors among all the physiological
information indices by the sensors. Therefore, the dynamic experiment was focused on investigating
these two indices. The heart rates measured by the WHDD during running were compared with those
measured using a commercially available commercial heart rate belt and the associated smartphone
application. This comparison is shown in Table 8.

Table 8. Comparison between heart rates measured with the WHDD and with a commercially available
heart rate belt during running.

Heart Rate [bpm]
Test Time (min)

2 4 6 12 15 Average

WHDD (after filtering) 78 106 140 157 157 131
commercial product 81 125 125 140 155 125

Error −3 −19 +15 +17 +2 +6

Next, the dynamic temperature data obtained during running were compared with the
instantaneous body temperature measured using a commercial thermal camera in combination with a
smartphone application, as shown in Table 9.

Table 9. Comparison between body temperatures measured with WHDD and with a commercially
available infrared temperature gun during running.

Body Temperature (◦C)
Test Time (min)

2 4 6 12 15 Average

WHDD (after filtering) 36.5 36.3 32.4 30.1 30.3 32.3
commercial product 33.8 33.8 32.8 32.5 31.9 32.9

Error +2.7 +2.5 −0.4 −2.4 −1.6 −0.6

3.2.2. Heat Stroke Risk Indicator

Figure 10 shows a comparison between the physiological data and the feedback signals of
the four users during running. Here, user 5 and user 1 are the same participant. Because the
change in environmental temperature and humidity were negligible and all of the users exercised
under suitable temperature and humidity conditions, the relationship between the environmental
temperature/humidity and heat stroke risk are not discussed in this paper.

 
(a) 

Figure 10. Cont.
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(b) 

(c) 

 
(d) 

Figure 10. Comparison between the physiological data and the feedback signals of the four users during
running. (a) Galvanic skin response (GSR); (b) body temperature; (c) heartbeat; and (d) heatstroke
risk level.

First, we found that the data associated with user 5 was very different from those associated with
the other four users because they did not undergo the filtering process developed in this study. Instead,
these data were extracted directly from the raw measurements to predict the heat stroke risk level.
Particularly, the body temperature and heart rate of user 5 varied more significantly from those of the
other four users. Although the data still exhibited a reasonable trend, in accordance with the model of
an individual performing exercise, the large data fluctuations in a continuous time period resulted in

87



Sensors 2018, 18, 4347

large fluctuations in the heat stroke risk indicator. Therefore, very different heat stroke risk predictions
are provided by the device in a short time. Such a high instability issue could cause the user and the
system to make wrong assessments. In contrast, the data associated with the other four users were
very stable. Therefore, the heat stroke risk levels were also found to be stable for these users.

Next, a detailed analysis was performed on the conditions of the remaining four users. As shown
in Figures 11 and 12, both user 3 and user 4 provided “uncomfortable” feedback to the system, while
user 1 and user 2 did not provide any uncomfortable feedback during the exercise. The results were
divided into two groups based on the feature of “uncomfortable” and analyzed by comparing the
numerical values. With respect to the change in skin inductance (skin resistance), both data groups
showed a stable condition in the measurements. This finding indicates that all four users experienced
continuous sweating while running. Therefore, the skin resistance changed accordingly during the
process. However, the skin inductance of individual was determined by the reference value of the
static skin resistance. In other words, the skin resistance is always different for different individuals.
Therefore, we infer that the occurrence of uncomfortable conditions in this group was apparently not
caused by the lack of sweating but by other physiological factors.

 
(a) 

 
(b) 

Figure 11. Cont.
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(c) 

(d) 

Figure 11. Comparison of skin inductance values in the testing group that did not report uncomfortable
conditions (user 1 and 2). (a) Galvanic skin response (GSR); (b) body temperature; (c) heartbeat; and
(d) heatstroke risk level.

 
(a) 

Figure 12. Cont.
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(b) 

(c) 

 
(d) 

Figure 12. Comparison of skin inductance values in the testing group that reported uncomfortable
conditions (user 3 and 4). (a) Galvanic skin response (GSR); (b) body temperature; (c) heartbeat; and
(d) heatstroke risk level.

Figure 13 shows the results of the outdoor WHDD experiment. Because the physical condition of
each test subject was different, the durations in which they completed the 2-km run were all different.
User 1, who exercises regularly, completed the 2-km run in the shortest amount of time, whereas
User 5, who had the worst physical condition, required the longest duration of time to complete
the run. Furthermore, because the environmental danger coefficient of this experiment was lower
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than that of the indoor experiment (31.5 versus 35.72), it was observed that the risk of heat stroke in
this low-risk environment, as evaluated by the WHDD system, was generally lower than that of the
indoor experiment.

 
(a) 

 
(b) 

 
(c) 

Figure 13. Cont.
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(d) 

Figure 13. Comparison between the physiological data and the feedback signals of the five users
during running outdoors. (a) Galvanic skin response (GSR); (b) body temperature; (c) heartbeat; and
(d) heatstroke risk level.

4. Discussion

The rise of body temperature is a common phenomenon for humans when running. Additionally,
the highest temperature of all four users never reached a dangerous level (40 ◦C). This finding suggests
that the central control of the human body functions properly to maintain a normal body temperature.
However, close examination reveals that the body temperatures of the users in the first group were
higher than those in the second group. Although their body temperatures were still within a normal
range, a high body temperature can still significantly increase the risk of heat stroke in the calculation.
Nevertheless, no substantial difference in body temperature was observed between different users.
Therefore, the body temperature is unlikely to be the factor causing an uncomfortable feeling. However,
a reasonable guess is that if all four users keep running continuously, there is a high possibility that
the body temperature of some users will eventually exceed 40 ◦C. This could result in a significant
increase in heat stroke risk and to a dangerous situation.

The last physiological factor, the “individual heart beat,” is presumed to be the main factor
causing an uncomfortable feeling. It can be seen in the Figure 10 that the conditions of all four users are
rather normal during the initial stage—particularly, in the first 10 min, when the users were jogging at
8 km/h. When the users started running at 10 km/h, a significant increase in heart rate was observed
for users 2, 3, and 4. This phenomenon is consistent with the physiological changes that occur in the
human body when performing exercise. No uncomfortable condition was observed during this stage,
which indicates that the heart rate of each user was within a reasonable range associated with exercise.
When the users started running at 12 km/h, the heart rate of user 3 was found to increase greatly
and to be considerably higher than that of the other three users. Next, an uncomfortable signal was
sent from user 4 when the total exercise time approached 800 s. Afterwards, the heart rate of user 4
increased suddenly as well. Although the increased heart rate of user 4 was still lower than that of
user 3, it was still much higher than those of the other two users. Although the heart rate of user 2 was
also rather high, it only increased slightly and remained mostly stable during the stage in which the
users were running at 12 km/h. This indicates that the high heart rate associated with the exercise
load was still acceptable for the user.

By combining the physiological information and the feedback signals of each user, three
conclusions can be drawn from the study:

First, from the perspective of individual data, it can be seen that the heat stroke risk indicator of
the users who gave uncomfortable feedback falls within the alert (21–30) and dangerous (31–40) zone.
For the users that did not give uncomfortable feedback, however, the highest heat stroke risk indicator
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falls only within the alert zone (21–30). Therefore, we conclude that the heat stroke risk indicator
obtained by the fuzzy controller can be used as a reference for predicting the danger of heat stroke.
However, the actual body condition of an individual with a heat stroke risk indicator in a fuzzy area
(e.g., the alert zone) can only be known by questioning the person. Only by doing so can we determine
the possibility of heat stroke for this individual.

Second, from the perspective of individual data, the physiological factor and the actual
physiological reaction of each individual are found to be in good agreement. We can infer with
confidence that the heart rate is the major reason causing the uncomfortable feeling to the user.
A second factor is the body temperature, which incurs a reaction slightly later than the reaction induced
by the heart rate. This is because the rise of body temperature is a normal phenomenon for humans
performing exercise. A body temperature reaching 39 ◦C can still be considered as normal. However,
if the individual keeps running with a high heart rate (high load), the body temperature will inevitably
rise to a dangerous level. The last factor related to heat stroke is the skin resistance. The reaction
induced by skin resistance occurs even later than that induced by body temperature. This is because the
human body must dissipate excessive heat by sweating to maintain a constant temperature. The skin
resistance starts changing significantly (decrease from large to small, accompanied by a reduction in
sweat) only when the body temperature becomes too high. This scenario indicates a shift from normal
sweating to a no-sweating condition. Therefore, the heat cannot be dissipated effectively from the
human body. At this stage, the user is most likely already affected by heat stroke. Therefore, it is
necessary to use the WHDD to predict the possibility of heat stroke and the associated uncomfortable
symptoms for a particular user. In this case, an appropriate reminder can be provided to the user to
avoid suffering a heat stroke.

A systematic assessment of the relationship between the heart rate, body temperature, and heat
stroke risk value was performed. The heat stroke risk value was calculated by the fuzzy controller.
Fuzzy theory is mainly based on expert systems—i.e., the experience of the user—whereas the fuzzy
rules are obtained from the literature, users’ feedback, and repetitive tests. In the previous section,
an analysis of the numerical values obtained from the actual experiments was performed based on
Figure 10. From this analysis, we can obtain the order of reaction to each physiological factor associated
with heat stroke, which is: heart rate > body temperature > skin resistance. Therefore, a similar result
is expected when analyzing the relationship between heart rate and temperature with heat stroke risk
using the heat stroke fuzzy controller designed in this study. Figure 14 shows the relationship between
these three factors, obtained by analyzing the results in MATLAB, as the figure clearly shows that
the slope associated with the relationship between heart rate and heat stroke is much larger than that
associated with the relationship between body temperature and heat stroke risk. This finding also
confirms that the device developed in this study can truly reflect the possibility of suffering heat stroke
during exercise for an individual with certain physiological characteristics.

 

Figure 14. Three-dimensional relationship map between heart rate, temperature, and heat stroke
risk level.
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Subsequently, the feedback of the users who reported an uncomfortable feeling was compared
and validated against the predictions of our system. The analysis of the comparison shown in Figure 15
yields the results shown in Tables 10 and 11. Based on the data of user 3, the system indicates a
“dangerous” condition after 816 s. This prediction is 84 s (1 min 24 s) later than the first feedback
provided from the user (732 s). For user 4, however, the system indicates a “dangerous” condition
starting at 814 s. This prediction is only 2 s earlier than the first feedback provided by user 4 (816 s).
Based on the analysis results on these two individuals, we can first conclude that the heat stroke
detection function of our system can be affected by the physiological differences between different
individuals and their distinct exercising habits. However, the system developed in this study is capable
of detecting potential heat strokes. If the time factor is excluded, our system can effectively reflect the
physiological condition of a user, predict the possibility of suffering heat stroke, and assist in cases
of danger. To resolve the issue of the differences between different individuals, we can modify the
parameters of the fuzzy controller according to the characteristics of the individual. Thus, the system
can be revised to better match the condition of a particular individual. In the future, we expect
to introduce the concept of machine learning to our system, which can automatically correct the
associated parameters and therefore resolve this issue.

 
Figure 15. Comparison of heat stroke risk indicators for users feeling uncomfortable during the
experimental tests (users 3 and 4).

Table 10. Comparison between feedback data and system prediction results for user 3.

Testing Time (s) 732 766 804 841

User Reported System Reported System Reported System Reported System

3 Yes Caution Yes Caution Yes Caution Yes Caution

Table 11. Comparison between feedback data and system prediction results for user 4.

Testing Time (s) 816 830 848 851

User Reported System Reported System Reported System Reported System

4 Yes Dangerous Yes Dangerous Yes Dangerous Yes Dangerous

5. Conclusions

Based on our previous work of a designed and implemented WHDD, this study performs further
static and dynamic experiments to verify the availability and effectiveness of WHDD. In the static
experiment, the heart rate and body temperature parameters are corrected by applying the proposed
filtering algorithm. In addition, various intensity running experiments are conducted on several
runners who wore the WHDD. The experimental results show that the WHDD can successfully
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identify the high-risk trends of heat stroke when the runners respond to discomfort information, so the
device can effectively predict the occurrence of heat stroke and ensure the safety of runners.
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Abstract: Falls have become a relevant public health issue due to their high prevalence and negative
effects in elderly people. Wearable fall detector devices allow the implementation of continuous and
ubiquitous monitoring systems. The effectiveness for analyzing temporal signals with low energy
consumption is one of the most relevant characteristics of these devices. Recurrent neural networks
(RNNs) have demonstrated a great accuracy in some problems that require analyzing sequential inputs.
However, getting appropriate response times in low power microcontrollers remains a difficult task
due to their limited hardware resources. This work shows a feasibility study about using RNN-based
deep learning models to detect both falls and falls’ risks in real time using accelerometer signals. The
effectiveness of four different architectures was analyzed using the SisFall dataset at different frequencies.
The resulting models were integrated into two different embedded systems to analyze the execution
times and changes in the model effectiveness. Finally, a study of power consumption was carried out.
A sensitivity of 88.2% and a specificity of 96.4% was obtained. The simplest models reached inference
times lower than 34 ms, which implies the capability to detect fall events in real-time with high energy
efficiency. This suggests that RNN models provide an effective method that can be implemented in low
power microcontrollers for the creation of autonomous wearable fall detection systems in real-time.

Keywords: accelerometer; deep learning; embedded system; fall detection; wearable; recurrent neural
networks

1. Introduction

Falls are major public health problems worldwide for elderly people. Reports from the World Health
Organization (W.H.O.) indicate that approximately 28%–35% of seniors over 65 years old suffer at least
one fall per year [1]. The reports also show that this rate increases when considering people over 70 years
old. The analysis of the records of emergency departments reported in [2] identified that fall victims
suffered at least one new fall every six months. A major factor that influences this fact is that many elderly
people lose confidence and adopt a more sedentary life, losing mobility, quality of life and, thus, increasing
the probability of falling because of their poor shape [3,4]. Direct consequences of falls can be injuries
to muscles or ligaments, bone fractures and head trauma with consequent brain damage, among others.
Major injuries pose significant risk for post-fall morbidity and mortality. In addition to that, it has strong
economic impacts on family and public health. For instance, it was estimated that the United States spent
$19 billion as a consequence of fall related hospitalizations in 2006 [5]. This topic is gaining importance
due to the progressive increase in the elderly population [6,7].
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Fall detection systems (FDS) are devices that monitor user activity and ideally alert when a fall has
occurred. Their main goal can be summarized as distinguishing between two states: Activity of daily
living (ADL) and fall events (alerting when this one happens) [8]. These devices allow sending an accident
notification immediately to medical entities, caregivers and family members for quick assistance.

The detection of falls through technological systems is a very active field of study, given the importance
of the subject. The literature review in [8] distinguishes between context-aware and wearable systems.
The first one uses sensors such as cameras, pressure sensors or microphones, deployed in the environment.
Their main advantages are that it is not necessary to wear any special device, and that acquisition sensors
can be more complex for an increased effectiveness as they do not have significant computational or
energy supply limitations. However, these kinds of solutions are limited to their deployment area, which
usually implies having to perform an installation of sensors in the different rooms where the user lives
or is monitored. These facts mean that these systems are not suitable in some situations, for instance if
the user lives in sparsely populated areas such as small towns and leaves home often. In addition, these
systems are generally expensive because of the installation they require and the sensors they use, which
could make them economically unfeasible for some population niches. Another important aspect is that
its installation in public health systems could be difficult because these systems would not only collect
information from the target patients, but from other people, undermining their privacy.

On the other hand, wearable devices allow continuous monitoring without any dependence from
environment-based sensors. That makes them ubiquitous systems that only acquire user-related data,
which favors its use in hospitals and many other scenarios. In addition, they usually use simple sensors,
commonly accelerometers and gyroscopes, that require low-power consumption. Several review studies
have been done about this topic and one of them is presented in this work [9]. This fact allows to reduce
the size of the devices and to increase their battery life. This also usually implies lower economical costs
compared to context-aware systems. As disadvantages, these devices need to be worn by the user and
must be charged periodically. In order to make these systems autonomous, they must combine efficiency
and effectiveness: Fall detection techniques require a continuous sensor monitoring process (several times
per second) that may demand a high power consumption if the data is processed externally (in order to
obtain better results); but, if the detection is done inside the embedded system itself (to reduce power
consumption), the detection algorithm may reduce the fall detection accuracy and the system could have
high response times if the algorithm implemented is computationally expensive.

Among the different algorithms that exist for wearable devices, we can find two main types: Threshold
based and machine learning based algorithms. While threshold based algorithms show very high
performance [10] in terms of detection effectiveness and low computational complexity, they present
many difficulties when trying to adapt them to new types of falls and user characteristics [11]. Machine
learning methods are considered more sophisticated approaches to solving this problem, but they require
a high number of samples to achieve high effectiveness rates, and nowadays there is a scarcity of datasets
for study these events [12]. Other functionalities that can be investigated for this type of system is the
prevention of falls or the possibility of damage mitigation [13].
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Recurrent neural networks (RNN) such as long short-term memory units (LSTM) and gated recurrent
units (GRU) are deep learning networks specifically designed to process sequences. Recent studies
shed some light on the potential of RNNs for dynamic signals classifications [14] and more precisely for
accelerometer data [15,16]. However, these algorithms have a high computational cost due to the large
number of algebraic operations they perform. Running these models on low power microcontrollers
with limited features, suitable for wearable devices, can lead to long response times and high power
consumption, even for simple tasks [17]. This fact makes difficult to create real-time wearable fall detectors
based on RNN.

The research described in this paper aims to assess the feasibility of implementing a wearable system
for the detection of both falls and fall hazards using RNN architectures which has a good performance in
terms of computational complexity and real-time effectiveness.

The article is organized as follows: the current Section 1 continues with the description of the most
recent works in the literature that use machine learning algorithms for fall detection, implemented on
wearable devices, as well as the basis of the two types of RNN used, that is, Long Short Term Memory
(LSTM) and Gated Recurrent Units (GRU); Section 2 describes the proposed materials and methodology
used for the assessment of the RNN-based wearable fall detector systems; Section 3 presents the results and
discussion regarding the effectiveness of the trained deep learning models, the performance obtained after
their integration into an embedded system, as well as an analysis of energy consumption; and Section 4
includes the conclusions and points out possible future works.

1.1. Previous Works

Fall detection systems are a very active research area. In this section we consider several of the most
recent studies that are based on the use of wearable devices to detect falls. Table 1 summarizes these works
highlighting information about the methodology and results.
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In [18] four different machine learning algorithms were analyzed using two combined datasets:
k-nearest neighbors (K-NN), artificial neural network (ANN), quadratic support vector machine (QSVM)
and ensembled bagged tree (EBT). The main contribution to this research area is the proposal of a set of
new features obtained from accelerometer information, so these can be used as output from the machine
learning algorithms. The best accuracy obtained (97.7%) was obtained with the ensembled bagged tree
algorithm, a type of decision tree algorithm. The study shown in [22] also proposed new features, based
on the first and second order moments, extracting 12 new features that were used with a Support Vector
Machine algorithm. The results are very good, with an accuracy of 99.9% when using the features.

The work in [21] combines threshold based metrics (TBM) with multiple kernel learning support
vector machine (MKL-SVM). The system was implemented in an Android app, and was trained to identify
falls with the mobile phone located near both the waist and the thigh. The first TBM stages allow to discard
false positives resulting from performing a daily activity that has sharp acceleration moments, such as
lying on a bed. The best results were obtained when the mobile was located in the waist, with an accuracy
of 97.8%.

The study in [11] also considers the effectiveness of different algorithms, that is, k-NN, linear
discriminant analysis (LDA), logistic regression (LR) and classic decision tree (DT). In this case, the fall
detector system consist of an ATMega32 Arduino microcontroller located in the user wrist. Thus,
the features considered as output of these algorithms have to identify arm movement key values. In this
work, k-NN algorithm had the best results with a 99.0% of accuracy, a 100% sensitivity and 97.9% specificity.
In this case, three sensors were used: An accelerometer, a gyroscope and a magnetometer.

The work in [24] showed a fall detection system architecture design that combines big data techniques
used for a continuous improvement of a decision tree algorithm. Initially, the algorithm was trained with a
subset of activities from the SisFall dataset [23] to classify three different classes of falls, and ADL. It was
tested with data obtained from empirical experiments, with good results. While the wearable device only
acts as an accelerometer signal acquisition tool, it would be possible to create a version that dumps the
updated decision tree in the embedded system periodically to get improved alert times.

A more unusual detection system is described in [13], where the used signals consist of muscle
impulses measured by a surface electromyography sensor. The study analyzes the capacity of a LDA
algorithm to identify the initial phases of a fall and prevent damage with an actuator system. The results
obtained showed that these signals can also be used to detect falls and can complement the most common
acquisition systems to reduce the number of false positives.

The study in [25] also combined TBM with Machine Learning. The TBM stage detected potential
falls and was implemented in an embedded system with accelerometer located in the user front-pocket.
The potential falls were finally classified using a k-NN algorithm implemented in an Android app.
The system was empirically tested with 20 users who simulated falls and activities of daily living. With this
approach short execution times were achieved, which allow real-time classification and good accuracy.

Finally, the proposal in [26] is unique, to the best of our knowledge, as it assesses the use of a
RNN-based algorithm to detect falls. The used approach, which we address in this work as well, is the
detection of both falls and fall hazards. The obtained effectiveness was exceptionally good, considering
that it is possibly the first study that uses this technology for fall detection using accelerometers, that the
architecture used comes from other studies and no modifications were made to adapt it to this problem,
and that the algorithm inputs are raw sensor samples without preprocessing or calculating any feature.
However, the main problem lies in its computational cost, which ruled out its use in real time when
executed on a microcontroller. One of the reasons that made real-time execution non viable were the
high sampling rates and the complexity of the used RNN architecture. The term architecture refers to the
number and type of layers that configure a specific neural network based algorithm.
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In this work we assess architectures where execution times are improved without losing effectiveness.
We also perform tests with different sampling frequencies.

1.2. Gated RNNs

Gated recurrent neural networks are RNN architectures that provides an effective solution to the
vanishing gradient problem [27] and the exploding gradient problem [28] that affected backpropagation
through time [29] in previous RNN versions. The central idea behind these architectures is a memory
cell with nonlinear gating units. The memory cells hold information separated, maintaining its state over
time. The information is managed through a set of activation functions, named gates. During the training
process, each cell adjusts the activation weights, that is, learns to close or open its gates, according to
the relevance of the information obtained from the sequence and the information currently stored. This
information is used in the learning process of the classical RNN part. Since the information contained in
the cells is isolated from the flow of the conventional RNN, they are not affected by the vanishing and
exploding problems.

long short-term memory units [30] were the first proposed Gated RNN. They contain three gates, two
of which, called input and forget gates, are responsible for evaluating the addition of new information
into memory and the deletion of part of the stored information, respectively. A third one, called output
gate, controls what information is provided to the next step of the neural network in the training process.
The set of vector formulas that rule a LSTM layer can be expressed mathematically as

ht = ot ◦ tanh(ct) (1)

ot = σ(Wxoxt + Whoht−1 + wco ◦ ct + bo) (2)

ct = ft ◦ ct−1 + it ◦ c̃t (3)

c̃t = tanh(Wxcxt + Whcht−1 + bc) (4)

ft = σ(Wx f xt + Wh f ht−1 + wc f ◦ ct−1 + b f ) (5)

it = σ(Wxix
t + Whih

t−1 + wci ◦ ct−1 + bi) (6)

where ht is the unit state. ct represents the cell memory, while c̃t is the new information coming from
the recurrent neural network. ot, ft, it are the results of the output gate, forget gate and input gates,
respectively. σ and tanh represent the sigmoid and hyperbolic tangent activation functions, respectively.
Vectorial pointwise multiplication is denoted by ◦ . We get the following weights:

• Input weights: Wxo, Wxc, Wx f , Wxi ∈ R
N×M

• Recurrent weights: Who, Whc, Wh f , Whi ∈ R
N×N

• Cell weights: wco, whc, wc f , wci ∈ R
N

• Bias weights: bo, bc, b f , bi ∈ R
N

where N is the number of LSTM units, and M the number of inputs.
On the other hand, gated recurrent units (GRU) [31] are more recent cells similar to LSTM. They are

distinguished mainly by the lack of the output gate and, thus, what is stored in the memory by the cell is
dumped into the neural network completely during the entire training process. The remaining gates are
named update and reset, which add new input information and clear data stored from previous iterations,
respectively. The equations are quite different from those modeling the LSTM, mainly as a result of the
absence of output gate:

ht = (1 − zt) ◦ ht−1 + zt ◦ h̃t (7)
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zt = σ(Wxzxt + Whzht−1 + bz) (8)

h̃t = tanh(Wxcxt + Whc(r
t ◦ ht−1)) (9)

rt = σ(Wxrxt + Whrht−1 + br) (10)

where zt, rt are the result of the update gate, and reset gates, respectively. For this architecture, there are
fewer weights involved:

• Input weights: Wxz, Wxc, Wxr ∈ R
N×M

• Recurrent weights: Whz, Whc, Whr ∈ R
N×N

• Bias weights: bz, br ∈ R
N

Both RNN layer alternatives have shown to be similarly effective [32], but GRUs have a slightly lower
computational cost because of the absence of the output gate.

2. Materials and Methods

2.1. Dataset

The research protocol and results presented in this work were performed using the SisFall dataset [23].
It is composed of several simulated activities mainly classified in falls and ADL. The participants in the
data collection were 38, among which there are 23 adults and 15 elderly people. Each sample contains
accelerometer and gyroscope measurements obtained from a device fixed to the user’s waist and acquired
at 200 Hz. This dataset was complemented in [16] with a labeling proposal. Each temporary sample
was classified according to whether it belonged to a fall event, a fall hazard or an activity of daily life.
To our best knowledge this is the only public fall dataset that contemplates fall hazard events, consisting
of moments before a fall, or during a dangerous situation where the user was able to avoid a fall.

As mentioned in previous sections, the inputs of recurrent neural networks consist of a sequence of
values with a fixed length. That length is named width. Each value in the sequence has a fixed dimension.
In the context of this problem, the values consist of a tuple with three elements corresponding to the
three axes of the accelerometer. From now on, throughout the manuscript we will refer to each tuple with
the term sample. In the same way, each sequence of samples with fixed width will be referred as block.
To train a RNN model, each block must have an associated label, corresponding to the event class that
contemplates. We used the proposal established in [16], in which each block is classified according to
the percentage of appearance of the most relevant class. The classes in order of relevance refer to a fall
event (FALL), a risk of falling (ALERT) and others, labeled as background (BKG). Background or BKG
class considers the rest of time intervals, that mainly includes activities of daily life, other activities not
related to a fall, such as jumping, and also the time that the user remains lying after a fall. The classification
criteria are schematized in Figure 1 (left). This rule was applied to each activity record from the dataset,
establishing a block width of 256 samples, equivalent to 1.28 seconds. A 50% stride was applied.

Lastly, three additional versions from the resulting dataset were created, reducing the number of
samples per block, that is, the width. It is intended to evaluate the performance of the models when they
are trained with less information, simulating a lower sampling rate. The process of reduction of samples
consisted in eliminating the samples in even position of each block (see Figure 1, right). It was performed
three times with each resulting dataset, obtaining blocks with a width of 128, 64 and 32 samples, which
correspond to 100 Hz, 50 Hz and 25 Hz sampling frequency, respectively.
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Figure 1. On the left: Recording segmentation and labeling process. Green circles, yellow triangles and red
hexagons indicate the block is classified as a background (BKG), a risk of falling (ALERT) or a fall event
(FALL), respectively. On the right: Block width reduction process. In the case illustrated, a 256-width block,
corresponding to a frequency sampling of 200 Hz, is reduced to 128 samples to obtain a frequency sampling
of 100 Hz. The same process was performed with 128-width and 64-width blocks to obtain 64-width (50 Hz)
and 32-width (25 Hz) datasets, respectively.

2.2. RNN Architectures

Results obtained in [33] showed that the regularization of sample values substantially improves the
effectiveness. To achieve this, a batch normalization layer is included at the beginning of the architecture.
A recent study [34] revealed that this smooths the objective function to improve the performance.
A 10-fold cross validation study [35] determined that this was not effective for obtaining non-sequential
characteristics. Based on these results, in this work we deepened our study and analyzed the feasibility
of integration for four different architectures. These architectures are those with higher performance
determined in previous studies.

The two simplest architectures consist of batch normalization, a RNN layer and a fully-connected
output layer (see Figure 2). Softmax is used to determine the event class. The difference between one
and the other is the use of LSTM or GRU as the recurrent layer. The other two architectures contain a
second RNN layer of the same type as the previous one. While the computational cost in the most complex
versions is higher, their effectiveness is also slightly higher.

In order to optimize the results, we adjusted batch size and learning rate hyperparameters by grid
search. Dropout [36] technique was also applied to the inputs of the fully-connected layer.
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Figure 2. Diagram of the four recurrent neural network (RNN) architectures analyzed in this study.

2.3. Embedded System Features

We chose two STM32 32-bit microcontrollers (MCUs) for the integration and performance analysis of
the trained models. Both are based on the high-performance ARM Cortex-M4 processors, with features
that allow real-time capabilities, digital signal processing and low-power operation.

The first device selected is a STM32L476RG, part of the ultra-low-power catalog with the specified
ARM processor MCU. It operates at a frequency up to 80MHz, contents 1 Mbyte of flash memory and 128
Kbyte of SRAM. The second device is a STM32F411RE, that offers a higher processing performance. It
operates at a frequency up to 80 MHz, 512 Kbytes of flash memory and 128 Kbyte of SRAM. Both feature a
floating point unit for a better precision in data-processing.

2.4. Protocol

The feasibility analysis consisted in a set of tests, divided into three stages. The first aims to study the
algorithm effectiveness before the training, optimizing the hyperparameters. Secondly, the performance of
the modes were assessed once they are integrated in the microcontroller. Lastly, a power consumption
analysis was performed.

2.4.1. Effectiveness Analysis

The architectures were trained using the data from 30 users, (near of 80% of the dataset), while the
rest, corresponding to 8 users, were used for the final evaluation. The users for each subset were randomly
chosen, but maintaining an equitable distribution between adults and elderly. The training subset were
the used in [35] applying 10-fold cross validation and estimate the goodness of the models with a correct
reliability. In a first stage, five training processes for each architecture with different sampling frequencies
were performed, in order to determine those with the best performance. In a second stage, we used smart
grid search for optimizing the architectures with better results in the first stage.

Due to the dataset being highly unbalanced, the overall classification accuracy is not an appropriate
way to measure the effectiveness of the system. We compared the effectiveness employing the macro
F1-score [37], that measures the relations between data’s positive labels and those given by a classifier
through a harmonic mean of macro-precision (precisionm) and macro-recall (recallm).

F1 − scorem = 2 ∗ precisionm ∗ recallm
precisionm + recallm

(11)
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Precisionm = ∑
c

TPc

TPc + FPc
, c ∈ classes (12)

Recallm = ∑
c

TPc

TPc + FNc
, c ∈ classes (13)

where m index refers to macro metric and classes = {BKG, ALERT, FALL}. TPc, FPc and FNc denotes the
number of true positives, false positives and false negatives of each class c ∈ classes, respectively.

While the F1-score is an appropriate metric for a multi-class problem, it is not usual to assess
the performance of a FDS. In this context, sensitivity and specificity metrics are more commonly used.
Sensitivity is another term to refer to recall. The formula for specificity is

Speci f icity = ∑
c

TNc

TNc + FPc
, c ∈ classes (14)

where TNc denotes the number of true negatives of each class c ∈ classes. These metrics are also considered
in this work.

2.4.2. Performance on Embedded Systems

Two main aspects were analyzed for the embedded devices with each proposed model. First, the time
spent processing a block, that is, the execution time of the integrated model. This parameter seeks to locate
those architectures that can work in real time, that is, that are capable of providing a response in the time
that elapses until a new sample of the accelerometer is read. Secondly, we assessed the differences on the
inference outputs of the models optimized for their execution on the embedded systems. This is obtained
by calculating the relative L2 error:

e =
‖Fgenerated − Foriginal‖

‖Fgenerated‖ (15)

where Fgenerated refers to the flatten array of the generated model last output layer and Foriginal refers to
the flatten of the original model.

2.4.3. Power Usage Analysis

We assessed if the implementation of these kinds of models in an embedded system provides some
advantage in terms of energy consumption. For this, two fall detector system designs were considered
(see Figure 3). The alternative version consisted in using the embedded system as only an acquisition and
transmission tool, so that its tasks are reading of the accelerometer measures and transmitting each new
sample to an external device with greater computational capacity and no energy related constraints. We
considered Bluetooth as the communication technology. This first scenario was compared with the target
version, consisting of an embedded system which integrates the RNN model and executes it in real-time.
This version has as main tasks the accelerometer reading, the execution of the implemented model and an
alert transmission to an external device, only in case of an alert or a fall event. The power consumption for
each task was calculated based on the technique specifications for the embedded systems and the auxiliary
modules: The bluetooth module and the triaxial accelerometer. The execution time for each task was also
estimated based on the hardware features and the RNN execution time.
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Figure 3. Fall detector system versions. In option 1, the microcontroller sends the accelerometer readings,
and a master device executes the RNN algorithm. In option 2, the RNN model is implemented in the
microcontroller, and only sends a notification when a fall or a fall hazard event happens.

3. Results and Discussion

3.1. Models Analysis

The number of blocks per each subset from the dataset is shown in Table 2. As mentioned in the
methods section, the number of blocks from classes ALERT and FALL are much lower than BKG. This is
due to the short duration of risk and fall events. For the training process, we used a graphic processor unit
NVIDIA GTX 1080 Ti and the CuDNN versions of this RNN layer provided, implemented in the Keras
framework. The use of CuDNN RNN layers improves the training speed substantially, 8 to 10 times faster.

Table 2. Dataset distribution for each subset.

Users Blocks

Subset Adults Elderly Total BKG Alert Fall

Training 19 11 94,667 90,173 1172 3322
Test 4 4 22,321 21,425 201 695

The results of F1-score with cross-validation using the training set (Figure 4, left) indicate that
the reduction of the number of samples per block does not affect the results negatively. The standard
deviation (around ±0.25 and ±0.35) reveals a slight dependence on training and validation subsets. Each
architecture was trained five times with initial random weights. Figure 4 (right) shows the macro F1-score
average results using the subset reserved for test. Both architectures presented similar effectiveness.
The architecture with two GRU layers shows a sightly better F1-score. However, we did not consider the
differences between the models substantial enough to discard any model in terms of effectiveness. On the
other hand, since the computational efficiency of these models was greatly influenced by the reduction in
the number of samples processed, the rest of the study was conducted with blocks of 32 samples (25 Hz).
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Figure 4. Macro F1-score results for each architecture and different input width (frequency sampling). On
the left: The results applying 10-fold cross validation with the training subset. On the right: Results with
the training subset and evaluated with the test subset (average results from training five times each model).

Table 3 covers the values considered for the hyperparameters and the dropout for grid search. The best
results obtained for each model and the associated hyperparameters are shown in Table 4. The accuracy
is greater than the most recent works which consider a multi-class problem. However, the sensitivity is
quite lower. We have assessed the architectures using 10-fold cross-validation to ensure the results are
independent from the test subset used. The effectiveness deviation depending on the test subset that
reveals Figure 4 (left) can explain the differences in the results with [16], where a typical 80%/20% dataset
split was used.

Table 3. Grid search values for exhaustive parameters optimization.

Parameter Value 1 Value 2 Value 3

Learning rate 0.001 0.0005 0.0001
Batch size 32 48 64
Dropout 0 0.2 0.35

Table 4. Best results obtained after grid search optimization.

RNN Learn. Batch RNN
Architecture Rate Size Drop.

Accuracy Precision F1-Score Specificity Sensitivity

One LSTM layer 0.0005 32 0 0.963 0.695 0.726 0.964 0.882
Two LSTM layers 0.001 48 0.2 0.961 0.683 0.724 0.971 0.902
One GRU layer 0.001 32 0.35 0.964 0.682 0.725 0.963 0.882
Two GRU layers 0.0005 32 0 0.967 0.681 0.730 0.968 0.875

Macro F1-score results are mainly affected by the low macro precision metric value which, in turn, is
low due to the low precision value in the ALERT class. This is due to the scarcity of data for this class.
A small percentage of BKG events are wrongly predicted as ALERT, but comparing with the amount of
blocks of the ALERT class this is a very significant percentage. This fact reveals the difficulty in training
machine learning algorithms with unbalanced data. A larger quantity of datasets is necessary, something
difficult for this problem, since falls can only be obtained from simulations and they imply putting at
risk the health of the participants, especially if the participants are elderly, which is unfortunately the
target population.

The receiver operating characteristic (ROC) curves (see Figure 5) per each model and class reveal a
good reliability in the inference of event classes. These curves were obtained from the results for each node
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of the output layer by modifying the confident threshold. The areas under the curve (AUCs) are higher
than 96%. The confusion matrix for each model (see Figure 6) shows high accuracy values, but in addition,
it reveals the previously mentioned problem about the scarcity of ALERT events and the percentage of
BKG predicted as ALERT.

Figure 5. Cont.

Figure 5. Receiver operating characteristic (ROC) curves of the best models for each architecture considered
(at 25 Hz).
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Figure 6. Confusion matrix of the best models for each architecture considered (at 25 Hz).

3.2. Integrated Model Performance

The different RNN models were integrated in the ST-Nucleo boards using the X-CUBE-AI
STM32CubeMX expansion pack. It allows the conversion of pre-trained models optimized for their
execution on SMT32 devices. Furthermore, it provides tools for measuring the execution times of the
model more accurately, as well as for the comparison between the original algorithm version and the
C-model running on the microcontroller. It is important to mention that, due to the models being
trained using CuDNN versions for the RNN layers, it was needed to transmit and adapt the weights to
non-CuDNN equivalent layers, before their conversion to optimized c-models. The framework allows this.
To verify that the change did not affect to the model effectiveness, it was checked that the classification
of the test subset matched to the results shown in the previous section. There were no differences in
the classification.

To evaluate the variation in the effectiveness of the models after their conversion to optimized versions
for ST32 devices, we compared the values of the outputs of the last layer for both cases. The outputs
per block inference consists of three values, one for each class considered, with ranges between 0 and 1,
in floating point. The L2 error for LSTM model (see Table 5) was less than 10−6, which indicates very
little variation in the generated models. However, the L2 error obtained is much lower in LSTM models
than GRU ones. This fact can be due to differences in Keras and X-CUBE-AI libraries that affect the GRU
layer implementation.

Table 5. L2 error per each model (trained model vs. generated c-model).

RNN Architecture 200 Hz 100 Hz 50 Hz 25 Hz

One LSTM layer 8.85 × 10−7 6.47 × 10−7 5.14 × 10−7 2.35 × 10−7

Two LSTM layers 5.08 × 10−7 3.78 × 10−8 3.78 × 10−8 9.30 × 10−7

One GRU layer 3.80 × 10−3 1.92 × 10−1 1.38 × 10−1 3.75 × 10−1

Two GRU layers 2.23E × 10−1 1.83 × 10−1 2.26 × 10−1 9.82 × 10−2
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Figure 7 shows the time required for each inference, that is, the classification of a unique block. It
is calculated as the average execution time for 10 executions per model and block size. The lines in the
chart indicate the accelerometer sampling rate, which implies approximately the available deadline of
each model to run in real time. In case of the F411RE device, only the simplest models complied with
the required running time, with a sampling frequency of 25 Hz, equivalent to 32 samples per block.
For the L476RG, only the simplest GRU model satisfied the time requirements, but it was very close to the
sampling rate (35.8 ms per classification). Due to the fact that the microcontroller also has to perform other
operations such as the accelerometer reading, the L476RG device had to be discarded.

Figure 7. RNN model execution times.

Since the system can operate in real time, at a frequency of 25 Hz, this implies that the system is
capable of sending an alert notification in less than 40 ms. Based on the criteria used to classify the dataset
blocks, a fall would be detected in less than 180 ms since it starts. Additionally, an alert event could be
detected in less than 680 ms since it begins. This implies that these types of systems can be a preventive
tool, connected to some element such as a portable airbag.

3.3. Power Consumption Estimations

The components that conform the systems are a ADXL345 accelerometer and a Bluetooth HC-06
module connected to a F411RE microcontroller, and a general-purpose device as receptor. During the
tests, this receptor was a personal computer, but in a real environment it would be ideally a portable
device with a continuous connection to a health emergency center. The transmission protocol used for the
accelerometer was I2C.

According to the technical features of the F411RE microcontroller, the current consumption when
executing from Flash memory should be as low as 100 μA/MHz. In stop mode the power consumption
is lower than 10 μA, which can be considered negligible. Using an I2C protocol for the accelerometer
register values from the ADXL345 sensor the current estimated during the reading process is 5 mA. In case
of the device without an integrated RNN, the battery is mainly used in the transmission of data, that is
determined by the sampling frequency. The current for stage, consisting in transform the values to be
sent, was estimated in 5 mA, and the sample sending via Bluetooth was 43 mA considering the power
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consumption in the specifications. At 25 Hz, the device battery life would be approximately 9.9 h if it is
powered with a 150 mAh battery.

Regarding to the device with the simplest LSTM model implemented, the energy consumption comes
mainly from the accelerometer values reading and the execution of the algorithm. The current estimated
during the RNN execution is 5 mA, although the time spent running it is considerably longer than the
transformation of values performed in the previous case (82.5% running for the simplest LSTM model
and 57.5% for the simplest GRU model). The remaining power consumption depends on the number of
transmissions made to alert on a fall or a risk event detection. According to [1,38], the number of falls of
an elderly person is near to once a year. However, we consider in this analysis unfavorable cases, such
as the case of people with poor balance or motor difficulties. Figure 8 shows the battery life considering
different number of events. Considering a large number of events, up to 100 K, the device’s battery life is
over 35 h when implementing the LSTM model, and over 56 h if it is running the GRU model.

Figure 8. Battery life with the power consumption estimation for each device and feasible real-time RNN
model.

Results obtained improve the battery life reported by other works with machine learning solutions [22,
26]. Due to this, it can be possible to add new characteristics, such as a wifi module or connection to mobile
networks, instead of bluetooth, to directly transmit information without the need for an auxiliary device.

Given the scarcity of datasets that currently exists from falls, that is the biggest problem currently
for the improvement of deep learning algorithms, the system should be improved with an infrastructure
based on big data analysis, as proposed in [24]. In order not to affect the battery consumption while in use,
these wearable devices could integrate a data storage module that saves the data registered during the day,
to be synchronized in the cloud when charging the device. This would allow this anonymized data to be
used to improve the algorithm.

4. Conclusions

This work provides a study of the feasibility for the creation of wearable fall detector systems in real
time using RNN architectures. The obtained results reveal that the architectures with 1 RNN layer at 25 Hz
sampling frequency can be executed into a low power microcontroller in real time. The assessment of the
trained models reveals that the reduction in the sampling frequency only affects the effectiveness very
slightly. The estimated consumption indicates that it is possible to use small batteries. It allows to design a
miniaturized device that is easy and comfortable to wear by the users.
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The results in accuracy and specificity are greater or similar to other multi-class fall detector classifiers
using accelerometer signals. However, sensitivity is slightly lower. The lack of data on the optimal
values used and absence of F1-score metric in these studies did not allow us to make a more exhaustive
comparison of effectiveness. In this study, 10-fold cross-validation has been used for greater result
reliability, independently of the training subset. This reveals an F1-score deviation depending of the
subset used and can explain the differences in sensitivity with other studies with evaluation methods
that may be influenced by the dataset split used. In any case, this work focuses mainly on the integration
of this type of model in low performance embedded systems. The execution times obtained with the
proposed models are much higher than those obtained in [26], allowing real-time prediction using low
power microcontrollers and higher battery life.

Due to the fact that these systems can be executed in real time, we consider that this work shows
that deep learning RNN architectures are a new approach to the creation of more effective wearable fall
detection systems. Therefore, we encourage research on these models, for instance by applying techniques
that are already used in traditional machine learning models such as the introduction of features as input
data, or reducing the complexity of the proposed models.

In future works a complete fall detection system based on this model will be thoroughly tested with
new participants in order to verify the effectiveness in real scenarios.
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Abbreviations

The following abbreviations are used in this manuscript:

RNN Recurrent Neural Network
FDS Fall detection system
ADL Activity of Daily Living
LSTM long short-term memory
GRU Gated Recurrent Unit
K-NN k-Nearest Neighbors
ANN Artificial Neural Network
QSVM Quadratic Support Vector Machine
EBT ensembled bagged tree
TBM Threshold based Metrics
MKL-SVM Multiple Kernel Learning Support Vector Machine
LDA linear discriminant analysis
LR logistic regression
DT decision tree
MCU Microcontroller Unit
ROC Receiver Operating Characteristic
AUC Area Under the Curve
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Abstract: Lower back pain is one of the most prevalent diseases in Western societies. A large
percentage of European and American populations suffer from back pain at some point in their lives.
One successful approach to address lower back pain is postural training, which can be supported by
wearable devices, providing real-time feedback about the user’s posture. In this work, we analyze
the changes in posture induced by postural training. To this end, we compare snapshots before
and after training, as measured by the Gokhale SpineTrackerTM. Considering pairs of before and
after snapshots in different positions (standing, sitting, and bending), we introduce a feature space,
that allows for unsupervised clustering. We show that resulting clusters represent certain groups of
postural changes, which are meaningful to professional posture trainers.

Keywords: posture analysis; spinal posture; accelerometer; wearable sensor

1. Introduction

Back pain is experienced by a large percentage of the world’s population. Approximately 70% of
the world’s population experience lower back pain, contributing to the worldwide burden of disease.
Levels of intensity and disability vary [1]:

• Grade I: low-intensity, low disability symptoms are experienced by 49%.
• Grade II: high-intensity, low disability symptoms are experienced by 12%.
• Grade III/IV: high-intensity, high disability symptoms are experienced by 11%.

In the U.S., 28% of the American workforce experiences lower back pain of various intensities
at any given time, and during any given year 8% of the working population will be disabled due to
low back pain [2,3]. According to Rubin and Devon [4], a majority of the population will suffer from
a back problem at some point in their lives. This makes back pain the largest factor in the decline in
productivity of workers, resulting in estimated economic costs ranging from $200 billion to $600 billion
per year in the United States [5].

There is a wide range of treatments for back pain in use. This includes invasive methods,
medication, exercise, supportive clothing, and postural change. The crowd-sourcing platform
healthoutcome.org collects patients’ ratings about all available treatments. In total more then
160,000 patient ratings have been collected for back pain, so far. Peleg et al. [6] report that results from
this platform correspond to findings of randomized control trials. According to the crowd-sourcing
platform itself, postural modifications are the highest-ranked interventions in terms of positive success.
Posture training can be supported by wearable devices [7,8] to provide both, the user and the trainer,
with real-time feedback about the student’s posture.

In their review of works in the field of wearable technology for spine movement assessment [9],
Papi et al. point out that the majority of articles in that field reported on the validity of their system
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with relatively few works making use of real-world data. They additionally state that the systems
used were usually rather cumbersome. While their systematic review focussed on dynamic task
performance only including papers themed in this direction, they excluded only three papers from
their original compilation of 1610 qualifying papers (1566 of these were excluded based on their title
or abstract) because the paper did not focus on dynamic task performance. This leads us to the valid
assumption that real-world data is generally not widely used in dynamic or non-dynamic movement
assessment of the spine.

Methods for analyzing changes in spine shape or posture [10–14] usually need a predefined
‘normal’ state to compare to or prevalently use statistical test to attempt differentiation between two
defined groups. Section 2 on related work goes into detail on the aforementioned works.

We aim to address these gaps by systematically analyzing geometric changes in posture as a result
of postural training by a Gokhale Method teacher and captured by the SpineTrackerTM wearable
(http://spinetracker.com, accessed 31 July 2019). To this end, we compare snapshots of the measured
spine curve before training and the most recent target set by the teacher during or at the end of posture
training. Our analysis does not rely on the definition of a global ‘normal’ spine shape.

The main contributions of this paper are:

1. The analysis of postural change in a large real-world data base of posture data, recorded using
the SpineTracker wearable, by

• devising a medium dimensional feature set from the spine curve data, well suited for further
analysis and

• showing how these data can be embedded into a two-dimensional feature space using
a combination of standard dimensionality reduction techniques.

2. The demonstration that simple unsupervised clustering in the defined feature space results in
a data separation which is geometrically and semantically meaningful.

The novelty of our approach lies in the fact that (a) works making use of real-world data to
assess spinal movement, especially with wearables, are very rare, and that (b) we do not rely on any
predefined ‘normal’ state to compare to.

Throughout this document we make use of the following terms: we use position to describe
a passive, static state, e.g., standing, sitting. The realization of such a state by a person is called posture,
emphasizing its execution as a multi-factor dynamic (active) process of both, skeletal alignment and
muscle activation. When looking at a temporal sequence of motion data (here posture data), snapshot
refers to a single element in that sequence.

The remainder of this work is organized as follows: We give an overview of related works in
Section 2. A detailed description of the used materials and methods is given in Section 3. We present
the results of our approach in Section 4 and discuss our findings in Section 5. Finally, the paper is
concluded in Section 6.

2. Related Work

Human motion capturing refers to the recording of human movement and transforming them
into a digital 3D representation. Full-body motion capture systems include optical and non-optical
systems. Optical systems generally rely on imaging sensors and computer vision algorithms to capture
a person with or without a set of passive or active markers attached to their body. Non-optical systems
include motion capturing based on e.g., exoskeletons and inertial measurement unit (IMU) based
systems. Optical systems generally suffer from being restricted to a capturing volume. Using inertial
systems is one way to lift such restrictions.
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2.1. IMU-Based Full-Body Motion Capture and Reconstruction

Roetenberg et al. [15] describe the Xsens (https://www.xsens.com, accessed 31 July 2019)
IMU-based full-body human motion capturing relying on biomechanical models and sensor fusion
algorithms. The system uses a set of 17 sensors. Earlier, Tautges et al. [16] enabled full-body animation
through four 3D accelerometers attached to wrists and ankles in combination with a large database
of motion clips recorded with a marker-based optical motion capture system. Extending on the
aforementioned work, Riaz et al. [17] use accelerometer data of wrists and the lower trunk together
with ground contact information (computed from trunk sensor) for data-driven motion reconstruction.

2.2. Capturing of Body Parts, Specifically the Shape of the Spine

Sometimes it is desirable to only capture data from specific body parts in order to capture these
in finer detail. Examples include capturing of the face [18,19], arms [20], legs [21], hands [22,23],
and spine [7,10,12,24–30].

There have been different technologies for measuring the curvature of the spine reaching from
image-based surface reconstruction methods (e.g., static and dynamic rasterstereography [24,25], CT
scans [10], laser-triangulation [26]) over a ribbon of (eight) fibre-optic sensors, e.g., Williams et al. [27],
strips of (twelve) strain-gauge elements, e.g., Consmüller et al. [28], and accelerometers, e.g.,
Stollenwerk et al. [7], to inertial sensors, e.g., Wong and Wong [12], Cajamarca et al. [29],
and Voinea et al. [30].

Wong and Wong [12] developed a smart garment with three inertial sensors (3D accelerometer,
three 1D gyroscopes) for posture training. Sensors were mounted between T1 and T2, between T11 and
L1, and on S1 (The human spine [31] is divided into four segments (from top to bottom): cervical spine
(neck region), thoracic spine (mid-back), lumbar spine (lower back), and sacrum (base of the spine).
Each of these regions consists of several vertebrae (here listed from top to bottom). The cervical spine
consists of seven vertebrae, abbreviated C1 through C7. The following twelve vertebrae belong to the
thoracic spine and are abbreviated T1 through T12. Beneath the thoracic spine are the five lumbar
vertebrae, L1–L5. The sacrum is a triangular-shaped bone located below L5. It consists of five fused
sacral vertebrae S1–S5). The authors estimated inclination angles in the sagittal and coronal plane
of thoracic and lumbar spine and measured posture change as a change in inclination between pairs
of neighboring sensors. They also included a small study on the garment’s posture feedback system
concluding that it helped participants to avoid poor postures.

Cajamarca et al. [29] built StraightenUp+, a low-cost wearable device for monitoring posture
explicitly designed for older persons. StraightenUp+ is a backpack-shaped waist-adjustable harness
vest in which three inertial sensors (3D gyroscopes and 3D accelerometers), along with other necessary
hardware, are attached to the vertical rear strap. Sensors are distributed equidistantly along the vertical
strap covering approximately the full length of the back. They use the sensor data to identify a fixed
set of eight physical activities.

Voinea et al. [30] and Stollenwerk et al. [7] describe a 2D reconstruction model for the shape of
the human spine based on inertial sensors and plain accelerometers. Although Voinea et al.’s sensors
are capable of outputting 3D orientations, they only use a single angle for spine shape reconstruction.
In their setup, the five sensors are distributed equidistantly between C7 and L4 vertebrae. While from
a reconstruction image their model looks a lot like the one used in [7], Voinea et al.’s models are
designed to explicitly represent a C-shaped spine (kyphosis) and an S-shaped spine (normal), the
authors of [7] do not make that assumption. Another difference is that [7] puts the first sensor on the L4
vertebra but distributes the following sensors equidistantly over a fixed-length segment independent
of the person’s spine length.

An overview of commonly used technologies for spine movement assessment along with
respective spine outcomes is reported in the Papi et al. review of works in the field of wearable
technology for spine movement assessment [9]. As explained in detail in the introduction (Section 1),
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this work gave rise to our assumption that in general, real-world data is rarely used in the movement
assessment of the spine, neither in dynamic nor in non-dynamic settings.

2.3. Methods for Data Analysis

Hay et al. [10] compare spine curves extracted from CT images to a model spine curve computed
from multiple individuals without spinal disorders and a history of back pain. Aiming at the detection
and quantification of pathologies, the comparison is based on the amount of curve deviation from the
model, the deviation of the curvature as well as the torsion along the curve.

In their paper, Brink et al. [11] evaluate the amount of postural change in adolescent computer
users after a period of twelve months in order to understand associations between postural change and
upper quadrant musculoskeletal pain. For this purpose, different sitting postural angles were recorded
and individually analyzed with respect to magnitude and orientational change using univariate
and multivariate linear regression models. Sitting postural angles considered were head flexion,
neck flexion, craniocervical angle, and trunk flexion. These angles mainly target the upper spinal
region. In a small three-day posture feedback study (first day without feedback, second and third day
with feedback) Wong and Wong [12] compare average trunk angles between days with and without
feedback as well as between days with feedback.

Franklin and Conner-Kerr [13] investigated the relationship of postural changes during pregnancy
and back pain. They measured and compared means and standard deviations as well as state
analysis of variance (ANOVA) results for a total of nine postural variables (seven postural angles
and head and shoulder displacements) of women in the first and third trimesters of pregnancy.
Gonzáles-Sanchez et al. [14] compare thoracolumbar curvature angles between two groups (normal
weighted and obese persons) using Student’s t-test (parametric test for independent data) and
Wilcoxon’s test (non-parametric tests) in order to find out if there are statistically significant differences
between the two groups.

As stated before (Section 1), methods summarized here either rely on a predefined ‘normal’ state
to compare to or use statistical tests to compare two defined groups. In contrast to this, we aim at an
analysis of changes in spinal shape essentially comparing two arbitrary spine curves of one person at
two points in time, one before (unguided) and one after posture training (guided). To the best of our
knowledge, there is no method for the geometric analysis of that change.

3. Materials and Methods

In this section we describe the system used for data recording in Section 3.1, the data we worked
with (Section 3.2) as well as the derived feature space (Section 3.3) and dimensionality reduction
techniques in Sections 3.4 and 3.5. The following Section 3.6 contains information on minimum
spanning trees and how they can be used for clustering. We detail our processing pipeline in Section 3.7
and conclude with an explanation of visualization methods used to present results (Section 3.8).

3.1. Wearable

The system used for capturing the spinal shape is the SpineTracker developed by Gokhale Method
Enterprises, Stanford, CA, USA. It consists of five individual accelerometer-based sensors (Figure 1a)
which are attached to the lower back of the user as shown in Figure 1b,c. In contrast to single-device
posture wearables, the five-sensor approach enables the capture of more detailed spinal curvature
information also covering a larger portion of the spine.

All five sensor units were technically identical. The sensors connected and streamed data
wirelessly to one host via bluetooth; currently this may be an iOS device or a computer. The sensors
support sample rates of up to 50 Hz, thus allowing for a variety of applications, ranging from
slow-motion measurements, e.g., sitting, to faster movements such as brisk walking.

120



Sensors 2019, 19, 3625

More detailed technical information on the wearable as well as the model used for reconstruction
of a spine shape from the accelerometer readings and the systematic evaluation of the system’s accuracy
(sensors and reconstruction method) can be found in [7].

(a) (b) (c)

Figure 1. Photos of the SpineTracker sensor system. (a) Four of the five sensors are sitting in the charger.
The sensor outside the charger is shown with its local coordinate system. A single sensor has the
dimensions 33 mm × 16 mm × 10 mm. Each sensor is attached to a person’s lumbar spine with double
sided tape. (b,c) Back and side view of sensor positioning on the lumbar spine including directions
of the sensor coordinate system. Sensors are overlayed with a reconstructed spine curve (green dots
and line).

3.2. Data

The data representing the shape of the spine is usually either a set of angles or a set of 2D positions:
when streaming data from the sensors, spine shape information is stored as a sequence of forward tilts
τacc,i, i = 1, . . . , 5 of the five SpineTracker sensors ordered by sensor ID. Using the spine curve model
described in [7], these five angles are transformed into a 2D spine curve consisting of six 2D points Pj
(a base point P0 and five sensor positions Pi, i = 1, . . . , 5) and arc segments connecting these points.
For consistent visualization, the spine curve is positioned in space in a way that the first sensor lies in
the origin, P1 = (0, 0).

The SpineTracker sensor system can also capture single frames (“snapshots”) from the data stream
that will represent the shape of the spine at that point in time. We used a database of such snapshots of
three distinct positions: standing, sitting, and (hip) hinging. Snapshots can be unguided or guided.
In an unguided snapshot, a person assumed one of the positions on their own and without a trainer’s
intervention or support. A guided snapshot was taken when the position was assumed under the
guidance of a posture trainer. Each single snapshot in this database was labelled either “guided” or
“unguided”.

From this database, we considered per-user snapshot pairs. These pairs consist of one unguided
posture and one teacher-guided posture in which the highest amount of change is to be expected.
i.e., for the unguided postures, we extracted the respective initial posture snapshot of a position
(t0 snapshot). For the guided postures, we used the latest guided snapshot (t1 snapshot) available.
The t0 snapshots hence represent the most unlearned realizations of the position and the t1 snapshots
contain the current best imitation of the position the user aims for at the moment of capture.
As a consequence, we use exactly one pair per user and position even if more snapshots of that
user are available for a specific position. For ethical reasons all data was anonymized. Table 1 gives
details on the size of the database used, split by position, as well as overall. It additionally shows
statistics on the time passed between unguided and guided snapshots.

In order to show that there was a significant difference in angles between the t0 and t1 snapshot
pairs in one or more sensors, indicating plausibility of further analysis, we considered each sensor
individually and conducted a paired samples Wilcoxon test (also called the Wilcoxon signed-rank
test) [32].
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Table 1. General statistics of the data basis used for our analysis. The column labelled # samples
contains information on the number of snapshot pairs per position. The # users states how many
different users recorded such pairs. The last four columns state the minimum, average, median,
and maximum time passed between the snapshots in each pair. Time is displayed as a tuple of days
(d), hours (hh), minutes (mm), and seconds (ss).

# Samples # Users Time Difference, Format: “d hh:mm:ss”

Minimum Mean Median Maximum

standing 393 393 0 00:30:07 30 01:34:18 2 00:39:43 443 03:38:05
sitting 386 386 0 00:30:13 23 23:03:02 2 01:16:43 399 00:23:05

hip hinging 362 362 0 00:37:44 24 11:23:42 2 00:54:51 385 21:39:54

full 1141 425 0 00:30:07 26 05:26:02 2 01:08:07 443 03:38:05

The database of (t0, t1) posture pairs used in this work is publicly available at https://skylab.vc.
h-brs.de/kstoll2m/PosturePairsDB19/ (Supplementary Materials).

3.3. Feature Extraction

For each pair of snapshots in the database of position-posture-pairs we compute a feature vector
F. F is composed of the normalized difference dj of the sensor positions in the t0 and t1 snapshots and
the length lj of the difference

lj =
∥∥∥Pj|t1

− Pj|t0

∥∥∥
2

(1)

dj =
Pj|t1

− Pj|t0

lj
, (2)

where Pj|t0
(Pj|t1

) is the j-th 2D spine curve point in snapshot t0 (t1). This way, spinal shape change
is expressed by the 2D directional change between the two snapshots and the 1D amount of change.
This results in a 15 dimensional feature vector, five 2D directions dj and five 1D lengths lj, j ∈
{0, 2, 3, 4, 5}, for each snapshot pair. We only considered five of the six spine curve points leaving out
the sensor positioned in zero (P1). For general statistics we continue to use the sensor angle data τacc,i|t,
i = 1, . . . , 5, t ∈ {t0, t1}.

3.4. Principal Component Analysis

Principal component analysis (PCA) [33] is one of the oldest and most widely used linear
dimensionality reduction techniques. It is based on the eigendecomposition of the data’s covariance
matrix. Its eigenvectors are sorted by their respective eigenvalue forming the new orthogonal
coordinate axes (principal component) of the underlying data set. The directions of the new coordinate
axes coincide with the directions of maximum variation of the original data points. Geometrically
spoken, PCA rotates the Cartesian coordinate system of a high dimensional point set in a way that
maximizes the variance of the data along each axis. After the transform, axes are sorted by descending
variance. Dimensionality reduction is achieved by retaining only the first n principal components.

3.5. T-Stochastic Neighbor Embedding

T-stochastic neighbor embedding (t-SNE) [34] is a more recent non-linear dimensionality reduction
technique for mapping high-dimensional data to a low-dimensional space (often called a map). It is
based on the following:

• A fix data similarity matrix of conditional distances between pairs of data points in the original
high-dimensional space. Conditional distances are computed based on a combination of the
pairwise Euclidean distances and a point-specific Gaussian distribution.
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• A similar point-wise neighborhood estimation in the low-dimensional target space (map similarity
matrix), exchanging the Gaussian distribution with a one degree-of-freedom Student’s
t-distribution.

The goal is to iteratively adapt the map similarity matrix to best fit the data similarity matrix.
This is achieved by minimization of the Kullback–Leibler divergence [35] of the two probability
distributions underlying the two similarity matrices.

3.6. Minimum Spanning Tree and Clustering

A minimum spanning tree (MST) is a graph theory concept fulfilling the following criteria: given
an undirected graph G = (V, E) of vertices V and weighted edges E, an MST is a tree (V, E′ ⊆ E)
including all vertices of G using a minimum number of edges E′ such that the total weight of the edges
is minimal. The MST is unique if all edge weights are distinct, which is a reasonable assumption for
real-world scenarios.

MSTs can be used for clustering. Let G = (V, E) be a fully connected graph of the data points (V)
of a data set. Let the weight of each edge e = {v, w} ∈ E be defined as e.g., the Euclidean distance
between the data points v and w it connects. This graph is used to construct an MST which is then used
for clustering: Subsequent cutting of edges with highest weight increases the number of connected
components in this graph. Connected components represent clusters.

3.7. Processing Pipeline

An overview of our processing pipeline is given in Figure 2. For each pair of snapshots in our
database, we compute each posture’s 2D spine curve and extract one feature vector per snapshot
pair as described above (Section 3.3). We perform PCA to the set of extracted features to reduce the
dimensionality of the data while retaining over 95% of the feature data’s variance. We additionally
use t-SNE to further reduce the dimensionality to two dimensions. PCA, as well as other linear
dimensionality reduction techniques, preserves the global structure of the data. This preservation
of global structure results from maintaining a high variability in the data which in turn translates
in a separation of dissimilar data points. The non-linear dimensionality reduction t-SNE tries both,
keep similar data points close together and dissimilar data points far apart. This is particularly
interesting for finding clusters of data points in higher dimensional space.

Figure 2. Overview of the processing pipeline used. Individual steps are marked by boxes, arrows
indicate the direction of the pipeline. Each arrow is annotated with dimensionality of the data output
by the preceding step. Two dimension labels indicate that the data from the two postures in each
posture pair is not yet combined.

Clustering generally groups data points sharing a set of properties. Even though postural training
is a highly individual process, we assume that the recorded data will exhibit certain differences and
commonalities. This in turn will allow us to combine posture pairs into distinct clusters. We apply
MST-clustering to the two-dimensional t-SNE map of the chosen feature space, as there is no prior
knowledge on the general structure of clusters in the 2D t-SNE map. We compute the Euclidean
distance between all pairs of t-SNE map points, which results in a similarity matrix of the map.
The MST is constructed on this similarity matrix. Using MST-clustering is a reasonable choice due to
the following properties:
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1. The t-SNE map equalizes the density of neighboring data points in the higher dimensionality
evening out distances between neighboring points in the map. As a consequence condensed
clusters are spread and spread clusters are contracted.

2. In MST-clustering, data points are grouped together by proximity and need neither be separable
by a regular geometric curve nor grouped around a centroid.

3.8. Visualization of Results

We visualize clustering results using the 2D t-SNE map of the data coloring each point by its cluster
ID. We compute the angle difference between the t1 and t0 snapshots, τacc,i|t1

− τacc,i|t0
, i = 1, . . . , 5.

This set of difference angles was used to reconstruct an offset spine shape. The resulting offset base
position Poffset,0 and offset sensor positions Poffset,i, i = 1, . . . , 5, ordered by increasing y-coordinate,
represent the computed differences as offset from a vertical line. Figure 3b shows an example of such
an offset spine shape. The underlying two reconstructed spine shapes are illustrated in Figure 3a.

(a) (b) (c) (d)

Figure 3. (a) Two spine shapes reconstructed from the t0 and t1 input angles and (b) resulting offset
spine shape. (c) Offset spine shape bundle representing a data cluster in the feature set’s T-stochastic
neighbor embedding (t-SNE) map (d), colored by cluster ID.

Spine shapes are annotated with the sensor angle data they were constructed from and
an indication to which side the person is looking: the line in each sensor position points away
from the person’s back.

Offset spine shapes are annotated with the sign of each offset position’s x-coordinate. A red ‘+’
stands for positive, a grey ‘o’ for zero, and a blue ‘-’ for a negative horizontal offset from a vertical line
positioned in zero.

As each data point in a cluster represents the difference of two spine shapes, we also visualize
clusters by overlaying all offset spine shapes of each cluster as displayed in Figure 3c. The light grey
area in this visualization represents the region between the 1st-percentile and 99th-percentile of the
horizontal distribution of the data. Covering the central 50% of the horizontal extent of the offset spine
shapes (at each point level), the dark grey area shows the region between the 25th-percentile and the
75th-percentile. Orange dots mark the median of the horizontal extent of the data. This overlay serves
as visualization of the main orientation of the offset spine shapes in a specific cluster.

4. Results

In the following, we first list the results of the angle data analysis (Section 4.1) and motivate why
this analysis is relevant. We then describe the behavior of the clustering under variation of the t-SNE
parameter perplexity in Section 4.2. For this section, too, we state reasons for analyzing results from
this variation. The last Section 4.3 presents and analyzes the results of the clustering of the posture
data divided by position based on their geometry.
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4.1. Analysis of the Angle Data

As normality test (Shapiro-Wilk [36], Anderson-Darling [37], Q-Q Plot [38]) indicated that the data
is not normally distributed, we use the non-parametric paired samples Wilcoxon test (also called the
Wilcoxon signed-rank test) [39] to check whether there was a difference in posture for the unguided and
guided snapshots already on a single sensor level. We could confirm that for all positions, there was
at least one sensor in which the median change in angle between the unguided t0 snapshots and the
guided t1 snapshot pairs was significantly different from zero.

For standing, there was a significant difference in angle between the t0 and t1 snapshot pairs for
all sensors (p < ε = 10−6). For sitting the difference between the two snapshots is significant for only
the first sensor (p < ε). Finally, the angle difference between t0 and t1 snapshot pairs is below the
standard significance threshold α = 0.05 for all but one sensor for hip hinging (p < ε for four out of
five sensors).

Descriptive statistics of both snapshots for all positions and sensors are listed in Table 2. The last
column of the table marks the previously reported sensors for which p < α. Figure 4 provides
additional information on the distribution of the five sensors’ angle data for each position.

Table 2. Mean, standard deviation (sd), minimum (min), maximum (max), and median (med) values
as well as the interquartile range (IQR) of all five sensor’s angle data for t0 and t1 snapshots. A star in
the last column stands for a rejected null hypothesis of the Wilcoxon signed-rank test (p < 0.05).

t0 Snapshots t1 Snapshots

Mean (SD) Min Max Med IQR Mean (SD) Min Max Med IQR

standing

sensor 1 19.6 (10.3) −24.6 57.8 19.4 11.8 22.5 ( 8.0) −4.5 48.2 22.7 10.2 *
sensor 2 10.1 (10.7) −19.8 54.1 10.0 13.0 13.8 ( 9.2) −14.4 51.4 13.3 12.4 *
sensor 3 −4.1 (10.3) −40.4 53.8 −4.5 11.1 −0.1 ( 9.0) −27.9 54.1 −0.9 10.4 *
sensor 4 −12.3 ( 8.9) −29.6 82.0 −13.1 8.5 −8.2 ( 6.6) −30.1 45.3 −8.3 7.0 *
sensor 5 −12.0 ( 9.5) −28.2 115.7 −12.8 8.3 −7.6 ( 7.3) −24.9 77.2 −7.7 7.5 *

sitting

sensor 1 12.0 (10.0) −34.1 45.2 11.8 13.4 16.7 (10.2) −22.3 56.1 16.2 11.4 *
sensor 2 6.0 ( 9.4) −21.6 35.1 5.6 12.3 6.3 ( 8.5) −16.0 43.2 5.9 9.8
sensor 3 −0.6 ( 8.7) −26.9 37.1 −0.7 10.6 −1.0 ( 7.1) −25.1 35.3 −0.9 7.8
sensor 4 −6.8 ( 7.4) −32.5 32.0 −6.7 9.9 −6.9 ( 6.9) −30.3 40.6 −6.6 8.2
sensor 5 −6.9 ( 8.2) −84.7 36.8 −7.3 9.1 −6.7 ( 5.9) −20.5 22.0 −6.8 7.7

hip hinging

sensor 1 75.5 (18.1) 2.7 114.8 77.7 22.7 81.8 (14.5) 21.9 116.9 83.7 19.1 *
sensor 2 77.4 (18.8) −9.7 121.0 80.1 22.8 79.9 (14.5) 33.1 116.3 81.0 19.8
sensor 3 79.1 (20.1) −16.9 128.1 81.7 23.6 75.1 (15.1) 27.7 111.4 75.7 20.4 *
sensor 4 82.1 (21.6) −22.2 128.5 85.2 24.9 69.3 (15.1) 20.2 109.1 71.2 19.5 *
sensor 5 87.8 (22.6) −26.3 142.0 90.7 25.3 69.1 (14.6) 9.4 111.8 70.5 17.8 *
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Figure 4. Boxplots of the angle distribution of the t0 and t1 snapshots grouped by sensor. The box frames
the lower (Q1) to upper (Q3) quartile values of the data. The horizontal line inside each box marks the
data’s median. Whiskers include data between Q1 − 1.5 IQR and Q3 + 1.5 IQR, where IQR = Q3 − Q1

abbreviates the interquartile range. Outliers outside the whisker range are marked with dots.

4.2. Clustering under Varying t-SNE Perplexity

The t-SNE parameter perplexity reflects the number of neighbors expected in its distance
optimization process. In their paper [34] van der Maaten and Hinton state that variation of perplexity
has little influence on the performance of t-SNE. In order to assert clustering of our data is prevalently
consistent under variation of perplexity, we show the results of clustering the 2D t-SNE map into four
(six for hip hinging) clusters for perplexity values ranging from 25 to 40 in steps of five in Figure 5.

As Figure 5 shows, most of the time the general size of the clusters were approximately identical
under variation of perplexity. This was also true for the data represented by these clusters. The only
noteworthy exception is observed in sitting when using a perplexity value of 40, also see Figure 6a,b in
comparison to Figure 6c, which is drawn using a perplexity value of 25 but is the same for 30 and 35.
While the general shape of the t-SNE map superficially appears unchanged, distances between groups
of data points slightly shift. The three segments of cluster 1 were pulled apart and partially moved
closer to cluster 0, thus changing the split position of clusters 0 and 1 and associating about 25 data
points more (less) to cluster ID 0 (1) than for lower perplexity values.

Figure 5. The number of elements per cluster under variation of the perplexity value, plotted by
cluster ID.

126



Sensors 2019, 19, 3625

(a) (b) (c)

Figure 6. Visual comparison of changes in clustering when varying perplexity. (a) A 2D t-SNE map and
(b) offset spine shape bundles per cluster for a perplexity value of 40. (c) offset spine shape bundles
per cluster for a perplexity value of 25. The offset spine shape bundles displayed represent the only
two clusters that changed for a perplexity value of 40. All axis titles of the offset spine shape bundles
contain information of the cluster ID and the number of elements in that cluster.

Inspecting the data (offset spine shape bundles) more closely, we see that with a perplexity value
of 40, almost all offset spine shapes in cluster ID 1 havd a positive x-coordinate, while this was not the
case for lower perplexity values. For lower values, these two clusters are predominantly split based on
the horizontal offset from zero in the base position P0 and the topmost position P5. The data in the
other clusters remain identical throughout parameter variation.

Choice of Parameters for Cluster Analysis

Throughout the results presented in this paper we used the following parameters. The number of
PCA components was chosen such that the resulting lower dimensional space still captures over 95%
of the feature data variance. For the computation of the 2D t-SNE map, we fixed the cost parameter
perplexity to 30, which is approximately the centre of achieving repeatedly stable results for clustering
(see Figure 5). Optimization parameters of t-SNE are left to the implementation defaults [40] as these
in general only affect the rate of convergence [41]. Upon initial inspection of the data, and after
confirming that clusters would be stable when varying parameters in repeated computations, we set
the number of clusters to four for standing and sitting and to six for hip hinging.

4.3. Analysis of Clusters per Position

The following three sections analyze results from clustering from a geometric point of view,
assigning a geometric meaning to each cluster. The analysis is separated into the three positions:
standing Section 4.3.1, sitting Section 4.3.2, and hip hinging Section 4.3.3.

4.3.1. Standing

Figure 7 illustrates the results of clustering the data from posture pairs of standing into four
components in form of their 2D t-SNE map and in form of offset spine shape bundles. For the
visualization of cluster representatives (t0 and t1 posture pairs and t1 − t0 offset spine shapes),
please see Figure A2 in the Appendix A.
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Figure 7. Results for clustering posture pairs of standing. (left) The T-SNE map labelled with and
colored by cluster ID. (right) Corresponding cluster bundles of offset spine shapes including information
about the cluster ID and the number of elements in that cluster in each axis title.

Geometrically, the four clusters were separated mainly based on the position of the offset spine
shapes’ base points and further by the orientation of the upper part. For the first and second cluster
(IDs 0 and 1), the offset spine shapes all had positive base point x-coordinates while these were
negative for the third and fourth cluster (IDs 2 and 3). The first and second cluster differ in the position
representing the second sensor (Poffset,2), for ID 0 its x-coordinate is always negative while it was
always positive for ID 1). The upper part of the offset spine shape bundle of cluster ID 0 shared no
particular orientation, this part is clearly leaning in positive x direction. This pattern was repeated
for the third and fourth cluster (IDs 2 and 3), in which the third cluster tends to negative values and
the fourth cluster leans to positive values. Again a clear geometric separation can only be seen for the
offsets in Poffset,2.

4.3.2. Sitting

Figure 8 shows the results of clustering the data from sitting posture pairs into four components
using the 2D t-SNE map and the offset spine shape bundles per cluster. Again, we show representative
spine curve shapes and offset spine curve shapes for each cluster in the Appendix A, Figure A4.

Figure 8. Results for clustering posture pairs of sitting. (left) The t-SNE map labelled with and colored
by cluster ID. (right) Corresponding cluster bundles of offset spine shapes including information about
the cluster ID and the number of elements in that cluster.

The geometric pattern observed in standing repeats for sitting: the four clusters are separated
mainly based on the position of the offset spine shapes’ base points and further by the orientation
of the upper part: For the first and second cluster (IDs 0 and 1), the offset spine shapes all have
positive base point x-coordinates while these are negative for the third and fourth cluster (IDs 2 and 3).
The two groups can each be further separated into positive slanted clusters (IDs 1 and 3) and negative
slanted clusters (IDs 0 and 2). While only sensor 1 shows a significant difference between the angular
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data of the unguided and guided snapshot pairs on a per sensor level (see Section 4.1 and Table 2),
the combined information on all five sensors allows for a class separation into four clusters.

4.3.3. Hip Hinging

The results of clustering t0 and t1 posture pairs of the position hinging into six clusters are
presented in Figure 9. As before, we show the 2D t-SNE map colored by cluster ID along with the
corresponding offset spine shape bundles. For representative spine curves for each cluster, please refer
to the Appendix A, Figure A6.

Figure 9. Results for clustering posture pairs of hip hinging. (left) The t-SNE map labelled with and
colored by cluster ID. (right) Corresponding cluster bundles of offset spine shapes.

Here, the geometry of the offset spine shapes reveals a clear pattern. Again, an initial distinction
between the clusters can be made based on the position of the base points. One cluster (ID 0) had
only positive x-valued base points while this is purely negative for four of the five others (IDs 1–4)
and almost purely negative (except for seven samples) for the last cluster (ID 5). In the upper part,
all samples in the first cluster (ID 0) more or less strongly slanted to the left, all upper offset spine
shape points having a negative x-coordinate. This was also the case for the upper part of the second
cluster (ID 1). For the subsequent clusters (IDs 2–5) the position at which the offset spine shapes of that
cluster cross the thought vertical line passing through x = 0 moved stepwise up. For cluster ID 1 there
was no crossing. In cluster ID 1, the offset spine shapes cross that line between Poffset,2 and Poffset,3,
i.e., the x-coordinate of all Poffset,2 is > 0 and it is < 0 for all Poffset,k, k ∈ {3, 4, 5}. For the next cluster
(ID 2), the crossing is between Poffset,3 and Poffset,4. This progression continues up to the last cluster
(ID 5) in which there is no crossing in the observed area, meaning that all offset spine curves slant in
positive direction (x > 0 for Poffset,k, k ∈ {2, 3, 4, 5}). These properties defines the separation of clusters
with IDs 1–5.

5. Discussion

This section shortly summarizes results (Sections 5.1 and 5.2), puts this work in context with
existing research (Section 5.3), and lists limitations in Section 5.4.

5.1. Summary of Results

For all three positions, sitting, standing, hip hinging, we found a significant change in posture
between the sets of guided and unguided snapshot pairs. We used a Wilcoxon signed-rank test on
the sensor angle data representation of the posture pairs. This results indicated that is is plausible to
further analyze posture pairs in our data base with respect to postural change.

We confirmed that our clusters remain stable under variation of the t-SNE parameter perplexity.
In the geometric analysis of the clusters for each position, it turned out that clusters formed

based on the position of offset spine shapes, the base points, and the direction of the upper part.
This underlines the necessity of a multi-sensor system to achieve a meaningful separation into different
clusters. The separation of the upper part was more fine-grained as there are six clusters for hip hinging.
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Showing several samples per cluster to a professional posture trainer, the samples and clusters,
that are based on our geometric feature, had a meaning for her. Her assessments are summarized in
the following section.

5.2. Sample-Based Evaluation per Cluster by a Professional Posture Trainer

Several samples of unguided and guided posture pairs per cluster were shown to a professional
posture teacher. She has experience in comparing such posture pairs and is able to understand how
the change in posture within such a posture pair affects the shape of the spine as well as posture in
general. This information is important to give semantic meaning to our clusters which formed based
on geometric features.

A professional posture trainer interprets clusters for standing (see Figure 7) the following way:
Cluster ID 0 represents a loss of pelvic anteversion and often (but not always) a reduction in sway.
The second cluster (ID 1) stands for a group of users who have sacrificed a little in pelvic anteversion
and very much straightened out a sway. The most notable property of the third cluster (ID 2) was
a high reduction of sway. The second property which this cluster shares with the last cluster but to
a smaller degree is an increased pelvic anteversion. The last cluster cluster could not be attributed with
a definitive property describing the changes in the upper part.

From the perspective of a professional posture trainer, in sitting (see Figure 8), cluster ID 0
represents cases that have less curvature in the upper lumbar area and (possibly due to having
reduced that curvature) reduced pelvic anteversion. The second cluster (ID 1) stands for sacrificing
(a little) pelvic anteversion and straightening out a sway. Both remaining clusters (IDs 2 and 3) exhibit
an increase in pelvic anteversion. Only cluster ID 2 could clearly be associated with a reduced sway
while for the fourth cluster (ID 3) there was no clear attribution to a consistent change in posture valid
throughout the cluster.

The posture trainer’s assessments of the clustering for hip hinging (see Figure 9) was this: Cluster
ID 0 in the guided t1 snapshots did not go as far with the pelvis as in the unguided t0 snapshot and
learned to stop rounding the upper part of the back in order to reach deeper. People in cluster ID 1
go further down in t1 than in t0 or as deep as in t0 in the lowest part of the pelvis and also stopped
rounding the upper back. The next cluster (ID 2) represents students who stopped rounding in the
upper lumbar area and who have increased their pelvic anteversion. Cluster four (ID 3) is a group with
more anteversion in the pelvis and a straighter upper back. This general pattern repeats for cluster
ID 4: rounding in t0, not rounded any more in the t1 snapshot and slightly more pelvic anteversion.
In the last cluster (ID 5) the posture trainer sees students who use a sway to overcome their inability to
tip their pelvis (alone), thus their pelvic tip increases but so does their sway.

5.3. Relation to Existing Research

Previous work on spine shape analysis has for a long time been majorly interesting in medicine.
There, analysis is mainly driven by pathology quantification, by relation investigation, or by evaluation
of a new technology. Pathology quantification (e.g., Hay et al. [10], 24 participants) is often tightly tied
to a definition of a ‘normal’ spine shape, determining and assessing a given spine shape by its deviation
from the ‘normal’ one. Relation driven investigations give answer to questions like is there a relation
between weight groups (normal, obese) and differences in spinal curvatures? ([14], 39 participants), or is there
a relation of back pain and changes in spine curvature during pregnancy? ([13], twelve participants), or is
upper back pain related to the amount of postural change in young computer users? ([11], 153 participants).
Relation driven questions are tested for significance and hypothesis confirmation using statistical tests,
e.g., ANOVA, Student’s t-test, or Wilcoxon’s test.

Wearables have become an increasingly promising tool for posture monitoring and analysis.
Posture change comparisons here are also often based on a ‘neutral’ or ‘normal ’ position:
In an evaluation study, Wong and Wong [42] (three participants, three repetitions of each position)
use accelerometers to measure postural change in terms of curvature variation from a neutral sitting
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position for three pre-defined modifications: sitting with left (right) lateral bending, and sitting while
flexing forward. They computed curvature variation with respect to neutral sitting.

Without the notion of a ‘normal’ state for spine shape or posture and without pre-defined groups
to put into relation to one another, we invert the process described above: Based on a database of
spine shapes of unguided and guided posture pairs, we cluster changes in spinal shape. Clusters form
based on the geometry of the change and represent a semantically meaningful separation of the data
according to the assessment of a professional posture trainer.

5.4. Limitations

Our database did not have information on gender, age, height, or weight of the users. Therefore,
we could not separate our analysis based on such criteria. However, these factors can have
a considerable impact on the shape of the spine: Nachemson et al. [43] reported a minor tendency
for the influence of age on increased stiffness of intervertebral discs. The authors also found that in
bending, female motion segments are more flexible than male. According to Hay et al. [10], the BMI,
which is based on weight and height, is related to thoracic sagittal kyophosis. Youdas et al. [44] found
an association between BMI and pelvic inclination.

Another limitation of our presented work is the choice of the number of clusters. These were
mainly based on observations in the 2D t-SNE map. Especially in light of the posture trainer’s
evaluation of the clusters, it is easily seen that the number of clusters suggested by the geometry does
not necessarily reflect the number of clusters found by the posture trainer. Therefore it would be highly
beneficial to include several posture trainer’s knowledge on patterns in change into the clustering
approach and maybe even into feature design.

We showed several samples per cluster to only one professional posture trainer for postural
change evaluation. As this work aimed at describing a general methodology for analysis of
changes in spine shape, we did not do a blind-test cross-validation with several posture trainers,
removing any information relating a sample to a cluster and have several posture trainers assess
the samples. However, this would make the evaluation of the postural change in the clusters
independent and improve the reliability of the clusters that formed based on geometric features
and the trainers’ assessments.

6. Conclusions and Future Work

This work aimed at analyzing the change of the spinal shape under posture training in three
different positions: sitting, standing, and hip hinging. In particular, it compared snapshots of
an unguided-guided posture pair based on features computed from the 2D spine curve geometry.
Clustering was used to group posture changes with common geometric characteristics. The results
from clustering our spine-shape-geometry inspired features could be identified with specific changes
in posture by a professional posture trainer. Our large data base consists of real-world spine curves
of over 350 single-user posture pairs and is pathology-unrelated. Our analysis is independent from
a definition of a global normal spine shape. Instead, it is a highly individual process based on each
individual’s spine shape before and after posture training. This makes the successful separation of
change in spinal shape into geometrically and semantically meaningful clusters (second contribution
stated in the introduction, see Section 1) both interesting and important. We believe that this is the first
work in the field of wearable-sensor-based evaluation of spine curves that analyzes this many distinct
data points based on geometric features without relying on the definition of a normal spine shape.

Future work includes blind-test cross-validation of multiple sample posture pairs per clusters
by several posture trainers as well as a more detailed grouping of our data based on additional
information about e.g., age and gender. Further research could also include comparison against pain
ratings using standard questionnaires, e.g., the low back pain specific Roland Morris questionnaire,
or targeting general health status measurement SF12 and SF36, and eventually associate pain levels or
changes therein with certain groups of posture change.
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Furthermore it will be interesting to integrate feedback based on common features in spinal
shape change, represented by clusters, into posture training. This could e.g., be implemented by also
categorising posture training exercises based on a student’s progress and suggest exercises tailored to
their group of shape change. Moving partially away from clustering postural change towards analysis
of spinal shape change of an individual user could provide them with helpful instant feedback on
which region they need improvement on and how to get there. This also could be realized using e.g.,
an exercise specifically designed to improve the identified region. It would need a previously taken
guided snapshot to compare the current user snapshot to.
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Appendix A. Sample Spine Curve of Posture Pairs per Cluster

On the following pages, we will show representative spine curve posture pairs for each cluster.
For better overview and localization of presented sample (cluster representative), we re-plot the t-SNE
map and corresponding cluster bundles from the results. Each cluster in the t-SNE maps is additionally
annotated with the location of the cluster representatives. Figures A1 and A2 draw the results of
clustering and sample posture pairs for standing. Clusters and representatives for the position sitting are
displayed in Figures A3 and A4. Finally, Figures A5 and A6 depict clusters and cluster representatives
for hip hinging.

Figure A1. Results for clustering posture pairs of standing. (left) The t-SNE map labelled with and
colored by cluster ID. An ‘x’ marks the position of a cluster representative. (right) Corresponding
cluster bundles of offset spine shapes.
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Figure A2. Results for clustering posture pairs of sitting: Cluster representative sample posture pairs
and offset spine shapes for each cluster. Each sample’s position within its cluster is marked by an ‘x’ in
the colored t-SNE map.

Figure A3. Results for clustering posture pairs of sitting. (left) The t-SNE map colored by cluster ID.
An ‘x’ marks the position of a cluster representative. (right) Corresponding cluster bundles of offset
spine shapes.
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Figure A4. Results for clustering posture pairs of sitting: Cluster representative sample posture pairs
and offset spine shapes for each cluster. Each sample’s position within its cluster is marked by an ‘x’ in
the colored t-SNE map.

Figure A5. Results for clustering posture pairs of hip hinging. (left) The t-SNE map colored by cluster
ID. An ‘x’ marks the position of a cluster representative. (right) Corresponding cluster bundles of offset
spine shapes.
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Figure A6. Results for clustering posture pairs of hip hinging. Cluster representative sample posture
pairs and offset spine shapes for each cluster. Each sample’s position within its cluster is marked by an
‘x’ in the colored t-SNE map. The two posture snapshots are additionally rotated about the origin such
that the topmost sensor of the unguided t0 snapshot lies on the y-axis.
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Abstract: Preventive healthcare has attracted much attention recently. Improving people’s lifestyles
and promoting a healthy diet and wellbeing are important, but the importance of work-related
diseases should not be undermined. Musculoskeletal disorders (MSDs) are among the most common
work-related health problems. Ergonomists already assess MSD risk factors and suggest changes
in workplaces. However, existing methods are mainly based on visual observations, which have
a relatively low reliability and cover only part of the workday. These suggestions concern the
overall workplace and the organization of work, but rarely includes individuals’ work techniques.
In this work, we propose a precise and pervasive ergonomic platform for continuous risk assessment.
The system collects data from wearable sensors, which are synchronized and processed by a mobile
computing layer, from which exposure statistics and risk assessments may be drawn, and finally,
are stored at the server layer for further analyses at both individual and group levels. The platform
also enables continuous feedback to the worker to support behavioral changes. The deployed
cloud platform in Amazon Web Services instances showed sufficient system flexibility to affordably
fulfill requirements of small to medium enterprises, while it is expandable for larger corporations.
The system usability scale of 76.6 indicates an acceptable grade of usability.

Keywords: disease prevention; occupational healthcare; P-Ergonomics; precision ergonomics;
musculoskeletal disorders; smart textiles; wearable sensors; wellbeing at work

1. Introduction

Musculoskeletal disorders (MSDs) are still common in the working population, causing individual
suffering and an economic burden for companies and societies [1,2]. Further, the challenge of an aging
population—an increased percentage of elderly individuals in the overall population—has occurred
for more than two decades and its consequences, e.g., increasing costs, a lack of healthcare personnel,
and more complex combinations of chronic diseases [3], have emerged. For economic reasons, a longer
life expectancy requires an increase in the retirement age. These increases have already occurred in
some countries and are planned in others [4,5].
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To facilitate a prolonged work life for the general population, a balance between work demands
and human capabilities must be found, especially for blue-collar workers [5]. This is in line with
suggested approaches for chronic disease management to reduce the healthcare burden [6].

Interventions aiming to reduce MSD risk factors at work are not new. Ergonomists and work
psychologists have tried to identify risk factors at specific workplaces to design and suggest physical,
organizational, and when relevant, behavioral changes to reduce the risks. Work psychologists may
use self-reports, and ergonomists often use observation-based assessment tools to identify these
risks [7,8]. Observation methods are easy to use, inexpensive, and widely accessible, but the inter-
and intra-observer reliability of such methods are relatively poor [7,9,10]. There are also substantial
inter-method differences in risk assessments [11]. Another source of variance in risk assessments is
the short observation time; the ergonomist often observes a minor part of the workday, which is then
supposed to represent the full day. There are also differences in anthropometrics and work techniques
between different workers, so risk assessments should include several workers to increase reliability.

Popular ergonomic risk assessment methods are mostly based on evaluation of the workplace and
the workers by ergonomists and experts who coach the workers or suggest the redesign of workplaces.
This approach faces at least two challenges; the first is due to differences in workers’ individualities,
e.g., height and body size. The solution to a risk factor, e.g., unforced demanding posture, may be to
coach the workers towards a less demanding and less risk-inducing work technique. However, it is
often difficult to change a habitual pattern of movement. In large organizations with manufacturing
and assembly lines, regular inspection and coaching by ergonomists is often used to customize the
workplace to the workers, e.g., providing the possibility for shorter persons to work in an assembly
line. In cases where there is a need to modify a worker’s technique, changing is trickier. A few coaching
sessions might appear to be sufficient to train the workers toward more ergonomic work behavior.
However, people tend to go back to their old working habits, reducing the effect of these training
efforts [12].

Direct measurement techniques provided by accelerometers, gyroscopes, magnetometers,
electromyogram (EMG), and heart rate recorders have been used in ergonomics research since the
nineties [13–15]. However, these systems are relatively expensive, complicated to use in the data
collection and analysis phases, and have not been widely used by ergonomists and occupational
healthcare providers. Electronic sensors, e.g., inertial measurement units (IMUs), have advanced
dramatically during the past two decades, making them widely accessible, more affordable, and more
compact in form. Additionally, wearable sensors, such as sensorized garments, smart watches, and
wristbands, are changing the traditional interaction with users in welfare and healthcare. Wearable
solutions may be a natural way to improve the usability of measurement systems by avoiding the use
of cables and sticky electrodes and ensuring correct electrode placement by novice users [16].

The use of wearable sensing technologies enables continuous and long-term monitoring (i.e., full
work days) for as many work days as needed, successively or at repeated time intervals (e.g., once a
month) for a reliable assessment or successful work technique intervention. Long-term usage allows
for a personalized coaching approach with continuous feedback and risk trend analysis. Informing
people about their behavior and risks could be a first step toward behavioral changes, which can be
supported with strategies such as gamification. Gamification is the use of gaming elements, e.g., points,
badges, trophies, and awards, in a collaborative or competitive environment to support behavioral
changes [17].

In this work, we present a platform that enables precise risk assessments and personalized
automatized coaching. Because it is precise, pervasive, and personalized, we call it the P-Ergonomic
platform. The platform is designed for producing a generic assessment and coaching by using in-house
developed garments and a mobile application, as well as third party solutions. The platform has
a generic base and may be used for other applications, e.g., in sports and medical kinetic training;
the current application is focused on MSD prevention and changing sedentary work behavior.
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In the following sections, the specification of the system and proposed architecture are described
in detail, followed by the methods for technical validation. The results of the technical evaluation are
presented in Section 5, followed by the discussion and conclusion.

2. System Specification

The main objective of the p-Ergonomics platform is to provide a reliable and flexible foundation
for data collection, storage, analysis, and feedback to the end users, i.e., workers, employers, coaches,
and occupational healthcare providers. The business cases for p-Ergonomics include small- to
medium-sized businesses, as well as large enterprises. Since these businesses have different budgets
and policies, the system architecture should consider the flexibility of deploying the platform at local
or cloud servers using a cost-effective approach, which is scalable for big enterprises and affordable
for small businesses, e.g., self-employed hairdressers or ergonomic coaches.

Security aspects are important features to ensure the privacy of workers. Authentication and
authorization should be implemented to ensure accredited access to specific actions according to
the user’s role and granted permissions. Action logs should provide the possibility of auditing the
activities. The confidentiality and integrity of the data should be ensured with different measures, e.g.,
encryption. The security features should provide the possibility for compliance with restrictive data
and information regulations, e.g., the General Data Protection Regulation (GDPR) [18].

The system should be flexible, which means a layered architecture to allow for changing different
modules, e.g., sensors, third party integration, and analytics, without modifying the entire system.
Considering the performance, a minimum required performance of 500 concurrent users for each
deployed instance of the system should be tested for a target availability of 24/7.

The system should handle internationalization (i18n), providing support for i18n in the
presentation layer and other layers, e.g., the analytic layer. Usability is another important requirement;
the system should be easy to deploy, learn, and use by different stakeholders, such as occupational
healthcare providers, administrators, and end users, i.e., workers.

3. Proposed Architecture

The system collects data generated by wearable sensors, processes it for the purposes of risk
assessment, intervention, and evaluation, and delivers the data to different stakeholders, including the
worker, coach, and manager. The proposed system architecture is illustrated in Figure 1. The system
consists of three layers: a wearable sensing layer, a mobile computing layer, and a server layer.
The wearable sensing layer provides various physiological and biomechanical measurements and
preprocesses the raw signals. At the mobile computing layer, data from each sensor node is collected,
synchronized, and processed into variables reflecting exposure. The risk levels are then assessed
according to defined ergonomic criteria and real-time feedback can be sent to the individual for
intervention. Data from each individual is collected and stored at the server layer, where further
analyses at both individual and group levels occurs. The server layer also employs user management
for data logging and information access.

3.1. Wearable Sensing System

The wearable sensor system consists of a t-shirt or vest, reported in other studies [19–25], which
includes four textile electrodes made of conductive fabric. A pair of electrodes is used for the current
injection and the other pair senses the electric potential. An ECGZ2 device (Z-Health Technologies AB,
Borås, Sweden) was used as the recorder for electrocardiography (ECG) and electrical bioimpedance
and was placed in a pocket on the shoulder strap of the vest or front of the t-shirt, as shown in
Figure 2. ECG and thoracic impedance signals were recorded with sampling rates of 250 Hz and
100 Hz, respectively. One and two LPMS-B2 inertial measurement units (IMUs) (LP Research, Tokyo,
Japan) were placed in the pocket on the back of the t-shirt or vest and t-shirt sleeves, respectively.
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The Polar A370 wristband smart watch (Polar Electro, Kempele, Finland) was included to monitor the
daily activity and nightly sleep outside of working hours.

Figure 1. The proposed system architecture, hardware layers, and information flow.

  

  

Figure 2. Vest (top) and t-shirt (bottom), including textrodes and ECGZ2 and IMUs.

3.2. Personal Analytics and Coaching App

Analysis of the data from the different wearable sensors and the provision of feedback to the
user is done through different software layers. The software runs on an edge-computing node in the
form of a smartphone device with an Android operation system. Figure 3 illustrates the different
layers of the system. This approach facilitates independence between layers, allowing for the update
or substitution of any of them without hindering the system’s performance.

3.2.1. Data Acquisition Layer

Data are acquired from the different wearable sensors, which make use of the Bluetooth
communication standard to connect to the smartphone device, emulating a body area network
operation. The user can select from a list of sensing devices based on the needs of different ergonomics
variables of the assessment. The options are inertial measurement units (IMUs), and electrocardiogram
(ECG) and thoracic bioimpedance recording devices. The smartphone connects to the sensors, initially
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configuring them based on preset specifications, emphasizing the frequency control of data acquisition
and communication, filtering implementation, and data formatting.

Figure 3. Distribution of the four layers that comprise the Edge node.

This layer also controls and applies calibration algorithms, which require a direct interaction
with the configuration functions of the sensing devices’ firmware, enabling treatment of the raw
data from the sensors to calibrate the referential systems for inertial measurement units and other
referential-type sensors.

This layer formats the acquired raw data to a standard format to be used by the subsequent layers.
Synchronization of recordings from different sensors is done by adding timestamps to the data.

3.2.2. Data Fusion and Basic Analytics Layer

This layer provides the system with the capability to transform the raw information extracted
from the sensors into added-value information that can be analyzed to perform real-time multimodal
risk assessments.

Firstly, preprocessing of the standardized raw data is performed. Data from the sensors is
transformed from their original units, i.e., quaternions from IMUs or voltage from electrocardiographic
recording devices, into units or information that are interpretable by the risk evaluation algorithms,
i.e., transforming quaternions into Euler angles or voltage from electrocardiographic measurements
into heart rate frequency. This process also includes data fusion from different sensors to produce
additional useful information for the assessment, i.e., relative angles and angular velocity between
two IMUs located in the body area network.

Processing and sensor fusion results in dramatic reduction of data sent to the cloud data
warehouse. As an example, data from IMUs includes 3-axis gyroscope, a 3-axis accelerometer, and a
3-axis magnetometer sampled at sampling rates around 20−100 Hz depends on application. However,
processed data from sensor fusion might just include the limb angles at a rate of 1 Hz sent to the cloud
data warehouse. In some working scenarios, such as production lines, it might be interesting to look at
workload at specific working or break cycles. To cover this scenarios, an extra processing of data can
be done by allowing categorization of data based on sensor data, e.g., location data showing a station
or even manual time stamps.

Finally, action policies are applied to enable the production of risk assessments based on the
requirements established by the users and existing risk assessment algorithms, such as Risk Assessment
and Management tool for manual handling Proactively (RAMP) screening [26].

3.2.3. Feedback Layer

Given the possibility of estimating the risks, the real-time analysis of the measured parameters
allows for the production of feedback in real time, based on the triggering of different events abiding to
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the different action policies chosen by the users. The feedback for this system prioritizes user-friendly
notifications, descriptions, and instructions that are easily understood by different users.

Different types of feedback can be used to adapt to different scenarios. Visual feedback, such as
the display of information through the graphical display of the smartphone, can provide different
levels of information based on the user’s profile and display different parameters continuously, e.g.,
heart rate and activity recognition. Visual feedback could be a detailed report of the session or simply
color-coded icons representing the different levels of risk, as well as a description of what caused that
problem, enabling the users to minimize it.

The system is not limited to visual feedback. In most common working scenarios, the workers
might not be able to interact with the screen, so an audio feedback system is preferred. A series
of predefined coaching messages are given to the worker if an activity has been recognized as
exceeding a risk threshold. The audio feedback is given at time intervals defined by the user. Haptic
feedback using the actuators integrated in the wearables has also been tested and showed promising
preliminary results.

3.2.4. Interoperability Layer

This layer provides the body area network with the possibility of connecting to a remote server
solution to send the information processed by the data analytics and fusion layer. By formatting the
time-stamped processed data into a JavaScript Object Notation (JSON) message, it is possible to use the
Hypertext Transfer Protocol (HTTP) Representational State Transfer (REST) service to upload the data
to a cloud platform or to a local server, depending on the restrictions of the deployment environment.
In this sense, this layer offer to users the possibility to specify the server that has implemented similar
REST APIs, described in Tables 1–3.

By default, the accumulated data of the previous five minutes is uploaded, but the user can
change this uploading speed to as fast as every second, allowing for the use of the information of the
body area network for remote monitoring in a close-to-real-time manner. At the end of a work-day, the
total work exposure is saved on the server, and a statistical summary may be generated, with variables
that may be compared the recommended action levels, and to the levels of other occupations [27,28].
Especially when a group of workers have been using the system at the same workplace, this is a
very time efficient way of objectively obtaining precise work exposure, and risk analyses, at a work
group level.

3.3. Data Warehousing and Business Logic

The server was developed following a RESTful software architecture approach. This means all
resources or services offered by the system on the server side are offered through HTTP methods.
The data is stored in an open source relational database, PostgreSQL version 9.6.8, with a management
layer by TimeScaleDB (Timescale Inc, NYC, US) added for the treatment of time-series records.

The Node.js 10.13.0 programming language was used for implementation of the server. Due to
its nature, Node.js is oriented to the development of web applications, facilitating the encapsulation
of all functions and procedures of the server into small RESTful services. Through a RESTful API,
these services are offered to the other components of the system as simple web resources, identified
by a textual representation. Figure 4 shows an overview of the relationships between the server side
solutions and the other elements through the RESTful API.

The internal design of the architecture is based on modules. Each module brings together
the functions and resources related to a specific objective: identity and security management,
log management, data management, communication with third-party applications, and management
of action policies. Figure 5 shows an overview of the architecture and the interaction between modules.
These interactions can be generated by the direct action of the user (solid arrow) or as a consequence
of an internal process (dashed arrow). The following sections define each of the modules.
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Figure 4. Data Warehouse and Business Logic Server overview and its interoperation with the other
elements of the system.

 
Figure 5. Distribution of the modules that comprise the analytical server and the interactive processes
between them.

3.3.1. Identity Management Module

The security management of the server is based on a simple access and identity management system.
Secure communication is implemented through HTTPS channels between the clients and the server and
the use of REDIS and PassportJS as a solution for the management of certificates, sessions, and cookies.

This module enables control of access to the resources offered by the server and management of
the users. This module allows for the management of permissions to the resources to generate different
user profiles. Thus, the system can discern and adapt the interactions according to whether it is an
administrator user that is more focused on the management of the system, end users, whether they are
information consumers (analysts and experts) or workers, and other profiles necessary for the correct
deployment of the solution. The resources offered by this module are detailed in Table 1.

Table 1. Resources provided by the Identity Manager Module.

Resource Method Description

/auth/login POST Performs the login in the system. As a response, the system sends an
authentication token.

/auth/register POST Registers new simple users in the system.
/auth/logout GET Log out from the system.

/auth/status GET Obtain the current status of the user and it informs users if they are logged
or not.

/auth/regdevice PUT Register a new mobile device in the system. This mobile is syndicated to
the user (authenticated previously) that uses this resource. See Section 3.3.3.
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3.3.2. Log Manager

All actions in the system must be logged to ensure the integrity of users. Therefore, the Log
Manager registers all activities carried out in the server to process. The recorded logs are stored
following the Common Log Format [29]. Through collaboration with the Data Management module,
this module allows for exporting logs to a CSV format file that can be analyzed by experts. This
functionality is encapsulated in a service managed by the Data Management module (see Table 4).

3.3.3. Data Management Module

In general, the P-Ergonomics solution uses two types of data—those generated by wearable
sensors, and those obtained from the evaluations of the user’s state, e.g., questionnaires or expert
comments. In addition, sensors might be placed on different body parts or different types of
questionnaires and subjective assessments can be used. Therefore, the data management module offers
the resources required to support different data structures. The data of the sensors correspond to the
structure described in Table 2. The information collected from the questionnaires is managed following
the data structure detailed in Table 3. The resources offered by the RESTful API of the system related
to the information management module are defined in Table 4.

Table 2. Data Structure of a Sensory Measurement.

Data Field Description Value Example

tstamp Time stamp when the data is stored into the system. 2018-07-23 12:37:37.206017+00

type Short description or type of the measurement, i.e., calories,
sleep time, etc. Angle (Degrees)

position Location of the sensor, if relevant, such as left arm, right
wrist, back, etc. Back/Trunk

sensor Sensor type, i.e., IMUs, Polar watch, etc. LPMS-B2 IMU

value Final value stored in the system and its interpretation,
conditioned by the type of data (type field). −3.63287

id_user User from whom the measure is taken. 6

Table 3. Data Structure of a Questionnaire Response.

Data Field Description Value Example

id_response Unique identification of the stored response. 123
id_user User who completed the form. 14

response_tstamp Time stamp when the response is stored into the
system. 2018-07-23 12:37:37.206017+00

response Response structure, e.g., 5#4#5#2#2#3#1. 4#4#5#2#1#-#3#3#-#1#2#1

q_type Type of form, indicating the policy to be applied for
its analysis. Stress-Energy

Table 4. Resources provided by the Data Management Module.

Resource Method Description

/api/v1/data/logs GET Obtain the logs of the system in CSV format.

/api/v1/data/msr GET Obtain all measures of all users. Only administrators can
perform this action.

/api/v1/data/msr POST Store measurements in the database. This resource admits a
set of several measurements or a single one.

/api/v1/data/msr/{id} GET Obtain all responses stored in the system. Only
administrators can perform this action.

/api/v1/data/qtn GET Obtain the current status of the user, i.e., this resource
informs users if they are logged or not.

/api/v1/data/qtn POST Store responses of a questionnaire in the database. This
resource admits a set of several measurements or a single one.
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3.3.4. External Communication Module

The interactions between the system and external agents are managed through the external
communication module. In the presented version, interaction with wearable solutions from Polar
Electro, Kempele, Finland, through the Polar AccessLink is implemented to retrieve the relevant user
information, e.g., sleep time, daily activity, consumed calories, and resting heart rate. This integration is
done through an Open Authorization (OAuth) protocol by asking users to share their Polar information
with this platform. The access token and user identifier in the third-party system, e.g., Polar, are kept
for the future operations, e.g., obtaining data from AccessLink (https://www.polar.com/accesslink-
api/#authorization-endpoint). The resources associated with this module are detailed in Table 5.

Table 5. Resources provided by the External Communication Module.

Resource Method Description

/external/polar/auth GET Connect with Polar AccessLink API and start
the authentication process.

/external/polar/callback GET
Stores authentication credential (access token
and user identification) of the user from the

Polar AccessLink API.

/external/polar/register/{id} GET
Registers a worker in the Polar AccessLink

system. This action is mandatory to allow users
to access their data.

/external/polar/delete GET Revokes the authorized access token provided
by Polar.

/external/polar/listOf/{performance} GET
Access and process the user’s daily activity

data from the Polar AccessLink and store them
in the system database.

3.3.5. Analysis and Action Policy Module

The server offers the possibility to manage action policies based on the data collected by the
sensors and questionnaires. These actions are based on previously designed analysis libraries that are
included in the system before execution. The analysis results of the user data are managed following
the guidelines established in the action policies, i.e., store or send to the user or to the coach.

In addition to internal feedback and notifications, this module allows for sending messages to
third party applications. In the current version, it interacts with Pocket mHealth (ATOS, S.A., Madrid,
Spain) [30]. The management of notifications in this third-party application is beyond the scope of the
article. The resources offered by this module are described in Table 6.

Table 6. Resources provided by the Analysis and Action Policy Module.

Resource Method Description

/api/v1/notification/pmh/{msg} GET
Send notifications and messages (msg) to external
services. The system uses an external notification API
based on Firebase [30].

/api/v1/notification/pmh GET
Perform analysis related to the health at work policy
associate. The policy is defined as a main function in
a library.

The process followed by this module to manage the action policies defined in the system and the
interactions involved are shown in Figure 6.
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Figure 6. Sequence diagram of the action policy execution and interactions involved.

4. System Validation

The proposed architecture and its implementation were validated through a realistic testing
scenario. The objective of this validation was to evaluate the functionality, performance, and
efficiency of the system for real deployment environments. Therefore, two types of tests were defined:
a performance evaluation and a usability assessment.

4.1. Usability Assessment

The first stage of validation is to measure the usability of the system. A quantitative usability
test, the System Usability Scale (SUS), was used [31]. The SUS questionnaire is a simple tool based
on ten items to give a global view of subjective assessments of usability; that is, the effectiveness,
the efficiency, and the user satisfaction related with the use of the system in order to perform a specific
task. This test was carried out with N = 20 users in 4 groups of 5 users. As Nielsen noted in previous
studies [32,33], this set of users is sufficient to tackle most usability problems and provides an overall
view of the usability of the system. These users were selected from two different work types—office
work and hospital work—to represent white- and pink-collar workers. The tests were carried out over
4–5 h for at least a working day in Spain and Sweden. In addition, all issues that occurred during the
execution of the work activities were logged by an expert, such as interruption of the workflow due
to system malfunctions. All participants were fully informed about the study and provided written
consent. Ethical permission for the tests and data collection were obtained from the Regional Ethical
Review Board in Stockholm (Dnr 2017/1586-31) and the local ethical board at Atos S.A.

4.2. Performance Evaluation

Another important aspect is to test the functional viability of the system using a performance test.
The design of this test is based on the common behavior of a user while interacting with the system,
i.e., skipping the connection setup of the wearable sensors. This behavior model is shown as a state
diagram defined in Figure 7.

Figure 7 shows the user interaction with the Edge App focuses on two main activities,
the initialization or identification and the data collection. These two activities must be considered in
the design of the performance test. Two processes comprise the information gathering, one related to
the filling of questionnaires, and the other to the use of body sensors to measure movements and record
physiological signals produced by the user. In both cases, the operation is similar: collect information,
package it, and send it to the server to be stored and processed. However, the task of processing the
data generated by the sensors is more complex due to the preprocessing performed in the Edge node.
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Therefore, the information gathering activity is modeled focusing only on the user’s interaction with
the questionnaires, as it considerably simplifies the implementation of the test.

Figure 7. State diagram of common user activity with the Edge App.

A Node.js library, Artillery.js, was used to implement the test using a human-readable data
serialization file (YAML). This file defines two functional scenarios, where a virtual user should sign in
and send the information related to a questionnaire to the server, with a similar workload to sending
sensor data. Considering the probability of each scenario in real life, a weight was assigned to each,
1−4% to log in and log out, and 96−99% to upload information to the server.

As noted in previous research [34], a common scenario for a normal large company (logistics,
manufacturing, etc.) is to have 120 workers for the same work line. However, a set of 50 simultaneous
users could represent small-medium enterprises (SMEs) and 200 to 500 is more suitable for large
corporations with more than 120 simultaneous users to be analyzed, if applicable. Thus, the test was
performed by simulating 50, 120, 200, 300, and 500 users.

In terms of hardware, an Amazon Elastic Compute Cloud (Amazon EC2) (Amazon, Seattle, WA,
USA) instance running the Ubuntu Server 16.04 was used to deploy the server, starting with the most
restrictive set of resources, Amazon EC2 instance t2.nano. The test increased the resources, i.e., the
Amazon EC2 instance type, when a use case demanded more CPU or memory. The client for data
generation was simulated in an Amazon EC2 instance type t2.medium with Ubuntu Server 16.04, with
similar hardware features to those offered by the real edge nodes used by the system. A description of
the Amazon EC2 instances is presented in the Table A1.

5. Results and Discussion

The platform was tested in two different real work scenarios—one corresponding to white-collar
workers at the ATOS offices in Madrid, Spain, and the other corresponding to pink-collar workers at
the sterilization unit of the New Karolinska University Hospital in Stockholm, Sweden. Twenty users
were enrolled and the system was tested for 4–5 h during a workday. These trials generated 2,601,016
measurements, an average of 130,050.8 per user. These measurements were used and analyzed to
determine new activity detection algorithms, define new ergonomic suitability comparisons between
jobs, or evaluate new occupational risks. Figure 8 shows the classification of the stored measurements
and how each sensor contributed to the total. The IMU sensors (3 in each T-shirt) generated 73.53% of
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the measurements stored, with the angle between them being the most common type of measurement
(48.61%). The least information came from third-party devices (Polar) at 8% of the total, because the
raw data is stored in the Polar Access link server and only the essential information for the ergonomic
analysis is retrieved, processed, and filtered according to the needs of the final application, i.e., calories,
activity levels, and active steps.

  

(a) (b) 

Figure 8. Distribution of the measures according to the type (a) and sensor that generated it (b).

The analysis of the answers obtained from the usability tests (N = 20) yields an SUS score of 75,625
out of 100. According to most interpretations [35], this score indicates that the system has an acceptable
usability level, i.e., a C grade. However, as shown in Figure 9, there is room for improvement.

Figure 9. The SUS score of the system (dashed red line), with a visual explanation of adjective ratings,
acceptability scores, and school grade scales in relation to the average SUS score [35].

This margin of improvement is visualized in the representation of the answers given to each
question of the questionnaire outlined in Figure 10.

Figure 10. Graphic representation of the scores given by the users to each question of the SUS
questionnaire. The questions are detailed in the Table A2.

Note that the even questions refer to positive aspects of the usability of the system and the odd
questions refer to negative aspects. It has observed that the system must improve around questions
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1, 5, and 8. Question 1 refers to the user’s desire to use the system at all times. In this sense, the
use of wearable elements and smart clothes appears to condition the final acceptance due to comfort
aspects and doubts related to cleaning. Question 5 refers to the level of integration of the elements that
comprise the system, that is, the functional coherence between the sensorized elements, such as the
smart shirt, watch, and app. Question 8 refers to the comfort of the system, i.e., the wearable elements,
which must be revised to increase the overall comfort of the system. The questions are detailed in the
Table A2.

The performance test results are shown in Table 7. Depending on the number of users, it is
possible to select a more restrictive Amazon EC2 instance type. The cost of each option is estimated
by the amount of CPU credits used by the instance in 24 h (see Table A1 for the amount of credits
offered for each instance type). The minimum amount of CPU credits necessary for a workday were
estimated for each test. It is worth mentioning that performance numbers reported in Table 7 are
heavily dependent on software implementation and cannot be generalized.

The performance scenario is designed as a worst case scenario, with simulation of request to the
server at every second. However, in our actual scenario, one-second interval warehousing and cloud
analysis of data is not required. Each limb data, from IMUs, was 150 bytes, and hence size of each
packet corresponds to Header Bytes + (number of seconds * (number of sensors * 150)). In our pilots,
we have used 300 s for synchronizing with the data warehouse, while the performance simulations
are done in one second. Perhaps it might be desired to change to a binary communication in future to
increase the efficacy.

Table 7. Summary of the performance test results.

Amazon EC2
Instance

User/sec
CPU

Usage
Amazon EC2
Credits Used

Average Latency
(ms)

T2.nano 50 37% 1.6 3.5 (p95 = 174.6)
T2.micro 120 72% 3.6 93.7 (p95 = 548.5)
T2.small 200 72% 3.5 61.3 (p95 = 420.7)

T2.medium 300 42% 3.5 75.2 (p95 = 468.8)
T2.medium 500 52% 3.6 154.7 (p95 = 658.8)

T2.large 500 59% 4.2 591.8 (p95 = 2485.7)
T2.nano 50 37% 1.6 3.5 (p95 = 174.6)

Figure 11 shows the difference between the minimum credits needed and those offered by each
type of Amazon EC2 instance on dedicated Linux servers. Although the most affordable instances
(t2.nano, t2.micro, and t2.small) offer adequate performance for few users, the final price can be altered
due to the number of CPU credits used. In contrast, an instance of type t2.medium offers the best
performance/credits-used ratio. With an annual advanced payment of $312, it is possible to handle up
to 500 concurrent users with a CPU usage of 52%.

Figure 11. Graphical representation of difference between Amazon EC2 CPU credits offered by upfront
payment for reserved Linux instances (type t2).
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Another requirement of the system specification is the possibility to deploy the system on a
local server. This is suitable for enterprises with highly restrictive policies about storing data on
the cloud. The analytical part of the system, although it is implemented following a cloud service,
can be deployed on private local servers. To achieve optimal performance similar to that offered by an
Amazon EC2 t2.medium instance, the server specification is at least a dual-core processor and 4 GB of
memory. Servers with such a specification are very affordable.

The development of the P-Ergonomics platform is in line with projects by our research group at the
Royal Institute of Technology (KTH) and Karolinska Institutet, Sweden, and by our research partners.
It is a part of the European Institute of Innovation and Technology (EIT) Health funded project [23],
We@Work (http://weatwork.eu/). In a previous study [24], we demonstrated a wearable system
integrating textrodes, motion sensors, and real-time data processing through a mobile application.
Heart rate, respiration, and motion measurements obtained from a wearable system were fused to
enhance the energy expenditure estimation [36,37]. Preliminary results of changing workers’ behavior
after giving feedback is also reported [38]. The aim is to develop a comprehensive solution to promote
and support a healthy and safe working life. To the authors knowledge, this approach is novel and has
not been reported elsewhere.

6. Conclusions and Future Work

The developed platform shows promising results in collecting data from the edge node (Android
application). For its part, the functional analysis has been done with a specific platform (Amazon
EC2) and different results could be achieved with other platforms, such as Google Cloud or Microsoft
Azure. In addition, the performance and capacity could be expanded by software or operating
system optimization, addition of hardware resources, or the detailed study of communication
and data exchange between the node and the server, i.e., data compression algorithms. However,
the results show that as a whole, the capacity and affordability of the implemented system meets the
required specification.

Inclusion of protocols that make use of universal sensors is another possible expansion of the
system that can increase its versatility. The usability tests show acceptable results, although the use of
specific smart clothes seems to condition the final acceptance. This has caused the redesign of a new
integration of the ECGZ2 device in the wearable garment by its integration into the t-shirt directly,
avoiding the use of the vest. Thus, more detailed tests, including long-term usage of the new wearable
systems, are planned for future work. A detailed test of the system for changing users’ behavior by
giving relevant feedback is ongoing. The use of gamification for engagement of workers is already
planned and will be implemented. The use of pervasive and wearable technology in ergonomics could
be a vital factor in enabling cost-effective ergonomic risk assessments and solutions in the near future.
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Appendix A

The Table A1 presents a summary of the features offered by Amazon for using Amazon EC2
Virtual Machines. This summary is only focused on the T2 Amazon EC2 instance, the most affordable
modality, which is ideal for a variety of general purpose applications. In addition, the description of the
T2 instances has been limited only to those used in the test, i.e., nano, micro, small, medium, and large.
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Table A1. Characteristics of the Amazon EC2 instances.

Amazon EC2 instance CPUs Credits/hour Memory (GiB) Upfront Price ($)

T2.nano 1 3 0.5 39.00
T2.micro 1 6 1 77.00
T2.small 1 12 2 156.00

T2.medium 2 24 4 312.00
T2.large 2 36 8 625.00

Appendix B

The usability analysis has been carried out through the use of the System Usability Scale (SUS).
For this, the tested and accepted questionnaire that provides this method has been used. Table A2
specifies the 10 questions that make up this questionnaire.

Table A2. SUS questionnaire.

Item Question

Q1 I think that I would like to use this system frequently.
Q2 I found the system unnecessarily complex.
Q3 I thought the system was easy to use.
Q4 I think that I would need the support of a technical person to be able to use this system.
Q5 I found the various functions in this system were well integrated.
Q6 I thought there was too much inconsistency in this system.
Q7 I would imagine that most people would learn to use this system very quickly.
Q8 I found the system very cumbersome to use.
Q9 I felt very confident using the system.
Q10 I needed to learn a lot of things before I could get going with this system.
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Abstract: In this work, a wearable smart clothing system for cardiac health monitoring with a
multi-channel mechanocardiogram (MCG) has been developed to predict the myo-cardiac left
ventricular ejection fraction (LVEF) function and to provide early risk warnings to the subjects.
In this paper, the realization of the core of this system, i.e., the Cardiac Health Assessment and
Monitoring Platform (CHAMP), with respect to its hardware, firmware, and wireless design features,
is presented. The feature values from the CHAMP system have been correlated with myo-cardiac
functions obtained from actual heart failure (HF) patients. The usability of this MCG-based cardiac
health monitoring smart clothing system has also been evaluated with technology acceptance model
(TAM) analysis and the results indicate that the subject shows a positive attitude toward using this
wearable MCG-based cardiac health monitoring and early warning system.

Keywords: mechanocardiogram (MCG); smart clothes; heart failure (HF); left ventricular ejection
fraction (LVEF); technology acceptance model (TAM)

1. Introduction

Mechanocardiogram (MCG) [1] or so-called Seismocardiogram (SCG) [2,3] was proposed in early
1990 using an inertial motion sensing device, i.e., an accelerometer, for cardiac activity monitoring.
This technology is capable of identifying feature points of the cardiac activity events, such as the
opening and closing of heart valves [4], as well as some heart systolic and diastolic characteristics,
such as isovolumic movement (IM), isotonic contraction (IC), peak of rapid diastolic filling (RF),
and peak of atrial systolic (AS) [5]. It has also turned into an emerging method for cardiac health
monitoring as mature MEMS-based technology and the development of integrated circuit (IC)
process [6].

Most of the related works employing MCG/SCG technologies used a single accelerometer
placed on the sternum of the chest to record the mechanical composite vibration signal incurred
from the complex heart beat activities within a cardiac cycle around the heart area on the surface
of the chest. In this way, time delays and signal attenuations occur in only one detected signal,
which is a combination of motion signals from different vibration sources in the heart, such as the
four heart valves. Hence, Zanetti et al. [7] suggested using multiple accelerometers to reduce the
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influence of time delay and signal attenuation for the better detection of cardiac diseases. In the
meantime, Lin et al. [8] identified six new feature points of cardiac activities, i.e., left ventricular lateral
wall contraction peak velocity (LCV), septal wall contraction peak velocity (SCV), trans-aortic peak
flow (AF), trans-pulmonary peak flow (PF), trans-mitral ventricular relaxation flow (MFE), and atrial
contraction flow (MFA), which were not reported in any previous related works, with a novel
multi-channel MCGs (or SCGs) system. With this system, more accurate timings of events have been
identified among the previously found feature points. Some very important and meaningful cardia
time intervals (CTIs) have then been calculated, such as the pre-ejection period (PEP), from ECG-Q to
MCG-AO, and the left ventricular ejection time (LVET), from MCG-AO to MCG-AC. Reant et al. [9]
proposed that the ratio of PEP to LVET, i.e., PEP/LVET, could also be an important index, known as
the Contractility Coefficient (CC), for myo-cardiac functions. The key index used to justify the
myo-cardiac functions, i.e., the left ventricular ejection fraction (LVEF), was also found to be strongly
inversely correlated to the CC values in the study. Indeed, LVEF is an important clinical index for
evaluating a human’s cardiac functions, especially for heart failure (HF) patients with a reduced
ejection fraction (HFrEF).

Unlike the popular diagnosis instruments which are widely used clinically for cardiac health
monitoring and examination, such as magnetic resonance imaging (MRI), computerized tomography
scan (CT scan), and echocardiography (Echo), this technology, by combining ECG and MCG signals,
can support long-term continuous cardiac health monitoring of patients [10]. To benefit from this
technology ubiquitously in daily life for long-term and continuous monitoring of cardiac health
monitoring, efforts towards implementing these technologies as wearable devices are desired. In the
past years, several efforts have been made to study wearable devices or the body-sensing-network
(BSN) for cardiac health monitoring [11–14], but all of them employed ECG-based technologies for
the monitoring of cardiac health. The only two portable products based on MCG/SCG technology
for cardiac health monitoring are the “Cardio Pro” from Heart Force Medical Inc., Vancouver, BC,
Canada [15], and the one by M. Di Rienzo et al. [16]. However, both of them use a single channel
MCG/SCG signal and still incorporate the drawbacks of the single-channel MCG/SCG technology.

Ballistocardiography (BCG) is another similar technology with SCG for cardiac activity
monitoring [17]. The difference between the SCG and BCG signals is not simply a matter of
nomenclature. Because the BCG measures whole body vibrations, the BCG signal is less influenced by
local anatomical and sensor placement factors, and thus provides a better indication of hemodynamic
information (e.g., CO) [18–20]. However, BCG signals cannot be measured as readily as SCG signals
with wearable devices, but rather with weighing scales, tables, beds, or chairs—devices that can
capture whole body movements. Moreover, a few works [21,22] proposed novel methods of measuring
BCG signals using cameras or optical imagine and gained high-quality signals, but these restrict the
measurement to fixed sites and hence are not able to benefit from the technologies anytime, anywhere,
as the wearable system can provide. Recently, serval groups have demonstrated that BCG signals
can also be measured using wearable accelerometers [23,24] and extensive data processing works
have been implemented for data analysis [25]. Nevertheless, the waveform of the data was more
distorted when more data processing techniques were used and this would make the analysis of event
identification less accurate.

Furthermore, with the increased attention in research on wearable devices and smart clothing
technologies, studies have also focused on trying to understand users’ perception of these smart
technologies. Recent studies have used the technology acceptance model (TAM) [26], which is one of the
most extensively used models to study an individual’s acceptance of information and communication
technologies, to explain a user’s perception of wearable technology and smart clothes. For example,
past studies [27–29] utilized the TAM to explain why users are more willing to adopt wearable
technologies, such as smartwatches and wearable fitness products. Besides the original variables in
the TAM, these studies also included other external constructs that were part of their research interests,
such as visibility [27], affective quality, and mobility [28], as well as perceived health benefits [29].
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However, even in recent studies that have sought to understand users’ perceptions of smart clothes,
the participants were mostly generally healthier rather than patients with cardiovascular disease (CVD).
Therefore, in this study, we have proposed an extension of the original TAM by adding external
variables with the goal to explore the effects of external factors on attitudes, behavioral intentions,
and the decision to use smart clothing technology among patients with CVD.

The goals of this work can be summarized as follows:

(1) CHAMP: Design of the Cardiac Health Assessment and Monitoring Platform (CHAMP) with
multi-channel MCGs/ECG data acquisition, processing, and the wireless communication
framework for mobile cardiac health monitoring.

(2) Smart Clothes: Implementing the framework as a wearable smart clothing for cardiac
health monitoring.

(3) Methods & Assessment of Cardiac health monitoring: Development of an efficient mechanism
for cardiac health assessment and prediction of the left ventricular ejection fraction (LVEF) for HF
patients with detected multi-channel MCGs and ECG data.

(4) Usability study: Analysis of the extended technology acceptance model in understanding users’
behavioral intention to use a wearable cardiac health monitoring smart clothing system.

In this paper, the design and implementation of the wearable cardiac health monitoring and early
warning system with multi-channel MCGs and ECG is described in Section 2, including: CHAMP;
integration of CHAMP with textile-based technologies into smart clothing; methods of cardiac
health assessment, especially for HF patients; and finally, the extended TAM model, the hypothesis
proposition, and the details of data collection for this technology acceptance study. Section 3 presents
the functional verification of the CHAMP, validations of the developed smart clothes, the analysis
of output data from the system, and data correlation with myo-cardiac functions, as well as linkage
to certain heart diseases, such as HFs, and the TAM results are also discussed. Finally, in Section 4,
we conclude the entire paper. Some discussions and conclusions about the future direction of the work
are drawn.

2. Materials and Methods

In this section, Section 2.1 describes the structure of CHAMP and its implementation
for the synchronous multi-channel MCGs/ECG data acquisition, processing, and wireless data
communication. The integration of the platform with textile-based technologies into wearable smart
clothes is presented in Section 2.2. Section 2.3 introduces the CTIs that could be calculated from the
system and how these can be used for the cardiac health assessment, such as how the LVEF can be
derived from those CTIs and used for the cardiac health assessment of heart HF patients. Section 2.4
describes the extended TAM model, the hypothesis proposition, and the details of data collection for
the usability and technology acceptance study.

2.1. CHAMP: Cardiac Health Assessment and Monitoring Platform

In order to simultaneously acquire data from multi-channel MCG units and a single channel ECG
unit of the monitoring system, it is necessary to be able to read data from multiple accelerometers
and digitized ECG data within a sampling period sequentially. To facilitate these requirements and
considering mobility for support as wearable devices, a cardiac health assessment and monitoring
platform, CHAMP, was designed and implemented. The block diagram of CHAMP is shown in
Figure 1. The core architecture of CHAMP is a microcontroller to access four accelerometers through a
four-channel I2C bus switch and digitized ECG signal from ECG front-end circuitry sequentially
within one sampling period. Then, data can be calculated and filtered by the firmware in the
microcontroller and the processed data are transmitted using UART protocol through the BlueTooth
module. Detailed functions and selection of the components are discussed below.
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Figure 1. Block diagram of CHAMP (Cardiac Health Assessment and Monitoring Platform).

2.1.1. The Hardware Design of CHAMP

The main circuit of CHAMP is an embedded system with the microcontroller ADuC7020 from
Analog Devices, Inc. (Norwood, MA, USA) as the core controller of this platform. The microcontroller
has an internal crystal oscillator and can operate up to the core clock of 41.78 MHz, and the core is an
ARM7TDMI core in 16-bit/32-bit RISC architecture with a 62 kB flash memory for program storage
and 8 kB of SRAM for program execution. It includes multiple analog-to-digital converters (ADCs)
providing a 12-bit resolution with a sampling rate up to 1 mega sampling per second (MSPS) on
each channel. It also has built-in UART, I2C, and SPI on-chip peripherals and four general purpose
timers. In the CHAMP design, an I2C interface is used to access multiple accelerometers, a UART
peripheral is used to communicate with a Bluetooth module for wireless data transmission, an ADC is
used to digitize the analog ECG signal so that it can be synchronized with multi-channel MCG data
from accelerometers, and a timer is also set in the firmware to control the timing of event handling
(data acquisition, processing, and transmission) for real-time data streaming to the receiver device.

Accelerometers used in this platform are LIS331DLH, from STMicroelectronics, Geneva,
Switzerland. With the sampling rate of 400 Hz, these accelerometers are set at the sensing range
of ±2 g at a 12-bit resolution, so that a 1 mg sensitivity (1 mg = 2−10 g, i.e., 1/1024 g, where g is the
gravity force) can be achieved. Raw data acquired from each accelerometer are the acceleration along
the X-, Y-, and Z-axis, but only the Z-axis acceleration data (in the direction perpendicular to the chest
surface area) were processed and transmitted wirelessly. In this multi-channel MCGs/ECG system
design, the four accelerometers used are the same components from the manufacture, and hence
these all have the same I2C address. The use of a single channel of the I2C interface built in the
microcontroller, ADuC7020, is not enough to identify these accelerometers separately. To be able to
access these four accelerometers separately, a four-channel I2C bus switch, PCA9546A, from Texas
Instruments (Dallas, TX, USA), is used and the specific bits in its control register are set to define which
channel of the I2C interface to use. Therefore, a specific accelerometer can be accessed through that
selected slave I2C interface.

In this design, an ECG measurement front-end circuit, AD8232, a fully integrated single-lead
ECG front end chip which is capable of providing high signal gain (G = 100) with dc blocking
capabilities, from Analog Devices, Inc., with surrounded discrete components (resistors and capacitors),
is integrated. The ECG signal can be extremely noisy, and the AD8232 circuit can work as an op amp
to obtain a clear ECG analog signal. A Lead I limb ECG measurement circuit is implemented. With a
positive reference electrode attached to the left arm (LA) and negative reference electrode attached
to the right arm (RA), it can obtain an optimal ECG waveform, configured with a 0.5 Hz high-pass
filter followed by a 40 Hz low-pass filter. The RLD circuit that drives the third electrode, which is
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usually attached to the right leg (RL), is used to cancel the common-mode interference. However, it is
optional and in our smart clothes integration, this input is not connected. Since CHAMP is integrated
into smart clothes, the electrodes for the LA and RA can only be located on the upper trunk.

To provide the capability of wireless data transmission, a Class 1, Bluetooth (BT) 2.1+EDR module,
RN-41 from Microchip Technology Inc. (Chandler, AZ, USA), is integrated into CHAMP. This BT
module is operated in a serial port profile (SPP) and configured with a 115,200 buad-rate and none
parity bit, 8 data bits, and 1 stop bit (N-8-1) standard. The UART interface is used for the data
communication between the microcontroller and BT module. As a result, the platform can stream the
data either through a RS-232 cable or BT module under the same firmware control.

After finishing the schematic design of CHAMP, the PCB layout was completed with two metal
layers with a size of 50 mm × 70 mm, as shown in Figure 2a. No special efforts were made to shrink
the size of the PCB layout and hence there is still space to further reduce the size of the CHAMP PCB
in future versions. Then, the PCB was fabricated with the FR4 panel and Figure 2b shows a photo of
the actual system after all the components were soldered and the function of the board was tested.
The total hardware cost of this platform, including the cost of PCB and all the components, is only
around US$130. With larger quantities of hardware platforms made, a lower cost can be achieved.

Figure 2. (a) The PCB layout of CHAMP; (b) the photo of the soldered system.

2.1.2. The Firmware Design of CHAMP

The firmware acts as the soul of CHAMP. Without proper implementation of the firmware,
the functions of CHAMP would not perform as expected. Figure 3 shows the flowchart of the firmware,
a simple interrupt driven program. Once the system is powered up, the firmware starts from its
main program. In the main program, the system is initialized with proper configuration of the
accelerometers (400 Hz sampling and output data rate, 0.5 Hz high-pass filter enabled), setting of the
timer (every 2.5 ms), ADC configuration (400 SPS, 12-bit resolution), general purpose input-output
(GPIO) configuration, UART initialization (115,200 bps, N-8-1 standard), and interrupt confirmation
and enabling, etc. After the system has been initialized, the main program enters into an infinite loop
waiting for the timer interrupt to occur. It is worth mentioning that the on-chip ADC is used to digitize
the analog ECG signal from the ECG measurement front-end circuit. To save the power consumption
of the microcontroller and to match the sampling rate with MCG signals, the sampling frequency of
the ADC is set to use the timer signal.
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Figure 3. The flowchart of the firmware for CHAMP.

The timer interrupt is set to generate interrupt signals to the microcontroller for every 2.5 ms, i.e.,
400 Hz frequency. Once the microcontroller receives the timer interrupt, the timer interrupt service
routine (ISR) is executed. In the timer ISR, it disables any further interrupt from occurring, and then
reads the ADC output data register. After reading ECG data from ADC, it uses the I2C interface to
go through the PCA9546A 4-channel I2C bus switch and to read each of the digital outputs of the
four accelerometers one by one. After the ECG and four-channel MCG data are retrieved, the signal
pre-processing task follows. In the signal pre-processing, digital filtering of a 50 Hz low-pass filter
through the single ECG and four-channel MCG data is performed. Then, the output data after filtering
are transmitted out of the system through the UART peripheral via the BT module. Before exiting the
timer ISR, all interrupts are enabled again and wait for the occurrence of the next interrupt event.

Because the timing is critical for this kind of high data rate (400 Hz) real-time system, only Z-axis
data from each accelerometer for the MCG signals are processed and transmitted. In this platform,
13 byte of data are transmitted from the system with UART protocol at 115,200 bps. The output
data packet is shown in Figure 4a. The data packet contains the header byte, 0xAA, 2 byte of data
for ECG, and the four accelerometers’ data (2 byte each), followed by an 8-bit counter value for the
checking of continuity, and ends with a tail byte, 0xBB. The timing breakup of the firmware execution
for the three major functional blocks, i.e., data retrieving, digital filtering, and UART transmission,
is shown in Figure 4b, in a logic analyzer. With the microcontroller retrieving the ECG and 4 MCG data
through I2C, it takes 0.71 ms for data preprocessing of digital filtering for a single ECG; for 4 ECG data,
it takes 0.551 ms; and finally, sending out the filtered data through UART takes 1.137 ms. Therefore,
the total execution time of the timer ISR is 2.398 ms, which is still less than the timer interrupt period of
2.5 ms (i.e., 400 Hz). From the measurement, it can be concluded that the system is actually performing
real-time data acquisition, processing, and streaming wirelessly.
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Figure 4. (a) The output data packet of the system; (b) the timing breakdown of the firmware execution.

The raw data measured with accelerometers around the heart area on the chest surface can
be extremely noisy. The signals have to be filtered for cleaner information and passed through the
following processes. The ECG front-end circuit is already implemented with hardware high-pass and
low-pass filters, so the major concerns are the MCG signals. The accelerometer used in the system is
equipped with a built-in high-pass filter with certain cut-off frequency configurations. In the system,
the accelerometer output data rate is set at 400 Hz and the built-in high-pass filter with a 1 Hz cut-off
frequency is configured to block-out the dc value of acceleration due to the gravity and orientation of
the accelerometer in use. To filter out the high frequency noise, the digital filtering process is desired
for the raw MCG data. A low-pass FIR filter with a 50 Hz cut-off frequency and 60 dB signal drop-off
at 60 Hz under a 400 Hz sampling frequency is designed with the FDATool in MATLAB®. With this
FIR low-pass filtering design specification, a FIR digital filter with 79 taps is generated. With generated
fixed-point coefficients and a filtering program implemented in C, the firmware incorporated with
FIR digital filtering using fixed-point operations and a circular buffer mechanism is achieved within
0.551 ms of execution time for one ECG signal channel and four MCG signal channels.

2.2. The Multi-Channel MCGs/ECG Monitoring Smart Clothes

To avail benefits from this technology anytime, anywhere, and for any movement in daily life
for long-term and continuous monitoring of cardiac health monitoring, CHAMP has been integrated
into a wearable system, i.e., multi-channel MCGs/ECG monitoring smart clothes. With our previous
experience [30] and understanding of the advanced textile-based conductive techniques, we teamed
up with AiQ, a Smart Clothing company, to integrate CHAMP and sensors into proper locations of
smart clothes and had it fabricated as the prototype of the multi-channel MCGs/ECG monitoring
smart clothes, as shown in Figure 5.

Figure 5a shows the integration of the previously discussed hardware platform and sensors,
i.e., CHAMP, into smart clothes. The smart clothes were fabricated as a stretchable vest, so that it is
skin-tight enough to collect steady and reliable MCG and ECG signals. Four accelerometer sensors
were placed at proper locations, as in a previously reported study in [8], as the green dots marked
in Figure 5a,b. The ECG electrodes were made with fabric electrodes, which can deliver more than
37 dB of SNR, for the collection of ECG signals, and the quality of ECG signals measured with these
electrodes was also verified and is described in Section 3.1.1. The main circuit board of CHAMP is
embedded at the location near the neck area, as shown in Figure 5a. It is connected to the accelerometer
sensors and ECG electrodes with electro-conductive fiber for the data collection. A battery was also
placed at the back of the main board to provide the working power. As a matter of fact, the only rigid
parts of this smart clothing are the CHAMP board, battery, and four accelerometer sensor modules
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(10 mm × 7 mm each), and they weighed 70 g in total. The weight of the clothes is 245 g, including the
rigid parts. Even so, from our usability study, patients still show a positive attitude towards using this
system. Figure 5b shows the smart clothes worn by a human subject.

Figure 5. The prototype of multi-channel MCGs/ECG monitoring Smart Clothes.

2.3. Cardiac Health Assessment for Heart Failures

With the six newly identified feature points in the multi-channel MCG spectrum reported
in Ref. [8] and the other feature points (FPs) which were identified and reported previously in Ref. [5],
the time sequencing of these 15 feature points identified in the multi-channel MCGs/ECG data,
along with the Q, R, and S points in the ECG signal, are plotted in Figure 6a. By calculating the
time differences between certain FPs, some meaningful cardia time intervals (CTIs) can be obtained.
For example, there are six CTIs related to the function of heart contraction, e.g., electro-mechanical
delay (EMD) from the time point of ECG-Q to MCG-MC, iso-volumeric contraction time (IVCT) from
MCG-MC to MCG-AO, pre-ejection period (PEP) from ECG-Q to MCG-AO, rapid ejection time (RET)
from MCG-AO to MCG-AF (or RE), left ventricular ejection time (LVET) from MCG-AO to MCG-AC,
and systole (SYS) from MCG-MC to MCG-AC. The time sequence of these feature points and the
obtained CTIs are marked in Figure 6b.

Clinically, the left ventricular ejection fraction (LVEF) is the key index to justify the myo-cardiac
functions, especially for HF patients with a reduced ejection fraction (HFrEF). A higher LVEF
value indicates healthier myo-cardiac functions. Among these CTIs, Buell [9] proposed that the
ratio of PEP to LVET, i.e., PEP/LVET, could also be an important index for myo-cardiac functions,
i.e., the Contractility Coefficient (CC), as in Equation (1), and LVEF was also found to be inversely
correlated to the CC values in the study.

CC = PEP/LVET, (1)

Hence, with the related feature points identified from the multi-channel MCGs and ECG signal,
and with those CTIs calculated accordingly, the CC value can be derived and thereafter, the correlated
LVEF can be obtained as the assessment index for myo-cardiac functions, which is especially helpful
for the cardiac health monitoring of HF patients.

164



Sensors 2018, 18, 3538

 

 
Figure 6. (a) All feature points identified on the multi-channel MCGs/ECG waveforms; (b) the time
sequence of all feature points and related cardiac time intervals.

2.4. Extended TAM Verification–Models, Hypothesis, and Data Collection

The TAM has been shown to successfully explain users’ perceptions of wearable technologies.
In the TAM, perceived ease of use (PEOU) and perceived usefulness (PU) are two key psychological
constructs that determine users’ attitudes toward the use of a technology or service. That is, if a
technology is perceived as easy and useful for accomplishing a task, then users will have a more
positive attitude toward the technology. Furthermore, a user’s attitude will later affect his/her intention
to actually use the technology. Due to the explanatory ability of the TAM framework, the TAM has
been consistently revised and validated in various fields of study. In this study, we extend the TAM to
understand how other constructs, such as technology anxiety, perceived ubiquity, resistance to change,
and benefit, would affect CVD patients’ perceptions of wearable smart clothing technology. As a result,
we postulated the following hypotheses:

Hypothesis 1. Technology anxiety will be negatively associated with the perceived usefulness of a wearable
cardiac health monitoring system among patients with cardiovascular disease.

Hypothesis 2. Perceived ubiquity will be positively associated with the perceived usefulness of a wearable
cardiac health monitoring system among patients with cardiovascular disease.
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Hypothesis 3. Perceived ubiquity will be positively associated with the perceived ease of use of a wearable
cardiac health monitoring system among patients with cardiovascular disease.

Hypothesis 4. Perceived ubiquity will be negatively associated with resistance to change with respect to using
a wearable cardiac health monitoring system among patients with cardiovascular disease.

Hypothesis 5. Perceived ubiquity will be positively associated with attitudes toward the use of a wearable
cardiac health monitoring system among patients with cardiovascular disease.

Hypothesis 6. Resistance to change will be negatively associated with the behavioral intention to use a wearable
cardiac health monitoring system among patients with cardiovascular disease.

Hypothesis 7. Benefit will be positively associated with the behavioral intention to use a wearable cardiac health
monitoring system among patients with cardiovascular disease.

Hypothesis 8. Perceived usefulness will be positively associated with attitudes toward the use of a wearable
cardiac health monitoring system among patients with cardiovascular disease.

Hypothesis 9. Perceived ease of use will be positively associated with the behavioral intention to use a wearable
cardiac health monitoring system among patients with cardiovascular disease.

Hypothesis 10. Attitude will be positively associated with the behavioral intention to use a wearable cardiac
health monitoring system among patients with cardiovascular disease.

In total, 48 participants who were older than 20 years and were either diagnosed as having HF
with a left ventricular ejection fraction <40% or severe valvular heart disease agreed to participate in
the study. Ethical approval was obtained from the Institutional Review Board (IRB) of Chang Gung
Hospital, Taoyuan, Taiwan (104-8175B). Among total subjects, 77% of the participants were male and
23% were female. In terms of age, 8% were between 20 and 29 years; 8% were between 30 and 39 years;
19% were between 40 and 49 years; 25% were between 50 and 59 years; 23% were between 60 and
69 years; 8% were between 70 and 79 years; 6% were between 80 and 89 years; and 2% were older than
90 years. Regarding education, 10% had graduated from a graduate school; 35% had graduated from
a university; 21% had completed high school as their highest level of education; 8% had completed
junior high school as their highest level of education; and 25% had completed elementary school as
their highest level of education.

When a participant arrived in the clinical room for this research survey, the researchers first
explained the purpose and the procedure of the study explicitly. Then, the participants signed
the consent form. During the experimental stage, the participants’ demographic data were collected.
Subsequently, the researchers presented the developed wearable MCG-based cardiac health monitoring
system to the participants so that they could actually feel the product and have a better sense of the
texture and the functions of the wearable cardiac sensing technology. After completing the scenario
presentation, the participant would then answer a technology acceptance questionnaire. The whole
survey took approximately 30 min.

The technology acceptance questionnaire consisted of eight major sections that assessed
technology anxiety, perceived ubiquity, resistance to change, benefit, perceived usefulness,
perceived ease of use, attitude, and behavioral intention. All constructs were measured using
five-point Likert-type scales, with 1 indicating strongly disagree and 5 indicating strongly agree.
Each construct’s corresponding questionnaire was derived and modified from a variety of sources
to reflect the characteristics of smart clothes. The measures for technology anxiety and resistance to
change were adapted from Guo et al. [31]. The measure for perceived ubiquity was adapted from
Hsiao and Tan [32]. The measure for benefit was adapted from Demiris et al. [33]. The measures for
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perceived usefulness and perceived ease of use were derived from Davis [26]. The measure of attitude
originated from Fishbein and Ajzen [34] and Ajzen [35], and the measure of behavioral intention
originated from Venkatesh et al. [36]. The data analysis included two stages: the measurement model
and the path analysis. The measurement model was used to test the reliability and the validity of
the constructs by conducting a confirmatory factor analysis. The path analysis was used to test the
proposed research hypotheses. SPSS 22 and LISREL 8.7 were used to respectively perform the analyses
of the measurement model and the path analysis.

3. Results and Discussions

3.1. Functional Verifications of CHAMP

The major functions of CHAMP are presented in this section. It verifies the ECG signal
measurement from the in-system AD8232 ECG acquisition circuit and performs signal verification of
digital filtering for both ECG and MCG signals.

3.1.1. Verification of ECG Signal Measurement

The integration of the ECG monitoring circuit into CHAMP is a very important feature of the
system. Therefore, the ECG signal measured from the on-board AD8232 ECG monitoring circuit is
compared with the ECG signal measured from Bio Amplifier using commercially available electrodes
simultaneously, as in the previous study [8], to confirm the correctness of the ECG measured signal
from the on-board AD8232 circuit. As shown in Figure 7b, the timing of ECG signal feature points,
i.e., P, Q, R, S, and T, measured from the on-board AD8232 circuit, is in-line with the one measured
from Bio Amp and data acquired by PowerLab. In this comparison study, as shown in Figure 7a,
not only the ECG signals are compared, and the positions of electrodes for AD8232 ECG measurement
are attached on the upper trunk of the body instead of the hands and leg, which are the locations of
electrodes attached in the conventional limb ECG measurement, such as the ECG measurement via Bio
Amp in previous study. The comparison results concluded that the function and performance of the
on-board AD8232 ECG monitoring circuit are reliable and the quality of ECG signals measured from
fabric electrodes is about the same when compared with the commercial available electrodes.

Figure 7. The verification of the on-board AD8232 ECG monitored signal. (a) Comparison of electrode
positions; (b) ECG signal comparison.

3.1.2. Verification for Digital Filtering Implementation

To validate the digital filter implementation, and to verify if the output of the filtered signals
meets the filter design specification, the frequency spectrum comparison of a single MCG channel
signal before and after the digital filtering is shown in Figure 8. Figure 8a shows the original frequency
spectrum of an MCG signal before digital filtering is applied and Figure 8b depicts the frequency
spectrum of that MCG signal after applying the digital filtering. From Figure 8b, it can be observed
that the signal starts to drop-off from 50 Hz and the magnitude almost drops to 0 after 60 Hz compared
with the original spectrum shown in Figure 8a.
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Figure 8. The frequency spectrum comparison of a single channel MCG signal before and after digital
filtering in the gateway.

Even though there is a delay of 40 data samples (around 100 ms in this case) after digital filtering,
the timing references to the ECG signal still remain the same since both the ECG signal and four-channel
MCG signals go through the same digital filtering and suffer the same amount of delay. By aligning the
ECG signal and one channel of the MCG signal in the time domain before and after the digital filtering,
it is very clear to observe the effect of noise filtering, as shown in Figure 9. In Figure 9, the timing signal
before filtering is shown in a black color and after filtering is shown in a red color. Clearly, from the
zoom-in portion of the MCG signal, the red line is smoother, i.e., less affected by high frequency noise,
after applying the digital filtering on the MCG signal. The ECG signal does not seem to vary a lot
before and after digital filtering. This is because the data from the ECG signal for digital filtering were
already filtered through the hardware low-pass filter implemented in the AD8232 circuit.

Figure 9. The timing signals of ECG and single channel MCG before (BLACK color) and after
(RED color) digital filtering.

3.2. Validations of Multi-Channel MCGs and ECG Smart Monitoring Clothes

Figure 10a shows the picture of a subject wearing the multi-channel MCGs/ECG smart monitoring
clothes. The subject also holds an android-based tablet PC running a mobile app for obtaining data
received from the smart clothes system wirelessly and performing the identification of feature points
automatically. The feature points identified by the mobile app are the newly identified six feature
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points (FPs) reported in Ref. [8] and other feature points of cardiac activity events reported in Ref. [5].
The waveforms of the data received from these smart monitoring clothes through BlueTooth are shown
in Figure 10b, i.e., one ECG waveform and four channels of MCG waveforms. Similar waveforms
and features of the signals could be identified visually as in the previous study 8 and it validated
the correctness of the multi-channel MCGs and signal-channel ECG measurement with the wireless
transmission feature. The sampling rate of the accelerometer was set at 400 Hz. The signals seem to be
nosier (lower SNR) than the ones shown in Ref. [24]; however, BCG signals were measured from the
vibration of the body, which have bigger amplitudes compared with MCG signals that measure the
tiny vibration signals in the chest area caused by cardiac activities. Also, a narrower bandwidth filter
(0.5–25 Hz) was used in Ref. [24] and it is more likely to distort the signal waveforms compared to the
original ones. Even though the MCG signals acquired from these smart clothes look nosier than the
other related works, based on the time-window-based Morphological identification rules proposed
previously by the comparison with echocardiography images, all the feature points could be identified
accurately by the app, which has the identified rules implemented on the android-based tablet PC.

Figure 10. (a) Smart clothes worn by a subject with a mobile app for data receiving and auto
identification of feature points; (b) the actual measured multi-channel MCGs/ECG signals plotted
from the output data transmitted from the smart clothes.

Taking the example of PEP and LVET calculation, the ECG-R, ECG-Q, MCG-MC, MCG-AO,
and MCG-AC feature points have to be identified. According to the proposed time-window-based
morphological identification rules, these feature points could be identified with the following rules.

a. ECG-R: Use the So-and-Chan detection algorithm [37] to find the ECG-R point.
b. ECG-Q: Find the first valley point, which defines the ECG-Q point, before the time instance of

ECG-R point identified in step a.
c. MCG-MC: On the MCG Mitral Valve (MV) channel, find the first peak right before the minimum

point within the ECG-Q to ECG-R + 0.04 s time window. The peak defines the MCG-MC point.
d. MCG-AO: On the MCG Aortic Valve (AV) channel, find the first peak right before the minimum

point within the time instance of MCG-MC to ECG-R + 0.06 s time window. If no peak can be
found, continue searching for the peak backward to ECG-Q. The peak defines the MCG-AO point.

e. MCG-AC: On the MCG Tricuspid Valve (TV) channel, find the first peak, i.e., A point, right before
the minimum point within ECG-R + 0.32 s to ECG-R + 0.5 s time window. On the MCG AV
channel, find the first peak, which defines the MCG-AC point, backward from the time instance
of A point.
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Note that, when searching for the local valley points or peak points, if there is more than one data
point with the same value, select the first data point from the searching direction as the local valley or
local peak point.

Among the identified feature points, i.e., ECG-R, ECG-Q, MCG-MC, MCG-AO, and MCG-AC,
of eight randomly selected subjects, 10 continuous heart beat cycles from each of these subjects were
chosen randomly to compare with their echocardiography image. Figure 11 illustrates the mapping of
an echo image with measured ECG/MCG signals to confirm the accuracy of the identification results
in one of the typical cycles. In the figure, ECG-R and ECG-Q were identified correctly on the ECG
channel. Then, MCG-MC was identified on the MCG MV channel using the rule described in step
c mentioned above and was confirmed with the Mitral Valve of the M-mode echo image, which is
now shown in this figure. After that, the MCG-AO and MCG-AC were identified on the MCG AV
channel according to the rules described in step d and e and were confirmed with the Aortic Valve
M-mode echo image shown in the figure. The time intervals in the second cycle for ECG-R to MCG-MC,
ECG-R to MCG-AO, and ECG-R to MCG-AC are also marked in the figure. All identified feature points
were found matched with the events corresponding to their echocardiography images. The detailed
identified time instances of the feature points compared with the inspection of echocardiography
images are provided in the Supplementary Materials.

 

Figure 11. Confirmation of identified ECG-R, ECG-Q, MCG-MC, MCG-AO, and MCG-AC feature
points with an Aortic Valve M-mode echocardiography image.

3.3. Data Analysis for Myo-Cardiac Function Interaction

To verify the correlation between CC and LVEF as proposed in Ref. [9], a study which was
reviewed and approved by the institutional review board (IRB) of the Chang Gung Memorial Hospital,
Taiwan R.O.C., was conducted. Twenty-five HF patients and 15 healthy subjects were enrolled in this
study. Each subject wore the smart clothes for 30 min in a supine position and data were collected.
These forty subjects were classified into four groups according to their LVEF, as suggested in Ref. [9],
and the results are listed in Table 1. The bar charts of PEP, LVET, and PEP/LVET averages of the
subjects in these four groups are plotted in Figure 12a and the linear regression of PEP/LVET, i.e., CC,
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v.s. LVEF, is plotted in Figure 12b. It is very clear that PEP/LVET is inversely proportional to the LVEF
with a correlation coefficient of −0.73 and the p value is less than 0.001.

Table 1. Statistics of four groups of subjects and their PEP, LVET, PEP/LVET, and LVEF values.

Groups (LVEF Range) PEP (ms) LVET (ms) PEP/LVET LVEF (%)

GP1 (<20%) 145.66 ± 11.91 250.83 ± 45.32 0.59 ± 0.10 15.07 ± 4.02
GP2 (21% < LVEF < 30%) 117.76 ± 37.40 251.64 ± 27.42 0.48 ± 0.18 24.91 ± 3.02
GP3 (31% < LVEF < 40%) 93.87 ± 27.84 285.42 ± 51.36 0.33 ± 0.09 34.26 ± 2.47

GP4 (>41%) 73.3 ± 13.47 306.81 ± 43.44 0.24 ± 0.05 59.57 ± 7.58

Figure 12. Analysis of data from multi-channel MCGs/ECG smart monitoring clothes and the
myo-cardiac function interpretation. (a) Bar chart comparison in different groups of subjects; (b) linear
regression of PEP/LVET, i.e., CC, v.s. LVEF.

By conducting a regression analysis of the tested data, the LVEF value can be derived from the
linear equation, as in Equation (2), with the CC value found and calculated from the multi-channel
MCGs/ECG smart monitoring clothes.

PEP/LVET = −0.0064 * LVEF + 0.6158, and hence,
LVEF = −156.25 * CC + 96.219

(2)

According to the grouping of tested subjects shown in Table 1, the subjects in GP1-3 were HF
patients, and for the CC value, a threshold value of 0.33 from the statistical analysis using receiver
operating characteristic (ROC) curve, as shown by the red-dotted line in Figure 12a, could be set
for justification of whether the subject is a HF patient or not. To further analyze the accuracy of the
prediction of HF patients according to this threshold, FPs and CTIs from 50 heart beat cycles for HF
patients and normal subjects were randomly retrieved from the data for blind testing. The outcomes of
the prediction using that threshold are summarized in Table 2. With this analysis, the accuracy rate
is 96%, and the positive predictivity rate is 94%, and a sensitivity of 98% and specificity of 94% are
achieved. Among this testing, the true positive rate is 98%, false positive rate is 6%, true negative rate
is 94%, and false negative rate is only 2%.

171



Sensors 2018, 18, 3538

Table 2. Accuracy analysis for the prediction of HF patients.

Predicted Abnormal Predicted Normal Total

Actual Abnormal 49 1 50
Actual Normal 3 47 50

Total 52 48 100

3.4. Analysis of the Extended TAM for the Smart Clothes Among Patients with CVD

To analyze the measurement model, Cronbach’s alpha and an item-total correlation were first
obtained to measure the reliability of the individual items with respect to the corresponding construct
variable. The recommended value for Cronbach’s alpha should be higher than 0.7, and the value for
the item-total correlation is recommended to be higher than 0.3. The composite reliability was also
measured, which tests the internal consistency within a construct. The value for composite reliability
should be higher than 0.7. The Cronbach’s alpha value for all constructs, except for the perceived
ease of use, surpassed the recommended value of 0.7. The Cronbach’s alpha for PEOU was 0.528,
which is lower than 0.7. For the results of the item-total correlation, nearly all of the items had values
greater than 0.3, although PEOU3 showed a value of 0.142, which is smaller than 0.3. The results
for composite reliability showed that all constructs had values greater than 0.7, indicating a good
internal consistency. Factor loading, which reflects how much a factor explains a variable, was also
obtained by conducting a confirmatory factor analysis. Because we only included 48 participants
in this study, which is considered to be a small sample size, MacCallum et al. [38] advocated that
all items in a factor model should have communalities greater than 0.60 to justify the performance
of a factor analysis with small sample sizes. The results showed that only PEOU1 had a factor
loading of 0.418, while the other items all surpassed the value of 0.6. In terms of validity measures,
we tested the construct validity, which included the convergent validity and the discriminant validity.
Convergent validity refers to the degree of convergence of the items in the questionnaire in terms of
one variable. For convergent validity to be statistically significant, the composite reliability should
be higher than the recommended value of 0.7, and the average variance extracted (AVE) of construct
variables should be higher than 0.5. Composite reliability has been examined previously, and the
results for the AVE showed that only PEOU was smaller than 0.5, while the other constructs had values
higher than 0.5. On the other hand, discriminant validity examines the degree to which two constructs
that are supposed to be unrelated are distinguishable. To measure discriminant validity, the square
root of the AVE of the measured construct should be larger than the correlation coefficient of the other
dimensions. The square root of the average change of the construct was larger than the correlation
coefficients of the other constructs. In addition to technology anxiety, the other constructs all showed
mean values higher than 3. For technology anxiety, the mean value was 2.49, indicating that the
participants did not have strong technology anxiety toward smart clothes. In short, the measurement
model showed strong results in terms of both reliability and validity. However, perceived ease of use
did not meet some of the recommended values in the measurement model.

We conducted a path analysis to test the 10 research hypotheses among eight constructs. The path
coefficients and the statistical measurements are shown in Table 3. Eight out of ten hypotheses
showed significant results, and two hypotheses were invalid. Hypothesis 1 hypothesized that by
using a wearable cardiac health monitoring system, patients with CVD would feel that technology
anxiety and perceived usefulness were negatively correlated. The path analysis results showed that
γ1 = −0.39 (t = −3.80, p < 0.001). However, the mean value of technology anxiety showed that
participants did not perceive the wearable system as anxiety-inducing. Therefore, Hypothesis 1 was
not supported. Hypothesis 2 hypothesized that by using a wearable cardiac health monitoring
system, patients with CVD would feel that perceived ubiquity and perceived usefulness were
positively correlated. The path analysis results showed that γ2 = 0.62 (t = 6.07, p < 0.001). Therefore,
Hypothesis 2 was supported. Hypothesis 3 hypothesized that by using a wearable cardiac health
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monitoring system, patients with CVD would feel that perceived ubiquity and perceived ease of
use were positively correlated. The path analysis results showed that γ3 = 0.54 (t = 4.22, p < 0.001).
Therefore, Hypothesis 3 was supported. Hypothesis 4 hypothesized that by using a wearable cardiac
health monitoring system, patients with CVD would feel that perceived ubiquity and resistance to
change were negatively correlated. The path analysis results showed that γ4 = −0.39 (t = −2.86,
p < 0.01). Therefore, Hypothesis 4 was supported. Hypothesis 5 hypothesized that by using a wearable
cardiac health monitoring system, patients with CVD would feel that perceived ubiquity and attitude
were positively correlated. The path analysis results showed that γ5 = 0.28 (t = 2.13, p < 0.05).
Therefore, Hypothesis 5 was supported. Hypothesis 6 hypothesized that by using a wearable cardiac
health monitoring system, patients with CVD would feel that resistance to change and behavioral
intention were negatively correlated. The path analysis results showed that γ6 = −0.39 (t = −3.35,
p < 0.01). Therefore, Hypothesis 6 was supported. Hypothesis 7 hypothesized that by using a
wearable cardiac health monitoring system, patients with CVD would feel that benefit and behavioral
intention were positively correlated. The path analysis results showed that γ7 = 0.36 (t = 2.99, p< 0.01).
Therefore, Hypothesis 7 was supported. Hypothesis 8 hypothesized that by using a wearable cardiac
health monitoring system, patients with CVD would feel that perceived usefulness and attitude were
positively correlated. The path analysis results showed that γ8 = 0.49 (t = 3.65, p < 0.05). Therefore,
Hypothesis 8 was supported. Hypothesis 9 hypothesized that by using a wearable cardiac health
monitoring system, patients with CVD would feel that perceived ease of use and behavioral intention
were positively correlated. The path analysis results showed that γ9 = −0.20 (t = −1.69, p > 0.05).
Therefore, Hypothesis 9 was not supported. Hypothesis 10 hypothesized that by using a wearable
cardiac health monitoring system, patients with CVD would feel that attitude and behavioral intention
were positively correlated. The path analysis results showed that γ10 = −0.22 (t = 1.73, p > 0.05).
Therefore, Hypothesis 10 was not supported. Overall, seven hypotheses were supported, and three
were invalid. The fit indices of the path analysis are listed in Table 4. All of the fit indices met the
recommended values, indicating that the results of the path analysis are appropriate.

Table 3. Summary of the hypothesis results.

IV → DV
Standardized

Regression Coefficient
T-Value p-Value Support

Hypothesis 1 TA → PU −0.39 −3.80 *** No
Hypothesis 2 PB → PU 0.62 6.07 *** Yes
Hypothesis 3 PB → PEOU 0.54 4.22 *** Yes
Hypothesis 4 PB → RC −0.39 −2.86 ** Yes
Hypothesis 5 PB → AT 0.28 2.13 * Yes
Hypothesis 6 RC → BI −0.39 −3.35 ** Yes
Hypothesis 7 BF → BI 0.36 2.99 ** Yes
Hypothesis 8 PU → AT 0.49 3.65 * Yes
Hypothesis 9 PEOU → BI −0.20 −1.69 No
Hypothesis 10 AT → BI 0.22 1.73 No

*** p < 0.001, ** p < 0.01, * p < 0.05.

Table 4. Fit indices for the path analysis.

Measures Recommended Criteria Path Analysis

χ2/df <3.0 0.7275
GFI >0.8 0.94

AGFI >0.8 0.86
NFI >0.9 0.94

NNFI >0.9 1.04
CFI >0.9 1.00

RMSEA <0.08 0.000
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4. Conclusions

In this study, the realization of a wearable cardiac health monitoring and myo-cardiac function
interpretation smart clothes with multi-channel MCGs and ECG measurement is presented. To acquire
the digital data from multiple accelerometers and to convert the analog data of the ECG signal
simultaneously, as well as to provide the capability of wireless data transmission, a platform,
i.e., CHAMP, has been designed and implemented. It provides the mobility and capability for
real-time data analysis and disease detections, so it is perfectly suitable to integrate the platform
into smart clothes.

This work translated the concept of a multi-channel MCG system into a wearable smart clothes for
cardiac health monitoring and myo-cardiac function interpretation system, which then can be applied
for home-based or clinical usages to detect certain cardiovascular diseases, such as HFs. After the smart
clothes delivered continuous real-time multi-channel MCGs/ECG data, data analysis for myo-cardiac
function interpretation of this wearable system was validated. A mobile application software has been
developed to receive the data from the smart clothes, identify feature points, and calculate CTIs, CC,
and LVEF. Also, the relationship between CC and LVEF has been verified in this study. In the system,
with the data received from the smart clothes, CC values are calculated and LVEF values are derived
from the analyzed data. A highly accurate rate of prediction for HF patients with this system could be
achieved. Hence, the developed smart clothes with multi-channel MCGs and ECG for cardiac health
monitoring can be applied for long-term and continuous monitoring of myo-cardiac functions.

The usability study of the wearable system is also verified. We extended the technology acceptance
model and investigated perceptions of the developed wearable MCG-based cardiac health monitoring
system among potential users with CVD. The results of TAM analysis indicated that perceived ubiquity
is a crucial construct that can affect participants’ perception of intention to use a wearable cardiac
sensing technology, such as smart clothes. The perceived benefit of the newly designed wearable
system increases participants’ willingness to adopt the smart technology. Furthermore, the perceived
usefulness of the wearable MCG-based cardiac health monitoring system showed a positive correlation
with the participants’ attitude toward it. The results of our hypothesized model contribute to the
original TAM and the existing research on understanding users’ perceptions of wearable sensing
technologies in general. In the future, several features of the system can be extended, for example,
the application of the system for the prediction of other cardiovascular diseases, such as valvular
heart diseases (VHDs), and also the risk assessment of certain heart diseases with expert systems
(or machine learning algorithm), cloud computing, and trend analysis for early prediction, etc. Finally,
this system can be applied to detect cardiovascular diseases, in particular HF and VHD, for patients
and individual users who are self-conscious about their heart health.

In short, unique smart clothes for cardiac health monitoring system is designed and implemented.
This is the first wearable system incorporated with multi-channel MCGs and ECG measurement
technology which is capable of the long-term and continuous monitoring of cardiac health of the
subjects in their daily life. In this work, a mobile application which receives data from the smart clothes,
identifies the feature points automatically, and calculates CTIs for deriving the cardiac health-related
indices, such as CC and LVEF, in real-time has also been developed. It can help to predict the
abnormality of cardiac functions, such as the HFs, for the subjects wearing the clothes, with an
accuracy rate of up to 96%. Moreover, the usability study of the smart clothes with proposed extended
TAM indicates that people, especially CVD patients, show a positive attitude toward using this
wearable MCG-based cardiac health monitoring and early warning system.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/18/10/3538/
s1.
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Abstract: Recently, wearable devices have become a prominent health care application domain
by incorporating a growing number of sensors and adopting smart machine learning technologies.
One closely related topic is the strategy of combining the wearable device technology with skill
assessment, which can be used in wearable device apps for coaching and/or personal training.
Particularly pertinent to skill assessment based on high-dimensional time series data from wearable
sensors is classifying whether a player is an expert or a beginner, which skills the player is exercising,
and extracting some low-dimensional representations useful for coaching. In this paper, we present a
deep learning-based coaching assistant method, which can provide useful information in supporting
table tennis practice. Our method uses a combination of LSTM (Long short-term memory) with a deep
state space model and probabilistic inference. More precisely, we use the expressive power of LSTM
when handling high-dimensional time series data, and state space model and probabilistic inference
to extract low-dimensional latent representations useful for coaching. Experimental results show
that our method can yield promising results for characterizing high-dimensional time series patterns
and for providing useful information when working with wearable IMU (Inertial measurement unit)
sensors for table tennis coaching.

Keywords: wearable sensors; skill assessment; deep learning; LSTM; state space model; probabilistic
inference; latent features

1. Introduction

Wearable technology has drawn intensive interest in the area of human activity recognition
(HAR) [1–3]. Using wearable technology, an HAR system can directly receive human activity
information from sensors on a human body. The HAR has a variety of application domains including
health care and skill assessment. In the domain of health care, problems such as detecting falls while
walking [1] have been investigated. In the closely related domain of skill assessment, applications such
as personal trainers for coaching fitness or rehabilitation [2,4] have been studied.

Wearable technology can also be useful for people in practicing their sports skills. For example,
people may not know enough about the correct or effective exercises in table tennis but want to
copy a teacher’s skill, in which case an assistant system using wearable sensors can be of great help.
This paper uses table tennis as one representative example for sports exercise assistance.

Many prior studies in HAR based on wearable technology use smartphones as data collecting
devices. Even though a smartphone is very useful as an everyday monitoring device, its size is too
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large for attaching to the precise positions at specific points on the human body. Thus, this paper uses
IMU sensors attached to the hand and arm of table tennis players. Using the information collected by
the IMU sensors, this paper presents a deep learning-based assistant system that can identify which
skill and type of player, among those stored in the system, are closest to the skill that the player is
exercising and can provide visual information useful for coaching.

Deep learning technology is a promising solution to realizing HAR systems. Convolutional neural
networks (CNNs) were used for HAR in [5,6] with a single sensor, and in [7] with multiple sensors.
However, the limits on local connectivity in a CNN prevent the network from effectively dealing with
lags of unknown duration between certain points in the time series data. Thus, to handle temporal
dynamics in an activity more effectively, long short-term memory (LSTM) recurrent neural networks
(RNNs) [8] were proposed for adoption in HAR in [3]. In [3], the authors showed that LSTM RNNs
worked better than CNNs as well as conventional machine learning technologies, such as random
forest and least-square support vector machines, for HAR problems in everyday life, including walking,
running, jumping, sitting, sleeping, and so forth. We chose the LSTM RNN because the time and
duration of the activities may vary depending on the player and the skill that the player hits. We found
that the inference accuracy of a unidirectional regular RNN is significantly (more than 10 %) lower than
that of the LSTM RNN for the cases considered in this paper. The number of levels of the network was
also determined experimentally. This paper proposes a deep learning-based coaching assistant, which
uses a combination of LSTM RNNs along with a deep state space model and probabilistic inference,
that can support table tennis practice.

The assistant uses expressive power of LSTM RNNs for efficiently handling high-dimensional
sensor data, and resorts to a deep state space model along with probabilistic inference to extract
low-dimensional latent representations useful for coaching. For the LSTM RNN component,
the unidirectional and bidirectional types [9,10] are both considered for the network. From experiments,
we observe that the LSTM RNNs work satisfactorily for the task of classifying high-dimensional
sensor data, with and without pruning, and for obtaining meaningful embedding features. We then
augment the LSTM RNN network to find latent representations capable of providing assistive coaching
information. The augmented network uses a deep state space model for a generative model that can
explain the observations with the state and output equations. Also, a probabilistic inference method
based on variational inference [11] is used to obtain posterior latent trajectories that can identify the
type of user such as a coach or a beginner, and table tennis skills such as forehand stroke, forehand
drive, forehand cut, backhand drive, and backhand short. Experimental results show that our method
can yield promising results for characterizing high-dimensional time series patterns and providing
useful information when working with the wearable IMU sensors for table tennis coaching.

The remainder of this paper is organized as follows. In Section 2, after providing preliminary
background on LSTM RNN, we present the state-space-model-based solutions for the problem of
characterizing dynamic sequence patterns and providing coaching information while practicing table
tennis skills. In Section 3, the effectiveness of the proposed solutions is illustrated by experiments.
Finally, in Section 4, the usefulness of the proposed method is discussed, and concluding remarks are
provided along with topics for future studies.

2. Methods

The purpose of this paper is to present a deep learning-based coaching assistant method, which
can provide useful information in supporting table tennis practice. Our strategy uses a combination
of LSTM with a deep state space model and probabilistic inference. More precisely, we use the
expressive power of LSTM when handling high-dimensional time series data, and state space model
and probabilistic inference to extract low-dimensional latent representations useful for coaching.
Detailed steps of the established strategy will be summarized in a table.
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2.1. Data Collection

Figure 1 shows the data collection unit set up to develop and evaluate the proposed system.
Three IMU sensor modules (MPU-9150s) were attached to the right hand and arm of a player as
shown in the figure. The sensors were wired and sent data to a Raspberry Pi 3 model B, which in turn
sent data to a notebook through a Bluetooth connection. Using the data collection unit, we collected
the sensor data from two table tennis players on five table tennis skills: Forehand stroke, backhand
drive, backhand short, forehand cut, forehand drive (Figure 2). Each player struck the ball with each
motion skill ten times: seven times for training and three times for testing. Each stroke was sampled at
27 time points. In all our experiments, the observation sequences were obtained from two persons
each for 5.4 s with the frequency of 5 Hz. The appropriate size of signal windowing was empirically
found. Tri-axial accelerometer data and tri-axial gyro data were collected from each of the three sensor
modules. Thus, 2 persons × 5 skills × 7 hits × 3 axes × 2 sensors × 3 modules = 1260 data sequences
(27 values per sequence) were used to train the neural networks.

Figure 1. Data collection unit set up.

Figure 2. Table tennis motion skills considered in this paper (from left to right): Forehand stroke,
backhand drive, backhand short, forehand cut, forehand drive.

2.2. Unidirectional LSTM RNN

The proposed method relies on the expressive power of LSTM RNNs for efficiently handling
high-dimensional sensor data. For the LSTM RNN [8] component, the unidirectional and bidirectional
types [9,10] are both considered for the network. A cell of an LSTM RNN is modeled as a memory cell.
Figure 3 depicts the structure of an LSTM RNN cell, which operates as follows [3]:

f d,l
t = φ f (W

d,l
x f , xt, Wd,l

h f , ht−1, bd,l
f ) (1)
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id,l
t = φi(W

d,l
xi , xt, Wd,l

hi , ht−1, bd,l
i ) (2)

od,l
t = φo(Wd,l

xo , xt, Wd,l
ho , ht−1, bd,l

o ) (3)

gd,l
t = φg(Wd,l

xg , xt, Wd,l
hg , ht−1, bd,l

g ) (4)

cd,l
t = f d,l

t ⊗ cd,l
t−1 + gd,l

t ⊗ id,l
t (5)

hd,l
t = od,l

t ⊗ A(cd,l
t ) (6)

In Equations (1)–(6), which are defined at time t, d denotes the direction, and l denotes the level
of the network where the cell is defined. The operator ⊗ denotes the element-wise multiplication
operation, while xt is the input, Ws are the parameter matrices containing the weights of the network
connections, and bs are the biases. The functions φ f , φi, φo, and φg are called the forget gate, input gate,
output gate, input modulation gate, respectively, and defined as follows:

φk(Wxk, x, Whk, h, bk) = A(Wxkx + Whkh + bk), (7)

where k = f , i, o, or g; and A(·) is an activation function. The internal state ct is used to handle the
internal recurrence, while the hidden state ht handles outer recurrences. The block labelled with Δ is a
memory element. The current hidden state at time t, ht, can be considered as the current output.

Figure 3. Structure of an LSTM RNN cell.

Unidirectional LSTM RNN [10] is an architecture of LSTM RNN, which connects layers by forward
paths only. Thus, d is not defined in Equations (1)–(6). This paper considers a unidirectional LSTM
RNN model that consists of two levels (l = 1, 2), each of which consists of one LSTM RNN cell. Figure 4
describes the operation performed in the model during three time steps, t − 1, t, and t + 1.

Figure 4. Operation of two-stacked unidirectional LSTM RNN model.
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2.3. Bidirectional LSTM RNN

The backward paths are often added to the stacked model in Figure 4, resulting in the bidirectional
LSTM RNN. The forward and backward paths are denoted as d = f and d = b, respectively, in
Equations (1)–(6). Figure 5 describes the operation of the two-stacked bidirectional LSTM RNN
considered in this paper, during three time steps, xt−1, xt, and xt+1. In Figure 5, the cells or levels are
denoted as l = 1 and l = 2. Each block labelled as LSTM1 or LSTM2 represents an LSTM RNN cell,
as depicted in Figure 3, that is defined at the level 1 or 2, respectively. At each time step, the model
calculates two pairs of hidden states: one for forward paths, h f 1 and h f 2, and the other for backward
paths, hb1 and hb2.

Figure 5. Operation of two-stacked bidirectional LSTM RNN model.

2.4. Pruning Networks

LSTM RNN shows high performance in time series data, but it has large number of learnable
parameters due to the four gating functions. This problem of LSTM RNN often leads to over-fitting
network and consume large memories [12,13]. The pruning technique tested in this paper begins by
creating a pre-trained model, and then removing the non-critical connections by setting a threshold
value. A sparse weight matrix is formed due to the weight removed by the desired amount. This matrix
is retrained again, and the accuracy is re-measured. Connections that have already been removed are
not recreated during the retraining process. Figure 6 shows the pipeline that represents the pruning
tested in this paper. Table 1 shows the number of parameters used in the two LSTM RNNs designed as
described above.

Figure 6. Operation of two-stacked bidirectional & unidirectional LSTM RNN models with pruning.

Table 1. Number of parameters.

The Number of Stacks Type Initial Design After Pruning (30%) After Pruning (60%)

1 Unidirectional 9.26 × 103 6.48 × 103 3.70 × 103

1 Bidirectional 17.90 × 103 12.53 × 103 7.16 × 103

2 Unidirectional 17.58 × 103 12.30 × 103 7.03 × 103

2 Bidirectional 34.54 × 103 24.18 × 103 13.82 × 103
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2.5. Training for Classification

The two models considered for classification were trained in the TensorFlow framework [14], using
an Intel i7-7500U CPU and an NVIDIA GeForce 930MX GPU. Among the collected data, 70% were used
for training, and 30% were used for testing the models. Supervised learning was used for classification:
the dataset and the label corresponding to the dataset were used together in the training phase.
The label was represented with one-hot encoding. The weight and bias were randomly initialized and
updated to minimize the cost function. The cost function was the mean cross entropy between the
ground truth labels and the predicted output labels. The ground truth labels were the true classes.
An Adam optimizer was used as the optimization algorithm to minimize the cost function.

Training was performed with data obtained from the accelerometer and gyro sensors after the
minmax-scaling by the MinMaxScaler of sklearn [15]. The batch size and the number of hidden units
were empirically found after some tuning for better accuracy. Please note that in general, inference
using LSTM RNNs is robust to the time variance in time series data [3]. L2 regularization was used to
prevent network over-fitting, and the dropout technique was not adopted.

Figure 7 shows the accuracy and cost incurred during the training and testing processes for the
bidirectional and unidirectional LSTM RNN models. The accuracy and cost of the testing process are
sufficiently close to those of the training process.

(a) Accuracy: Bidirectional case (b) Cost: Bidirectional case

(c) Accuracy: Unidirectional case (d) Cost: Unidirectional case

Figure 7. Learning curves on accuracy and cost for the bidirectional and unidirectional LSTM RNN models.

2.6. Network Augmentation for Coaching Information

As mentioned, one of our main goals in this paper is to provide assistive coaching information
for table tennis practice. In Sections 2.3–2.5, we focused on how to perform classification tasks over
the players (i.e., binary classification of coach vs. beginner) and the motion skills (i.e., multi-class
classification of forehand stroke, forehand drive, forehand cut, backhand drive, and backhand short).
The resultant LSTM RNN has turned out to be capable of efficiently identifying whether the player
is a coach or a beginner and which skills are exercised by the player. In this subsection, we augment
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the LSTM RNN classifier for the purpose of providing additional coaching information. To fulfill the
purpose, the augmented network should satisfy the following criteria:

• The features used for performing the classification tasks should be also used in the augmented network.
• The augmented network should provide some low-dimensional latent representations, which

can identify dynamic characteristics of the sensor data and enable visual interactions and/or
evaluative feedback between the coach and the beginner concerning skill performance accuracy.

• It should be able to function as a coaching assistant when used in a closed loop with the beginner
as the user.

To satisfy the above requirements, we use the embedding of high-dimensional time series of sensor
data by the LSTM RNN along with a deep state space model and probabilistic inference (Figure 8).
A reasonable framework for modeling the dynamics for the noise-prone high-dimensional data is to use
the state equation for low-dimensional latent space along with the output equation. In the framework
of the deep probabilistic state space model, one has the following state and output equations:

zt+1 = fθ(zt), xt = gθ(zt), (8)

where fθ(zt) and gθ(zt) are both random variables indexed by the state vector zt,and their distributions
are implemented by means of deep neural networks with parameters θ. The probabilistic generative
model for the state and output Equation (8) can be described as follows:

pθ(x1:T , z1:T) = pθ(x1|z1)
T

∏
t=2

pθ(xt|zt)pθ(zt|zt−1). (9)

Based on the variational inference method [11], the true posterior distribution p(z1:T |x1:T) can be
efficiently approximated by the variational distribution (10):

qφ(zt|zt−1, x1:T) = N (zt−1|μ(zt−1, xt:T), Σ(zt−1, xt:T)), (10)

where N (z|μ, Σ) denotes the multivariate Gaussian distribution with the mean vector μ and the
covariance matrix Σ. The distributions of qφ are implemented by means of deep neural networks with
parameters φ. Finally, one can optimize the parameters θ and φ by maximizing the variational lower
bound ELBO(θ, φ) (11) [16,17]:

log p(x1:T) ≥ ELBO(θ, φ) = Ez1:T∼qφ(z1:T |x1:T)
[log pθ(x1:T |z1:T)]− KL(qφ(z1:T |x1:T) ‖ pθ(z1:T)). (11)

The above inference and optimization comprise the role of the inference layer of Figure 8.

Figure 8. Schematic diagram for the inference network.
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3. Experimental Results

In our experiments, we consider two players, one being a table tennis coach and the other being
a beginner. For the skills, we consider five motions: forehand stroke, forehand drive, forehand cut,
backhand drive, and backhand short. In our continuing study, we will consider more subjects along
with a wider class of skills.

In the experiments, we consider a case where the coach and the beginner both use the same table
tennis grip. To verify the LSTM RNN models, we use evaluation metrics that are typically used for
multi-class classification. In addition, the pruning technique described above is used to remove the
weights and then the model is re-evaluated.

3.1. Classifying by LSTM RNNs

Figures 9 and 10 show the confusion matrices of the unidirectional LSTM RNN and bidirectional
LSTM RNN for the test set, respectively. Please note that in the confusion matrices in Figures 9 and 10,
the sum of the values of a row is the same for every row. Also, Table 2 shows the results of metrics that
evaluate the unidirectional LSTM RNN and bidirectional LSTM RNN, respectively. As shown in the
figures and tables, all the trained LSTM RNN classifiers yielded satisfactory results for the test dataset.

Figure 9. Confusion matrix of the two-stacked unidirectional LSTM RNN model.
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Figure 10. Confusion matrix of the two-stacked bidirectional LSTM RNN model.

Table 2. Classification Performance of the Bidirectional & Unidirectional LSTM RNNs.

Type Performance

Overall Accuracy (Uni) 86.7%
Average Precision (Uni) 87.5%

Average Recall (Uni) 86.7%
F1 Score (Uni) 86.3%

Overall Accuracy (Bi) 93.3%
Average Precision (Bi) 95.0%

Average Recall (Bi) 93.3%
F1 Score (Bi) 93.1%

3.2. Pruning

Tables 3 and 4 show the results of metrics re-measured through the pruning technique described
above. It turns out that the bidirectional LSTM RNN is a stronger network for reasoning than the
unidirectional LSTM RNN because it does not have a negative effect on accuracy even after 90% of
weights are removed.

Table 3. Performance of Pruning Networks.

Type Initial Design After Pruning (30%) After Pruning (60%) After Pruning (90%)

Overall Accuracy (Uni) 86.7% 86.7% 86.7% 83.3%
Average Precision (Uni) 87.5% 87.5% 87.5% 84.2%

Average Recall (Uni) 86.7% 86.7% 86.7% 83.3%
F1 Score (Uni) 86.3% 86.3% 86.3% 82.4%

Overall Accuracy (Bi) 93.3% 93.3% 93.3% 93.3%
Average Precision (Bi) 95.0% 95.0% 94.2% 95.0%

Average Recall (Bi) 93.3% 93.3% 93.3% 93.3%
F1 Score (Bi) 93.1% 93.1% 93.3% 93.1%
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Table 4. Execution Time of Pruning Networks.

Type Initial Design After Pruning (30%) After Pruning (60%) After Pruning (90%)

Unidirectional 0.23 s 0.21 s 0.19 s 0.15 s
Bidirectional 0.26 s 0.24 s 0.22 s 0.19 s

3.3. Identifying Latent Patterns

Regarding identifying latent representations, we have two issues in the problem under
consideration. The first issue is whether we can find such representations for every player and every
skill reliably in the latent space. To examine the first issue, we rely on the holdout cross-validation [18].
For the holdout, we split our sensor dataset into a training set and a test set. We then use the training
data for the network training, and check if similar results are observed for the test dataset.

Figures 11 and 12 show a set of the cross-validation results for the coach and the beginner,
respectively. The exact meaning of the pictures in the figure is as follows: in the j-th column, which
is for the j-th skill, the red solid lines show the latent trajectories obtained for the test dataset, while
the blue dashed lines are for the latent trajectories for the training dataset. Figures 11 and 12 show
that the proposed method worked reasonably well in characterizing dynamic sequence patterns
in the latent space. From the cross-validation results, one can see similarities between the latent
trajectory of the test data and that of the training data. This indicates that our approach successfully
transformed a high-dimensional time series of sensor data into a time series of low-dimensional latent
representations, and the training and test dataset with common characteristics indeed shared same
latent representations. We believe that this capability of yielding meaningful latent representations
reliably for characterizing high-dimensional time series of sensor data is of significant practical value.

Figure 11. Cross-validation results for the coach’s skills (from left to right): Forehand stroke, forehand
drive, forehand cut, backhand drive, backhand short.

Figure 12. Cross-validation results for the beginner’s skills (from left to right): Forehand stroke,
forehand drive, forehand cut, backhand drive, backhand short.
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The second issue is whether the extracted low-dimensional latent representations are indeed
capable of distinguishing the players and the skills well. This capability is crucial in providing the
beginner with evaluative feedback, because the beginner can explore and improve skills based on
how similar his or her latent trajectories are to the coach’s performance. The conceptual diagram for
such improvements is shown in Figure 13 along with actual improvements observed for motion skill
”forehand drive” when used in a closed loop. Actually, Figures 11 and 12 can also address the second
issue well. Since the LSTM RNNs, which provide the embedding of the time series of sensor data
for the augmented network, inherit this multi-class classification ability, the training results of the
augmented network show an obvious capability for distinguishing players and skills.

(a) Conceptual diagram. (b) Actual improvements.

Figure 13. Conceptual diagram of the improvement of skills reflected in latent space, along with actual
improvements observed for motion skill ”forehand drive” when used in a closed loop.

4. Discussion and Conclusions

4.1. Discussion

In this paper, we investigated an LSTM-guided coach assistant for table tennis practice.
The proposed method is based on a combination of LSTM with a deep state space model and
probabilistic inference, and our experiment results show that the method can yield promising results for
characterizing high-dimensional time series patterns and providing useful information when working
with the wearable IMU sensors for table tennis coaching. For the assessment of the classification part,
we used the cross- entropy loss. More precisely, we used the corresponding method of the TensorFlow
library, i.e., tf.nn.softmax_cross_entropy_with_logits.

For the probabilistic inference part, the ELBO for the log-likelihood of the data was used, as
described in (11). Table 5 reports the training procedure established in this paper.

Table 5. Steps for the established training procedure.

1: Obtain sets of training data for each class of skills, and for each subject (coach or beginner).

2: Obtain sets of test data for each class of skills, and for each subject (coach or beginner).

3: Train the LSTM RNN with the training data for classification purposes, and fix the classifier network.

4: Compose the augmented network by combining the embedding of the LSTM RNN classifiers with
inference network, and compute latent trajectories with the training data for each class of skills and
each subject (coach or beginner).

5: Check the validity of the obtained latent trajectories via cross-validation using the test dataset. If
not satisfactory, repeat the above until satisfactory.

6: Plot the latent trajectories for the coach’s skills.

7: In the beginner’s practice with the IMU sensors, compute and plot the latent trajectories for skills.
When the resultant latent trajectories are not close to the coach’s, explore other motion skills and follow
the motion yielding more similar latent trajectories.

189



Sensors 2018, 18, 4112

Our approach is inspired by the deep Markov model (DMM) approach [19]. The most significant
difference lies in the way the LSTM RNNs are used in the classification phase: The use of LSTM RNNs
as a multi-class classifier as well as a kind of feature extractor in the initial stage is critically important,
because it ensures that the augmented network contrasts the latent trajectories of the coach and
beginner’s skills. Classical machine learning methods can be considered as alternatives to the LSTM
RNN, because they often have similar performance in some applications for HAR [3]. However,
it was observed in [3] that LSTM RNNs yielded good performance consistently, whereas other
classical machine learning method did not. Moreover, data coming from IMU sensors are inherently
high-dimensional time series; hence the use of recurrent type neural networks is more natural.

The problem we consider in this paper may also gain some inspirations from the field of imitation
learning [20]. More specifically, a policy of an agent (which is not human) is trained to copy the
decision-making of an expert in imitation learning. Comparison with imitation learning methods is
a worthwhile and attractive subject, e.g., in exploring the challenges of applying guided coaching
and machine learning to training actual human subjects. One difference between machine training
and human sports skill learning is that humans have previous knowledge of games, and in particular,
all types of moves in a ball-based sport. The expert can have difficulty communicating a skill to
a beginner, and a beginner may have difficulty understanding an expert’s explanations, feedback,
or modeling of a skill. Thus, in training an actual human learner from an expert network or trained
machine, merely watching an expert and attempting to model its behavior may prove challenging,
especially if the expert is unable to convey a conceptual understanding of the task to the learner.
We believe that the latent trajectories provided by the propose method can be a significant help in
the case.

Currently, we have not covered the issues of C statistics and calibration for the cross-validation.
More detailed aspects of cross-validation need to be studied in future works.

Finally, note that overall performance can be maintained, and the execution time can be reduced
after a significant amount of pruning as shown in Tables 3 and 4, respectively. These points will be
important when dealing with deployment into wearable sensors [21,22].

4.2. Conclusions

In this paper, we presented a deep learning-based coaching assistant method, which can provide
useful information in supporting table tennis practice. Our strategy used a combination of LSTM with
a deep state space model and probabilistic inference. More precisely, we used the expressive power
of LSTM when handling high-dimensional time series data, and state space model and probabilistic
inference to extract low-dimensional latent representations useful for coaching. Experimental results
showed that the presented method can yield promising results for characterizing high-dimensional
time series patterns and for providing useful information when working with wearable IMU sensors
for table tennis coaching. Future works include more extensive and comparative studies, which should
reveal the strengths and weaknesses of the proposed approach, and further extensions of the method
in several directions and with more subjects. Consideration of different kinds of state transition models
and applications to other kinds of sports practice are some of the topics to be covered in future research.
Issues of embedding the trained coaching assistant into the wearable sensors for training players on
real-time are also left for future studies.
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Abstract: This paper presents a new method that integrates heart rate, respiration, and motion
information obtained from a wearable sensor system to estimate energy expenditure. The system
measures electrocardiography, impedance pneumography, and acceleration from upper and lower
limbs. A multilayer perceptron neural network model was developed, evaluated, and compared
to two existing methods, with data from 11 subjects (mean age, 27 years, range, 21–65 years) who
performed a 3-h protocol including submaximal tests, simulated work tasks, and periods of rest.
Oxygen uptake was measured with an indirect calorimeter as a reference, with a time resolution
of 15 s. When compared to the reference, the new model showed a lower mean absolute error
(MAE = 1.65 mL/kg/min, R2 = 0.92) than the two existing methods, i.e., the flex-HR method
(MAE = 2.83 mL/kg/min, R2 = 0.75), which uses only heart rate, and arm-leg HR+M method
(MAE = 2.12 mL/kg/min, R2 = 0.86), which uses heart rate and motion information. As indicated,
this new model may, in combination with a wearable system, be useful in occupational and general
health applications.

Keywords: energy expenditure; wearable device; accelerometer; impedance pneumography;
neural network

1. Introduction

The energy expenditure (EE), as an indicator of metabolic state and physical activity level, provides
valuable information that can be used for occupational health and safety design [1], exercise, and daily
life management, and prevention and treatment of health problems such as obesity and diabetes [2].
Direct measurement methods of EE or oxygen consumption (VO2), a commonly-used indicator of
EE, requires expensive and sophisticated equipment, such as the direct calorimetry using metabolic
chamber, the double labeled water method, and indirect calorimetry with a face mask, which are
not suitable for daily free-living use [3]. Therefore, indirect measurement techniques using wearable
sensors are desired, and have attracted significant attention in the last two decades; consequently,
considerable effort has been allocated to the issue [4–32].
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Heart rate (HR) monitoring is often used to estimate EE, as it has a good linearity with oxygen
consumption in a large range of aerobic work [13,21]. The relationship between HR and EE at
an individual level can be established through a calibration procedure, i.e., maximal or submaximal
tests performed with a treadmill or cycle ergometer, which requires time and resources [33]. However,
the poor relationship between HR and EE in resting and low intensity activities is an important limiting
factor [24]. The HR-VO2 relation can vary in different activities [19], e.g., difference has been reported
between upper body and lower body activities [34]. In addition, HR is affected by several factors that
are not directly related to metabolism e.g., mental stress, emotions, and medication [16].

Accelerometry is also a popular tool to estimate physical activity related EE in free-living
conditions. With count-based methods [11,35], the activity count is calculated using acceleration,
and then directly linked to EE, while the type of activity being performed is not considered [6].
In activity related methods [4,7,12], firstly, the activity recognition is preformed, then the EE is
estimated through a look-up table or by using the activity specified EE model [6]. The acceleration
(ACC) measurement directly reflects the movement information. However, it lacks the information
about the effort of the movements, which limits its effectiveness for assessing complex activities
involving interaction with other objects, such as manual handling. Several methods that utilize HR and
ACC have been proposed, which improves the estimation of EE by the sole use of HR or ACC [9,36].

Respiration is another factor that is related to EE [14]. Several studies have demonstrated that
pulmonary ventilation (VE) has better linearity with EE compared to the HR [37,38]. As an accurate
VE measurement requires devices with facemasks or mouthpieces, the real application is very
limited in free-living conditions. Recent developments in wearable technologies, such as impedance
pneumography (IP), inductive plethysmography, and piezoresistive pneumography integrated in
smart clothing [39–43], give new opportunities to use portable respiration measurement devices for EE
estimation in a free-living setting, and preliminary studies have been carried out [15,18].

The purpose of this study was to develop and test a method that uses a combination of information
from measurements of heart rate, respiration, and accelerations to estimate energy expenditure.
The measurements were acquired through a wearable sensor system, and integrated by a model
based on neural network. The wearable sensor system was developed under our research projects
towards automatic risk assessment at work [44,45]. A lab experiment was implemented to support the
development of the model and evaluate the developed system and estimation model. The proposed
method was compared with two existing methods: HR-flex [28], a HR based method that uses
a bi-linear model to improve the estimation in low intensity, and Arm-Leg HR+M [29,36], a method
which uses combined HR and ACC measurements, with independent arm and leg calibration.
The results showed improved accuracy over the two existing methods. In addition, the proposed
method does not require complex lab calibration, which can dramatically improve the usability of such
a system in field settings.

2. Materials and Methods

2.1. The Wearable Sensor System

The wearable sensor system and the sensor placement are shown in Figure 1. The vest, reported
in [40,46], includes four textile electrodes made by conductive fabric. One pair of electrodes was
used for IP current injection, and the other was used for electric potential sensing for IP and ECG.
A compact recorder, ECGZ2 (Z-Health Technologies AB, Borås, Sweden), for ECG and electrical
bioimpedance was connected to the vest and placed in a pocket on the shoulder strap of the vest.
The frequency of the injection current for impedance measurement was 50 kHz. ECG and IP signals
were recorded with sampling rates of 250 Hz and 100 Hz, respectively. Four 3-axis accelerometers
(AX3, Axivity Ltd., Newcastle, UK) were placed on both wrists, using rubber wristbands, and on the
thighs, using trousers with specially designed pockets to hold the accelerometer units. The acceleration
was recorded at 100 Hz.
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Figure 1. The wearable sensor system and its placement. The system includes a vest with textile
electrodes, a wireless ECG and IP recording unit, 4 accelerometers, rubber wristbands, and trousers
with specially designed pockets.

2.2. Data Collection

2.2.1. Participants

Nine men and three women participated in the laboratory experiment implemented in GIH,
the Swedish School of Sport and Health Sciences, Stockholm, Sweden. The subjects consisted of
a homogeneous group with young male subjects, and a heterogeneous group with both male and
female participants in different age groups. Data from one subject was removed from the analysis
because of the lack of a vest with a suitable size for the participant, which resulted in poor ECG
and IP signal quality. The detailed characteristics of the included participants are shown in Table 1.
All participants provided written informed consent. Ethical approval for the study was obtained from
the Regional Ethical Review Board in Stockholm (Dnr 2016/724-31/5).

Table 1. Characteristics of included participants (median [range]).

Men (N = 9) Women (N = 2) All (N = 11)

Age (year) 27 [21–65] 43 [25–61] 27 [21–65]
Height (cm) 181 [171–199] 169 [165–173] 177 [165–199]
Weight (kg) 77 [51–89] 60 [58–62] 75 [51–89]

BMI (kg/m2) 22.8 [17.4–25.6] 20.9 [20.7–21.2] 22.6 [17.4–25.6]
VO2 max (mL/min/kg) 42.9 [32.1–54.6] 35.6 [30.9–40.3] 40.3 [30.9–54.6]

2.2.2. Experiment Protocol

The participants were asked to avoid intense physical activity for 1 day before the
experiment, and to refrain from eating, smoking, drinking tea, coffee, or alcohol for at least
2 h beforehand. The experiment process took about 3 h. During the experiment, VO2 was
measured by a computerized metabolic system (Jaeger Oxycon Pro, VIASYS Healthcare GmbH,
Würzburg, Germany), where a facemask was worn by the participants. The experiment protocol

195



Sensors 2018, 18, 3092

consisted of three categories of activities: resting, simulated working tasks, and submaximal tests.
The list of performed tasks and corresponding VO2 levels measured in the experiment is presented in
Table 4 under the result section. After each task, the subject had a break for 5 to 25 min, until the HR
returned to within 10 percent of the resting HR.

The resting test included resting in three postures: 20 min in lying, 5 min in sitting and 5 min in
standing. During the resting test, the resting energy expenditure (REE) was measured. Five different
working tasks, with different intensity levels and active muscle groups, were performed afterwards.
Each of the tasks lasted 8–10 min. The office work required the participant to type on a computer
while sitting beside a table. The painting work required the participant to simulate painting a wall at
their own pace using a painting pole. The postal delivery work was performed by cycling at a cycle
ergometer with 0.75 kg resistance. The meat cutting work was simulated by pulling a resistance band
repetitively. The construction work included arm and whole body lifting tasks. The submaximal tests
session consisted of 3 tests. The first was the Chester step test [47], with maximal 5 levels of incremental
stepping pace. The second was a walking pace treadmill test as described in [36]. Each level of the
treadmill test lasted three minutes. The speed was increased after the first level. From the second
level, the inclination was raised by 2% between each stage. The third test was an arm ergometer test
with a constant cadence while the resistance increased between each level [36]. All the submaximal
tests were terminated when the HR of the subject reached the 80% of the age-predicted maximal HR
(220 − age).

2.3. The Model for VO2 Estimation

The process of the estimation is shown in Figure 2. A multilayer perceptron neural network
(MLPNN) with four input units, five hidden units, and one output unit was used to construct the
model. The activation function of the hidden layer was hyperbolic tangent sigmoid function, and linear
function for the output layer. All features and the output are listed in Table 2. All data were analyzed
with 15-s non-overlapping windows. Four features were used that represent HR, VE, arm motion and
leg motion, respectively. HR, VE, and VO2 were normalized by corresponding individual characteristics
before being used as the inputs and output of the MLPNN to train a network with good genericization
that learns characteristics at the group level.

 

Figure 2. A demonstration of the flow of the oxygen consumption (VO2) process. The input and output
are explained in Table 2.
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Table 2. Summary of the input features and the output of the neural network.

Input Features

% HRmax HR normalized by age predicted HRmax
% VE-rel max VE-rel normalized by estimated VE-rel max

ACCarm Mean absolute value of wrist acceleration
ACCleg Mean absolute value of thigh acceleration

Output % VO2 max VO2 normalized by estimated VO2 max

The VO2 measurements were normalized by the individual maximal oxygen uptake (VO2 max),
which was estimated through the Chester step test with pre-estimated VO2 level on each stage [47].
The HR was normalized by individual maximal HR (HRmax), calculated by HRmax = 220 − age.
The relative tidal volume (VT-rel) of each breath was represented by the impedance difference in peak
and valley pairs of the filtered IP signal. The relative ventilation (VE-rel) during each 15-s epoch was
acquired by the sum of the VT-rel values in the window. A quadratic relationship between HR and
VE-rel was established for each subject by the least square method using measured HR and VE-rel
during the experiment. The maximal relative ventilation (VE-rel max) was then estimated by applying
the HRmax to the HR-VE-rel relationship. VE-rel was then normalized by the VE-rel max and fed to the
network. The acceleration data was first band pass filtered with a 0.25−6 Hz passband; then, the mean
absolute acceleration was computed for each 15-s epoch. For the arm and leg acceleration, the higher
value from the right and the left sides of each epoch was picked.

2.4. Model Training and Cross Validation

The so-called Leave one subject out (LOSO) validation method was used. In repeated trials,
all data except one subject was used for training the model; the data of that subject was used for
testing the model. The LOSO method avoids test results that are overfitted to individual characteristics.
The overall performance of the network was evaluated by combining test results from all LOSO cross
validation. The training data was split for training and validation set with a ratio of 6:4, and the
Levenberg-Marquardt backpropagation was used for the training process.

2.5. Comparision to Published Methods

Results from our method were compared with two published methods, i.e., HR-flex [28], one of the
mostly used HR based method in the field, and Arm-Leg HR+M method [29,36], a method showed
improved accuracy during occupational tasks in our previous evaluation [48]. The inputs and
calibration requirements of all methods are listed in Table 3.

Table 3. A comparison of requirements of input data and personalized measurement among the
three methods.

Methods Input Data Additional Individualized Measurements

Flex-HR HR
Flex HR Point

REE
HR-VO2 Calibration

Arm-Leg HR+M HR, ACCleg, ACCarm

REE
Leg HR-VO2 Calibration
Arm HR-VO2 Calibration

Proposed HR, ACCleg, ACCarm, VE-rel VO2 max

The flex-HR method [28] considers the nonlinearity in HR-EE relation in low intensity. It uses
REE when the HR is below the flex point, and a linear HR-EE relationship when the HR is above the
flex point. For the comparison, we chose to use step test data with pre-estimated VO2 levels on each
stage for calibration, as it required the same level of test equipment as the new method. The REE was
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measured during the resting test. The flex-point was chosen as the average of the highest HR during
rest and the lowest HR during walking on treadmill test.

The Arm-Leg HR+M method [29,36] accounts for the difference in HR-EE response between the
upper and the lower body. It uses the level of arm and leg ACC and their ratio to determine the arm
specified HR-EE equation, the leg specified HR-EE equation, or the REE for EE estimation. We used
a treadmill test and arm ergometer test data to establish the arm and leg calibration respectively,
together with a simultaneously measured VO2 level. The calibration requires a treadmill, an arm
ergometer, and indirect calorimetry. Thresholds for the ACC level and ratio were re-adapted to our
measurement data, as a different accelerometer and acceleration signal processing procedure were
used in comparison to the original study.

2.6. Statistics

Estimated VO2 in 15-s epochs were compared to the criterion measurements. Bias, the mean
absolute error (MAE), the root-mean-square-error (RMSE) and the coefficient of determination (R2)
were calculated to evaluate the performance. Paired t-tests were performed to compare the absolute
errors between the new method and each of the two published methods. Bland-Altman plots with
error histograms were plotted to assess the agreement and the error distribution.

3. Results

The mean levels of measured VO2 for performing each task during the experiment are listed in
Table 4.

Table 4. A summary of tasks performed during the experiments and corresponding mean VO2 level
(mL/min/kg) of the 11 subjects.

Group Task VO2 Level (Mean ± SD)

Resting
Lying 3.78 ± 0.96
Sitting 3.82 ± 1.16

Standing 4.01 ± 0.41

Work Tasks

Office Work 4.01 ± 1.42
Painting Work 8.51 ± 1.68

Postal Delivery Work 14.04 ± 2.37
Meat Cutting Work 7.62 ± 1.89
Construction Work 12.24 ± 4.56

Submaximal Tests
Step Test 22.23 ± 7.71

Treadmill Test 22.88 ± 8.05
Arm Ergometer Test 11.06 ± 4.98

The training and testing results (%VO2 max) on each subject, as well as the averaged results
from the LOSO validation, are shown in Table 5. The RMSE and R2 level from training and testing
results were very close, which indicates the method has a good generalization among the participants.
The averaged group bias was very low (−0.16%). However, a relatively lager bias (maximal 2.71%)
can be found on individual level in few occasions. No strong relationship was found between the
estimation errors and the personal characteristics, such as gender, age, and aerobic capacity.

The results of overall performance in VO2 estimation, measured by individual bias (IB), group bias
(GB), MAE, RMSE, and R2 of three methods, are shown in Table 6. The proposed method showed a more
accurate estimation (IB = 0.42 mL/kg/min, GB = −0.01 mL/kg/min, MAE = 1.65 mL/kg/min) compared
to the flex-HR method (IB = 1.11 mL/kg/min, GB = 0.69 mL/kg/min, MAE = 2.83 mL/kg/min),
where estimation error, individual bias, and group bias were significantly reduced (p < 0.001).
The proposed method also showed a significant improvement (p < 0.001) in estimation error over the
arm-leg HR+M method (MAE = 2.12 mL/kg/min).
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Table 5. Results of the cross validation of the relative VO2 (%VO2 max) from the neural network.

Gender Age (Year) Weight (kg) Height (cm) BMI (kg/m2) VO2 max (mL/kg/min)

%VO2 max

Train Test 1

Bias RMSE R2 Bias RMSE R2

M 65 80 188 22.6 32.7 −0.03 5.26 0.92 −2.03 5.74 0.88
M 21 77 176.5 24.7 54.6 0.07 5.54 0.90 −0.35 5.40 0.92
F 61 62 173 20.7 30.9 0.10 5.06 0.92 −1.19 8.03 0.84
F 25 58 165.5 21.2 40.3 −0.01 5.39 0.91 0.11 4.55 0.93
M 27 88.5 199 22.3 47.8 0.04 5.33 0.91 0.18 4.69 0.94
M 27 51 171 17.4 39.6 0.14 5.21 0.92 −0.36 6.61 0.87
M 25 79.8 176.5 25.6 43.6 0.05 5.35 0.91 1.84 4.60 0.93
M 29 88.9 190 24.6 42.9 −0.03 5.54 0.91 −0.51 4.07 0.95
M 42 75 177 23.9 32.1 0.03 5.26 0.92 2.71 5.93 0.88
M 26 75 181.5 22.8 37.2 0.06 5.28 0.91 −0.68 4.86 0.92
M 26 68.5 184 20.2 44.8 0.08 5.30 0.91 −1.47 5.76 0.90

Average Mean (SD) −0.16
(1.38)

5.47
(1.13)

0.91
(0.03)

1 In each row, the data for the specific subject was excluded in the training and used for the testing.

Table 6. Comparison of VO2 estimation results among flex-HR, arm-leg HR+M, and proposed method
(mL/kg/min).

Methods Individual Bias 1 Group Bias MAE RMSE R2

Flex-HR 1.11 0.69 2.83 4.00 0.75
Arm-Leg
HR+M 0.60 −0.09 2.12 2.95 0.86

Proposed 0.42 −0.07 1.65 2.28 0.92
1 Mean absolute value of individual biases.

The Bland-Altman plots and the error rate histograms of three methods are shown in Figure 3.
The proposed method shows a large improvement in the low intensity region. The mean estimation
error rate was also reduced (28.1%) compared to the other methods (44.1% and 38.4% respectively).

The errors with each specific activity are shown in Table 7, where for each activity, the worst
performance among the three methods is shown in bold and italic. The proposed method has a good
overall generalization over different kinds of activities, except that a large bias on the simulated
construction work can be found. Comparing to the flex-HR method, the error caused by different
HR response to arm and leg activity was reduced in the proposed method by learning from group
characteristics without arm calibration, which can be seen from the arm ergometer results, as well as
from the top right corner of the Bland-Altman plot in Figure 3.

Table 7. Comparison of task specific errors among three methods (mL/kg/min).

Resting Office Work Painting Postal Delivery Meat Cutting Construction Work Step Treadmill Arm Ergometer

Flex-HR

Bias −0.05 −0.29 −0.47 −2.42 1.84 1.05 −1.05 1 −0.81 4.18
RMSE 0.90 0.84 3.89 4.15 4.33 3.90 2.85 1 2.92 5.91

Arm-Leg HR+M

Bias −1.42 −0.93 −1.90 −1.59 −0.16 −1.09 −0.38 −0.01 2 0.00 2

RMSE 2.50 2.09 2.55 2.57 1.56 4.44 2.53 1.82 2 1.14 2

Proposed

Bias 0.02 0.17 −0.47 −0.46 0.55 −2.01 −1.08 3 0.44 0.06
RMSE 0.93 0.86 1.69 2.36 1.62 3.88 2.83 3 2.71 1.69

The bold and italic numbers indicate the largest error in each activity. 1 Data used for individual calibration,
with pre-estimated VO2 level. 2 Data used for individual calibration, with measured VO2 level. 3 Data used for
VO2max estimation, with pre-estimated VO2 level.
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Figure 3. Bland-Altman plots and error rate histograms of flex-HR, arm-leg HR+M, and proposed
methods against the criterion measurement. Data used in individual calibration are plotted in grey.

4. Discussion and Conclusions

In this study, we have demonstrated a method for free-living energy expenditure estimation that
combines the HR, respiration, and motion information using nonlinear data driven modeling. In the
experiment, the method showed improved accuracy over two established methods, based on HR and
HR combined with ACC.

The method has also improved the usability by avoiding a complex laboratory calibration.
The Chester step test used for VO2 max estimation only requires a step with designed height, and takes
only 6 to 10 min, which can be easily applied in the field. For certain ergonomic applications that
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use per cent maximum aerobic capacity (%VO2 max) as a measure of physical workload, the output of
the network can be used directly without the need of multiplying individual VO2 max value; hence,
no calibration procedure is required. The wearable system used in the study is light-weight and easy
to wear, which opens up the possibility for long-term, unobtrusive monitoring in different contexts.
However, different contexts will come with different needs regarding number of accelerometers and
their placement. The most versatile system would have many accelerometers at different sites on the
body, but many sensors will increase the overall price of the system. Obviously, there will be trade-off
between versatility, complexity, and cost.

A method using neural network based model to estimate EE from HR has been reported previously
in [31,32]. This method uses not only the HR, but also heart rate variability derived respiration rate,
and HR ‘on and off dynamics’ as input features. However, very limited information has been shown
about the implementation. Hence, we were not able to compare our method with it.

In previous studies [15,18], which used portable indirect respiration monitoring devices to
estimate EE, the measured physical quantities such as transthoracic impedance and thoracic
circumference distance were converted into flow or volume through a personal calibration process
using a spirometer. In this study, a rough calibration of the personalized impedance level was acquired
by using simultaneously-measured HR values. How much data is needed to establish a reliable
relationship and the durability of the relationship should be further studied. In the experiment,
we found our VE-rel measurement through IP did not have very high linearity with the VE measured
by the indirect calorimetry. Possible causes for this discrepancy include the configuration of electrode
position, posture change that alters the shape of ribcage [49], and motion artifacts. Applying optimized
IP electrodes position [50] and advanced processing methods will have the potential to improve the IP
measurement hence the EE estimation.

Limitations of this study include a small sample size (11 subjects), and the fact that limited
activity types were performed under laboratory condition. The method has not yet been validated
for complex real free-living scenarios, and the trained network could be overfitted to the activities
that were performed in the experiment. The experiment has not taken into consideration many
nonmetabolic-related factors that may alter HR or VE, such as mental stress and temperature.

Since the new model showed a higher level of agreement with the reference methods compared
to two existing methods, this study indicates a high potential for applying information fusion of HR,
respiration, and motion data in combination with a nonlinear statistical learning method in the field
of unobtrusive energy expenditure estimation. The solution may be used both in occupational and
general health applications. Studies with improved respiration monitoring techniques and varied
populations with larger size under free-living conditions are suggested in future development.
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Abstract: Social isolation and loneliness are major health concerns in young and older people.
Traditional approaches to monitor the level of social interaction rely on self-reports. The goal of
this study was to investigate if wearable textile-based sensors can be used to accurately detect if
the user is talking as a future indicator of social interaction. In a laboratory study, fifteen healthy
young participants were asked to talk while performing daily activities such as sitting, standing
and walking. It is known that the breathing pattern differs significantly between normal and speech
breathing (i.e., talking). We integrated resistive stretch sensors into wearable elastic bands, with
a future integration into clothing in mind, to record the expansion and contraction of the chest and
abdomen while breathing. We developed an algorithm incorporating machine learning and evaluated
its performance in distinguishing between periods of talking and non-talking. In an intra-subject
analysis, our algorithm detected talking with an average accuracy of 85%. The highest accuracy
of 88% was achieved during sitting and the lowest accuracy of 80.6% during walking. Complete
segments of talking were correctly identified with 96% accuracy. From the evaluated machine learning
algorithms, the random forest classifier performed best on our dataset. We demonstrate that wearable
textile-based sensors in combination with machine learning can be used to detect when the user is
talking. In the future, this approach may be used as an indicator of social interaction to prevent social
isolation and loneliness.

Keywords: wearable sensors; machine learning; smart textiles; healthcare; talking detection

1. Introduction

Social isolation and loneliness are important health risk factors and known to negatively influence
wellbeing. It has been reported that up to 50% of older people suffer from a low level of social
interaction [1]. The causes can be diverse including general health issues, disabilities and certain life
events such as the loss of a spouse or a change in residence [2,3]. On a positive note, research has
shown that social isolation and loneliness can be prevented. Intervention programs such as in-person
support activities or phone-mediated groups have shown promising results [3]. However, due to the
limited health care resources, it would be warranted to accurately identify people who are in need of
targeted interventions. Traditional approaches rely on the self-reports using questionnaires to assess
the daily level of social interaction. Self-reports are often described as subjective and influenced by
a recall bias [4].

One alternative approach could be to automatically identify people with a low level of social
interaction by using technology. Previous work in this area has mainly focused on audio-based systems
using a microphone to capture talking throughout the day [5,6]. Previous work has also investigated
the use of video-based systems to monitor mouth movements as an indicator of social interaction [7,8].
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Both methods look promising in terms of accuracy. However, user acceptance and portability might be
a challenge [9].

There is a need for more unobtrusive and portable solutions. We propose to detect if someone
is talking by using wearable textile-based sensors, which can be directly integrated into everyday
clothing. Our approach does not rely on audio or video recordings; instead, it aims to detect talking by
monitoring changes in the respiratory (i.e., breathing) patterns.

1.1. Detection of Talking (Speech Breathing)

Generally, breathing results in an expansion and a contraction of the chest and abdominal region.
It has been found that the breathing pattern differs significantly between normal and speech breathing
(i.e., talking), with the respiration more rhythmic during normal breathing [10,11]. It has been also
reported that the inhalation duration and the ratio between the inhalation and exhalation time are
good discriminatory indicators [12,13].

To date, only a few studies have investigated the use of wearable sensors to detect if someone
is talking based on respiratory markers [10,12,14]. These studies used inductive plethysmography
sensors, which consist of electrical wires embedded in elastic bands usually attached to the chest and
abdominal region. By generating a magnetic field and passing it through a sinusoidal arrangement
of electrical wires, the self-conductance of the coils, which is proportional to the cross-sectional area
surrounded by the band, can be measured [12]. However, these sensors are primarily designed for
clinical settings and mainly used for short duration recordings.

1.2. Textile-Based Sensors

In this paper, we investigate the feasibility of wearable textile-based sensors. In particular,
we focus on resistive stretch sensors, which are made by a mixture of polymer (e.g., silicone,
rubber) and a conductive material (e.g., carbon black). These resistive sensors act like a resistor,
which means that any elongation results in a measurable change in electrical resistance. Related work
in this field has investigated the use of textile-based stretch sensors in several human applications.
For example, Tognetti et al. [15] investigated a textile-based sensor for posture monitoring. Similarly,
Mattman et al. [16] integrated sensors into tight-fitting clothing to classify between various body
postures. Papi et al. [17] explored the feasibility to discriminate between daily activities (i.e., walking,
running, stair climbing) by using a stretch sensor attached to the knee. These studies suggest the
preliminary feasibility of textile-based stretch sensors to monitor human motions. To the best of our
knowledge, our study is the first to use this type of sensor to detect talking in respiratory signals.

The main aims of this study were to (1) investigate the feasibility of textile-based stretch sensors
to monitor breathing patterns, (2) develop an algorithm using machine learning to accurately detect
talking and (3) evaluate its performance in a study with 15 participants.

2. Materials and Methods

2.1. Stretch Sensor

In this paper, we investigated the feasibility of a wearable textile-based stretch sensor to detect if
someone is talking. The stretch sensor has been fabricated in our research lab (Menrva) at Simon Fraser
University, Canada [18], using a mixture of polymer and conductive carbon black. The sensor shows
similar properties as the commercially available sensors from Adafruit (New York, NY, USA) [19] and
Image SI (Staten Island, NY, USA) [20], but only has a diameter of 0.4 mm, which makes it suitable to
integrate into garments (Figure 1). Previous work has shown good results in using machine learning
to obtain accurate measurements from these textile-based stretch sensors [21,22] and using them for
the monitoring of human movements [15,16,23].
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Figure 1. Comparison between the Adafruit, Image SI and Menrva sensors.

2.2. Chest and Abdominal Bands

The approach was to detect talking based on changes in the breathing pattern. As is known from
the literature, we can differentiate between chest and abdominal breathing [24,25]. Chest breathing
can be described as the drawing of air into the chest area by using the intercostal muscles. This type
of breathing is more common during states of exertion. In contrast, abdominal breathing is the
expansion of the belly by contracting the diaphragm. This type of breathing is common during phases
of relaxation [26].

However, breathing can be quite diverse between people. Some people are more heavily chest
breathers, whereas others are more so abdominal breathers [25]. To capture the expansion and
contraction of the full torso, we designed three elastic bands with the stretch sensor integrated and
positioned them at the abdominal, lower and upper chest region for our study (Figure 2). In the future,
the sensor might be directly integrated into the clothing.

Upper Chest Band

Lower Chest Band

Abdominal Band

Stretch Sensor

Figure 2. Three custom-made sensor bands to monitor the expansion and contraction of the torso while
breathing (and talking). The red dashed line shows the positioning of the sensor.

The bands were made out of two materials. The back and side part were made out of a synthetic
knit with medium elasticity. The front piece and attachment of the sensor were made of a fleece
material with high elasticity. The intention was to concentrate the stretch during breathing (and talking)
primarily on the sensor. Three pieces of the Menrva stretch sensor with a length of 10 cm each were
integrated into the front piece of the bands (Figure 2). Sensors were laid out straight and secured with
an elastic stitch on top. The wires were connected on both sides with a mixture of rubber glue and
conductive ink.

2.3. Data Acquisition Hardware

The three bands were connected to a data acquisition system (Model NI-USB-6009, National
Instruments, Austin, TX, USA) using a voltage divider circuit to measure their electrical response by
connecting a 5 V DC voltage source and a resistor in series to the sensors. The resistor value was selected
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to match the base resistance of the stretch sensor (20 kΩ). All data were captured with a sampling rate
of 100 Hz.

2.4. Study Protocol

The study protocol included three main parts with a total duration of 1.5 h per participant
including the setup time. Participants were asked to wear the three custom-made sensors to monitor
the expansion and contraction of the torso while talking. Sensor bands were tightly fitted, but still
comfortable, for each participant. The tightness was adjusted based on the user’s feedback by
explaining that the bands should be similarly tight and comfortable as, for example, a tight-fitting
t-shirt, usually used for exercising. Participants were asked to talk while sitting, standing and walking.
We selected these activities because they are the most common activities in which people talk in daily
life. Each activity lasted for 20 min and included 5 trials with 2 min of non-talking and 2 min of talking.
The order of the activities was randomized. To capture sufficient data of talking during each period
and activity, we asked the participants to read out the text of a news article. The article included
general information about the city of Vancouver, Canada. For the walking part, participants were
asked to walk on a treadmill. We used a treadmill for convenience due to the limited length of the
wires, which connected the bands with the data acquisition hardware. Talking while walking usually
occurs at slower speed, and therefore, we selected 2 mph for this test.

2.5. Participants

Fifteen young adults were asked to participate in this study. Participants were between 19 and
30 years old and were students at Simon Fraser University (SFU), Canada. Table 1 shows the participant
characteristics. Written informed consent was obtained from all participants prior to data collection.
The study was approved by the Research Ethics Board of SFU.

Table 1. Participant characteristics.

Study Participants (n = 15)

Age (years) 23 (3.8)
Gender (F/M) 6/9

Height (cm) 169.8 (8.9)
Weight (kg) 68.5 (12.1)

BMI (kg/m2) 23.6 (3.1)

2.6. Talking Detection Algorithm

Our main aim was to detect talking based on changes in the respiratory signals. Before talking,
air usually gets inhaled fast and then exhaled slowly while talking. This results in a specific breathing
pattern when compared to normal breathing (Figure 3). Our algorithm utilizes this information to
detect talking.

Quiet Breathing Speech Breathing (Talking)

Time

A
ir 

Vo
lu

m
e

Inhalation

Exhalation

Figure 3. Changes in the air volume while talking.

208



Sensors 2018, 18, 2474

Our algorithm is based on the following steps of data processing and analysis (Figure 4):

• Data input: The input data to our algorithm were the raw sensor signals (sampled with 100 Hz) of
the three bands, which we converted from voltage to resistance values.

• Signal filtering: A healthy adult usually breathes between 12 and 18 times per minute at rest.
For older adults, the breathing can vary between 12 and 30 times per minute [27]. We filtered the
sensor signals accordingly with a bandpass filter (4th order Butterworth, lower cut-off frequency
of 0.1 Hz and higher cut-off of 1.5 Hz) to account for possible drift and reduce the overall level of
noise in the sensor signals.

• Breathing detection: Any inhalation of air and consequent expansion of the torso results in a peak
of the stretch sensor signal. Our algorithm detects these peaks using MATLAB’s peak detection
algorithm with an empirically-defined parameter of 5 for the minimum peak prominence setting.
The prominence of a peak measures how much the peak stands out due to its intrinsic height and
its location relative to other peaks.

• Feature extraction: The detection of a peak triggers the feature extraction process. The algorithm
centres a window with an empirically-found length of 3 s on each detected peak. From this
time window, a set of predefined features get extracted and used as the input to a machine
learning classifier.

• Classification of talking: A machine learning classifier has been trained to detect speech breathing
(i.e., talking) based on the extracted features.

Figure 4. Design of the talking detection algorithm incorporating machine learning.

2.7. Machine Learning Approach

In the first part of the analysis, we were focused on identifying which machine learning algorithm,
hyper parameters and features would generally perform best in the task of detecting talking using this
kind of technology. In the second part of the analysis, we applied the selected model and calculated
the accuracy for each participant.

2.7.1. Model Selection

Four machine learning algorithms have been selected to investigate their feasibility in detecting
talking based on our collected data. We have selected these four algorithms because they have been
commonly used in health-related machine learning tasks and have achieved promising results in the
past. First, random forest is an ensemble method that operates by constructing multiple decision trees
at training time and then uses the mean prediction of individual trees to estimate the target values [28].
Second, neural network is a method inspired by the biological neural network system using layers and
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a number of interconnected nodes to make a prediction [29]. Third, support vector machine operates
by constructing a set of hyperplanes in a high- or infinite-dimensional space to estimate the target
value [30]. Fourth, linear discriminant analysis uses a linear decision boundary and has been proven
to work well in practice due to its low computational costs [31].

The hyper parameters for the machine learning classifiers were empirically identified. To calculate
the performance of each model and select the best performing hyper parameters, we used 15-fold
cross-validation. This was done on a training dataset that consisted of the first 70% of data of each
participant. The model performance was evaluated using the receiver operating characteristics curve
(ROC) and the associated area under the curve (AUC) metric.

For the random forest classifier, the best performance was achieved using 200 as the parameter
for the number of trees (values tested between 10 and 200). For the support vector machine, the
best performance was achieved with gamma set to 0.01 (tested between 0.001 and 1) and C set to 10
(tested between 1 and 100). For the neural network classifier, the best performance was achieved with
a network structure of 2 hidden layers (tested from 1 to 2) and 30 neurons in the hidden layers.

2.7.2. Feature Extraction and Selection

Features were extracted with an automated feature extraction approach. Therefore, we used
the Python library tsfresh [32], which calculates and tests more than 100 predefined time and
frequency-domain features with various parameters. Using this approach, we extracted features from
the raw and first derivate of the sensor signals of all three bands. Features were extracted using a sliding
window (size of 3 s) approach. For the feature selection, we also applied 15-fold cross-validation
and used the same training dataset as for the hyper parameter tuning. A tree-based approach was
used to rank the best performing features based on their relevance (i.e., Gini importance [33]) for
each run. Only the top 10% features among all runs were selected for the final algorithm to reduce
complexity and computation time. For a detailed description of the calculation of these features, see [32].
The majority of significant features were based on the sensor signals of the upper chest and lower chest
band. The features included in our final model were:

• Ratio beyond sigma: the ratio of values that are more than r × std(x) away from the mean of x
(with r = {1, 2}).

• Symmetry looking: the Boolean variable denoting if the distribution of x looks symmetric.
• Continues Wavelet Transform peaks: the number of peaks of the continuous wavelet transform

using a Mexican hat wavelet [34].
• Skewness: the sample skewness of x (calculated with the adjusted Fisher–Pearson standardized

moment coefficient G1).
• Energy ratio by chunks: the sum of squares of chunk i out of N chunks expressed as a ratio with

the sum of squares over the whole (with N = 10).
• Augmented Dickey–Fuller: the hypothesis test that checks whether a unit root is present in x [35].
• Count above mean: the number of values in x that are higher than the mean of x.
• Count below mean: the number of values in x that are lower than the mean of x.
• Number of crossings: the number of crossings of x on m (with m = 0).
• Fourier coefficients: the coefficients of the one-dimensional discrete Fourier transform [36].
• Welch’s spectral density: the cross power spectral density of x [37].
• Sample entropy: the sample entropy of x.
• Autoregressive coefficients: the fit of the unconditional maximum likelihood of an autoregressive

AR(k) process.

2.7.3. Performance Evaluation

We integrated the best performing machine learning model, features and parameters into our
algorithm and evaluated its performance in detecting talking in an intra-subject analysis. The data
of each participant were split into the activities of sitting, standing and walking. For each activity,
we trained a model separately and evaluated it using cross-validation.
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As sample-based performance metrics, accuracy (ACC), true positive rate (TPR) and false positive
rate (FPR) were selected. TPR has been defined as the percentage of correctly identified speech
breathing patterns. FPR has been defined as the percentage of incorrectly identified speech breathing
patterns among all other breathing patterns.

ACC =
TP + TN

TP + TN + FP + FN
(1)

TPR =
TP

TP + FN
(2)

FPR =
FP

FP + TN
(3)

Furthermore, the number of correctly identified talking segments was calculated. A talking
segment was classified correctly if the majority of prediction labels in this segment predicted talking.

ACCseg =
correctly_classi f ied_talking_segments

total_number_o f _talking_segments
(4)

2.8. Software

MATLAB (R2016b) was used for data acquisition, processing of the sensor data and algorithm
development. The Python package scikit-learn [38] was used to train and evaluate the machine
learning models. The Python package tsfresh [32] was used for automated feature extraction.

3. Results

One hour of sensor data was recorded from each participant with a recording time of 30 min
of talking. The entire dataset included 11,924 detected breathings, which were used for further
classification. We observed significant differences between normal and speech breathing in the
activities of sitting, standing and walking (Figure 5). During the phases of talking, the breathing is less
rhythmic with faster inhalations and slower exhalations.
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Figure 5. Comparison of the raw sensor signals (upper chest band) between quiet and speech breathing
(i.e., talking) for: (a) sitting; (b) standing; and (c) walking.

211



Sensors 2018, 18, 2474

3.1. Model Selection

Among all tested machine learning algorithms, the random forest (and support vector machine)
classifier performed best on our dataset with an AUC value of 0.90, which was slightly higher compared
to the performance of the neural network classifier (AUC = 0.89) and linear discriminant analysis
(AUC = 0.87) (Figure 6).
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Figure 6. Comparison of the ROC curves (and the associated AUC metric) among the tested machine
learning algorithms.

3.2. Accuracy of Talking Detection Algorithm

Among all participants, our algorithm utilizing the random forest classifier detected talking with
an average ACC of 85% (TPR: 81.3%, FPR: 12.8%) (Table 2). The highest ACC of 88% was achieved in
the sitting task and the lowest ACC of 80.6% in walking. Table 3 shows the results for each participant
in detail with the accuracy ranging from 68.8% to 97.5%. Furthermore, segments of talking have been
correctly classified with an ACCseg of 96.3%. Figure 7 illustrates the exemplary prediction accuracy of
our algorithm on the data of participant P10. The number of misclassifications increased from sitting,
standing to walking.

Table 2. Average performance of our algorithm in detecting talking among all participants.

Average ACC Average TPR Average FPR

Sitting 88.0 (5.4) 88.0 (6.1) 12.6 (6.9)
Standing 86.3 (7.3) 84.2 (8.6) 12.5 (7.6)
Walking 80.6 (7.7) 71.8 (12.1) 13.3 (6.5)

Average 85.0 (6.8) 81.3 (8.9) 12.8 (7.0)

Sitting
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Talking

Quiet

(c)

Figure 7. Exemplary detection of talking for participant P10 in activities: (a) sitting; (b) standing;
and (c) walking.
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Table 3. Performance results of our algorithm in detecting talking for each participant (P).

P01 P02 P03 P04 P05

ACC TPR FPR ACC TPR FPR ACC TPR FPR ACC TPR FPR ACC TPR FPR

Sitting 94.3 92.3 3.9 94.8 93.5 4.2 97.5 94.9 0.9 84.9 84.9 15.0 82.9 81.2 15.6
Standing 93.9 92.2 4.4 90.5 90.0 9.1 94.2 91.5 3.7 76.1 73.1 21.3 86.0 79.1 9.9
Walking 79.6 76.4 17.6 85.2 81.0 11.6 90.2 82.4 4.4 68.8 55.3 20.7 87.2 83.6 9.8

P06 P07 P08 P09 P10

Sitting 81.6 87.7 24.2 88.6 95.1 20.2 93.7 93.1 5.9 89.3 93.3 14.6 92.0 90.9 7.3
Standing 82.5 79.2 14.7 94.0 94.9 7.1 95.1 92.5 2.9 93.6 96.1 8.9 87.0 81.4 9.1
Walking 71.1 70.5 28.5 87.8 84.7 9.3 95.6 90.8 1.4 79.7 75.4 17.0 81.1 68.2 11.9

P11 P12 P13 P14 P15

Sitting 82.7 82.0 16.7 89.8 87.0 7.9 83.5 89.3 22.7 84.3 79.1 12.6 79.3 75.0 16.7
Standing 73.9 73.8 26.1 83.3 70.8 9.0 78.7 76.2 18.8 75.8 79.5 28.2 89.8 93.2 13.9
Walking 68.3 42.5 14.8 79.4 69.4 13.5 73.0 61.3 18.6 81.7 68.2 9.9 80.0 66.9 9.9

4. Discussion

We developed an algorithm that can detect if the user is talking based on respiratory markers.
In contrast to previous work, we used textile-based stretch sensors to monitor the expansion and
contraction of the torso and achieved a reasonable accuracy by incorporating machine learning into
our algorithm.

Previous studies have relied on either audio or video recordings to detect talking. Besides
the technical challenges of these approaches, there might be also privacy concerns [9]. The aim
of this study was to develop a system that is unobtrusive and portable. We selected a wearable
approach, as it would allow quantifying talking throughout the day independent of the user’s location.
This is in alignment with a recent trend in the development of the wearable technologies for various
health applications [39,40].

Our approach uses wearable textile-based sensors to monitor breathing and as a consequence
detect if someone is talking. Although there were some studies that have investigated the feasibility
of detecting respiratory events in the past, only a few studies have focused on the detection of
talking in respiratory signals [10,12,14]. These studies have used inductive plethysmograph sensors.
Conventional inductive plethysmograph sensors are primarily designed for the clinical setting and
short-term recordings with possible limitations in the size of the electronics and number of sensors
that can be used at the same time [41].

In terms of accuracy, Rahman et al. [10] (and Bari et al. [42]) reported 82 to 87% in speech/non-
speech classification using inductive plethysmograph sensors. The reported accuracy is in alignment
with what we have achieved in this study.

What differentiates this work is the use of textile-based stretch sensors in combination with the
developed machine learning-based algorithm. The sensor we used is flexible with a diameter of
only 0.4 mm and acts like a resistor, which makes it easy to integrate into garments and to acquire
measurements. We proposed an algorithm suitable to detect talking including a comprehensive
identified and discriminative set of features upon which future work can build.

What we have observed is that breathing and the corresponding patterns were quite
heterogeneous between participants. Breathing was either shallow, normal or deep, and for some
participants, the chest expansion was more noticeable, whereas for others, the abdominal region
expanded more. We compensated for this behaviour by training our algorithm individually for each
participant. In practice, this would suggest that a calibration phase might be needed before the
system can be used by an individual. Another factor that might have influenced the accuracy was
the sensitivity of the technology to noise due to body movements. Breathing and the corresponding
expansion of the torso result in a relatively small elongation of the stretch sensor. What we have
observed is that rotational and bending movements of the upper body influenced the measurements.
This was especially noticeable in the task of walking, which might explain the lower accuracy in this
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task. Future work might combine our approach with an accelerometer to filter out the noise due to
body movements.

Considering the advantages of the technology, this approach might be suitable for the daily
life setting. A future application could be the integration of the sensor (or a series of sensors) into
a tight-fitting undershirt. In addition to the sensor, a circuit board and battery would be required.
Preliminary results show that the sensor has a power draw of about 1.25 mW (as used in this
study). This would allow the monitoring of the user’s level of talking throughout the day, and
furthermore, this measurement could be used as an indicator of social interaction. Such a system might
be used in older adults where social isolation and loneliness are common concerns [1,3]. For example,
in an institutionalized setting, such a system could provide the staff daily feedback about the level of
social interaction of each resident. Once a significant change in behaviour has been detected, targeted
interventions could be started. Similarly, this technology could be used in older people living in
the community where a low level of social interaction can lead to more frequent home visits by the
healthcare professionals.

We acknowledge certain study limitations. Data were collected in the laboratory setting under
fairly controlled conditions with young and healthy adults. Participants were asked to read a text
out loud, which might be different from conversational speaking. Future studies are warranted to
determine whether this approach can be used in a daily life setting and to investigate the accuracy and
user acceptance of this system in the older population.

In summary, we have demonstrated that wearable textile-based sensors in combination with
a machine learning-based algorithm can be used to detect when the user is talking. In future,
this approach may be used to unobtrusively quantify talking as an indicator of social interaction,
and consequently may prevent social isolation and loneliness.
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Abstract: Breathing frequency (fB) is an important vital sign that—if appropriately monitored—may
help to predict clinical adverse events. Inertial sensors open the door to the development of
low-cost, wearable, and easy-to-use breathing-monitoring systems. The present paper proposes
a new posture-independent processing algorithm for breath-by-breath extraction of breathing
temporal parameters from chest-wall inclination change signals measured using inertial measurement
units. An important step of the processing algorithm is dimension reduction (DR) that allows the
extraction of a single respiratory signal starting from 4-component quaternion data. Three different
DR methods are proposed and compared in terms of accuracy of breathing temporal parameter
estimation, in a group of healthy subjects, considering different breathing patterns and different
postures; optoelectronic plethysmography was used as reference system. In this study, we found
that the method based on PCA-fusion of the four quaternion components provided the best fB

estimation performance in terms of mean absolute errors (<2 breaths/min), correlation (r > 0.963)
and Bland–Altman Analysis, outperforming the other two methods, based on the selection of a
single quaternion component, identified on the basis of spectral analysis; particularly, in supine
position, results provided by PCA-based method were even better than those obtained with
the ideal quaternion component, determined a posteriori as the one providing the minimum
estimation error. The proposed algorithm and system were able to successfully reconstruct the
respiration-induced movement, and to accurately determine the respiratory rate in an automatic,
position-independent manner.

Keywords: principal component analysis; biomedical signal processing; wearable biomedical sensors;
wireless sensor network; respiratory monitoring; optoelectronic plethysmography

1. Introduction

Continuous monitoring of respiratory parameters such as breathing frequency (fB), inspiratory
time (TI) and expiratory time (TE) could foster early diagnosis of a wide range of respiratory disorders
and help to track a patient’s condition, discriminating between stable and at-risk patients [1,2].
Conditions of interest could be sleep breathing disorders, sudden infant death syndrome, chronic
obstructive pulmonary disease (COPD) and neuromuscular disorders. The current gold standard for
measuring fB is to count the number of breaths in one minute, through auscultation or observation [3,4].
Other methods for breathing function assessment currently used in clinical practice are spirometry or
pneumotachograph based on airflow measurement by using mouthpiece or facemask. In overnight
polysomnography, breathing activity is assessed both by measuring respiratory flow, through pressure
transducer or thermistors near the nostrils, and respiratory efforts (breathing-derived chest-wall
movements), by strain-gauge belts. Also, exhaled carbon dioxide sensors, transthoracic inductance and
impedance plethysmography and ECG—or PPG—derived fB have been used to measure breathing
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signal. Despite their accuracy, these methods are uncomfortable and intrusive, and are not suitable for
continuous monitoring in the clinical environment and at home. An emerging area of interest is to
use motion sensors to detect the small breathing-derived movements/orientation changes of the chest
wall. This method is particularly suitable for long-term breathing monitoring because it is unobtrusive,
tolerable, and low-cost. The principle was first presented with a single-axis accelerometer in animal
model (dog) using a pressure transducer in the trachea as reference [5]. Starting from this point,
a variety of studies demonstrated the feasibility of using one accelerometer placed on the chest wall to
derive respiratory signal and/or breathing frequency in different positions [6–14]. Morillo et al. [8]
combined a piezoelectric single-axis accelerometer and a polarized capacitive microphone placed on
the suprasternal notch to collect information of the cardiac, respiratory, and snoring activities for the
screening of patients affected by Sleep Apnea-Hypopnea Syndrome. Measurements were limited to the
supine position, that was selected to increase the sensitivity of the single-axis accelerometer, limiting
the generality of the findings. The analysis method was based on the estimation of breathing frequency
through the identification of the peak of the spectrum or autocorrelation; the main limitation of this
approach is that, when the breathing is irregular, a main peak may not exist, and individual breaths
must be identified and counted. Hung et al. [7] moved from single-axis to biaxial accelerometers.
The aim of their study was to evaluate the reliability of the device in terms of detection of the onsets of
expiration and expiration, and to assess the feasibility of differentiating between different breathing
patterns (normal breathing, apnea, deep breathing). The signals from both axes (anteroposterior and
longitudinal) of the accelerometer were summed, limiting the analysis to the sagittal plane, in sitting
and lying positions. An adaptive band-pass filter was applied with a variable passband centered at the
detected dominant breathing frequency.

As emerged by these studies, single or dual-axis accelerometers can be used to derive breathing
signal when appropriately aligned with the major axis of rotation, which changes when the subject
move from a posture to another. Contrarily, the use of a tri-axial accelerometer allows measuring
inclination changes due to breathing regardless of orientation. In this case, the problem lies in the
identification of the accelerometer axis to consider when posture changes. Bates et al. [13] proposed
a method to track the major axis of rotation as it changes, to continuously monitor angular motion
due to breathing also when subject change position/orientation. An alternative possibility to the
best axis selection is fusing the axes. Jin et al. [12] proposed a posture-independent signal processing
method based on three possible algorithms for accelerometer axes fusion. They demonstrated that
methods based on Principal Component Analysis (PCA) obtained the highest performance in terms of
Signal-to-Noise Ratio (SNR), but no results were provided about breathing rate estimation or validation
against a reference method.

With the entry of tri-axial accelerometers new opportunities opened for the monitoring of
breathing frequency using inertial sensors, but their use was still confined to static conditions since,
when the subject is moving, the degree of the movement-related signal would exceed that due to
breathing. One possible approach is to identify non-breathing motion, as proposed by Bates et al [13].
In a successive study, Mann et al. [11] furtherly developed the method proposed by Bates et al. [13],
by adding activity tracking, and allowing identification of asymmetric breaths, that was not possible
in the original method. An attempt to remove motion artifacts by using signal processing was made
by Liu et al. [14]. They proposed an elegant method based on PCA-fusion of the three axes of
an accelerometer and on filtering of the first principal component by using an adaptive filter that
varied according to the energy expenditure derived by the same accelerometer. To overcome the
problems of using a single accelerometer in dynamic conditions, a possibility is to fuse data from
accelerometers and from other sensors, such as gyroscopes. Yoon et al. [15] investigated the feasibility
of measuring breathing-related motions also during dynamic activities of the subject, by fusing data
from a tri-axial accelerometer and a gyroscope and applying Kalman filter. They found that, during
dynamic exercises, fusion of accelerometer and gyroscope data provided benefits in terms of reduction
of estimation error. Gollee et al. used a more complex system, an inertial measurement unit (IMU)
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fusing accelerometer, gyroscope and magnetometer but considered only static conditions [16]. Another
approach to overcome the problems related to motion artefacts is modularity. Lapi et al. [17] tried to
overcome limitations deriving from the use of a single accelerometer by proposing a system based on
a couple of 3-axis accelerometers placed bilaterally on the chest. Using two accelerometers permitted
to detect respiration-related chest-wall movements regardless of sensor positioning with respect to the
gravity vector; secondly, the breathing frequency can be obtained even when one of the two sensors is
silenced by postural constraints. Recently, Gaidhani at al. [18] proposed a method that uses two IMUs
composed by a 3-axis accelerometer, a 3-axis gyroscope and a 3-axis magnetometer, placed on the
anterior and posterior side of the chest to decompose the motions experienced by the two IMUs into
trunk movements and breathing actions. This paper presents an automatic processing algorithm
to derive breathing frequency and other breathing temporal parameters from quaternion-based
orientation signals recorded simultaneously at thoracic and abdominal level by using a modular,
wireless, IMU-based device [19]. An important step of the processing algorithm is dimension reduction
(DR) that allows the extraction of a single respiratory signal starting from 4-component quaternion data.
Three different methods of DR are proposed and compared; two of them are based on the selection
of one quaternion component, the third one is based on PCA-fusion of the 4 quaternion components.
Results obtained using the IMU-based device, with the three different methods, are validated against
optoelectronic plethysmography, an already established method to evaluate ventilation through an
external measurement of the chest-wall surface motion [20–25].

2. Materials and Methods

2.1. Device Architecture and Hardware Description

The system used in this study is composed by three IMU-sensor units that communicate via
Bluetooth with a smartphone; here data are pre-processed and saved. Two of the three sensor units
(peripheral units) are dedicated to the recording of chest-wall respiratory-related movements and
are placed on the thorax and on the abdomen to record respiratory information about both the
compartments; the third sensor unit (reference central unit) is placed on a body area that is integral
with the chest wall, but not involved in respiratory movements (e.g., coccyx or anterior superior
iliac crest). The measurement of chest-wall movements, related to both abdominal and thoracic
compartments, allows the consideration of the two-degree-of-freedom (DoF) model of chest-wall
breathing movements [26], that considers abdomen and rib cage (thorax) as acting independently.
Moreover, the compartmental contribution to total chest-wall volume changes according to posture
and the breathing strategy adopted by each subject. Thus, the recording of chest-wall movements
at different levels provides on the one hand, a more accurate estimation of the breathing signal, and
on the other hand allows investigation of asynchronies between compartments, typical of different
pathological conditions. The reference central unit, in addition to performing a central role within the
Bluetooth piconet, can be used to discriminate between static and dynamic conditions and to map the
activity state of the subject. Moreover, it could be used to reduce movement information not linked to
breathing by means of frequency domain analysis or by referring orientation change experienced by
the peripheral units to the coordinate frame of the reference unit. Each unit is composed by a printed
circuit board equipped with a low-power microcontroller, a Bluetooth Low Energy (BLE) module,
a 9-DoF IMU (3-axis accelerometer, a 3-axis gyroscope, and a 3-axis magnetometer) and lithium
polymer rechargeable battery. A voltage regulator circuit, and Li–Po battery recharge circuit with mini
USB port are also included in the design. Differently from the peripheral units, the reference central
unit is equipped with a different BLE module, able to support simultaneous central/peripheral role
and also brings a Micro Secure Digital (SD) Memory Card Connector for data logging. The dimensions of
each peripheral unit, comprehensive of the 3D-printed housing, are 41 mm × 33 mm× 19 mm (LWH),
and the weight is 25 g, including the battery, while the reference central unit measures 45 mm × 45 mm ×
15 mm (LWH), and weighs 35 g. A prototypal version of this device has been described in [19].
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2.2. Quaternion-Based Orientation Estimation and Fusion Algorithm

The final goal is to derive breathing signal by measuring orientation changes during the respiratory
movements, both at thoracic and abdominal level. The IMUs provide 3D-acceleration, 3D-magnetic
field, and 3D-angular rate. These measures are combined to provide accurate 3D orientation data
aboard each unit. The orientation is represented with quaternions [27,28], that even though may suffer
from problems of interpretation in terms of meaningfully physical angles, are interesting mathematical
entities (four-dimensional complex number (q = [q0 q1 q2 q3]), since they require less computing time
and avoid the singularity problems (i.e., “gimbal lock”) typical of other orientation descriptors, e.g.,
Euler angles. The fusion of the data collected from the sensors is done by using the sensor fusion
algorithm proposed by Madgwick et al. [29], based on an analytically derived and optimized gradient
descent algorithm enabling levels of accuracy exceeding that of the Kalman-based algorithm, with
low computational (277 scalar arithmetic operations each filter update) load and low sampling rates
(e.g., 10 Hz); this orientation filter also provides an online magnetic distortion compensation algorithm
and gyroscope bias drift compensation. The sensors data were collected at 40 Hz and the fusion
algorithm was updated with the same rate, but due to limited buffer of the BLE module and to the
stricter timings used for the Bluetooth communication, just one quaternion out of 4 computed is
considered (10 Hz); nevertheless, the final sampling rate was considered appropriate given the relative
low frequency of the respiratory signal [0.1 ÷ 1 Hz]. Thus, the microprocessor of each unit, receives
data from accelerometer, gyroscope and magnetometer that are on board and implements Madgwick
fusion filter [29] to compute a quaternion representing the change of orientation of each unit relative to
the earth frame ( Th

Earthq̂, Ab
Earthq̂, Re f

Earthq̂), or more correctly the change of orientation of the earth relative
to each unit frame [29]. In fact, in quaternion form, an arbitrary orientation of a coordinate frame B
relative to coordinate frame A, achieved through a rotation of angle θ around an axis Ar (rx, ry, rz) defined
in frame A, is univocally represented through the normalized quaternion A

B q̂ defined by Equation (1):

A
B q̂ =

[
q0 q1 q2 q3

]
=

[
cos

θ

2
− rx sin

θ

2
− ry sin

θ

2
rz sin

θ

2

]
(1)

2.3. Quaternion-Derived Breathing Frequency

All the elaborations and computations needed to extract breathing parameters from data
collected by the device were performed offline using MATLAB, the processing took on average
1.027 ± 0.129 seconds for the analysis of signals of 1071 ± 270 samples. A signal processing procedure
was designed to extract the breathing frequency starting from quaternions representing the change
of orientation of each unit relative to the earth frame ( Th

Earthq̂, Ab
Earthq̂, Re f

Earthq̂). The block diagram of
the signal processing part is presented in Figure 1. The algorithm is divided into 4 main blocks:
(i) pre-processing, (ii) DR, (iii) spectrum analysis, and (iv) processing.

Pre-processing block includes the preliminary steps that leads to chest-wall respiratory-related
orientation change signals. The orientations changes of thoracic and abdominal units were referred to
the reference unit frame (that in turn represents orientation changes of trunk) applying Equations (2)
and (3) respectively:

Th
Re f q̂ = Th

Earth q̂
⊗ Re f

Earth q̂∗ = Th
Earth q̂

⊗ Earth
Re f q̂, (2)

Ab
Re f q̂ = Ab

Earthq̂
⊗ Re f

Earth q̂∗ = Ab
Earthq̂

⊗ Earth
Re f q̂, (3)

These two quaternions represent the outputs of the pre-processing block and the input of the
DR block.
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Figure 1. Block Diagram of the Analysis algorithm that allows derivation of breathing temporal
parameters (fB. TI, TE) from quaternion-based orientation change signals recorded on Thorax, Abdomen
and Reference point.

Dimension-reduction block takes the quaternions obtained from Equations (2) and (3), that
are composed by 4 components each, and provides as output 2 single-component signals (1 for the
abdomen and 1 for the thorax) representing chest-wall respiratory-related orientation change signals.
These two signals represent the input of the power spectrum block and of the processing block.
To reduce dimension from 4 components to 1, two possibilities were investigated as shown in Figure 2:

(i). Best quaternion component selection
(ii). PCA-based fusion of the quaternion components

To select the best component among the 4 components representing the orientation quaternion,
two different methods were proposed, both based on spectrum analysis. The idea was to choose the
component with the highest breathing information, computing the power spectral density estimate
(PSD) between 0.5–2 Hz for each component and selecting the component with: (1) maximum PSD
peak (“Peak” method) or (2) maximum area under the PSD (“Area” method). To assess the goodness
of these two methods in predicting the best quaternion component, the ideal component (“Ideal”) was
determined a posteriori, case by case, based on minimum breathing frequency estimation error (see
Section 2.5).

Since more than one quaternion component is supposed to convey breathing information, the
possibility to maximize this information fusing the 4 components of the quaternion by means of PCA
was investigated. PCA is a mathematical procedure that transforms an original set of correlated
variables into a (smaller) number of uncorrelated variables by determining a set of orthogonal vectors
called principal components, which are defined by a linear combination of the original variables [30,31].
To do this, the directions in the data with the most variation, i.e., the eigenvectors corresponding to
the largest eigenvalues of the covariance matrix, are computed and the data are projected onto these
directions. To compute the eigenvectors, data were arranged into a two-dimensional matrix X(m × n),
where m was the number of observations of the time series and n the number of variables (quaternion
components). Then, the univariate means were subtracted from the n columns, to center the data.
Singular Value Decomposition (SVD) was used to compute the eigenvectors (V = [v1, v2, v3, v4]) and
corresponding eigenvalues (λ1, λ2, λ3, λ4). Original data were finally projected in the new coordinate
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system (Y = XV) and the first principal component, accounting for the largest possible variance, was
selected and passed to other blocks [30,31].

Figure 2. Dimension-reduction block in detail. Starting from the 4 components [q0, q1, q2, q3] of each
quaternion (Abdominal: Ab and Thoracic: Th), three methods are applied to obtain a single-component
signal: two methods based on best quaternion component selection (“Area” and “Peak”) and one
method based on the fusion of the 4 components through Principal Component Analysis (PCA). “Area”
method selects the quaternion component with the larger area under the Power Spectral Density
(PSD) estimate, while “Peak” method selects the quaternion component with the highest PSD’s peak.
PCA-fusion method selects the first principal component (PC_1) that accounts for the largest variance
in the data.

Spectrum Analysis block include a set of steps needed to optimize the subsequent processing
phase. The two signals representing chest-wall (abdominal and thoracic) respiratory-related orientation
obtained downstream of the dimension-reduction block underwent the following steps (Figure 1):

(i). A low-frequency threshold (fLOW) was determined based on a first estimate of the breathing
frequency (fB). The rough estimate of fB was done by identifying maxima points of the signal and
computing the fB, breath by breath, as reciprocal of the temporal distance between consecutive
maxima points. Then, the mean (fB_Rough) and the standard deviation (fB_Rough_SD) of the fB

over the entire trial were computed. To facilitate maxima points identification, signals were
at first band-bass filtered using a first-order infinite impulse response (IIR) Butterworth filter
[0.05 Hz–2 Hz] and smoothed with a third-order Savitzky–Golay [32] finite impulse response (FIR)
filter (fixed window length = 31 samples). Low thresholds fLOWAb and fLOWTh were determined
for the abdominal and thoracic signals respectively as difference fB_Rough − fB_Rough_SD. Then
the minimum value between fLOWAb and fLOWTh was chosen as final low-frequency threshold,
named fLOW, and it was used in the next step.

(ii). PSD estimate (Welch’s method, Hamming window size: 300 samples, overlapping: 50 samples)
was computed and the spectrum frequency corresponding to the breathing rate was identified,
both for the thorax (fpeak_T) and the abdomen (fpeak_A), by looking for the local peak of the PSD
within the window [fLOW ÷ 2 Hz]. The use of a low threshold, based on a rough estimate of the
breathing frequency, supports the selection of the PSD peak linked to breathing rate and avoid
selecting wrong peaks, often related to low-frequency oscillation artifacts.
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(iii). The breathing frequency derived by the spectrum was used to set an adaptive band-pass filter,
as proposed in a previous study [7], centered on fpeak frequency. For the abdomen, upper (fU) and
lower (fL) cut-off frequency points for the band-pass filter were defined, by applying Equations (4)
and (5) respectively [7]:

fU_A = fpeak_A + 0.04, (4)

fL_A = max (0.05, (fpeak_A − 0.04)), (5)

For the thorax, Equations (6) and (7) were applied:

fU_T = fpeak_T + 0.04, (6)

fL_T = max (0.05, (fpeak_T − 0.04)), (7)

Moreover, based on fpeak, a set of parameters was selected to optimize subsequent smoothing and
minima/maxima detection phases of the processing block.

Processing block includes all the steps needed to extract breathing frequency and temporal
parameters from the signals obtained downstream of the dimension-reduction block. Chest-wall
respiratory-related orientation change signals (abdominal and thoracic) underwent the following steps:

(i). Adaptive band-pass filter. The signals were band-pass filtered (first-order IIR Butterworth filter),
with fU and fL cut-off frequency points determined within the spectrum analysis block.

(ii). Smoothing. Filtered signals were furtherly smoothed (third-order Savitzky–Golay FIR filter)
to simplify subsequent identification of maxima and minima points. The level of smoothing
(window length) was automatically selected based on fpeak, i.e., increasing window length for
decreasing fpeak. Relation between optimal window length values and fpeak values has been
determined empirically.

(iii). Minima and maxima points detection. A set of optimized parameters (i.e., minimum peak
distance (MPD) and minimum prominence threshold (MPT)) was automatically selected based
on fpeak to optimize recognition of minima and maxima points of the smoothed signals. Optimal
MPD and MPT values depending on fpeak were experimentally determined.

(iv). Breathing frequency extraction. Breath by breath, inspiratory time (TI) was computed as the
temporal distance between a minimum point (mi) and the consecutive maximum point (Mi);
Expiratory time (TE) was computed as the temporal distance between the maximum point (Mi)
and the consecutive minimum point (mi + 1); total time (TTOT) was computed as TTOT = TI + TE

[s], duty cycle (DC) was computed as TI
TTOT

× 100 [%] and breathing frequency was computed
as 60

(TTOT)
[breaths/minute]. A mean value for each of the above-mentioned parameter was

computed for each trial (~3 min).

2.4. Experimental Setup

To evaluate the capability of the device and of the proposed methods to correctly estimate
breathing frequency (and temporal parameters) 8 healthy volunteers (4 males, 4 females) were enrolled.
All subjects gave their informed consent for inclusion before they participated in the study. The study
was conducted in accordance with the Declaration of Helsinki, and the protocol (Project identification
code n◦ 534) was approved by the Ethics Committee of Scientific Institute IRCCS Medea (date of
approval: 25 January 2018). Chest-wall movements during breathing, in seated and supine position,
were measured using the proposed device and optoelectronic plethysmography (OEP) simultaneously.
OEP [21] is a technique based on a similar functioning principle of the proposed device; in fact, it allows
assessment of ventilatory and breathing pattern by measuring chest-wall movements related to
breathing, by using motion capture principles. The system is composed of eight infrared video cameras
working at a sampling rate of 60 Hz. It can compute the 3D coordinates of retro-reflective markers
positioned on the chest wall in specific anatomic points. From the three-dimensional coordinates of
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the markers, it is possible to obtain the volume enclosed by the chest-wall surface, by applying the
Gauss’s theorem. The chest wall is modelled by a bicompartmental model, composed of rib cage and
abdomen, and thus it is possible to investigate the contribution of both the compartments. This is
an advantage for the validation of the proposed device, in fact, using OEP as reference method it is
possible to compare the data recorded with the thoracic and abdominal units of the device with those
obtained by using OEP for the thoracic and abdominal compartments, respectively. OEP has been
widely validated against spirometer, in healthy subjects, in different conditions and positions, also
during submaximal and maximal exercise on cycle ergometer, obtaining discrepancies in tidal volume
measurements always <5% [22–24,33,34].

The subjects were prepared, placing the reflective markers according to the 89-marker protocol
(previously described in [24,35]) used for seated position and the 52-marker protocol (previously
described in [36,37]) used for supine position or, more generally, when a back support is present. Then
peripheral IMU-units were placed on the thorax and on the abdomen, while reference IMU-unit was
placed on the coccyx in seated position, and on the bed in supine position (Figure 3).

 

Figure 3. Experimental setup. Retroreflective-marker configuration for optoelectronic plethysmography
(OEP) and IMU-unit (Ab: Abdomen, Th: Thorax, Ref: Reference) placement in supine (A and B panels)
and seated (C and D panels) positions. Panel E shows the experimental setup and the OEP Lab; Infrared
cameras of the motion capture system are also noticeable.

Subjects were then asked to seat or lie on a bed and were invited to perform a slow vital capacity
maneuver (SVC) and then to start breathing with the following patterns: (I) quiet breathing (QB), (II)
increasing fB but same tidal volume of QB (↑fB, VT=), (III) increasing fB and reducing tidal volume (↑fB,
VT↓), (IV) decreasing fB with the same tidal volume of QB (↓fB, VT=), (V) decreasing fB increasing tidal
volume of QB (↓fB, VT↑). QB trial was repeated two times, thus, each subject performed 6 trials of the
duration of 3 min each. The SVC maneuver was used to align OEP signal and device signals during
data analysis, since it is generally recognizable with respect to QB. In fact, SVC requires a maximal
inspiration followed by a complete expiration without forced or rapid effort.
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The subjects were asked to maintain the same breathing pattern (namely, QB, ↑fB, VT=, ↑fB, VT↓,
↓fB, VT=, ↓fB, VT↑) until the end of the trial; in case of fatigue they were asked to perform a second
SVC before returning to QB. This procedure was repeated in seated position and in supine position.

2.5. Statistical Analysis

For each trial, mean values of fB, TI, TE and DC were extracted from the best quaternion
components identified online by using “Area” and “Peak” methods, and from the signal obtained with
the PCA-based fusion method, both for the thoracic and abdominal tracings. Moreover, to evaluate
the performance of the selection methods (“Area” and “Peak”) and their ability to select the best
component, the same parameters were obtained for all the quaternion components (q0, q1, q2, q3) and
compared with those obtained by OEP, on the abdominal and thoracic compartment, respectively.
The “Ideal” quaternion component was identified a posteriori, trial by trial, as the one providing the
minimum estimation error of the breathing frequency. Obviously, the “Ideal” component cannot be
identified during online analysis, or when a reference method is not present. Thus, for each trial, 5 sets
of parameters were available:

• fB_OEP, TI_OEP, TE_OEP and DC_OEP

• fB_Peak, TI_Peak, TE_Peak and DC_Peak

• fB_Area, TI_Area, TE_Area and DC_Area

• fB_PCA, TI_PCA, TE_PCA and DC_PCA

• fB_Ideal, TI_Ideal, TE_Ideal and DC_Ideal

Among the entire set of trials, those with fB_OEP < 6 breaths/minute or fB_OEP > 60 breaths/minute
were discarded. Then, the absolute (Equation (8)) and relative (Equation (9)) errors of estimation in
static conditions (supine and seated position) were computed for each parameter:

Absolute Error (E) = |Device − OEP|, (8)

Relative Error (E%) =
|Device − OEP|

OEP
× 100 (9)

For all the dimension-reduction methods (“Area”, “Peak”, “PCA”), mean and standard deviation
(SD) were computed for E and E% considering all the subjects and all the trials, for the supine and seated
position and compared with those obtained considering the “Ideal” component. The error obtained
with the “Ideal” component, identified a posteriori, is thus the minimum error obtainable using a
single quaternion component, and represents the performance that the other methods (“Area”, “Peak”,
and PCA-fusion) should achieve or beat. For E% obtained in fB and DC estimation, non-parametric
alternative to the one-way Analysis of variance (ANOVA) with repeated measures (Friedman test) was
performed to assess if significant differences between methods (“Area”, “Peak”, “PCA”) and “Ideal”
component occurred, “Ideal”); post-hoc analysis was done performing Wilcoxon signed-rank tests on
the different combinations of related methods, applying the correction for multiple comparisons using
false discovery rate (FDR) method [38,39].

For fB, TI, TE, linear regression analysis and correlation analysis (Pearson’s product-moment
correlation rP, or Spearman’s rank-order correlation rS, if data were not normally distributed) were
performed between measurements obtained with the device and measurements obtained with the
OEP, for the supine and seated position, respectively.

To assess the agreement between measurements obtained with the device and with the OEP,
Bland–Altman analysis was performed plotting the difference of the two paired measurements
(device–OEP) against the mean of the two measurements [40–42]. Mean of the differences (d) and
limits of agreement (LOA: from d − (1.9 × SD) to d + (1.9 × SD)) were calculated. The presence
of heteroscedasticity was always examined to assess the presence of proportional biases and/or the
correlation between differences and mean values. As proposed by Brehm et al. [43], to determine if
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data were heteroscedastic a visual inspection of Bland–Altman plots was performed at first. If the
errors (y-axes: absolute differences) increased with increasing measured values (x-axes: mean), the
data were suspected of being heteroscedastic. Then Kendall’s tau (τ) correlation between the absolute
differences and the corresponding means was computed to assess the degree of heteroscedasticity.
Data were denoted heteroscedastic when a positive, significant correlation (τ > 0.1 and p-value < 0.05)
was found, for other cases data were considered homoscedastic [43].

When heteroscedasticity was present the “classical” 95% confidence and tolerance limits cannot
be constructed, thus the approach based on the construction of V-shaped limits was applied: the
regression line (ordinary least squares (OLS) best fit) was constructed for differences on mean values
and the V-shaped confidence limits (upper confidence limit: UCL, lower confidence limit: LCL) were
constructed modelling the variability in the SD of the differences directly as a function of the level of
the measurement, using a method based on absolute residuals from a fitted regression line [44,45].

3. Results

3.1. Breathing Patterns

Table 1 presents the mean and SD of breathing rate for each breathing pattern (QB1 e QB2, ↑fB,
VT=, ↑fB, VT↓, ↓fB, VT=, ↓fB, VT↑) estimated with OEP and device, using “PCA”, “Area”, and “Peak”
methods and the “Ideal” component, for all subjects, in supine and seated position. Sample size (n)
of each condition is reported in Table 1 for the breathing pattern ↑fB, VT↓, just one thoracic tracing
was available for seated position (n = 1). It can be noticed that each subject demonstrated a different
breathing frequency for each breathing pattern and SD in the forced breathing patterns is higher than
those obtained for QB, meaning that subjects interpreted the required speed differently.
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3.2. Accuracy Errors

Relative errors of estimation in supine and seated position computed for best component-selection
methods (“Peak”, “Area”), for PCA-fusion method and for the “Ideal” quaternion component for fB

and DC are presented in Figure 4. For what concerns fB estimation in supine position, relative errors
obtained using PCA were similar or even better than those provided by the “Ideal” component; on the
contrary, both component-selection methods, namely “Area” and “Peak”, provided errors higher
than 10%, both for the abdominal and the thoracic compartments. Errors obtained with PCA resulted
significantly lower than those obtained with the “Area” method, both for the abdominal (Wilcoxon
post-hoc test FDR-adjusted, p = 0.038) and thoracic compartment (Wilcoxon post-hoc test FDR-adjusted,
p = 0.015); also, PCA was significantly better than “Peak” method considering abdominal compartment
(Wilcoxon post-hoc test FDR-adjusted, p = 0.038). Errors obtained with “Ideal” component resulted
significantly lower than those obtained with the component-selection methods both for the abdominal
(Wilcoxon post-hoc test FDR-adjusted, Ideal vs. Area p = 0.038, Ideal vs. Peak p = 0.038) and thoracic
(Wilcoxon post-hoc test FDR-adjusted, Ideal vs. Area p = 0.000, Ideal vs. Peak p = 0.020) compartments.

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4. Relative errors (E%) of estimation of breathing frequency (a,b) and Duty Cycle (c,d) in
supine (a,c) and seated (b,d) positions, computed for each method (Peak, Area and PCA) and for the
“Ideal” component with respect to the reference (OEP). Errors are computed both for the Thoracic and
abdominal compartments. Horizontal blue lines indicate statistical significance of difference (post-hoc
analysis, Wilcoxon test FDR corrected).

In seated position, fB estimation errors obtained with component-selection methods were lower
on average than those obtained in supine position, while PCA performances declined. This led to a
sort of equalization effect, confirmed also by the statistical analysis: significant differences remained
only for comparisons “Ideal” vs. “Area” method (Wilcoxon post-hoc test FDR-adjusted, AB: p = 0.102,
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TH: p = 0.015) and “Ideal” vs. “Peak” method (Wilcoxon post-hoc test FDR-adjusted, AB: p = 0.006,
TH: p = 0.015).

Regarding duty cycle, relative errors of estimation obtained with the different methods are
comparable, with exception of those provided by “Ideal” component that are on average lower, both
in supine (Wilcoxon post-hoc test FDR-adjusted, AB: Ideal vs. Peak p = 0.042, Ideal vs. Area p = 0.042;
TH: Ideal vs. Area p = 0.006) and seated position (Wilcoxon post-hoc test FDR-adjusted, AB: Ideal vs.
Peak p = 0.015, Ideal vs. PCA p = 0.006; TH: Ideal vs. Area p = 0.015, Ideal vs. Peak p = 0.015, Ideal vs.
PCA p = 0.05).

Absolute estimation errors of fB, TI and TE obtained with the device using different methods
(Area, Peak, Ideal, PCA) relative to OEP are reported in Table 2.

Table 2. Absolute errors of breathing frequency (E_fB), Inspiratory time (E_TI) and expiratory time
(E_TE) obtained for the device with respect to OEP, using best component-selection methods (“Area”
and “Peak”), PCA-fusion method and “Ideal” component.

Area Peak PCA Ideal

E_fB
[breaths/minute]

supine AB 3.64 ± 7.46 3.64 ± 7.46 1.00 ± 1.24 1.39 ± 2.76
TH 5.46 ± 8.89 3.17 ± 4.92 1.55 ± 1.51 1.56 ± 1.96

seated
AB 2.19 ± 2.49 2.12 ± 2.74 1.71 ± 2.25 1.04 ± 1.24
TH 3.35 ± 5.68 3.31 ± 5.69 1.79 ± 2.04 0.96 ± 0.22

E_TI [s]

supine AB 0.48 ± 0.73 0.48 ± 0.73 0.33 ± 0.51 0.20 ± 0.38
TH 0.43 ± 0.52 0.41 ± 0.49 0.47 ± 0.67 0.17 ± 0.25

seated
AB 0.33 ± 0.58 0.36 ± 0.56 0.46 ± 0.71 0.16 ± 0.27
TH 0.43 ± 0.48 0.44 ± 0.49 0.42 ± 0.35 0.17 ± 0.25

E_TE [s]

supine AB 0.58 ± 0.82 0.58 ± 0.82 0.43 ± 0.58 0.29 ± 0.52
TH 0.79 ± 0.94 0.67 ± 0.92 0.46 ± 0.63 0.36 ± 0.71

seated
AB 0.43 ± 0.56 0.43 ± 0.56 0.43 ± 0.55 0.22 ± 0.31
TH 0.56 ± 0.66 0.56 ± 0.66 0.39 ± 0.41 0.24 ± 0.36

Data are reported as mean ± SD, in supine and seated position for thoracic (TH) and abdominal (AB) compartments.

3.3. Linear Regression and Correlation Analysis

Scatter plots showing the relationship between measurements obtained with the OEP and with
the device, using “Area”, “Peak”, “Ideal” components, and PCA-fusion respectively are presented for
fB (Figure 5), TI (Figure 6) and TE (Figure 7). For each scatter plot the regression line is computed, both
for thorax and abdomen, and the relative equations are reported.

Correlation coefficients for the comparisons Device vs. OEP are reported in Table 3. Regarding the
main parameter, fB, results obtained with correlation analysis confirmed what emerged from estimation
error analysis: in supine position, PCA exhibited the best performances in terms of correlation with
OEP measurements both in terms of regression line and correlation coefficient. In seated position,
“Ideal” component was the one with the highest correlation with OEP measurements, followed by PCA.
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Figure 5. Comparisons of breathing frequency (fB expressed as breaths/minuteute) measurements
by using the proposed device and by using Optoelectronic plethysmography (OEP) presented as
regression analysis, in supine (top panels) and seated (bottom panels) positions. For what concerns fB

measurements obtained with the IMU-device, three dimension-reduction methods were considered:
Area, Peak and PCA-fusion. The performance obtained by using these three methods is benchmarked
against that obtained with the Ideal quaternion component determined a posteriori based on the
minimum estimation error. The regression line between measurements done by OEP and the proposed
device is plotted, and the relative equation presented, both for the thorax and the abdomen.

Figure 6. Comparisons of inspiratory time (TI expressed as seconds) measurements by using the
proposed device and by using Optoelectronic plethysmography (OEP) presented as regression analysis,
in supine (top panels) and seated (bottom panels) positions. For what concerns TI measurements
obtained with the IMU-device, three dimension-reduction methods were considered: Area, Peak
and PCA-fusion. The performance obtained by using these three methods is benchmarked against
that obtained with the Ideal quaternion component determined a posteriori based on the minimum
estimation error. The regression line between measurements done by OEP and the proposed device is
plotted, and the relative equation presented, both for the thorax and the abdomen.
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Figure 7. Comparisons of expiratory time (TE, expressed as seconds) measurements by using the
proposed device and by using Optoelectronic plethysmography (OEP) presented as regression analysis,
in supine (top panels) and seated (bottom panels) positions. Regarding TE measurements obtained with
the IMU-device, three dimension-reduction methods were considered. Area, Peak and PCA-fusion.
The performance obtained by using these three methods is benchmarked against that obtained with
the Ideal quaternion component determined a posteriori based on the minimum estimation error.
The regression line between measurements done by OEP and the proposed device is plotted, and the
relative equation presented, both for the thorax and the abdomen.

Table 3. Correlation outcomes across subjects and breathing patterns. Coefficient of correlation (r)
between measurements obtained using Device vs. OEP are reported for fB. TI. and TE using best
component-selection methods (“Area” and “Peak”), PCA-fusion method and “Ideal” component,
in supine (Thorax: n = 37. Abdomen: n = 37) and seated (Thorax: n = 35. Abdomen: n = 39) position.

Supine Seated

Thorax Abdomen Thorax Abdomen

fB

Area 0.580 $ 0.706 $ 0.748 $ 0.915 $

Peak 0.833 $ 0.706 $ 0.759 $ 0.861 $

PCA 0.963 $ 0.985 $ 0.953 $ 0.924 $

Ideal 0.935 $ 0.931 $ 0.974 $ 0.977 $

TI

Area 0.727 # 0.665 $ 0.812 # 0.812 #

Peak 0.785 # 0.659 $ 0.809 # 0.824 #

PCA 0.783 # 0.874 # 0.926 # 0.731 #

Ideal 0.943 # 0.862 $ 0.951 # 0.948 #

TE

Area 0.600 $ 0.713 # 0.682 # 0.818 #

Peak 0.687 $ 0.712 # 0.723 # 0.835 #

PCA 0.891 # 0.864 # 0.888 # 0.824 #

Ideal 0.874 # 0.966 $ 0.938 # 0.951 #

Correlations are all significant (p-value < 0.001). $ Spearman correlation coefficient; # Pearson correlation coefficient;
Bold: best correlation result.

With reference to TI estimation in supine position, “Ideal” component provided the best
performances, followed by PCA method; “Peak” and “Area” methods provided comparable, poor
performances. In seated position, measurements of TI provided by component-selection methods were

231



Sensors 2019, 19, 88

on average more correlated with OEP measurements than measurements obtained using PCA-fusion
method. The “Ideal” component presented the best results, followed by “Area” and “Peak” methods;
PCA provided the worst performance considering the abdominal compartment, while correlation
between measurements obtained with the thoracic unit and OEP measurements was good.

Estimation of TE was on average more problematic. In terms of regression lines in fact, slope
values were far from the unity for all the considered methods, highlighting a proportional error leading
to an overestimation for low values of expiratory time and an underestimation at high expiratory
times, as shown in Figure 7. For what concerns supine position, correlation coefficients were good
both for “Ideal” component and PCA-fusion method; on the contrary, correlation coefficients were
low both for “Area” and “Peak” methods. Also, in seated position correlation coefficients provided
by “Ideal” and PCA-fusion method were higher than those provided by “Area” and “Peak” methods,
especially with respect to the thoracic compartment.

3.4. Bland–Altman Analysis

Bland–Altman plots representing the agreement between measurements obtained with the OEP
and with the device, using “Area”, “Peak”, “Ideal” components, and PCA-fusion respectively are
presented for fB (Figure 8), TI (Figure 9) and TE (Figure 10). In Bland–Altman plots, the difference
of the two paired measurements (device–OEP) is plotted against the mean of the two measurements
(device+OEP)⁄2. Results of agreement analysis, including evaluation of heteroscedasticity (Kendall’s
τ correlation and relative p-value) are reported in Table 4. As shown there, for homoscedastic data,
the mean of the differences representing the fixed bias, and LOAs were computed. On the other hand,
for heteroscedastic data, OLS line of best fit representing the proportional bias and upper and lower
95% V-shape confidence limits (UCL and LCL) are reported.

Figure 8. Agreement analysis between OEP and the IMU-based device for breathing frequency
(fB, expressed as breaths/minuteute) measurements, in supine (top panels) and seated (bottom panels)
position. In each Bland–Altman plot the differences between measurements of fB obtained by using
the IMU-based device and by using OEP are plotted against the mean of the two measurements.
For homoscedastic data, the mean of the differences (bias: —) and limits of agreement (black dotted line)
from mean − 1.96 s to mean + 1.96 s are represented by lines parallel to the X axis. For heteroscedastic
data, the proportional bias (—) is represented by the ordinary least squares (OLS) line of best fit for
the difference on mean values; V-shaped upper and lower 95% confidence limits (- - -) are calculated
according to Bland [44].
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Figure 9. Agreement analysis between OEP and the IMU-based device for inspiratory time (TI, [s])
measurements, in supine (top panels) and seated (bottom panels) position. In each Bland–Altman plot
the differences between measurements of TI obtained by using the IMU-based device and by using
OEP are plotted against the mean of the two measurements. For homoscedastic data, the mean of the
differences (bias: —) and limits of agreement (- - -) from mean − 1.96 s to mean + 1.96 s are represented
by lines parallel to the X axis. For heteroscedastic data, the proportional bias (—) is represented by the
OLS line of best fit for differences on mean values; V-shaped upper and lower 95% confidence limits
(- - -) are calculated according to Bland [44].

Figure 10. Agreement analysis between OEP and the IMU-based device for expiratory time (TE, [s])
measurements, in supine (top panels) and seated (bottom panels) position. In each Bland–Altman plot
the differences between measurements of TE obtained by using the IMU-based device and by using
OEP are plotted against the mean of the two measurements. For homoscedastic data, the mean of the
differences (bias: —) and limits of agreement (- - -) from mean − 1.96 s to mean + 1.96 s are represented
by lines parallel to the X axis. For heteroscedastic data, the proportional bias (—) is represented by the
OLS line of best fit for differences on mean values; V-shaped upper and lower 95% confidence limits
(- - -) are calculated according to Bland [44].
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Table 4. Agreement analysis outcomes across subjects and different breathing patterns. Bland and
Altman plot statistics for measurements of fB. TI. and TE using best component-selection methods
(“Area” and “Peak”), PCA-fusion method and “Ideal” component and, in supine (n = 74) and seated
(n = 74) position.

τ p-Value Heteroscedastic? Fixed Bias a/OLS LOA c/V-Shape Limits d

f B
su

p
in

e

Area 0.159 0.045 Yes y = −0.054x + 2.316 b UCL: y = 0.085x + 10.907 d

LCL: y = −0.192x − 6.275
Peak 0.142 0.074 No 1.380 a From −11.95 to 14.72 c

PCA 0.211 0.008 Yes y = 0.008x + 0.130 b UCL: y = 0.054x + 2.299 d

LCL: y = −0.038x − 2.039
Ideal 0.038 0.631 No 0.884 a From −4.171 to 5.940 c

f B
se

a
te

d

Area 0.142 0.074 No 0.084 a From −9.635 to 9.803 c

Peak 0.132 0.096 No −0.121 a From −9.931 to 9.688 c

PCA 0.108 0.174 No −0.23 a From −5.474 to 5.010 c

Ideal 0.196 0.014 Yes y = −0.021x + 0.597 b UCL: y = 0.028x + 2.057 d

LCL: y = −0.071x − 0.864

T
I

su
p

in
e

Area 0.302 0.000 Yes y = 0.084x − 0.019 b UCL: y = 0.618x + 0.095 d

LCL: y = −0.450x − 0.132

Peak 0.334 0.000 Yes y = 0.104x − 0.021 b UCL: y = 0.638x + 0.093 d

LCL: y = −0.430x − 0.135

PCA 0.375 0.001 Yes y = 0.283x − 0.175 b UCL: y = 0.926x − 0.840 d

LCL: y = −0.390x + 0.354

Ideal 0.292 0.000 Yes y = −0.090x + 0.121 b UCL: y = 0.158x + 0.163 d

LCL: y = −0.338x + 0.078

T
I

se
a

te
d

Area 0.430 0.000 Yes y = 0.1022x − 0.0141 b UCL: y = 0.834x + 0.112 d

LCL: y = −0.618x − 0.409

Peak 0.422 0.000 Yes y = 0.220x − 0.075 b UCL: y = 0.642x − 0.173 d

LCL: y = −0.438x + 0.197

PCA 0.489 0.000 Yes y = 0.171x − 0.0332 b UCL: y = 0.7182x − 0.226 d

LCL: y = −0.377x + 0.160

Ideal 0.313 0.000 Yes y = −0.059x + 0.129 b UCL: y = 0.211x + 0.069 d

LCL: y = −0.329x + 0.189

T
E

su
p

in
e

Area 0.421 0.000 Yes y = −0.170x + 0.166 b UCL: y = 0.508x + 0.358 d

LCL: y = −0.847x − 0.026

Peak 0.405 0.000 Yes y = −0.138x + 0.144 b UCL: y = 0.496x + 0.306 d

LCL: y = −0.771x − 0.017

PCA 0.522 0.000 Yes y = −0.209x + 0.328 b UCL: y = 0.667x + 0.037 d

LCL: y = −1.084x + 0.620

Ideal 0.484 0.000 Yes y = −0.153x + 0.148 b UCL: y = 0.3987x − 0.185 d

LCL: y = −0.705x + 0.481

T
E

se
a

te
d

Area 0.384 0.000 Yes y = −0.216x + 0.364 b UCL: y = 0.303x + 0.532 d

LCL: y = −0.735x + 0.197

Peak 0.396 0.000 Yes y = −0.231x + 0.413 b UCL: y = 0.226x + 0.666 d

LCL: y = −0.657x + 0.101

PCA 0.422 0.000 Yes y = −0.127x + 0.320 b UCL: y = 0.284x + 0.498 d

LCL: y = −0.538x + 0.142

Ideal 0.316 0.000 Yes y = −0.058x + 0.054 b UCL: y = 0.383x + 0.337 d

LCL: y = −0.500x − 0.228

τ: Kendall’s τ correlation coefficient and relative p-value (heteroscedasticity test). a Fixed Bias. obtained as the mean
of differences (device – OEP). for homoscedastic data. b OLS: ordinary least squares line of best fit (proportional bias)
for heteroscedastic data. c LOA: limits of agreement. computed as mean difference ± 1.96SD (for homoscedastic
data). d V-shape limits: UCL and LCL 95% confidence limits. calculated according to Bland [44].

With respect to the main parameter (fB), agreement between OEP and the device is very strong
when the “Ideal” component or the PCA-fusion are used, both in supine and seated position. In relation
to time estimation, the agreement decreases for all the methods considered. In particular, for what
concerns inspiratory times, a significant relationship between errors and mean value emerged, with a
general increase of the difference (device–OEP) at higher time values (overestimation of the device),
both in supine and seated position. Also, for expiratory times absolute errors increased with increasing
time values, but in this case the device underestimated at high time values (negative slope of the OLS).
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3.5. Quaternion Component Selection

Considering the quaternion components selected by the “Area” and “Peak” methods as best
component or identified as “Ideal” component, a clear rule did not emerge. In fact, there was not a
quaternion component that was selected as best component with a considerable frequency. Relative
frequencies of quaternion component selection with the different methods are presented in Figure 11.
It is interesting to notice that quaternion component q0 was never selected by “Area” and “Peak”
methods, while the “Ideal” component was q0 in 14.86 % of cases (n = 74) in supine position and
6.76% of cases (n = 74) in seated position. In seated position, the component q1 was selected more
frequently as best component both by using “Area” (44.59) and “Peak” (39.19%) methods. In contrast,
in supine position, the components q2 (“Area” 51.35%, “Peak”: 41.89) and q3 (“Area”: 39.19% and
“Peak”: 40.54%) were selected more frequently.

Excluding q0 component, that was clearly less selected, the other quaternion components were
almost equally selected as “Ideal” component considering all the trials, both in supine position
(q0: 14.86%, q1: 22.97%, q2: 32.43%, q3: 29.73%), and seated position (q0: 6.76%, q1: 33.78, q2: 22.97%,
q3: 36.49%).

In regard to the ability of the two component-selection methods (“Area” and ”Peak”) to identify
the “Ideal” component, i.e., the component providing the minimum fB estimation error, in supine
position, the “Area” method was able to identify the “Ideal” component in 45.94% of the cases (relative
frequency for the event “the component selected by “Area” method and the “Ideal” component
corresponded”), the “Peak” method identified the “Ideal” component in 52.70% of the cases, while
for the 45.94% of the cases neither the “Area” method nor the “Peak” method were able to identify
the “Ideal” component. In 44.59% of cases, “Area” method and “Peak” method selected the same
quaternion component, that was also identified as “Ideal” component.

Figure 11. Relative frequencies of quaternion component (q0, q1, q2, q3) selection using Area and Peak
methods and of quaternion component selection as Ideal component, in supine and seated position.
Each portion of the rings represents the ratio between the number of times that each quaternion
component has been selected (by Area and Peak methods or as Ideal component respectively) and the
total number of trials (n = 74).

4. Discussion

In this study, we presented an automatic, position-independent processing algorithm to derive
breathing signal, and subsequently breathing temporal parameters, from chest-wall orientation changes
acquired using an IMU-based device previously developed by our group [19], composed of three
sensor units. Even if the modular configuration of the device was designed to reduce non-breathing
movements, the aim of this work was neither to demonstrate the effectiveness of this approach nor
to support the presence of the reference unit. On the contrary the focus is on the analysis algorithm,
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which uses quaternion form to represent orientation, avoiding singularity problem that affects Euler
representation; thus, thoracic and abdominal orientation change signals are 4-dimensional entities.
The proposed algorithm includes therefore a dimension-reduction block to obtain a 1-dimension signal
representing chest-wall orientation changes due to breathing activity.

Another aim of this study was, therefore, to compare three different dimension-reduction methods.
The first two methods (“Peak” and “Area”) are based on the selection of the quaternion component
with the highest breathing information. The third method is based on the fusion of the 4 components
of the quaternion using PCA.

The PCA-fusion method performed better than the best component-selection methods (“Peak”
and “Area”) as regards breathing frequency estimation, both in supine and seated position. In supine
position, it provided better results than “Ideal” component, while in seated position it provided
closer performances to those obtained by using the “Ideal” component with respect to “Area” and
“Peak” methods.

About estimation of other temporal parameters (TI, TE and duty cycle), “Ideal” component
provided the best results, while PCA-fusion method gave results comparable to the best
component-selection methods. Thus, a quaternion component providing the best performance exists,
the problem lies in its a priori identification. In fact, both “Area” and “Peak” methods failed to identify
it on the basis of spectral analysis (in 45.94% of the cases neither the “Area” method nor the “Peak”
method were able to identify the “Ideal” component), and no quaternion component emerged as the
most selected as “Ideal” component (supine q0:14.86%, q1: 22.97%, q2: 32.43%, q3: 29.73%; seated q0:
6.76%, q1: 33.78, q2: 22.97%, q3: 36.49%).

Geometrical or morphological considerations to determine which quaternion component is more
involved in breathing movement are problematic when considering quaternions, and are position- and
IMU-placement dependent, thus not suitable in dynamic conditions. On the contrary, PCA-fusion
method represents an interesting solution to this problem because it fuses the information of the four
quaternion components regardless the position of the subject or the IMUs placement, avoiding the
necessity to select a best component/axes, as reported in previous studies [7,11,13].

In this study, we found that PCA-fusion method provided the best fB estimation performance in
terms of mean absolute errors (<2 breaths/minute), correlation (r > 0.963) and agreement (see Table 4)
with the reference method. Comparing our results in terms of accuracy errors with those obtained
by previous studies is difficult because in most cases only relative errors were reported, but these
errors depend on the breathing frequency adopted. Liu et al. [14] reported a mean absolute error
of 15.45 breaths/minute (thus about 7 times higher than the error obtained in this study) during
quiet sitting. Bates et al. [13] obtained an RMS error of 0.38 breaths/minute and a peak error
of 3 breaths/minute in a postoperative patient during sleep. Considering comparable conditions
(abdominal compartment in supine position) we obtained an RMS error of 1.51 breaths/minute, using
PCA-fusion method, but in our study different, forced, breathing patterns were included, leading to
higher mean error.

Regarding correlation between fB measurements obtained with the proposed method and OEP,
our results are comparable to those obtained by Bates et al. [13] that reported a correlation coefficient
equal to 0.985 between measurements of fB obtained with the accelerometer and nasal cannula.
Mann et al. [11] obtained a correlation coefficient of 0.97 between measurements of fB obtained with
a tri-axial accelerometer and with a system based on oxygen consumption measurement (Oxycon
Mobile). In both cases [11,13], breath-by-breath analysis was not possible. Liu et al. [14] reported
correlation coefficients lower than 0.6 between fB computed with a 3-axis accelerometer and with the
reference (Airflow CO2 analysis).

There are few studies in the literature that performs Bland–Altman analysis to assess the
agreement between breathing frequency measurements obtained by using inertial sensors and other
validated methods. In the study from Morillo et al. [8] agreement analysis using Bland Altman plots
was done against PSG thermistor. The authors reported a mean difference (fixed bias) of 0.02 (SD = 1.09)
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breaths/minute and LOAs from −3.05 to +2.11 breaths/minute in the range ~12 ÷ 35 breaths/minute.
In that case, the use of a single-axis accelerometer, prevent the use of that method during postural
changes. Dehkrodi et al. [9] used a tri-axial accelerometer placed on the suprasternal notch extending
the validation presented in [8] to different sleeping positions and breathing conditions (Deep: 13.5 ± 4.3,
Normal: 16.5 ± 5.2 and Shallow: 39.7 ± 30.3 breath/minute). They reported a mean difference
(fixed bias) of 0.042 breaths/minute and LOAs from –0.65 to 0.74 breaths/minute. Lapi et al. [17]
performed agreement analysis with Bland Altman plots for measurements of breathing frequency
(range 12 ÷ 26 breaths/minute) obtained with the accelerometer and with the standard method
(counting breaths by visual inspection), in supine position. They reported a mean difference (fixed bias)
of 0.33 breaths/minute and LOA from −1.92 to 2.60 with 3.2% of data outside that range. For all the
above-mentioned studies heteroscedasticity of data was not considered or reported making it difficult
compare them directly with our results. In fact, taking into account heteroscedasticity of data, for fB in
supine position, we built Bland–Altman plot with proportional bias (OLS: y = 0.008x + 0.130, thus going
from 0.18 (at x = 6 breaths/minute) to 0.61 (at x = 60 breaths/minute) breaths/minute) and V-shaped
limits (LCL: y = −0.038x − 2.039 thus the lower limit goes from −2.26 (at x = 6 breaths/minute) to
−4.32 (at x = 60 breaths/minute) breath/minute; UCL: y = 0.054x + 2.299; thus the upper limit goes
form 2.62 (at x = 6 breaths/minute) to 5.539 (at x = 60 breaths/minute) breaths/minute) ). Thus,
considering comparable breathing frequency ranges our results are closer to those obtained by Morillo
et al. [8] and Lapi et al. [17]. On the contrary, Dehkrodi et al. [9] obtained better results; unfortunately,
the steps to obtain the acceleration derived respiratory (ADR) signal are not described in detail.

For the best of our knowledge, this is the first study that provides a detailed analysis of
respiratory timing measurements obtained by using inertial sensor systems, validating them against
an established method.

5. Conclusions

PCA-fusion method provided overall best performances with respect to selecting the best
quaternion component identified based on spectrum analysis. In supine position results obtained
fusing the 4 quaternion components were even better than those obtained with the “Ideal” component,
identified a posteriori considering the minimum breathing frequency estimation error. Performance
in seated position were worse than those obtained in supine position, probably because subjects
were seated without the back support and some oscillations of the trunk were more likely to occur.
This could particularly affect PCA-based method where the first principal component selected for
further analysis is the one with the largest variance, and thus more subject to larger body motions.
This must be taken into account in dynamic conditions; signal baseline removal prior to PCA-fusion
should be considered in this case.

The analysis algorithm proposed in this work, applying PCA-fusion as dimension-reduction
method, can be used to analyze further data. In fact, an extended validation of the proposed
device and method is needed also in dynamic conditions, during daily activities, considering not
only healthy subjects but also patients that could particularly take advantage of this system (e.g.,
COPD, neuromuscular patients, sleep apnea, etc.). This would also allow study of asynchronies
of thoraco-abdominal compartments taking advantage of the modular configuration of the device.
Another key step will be the adaptation of our method, currently implemented as an offline analysis,
to online monitoring, moving the computation process aboard the smartphone. This enhancement
could allow immediate computation of an average breathing frequency over a certain period (e.g., 60 s)
directly aboard the smartphone, fostering the use of the device in other applications such as sport and
fitness, exercise testing, breathing training to use different respiratory muscles, rehabilitation protocols
and treatment evaluation where respiratory assessment could be of great interest.
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6. Patents

The present work is partially described in the International Patent application n◦ PCT/IB2018/
054956, priority date 11 July 2017, title “A wearable device for the continuous monitoring of the
respiratory rate”. Inventors: Ambra Cesareo, Andrea Aliverti, Assignee: Politecnico di Milano.
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Abstract: In this work, authors address workload computation combining human activity recognition
and heart rate measurements to establish a scalable framework for health at work and fitness-related
applications. The proposed architecture consists of two wearable sensors: one for motion, and another
for heart rate. The system employs machine learning algorithms to determine the activity performed
by a user, and takes a concept from ergonomics, the Frimat’s score, to compute the corresponding
physical workload from measured heart rate values providing in addition a qualitative description of
the workload. A random forest activity classifier is trained and validated with data from nine subjects,
achieving an accuracy of 97.5%. Then, tests with 20 subjects show the reliability of the activity classifier,
which keeps an accuracy up to 92% during real-time testing. Additionally, a single-subject twenty-day
physical workload tracking case study evinces the system capabilities to detect body adaptation to a
custom exercise routine. The proposed system enables remote and multi-user workload monitoring,
which facilitates the job for experts in ergonomics and workplace health.

Keywords: human activity recognition; physical workload; wearable systems for healthcare; machine
learning for real-time applications

1. Introduction

According to the World Health Organization (WHO), the amount of workload can be a hazard
at the workplace leading to work-related stress [1]. Having too much or too little to do at work is
often an indication of bad time management that results on mental stress [1,2]. Mental stress affects
the heart rate (HR) that in turns spreads its effects to other parts of the body [3]. Workload is a key
factor in ergonomics to determine the adequate length and number of rest breaks for a given job,
helping to reduce work-related stress [4]. However, the amount of physical workload is not necessarily
determined by the length of a particular task, but by the quantity of energy required to complete it,
and can also be reflected on the HR [5].

In consequence, works like [5] describe the importance of HR tracking in physical workload
assessment. The authors of [5] perform a comparison between using absolute cardiac cost (ACC) and
relative cardiac cost (RCC) to evaluate physical workload based on HR values during resting periods
between activities. Similarly, Solé proposes in [6] an standardization for workload values based on
RCC using the Chamoux [7] and Frimat [8] criteria, where the numeric workload scores are mapped
into categories going from extremely hard to very light. These criteria allow a qualitative assessment of
workload using only HR measurements.

A common element among the physical effort assessment systems is HR tracking. HR has a
well-known relation with mental stress, as evidenced in [9–12]. The methods to obtain information
about heart activity must be reliable and must allow their implementation using non-invasive devices to
be relevant in practice. In [13], a comparison of HR signals coming from an electrocardiography (ECG)
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and a photoplethysmography (PPG) sensor establishes the reliability of PPG to obtain HR information.
Additionally, the authors of [14] validate the use of a commercial HR monitor, which employs PPG
to track HR waveforms during rest. A similar conclusion is found in [15] with a smartwatch. This
validation of PPG-based HR tracking has led to developments that seek to strengthen HR monitoring
on environments where sensor signals can be corrupted by body movements [16]. Despite of such
possible corruption, other systems have been built with PPG sensors under movement conditions and
have not displayed issues regarding performance [17–19].

Regarding physical workload, several methods for continuous track of the physical effort can
be found in literature where qualitative data are not provided. For example, in [20] Jovanov et al.
use a wireless body area network (WBAN) to monitor motion from on-body accelerometer and
electrocardiography (ECG) sensors. Such a system intends to keep track of the physical activity and
health status with non-invasive technology. Other works like [21–24] propose manually initiated
recording of activities with data from HR trackers to measure the physical workload of a given
population. Such a method is tested in [21–24] with salsa dancers, dockers, nurses and porters,
respectively. Complementary, Jovanov et al. introduce real-time HR monitoring and step counting to
track the work stress in nurses in [12]. Our previous work in [19] improves the method proposed in [21]
by developing a mobile application that computes the workload during each activity performed by
janitorial staff. In the case of [19] the system is manually initiated, as in [21–24], and allows only local
monitoring, which requires the presence of an expert next to the worker. In most real-life scenarios,
having an ergonomics expert all over the workplace is unfeasible.

To follow the tendencies on mobile-health applications, it is necessary to address the problem of
workload assessment from a real-time perspective as suggested by [12]. Therefore, HR tracking must be
integrated with real-time human activity recognition (HAR) or online HAR (according to [25]) to achieve
workload assessment without requiring manual intervention to indicate the start and end of an activity.
Some works have shown efforts to achieve this integration. For example, [26–28] exhibit systems that
combine HR tracking and online HAR using on-body sensors and an integration device to receive and
display the sensors information. The integration device, typically a smartphone, can take the place of
a movement sensor [29]. Accordingly, [30–32] describe smartphone-based HAR systems along with
their corresponding challenges regarding feature extraction and selection. However, these systems are
highly dependent on the on-body location of the smartphone. On the other hand, accelerometer-based
HAR architectures present robust performance regardless the sensor location and allow to distinguish
among a wider range of activities compared to smartphone-based systems [26,33–35].

The robustness and reliability of HAR with accelerometers is reflected in the variety of the e-health
applications where it is found. For example, [36] employs accelerometer-based HAR for posture
recognition which helps to monitor falls in elderly people. Such an approach is also present in [37–39],
which demonstrates the rising popularity of this application. Moreover, some developments related
with sports and fitness complemented with HAR are shown in [40,41].

Thus from these previous works, it can be concluded that HAR is suitable as a key component for
workload tracking. Nevertheless, the need of relevant implementations that integrate HR and HAR
tracking and take it a step further to qualitative workload assessment remains a challenge from an
ergonomic point-of-view. Consequently, the work described in this article presents a solution that
embraces wearable technology and machine learning algorithms to compute physical workload in
real-time. Our solution here combines the HAR and HR tracking to achieve a workload assessment
that is linked automatically with the performed activity. Compared to our previous work in [19],
this new system eliminates the need of an expert next to every single worker that is being tracked,
since it enables remote and multi-user monitoring.

The rest of the paper is organized as follows. Section 2 describes the characteristics of the wearable
devices implemented in this system, details the workflow of the mobile application, and displays how
the system classifies the workload. Section 3 shows the development of the online HAR component
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and presents two cases of study to evaluate the online HAR performance and the physical workload
assessment. Sections 4 and 5 contain the discussion and conclusions regarding the results, respectively.

2. Materials and Methods

2.1. Wearable Devices and Mobile Application

The hardware for HAR comprises of an ultra-low power (ULP) microcontroller unit (MCU) with
Bluetooth low energy (BLE) capability, an ULP MEMS (Micro Electro-Mechanical Systems) based
accelerometer and a small Li-ion battery. The HAR hardware is displayed in Figure 1. The selected
ULP MCU is the Lilypad Simblee, as used in [26]. The advantages of this device include small
footprint (50 mm diameter), embedded BLE radio, and a battery charge controller. A 100 mAh Li-ion
battery powers the Lilypad Simblee and can be recharged through a USB controller module [42]. This
MCU samples the signal from a tri-axial accelerometer at a 20 Hz rate, as recommended in [25]. The
accelerometer selection also follows the hardware used in [26], which is the ADXL335. This sensor
allows us to obtain information from movement and inclination with a sampling frequency up to 50
Hz and an acceleration up to 2 g [43].

 

Figure 1. Human activity recognition hardware. The case allows the system to be worn on the hip.

For the HR tracking, a Microsoft Band performs HR sampling with a built-in PPG sensor [44].
This wearable enables the tracking of other fitness-related variables such as sweating, arm movement
and step counting, among others [44]. This device has been validated by different authors for HR
monitoring [45,46]. For this work, we only required the HR sensor; and therefore, other sensors are
deactivated to save energy. A specialized Software Development Kit (SDK) for Android devices permits
the control of the Microsoft Band. This SDK can be found in [47]. We develop a mobile application that
connects automatically to both sensors and has two operating modes: training mode and testing mode.

In training mode, the user interface (UI) asks for the activity that the user is going to perform
from a list of predefined exercises (jogging, squatting, doing push-ups and doing crunches) and the
average HR at rest to use it as a reference parameter for workload estimation. A 1-minute timer is
used to standardize the length of the training sessions for the classification algorithms. The UI for this
operation mode is displayed in Figure 2a. The application stores the incoming data from both sensors
in a JSON (JavaScript Object Notation) array, expecting to have 20 samples of each accelerometer axis,
the average HR within one second and a label representing the activity. Every second, the JSON array
containing the sensor samples is sent to a cloud server for storage in a database. After taking training
samples from nine subjects, a Python script retrieves the stored data along with its corresponding
activity labels and trains a classification model using the scikit-learn library [48]. The details regarding
training and validation are explained in the Section Results. Once the model is validated, the mobile
application can function in the testing mode. In this mode, the sampling process from the sensors
remains the same as in the training mode; however, the UI does not have any time restriction. Therefore,
an array containing the samples from the tri-axial accelerometer is taken by a feature-computing
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function followed by the classification model and the average HR during activity passes through a
workload estimator. Figure 2b shows the UI for the testing mode.

  

(a) (b) 

Figure 2. User interface of the mobile application. (a) Training mode. (b) Testing mode.

2.2. Physical Workload Computation

As [6] mentions, physical workload can be computed using metabolic consumption tables, oxygen
consumption tables and HR measurements. However, HR measurements are the only non-invasive
method, which allows the integration of wearable technology. In the literature, there are two criteria
to evaluate HR-based workload: Frimat’s [8] and Chamoux’s [7]. In one hand, the Frimat’s criterion
estimates workload on short work times or on specific activities; while, on the other hand, the Chamoux
criterion computes the workload of a full workday (at least 8 h) [19]. For this work, the Frimat’s
criterion is chosen since the target are fitness-related activities. The methodology used for physical
workload computation is the same as in [19].

The selected method requires the computation of some cardiac indicators. The first one is the
absolute cardiac cost (ACC) as defined by Equation (1),

ACC = HRactivity −HRrest, (1)

where HRactivity refers to the average heart rate during the activity and HRrest is the statistical mode of
the HR values measured during resting periods. ACC allows the estimation of intensity for a given task.
Another indicator, the relative cardiac cost (RCC) is derived from the ACC as shown in Equation (2).

RCC =
ACC

HRmax −HRrest
× 100. (2)

RCC indicates the adaptation of the body to an activity.
In Equation (2), HRmax stands for the maximum achievable HR by a subject. The exact value of

HRmax should be found in a stress test. However, [6] provides a theoretical definition, which can have
up to 5% of error compared to the actual value. Such definition for HRmax depends on the subject age
as stated in Equation (3),

HRmax = 220−Age. (3)
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Frimat’s criterion also needs the calculation of the cardiac acceleration (ΔHR) defined in
Equation (4), and the mean heart rate (HR) within an arbitrary time window.

ΔHR = HRmax −HR. (4)

Thus, once the five variables for Frimat’s criterion (ACC, RCC, HRmax, HR and ΔHR) are computed,
each one of them is mapped into a corresponding Frimat’s coefficient, which takes an integer value
between 1 and 5. Table 1 details the relation between the values of each indicator and their respective
Frimat’s coefficient.

Table 1. Relation between Frimat’s coefficients and cardiac indicators.

Frimat’s
Coeffs. Value

Variable Ranges

ACC (bpm) RCC (bpm) HRmax (bpm) HR(bpm) ΔHR (bpm)

1 10–14 0.10–0.14 110–119 90–94 20–24

2 15–19 0.15–0.19 120–129 95–99 25–29

3 20–24 0.20–0.24 130–139 100–104 30–34

4 25–29 0.25–0.29 140–149 105–109 35–39

5 >30 >0.30 >150 >110 >40

Then, the method requires to take the Frimat’s coefficient from each input variable and add them
up to obtain a Frimat’s score, which ranges between 5 and 25. This score is the value that determines
the level of physical workload of an activity. Following the ranking presented in [6], an activity can be
ranked as shown in Table 2. During the implementation of the workload computation, the system
takes the resting HR that must be previously measured and compares it with the average HR within
one-second time windows to compute the five cardiac indicators needed to obtain the Frimat’s Score.
This score was mapped to its corresponding category according to Table 2, accompanied with the label
of the most recent activity.

Table 2. Ranking of an activity according to its Frimat’s score.

Frimat’s Score Values Ranking

25 Extremely hard

24 Very hard

22–23 Hard

20–21 Distressing

18–19 Bearable

14–17 Light

12–13 Very light

≤10 Minimum workload

3. Results

3.1. Training and Validation of the Activity Classifier

The implementation of the online HAR subsystem requires three critical steps: data collection,
training and validation. To perform a reliable data collection, the selected activities must be clearly
distinguishable from the sensor point-of-view and they should be related to a common set of tasks.
For the sake of test subject availability, we selected a fitness routine, which includes jogging, doing
crunches, push-ups and squatting. These activities are among the most common exercises performed
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by the local population. Since the workload assessment requires us to track the resting periods,
standing still is also an activity into consideration. Additionally, to increase the system generalization
capabilities, data collection must be done from heterogeneous sources, i.e., subjects with different
anatomic characteristics and different styles to perform exercises. Thus, nine volunteer subjects (six
men and three women) performed the four mentioned exercises during the same amount of time.
The ages of the volunteers ranged between 19 and 32 years. At least four hours before each exercise
session, volunteers did not drink substances that alter HR, such as: caffeine, alcohol, nicotine, etc. Five
subjects exercise four times a week, while the other four subjects only exercise once in a week. Data
was collected between Monday and Friday in the evening (18:00–20:00). Since exercises like push-ups
and crunches are generally more physically demanding than jogging and squatting, we designed the
sessions of the experiments to consist of one-minute part of exercise and three-minute part of resting.
Hence, each volunteer performs at least four different sessions, one per exercise. To avoid unexpected
short pauses during the exercising part of each session, hydration needs of the subjects are attended as
required. These unexpected pauses would represent noise on the motion signals and can introduce
undesired glitches in the training and validation datasets. Such glitches are unavoidable in the practice,
but to guarantee the correct labeling of data, we asked subjects to reduce the pauses during exercises.
Thus, to overcome this issue, subjects with better physical condition were asked to participate in more
than one experiment. By the end of collection, the dataset for training and validation contained over
118,000 three-dimensional samples taken at 20 Hz from the hip-placed accelerometer.

Consequently, the dataset must be converted to a multidimensional space of features. The
considered feature set was the same as in the previous work [26]. Thus, it is shown that the most
relevant features are those summarized in Table 3.

Table 3. Features considered for training.

Feature name Symbol per axis Meaning

Mean x, y, z Statistical tendency of a group of samples from the same axis

Standard deviation std(x), std(y), std(z) Measure of variability of a group of samples from the same axis

Variance var(x), var(y), var(z) Measure of variability of the squares of a group of samples from
their corresponding mean

Mean absolute deviation MAD(x), MAD(y), MAD(z) Measure of variability of a group of samples from their
corresponding mean

Difference of means =
x − y, y− z, x− z Difference between means of two different axes

This preselected feature set is the product of an extensive literature review about online HAR
systems and the engineering process carried out in [26]. Table 3 describes each considered feature
along with their corresponding symbol and meaning. Each one of the 15 mentioned features must be
computed from a group of samples, and each array forms a feature vector; therefore, the sample-group
size becomes a concern. The group size is named time-window size, since the number of samples
required to calculate a feature vector is directly related to the amount of time that the system takes to
gather the samples. From the real-time implementation perspective, this time-window size is critical to
determine the system latency. Hence, the selected time-window size is one second considering that the
perception of activity changes for different users is not immediate and there is the need of gathering
enough data within a time window to allow a clear distinction between activities. Thus, the minimum
delay for the classifier to detect a change of activities was one second, and each feature vector was
computed using 20 samples, due to the sensor 20 Hz sampling frequency.

After setting the time-window size, the dataset was reduced to 5900 feature vectors approximately,
each one associated to their respective activity label. Next, classification algorithms to train with this
dataset were needed. According to [25], random forest (RF) and k-nearest neighbors (kNN) are the
most common choices for online HAR applications. In the present work, both algorithms were used in
order to compare their performance to select one for implementation.
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RF algorithm is an estimator that separates the training dataset into subsets for a custom number
of decision trees. These trees decide over their respective samples and then the estimator averages
their decisions. On the other hand, kNN algorithm maps the feature vectors into a multidimensional
space and separates them according to their labels. Then, an incoming sample was compared to its
closest training samples (or neighbors), determined by an internal distance measure, and the incoming
sample was assigned to the class of most of its neighbors.

Collected data from the volunteers was separated by assigning 70% to a training subset and 30% for
a validation subset, following a proper data randomization to avoid underfitting. Then, RF estimators
were trained varying the number of trees from 2 to 100, and kNN with the number of neighbors
from 2 to 50. These values are chosen after noticing that there was not a significant improvement on
overall accuracy by increasing the number of trees or neighbors, respectively. Best results show an
overall accuracy of 97.7% for RF with 63 trees and 95.2% for kNN with five neighbors. The normalized
confusion matrices for both algorithms are displayed in Figure 3. These confusion matrices evince the
difference in the overall accuracies by exhibiting less confusion in crunches, push-ups and squatting
for the RF algorithm compared to kNN. Such results were obtained using the validation subset.
Consequently, optimization efforts were conducted towards RF.

  
(a) (b) 

Figure 3. Normalized confusion matrices for: (a) random forest (RF) classifier and (b) k-nearest
neighbor (kNN) classifier.

A classifier optimization process is required to reduce dimensionality and, in the case of RF, reduce
the number of decision trees. After such a process, validation of the optimized classifier should not
show significant reduction on the performance metrics (overall accuracy and confusion matrix).

For dimensionality reduction, the level of importance that each feature has during training
was analyzed. The importance levels considered here were equivalent to Gini importance, which is
described in [49]. This importance was computed considering the decrease in average accuracy for the
trained trees when a feature value was varied randomly. Thus, significant accuracy detriments point
to the significant importance for a feature. In the case of the scikit-learn library, the feature importance
levels are normalized. Figure 4 displays a bar graph of the feature importance. As observed, it was
clear that y, MAD(y), MAD(z) and x− y were the features with the lower significance; and therefore,
we proceeded to remove them from the feature vectors. Even though further reduction in the number
of features reduced the code size that would be embedded in the mobile application; extra reductions
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could also compromise the classifier performance. Thus, we decided to work with the new feature set
of 11 features; but therefore, the model needs to be retrained with this new set.

Figure 4. Bar graph of the importance of the features in RF classifier.

Figure 5 shows the variation of classifier accuracy with respect to the number of trees, along with
a dashed tendency line. According to the accuracy tendency line, after 20 trees, the classifier trended
to a stable behavior. Consequently, the number of trees could be reduced to a value above 20 trees
without sacrificing performance. In our tests, the overall accuracy with the validation subset changed
from 97.7% with 63 trees to 97.5% with 24 trees, but with lower computational cost. Figure 6 exhibits
the confusion matrix of this new model, where it could be observed that there was no performance
compromise, which facilitated performing the classification directly on the mobile application.

 
Figure 5. Variation of the overall accuracy with the number of trees in the RF classifier.
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Figure 6. Confusion matrix of the optimized RF classifier.

The resulting model was exported from Python to Java using the Porter tool described in [50] given
the requirements of the Android environment. Thus, the model converted into a Java class contains
the mathematical description of the 24 decision trees and computes the average decision among them
to estimate the corresponding activity. The mobile application includes a testing mode where it reports
the true label of the activity performed during the experiment and the labels detected by the model,
along with a user identification number and the time stamps of the samples. Thus, this working mode
was used for the remaining tests described next.

3.2. Online HAR Performance

Once the classifier model was embedded in the mobile application, the model was tested in a
real-time environment. For the test, 20 people, different from the nine volunteers who participated in
the training data collection, were asked to participate in a new set of experiments. This time, people
registered their age on the application along with the average heart rate obtained from the smartwatch
on a preliminary 30-seconds resting period. Then, they wore the HAR device on the hip and performed
the following exercise routine: push-ups, resting, jogging, resting, squatting, resting, crunches and
resting. Each of these activities had a fixed duration of 30 s, which was set seeking a limitation of
physical demand to avoid unexpected resting moments. Planned, 30-second resting moments were
situated between exercises to help subjects to fulfill the routine without extreme fatigue. Along with
each routine, a researcher manipulated the application to set the activity label manually as the subjects
shifted from one activity to another. Meanwhile, the system reported to a cloud-stored database the
labels obtained from the model, the labels entered manually, a system-custom user identification
number and the time stamp.

After this data collection stage, the detected labels were compared against the manual labels to
obtain the accuracy rate per activity and per user. Table 4 resumes the statistics of the accuracies from
the testing stage. Figure 7 also shows the confusion matrix from online HAR testing. Although the
validation accuracy was reported to be 97.5%, real-time tests had an average accuracy between 86%
and 92% due to unexpected movements that induced noise for the classifier. Further details regarding
the results of Table 4 and Figure 7 are given in the Section Discussion.
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Table 4. Representative statistics of the online human activity recognition (HAR) testing.

Statistical Parameter
Accuracy Percentages per Activity

Resting Crunches Push-ups Squatting Jogging Overall accuracy

Average 92.26% 86.11% 87.01% 86.71% 87.82% 89.53%
Standard deviation 3.34% 7.89% 4.90% 7.53% 6.47% 3.19%

Maximum 96.92% 100.00% 96.81% 98.76% 100.00% 95.13%
Minimum 84.22% 65.95% 75.24% 70.73% 76.96% 82.69%

 

Figure 7. Confusion matrix from testing data.

3.3. Case Study: Physical Workload Evolution on an Individual

This second case study set its focus on testing the workload estimator reliability. For this purpose,
a 27-year-old healthy male subject volunteered to participate in a twenty-day experiment. The subject
performed the same exercise routine every day, and its physical workload was recorded. In our system,
the collection of workload data was linked to the activity recognition function in order to provide
meaningful insights of physical performance. Then, the tests set-up implies that the subject must wear
both devices during each session. Figure 8 shows how the subject wears the devices and evinces that
they do not represent major discomfort. Before the first session, a preliminary exercising round reveals
that crunches do not represent significant physical effort for the subject. Thus, the routine for each day
is defined as follows: 15 s of resting to find the reference HR for workload estimation, followed by 60 s
of push-ups, 60 s of jogging, 60 s of squatting and 60 s of resting. Then, the one-minute rounds are
repeated three times.

The subject did not exercise regularly, which led to the expectation of high levels of workload
on the first session and a progressive decline on the physical exigency on successive sessions, as the
body adjusts to the exercise routine. The performance of the online HAR was also expected to be
steady along the sessions, since the system was used by the same person. Due to the methodology
of workload estimation, several Frimat’s scores can be obtained during a one-minute exercise round
given the HR variations. However, the system maps those scores into the eight categories, reducing
information sensitivity. After each session, a Python script retrieves the classified activities and the true
label of activities for HAR assessment, and the workload categories for each activity. Consequently, this
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script found the statistical mode of the workload categories for an activity and set it as the estimated
physical workload.

 

Figure 8. Subject wearing the devices before exercising.

Figure 9 displays the resulting mean HR for push-ups, squatting and jogging, during each daily
session. Figure 10 shows the Frimat’s score values assessment during the resting rounds at the end of
each session. These workload values reflect the overall perception of the body of the subject after all
the exercising rounds. Complementary, Table 5 resumes the online HAR performance for each session.
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Figure 9. Physical workload tracking results for an individual after 20 days.
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Figure 10. Physical workload assessment after each session.
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Table 5. Average accuracies of online HAR for the second case study.

Session
Activity Classification Accuracy

Push-ups Jogging Squatting

1 94.53% 90.36% 91.38%
2 94.24% 93.83% 89.76%
3 93.03% 91.73% 88.53%
4 92.86% 89.77% 87.76%
5 89.53% 84.20% 90.73%
6 88.50% 87.83% 92.53%
7 88.95% 89.17% 92.67%
8 89.73% 90.13% 91.44%
9 90.64% 90.13% 91.43%
10 91.78% 92.60% 90.14%
11 92.13% 91.27% 90.74%
12 92.16% 90.66% 91.03%
13 91.06% 90.46% 92.80%
14 89.73% 90.36% 90.03%
15 92.63% 90.93% 91.56%
16 92.36% 91.43% 91.03%
17 91.66% 89.43% 92.23%
18 91.23% 90.44% 90.26%
19 90.96% 91.27% 89.43%
20 89.66% 90.13% 93.03%

Average 91.37% 90.31% 90.93%

4. Discussion

This work introduced a system that combines real-time activity monitoring and physical workload
estimation to allow remote tracking of workers in physically demanding jobs (as in our previous case
study in [19]) and athletes for work health and fitness purposes, respectively. For a comprehensive
assessment of system performance, two case studies were presented. The first one embraces the
training, validation and real-time testing with 20 subjects of the human activity recognition component.
The second case shows the evolution of physical workload for an individual over twenty days.

The training and validation results stood above 95% for overall classification accuracy, compared
to previous studies, which also employed wearable devices as shown in Table 6. Critical parameters
regarding real-time implementation were considered for comparison such as number of sensors,
number of activities and accuracy.

Table 6. Online HAR comparison with previous studies.

Article Number of Wearable Sensors Number of Activities Validation Accuracy

[26] 1 10 98.7%
[27] 5 9 94.8%
[28] 1 5 95.7%
[30] Smartphone 3 98.6%
[51] 1 9 94.8%
[52] 1 8 95%

This work 1 5 97.5%

The comparison in Table 6 allows us to locate the present work with an overall accuracy that
is only surpassed by a system that only considers three activities and by our previous work in [26].
However, the only work from Table 6 that displays results of real-time tests is [30]. There, tests are
10 s long, compared to the 30 s tests of the present work. Reference [30] considers six test subjects,
while our case study considered twenty. Hence, such a length and subject quantity difference can
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lead to errors in movement data, which makes the results shown in Table 4 generalizable to expected
performance during real use.

Additionally, results in Table 4 and Figure 7 containing the average accuracy per activity and their
respective standard deviation evinced the tendency of the system to keep a classification exactitude
above 85%. However, tests on the first case study were carried by people who do not know the system
nor where intensively introduced to its use. Instead, the explanation of the experiment was held short
and they were asked to perform the exercises in the most natural way for them. Thus, there were
some cases where the subjects took unexpected pauses or just trembled during the exercise, which
introduced noise on the one-second time-windows of sampling and reflects on a reduction of the
overall accuracy. Nevertheless, by observing at the maximum values, there was also evidence of cases
where classification of the embedded model shows no incorrect estimations.

Regarding the second case study, it helps us to validate the reliability of the workload computation
in real-time. This approach differs from other workload-related works like [21–24] where there is no
real-time feedback. Instead, authors from [21–24] take activity and HR data manually and then compute
the workload and categorize it. The proposed system does all this process automatically, facilitating
the relationship between activity and physical effort, which takes relevance at the application field.
The subject considered for the twenty-day experiment of the second case study performed a physically
demanding routine that was evaluated as extremely hard at the end of the first ten days, according to
Frimat’s criteria. However, a remarkable evolution in the perception of each activity by the subject is
shown in Figure 9. In the first sessions, the system evaluated that each type of exercise was extremely
hard for the subject, obtaining an average HR of 150 bpm, then in the last session these activities were
classified as a light workload, obtaining an average HR of 95 bpm. As expected, the first exercise of the
routine (push-ups) displayed the lowest workload amounts, since the body started to adapt to the
routine. However, as the exercising round advances, the HR started to increase, which was reflected
in higher workloads. Another evidence of the assimilation of the exercising routine was the change
from Frimat’s scored values in the resting periods at the end of each session, as shown in Figure 10.
Considering that the subject always performed the same exercise routine for twenty sessions (that is,
there was no increase or variation in the load), a principle of adaptation is presented in the physical
state of the subject [53–55]. As can be seen in Figures 9 and 10, at the beginning of the sessions, the
physical capacity of the subject was not enough for the established load, but as the exercise sessions
increased, the body managed to adapt to that load.

Additionally, Table 5 shows the performance stability of the online HAR component during the
second case study. The accuracies stood around 90% for the three activities, considering the fatigue
effect on the subject movements. It also must be noticed that these experiments were longer than in the
first case study and exhibited higher average accuracy; this is due to the lack of heterogeneity, which
leads the system to be exposed to more similar movements each session. Thus, these results confirmed
the reliability of the two components of our system for workload tracking purposes.

Finally, the contributions of this work are highlighted as follows:

1. We described the development of a smart physical workload tracking system that allows health
and fitness professionals to monitor several people simultaneously and remotely, which is critical
in manufacturing and sport industries. To the best of our knowledge, this solution integrating the
physical workload concept has not been explored before.

2. We included a well-known concept from ergonomics (Frimat’s criteria) into a real-time e-health
application. We achieved this by embedding the workload computation and activity classification
on a mobile application, which integrates the signal from a hip-placed accelerometer and
a wrist-placed PPG sensor. To the best of our knowledge, this approach has not been
presented before.

3. We displayed tests with 20 people performing the same exercise routine. We trained the
classification algorithms with data sampled from chosen volunteers; and then tested with a
different set of subjects using the devised wearable device during an exercise routine, which
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comprises crunches, push-ups, squatting and jogging. The accuracy of the classifier was above
85% during real-time testing.

4. We showed the physical progress of a volunteer by tracking his/her physical workload for twenty
days while he/she performed the same routine. This case study evidenced that Frimat’s score
could provide enough information to determine the level of fitness progress of a person that
intends to train using physically demanding exercises.

5. Conclusions

A physical workload tracking using human activity recognition and HR measurements with
wearable devices was presented. The system used a hip-placed motion sensor and a wrist-placed
photoplethysmography sensor for HR. The information from both sensors was gathered by a mobile
application through BLE connections; then, performed activity recognition with a trained random forest
model and computed physical workload using Frimat’s method. The activity classifier displayed a
97.5% accuracy during validation, and 92% accuracy during real-time tests with 20 subjects. In addition,
a twenty-day experiment with a single subject who performed a custom exercise routine shows that
the system could recognize the body adaptation to the physically demanding activities.

Future research directions point to a further study of the information relating physical workload
and the activities performed. Given the reliability of the wearable-based activity classifier and the
workload estimation method, new developments combining ergonomics and machine learning can
be carried to predict the amount of physical effort that an activity can represent for a subject. Hence,
this could lead to an injury prevention environment powered by historical information on a workplace
or physically/mentally demanding tasks.
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Abstract: In practical rehabilitation robot development, it is imperative to pre-specify the critical
workspace to prevent redundant structure. This study aimed to characterize the upper extremity
motion during essential activities in daily living. An IMU-based wearable motion capture system was
used to access arm movements. Ten healthy subjects performed the Action Research Arm Test (ARAT)
and six pre-selected essential daily activities. The Euler angles of the major joints, and acceleration
from wrist and hand sensors were acquired and analyzed. The size of the workspace for the ARAT
was 0.53 (left-right) × 0.92 (front-back) × 0.89 (up-down) m for the dominant hand. For the daily
activities, the workspace size was 0.71 × 0.70 × 0.86 m for the dominant hand, significantly larger
than the non-dominant hand (p ≤ 0.011). The average range of motion (RoM) during ARAT was
109.15 ± 18.82◦ for elbow flexion/extension, 105.23 ± 5.38◦ for forearm supination/pronation, 91.99 ±
0.98◦ for shoulder internal/external rotation, and 82.90 ± 22.52◦ for wrist dorsiflexion/volarflexion,
whereas the corresponding range for daily activities were 120.61 ± 23.64◦, 128.09 ± 22.04◦, 111.56 ±
31.88◦, and 113.70 ± 18.26◦. The shoulder joint was more abducted and extended during pinching
compared to grasping posture (p < 0.001). Reaching from a grasping posture required approximately
70◦ elbow extension and 36◦ forearm supination from the initial position. The study results provide
an important database for the workspace and RoM for essential arm movements.

Keywords: inertial measurement unit; upper extremity; motion; action research arm test; activities of
daily living

1. Introduction

In the last decade, there have been dramatic improvements in rehabilitation robots and kinematic
analyses of the upper extremities. Many types of multi-axis exoskeletons have been developed, as
well as relatively simple end-effector type robots [1–5]. Exoskeletons are commonly defined as having
a structure in which the robot joints correspond to human joints, whereas end-effector type robot
structures do not correspond to human anatomical structures [1,6]. However, even in exoskeletons, the
angular movements of human and robot joints do not exactly match. This discrepancy comes from the
fundamental difference in that exoskeleton joints have mechanical joint axes with their corresponding
motors, whereas human joints consist of bones, muscle and tendons, and soft tissues [7]. Therefore,
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the goal of exoskeleton rehabilitation robot development should not focus on perfectly resembling
the human arm joint and structure, but rather on designing a modified structure based on a better
understanding of human kinematics.

Many types of sensors are used for a motion analysis of the upper extremities including
electromagnetic sensors, mechanical sensors, optical sensors, and inertial sensors. Aizawa et al. [8]
reported the range of motions (RoM) of the major upper extremity joints during selected activities of
daily living (ADL), using a commercial electromagnetic sensor system. Gates et al. [9] also quantified
the RoM of the upper extremities during eight ADLs using reflective sensors. Kim et al. [10] conducted
a kinematic analysis of drinking movements using reflective markers. Chen and Lum [11] used a
spring-operated exoskeleton to compare the RoM with and without robotic assistance during the given
tasks, where the angles were evaluated using mechanical sensors within the robot. Perez et al. [12]
introduced a portable motion analysis for the upper limbs using inertial measurement unit (IMU)
sensors. A recent review showed that accelerometers and IMUs are most frequently used devices for
an analysis of upper limb motion [13]. Although many of these reports present quantitative angular
values during specific ADL tasks, assessments focusing on clinically relevant applications of the motion
data remain scarce.

To minimize the size and complexity of neurorehabilitation robots, the number of axes and the
workspace of a robotic hand or end-effector should be minimized; at the same time, however, essential
tasks need to be performable during daily activities. From the viewpoint of performing a specific task,
although the human performance using an arm may seem similar to the actuation of a robot, when
considering the mechanism of the performance, they are significantly different. Moreover, it is possible
to state that biological and engineering mechanisms are in significant opposition [7]. It is important to
have a database on the position and joint angles while performing essential daily activities; however,
the movement patterns in healthy subjects and stroke patients differ significantly, and the exoskeleton
cannot be actuated in exactly the same manner as a human limb. It is necessary to create a design
that patients may not only wear but also actuate in an appropriate manner to help the movement of a
paralyzed limb and induce neuroplasticity.

The purpose of this study was to provide a database on the dimensions of the essential workspace
and the RoM of the major upper extremity joints during the normal motion of healthy subjects from
clinical and practical perspectives.

2. Materials and Methods

In this section, we present the IMU-based motion capture system used in this study with validation
protocol, followed by participants information and task protocols. Detailed information on extracted
parameters and statistical methods are also provided.

2.1. Upper Extremity Motion Capture System and Its Validation

For motion capture of the upper extremities, Perception Neuron® (Noitom Ltd., Beijing, China), a
wearable multi-IMU based modular motion capture system was used. In this study, we utilized 25
IMU sensors for the upper body assessment; three sensors for the body axis, four sensors for each arm,
and seven sensors for each hand including the fingers (Figure 1). User-interface software, Axis Neuron
(Noitom Ltd., Beijing, China), was applied for motion recording and data extraction. The sampling
rate of the data was set to 60 Hz.
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Figure 1. (A) A volunteer subject is wearing the IMU-based upper extremity motion capture system.
(B) The subject is performing a task in the Action Research Arm Test.

To validate the accuracy and consistency of the system, root mean square error (RMSE) analyses
for the elbow flexion/extension and wrist dorsiflexion/volarflexion axes were performed using an
electro-goniometer as a reference. During real motion with the system worn on the body, it is not
possible to isolate single joint movements in a single plane with all other joint being fixed. Therefore,
coefficient of variation (CoV) analyses for forearm supination/pronation and elbow flexion/extension
for the angles from a gyrosensor, and the z-axis (up-down) and y-axis (front-back) distances from
accelerometers in the forearm and hand sensors were conducted using the data collected during
the tasks.

2.2. Participants

Ten healthy volunteers (six males, four females) were recruited for this study, and participated
after providing written informed consent. Their mean age was 29.3 ± 4.7 years (age range: 23–35).

2.3. Tasks and Procedure

All subjects wore the IMU sensor based motion capture system on both upper extremities. After
sensor calibration, they performed all 19 test items of the Action Research Arm Test (ARAT) with using
both their right and left hands alternatively [14]. ARAT consists of four domains: domain 1 includes
six grasp and reaching tasks with various size of wooden blocks, ball, or a stone; domain 2 consists
of four grip activities such as pouring water from glass to glass or putting a hollow tube through a
stick; domain 3 includes six pinch and reaching tasks using various size of marbles using different
fingers; and domain 4 consists of four gross movements placing the hand on three different parts of the
head [14]. They also performed six pre-specified ADL tasks: (1) opening a water bottle and drinking,
(2) peeling off a banana, (3) buttoning and unbuttoning a shirt, (4) combing their hair, (5) squeezing
toothpaste from a tube and brushing their teeth, and (6) turning a door knob. These pre-specified ADL
tasks were selected from the survey results from our previous study which evaluated the practical
needs of stroke patients owing to their hemiplegia [15]. During the ADL tasks, the subjects were
instructed to perform the task in the most natural way possible, without specifying which hand to use
to hold or manipulate the object.

2.4. Extracted Parameters

Using Axis Neuron (Noitom Ltd., Beijing, China) software, acceleration and position data of the
wrist and hand sensors from the accelerometer, and the Euler angles for the sensors of all major joints
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with reference to their proximal segment sensors during the ARAT and ADL tasks, were extracted.
For each ARAT domain and ADL task, the size of the workspace in three orthogonal coordinates and
the angular position and RoM for each upper extremity joint were calculated. For a sub-analysis,
grasping/pinching and reaching movements when conducting the tasks in ARAT domains 1 and
3 were additionally analyzed regarding the initial grasping/pinching position and RoM during a
reaching movement.

2.5. Statistical Analysis

For validation purposes, the intra-subject covariance and inter-subject covariance were both
calculated for repetitive grasping/pinching and reaching tasks. Paired t tests were conducted to
compare the workspace dimensions and RoM between dominant and non-dominant arms. Paired t
tests were also conducted for a comparison of the major joint angles in the grasping/pinching position
and reaching position, the initial position between grasping and pinching, and the reaching position
from grasping and pinching. The statistical program SPSS ver. 25 (SPSS Inc., Chicago, IL, USA) was
used for analysis. A p value of less than 0.05 was considered statistically significant.

3. Results

The validation results followed by data analysis on movement characteristics are provided in
this section.

3.1. Validation of Upper Extremity Motion Capture System

The range of RMSE for the elbow flexion/extension angle ranged from 2.11◦ to 4.75◦ (3.61 ± 1.32◦),
and 0.42◦ to 1.22◦ (0.85 ± 0.40◦) for wrist dorsiflexion/volarflexion angle. During the reaching task,
the mean change in forearm supination/pronation was 36.65 ± 6.98◦, with an intra-subject CoV of
17.29% and inter-subject CoV of 19.05%. The change in elbow flexion/extension was 69.96 ± 16.89◦,
and intra-subject and inter-subject CoV was 11.67% and 24.14%, respectively. Distance data extracted
from the sensors during the reaching tasks were evaluated and then compared with the real movement
distance. Regarding the accelerometer on the forearm sensor, the average of calculated movement
distance was 34.14 ± 4.15 cm in the z-axis, and 33.54 ± 4.79 cm in the y-axis, where the measured
distance in each direction was 34.0 cm and 33.5 cm, respectively. Data calculated from hand sensors
were 36.78 ± 3.09 cm and 32.35 ± 4.64 cm), respectively. The intra-subject CoV ranged from 5.5% to 9.5%,
whereas the inter-subject CoV ranged from 8.4% to 14.3%. The complete results are shown in Table 1.

Table 1. Coefficient of variation (CoV) for major movements a.

Sensor Type Axis
Average Change

during Task
(Across Subjects)

Intra-Subject
CoV Average

Inter-Subject
CoV

Estimated Real
Distance *

Gyrosensor Forearm
supination/pronation 36.65 ± 6.98◦ 17.29% 19.05% -

Elbow
flexion/extension 69.96 ± 16.89◦ 11.67% 24.14% -

Accelerometer
(forearm sensor)

z-axis distance
(up/down) 34.14 ± 4.15 cm 6.18% 12.17% 34.0 cm

y-axis distance
(front/back) 33.54 ± 4.79 cm 7.16% 14.28% 33.5 cm

Accelerometer
(hand sensor)

z-axis distance
(up/down) 36.78 ± 3.09 cm 5.56% 8.41% 34.0 cm

y-axis distance
(front/back) 32.35 ± 4.64 cm 9.49% 14.33% 33.5 cm

a Tasks performed by 10 normal subjects, six trials per reaching. * Estimated distance between initial object position
and target position is approximately 33.5 cm for y-axis and 34.0 cm for z-axis. Note that this is the distance regarding
common position of the forearm and hand sensors during the task and it varies by trials and subjects.
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3.2. Workspace and RoM in Basic Upper Extremity Movements

All ten subjects were right-handed. For an orthogonal coordination, the axes were defined as
follows: left-right direction for the x-axis, front-right direction for the y-axis, and up-down direction
for the z-axis. For ARAT tasks, the size of the workspace for the right hand with reference to the
sensor on the dorsum of the hand was 0.53 ± 0.11 m for the x-axis, 0.92 ± 0.08 m for the y-axis, and
0.89 ± 0.10 m for the z-axis. For the left side, the average workspace size was 0.62 × 0.80 × 0.86 m
(in x, y, z-axis order). For pre-specified ADL tasks, the workspace for the dominant hand was 0.71 ±
0.22 m, 0.70 ± 0.17 m, and 0.86 ± 0.11 m (in x, y, z-axis order). The workspace of the non-dominant
hand was significantly smaller, with an average size of 0.52 × 0.53 × 0.65 m (p = 0.001, 0.011, and
0.001 for the x-, y-, and z-axes, respectively). For the RoM in the major upper extremity joints, the
angular ranges were similar between the right and left sides. The elbow flexion/extension and forearm
supination/pronation showed the highest RoM in both ARAT and ADL for the dominant arm. The
mean RoM values were 109.15 ± 18.82◦ and 105.23 ± 15.38◦ (elbow flexion/extension and forearm
supination/pronation, respectively) for ARAT tasks, and 120.61 ± 23.64◦ and 128.09 ± 22.04◦ for ADL
tasks. The RoM of the dominant side was significantly greater than on the non-dominant side for
all joint directions except for the wrist dorsiflexion/volarflexion, which showed similar values (mean
113.70 ± 18.26◦ versus 110.08 ± 12.16◦; right versus left, p = 0.526). All workspaces and RoM data
during the ARAT and ADL tasks are shown in Table 2.

Table 2. Range of motion angle between right and left upper extremities during ARAT and ADL tasks.

Axis Right Left p a

ARAT x-axis (left-right, hand sensor) 0.53 ± 0.11 m 0.62 ± 0.07 m 0.082
y-axis (front-back, hand sensor) 0.92 ± 0.08 m 0.80 ± 0.11 m 0.049 *

z-axis (hand sensor) 0.89 ± 0.10 m 0.86 ± 0.08 m 0.224
Shoulder abduction/adduction 50.16 ± 11.14◦ 55.34 ± 13.48◦ 0.249

Shoulder flexion/extension 79.52 ± 19.34◦ 75.71 ± 21.56◦ 0.478
Elbow flexion/extension 109.15 ± 18.82◦ 106.89 ± 12.83◦ 0.705

Forearm supination/pronation 105.23 ± 15.38◦ 108.64 ± 12.64◦ 0.426
Shoulder IR/ER 91.99 ± 20.98◦ 84.44 ± 44.75◦ 0.584

Wrist dorsiflexion/volarflexion 82.90 ± 22.52◦ 81.26 ± 11.16◦ 0.833
ADL tasks x-axis (left-right, hand sensor) 0.71 ± 0.22 m 0.52 ± 0.13 m 0.001 *

y-axis (front-back, hand sensor) 0.70 ± 0.17 m 0.53 ± 0.15 m 0.011 *
z-axis (hand sensor) 0.86 ± 0.11 m 0.65 ± 0.13 m 0.001 *

Shoulder abduction/adduction 58.84 ± 14.53◦ 35.43 ± 10.09◦ <0.001 *
Shoulder flexion/extension 68.41 ± 17.56◦ 40.49 ± 18.54◦ 0.002 *

Elbow flexion/extension 120.61 ± 23.64◦ 102.53 ± 19.51◦ 0.044 *
Forearm supination/pronation 128.09 ± 22.04◦ 108.00 ± 16.23◦ 0.027 *

Shoulder IR/ER 111.56 ± 31.88◦ 77.04 ± 21.28◦ 0.030 *
Wrist dorsiflexion/volarflexion 113.70 ± 18.26◦ 110.08 ± 12.16◦ 0.526

a p value for paired t test between right and left side; * p value less than 0.05 considered statistically significant.

3.3. Characteristics of Grasping/Pinching and Reaching

The upper extremity postures during grasping/pinching and reaching were analyzed as a subset
analysis of the motion data extracted from grasping/pinching and reaching tasks in ARAT domains 1
and 3. Comparing grasping and pinching postures, the shoulder was more significantly abducted
during pinching (19.39 ± 7.84◦) compared to grasping (15.33 ± 6.91◦, p = 0.040) and more extended
during pinching (29.12 ± 12.33◦) than grasping (22.99 ± 10.63◦, p = 0.038). Elbow flexion/extension,
forearm supination/pronation, and shoulder internal/external rotation did not significantly differ
between the two postures. While reaching after grasping, the elbow was extended for an average of
87.87 ± 25.18◦ from the initial flexed posture, and pronated for an average of 36.65 ± 6.98◦ from the
initial posture. The degrees of elbow extension and forearm pronation while reaching after pinching
were similar (p = 0.849 and 0.294, respectively). The full results are shown in Table 3.
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4. Discussion

The purpose of this study was to provide clinically relevant information regarding the workspace
and major joint angle range while performing essential ADLs or important movements. By identifying
these factors, it is possible to limit the extent of exoskeleton movements and, therefore, modify the
design of the robot such that it can move within the designated workspace with a relatively simpler
structure. In this study, we evaluated the RoM and workspace while conducting ARAT tasks, which
is a common functional evaluation tool used in the clinics, because it is well known to significantly
correlate with the patients’ functional status or recovery state [16–18]. ARAT consists of four domains:
domain 1 and 3 tasks consist of the grasping and pinching of various sized objects and reaching
afterwards. Domain 2 mainly involves moving items on a table focusing on the grip function, and
domain four items are gross movement tasks that require lifting the arm to the head or face [19].

Validation of the IMU-based motion analysis system used in this study showed that the accuracy
and reliability of the sensors themselves are very high regarding angles. However, in the form
of wearable multi-sensor system, it is impossible to isolate a single joint movement, because
all joints systemically move in three dimensions, including body trunk and contralateral upper
extremity. Intra-subject covariance and inter-subject covariance were calculated for the forearm
supination/pronation and elbow flexion/extension angles to evaluate the system reliability, and the
range was deemed acceptable when considering that the reaching tasks were not completely identical.
For the position data from the accelerometers, we compared the calculated data in the y and z directions
using the estimated real movement distance. The calculated distance data were similar to the measured
data, and the variability was considered acceptable. In addition, the calculated workspace and RoM
during ARAT tasks were similar between the two extremities with no significant difference (Table 2).
This may also support the reliability of the system-derived parameter values. Although it is difficult to
state that the system provides a completely accurate measurement, it seems to provide consistent and
meaningful data.

The workspaces of the right and left hands were mostly similar, because ARAT repeats the
same tasks with both hands alternatively. The slight difference between both sides is likely due to
the difference in posture and orientation based on the limb dominance. During the ADL tasks, the
workspace of the dominant hand, right hand for all subjects, was significantly larger than that of the
non-dominant side by up to nearly 20 cm for all directions. In the view of stroke rehabilitation, most of
the patients demonstrated hemiplegia of up to 80% or more [20], which means that their intact limb
should be able to perform all normal functions. Patients with hemiplegia will use their intact hand as
their dominant hand and, therefore, in certain occasions, the exoskeleton may only need to cover a
smaller workspace than the dominant side.

The RoMs of the major upper extremity joints during essential daily activities are presented in
Table 2. The forearm supination/pronation and elbow flexion/extension showed the highest values
for the dominant side. The RoM for the forearm supination/pronation was 128.09◦ and 108.00◦ on
average for the right and left sides, respectively, during all ADL tasks. In a study using a reflective
marker-based motion capture system, the whole RoM calculated by overlapping all 95% confidential
interval range during various ADL tasks was approximately 92◦ [9]. Another study applied using an
electromagnetic sensor system reported that the maximal supination angle from full pronation was
110◦ while glass drinking and 75◦ while combing their hair [8]. In a study by van Andel et al. [21], four
selected ADL tasks were evaluated using an optic marker-based system, and their reported RoM for
forearm supination/pronation was approximately 130◦. Regarding elbow flexion/extension RoM, other
studies also showed similar results. Aizawa et al. [8] reported a RoM of approximately 120◦ to 130◦
during various tasks, and Gates et al. [9] showed that the peak flexion angle of the elbow joint was
121◦ on average when drinking from a cup, which was the highest value among the evaluated tasks.
Another study reported a RoM of around 140◦ from full extension [21]. Wrist dorsiflexion/volarflexion
RoM was also similar with other studies, which ranged from 90◦ to 130◦, whereas it was 113.70◦
and 110.08◦ for right and left side, respectively, in our study. It is important to ensure a sufficient
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RoM for elbow flexion/extension, forearm supination/pronation, and wrist dorsiflexion/volarflexion
movements during rehabilitation, because such joint movements are essential for conducting ADL
tasks, while recovery for distal joints are relatively slow and insufficient for a large portion of stroke
patients [22–24].

The angular changes in the major joints when reaching after a grasping/pinching motion are
evaluated because such actions are the fundamental movements for conducting any kind of tasks [25,26],
and most of the activities are performed within the spatial range of these actions. Pinching was
performed at a slightly but significantly more abducted and flexed posture of the shoulder joint, and
showed a significant difference in fine tuning movements of the wrist joint.

In contrast to a simple pure reaching movement, a reaching movement associated with a task
may differ significantly regarding the arm postures, grasping position, and orientation [27,28]. The
human motor system has high redundancy in terms of a multi-degree-of-freedom control system, and
while task-relevant factors are specifically controlled, task-irrelevant variables are given relatively high
variability [27]. In this study, the shoulder joint angles showed significantly different postures between
grasping and pinching, which reflects different positions of the elbow joint while conducting a task.
The wrist deviation and rotation angles also showed a significant difference, reflecting the difference
in the fine motor posture and movements. Given the difference in posture, the main components of
the reaching movement, elbow flexion/extension and forearm supination/pronation, did not differ
significantly between the two types of tasks. This result may be applied to the swivel angle model
suggested by Li et al. [27], where the shoulder joint angles can be simplified to a swivel angle regarding
the orientation and posture, and the other distal joint angles account for essential reaching movements.
In regular stroke rehabilitation, proximal muscle power recovery occurs in the early stage and more
sufficiently compared to distal muscles [22–24] and, thus, it will be reasonable to motivate the patient to
practice taking an appropriate posture for providing the right orientation of the upper extremity using
the proximal muscles voluntarily, with the help of a gravity support system if applicable, whereas the
individual robot joint actuation should focus on the essential distal joint movements such as elbow,
forearm, and wrist movements.

Based on the current study dataset and the analysis, the workspace of the end-effector and its
corresponding elbow or forearm position workspace, along with the essential elbow flexion/extension
and forearm supination/pronation, may provide minimal structural requirements for the rehabilitation
robot to maintain basic grasping, pinching, and reaching movements which are necessary to perform
daily activities. This may be applied in both neurorehabilitation exoskeletons and assistive exoskeletons.
These results may have helpful applications in virtual reality rehabilitation systems, especially in
developing games or tasks which are clinically relevant.

This study has several limitations. To generalize the findings of the motion analysis, the number
of subjects was relatively small. However, the statistical analyses provided minimal requirements
regarding the validity and reliability and the data pattern for each subject was nearly identical especially
during the structured movements (ARAT). Still, further studies with advanced protocol are necessary
to verify and generalize the study results. In addition, gender and age factors could not be investigated
sufficiently due to small number of subjects. Nevertheless, we have performed non-parametric tests to
compare the major sensor-based parameters between men and women, and because the age range
for this study was relatively in the young age, they were compared with additional dataset of the
intact limb of the older people with hemiplegia. Most of the parameters did not show statistically
significant difference according to the gender or age, except that older people tend to perform tasks
within a smaller workspace during free ADL tasks and that women tend to abduct the shoulder more
than men during pinching. IMU-based sensors basically have their own inevitable limitations, which
include drift phenomenon in both the position and angular values, which may affect the values of the
outcome measures [29]. In addition, a gimbal-lock phenomenon regarding the shoulder joint angles in
particular may have occurred during the data measurements [8]. In this regard, the data may not be
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accurate in terms of the absolute values; however, because the data are sufficiently consistent, it seems
that the general pattern of the data is reliable.

5. Conclusions

These study results provide the essential workspace and RoM of the major upper extremity joints
during ARAT and ADL tasks in healthy subjects, which will serve as a basis in designing a practical and
simple upper extremity exoskeleton robot. Further motion analyses on stroke patients are necessary to
characterize upper extremity movements in neurological disorders and determine the key features in
the stroke recovery process, which will be important in extracting the clinically relevant movement
characteristics for designing new exoskeletons for neurorehabilitation purposes.
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Abstract: The emerging mHealth applications, incorporating wearable sensors, enables continuous
monitoring of physical activity (PA). This study aimed at analyzing the relevance of a multivariate
complexity metric in assessment of functional change in younger older adults. Thirty individuals
(60–70 years old) participated in a 4-week home-based exercise intervention. The Community Balance
and Mobility Scale (CBMS) was used for clinical assessment of the participants’ functional balance and
mobility performance pre- and post- intervention. Accelerometers worn on the low back were used
to register PA of one week before and in the third week of the intervention. Changes in conventional
univariate PA metrics (percentage of walking and sedentary time, step counts, mean cadence)
and complexity were compared to the change as measured by the CBMS. Statistical analyses
(21 participants) showed significant rank correlation between the change as measured by complexity
and CBMS (ρ = 0.47, p = 0.03). Smoothing the activity output improved the correlation (ρ = 0.58,
p = 0.01). In contrast, change in univariate PA metrics did not show correlations. These findings
demonstrate the high potential of the complexity metric being useful and more sensitive than
conventional PA metrics for assessing functional changes in younger older adults.

Keywords: wearable sensors; multivariate analysis; longitudinal study; functional decline;
exercise intervention
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1. Introduction

The aging process is often accompanied by functional decline and increased risk of chronic
diseases [1]. However, functional ability varies between older adults, depending on individual health
condition and lifestyles. Physical inactivity is one of the known risk factors that can lead to morbidity
and mortality [2]. The transition from work to retirement, which often occurs between 60 and 70 years
of age, can involve a significant change in structured daily activities, with physical activity declining.
A study on the Dutch population found that retirement introduces a reduction in physical activity
from work-related transportation that is not compensated for by an increase in sports participation
or an increase in non-sports leisure-time physical activity [3]. Thus, this population is of particular
importance for addressing maintenance of their functional status.

In recent years, mobile health (mHealth) applications, incorporating wearable sensing
technologies with modern mobile communication devices, are emerging. From the early adoption in
younger populations for fitness tracking in particular, mHealth has been continuously developing and
diversifying its applications for different populations [1,4]. The scalability of mHealth technologies
enables data collection in diverse geographic locations over prolonged time periods [5]. This provides
a new perspective in studying physical activities in real life and allows new analytical tools to be
developed to analyze and present the data.

An earlier systematic review on body-worn, accelerometer-based physical activity monitoring
revealed the challenge of achieving consensus on the reporting and the interpretation of the
measurements provided by various mHealth applications [6]. Furthermore, the review pointed
out that energy expenditure, walking time, and total activity are most frequently reported and are
comparable variables across studies. In addition, several variables, such as walking time, number of
steps, and cadence are the most widely adopted variables in research [5,7,8] to characterize walking
pattern, the most common daily physical activity across all age groups. Descriptive statistics (e.g., mean,
maximum values) are applied to the above walking parameters for analysis. Detrended fluctuation
analysis proposed by Hausdorff et al. is used to quantify the stride-to-stride variability in supervised
walking tasks [9]. However, physical activity involves multiple components and has more than
one dimension. Different types of activities in daily life, as well as the quantity and the quality
(performance) of each activity jointly determine a person’s functional status. Thus, a variable that
models a person’s physical activity behaviour based on these aspects is warranted.

Complexity analysis as introduced by Paraschiv-Ionescu et al. [10] aims at combining both the
quantity and quality dimensions of multiple, commonly performed daily activities into one metric
to describe physical activity behaviour. This complexity metric has demonstrated discriminative
power to distinguish groups of patients suffering from chronic pain [11,12]. Besides analyzing
accelerometry-derived activities, the metric has been validated also for analyzing activity behaviour of
older adults using an application based on wearable pressure insoles [13].

While several cross-sectional studies exist for clinical validation of complexity metrics,
the sensitivity of those metrics for detecting changes in physical function over time has not yet
been determined. Therefore, we aimed to examine the ability of the aforementioned complexity metric
to detect change in a longitudinal intervention study conducted in younger older adults in comparison
to conventionally applied univariate physical activity metrics. Within this context, we further explored
the impact of smoothing sensor-based physical activity data on the complexity metric.

2. Materials and Methods

2.1. Study Protocol

The study is part of the larger PreventIT project [1], developing and testing an ICT-based mHealth
system that enables early identification of risk for age-related functional decline, and engenders
behavioural change in younger older adults (aged 60–70 years) in order to adopt a healthy,
active lifestyle.
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Thirty participants, aged between 60 and 70 years, were recruited at three different sites,
Trondheim (Norway), Amsterdam (the Netherlands), and Stuttgart (Germany), to participate in
a 4-week pre-post pilot intervention study. All participants were instructed by an experienced
physical therapist or exercise therapist to follow an adapted Lifestyle-integrated Functional Exercise
(aLiFE) programme specifically developed for improving balance and strength and increasing physical
activity in younger older adults [14]. aLiFE was taught during four weekly home visits, and the
participants were asked to integrate the aLiFE activities into everyday routines. Pre and post
intervention, the participants completed a balance and mobility assessment using the Community
Balance and Mobility Scale (CBMS). The scale has been validated to capture high-level balance, gait,
and mobility performances in healthy active younger older adults based on the quality of performing
the tasks [15]. CBMS assessments were performed in the research hospital or university by trained
assessors. In addition, daily physical activity (PA) of each participant was measured twice for one
week with wearable sensors. The participants were instructed to wear an inertial sensor (DynaPort,
MoveMonitor, McRoberts, The Hague, The Netherlands) at their lower back at the level of L5 using an
elastic belt during the day and night. The sensor needed to be removed when showering or during
any water activity and needed to be put back on afterwards. The sensor did not need to be recharged
during the one week measurement. All sensors were collected at the end of the measurement and raw
sensor data was downloaded for offline data analysis. The first measurement was prior to the start of
the intervention period. The measurement was repeated during the third week of the pilot study to
capture the change of daily activity patterns during the intervention.

2.2. Sensor Data Processing

The sensor consists of a 3D accelerometer with sampling frequency of 100 Hz. The recording start
time of each sensor was registered on the device by manual insertion of a timestamp. A non-commercial
activity classification software was used to extract quantitative as well as qualitative features of PA
from raw sensor data. The software is an outcome of the FARSEEING EU project (FP7/2007–2013,
grant agreement 288940). It has been applied in studies with dementia patients [16] and older people
residing in independent-living retirement homes [17]. The software has been further developed based
on two datasets of elderly subjects. The first one is the ADAPT dataset [18], where video recording
was performed using ceiling-mounted cameras in lab settings and an action camera in free-living
conditions. The second dataset is from the University of Auckland [17], where subjects performed
both scripted and unscripted activities of daily living collected in a free-living environment. First,
the algorithm estimates Metabolic Equivalents (METs); signals are filtered and processed as described
in [19]. An interval is labelled as ‘sedentary’, if associated energy expenditure is below or equal
to 1.5 MET [20]. Otherwise, the interval is labelled as ‘active’. ‘Sedentary’ intervals with a mean
angle between the vertical axis and the medio-lateral or the anterior–posterior direction of the trunk
below 30◦ are labelled as ‘lying’. The ‘active’ intervals, where steps are detected are labelled as
‘walking’. Step detection is based on [21]. Each interval is then characterized by the category (label),
the duration, and the activity counts (counts/minute) from which METs are estimated [19]. In addition,
number of steps and the cadence (steps/minute) are extracted for each ‘walking’ bout. Data is labelled
as ‘non-wearing’, if the sensor is detected lying flat with very low variance in acceleration signals for
longer than half an hour.

The classified activities were sorted into natural days based on the registered timestamp.
Days with less than 16 h of measurements (i.e., the first and the last day of the measurement) were
excluded from further processing and analysis. Given the high resolution (1 s) of the PA output
data, bouts of one activity may be interspersed with short episodes of other activities. For example,
short breaks of a few seconds are often present during one walking bout due to environmental factors
(e.g., walking episodes whiles shopping in a supermarket), which may lead to a string of several
walking episodes rather than one continuous walking bout. Such short breaks during an activity
introduce artificial changes in the dynamics of the PA time series, which are not relevant to one’s
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physical behaviour. Therefore, a smoothing technique was devised to filter such artefacts and to
aggregate bouts in the original PA output belonging to the same PA category based on the following
steps, as illustrated in Figure 1. First, we applied a moving forward sliding window of 30 s without
overlap to smooth the PA time series [22]. The activity category of these 30 s was replaced by the
activity with the highest density (counts) within the window. Second, the process was repeated for K
folds. At each fold, the smoothing starts with a random shift between 1 and 30 s at the beginning of the
time series. Third, the activity category of each second in the aggregated time series was determined
by the majority vote of the K-fold smoothing. The sliding window length was chosen according to the
‘barcode’ design (explained in the later section Complexity analysis), where 30-s is the threshold of
activity duration corresponding to indoor walking.

Figure 1. Smoothing activity classification output to aggregate activity bouts in a measurement time series
of 45 min. The top bar shows the original PA sequence and the bottom bar shows the smoothed sequence.

2.3. Univariate Analysis

For each activity bout, its duration and activity counts per minute (‘ActiCount’) were estimated.
In addition, the total number of steps and the average cadence (steps/min) were provided for each
classified walking bout. PA was characterized by various univariate metrics including the percentage
of time being sedentary, the percentage of time spent walking, the number of steps normalized to the
measurement duration (in hours), and the mean cadence of walking bouts of each day. The univariate
metrics were computed based on the original and the smoothed PA time series.

2.4. Complexity Analysis

Complexity was introduced in order to analyze the variability of biological and physiological
time series data [23,24]. The technique was subsequently adapted and applied to analyze ambulatory
activity patterns [25]. Paraschiv-Ionescu et al. proposed complexity analysis on a multivariate PA
pattern (‘barcode’) derived from wearable sensor data [10]. The ‘barcode’ is constructed for the
analyzed period based on the classified activity category, the duration and the intensity. The entropy
rate of the resulting multi-state ‘barcode’ represents complexity. In the analysis of the pilot data,
an adapted ‘barcode’ was used, where the ‘ActiCount’ was modeled according to a validation study
presented in [19]. Entropy rate of the ‘barcode’ was computed in terms of Lempel-Ziv complexity based
on the method described in [26]. (Additional materials are presented in Appendix A.1). Complexity of
the ‘barcode’ generated from both the original and the smoothed time series of PA were computed to
analyze the influence of activity classification on the calculated complexity.
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2.5. Statistical Analysis

For each participant, the univariate metrics and the complexity metric of PA were analyzed for
each day. The average value of each metric over the one-week measurement before (Week0) and during
(Week3) the pilot study was calculated. According to study [27], participants having more than two
days’ sensor data during the one-week measurement, in both Week0 and Week3, were included for
statistical analysis. The changes in PA metrics between Week0 and Week3 were computed. The change
in CBMS score pre and post the pilot study was calculated. The primary analysis was to examine the
correlations between the change in PA metrics and the change in CBMS score. Given the small sample
size and ordinal data type (CBMS scores), spearman coefficient (ρ) was used to analyse the strength of
correlation. In addition, a non-parametric effect size calculator, Cliff’s Delta, was applied to measure
the degree of overlap between the distribution of various variables extracted pre- and during/post
interventions [28]. Cliff’s Delta approaching 1 or −1 indicates absence of overlap, whereas 0 indicates
overlap completely. Wilcoxon signed rank test was applied to examine the statistical significance of the
change. Changes with a p value < 0.05 was considered statistically significant. The secondary analysis
consisted of the impact of PA time series smoothing on the conventional metrics and the complexity
metric. The analysis compared the aforementioned statistical outcomes before and after smoothing.
Additional analyses on Week0 data compared the distributions of the length of sedentary and walking
bouts before and after smoothing. The coefficients of variance (CV) of the daily complexity value of
the original and the smoothed PA time series were compared.

3. Results

In total, 30 participants were included in the pilot study with 10 participants at each trial site.
Due to technical problems with the sensor devices (no data could be retrieved), eight participants
were excluded from further data processing and analysis (n = 5 in Week0 and n = 3 in Week3).
One participant’s CBMS score was not available at the baseline assessment and was excluded from
further data analysis leaving 21 participants for statistical analyses. All participants in statistical
analysis had minimum 3 days of data in Week0 and Week3. Table 1 summarizes the descriptive
statistics of PA metrics and CBMS score for the included participants (n = 21, except the CV of
complexity, where n = 25 from Week0 were analyzed) in the pilot study. The included participants
were not significantly different from the excluded participants in CMBS scores at the pre- (Willcoxon
ranksum test, p = 0.14) or the post- (p = 0.23) intervention assessment. To illustrate, Figure 2 shows
one participant’s barcode (based on smoothed PA time series) in Week0 (left) and Week3 (right).
The barcode in Week3 shows richer colours filled in throughout several days of measurements,
which was reflected by the higher mean complexity score of 0.120 compared to 0.111 in Week0.

Figure 2. Barcode and mean complexity of one-week PA time series of Week0 (left) and Week3 (right)
in one participant.
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Table 1. Descriptive statistics of PA metrics, complexity, and CBMS scores in pre- and post- intervention
assessments. PA metrics and complexity based on original and smoothed PA time series are compared
with CMBS scores.

Week0 or Pre Pilot
(Mean ± SD)

Original/Smoothed

Week3 or Post Pilot
(Mean ± SD)

Original/Smoothed

Association (ρ)
with CBMS

Original/Smoothed

Effect Size
(Cliff’s Delta)

Original/Smoothed

Percentage of
sedentary time (%)

44.9 ± 6.0/47.7 ± 6.5 44.4 ± 5.6/47.5 ± 6.0 −0.35/−0.28 −0.12/−0.08

Percentage of
walking time (%)

9.1 ± 2.0/9.1 ± 2.2 9.9 ± 3.0/10.0 ± 3.3 0.05/−0.01 0.13/0.15 a

Normalised nr. of
steps (steps/hour)

489 ± 123/361 ± 111 532 ± 182/395 ± 160 0.02/−0.17 0.11/0.08

Mean cadence
(steps/minute)

78 ± 5/52 ± 8 78 ± 6/51 ± 7 −0.25/−0.33 0/−0.13

Complexity 0.178 ± 0.024/0.101 ± 0.006 0.185 ± 0.024/0.103 ± 0.007 0.47 a/0.58 a 0.18/0.15

CV of complexity b 0.11 ± 0.05/0.07 ± 0.02

CBMS score 66.4 ± 12.8 70.2 ± 12.9 0.20 a

a Statistically significant (p < 0.05), b based on 25 participants’ data at Week0.

For the primary analysis, scatter plots in Figure 3 show the correlations. Spearman correlations
between changes in PA metrics (based on original PA time series) and CBMS score (between the
change in CBMS score and the changes measured by various conventional univariate metrics and
the complexity metric) are based on original PA time series. Changes in univariate metrics had no
significant association with the change as measured by the CBMS score. In contrast, complexity had a
significant positive correlation (ρ = 0.47, p = 0.03) with the change in CBMS. Complexity was higher
after intervention with an effect size of 0.18, which was comparable to the effect size as measured
by the CBMS score (0.20). Despite an increase in complexity post intervention, the change was not
statistically significant. Changes in univariate metrics had smaller effect size and were not statistically
significant (see Table 1).

Figure 3. Spearman correlations between changes in PA metrics (based on original PA time series) and
CBMS score. (a) Change in percentage of sedentary time vs. change in CBMS. (b) Change in percentage
of walking time vs. change in CBMS. (c) Change in normalized number of steps vs. change in CBMS.
(d) Change in mean cadence vs. change in CBMS. (e) Change in complexity vs. change in CBMS.

For the secondary analysis, after smoothing the PA time series, multiple very short sedentary
bouts were merged into one longer bout. Similarly, multiple walking bouts with short interruptions
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were concatenated to form a continuous walking bout (see Appendix A.2). Comparison of mean
values of various univariate metrics presented in Table 1 indicated that smoothing had little impact
on the percentage of sedentary time and the percentage of walking time, whereas the total number
of steps and mean cadence were reduced. The value of complexity for the smoothed PA time series
was smaller, compared to the original complexity. The change in complexity for the smoothed PA time
series resulted in a stronger association with the change in CBMS score (ρ = 0.58, p = 0.01 as shown in
Figure 4. Association between complexity change and CBMS score change after smoothing PA time
series.). Moreover, the mean CV of complexity of the participants in Week0 decreased from 0.11 to 0.07
after smoothing the PA time series (see Appendix A.2).

Figure 4. Association between complexity change and CBMS score change after smoothing PA
time series.

4. Discussion

Authors should discuss the results and how they can be interpreted from the perspective of
previous studies and of the working hypotheses. The findings and their implications should be
discussed in the broadest context possible. Future research directions may also be highlighted.
The primary analysis of this study focused on the relevance of various conventional PA metrics
and the complexity in the assessment of functional change after an exercise intervention in younger
older adults. In addition, we analyzed the impact of smoothing PA time series data on the calculation
of various PA metrics and the complexity metric. Despite a very short intervention, the change in
complexity was significantly correlated with the change as measured by the CBMS score, whereas,
the changes in conventional PA metrics did not show significant correlation with the change as
measured by the clinical assessment. Moreover, smoothing the PA time series, to aggregate short
activity bouts, improved the complexity metric in terms of stronger correlation with functional change
as measured by a clinical assessment and higher measurement reproducibility as quantified by the CV
of one-week measurements.

These results revealed that complexity is a useful and a more sensitive metric than conventionally
applied univariate PA metrics in the assessment of functional change in younger older adults.
Conventional PA metrics derived from wearable sensors, step counts, or cadence, might not be
sensitive enough to capture the functional change after short interventions. Metrics characterizing one
aspect of daily physical activity, such as the time spent walking or being sedentary, do not provide a
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comprehensive picture of the determinants of functional status. The complexity metric of physical
behaviour, on the other hand, characterizes the quantity, the quality, and the dynamic changes between
different activities and different performances while doing the same activity (such as a change in
cadence) in the ‘barcode’. Further, the entropy rate increases while the number of sub-patterns in
the ‘barcode’ increases as illustrated in Figure 2. Since it captures more aspects of physical behaviour
simultaneously, the complexity metric has the potential to capture the underlined important aspect in
the aging process that the variety and dimension of activities decreases due to functional decline [29,30].

The ‘barcode’, as defined in Table A1 and illustrated in Figure 2, is constructed with generic
activity features derived from the wearable sensors. This makes complexity a generic metric
for PA data analysis in principle without constraints in specific sensor configuration or wearing
position. The activity features required by the ‘barcode’, such as walking time and number of steps,
are universally recognized by the state-of-the-art wearable sensors [10,12,25]. Selection of activity
features to be included in barcode construction is a topic worth separate investigation. For example,
efficacy and sensitivity to wearing position of a ‘barcode’ that states sensor-derived activity levels
(sedentary, light, and moderate-to-vigorous) can be analyzed [31].

The complexity metric analyses the entropy rate of the ‘barcode’. Changes in ‘barcode’ states
depend on the richness of the activity performed but is also influenced by the resolution of the
activity features. The higher the resolution, the more detailed the features in the activity performed
can be described; however, the resolution becomes less resistant to noise in the activity data.
As demonstrated in Figure 1, the original PA time series (the top bar) has second-by-second feature
resolution, which shows frequent fast changes between sedentary and walking activities (for example,
see between 1000 and 1250 s). In the original PA time series, almost all sedentary bouts were shorter
than five minutes, and less than 5% of walking continued for more than one minute in all participants
(see distribution of PA activity data before and after smoothing in Figure A1). It is plausible that very
short bouts were artifacts of the activity features due to the noise in the accelerometry signal acquired
at the waist. The complexity metric aims to capture the dynamic change of real activity patterns
that are encoded in the ‘barcode’ rather than the signal noise. Thus, a pre-processing method to
remove the noise, or smooth the activity features before barcoding for complexity analysis is necessary
and important. We proposed a smoothing method in this study to remove the noise. As shown
in the secondary analysis, the resulting complexity value was lower than the complexity of the
original PA time series, indicating that there was less frequent change in the activities after smoothing.
The smoothing method improved the reproducibility of the complexity metric, which implies that the
smoothing removed irrelevant noise existing in the original PA time series. However, it preserved the
clinically relevant activity patterns as shown in the significant correlation with the clinical outcome.
We observed a decrease in step counts and mean cadence after smoothing, which was likely due to the
procedure, where steps in very short walking bouts were removed, but no step was inserted in the
concatenated walking bouts.

There are some limitations in the study presented in this manuscript. First, the sample size was
relatively small. Due to missing data, only 21 participants were included in the statistical analyses.
Even though, there was no significant difference in functional status as measured by the CBMS score
between the included and the excluded subject, the strength of association and effect size of change
measured in this pilot study will need to be confirmed in a larger cohort of comparable participants.
Secondly, the assessment of daily activity with wearable sensors during the intervention (Week3) was
collected one week prior to the post-intervention assessment of CBMS. For the short intervention pilot,
this time discrepancy might have introduced bias. This bias likely has made our estimates of pre- or
post-intervention change in PA metrics to be more conservative. Lastly, the window of 30 s chosen
for the smoothing method is based on the lowest threshold for walk analysis in the ‘barcode’ design.
Conceptually, this threshold corresponds to most indoor walking activities [7,10]. However, future
research should conduct a systematic evaluation to confirm the optimized activity feature resolution
for complexity analysis.
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In the context of PreventIT project, the on-going multi-national randomized controlled trial (RCT)
study will provide a larger cohort data of 180 participants with comparable demographic and health
profile as studied in this pilot. The RCT will assess the participant’s CBMSs and monitor their PAs using
a similar sensor configuration at baseline, 6-month, and 12-month follow-up. Correlation between
the change in complexity and the change in CBMS will be validated after the longer intervention.
Analyses on the association between complexity and CBMS at baseline will be conducted. In addition,
relationship between complexity and each individual balance and mobility components assessed in
CBMS will be analyzed.

5. Conclusions

This study demonstrated the clinical relevance of using a multivariate metric for physical
behavioural complexity to capture change in functional status in a longitudinal study in younger older
adults. The complexity metric showed higher sensitivity to functional change than conventionally
applied univariate PA metrics such as sedentary time and step count. Complexity can be applied
as a generic metric to analyze the daily life activity patterns derived from wearable sensors.
A meaningful resolution of sensor-derived activity features is important for reliable complexity
analysis. The complexity metric is a useful metric to be further developed for the outcome measure of
the feasibility and the effectiveness of PreventIT interventions.
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Appendix

Appendix A.1 Adapted Barcode Design and Complexity Computation

A ‘barcode’ state was assigned to each second of the time series according to Table A1.
The definition was modified for the type ‘active’ from the original design presented in [10] that
applied the absolute value of acceleration. As acceleration is sensitive to the sensor wearing location,
the acceleration based threshold was replaced by the ‘ActiCount’ in this study. The ‘ActiCount’
thresholds are determined based on a validation study presented in [19]. Complexity computation
was according to Equation (A1), where ‘nrPattern’ is the total number of sub-patterns found in the
‘barcode’. ‘nBC’ is the total number of ‘barcode’ states. In our analysis, nBC = 18. N is the total length
of PA time series in seconds.

Complexity =
nrPattern ∗ ( log10(nrPattern)

log10(nBC)
+ 1)

N
(A1)
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Table A1. Definition of barcode state according to PA category, intensity and duration.

Category Intensity Duration State

Lying 1
Sedentary 2

ActiCounts ≤ 3500 (counts/minute) 3
3500 < ActiCounts ≤ 7000 4

7000 < ActiCounts ≤ 10000 5Active

ActiCounts > 10000 6
Cadence ≤ 60 (steps/minute) 7

60 < Cadence ≤ 90 8
90 < Cadence ≤ 140 9

Cadence > 140

Duration ≤ 30 s

10
Cadence ≤ 60 11

60 < Cadence ≤ 90 12
90 < Cadence ≤ 140 13

Cadence > 140

30 < Duration ≤ 120

14
Cadence ≤ 60 15

60 < Cadence ≤ 90 16
90 < Cadence ≤ 140 17

Walking

Cadence > 140

Duration > 120

18

Appendix A.2 Effect of Smoothing on the Duration of Activity Bouts and Reliability of Complexity

Figure A1 shows that, after smoothing, 90% of the sedentary bouts lasted up to 15 min, whereas
only 10% of the walking bouts were longer than two and half minutes before a stop. Figure A2
compares the mean and standard deviation of daily complexity in one-week measurement before and
after smoothing. Smoothing lowered the mean values and the CV of the complexity.

Figure A1. Comparison of cumulated distribution of walking and sedentary bouts before and after
smoothing of activity classification output.
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Figure A2. CV before and after smoothing PA time series.
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Abstract: A standard 12-lead electrocardiogram (ECG) is an important tool in the diagnosis of
heart diseases. Here, Ag/AgCl electrodes with conductive gels are usually used in a 12-lead ECG
system to access biopotentials. However, using Ag/AgCl electrodes with conductive gels might be
inconvenient in a prehospital setting. In previous studies, several dry electrodes have been developed
to improve this issue. However, these dry electrodes have contact with the skin directly, and they
might be still unsuitable for patients with wounds. In this study, a wearable 12-lead electrocardiogram
monitoring system was proposed to improve the above issue. Here, novel noncontact electrodes
were also designed to access biopotentials without contact with the skin directly. Moreover, by using
the mechanical design, this system allows the user to easily wear and take off the device and to
adjust the locations of the noncontact electrodes. The experimental results showed that the proposed
system could exactly provide a good ECG signal quality even while walking and could detect the
ECG features of the patients with myocardial ischemia, installation pacemaker, and ventricular
premature contraction.

Keywords: electrocardiogram; conductive gels; noncontact electrode; myocardial ischemia;
pacemaker; ventricular premature contraction

1. Introduction

The standard 12-lead electrocardiogram (ECG) is an important tool to assist the diagnosis of
myocardial ischemia and arrhythmia. In particular, for the diagnosis of myocardial infarction, 12-lead
ECG provides important and meaningful information. The timely treatment of occluded coronary
artery is critical to reduce myocardial injury and mortality. In order to save the ischemia myocardium,
a 12-lead ECG of the patient must be obtained in emergency or prehospital settings. Myocardial
infarction must be identified as early as possible and the patient must be taken to a hospital with a
cardiac cath lab. In general, the conventional Ag/AgCl ECG electrodes with conductive gels are used
to measure ECG signals. The use of conductive gels can effectively improve the conductivity of the
skin electrode interface to acquire a better ECG signal quality [1]. However, the use of conductive gels
usually encounters the dying issue of long-time measurement or the dislodgement of electrodes due to
wet skin.

In order to improve the above issue of the conventional ECG electrodes, several novel
dry electrodes have been proposed in previous studies. Some studies applied the technique of
microelectromechanical systems (MEMS) in the development of novel dry electrodes [2]. However,
the manufacturing cost and process of these MEMS-based dry electrodes is relatively expensive and
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complex. Moreover, the measuring method of these MEMS-based dry electrodes are semi-invasive,
and this also increases the risk of a skin allergy. Several conductive fabrics, conductive materials,
or metals are also used for the development of dry electrodes [3–15]. In 2013, Zhou et al. proposed
microstructure-array metal dry electrodes [16]. In 2012, Jung et al. developed carbon nanotube
(CNT)/polydimethylsiloxane (PDMS) composite flexible dry electrodes for ECG measurement [17].
The above dry electrodes are also semi-invasive and could provide a good signal quality in a hairless
site. In 2011, Lin et al. proposed a novel foam dry electrode [18,19] to acquire biopotentials without
conductive gels. However, the abovementioned dry electrodes have to contact the skin directly and
may be unsuitable for measuring biopotentials in a hairy site due to the fact that the hair layer might
increase the impedance of the skin-electrode interface.

Different from the above dry electrodes which have to contact with the skin directly, the noncontact
dry electrode was developed in recent years. In general, the design of dry electrodes has to minimize
the impedance of the skin-electrode interface. Different from other skin-electrode models of other
dry electrodes, the skin-electrode interface model of a noncontact dry electrode can be viewed as a
coupling capacitance. In 2013, Lin et al. successfully applied the technique of noncontact electrode
to acquire a lead I ECG signal [20,21]. Based on our experience of the noncontact electrode design,
a wearable 12-lead ECG monitoring system with noncontact electrodes was proposed in this study.
By using the properties of the noncontact electrode technique, ECG signal can be measured across thin
clothes to avoid contacting a wound of the subject. Moreover, by using the wearable mechanical design,
the proposed system can be easily worn and taken off, and the locations of noncontact electrodes
can be quickly and easily adjusted. Finally, the performance of the proposed noncontact electrode
has also be validated and applied in the detection of myocardial ischemia, installation pacemaker,
and ventricular premature contraction.

2. Materials and Methods

2.1. Fundamental Theory of Noncontact Electrode

The electrode-skin interface models of conventional Ag/AgCl electrode and noncontact electrode
are shown in Figure 1a,b. In general, conductive gel has to be applied in the conventional Ag/AgCl
electrode to form a conductive layer between the electrode and skin and to reduce the impedance of
the electrode-skin interface. Therefore, the equivalent circuit of the conductive gel layer can be simply
viewed as a resistor. The skin layer can be viewed as a plate, and its equivalent circuit can be presented
as a resistance and a capacitor in parallel. Therefore, the measurement of a biopotential by using the
conventional Ag/AgCl electrode has to pass through these equivalent impedances, such as the skin
layer, the conductive gel layer, and the metal electrode.

Figure 1. The skin-electrode interface models of (a) an Ag–AgCl electrode and (b) a noncontact
dry electrode.

In the electrode-skin interface model of a noncontact electrode, the skin layer and the metal
electrode can be viewed as two parallel plates, and the clothes can be viewed as an isolation layer.
Therefore, the electrode-skin interface model of a noncontact electrode can be viewed as a capacitor.
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Figure 2a shows the basic scheme of the designed noncontact electrode. Its major parts contain a
metal electrode; an impedance converter, which is used to provide an ultrahigh input impedance to
reduce the influence of the variation of the skin-electrode interface impedance; and a high-impedance
pathway, which is used to reduce the influence of the bias variation of the unit buffer to ensure it
works within the active region. Here, the metal electrode was coated with an isolated layer of solder
mask. Figure 2b shows the equivalent electrical model of the used noncontact electrodes. Let Vi

and Vo denote the ECG signal source of the human body and the output of the noncontact electrode,
respectively, Cg denote the coupling capacitance formed by the skin and the metal electrode plate,
Rg be the equivalent impedance of the bias pathway, and Ri and Ci denote the equivalent resistance
and the equivalent capacitance of the used operational amplifier, respectively. Therefore, the transfer
function of the used noncontact electrode can be expressed as followings.

Vo(S)
Vi(S)

=
Rg//Ri// 1

SCi
1

SCg
+ Rg//Ri// 1

SCi

=
SCgRgRi

SCgRgRi + SCiRgRi + Rg + Ri
(1)

Figure 2. (a) A basic scheme and (b) the equivalent electrical model of a used noncontact electrode.

From the above formula, it showed that decreasing Ci could provide the larger amplitude response
when Cg, Rg, and Ri are large enough. In the design of the noncontact electrode, Ri and Ci are decided
by the selection of the used operational amplifier. Cg is a coupling capacitor, formed by the metal plate
of the noncontact electrode and the skin. In order to increase the value of Cg, the electrode surface area
has to be increased or the distance between the skin and the electrode has to be decreased.

2.2. Measurement of Standard 12-Lead Electrocardiogram

The standard 12-lead ECG system is used to collect 12 different ECG signals from different
locations simultaneously to completely estimate the vector of electrocardiogram. The measurement
of 12-lead ECG system can be simply classified into three parts, including three bipolar limb leads
(LeadI, LeadII, and LeadIII), three unipolar limb leads (aVR, aVL, and aVF), and six unipolar chest
leads (V1–V6). The measurement of LeadI–LeadIII uses three electrodes placed on the left arm (LA),
the right arm (RA), and the left leg (LL) respectively. These unipolar limb leads can be represented as
Equations (2)–(4).

aVR = RA − 1
2
(LA + LL) = −1

2
(LeadI + LeadII) (2)

aVL = LA − 1
2
(RA + LL) = LeadI − 1

2
LeadII (3)

aVF = LL − 1
2
(RA + LA) = LeadII − 1

2
LeadI (4)

The six unipolar chest leads (V1 to V6) represent the voltage difference between the chest voltage
and the average voltages of LA, RA, and LL, and they can be expressed by
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Vk = Chestk − 1
3
(RA + LL + LA) (5)

where Vk and Chestk denote the kth chest leads and the voltage of the kth chest electrode, respectively.

3. Design and Implementation of Wearable 12-Lead ECG Monitoring System

The system architecture and photograph of the proposed system is shown in Figure 3, and it
mainly contains a wearable mechanical design, a wireless 12-lead ECG acquisition module, and a
back-end host system. The wireless 12-lead ECG acquisition module is designed to measure ECG
signals and can be embedded into the wearable mechanical design. The wearable mechanical design is
designed to be worn easily in daily life and can provide a suitable pressure to avoid the sliding of the
wireless 12-lead ECG acquisition module to acquire a good ECG signal quality. Finally, the acquired
ECG signal will be transmitted to the back-end host system wirelessly via Bluetooth.

Figure 3. A basic scheme and photograph of the wearable 12-Lead electrocardiogram (ECG)
monitoring system.

The block diagram of the wireless 12-lead ECG acquisition module is shown in Figure 4, and it
mainly consists of several parts: noncontact dry electrodes, multiplexers, a summing amplifier,
a front-end amplifier, a microprocessor, and a wireless transmission circuit. First, the biopotentials
would be acquired by these noncontact dry electrodes. In order to measure the six unipolar chest
leads, the reference signal, combined from the voltages of RA, LL, and LA, has to be obtained.
Here, the summing amplifier is used to obtain the combination of the RA, LL, and LA voltages.
According to the definition of the 12-lead ECG system, nine dry electrodes would be switched by two
multiplexers and, then, would be inputted into the front-end amplifier to obtain the 12-lead ECG signals.
The front-end amplifier contains an instrumentation amplifier (AD620, Analog Devices, Norwood, MA,
USA; gain = 20), a band-pass filter (gain = 20, and frequency band = 0.1 Hz–150 Hz), and a notch filter
of 60 Hz. Then, the preprocessed ECG signals would be digitized by an analog-to-digital converter
built into the microprocessor with the sampling rate of 500 Hz and, then, would be sent to the wireless
transmission circuit to transmit to the back-end host system. The wearable mechanical design mainly
consists of an elastic chest vest and Velcros. By using these Velcros, the designed wireless 12-lead
ECG acquisition module could be easily embedded on the elastic chest vest, and it also allows the
adjustment of the positions of the noncontact electrodes to reduce the influence of the individual body
size difference.
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Figure 4. A block diagram of the wearable 12-Lead ECG acquisition module.

In this system, a commercial tablet was used as the platform for the host system, and a 12-lead ECG
monitoring program was also designed to continuously monitor the 12-lead ECG signals. This program
would first build the graphical user interface to allow the user operating and setting the program
parameters. When clicking the start button, it would call the Bluetooth application programming
interface (API) to search the wireless 12-lead ECG acquisition module and to make a connection with
this module. After connecting with this module, the thread of DataREC would receive the 12-lead
ECG signals, store them into the program buffer, real-time display them on the screen, and store the
raw data into the local files.

4. Results

4.1. Electrical Specifications of Noncontact Electrodes

In this section, the electrical specifications of the designed noncontact electrodes were first
investigated. Figure 5a,b shows the magnitude response and phase response of the designed noncontact
electrodes. Here, a function generator was used to generate a 1 voltage p-p sine wave with varying
frequency (from 0.1 Hz to 1000 Hz), and it was connected to a copper plate coated with an insulation
tape as the input of the noncontact electrode. From the experimental results, the magnitude response
of the noncontact electrode at the frequency range between 1 Hz and 1000 Hz is stable and flat, and its
phase response is also almost linear. Figure 5c shows the referred noise spectrum of the noncontact
electrode. In this test, the input of the noncontact electrode was connected to the ground. It showed
that the referred noise spectrum of the noncontact electrode in higher frequency would be slightly
decayed, and the whole referred noise is almost below 10−5 V/Hz.

Next, the ECG signal quality obtained by the proposed noncontact electrode was compared with
that of the conventional ECG electrode with conductive gels. In this experiment, the noncontact
electrodes were placed across the chest through a thin T-shirt, and their locations were close to that
of these conventional ECG electrodes. Figure 6a–c shows the comparisons between the lead II, aVL,
and V6 ECG signals randomly selected from 12-lead ECG signals of different ECG electrodes and their
spectra. Here, the ECG machine (PageWriter TC30, Philips, Amsterdam, Netherlands) with Ag/AgCl
electrodes in Chi Mei Medical Center, Taiwan was used, and the function of the linear correlation
coefficient in the Matlab software was used to estimate the difference between the ECG signal qualities
obtained by different ECG electrodes. It showed that the correlation between ECG signals obtained by
different electrodes was over 0.95 and that the correlation for the ECG spectra was over 0.99. The ECG
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signal quality obtained by the proposed noncontact electrodes across a T-shirt was exactly similar to
that of the conventional ECG electrodes with conductive gels.

Figure 5. (a) The magnitude response, (b) phase response, and (c) referred noise spectrum of the
proposed noncontact electrode.

Figure 6. Comparisons between the ECG signals and their spectra obtained by different electrodes:
(a) lead II, (b) aVL, and (c) V6.

4.2. ECG Signal Quality of Wearable 12-Lead ECG Monitoring System under Different Conditions

In this section, the influence of motion artifact on the ECG signal quality of the proposed system
was first investigated. Figure 7a,b shows the ECG signals obtained by the proposed system while
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sitting and walking respectively. While walking, the motion artifact of walking causes the slight
baseline swinging of the ECG signals, but its signal quality is still similar to that while sitting. Next,
the ECG signals of patients in the emergency room were measured by the proposed system. Figure 8a–c
shows the ECGs signal obtained from the patients with myocardial ischemia, installation pacemaker,
and ventricular premature contraction, respectively. From the experimental results, the ECG features of
Lead III T-wave inversion and the V6 ST-wave depression for myocardial ischemia [22] were measured
by the proposed system. In Figure 8b, the pulse waves generated by installation pacemaker [23] in the
front of each ECG cycle were also measured. For ventricular premature contraction, its ECG features
can be reflected on the broadening QRS wave and the lack of P-wave [24], and the ECG signal in
Figure 8c could also present these ECG features of ventricular premature contraction. Next, the effect
of the cloth material, the effect of the thickness, and the influence of sweating on the ECG signal quality
of the proposed system was also investigated. Figure 9a–d shows the ECG signal measured under
different cloth conditions, including materials, thicknesses, and humidity. It shows that the amplitude
of the ECG signal is slightly attenuated when the cloth thickness increased. In this experiment,
the effect of selecting the cloth material on the ECG signal quality was unobvious. Moreover, the effect
of sweating could improve the ECG signal quality.

 

Figure 7. The 12-lead ECG signals obtained by the proposed system when (a) sitting and (b) walking.
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Figure 8. The ECG signal of patients with (a) myocardial infarction, (b) installation pacemaker, and (c)
ventricular premature contraction obtained by the proposed system.
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Figure 9. The 12-lead ECG signals obtained by the proposed system under different cloth conditions:
(a) material: 100% cotton, thickness: 0.8 mm, dry; (b) material: 100% cotton, thickness: 1.4 mm, dry; (c)
material: 80% cotton and 20% polyester, thickness: 0.8 mm, dry; (d) material: 100% cotton, thickness:
0.8 mm, sweating.
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5. Discussion

In Figure 5a–c, in the frequency range between 0.1 Hz and 1000 Hz, the amplitude response
of the proposed noncontact electrode is stable, and its phase response is linear. The whole referred
noise of the proposed electrode is less than 10−5 V/Hz. From the above electrical specifications,
the proposed noncontact electrode is suitable for measuring biopotentials, such as ECG, EEG, etc.
In Figure 6a–c, the correlations between the EEG signals and spectra obtained by the proposed
noncontact electrode and the conventional electrode with conductive gels are high. The influence of
motion artifact on measuring the ECG signal was also investigated. The experimental results showed
that the ECG signal quality was also good while walking, due to the fact that the flexibility of the
wearable mechanical design might provide a suitable pressure to reduce the shifting of the noncontact
electrodes. Moreover, the ECG features of myocardial ischemia, installation pacemaker, and ventricular
premature contraction were also measured by the proposed system. Therefore, the reliability and
practicability of the proposed system on measuring ECG were good. Moreover, the effect of the cloth
condition on the ECG signal quality was also investigated. In Figure 9 a–d, it shows the amplitude
of the ECG signal would be attenuated when the cloth thickness increased. Moreover, the effect of
sweating could improve the ECG signal quality. This can be explained by the value of Cg in Equation
(1) which would increase when the distance between the electrode and skin decreased or the humidity
increased, due to the increase in dielectric.

Several dry and noncontact electrodes have been proposed in previous studies, and their
specification comparison is summarized in Table 1. In 2013, Zhang et al. proposed a microneedle
array (MNA) electrode [25]. The size of this MNA electrode was about 12 × 12 mm2. Its substrate
and microneedles were made of polydimethylsiloxane (PDMS) and silicon respectively, and finally,
the MNA electrode was coated with poly-3,4-ethylenedioxythiophene/polystyrene sulfonate
(PEDOT/PPS). This MNA electrode contained the properties of excellent flexibility, good conductivity,
and semi-invasive measurement. The MNA electrode could directly penetrate the human stratum
corneum to reduce the impedance of the skin-electrode interface and the electrode movement caused
from the body friction. However, the manufacturing procedure of the MNA electrode is relatively
complex, and its cost is also expensive. Under strenuous exercise, sweating might cause the falling
off of the PEDOT/PSS coating, increase the skin-electrode interface impedance, and further affect
the signal quality. In 2015, Weder et al. proposed an embroidered electrode [26]. The size of this
embroidered electrode was about 70 × 20 mm2. Here, polyethylene terephthalate (PET) yarn was used
as the electrode substrate, and then, it was coated with silver/titanium (Ag/Ti) to provide a good
biocompatibility and good conductivity. However, body hair might easily affect the measurement of
this embroidered electrode. In 2011, Liao et al. proposed a spring probe dry electrode [27]. The size of
this spring probe dry electrode was about 13 × 13 mm2. A 13-mm-diameter copper piece was used
as the substrate, and 17 gold-plated spring probes were soldered on the copper piece. The electrode
was also coated with silicone. The comb telescopic structure of this electrode allowed it to pass
through the hair layer and contact the skin directly. However, the skin-electrode interface impedance
might be still higher and affect the signal quality [11]. In 2018, Castro et al. proposed a four-channel
contactless capacitively coupled electrocardiography (ccECG) system for the extraction of sleep apnea
features [28]. The ccECG system has the advantage of long-term physiological monitoring but the
disadvantage of a high variation in the quality of the acquired signals due to its high sensitivity to
motion artefacts. This system was only used in sleep apnea; it was not verified and did not guarantee
a good performance of the ECG measurement under motion. Different from the above dry and
noncontact electrodes, the proposed noncontact electrode could access biopotentials across the clothes
without contacting the skin directly. Moreover, a flexible printed circuit board (PCB) was used as
the substrate of the proposed electrode. The proposed electrode could easily be embedded into the
clothes, and its flexibility could fit the body contour to provide a stable and good signal quality even
under motion.
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Table 1. The specification comparisons between different dry and noncontact electrodes and the
proposed noncontact electrode.

Zhang et al. [25]
Weder et al.

[26]
Liao et al. [27] Castro et al. [28]

Proposed
Electrode

Area of
electrode (cm2) 1.44 14 1.69 - 6.16

Frequency
band (Hz) 0.5–50 - - 0.5–40 0.1–100

Input-referred
noise (V/Hz) - - - - 6 × 10−5

Electrode
material PEDOT/PSS Ag/Ti Gold, copper Ag/AgCl Copper

Noncontact
electrode No No No Noncontact Noncontact

Advantages

Excellent flexibility
and conductivity,

measurement
under motion

Good
biocompatibility

and
conductivity

Measurement in
hairy site

Good measurement
under slight motion

(e.g., sleep)

Excellent flexibility,
noncontact

measurement
under motion

Affecting
factors

Influence of
sweating

Influence of
body hairs

Poor skin-electrode
interface

impedance

Not verified and
guaranteed under

motion

Thickness of
clothing

In previous studies, several wearable 12-lead ECG systems have also been designed, and a
comparison between the proposed system and other systems is listed in Table 2. In 2016, Boehm et al.
proposed a 12-lead ECG T-Shirt [29], and its system size was about 70 × 65 mm2. Ten active electrodes
were embedded in a T-Shirt to greatly improve the convenience of use. However, it might be difficult
to fit the body closely to affect the signal quality under motion. In 2015, Yasunori Tada et al. proposed
a 12-lead ECG smart shirt [30], and its system size was about 90 × 28 mm2. The system contained 10
dry foam electrodes, and conductive ink lines were also used as the ECG leads. The flexibility of the
compressed shirt could help these foam electrodes contact the skin well to provide a good ECG signal
quality, even under motion. However, these foam electrodes still have to contact the skin directly to
acquire a biopotential, and body hairs might affect their measuring performance. In this study, the size
of the proposed system was about 25× 65 mm2, and it contains 9 noncontact electrodes. Different from
the above 12-lead ECG system, the flexible PCB was used as the substrate of the proposed noncontact
electrodes and a wearable mechanical design was also designed to closely fit the body and provide
a suitable pressure to reduce transversal motion and lateral motion. Thus, the proposed system
could provide a good ECG signal quality under motion. Moreover, different from other wearable
ECG monitoring systems, the proposed systems could access biopotentials across the clothes without
contacting with the skin directly.

Table 2. The specification comparisons between the proposed 12-Lead ECG monitoring system and
other systems.

Anna Boehm et al. [29] Yasunori Tada et al. [30] Proposed System

Operation voltage 3.3 V - 3.3 V

Amplifier gain - - 400 V/V

System of size 70 × 65 mm2 90 × 28 mm2 25 × 65 mm2

Signal resolution 24 bits - 12 bits

Frequency band (Hz) 2–20 Hz - 0.1–100 Hz

Wireless transmission - XBee Bluetooth

Power consumption 260 mW - 150 mW

Advantages Wearability, long-term
monitoring

Wearability,
measurement under

motion

Wearability, noncontact
measurement under

motion

Affecting factors Influence of motion Influence of body hairs Thickness of clothing
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6. Conclusions

In this study, a wearable 12-lead noncontact electrocardiogram monitoring system was proposed
and successfully applied in measuring the ECG signals of patients with myocardial ischemia and
arrhythmia. From the experimental results, the magnitude and phase responses of the designed
noncontact electrodes were suitable for measuring ECG signal, and its referred noise was less
than 10−5 V/Hz. The proposed system could provide a good signal quality even while walking.
Moreover, the ECG features of myocardial ischemia, installation pacemaker, and ventricular premature
contraction could be measured by the proposed system. The properties of the noncontact electrode
technique can effectively avoid contacting the wound of the subject. Moreover, the positions of
the noncontact electrodes can be easily adjusted to reduce the influence of the individual body size
difference. Therefore, the proposed system might be usefully applied in the applications of mobile
ECG monitoring in the future.
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Abstract: Inertial sensors are a useful instrument for long term monitoring in healthcare. In many
cases, inertial sensor devices can be worn as an accessory or integrated into smart textiles. In some
situations, it may be beneficial to have data from multiple inertial sensors, rather than relying on a
single worn sensor, since this may increase the accuracy of the analysis and better tolerate sensor
errors. Integrating multiple sensors into clothing improves the feasibility and practicality of wearing
multiple devices every day, in approximately the same location, with less likelihood of incorrect
sensor orientation. To facilitate this, the current work investigates the consequences of attaching
lightweight sensors to loose clothes. The intention of this paper is to discuss how data from these
clothing sensors compare with similarly placed body worn sensors, with additional consideration
of the resulting effects on activity recognition. This study compares the similarity between the
two signals (body worn and clothing), collected from three different clothing types (slacks, pencil
skirt and loose frock), across multiple daily activities (walking, running, sitting, and riding a bus)
by calculating correlation coefficients for each sensor pair. Even though the two data streams are
clearly different from each other, the results indicate that there is good potential of achieving high
classification accuracy when using inertial sensors in clothing.

Keywords: actigraph; body worn sensors; clothing sensors; cross correlation analysis; healthcare
movement sensing; wearable devices

1. Introduction

In many countries, a significant increase can be seen in the number and proportion of older adults
year on year. The population of people over 60 years old is projected to increase in Europe, Northern
and Latin America, Asia and Africa from the year 2015 to 2030 [1]. The number of people who have
noncommunicable diseases is also projected to increase significantly by 2030 [2]. Generally older
people are more prone to noncommunicable diseases [2] resulting in high care costs in each country.
In OECD (Organisation for Economic Co-operation and Development) countries, an annual increment
of 4.8% of the cost allocated for long-term monitoring from 2005 to 2011 was seen. It is predicted that
this cost will double in the period from 2015 to 2060 [3].

Home-based monitoring potentially offers a cost-effective mechanism for prevention of disease
and promotion of healthier lifestyles. A number of factors have to be taken into account when using a
long-term monitoring system, such as whether these systems are reliable for measuring real time data,
are safe to use with patients, have high power efficiency, and provide clinically useful data. Wearable
sensors have the capability to provide efficient monitoring of daily routines for a long period in a cost
effective way [4].
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A growing interest in health monitoring has led to the commercial availability of a number of
wearable sensors for self-monitoring. Consumer products for self-monitoring generally comprise a
single device, often wrist worn, which may hinder the accuracy of the data analysis and classification.
In contrast, in research work, multiple sensor devices are often used in order to achieve a higher
accuracy in activity classification. However, there are feasibility issues with the wearing of multiple
sensors on a daily basis in a residential environment. There are also challenges in maintaining a
consistent sensor orientation and approximate location with respect to the body during the data
collection periods. Further, in healthcare the patient or research participant may not have the patience,
or abilities to attach multiple sensors each day. Embedding sensors into the clothing may, to some
extent, address both issues of wearing multiple sensors every day and managing the sensor orientation
and approximate location.

This study considers the quality of data that would arise from inertial sensors embedded into
clothes that people wear on a daily basis.

It examines whether these sensor devices would be able to provide data as accurate as that
collected by sensors attached to the person. In particular, can the data be used to predict the actions
and behaviour of the individual and allow activity classification?

The aim of this research is to investigate and quantify to what extent the data obtained from the
clothing sensors can be used in characterising activities, as compared with body worn sensor data.
To achieve this, sensor data were collected from body worn sensors and sensors attached to three
different clothing types, across a range of daily activities. The correlation coefficients were calculated
between the clothing-embedded and worn data to check how much they agree with each other across
a range of daily activities and different styles of clothes.

2. Related Work

Research relating to the use of wearable sensors with older adults has largely been in three areas –
indoor tracking, activity classification and real-time vital sign monitoring [5]. Activity classification
using body worn inertial sensor data in long-term monitoring is a well-established approach [6].
Accelerometers are being used as the key instrument, while gyroscopes and barometric pressure
sensors are also used in some studies. Out of those studies some are using a single sensor while others
are using multiple sensors for activity recognition. For example, a single sensor, i.e., a sensor only on the
waist, thigh, lower-back and thigh, in activity classification of the whole body can be seen respectively
in [7–10]. Other studies, using multiple sensors, investigate the accuracy of activity classification
compared across placement of the sensors on the wrist, hip, neck, knee, chest, lower arm, lower
back, upper arm and ankle. Montoye et al. [11] observed high accuracy in activity classification for
three levels of physical activities, i.e., SB (sedentary behaviour), LPA (light-intensity physical activity)
and MVPA (moderate-to vigorous-intensity physical activity) based on thigh data, high accuracy in
classifying SB based on (non-dominant) wrist data, and low accuracy in classifying physical activities
based on (dominant) wrist and hip data. Hence, they concluded that it is better to use thigh data or
non-dominant wrist data in analysing different levels of physical activities. Cleland et al. [12] found
that, of chest, wrist, lower back, hip, thigh and foot sensor data, hip data scored the highest accuracy
in activity classification. However, they [12] also noted that further studies should be carried out in
order to find the optimal sensor placement across multiple activities, since their study focused only
on activities such as walking, lying and sitting. As both upper body and lower body movements
contribute to locomotion [13], it is better to investigate movements from both sides of the body, rather
than just one side.

Analysis of above mentioned sensor data related to activities may seek to find patterns of activities
or movement quality. In most of the studies, pattern recognition algorithms were used in activity
classification, such as decision trees ([10,14,15]), KNN (k-nearest neighbours algorithm) ([15–17]), SVM
(Support Vector Machine) ([9,18,19]) and other algorithms (C4.5, RF (Random Forest), NB (Naive
Bayes), Bayesian).
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Even though there are numerous research studies on activity classification with sensor data, very
few have been conducted on sensors attached to everyday clothes. One study highlighted that there
was little to no research validating the measurements of IMUs (Inertial Measurement Unit) attached to
loose clothes [20]. Their research aimed to validate the temporal motion from the sensors attached
to the clothes. As the clothes, a tight fitting vest and a tight jacket were used. Their main intention
was to validate the sensor readings by calculating four parameters, i.e., raw error, standardised error
(Cohen scale), Pearson’s correlation and mean difference. Five inertial sensor devices (weighing 23 g,
with dimensions 55 mm × 30 mm × 13 mm) were used, where two were strapped onto the Cervical
vertebrae segment(C7) and Thoracic vertebrae segment (T12), one was placed on a jacket at C7, and the
other two sensors were sewn into two pockets of a tight fitting elastic heart rate monitor vest so
that they were posterior to the C7 and T12 sensors. The study focused on only one activity, that is,
dead-lifting. When comparing the raw error, Cohen scale, correlation and mean difference of the data
sets, only the anterior-posterior acceleration was used. They were able to see a high similarity between
the sensor values that were obtained from both mechanisms, owing to the single activity that they
conducted with the tight clothes.

A second research study reported that sensors mounted onto clothes, instead of strapping them
onto a structure with rigid bands, gives a better signal variation so that it may make the activity
recognition procedure easier [21]. For their data collection, a pendulum and three different fabric
materials (denim, jersey and roma) and three tri-axial accelerometers were used. The fabric was
attached to the end of the pendulum and three accelerometers attached such that one was at the tip
of the pendulum (fixed in place with a rigid band), a second one was in the middle of the fabric,
and a third was at the edge of the fabric. After attaching the calibrated sensors, the pendulum was
released from a horizontal position and data was collected for 10 seconds. The experiment was done
with and without an additional weight at the end of the pendulum. The Euclidean distance and
one-way analysis of variance were calculated when calculating the similarity of the signals (data from
sensors attached with rigid bands as compared with sensors attached to different fabric materials).
The objective was to predict whether the pendulum was swinging with or without a weight attached
to the end. For this prediction, SVM and DRM (Discriminative Regression Machines) were used.
The conclusion of their research work was that the fabric’s nature of deforming movements in various
directions makes it easier to predict the motion, compared with the sensor data obtained from the
sensors attached with the rigid bands.

Hence it can be concluded that more information is needed to assess the true value of embedding
sensors into clothing to allow better representation of human movement and activity classification.

3. Materials and Methodology

The aim of the present study is to compare and contrast how clothing sensor data patterns
correlate/deviate from body worn sensor data, across three different types of clothing.

3.1. Data Collection Procedure

Data were collected from one participant (the first author) over three normal working
days. On each day, the participant wore a different type of clothing (loose slacks, pencil skirt,
and frock/knee-length dress), and multiple sensors were worn in pairs on the clothing and the
body. The sensors and their placement are described further in the next section. An activity log was
kept and used to annotate the data files. The main activities were walking, running, sitting as well as
other daily activities including riding on a bus.

3.2. Sensor Placement

Actigraph tri-axial accelerometers (wGT3X-BT, weighing 19 g and measuring 4.6 cm × 3.3 cm ×
1.5 cm, as shown in Figure 1) were worn in pairs, such that one sensor was strapped onto the body
and the other was sewn to the clothes in a similar location to the body-worn sensor. As the optimal
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places to mount sensors are not yet well defined [12], we mounted one sensor pair on the waist to track
upper body movements, and two other sensor pairs on the upper thigh and ankle to track lower body
movements [13]. Hence, sensor pairs were placed at the participant’s waist and upper-thigh for the
pencil skirt (41 cm long, with a 38 cm inch perimeter at the thigh) and the frock (48 cm inch perimeter
at the thigh). For loose slacks, a further pair of sensors was worn on the ankle and hem of the slacks.
The body worn sensors were always placed just below the sensors on the clothes, as shown in Figure 2.
The participant was 152 cm in height, and wore UK women’s size 6 clothes. The orientation of the
sensors was set such that the y-axis was aligned most closely to the axis of acceleration from gravity.
Table 1 shows the duration of data collection, type of clothing and sensor placement.

Figure 1. Coordinate frame of the Actigraph device. (Image from Actigraph website https://www.
actigraphcorp.com).

Figure 2. Sensor placement on subject and on subject’s clothes.

The sensor devices were initialised with the Actilife (https://www.actigraphcorp.com/support/
software/actilife/) software to synchronise their internal clocks. Additionally, at the start of each
day of data collection, the participant performed a jump in order to create a distinctive marker in the
accelerometry data that could be used to further check the synchronisation. Furthermore, each pair of
sensors (one in clothes and one on the body) were tapped synchronously four times to ensure data
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from sensor pairs could be time-aligned. At the end of each data collection period, another jump was
performed to identify the point where the data collection was completed, and provide an indication of
any potential sensor time drift.

Table 1. Sensor placement over three days and three types of clothing.

Day 1 Day 2 Day 3

Clothes Loose slacks Pencil skirt Frock (knee-length dress)

Duration 5 hours 3 hours 3 hours

Frequency 50 Hz 50 Hz 50 Hz

Sensor
placement

on Body
Waist Waist Waist

Right thigh Right thigh Right thigh

Right ankle n/a n/a

on Clothes
Waist band of slacks Waist band of skirt Waist band of frock

On seam of slacks near thigh On seam of skirt near thigh On seam of frock near thigh

Hem of slacks near ankle n/a n/a

3.3. Data Analysis

The data were analysed in terms of sensor pairs, in order to compare the body worn with the
clothing worn data. Comparisons were also made across different activities and the different clothing
types. The data were analysed in MATLAB.

3.3.1. Preprocessing the Data

The data from both sensors in a pair were first time-aligned, based on the “jump” and the
“tap” markers. Next, the time lag between the two sets of sensor readings for each activity was
estimated using a cross correlation, because there can be time lags between the body-worn and the
clothing-mounted sensor readings owing to factors such as the stiffness of clothing material (which
causes swing) and cloth dynamics for each activity. The maximum cross correlation value was then
used to determine the lag between the two signals, and this lag was adjusted in order to bring the two
signals into alignment.

Secondly, an orientation correction was applied to both sets of data. When attaching the sensors
onto the body and to the clothes, there may be discrepancies in the orientations between the two
sensors in a pair. Hence in order to maintain a reasonably similar orientation for each sensor pair, each
data set was rotated along a common axis so as to align the principal direction of gravity with the
y-axis of the sensor. This correction can be computed easily using Rodrigues’ rotation formula [22] and
identifying the axis of rotation as being perpendicular to both the gravity vector and the y-axis, and the
rotation about this axis is therefore the angle between these two vectors. Data where this rotational
correction has been applied is termed the ‘rotated data set’.

These preprocessing techniques were carried out in order that the data from the two sensors in
each pair could be meaningfully compared.

3.3.2. Activity Extraction

Using the activity log, data segments corresponding to four activities (walking, running, sitting,
bus ride) were extracted for each day/clothing type. From these segments, three shorter instances
(30–40 s/1500–2000 data points) of each activity were identified and extracted for further analysis.

3.3.3. Comparing the Similarity of the Body-Worn and Clothing-Mounted Sensors

After establishing the normality of the data [23], Pearson’s correlation coefficient was calculated
for each sensor pair to assess the strength of the linear relationship between the two signals [24].
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3.3.4. Activity Classification

We also wished to investigate the possibility of using the clothing sensor data in activity
classification as productively as the body worn sensors. For this purpose, the data were categorised into
four classes: walking/running, transition of a movement, sitting and standing. The analysis examined
only the ’thigh’ sensor data. When a subject is sitting, the thigh is often in a perpendicular posture
with respect to the standing posture, hence sitting and standing would be more easily distinguished
with thigh sensor orientation data as compared with waist or ankle sensor data.

Furthermore, the y-axis accelerations (gravity axis) were used for the classification, because this
axis exhibited the most noticeable differences across activities in acceleration values. When a subject
is standing, the gravity axis acceleration is (following alignment) close to the y-axis value. When the
subject is sitting, the y-axis is now perpendicular to the gravity vector so values are close to zero. When
the subject is moving, the y-axis values are changing significantly based on the additional accelerations
that result from these movements.

The features used for classification were chosen to emphasise information about posture and
movement, including movement transitions. Transitions include sit-to-stand/stand-to-sit activities
which would cause the y-axis acceleration to increase/decrease suddenly, sit-to-walk/run could again
increase the acceleration suddenly, and walk/run-to-stand would cause a sudden reduction of the
acceleration. Two features were used in this classification. To track postural changes, the y-axis
acceleration values were used, while the moving variance of the y-axis acceleration values was
calculated to track these transitions. A window size of 250 milliseconds was chosen to ensure that
even the acceleration changes in short periods were captured.

A decision tree was implemented to classify the data into activities by defining threshold values,
based on visual inspection, for the y-axis (gravity) acceleration and the y-axis moving variance values.
Threshold values were estimated for both body-worn and clothing-mounted sensor data.

Both body worn and clothing data files were then classified into activities by using the decision
tree. Finally, a confusion matrix was created to observe how the classification outputs differed from
body worn data and clothing sensor data, by considering the classifications of body worn sensor data
as the benchmark data set.

4. Results

4.1. Activity-Wise Time-Alignment

Figure 3 illustrates the cross correlation values plotted over time for one of the running data
segments. The point at which the cross correlation reaches a maximum value indicates the lag between
the two signals. The graph shows Day 3 (Frock) running data from the thigh sensor, and for this
specific activity, the lag was 38 data points (approximately 0.76 s delay).

After adjusting for the delay based on the cross correlation maximum value, the time-aligned
signals are as shown in the right-hand plots in Figure 3, with a maximum cross-correlation now
appearing at 0 s, indicating that the delay between the two signals was minimised after applying this
technique. When the correlation coefficient is calculated without considering this time lag, for this
running instance, the value was 0.4136 and after the lag was corrected the correlation coefficient value
was 0.6345. Likewise, the time lag between body worn and clothing worn data set for each activity
segment was calculated and corrected before examining the correlation coefficient values for each
activity.
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Figure 3. (a): Left side 3 plots: Tracked time lag between body worn and clothing sensor data for
running when the subject was wearing a frock, (b) Right side 3 plots: Signals after the alignment using
cross-correlation value. (b) After alignment, maximum cross correlation was observed at 0 s.

4.2. Descriptive Analysis of Acceleration Data

Figure 4 illustrates walking data extracted from thigh and ankle sensor pairs when the subject
was wearing slacks. The sensors were on the right leg, thus two peaks can be interpreted as a single
stride (2 steps) as indicated. According to the data it was calculated that typical stride (two steps) time
here was approximately 0.7 s.

Figure 4. Walking from Day 1 (slacks). (a): Data from thigh worn sensor, (b): Data from seams of slacks
near thigh, (c): Data from ankle worn sensor, (d): Data from hem of slacks near ankle. Red axis: vertical
acceleration, Blue axis: anterior-posterior acceleration, yellow axis: mediolateral acceleration. Note the
similarity of signals between clothing and body worn sensors for walking
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Figure 5 shows running data from the sensor pairs that were on (and over) the thigh when the
subject was wearing a pencil skirt (left graphs) and frock (right graphs) respectively. According to
these data it can be seen that typical stride time (two steps) for running was approximately 0.3 s. Even
though the acceleration values of pencil skirt data have relatively similar values with body worn
sensor data, the frock data in contrast comprise higher acceleration values with sharp peaks when
compared to body worn data.

Figure 5. Running data from Day 2 (Skirt; left graphs) and Day 3 (Frock; right graphs). (a): Day 2
data from thigh, (b): Day 2 data from seams of skirt near thigh, (c): Day 3 data from thigh, (d): Day
3 data from seams of frock near thigh. Red axis: vertical acceleration, Blue axis: anterior-posterior
acceleration, yellow axis: mediolateral acceleration. Note the similarity of signals between clothing
and body worn sensors for skirt data verses the high accelerations present in frock data.

4.3. Correlation Coefficient Value Analysis

When examining the correlation coefficient values, five different sets of data were compared to
determine from which data set the maximum correlation coefficient could be found. The five different
data sets were the original data set, the time aligned data set, rotated data along the gravity axis,
time-aligned and rotated data and finally the time-aligned, rotated and activity wise time-aligned data.
After comparing all the values, it was noted that for activities like walking and running, maximum
correlation coefficient values were found after applying a rotation matrix and activity-wise alignment.

Table 2 shows correlation coefficient values for each activity (multiple walking, running and
sitting segments) after applying a rotation matrix and activity-wise alignment. They are listed by
clothing type (slacks, skirt and frock) for both waist and thigh sensor data.

From Table 2, the waist sensor data had the highest correlation coefficients, irrespective of clothing
type. However, thigh data also showed reasonable correlation values for each activity depending on
the clothing type.
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Table 2. Median correlation coefficient values for different activities for different clothes based on
the ‘Waist’ and ‘Thigh’ sensors. Where there were multiple instances of the same activity in a day,
the correlation coefficient was calculated for each instance, and the median and variance of the multiple
instances is shown. There was a good correlation between body-worn and clothing sensors, apart from
the sensor pair on the thigh and seam of the frock.

Slacks Skirt Frock

Waist Thigh Waist Thigh Waist Thigh

Walking 0.985± 0.022 0.945± 0.013 0.991± 0.006 0.973 ± 0.013 0.978 ± 0.018 0.921 ± 0.059
Running 0.811 ± 0.065 0.802 ± 0.067 0.926 ± 0.0007 0.835 ± 0.094 0.901 ± 0.008 0.642 ± 0.014
Sitting 0.993 ± 0.014 0.967 ± 0.001 0.999 ± 0.0002 0.995 ± 0.004 0.974 0.705

Bus Ride 0.988 0.987 - - - -

4.4. Activity Classification

Figure 6 shows a segment of the output of the activity classifier, based on both body worn
and clothing sensors (thigh data on the slacks). This classifier attempted to identify activities
i.e., walking/running, transitions, sitting and standing, as denoted on Figure 6. In addition to the
classification results, the activities performed by the participant as recorded in the diary are indicated
on both graphs.

Figure 6. Activity recognition using a decision tree: Day 1 (slacks) data from body worn (top graph)
and clothing sensors (bottom graph) were classified into one of four activities i.e., Walking/Running,
Transitions of activities, Sitting and Standing. This figure shows a segment of the day’s data. The gravity
axis acceleration is plotted in grey, and the outputs of the classifier are denoted in different colours. Red:
Walking/Running, Green: Transitions, Cyan: Sitting, Purple: Standing. The participant’s activities
according to the diary data are also shown in yellow. The outputs of the classifier are similar in both
data files, with minor mismatches.
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As the main intention of this research was to examine how the classifier outputs for the clothing
sensor data compared with those from the body worn sensor data, and not to calculate the “true”
activity classification accuracy, a confusion matrix (Table 3) was created considering the classifications
from the body worn data set as the true class. For example, the first cell (row 1, column 1) of Table 3
indicates that 88.0% of the data that was classified as “walking” based on the body worn sensor are
also classified as walking based on the clothing worn sensor. Similarly, 9.5% of the data classified as
walking based on the body worn sensor are classified as transitions based on the clothing worn sensor.

Table 3. Confusion matrix showing the level to which activity classification based on the clothing
sensor data was in agreement with classification based on the body worn sensor data (Day 1 data:
when the subject was wearing slacks). Green boxes show when the highest value was expected and
also achieved, Yellow boxes indicate where a high value was expected, but a lower value than expected
was observed.

Classification Data from the Body
Worn Sensor as the “True” Class

Classification Data from Clothing Worn Sensor against Body Worn Data

Walking Transitions Sitting Standing

Walking 88.00% 9.50% 0.70% 1.8%
Transitions 16.10% 45.58% 11.42% 26.90%

Sitting 0.32% 0.26% 88.37% 11.05%
Standing 1.20% 9.58% 0.08% 89.14%

5. Discussion

When using correlation coefficients to compare the data sets, it was important to perform a data
alignment for all the sensors, as the correlation was affected by time lags between the sensors’ starting
times. Orientation correction at this level is also important as the sensors can become misplaced while
the subject is moving and it can mislead the comparisons of data sets. The long term goal is to eliminate
the need for time lag and orientation correction by embedding the sensors more effectively in the
clothes and engineering synchronous data readings.

The first analysis was done calculating correlation coefficient values for both data files. Table 2
was prepared with a summary of all data from the four common activities that were conducted on
three days for waist and thigh sensors. It was clear that thigh data were less correlated than waist
sensor data sets. Yet, these values were also significantly correlated with each other. The frock data
indicate the possibility of considering clothing dynamics in the sensor data as the frock was a loose
dress. Thus the frock could swing with the movements of the leg when the subject was running and
walking. Further, when the subject was sitting on a chair, it was noted that the sensor on the clothes
near the thigh tended to shift with respect to the sensor worn on the thigh itself. Typically the sensor
on the frock would fall away from the leg and onto the chair thus losing a strong relationship to the
underlying limb. In addition to the swinging attribute of the frock, the weight of the sensor device
(Actigraph) emphasised the movement of the clothing rather than the body. Even though there are no
established measures of the looseness of clothes relative to body size, clothing sensor readings would
allow these concepts to be explored.

The final analysis was the comparison of the outputs of the activity classifiers. Based on the
confusion matrix (Table 3), it was noted that all the activities except the transitions were identified in a
high true positive rate, i.e., more than 80%, where the classifier output based on the body-worn sensor
was considered as “true”. Hence it can be taken as a positive indication that this would work more
accurately when an advanced classifier would be used in activity classification. The findings of [21],
mentioned that the accuracy of activity recognition was higher when the sensors were mounted onto
clothes. However, they collected the data from a cloth attached to a pendulum. When it comes to
data collection from a human with actual clothes, it could be said that our evidence demonstrates a
more complex relationship. However, it should be noted that owing to the weight and the size of the
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Actigraph devices, the correlation of data could have been decreased, and it is better to use smaller,
lightweight sensors in a study like this.

When clothing worn sensor data is used for activity classification, it is reasonable to expect that
the results will depend on factors that include subject characteristics (e.g., size, gender) as well as
clothing styles (looseness, placement). However this study is intended to assess the viability of this
approach and hence considers only a single subject across three different clothing types. In future
studies, if the sensor positions may vary slightly from day to day due to different positioning of the
clothes on the body, this issue can be minimised by rotating the three axis sensor readings along a
common axis so as to align the principal direction of gravity with the y-axis of the sensor. Moreover,
the data distribution for each activity is expected to be the same for x, y and z axis acceleration for
sensor readings from different positions. Out of the three types of clothing, the pencil skirt data had
the highest correlation as it was the tightest fitting of the clothing used in the study. Moreover, as the
clothing waist sensors were more tightly attached to the waist with the clothes, waist sensor data were
significantly correlated with each other irrespective of the clothing type.

6. Conclusions

This study aimed to assess the suitability of clothing sensor data for use in activity recognition
when compared to similarly placed body worn sensors. In this study the clothing sensor data are shown
to be well correlated with body worn sensor data as indicated by an analysis of correlation coefficient
values. Furthermore the classification results from the clothing sensors are promising when compared
to body worn sensors. This is a first study reporting data from sensors embedded into loose clothing
in everyday activities. Results indicate that this approach has good potential for daily monitoring,
for example in healthcare applications, and that this is an area worthy of further investigation.

This was a single person study intended to gain insight into how data might vary across three
different clothing types across a range of likely daily activities. As such the study does not consider
benefits of the wide range of different algorithms that could be used for classification. Rather the study
checks whether it is possible to collect meaningful data from clothing worn sensors compared to body
worn ones. Future studies are now encouraged to improve activity classifiers based on clothing types
and supporting the use of multiple lightweight sensors that are networked and time synchronised.

All data used in the paper is available at 10.5281/zenodo.3597391.
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Abstract: This paper aims to examine the role of global positioning system (GPS) sensor data in
real-life physical activity (PA) type detection. Thirty-three young participants wore devices including
GPS and accelerometer sensors on five body positions and performed daily PAs in two protocols,
namely semi-structured and real-life. One general random forest (RF) model integrating data from
all sensors and five individual RF models using data from each sensor position were trained using
semi-structured (Scenario 1) and combined (semi-structured + real-life) data (Scenario 2). The results
showed that in general, adding GPS features (speed and elevation difference) to accelerometer data
improves classification performance particularly for detecting non-level and level walking. Assessing
the transferability of the models on real-life data showed that models from Scenario 2 are strongly
transferable, particularly when adding GPS data to the training data. Comparing individual models
indicated that knee-models provide comparable classification performance (above 80%) to general
models in both scenarios. In conclusion, adding GPS data improves real-life PA type classification
performance if combined data are used for training the model. Moreover, the knee-model provides
the minimal device configuration with reliable accuracy for detecting real-life PA types.

Keywords: physical activity type; real-life; GPS; GIS

1. Introduction

In today’s societies, the increase in sedentary lifestyles in people’s homes and workplaces has
caused severe health problems such as obesity and chronic diseases [1,2]. A physically active lifestyle
can contribute to maintaining quality of life and preventing challenges related to people’s health status,
particularly for older adults. Many studies have been designed to objectively measure physical activity
(PA) using wearable sensors; however, they have been conducted in controlled conditions. The data
collected under controlled conditions are unable to reproduce PA behavior as it happens in real-life [3].
Studying such behaviors in natural daily settings is therefore important in order to discover how daily
PA types can affect health status.

Accurate PA type detection is a prerequisite to recognize humans’ daily activity behavior. Once
we detect PA type, we can also estimate the other PA measures such as activity duration or level [4].
Detecting PA type helps to understand how much each activity type (e.g., walking or sitting) contributes
to human physical and mental health. This also provides useful guidance regarding the amount of
time that people should spend on a specific activity type to maintain their health. Moreover, PA type is
a more understandable concept than PA level, particularly for laypersons [5]. Thus, it is imperative

Sensors 2020, 20, 588; doi:10.3390/s20030588 www.mdpi.com/journal/sensors309



Sensors 2020, 20, 588

to improve daily PA type detection to identify humans’ daily PA patterns and their association with
health outcomes.

During the past decade, rapid progress in wearable sensor technologies has facilitated long-term
PA behavior monitoring in real-life conditions. Among the existing wearable sensors, three-dimensional
(3D) accelerometers have gained the most attention. A 3D accelerometer (ACC) measures acceleration
forces in y, x and z dimensions, and therefore can sense the status of a body’s motion or postures.
Although the 3D accelerometer is the most common and informative sensor for PA type detection, it
is challenging to accurately detect real-life activity types using only a single 3D accelerometer [5–7].
Researchers have extensively examined the usefulness of complementing accelerometer-based
PA measures with additional sensors such as gyroscope, magnetometer, barometer and heart
rate [8–11] or using multiple accelerometer devices on different body locations to improve the
activity recognition [5,12]. However, these solutions entail mounting more devices on a person’s body
or rendering data analysis more complex due to dealing with different sensors featuring different data
formats and sampling rates. Moreover, few studies have investigated the role of global positioning
system (GPS) data in informing classifiers for detecting PA types [5,13], despite the great potential that
a GPS sensor might have in contributing spatial context information that could further facilitate the PA
type detection process.

Combining GPS and accelerometer sensors has been useful in improving movement monitoring
of humans, particularly in daily life. In the transport mode detection domain, the combination of
GPS and accelerometer sensors is more useful than using each sensor individually, specifically in
differentiating transport-related activities such as walking, cycling and running. In the PA literature,
we can categorize the use of GPS sensors into two broad applications. The first application mainly
focuses on utilizing GPS spatial coordinates to link PA behavior derived from accelerometer data
to the location and relevant spatial data such as land use, walkability, green spaces, neighborhood
and exposure in a geographic information systems (GIS) environment [14–16]. These links enhance
our contextual knowledge of the relationship between objectively measured PA and physical and
social environments [17–21]. The second application uses features such as time, distance, altitude and
speed derived from GPS data to inform classifiers in PA detection [5,22–25]. However, few studies in
the PA domain attempted to assess the potential benefit of using GPS data as additional input to PA
type detection.

Previous studies indicated that utilizing GPS devices is a practical method to accurately estimate
humans’ locomotion speed [26–30]. While adding GPS data (i.e., speed) to accelerometer data increases
transport mode detection performance when differentiating between active and passive modes of
transport [24,31–33], these studies rarely included different types of walking or cycling activities or
different sub-types of the stationary class such as sitting, standing and lying. Although studies have
included GPS speed to improve PA type detection for more fine-grained activities [5,13,34], they have
a number of limitations that still have to be addressed.

Many of the models in the literature used data collected in controlled environments [5,13] to
detect a limited number of activities from a small sample size [5,13,24,31,32,34]. Using GPS speed
in combination with accelerometer data, models reliably detected activities that generate distinct
accelerometer and GPS data profiles. However the models were unable to accurately detect activities
with similar movement data profiles, such as non-level and level walking, which require different
energy expenditure (EE) and have differing health impacts [6]. Exploiting GPS data to provide
distinctive features would allow these similar types of activities to be distinguished. The previous
studies have reported that the combination of GPS and accelerometer sensors generates better results
for activity detection than using an accelerometer alone, but they did not fully discuss the role of the
individual sensors in detail [5,24,32,34]. For example, it is unclear that to what extent adding GPS
data improves activity recognition when using data collected in different environments (controlled
and uncontrolled) or when using data from different sensor positions. It is also unknown whether
adding GPS data addresses concerns about participant burden (e.g., wearing multiple sensors) during
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real-life data collection. To our knowledge, no study has explored the potential benefit of also using
GPS spatial coordinates to classify PA type. The potential for combining GPS and accelerometer data
to enhance real-life activity recognition is therefore a research area that is yet to be explored in detail.

This paper contributes to the body of literature on sensors and PA type detection first by calculating
an informative elevation difference feature by linking the GPS spatial coordinates to GIS data, namely
a digital elevation model (DEM), rather than using GPS speed alone. Second, we investigate the extent
to which GPS sensors, in conjunction with accelerometer data, can enhance the prediction performance
of detecting the major posture and transport-related motion activity types (sitting, standing, lying,
walking, non-level walking, running and cycling). We then explore whether GPS data informs PA
monitoring such that their inclusion minimizes the number of accelerometer devices that are required
to reliably differentiate between the above posture and motion activity types under real-life conditions,
with the aim of reducing participant burden. Finally, we advance research on real-life PA type detection
through not only developing a single classification model, but also by assessing the contribution of
GPS data in addressing the limitations of accelerometer sensor data and by studying the contribution
of these sensors in detail within different realistic and stringent validation scenarios.

Our results provide insights that can assist future PA study design, especially when PA type
detection is a focus. In particular, this research gives guidance regarding relevant data sources
(accelerometer, GPS) and their usage, appropriate evaluation methods and optimal sensor positions for
studies aiming to detect the major posture and transport-related motion activities.

2. Materials and Methods

2.1. Experimental Overview

The target PAs are lying, sitting, standing and walking on level ground at different speeds (slow,
normal and fast), running, cycling, walking uphill, walking downhill, walking downstairs and walking
upstairs. The rationale for selecting these target activities is to consider a subset of PAs from prior
research including, (1) simple PAs classified by [35]. (2) Mobility-related activities of the International
Classification of Functioning, Disability and Health (ICF) and (3) global body motion activities classified
by [12]. (4) Activities that are commonly performed in everyday life and (5) activities that can cover
different levels/intensities of PA and EE.

We used two study designs for data collection, semi-structured and real-life, to assess
the transferability of the model trained with a semi-controlled data set on data collected in
real-life conditions.

2.1.1. Semi-Structured Protocol

Participants reported to the sport center of the University. After completing a questionnaire
regarding their socio-demographic information and typical PA based on the Global Physical Activity
Questionnaire (GPAQ) [36], they put the six devices on in the following configuration: one smartphone
(Motorola Moto E, 2nd gen) inside their right pocket and five wearable customized uTrail devices [37]
on different body locations including left and right hips, inside their left pocket, chest and right knee
(Figure 1). Two elastic straps, each holding the uTrail, were adjusted around their chest and below their
right knee. For the hip positions, we fixed the uTrail devices to their waistband using the device clip.
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Figure 1. The location of smartphone and uTrail devices (orange circles) on the participants’ body.

The uTrail device includes an audio sensor, a GPS sensor (uBlox UC530M) and an accelerometer
that includes three magnetic field channels and three acceleration channels (ST Microelectronics
LSM303D). The GPS recorded data at 1 Hz and has the ability of concurrent reception of up to three
global navigation satellite systems (out of GPS (GPS = USA), Galileo (Galileo = European), GLONASS
(GLONASS = Russia) and BeiDou (BeiDou = China)). The sampling rate for the accelerometer was
50 Hz. The uTrail device can be connected to a computer via a micro-USB port to download stored
data; we were able to configure the device and retrieve the data via software developed for the uTrail.
The smartphone and audio sensor data were not used in the present study. For all sensor positions
except the right hip, the devices were oriented to have the y, x and z axes, recording acceleration data
in the vertical, medio-lateral and antero-posterior direction of the body, respectively. For the right
hip, the device was oriented to have the y, x and z axes, recording acceleration data in the vertical,
antero-posterior and medio-lateral direction of the body, respectively.

Participants performed a number of activities, each completed twice in an outdoor area (see
Appendix A, Table A1). They performed the motion activities at their own comfortable speed and were
not restricted in this sense. We applied a direct observation approach for activity annotation using the
“aTimeLogger” free app installed on a smartphone.

2.1.2. Real-Life Protocol

The real-life experiment was conducted a few days after the participants completed the
semi-structured protocol. Participants wore the devices in the same configuration as the semi-structured
protocol and they were instructed to use the “aTimeLogger” app to make their own data annotation
during the real-life data collection. No instruction regarding how to perform the activities was
given to the participants. They performed the target activities in an outdoor environment as part of
their daily life spontaneously and in a random order. The only criteria were to meet the required
minimum time duration for each activity task described in (see Appendix A, Table A2) and perform the
transport-related activities such as walking, cycling and jogging in two different environments, namely
an urban area and a leisure area; this data collection protocol took 3 h on average. The total amount of
labeled data collected in both protocols (semi-structured + real-life) is about 161 h (29,017,465 data
recordings), corresponding to an average of 4.8 h labeled data for each participant (Table 1). We
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anonymized all data (with the personal data stored separately from the ACC and GPS data) and
instructed the participants to perform all PAs away from their home and workplace, such that their
home and workplace location could not be inferred from the GPS data. This dataset is not yet publicly
available as we intend to use it in a future publication [38].

Table 1. Labeled data collected for the study.

Dataset Total Acc. Data Total GPS Data
Acc. Data per

Person
GPS Data per

Person

Semi-structured 61.6 h (11,098,581) 59.6 h (214,628) 1.8 h (336,320.6) 1.8 h (6503.879)
Real-life 99.5 h (17,918,884) 101.5 h (365,631) 3 h (542,996.5) 3 h (11,079.73)

Total 161 h (29,017,465) 161 h (580,259) 4.8 h (879,317.1) 4.8 h (17,583.61)

2.1.3. Participants

A sample of 33 (20 male and 13 female) young participants ranging in age from 20 to 35 from
15 different countries (see Appendix A, Figure A1) participated in data collection (Table 2). As inclusion
criteria, participants were required to be physically healthy and be able to walk and run without
walking aids (self-report), and accept the instructions of the study protocol. The study was carried out
following the rules of the Declaration of Helsinki of 1975. According to the rules of the University
of Zurich (UZH) Ethics Policy, which are in accordance with the Swiss Human Research Act, it was
not necessary to obtain separate ethics approval from the UZH Ethics Committee and our study was
conducted in compliance with the ethical guidelines of the Philosophical Faculty of the University of
Zurich. All participants provided written informed consent.

Table 2. Physical characteristics of the participants involved in the study.

Physical Characteristics Mean (SD)

No. (F/M) 33 (13/20)
Age (year) 29 ± (5.6)

Height (cm) 173 ± (10.05)
Weight (kg) 67 ± (9.8)

BMI (kg·m−2) 22 ± (1.9)

2.2. Model Development

2.2.1. Accelerometer Preprocessing

After removing duplicates and missing values, we synchronized the data from five accelerometers.
The synchronization was based on a sudden jump (i.e., “standing still-jump-standing still”) as
introduced in [7] and was performed by the participant before and after performing each activity task,
as instructed. The jump activity generated a distinguishable acceleration profile (i.e., peaks) within the
standing still segments. We detected the peak acceleration of the start and end jumps, and aligned
the data recordings of the five sensors based on those peaks. We used the start and end timestamps
recorded by the “aTimeLogger” app to annotate the data. For each activity task, we removed 10 s
before and after the activity segment to exclude data recorded during the sudden jump period for each
activity. We also removed long stops (more than 1 s) within the motion activities. To do this, we firstly
developed a threshold-based stop-move detection algorithm based on accelerometer data, secondly we
found the stop segments longer than 1 s, thirdly we removed them from each motion activity segment
and finally, we assigned the corresponding label to the raw accelerometer data of that segment. Visual
inspection helped to ensure signal alignment to the corresponding activities.

We used an overlapping fixed size windowing technique to segment the labeled data. We applied
a sensitivity analysis (i.e., we altered and tested different segment sizes) using segments of 2, 5, 10, 20,
30 and 60 s to investigate how robust the model’s classification performance was to the segment size.
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After signal segmentation, we calculated time and frequency domain features from each segment to
use as inputs to the classifier. Time domain features are typically mathematical or statistical measures
derived directly from the sensor data. To derive frequency domain features, the segment of sensor data
must first be transformed into the frequency domain, normally using a fast Fourier transform (FFT). In
total, we extracted 85 features from each sensor’s accelerometer data. The initial target features from
accelerometer data include:

• Time domain features: mean, standard deviation and range of three axes and total acceleration,
correlation among three axes, kurtosis, skewness and average absolute difference of three axes,
number of observations falling within each of 10 bins of the three axes, time interval between
local peaks and number of peaks of three axes.

• Frequency domain features using FFT: power spectral density, energy of the signal, mean of the
first three dominant frequencies, amplitude of the first three dominant frequencies of three axes
and total acceleration.

2.2.2. GPS Preprocessing

The GPS data include latitude, longitude, date, time, horizontal dilution of precision (HDOP),
vertical dilution of precision (VDOP), number of satellites, altitude and instantaneous speed. To
preprocess the GPS data, we firstly removed duplicates and missing values. We used linear interpolation
based on latitude, longitude and timestamps to fill the data gaps greater than 1 s between consecutive
GPS fixes. We extracted an elevation value for each interpolated GPS point from a DEM to fill in the
altitude value for the interpolated GPS points. A DEM is a representation of the altitude of the earth’s
surface, today typically generated using remote sensing techniques such as stereo photogrammetry or
laser scanning. We used the swissALTI3D DEM, which has a spatial resolution of 2 m and is provided
by the Swiss national mapping agency swisstopo.

After filling gaps in the GPS data, it was important to keep the spatial error of GPS coordinates at
a minimum. Map matching is a helpful solution to improve the spatial accuracy [39]. We used the
point-to-curve geometric map-matching approach according to Quddus et al.’s (2007) categorization [39].
We applied an existing map matching algorithm on interpolated GPS data using road data obtained
from OpenStreetMap (OSM) [40] and R software [41] (Figure 2).

Figure 2. Map-matched global positioning system (GPS) points of data collected by a single participant
in real-life using OpenStreetMap (OSM) data.

Afterward, we used the map-matched GPS coordinates to derive an elevation value from
swissALTI3D for each GPS point. SwissALTI3D is an accurate DEM, which describes the surface of
Switzerland without vegetation and development and is updated every six years. We used ArcGIS
software v.10.6.1 and the tool “Extract value to points” to assign an elevation value to each GPS
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point. We then used a weighted average filter to remove noise and outliers and smooth the extracted
elevation data from DEM. We matched the GPS timestamps with the start and end timestamps of
accelerometer segments to combine the GPS data with the accelerometer data. Finally, we calculated
the average speed and elevation difference for each segment and appended these two GPS features to
the accelerometer feature space.

2.2.3. RF Model Development

We built two different training datasets, one using data from the semi-structured protocol only
and another one using the combined dataset of both the semi-structured and real-life protocols, and
used the random forest (RF) classifier to build the classification models in different scenarios (Table 3).
For each scenario, we examined both single (accelerometer data only) and multi-sensor (accelerometer
and GPS data) approaches to build the RF classification models. We built a general model that was
trained with data obtained from all five sensor positions (chest, left hip, right hip, left pocket and right
knee) and also five individual models, each trained with data from a single sensor position. Each
accelerometer-based individual model used 85 features (see Section 2.2.1) for classification, and each
accelerometer-based general model integrated features from all five sensors and used a total of 425
(85 × 5) features.

Table 3. Scenarios for separating data into a train and test data set and the corresponding
validation method.

Scenario No. Training Dataset Validation Method and Test Data

Scenario 1 Semi-structured dataset
L1SO cross validation on semi-structured data
L1SO cross validation on real-life data
k-fold cross validation on semi-structured data

Scenario 2 Combined semi-structured and
real-life dataset

L1SO cross validation on combined data
L1SO cross validation on real-life data
k-fold cross validation on combined data

We grouped the activities of each protocol and detected seven classes including walking, non-level
walking, running, cycling, sitting, standing and lying. We also validated the results using three
approaches: Leave-One-Subject-Out (L1SO), k-fold cross validation and L1SO validation with the
real-life data set. We tested different segment sizes (2, 5, 10, 20, 30 and 60 s) for general models to assess
the effect of segment size on classification performance. The data analysis tasks were implemented
using the R statistical computing software [41].

To report the classification performance, we used four metrics including accuracy, recall, precision
and F1 (Equations (1)–(4)).

Accuracy = (True positive + True negative)/(True positive + True negative + False positive + False negative). (1)

Precision = True positive/(True positive + False positive). (2)

Recall = True positive /(True positive + False negative). (3)

F1 = 2 × precision × recall/((beta2 × precision) + recall). (4)

3. Results

We presented the overall accuracies of the RF models (general model and individual models) as
evaluated using L1SO, 10-fold cross validation and validation with a real-life dataset in Figure 3 and
Figure 5. Based on the results, we realized that the L1SO cross validation (with a training or real-life
dataset) led to more realistic results compared to 10-fold cross validation. The 10-fold cross validation
always had the best performance (above 95%) for all models regardless of the sensor positions, training
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or testing dataset and there was significant difference between the classification accuracy measured
using L1SO (with training or real-life dataset) and 10-fold cross validation. In other words, 10-fold
cross validation produced artificially high scores for all models, therefore we focus on the results
obtained by L1SO cross validation only.

 
(a) (b) 

Figure 3. Overall accuracy of the RF classification models trained with semi-structured data,
(a) accelerometer data only and (b) accelerometer and GPS data.

3.1. Results for Scenario 1

Using L1SO cross validation (with training data) and accelerometer data only, the general model
with 87% accuracy performed better than individual models. Among individual models, the knee
position scored highest with 82% accuracy followed by left/right hip (77%), chest (76%) and left pocket
(73%). We observed a dramatic drop in accuracy under real-life dataset when using L1SO cross
validation, indicating that the model trained with semi-structured data could weakly predict PA types
in real-life (Figure 3a).

Adding GPS data to the accelerometer data improved the classification performance for all models
validated by L1SO of the training dataset. The overall accuracy of hips and chest, pocket, general and
knee positions increased by 6%, 5%, 4% and 3%, respectively. However, similar to accelerometer-based
models, the classification performance decreased for all models when testing on real life data. General
model performed the best with 73% accuracy followed by knee (72%), chest (71%), left/right hips (69%)
and pocket (66%; Figure 3b).

Using L1SO of the training dataset, the overall accuracy for the general models ranged from 70%
to 98% (using accelerometer data only) and from 81% to 99% (using accelerometer data combined
with GPS data). Testing the general models with real-life data, the classification performance was
between 56% and 95% and 56% and 95% using accelerometer data and ACC + GPS data, respectively.
The interquartile range (IQR) of L1SO and the related real-life validation partially overlapped for all
models excluding the general model when using accelerometer data only (Figure 4a). Conversely,
there was no overlap between the IQR of L1SO and its related real-life validation when we added GPS
data (Figure 4b). In addition, using multi-sensor data (Figure 4b) generated more outliers compared
to using accelerometer data only (Figure 4a). The distribution range of the general and individual
position models does not show a significant difference between Figure 4a,b. Results show that in an
ideal situation (i.e., fewer GPS gaps and complete OSM data), adding GPS data could increase the
overall classification accuracy for L1SO of training dataset by 15%.
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(a) (b) 

Figure 4. The distribution of overall accuracy among all participants for the RF classification models
trained with semi-structured data, (a) accelerometer data only and (b) accelerometer and GPS data.

The general RF model using accelerometer data only detected lying, sitting, standing and running
with high recall, precision and F1. However, the model obtained the lowest performance for non-level
walking followed by walking and cycling (highlighted in bold in Table 4). Adding features derived from
GPS data (speed and elevation differences) to the accelerometer feature space significantly improved
the recall, precision and F1 for non-level walking, walking and cycling (highlighted in bold in Table 5).

Table 4. Confusion matrix of a participant (with the highest GPS contribution) when using accelerometer
data only (Scenario 1).

Accelerometer Only Cycle Lie N_Walk Run Sit Stand Walk Recall Precision F1

Cycle 168 0 9 0 0 0 0 78 95 85

Lie 0 124 0 0 0 1 0 99 99 99
N_walk 0 0 209 0 0 0 163 42 56 48

Run 1 0 0 113 0 0 0 100 99 100
Sit 0 1 0 0 108 0 0 99 99 99

Stand 0 0 0 0 1 62 0 98 98 98
Walk 47 0 279 0 0 0 394 71 55 62

Table 5. Confusion matrix of a participant (with the highest GPS contribution) when using accelerometer
and GPS data (Scenario 1).

Accelerometer & GPS Cycle Lie N_Walk Run Sit Stand Walk Recall Precision F1

Cycle 165 0 10 0 0 0 0 98 94 96

Lie 0 124 0 0 0 1 0 99 99 99
N_walk 0 0 278 0 0 0 89 58 76 66

Run 1 0 0 112 0 0 0 100 99 100
Sit 0 1 0 0 107 0 0 100 99 100

Stand 0 0 0 0 0 66 0 99 100 99
Walk 2 0 192 0 0 0 523 85 73 79

Feature Importance

Using accelerometer data only, the mean acceleration along the vertical and medio-lateral axes,
standard deviation and energy of the signal of total acceleration and of the vertical axis, the number of
observations falling within the fourth bin of the medio-lateral axis from the chest sensor’s data; the
mean acceleration along the medio-lateral axes of the left hip and pocket sensor’s data and the number
of observations falling within the fifth bin of the medio-lateral axis from the pocket’s data were the top
10 best features for the general RF model (see Appendix B, Figure A2a).
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Though the order of important features varied according to the different individual models, the
mean acceleration along the vertical and medio-lateral axes, as well as power spectral density, and
energy and amplitude of the first dominant frequency of total acceleration fell within the top 10 features
for all individual models. We also observed that mean acceleration along the antero-posterior axis
and total acceleration, average absolute difference of total acceleration, standard deviation of total
acceleration, vertical and medio-lateral axes, energy of the signal along the vertical and medio-lateral
axes, amplitude of the second dominant frequency of total acceleration, number of observations falling
within the fourth, fifth and seventh bin of the medio-lateral axis and range of acceleration along the
medio-lateral axis are among the top 10 features among different individual models.

Using the accelerometer and GPS data, excluding the features derived from GPS data, a similar
feature importance pattern was seen for the general (see Appendix B, Figure A2b) and individual models.

3.2. Results for Scenario 2

In Scenario 2, for each participant, we combined all collected data in the semi-structured and
real-life settings, and built the training data or “combined dataset” (Figure 5).

 
(a) (b) 

Figure 5. Overall accuracy of the RF classification models trained with combined dataset,
(a) accelerometer data only and (b) accelerometer and GPS data.

Using L1SO cross validation (with training data) and accelerometer data only, the general model
achieved 84% accuracy, a 3% decrease compared to the result obtained by using semi-structured data
in training. Among individual models, the knee position again scored highest with 81% accuracy
followed by chest (78%), hips (75%) and left pocket (74%). Using the combined data for training the RF,
compared to Scenario 1, the model performance for chest and pocket positions slightly increased by
2% and 1%; whereas, it decreased by 3% and 1% for hips and knee position, respectively (Figure 5a).

Adding GPS data to the accelerometer data improved the classification performance for all models
validated by L1SO of the training dataset by 2% with the exceptions of 1% for the pocket model and
3% for the hips position. This scenario also performed better with the real-life data, and ACC + GPS
resulted in stable classification performance, unlike Scenario 1 where the performance dramatically
dropped for all models. The general, knee, chest, pocket and right hip, and left hip models achieved
84%, 83%, 80%, 76% and 77% overall accuracy, respectively (Figure 5b).

The boxplots for the models’ performance when using the combined dataset for training RF
models shows that the overall accuracy ranges from 73% to 95% and from 74% to 95% when using
accelerometer data only and when using data from both accelerometer and GPS sensors, respectively,
and evaluated by L1SO (Figure 6). Testing the general models with real-life data, the overall accuracy
ranges from 65% to 95% (Figure 6a) and 66% to 96% (Figure 6b). The IQR of L1SO and the related
real-life validation overlapped for all models. The overall accuracies follow a similar distribution trend
for both Figure 6a,b, regardless of sensor positions and validation methods. Both hip positions and the
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pocket models had the widest distribution followed by chest, knee and general models. Adding GPS
data produced more outliers, as was the case in Scenario 1.

 

(a) (b) 

Figure 6. The distribution of overall accuracy among all participants for the RF classification models
trained combined dataset, (a) accelerometer data only and (b) accelerometer and GPS data.

The confusion matrix for the participant with the highest GPS contribution (4%) shows that the
most misclassification occurred for non-level walking and walking activities when using accelerometer
data only and L1SO validation (highlighted in bold in Table 6). Similar to Scenario 1, adding GPS
features improved the classification performance by reducing the misclassification errors for these two
activities (highlighted in bold in Table 7).

Table 6. Confusion matrix of a participant (with the highest GPS contribution) when using accelerometer
data only (Scenario 2).

Accelerometer only Cycle Lie N_Walk Run Sit Stand Walk Recall Precision F1

Cycle 743 0 2 0 0 0 0 100 100 100
Lie 0 185 1 0 1 0 0 99 99 99

N_walk 2 0 800 1 0 0 91 77 89 83

Run 0 0 0 320 0 0 0 99 100 100
Sit 0 1 0 0 170 1 0 99 99 99

Stand 0 1 0 0 0 157 0 99 99 99
Walk 0 0 233 2 0 1 885 91 79 84

Table 7. Confusion matrix of a participant (with the highest GPS contribution) when using accelerometer
and GPS data (Scenario 2).

Accelerometer & GPS Cycle Lie N_Walk Run Sit Stand Walk Recall Precision F1

Cycle 738 0 0 0 0 0 0 100 100 100
Lie 0 186 1 0 0 0 0 99 99 99

N_walk 1 0 810 1 0 0 63 89 93 91

Run 0 0 0 318 0 0 1 99 100 99
Sit 0 1 0 0 166 1 0 98 99 99

Stand 0 1 0 0 3 158 0 99 98 98
Walk 1 0 97 2 0 1 1018 94 91 93

Feature Importance

As in Scenario 1, mean acceleration along the vertical and medio-lateral axes, standard deviation
of acceleration along the vertical axis from the chest sensor’s data, mean acceleration along the vertical
axis and number of observations falling within the fifth bin of the medio-lateral axis from the pocket
sensor’s data fell within the top 10 features for the general model when using accelerometer data only
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(see Appendix B, Figure A3a). The average absolute difference of total acceleration and acceleration
along the vertical axis, power spectral density of total acceleration from the chest’s sensor data, number
of observations falling within the fourth bin of the medio-lateral axis and amplitude of the third
dominant frequency of acceleration along the medio-lateral axis from the pocket’s sensor data were
also among the top 10 important features for accelerometer data. The individual models’ importance
pattern for the top 10 features was similar to the individual models’ feature importance in Scenario 1.
There was again variation in the order of feature importance depending on the different individual
models. The mean acceleration along the medio-lateral axis and power spectral density of total
acceleration were among the top 10 features of all individual models.

Using accelerometer and GPS data, excluding the features derived from GPS data, we observed a
similar feature importance pattern for the general (see Appendix B, Figure A3b) and individual models.

3.3. Sensitivity Analysis on Segment Size

We performed sensitivity analysis on different segment sizes using L1SO of training data to
determine how sensitive the models are to the segment size. For both scenarios, we tested segment
sizes of 2, 5, 10, 20, 30 and 60 s and performed L1SO cross validation on the general RF models. The
results show that performance starts to converge with larger window size in (a) whereas (b) has the
widest gap at 20 and 30s. Overall, there are slight changes ranging from 1% to 3% for the models’
performance when using different segment sizes (Figure 7).

 

(a) (b) 
  

Figure 7. Sensitivity analysis on segment size, (a) general model trained with semi-structured dataset
and (b) general model trained with combined dataset.

4. Discussion

4.1. Discussion of Results

The aim of this study was to investigate the extent to which using GPS sensor data, in conjunction
with accelerometer data, enhances the prediction performance in detecting the major posture and
transport-related motion activity types (sitting, standing, lying, level walking, non-level walking,
running/jogging and cycling). Moreover, this study explored how adding GPS data allows the number
of sensor devices to be minimized in PA monitoring.

The validation results show that using standard 10-fold cross validation, which allows data from
the same participant in the test and training set produces artificially high accuracy scores. Though
10-fold cross validation is commonly used, it is a weak evaluation method, while L1SO cross validation
corresponds to a more realistic setting in which the algorithm would be applied. In practical use, the
data from a particular participant are never used as training data to classify another piece of data from
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that same participant, but will instead be used to classify data from another participant. Hence, it
is likely that L1SO scored lower than 10-fold because different participants have different ways of
performing individual activities. For these reasons, we recommend against using the 10-fold cross
validation method in the PA type detection.

Adding GPS data to the general model improved the accuracy in Scenario 1, although the
developed models showed a dramatic decrease when evaluated with L1SO applied on the real-life
dataset. Performance decreased by 12% when using accelerometer only, and by 18% when using both
accelerometer and GPS. This result indicates that adding GPS data to accelerometer data produces
significant generalization error when tested with a real-life dataset. The generalization error may result
from performing the activities in different real-life environments (leisure and urban), impacting the
variable accuracy of GPS data. Urban areas in particular can affect GPS signal reception and therefore
generate more GPS gaps and uncertainty in the data. Having more outliers in the boxplots when
adding GPS data is also a manifestation of the increase in data uncertainty (Figure 4a). Moreover,
incomplete OSM data is more often encountered in leisure (i.e., rural) environments, which influences
the outcome of map matching GPS data collected in those areas. Thus, models developed using
semi-structured data are weakly transferable to the data collected in real life, particularly when we
add GPS data to the training data. The distribution of overall accuracy among all participants also
shows the above-mentioned conclusion; by adding GPS data, there is a larger gap between IQR of
L1SO and its related real-life validation for the general model (Figure 4b).

We used the combined dataset to train models in Scenario 2 to improve the transferability of our
models for a real-life dataset and address the overfitting issue. In machine learning, overfitting refers
to when a model learns the training data very well but performs weakly on a new dataset. Compared
to the semi-structured dataset, there is more variation in the combined dataset, which explains the
overall decrease in overall accuracy of the models between Scenarios 1 and 2. Using the combined
data, the models showed comparable accuracy when evaluated by a L1SO of the training data and
when evaluated with the real-life dataset. Testing the models on the real-life dataset of an unseen
participant in the training data resulted in an overall accuracy of 83% for the accelerometer-based
model (decreasing by only 1% compared to the result obtained by using L1SO validation of the training
data) and 86% for the ACC + GPS based model. We therefore conclude that the new models trained
with the combined dataset generate robust models with reproducible classification performance for
real-life data from new subjects. The high degree of overlap between IQR of L1SO and the related
real-life validation for all models in Scenario 2 also supports this conclusion. The advantage of using
the combined dataset rather than the semi-structured dataset for training the model is that there is less
generalization error in the classification performance when we use a real-life (i.e., a new) dataset for
testing. This supports the results by Ermes et al. (2008) that in order to build a model that performs
reliably on a real-life dataset, it is necessary to include labeled data collected in real-life in the training
data [34]. It also explains why Scenario 2 performed better than Scenario 1 on the real-life data, with
ACC + GPS increasing real-life performance.

Regarding the features, we did not apply any feature selection or dimensionality reduction
algorithms as we used the random forest as a classifier, which performs feature selection throughout
the classification process. Therefore, using the random forest classifier, the high number of features for
general models does not lead to oscillations of the classification. We also used the R package ranger [42],
which is a faster and more memory-efficient implementation of random forests, to improve the models’
processing time. In general, when excluding GPS features, similar time and frequency domain features
from accelerometer data appeared in all models, though the importance changes based on the sensor’s
position. The top 10 important features that gained the highest frequency among all models include
the mean acceleration of the vertical, medio-lateral and antero-posterior axes; energy of acceleration
along the vertical and medio-lateral axes; standard deviation of vertical axis and the average absolute
difference, standard deviation, energy, power spectral density and amplitude of the first dominant
frequency of total acceleration.
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We performed a sensitivity analysis on six different segment sizes to assess the transferability
of our models on data extracted from different time intervals. The highest GPS contribution to the
classification performance was for the segment size of 2 s (4%) in Scenario 1 and for the segment sizes
of 20 and 30 s (3%) in Scenario 2. Adding GPS data resulted in a high accuracy of 91% for all segment
sizes except 20 s (90%) in Scenario 1. In Scenario 2, using multi-sensor data led to the highest accuracy
of 87% when 20s segments were used. As there are only slight changes ranging from 1% to 3% for
the models’ performance when using different segment sizes, we could conclude that our models
were stable and robust to the segment size. Using the longest, 60 s segment size, the ACC + GPS
models in Scenario 1 and 2 reached 91% and 84% overall accuracy, respectively. This demonstrated that
our models would be useful when collecting data with storage and battery limited devices (such as
smartphones), which have limitations in recording sensor data at high sampling rates during long-term
PA monitoring.

Comparing the five individual models, each trained on data from a single sensor position, showed
that hips and chest models generate comparable accuracy with and without adding GPS data. For both
hip positions, we usually gained similar classification performance, although we asked participants to
wear the hip devices in different orientations. This shows that the orientation does not have a significant
influence on the overall classification performance when using hip positions. However, looking more
in detail, we found that the two hip models have distinguishable performance for different participants
in detecting different activities. For example, the left hip model detects sitting activity better than
the right hip model for some participants. The pocket position usually performed worse than other
positions, possibly because the device in this position was not fixed as participants simply put the
device in their pocket, which could cause flipping or rotating the device during activity performance.
The knee model performed best both when using accelerometer only and when using multi-sensor
data in both scenarios. In Scenario 2, the knee model showed comparable performance with the
general model and achieved an accuracy above 80%. It also gained the most similar IQR compared
to its related general model in this scenario. Moreover, in an ideal situation, the knee multi-sensor
model obtained an overall accuracy of 94% for detecting the major posture and motion activities (see
Appendix B, Table A4) when evaluated by L1SO on training data. This indicates that adding GPS data
to knee-positioned accelerometer data provides classification performance with high accuracy, which
further suggests that participant burden might be reduced as the number of sensor devices can be
minimized for PA type detection.

4.2. Contributions and Limitations

This study has several strengths and limitations worth noting. A general strength of this
study is that we comprehensively investigated the contribution of adding GPS data to enhance
accelerometer-based PA type classification, as discussed above. We accurately detected activities that
help to discover humans’ daily activity behavior. For instance, Ermes et al., (2008) noted that the
majority of data collected in the real-life environment by their participants (78%) include lying, sitting
and standing, and emphasized the importance of detecting these three stationary activity types in
real-life. However, they grouped sitting and standing to one group, as their model could not reliably
distinguish these two activities [34]. There is a causal effect between spending too much time on these
activities and the risk of negative health impacts such as diabetes or obesity. Detecting stationary
activities, therefore, allows measurement of the amount of time people can spend on other more
health-enhancing activities in their daily life. Related to this, Nguyen et al., (2013) were unable to
accurately detect activities with similar GPS speed and accelerometer data profiles that require different
EE and have a different health impact such as non-level and level walking [6]. In order to better detect
these activities, in addition to GPS speed, we extracted another distinctive feature (elevation difference)
by linking GPS spatial coordinates to DEM data.

Compared to most studies, which use a small sample size, we employed a large sample of
thirty-three people that generated a comprehensive training dataset in terms of the diversity of the
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subjects’ physical characteristics and also inspires confidence in our results. We used a customized light
portable device with embedded accelerometer and GPS sensors for data collection, which overcomes
the drawbacks of using smartphones or multiple devices. Using smartphones reduces the burden
on the participant [24,31], as there is no need to carry extra devices; however, smartphones’ limited
battery and storage makes long-term activity monitoring problematic. Moreover, user interaction with
the smartphone, such as making a phone call or sending a text message, can affect the sensor’s data
quality. Applying multi-devices [5,13,32,34] also entails carrying more devices and therefore a great
burden on participants, particularly in real-life PA monitoring. In real-life experiments, well-designed
data collection logistics are necessary to ensure that the process is minimally invasive for participants,
while providing suitable data quality for researchers. Studies have addressed the question of how
different body locations of accelerometers’ can influence the performance of PA type detection [10,12,43].
However, it previously remained unknown how GPS sensor data can help in providing minimum a
device configuration when used in combination with accelerometer data. Our examination of five
device locations showed that the model developed using GPS and accelerometer data from a knee-worn
device produces comparable high accuracy (above 80%) to the model developed by using data from
multiple devices.

This study has some limitations that should be addressed in future research. The models that
included GPS data are limited to detect outdoor activities because there are limitations regarding GPS
signal reception in indoor environments and DEM data are only available for outdoor environments.
We applied a high resolution DEM (2 m ground resolution) to extract elevation information for
each GPS point; using a DEM with low resolution may not lead to similar results. We only used
linear interpolation and point-to-curve geometric map matching to preprocess the GPS data. Other
interpolation and map matching methods might help to advance the classification performance. The
high performance of the developed models, however, can be achieved only when GPS data with few
gaps and complete OSM data are available. Low data quality might lead to unreliable PA classification
performance. Moreover, as in all such studies, the classification results depend on the target activities
and study settings; selecting other activities and experimental conditions might lead to different
outcomes. Though we accurately detected three major sub-types of postures (i.e., sitting, standing
and lying), we did not aim to detect other sub-types of posture activity such as active standing (which
occupies significant percentages of human daily activities) or complex activities [44]. In future studies,
a wider range of activities should be included to provide more information about health-related daily
PAs. Though we achieved a high classification performance using the RF classifier, applying other
advanced machine learning models such as recurrent neural networks including long short-term
memory (LSTM) networks [45,46] and comparing their performance may be considered as a future
study. Finally, we trained the models using data collected by young healthy adults only. To what
extent these models are transferable to older adults is a research question that we would like to answer
in a future study.

Author Contributions: Conceptualization, H.A.; Data curation, H.A.; Formal analysis, H.A.; Investigation, H.A.;
Methodology, H.A.; Project administration, H.A.; Resources, H.A. and R.W.; Software, H.A. in coordination
with L.C. and B.N.; Supervision, R.W.; Validation, H.A.; Visualization, H.A.; Writing—original draft, H.A.;
Writing—review and editing, H.A. in coordination with L.C., B.N. and R.W. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was in part supported by the University Research Priority Program, “Dynamics of Healthy
Aging” of the University of Zurich and the Velux Stiftung (grant no. 917).

Acknowledgments: We would like to thank Alexander Sofios for his technical support. We would like to
acknowledge the assistants for the data collection, and the participants who contributed their time for taking part
in the study.

Conflicts of Interest: The authors declare no conflict of interest.

323



Sensors 2020, 20, 588

Appendix A

Table A1. Activity tasks for the semi-structured data collection.

Activity Task (I) Activity Task (II) Duration: 16.5 + 16.5 + 33 1.5 h

First step: Walking at different speed

Jump and stand still for 5 s at starting point Jump and stand still for 5 s at starting point 3 + 3
Walk at SLOW speed Walk at NORMAL speed

Turn left at turning point (sharp turn) Turn right at turning point (smooth turn)
Walk at SLOW speed Walk at NORMAL speed

Stop at the stop point for 5 s Stop at the stop point for 5 s
Walk at FAST speed Walk at FAST speed

Stop at the stop point for 5 s Stop at the stop point for 5 s
Walk at NORMAL speed Walk at SLOW speed

turn left at point (smooth turn) turn right at turning point (sharp turn)
Walk at NORMAL speed Walk at SLOW speed

Stand still for 5 s at end point and jump Stand still for 5 s at starting point and jump
Second step: Running

Jump and stand still for 5 s at starting point Jump and stand still for 5 s at starting point 1.5 + 1.5
Run at self-paced speed Run at self-paced speed

Turn left at turning point (sharp turn) Turn right at turning point (smooth turn)
Run at self-paced speed Run at self-paced speed

Stop at the stop point for 5 s Stop at the stop point for 5 s
Run at self-paced speed Run at self-paced speed

Turn left at turning point (smooth turn) Turn right at turning point (sharp turn)
Run at self-paced speed Run at self-paced speed

Stand still for 5 s at starting point and jump Stand still for 5 s at starting point and jump
Third step: Cycling

Jump and stand still for 5 s at starting point Jump and stand still for 5 s at starting point 1.5 + 1.5
Get on the cycle Get on the cycle

Cycle at self-paced speed Cycle at self-paced speed
Turn left at the turning point Turn right at the turning point

Cycle at self-paced speed Cycle at self-paced speed
Turn left at the turning point Turn right at the turning point

Stop at the ending point Stop at the ending point
Get off the cycle Get off the cycle

Stand still for 5 s at starting point and jump Stand still for 5 s at starting point and jump
Fourth step: Stairs walking

Jump and stand still for 5 s at starting point Jump and stand still for 5 s at starting point 1 + 1
Walk upstairs at normal speed Walk upstairs at normal speed

Stand still for 5 s after first floor Stand still for 5 s after first floor
Walk upstairs at normal speed Walk upstairs at normal speed

Stand still for 5 s at ending point and jump Stand still for 5 s at ending point and jump
Jump and stand still for 5 s at starting point Jump and stand still for 5 s at starting point 1 + 1

Walk downstairs at normal speed Walk downstairs at normal speed
Stand still for 5 s after first floor Stand still for 5 s after first floor

Walk downstairs at normal speed Walk downstairs at normal speed
Stand still for 5 s at ending point and jump Stand still for 5 s at ending point and jump

Fifth step: Walking at different slopes
Jump and stand still for 5 s at starting point Jump and stand still for 5 s at starting point 2 + 2

Walk uphill at normal speed Walk uphill at normal speed
Stand still for 5 s at ending point and jump Stand still for 5 s at ending point and jump
Jump and stand still for 5 s at starting point Jump and stand still for 5 s at starting point 2 + 2

Walk downhill at normal speed Walk downhill at normal speed
Stand still for 5 s at ending point and jump Stand still for 5 s at ending point and jump

Sixth step: Sedentary activities
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Table A1. Cont.

Activity Task (I) Activity Task (II) Duration: 16.5 + 16.5 + 33 1.5 h

Sit
Jump Jump 1 + 1

Go from standing position to sitting Go from standing position to sitting
Sit for 1 min Sit for 1 min

Go from sitting position to standing Go from sitting position to standing
Stand Stand
Jump Jump

Stand
Jump Jump 1 + 1

Stand for 1 min Stand for 1 min
Jump Jump

Lie
Jump Jump 1 + 1

Go from standing position to sitting Go from standing position to sitting
Sit Sit

Go from sitting position to lying on your
back

Go from sitting position to lying on your
back

Lie on your back for 1 min Lie on your back for 1 min
Go from lying on your back to sitting

position
Go from lying on your back to sitting

position
Sit Sit

Go from sitting position to standing Go from sitting position to standing
Stand Stand
Jump Jump

Table A2. Activity tasks for the real-life data collection.

Activity Minimum Duration (Minute) Location

Sedentary activities

Lying 1 Outdoors (e.g., on a bench)

Sitting 1 Outdoors (not in a vehicle)

Standing 1 Outdoors (not in a vehicle)

Non-level walking

Walking uphill 2 Outdoors

Walking downhill 2 Outdoors

Walking downstairs 2 floors (8 steps each) Outdoors

Walking upstairs 2 floors (8 steps each) Outdoors

Transport-related activities

Walking, level ground 5 Leisure area (e.g., park)

5 Urban area (e.g., street sidewalk)

Cycling, level ground 5 Leisure area (e.g., park)

5 Urban area (e.g., street bike path)

Running, level ground 1 Leisure area (e.g., park)

1 Urban area (e.g., street sidewalk)

325



Sensors 2020, 20, 588

Figure A1. Nationality of the participants involved in the study.

Appendix B

 
(a) (b) 

Figure A2. Top 30 important features of a participant’s general RF model (with the highest
GPS contribution) trained with semi-structured data (see the feature description in Table A3).
(a) Accelerometer data only and (b) accelerometer and GPS data.

 

(a) (b) 

Figure A3. Top 30 important features of a participant’s general RF model (with the highest GPS
contribution) trained with combined data (see the feature description in Table A3). (a) Accelerometer
data only and (b) accelerometer and GPS data.
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Table A3. List of features appearing in Figures A2 and A3.

Feature Notation Description

1, 2, 3, 4, 5

1 = Chest sensor’s data
2 = Knee sensor’s data
3 = left hip sensor’s data
4 = left pocket sensor’ data
5 = right hip sensors’ data
(e.g., ef1 = energy of total acceleration derived from chest
sensor’s data)

SVM Total acceleration

Avg-SVM, Avg-acc-x, Avg-acc-y, Avg-acc-z Mean of total acceleration and each axis

Std-SVM, Std-x, Std-y, Std-z Standard deviation of total acceleration and each axis

BinN, BinNx, BinNy, BinNz Number of observations falling within the Nth bin of total
acceleration and each axis

Avgabsdiff, Avgabsdiffx, Avgabsdiffy, Avgabsdiffz Average absolute difference of total acceleration and each axis

RangeSVM, Rangex, Rangey, Rangez Range of total acceleration and each axis

APSD, APSDx, APSDy, APSDz Power spectral density of total acceleration and each axis

ef, efx, efy, efz Energy of total acceleration and each axis

ADF1, ADF1x, ADF1y, ADF1z Amplitude of the first dominant frequency of total
acceleration and each axis

ADF2, ADF2x, ADF2y, ADF2z Amplitude of the second dominant frequency of total
acceleration and each axis

ADF2, ADF2x, ADF2y, ADF2z Amplitude of the third dominant frequency of total
acceleration and each axis

Table A4. Confusion matrix of a participant when using accelerometer and GPS data for knee position.
(Scenario 2).

Accelerometer & GPS Cycle Lie N_Walk Run Sit Stand Walk Recall Precision F1

Cycle 1245 0 8 1 0 0 11 98 98 98
Lie 0 196 0 0 0 0 0 100 100 100

N_walk 21 0 536 0 0 1 145 76 91 83
Run 0 0 3 254 0 0 3 98 99 98
Sit 1 0 1 0 195 2 0 98 93 95

Stand 0 0 0 0 15 259 0 95 99 97
Walk 0 0 43 1 0 0 1029 96 87 91
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8. Adaškevičius, R. Method for Recognition of the Physical Activity of Human Being Using a Wearable
Accelerometer. Elektron. Elektrotechnika 2014, 20, 127–131.

9. Barshan, B.; Yüksek, M.C. Recognizing Daily and Sports Activities in Two Open Source Machine Learning
Environments Using Body-Worn Sensor Units. Comput. J. 2013, 57, 1649–1667. [CrossRef]

10. Skotte, J.; Korshøj, M.; Kristiansen, J.; Hanisch, C.; Holtermann, A. Detection of Physical Activity Types
Using Triaxial Accelerometers. J. Phys. Act. Health 2014, 11, 76–84. [CrossRef]

11. El Achkar, C.M.; Lenoble-Hoskovec, C.; Paraschiv-Ionescu, A.; Major, K.; Büla, C.; Aminian, K.;
Information, P.E.K.F.C. Instrumented shoes for activity classification in the elderly. Gait Posture 2016,
44, 12–17. [CrossRef] [PubMed]

12. Cornacchia, M.; Zheng, Y.; Velipasalar, S.; Ozcan, K. A Survey on Activity Detection and Classification Using
Wearable Sensors. IEEE Sens. J. 2016, 17, 386–403. [CrossRef]

13. Troped, P.J.; Oliveira, M.S.; Matthews, C.E.; Cromley, E.K.; Melly, S.J.; Craig, B.A. Prediction of Activity
Mode with Global Positioning System and Accelerometer Data. Med. Sci. Sports Exerc. 2008, 40, 972–978.
[CrossRef] [PubMed]

14. Maddison, R.; Jiang, Y.; Hoorn, S.V.; Exeter, D.; Ni Mhurchu, C.; Dorey, E. Describing patterns of physical
activity in adolescents using global positioning systems and accelerometry. Pediatr. Exerc. Sci. 2010, 22,
392–407. [CrossRef] [PubMed]

15. Quigg, R.; Gray, A.; Reeder, A.I.; Holt, A.; Waters, D.L. Using accelerometers and GPS units to identify the
proportion of daily physical activity located in parks with playgrounds in New Zealand children. Prev. Med.
2010, 50, 235–240. [CrossRef] [PubMed]

16. Wheeler, B.W.; Cooper, A.R.; Page, A.S.; Jago, R. Greenspace and children’s physical activity: A GPS / GIS
analysis of the PEACH project. Prev. Med. 2010, 51, 148–152. [CrossRef]

17. Cebrecos, A.; Díez, J.; Gullón, P.; Bilal, U.; Franco, M.; Escobar, F. Characterizing physical activity and food
urban environments: A GIS-based multicomponent proposal. Int. J. Health Geogr. 2016, 15, 35. [CrossRef]

18. Brown, G.; Schebella, M.F.; Weber, D. Using participatory GIS to measure physical activity and urban park
benefits. Landsc. Urban Plan. 2014, 121, 34–44. [CrossRef]

19. E Thornton, L.; Pearce, J.R.; Kavanagh, A.M. Using Geographic Information Systems (GIS) to assess the
role of the built environment in influencing obesity: A glossary. Int. J. Behav. Nutr. Phys. Act. 2011, 8, 71.
[CrossRef]

20. Oakes, J.M.; Forsyth, A.; Schmitz, K.H. The effects of neighborhood density and street connectivity on
walking behavior: The Twin Cities walking study. Epidemiol. Perspect. Innov. 2007, 4, 16. [CrossRef]

21. Saelens, B.E.; Sallis, J.F.; Black, J.B.; Chen, D. Neighborhood-Based Differences in Physical Activity: An
Environment Scale Evaluation. Am. J. Public Health 2003, 93, 1552–1558. [CrossRef] [PubMed]

22. Almanza, E.; Jerrett, M.; Dunton, G.; Seto, E.; Pentz, M.A. A study of community design, greenness, and
physical activity in children using satellite, GPS and accelerometer data. Health Place 2011, 18, 46–54.
[CrossRef] [PubMed]

23. Troped, P.J.; Wilson, J.S.; Matthews, C.E.; Cromley, E.K.; Melly, S.J. The built environment and location-based
physical activity. Am. J. Prev. Med. 2010, 38, 429–438. [CrossRef] [PubMed]

24. Lee, K.; Kwan, M.-P. Automatic physical activity and in-vehicle status classification based on GPS and
accelerometer data: A hierarchical classification approach using machine learning techniques. Trans. GIS
2018, 22, 1522–1549. [CrossRef]

25. Miller, H.J.; Tribby, C.P.; Brown, B.B.; Smith, K.R.; Werner, C.M.; Wolf, J.; Wilson, L.; Oliveira, M.G.S. Public
transit generates new physical activity: Evidence from individual GPS 583 and accelerometer data before
and after light rail construction in a neighborhood of Salt Lake City, Utah, USA. Health Place 2015, 36, 8–17.
[CrossRef]

26. Schutz, Y.; Chambaz, A. Could a satellite-based navigation system (GPS) be used to assess the physical
activity of individuals on earth? Eur. J. Clin. Nutr. 1997, 51, 338–339. [CrossRef]

27. Townshend, A.D.; Worringham, C.J.; Stewart, I.B. Assessment of Speed and Position during Human
Locomotion Using Nondifferential GPS. Med. Sci. Sports Exerc. 2008, 40, 124–132. [CrossRef]

328



Sensors 2020, 20, 588

28. Witte, T.; Wilson, A. Accuracy of non-differential GPS for the determination of speed over ground. J. Biomech.
2004, 37, 1891–1898. [CrossRef]

29. Larsson, P.; Henriksson-Larsén, K. The use of dGPS and simultaneous metabolic measurements during
orienteering. Med. Sci. Sports Exerc. 2001, 33, 1919–1924. [CrossRef]

30. Perrin, O.; Terrier, P.; Ladetto, Q.; Merminod, B.; Schutz, Y. Improvement of walking speed prediction by
accelerometry and altimetry, validated by satellite positioning. Med. Biol. Eng. 2000, 38, 164–168. [CrossRef]

31. Reddy, S.; Mun, M.; Burke, J.; Estrin, D.; Hansen, M.; Srivastava, M. Using mobile phones to determine
transportation modes. ACM Trans. Sens. Netw. 2010, 6, 13. [CrossRef]

32. Ellis, K.; Godbole, S.; Marshall, S.; Lanckriet, G.; Staudenmayer, J.; Kerr, J. Identifying Active Travel Behaviors
in Challenging Environments Using GPS, Accelerometers, and Machine Learning Algorithms. Front. Public
Health 2014, 2, 2–36. [CrossRef]

33. Brondeel, R.; Pannier, B.; Chaix, B. Using GPS, GIS, and Accelerometer Data to Predict Transportation Modes.
Med. Sci. Sports Exerc. 2015, 47, 2669–2675. [CrossRef] [PubMed]

34. Ermes, M.; Parkka, J.; Mantyjarvi, J.; Korhonen, I. Detection of Daily Activities and Sports with Wearable
Sensors in Controlled and Uncontrolled Conditions. IEEE Trans. Inf. Technol. Biomed. 2008, 12, 20–26.
[CrossRef] [PubMed]

35. Spinsante, S.; Angelici, A.; Lundström, J.; Espinilla, M.; Cleland, I.; Nugent, C. A Mobile Application for
Easy Design and Testing of Algorithms to Monitor Physical Activity in the Workplace. Mob. Inf. Syst. 2016,
2016, 5126816. [CrossRef]

36. Armstrong, T.; Bull, F. Development of the World Health Organization Global Physical 609 Activity
Questionnaire (GPAQ). Public Health 2016, 14, 66–70. [CrossRef]

37. Allahbakhshi, H.; Haosheng, H.; Weibel, R. A Study Design for Physical Activity 611 Reference Data
Collection Using GPS and Accelerometer. In Proceedings of the 21th AGILE 612 Conference on Geographic
Information Science, Lund, Sweden, 12–15 June 2018; pp. 1–6.

38. Allahbakhshi, H.; Weibel, R. Transferability of PA type detection models between different age cohorts. 2020,
in press.

39. Quddus, M.A.; Ochieng, W.Y.; Noland, R.B. Current map-616 matching algorithms for transport applications:
State-of-the art and future research directions. Transp. Res. Part C Emerg. Technol. 2007, 15, 312–328.
[CrossRef]

40. OpenStreetMap Contributors. “OpenStreetMap”. Available online: www.openstreetmap.org (accessed on
15 August 2019).

41. R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing:
Vienna, Austria, 2013. Available online: http://www.r-project.org/ (accessed on 13 February 2012).

42. Wright, M.N.; Ziegler, A. ranger: A Fast Implementation of Random Forests for High Dimensional Data in
C++ and R. J. Stat. Softw. 2017, 77. [CrossRef]

43. De Vries, S.I.; Garre, F.G.; Engbers, L.H.; Hildebrandt, V.H.; Van Buuren, S. Evaluation of Neural Networks
to Identify Types of Activity Using Accelerometers. Med. Sci. Sports Exerc. 2011, 43, 101–107. [CrossRef]

44. Liu, L.; Wang, S.; Hu, B.; Qiong, Q.; Wen, J.; Rosenblum, D.S. Learning structures of interval-based Bayesian
networks in probabilistic generative model for human complex activity recognition. Pattern Recognit. 2018,
81, 545–561. [CrossRef]

45. Zhang, Y.; Wang, C.; Gong, L.; Lu, Y.; Sun, F.; Xu, C.; Li, X.; Zhou, X. A Power-Efficient Accelerator Based on
FPGAs for LSTM Network. In Proceedings of the 2017 IEEE International Conference on Cluster Computing
(CLUSTER), Honolulu, HI, USA, 5–8 September 2017; pp. 629–630.

46. Guan, Y.; Yuan, Z.; Sun, G.; Cong, J. FPGA-based accelerator for long short-term memory recurrent neural
networks. In Proceedings of the 2017 22nd Asia and South Pacific Design Automation Conference (ASP-DAC),
Chiba, Japan, 16–19 January 2017; pp. 629–634.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

329





sensors

Article

Quantile Coarsening Analysis of High-Volume
Wearable Activity Data in a Longitudinal
Observational Study

Ying Kuen Cheung 1,*, Pei-Yun Sabrina Hsueh 2, Ipek Ensari 3, Joshua Z. Willey 4 and

Keith M. Diaz 3

1 Department of Biostatistics, Mailman School of Public Health, Columbia University, New York,
NY 10032, USA

2 IBM Watson Research Center, Yorktown Heights, NY 10598, USA; phsueh@us.ibm.com
3 Center for Behavioral Cardiovascular Health, Department of Medicine, Columbia University Medical Center,

New York, NY 10032, USA; ie2145@cumc.columbia.edu (I.E.); kd2442@cumc.columbia.edu (K.M.D.)
4 Department of Neurology, Columbia University Medical Center, New York, NY 10032, USA;

jzw2@cumc.columbia.edu
* Correspondence: yc632@cumc.columbia.edu; Tel.: +1-212-305-3332

Received: 13 August 2018; Accepted: 6 September 2018; Published: 12 September 2018

Abstract: Owing to advances in sensor technologies on wearable devices, it is feasible to measure
physical activity of an individual continuously over a long period. These devices afford opportunities
to understand individual behaviors, which may then provide a basis for tailored behavior
interventions. The large volume of data however poses challenges in data management and analysis.
We propose a novel quantile coarsening analysis (QCA) of daily physical activity data, with a goal
to reduce the volume of data while preserving key information. We applied QCA to a longitudinal
study of 79 healthy participants whose step counts were monitored for up to 1 year by a Fitbit device,
performed cluster analysis of daily activity, and identified individual activity signature or pattern in
terms of the clusters identified. Using 21,393 time series of daily physical activity, we identified eight
clusters. Employment and partner status were each associated with 5 of the 8 clusters. Using less
than 2% of the original data, QCA provides accurate approximation of the mean physical activity,
forms meaningful activity patterns associated with individual characteristics, and is a versatile tool
for dimension reduction of densely sampled data.

Keywords: citizen science; cluster analysis; physical activity; sedentary behavior; walking

1. Introduction

Physical activity has been shown to improve cardiovascular health, reduce risk of mortality [1–4]
and is an important component of primary prevention for many chronic diseases and conditions
such as Type 2 diabetes and obesity [5,6]. Walking, in particular, is recognized as an easily accessible,
convenient, and familiar mode of physical activity, and thus is an appealing strategy for the promotion
of health and well-being. As such there is impetus for examining walking behaviors as a predictor of
multiple health outcomes in ambulatory, community-dwelling adults.

Advances in sensor technologies on wearable devices have enabled the continuous and accurate
collection of step counts and other walking parameters over an extended period of time, thus providing
a voluminous stream of data. The large amount of data provides an opportunity to better understand
the daily physical activity patterns across populations. However, conventional analytical approaches
focus on measuring physical activity patterns by predefined summary statistics such as total step
counts and average minutes with activity on a given day. By summarizing physical activity at the
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daily level, however, these methods ignore between-day heterogeneity within a person, as they fail
to capture the within-day patterns of activity. An understanding of within-day patterns of physical
activity is of importance to facilitate individualized mobile experience, such as when push notifications
and activity updates are being sent [7,8], and identifying changes in an individual’s daily routines,
thereby facilitating tailored behavior intervention [9,10]. Given the broad use of step-counting trackers
to monitor and improve physical activity [11–25], analyzing sensor data beyond predefined daily
features thus can have significant public health impact.

Multivariate finite mixture modeling (MFMM) is a clustering method, whose purpose is to identify
homogeneous subgroups wherein the number of subgroups is not assumed to be known in the analysis.
The MFMM analysis is model-based, data-driven, and aims to produce subgroups with features arising
from the same statistical distribution; dividing the data into an optimal number of subgroups based
on specific criteria such as the Bayesian information criterion [26]. Clustering algorithms utilizing
MFMM methods have been applied to identify dietary patterns [27,28] and physical activity patterns
based on questionnaire data [29]. These algorithms often entail prespecifying only a small-to-moderate
number of features as input variables, as the computational complexity grows exponentially with the
addition of more features [30]. In the present context where the goal is to examine the within-day
activity patterns, hundreds of physical activity inputs can be recorded from sensors throughout a day
(e.g., minute-by-minute step counts), existing clustering algorithms may prove to be computationally
infeasible without properly reducing the dimension of the data in a pre-processing step.

Dimension reduction of sensor data continuously collected can be achieved by time series
modeling of the data [31–34]. Typically, a time series is first transformed to a domain relevant to the
scientific interest, and is then summarized by a few parameters (e.g., autocorrelation). These parameters
in turn serve as input features in a clustering algorithm. In this article, we take a similar approach
and propose a two-step method for analyzing sensor data as time series: the proposed method first
transforms the daily physical activity data into a coarsened probability density function of quantiles of
activity time, and then applies the MFMM analysis using the quantiles as input features. The method
is thus called quantile coarsening analysis (QCA). This approach is motivated by the consideration
that time of activity, as well as the amount of activity, is of primary interest in our application. As will
be shown in Statistical Analyses below, the resolution or coarseness of dimension reduction can be set
by users in accordance with the needs in their application; such flexibility distinguishes the proposed
method from the traditional parametric modeling of time series data [35]. The purposes of this article
are to demonstrate the feasibility of QCA in a data set of 21,393 time series of daily physical activity,
and to examine its estimation properties under various degrees of coarseness.

2. Materials and Methods

2.1. Study Cohort

A single cohort, 12-month, intensive observational study was conducted in healthy adults
with an objective to collect their personal daily stress and physical activity for associative analysis.
The study was approved by Columbia University Medical Center’s (CUMC) institutional review board.
All participants provided informed consent. Access to the study dataset and information about the
study’s execution and materials is publicly available [36].

Potentially eligible participants were identified and screened at CUMC. The inclusion criteria were
(i) aged 18 years or older; (ii) self-reported intermittent exerciser (i.e., exercise 6–11 times per month but
did not have a regular workout schedule); (iii) having access to a personal computer and a smartphone.
Exclusion criteria included individuals who (i) were unavailable for 12 continuous months; (ii) had
serious medical comorbidity that would compromise their ability to engage in usual physical activity;
(iii) had occupational work demands that required rigorous activity; or (iv) were unable to read and
speak English. From January 2014 to July 2015, a total of 79 participants were enrolled and followed
for 12 months. For the purpose of this article, we considered the physical activity data (described
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below). Details of enrollment, participant characteristics, and other association studies of stress level
were previously reported [37]. Briefly, the data set for the present analysis consisted of 45 females
and 34 males, with an overall mean age of 31.9 years (±9.5 years). In addition, we considered the
following variables for association with physical activity: race/ethnicity (27 non-Hispanic whites vs.
52 others), education as an ordinal variable (13 having less than college vs. 34 completing college
vs. 32 attaining graduate or professional degrees), employment status (64 full-time employed vs. 8
part-time), and partner status (32 having a partner or spouse vs. 45 being single).

2.2. Physical Activity

Physical activity was monitored continuously for up to 12 months using a wrist-worn Fitbit
activity monitor (Fitbit Flex) [38]. The Fitbit device, containing an accelerometer and an altimeter,
tracks the wearer’s daily physical activity including steps, distance walked, and stairs climbed, and has
been previously validated for measuring physical activity [39]. While the Fitbit devices (including the
Fitbit Flex) have been demonstrated to have good validity for the objective measurement of physical
activity, their accuracy has largely been reported for stepping-related physical activities (e.g., walking
and running) [40]. Similar to other research-grade accelerometers, the Fitbit devices have poor accuracy
for the measurement of cycling [41,42]. Furthermore, Fitbit instructs users to not swim with the Fitbit
Flex because it is not waterproof [43], thus rendering it unable to assess swimming-based exercise.

Data from the devices were automatically uploaded to the Fitbit website whenever the device was
within 15 feet of the base station, which was plugged into the participant’s own personal computer.
Participants were instructed to sync and charge their device every 5–7 days to ensure no loss of activity
data. The Fitbit accelerometer recorded data in one-minute epochs, starting at 12:00 a.m. and ending at
23:59 p.m. every day, yielding a time series of 1440 minute-epochs per day per individual. The raw
minute-by-minute step count data were extracted from the manufacturer’s website using Fitabase
(Small Steps Labs, San Diego, CA, USA) and were reduced using a novel QCA, described in Statistical
Analyses below. Specifically, the raw data that was relevant to the present article included the step
counts over one-minute intervals with a timestamp; data for each participant was converted to an
“RDATA” file each associated with a unique participant ID. Based on the raw data, we calculated other
predefined physical activity measurements, including total daily step counts, the duration in minutes
of physical activity (PA, defined as having at least 50 steps in a minute), and activity midday (defined
as the time when 50% of daily step counts were achieved).

2.3. Statistical Analyses

2.3.1. Quantile Coarsening Analysis (QCA)

Let Y(t) denote the step counts at time t and S(t) =
∫ t

0 Y(u)du be the cumulative activity up to time
t ∈ (0, tmax). Then

T(p)inf{t : S(t) ≥ p S(tmax)} (1)

denotes the time where 100p percent of the total activity has been achieved and will be referred to
as the 100pth quantile of the activity time [44]. Specifically, activity midday is defined by the 50th
quantile, T(0.5). The idea of QCA is to represent a time series Y(t) using multiple quantiles T(pj) for
a prespecified set of p1 < p2 < . . . < pK, together with the total daily counts S(tmax). The number K
of quantiles determines the number of components used to represent Y(t), and hence controls the
resolution or coarseness of the approximation. Define the Kth order quantile-coarse function of Y(t) as

CKY(t) =
S(tmax)

(K + 1)
{

T
(

pj+1
)− T

(
pj
)} for T

(
pj
) ≤ t < T

(
pj+1

)
(2)

for j = 0, . . . , K, with the convention that T(0) = 0 and T(1) = tmax. While pj can be any values between
0 and 1, we consider an evenly spaced grid, i.e., setting pj = j/(K + 1) for j = 1, . . . , K. It can be easily
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shown that the quantile-coarse function is invariant under the quantile transformation. That is to
say, applying the quantile transformation to CKY(t) will result in the same quantile representation as
applying the transformation to the original Y(t), i.e., CK{CKY(t)} = CKY(t). As a result, there is no loss
in information by converting between coarsened data and quantiles back and forth for any given K.

Our data set consisted of a total of 21,393 days of minute-by-minute step counts from 79 study
participants. For each daily time series, we evaluated the quantile-coarse function. The mean time
series Y(t) of each cluster was then approximated by the corresponding mean quantile-coarse function
CKY(t). We calculated the integrated mean squared error:

∫ tmax

0

{
CKY(t)− Y(t)

}2dt (3)

to assess the accuracy of the quantile coarsening method under various coarseness values K.

2.3.2. Cluster Analysis

We performed cluster analysis using MFMM with the quantile-coarse function CKY(t) as input.
Specifically, we considered K = 19 so that each time series Y(t) was represented by a total of 20 features,
namely, T(0.05), T(0.10), T(0.15), . . . , T(0.95), and S(tmax). Note that although we did not use common
features such as PA minutes as direct inputs of the cluster analysis, these features were implicitly
incorporated as they could be approximated from a quantile-coarse function. The number of clusters
was determined based on the Bayesian information criterion [45]. After the MFMM analysis, physical
activity features of each cluster were described using means and standard deviations, along with the
mean time series Y(t) of each cluster.

2.3.3. Association Studies

In order to identify important factors affecting a participant’s physical activity behaviors in terms
of the identified clusters, association between the cluster membership and participant characteristics
was assessed using generalized linear mixed model (GLMM) with a logit link in a univariate manner,
with an adjustment for a weekend/weekday random effect nested within a subject random effect.
For comparison purposes, we also examined the association of step-count based clusters with
participant characteristics using the same GLMM approach.

3. Results

3.1. Physical Activity Clusters by Multivariate Finite Mixture Modeling

The MFMM analysis found an eight-cluster solution among the 21,393 series. Table 1 reports
some summary physical activity measures in each cluster. The clusters were organized according to
the average daily step counts, which were in concordance with PA duration. The least active cluster
(Cluster 1) on average completed just below 1000 steps a day with 7.3 min in PA; this subgroup of
activity either depicted a very sedentary pattern or effectively identified inactivity due to non-wear.
The most active group (Cluster 8) had about 10,000 counts on average with 73 min in PA. The next two
most active clusters (Clusters 6 and 7) had similar activity level to Cluster 8 and were within 1000 steps
daily on average. However, activity midday in these clusters, ranging from noon to 3:00 p.m., occurred
earlier than that of Cluster 8. While not as inactive as Cluster 1, Clusters 2 and 3 had low PA level
when compared to the higher clusters, with different activity midday. Clusters 4 and 5 represented
days of intermediate PA level.
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Table 1. Physical activity clusters by multivariate finite mixture modeling.

Cluster ID 1 2 3 4 5 6 7 8

N 409 1302 2285 2751 7819 1678 2326 2823
Daily step counts 961 6227 6855 8037 8999 9379 9396 10,038
Activity midday a 11:30 a.m. 1:00 p.m. 2:00 p.m. 3:30 p.m. 2:00 p.m. Noon 3:00 p.m. 5:00 p.m.

PA minutes b 7.3 42.3 45.6 52.8 59.9 65.9 65.1 72.7
Weekend c 37% 40% 39% 35% 16% 46% 30% 23%

a Time of day when 50% of daily counts were achieved; time was rounded to nearest half-hour. b Duration (in
minutes) with ≥50 counts per minute. c Percent of time series in the cluster being on a weekend.

Figure 1 shows the mean activity curves of the clusters, and the superimposed cumulative
activities of the clusters (lower right figure). These plots reveal additional cluster-defining features.
Specifically, Cluster 2 was characterized by very early (i.e., late night) activity. Clusters 6 and 8 had
peak activity averaged at around noon and 6:00 p.m. respectively, whereas Cluster 5 had multiple
peaks throughout the day (at around 8:00 a.m., noon, and 5:00 p.m.).

Figure 1. Mean activity of the 8 physical activity clusters by multivariate finite mixture modeling.
Lower right: Superimposed cumulative step counts of the 8 clusters.

3.2. Activity Patterns and the Weekends

Table 1 also shows the proportion of daily activity falling on a weekend for each cluster,
and demonstrates a range across the eight groups with ≥40% of time series in Clusters 2 and 6
occurring on a weekend, and 16% in Cluster 5 being on a weekend. Generally, it is also noted that the
time series in the inactive clusters (Clusters 1–3) tended to fall on weekends.
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Figure 2 further shows the PA patterns of the 79 participants were very different on weekdays
and on weekends, with Cluster 5 being clearly a weekday phenomenon in most participants. It was
consistent with the fact that Cluster 5 was characterized by spikes in activity around morning commute,
lunch, and evening commute (Figure 1). At the same time, the heatmaps showed variations among the
participants and that some did not follow this weekday/weekend differential (e.g., Participants 11 and
16). In addition, the PA patterns on the weekends were more dispersed than those on the weekdays,
suggesting weekend activities were less structured and more heterogenous across participants.

Figure 2. Heatmap of activity patterns of the 79 participants on weekdays and weekends. The color
code indicates the proportion of days that a participant fell into each activity cluster.

3.3. Physical Activity Clusters and Participant Characteristics

Table 2 gives the association between each cluster and participant characteristics, in terms of odds
ratio of falling into one activity cluster vs. the others using GLMM. In this cohort, employment and
partner statuses were the most influential predictors of activity, each associated with 5 PA clusters.
Specifically, Cluster 5 was highly significantly (p < 0.01) associated with being full-time employed
and having a partner/spouse. Interestingly, the association between Cluster 5 and employment status
was significant after adjusting for the weekend/weekday effect, suggesting that employment had a
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structural impact on an individual’s behaviors and habits beyond the physical constraint it has during
a workweek.

In contrast, Clusters 2 and 4, both having very early activity (Figure 1), were associated with
singles with part-time jobs; having a younger age and receiving less education were also associated
with these two clusters.

To a lesser extent, race/ethnicity was also predictive of an individual’s activity behaviors.
Specifically, non-Hispanic whites were more likely to engage in physical activities consistent with
Clusters 5 and 8, and less with Cluster 2. Finally, it is interesting to note that the inactive cluster
(Cluster 1) was not associated with any particular characteristics.

Table 2. Association (odds ratio) of physical activity clusters and participant characteristics.

Cluster ID 1 2 3 4 5 6 7 8

Age a 0.99 0.96 *** 0.99 0.98 * 1.02 * 1.01 1.00 1.01
Male (ref: Female) 0.77 0.94 0.80 1.37 0.86 1.04 1.02 0.95

NHW b (ref: others) 0.65 0.60 * 0.80 0.85 1.35 * 1.04 0.91 1.23 *
Education c 1.02 0.66 ** 1.01 0.75 * 1.15 1.17 0.91 1.11

Full-time (FT)
(ref: Part-time, PT) 1.17 0.44 * 0.93 0.42 *** 3.49 *** 0.57 ** 1.01 1.41 *

Being single
(ref: Partner/spouse) 0.74 2.37 *** 0.76* 1.72 *** 0.65 ** 1.02 1.19 * 0.85

a Odds ratio per one-year increase in age. b NHW: Non-hispanic white. c Education as an ordinal variable: 0 = less
than college; 1 = college graduate; 2 = above college. * ≤0.05, ** ≤0.01, *** ≤0.001.

3.4. Accuracy of Approximation

Table 3 gives the integrated mean squared errors of the quantile-coarse function using different
values of K for estimating the mean activity of the 8 patterns. Accuracy improves as the original
function Y(t) is represented with a larger number K of quantiles, with the initial improvement being
most substantial. With K = 19, the mean squared error was about 3% on average of the error when
daily activity was summarized using only the total daily counts (K = 0).

Table 3. Integrated mean squared errors in estimating the mean activity of the eight clusters.

K 1 2 3 4 5 6 7 8

0 a 563 3191 15,674 16,106 22,800 32,004 26,226 47,884
3 224 1690 5189 3926 13,473 8631 7356 15,360
9 59 609 880 908 2763 1519 2132 3084
19 29 255 253 342 676 506 626 826
39 19 131 98 135 181 188 211 237

a = 0 corresponds to approximation using daily step counts only; activity is assumed to be uniform throughout
the day.

4. Discussion

We have proposed a novel QCA for reducing dimension of data collected from wearable devices,
and for representing data in conjunction with downstream analyses such as MFMM and association
studies. The proposed method contributes to the analysis and management of wearable data in
two ways. First, quantile transformation lends itself to making inferences about the time of activity,
which could be useful in distinguishing individuals and days from a single individual with differing
patterns of PA accrual. Using data from an intensive, 12-month observational study, we were able to
identify 8 unique clusters (or subgroups) that characterized the various types of PA accrual patterns
observed at the day-level and were able to link these clusters with participant characteristics that
provided important contextual information regarding the observed patterns. For example, we observed
a “worker” cluster (Cluster 5) associated with employment status wherein spikes in activity were
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observed around times of day that typically coincide with morning commute, lunch, and evening
commute. We also observed active clusters that accrued much of the activity earlier or later in
the day (Clusters 6–8), possibly reflective of morning or evening exercise. On the other hand, it is
interesting to note that the most active pattern (Cluster 8) accumulates steps late in the day and is
associated with full-time employment, suggesting these are intentional leisure-time physical activities.
This is consistent with the literature that individuals who meet physical activity guidelines are those
who engage in leisure-time physical activity [46]. In contrast, when we performed cluster analysis
using total step counts only (i.e., not including time of activity as inputs), all but one cluster had an
activity midday at 2:30 p.m. (Table 1). And as a result, we identified fewer and weaker association
between the step-count based clusters and participant characteristics (Table 2); this analysis did provide
nuances about the nature of activity, which in turn could be useful for developing applications of
individualized intervention.

Second, QCA facilitates large-scale data reduction, as quantile transformation requires only simple
and scalable computations. We have demonstrated the method in a dataset of 21,393 time series (over
30 million minute-by-minute counts) from 79 participants for up to 1-year follow-up as a proof of
concept. In real-life situations where deployment of mobile sensors such as Fitbit can occur at a much
larger scale for a much longer duration, the large data volume will be a practical issue for storage and
analyses and for the deployment of edge computing [47]. In a typical application, data are transmitted
from the devices and stored externally on a server or in a cloud platform for specific analyses. Quantile
coarsening in this context can be used as a data pre-processing step to minimize the volume of data
transmission, storage, and persistence demand. As the size of the wearable devices tends to be small,
their computational capacity is often limited. As such, continuous sensing may pose challenges to
existing multi-modal analysis techniques using wearable devices. Since quantile transformation is
easy to implement and can be computed independently of data from other individuals, simple scripts
can be written to execute on the edge devices as well as on the server level. Depending on the purpose
of the analysis, the end-user can specify the level of resolution in terms of the number K of quantiles
needed. Our analyses show that the mean quantile-coarse function provides good approximation of
the original mean function with only 20 data points per day per individual, representing less than 2%
of the original amount of data (1440 data points). In addition, at the deployment time, QCA can also be
applied on the incoming streams of data to compare to pre-stored cluster characteristics identified from
the cluster analysis. This can lend support to the implementation of many other dynamic, just-in-time
adaptive interventions that are key to persuasive reminder and sustainable behavioral changes [48].

The high volume of step count data offers the opportunities to tailor behavior intervention of
each individual in a highly personalized manner. Specifically, we have created an activity behavior
signature for each individual over time (Figure 2), which can serve as the basis of adaptive intervention.
For instance, we could adapt the “dose” and time of push notifications if there are indications that
an individual deviate from his/her own norm. The use of signature is broadly applicable to other
behavioral intervention system such as centralized recommenders of health apps [49–51]. To allow for
such tailored intervention, it is important to acknowledge individual behaviors are not monolithic,
but heterogeneous. It is therefore important to note that our analysis goal was to identify clusters of
daily activity as building blocks of each signature, as opposed to identify clusters of individuals.
While within-day metrics (such as intensity and regularity [52]) have been examined to reflect
enrich the heterogeneity in between-day activities of each individual, these approaches typically
are semi-quantitative and are intended for visualization.

In the present article, we have shown the feasibility of QCA in a small cohort of relatively healthy
individuals. The study design and analytical methods can be easily deployed to other populations.
For example, the Northern Manhattan Study aims to assess risk factors for stroke and cardiovascular
diseases, and has examined and analyzed the physical activity patterns of the cohort based on paper
questionnaires [3,29]. It would be an interesting next step to follow up on these individuals to monitor
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and assess their mobility issues using wearables, and to provide additional information (signature)
that contributes to cardiovascular risks.

We applied QCA to step count data. The method however is applicable to other data variety
and supports monitoring of biometrics (e.g., heart rate, ambulatory blood pressure, etc.), location
(e.g., indoor/outdoor), behaviors (e.g., medication adherence), exogenous factors such as weather,
and user-input data via ecological momentary assessment. There is a growing trend towards
self-monitoring on a daily basis with goals such as tracking health status, ameliorating exacerbations of
chronic conditions, and avoiding episodic hospitalization; see [53–57] for example. As such, wearables
devices are well-suited for this new approach to patient care, provided that they are capable of handling
complex analysis efficiently (resulting in smaller and lighter devices with longer battery life). At the
same time, we acknowledge that accelerometers are not capable of capturing some of the more common
forms of aerobic exercise. Research- and commercial-grade accelerometers such as those made by
Fitbit have poor accuracy for the measurement of cycling and cannot be worn while swimming due to
not being waterproof [41,42]. However, given the versatility of the QCA, it shall provide useful unified
analytical tools for the high data variety in multi-modal monitoring as sensing technologies advance.
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Abstract: Actigraphs for personalized health and fitness monitoring is a trending niche market and fit
aptly in the Internet of Medical Things (IoMT) paradigm. Conventionally, actigraphy is acquired and
digitized using standard low pass filtering and quantization techniques. High sampling frequencies
and quantization resolution of various actigraphs can lead to memory leakage and unwanted battery
usage. Our systematic investigation on different types of actigraphy signals yields that lower levels
of quantization are sufficient for acquiring and storing vital movement information while ensuring
an increase in SNR, higher space savings, and in faster time. The objective of this study is to propose
a low-level signal encoding method which could improve data acquisition and storage in actigraphs,
as well as enhance signal clarity for pattern classification. To further verify this study, we have used
a machine learning approach which suggests that signal encoding also improves pattern recognition
accuracy. Our experiments indicate that signal encoding at the source results in an increase in SNR
(signal-to-noise ratio) by at least 50–90%, coupled with a bit rate reduction by 50–80%, and an overall
space savings in the range of 68–92%, depending on the type of actigraph and application used in
our study. Consistent improvements by lowering the quantization factor also indicates that a 3-bit
encoding of actigraphy data retains most prominent movement information, and also results in
an increase of the pattern recognition accuracy by at least 10%.

Keywords: actigraphy; encoding; data compression; denoising; edge computing; signal processing;
wearables; activity monitoring; machine learning

1. Introduction

The advent of smart devices and rapidly evolving communication technologies, has enabled the
formation of the Internet of Things (IoT) environment. The IoT paradigm intends to connect and
exchange information and user data between devices, physical environment and the individual.
This translates into a smart, connected and interactive environment for an individual, thereby
improving the quality of life. The devices could be computers, phones, wearables, home appliances,
infrastructure and vehicles [1–3]. Therefore, any device which operates even with an ON/OFF switch
can be integrated into an IoT environment. The IoT environment also allows for connecting devices
with limited memory, power and CPU. Figure 1 shows how different components and users are
interconnected in an IoT paradigm [1,4].

Sensors 2018, 18, 2966; doi:10.3390/s18092966 www.mdpi.com/journal/sensors343
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Figure 1. IoT Environment [4].

Advancements in sensor design have also enabled the rapid evolution of smart devices for
personalized applications which include communication, health and fitness monitoring, virtual
environments, autonomous transportation and smart homes. Considering the aspect of connected
healthcare, the development of telehealth systems has resulted in coining of the term IoMT (Internet
of Medical Things), which is a subset of IoT. The IoMT environment focuses on delivering clinical
services to an individual via connected devices such as smart phones, wearables and infrastructure
(see Figure 2). These services include [5]:

• Remote health monitoring via telecommunication network.
• Use of mobile health monitoring equipment and applications.
• Doctor-patient consultation via interactive technology.
• Continuous monitoring using smart devices for elderly and critical care individuals.

Figure 2. Connected Healthcare in an IoMT paradigm [5].
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Our study is based on the use of wearables for home-based health monitoring in an IoMT
environment. Wearables are devices embedded with accelerometers, gryoscopes, light and pressure
sensors, for capturing and analyzing streaming physiological data from an individual during daily
activity. Unlike smart phones or tablets, these devices can be comfortably worn on different body
regions throughout the day, and can be used for various applications such as fitness monitoring,
behavior tracking and vital signs analysis for critical disorders such as stroke, falls or seizures [6].

From our prior survey [6], we found that many currently available wearables such as Apple
WatchTM and FitBitTM have embedded sensors for collecting and analyzing basic human activity
parameters such as step counts, pulse rate, temperature and sleep times for fitness awareness.
We also investigated into their respective SDKs (software development kits), which described
how physiological data is collected, analyzed and shared with service providers for decision
generation. In recent times, many clinical studies have been conducted to explore the validity of
using wearables for physiological data analysis for disease or disorder detection. For example,
accelerometer-based wearables have been used to study daily activity monitoring in individuals
suffering from neuromuscular disorders, and validate their outputs with clinical standards [7].

As per a survey [8], considering that only about 90 out of 600 currently available wearables
are being used for medical applications, we can see a clear potential for their usage in long-term,
home-based health monitoring applications. Even though these numbers present a promising future
for wearable-based health monitoring solutions, our review indicates that there still exist some
crucial hurdles before implementing health monitoring devices and applications in real-time [6].
These include:

• Focusing on developing physiological signal analysis algorithms which promote edge computing
approaches [4–6,9]. That is, the data acquisition, compression and analysis must be done at
the device level without having the need to transmit long, streaming data to cloud services.
This would lead to optimization of cloud resources by minimizing usage for data storage and
analysis. The idea of edge computing is to help in optimizing on-device memory and power
usage, thereby increasing operating efficiency and throughput [5,9].

• In addition to this, there is also a need for data acquisition standardization with respect to data
formats and communication protocols [10,11].

• Ensuring seamless Internet connectivity across users, devices, infrastructure and services.
• Developing safe, non-invasive and comfortable wearables embedded with sensors for collecting

and processing physiological data in a remote setting.

Meeting these challenges, could not only establish a set of standards with respect to device
manufacturing and developing new communication protocols, but would also promote the
development of novel data acquisition and storage algorithms in wearables. Since the most common
sensor currently used in wearables is the accelerometer [6,8], we focus our study on activity
monitoring applications. Note that wearables embedded exclusively with accelerometers are termed
as actigraphs [12]. In the following section, we will discuss actigraphy applications, data acquisition
and signal analysis.

2. Actigraphy

Actigraphs measure human body displacement in single or tri-axial directions, and have been
used extensively in calculating gross motor activity for different applications. They are miniature
devices which record and store motion data, which could then be further used for performing offline
analysis. Actigraphs have been used by researchers in numerous clinical and consumer studies such as
fitness monitoring, calorie consumption, sleep/wake activity analysis and for rehabilitation therapies
in disabled individuals. To cite a few examples, actigraphy studies have been conducted in the
following domains:
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• Home-based sleep staging [13–15].
• Analyzing movements in individuals suffering from Parkinson’s and Alzheimer’s disease [16–18].
• Monitoring home activity of military personnel experiencing post-traumatic stress disorder

(PTSD) [19].
• Routine of children diagnosed with autistic spectral disorder and ADHD (attention deficit

hyperactivity disorder) [20,21].
• Estimating the severity of sleep related movement-disorders such as periodic limb movements

(PLMs) [7,22,23].
• Therapeutic rehabilitation of joint disabilities in war veterans [24,25].
• Demographic studies for identifying differences in sleep patterns with respect to age, gender,

ethnicity and sleep disorder prevalence [26].

A variety of actigraphs are currently available in the market (see Figure 3), and they are usually
worn on wrist, waist or lower ankles for capturing human motor activity [27]. Typically, an actigraph
is able to capture motion data with a sampling frequency in the range of 16–3200 Hz, coupled with
an A-to-D quantization of 6–16 bits per sample, depending on the manufacturer [7,12,27,28] .

Figure 3. Example of actigraphs.

The reader must note that, due to device property variability from one manufacturer to another,
data analysis of the same activity captured from two different actigraphs, might yield different
results. This infers that actigraphy analysis algorithms must be designed to be device-independent
and customizable as per application [6,29]. Typically, an actigraph consists of the following
components [12,30]:

• Piezoelectric accelerometer for capturing motion/vibrations.
• Signal amplifier coupled with an A-to-D converter.
• low-pass filter to remove external vibrations.
• Flash-memory to store sampled and filtered amplitudes.
• Capacitive and rechargeable battery.
• A micro-USBTM, serial or low power wireless interface to transfer data to a local computer.

The actigraph maintains a record of zero-crossings and minimal thresholds, and uses them to
generate raw signal values from the motion. Most of the currently available actigraphy devices
are able to record and store 24 h motion data for up to a week. Depending on the choice and
application domain, actigraphs could be single axial or tri-axial. Note that, usually tri-axial devices
are comparatively more sensitive than single axial ones, and may capture motion in scenarios which
require real-time data analysis. Figure 4 illustrates single and tri-axial actigraphy signals captured
from two different actigraphs.
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Figure 4. (A) Tri-axial, (B) Single axial actigraphy signal, captured from two different devices.

In case of tri-axial actigraphy data, our review of prior studies indicates that one must perform
vector compounding of individual axial data before analysis, in order to simplify computations,
and most importantly ensure that vibration information from all three directions is captured [14,31,32].
For example, given a tri-axial signal S =< x, y, z >, its vector magnitude would be computed as,

V =
√

x2 + y2 + z2 (1)

In order to analyze an actigraphy signal, we must first run certain signal property tests to
determine appropriate processing tools and techniques [29]. Following Table 1 highlights various tests
and our observations on actigraphy data, computed in MATLABTM.

Table 1. Actigraphy signal tests.

Property Test Observations

Visual inspection

Spiky data with a lot of transient information
randomly distributed. Motion events seem
uncorrelated when separated by significant
time period.

Stationarity—KPSS test [33] Non-stationary signals

Linearity—
Augmented Dickey–Fuller test [34] Non-linear data

Gaussianity—KS test [35]
Non-Gaussian distribution in most cases,
since human motion is random.

Sparsity test—Gini Index [36]
Sparse in short windows. In case of tri-axial data,
vector compounding and additional quantization
may be needed.

Before an actigraphy signal is analyzed to detect specific movements or patterns, it must be
pre-processed in order to remove noise and artifacts. Conventionally, actigraphy signals undergo the
following operations before analysis:

(1) A-to-D conversion in order to assign discrete amplitudes to specific movements [29].
(2) As per our literature review, human activity is usually captured in the 0.3 to 6 Hz frequency range,

and high frequency noise is captured around the sampling frequency. In order to remove the
noise, a simple low-pass filter (Butterworth) is employed to capture movement data [12,14,31,32].
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(3) Additional band-pass filters could be implemented in order to remove low frequency artifacts
and noise.

(4) Depending on application, the actigraphy signal is annotated using time-stamps. For example,
in many sleep studies, actigraphy data was clipped between “Lights-off” and “Lights-on” time
periods, in order to ensure alignment with other clinical signals recorded in simultaneous PSG [7].

Although most actigraphs are designed for long-term recordings, there are certain shortcomings
in their data acquisition and storage methods, which need to be met in order to optimize their usage
and implementation as standalone devices, or in smart wearables. These limitations could be:

(1) Actigraphs that sample data at higher frequencies (typically 100 Hz and above) along with
a high quantization rate (typically 12–16 bits per sample), often lead to memory leakage and
underutilization of battery life during recording.

(2) Manufacturer-based variability in sampling and quantization. This limits algorithms from being
designed as device-independent tools [27,37]. Some actigraphs tend to sample movement data
too infrequently, thus leading to information loss in the output raw signal.

(3) Many prior studies have been conducted on short-duration actigraphy datasets and did not
require extensive memory and computational resources for analysis [14,22]. Translating these
studies into long-term activity monitoring solutions is not feasible unless the actigraphy data is
subjected to significant compression and segmentation at the source.

(4) Increased use of computational resources (local or cloud) during offline processing of long-term
recordings. Conventionally, actigraphy data is captured and entirely transferred to a local
computer or cloud for analysis. Our review indicates that in most studies, no prior
data processing is done at the source to retain only meaningful information and discard
redundant values.

As stated in previous section, signal acquisition methods which promote an edge computing
approach could overcome the afore-mentioned challenges in long-duration actigraphy data analysis
and optimize device usage [5,6]. In the following section, we propose one such technique to
pre-processing actigraphy data by performing data compression and denoising at the source. It should
be noted that the proposed solution in this study is not an edge computing technique in itself, but
rather focuses on optimizing data acquisition and storage which would then promote edge computing
on the hardware.

Proposed Approach

In our review of actigraphy signals captured from different studies and applications, we found
that employing a lower level of quantization to actigraphy data at the source, addresses a significant
number of afore mentioned challenges. In this study, we propose a low-level encoding scheme which
would improve actigraphy analysis in the following ways:

(1) Data compression at the source. The proposed encoding method intends to reduce the output
actigraphy file size, thus enabling faster transfer and read time on a local computer.

(2) Signal normalization and denoising, which removes redundant and minute vibrations captured
from highly sensitive accelerometers.

(3) SNR (signal-to-noise ratio) increase and enhancement of meaningful movement amplitudes in
the signal.

(4) The proposed scheme also ensures operation across different types of actigraphs, thus promoting
device-independency of this algorithm.

The reader must note that data compression might result an increase in energy consumption and
latency at the source. But the proposed solution intends to reduce memory usage and optimize overall
battery usage, which would balance-off these shortcomings. Figure 5 illustrates the methodology
implemented in this study.
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Figure 5. Flowchart of the proposed methodology.

In order to conduct a systematic investigation, we have conducted experiments on actigraphy
data acquired from the following applications:

(1) Long-duration tri-axial actigraphy signals captured simultaneously with polysomnography in
sleep studies [28].

(2) Activities of Daily Life (ADL) dataset obtained from Dua et al. [38].
(3) Vibroarthrographic signals captured from knee joints for osteoarthritis severity assessment [39].

The reader must note that in case of long-duration sleep actigraphy signals, the proposed encoding
scheme’s results have already been published in [28] by Athavale et al., and hence we’ve shown the
same results in this paper, to augment our experiments with daily activity [38] and vibroarthrography
datasets [39].

For the reader’s reference, this paper has been further organized as follows: In Section 3.1 we
will briefly explain the datasets used in our experiments, along with actigraph and signal properties
used in each study. Next, in Section 3.2 we explain the proposed signal encoding scheme. Following
this, we then proceed to check the validity of the proposed encoding scheme by performing simple
machine learning and pattern classification of encoded signals, and comparing its results with those of
raw actigraphy signals from each dataset, in Section 3.3 . In the next Sections 4.1 and 4.2 we present
our experimental results from signal encoding and its validation. We finally conclude this paper with
some critical discussions in Section 5.

3. Materials and Methods

3.1. Data Acquisition

In the proposed study, we have conducted experiments on three datasets:

• Long-duration, tri-axial,bi-lateral ankle actigraphy signals [28]
• Short-duration, tri-axial, wrist-actigraphy signals [38], and
• Short-duration, single-axial, vibroarthrographic actigraphy signals [39]

Following Table 2 highlights describes the datasets used in our study:

Table 2. Dataset Properties.

Application Data-Type No. of Signals Length/Signal Resolution fs

Sleep [28] Tri-axial 50 6–8 h 16-bits/sample 25 Hz
ADL [38] Tri-axial 274 5–60 s 6-bits/sample 32 Hz
VAG [39] Single-axial 89 3–5 s 12-bits/sample 2 kHz

fs is the sampling frequency.
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In the next section, we will describe the proposed signal-encoding scheme applied to all the
signals in the datasets described in Table 2.

3.2. Proposed Encoding Scheme

The proposed signal encoding scheme is then applied to afore mentioned actigraphy datasets as
described in the following steps:

(1) The raw actigraphy signal is first normalized with respect to “g” factor using the device
specifications. This operation removes signal components which have been amplified or caused
due to earth’s gravitational effect on the accelerometer sensor [31]. In this study, depending
on the application and device used, one of the following normalization step has been applied.
Given a raw actigraphy signal Sr =< xr, yr, zr >, its corresponding normalized version can be
computed as follows:

• For sleep, the normalized signal would be [28]

S =
Sr

2048 counts/g
(2)

• For ADL, the normalized signal would be [38]

S = −1.5g +
Sr

63
× 3g (3)

• For VAG, the signal is normalized as [39],

S =
(maxSri

(Sr)− S)

(maxSri
(Sr)− minSri

(Sr))
(4)

Note that in case of Eqns.2 and 3, g = 9.8 m/s2.

Note that the normalization operation is applied to each axis of the actigraphy signal.
(2) Next, depending on the signal type we perform vector compounding as shown in Equation (1).

This operation is done only for tri-axial actigraphy data, and in case of single axial signals, we
skip to normalization as shown in Equations (2)–(4).

(3) Assuming that b is the number of encoding bits, and Q f = 2b−1
2 is the quantization factor, we

encode the signal S using the floor operation,

Se =
⌊(

S × Q f + Q f

)⌋
(5)

The floor operation in Equation (5) digitally approximates each value generated from (S × Q f +

Q f ) to the greatest integer less than or equal to it. For example, a value of 3.4 would be mapped
to 3. Note that in this study, we have experimented with different levels of encoding depending
on the dataset. From our experiments, we have observed that a 3-bit encoding provides highest
signal clarity.

(4) The SNR of the encoded actigraphy signal is then calculated as,

SNRSe = 20 log
(

RMSS
RMSQe

)
dB (6)

where, RMSS and RMSQe are the root mean square values of the input normalized signal and the
quantization error respectively. The quantization error can be computed as Qe = (S − Se).

The encoding scheme proposed in this section aims to perform on-the-fly denoising,
SNR enhancement and compression of actigraphy data at the source. Our experimental results
with different levels of encoding have been highlighted in Section 4.1. In the next section, we describe
a validation process using a machine learning approach.

350



Sensors 2018, 18, 2966

3.3. Validation Using Machine Learning

In order to ensure that no vital information is lost in the encoding process, we perform a machine
learning validation in our study. This is done because unlike physiological data with characteristic
patterns such as ECG, actigraphy signals do not show any specific structure or morphology, and hence
obtaining a ground truth from experts proves to be trivial [29]. For example, in prior studies
pertaining to actigraphy validation with PSG (polysomnography), clinical feedback was given
only on PSG readings, and the actigraphy data was used only for comparing certain statistical
parameters [7,23,40,41].

As shown in Table 1, the actigraphy data looks transient in nature, and requires ground truth
information such as activity labels for further analysis. In order to validate the encoding scheme,
we perform a simple feature extraction and pattern classification of raw and encoded actigraphy
signals from each dataset used in this study, using the following steps:

(1) For each dataset, we create two distinct groups, namely:

• Group 1: Raw actigraphy signals, and;
• Group 2: Encoded actigraphy signals

(2) From each signal in Groups 1 and 2, we extract 13 time, frequency [7] and signal-specific features,
defined in Table 3 as shown. For the reader’s reference, in this research study we propose two
new signal specific features, namely—rapid change factor and spiky index. The remaining 11
features have been used in prior works pertaining to actigraphy and other physiological signal
analysis applications [29].

Table 3. Features and their description

Domain Feature Description

Time

RMS Root mean square value of the signal
Maxima Maximum Peak value in the signal

Peak-to-Peak Difference between maximum and minimum peak
Peak-to-RMS Maximum peak to RMS ratio

Peak-to-Avg.Power Maximum peak to avg. power ratio
SNDR Signal to noise & distortion ratio

Hjorth’s Parameters [42]
First order mobility, Mf =

√
σf
σx

Second order mobility, Ms =
√

σs
σx

Complexity, Cx =
Mf s
Mf

Frequency
Median Frequency Median normalized frequency of power spectrum

Band power Average signal power

Signal-Specific
Spiky Index SI = # o f Prominent Peaks or events

Total Activity Time(s)

Rapid Change Factor RCF =
Step Size

b×Ts

(3) Next, depending on the dataset and its corresponding application, we apply pre-defined labels
to Group 1 and 2 feature sets as follows:

• Sleep Data: As the application is focused on distinguishing between mild and severe PLM
(periodic limb movement) index, using the pre-defined labels in Athavale et al. [7,28],
we divide the feature set into “Mild” and “Severe”.

• ADL Data: Since this dataset contains signals of 14 multiple activities, we divide the feature
set based on 14 labels [38].

• VAG Data: As per Krishnan et al., the feature set has been divided into “Normal” and
“Abnormal” depending on the severity of knee-joint degeneration [39].
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(4) Finally, using a 70–30 ratio of training and testing feature data, we use an LDA (linear discriminant
analysis) tool to classify actigraphy feature data within Groups 1 and 2 of each dataset. Further
to this, we also cross-validate our results with a support vector machine (SVM).

It should be noted that in this study, machine learning of actigraphy data is not the main objective
but has been used to validate the effect of signal encoding at source. Hence, the choice of using
a LDA classifier has been done only to observe the linear classification performance on the encoded
data. The results from this machine learning based validation for each dataset have been presented in
Section 4.2.

4. Results

4.1. Signal-Encoding Results

As evident from Equation (5), the encoding floor operation digitally approximates an actigraphy
signal S by performing a non-linear mapping of each sample Si to an integer less than or equal to Si
after multiplication with the quantization factor. Figure 6 illustrates a sample actigraphy signal from
each dataset and its corresponding encoded version.

Figure 6. Sample Raw and Encoded signals from each dataset.

Additionally, we also perform a parameter-wise comparison, and observe that signal encoding
not only inherently denoises and enhances SNR, but also performs significant data compression at
the source. Following Table 4 highlights these results for a sample actigraphy signal obtained from
each dataset.

Table 4. Parametric Encoding Results.

Signal Type Parameter Sleep ADL VAG

Raw
SNR (dB) −18.9 −48.4 −0.1

Bit Rate (bits/s) 400 192 20 × 103

Encoded
SNR (dB) 38.8 28.2 19.9

Bit Rate (bits/s) 75 96 6 × 103

Overall % Space Savings 92% 68% 88%

These results have also been illustrated in following Figures 7–9.
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Figure 7. Encoding Sleep actigraphy signals.

Figure 8. Encoding ADL actigraphy signals.

Figure 9. Encoding VAG actigraphy signals.
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As evident from Table 4 and Figures 7–9, signal encoding not only enhances actigraphy data
by retaining vital movement information and discarding redundant values, but also helps in signal
compression at the source. Further to this, in Section 4.2, we highlight the machine learning validation
results in order to show the encoding procedure’s efficiency in improving actigraphy signal recognition.

4.2. Encoding Validation Results

As described in Section 3.3, we performed a machine learning based validation of the proposed
encoding scheme, and find that for each dataset, the classification rate within Group 2 (encoded)
features is higher than that of Group 1 (raw) feature set. Table 5 highlights the classification results
for LDA and SVM. In addition to computing the classification accuracies between raw and 3-bit
encoded feature sets, we also calculate the F1-score metric for each data-set’s classification rate using
the expression,

F1 = 2 × Precision × Recall
Precision + Recall

(7)

Table 5. Machine Learning Results along F1-Scores for each actigraphy dataset.

Data

Raw Features Encoded Features

LDA SVM LDA SVM

Accuracy (%) F1-Score Accuracy (%) F1-Score Accuracy (%) F1-Score Accuracy (%) F1-Score

Sleep 87.1 0.78 83.3 0.71 93.3 0.90 93.3 0.91
ADL 88.3 0.82 82.8 0.73 89.1 0.85 84.9 0.76
VAG 57.7 0.45 65.4 0.59 76.0 0.70 84.6 0.81

As evident from Table 5, the classification accuracies for ADL data [38] does not increase
significantly even after encoding. We investigated this further and found that the classification
rates varied drastically within the 14 classes of the ADL data due to lack of sufficient number of signals
for certain activities. Nevertheless, we have still included the encoding results in this study, in order
show the applicability of the proposed technique to any type of actigraphy.

Further to this, we also compare the LDA classification accuracies of signals encoded using
different bit-factors for each dataset. Through this, we find that a 3-bit encoding of actigraphy data
ensures highest performance in data acquisition, storage and analysis. Following Figures 10–12
illustrates this trend on how the classification rate for each dataset decreases with increase in bit
resolution of the signal.

Figure 10. Classification rate vs. encoding - sleep data.
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Figure 11. Classification rate vs. encoding - ADL data.

Figure 12. Classification rate vs. encoding - VAG data.

5. Discussions and Future Works

As evident from our investigation and experimental results, employing a very low-factor signal
quantization greatly improves the device’s data handling capacity by ensuring enhanced SNR,
high compression ratio and removal of redundant movement information from the actigraphy signal.
The 3-bit encoding proposed in this study, works best in compressing actigraphy data at the edge of
an IoT-type setup. Considering the nature of actigraphy signals as highlighted in Table 1, the proposed
encoding scheme addresses the transient, spiky information by retaining only significant movement
amplitudes or true acceleration values. Movements which are very small are floored to zero in the
encoding operation. Thus, redundant values and high frequency noise are removed in the encoded
signal, which now contains only relevant movement information.

Although in this study we have used offline datasets, it must be noted that the objective of the
proposed encoding scheme is to be applied at the recording source (i.e., on the device) in real-time.
This supports an edge computing approach when coupled with activity-based adaptive segmentation
techniques to extract regions of peak movements. The machine learning validation approach used
in this study aptly supports the proposed encoding scheme as shown by the classification results in
Table 5. Further to this, we observe that the 3-bit encoding provides the highest activity recognition
rate. From our study on different actigraphy datasets, it should be noted that the proposed encoding
algorithm is device-independent and signal-independent, and could easily be ported onto any
accelerometer-based wearable.
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Current trends in IoMT and related device developments highly promote the edge computing
structure in smart devices, as it would significantly reduce cloud burden, and ensure data privacy
and security at the consumer end. Home-based health monitoring using an IoMT framework is
a burgeoning market and would help in significant reduction of patient-doctor visits and associated
healthcare costs. One way to encourage this trend is to use wearables and sensors, embedded with edge
computing friendly algorithms, such as the one proposed in this study. This would also promote the
clinical validation and development of tools for long-term monitoring of vital physiological parameters
in not just chronically ill or elderly patients, but for the betterment of all individuals [6,43].

As part of our future work, we would like to test the proposed algorithm’s efficiency on
commercially available wearables such as FitBitTM, Apple WatchTM as well as other generic actigraphs
used in activity monitoring studies.
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Abstract: In this work, we present a first step towards an efficient one-class classifier well suited for
mobile devices to be implemented as part of a user application coupled with wearable sensors in
the context of personal risk detection. We compared one-class Support Vector Machine (ocSVM) and
OCKRA (One-Class K-means with Randomly-projected features Algorithm). Both classifiers were
tested using four versions of the publicly available PRIDE (Personal RIsk DEtection) dataset. The first
version is the original PRIDE dataset, which is based only on time-domain features. We created a
second version that is simply an extension of the original dataset with new attributes in the frequency
domain. The other two datasets are a subset of these two versions, after a feature selection procedure
based on a correlation matrix analysis followed by a Principal Component Analysis. All experiments
were focused on the performance of the classifiers as well as on the execution time during the
training and classification processes. Therefore, our goal in this work is twofold: we aim at reducing
execution time but at the same time maintaining a good classification performance. Our results
show that OCKRA achieved on average, 89.1% of Area Under the Curve (AUC) using the full set
of features and 83.7% when trained using a subset of them. Furthermore, regarding execution time,
OCKRA reports in the best case a 33.1% gain when using a subset of the feature vector, instead of
the full set of features. These results are better than those reported by ocSVM, in which case, even
though the AUCs are very close to each other, execution times are significantly higher in all cases,
for example, more than 20 h versus less than an hour in the worst-case scenario. Having in mind
the trade-off between classification performance and efficiency, our results support the choice of
OCKRA as our best candidate so far for a mobile implementation where less processing and memory
resources are at hand. OCKRA reports a very encouraging speed-up without sacrificing the classifier
performance when using the PRIDE dataset based only on time-domain attributes after a feature
selection procedure.

Keywords: time-domain features; frequency-domain features; principal component analysis;
behaviour analysis; classifier efficiency; personal risk detection; one-class classification;
wearable sensors

1. Introduction

It is highly desirable to recognise as soon as possible whenever a person faces a risk-prone
situation that could threaten that person’s physical integrity. Barrera-Animas et al. in [1] introduce
the term Personal Risk Detection as an attractive line of research focused on this timely detection. Their
hypothesis is based on the observation that people express regular patterns, with small variations,
regarding their normal physical and behavioural activities. These patterns would change, even
drastically, whenever the person is facing a hazardous situation. A wearable device with a set of
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simple and common sensors, such as heart rate, accelerometer, gyroscope, and skin temperature, just
to mention a few, is sufficient to capture deviations from normal behaviour. Personal risk detection
can be tackled as an anomaly detection problem that aims at differentiating a normal condition from
unusual behaviour. In this context, the use of one-class classification algorithms has shown very
good results. Actually, Barrera-Animas et al. reported in [1] that one-class Support Vector Machine
(ocSVM) achieved the best performance among the classifiers used in their experiments. Later on,
a new one-class classifier named One-Class K-means with Randomly-projected features Algorithm
(OCKRA) proposed by Rodríguez et al. in [2] was introduced for the personal risk detection problem.
In their research, they showed that OCKRA achieved the best results in the classification task, leaving
ocSVM in second place.

As stated in [1], Vital Signs Monitoring (VSM) and Human Activity Recognition (HAR) fields
are closely related to the personal risk detection problem. From research works presented in both
fields, a trend to use features in frequency and time domains can be noticed [3–6]. The rationale
behind this approach lies in the nature of recorded sensors measurements and that their treatment
in frequency-domain reveals several features that can not be appreciated in the time-domain. Thus,
the inclusion of features in both domains generally gives a more complex and complete view of the
observed scenario. Furthermore, in HAR and VSM research fields, several works pursue the use
of distinct specialised sensors to gather the most possible information about individuals and their
environment. For instance, an interesting review work on this subject is that of Rucco et al. [7], which
describes the state-of-the-art research on fall risk assessment, fall prevention and detection. Their
review surveys the most adopted sensor technologies used in this field and their position on the human
body, with special interest in healthy elderly people. With this approach, it is also intended to increase
the number of features obtained that characterise the study case.

Advantages such as to gain a better understanding of the physiological and behavioural patterns of
an individual, and to avoid lack of information and data concurrency, result from increasing the number
of used sensors and features. However, despite the fact that using several sensors and deriving diverse
features in time/frequency-domain has some advantages, an important issue could arise from this
approach: a high dimensionality problem. Reducing dimensionality comprises the process of project
high-dimensional data into a low-dimensional space while retaining its variability [8]—that is, to reveal
a relevant low-dimensional space embraced in the high-dimensional one [9]. Principal Component
Analysis (PCA) is one of the classic techniques used in the literature to reduce the dimensionality of a
dataset due to its capability to reveal the hidden structure of data, even on high-dimensional space,
and to its low computational consumption requirements [9]. Regarding the personal risk detection
problem, to the authors’ knowledge, there is no research work based on this approach. However,
several research studies across multiple disciplines integrate frequency-/time-domain features and
deal with the dimensionality reduction problem, as we briefly describe in Section 2.

The aim of the present research is twofold. Firstly, we are interested in exploring the impact of
using dimension reduction techniques and frequency domain features in the context of the personal risk
detection problem. We use a correlation matrix and Principal Component Analysis for the dimension
reduction task as they are well studied and implemented in related research concerning classification
problems. The second aim is to speed-up the training and classification process of a given classifier,
without sacrificing its performance. This is a very important requirement since our final classifier
is meant to be implemented on mobile devices; thus, efficiency is paramount due to a limitation on
memory and CPU resources.

The rest of the document is organised as follows: in Section 2, we briefly review recent work
that is closely related to ours; in Section 3, we present the PRIDE dataset used in our experiments,
the pre-processing of PRIDE and feature selection methodology in the time and frequency domains.
Additionally, the one-class classifiers used in our experiments are introduced. Next, in Section 4, we
present our experimental results and, to reinforce their validity, we discuss the outcome of statistical
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tests run over our algorithms. Finally, in Section 5, we give our conclusions about the outcomes of this
work and ideas for current and future work.

2. Related Work

Pei et al. [3] work focused on three main topics: context sensing, modelling human behaviour, and
the development of a new architecture intended for a cognitive phone platform. Time and frequency
domain features were comprised in their study. Furthermore, a sequential forward selection algorithm
was used during the feature selection process carried out before training any classifier. Test results
showed an accuracy rate up to 92.9%.

Özdemir and Barshan [4] used an accelerometer, gyroscope, and magnetometer/compass tri-axial
sensors to detect people’s falls by means of six wearable sensors. They set up a controlled environment
to capture data when falling occurs. In their work, they derived a 1404-dimensional feature vector,
using variables in the time and frequency domains; later, they employed a Discrete Fourier Transform.
Afterwards, PCA was used to reduce the feature vector high dimensionality and complexity in training
and testing the classifiers, obtaining a 30-dimensional feature vector. As classifiers, they used Least
Squared Method, k-Nearest Neighbour, Support Vector Machines, Bayesian Decision Making, Dynamic
Time Warping, and Artificial Neural Networks. Furthermore, they computed the computational cost
for training and testing of each classifier for a single fold. Results showed an accuracy over 95% for
the six tested classifiers. The authors conclude that k-Nearest Neighbour and Least Squared Method
are suitable for real-time applications since their computational requirements are acceptable in the
training and testing phase.

Wundersitz et al. [5] research was centred on the classification of team sport-related activities
using data obtained from accelerometers and gyroscopes. In their study, frequency and time domain
features were calculated and used to train different classifiers. Frequency-domain features were
calculated via the fast Fourier transformation. Moreover, ANOVA (Analysis of variance) and LASSO
(Least absolute shrinkage and selection operator) regression analysis were used as feature selection
methods to reduce the processing time and to make the model easier to interpret. As part of their
conclusions, they stated that it is possible to reduce the processing time through feature selection,
but decreasing the classification accuracy. However, they also concluded that further exploration of
features and feature selection is needed.

Lian [10] showed that PCA can be used as a dimension reduction tool for an ocSVM classifier
with good results. His research takes as a baseline one of the most popular dimension reduction tools
used in unsupervised and supervised problems, PCA. However, instead of extracting eigenvectors
associated with top eigenvalues, he extracts the eigenvectors associated with small eigenvalues. In this
approach, the null of the eigenspace is of interest since common features contained in the training
samples are described by the null space.

Su et al. [11] work explores the dimension reduction of a hyperspectral images (HSI) dataset
through feature selection and feature extraction techniques. Their goal was to augment the classification
accuracy obtained by SVM. To reduce the size of the training dataset, they tested the following
algorithms: mutual information, minimal redundancy maximal relevance, PCA, and Kernel PCA.
Their experiments were centred on the performance achieved by SVM using the number of features
selected by each technique. Results showed that PCA was the most effective technique to reduce
data dimensionality in terms of computational load, implementation complexity, and classification
performance. Furthermore, they showed that using SVM in combination with PCA obtains better
prediction performance in terms of accuracy than using SVM with the full dataset. The authors
concluded that using SVM with PCA is suitable for real-time applications since there is a significant
reduction in computational time.

As we have seen in the reviewed work, a common approach is to work with attributes in both
domains, time and frequency, and then apply feature selection techniques before training any classifier.
Following this approach, it is possible to minimise the number of computed features and thus reduce
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the processing time required to train the classifiers, but, at the same time, trying to keep a good
classification performance.

3. Methods

In this section, we describe in detail the datasets used in our experiments as well as the feature
selection procedures performed on the datasets. In addition, we describe the classifiers used to compare
the efficiency of the feature selection process.

3.1. PRIDE Dataset

Barrera-Animas et al. [1] built a new dataset specifically oriented to the personal risk detection
problem, so that the research community could use it for a fair comparison of algorithms. The dataset is
known as PRIDE and contains sensor data from 23 subjects wearing a Microsoft Band v1 c© (Microsoft
Corporation, Washington, DC, USA), and by means of a mobile application developed by the authors,
they collected sensor data from the band, and uploaded it to an FTP (File Transfer Protocol) server.
This procedure was done during one week, 24 h a day, to create the normal conditions dataset (NCDS),
which is part of PRIDE. During this period, subjects made sure that their week was an ordinary
one. PRIDE includes subjects with diverse individualities regarding gender, age, height and lifestyle.
The dataset comprises 15 male and eight female volunteers aged in the range 21 to 52 years, statures
from 1.56 to 1.86 m, weights in the range 42 to 101 kg, exercising practice of 0 to 10 h per week,
and sedentary hours or leisure ranging from 20 to 84 h per week. Afterwards, to build the PRIDE’s
anomaly conditions dataset (ACDS), the same 23 subjects participated in another process to obtain data
under specific conditions, for which five scenarios to simulate hazardous or abnormal conditions were
designed. These scenarios involved the following activities: running 100 m as fast as possible, climbing
the stairs in a multi-floor building as quick as possible, a two-minute boxing episode, falling back and
forth, and holding one’s breath for as long as possible. Each activity intended to simulate anomalous
conditions, comprising possibly risk-prone situations from real world, e.g., running away from an
unsafe situation, clearing a building due to an emergency alert, defending against an aggressor during
a dispute, swooning and suffering from breathing problems. The session to perform all five scenarios
by each subject lasted for about two hours, and it demanded major physical effort. They were realised
indoors and outdoors with different weather conditions and levels of UV exposure, depending on the
day the subject was able to present them. The elderly, and other groups such as people suffering a
chronicle disease, comprise very important groups in our society; however, they were not included in
the data collection process, due to the demanding nature of the method just described.

As mentioned previously, personal risk detection can be approached as an anomaly detection
problem, to differentiate a normal condition from uncommon behaviour. The anomaly detector can be
a one-class classifier, trained only with a user’s normal conditions dataset. The stress scenarios serve
to verify if the classifier is able to distinguish them as an anomaly, and not to recognise which scenario
or activity is being observed. The stress scenarios are intended to simulate certain danger or abnormal
behaviour; however, we acknowledge that they are only an estimate to real-life situations. Our goal is
to detect anomalies that can be the result of, for example, a car accident, a health crisis, or a physical
aggression. We decided to undertake this approach since we do not have the means to obtain data
in the course of a real-life crisis. It is worth remarking that anomalous situations in some cases may
be related to a personal risk-prone situation. However, labelling a behaviour as abnormal does not
always imply risk; moreover, not all risk-prone situations will always turn into anomalous behaviour.
In other words, we are able to differentiate abnormal behaviour from ordinary one, thereby spotting
some (but not all) possible risk-prone circumstances.

Next, we briefly describe the sensors embedded in the wearable device. Table 1 lists the sensors in
the band and their operating frequencies; using these values, a user gathered on average 1.6 millions
of records per day. A readout from the accelerometer and gyroscope was obtained every 125 ms,
using an operating frequency of 8 Hz. Ultraviolet exposure values are gathered every 1 min and skin
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temperature values every half a minute. The measurements of the rest of the band’s sensors, distance,
pedometer, heart rate, and calories are logged every 1 s.

Table 1. Description of sensors in the band.

Sensor Description Operation Frequency

Accelerometer Provides x, y, and z acceleration in g units. 8 Hz
1 g = 9.81 m/s2.

Gyroscope Provides x, y, and z angular velocity in 8 Hz
◦/s units.

Distance Gives the total distance in cm, current speed 1 Hz
in cm/s, current pace in ms/m.

Heart Rate Gives the number of beats per minute. 1 Hz

Pedometer Delivers the total number of steps the user 1 Hz
has accomplished.

Skin Temperature Gives the current skin temperature of the user 33 mHz
in Celsius.

Ultraviolet exposure Delivers the current ultraviolet radiation 16 mHz
exposure intensity.

Calories Provides total calories burned by the user. 1 Hz

In the following sections, we present our methodology for feature selection in time and frequency
domains, respectively. By running the Kruskal–Wallis test, we proved that all users’ datasets are
statistically different, that is, they are not drawn from the same population. Hence, we decided to use
a subject-dependent approach during the feature selection process, i.e., on a user-by-user basis. It is
important to notice that the feature selection process is performed only on the user’s training dataset,
that is, the Normal Conditions Dataset (NCDS).

3.2. PRIDE Pre-Processing and Feature Selection in the Time-Domain

During the pre-processing step, a feature vector is computed using windows of one second of
sensor data; this process is done for every user in the PRIDE dataset. Depending on the readout
interval of a sensor, three rules apply in order to assign a value to the feature vector:

Feature vector =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Average and sample standard deviation

of all sensor measurements in a second, if readout interval < 1 s,

Assign the sensor value, if readout interval = 1 s,

Assign the last sensor value, if readout interval > 1 s.

Thus, a feature vector from a given window contains the following sensor values:

• Means and standard deviations of the gyroscope and accelerometer readouts.
• Absolute values from the heart rate, skin temperature, pace, speed, and ultraviolet exposure

sensors.
• A Δ-value, computed as the difference between the current and previous values of the following

measurements: total steps, total distance, and calories burned.

Using this procedure, a 26-dimensional feature vector is derived; its final structure is shown in
Table 2. This feature vector in the time-domain was used to obtain all results reported in [1,2,12].
The subsets NCDS and ACDS of PRIDE are pre-processed using this procedure.
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Table 2. Feature vector structure.

Feature Number Feature Name Feature Number Feature Name

1 x Gyroscope Accelerometer x-axis 14 s Accelerometer x-axis
2 s Gyroscope Accelerometer x-axis 15 x Accelerometer y-axis
3 x Gyroscope Accelerometer y-axis 16 s Accelerometer y-axis
4 s Gyroscope Accelerometer y-axis 17 x Accelerometer z-axis
5 x Gyroscope Accelerometer z-axis 18 s Accelerometer z-axis
6 s Gyroscope Accelerometer z-axis 19 Heart Rate
7 x Gyroscope Angular Velocity x-axis 20 Skin Temperature
8 s Gyroscope Angular Velocity x-axis 21 Pace
9 x Gyroscope Angular Velocity y-axis 22 Speed
10 s Gyroscope Angular Velocity y-axis 23 Ultraviolet
11 x Gyroscope Angular Velocity z-axis 24 Δ Pedometer
12 s Gyroscope Angular Velocity z-axis 25 Δ Distance
13 x Accelerometer x-axis 26 Δ Calories

Finally, each of the user logs was divided into five folds to use them in a five-fold cross-validation.
In the cross-validation, four folds of the normal behaviour of a user were used for training and one
fold was joined with the anomaly dataset log to test the classifiers. This procedure was repeated five
times alternating the user’s fold that was retained for testing. Hence, five training datasets and five
testing datasets were set.

After this pre-processing step, we have conducted a Principal Component and a Correlation
Matrix (CM) analysis on the PRIDE time-domain dataset with the aim of reducing its dimensionality.
PCA allows identifying those features that best describe the variability of the points in the dataset,
whereas the correlation matrix performs a statistical correlation analysis that is often used to remove
redundant (highly-correlated) features [6,13–16].

The experiments were conducted in R language, in the RStudio software (version:1.0.153 , RStudio
Inc., Boston, MA, USA) [17]. The correlation matrix was computed using the well-known caret
package [18]. Firstly, we performed the CM process to remove redundant features and then we applied
PCA to remove features that do not contribute sufficiently to the principal components but at the same
time retaining at least 60% of data variability [13,14,19]. This process is illustrated in Figure 1.

Figure 1. Feature selection process performed over every user of the PRIDE training dataset.

3.2.1. Correlation Matrix Analysis on the Time-Domain Attributes

We computed the correlation matrix for the 23 users in PRIDE. As a sample, the result for user
1 is shown in Figure 2. For each user, features with a correlation value equal to or greater than 0.75
are saved into a vector [20]. Next, we computed the frequency of occurrence of each feature along the
23 vectors. If a feature is reported as highly-correlated by at least 22 of the 23 vectors, then that feature
is removed from the dataset.
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Figure 2. Correlation matrix of user 1.

The results in Table 3 show that features F2, F6, F10, F14, and F18 are highly-correlated consistently
in at least 22 users, thus they were removed from the PRIDE dataset. Using the correlation matrix
analysis for feature selection, the PRIDE dataset was downsized from 26 to 21 features.

Table 3. Results of the correlation matrix analysis for feature selection in the PRIDE dataset.

Feature Number Frequency Feature Name Feature Number Frequency Feature Name

F1 9 x Gyro Accel x F14 22 s Accel x
F2 23 s Gyro Accel x F15 15 x Accel y
F3 8 x Gyro Accel y F16 21 s Accel y
F4 19 s Gyro Accel y F17 8 x Accel z
F5 15 x Gyro Accel z F18 23 s Accel z
F6 23 s Gyro Accel z F19 0 Heart Rate
F7 0 x Gyro Ang Vel x F20 0 Skin Temperature
F8 2 s Gyro Ang Vel x F21 3 Δ Pedometer
F9 0 x Gyro Ang Vel y F22 13 Δ Distance
F10 22 s Gyro Ang Vel y F23 2 Speed
F11 0 x Gyro Ang Vel z F24 0 Pace
F12 10 s Gyro Ang Vel z F25 1 Δ Calories
F13 14 x Accel x F26 0 Ultraviolet

3.2.2. Principal Component Analysis on the Time-Domain Attributes

We run a Principal Component Analysis over every user of the PRIDE dataset in order to identify
those features that best describe the variability of the data in the dataset; in this way, we are able to
remove those features that do not contribute sufficiently to data variability.

Figure 3 shows the results of PCA computed over the PRIDE user with more data, user 1. It shows
the percentage of the explained variances across ten dimensions. It can be observed, by aggregating
the contribution of each dimension, that the first five dimensions explain approximately 60% of data
variability [13,14,19]. Figure 4a–e depict a plot for each of the first five dimensions, with contribution
percentage per variable in such dimension. Additionally, Figure 4f shows the contribution percentage
of each variable to the aggregated first five dimensions. All plots are related to user 1.

After we computed PCA over the 23 users, we totalled the frequency of occurrence of each
feature along the first five dimensions of all users. A feature is included in this count if it had a
contribution value over the expected average contribution of all features. The red line in each plot
of Figure 4 represents the expected average contribution of all features if their contributions were
uniform. This means that the highest possible value of a feature is 115, i.e., it is above a threshold
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in all five dimensions for every user (5 × 23). From this sum, we removed from the dataset those
features that never contributed (or contributed insufficiently) to any of the first five dimensions, i.e.,
the dimensions necessary to preserve at least 60% of data variability.

Figure 3. PCA results for user 1 from PRIDE that shows the percentage of explained variance of the
first 10 dimensions.

(a) (b)

(c) (d)

Figure 4. Cont.
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(e) (f)

Figure 4. PCA results for user 1. Each graph represents the contribution of every feature to data
variability in (a) dimension 1; (b) dimension 2; (c) dimension 3; (d) dimension 4; and (e) dimension 5;
(f) contribution of every feature in the aggregated five dimensions.

The results in Table 4 show that features F7, F9, and F11 are never used in the PCA analysis; that
is, these features do not contribute to explaining the data variability. Furthermore, feature F26 is used
only once across the first five dimensions, making its contribution negligible. Hence, it is feasible to
remove these features from the PRIDE dataset without losing data representativeness.

Table 4. Principal Component Analysis results for feature selection in the PRIDE dataset.

Feature Number Frequency Feature Name Feature Number Frequency Feature Name

F1 52 x Gyro Accel x F16 37 s Accel y
F3 31 x Gyro Accel y F17 53 x Accel z
F4 37 s Gyro Accel y F19 18 Heart Rate
F5 53 x Gyro Accel z F20 16 Skin Temperature
F7 0 x Gyro Ang Vel x F21 29 Δ Pedometer
F8 28 s Gyro Ang Vel x F22 29 Δ Distance
F9 0 x Gyro Ang Vel y F23 31 Speed

F11 0 x Gyro Ang Vel z F24 29 Pace
F12 26 s Gyro Ang Vel z F25 15 Δ Calories
F13 52 x Accel x F26 1 Ultraviolet
F15 58 x Accel y

At this point, we have performed a feature selection procedure based on a correlation matrix and
Principal Component Analysis in order to reduce the dimension of the PRIDE dataset and thus reduce
execution time by keeping a comparable performance of the classifiers. After this procedure, nine
attributes in the time-domain were removed without losing data representativeness: five attributes by
means of the correlation matrix analysis (F2, F6, F10, F14, and F18) and four attributes by applying
Principal Component Analysis (F7, F9, F11, and F26). The complete feature selection process just
described is summarised and shown in Figures 5 and 6.

In the next section, we describe the pre-processing of the PRIDE dataset using attributes in the
time and frequency domains. Then, a similar procedure for feature selection as the one just described
is also presented.
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Figure 5. Feature selection process. Phase 1: CM Analysis.

Figure 6. Feature selection process. Phase 2: PCA analysis.

3.3. PRIDE Pre-Processing and Feature Selection in the Time/Frequency-Domain

Inspired by [21] and following the aim to obtain features that could describe the behavioural and
physiological patterns of a person, several features were calculated in the frequency-domain. Hence,
we extended the feature vector presented in Section 3.2 by calculating new frequency-domain attributes;
as a result, ten new features in the frequency-domain were derived for each axis of the accelerometer
and gyroscope sensors. These features are computed using a non-overlapping one-second time sliding
window, similar to the process described in Section 3.2. The accelerometer and gyroscope provide
eight data samples every window, since the operation frequency of these sensors is set up at 8 Hz,
as recalled from Table 1.

Table 5 shows the new frequency-domain features, computed according to [21–24].
These attributes come from the signal analysis area and have been widely used to reveal more
properties normally not appreciated in the domain of time, to attain a richer view of the observed
scenario; the interested reader is referred to these works, for a complete description of the signal
processing methods. In total, 90 features in the frequency-domain were obtained. Furthermore,
the eight features of non-motion sensors from Table 2 were preserved. Thus, we end up with a
98-dimensional feature vector that combines attributes from both dimensions. For the sake of simplicity
to the reader, the final vector is listed in the Appendix. The feature selection process described next is
performed over this new feature vector, containing both time and frequency domain features.

368



Sensors 2018, 18, 2857

Table 5. New frequency-domain attributes.

Feature Name Feature Formula

FFT energy ∑
( n

2 )+1
i=1 x[i]2

FFT mean energy 1
n × ∑n

i=1 xi

FFT STD energy ( 1
n × ∑n

i=1 xi((|xi − 1
n × ∑n

i=1 xi|)2))2

Peak power max P(wi)
∑i P(wi)

Peak DFT bin maxith (n × Fs/N)

Peak magnitude max | f f t(x)|

Entropy ∑
( n

2 )+1
j=1

|xi |
∑

( n
2 )+1

i=1 x[i]2
× log( |xi |

∑
( n

2 )+1
i=1 x[i]2

)

Spectral Entropy −∑n
i=1

P(wi)
∑i P(wi)

× ln( P(wi)
∑i P(wi)

)

Peak Frequency max (n × Fs/N)

Peak energy max ∑
( n

2 )+1
i=1 x[i]2

Note: FFT stands for Fast Fourier Transform; STD stands for Standard Deviation; DFT stands for Discrete Fourier Transform.

In this case, we have also conducted a Principal Component Analysis and a Correlation Matrix
analysis on the extended PRIDE dataset with attributes in the time and frequency domains, with the
aim of reducing its dimensionality. As in the time-domain case, we first performed the CM process
to remove redundant features and then we applied PCA to remove features that do not contribute
sufficiently to the principal components, retaining at least 60% of data variability.

We used the same criteria to remove attributes to the dataset as described in Section 3.2; thus, for
the sake of simplicity, we only present in the following sections the outcome of the correlation matrix
and the Principal Component Analysis.

3.3.1. Correlation Matrix Analysis on the Time/Frequency-Domain Attributes

After performing a correlation matrix analysis on the new feature vector, we were able to remove
11 features from the PRIDE dataset, since their correlation values were consistently above 0.75 in all
23 users. Table 6 shows the features that appeared at least 22 times, thus removed. Since the new
vector contains 98 attributes, we only show in the table those attributes removed by the CM analysis,
downsizing the vector to 87 attributes.

Table 6. Results of the correlation matrix analysis for feature selection in the extended PRIDE dataset.
Only removed features are shown.

Feature Number Frequency Feature Name

F1 23 Energy GyroSensor xAccel
F3 23 Standard Deviation Energy GyroSensor xAccel
F5 23 Peak DFT Bin GyroSensor xAccel
F7 23 Peak Magnitude GyroSensor xAccel
F10 23 Peak Energy GyroSensor xAccel
F11 22 Energy GyroSensor yAccel
F15 23 Peak DFT Bin GyroSensor yAccel
F17 23 Peak Magnitude GyroSensor yAccel
F18 22 Entropy GyroSensor yAccel
F20 23 Peak Energy GyroSensor yAccel
F21 23 Energy GyroSensor zAccel
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3.3.2. Principal Component Analysis on the Time/Frequency-Domain Attributes

We run a Principal Component Analysis over every user of the extended PRIDE dataset in order
to get rid of those features that do not contribute sufficiently to data variability. After running PCA,
we found out that, in this case, the first eight dimensions explain at least 60% of data variability. Then,
we added up the frequency of occurrence of each feature along the first eight dimensions of all users.
A feature is included in this count if it had a contribution value over the expected average contribution
of all features. In this case, the highest possible value of a feature is 184, i.e., it is above a threshold
in all eight dimensions for every user (8 × 23). From this sum, we removed from the dataset those
features that never contributed to any of the eight dimensions, i.e., the dimensions necessary to retain
at least 60% of data variability.

Results in Table 7 show that features F38, F48, F58 and F98 are never used in the PCA analysis;
that is, these features do not contribute to explaining the data variability. Hence, it is feasible to get rid
of these features from the PRIDE dataset without losing data representativeness.

Table 7. Principal Component Analysis results for feature selection in the extended PRIDE dataset.
Only removed features are shown.

Feature Number Frequency Feature Name

F38 0 Entropy GyroSensor xAngVel
F48 0 Entropy GyroSensor yAngVel
F58 0 Entropy GyroSensor zAngVel
F98 0 Ultraviolet

In summary, we performed a feature selection procedure based on a correlation matrix and
Principal Component Analysis in order to reduce the dimension of the new PRIDE dataset and thus
reduce execution time by keeping a comparable performance of the classifiers. After this procedure,
fifteen attributes in the time/frequency-domain were removed without losing data representativeness:
eleven attributes based on the correlation matrix analysis (F1, F3, F5, F7, F10, F11, F15, F17, F18, F20,
and F21) and four attributes after applying a Principal Component Analysis (F38, F48, F58, and F98),
resulting in an 83-dimension feature vector.

3.4. The Classifiers

We decided to use in our experiments two classifiers, ocSVM and OCKRA. ocSVM is well known
in the literature [25] and it was reported by Barrera-Animas et al. in [1] as the best classifier for the
personal risk detection problem. On the other hand, OCKRA is a new algorithm proposed in [2]
specially designed to improve previous results in the same context and particularly having in mind its
implementation in a mobile device. OCKRA is an ensemble of one-class classifiers, based on multiple
projections of the dataset according to random subsets of features. Refer to [2] for a detailed description
of this new algorithm. For our experiments, we used four different versions of PRIDE, which are:

• Dataset 1. Original dataset as described in [1] based on 26 time-domain features.
• Dataset 2. A subset of Dataset 1, after a feature selection procedure, as described in Section 3.2.

Each vector holds 19 attributes.
• Dataset 3. An extended feature vector based on Dataset 1, with new frequency-domain attributes.

Each vector comprises 98 attributes.
• Dataset 4. A subset of Dataset 3, after a feature selection procedure, as described in Section 3.3.

Each vector holds 83 attributes.

We used the implementation of ocSVM [25] built-in in LibSVM [26] using the radial basis function
kernel with default parameter values (γ = 0.038 and ν = 0.5). Both classifiers, ocSVM and OCKRA,
were tested using a five-fold cross-validation, as described in Section 3.2.
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In the context of personal risk detection, our intention is to find a classifier that is able to
distinguish every possible abnormal behaviour from those that are normal. For that reason, the goal
is to build a classifier that maximises true positive classifications (i.e., true abnormal conditions)
while minimising false positive ones (i.e., false abnormal or hazardous situations). To evaluate the
performance of our classifiers, we compute the Area Under the Curve (AUC) of the true positive
detection rate (TPR) versus the false positive detection rate (FPR). This indicator describes the general
performance of the classifier for all false positive detection rates.

We only use AUC as the metric to evaluate and compare the classifiers performance since our focus
in this work is mainly on the feature selection procedure and the speed-up achieved during training,
without sacrificing the classifier performance. We consider AUC a very valuable and robust metric
to monitor the overall performance of the classifiers when trained over the four datasets, which all
come from the same problem domain, that is, the publicly available PRIDE dataset. For the interested
reader, an exhaustive performance comparison between ocSVM and OCKRA over the PRIDE dataset
(Dataset 1) is presented in [2]. Therein, in addition to AUC values, Precision–Recall curves and ROC
curves (Receiver Operating Characteristic) per user and for the total population are presented, along
with several statistical tests.

4. Results

Table 8 shows our results regarding the performance of the classifiers based on the AUC metric,
where DS-i refers to Dataset i. In this particular case, averages are acceptable as a quick reference,
since the multiple datasets are related to the same problem domain [27]. In general, both classifiers
perform better when using datasets DS-1 and DS-2 (i.e., based on time-domain attributes and a subset
of it, respectively) than when they are trained using datasets DS-3 and DS-4 (i.e., the extended vector
with new attributes in the time/frequency domains and a subset of it, respectively). Based on the
performance of both classifiers, we discarded DS-3 and DS-4 for further analysis.

Table 8. ocSVM and OCKRA performance based on the AUC with different datasets.

User
ocSVM OCKRA

DS-1 DS-2 DS-3 DS-4 DS-1 DS-2 DS-3 DS-4

User 1 97.3 97.3 79.1 78.5 98.8 95.5 78.0 81.0
User 2 94.5 94.3 82.2 81.6 95.7 92.0 85.5 82.9
User 3 87.4 87.2 74.5 73.9 91.2 84.1 82.4 81.9
User 4 83.9 82.1 57.7 57.1 88.2 83.6 61.4 61.0
User 5 80.8 80.8 65.7 65.8 90.2 71.5 68.8 61.9
User 6 96.1 96.1 81.8 81.8 98.2 97.4 87.9 82.3
User 7 69.4 68.1 64.9 64.1 79.2 76.9 65.6 59.5
User 8 93.8 94.0 73.2 71.6 92.4 86.8 77.6 72.8
User 9 95.3 95.5 76.4 75.6 92.7 89.3 81.5 77.8
User 10 94.0 94.3 70.0 69.8 93.7 91.5 69.3 71.9
User 11 93.4 93.8 66.5 66.1 90.9 79.4 69.9 66.8
User 12 74.6 73.4 73.2 73.3 80.3 77.6 71.4 69.4
User 13 75.8 73.4 74.1 73.4 80.5 76.0 70.7 69.2
User 14 78.0 78.2 63.0 62.9 81.9 79.0 66.8 65.1
User 15 93.8 94.4 71.5 70.8 94.5 89.9 77.4 69.3
User 16 83.2 83.0 73.6 73.2 87.9 84.3 73.0 73.8
User 17 98.1 99.0 82.5 82.1 98.0 84.1 81.6 81.9
User 18 89.1 89.0 77.0 77.0 86.9 75.9 70.6 72.5
User 19 89.4 90.0 64.7 64.2 89.6 86.3 64.5 61.8
User 20 90.5 90.2 78.0 77.8 92.2 88.2 79.8 73.6
User 21 98.4 98.4 89.5 89.4 97.9 94.2 87.2 88.3
User 22 78.3 77.8 70.8 70.1 79.2 77.4 70.2 71.5
User 23 53.0 52.6 63.3 62.9 68.9 64.2 72.3 60.9

Average 86.44 86.2 72.8 72.3 89.1 83.7 74.5 72.0
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We run a set of Wilcoxon signed-ranks tests to verify whether the two classifiers are statically
significantly different or the differences between their performance are random. The first test compares
OCKRA against ocSVM run over DS-1, and the second test run over DS-2. According to the results
shown in Table 9, we reject the null-hypothesis and decide that OCKRA improves ocSVM with a level
of significance α = 0.95 and a p-value of 0.01. For the second test, Wilcoxon test result is shown in
Table 10. We can appreciate that there is also a significant difference between the two classifiers, ocSVM
performing better than OCKRA when running over DS-2, this time at a level of significance α = 0.90
and a p value of 0.049. Although this significant difference is weak (p ≈ 0.05), at this point, we cannot
conclude that either classifier improves the other in all cases; hence, further analysis is needed.

Table 9. Wilcoxon signed-ranks test comparison between AUC obtained respectively by ocSVM and
OCKRA classifiers when using the DS-1 dataset.

Comparison R+ R− Hypothesis (α = 0.05) p-Value

OCKRA vs. ocSVM 221.0 55.0 Rejected 0.010793

Table 10. Wilcoxon signed-ranks test comparison between AUC obtained respectively by ocSVM and
OCKRA classifiers when using the DS-2 dataset.

Comparison R+ R− Hypothesis (α = 0.10) p-Value

ocSVM vs. OCKRA 202.0 74.0 Rejected 0.04979

Regarding execution time, Table 11 shows our results in hh:mm:ss format. We chose the datasets
from two users, the ones with more and less number of observations in the PRIDE dataset; that is,
users 1 and 17, respectively.

Table 11. Execution time required by the classifier training phase using different datasets. The G column
indicates the gain in percentage when using a subset against the full feature vector. Experiments were
performed using an Intel core i7-6600U (Mountain View, CA, USA) at 2.60–2.81 GHz and 16 GB RAM.

Domain Dataset Dimension
ocSVM OCKRA

User 1 G User 17 G User 1 G User 17 G

Time DS-1 full 21:14:59 02:39:36 00:55:23 00:04:52
DS-2 subset 21:07:07 0.6% 02:38:28 0.7% 00:37:01 33.1% 00:03:55 19.5%

Time+Freq DS-3 full 19:31:21 01:56:13 03:37:53 00:20:52
DS-4 subset 19:05:31 2.2% 01:55:05 0.9% 03:11:17 12.2% 00:17:37 15.5%

In the case of OCKRA, there is in all instances a reduction in the execution time when training with
a subset of the attributes instead of using the full feature vector. The best speed-up is obtained when
training user 1 with a subset of attributes in the time-domain (DS-2). In this case, the execution time was
approximately 37 min compared to approximately 55.4 min when trained using the full set of attributes
(DS-1), which corresponds to a speed-up of 33.1%. For user 17, the attained acceleration is 19.5%.
The achieved acceleration is smaller when working with a subset of attributes in the time/frequency
domain (DS-3, DS-4); for user 1, 12.2% and for user 17, 15.5%. However, the execution time is much
higher, above three hours in the worst case (user 1) compared to 37 min in the previous case. In the case
of ocSVM, there is a minimum gain in the execution time when using a subset of attributes against the
full feature vector (≤2.2%); however, execution times are much higher in all cases than those reported
by OCKRA.

Concerning execution time, it is clear that our best candidate to be implemented on a mobile
device is OCKRA using a subset of the time-domain dataset (DS-2). However, as for the performance
of the classifiers when using DS-2, we recall from Table 10 that the Wilcoxon test reports a very weak
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statistical difference, which allows us to take a safe decision when choosing OCKRA as our best
candidate without sacrificing performance. Additionally, the gain in speed-up is considerably higher
when compared to the execution time reported by ocSVM.

Besides training times, testing and classification times are also important in several real-world
applications; however, in our case, these times are very short. We registered the time required for
testing by the same users, both classifiers, and the four datasets. We observed seven seconds in the
worst case (user 1, OCKRA, DS-3, that is, the extended dataset in the time and frequency domains
before feature selection), and less than one second in 25% of the cases. Taking into account that a
testing fold contains approximately 94,000 observations for user 1, and 27,000 observations for user 17,
the time needed to classify a new object by either OCKRA or ocSVM is negligible.

We can note that, when using the PRIDE dataset based only on time-domain attributes and a
subset of it, both classifiers guarantee a good classification performance, which is not the case when
using the extended feature vector and a subset of it, as classification performance is notably degraded;
however, in the case of OCKRA, the time needed for training can be reduced considerably using the
dataset after feature selection. This is a very important fact to consider during the design process,
in order to select the more efficient classifier that is to be implemented in a mobile device, assuming
less processing and memory resources.

5. Discussion

In this work, we built upon previous results reported by Barrera-Animas et al. in [1], in which
the authors claimed that it is likely to use PRIDE, a dataset with information drawn from a number
of users wearing a device with built-in sensors, to develop a personal risk detection mechanism, and
showed that abnormal behaviour could be automatically detected by a one-class classifier. In addition,
they showed that OCKRA stands so far as the state-of-the-art classifier in the context of personal
risk detection, followed by ocSVM [2]. Our current goal is to derive an efficient classifier to be
implemented on mobile devices, as part of a user application for automatic personal risk detection, thus
low-consumption of physical resources, such as CPU time and memory, must be taken into account.

First, we decided to extend the PRIDE dataset by adding features in the frequency-domain by
transforming current time-domain features on the search to attain a better classification accuracy.
Concerning CPU time, we decided to apply feature selection techniques on the PRIDE dataset; in our
case, we used correlation matrix and Principal Component Analysis.

We conclude that, in the context of personal risk detection, using the PRIDE dataset based
on time-domain attributes and a subset of it should be enough to guarantee a good classification
performance. Additionally, OCKRA showed a very important speed-up during the training process
when using the dataset after feature selection. Considering the trade-off between classification
performance and efficiency, our results support the choice of OCKRA as our best candidate so far for a
mobile implementation, using a reduced dataset on the time-domain after a feature selection procedure.
By using this subset, OCKRA reported a very important gain on execution time without sacrificing the
classifier performance. This result is promising since it can translate into a better user experience, thus
reducing the chance to stop using the wearable and its application in the short and mid-term.

Our results are encouraging since they represent the first step towards an efficient classifier well
suited for mobile devices and to be implemented as part of a user application coupled with wearable
sensors, in order to deal with the problem of timely detecting risk-prone situations experienced by
a person.

However, by using our methodology, we acknowledge the possibility that the feature selection
process performed on the training dataset could result in removing features that may contribute to
the detection of abnormal situations. For example, concerning the UV attribute, the CM analysis kept
this feature and the PCA analysis left this variable out, meaning that even though it is not highly
correlated to other variables, it does not contribute enough to explain the dataset variability, thus it
was removed without losing data representativeness. Therefore, even if we initially thought that UV
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was a very important feature, PCA tells us that, at least in this dataset, we can safely get rid of it,
for the purpose of dimension reduction. The performance of the classifiers was maintained, meaning
that the selection process was satisfactory. Nevertheless, it is of great interest to perform the feature
selection process on the complete dataset, that is, using the training and testing datasets. Although we
believe this can result in overfitting of the dataset, we might be reducing the possibility of leaving
out an important feature capable of detecting unseen abnormal behaviours. Therefore, it is clearly a
trade-off issue inherent in the feature selection problem for one-class datasets, which is worth further
exploring. Indeed, we are currently reviewing other feature selection techniques that allow for a
similar reduction on the execution time, but at the same time could achieve a statistically equivalent or
better classification performance.

According to Yousef et al. [16,28], feature selection is well studied for two-class classification
problems while few methods are proposed for one-class classification ones. Furthermore, two-class
feature selection methods may not apply to one-class classification problems because of the use of
the two classes during the feature ranking procedure. Thus, this further step becomes challenging,
since feature selection is NP-hard according to Yousef et al. Recall from computational complexity
theory that a problem is NP-hard if there is an algorithm to solve it that can be transformed into one
for solving any NP (non-deterministic polynomial-time) problem. NP-hard is then “at least as hard as
any NP-problem”, or even harder. Therefore, additional work must be performed to determine an
appropriate feature selection method for the personal risk detection problem.
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Abbreviations

The following abbreviations are used in this manuscript:

ACDS Anomaly conditions dataset
AUC Area under the curve
CM Correlation matrix
FPR False positive detection rate
LibSVM Support vector machine library
NCDS Normal conditions dataset
OCKRA One-class K-means with randomly projected features algorithm
ocSVM One-class support vector machine
PCA Principal component analysis
PRIDE Personal risk detection
ROC Receiver operating characteristic
TPR True positive detection rate
NP-hard Non-deterministic polynomial-time hard
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Appendix A

Table A1. Time/frequency-domain feature vector part 1.

Feature Number Feature Name

1 Energy Gyroscope x-Axis
2 Mean Energy Gyroscope x-Axis
3 Standard Deviation of Energy Gyroscope x-Axis
4 Peak Power Gyroscope x-Axis
5 Peak DFT Bin Gyroscope x-Axis
6 Spectral Entropy Gyroscope x-Axis
7 Peak Magnitude Gyroscope x-Axis
8 Entropy Gyroscope x-Axis
9 Peak Frequency Gyroscope x-Axis

10 Peak Energy Gyroscope x-Axis
11 Energy Gyroscope y-Axis
12 Mean Energy Gyroscope y-Axis
13 Standard Deviation of Energy Gyroscope y-Axis
14 Peak Power Gyroscope y-Axis
15 Peak DFT Bin Gyroscope y-Axis
16 Spectral Entropy Gyroscope y-Axis
17 Peak Magnitude Gyroscope y-Axis
18 Entropy Gyroscope y-Axis
19 Peak Frequency Gyroscope y-Axis
20 Peak Energy Gyroscope y-Axis
21 Energy Gyroscope z-Axis
22 Mean Energy Gyroscope z-Axis
23 Standard Deviation of Energy Gyroscope z-Axis
24 Peak Power Gyroscope z-Axis
25 Peak DFT Bin Gyroscope z-Axis
26 Spectral Entropy Gyroscope z-Axis
27 Peak Magnitude Gyroscope z-Axis
28 Entropy Gyroscope z-Axis
29 Peak Frequency Gyroscope z-Axis
30 Peak Energy Gyroscope z-Axis
31 Energy Gyroscope Angular Velocity x-Axis
32 Mean Energy Gyroscope Angular Velocity x-Axis
33 Standard Deviation of Energy Gyroscope Angular Velocity x-Axis
34 Peak Power Gyroscope Angular Velocity x-Axis
35 Peak DFT Bin Gyroscope Angular Velocity x-Axis
36 Spectral Entropy Gyroscope Angular Velocity x-Axis
37 Peak Magnitude Gyroscope Angular Velocity x-Axis
38 Entropy Gyroscope Angular Velocity x-Axis
39 Peak Frequency Gyroscope Angular Velocity x-Axis
40 Peak Energy Gyroscope Angular Velocity x-Axis
41 Energy Gyroscope Angular Velocity y-Axis
42 Mean Energy Gyroscope Angular Velocity y-Axis
43 Standard Deviation of Energy Gyroscope Angular Velocity y-Axis
44 Peak Power Gyroscope Angular Velocity y-Axis
45 Peak DFT Bin Gyroscope Angular Velocity y-Axis
46 Spectral Entropy Gyroscope Angular Velocity y-Axis
47 Peak Magnitude Gyroscope Angular Velocity y-Axis
48 Entropy Gyroscope Angular Velocity y-Axis
49 Peak Frequency Gyroscope Angular Velocity y-Axis
50 Peak Energy Gyroscope Angular Velocity y-Axis
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Table A2. Time-/Frequency-domain feature vector part 2.

Feature Number Feature Name

51 Energy Gyroscope Angular Velocity z-Axis
52 Mean Energy Gyroscope Angular Velocity z-Axis
53 Standard Deviation of Energy Gyroscope Angular Velocity z-Axis
54 Peak Power Gyroscope Angular Velocity z-Axis
55 Peak DFT Bin Gyroscope Angular Velocity z-Axis
56 Spectral Entropy Gyroscope Angular Velocity z-Axis
57 Peak Magnitude Gyroscope Angular Velocity z-Axis
58 Entropy Gyroscope Angular Velocity z-Axis
59 Peak Frequency Gyroscope Angular Velocity z-Axis
60 Peak Energy Gyroscope Angular Velocity z-Axis
61 Energy Accelerometer x-Axis
62 Mean Energy Accelerometer x-Axis
63 Standard Deviation of Energy Accelerometer x-Axis
64 Peak Power Accelerometer x-Axis
65 Peak DFT Bin Accelerometer x-Axis
66 Spectral Entropy Accelerometer x-Axis
67 Peak Magnitude Accelerometer x-Axis
68 Entropy Accelerometer x-Axis
69 Peak Frequency Accelerometer x-Axis
70 Peak Energy Accelerometer x-Axis
71 Energy Accelerometer y-Axis
72 Mean Energy Accelerometer y-Axis
73 Standard Deviation of Energy Accelerometer y-Axis
74 Peak Power Accelerometer y-Axis
75 Peak DFT Bin Accelerometer y-Axis
76 Spectral Entropy Accelerometer y-Axis
77 Peak Magnitude Accelerometer y-Axis
78 Entropy Accelerometer y-Axis
79 Peak Frequency Accelerometer y-Axis
80 Peak Energy Accelerometer y-Axis
81 Energy Accelerometer z-Axis
82 Mean Energy Accelerometer z-Axis
83 Standard Deviation of Energy Accelerometer z-Axis
84 Peak Power Accelerometer z-Axis
85 Peak DFT Bin Accelerometer z-Axis
86 Spectral Entropy Accelerometer z-Axis
87 Peak Magnitude Accelerometer z-Axis
88 Entropy Accelerometer z-Axis
89 Peak Frequency Accelerometer z-Axis
90 Peak Energy Accelerometer z-Axis
91 Heart Rate
92 Skin Temperature
93 Δ Pedometer
94 Δ Distance
95 Speed
96 Pace
97 Δ Calories
98 Ultraviolet
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Abstract: Wearable motion sensors are assumed to be correctly positioned and oriented in most of
the existing studies. However, generic wireless sensor units, patient health and state monitoring
sensors, and smart phones and watches that contain sensors can be differently oriented on the
body. The vast majority of the existing algorithms are not robust against placing the sensor units at
variable orientations. We propose a method that transforms the recorded motion sensor sequences
invariantly to sensor unit orientation. The method is based on estimating the sensor unit orientation
and representing the sensor data with respect to the Earth frame. We also calculate the sensor
rotations between consecutive time samples and represent them by quaternions in the Earth frame.
We incorporate our method in the pre-processing stage of the standard activity recognition scheme
and provide a comparative evaluation with the existing methods based on seven state-of-the-art
classifiers and a publicly available dataset. The standard system with fixed sensor unit orientations
cannot handle incorrectly oriented sensors, resulting in an average accuracy reduction of 31.8%.
Our method results in an accuracy drop of only 4.7% on average compared to the standard system,
outperforming the existing approaches that cause an accuracy degradation between 8.4 and 18.8%.
We also consider stationary and non-stationary activities separately and evaluate the performance
of each method for these two groups of activities. All of the methods perform significantly better
in distinguishing non-stationary activities, our method resulting in an accuracy drop of 2.1% in this
case. Our method clearly surpasses the remaining methods in classifying stationary activities where
some of the methods noticeably fail. The proposed method is applicable to a wide range of wearable
systems to make them robust against variable sensor unit orientations by transforming the sensor
data at the pre-processing stage.

Keywords: activity recognition and monitoring; patient health and state monitoring; wearable
sensing; orientation-invariant sensing; motion sensors; accelerometer; gyroscope; magnetometer;
pattern classification

1. Introduction

As a consequence of the development and pervasiveness of sensor technology and wireless
communications, wearable sensors have been reduced in size, weight, and cost, gained wireless
transmission capabilities, and been integrated into mobile devices such as smart phones, watches,
and bracelets [1]. Such smart devices, however, have limited resources. Their effectiveness
is determined by the screen size, sensor, computing processor, battery and storage capacities,
as well as the wireless data transmission capability [2,3]. Activity recognition with wearables has
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various potential applications in the healthcare domain in the form of medical state monitoring,
memory enhancement, medical data access, and emergency communications [4,5]. Health state
monitoring and activity recognition using wearable sensors is advantageous compared to approaches
based on computer vision and radio frequency identification that rely on external sensors such as
cameras or antennas [6].

With the advancements mentioned above, placing wearable devices on the body properly has
become a challenging and intrusive task for the user, making wearable devices prone to be fixed to the
body at incorrect orientations. For instance, disabled, injured, elderly people or children whose health,
state, or activities can be monitored using wearables [7] tend to place the sensor units at incorrect
or variable orientations. Mobile phones can be carried in pockets at different orientations. However,
the majority of existing wearable activity recognition studies neglect this issue and assume that the
sensor units are properly oriented or, alternatively, use simple features (such as the vector norms)
that are invariant to sensor unit orientation. In this study, we focus on orientation invariance in a
generic activity recognition framework. Our aim is to develop a methodology that can be applied at
the pre-processing stage of activity recognition to make this process robust to variable sensor unit
orientation, as depicted in Figure 1.

Figure 1. An overview of the proposed method for sensor unit orientation invariance.

We utilize tri-axial wearable motion sensors (accelerometer, gyroscope, and magnetometers)
to capture the body motions. Data acquired by these sensors not only contain information about
the body movements but also about the orientation of the sensor unit. However, these two types of
information are coupled in the sensory data and it is not straightforward to decouple them. More
specifically, a tri-axial accelerometer captures the vector sum of the gravity vector and the acceleration
resulting from the motion. A tri-axial gyroscope detects the angular rate about each axis of sensitivity
and can provide the angular velocity vector. A tri-axial magnetometer captures the vector sum of the
magnetic field of the Earth and external magnetic sources, if any.

The acceleration vector acquired by an accelerometer approximately points in the down direction
of the Earth frame, provided that the gravitational component of the total acceleration is dominant
over the acceleration components resulting from the motion of the sensor unit. However, even if
the acceleration vector consists of mainly the gravitational component, by itself it is not sufficient to
estimate the sensor unit orientation because there exist infinitely many solutions to the sensor unit
orientation, obtained by rotating the correct solution about the direction of the acquired acceleration
vector (Figure 2a). Hence, we need to incorporate the magnetometer into the orientation estimation
as well. The magnetic field vector acquired by a magnetometer points in a fixed direction in the
Earth frame (the magnetic North) (Figure 2b), provided that there are no external magnetic sources or
distortion and the variation of the Earth’s magnetic field is neglected.
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(a) (b)

Figure 2. (a) With only the acquired acceleration field vector a, there exist infinitely many solutions
to the sensor unit orientation (two are shown); (b) the acquired magnetic field vector m uniquely
identifies the sensor unit orientation.

By taking the reference directions obtained from the accelerometer and the magnetometer as
the vertical axis and the (magnetic) North axis of the Earth frame, respectively, we can calculate the
orientation of the sensor unit with respect to the Earth frame. However, this estimation is reliable only
in the long term because the gravity component is superposed with the acceleration caused by the
motion of the unit and the Earth’s magnetic field is superposed with the external magnetic sources
(if any). Hence, we also estimate the sensor unit orientation by integrating the gyroscope angular rate
output, which is reliable only in the short term because of the drift error [8]. To obtain an accurate
orientation estimate both in the short and long term, we merge these two sources of information.
Thus, we exploit the information provided by the three types of sensors to determine the sensor unit
orientation with respect to the Earth frame as a function of time.

Once we estimate the sensor unit orientation with respect to the Earth frame, we can transform
the acquired data from the sensor frame to the Earth frame such that they become invariant to sensor
unit orientation. In addition, to include the information about the rotational motion of the sensor
unit, we represent the sensor unit rotation between consecutive time samples in the Earth frame by
using a similarity transformation. We show that appending this rotational motion data to the sensor
data and representing both in the Earth frame improves the activity recognition accuracy. Figure 1
provides an overview of the proposed method with experimentally acquired sensor sequences during
a walking activity.

We utilize widely available sensor types and do not make any assumptions about the sensor
configuration, data acquisition, activities, and activity recognition procedure. Our proposed method
can be integrated into existing activity recognition systems by applying a transformation to the
time-domain data in the pre-processing stage without modifying the rest of the system or the
methodology. We outperform the existing methods for orientation invariance and achieve an accuracy
close to the fixed orientation case.

The rest of the article is organized as follows: In Section 2, we summarize the related work on
wearable sensing that allows versatility in sensor placement. Section 3 presents the transformations
applied to the sensor data to achieve orientation invariance. In Section 4, we describe the dataset
together with the proposed and existing methodology on orientation invariance, explain the activity
recognition procedure, and present the data analysis results including accuracies and run times of
the data transformation techniques and the classifiers. In Section 5, we provide a discussion of the
results. Section 6 summarizes our contributions, draws conclusions, and indicates some directions for
future research.
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2. Related Work

Although most of the existing activity recognition studies assume fixed sensor unit
orientations [9,10], a number of methods have been proposed to achieve orientation invariance
with wearable sensors. These methods can be grouped as transformation-based geometric methods,
learning-based methods, and other approaches.

2.1. Transformation-Based Geometric Methods

A straightforward method for achieving orientation invariance is to calculate the magnitudes
(the Euclidean norms) of the 3D vectors acquired by tri-axial sensors and to use these magnitudes as
features in the classification process instead of individual vector components. When the sensor unit is
placed at a different orientation, the magnitude of the sensor readings remains the same, making this
method invariant to sensor unit orientation [10–12]. Reference [10] states that a significant amount
of information is lost with this approach and the accuracy drops off even for classifying simple daily
activities. Instead of using only the magnitude, references [13–15] append the magnitude of the tri-axial
acceleration vector as a fourth axis to the tri-axial data. Reference [13] shows that this modification
slightly increases the accuracy compared to using only the tri-axial acceleration components. Even if
the magnitude of the acceleration is not appended to the data, the limited number of sensor unit
orientations considered (only four) allows accurate classification to be achieved with Support Vector
Machine (SVM) classifiers [13]. Reference [16] uses the magnitude, the y-axis data, and the squared
sum of x and y axes of the tri-axial acceleration sequences acquired by a mobile phone, assuming that
the orientation of the phone carried in a pocket has natural limitations: the screen of the phone either
faces inward or outward.

In a number of studies [17–19], the direction of the gravity vector is estimated by averaging the
acceleration vectors in the long term. This is based on the assumption that the acceleration component
associated with daily activities averages out to zero, causing the gravity component to remain dominant.
Then, the amplitude of the acceleration along the gravity vector direction and the magnitude of
the acceleration perpendicular to that direction are used for activity recognition [17–19], which is
equivalent to transforming tri-axial sensor sequences into bi-axial ones. In terms of activity recognition
accuracy, in reference [17], this method is shown to perform slightly better and in reference [19],
significantly worse than using only the magnitude of the acceleration vector.

In addition to the direction of the gravity vector, reference [20] also estimates the direction of
the forward-backward (saggital) axis of the human body based on the assumption that most of
the body movements as well as the variance of the acceleration sequences are in this direction.
The sensor data are transformed into the body frame whose axes point in the direction of the
gravity vector, the forward-backward direction of the body that is perpendicular to that, and a
third direction perpendicular to both, forming a right-handed coordinate frame. The method in [20]
does not distinguish between the forward and backward directions of the body, whereas reference [10]
determines the forward direction from the sign of the integral of the acceleration as the subject walks.

Reference [21] assumes that incorrect placement of a sensor unit causes only shifts in the class
means in the feature space. The class means of a Bayesian classifier are adapted to the data by using
the expectation-maximization algorithm, and it is shown that the accuracy improves for one dataset
and diminishes for another. To test for orientation invariance, sensor data are artificially rotated either
about the x or z axis of the sensor unit. In this study, sensor unit rotation about an arbitrary axis is not
considered and the assumption regarding the shifts in the class means is a strong one since such shifts
may not always be significant.

Reference [22] proposes a coordinate transformation from the sensor frame to the Earth frame to
achieve orientation invariance. To transform the data, the orientation of a mobile phone is estimated
based on the data acquired from the accelerometer, gyroscope, and magnetometer of the sensor
unit embedded in the device. An accuracy level close to the fixed orientation case is obtained by
representing the sensor data with respect to the Earth frame. However, only two different orientations
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of the phone are considered, which is a major limitation of the study in [22]. Reference [23] calculates
three principal axes based on acceleration and angular rate sequences by using principal component
analysis (PCA) and represents the sensor data with respect to these axes.

2.2. Learning-Based Methods

Reference [24] proposes a high-level machine-learning approach for activity recognition that
can tolerate incorrect placement (both position and orientation) of some of multiple wearable sensor
units. In the standard approach, features extracted from all the sensor units are aggregated and the
activity is classified at once. In reference [24], the performed activity is classified by processing the data
acquired from each sensor unit separately and the decisions are fused by using the confidence values.
The proposed method is compared with the standard approach for different sets of activities, features,
and different numbers of incorrectly placed sensor units by using three types of classifiers. When the
subjects are requested to place the sensor units at any position and orientation on the appropriate body
parts, incorrect placement of some of the units can be tolerated when all nine units are employed, but
not with only a single unit.

Among the references [25–27] that employ deep learning for activity recognition, reference [27]
increases robustness to variable sensor unit orientations by summing the features extracted from the
x, y, z axes.

2.3. Other Approaches

Reference [28] proposes to classify the sensor unit orientation to compensate for variations in
orientation. Dynamic portions of the sensor sequences are extracted by thresholding the standard
deviation of the acceleration sequence and four pre-determined sensor unit orientations are perfectly
recognized by a one-nearest-neighbor (1-NN) classifier. Then, the sensory data are rotated accordingly
prior to activity recognition. However, the number of sensor unit orientations considered is again very
limited and the direction of one of the sensor axes is common to all four orientations.

Reference [29] proposes an activity recognition scheme invariant to sensor orientation and position,
based on tri-axial accelerometers. Orientation invariance is achieved by calibration movements to
estimate the sensor orientation. With sensor units fixed to the body, the subject performs two static
postures for a few seconds. Then, the axes of a new coordinate frame are determined by using
Gram-Schmidt ortho-normalization applied to the average acceleration vectors corresponding to the
calibration postures.

In some studies [30,31], the sensor unit is allowed to be placed at an incorrect position on the
same body part but its orientation is assumed to remain fixed throughout the activity, which is not
realistic. Reference [30] claims that the sensor unit orientation can be estimated without much effort in
most cases, which is not always true according to the results obtained in the literature [32,33].

In our earlier work [34–36], we have proposed two different approaches to transform and make
time-domain sensor data invariant to the orientations at which the sensor units are fixed to the body.
The first approach is a heuristic transformation where geometrical features invariant to the sensor
unit orientation are extracted from the sensor data and used in the classification process [34,35],
analogous to a method proposed by [37] for gait analysis. In the second approach, sensor sequences are
represented with respect to three principal axes that are calculated using singular value decomposition
(SVD) [34,36]. In both approaches, the transformed sequences are mathematically proven to be
invariant to sensor unit orientations. Unlike most of the other studies that investigate orientation
invariance, the proposed heuristic and SVD-based methods are compared with the fixed orientation
case and shown to decrease the accuracy by 15.5% and 7.6%, respectively, on average, over five publicly
available datasets, four state-of-the-art classifiers, and two cross-validation techniques. It is also shown
in [34] that randomly oriented sensor units degrade the accuracy by 21.2% when the untransformed
sensor data are used for classification. In this article, as explained in Section 4.3, we use a wider set of
classifiers and leave-one-subject-out (L1O) cross-validation technique for better generalizability [38],
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in which case our newly proposed method achieves a noticeably higher accuracy than our previously
proposed methods [34–36].

2.4. Discussion

The activity recognition methods in most of the existing studies are not generic and the
results are neither consistent nor comparable because they use different datasets and sensor
configurations. Furthermore, in most studies, the proposed orientation-invariant methods are not
evaluated comparatively including the case with fixed sensor unit orientations. These methods
either impose a major restriction on the possible sensor unit orientations or the types of body
movements, which prevents them from being used in a wide range of applications such as health,
state, and activity monitoring of elderly or disabled people. The aim of our study is to propose a novel
orientation-invariant transformation and to comparatively and fairly observe its impact on the activity
recognition accuracy based on the same dataset. To this end, we execute the activity recognition scheme
with and without applying our transformation in the pre-processing stage for comparison between
fixed and variable sensor unit orientations. We also implement the existing orientation invariance
methods to compare them with ours. Furthermore, we artificially rotate the sensor data to observe the
effects of incorrectly oriented sensor units on the standard activity recognition system that is originally
designed for fixed sensor unit orientations.

3. Proposed Methodology to Achieve Invariance to Sensor Unit Orientation

To achieve orientation invariance with wearable motion sensor units in activity recognition,
we propose to transform the acquired sensor data such that they become invariant to the orientations
at which the sensor units are worn on the body. To transform the data, we first estimate the orientation
of each sensor unit with respect to the Earth frame as a function of time. Unlike most existing studies,
we consider a continuum of sensor orientations.

3.1. Estimation of Sensor Orientation

We define the Earth’s coordinate frame E such that the Earth’s z axis, zE, points downwards and
the Earth’s x axis, xE, points in the direction of the component of the Earth’s magnetic field that is
perpendicular to the z axis, which is roughly the North direction, as illustrated in Figure 3. The Earth
frame is also called the North-East-Down frame [39].

Let Sn be the rotating sensor frame at time sample n. Estimating the sensor unit orientation
involves calculating a 3× 3 rotational transformation matrix RE

Sn
that describes the sensor frame Sn with

respect to the Earth frame E at each time sample n. The Earth frame and the sensor frame at consecutive
time samples n and n + 1 are depicted in Figure 4 together with the rotation matrices relating these
coordinate frames. We adopt the orientation estimation method in [40], which is explained in the
Appendix A. The short-term orientation estimate is calculated by integrating the angular rate acquired
by the gyroscope. For the long-term orientation estimation, Gauss-Newton method is used to minimize
a cost function which decreases as the acceleration vector points downwards in the Earth frame and
as the horizontal component of the magnetic field vector is aligned with the North direction of the
Earth frame. Then, the short- and long-term orientation estimates are combined through weighted
averaging [40].

3.2. Sensor Signals with Respect to the Earth Frame

The tri-axial data acquired on the x, y, and z axes of each sensor in the sensor coordinate frame Sn

naturally depend on the orientations of the sensor units. Our approach is based on transforming the
acquired data from the sensor frame to the Earth frame.

Let vS[n] =
(

vS
x [n], vS

y [n], vS
z [n]

)T
be the data vector in R

3 acquired from the x, y, z axes of a

tri-axial sensor at time sample n. To represent vS[n] with respect to the Earth frame, we pre-multiply it
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by the estimated sensor unit orientation at that time sample, which is the rotation matrix relating the
Sn frame to the E frame:

vE[n] = RE
Sn

vS[n] (1)

The components of the vector vE[n] =
(

vE
x [n], vE

y [n], vE
z [n]

)T
are represented with respect to the

xE, yE, zE axes of the Earth frame and are invariant to the sensor orientation.

Figure 3. The Earth frame illustrated on an Earth model with the acquired reference vectors.

Figure 4. The Earth and the sensor coordinate frames at two consecutive time samples with the
rotational transformations relating them.

3.3. Differential Sensor Rotations with Respect to the Earth Frame

In addition to the data transformed to the Earth frame, we propose to incorporate the information
contained in the change in the sensor unit orientation over time. While the sensor units can be placed
at arbitrary orientations, we require that during data acquisition their orientations remain fixed with
respect to the body part they are placed on. In other words, the sensor units need to be firmly attached
to the body and are not allowed to rotate freely during the motion. However, this restriction is
only necessary in the short term over one time segment (5 s in this study). Under this restriction,
the rotational motion of the body parts on which the sensor units are worn can be extracted from the
acquired data correctly regardless of the initial orientations of the units.

Note that we can easily calculate the sensor unit orientation RSn
Sn+1

at time sample n + 1 relative to
the sensor orientation at time sample n as

Cn � RSn
Sn+1

= RSn
E RE

Sn+1
=
(

RE
Sn

)−1
RE

Sn+1
(2)
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for each n as shown in Figure 4. The matrix Cn is not invariant to sensor orientation because it
represents the orientation of frame Sn+1 with respect to Sn and depends on the orientation at which
the sensor unit is fixed to the body. To observe this, let us assume that the sensor unit is placed at a
different arbitrary orientation; that is, the sensor unit is rotated by an arbitrary rotation matrix P that is
constant over time. Then, the acquired data are ṽS[n] = P−1 vS[n] for all n, represented with respect to
the new sensor orientation S̃n, and the sensor unit orientation with respect to the Earth is estimated
as R̃E

Sn
= RE

Sn
P for all n. Note that the original rotation matrix is post-multiplied by P because P

describes a rotational transformation with respect to the sensor frame, not the Earth frame [41]. For the
new sensor unit orientation, the rotation of the sensor unit between time samples n and n + 1 can be
calculated as

C̃n = R̃Sn
Sn+1

= R̃Sn
E R̃E

Sn+1

=
(

R̃E
Sn

)−1
R̃E

Sn+1

=
(

RE
Sn

P
)−1 (

RE
Sn+1

P
)

= P−1
(

RE
Sn

)−1
RE

Sn+1
P

= P−1 RSn
E RE

Sn+1
P

= P−1 RSn
Sn+1

P

= P−1 Cn P

(3)

Since C̃n �= Cn in general, Cn is not invariant to sensor orientation.
We can make the rotational transformation Cn invariant to sensor unit orientation by representing

it in the Earth frame. Hence, we transform Cn from the sensor frame Sn to the Earth frame E by using
a similarity transformation [42]:

Dn =
(

RSn
E

)−1
Cn

(
RSn

E

)
= RE

Sn
RSn

Sn+1
RSn

E = RE
Sn+1

RSn
E (4)

We call this transformation Dn differential sensor rotation with respect to the Earth frame.
It is straightforward to show that Dn is invariant to sensor orientation. Using a constant arbitrary

rotation matrix P that relates the original and modified sensor orientations as before, we have:

D̃n = R̃E
Sn+1

R̃Sn
E

= R̃E
Sn+1

(
R̃E

Sn

)−1

=
(

RE
Sn+1

P
) (

RE
Sn

P
)−1

= RE
Sn+1

P P−1︸ ︷︷ ︸
I3×3

(
RE

Sn

)−1

= RE
Sn+1

RSn
E

= Dn

(5)

Thus, we observe that the differential rotation D̃n with respect to the Earth frame, calculated
based on the rotated data, is the same as the one calculated based on the original data (Dn).
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4. Comparative Evaluation of Proposed and Existing Methodology on Orientation Invariance for
Activity Recognition

4.1. Dataset

To demonstrate our methodology, we use the publicly available daily and sports activities dataset
acquired by our research group earlier [43]. To acquire the dataset, each subject wore five Xsens
MTx sensor units [44] (see Figure 5), each unit containing three tri-axial devices: an accelerometer,
a gyroscope, and a magnetometer. The sensor units are placed on the chest, on both wrists, and on
the outer sides of both knees, as shown in Figure 6. Nineteen activities are performed by eight
subjects. For each activity performed by each subject, there are 45 (= 5 units × 9 sensors) time-domain
sequences of 5 min duration, sampled at 25 Hz, and consisting of 7500 time samples each. The dataset
comprises the following activities:

Sitting (A1), standing (A2), lying on back and on right side (A3 and A4), ascending and
descending stairs (A5 and A6), standing still in an elevator (A7), moving around in an
elevator (A8), walking in a parking lot (A9), walking on a treadmill in flat and 15◦ inclined
positions at a speed of 4 km/h (A10 and A11), running on a treadmill at a speed of
8 km/h (A12), exercising on a stepper (A13), exercising on a cross trainer (A14), cycling on an
exercise bike in horizontal and vertical positions (A15 and A16), rowing (A17), jumping (A18),
and playing basketball (A19).

The activities can be broadly grouped into two: In stationary activities (A1–A4), the subject stays
still without moving significantly, whereas non-stationary activities (A5–A19) are associated with some
kind of motion.

Figure 5. The Xsens MTx unit [44].

4.2. Description of the Proposed and Existing Methodology on Orientation Invariance

In the pre-processing stage, seven data transformation techniques are considered to observe the
effects of different sensor orientations on the accuracy and the improvement obtained with the existing
and the proposed orientation-invariant transformations:

• Reference: Data are not transformed and the sensor units are assumed to maintain their fixed
positions and orientations during the whole motion. This corresponds to the standard activity
recognition scheme, as in [45–47].

• Random rotation: This case is considered to assess the accuracy of the standard activity
recognition scheme (without any orientation-invariant transformation) when the sensor units are
oriented randomly at their fixed positions. Instead of recording a new dataset with random sensor
orientations, we randomly rotate the original data to make a fair comparison with the reference
case. For this purpose, we randomly generate a rotational transformation:

P =

[1 0 0
0 cos θ − sin θ
0 sin θ cos θ

] [ cos φ 0 sin φ
0 1 0

− sin φ 0 cos φ

] [cos ψ − sin ψ 0
sin ψ cos ψ 0

0 0 1

]
(6)
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where yaw, pitch, roll angles θ, φ, ψ are independent and uniformly distributed in the interval
[−π, π) radians. For each time segment of each sensor unit (see Section 4.3 for segmentation),
we generate a different P matrix and pre-multiply each of the three tri-axial sequences of that
unit by the random rotation matrix corresponding to that segment of the unit: ṽ[n] = P vS[n].
In this way, we simulate the situation where each sensor unit is placed at a possibly different
random orientation in each time segment.

• Euclidean norm method: The Euclidean norm of the x, y, z components of the sensor sequences
are taken at each time sample and used instead of using the original tri-axial sequences.
As reviewed in Section 2, this technique has been used in activity recognition to achieve sensor
orientation invariance [10–12] or as an additional feature as in [13–16,48,49].

• Sequences along and perpendicular to the gravity vector: In this method, the acceleration
sequence in each time segment is averaged over time to approximately calculate the direction of
the gravity vector. Then, for each sensor type, the sensor sequence’s amplitude in this direction
and the magnitude that is perpendicular to this direction are taken. This method has been used
in [17–19] to achieve orientation invariance.

• SVD-based transformation: Sensory data are represented with respect to three principal axes
that are calculated by SVD [34,36]. The transformation is applied to each time segment of each
sensor unit separately so that sensor units are allowed to be placed at different orientations in
each segment.

To calculate the orientation-invariant transformations in the remaining two methods, we estimate
the orientation RE

Sn
of each of the five sensor units as a function of time sample n as explained in the

Appendix A. For the algorithm to reach steady state rapidly, we append to the acquired signal a prefix
signal of duration 1 s that consists of zero angular rate, a constant acceleration, and a constant magnetic
field that are the same as the measurements at the first time sample.

• Sensor sequences with respect to the Earth frame: We transform the sensor sequences into the
Earth frame using the estimated sensor orientations, as described by Equation (1). This method
has been used in [22] to achieve invariance to sensor orientation in activity recognition.
As an example, Figure 7a shows the accelerometer, gyroscope, and magnetometer data (vS[n])
acquired during activity A10 and Figure 7b shows the same sequences transformed into the Earth
frame. We observe that the magnetic field with respect to the Earth frame does not significantly
vary over time because the Earth’s magnetic field is nearly constant in the Earth frame provided
that there are no external magnetic sources in the vicinity of the sensor unit.

• Proposed method: sensor sequences and differential quaternions, both with respect to the

Earth frame: We calculate the differential rotation matrix Dn with respect to the Earth frame
for each sensor unit at each time sample n, as explained in Section 3.3. This rotation matrix
representation is quite redundant because it has nine elements while any 3D rotation can be
represented by only three angles. Since the representation by three angles has a singularity
problem, we represent the differential rotation Dn compactly by a four-element quaternion qdiff

n as

qdiff
n =

⎡
⎢⎢⎢⎣

qdiff
1

qdiff
2

qdiff
3

qdiff
4

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

√
1+d11+d22+d33

2
d32−d23

4
√

1+d11+d22+d33
d13−d31

4
√

1+d11+d22+d33
d21−d12

4
√

1+d11+d22+d33

⎤
⎥⎥⎥⎥⎥⎦ (7)

where dij (i, j = 1, 2, 3) are the elements of Dn [50]. The vector qdiff
n is called differential quaternion

with respect to the Earth frame (the dependence of the elements of qdiff
n and Dn on n has been

dropped from the notation for simplicity). In the classification process, we use each element of
qdiff

n as a function of n, as well as the sensor sequences with respect to the Earth frame. Hence,
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there are four time sequences for the differential quaternion in addition to the three axes each of
accelerometer, gyroscope, and magnetometer data for each of the five sensor units. Therefore,
the transformed data comprises (4+ 3+ 3+ 3) sequences× 5 sensor units = 65 sequences in total.
We have observed that the joint use of the sensor sequences and differential quaternions, both with
respect to the Earth frame, achieves the highest activity recognition accuracy compared to the
other combinations. Representing rotational transformations by rotation matrices instead of
quaternions degrades the accuracy. Omitting magnetometer sequences with respect to the Earth
frame causes a slight reduction in the accuracy. Activity recognition results of the various different
approaches that we have implemented are not presented in this article for brevity, and can be
found in [51].
Figure 7c shows the nine elements of the differential rotation matrix Dn with respect to the
Earth frame over time, which are calculated based on the sensor data shown in Figure 7a.
Figure 7d shows the elements of the differential quaternion qdiff

n as a function of n. The almost
periodic nature of the sensor sequences (Figure 7a) is preserved in Dn and qdiff

n (Figure 7c,d).
The differential rotation is calculated between two consecutive time samples that are only a
fraction of a second apart, hence the amplitudes of the elements of Dn and qdiff

n do not vary much.
Since differential rotations involve small rotation angles (close to 0◦), the Dn matrices are close to
the 3 × 3 identity matrix (I3×3) because they can be expressed as the product of three rotation
matrices as in Equation (6) where each of the basic rotation matrices (as well as their product) is
close to I3×3 because of the small angles. Hence, the diagonal elements which are close to one
and the upper- and lower-diagonal elements which are close to zero are plotted separately in
Figure 7c for better visualization. When Dn is close to I3×3, the qdiff

n vectors calculated by using
Equation (7) are close to (1, 0, 0, 0)T , as observed in Figure 7d.

(a) (b)

Figure 6. (a) Positioning of the MTx units on the body; (b) connection diagram of the units (the body
drawing in the figure is from http://www.clker.com/clipart-male-figure-outline.html; the cables,
Xbus Master, and sensor units were added by the authors).
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Figure 7. Original and orientation-invariant sequences from a walking activity plotted over time.
(a) Original sensor sequences; (b) sensor sequences; elements of (c) the differential rotation matrix and
(d) the differential quaternion. Sequences in (b–d) are represented in the Earth frame and are invariant
to sensor orientation.

4.3. Activity Recognition and Classifiers

A procedure similar to that in [34,45] is followed for activity recognition. The sensor sequences
are divided into 9120 (= 60 feature vectors × 19 activities × 8 subjects) non-overlapping segments of
5 s duration each and transformed according to one of the seven approaches described in Section 4.2.
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Then, statistical features are extracted for each segment of each axis of each sensor type. The following
features are calculated: minimum, maximum, mean, variance, skewness, kurtosis, 10 coefficients of
the autocorrelation sequence (autocorrelation sequence for the lag values of 5, 10, . . . , 45, 50 samples is
used), and the five largest discrete Fourier transform (DFT) peaks with the corresponding frequencies
(the separation between any two peaks in the DFT sequence is taken to be at least 11 samples), resulting
in a total of 26 features per segment of each axis. For the reference approach that does not involve
any transformation, there are 5 sensor units × 9 axes × 26 features per axis = 1170 features that are
stacked to form a 1170-element feature vector for each segment. The number of axes as well as the
number of features vary depending on the transformation technique; however, the total number of
feature vectors is fixed (9120). For instance, in the Euclidean norm, there is a three-fold decrease in the
number of axes and hence in the number of features. The features are normalized to the interval [0, 1]
over all the feature vectors for each subject.

The number of features is reduced through PCA, which is a linear and orthogonal transformation
where the transformed features are sorted to have variances in descending order [52]. This allows
one to consider only a certain number of features that exhibit the largest variances to reduce the
dimensionality. Thus, for each approach, the eigenvalues of the covariance matrix of the feature vectors
are calculated, sorted in descending order, and plotted in Figure 8. Using the first 30 eigenvalues
appears to be suitable for most of the approaches; hence, we reduce the dimensionality down to
F = 30.
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random rotation
Euclidean norm
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proposed method: sensor sequences and differential quaternions,
both with respect to the Earth frame

Figure 8. The first 100 eigenvalues of the covariance matrix of the feature vectors sorted in
descending order, calculated based on the features extracted from the data transformed according to
the seven approaches.

We perform activity classification with seven state-of-the-art classifiers that are briefly
described below.
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• Support Vector Machines (SVM): The feature space is nonlinearly mapped to a
higher-dimensional space by using a kernel function and divided into regions by hyperplanes.
In this study, the kernel is selected to be a Gaussian radial basis function fRBF(x, y) = e−γ‖x−y‖2

with parameter γ because it can perform at least as accurately as the linear kernel if the
parameters of the SVM are optimized [53]. To extend the binary SVM to more than two classes,
a binary SVM classifier is trained for each class pair, and the decision is made according to the
classifier with the highest confidence level [54]. The penalty parameter C (see Equation (1)
in [55]) and the kernel parameter γ are jointly optimized over all the data transformation
techniques by performing a two-level grid search. The optimal parameter values in the coarse
grid (C, γ) ∈ {

10−5, 10−3, 10−1, . . . , 1015} × {
10−15, 10−13, 10−11, . . . , 103} are obtained as

(C∗, γ∗) =
(
101, 10−1). Then, a finer grid is constructed around (C∗, γ∗) as (C, γ) ∈ 100P ×P

with P = {0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.7, 1, 3, 5} and the optimal parameter values found
by searching the fine grid, (C∗∗, γ∗∗) = (5, 0.1), are used in SVM throughout this study. The SVM
classifier is implemented by using the MATLAB toolbox LibSVM [56].

• Artificial Neural Networks (ANN): We use three layers of neurons, where each neuron has a
sigmoid output function [57]. The number of neurons in the first (input) and the third (output)
layers are as many as the reduced number of features, F, and the number of classes, K, respectively.
The number of neurons in the second (or hidden) layer is selected as the integer nearest to
the average of log (2K)

log 2 and 2K − 1, with the former expression corresponding to the optimistic
case where the hyperplanes intersect at different positions and the latter corresponding to the
pessimistic case where the hyperplanes are parallel to each other. The weights of the linear
combination in each neuron are initialized randomly in the interval [0, 0.2] and during the training
phase, they are updated by the back-propagation algorithm [58]. The learning rate is selected as
0.3. The algorithm is terminated when the amount of error reduction (if any) compared to the
average of the last 10 epochs is less than 0.01. The ANN has a scalar output for each class. A given
test feature vector is fed to the input and the class corresponding to the largest output is selected.

• Bayesian Decision Making (BDM): In the training phase, a multi-variate Gaussian distribution
with an arbitrary covariance matrix is fitted to the training feature vectors of each class. Based on
maximum likelihood estimation, the mean vector is estimated as the arithmetic mean of the
feature vectors and the covariance matrix is estimated as the sample covariance matrix for each
class. In the test phase, for each class, the test vector’s conditional probability given that it is
associated with that class is calculated. The class that has the maximum conditional probability is
selected according to the maximum a posteriori decision rule [52,57].

• Linear Discriminant Classifier (LDC): This classifier is the same as BDM except that the average
of the covariance matrices individually calculated for each class is used for all of the classes.
Since the Gaussian distributions fitted to the different classes have different mean vectors but
the same covariance matrix in this case, the classes have identical probability density functions
centered at different points in the feature space. Hence, the classes are linearly separated from
each other, and the decision boundaries in the feature space are hyperplanes [57].

• k-Nearest Neighbor (k-NN): The training phase consists only of storing the training vectors with
their class labels. In the classification phase, the class corresponding to the majority of the k
training vectors that are closest to the test vector in terms of the Euclidean distance is selected [57].
The parameter k is chosen as k = 7 because it is suitable among the k values ranging from 1 to 30.

• Random Forest (RF): A random forest classifier is a combination of multiple decision trees [59].
In the training phase, each decision tree is trained by randomly and independently sampling the
training data. Normalized information gain is used as the splitting criterion at each node. In the
classification phase, the decisions of the trees are combined by using majority voting. The number
of decision trees is selected as 100 because we have observed that using a larger number of trees
does not significantly improve the accuracy while increasing the computational cost considerably.
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• Orthogonal Matching Pursuit (OMP): The training phase consists of only storing the training
vectors with their class labels. In the classification phase, each test vector is represented as a
linear combination of a very small portion of the training vectors with a bounded error, which is
called the sparse representation. The vectors in the representation are selected iteratively by
using the OMP algorithm [60] where an additional training vector is selected at each iteration.
The algorithm terminates when the desired representation error level is reached, which is selected
to be 10−3. Then, a residual for each class is calculated as the representation error when the test
vector is represented as a linear combination of the training vectors of only that class, and the
class with the minimum residual error is selected.

To determine the accuracies of the classifiers, L1O cross-validation technique is used [57]. In this
type of cross validation, feature vectors of a given subject are left out while training the classifier with
the remaining subjects’ feature vectors. The left out subject’s feature vectors are then used for testing
(classification). This process is repeated for each subject. Thus, in our implementation, the dataset
is partitioned into eight and there are 1140 feature vectors in each partition. L1O is highly affected
by the variation in the data across the subjects, and hence, is more challenging than subject-unaware
cross-validation techniques such as repeated random sub-sampling or multi-fold cross validation [61].

4.4. Comparative Evaluation Results

The activity recognition performance of the different data transformation techniques and
classifiers is shown in Figure 9. In the figure, the lengths of the bars correspond to the classification
accuracies and the thin horizontal sticks indicate plus/minus one standard deviation about the
accuracies averaged over the cross-validation iterations.

In the lower part of Figure 9, the accuracy values averaged over the seven classifiers are also
provided for each approach and compared with the reference case, as well as with the proposed method.
Referring to this part of the figure, the standard system that we take as reference, with fixed sensor
orientations, provides an average accuracy of 87.2%. When the sensor units are randomly oriented,
the accuracy drops by 31.8% on average with respect to the standard reference case. This shows
that the standard system is not robust to incorrectly or differently oriented sensors. The existing
methods for orientation invariance result in a more acceptable accuracy reduction compared to the
reference case: The accuracy drop is 18.8% when the Euclidean norms of the tri-axial sensor sequences
are taken, 12.5% when the sensor sequences are transformed to the Earth frame, 12.2% when the
sensor sequences are represented along and perpendicular to the gravity vector, and 8.4% when the
SVD-based transformation is applied.

Our approach that uses the sensor sequences together with differential quaternions, both with
respect to the Earth frame, achieves an average accuracy of 82.5% over all activities with an average
accuracy drop of only 4.7% compared to the reference case. Such a decrease in the accuracy is expected
when the sensor units are allowed to be placed freely at arbitrary orientations because this flexibility
entails the removal of fundamental information such as the direction of the gravity vector measured
by the accelerometers and the direction of the Earth’s magnetic field detected by the magnetometers.
Hence, the average accuracy drop of 4.7% is considered to be acceptable when such information related
to the sensor unit orientations is removed inevitably.

In the lower part of Figure 9, we also provide the improvement achieved by each method
compared to the random rotation case which corresponds to the standard system using random sensor
orientations. The method that we newly propose in this article performs the best among all the methods
considered in this study when the sensor units are allowed to be placed at arbitrary orientations.

The activity recognition accuracy highly depends on the classifier. According to Figure 9, in almost
all cases, the SVM classifier performs the best among the seven classifiers compared. SVM outperforms
the other classifiers especially in approaches targeted to achieve orientation invariance where the
classification problem is more challenging. The robustness of SVM in such non-ideal conditions
is consistent with other studies [13,46]. Besides the SVM classifier, ANN and LDC also obtain high
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classification accuracy. Although reference [22] states that k-NN has been shown to perform remarkably
well in activity recognition, it is not the most accurate classifier that we have identified.
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Figure 9. Activity recognition performance for all the data transformation techniques and classifiers
over all activities. The lengths of the bars represent the accuracies and the thin horizontal sticks indicate
plus/minus one standard deviation over the cross-validation iterations.

To observe the recognition rates of the individual activities, a confusion matrix associated with
the SVM classifier is provided in Table 1 for the proposed method. It is apparent that the proposed
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transformation highly misclassifies the stationary activities A1–A4. These activities contain stationary
postures, namely, sitting, standing, and two types of lying, which are misclassified probably because
we remove the information about sensor orientation from the data. In particular, activity A1 (sitting)
is mostly misclassified and confused with activities A3 (lying on back side) and A7 (standing still
in an elevator). The remaining stationary activities are also misclassified as A7. Among the 15
non-stationary activities, activities A10 and A11 (walking on a treadmill in flat and 15◦ inclined position,
respectively) are confused with each other because of the similarity between the body movements in
the two activities. Other misclassifications occur between activity pairs that have similarities such as
A7/A8, A8/A7, A2/A8, A18/A6, and A13/A9, although rarely. Activities A12 (running on a treadmill
at a speed of 8 km/h) and A17 (rowing) are perfectly classified by SVM for the proposed method,
probably because they are associated with unique body movements and do not resemble any of the
other activities.

We present the classification performance separately for stationary and non-stationary activities
in Figure 10. For each classifier and each approach, we calculate the accuracy values by averaging out
the accuracies of the stationary activities (A1–A4) and non-stationary activities (A5–A19).

For stationary activities (see Figure 10a), an average accuracy of 81.2% is obtained for fixed sensor
orientations. When the sensor units are oriented randomly, the average accuracy drops to 42.6%.
The existing orientation-invariant methods exhibit accuracies between 31.7% and 62.2%, some of them
being higher and some being lower than the accuracy for random rotation. The Euclidean norm
method performs particularly poorly in this case. The proposed method achieves an average accuracy
of 66.8%, which is considerably higher than random rotation and all the existing orientation-invariant
transformations. Although two of the existing transformations provide some improvement compared
to the random rotation case, their accuracies are much lower than the standard reference system.
Hence, removing the orientation information from the data makes it particularly difficult to classify
stationary activities.

For non-stationary activities (see Figure 10b), the accuracy decreases from 88.8% to 58.8% on
average when the sensor units are placed randomly and no transformation is applied. The existing
orientation-invariant methods obtain accuracies ranging from 78.2% to 83.2%, which are comparable to
the reference case with fixed sensor orientations. The method we propose obtains an average accuracy
of 86.7%, which is higher than all the existing methods and only 2.1% lower than the reference case.
This shows that when the sensor units are fixed to the body at arbitrary orientations, the proposed
method can classify non-stationary activities with a performance similar to that of fixed sensor unit
orientations. In the last two rows of the confusion matrix provided in Table 1, the average accuracy of
the stationary activities (A1–A4) and non-stationary activities (A5–A19) are provided separately for the
proposed method, again using the SVM classifier.

Referring to Figure 10a, we observe that the recognition rate of stationary activities highly depends
on the classifier. On average, the best classifier is LDC, probably because the recognition of stationary
activities is quite challenging and the LDC classifier separates the classes from each other linearly and
smoothly in the feature space. For the proposed method, the OMP classifier performs much better
than the remaining six classifiers. On the other hand, for non-stationary activities (see Figure 10b),
the classifiers obtain comparable accuracy values, unlike the case for stationary activities. In this case,
SVM is the most accurate classifier, both on average and for the proposed method.
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Figure 10. Activity recognition performance for all the data transformation techniques and classifiers
for (a) stationary and (b) non-stationary activities. The lengths of the bars represent the accuracies
and the thin horizontal sticks indicate plus/minus one standard deviation over the cross-validation
iterations.

4.5. Run Time Analysis

The average run times of the data transformation techniques per one 5-s time segment
are provided in Table 2. All the processing in this work was performed on a laptop with a
quad-core Intel R© CoreTM i7-4720HQ processor at 2.6–3.6 GHz and 16 GB of RAM running 64-bit
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MATLAB R© R2017b. The proposed method has an average run time of about 61 ms per 5-s time
segment and can be executed in near real time since the run time is much shorter than the duration of
the time segment.

Table 2. Average run times of the data transformation techniques per 5-s time segment.

Data Transformation Technique Run Time (ms)

Euclidean norm 0.69

sensor sequences with respect to the Earth frame 56.25

sensor sequences along and perpendicular to the gravity vector 1.09

SVD-based transformation 8.94

proposed method: sensor sequences and differential 61.08quaternions, both with respect to the Earth frame

The run times of the classifiers are presented in Table 3 for each of the seven data transformation
techniques. Table 3a contains the total run times of the classifiers for an average cross-validation
iteration, including the training phase and classification of all the test feature vectors. We observe
that k-NN, LDC, and BDM are much faster than the other classifiers for all of the data transformation
techniques. Table 3b contains the average training times of the classifiers for a single cross-validation
iteration. The k-NN and OMP classifiers only store the training feature vectors in the training phase;
therefore, their training time is negligible. Among the remaining classifiers, training of BDM is the
fastest. Table 3c contains the average classification time of a single test feature vector, extracted from
a segment of 5 s duration. ANN and LDC are about an order of magnitude faster than the others
in classification. The classification time of OMP is the largest. Note that, because of programming
overheads, the total classification times provided in Table 3a are greater than the sum of the training
and classification times (Table 3b,c, respectively) multiplied by 1140 (the number of feature vectors per
L1O iteration).

This study is a proof-of-concept for a comparative analysis of the accuracies and run times of the
proposed and existing methods as well as state-of-the-art classifiers. Therefore, we have implemented
them as well as the remaining parts of the activity recognition framework on a laptop computer rather
than on a mobile platform.

Given that the data transformation techniques and most of the classifiers have been implemented
in MATLAB in this study, it is possible to further improve the efficiency of the algorithms by
programming them in other languages such as C++, by implementing them on an FPGA platform,
or by embedding the algorithms in wearable hardware. As such, our methodology can be handled
by the limited resources of wearable systems. Alternatively, transmitting the data acquired from
wearable devices wirelessly to a cloud server would allow performing the activity recognition in
the cloud [14,62]. Despite the latency issues that will arise in this case, this approach would provide
additional flexibility and enable the applications of wearables to further benefit from the proposed
methodology and the advantages of cloud computing.
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Table 3. (a) Total run time (including training and classification of all test feature vectors) and
(b) training time in an average L1O iteration; (c) average classification time of a single test feature vector.
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(a)

total run time

(s)

SVM 6.42 14.20 7.22 11.71 8.19 6.24 10.05

ANN 7.37 8.49 8.54 6.58 12.04 7.91 6.14

BDM 1.67 1.61 1.59 1.55 2.12 1.48 1.69

LDC 1.10 0.87 0.84 1.52 0.84 0.93 1.51

k-NN 0.24 0.12 0.12 0.21 0.19 0.12 0.22

RF 16.81 22.51 26.40 24.34 19.05 19.71 23.98

OMP 1018.27 798.90 92.32 99.41 96.48 75.18 114.68

(b)

training time

(s)

SVM 6.01 13.39 6.61 10.31 7.58 5.36 8.60

ANN 7.35 8.47 8.52 6.57 12.01 7.89 6.12

BDM 0.01 0.01 0.01 0.01 0.01 0.01 0.01

LDC 0.33 0.23 0.22 0.38 0.22 0.26 0.33

k-NN – – – – – – –

RF 15.20 20.90 24.11 21.75 17.45 17.87 21.25

OMP – – – – – – –

(c)

classification time

(ms)

SVM 0.26 0.60 0.42 0.39 0.40 0.24 0.31

ANN 0.02 0.02 0.01 0.01 0.02 0.01 0.01

BDM 1.46 1.41 1.39 1.35 1.85 1.29 1.47

LDC 0.04 0.03 0.03 0.05 0.03 0.03 0.04

k-NN 0.21 0.11 0.11 0.19 0.16 0.11 0.19

RF 0.71 0.73 0.99 0.83 0.72 0.74 0.87

OMP 892.55 700.17 80.55 86.38 84.20 65.43 99.69

5. Discussion

Overall, the recognition rates of non-stationary activities are considerably better than those of
stationary ones for all the approaches considered in this study. This is because in non-stationary
activities, the activity type is encoded in the body motion whereas in stationary activities, since there
is no significant body motion, the removal of sensor orientation information to achieve orientation
invariance has a major impact on the accuracy. The classification of stationary activities is a more
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challenging problem and it is clear that sensor unit orientations provide essential information for
this purpose.

The direction of the gravity vector measured by the accelerometer and the direction of the magnetic
field vector determined by the magnetometer provide essential information about the orientation of
the sensor unit. When the sensor sequences are represented with respect to the Earth frame to achieve
orientation invariance, this information is lost because the gravity and the magnetic field of the Earth
are roughly in the fixed zE and xE directions of the Earth frame, respectively. Hence, in our proposed
method, we incorporate the change in the sensor unit orientation over time by calculating differential
quaternions with respect to the Earth, which represent the rotation between consecutive time samples
invariantly to the sensor unit orientation. The use of differential quaternions increases the accuracy
considerably because they effectively represent the rotational motion of the sensor unit related to the
activities. When the rotational transformation is represented with respect to the Earth frame, it is
invariant to sensor unit orientation, as desired.

For all the methods compared in this study, we use the same dataset which was acquired by
placing the sensor units on the body at fixed orientations. This enables us to make a fair comparison
between all of the seven approaches considered in this work. In the random rotation case, we rotate the
data arbitrarily for each time segment and each sensor unit; hence, we obtain new data that simulate
random sensor orientations and match exactly the same level of difficulty of the original data except for
the rotational difference. In the last five approaches that correspond to orientation-invariant methods,
it is mathematically guaranteed that the transformed data are exactly invariant to sensor orientations;
hence, they can be directly compared with the reference and random rotation cases. Had we recorded
an additional dataset with different sensor unit orientations, we would not be able to fairly compare
the accuracies obtained with the two datasets because it is not possible to guarantee the same level of
difficulty in activity recognition in different experiments. This fact can be observed even within the
current dataset from the non-negligible standard deviations in the activity recognition accuracy over
the cross-validation iterations (see Figures 9 and 10). This shows that the variation among the subjects
is significant, as also observed in [38].

6. Conclusions and Future Work

We have demonstrated that the standard activity recognition paradigm cannot handle incorrectly
or differently oriented sensors when the position remains fixed. To overcome this problem, we have
proposed a transformation that we apply on the sensor data at the pre-processing stage to increase
the robustness of the system to errors in the orientations at which the sensor units are worn on
the body. The method we have proposed extracts the activity-related information from the sensor
sequences while removing the information associated with the absolute sensor unit orientations.
This way, we ensure that the transformed sequences do not depend on the absolute sensor unit
orientations. The transformed sequences have the same form as the original sequences except the
number of axes, which enables us to apply this method in the pre-processing stage of any system that
can handle multi-axial data, including systems that directly use time-domain data in its raw form as
well as those that use extracted features. We have shown that our method significantly reduces the
accuracy degradation caused by incorrect/different sensor unit orientations. The proposed method
performs substantially better than the existing methods developed specifically for this problem and
achieves nearly the same accuracy level as the fixed orientation case for non-stationary activities.
The transformation we propose can be computed in a time much shorter than the duration of one
segment of the data, therefore, it can be efficiently implemented and used in near real time.

The next step of this research may involve calculating the differential quaternions with respect to
the Earth over a wider time window rather than over only two consecutive time samples, which may
improve robustness against high-frequency noise. The transformation proposed here can be used in
other wearable sensing applications such as detecting and classifying falls and automated evaluation
of physical therapy exercises. By transforming the sensor data at the pre-processing stage, orientation
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invariance can be achieved without the need to modify the rest of the system. Position invariance can
also be investigated to allow the sensor units to be interchanged and/or placed at different positions
on the body. The two can be combined to develop activity recognition systems that are invariant to
both the position and orientation of the sensor units.
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Abbreviations

The following abbreviations are used in this manuscript:

SVM Support Vector Machines
PCA Principal Component Analysis
1-NN One-Nearest-Neighbor
SVD Singular Value Decomposition
DFT Discrete Fourier Transformation
ANN Artificial Neural Networks
BDM Bayesian Decision Making
LDC Linear Discriminant Classifier
k-NN k-Nearest Neighbor
RF Random Forest
OMP Orthogonal Matching Pursuit
L1O Leave-One-Subject-Out

Appendix A. Sensor Unit Orientation Estimation

The orientation estimation method in [40] combines orientation estimates based on two sources
of information. The first estimate is obtained simply by integrating the gyroscope angular rate
measurements. This estimate is accurate in the short term but drifts in the long term. The second relies
on the direction of the gravity vector measured by the accelerometer and the magnetic field of the
Earth detected by the magnetometer in the long term. For the long-term estimation, the Gauss-Newton
method [40] is used to solve a minimization problem where the cost function decreases as the acquired
acceleration vector is aligned with the gravity vector and as the acquired magnetic field vector is
aligned with the magnetic North of the Earth. The short- and long-term estimates are combined
through weighted averaging [40].

In the orientation estimation algorithm, we relate the sensor and the Earth frames by a quaternion

q̂n = (q1, q2, q3, q4)
T corresponding to the rotation matrix R̂Sn

E =
(

R̂E
Sn

)−1
for all n as follows [50]:

R̂Sn
E =

⎡
⎢⎣q2

1 + q2
2 − q2

3 − q2
4 2 (q2q3 − q1q4) 2 (q1q2 + q2q4)

2 (q2q3 + q1q4) q2
1 − q2

2 + q2
3 − q2

4 2 (q3q4 − q1q2)

2 (q2q4 − q1q3) 2 (q1q2 + q3q4) q2
1 − q2

2 − q2
3 + q2

4

⎤
⎥⎦ (A1)

The short- and long-term orientation estimates are denoted by q̂n, ST and q̂n, LT and the overall
estimate is denoted by q̂n.

The short-term estimate of the sensor quaternion q̂n, ST at time sample n based on the overall
estimate q̂n−1 at the previous time sample is given by:

q̂n, ST = q̂n−1 + Δt
(

1
2

q̂n−1 ⊗ωS[n]
)

(A2)
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where ωS[n] =
(

0, ωS
x [n], ωS

y [n], ωS
z [n]

)T
is an augmented vector consisting of zero and the angular

rate vector acquired by the gyroscope at time sample n [40] and Δt is the sampling interval. Note that
the equation involves feedback because q̂n, ST is calculated based on q̂n−1.

For the long-term estimation, let aS[n] and mS[n] be the acceleration and the magnetic field
vectors, respectively, represented in the sensor frame and normalized by their magnitudes. To align
aS[n] with the zE axis of the Earth frame, we represent it in the Earth frame as aE[n] = qn ⊗ aS[n]⊗ q∗

n,
and solve the following minimization problem [40]:

q̂n, LT-1 = arg min
qn

f1

(
qn, aS[n]

)
where f1

(
qn, aS[n]

)
=
∥∥∥(0, 0, 1)T − qn ⊗ aS[n]⊗ q∗

n

∥∥∥ (A3)

where ‖ · ‖ denotes the Euclidean norm and ⊗ denotes the quaternion product operator.
We represent the magnetic field vector mS[n] as mE[n] = qn ⊗ mS[n] ⊗ q∗

n in the Earth
frame and allow it to have only a vertical component along the zE direction and a horizontal
component along the xE direction. Hence, we align mE[n] with the magnetic reference vector

defined as m0[n] �
(√

(mE
x [n])2 + (mE

y [n])2, 0, mE
z [n]

)T
in the Earth frame by solving the following

minimization problem [40]:

q̂n, LT-2 = arg min
qn

f2

(
qn, mS[n]

)
where f2

(
qn, mS[n]

)
=
∥∥∥m0[n]− qn ⊗ mS[n]⊗ q∗

n

∥∥∥ (A4)

To simultaneously align the acceleration and magnetic field vectors, we combine the
minimization problems defined in Equations (A3) and (A4) into one and solve the following joint
minimization problem:

q̂n, LT = arg min
qn

f
(

qn, aS[n], mS[n]
)

(A5)

where the combined objective function is

f
(

qn, aS[n], mS[n]
)
= f2

1

(
qn, aS[n]

)
+ f2

2

(
qn, mS[n]

)
(A6)

We use the Gauss-Newton method to solve the problem defined in Equation (A5) iteratively [40].
The quaternion at iteration i + 1 can be calculated based on the estimate at the ith iteration as follows:

q
(i+1)
n, LT = q

(i)
n, LT −

(
JTJ

)−1
JT f

(
q
(i)
n, LT, aS[n], mS[n]

)
(A7)

where J is the 6 × 4 Jacobian matrix of f with respect to the elements of q
(i)
n . This matrix is provided in

closed form in [40].
Finally, the short- and long-term estimates are merged by using weighted averaging [40]:

q̂n = Kq̂n, ST + (1 −K)q̂n, LT (A8)

where the parameter K is selected as 0.98 as in [40]. The estimated quaternion q̂n represents the
rotation matrix R̂Sn

E compactly, where we drop the hat notation (ˆ) in the main text for simplicity.
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Abstract: The purpose of this study was to classify, and model various physical activities performed
by a diverse group of participants in a supervised lab-based protocol and utilize the model to identify
physical activity in a free-living setting. Wrist-worn accelerometer data were collected from (N = 152)
adult participants; age 18–64 years, and processed the data to identify and model unique physical
activities performed by the participants in controlled settings. The Gaussian mixture model (GMM)
and the hidden Markov model (HMM) algorithms were used to model the physical activities with
time and frequency-based accelerometer features. An overall model accuracy of 92.7% and 94.7%
were achieved to classify 24 physical activities using GMM and HMM, respectively. The most accurate
model was then used to identify physical activities performed by 20 participants, each recorded
for two free-living sessions of approximately six hours each. The free-living activity intensities
were estimated with 80% accuracy and showed the dominance of stationary and light intensity
activities in 36 out of 40 recorded sessions. This work proposes a novel activity recognition process to
identify unsupervised free-living activities using lab-based classification models. In summary, this
study contributes to the use of wearable sensors to identify physical activities and estimate energy
expenditure in free-living settings.

Keywords: physical activity classification; free-living; GENEactiv accelerometer; machine learning;
Gaussian mixture model; hidden Markov model; wavelets

1. Introduction

Engaging in sufficient amounts of physical activity (PA) is associated with decreased risk
of premature mortality from cardiovascular diseases [1–3]. The 2008 physical activity guidelines
recommend engaging in at least 150 minutes per week of moderate-vigorous physical activity [4].
Without an accurate PA measurement tool, our ability to determine the relationship between physical
activity and health, develop effective interventions to promote these healthy behaviors, and evaluate
the effectiveness of these interventions, is severely limited. Human beings perform a wide range of
complex activities, varying based on age, profession, time of the day and other demographics. Physical
activities of many forms including daily household activities, walking, aerobics, and strength training
are performed at various intensities (i.e., light, moderate or vigorous), based on the individual. Hence,
we need measurement tools to quantify complex human activities accurately, and make necessary
interventions to maintain healthy behaviors.
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With the advent of wearable and remote sensors, it has become easier to monitor PA due
to their objectivity, minimal participant burden and rich data that can be collected for a long
period. Human activity recognition using video processing has become a widely studied area of
research. Video analysis approaches based on template-based methods [5,6], generative models [7–9],
and discriminative models [10] have been used to classify complex human activities and gait patterns.
However, in this paper we focused on wearable accelerometers, which have become inexpensive,
small and lightweight, can gather high-frequency data and can be used by the population across all
demographics. Accelerometer-based systems have been used to gain insights about physical activity
of all age groups, adolescents [11,12], young adults [13–16], old adults [17–22] and seniors [17,23–25].
There are two major research foci in PA monitoring studies: (a) energy expenditure (EE) estimation
and (b) activity classification. The traditional approach to EE estimation using accelerometer data is to
estimate the intensity (MET value) of an activity through simple linear regression modeling [26].
Another approach attempts to identify the type of activity performed, and calculate EE using
knowledge of the activity’s intensity. Current methodological development, especially in signal
processing and machine learning techniques, have led researchers to implement alternative frameworks
for estimating EE. Of which, methods such as artificial neural network [27], novel estimation framework
based on statistical estimation theory [28] and piecewise linear regression model [29], deserve special
mention due to their high prediction accuracy. Activity classification studies have been performed
with both supervised laboratory and free-living protocols. Most PA classification approaches involve
extracting features from raw or processed accelerometer data and using them to identify unique
physical activities using machine learning or deep learning based classifiers. Various studies have
investigated different types of features and classifiers to identify a wide range of PA, reporting
efficiency ranging between 68 and 99% [11,18,19,22,30–34]. All these studies have proposed methods
to identify various PA performed by study participants (N ≤ 130) using single [11,18,22,32] or multiple
accelerometer units [30,31,35], but strictly in supervised, controlled settings and lack free-living
applications. The studies [11,30] that have analyzed a large database of PA (≥20) lack in diversity and
total number of study participants (N ≤ 53). Simultaneously, studies [18,32] that dealt with a large
number of study participants (N ≥ 100) analyzed less PA (≤12). In this study, however, we have
used a larger dataset of (N = 152) participants to model 24 PA in a lab-based study using just a single
wrist-worn accelerometer. Previous work has generally relied on lab-based activity trials to train and
test classification models. However, validity of these previously studied methodologies applied toward
free-living contexts is starting to emerge. One such study [36] cross-validated four PA classification
models (N = 21) and classified four activities in free-living setting from (N = 16) participants wearing
a wrist-worn accelerometer. Supervised classification was performed with reference to recorded labels
using another thigh worn accelerometer. In this study, we use a novel unsupervised framework to
identify PA performed by 20 participants in a free -living setting. In the first part of this paper, we train
and test classifiers to model physical activities using accelerometer data from lab-based settings. In the
second part of the paper, we use the lab-based classification model to identify free -living activities in
an unsupervised framework.

The data used in this analysis were gathered through two separate studies conducted in
a southwestern university in the USA. The first study provided accelerometer data on structured,
lab-based activities that were used to train and validate the proposed machine learning method.
The data from the free-living protocol were used to evaluate the developed algorithm in its capacity to
estimate activity intensities in a free -living setting. The details of each study (recruitment, participant
characteristics, and data collection methods) are described in the following sections.
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2. Lab-Based Study Protocol

2.1. Data Collection

A total of 152 adult participants (48% male, age 18–64 years old) were recruited in the lab-based
protocol. The recruitment method and participant eligibility criteria were similar in both lab-based and
free-living protocol and accomplished via fliers, emails, and social networks (e.g., Twitter, Facebook).
Interested participants completed an online screener and scheduled a lab visit to determine eligibility
by performing a wide array of physical activities. Participants were screened for conditions that could
limit their physical activity (e.g., cardiovascular disease, high blood pressure) as well as completed
a physical activity readiness questionnaire. For both studies, informed consent was obtained from
each participant prior to enrollment. The university’s institutional review board approved all study
materials and procedures.

After obtaining consent, each participant was scheduled for a two-hour laboratory visit. They were
instructed to wear comfortable clothing and were fitted with a GENEActiv accelerometer (Activinsights
Ltd., Kimbolton, Huntingdon, UK) on their non-dominant wrist along with other activity monitors.
The GENEActiv is a lightweight, waterproof, wrist-worn sensor that collects raw acceleration data.
Adult participants performed a set of ambulatory and lifestyle activities randomly selected from
a predetermined pool of activities (see Table 1). Participants were video-recorded completing each of
the activities using a custom-designed Android app developed by our research team. This application
provided automated start and stop times for each activity and an electronic video file of each activity
performed. Table 1 shows the major groups of PA, the metabolic equivalent (MET) values (defined as
the ratio between energy expenditure during an activity and energy expenditure at rest) associated to
each PA, according to the 2011 Adult Compendium of PA [37], and their corresponding intensity levels.

Table 1. Laboratory dataset and physical activity details, showing the unique physical activities
performed by the participants, with the associated metabolic equivalent (MET) values and intensities.

Dataset
PA No PA Class

MET Intensity

(Adults) Value a Label b

Stationary

1 Seated, folding/stacking laundry 2.0 L
2 Standing/fidgeting with hands while talking 1.8 L
3 1 minute brushing teeth + 1 minute brushing hair 2.0 L
4 Driving a car 2.5 L

Walking

5 Treadmill at 1 mph 2.0 L
6 Treadmill at 2 mph 2.8 L
7 Treadmill at 3 mph 3.5 M
8 Treadmill at 3 mph, 5% grade 5.3 M
9 Treadmill at 4 mph 4.9 M
10 Hard surface walking 2.8 L
11 Hard surface, hand in pocket 3.5 M
12 Hard surface, while carrying 8 lb. object 5.0 M
13 Hard surface, holding cell phone 4.5 M
14 Hard surface, holding filled coffee cup 3.5 M
15 Carpet with high heels or dress shoes 2.8 L
16 Grass barefoot 4.8 M
17 Uneven dirt 4.5 M
18 Uphill with high heels or dress shoes, 5% grade 5.3 M
19 Downhill with high heels or dress shoes, 5% grade 3.3 M

Running
20 Treadmill at 5 mph 8.3 V
21 Treadmill at 6 mph 9.8 V
22 Treadmill at 6 mph, 5% grade 12.3 V

Stair climbing 23 Walking upstairs (5 floors) 4.0 M
24 Walking down stairs (5 floors) 3.5 M

a MET values obtained from the Adults Compendium of PA, Ainsworth et al. 2011;
b L = light intensity, M = moderate intensity, V = vigorous intensity.
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2.2. Data Processing

Tri-axial accelerometer data (X, Y and Z axes) were collected at a sampling rate of 100 Hz, during
which the participants had to stay still for the first 5 seconds, and then perform a specific PA for
a fixed period of time. As a part of pre-processing, the resultant acceleration, R =

√
X2 + Y2 + Z2,

was calculated and used as a fourth signal along with the X, Y and Z direction acceleration signals.
After the activity transitions were identified from observed labels, the four acceleration signals were
divided into windows of 10 seconds (1000 samples) without overlap, which is enough to capture
both stationary and properties of the signal. To find descriptors of unique PA, various features were
extracted from windowed accelerometer signals, followed by a feature selection method. Supervised
classification was performed using the Gaussian mixture model (GMM) and the hidden Markov model
(HMM), and their performances were compared. The entire lab-based process chain is shown in
Figure 1.

Figure 1. Lab-based activity classification process chain.

2.2.1. Feature Extraction

In this study, we have investigated some state-of-the-art features and introduced some novel ones
as descriptors of PA for each window of accelerometer signals. 130 such features were extracted from
every 10 second window (1000 samples) from different combinations of the four acceleration signals.
We have briefly explained some essential backgrounds of the features investigated in this study.

• Time-Domain Features: Mean, standard deviation, skewness, kurtosis, energy and the squared sum
of the Y and Z acceleration signals under the 25th and 5th percentile.

• Frequency-Domain Features: Maximum magnitude between 1 → 5 Hz, sum of frequency component
heights below 5 Hz and number of peaks in spectrum below 5 Hz.

• Principal Component Features: First four principal components of X, Y, Z and R.
• ‘Modified’ Wavelet Coefficient Features: The wavelet transform provides a time-frequency

representation of a signal, as it gives an optimal resolution in both time and frequency domains [38].
In our case we used a three level Haar wavelet decomposition to extract wavelet coefficients
from each 10 seconds window. We used the Kolmogorov-Smirnov (KS) test, to automatically
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select 20 coefficients out of 1000 (10 secs window). Given a wavelet coefficient x, across all the
windows of a specific PA, the test compares the cumulative distribution function F(x) with that of
a Gaussian distribution with the same mean and variance G(x), and hence it finds the coefficients
that show maximum deviation as a sign of multi-modal distribution.

2.2.2. Feature Selection

Machine learning algorithms always present problems when dealing with high dimensional
inputs, so we selected the most ‘efficient’ features out of 130 features. For this purpose, we used
the sequential forward selection (SFS) method. The SFS is a greedy search algorithm that works
in tandem with classifiers and compares classification accuracy at each step. We used the SFS
algorithm for training on a random subset of 40 adult participants’ laboratory accelerometer data,
using a GMM classifier. Results showed that the ‘modified’ wavelet coefficients extracted from the
resultant acceleration signal (R) were the most ‘efficient’ or highest ranked features. This suggests that
the ‘modified’ wavelet coefficients of R can be used as a descriptor of unique PA. To make use of all
the 20 wavelet coefficients we computed the principal components of these coefficients, and used the
first 10 components as the feature space for PA classification.

2.2.3. Classification

For classification of physical activities, we explored two classification algorithms, GMM and HMM,
with the first 10 principal components of the ‘modified’ wavelet features, used as the input feature
vector. We assume that wavelet features of each PA follows a Gaussian distribution. Based on this
assumption, the principal components which are orthogonal vectors also follow Gaussian distributions.
Thus, the choice of GMM and HMM with Gaussian distribution as their output distribution is justified.
To measure the specificity of classification, we executed two levels of classification. The first level was
used to combine similar activities and reduce the number of activity classes and the second level was
used to extract the models for each activity (unique or combined).

• Gaussian Mixture Model: GMM is one of the most commonly used classifiers, which models
the probability distribution of data as a linear combination of multiple Gaussian distributions.
To create a model, the optimal values of each Gaussian distribution in the mixture must be
estimated, using the Expectation-Maximization (EM) procedure [39]. GMMs have been extensively
used for supervised classification problems, in which a GMM can model a single class, but can also
be used for unsupervised clustering problems [40]. Before estimating the Gaussian distribution,
we initialized the GMM using the Linde-Buzo-Gray (LBG) k-means algorithm [41].

• Hidden Markov Model: We used the GMM as the probability distribution function of the HMM
output, otherwise known as the emission probability parameter. The Viterbi approximation path
algorithm [42] was used to estimate the new labels for which the joint distribution of X (feature
vector) and Z (observed PA labels) is maximized. The algorithm considers the most likely path
instead of summing over all possible state sequences, which saves computation time.

• Merging Similar Classes: One shortcoming of using a single accelerometer is that there is a high
possibility that similar activities (e.g., ‘Hard surface walking, while carrying 8 lb. object’ and ‘Hard
surface walking, while holding filled coffee cup’) might be hard to classify. Consequently, we executed
a simple method to measure the specificity of classification and find out which classes are more
likely to get merged. The confusion matrix was constructed after first level of classification using
the predicted and actual classes as its rows and columns, respectively. We employed a thresholding
technique to combine similar classes into one larger class. For any class, if more than 50% of the
class was predicted as another class, we combined them into a single class. This method helped us
to find similar PAs in an unsupervised manner. After combining the similar classes, we performed
a second level of classification to construct the final confusion matrix. We have shown the final
number of combined classes as the measure of specificity.
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2.3. Results

We trained the classification process with a random subset of 40 adult participants using SFS and
GMM. The rest (112 adults) were used as the test data. The classification results for the adult samples
are shown below.

2.3.1. Lab-Based PA Classification Results

We have shown classification results for the four major classes of activities; stationary, walking,
running and stair climbing in Table 2. The table shows the number of initial activity classes, the number
of combined classes after merging and the final classification accuracy using GMM and HMM. Out of
15 walking activities, 5 classes (PA classes 5, 10, 12, 14 and 16 from Table 1) and two classes (PA classes
15 and 19 from Table 1) were merged into two single PA classes using GMM. With HMM, two classes
(PA classes 6 and 9), four classes (PA classes 10, 12, 14 and 16) and two classes (PA class 15 and 19)
were merged into three single PA classes. Similar groups of classes were merged with both classifiers.
In all other activities, the classes mostly remained unmerged. Observing the PAs that were merged,
we can see that most of the walking activities were merged. PA classes 5, 10, 12, 14 and 16 were
walking activities with or without carrying something with their dominant hand, and 15 and 19 were
both activities wearing dress shoes. Some of these merges were similar activities of different intensity.
In this study, we were limited to a single accelerometer on the non-dominant wrist, which might be the
reason why both the classifiers were not able to distinguish between these classes. This suggests that
the features from just the non-dominant wrist accelerometer are not able to capture unique descriptors
of these PAs. This limitation might be because of less variability in the intensity of movement of the
non-dominant arm. However, despite such limitations, the classifiers could identify various complex
activities. This suggests that the ‘modified’ wavelet features can be an accurate descriptor of physical
activities. Comparing the two classifiers, the final classification accuracies for all the major classes
were 99.91% (GMM) for stationary, 84.87% (HMM) for walking, 99.86% (HMM) for running and 100%
(GMM) for stair climbing activities.

Table 2. Classification accuracy for various lab-based physical activities using Gaussian mixture model
(GMM) and hidden Markov model (HMM) (showing the initial and the final number of PA classes
after merging).

Activities
Original

PA Classes PA Classes Classification Classification

PA Classes
after Merging after Merging Accuracy% Accuracy%

(GMM) (HMM) (GMM) (HMM)

Stationary 4 4 4 99.91 89.32
Walking 15 10 10 79.57 84.87
Running 3 2 3 91.4 99.86

Stair-climbing 2 2 2 100 99.8
All activities 24 21 17 78.54 90.2

2.3.2. Best Classification Model Selection

The best classification model was estimated by comparing the two classification algorithms.
Three parameters were used to compare the performances of the classifiers: trace of the confusion
matrix after the two levels of classification, final classification accuracy (mean of the trace of the final
confusion matrix) and total number of classes identified after merging (specificity). Given the input
feature vector of 10 principal components (of ‘modified’ wavelet features), we tested the classifiers in
multiple feature spaces (2-D to 10-D, each dimension representing a principal component) to find the
best classification model and feature space. The GMM gave the best classification performance in 10-D
feature space with an accuracy of 78.5% (21 final classes), and HMM gave the best performance in 6-D
feature space with accuracy 90.5% (17 final classes). Upon comparing both classifiers, the GMM
achieved higher average trace with fewer classes combined, while the HMM achieved higher
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classification accuracy with more classes combined. To decide on the better classifier, we made
a comparison between the two best cases of GMM and HMM by combining one class at a time and
comparing the accuracy after each step, until all classes were merged to one whole class (Figure 2).
It can be seen in Figure 2, as we kept combining PA classes, HMM showed a better convergence
than GMM. Thus, the classification model of the HMM in 6-D feature space was selected as the best
classification model. We used the models of all the 24 classes to identify PA in the free-living setting.

Figure 2. Convergence characteristics of each classifier (GMM and HMM), comparing the classification
accuracies, as a PA class is merged at every step.

3. Free-Living Study Protocol

3.1. Data Collection

The 20 participants (50% male, age 21–46 years old) who participated in the free -living protocol
were instructed to indicate two typical days (one weekday and one weekend day) for data collection.
The participants included students, office workers, professors and home-makers. On those selected
days, they were instructed to maintain their usual daily activity pattern while two researchers were
independently classifying their activities through direct observation [43]. The researchers continuously
classified a participant’s activity over a 6–8 hour period using a researcher-developed mobile app that
allowed for continuous activity classification. Activities were labeled based on the type and context
of activities. The six physical activity type labels were walking, sitting, jogging, reclining, standing
and squatting whereas the context labels were sports/exercise, household chores, transportation,
occupation and leisure. Approximately 8% of the data were classified as unobserved, when participants
required private time (e.g., restroom use) or were out of sight of the researchers. On both days,
participants were asked to wear the GENEActiv continuously along with other activity monitors.

3.2. Data Processing

In the lab-based settings, we modeled unique PA by distribution of Gaussian mixtures in
a 6-D space. From the lab-based results, it was shown that the best supervised classification model
was accomplished using HMM with the first six principal components of the ‘modified’ wavelet
features. We used all the 24 PA models to identify PA in the free-living settings in an unsupervised
classification framework. The primary goal of the free-living data analysis was to identify PA and
the PA intensity associated to the identified activity types. The entire process was divided into the
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following sub-sections based on the order they were performed: pre-processing, feature extraction,
unsupervised classification and Gaussian model matching (see Figure 3).

Figure 3. Free-living activity identification process chain.

3.2.1. Pre-Processing

The resultant acceleration, R, was calculated from the tri-axial acceleration signals and was used
as the main signal from which features (PA descriptors) were extracted from 10 second windows of
the signal.

3.2.2. Feature Extraction

The ‘modified’ wavelet coefficients proved to be the most efficient feature choice for the lab-based
settings study. The first six principal components of 20 ‘modified’ wavelet coefficients were used as
feature vector.

3.2.3. Unsupervised Classification

Since the number of activities performed during a session was unknown, we first estimated
the total number of activities performed using Gaussian mixture maximum likelihood estimation.
The maximum log likelihood is calculated using the following equation,

Ml = arg max
K

N

∑
n=1

{
K

∑
k=1

πkN(xn|μk, Σk)}

where, xn are the data points, N is total number of data points from a session and K is the total
number of PA classes for each session. μk and Σk are the mean and standard deviation of the
Gaussian distributions corresponding to each PA class. After estimating the total number of classes,
we performed classification using HMM with output distribution of Gaussian mixtures to find the
Gaussian distribution corresponding to each activity.

3.2.4. Gaussian Model Matching

Using unsupervised classification, we managed to estimate the total number of activities and
modeled them by a mixture of Gaussians in the 6-D feature space. However, we still needed to identify
the activities. We identified an unsupervised activity as the lab-based PA that had the ‘minimum
distance’ in the feature space. We defined this ‘distance’ as the distance between the means of the
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Gaussians of the unsupervised model and the best supervised model. The predicted unsupervised PA
is given by Lc and computed as follows,

kc = arg min
Lc ,c=1,...,24

|μk − μLc |

μx and μLc are the means of the kth free-living PA class from the unsupervised model and cth
lab-based PA class from the best supervised model Gaussian distributions.

3.3. Results

We first estimated the total number of activities performed by a participant in each session using
Gaussian mixture maximum likelihood. HMM and Gaussian model matching were used to identify the
estimated activities among the pool of lab-based activities. In Figure 4, we have shown the proportion
of the identified PA performed by the participants in each free-living session. It can be seen that
‘Standing/fidgeting with hands while talking’ was the most commonly performed PA. Most of the study
participants spent the majority of their sessions performing stationary activities, and at most 10%
of the time performing ambulatory activities. Result shows that participants 3, 5, 6 and 16 mostly
performed ambulatory activities during their second sessions. We also estimated the intensity levels of
the activities using the corresponding MET values of the estimated classes. A correlation coefficient
of 0.80 was achieved between the estimated and the actual intensity level, which was approximately
calculated from direct observations. Figure 5 shows the estimated number of activities performed
by a participant (total 20) in each session (total 2) and the estimated intensity levels along with the
recorded activity and context labels. Results are shown in terms of percentage of time spent on different
activities (estimated and observed).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
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40
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Figure 4. Free-living analysis results, showing the proportion of identified PA for each participant
in each session; each column represents a session, showing the percentage of time spent on unique
activities (out of 24 lab-based PA) by a participant in that session.
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Figure 5. Free-living analysis results, showing the estimated number of PA and intensity levels
(estimated), the observed activity types and contexts for every participant in each session. Results
are shown in the form of percentage of time spent on each type of activity in a session. For example,
participant 1 performed more that 90% of his 1st session performing sedentary or light intensity
physical activities (estimated), and from the observed labels, it can be seen that he performed sitting
and standing activities for more than 90% of the time, which was mostly during his workday.

4. Discussion

This study systematically classified 24 lab-based supervised PAs and used the best classification
model to identify activities in free-living settings. The lab-based participants (N = 152) performed
activities from a pool of four stationary, 15 walking, three running and two stair climbing activities.
We achieved fairly high accuracy, identifying classes from each activity group with both GMM
(79–100%) and HMM (85–99%), with some limitations in specificity regarding a few walking activities.
We then tested both the classifiers with the entire dataset in different feature spaces to find out the best
classification space. The HMM in a 6-D feature space proved to be the best classification model and this
model was used to identify unsupervised activities in the free-living settings. We estimated the total
number of activities and identified them for 20 participants in each session. We further estimated the
PA intensity levels with high accuracy (approximately 80%) and found that nearly all participants spent
most of their time doing stationary and light intensity activities. The recorded activity levels showed
that participants spent most of their time performing stationary (i.e., sitting and standing) activities.

In the last decade, GMMs and HMMs have been successfully applied in classification problems
for their low computational complexity and robustness. HMMs make use of both the similarity of
shapes between test and reference signals and the probabilities of shapes appearing and succeeding
in time series signals, which makes it a dynamic modeling scheme. The GMM, on the other hand,
is a static modeling scheme and it can be thought of as a single state HMM. In this study, the GMM does
a better job classifying stationary activities, but overall the HMM outperforms GMM. This suggests
that dynamic models are more suitable to recognize complex PA, especially non -stationary activities.
On the other hand, a static model like GMM is more likely to classify stationary activities with
better precision.

This study is unique because both lab-based and free-living dataset were investigated, with one
dataset co-dependent on the other. We identified novel descriptors of PA from accelerometer signals
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(‘modified’ wavelet coefficients) that can be used to classify PA and produce near-accurate models.
In our previous paper [34], we already showed that these features were efficient descriptors of gait
patterns in 99 older adults with disabilities. With the use of a novel unsupervised classification
technique we identified free-living PA and estimated energy expenditure. Generally, activities
performed on a daily basis are more complex than the 24 activities investigated in this study. This study
suggests that although the identified activities might not be exactly the same as the real activity, it can
be a close approximation. Of note, our results suggest less degradation in activity classification
accuracy from laboratory to free-living settings than previous studies. We posit that this may be
because of the robust activity classifier that was developed given the large sample size and diverse set
of laboratory-based activities.

This study has important implications for physical activity researchers. First, because these
data were collected using a raw waveform accelerometry on the wrist, these computations can be
replicated across a large range of wearable sensors that capture and make available to the researcher
raw accelerations, and are not limited to the GENEactiv sensors used here. Accelerometers that can
record the magnitude and intensity of movement by measuring acceleration between the magnitudes
of ±8g (where g is equal to 9.825 ms−2, the acceleration of gravity), within a frequency range of 0 to
1 kHz, produce good spatiotemporal resolution. A good spatiotemporal resolution of the accelerometer
waveform is sufficient to extract the ‘modified’ wavelet coefficients as descriptors of PA. Second,
the study posits limitations regarding identification of some walking activities, which is due to the use
of only one accelerometer on the non-dominant wrist. Although wrist-worn accelerometers are most
convenient to wear and associated with greater wear-time compliance, we might be able to improve
our results with the use of multiple accelerometers at various other locations of the body. Third,
although ample details are provided here for data scientists to replicate this approach, the methods
are not computationally intensive and more user -friendly tools are currently being prepared to make
this approach available for physical activity researchers. The manufacturers of wearable sensors that
are commonly used by physical activity researchers are encouraged to include this algorithm in data
analysis packages they are made available to their customers.

In summary, this study contributes to the use of wearable sensors to identify physical activities
and estimate energy expenditure in free-living settings by applying state-of-the-art machine learning
approaches to a diverse set of laboratory -based, supervised activities. This study has demonstrated
success in transferring lab-based validation techniques to the estimation of free-living activities that
can be applied to future studies that wish to estimate physical activity in cohort or intervention studies.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/18/11/3893/s1,
Section 1: Summary of features extracted for lab-based activity classification, Section 2: Sequential Forward
Selection Algorithm, Section 3: Gaussian mixture model, Section 4: Hidden Markov model, Section 5: Class
merging using confusion matrix, Section 6: Lab-based classifier comparisons.
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Abstract: Human Activity Recognition (HAR) refers to an emerging area of interest for medical,
military, and security applications. However, the identification of the features to be used for activity
classification and recognition is still an open point. The aim of this study was to compare two different
feature sets for HAR. Particularly, we compared a set including time, frequency, and time-frequency
domain features widely used in literature (FeatSet_A) with a set of time-domain features derived by
considering the physical meaning of the acquired signals (FeatSet_B). The comparison of the two
sets were based on the performances obtained using four machine learning classifiers. Sixty-one
healthy subjects were asked to perform seven different daily activities wearing a MIMU-based
device. Each signal was segmented using a 5-s window and for each window, 222 and 221 variables
were extracted for the FeatSet_A and FeatSet_B respectively. Each set was reduced using a Genetic
Algorithm (GA) simultaneously performing feature selection and classifier optimization. Our results
showed that Support Vector Machine achieved the highest performances using both sets (97.1% and
96.7% for FeatSet_A and FeatSet_B respectively). However, FeatSet_B allows to better understand
alterations of the biomechanical behavior in more complex situations, such as when applied to
pathological subjects.

Keywords: human activity recognition; wearable sensors; MIMU; genetic algorithm; feature selection;
classifier optimization; machine learning

1. Introduction

Human Activity Recognition (HAR) is a growing research field of great interest for medical,
military, and security applications. Focusing on the healthcare domain, HAR was successfully applied
for monitoring and observation of the elderly [1], remote detection and classification of falls [2], medical
diagnosis [3], rehabilitation and physical therapy [4].

A HAR system is usually made up of two components: (1) a wearable device, equipped with a
set of sensors (i.e., accelerometers, gyroscopes, magnetometers, . . . ) suitable for capturing human
movements during daily life, and (2) a processing tool that recognizes the activity performed in a
given instant by the subject. The most common systems employed for HAR are miniature magnetic
and inertial measurement units (MIMUs) that work only as a data logger, performing the signal
acquisition and storage, while an external system (pc, tablet, smartphone) is needed to process signals
and recognize the activities. However, for all those applications in which a real-time feedback is
required, it is important to create a stand-alone device able both to acquire several magnetic-inertial
signals for long periods of time and to identify the performed activities as fast as possible. From this
perspective, the desired device should be lightweight, small and easy to be worn from the subject,
provided with a long-lasting battery, and equipped with a microcontroller having enough internal
memory for signals and activities storage and able to support the implementation of a classifier for
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activity recognition. From the classifier point of view, it should be as fast as possible, in order to return
a real-time feedback, with low storage requirements and easy to be realized on a microcontroller. In a
previous work, we showed that a suitable machine learning classifier is Decision Tree (DT), that is also
able to reduce the number of input variables, decreasing the computational time, even if its accuracy
was lower than other methods [5].

Another challenging and still open aspect when dealing with HAR is the identification of
the correct set of input variables (or features) for the classifier. Analyzing the literature, different
approaches can be found. The most popular approach is based on time-domain features [6–8], that are
usually of a statistical nature: mean value, median, variance, skewness, kurtosis, percentiles and
interquartile range. Some studies use cross-correlation coefficients to quantify the similarity between
signals coming from different axes [9,10], but other studies demonstrated the inefficiency of these
features [11]. To give an idea of the energy and power contained in signals, frequency-domain
features, such as signal power, root mean square value, auto-correlation coefficients, mean and median
frequency, and spectral entropy, are commonly extracted [8,12]. Finally, some approaches based on
the time-frequency domain can be found in the literature, in particular using the Discrete Wavelet
Transform (DWT), that allows a decomposition of signals into several coefficients, each containing
frequency data across temporal changes [13]. A detailed review of features used for HAR applications
and belonging to time, frequency and time-frequency domains can be found in [14]. Although the
great majority of applications use these kinds of features, three main problems must be addressed:
(1) the extraction of frequency-domain and wavelet-domain features could result really hard for a
microprocessor [15]; (2) the great majority of these features are not directly related to the acquired
signals and, thus, they are difficult to attribute to physical quantities, complicating the interpretation
of the results and the understanding of errors; (3) the number of variables proposed in the literature is
huge and this is not always associated with high classification accuracy since some of them could be
sources of noise [16].

Feature Selection (FS) is a fundamental step when dealing with high-dimensional data, allowing
for eliminating those variables that are redundant or irrelevant for the system description. Moreover,
it has been proven that FS increases the classification performance [17], due to the removal of those
variables introducing noise during the classifier construction and application. Two main categories of
FS algorithms have been proposed in the literature and successfully applied in the biomedical field for
dataset [18], signal [19] and image [20] processing: filter and wrapper methods [21]. Filter methods
perform FS independently of the learning algorithm: variables are examined individually to identify
those more relevant for describing the inner structure of the analyzed dataset. Since each variable
is considered independently during the selection procedure, groups of features having strong
discriminatory power may be ignored. Conversely, in wrapper methods, the selection of the feature
subset is performed simultaneously with the estimation of its goodness in the learning task. For this
reason, this latter category of FS methods usually can reach better performances than filter methods [21],
since it allows for exploring also feature dependencies. On the other hand, wrapper FS could be
computationally very intensive and the obtained feature subset optimized only for the specific learning
algorithm or classifier.

Moreover, once a feature subset is fixed, different classification results might be obtained
changing the classifier parameters, since they strongly influence the classification performance [22].
Several approaches have been developed for parameters tuning, e.g., grid search, random search,
heuristic search [23]. However, the simultaneous selection of the optimal feature subset and
optimization of the classifier parameters is likely the only way assuring to reach the best performances.
Since an exhaustive search of the best couple feature subset-classifier parameters is unfeasible in most
real situations, heuristic search represents a convenient way to find a good compromise between
reasonable computational time and sub-optimal solutions. In particular, genetic algorithms (GAs)
have been applied for solving optimization problems connected to FS [17] and parameter tuning [22],
but very scarce applications can be found for the simultaneous optimization of both aspects.
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The aim of this study is to compare two sets of features for real-time HAR applications:
FeatSet_A comprising time, frequency and time-frequency domain parameters presented in the
literature and FeatSet_B consisting of variables belonging only to the time-domain and derived from
the understanding of how a specific activity will affect the sensor signals. The most informative
features for each set were identified using a GA that simultaneously performs feature selection and
optimization of the classifier parameters. Then, the obtained feature subsets were compared analyzing
the performances reached by four different machine learning classifiers.

The rest of the paper is divided as follows: Section 2 describes related works about HAR
using wearable sensors. Section 3 presents the protocol and population involved in our experiment,
the extracted features and the GA used for simultaneous FS and classifier optimization. Results are
presented in Section 4 and discussed in Section 5. Section 6 concludes this study and proposes future
directions in this context.

2. Related Work

A huge number of studies was proposed in the literature for HAR by means of wearable sensors.
Although an exhaustive analysis of publications dealing with these aspects is beyond the scope of this
paper (a recent review can be found in [24]), several aspects can be used to characterize and summarize
these studies, such as acquired signals, extracted features and algorithms used for dimensionality
reduction and activity recognition.

Accelerometric signals are common to all HAR applications. Some studies used this information
alone [25–27], but more often accelerometers were combined with gyroscopes [12,28,29] and
magnetometers [30,31]. In few cases other signals were taken into account such as quaternions [32],
temperature [1], gravity [33] or data acquired from ambient sensors [1].

Once they were acquired, the raw signals were rarely employed as they are [33,34] but usually
some kind of processing was applied to extract a set of informative features. In general, most of
extracted features belongs to the time-domain (e.g., mean, standard deviation, minimum value,
maximum value, range, . . . ) and the frequency-domain (such as mean and median frequency, spectral
entropy, signal power, entropy) [32,35,36]. However, other different variables can be found in literature,
such as time-frequency domain variables used in the studies by Eyobu et al. [12] and Tian et al. [37],
or the cepstral features proposed by San-Segundo et al. [26] and Vanrell et al. [38].

Regarding the dimensions of the obtained feature sets, three different approaches were followed
in the literature. In some studies no dimensionality reduction was performed and, thus, the whole set
of variables was used for the recognition phase [39,40]. The second approach achieves dimensionality
reduction by means of a transformation of the original set of variables in a new one with lower
dimensionality. The most common method belonging to this category is the principal component
analysis (PCA), that was employed for example in ref. [41,42]. Finally, different FS methods were
used to reduce the number of variables without any transformation, such as Minimum Redundancy
Maximum Relevance [43], recursive feature elimination [34], Information Gain [25], or evolutionary
algorithms [44].

Since the aim of a HAR application is to identify the performed activity, a proper learning
algorithm must be applied as final step. The great majority of the studies in this fields was based
on supervised learning algorithms, ranging from machine learning (support vector machine [33],
decision tree [27], random forest [32], multilayer perceptron [44], . . . ) to the emerging deep learning
neural networks [45–47]. However, sporadic applications of unsupervised learning algorithms were
proposed [48]. Ensemble learning, that combines different classifiers to improve the final performances,
was proposed by Tian et al. [37] and Garcia-Ceja et al. [40].
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3. Materials and Methods

3.1. Signal Acquisition and Experimental Setup

Signals were acquired using a MIMU-based device by Medical Technology (Torino, Italy).
The sensor unit consisted of a tri-axial accelerometer, a tri-axial gyroscope and a tri-axial magnetometer
allowing for acquiring acceleration, rate of turn, and Earth-magnetic field data, for a total of nine
signals. The measurement range was ± 4 g for the accelerometers, ± 2000◦/s for the gyroscopes and
± 4 G for the magnetometers. The sampling frequency of all signals was 80 Hz. An example of signals
acquired during a walk of a healthy subject is shown in Figure 1. For the purpose of this study, signals
were recorded in local data storage devices and transmitted to a laptop for the following analysis.

 
Figure 1. Example of signals acquired by (a) accelerometer, (b) gyroscope and (c) magnetometer during
5 s of walking of a healthy subject.

The MIMU sensor was located on the lateral side of the right thigh. The y-axis was oriented in
down-top vertical direction, x-axis was aligned to the antero-posterior direction, and z-axis was aligned
to the medio-lateral direction, pointing to lateral side. Sixty-one young and healthy subjects (28 males,
33 females; age: 22 ± 2 years; age range: 20–28 years; height: 169.9 ± 8.3 cm; weight: 64.3 ± 11.0 kg)
with no history of physical disabilities or injuries were involved in this study. All subjects were asked
to perform seven simple activities: resting (A1, comprising sitting and laying), upright standing (A2),
level walking (A3), ascending and descending stairs (A4 and A5), uphill and downhill walking (A6 and
A7). All activities lasted 60 s and were repeated five times by each subject. Activities were executed
in indoor and outdoor areas, following a default path, without any speed restriction and style of
performing. Each subject signed an informed consent form. Since this was an observational study and
subjects were not exposed to any harm, the study protocol was not submitted to an ethical committee
nor to an institutional review board.

3.2. Dataset Construction and Feature Extraction

To avoid bias due to the magnetic direction of the performed activities during signals acquisition
and magnetic disturbances on the magnetometer, only inertial information (i.e., accelerometer and
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gyroscope signals) was used for HAR. Each signal was segmented using a 5 s sliding window with an
overlap of 3 s between subsequent windows. The total number of processed windows was included in
the validation set while the training set was obtained by randomly selecting 10% of windows for each
activity of each subject.

For every window, two sets of features were extracted: FeatSet_A, comprising features commonly
used in literature, and FeatSet_B, containing only time-domain features derived from the analysis of
the expected biomechanical effect of a given activity on the sensor signals. Since features included
in the two sets had different ranges, the min-max scaling method was applied to the training sets to
obtain variables between 0 and 1:

Var_normi =
Vari − min(Vari)

max(Vari)− min(Vari)
(1)

where Vari is the original value of the i-th variable.
Even if standardization using mean and variance of each variable is commonly used for machine

learning purposes, it is suitable where close-to-Gaussian distribution could be assumed and might be
inappropriate for very heterogeneous features [49]. In this study we used features belonging to very
different domains, thus we preferred to use the min-max scaling that also preserves the original value
distribution of each variable.

Finally, since all machine learning methods tested in this study were supervised methods,
each window in the training and validation sets was labeled with the activity performed by the
subject in that specific moment. In particular, an integer number was used to codify each activity,
ranging from 1 to 7 for activities from A1 to A7, respectively.

3.2.1. FeatSet_A

FeatSet_A included 222 features belonging to different domains. In particular, for the six
considered signals we calculated:

• 20 time-domain features [14,50,51] (mean value, variance, standard deviation, skewness, kurtosis,
minimum and maximum values, 25th and 75th percentiles, interquartile range, 10 samples of the
autocorrelation sequence);

• three frequency-domain features [14,50,51] (mean and median frequency of the power spectrum,
Shannon spectral entropy);

• 14 time-frequency domain features [14] (norms of approximation and detail coefficients,
considering seven levels of decomposition of the discrete wavelet transform).

3.2.2. FeatSet_B

A set of 221 features was extracted based on the time-domain analysis of the signals. First,
we defined the positive and negative peaks as the maximum and the minimum values reached
between two consecutive zero crossings, respectively. Then, we calculated the following 33 features for
the six signals:

• number of zero crossing (one feature);
• number of positive and negative peaks (two features);
• mean value, standard deviation, maximum, minimum, and range of duration for positive,

negative, and total peaks (15 features);
• mean value, standard deviation, maximum, minimum, and range of time-to-peak for positive,

negative, and total peaks (15 features).

Moreover, we computed single and double integration of the acceleration in the antero-posterior
and vertical directions, and the single integration of the rate of turn in medio-lateral direction.
These signals represented the velocity and distance traveled by the limb in the corresponding directions.
Other 23 features were extracted from these signals:
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• mean of the single and double integration of vertical acceleration (two features);
• mean and RMS value of single integration of antero-posterior acceleration (two features);
• RMS value of double integration of antero-posterior acceleration (one feature);
• number of positive, negative and total peaks of the single integration of the rate of turn in

medio-lateral direction (three features);
• mean value, standard deviation, maximum, minimum, and range of duration of positive, negative

and total peaks of the single integration of the rate of turn in medio-lateral direction (15 features).

3.3. Recognition of Static Activities

Since static (resting and upright standing) and dynamic activities (level walking, ascending and
descending stairs, uphill and downhill walking) showed very different types of behavior from the
signal point of view, we decided to implement a first recognition step, based on a couple of rules,
to discriminate these two classes of movements. Figure 2 shows an example of accelerometer and
gyroscope signals acquired during upright standing (panels a and b) and walking (panels c and d) of a
healthy subject.

 
Figure 2. Example of signals acquired by accelerometer (left panels) and gyroscope (right panels)
during 5 s of upright standing (panels (a,b)) and walking (panels (c,d)) of a healthy subject.

The following rule was used to separate windows representing static activities from those
associated to dynamic activities:

if variance of gyroscope signal in z direction is below 600 deg·s−1, then window represents a
static activity, else window represents a dynamic activity.

Windows recognized as static activities were further separated between resting and standing
windows according to the following rule:

if mean of accelerometer signal in y direction is below 8.5 m·s−2, then the window is classified
as resting, else the window is classified as standing.

All windows recognized as dynamic activities were pooled together and used for the following
step of HAR based on GA and machine learning classifiers.
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3.4. Genetic Algorithm for Simultaneous Feature Selection and Classifier Optimization

GA [52] is a well-known optimization algorithm belonging to the class of metaheuristics, i.e.,
algorithms designed to search for optimal solutions of a given optimization problem in a reasonable
time. A GA is inspired to the Darwin’s theory of evolution and, as such, it evolves a population of
possible solutions (or individuals) toward better solutions, using the genetic operators of mutation
and crossover. The main steps of a generic GA can be summarized as follows:

(1) Generation of an initial population: a random pool of individuals is generated by the algorithm,
where an individual is represented by a binary vector, and the fitness value for all of them is
calculated. The fitness function is a mathematical function that measures the goodness of a
specific individual to solve the optimization problem.

(2) Parents’ selection: a subset of individuals is selected to be parents of a new generation of solutions
by means of a selection operator. The most used operator is the roulette wheel.

(3) Application of genetic operators: a new generation of individuals is obtained by applying
mutation and crossover to the parents. Mutation produces a change in one or more bits of
a solution and it is used for maintaining genetic diversity from one generation to the next.
The bits to be mutated are randomly selected according to a mutation probability (usually very
low, from 0.1 to 0.2). By mutation, a “1” bit in the original solution becomes a “0” bit and
vice-versa. Crossover is applied to a couple of individuals with the aim of combining their genetic
information. The two individuals are cut in correspondence of one or more random cut-points
and the produced substrings are exchanged between them. Each individual has a crossover
probability (usually higher than 0.8) to be part of at least one couple.

(4) Termination: if the stopping condition is not reached, a new population of individuals is selected
among children and parents and the algorithm restarts from Step 2. The stopping condition
is usually based on a given number of iterations or to a plateau in the fitness values of the
new generations.

In this study we developed an ad-hoc GA for searching the optimal feature subset and classifier
parameters, simultaneously. Four classifiers belonging to machine learning were tested and optimized:
K-Nearest Neighbors (KNN), Feedforward Neural Network (FNN), Support Vector Machine (SVM)
and Decision Tree (DT). Since all couples classifier-feature set were optimized, a total of 8 GAs were
implemented (four classifiers × two feature sets).

Each solution was represented by a binary vector made up of two concatenated substrings: a first
substring used for the selection of the most informative features to be input in the classifier and a
second substring codifying the classifier parameters. For the first substring, we associated one bit to
each available feature, obtaining a number of bits equal to the total number of features included in the
considered feature set (FeatSet_A or FeatSet_B). A bit assuming value equal to “1” identified a feature
included in the subset and used by the classifier, while a “0” labelled a not-used feature. The number of
bits constituting the second substring was defined for each specific classifier, according to the number
of parameters to be optimized and the values we wanted to explore. The details of the codification
scheme used for the second substring can be found in the following sections for each classifier tested
in this study.

The initial population of possible solutions comprised 400 individuals. The fitness function of
each solution was measured according to the following equation:

f itness = 1 − acc + 0.3 ×
(

max
∀activity

(
accactivity

)− min
∀activity

(
accactivity

))
(2)

where the total accuracy (acc) and the accuracy for the i-th activity (accactivity) were calculated on
the validation set for each specific classifier and were expressed in percentage between 0 and 1.
The classifiers were trained using the training set, fed with the feature subset defined by the first
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substring and set up with the parameters codified in the second substring. In Equation (2), the first
part of the formula aims at maximizing the classifier performances and the second part is a penalty
term introduced to balance the performances among the different classes. Lower fitness values are
associated with better solutions.

The parents’ selection was based on the roulette wheel algorithm [52], in which the probability of
each individual to be selected as parent is proportional to its fitness: individuals with better fitness
values have higher probability to become parents of the new generation.

Crossover was implemented with four random cut-points and probability equal to 1. The mutation
probability was set to 0.2. Two stopping conditions were implemented: maximum number of
iterations (experimentally established as 30) and a plateau in the best fitness value for 15 consecutive
iterations. All GAs and classifiers were implemented in Matlab2018a® (The MathWorks, Natick, MA,
USA) environment.

3.4.1. K-Nearest Neighbors

KNN algorithm is a simple classification algorithm based on the calculation of the distance
(usually the Euclidean distance) between the new element to be classified and the elements in the
training set. Firstly, the training elements are sorted in descending order according to their distance
from the new element. Then, the most frequent class of the first K elements (called neighbors) is
associated to the new element.

For this kind of classifier, only the value of the K neighbors must be decided. A common starting
value for K is Kin =

√
N [53], where N was the number of elements in the training set. Beginning from

this consideration, we decided to analyze 32 values around Kin and, thus, we used five bits for the
second substring of each GA solution (25 = 32): each possible value assumed by the second substring
was associated to a specific K value to be set in the classifier.

3.4.2. Feedforward Neural Network

A FNN is made up of a set of neurons, connected by weighted arcs, that process the input
information according to the McCulloch and Pitts model [54]:

y = f

(
∑

i
wi·xi

)
(3)

where y is the output of the neuron, wi are weights of the incoming connections, xi are inputs to the
neuron, and f is called transfer function and should be selected according to the classification problem.

Neurons in a FNN are organized in layers: in the input layer, one neuron for each input variable
is required; the number of neurons in the output layer is decided according to the number of classes to
be recognized and the selected transfer function; between input and output layers a certain number of
hidden layers can be inserted, whose dimensions are usually decided testing different configurations.

In this study we fixed a basic network structure with input layer and first hidden layer both
including one neuron for each feature selected according to the first substring of the GA solution, and
an output layer made up of one neuron returning the recognized activity. Then, the number of hidden
layers was increased according to the second substring of each solution: three bits were used for
adding from one to eight further hidden layers to the basic structure. Each new hidden layer included
1/2 of the previous layer neurons.

The sigmoid transfer function was used for all hidden layers and the linear transfer function was
set for the output neuron. Since the output neuron retuned a real value for each classified element,
the round operator was applied to the FNN output and used to assign the final class.
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3.4.3. Support Vector Machine

A SVM is a binary classifier (meaning that it is able to distinguish between two classes) that
projects the input elements in a new multidimensional space, usually with higher dimensionality
than the original one, in which the elements belonging to the two classes are linearly separable.
The mapping from the original to the new space is accomplished by means of a function called kernel
function, that could be linear or non-linear according to the problem complexity. In the new space,
the separation between the classes is obtained with a hyperplane that maximizes its distance from the
so-called support vectors. These are the elements of the two classes nearest to the hyperplane and their
distance from the hyperplane is called margin.

For this kind of classifier, two different parameters must be set: the kernel function and the
penalty term C, that regulates the tradeoff between large margins and small misclassification errors.
Thus, we codified in the second substring both information, using two bits for choosing the kernel
function and 4 bits for selecting the C value. For the kernel, we examined four different functions:
linear, Gaussian, polynomial of order 2 and polynomial of order 3. For the penalty term, the value was
set according to the following equation:

C =

⎧⎪⎨
⎪⎩

0.5 i f Cdec = 0
1 i f Cdec = 1

(Cdec − 1)× 10 otherwise
(4)

where Cdec is the decimal value of the 4 bits codifying the C term. Using Equation (4) we were able to
explore values between 0.5 and 140.

Since the SVM is a binary classifier and, in this study, we would like to identify seven different
activities, we implemented a multiclass model for SVM. It combined 21 SVMs using the one vs one
strategy in which, for each classifier, only two classes were evaluated, and the rest was ignored. In this
way all possible combinations of class pairs were evaluated. The final classification is then obtained
using the majority voting.

3.4.4. Decision Tree

A DT is a tree-like classifier belonging to machine learning methods. In general, the tree is
constructed top-down by recursively dividing the training set into partitions according to a given
splitting rule in the form of “if variablei < threshold then partition1, else partition2”. For each splitting
rule, a new node is created in the tree. The best splitting rule is identified as that producing two
partitions as pure as possible, where pure means that all the elements into a given partition belong to
the same class. The construction of a branch stops when the obtained partition is pure or if no more
variables can be used for partitioning: in case of pure partitions, the class of the elements is assigned
to the leaf node, while in case of no pure partitions, the corresponding leaf node is labeled with the
most represented class in the partition. During DT construction it could happen that not all available
variables are used, thus a selection of the most discriminant features could be obtained as byproduct
of this classifier. Once the tree has been constructed, a new element is classified iteratively applying
the splitting rules and following the corresponding branch until a leaf node is reached: the class of the
leaf is automatically associated to the new element.

Although several algorithms have been proposed for the tree construction and the identification
of the best splitting rule for each node, the CART algorithm [55] and the Gini index [55] are commonly
used for the these purposes, respectively, and applied in this study. Once these methods have been
selected, no other parameters must be set for DT construction and running. For this reason, in our GA
the optimization of the DT did not require bits associated to the second substring.
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3.5. Post-Processing

Each couple feature subset-classifier parameters identified by GAs was used for classifying all
dynamic windows in the validation set. Furthermore, a post-processing algorithm based on majority
voting was implemented on the outputs of each classifier, to reduce isolated classification errors:
considering 5 subsequent windows, the most frequently recognized activity was assigned to the entire
group of 5 overlapping windows.

3.6. Performance Evaluation

The performances of the eight couples feature subset-classifier parameters were evaluated
in terms of accuracy reached for each dynamic activity in every subject involved in the study,
after post-processing. The results obtained for FeatSet_A and FeatSet_B across the 61 subjects were also
compared by means of a Student t-test (paired, 2-tail, significance level: α = 0.05), for each activity
separately. Moreover, the F1-score [56] was calculated for each classifier as:

F1 − score =
2 × precision × recal

precision + recall
(5)

where recall measures the ratio between the number of true positive elements and the total number of
positive elements and precision measures the ratio between the number of true positive elements and
the total number of elements classified as positive.

4. Results

A total of 59780 windows were included in the validation set (61 subjects × 140 windows × 7
activities).

The separation of static activity windows from dynamic activity windows based on rules was
able to correctly detect 100% of resting windows and 100% of upright standing windows. Thus, for GA
implementation and performance evaluation, 42,700 dynamic windows were used as validation set
and 4270 windows were randomly included in the training set.

Table 1 summarizes the GA results for each classifier and for the two feature sets. The following
information, related to the best solution found by GAs, are reported: number of features selected by
the first substring, classifier parameters codified in the second substring, accuracy obtained on the
training set used for the classifier construction, and accuracy reached on the validation set comprising
all dynamic windows.

Table 1. GA results for each classifier and for the two feature sets.

Classifier

# of Selected
Features

Classifier Parameters
Accuracy on
Training Set

Accuracy on
Validation Set

FeatSet_A FeatSet_B FeatSet_A FeatSet_B FeatSet_A FeatSet_B FeatSet_A FeatSet_B

KNN 106 132 K = 55 K = 55 87.7% 86.6% 87.7% 86.1%

FNN 114 138
#hidden layers = 6
#hidden neurons =

[114, 57, 29, 15, 8, 4]

#hidden layers = 6
#hidden neurons =

[138, 69, 35, 18, 9, 5]
91.7% 49.7% 89.7% 48.5%

SVM 118 133 kernel = gaussian
scale = 20

kernel = gaussian
scale = 10 100.0% 99.9% 98.5% 96.4%

DT 151 103 None None 97.7% 97.1% 85.9% 82.7%

As it emerges from the table, the GA allowed a substantial reduction of the number of features
that was almost halved for both feature sets. Except for DT, a higher number of variables were selected
from FeatSet_B with respect to FeatSet_A, even if this was not associated to substantial differences in
the classifiers parameters and this did not produce better performances, neither on training nor on
validation set.
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Figure 3 shows, for each optimized couple feature subset-classifier parameters, the mean accuracy
and the standard error across the 61 subjects involved in the study after post-processing.

Analyzing the behavior of the four classifiers, it emerges that the SVM reached the best
performances, allowing to correctly recognize more than 95% of windows for all dynamic activities
and for both feature subsets. Comparing the two feature subsets, no significant differences were
observed for every dynamic activity using SVM and DT, while FNN fed with FeatSet_B was not able
to reach acceptable results. This behavior is also evident in Figure 4, where the mean accuracy and
F1-score across all seven activities (both static and dynamic) examined in this study is showed for
each classifier. Overall, the highest accuracy achieved by the SVM is 97.1% and 96.7% for FeatSet_A
and FeatSet_B respectively, while the worst mean accuracy was 65.5% obtained using FNN fed with
FeatSet_B. The same behavior can be observed for the F1-score (Figure 4 panel b): the SVM had a score
equal to 0.971 and 0.967 for the two sets, meaning that very high values of recall and precision were
reached in both cases.

Figure 3. Mean accuracy (bar) and standard error (whisker) across the 61 subjects involved in the study
for each dynamic activity (level walking (A3), ascending and descending stairs (A4 and A5), uphill
and downhill walking (A6 and A7)), after post-processing. Four classifiers are analyzed: (a) K-Nearest
Neighbors; (b) Feedforward Neural Networks; (c) Support Vector Machine; (d) Decision Tree. Asterisks
(*) mark significant differences between accuracies reached by FeatSet_A and FeatSet_B (p-value < 0.05).

Figure 4. Mean accuracy (panel (a)) and F1-score (panel (b)) of the four classifiers across the seven
activities (both static and dynamic activities), after post-processing, for the two sets of features.
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5. Discussion

In this work we compared two sets of features for HAR applications, one comprising features
widely used in literature for similar purposes [24] and the second set including variables connected to
the expected biomechanical meaning of a given activity on the sensor signals.

With respect to the FeatSet_A, our results are in accordance with or better than those obtained
by other similar studies. In a recent study by Yurtman et al. [41], the authors compared seven
machine learning classifiers using only time- and frequency-domain features. Their results
showed that, considering both static and dynamic activities, the best classifier was the SVM,
that allowed them to recognize the 86.4% of activities. Similarly, in our study the best results were
achieved by the SVM, although our mean accuracy across the seven examined activities was 97.1%.
Moreover, our methodology allowed to correctly recognize all windows related to static activities
(accuracy = 100%), whereas in ref. [41] better performances were obtained for non-stationary activities
with respect to stationary ones (accuracy of 90.7% and 70.6% respectively). Attal et al. [8] analyzed
the total accuracy across static and dynamic activities of different classifiers and they found that the
best method for HAR was the KNN, that reached 99.3% of correct classification. In our case, the mean
accuracy of KNN across the seven examined activities was 91.6% but this was our worst result for
FeatSet_A (see Figure 4 panel a).

Regarding the second set of variables, sometimes defined as heuristic features [14], it was rarely
used for activity classification thus a comparison with previous studies is difficult. Reference [1] used
some heuristic variables, such as zero crossing rate and peak-to-peak amplitude, in combination with
other time-domain and frequency-domain features. The gyroscope signal integration was used in the
study by Najafi et al. [57] for identifying postural transactions and further processed using the discrete
wavelet transform. However, to the best of our knowledge, no studies proposed an entire set of features
context-based. In our study, these variables were defined with the support of an expert in movement
analysis that analyzed in detail the acquired signals during different types of activity and the expected
biomechanical effect of a given activity on the sensor signals. From our results it is evident that this
kind of variables, associated with the proper classifier, can effectively be used for HAR purposes
with very good results (mean accuracy above 96% when used in combination with SVM). From the
implementation point of view, the computational complexity of this set of features is lower than the one
required by frequency and time-frequency domain features [15], since no transformation of the signals
is needed and features are extracted only in time-domain. Moreover, having a direct physical meaning,
heuristic features can be useful for supporting the interpretation of results in more complex situations,
for example in the monitoring of pathological subjects. In fact, in presence of pathological conditions,
the acquired MIMU signals could be altered and consequently some of the extracted features could
differ from a “standard” condition. In this case, using FeatSet_B and analyzing the physical meaning
of these “altered” variables, it could be possible to understand which biomechanical aspect is mostly
compromised by a given pathology.

Finally, our study is the first in the HAR field in which the simultaneous optimization of feature
subset and classifier parameters was performed. This allows to effectively obtain the optimal combination
between input variables and classifier. Moreover, the dimensionality reduction obtained with GA allows
for removing redundant and irrelevant features for the initial set of variables, preserving the feature
meaning and supporting the results interpretation. On the contrary, other methods widely used in HAR
literature, such as PCA [41] or linear discriminant analysis (LDA) [58], produce a transformation of the
original variables that could complicates the understanding of the obtained results.

The main advantage of the proposed methodology is that the feature subsets were compared
to the best of their performances. In fact, since a wrapper FS method was implemented with GAs,
the optimal reduced subset was identified in both situations. Moreover, the simultaneous optimization
of the classifiers allowed to find the proper set of parameters suitable for that specific input features.

One limitation of this study lies in the fact that only healthy subjects were involved in our
experiment. However, our aim was to compare the two sets of features, thus the most basic and
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common situation was used, with no introduction of gait variability due to pathological conditions.
Nevertheless, we are planning to enlarge our protocol to other neurological pathologies such as
Parkinson disease. Moreover, we are implementing the HAR directly on a wearable device composed
of three MIMU sensors (accelerometer, gyroscope and magnetometer) and a 32-bit microprocessor
equipped with floating point processing unit. The optimized version of the SVM associated with the
selected FeatSet_B variables was chosen to be implemented on this new device version.

6. Conclusions

This study focused on the emerging field of HAR and aimed at comparing a set of variables
commonly used in literature with a completely new one, comprising only time-domain variables
associated with the biomechanical meaning of acquired signals. Moreover, we used a methodology
for simultaneous feature selection and classifier parameter optimization, based on GA and never
used before in similar contexts. From our results it emerged that the two sets of features can both
reach very high recognition accuracy, above 96%, if associated with the SVM classifier. However,
the newly-proposed set of variables can be easier to be interpreted and their biomechanical meaning
could be employed to better understand alterations of the biomechanical behavior in more complex
situations, such as when applied to pathological subjects.

Author Contributions: Investigation, S.R.; Methodology, S.R. and G.B.; Supervision, G.B. and M.K.;
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Abstract: Wearable physiological monitors have become increasingly popular, often worn during
people’s daily life, collecting data 24 hours a day, 7 days a week. In the last decade, these devices
have attracted the attention of the scientific community as they allow us to automatically extract
information about user physiology (e.g., heart rate, sleep quality and physical activity) enabling
inference on their health. However, the biggest issue about the data recorded by wearable devices is
the missing values due to motion and mechanical artifacts induced by external stimuli during data
acquisition. This missing data could negatively affect the assessment of heart rate (HR) response and
estimation of heart rate variability (HRV), that could in turn provide misleading insights concerning
the health status of the individual. In this study, we focus on healthy subjects with normal heart
activity and investigate the effects of missing variation of the timing between beats (RR-intervals)
caused by motion artifacts on HRV features estimation by randomly introducing missing values
within a five min time windows of RR-intervals obtained from the nsr2db PhysioNet dataset by using
Gilbert burst method. We then evaluate several strategies for estimating HRV in the presence of
missing values by interpolating periods of missing values, covering the range of techniques often
deployed in the literature, via linear, quadratic, cubic, and cubic spline functions. We thereby compare
the HRV features obtained by handling missing data in RR-interval time series against HRV features
obtained from the same data without missing values. Finally, we assess the difference between the use
of interpolation methods on time (i.e., the timestamp when the heartbeats happen) and on duration
(i.e., the duration of the heartbeats), in order to identify the best methodology to handle the missing
RR-intervals. The main novel finding of this study is that the interpolation of missing data on time
produces more reliable HRV estimations when compared to interpolation on duration. Hence, we can
conclude that interpolation on duration modifies the power spectrum of the RR signal, negatively
affecting the estimation of the HRV features as the amount of missing values increases. We can
conclude that interpolation in time is the optimal method among those considered for handling data
with large amounts of missing values, such as data from wearable sensors.

Keywords: heart rate; IoT wearable monitor; health

1. Introduction

In the last two decades, the interest in the variation of the timing between beats (RR-intervals) of
the cardiac cycle, called heart rate variability (HRV), has widely increased in the psycho-physiological
research field. Assessment of RR-intervals variability is possible through time and frequency domain
analyses that provide parameters able to quantify the amount of fluctuations occurring between
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consecutive beats, giving therefore an indirect index of autonomic regulation. Actually, the parameters
extracted from HRV analysis are useful to provide insight about sympathetic-parasympathetic balance
of cardiac vagal tone that was found to be an indicator of cognitive, emotional, social and health
status [1].

Thanks to the technological advancements of recent decades, it is now possible to continuously
record heart activity during peoples’ life via wrist-worn wearable devices equipped with heart
rate sensors. This innovation might have a great impact on the medical field because of the low
cost of the devices and the possibility to obtain continuous passive measurements performed in
an ecological setting, gaining an overview of the users’ health status by assessing HRV features
during their daily life [2]. These wrist-worn wearable devices, however, produce several inconsistent
RR-intervals produced not only by ectopic beats (e.g., atrial fibrillation and premature heart beat),
but mainly by motion and mechanical artifacts induced by external stimuli. The number of abnormal
RR-intervals increases from 1%—when heart beats are recorded with gold standard technology (i.e.,
electrocardiography)—[3] to more than 10%—when they are recorded with wrist-worn wearable
devices. However, standard methods for calculating HRV features from the time-series of RR-intervals
require accurate beat detection. Hence, handling the missing values became a fundamental aspect
to correctly evaluate users’ physiological response. As a matter of fact, these missing values affect
the HRV analysis producing misleading results [4]. In previous studies, the inconsistent RR-interval
data were handled by reconstructing the missing values using nearest-neighbour, linear, cubic spline
and piecewise cubic Hermite interpolation methods [4,5]. However, these methods can also introduce
changes in the reconstructed timeseries that could corrupt the signal spectrum [6], thus reducing the
ability to estimate both time or frequency domains HRV features.

In this paper, we focus on healthy subjects with normal heart activity, and investigate the effects of
interpolation on time (i.e., the timestamps when the heartbeats happen) and duration (i.e., the duration
of the heartbeats) with an increasing amount of missing values (from 0% to 70%) in order to assess
which interpolation strategy yields better results when estimating HRV features. In particular, in this
paper we show that quadratic interpolation on time is the best approach to reconstruct the missing
RR-intervals. Anyway, the main finding of this study is that the interpolation on time produce better
HRV feature estimation that the interpolation on Duration suggested by all the previous studies.

1.1. Paper Contribution

To the best of our knowledge, this work is one of the first studies investigating the effect of
high percentage of missing values (i.e., 30%, 50% and 70%) on HRV analysis. In previous studies,
the inconsistency of RR-intervals was due to a small number of ectopic beats, while wrist-worn
wearable devices introduce motion and mechanical artifacts that produce a huge quantity of abnormal
heart beats.

Moreover, to the best of our knowledge, this is the first study to analyse the effect on HRV features
of interpolation on time versus interpolation on duration. We show the difference among interpolation
methods (i.e., no-interpolation, nearest neighbor, linear, quadratic and cubic spline) on both time and
duration timeseries in order to detect which interpolation method yields lower error in HRV features
estimations. This analysis permits to provide insight about how the interpolation methods work in
quantifying the noise introduced into the timeseries.

We conclude by showing that interpolation on time is the best choice for preprocessing
RR timeseries with missing values, contradicting the approach traditionally followed, based on
durations timeseries.

1.2. Related Work

During the day, approximately 1% of beats are to be expected to be ectopic [3] when they are
recorded by using gold standard instrument (i.e., Electrocardiography). An ectopic beat is a disturbance
of the cardiac rhythm that induces premature ventricular or atrial contraction. The physiological artifact
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producing inconsistent beat seriously affects the HRV spectrum, and could result in erroneous results
during HRV analysis by introducing non-existing frequencies into the spectrum [7]. In addition to
physiological artifact, motion and mechanical artifacts induced by external stimuli introduce a large
amount of inconsistent beats when the data are recorded by using wrist-worn wearable device [4–6].
This work is one of the firsts studies that investigate the effect of huge quantities of inconsistent
beats that are not only derived from ectopic beats. Since missing data are common in the RR-interval
timeseries derived from wrist-worn wearable device, they could complicate the analysis of HRV
features making it sometimes impossible. To make reliable HRV analysis, previous studies suggested
several preprocessing methods for RR-intervals timeseries (e.g., deletion, interpolations and filtering).
However, these preprocessing methods have their own distinct effect on HRV analysis yielding
different results [7].

The simplest way of handling the inconsistent RR-intervals provided in literature is to delete
them [8]. In this approach, the abnormal RR-intervals are removed and the normal RR-intervals list
are merged together. A huge issue of the deletion approach is that it reduces the overall length of the
HRV signal. This may significantly influence HRV spectrum [8]. Other interpolation methods maintain
the original number of samples, but, by manipulating the duration of RR-intervals, they also change
the overall duration by some amount. There are several interpolation approaches useful for handling
inconsistent RR-intervals, i.e., zero degree, linear and cubic spline [9]. Zero degree replaces the
inconsistent RR-intervals with the mean of the closest normal values. Differently, linear interpolation
fits a straight line over the inconsistent RR-intervals to obtain normal values. Finally, the most
popular interpolation approach is the spline of order three (i.e., cubic spline). It fits a third degree
polynomial smooth curve through a number of data points to obtain new values. This latter approach
is recommended when there is only small number of inconsistent RR-intervals [9].

Finally, it was found that the interpolation introduces low frequency components (LF) and reduces
high-frequency components (HF) power [6]. This aspect affects frequency domain HRV features [5],
while little effect was found in time domain HRV features [4].

We were not able to find any previous work studying the effect of interpolation missing values on
the duration versus time, and the propagation of error to HRV features.

2. Materials and Methods

2.1. Dataset

In this paper, we used nsr2db (Normal Sinus Rhythm RR Interval Database) PhysioNet dataset [10].
This dataset contains beat annotations of 54 normal sinus rhythm subjects (30 men: 28–76 years;
24 women: 58–73 years) extracted from 23 h long electrocardiogram (ECG) recordings, digitized at
128 samples per second, and beat annotations obtained by automated analysis with manual review
and correction.

In order to compute HRV features, the 23 h time series of ECG recording of each user were
split into 5 min windows. Moreover, to investigate the effect of missing values on HRV analysis,
artificial missing RR-intervals (i.e., 30%, 50% and 70% of missing values) were inserted into the
5 min windows.

The missing values were created in accordance with a burst Gilbert model that simulates
burst-error with a two-state Markov chain (i.e., good as 0 and bed as 1) [11]. We define P as the
probability of transition form state 0 to the state 1 and p the probability of transition from state 1
to 0. Moreover, Q and q give the probabilities of remaining in the same states 0 or 1 (see Figure 1).
Using these parameters, it is possible to represent average bit-error rate Pe as showed in Equation (1)
and the average burst length (Llength) is set at 10.

Pe =
P

p + P
. (1)
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Given these equation, we define P, p, Q and q as showed in Equations (2)–(5), respectively.

p = 1/Lburst (2)

P =
Pchange

1 − Pchange
∗ p (3)

q = 1 − p (4)

Q = 1 − P, (5)

where the Pchange is set in accordance with the missing values percentage that we want to add in the
time series (e.g., if we want 20% of missing values we set Pchange as 0.3). The missing values were
introduced in the time series when the state of the two-state Markov chain is equal to 1. Examples of
30%, 50% and 70% of missing values created by Gilbert model are provided in Figure 2.

Figure 1. Gilbert model simulates burst-error with a two-state Markov chain (i.e., 0 and 1).

Figure 2. Examples of 30%, 50% and 70% of missing values created by Gilbert model. The colored lines
refer to missing beats.

2.2. Missing Values Interpolation

The missing values were then handled with six different interpolation methods:
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• No interpolation: this approach does not create interpolated values of missing RR-intervals.
Differently to the Deletion method that remove missing values merging non-consecutive beats
that induce in missing interpretation of HRV features, the no-interpolation method maintains the
missing values into the RR-intervals time series.

• Nearest neighbor: the nearest neighbor or proximate interpolation is the easiest interpolation
method [12]. This interpolation assigns the value of the closest known (existing) neighbor to the
missing- value as shows in Equation (6).

Xi =

{
xB if i < a+b

2

xA if i ≥ a+b
2

(6)

where a and b are the indexes of xA and xB. Interpolated data by this method are discontinuous
and it often yields the worst results [13]

• Linear: this method fits a straight line passing through points xA and xB [14]. Interpolated data
by the linear model are bound between xA and xB as showed in Equation (7).

Xi =
xA − xB

a − b
(i − b) + xB. (7)

Gaunck et al. [14] demonstrated that this method is efficient, and most of the time it is better
than non-linear interpolations for predicting missing values in environmental phenomena
with constant rates. In addition, they also found that in average this interpolation model
underestimated the real values but it strongly depends on the distribution of the data.

• Quadratic: differently from the linear interpolation model, the quadratic function needs three
points of interest to interpolate missing values in a time series as showed in Equation (8).

Xi = xB
(i − b)(xC − xA)

2(b − a)
+

(i − b)2(xA − 2xB + xC)

2(b − a)2 . (8)

Compared to the linear model, quadratic interpolation is found to be in general more accurate [13].
• Spline cubic: fitting datapoints using polynomials of degree higher than one leads to problems

of oscillation outside the fitted points, known as Runge’s phenomenon [15]. This problem can
be avoided by using a spline, a function defined piecewise by polynomials, using datapoints as
control points instead of forcing the fitted function to pass through the data points. Cubic spline
is a spline composed of piecewise third-order polynomials. By using third degree polynomials is
possible to ensure that the resulting curve is smooth [15], avoiding the problem of the straight
polynomial interpolation that tends to induce distortions on the edges of the polynomials, given by
the fact that, in general, the first and second derivative of the function defined by piecewise
polynomials will not be continuous at the edges of polynomials. With cubic spline, it is possible to
force the first and second derivatives of consecutive polynomials to be equal, ensuring smoothness
of the resulting curve.

We applied each of the interpolation methods listed above to heartbeats expressed as a sequence
of durations and as a sequence timestamps, then analyzed the error in HRV features estimations,
in order to identify the best approach.

The on-duration approach is the one mostly used in literature to handle missing values.
The data used as input to the interpolation methods was the sequence of durations of the heartbeats
(the RR-intervals), obtained by subtracting the timestamp of each heartbeat from the timestamp of the
subsequent heartbeat in the sequence of heartbeats.

Differently, we propose the the on-time approach whereby interpolation methods are applied to
the sequence of timestamps of the heartbeats, postponing the differentiation preprocessing step that
transforms timestamps into durations to after the interpolation step.
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As shown in Figure 3 the difference between the on-time and on-duration approaches is the order
of the processing steps: in the on-duration approach the timestamps are converted to durations as the
first processing step; in the on-time approach this step is performed after interpolation is performed.

timestamps to
durations

interpolation 
method

HRV features
calculation

timestamps to
durations

interpolation 
method

HRV features
calculation

On-duration approach
processing steps

On-time approach
processing steps

Figure 3. Processing steps in the on-time and in the on-duration approaches.

To better illustrate the differences between interpolation on time and duration, we simulated
100 heartbeats and then we randomly generated 10% of missing RR-intervals in this artificial timeseries
by using Gilbert burst approach. The length of the RR-intervals timeseries changes when we
interpolate the missing values on duration, while it remains the same when we interpolate on time
(Table 1). This result suggests that the interpolation on duration moves beats away from their original
position in time, introducing changes to the spectrum, while interpolation on time preserves the
position on time of retained heartbeats. In particular, Table 1 shows that the low RR-intervals error
(i.e., average difference between heartbeats duration) is obtained with linear interpolation on time.
The nearest interpolation on time was not performed because interpolating with this approach is
useless, as the interpolated values introduced into the timeseries would have the same time as the
closest beat, creating physiologically impossible data.

Table 1. Difference between duration and time interpolation by using different approach (i.e.,
no-missing values, nearest neighbor, linear, quadratic, and cubic spline).

Window Time (s) RMSE (s) RE (%)

Interpolation Time Duration Time Duration Time Duration

No-missing values 90.11 — —
Nearest — 91.95 — 0.096 — 5.11
Linear 90.11 91.83 0.075 0.090 3.70 4.86

Quadratic 90.11 92.13 0.084 0.107 4.35 5.83
Cubic spline 90.11 92.24 0.085 0.109 3.46 6.63

Figure 4 provide more detailed analyses of the difference between linear interpolation on both
duration and time. The cumulative error when the missing values are interpolated on duration
increases as the time series goes by because it creates RR-intervals in accordance with the closest interval
values (i.e., the higher is the number of missing values, the higher is the cumulative error) depending
on the interpolation type used (e.g., linear, quadratic and cubic spline). Differently, time interpolation
did not introduce change in time series length due to the fact that this approach estimates intermediate
values between the time when two observed beats happen in accordance with interpolation type.
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Figure 4. Difference between linear interpolation on time and duration. Red solid line refers to
real variation of the timing between beats (RR-intervals) time series, green dashed line refers to the
on-duration approach, and green dot dash line refers to the on-time approach.

2.3. Feature Engineering

To obtain HRV features, we analyzed real (i.e., without missing values values), non-interpolated,
and interpolated (i.e., with different percentage of artificial missing values values) 5 min ECG time
series. We analyze time domain HRV features, frequency, and non-linear domains. Time domain
analysis usually contains various statistical variables of the duration time series. The frequency domain
analysis investigates the power spectrum of RR-intervals time series in order to assess the cardiac
autonomic balance (i.e., sympathetic and parasympathetic nervous systems activity). Additionally,
non-linear HRV features try to capture the non-periodic behaviour of the HRV and the complexity that
exists inside the RR-interval dynamics. The variables that we incude in our analysis, in both time and
frequency domain, are defined as:

• Time domain:

– HR mean: mean values of heart rate (HR) computed as showed in Equation (9).

HRmean =
1

N − 1

N−1

∑
i=1

60/(Ri+1 − Ri), (9)

where N is the number of beats and R is the time when the beats happened.
– RMSSD: root mean square of the successive RR-intervals differences (Equation (10))

represents the strength of the autonomic nervous system (specifically the parasympathetic
branch) at a given time.
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RMSSD =

√√√√ 1
N − 1

N−1

∑
i=1

[(Ri+1 − Ri)− (Ri − Ri−1)]2, (10)

where N is the number of beats and R is the time when the beats happened.
– SDNN: standard deviation of RR-intervals (Equation (11)). It reflects the cyclic components

responsible for variability in the RR-intervals time series. The SDNN is the “gold standard”
for medical stratification of both morbidity and mortality [16].

SDNN =

√√√√ 1
N − 1

N

∑
i=1

(RRi − RR)2, (11)

where N is the number of beats and RR is the intervals between two consecutive R and RR is
the mean of RR-intervals in the time series.

– PNN50: the ratio between NN50 (i.e., number of pairs of successive RR intervals that differ
by more than 50 ms) and the total number of RR-intervals (Equation (12)).

PNN50 =
NN50count

NRR−intervals
(12)

• Frequency domain:

– Power spectral density (PSD): describes the distribution of power into frequency components
composing that signal. The Lomb–Scargle periodogram for PSD estimation was found
to be the most appropriate method to analyze RR-interval data [5,6]. VLF (power in
very-low-frequency ranges, i.e., ≤0.04 Hz), LF (power in low-frequency ranges, i.e., 0.04–0.15
Hz), HF (Power in high-frequency ranges, i.e., 0.15, 0.4 Hz), LF/HF ratio (ratio between LF
and HF expressed as ms2), and total power (Power in all the frequency ranges, i.e., ≤0.4)
were obtained by the sum of the power in the relevant frequency range in the spectrum.

• Non-linear HRV features:

– Poincaré plot: it is a type of recurrence plot used to quantify self-similarity in processes.
A Poincaré plot is a graph of RR interval (RRn) against the previous one (RRn − 1).
From this scatter plot, it is possible to quantitatively analyze the variance of two consecutive
RR-intervals by fitting an ellipse to the plotted shape. SD1 is the standard deviation of
Poincaré plot perpendicular to the line-of-identity, while SD2 is the standard deviation of the
Poincaré plot along the line-of-identity.

2.4. Success Metrics

We assessed the difference of HRV variables computed on real time series and the ones with
missing values by the root mean squared error (RMSE). Additionally, the relative errors (REs,
see Equation (13)) were used to assess the effects of the missing data on the HRV features compared
with the parameters calculated from the RR-intervals timeseries without missing data.

RE =
|xreal − xk|

xreal
∗ 100, (13)

where xreal refers to the HRV features computed from RR-intervals timeseries without missing values,
while xk refers to the values obtained from interpolated timeseries.
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3. Results and Discussions

3.1. Results Summary

We analyzed 15,359 RR-intervals timeseries of 5 min in this study. Table 2 shows the descriptive
statistic of the HRV features extracted from all users in the dataset. In particular, the users shows an
average heart rate of about 75 ± 14 beats per minute.

Table 2. Descriptive statistic of hart rate variability (HRV) features. Mean and 95% coefficient intervals
(CI) are provided for all the feature.

HRV Features Mean 95% CI

IBI (s) 0.78 [0.54, 1.11]
PNN50 (n) 8 [4, 16]
RMSSD (s) 0.039 [0.017, 0.36]
SD1 (s) 0.027 [0.012, 0.26]
SD2 (s) 0.077 [0.040, 0.25]
SDNN (s) 0.059 [0.017, 0.25]
VLF (s2) 0.87 [0.22, 4.15]
LF (s2) 0.477 [0.12, 5.57]
HF (s2) 0.28 [0.050, 3.024]
total power (s2) 1.91 [0.53, 21.44]
LF/HF (s2) 2.9 [1.2, 10.2]

Table 3 shows that the on-time approach (i.e., interpolation on the timestamp of heartbeats)
produces more reliable HRV feature estimations compared to the on-duration approach (i.e.,
interpolation on interval duration between two consecutive heartbeats). In this table we provide
the results of the best interpolation approach for each HRV feature and for all the percentages of
missing values. The RE and RMSE values provided in this table refer to the error induced by missing
values when we compare HRV features obtained from the real RR-intervals timeseries versus the ones
obtained from interpolated timeseries. The best interpolation methods provided in Table 3 refer to the
ones with lower RE. For all of the HRV features, the highest was the percentage of missing RR-intervals,
and also the parameters estimation errors. This was due to the fact that the power spectrum of the
RR-intervals signal changes with the number of missing values. The choice of the interpolation method
also added different types of noise to the signal. As shown in Table 1, the interpolation on time, or not
interpolation at all, produces more reliable HRV features compared to interpolating on duration.

Table 3. Best performing interpolation approach (i.e., with low RE) for each HRV feature in each
percentage of missing values evaluated. The error in estimating HRV features is reported using RE
and root mean squared error (RMSE).

Interpolation
Missing Values (%) HRV How Method RE (%) RMSE

30

RMSSD (s) No-interpolation 14.65 0.38
SDNN (s) Time quadratic 9.42 0.34
PNN50 (n) No-interpolation 24.37 1.51

SD1 (s) No-interpolation 14.68 0.27
SD2 (s) Time quadratic 8.57 0.47

VLF (s2) Time quadratic 14.50 0.82
LF (s2) Time quadratic 26.87 2.01
HF (s2) Time quadratic 32.18 4.48

LF/HF (s2) Time cubic 41.39 1.73
total power (s2) Time quadratic 17.16 6.26
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Table 3. Cont.

Interpolation
Missing Values (%) HRV How Method RE (%) RMSE

50

RMSSD (ms) No-interpolation 23.13 0.76
SDNN (s) Time quadratic 15.47 0.41
PNN50 (n) No-interpolation 39.01 2.35

SD1 (s) No-interpolation 23.18 0.54
SD2 (s) Time quadratic 13.49 0.49

VLF (s2) Time quadratic 23.72 0.40
LF (s2) Time quadratic 42.42 1.12
HF (s2) Time quadratic 52.56 2.48

LF/HF (s2) Time cubic 58.07 2.26
total power (s2) Time quadratic 27.59 3.96

70

RMSSD (s) No-interpolation 34.37 0.91
SDNN (s) Time quadratic 22.76 0.47
PNN50 (n) Time linear 63.90 3.88

SD1 (s) No-interpolation 34.46 0.59
SD2 (s) Time quadratic 19.19 0.51

VLF (s2) Time quadratic 29.73 0.52
LF (s2) Time quadratic 56.41 1.45
HF (s2) Time quadratic 72.98 3.34

LF/HF (s2) Time cubic 72.07 2.80
total power (s2) Time quadratic 72.07 5.27

The lowest errors on HRV features estimation with missing RR-intervals are obtained using
the no-interpolation or the interpolation on time approaches, while the interpolation on duration
approach consistently yields the worst results (Table 3). Even if low timeseries difference were
detected in simulated linear interpolation on time (Figure 4 and Table 1), Table 3 suggests that the best
interpolation method depends of the HRV features that we want to assess. Moreover, this table also
shows that, as suspected, the higher is the percentage of missing values, the higher is also the HRV
feature estimation error (i.e., RE and RMSE).

3.2. HRV Features

3.2.1. Time Domain

RMSSD and PNN50 do not require any interpolation to obtain reliable estimations for all the
percentages of missing values, while SDNN need quadratic interpolation on time (see Table 3).
A possible explanation of this result is that RMSSD and PNN50 capture fast changes in heart activity,
i.e., high spectrum frequencies, and SDNN captures slow changes, i.e., very low spectrum frequencies.
Moreover, interpolation methods, especially interpolation on duration, act as low pass filters,
affecting the signal measured by the HRV features (Figure 5). No interpolation changed the spectrum,
but did not introduce fictuous durations, thus minimizing the impact on successive differences of
durations, that were the first computation step of both RMSSD and PNN50.

3.2.2. Frequency Domain

Figure 5 shows the Lomb–Scargle spectral analysis for different percentages of missing values and
for each interpolation method on both time and duration. This figure shows that different interpolation
methods introduce different deformations in the resulting power spectra. It is interesting to notice that
performing no interpolation results in a flatter spectrum, more similar to a white noise.

In the frequency domain, the interpolation method that produces the least error is the
quadratic on time (see Table 3). This figure shows that, as the amount of missing values increases,
the no-interpolation approach tends to flatten the HRV spectrum, making it similar to the spectrum
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of white noise. Figure 5 also shows that cubic spline interpolation on time tends to dampen low
frequencies while enhancing high frequencies; that cubic spline interpolation on duration tends to
dampen all frequencies; and that quadratic interpolation on duration tends to enhance all frequencies.
Finally, Figure 5 also shows that linear and quadratic interpolations on time and that nearest
neighbour and linear interpolation on duration have minimal impact on both low and high frequencies,
with quadratic interpolation on time having the least effect on all frequencies.

Figure 5. Frequency analysis of a user’s RR-intervals timeseries recorded in 5 min with different
percentages of missing values (i.e., 0%, 30%, 50% and 70%) handled with different interpolation
methods (i.e., nearest neighbor, linear, quadratic and cubic spline) on both time and duration.

3.2.3. Non-Linear Domain

SD1 does not require any interpolation to handle missing values, while SD2 needs quadratic
interpolation on time to obtain reliable result (see Table 3). To give an explanation of these results,
in Figure 6 we provide an example of the relationship between RR − intervaln and RR − intervaln+1

(i.e., Poincaré plot) where SD1 and SD2 are extracted. This figure shows Poincaré plots obtained after
interpolating missing RR-intervals by using different interpolation method on both time and duration.
This figure shows that when the missing values were interpolated on time, the variability of SD1
reduced as the percentage of missing values increased, while the SD2 remain constant. Differently,
the interpolation on duration introduce error on both SD1 and SD2 increasing their variability as
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the missing values increase. Finally, in this figure it can be seen that no-interpolation and quadratic
interpolation on time introduced less error compared to the other method on SD1 and SD2, respectively.

Figure 6. Poincaré plot of a user’s RR-intervals timeseries recorded in 5 min with different percentage
of missing values (i.e., 0%, 30%, 50% and 70%) handled with different interpolation methods (i.e.,
nearest neighbor, linear, quadratic and cubic spline) on both time and duration.

4. Conclusions

In this work we quantify the expected error propagation of missing values in RR-intervals
timeseries to HRV features, as a function of preprocessing interpolation approach, and amount of
missing data. The main findings of this study is that the interpolation of missing values in RR-intervals
timeseries on time (i.e., the heartbeats timestamps) produces more reliable HRV features estimations
compared to interpolation on duration.
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By using this preprocessing approach, the quantification of the expected error on HRV features
caused by a huge amount of missing values (e.g., motion artifacts on a wrist-worn wearable device)
can support better estimations of users’ well-being, by assessing their HRV features. This enables
continuous passive monitoring of users’ cardiovascular activity in a non-obtrusive way, collecting data
during their daily activities that could enable further research on preventative health.

A limitation of this study is the fact that we limited our focus on healthy subjects with normal
heart activity, limiting the analysis to large amounts of missing values induced by motion artifacts,
ignoring physiological phenomena such as ectopic beats.

Future studies will be useful for researcher and companies, which give insight into heart rate
variability recorded by wrist worn IoT wearable devices, in order to better understand the potentiality
of the data extracted from these devices to make inference about people heath status. Future work is
needed to assess the influence of missing values simulated in accordance with motion and mechanical
artifacts induced by external stimuli during data acquisition by using wrist worn IoT wearable devices.
Finally, future works will also include the investigating the influence of missing values on HRV features
on short timeseries (e.g., 2 min, 1 min and 30 s) and the identification of the shortest time required to
obtain accurate estimation of users’ HRV features.
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Abstract: Inertial measurement units have recently shown great potential for the accurate
measurement of joint angle movements in replacement of motion capture systems. In the race
towards long duration tracking, inertial measurement units increasingly aim to ensure portability
and long battery life, allowing improved ecological studies. Their main advantage over laboratory
grade equipment is their usability in a wider range of environment for greater ecological value.
For accurate and useful measurements, these types of sensors require a robust orientation estimation
that remains accurate over long periods of time. To this end, we developed the Allumo software for the
preprocessing and calibration of the orientation estimate of triaxial accelerometers. This software has
an automatic orientation calibration procedure, an automatic erroneous orientation-estimate detection
and useful visualization to help process long and short measurement periods. These automatic
procedures are detailed in this paper, and two case studies are presented to showcase the usefulness
of the software. The Allumo software is open-source and available online.

Keywords: accelerometer; calibration; inertial measurement units; human movement

1. Introduction

Wearable sensors are increasingly being used in research and clinical practice to assess the pose
and posture of individuals. For instance, physical rehabilitation may require objective movement
measurements over extended periods of time to perform a comprehensive assessment of the patient.
Being able to obtain quantitative measurements outside of controlled environments, such as a
laboratory, through the use of wearable sensors could help in the diagnosis and treatment of
patients. For instance, stride parameters are measured through GPS and inertial measurement
unit (IMU) data [1], as well as gait and posture analyzed from pressure-sensitive insoles and IMU
data [2]. Navigation estimates using IMUs with [3] and without GPS [4] have also been studied.
IMU sensors have proven to be effective in orientation estimation, such as trunk orientation and
lower limb kinematics [5] and in measuring the shoulder joint angles [6]. Accelerometers can
also be used for impact detection and gait timing [7–9]. They have also been used in harsher
conditions such as swimming [10]. As the number of contexts using these types of sensors increases,
so does the need to improve orientation estimation accuracy. A static accuracy assessment of the
Xsens IMU sensors [11] for 3D orientation positioning has been published [12]. Validation of the
Xsens movement measurement [13] reported good correlation (0.96) between Xsens movement
and vision-based measurements. Further assessment of accuracy for joint rotation for field-based
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occupational studies [14] reported measurement errors varying from 4◦ to 12◦. A recent systematic
review reported that IMU should be considered as a valid tool to assess the whole body range of
motion, and underlined the importance of the calibration step [15] to obtain such levels of accuracy.

Indeed, calibration is an important step to capture accurate pose estimates, especially for joint
angle measurement [16]. The published procedure for pose calibration to align an IMU to another
motion-capture system, which is presented in [17], and a pose calibration procedure for 3D knee joint
angle [18]. Furthermore, Lotter et al. [19] published a procedure for in-use calibration of triaxial
accelerometers that shares similarities with our proposed automatic orientation estimation algorithm,
such as relying on the fact that the magnitude of the gravity acceleration vector measured with the
accelerometer is constant and equals to 1g under quasi-static conditions. They use those assumptions
to calibrate the tension readings of the triaxial acceleration (an offset and scaling for each axis). In our
proposed automatic orientation algorithm, the same assumptions are leveraged to determine the
orientation of the accelerometer reference frame with respect to the fixed, world reference frame.
A review of several calibration methods of the former style for motion analysis is available in [20].

In the context of a project to collect mobility data, an important challenge occurs during the
assessment of IMU data obtained in the field. Indeed, while the typical use case is a relatively short
acquisition duration (minutes to hours long), larger scale mobility projects aim to record data over
long periods of time. Corresponding time series data sets are thus quite large and require a tedious
and time-consuming manual preprocessing task, during which the accuracy of the pose estimate can
decrease. This concern was also raised in [21]. In mobility data, file duration can span over several
weeks of continuous recording at 60 Hz (three data channels per accelerometer). While this data file
size may not be considered large in a big data context, the amount of manual preprocessing required
using the existing commercial tools precludes them from being used at the scale required for many
projects. As participants remove and install the equipment, a manual recalibration of the orientation
estimate of the devices is required and can be difficult in the field. Whereas some analyses such as
automatic activity recognition does not require a known orientation [22], posture monitoring does, and
therefore requires this recalibration step. Manual adjustments of the orientation estimate using only
the data stream and without direct monitoring from an external observer in the field are impracticable.
Furthermore, uncontrolled events such as unwanted shifts of the sensor on the participant may result
in erroneous readings stemming from an inaccurate calibration. These also require identification and
a subsequent sensor recalibration, which is also manually impracticable using the raw data stream.
Identifying such erroneous readings is difficult with the available commercial tools, as they tend to only
present time series plots of the data, a counter-intuitive method for detecting erroneous orientation
estimate by most observers.

To help in the calibration of the orientation estimate of IMUs used for joint angle measurement,
we present a tool for visualization and preprocessing to be used in human posture monitoring and
assessment. The development goal of the software presented here was to expedite the identification
and recalibration of the orientation estimate of triaxial accelerometer readings by showing an intuitive
graphical interface to the observer. An animated humanoid avatar illustrates the estimated posture of
the participant along the data stream. It makes it easier to identify erroneous orientation estimates
since abnormal postures of the body will be displayed (e.g., wrong limb orientation, walking at a
skewed angle).

This paper is structured as follows: first is the presentation and description of the automatic
calibration of the orientation estimate, erroneous orientation-estimate detection and activity detection
algorithms; second is an overview of the software followed by two case studies to show typical usage
of the software.

2. Software Overview

The main software, of which the interface in presented in Figure 1, boasts several features useful
for the preprocessing and assessment of IMU data. It features a real-time playback visualization of

452



Sensors 2020, 20, 229 3 of 8

a humanoid model for easy diagnostics of improbable orientation estimate or wrongly positioned
sensors. It helps to identify potential problems by displaying captured motion on an avatar model.
For instance, a mis estimated orientation measurement could show a skewed trunk angle or unrealistic
leg movement. It can also display a matching video to help with the visual comparison of the
movement. Options in the settings are available to synchronize the video playback with the animated
human shape motion. There is also a live display of the variables of interest, such as torso and leg joint
angles, with respect to the vertical axis. For long duration data acquisitions, the software provides
convenient time selection features that allow the definition of a specific working window.

Figure 1. Main interface of the software.

The software also features an interface for manual selection of reference positions that is useful for
the initialization of the orientation estimate of short recordings when reference points (neutral position)
are known, e.g., a recording that begins with still sensors positioned in a known orientation. To improve
the accuracy of the reference point measure, a section (window) of the signal can be marked as the
reference orientation so that an averaging can be performed to reduce measurement noise during
the reference position in the recording. To further help with this task, an algorithm, used for the
automatic detection of erroneous orientation estimates, was implemented and is described in Section 4.
Since manual adjustment of the initial orientation estimate can be complex and time-consuming, one
of the software’s main features is the automatic calibration of the sensor initial orientation through
automatic detection of motionless neutral positions (quasi-static), based on filtering and singular value
decomposition, all of which are further described in Section 3. A basic automatic activity detection
feature, used to distinguish between idling, walking and running, is also available.

Lastly, the software allows the importation of raw accelerometer values from multiple file formats
such as Actigraph GT3x, comma-separated values (csv) files, and Excel spreadsheets. It allows the
exportation of the calibrated accelerometer values to a convenient csv or Excel file format for uploading
to most analytics programs.

3. Automatic Calibration Algorithm

We define the calibration of the orientation estimate of the triaxial accelerometer as "identifying
the rotation matrix that aligns the mobile reference frame originating at the accelerometer with the
fixed (world) reference frame". In other words, the orientation of the mobile reference frame R, with
respect to the fixed reference frame F , is defined by the rotation matrix R as seen in Figure 2. This
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therefore defines the three rotational degrees of freedom (DOF) of the accelerometer. This allows
for the full orientation of an arbitrarily placed sensor to be estimated. To this end, the automatic
calibration algorithm leverages the gravitational force g, which is constant in the fixed reference frame,
to constrain two of the three DOF, and a variance analysis to constrain the third DOF, fully defining
the matrix R. The measured acceleration matrix is defined as

A =

⎡
⎢⎣

ax1 ay1 az1
...

...
...

axm aym azm

⎤
⎥⎦ ∈ R

m×3, (1)

where axi, ayi, azi, are the ith measurements along the xR , yR , zR axes respectively, and m is the index
of the last measurement.

F

RRg

xF

yF

zF

xR

yR

zR

Figure 2. Geometric representation of the accelerometer.

The automatic calibration algorithm works by using three main assumptions. First, when the
participant is at rest, he/she is in the neutral position most of the time (e.g., standing upright). Second,
the gravity vector can be measured without bias most of the time, meaning that no steady state
acceleration should be present outside of gravity, i.e., the system is not in free fall or under centrifugal
acceleration. Third, most of the variance in the movement occurs in the plane that is parallel to the
gravitational force and in the forward-facing direction xF (e.g., walking). If these conditions are not
met, a manual assisted option is available (see Section 4).

When those assumptions are observed, the algorithm works as follows. The first step is to find the
direction of the gravitational force acting on the sensor. To this end, raw accelerometer data are filtered
with a bidirectional low-pass filter with a cutoff frequency (COF) of 1/10 Hz to remove impacts,
high-frequency noise and human limb movements to keep only low-frequency signals indicative
of a steady state acceleration, which should correspond to a large extent to the neutral position.
To accurately identify the direction of the gravity vector, the only data points kept for averaging are
those where no movement is perceived (quasi-static). Those data points are found using a high-pass
filter with the same COF of 1/10 Hz, filtering over the acceleration vector magnitude (l2 norm) instead
of over each component, to identify where the signal lies closer to zero. A 2-s Hann window filter is
used to further smooth the acceleration magnitude signal and keep only substantially long periods of
quasi-static movements. The gravitational acceleration direction is then averaged across these sections
with low movements. Knowing the unit vector ĝ, which represents the direction of the measured
gravitational acceleration, a matrix R′ such as

g = R′ĝ, (2)

that aligns the zR axis to the zF axis can be derived, therefore establishing two DOFs. To establish
the last DOF, raw acceleration measurements are transformed with matrix R′ so that the measured
gravitational acceleration aligns with the negative zF direction, leaving acceleration on the xR , yR

planes as the only result of the accelerometer motion. The principal axis of motion is then computed
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using singular-value decomposition of the acceleration matrix A to find the largest singular value, σ1,
and its corresponding singular vector, v1, such as

A = UΣV, (3)

with U ∈ R
m×m, containing the left-singular vectors, Σ ∈ R

m×3 containing the singular values σ1 . . . σ3

and V ∈ R
3×3 containing the right-singular vectors including the vector of interest v1. The singular

vector v1, which corresponds to the largest singular value, σ1, is considered to be the forward-facing
direction and therefore allows to establish the last DOF which, in turn, allows the full computation
of R. Note that since the direction of the singular vector can be positive or negative, this leaves the
distinction between forward and backward undefined, and is thus a known shortcoming of the method
that needs to be corrected manually.

4. Automatic Erroneous-Orientation Detection

When the automatic orientation estimation calibration cannot be used (assumption not met),
the automatic erroneous orientation-estimate detection provides an alternative assisted orientation
estimation calibration option. It is based on the same assumption as the automatic calibration
algorithm, but is only used as a tool for the detection of periods when manual orientation adjustment
is necessary. The user can then manually discriminate between erroneous orientation estimates and
other movements that may trigger the erroneous orientation-estimate detection, such as lying down
for a long period of time. The algorithm operates by checking whether the gravitational acceleration
aligns correctly with the negative zF direction. Using a bidirectional low-pass filter, it isolates
the gravitational measurement, as described in Section 3, and flags sections of the accelerometer
measurements in which the angle between the measured direction of gravity and the zF direction is
larger than a user-defined threshold value. This way, the algorithm can help detect whether or not a
sensor has moved since the last adjustment. A visual cue is presented to the user so that he/she can
act on the flagged section by manually adding reference orientation point as presented in Section 2,
or removing the section altogether.

5. Activity Detection

A basic activity detection algorithm is implemented in the software. It differentiates between
three different states: idling, walking or running. Again, using a low-pass filter followed by a Hann
window filter over the acceleration vector magnitude (l2 norm) generates an activity intensity signal.
By using simple threshold values, the discrimination between idling, walking and running can be
achieved.

6. Case Studies

6.1. Demonstration in the Laboratory

A participant wearing two Actigraph GT3X accelerometers, one placed on the left thigh and the
other on his back, was asked to perform a 15-min routine with a mix of standing, walking, running and
lying down. The activity was captured on video to qualitatively assess the pose estimates of reported
by the software. During the routine, the orientation of the sensors on the body was deliberately altered
at three different times to test the algorithm’s erroneous orientation-estimate detection. This resulted
in 5 sections of signal being flagged using the erroneous orientation-estimate detection tool. The three
deliberate orientation change and both time the participant lay down for an extended period of time had
been correctly flagged. Using the playback of the humanoid visualization, the user can easily identify
whether the detection is caused by an erroneous orientation estimate or a real change in steady-state
operation such as going from a standing vertical to a horizontal orientation. This demonstration
showed good performance in correctly identifying miscalibrated orientation estimates and was able to

455



Sensors 2020, 20, 229 6 of 8

process the signal by applying the correct orientation adjustment parameters during each segment.
With the correct adjustment applied, the user can look at the avatar and easily distinguish certain
movements performed by the participant such as sitting, crouching and lying down. The activity
detection algorithm was also able to correctly identify the two running events, the six walking events
and the corresponding idling sequences between those.

6.2. Demonstration in the Field

In this data collection, the software has been used in the analysis of data from two expeditions
lasting 39 and 32 days, respectively. During those expeditions, two participants wore two Actigraph
GT3X accelerometers; one of the accelerometers was placed on the pelvis and the other on the left
thigh. Both were affixed on shorts so that they moved along with the body. Data acquisition was
performed over the 71 days for a total of around 1700 h of recording. Participants wore the sensors
for the major part of the days and removed them during most sleep hours. Manual initialization of
the orientation estimate for those types of extended periods is impractical. The automatic calibration
algorithm was therefore used for each day of acquisition. After automatic calibration is performed,
relevant data can be extracted, such as the amount of time walking or running and the trunk angle. The
calibrated accelerometer’s data can then be exported for further processing. Table 1 shows an example
of which data can be obtained for 1 hour segments of a day of recording and the corresponding logbook
entries. By comparing the ratio of walking and running detection to corresponding entries, an overall
assessment of the activity detection can be made. It can be seen that high trunk angle correlates with
nap time and that running detection correlates with high-intensity activities. Walking proportion also
varies sensibly with reported activities.

Table 1. Data summary samples for a 1-h expedition segment.

Walking Running Trunk Angle Logbook Entry

segment 1 7.40% 0.19% 6.28◦ Jumping jacks as a warm-up following by work at the computer
segment 2 7.20% 0.00% 71.21◦ Lying down for 50 min
segment 3 4.42% 0.00% 3.53◦ Work at the computer (mostly siting)
segment 4 12.78% 35.84% 10.61◦ 30 min jogging followed by work at the laboratory
segment 5 6.89% 0.00% 83.14◦ 50 min nap (lying down)
segment 6 17.08% 0.83% 6.17◦ Helicopter outing and walk ashore
segment 7 9.87% 0.02% 5.47◦ Diner and relaxation on board

7. Conclusions

This paper presented a graphical software for preprocessing raw accelerometer data in the context
of posture tracking. The software allows the visualization of measured posture on a humanoid form to
easily identify errors in measurements or in the orientation estimate of the device in long duration,
in the field, experiment. The paper also presented a novel algorithm for automatic calibration of
the orientation estimate that can be used when manual initialization of the orientation estimate is
impractical. A simple erroneous orientation-estimate detection and basic activity detection algorithms
are implemented in the software. Two case studies were used to show typical usage of the software.
The software is open-source and available at https://github.com/alexisfcote/allumo.
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Abstract: Falls in older adults present a major growing healthcare challenge and reliable detection
of falls is crucial to minimise their consequences. The majority of development and testing has
used laboratory simulations. As simulations do not cover the wide range of real-world scenarios
performance is poor when retested using real-world data. There has been a move from the use of
simulated falls towards the use of real-world data. This review aims to assess the current methods
for real-world evaluation of fall detection systems, identify their limitations and propose improved
robust methods of evaluation. Twenty-two articles met the inclusion criteria and were assessed with
regard to the composition of the datasets, data processing methods and the measures of performance.
Real-world tests of fall detection technology are inherently challenging and it is clear the field is in
its infancy. Most studies used small datasets and studies differed on how to quantify the ability to
avoid false alarms and how to identify non-falls, a concept which is virtually impossible to define and
standardise. To increase robustness and make results comparable, larger standardised datasets are
needed containing data from a range of participant groups. Measures that depend on the definition
and identification of non-falls should be avoided. Sensitivity, precision and F-measure emerged as the
most suitable robust measures for evaluating the real-world performance of fall detection systems.

Keywords: accidental falls; fall detection; real-world; signal analysis; performance measures;
wearable sensors; non-wearable sensors; accelerometers; cameras

1. Introduction

Falls in older adults and their related consequences pose a major healthcare challenge that is set
to grow over the coming decades [1]. Approximately 30 percent of those over the age of 65 experience
one or more falls each year, which rises to around 45 percent in those over 80 [2]. Roughly six percent
of older adult falls result in fractured bones [3,4]. Falls are estimated to cost the UK over one billion
pounds each year, with fractures being the most costly fall related injury [5].

Even when the injuries are not so serious, fallers often struggle to get up unaided [6,7],
sometimes leading to a ‘long-lie’ where the faller remains trapped on the floor for an extended
period of time. Long-lies can lead to dehydration, pressure sores, pneumonia, hypothermia and
death [8–11]. Further to the physical consequences, the fear of falling can impact on older adults’
quality of life. A fear of falling is associated with a decline in physical and mental health, and an
increased risk of falling [12]. Estimates suggest that between 25 and 50 percent of older adults are
fearful of falling and half of these will limit their activities as a result [13,14].

One method used to address the severe consequences associated with falling is the use of a push
button alarm system, which can ensure help is received quickly, and reduce the risk of a long-lie.
However, studies have shown that 80 percent of fallers do not or cannot activate their alarm following
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a fall, meaning an alternative approach is needed [6,15]. As a result, there has been extensive research
into automatic detection of falls and a broad range of approaches have been developed.

In order to understand the efficacy of the automated fall detection systems, it is important to have
a robust method of testing performance. Key to the assessment of these systems is the evaluation
of reproducibility and experimental validity [16]. There are two types of experimental validity:
internal and external. Internal validity is the extent to which the results truly reflect the capability
of the tested system, and were not influenced by other confounding factors or systematic errors.
External validity is the extent to which the results can be generalised across people and environments.

External validity has been a central issue in tests of fall detection systems. The poor external
validity has been caused by the use of laboratory simulated falls conducted by young healthy
adults. The accidental, unexpected and uncontrolled nature of a fall makes it challenging to simulate.
When a person simulates a fall the movement is expected, deliberate and carried out in a safe space
where injury is highly unlikely. Therefore, reflexes to prevent or lessen the severity of the fall are
likely to be suppressed leading to a different pattern of movement. When 13 previously published
approaches were tested using real-world fall data, the performance was found to be considerably
worse (mean sensitivity and specificity of 0.57 and 0.83, respectively) than had originally been reported
from testing using simulations (mean sensitivity and specificity of 0.91 and 0.99, respectively) [17].

Despite the challenge associated with simulating falls, the vast majority of studies have used
simulated fall data (for recent reviews see [18,19]). The use of laboratory simulated falls has been an
accepted approach due to the challenge associated with recording real-world falls. The rarity of falls
means that recording them is both costly and time consuming. Bagala et al. [17] estimated that to
collect 100 falls, 100,000 days of activity would need to be recorded, assuming a fall incidence of one
fall per person every three years. Despite this challenge, the focus is now moving to real-world fall
data due to the external validity issues inherent in simulated fall based testing. Real-world data, by its
very nature provides high ecological validity and therefore contributes to higher external validity.

The use of real-world data, while a significant step forward, does not make the test robust.
Other factors such as cohort selection and size are important for external validity. In addition, the use
of real-world data does not increase the internal validity, in fact, the level of variation and abundance
of confounding factors creates a greater risk of systematic errors. Therefore, careful consideration and
planning of both the data collection and test procedure is vital to ensure the validity of results.

All methods of testing fall detection systems share the same basic framework which shapes the
whole method from data collection through to data processing. Therefore, a basic understanding
of this framework is needed to understand the best method to evaluate fall detector performance.
Fall detection is a case of binary classification; each movement is classified as either a fall (positive case)
or non-fall (negative case). For each movement there are four possible outcomes:

• True Positive (TP)—Correctly detected fall
• True Negative (TN)—Non-fall movement not detected as a fall
• False Positive (FP)—Classified as a fall when none occurred
• False Negative (FN)—A fall which was not detected

These four values can be represented as a table comparing the actual data with the system’s
predictions, this is known as a confusion matrix (Figure 1). All further measures can be calculated
from either a complete confusion matrix or a subset of one. Therefore, studies should aim to collect
data and process it in such a way that as many of these four values as possible can be calculated.

460



Sensors 2018, 18, 2060

Figure 1. Example confusion matrix.

The aim of this review is to identify the methods which have previously been used to evaluate fall
detector performance using real-world data and investigate how the differences in these methods of
evaluation effect the results. The review covers the methods of data collection and processing as well
as the performance measures which have been used for evaluation. In this review, we aim to identify
the strengths and limitations of current approaches and propose a more robust approach of evaluation
based on the findings.

2. Methods

A systematic search was conducted in August 2017 and repeated in March 2018, using the
following on-line literature databases: Medline, Cinahl, Pubmed, Web of Science and IEEE Xplore.
The search aimed to find all records where a fall detection technology (hardware or software) had
been tested using real-world falls. The search strategy used is shown in Table 1. Papers were excluded
where no fall detection technology was tested, where tests used fall simulations, or the technology was
not aimed at older adults. Only articles available in English were included.

Table 1. Example Search Strategy for PubMed.

fall*-detect*[Title/Abstract] OR fall*-sensor*[Title/Abstract] OR
fall*-alarm*[Title/abstract]

AND real-world[Title/Abstract] OR real-life[Title/Abstract] OR free-living[Title/Abstract]
OR community-dwelling[Title/Abstract] OR home-dwelling[Title/Abstract] OR
domestic-environment[Title/Abstract] OR long-term-care[Title/Abstract] OR
care-home[Title/Abstract] OR nursing-home[Title/Abstract] OR
hospital[Title/Abstract]

The studies which met the inclusion criteria were assessed with regard to the method used to test
the fall detection system. The focus was to assess the robustness of these tests and we therefore did not
assess the systems’ design or performance. For a comparison of wearable systems see [17] and for a
comparison of non-wearable systems see [20]. All included studies tested fall detection technology
using real-world fall data. Where studies reported on both tests using simulated data and tests using
real-world data, only the methods used for the real-world portion of the data were considered.

First we reviewed the information studies provided about their participants, how they collected
data and the volume of data collected. Next, we examined the methods used to identify fall events
and to process the data. Finally, we evaluated the use of each applicable performance measure.

3. Results

The systematic search returned 259 unique records. Following application of the selection criteria,
22 papers were identified for analysis. The full breakdown of the literature identification process,
including the reasons for exclusion, is shown in Figure 2. Table 2 provides a breakdown of the 22
included papers with regard to participant groups, devices used, participant numbers, numbers of
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recorded falls, the quantity and processing of non-fall data and finally, the performance measures
reported. The following sections provide further detail to complement Table 2.

Figure 2. Flow diagram of the systematic search.
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3.1. Participant Descriptions

The level of detail provided about participants varied considerably. All but three [31,38,40] of the
articles stated whether participants were community dwelling, in long-term care or hospital patients.
Five articles did not provide any additional descriptive information on the participants [23,24,35,37,40].
The other eighteen articles describe participant’s age, twelve also provide gender information and six
provide details of height and weight or BMI [17,25,29,31,32,34]. Four articles provided information on
specific medical conditions, three recruited participants with Progressive Supranuclear Palsy [17,21,36]
and one included a single older adult with Parkinson’s disease [31]. Lipsitz et al. [34] provided the
most in-depth description with a breakdown of the proportion of participants with a range of 21
comorbidities. Eight articles reported results of mobility assessments [21,27–31,33,38], three articles
provided information on walking aid use [20,27,28] and three articles additionally reported results
of cognitive assessments [29,30,33]. None of the other 15 articles reported standardised measures of
cognitive or mobility status.

3.2. Method of Data Collection

All studies used the same general approach of monitoring participants with one or more
sensor devices. Studies can be classified into two main categories, those using wearable technology
(e.g. accelerometers or gyroscopes) and those using non-wearable technology (e.g. fixed cameras or
Kinect sensors). Both approaches have advantages and disadvantages with regard to fall detection.
For example, wearable devices are always with the user, however they may forget to wear the device.
In contrast, non-wearable devices have a limited capture area but the user can safely forget about them.
For a full discussion on the advantages and disadvantages of different sensor types refer to recent
reviews [19,41].

Fifteen studies used wearable technology and ten used non-wearable, Table 2 shows full details
of the devices used in each study. Accelerometers are the most common choice of sensor and
have been used in 15 of the studies [17,21–25,29–34,36,38,40]. Eight studies tested some form of
optical sensor [20,22,26–28,30,37,39], making them the most common choice of non-wearable devices.
One additional study deployed an optical sensor as part of their system, but this did not record any
falls so they could not test it [29].

Studies can be further classified based on whether the device used was capable of processing data
on-line and raising an alarm when it detected a fall. Three studies deployed functioning wearable alarm
systems [24,33,34], one study deployed a system combining wearable and non-wearable devices [22],
no studies deployed an alarm system solely using non-wearable devices. Two of the studies which
tested working alarm systems did not store the raw sensor data, only recording when the alarm went
off [22,34], one article did not state if the raw sensor data was stored [24]. The raw sensor data can be
used for future development and testing, and therefore the favoured approach is to store this data.

The availability of the collected data is important for future work and the direct comparison of
approaches. None of the studies used publicly available datasets nor made their real-world fall data
publicly available. Two studies [25,40] made use of a subset of the FARSEEING repository, which is
available on request. The FARSEEING project is a real-world fall repository project funded by the
European Union. Four studies [17,21,23,36] were conducted by members of the FARSEEING project or
in collaboration with members, and also used data from the FARSEEING repository. No other studies
provide any information on the availability of their datasets.

3.3. Number of Participants and Falls, and the Volume of Non-Fall Data

There is a large range in the number of participants included, with most studies using small
cohorts. One article did not provide any information on the number of participants [37]. Three studies
had just a single participant [31,35,38] and one study [20] used data from only one participant in
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parts of their analysis. The maximum number of participants was 62 [34] and the median was nine
(IQR 4–18).

There was an equally large range in the number of fall events recorded. Two studies included
just a single real fall [31,38] and in one of the two datasets used by Aziz et al. [21] only one fall was
recorded. The maximum number of falls was 89, which was achieved in two separate studies [23,34].
The median number of falls contained in the datasets used was 17.5 (IQR 8.25–29).

Where reported, the length of the monitoring period varied considerably and comparison
is made difficult by the inconsistent choice of reported metrics. Thirteen articles provided
the total length of the recorded data, but did not provide details of the proportion where the
system was recording participant’s movement (participant in the capture area or wearing the
device) [20–22,24,26–28,30,32,34,35,38,39]. The median length of total recorded data, from studies
which provided it, was 592 days (IQR 21–1474). Only three articles provided information on device
wear time, in these studies the mean wear times were 8.1 [29], 14.2 [33] and 24 [31] h per day. None of
the articles on non-wearable devices provided information on the proportion of time during which
participants were in the capture area.

Six articles did not clearly state the time period over which participants were monitored
or the amount of data captured, instead they provided the number of extracted non-fall
events [17,23,25,36,37,40]. The number of non-fall events used in these studies ranged from 22 [25] to
3466 [23].

3.4. Method of Fall Identification and Validation

One of the main challenges in recording real-world falls is ensuring every fall that occurs is
identified accurately. How fall events are identified is influenced by both the choice of device and
whether the system is capable of raising alarms in real-time. The device used determines the type
and detail of information available for retrospective verification of fall times and types. A camera,
for example, provides a greater level of information compared to an accelerometer; assuming the video
footage is not highly pre-processed, for privacy reasons, before being stored. Where working alarm
systems are deployed, all detected falls can be quickly verified, providing additional robustness over a
single reporting method such as staff incident reports.

Four studies [22,24,33,34] deployed a functioning wearable alarm system. As the alarm systems
were being validated, a second reporting system was still needed to identify falls which did
not trigger an alarm. Three of the studies used staff incident reports in addition to the alarm
system [22,33,34]. It was unclear what secondary method of fall identification was used in one
of the studies [24]. Of the 18 studies which analysed the data retrospectively, three identified falls using
staff reports [17,21,39], five used participant self-report [29–32,38] and ten did not state how falls were
identified [20,23,25–28,35–37,40].

Where self-report of falls is used it is important to consider the cognitive ability of participants,
especially their memory. Only two of the five studies which used self-report provide results of
assessments of cognitive ability [29,30]. Both of these studies used a Mini Mental State Exam [42].
Feldwieser et al. [29] found no signs of cognitive impairment and Gietzelt et al. [30] found that one of
their three participants had cognitive impairment, but does not report how they accounted for this.

It is important to consider that reported fall times might not be accurate and that some falls may
not be reported, or may be reported by more than one member of staff with different timestamps.
This could, for example, be due to delays in completing the report, delays in the faller being discovered,
participant recall problems or staff naturally prioritising helping the faller over checking and reporting
the time. Only three articles describe methods to check reported fall times [17,21,32]. Two of
these [17,21] used datasets from the FARSEEING repository where expert analysis of the sensor
signals in combination with fall reports was used to pinpoint the fall signal. Hu et al. [32] reported
correlating self-reported fall times with the signals, but provided no details on how this was carried out.
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3.5. Methods of Data Processing

There are two approaches for testing real-world fall detection systems, the key difference is how
the data is prepared. The first approach is based on simply identifying when falls occur in continuous
user movement or a stream of sensor data, we call this the continuous data approach. The second
approach is based on a fall detector classifying events as either a fall or not a fall, we call this the
event based approach. The following sections explain each of these approaches and review their use.
In five studies it was unclear which approach was used [20,24,29,30,39].

3.5.1. Continuous Data Approach

The continuous data approach mirrors real-world usage of fall alarm systems where user
movement is the input and fall times or alarms are the output. This approach is therefore the primary
way of testing deployed fall alarm systems but can also be used for retrospective testing using existing
data. The fall detection systems sensors convert movement into a stream of raw data which is then
processed by the software component of the system. In this approach all aspects of data processing
are part of the fall detection software and are tested as a single unit. To test performance the systems
predictions are compared to the actual verified fall times. This comparison allows quantification of the
number of true positives (actual and predicted timestamps match), false positives (predicted fall with
no actual fall) and false negatives (fall occurred but none was predicted).

True negatives can be quantified if the times when non-falls occurred were recorded, however,
non-falls are not defined. In the strictest sense non-falls are everything which is not a fall, but that
does not enable their occurrence to be quantified. It is not possible to count when a fall doesn’t occur
without arbitrarily dividing the time-series data into events, and counting the events where no fall
occurred. Such a method of dividing the data would fall under the event based testing approach.
In the continuous data approach any segmenting of the data for processing purposes is part of the fall
detection system, not the test procedure.

Six studies used the continuous data approach [22,31,33–35,38]. Bloch et al. [22] processed the
data using the continuous data approach, and then used an assumption of thirty ‘fall-like’ events
per day to calculate a number of true negatives (30 × number of days the sensor was in use). The other
five studies did not attempt to quantify TN.

3.5.2. Event Based Approach

The event based approach has its roots in tests using laboratory based simulation datasets.
When data is collected in the laboratory a predefined set of movements or events is simulated, the times
of these events is known and therefore they can be easily extracted. To test performance all the events
must first be labelled as either a fall or not a fall using the record of event times. For each event the
label is compared to the software’s predictions allowing a complete confusion matrix to be generated.

In real-world data, events are less clearly defined than in simulated data since there is no
complete record of the movements which occurred. The creation of events from real-world data
has been based on arbitrary rules rather than identification of the underlying movements of the users.
The events are labelled using reported fall times, where no fall occurred the event is considered a
non-fall. As this method always yields non-fall events, true negatives can be quantified, unlike in the
continuous approach.

Eleven studies used the event based approach [17,21,23,25–28,32,36,37,40]. The predominant
method to create events was based on time windows, where the data is sliced using constant time
intervals, for example each 60 seconds of data is one event. However, there is no consensus on what
constitutes an event and in practice, a method of reducing the volume of data is often used, for example,
to exclude data where no movement was recorded. The time windows can overlap allowing the same
data to be processed multiple times, although the rationale for this is not clear.
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To create events, one study used 2.5 s windows with a 1.5 s overlap and kept all the events [21].
Two studies divided the data into 60 s windows and used a movement detection algorithm to select
events [17,36]. Bourke et al. [23] also used a movement detection algorithm to select events but does
not describe the windowing technique. Two studies used the same dataset where the 24 hours prior
to each fall was divided into one second windows [27,28]. One study used self-reported wear time
to reduce the dataset prior to dividing into windows, but does not provide any details about the
windowing technique [32].

Three studies used only a limited section of data from around each fall. Debard et al. [26]
divided up the 20 minutes of data prior to a fall into two minute windows. Chen et al. [25] only used
data from 20 minutes surrounding each fall and used the section of data up to one second prior to
impact as non-fall events. Yu et al. [40] divided the two minutes around each fall into one second
windows, removed the one second window where the fall occurred and used the remaining windows
as non-fall events.

3.6. Definition of Performance Measures and Review of Their Use

3.6.1. Sensitivity

Sensitivity (also known as recall and true positive rate) is the proportion of falls which are correctly
detected (Equation (1)). The inverse of sensitivity is miss rate (false negative rate) which quantifies
the proportion of falls not detected (Equation (2)). Sensitivity is by far the most commonly reported
statistic; it was reported in 18 of the articles [17,20–28,32–34,36–40] and could be calculated from the
information given in the other four [29–31,35].

Sensitivity =
TP

TP + FN
=

TP
P

(1)

Miss Rate =
FN

FN + TP
=

FN
P

= 1 − Sensitivity (2)

3.6.2. Specificity

Specificity (also known as true negative rate) is the proportion of non-fall events which are
correctly detected (Equation (3)). It quantifies the ability to avoid false positives (false alarms).
The inverse of specificity is false positive rate, which is the proportion of non-fall events mistakenly
detected as falls (Equation (4)). Nine articles reported specificity [17,21–24,26,32,36,40] and two
reported false positive rate [36,37]. It is unclear whether Chen et al. [25] reported specificity or false
positive rate, as the reported number of TN and FP suggest that what they report as specificity is in fact
false positive rate. Specificity could be calculated from the information provided in a further two of
the studies [27,28].

Specificity =
TN

TN + FP
=

TN
N

(3)

False Positive Rate =
FP

FP + TN
=

FP
N

= 1 − Specificity (4)

3.6.3. False Positive Rate over Time

False Positive Rate over Time (FPRT) has become a popular measure in real-world tests of fall
detection. This measure provides information on the frequency of false alarms. Twelve articles report
the number of false positives either per hour or per day [17,20,21,28–31,33,35,36,38,39] and it could be
calculated from the information provided in seven others [24–27,32,34,37].
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3.6.4. Precision

Precision (also known as positive predictive value) is the proportion of alarms which are true falls
(Equation (5)). It therefore provides the probability that an alarm will be an actual fall and not a false
alarm. For example, a precision of 0.5 means that half of alarms will be actual falls, and half will be false
alarms (1 false positive for every detected fall). Eight articles reported precision [17,22,24,26–28,34,40]
and it could be calculated from the information provided in all of the other articles.

Precision =
TP

TP + FP
(5)

3.6.5. Negative Predictive Value

Negative Predictive Value (NPV) is the proportion of events classified as non-falls which are
true non-fall events (Equation (6)). NPV therefore provides information about the ability to correctly
classify non-fall events. NPV will be high if a system correctly ignores many times more non-fall
events than the number of falls it fails to detect. Therefore, for false negatives to have any notable
effect, the number of falls and non-falls must be approximately equal. However, in real-world fall
data falls are usually much less frequent than non-fall events, which limits the insights yielded from
NPV as systems typically score over 0.99 out of 1 [17,22,24]. Three articles reported NPV in their
results [17,22,24]. NPV could also be calculated from the information provided in eleven of the other
articles [21,23,25–28,32,34,36,37,40].

Negative Predictive Value =
TN

TN + FN
(6)

3.6.6. Accuracy

Accuracy is the proportion of predictions which were correct (Equation (7)). Accuracy is a measure
which summarises the whole confusion matrix in a single value. Accuracy’s major limitation is the
inability to handle imbalanced datasets, for example, in real-world fall data where there are many
more non-fall events than falls. Similar to NPV, accuracy is dominated by the larger group and the
effect is proportional to the size of the imbalance. Therefore, in real-world fall detection studies,
accuracy is skewed towards the correct detection of non-fall events over the correct detection of falls.
For example, in eight of the algorithms tested by Bagala et al. [17] the accuracies were greater than
0.9 with sensitivities below 0.6, in one case an accuracy of 0.96 with a sensitivity of 0.14. Four articles
reported accuracy [17,23,25,37] and it could be calculated from the results provided in seven of the
other articles [21,24,26–28,36,40].

Accuracy =
TP + TN

P + N
(7)

3.6.7. F-Measure

F-measure (also known as F-score) is the harmonic mean of sensitivity and precision (Equation (8)).
F-measure, therefore, considers all outcomes except true negatives (non-falls). In fall detection,
the priorities are detected falls (TP), missed falls (FN) and false alarms (FP). F-measure considers
all of these outcomes and therefore provides a good overview of performance. No articles
report a value for F-measure, however it could be easily calculated from their results as eight
articles [17,22,24,26–28,34,40] reported both sensitivity and precision and all but two [32,39] reported
enough information to calculate both sensitivity and precision.

F-measure = 2 × Precision × Sensitivity
Precision + Sensitivity

(8)
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3.6.8. Informedness

Informedness (also known as Youden’s J Statistics or Youden’s Index) is a statistic which combines
sensitivity and specificity (Equation (9)). It is the probability that predictions are informed versus a pure
guess. Informedness is linked to the proportion of cases classified correctly. However, unlike accuracy,
it is robust to an imbalance in the number of fall and non-fall events. This is achieved through equal
weighting of sensitivity and specificity which are in turn the proportions of falls detected and non-falls
correctly ignored. The value ranges from negative one to positive one. Zero indicates predictions
are no better than guessing, positive one indicates perfect predictions and negative one indicates
all predictions are the opposite of the true value. In cases where the value is negative, the output
classes can simply be swapped over. One study reported informedness [36], however, 12 other articles
reported both sensitivity and specificity or false positive rate, or the information necessary to calculate
them [17,21–28,37,40], so informedness could be calculated from their results.

Informedness = Sensitivity + Specificity − 1 (9)

3.6.9. Markedness

Markedness is a statistic which combines precision and NPV (Equation (10)). Markedness is
linked with the proportion of predictions which are correct. It combines the proportion of correct
positive and negative predictions with equal weighting and is therefore unaffected by imbalance in
the number of positive and negative predictions. As with informedness, the result is a value between
negative and positive one. No articles reported markedness, but twelve did report enough information
for markedness to be calculated [17,21–28,36,37,40].

Markedness = Precision + NPV − 1 (10)

3.6.10. Matthews Correlation Coefficient

Matthews Correlation Coefficient (MCC) is the geometric mean of informedness and markedness
(Equations (11) and (12)). It should be noted that Equation (11) only works if informedness and
markedness are both positive, Equation (12) works in all cases. MCC considers both the proportion
of events classified correctly and the proportion of correct predictions and is therefore robust to
imbalanced datasets. The result is a value between negative and positive one as with both informedness
and markedness. None of the articles reported MCC, enough information to calculate MCC was given
in 14 articles [17,21–28,32,34,36,37,40].

MCC =
√

Informedness × Markedness (11)

MCC =
TP × TN − FP × FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(12)

3.6.11. Receiver Operating Characteristic Curve

A Receiver Operating Characteristic (ROC) Curve is a plot of sensitivity versus false positive
rate as the primary threshold of the classifier is adjusted. ROC curves can therefore be used to
understand the trade-off between sensitivity and false positive rate and optimise a primary threshold.
There could be debate as to which balance of sensitivity and false positives is optimal, therefore a
ROC curve provides useful insight. However, it is difficult to compare systems robustly based on a
curve. Consequently, it is in the optimisation where ROC curves are best used, rather than final results,
as only the optimised version will be deployed.
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ROC curves can be reduced to a single number by calculating the area under the curve (AUC).
AUC has been found to be a poor measure for comparing classifiers, particularly where the sample
size is small [43–45]. Two studies have used ROC analysis and reported AUC [23,36].

3.6.12. Precision-Recall Curve

A precision-recall (PR) curve is similar to a ROC curve, the difference is that precision is used
instead of false positive rate and the term recall is used in place of sensitivity. PR curves are preferred
over ROC curves when there is a large imbalance in the data [46]. Calculating AUC for PR curves
is more challenging than for ROC curves as precision does not increase linearly, meaning linear
interpolation yields incorrect results [46]. Two studies reported PR AUC [27,28], although it is unclear
how PR AUC was calculated in these studies.

4. Discussion

This is the first review to be conducted on the methods used to evaluate real-world performance of
fall detection systems. Ensuring a sound method is critical for meaningful results, therefore reflecting
on the way studies are conducted and seeking improvements to the method is vital in emerging areas
of research where no consensus has yet been reached. The real-world testing of fall detection systems
is currently in its infancy and this is reflected in our findings. The method is highly variable across
studies, which makes comparing the results difficult if not impossible. The following three sections
discuss the key issues and make recommendations for future studies.

4.1. Data Collection and Preparation

One major aspect which leads to variation between studies is the participant groups and the
differences in the movements and behaviours captured by the sensor systems. If insufficient detail is
gathered about participants it is challenging to reproduce the findings as differing results could be due
to differing participant characteristics. In addition, one may want to collect new data comparable to
that used in a previous study for the purpose of comparing the performance of a new system using
different sensors with previously tested systems. Information gathered about participants was both
inconsistent and insufficient to allow the data collection to be reproduced.

A comprehensive consensus process has previously been carried out by the FARSEEING
consortium [47]. As part of the consensus process the group identified a minimum set of clinical
measures which they deemed essential for the interpretation of real-world fall data. The measures
included age, height, weight, gender, fall history, assistive device use as well as assessments of mobility,
cognitive impairments and visual impairments. None of the reported studies have implemented
these recommendations.

Cognitive and mobility tests provide useful information about fall risk and the likelihood
of false positives caused by events such as ‘falling into a chair’ or improper use of the device.
Compared to standard metrics such as age, height and weight, assessments of mobility and
cognition provide a much deeper insight into participant’s fall risk and movement characteristics.
Therefore, standardised cognitive and mobility assessments should be prioritised. Deeper insights into
participant’s movements could be achieved though continuous profiling using activity monitoring
software to process the recorded dataset. However, development and validation of activity monitoring
software may be a barrier unless an existing activity monitoring system is used for the data collection.
Where such profiling is possible details should be reported to enhance the interpretation of results.

Another critical aspect of the test is the size of the dataset. Currently, the datasets used are
generally small, have been collected with a low number of participants and contain only a few falls.
Small datasets reduce the validity of the test and hinder reproducibility. Where the dataset is small
either due to few participants, a low incidence of falls or both, it is possible that only a limited subset of
movements and fall types were captured. In such cases comparisons of results to tests of other systems
is difficult as the dataset may be the main cause of differences in reported performance. Further,
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the generalisability of results is questionable where the sample size is small. The small datasets are
one factor which makes it difficult to understand which systems perform the best and therefore where
future development should focus. The other main factors are the different populations recruited
for studies and the limited insights into how this effects the fundamental aspect of the data—the
movements captured.

Due to the known challenges in recording fall signals, the only feasible way for most researchers
to gain access to a large number of fall signals is through collaboration. In addition, if systems are
tested using the same data, the results are directly comparable. Therefore, large shared test datasets
are needed to allow the performance of fall detection software to be compared. To facilitate the sharing
of datasets, the FARSEEING consortium have established a data repository which currently contains
over 300 fall signals [48]. However, more studies are needed to generate datasets that can be added to
the repository and used for robust testing of devices and development of improved software.

Even with shared data, there is still an issue of how to ensure all fall signals are accurately
identified. We have identified that the method used to identify the fall signals is poorly described
in published studies, leaving a large gap in our understanding of how the dataset was prepared.
The current prevailing method to identify fall signals is expert signal analysis to verify participant or
staff reported fall times. There is a risk that not all falls are reported, leading to real falls being included
as non-fall data. Expert signal analysis cannot overcome the issue of under reporting, but does at least
give greater confidence that inaccurate reported times were corrected and all included fall signals were
real falls.

Expert signal analysis, while clearly better than no verification, could lead to bias. Currently there
is an insufficient understanding of fall signals due to a limited number of recorded falls and a lack of
research into the profile of the signals. Our limited understanding could lead to atypical falls not being
verified and thus excluded. There is a risk that systems are designed to detect certain signal profiles
as falls and only these profiles are being verified as falls. Therefore the results could be artificially
improved through restricting the test data.

Unless a gold standard fall reporting system is used, such as video analysis, studies will be limited
in their ability to verify fall signals, under reporting of falls will remain a concern and there is a risk
of bias in the verification process needed to compensate for the inaccuracies of the ‘silver standard’
reporting system. The current lack of standardised method or gold standard, and the lack of reporting
how fall signals were identified and verified, inhibits understanding of results. A consensus is needed
on the process for fall signal identification and studies should clearly report their methods.

4.2. Data Processing

Two approaches were identified for preparing sensor signals for fall detection system testing and
we named these the continuous data approach and the event based approach. Both approaches have
issues surrounding what constitutes a non-fall. In the continuous data approach the issue is centred
around the definition and identification of non-falls. In the event based approach non-fall events can
be defined as any event which is not a fall. However, events could be defined as anything which is
either a fall event or non-fall event, and since falls are defined, the issue returns to what constitutes
a non-fall.

The strictest definition of non-falls as everything which is not a fall is not particularly useful.
This definition does not allow non-falls to be quantified in the continuous data approach and provides
no indication of how the data should be divided into events for the event based approach. A more
helpful concept is that of fall-like movements, a subset of non-falls which share characteristics with
falls. The FARSEEING consortium defined a fall as “an unexpected event in which the person comes
to rest on the ground, floor or lower level” [49]. A fall-like movement could therefore, by removing the
unexpected clause, be defined as “any event in which the person comes to rest on the ground, floor or
lower level”.
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With a definition for fall-like events these could be recorded, at least theoretically, in the same
manner as falls and therefore, allow true negatives to be quantified robustly. In reality it is not feasible
for a researcher to record the times of all fall-like movements in the same way that falls are recorded,
due to the vast quantity which would occur. An automated system would be more practical, although
it is unlikely to be easier to develop automated fall-like detection than automated fall detection systems.
Consequently, researchers must consider if the development of fall-like movement detection systems
is worth the investment, simply to extend the testing of fall-detection systems. Given that a robust
evaluation of fall detection systems can be achieved without the need for true negatives, and hence
non-fall or fall-like movements, we suggest that automated fall-like movement detection is unlikely to
bring benefits which outweigh the required investment.

4.3. Performance Measures

It is challenging to compare results across studies or determine the current state-of-the-art due
to disparity in the choice of measures reported and challenges calculating unreported measures.
The measures used to report and interpret performance vary widely across studies and not all studies
report the basic results from which all measures can be calculated (TP, FP, FN and TN). Where TP,
FP, FN and TN are not reported these can only be estimated, due to rounding of the reported results.
Using one of the tests reported by Bourke et al. [23] as an example, the number of FP could be any
value between 18 and 51 based on the reported specificity of 0.99 with 3466 total non-falls. To facilitate
the calculation of additional measures, future studies should report TP, FP, FN and TN if these can be
calculated robustly and are used in the calculation of the reported performance measures.

In addition to reporting enough information to allow further measures to be calculated, it is
important that the headline measures give a true reflection of performance and allow robust
comparisons to be made with other systems. Sensitivity has been a mainstay in previous studies, it is
an important aspect of system performance. Sensitivity only quantifies the ability to detect falls, it does
not consider false positives. The question is therefore which measure to pair sensitivity with to provide
understanding of the ability to avoid false positives. In addition, a single combined measure which
considers both aspects is important in order to understand the overall level of performance.

Specificity has been the most common choice of measure to quantify the ability to avoid
false alarms in laboratory based testing [19] and it has remained a common choice in real-world
tests. Specificity considers how well non-fall events are classified, it could therefore be considered
sensitivity’s natural counterpart. The weakness of specificity in the context of real-world fall detection
is the reliance on non-falls, which are poorly defined and troublesome to identify.

The need for researchers to design or select methods for non-fall identification opens up a
considerable possibility of bias. A method could be used which suits the specific system and dataset
causing distortion of the results and hindering comparisons with other systems. In the case of
specificity, the difficulty of the test is very much determined by the definition of a non-fall; the more
inclusive the definition, the more non-fall events and therefore the higher the score for the same
number of false positives. This effect can be seen in the study of Bourke et al. [23], where tests were
conducted twice using different definitions of non-falls. With the most restrictive definition of non-falls,
specificity ranged from 0.83 to 0.91. With the more open definition, specificity was consistently 0.98 or
greater. Expanding the definition includes more movements which are less fall-like, thus it creates an
easier test.

It is hard to prevent bias in selecting a definition of non-falls as it is likely unintentional.
One solution is to remove the need to select a method on a study by study basis, however, standardising
the method is challenging. Since there is currently no clear way to standardise non-fall identification,
the best option may simply be to avoid them altogether. A solution might be standard publicly
available datasets, with an agreed method to identify non-fall events. In such a case, the results are
comparable to each other, but not to other studies using other datasets or methods.
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Using standard data is challenging due to the vast array of sensors which could be used and
the huge number of combinations. It is simply not possible to have a single dataset used to test all
systems. Furthermore, it seems impossible to identify all types of relevant non-fall movements needed
for a universal standard dataset. Any measures which rely on non-falls (specificity, NPV, accuracy,
informedness, markedness, MCC and ROC AUC) are subject to the above problems and therefore
should not be used as a primary measure. Where measures reliant on non-falls are used the methods
should be described in detail and their limitations should be made clear to avoid confusion and
misinterpretation.

The issues surrounding non-falls substantially reduces the options for quantifying the ability to
avoid false positives and gauge overall performance. There are four possible measures which do not
rely on non-falls, these are FPRT, precision, F-measure and PR AUC.

FPRT is a useful measure to understand the frequency of false alarms, however differences in
the datasets affect the calculation. Wear time or time in the capture area must be considered, as false
positives will, most likely, be far lower when the device is not in use. Another consideration is which
hours of the day the device is in use; false positive rate during night time hours would be very different
to day time hours. Reporting of times when the device was monitoring participants was found to be
inadequate. Of the 11 articles which reported FPRT only two clearly reported wear time or time in the
capture area [29,33] and none reported any details on the distribution of this time throughout the day.

Our findings suggest that there is a lack of an agreed and clearly defined method to calculate FPRT.
Only one study clearly states that FPRT was calculated using solely the time a participant was being
monitored by the device [33]. None of the other studies appear to have taken usage time into account
when calculating FPRT. If usage time is not considered or reported it is unclear what extent device
usage, or lack thereof affected the result. An unused system is unlikely to produce false positives.
The issues in identifying wear time or time in the capture area could make FPRT an unreliable measure
to compare across studies. Although users and clinicians may find the rate of false positives over time
useful, it might be better to use a rate of something other than time.

Precision is an alternative to specificity and FPRT, it quantifies the false positives (FP) in relation
to detected falls (TP). TP and FP should, for any reasonable level of performance, be in the same order
of magnitude, therefore precision is resilient to the imbalance in the data. Further, the ratio between TP
and FP is unlikely to be notably affected by usage time, if a device is used half of the time, TP and FP
would be expected to be half compared to full device usage. Therefore, compared to FPRT, precision is
far less affected by device usage, or lack thereof. The proportion of fall predictions which were true
falls could be more useful than FPRT since frequent false positives may be acceptable to a frequent
faller, assuming the falls are detected. Precision should be the primary measure of the ability to avoid
false positives.

Sensitivity and precision together quantify the ability to detect falls and avoid false alarms,
therefore providing a complete portrayal of performance. In addition to sensitivity and precision
it is important to have a single measure which can quantify the trade-off between them. PR AUC
is one possible option, however it considers the performance of multiple sub-optimum versions
of the system as the system’s parameters are adjusted. Since only the optimised system can be
deployed, it is the optimised version which should be the focal point of the evaluation. F-measure,
the harmonic mean of sensitivity and precision, appears to be the most suitable single measure for
objective comparison. This trio of measures has two major advantages in robustness: (1) it does not
rely on non-falls and (2) it is resistant to issues surrounding wear time and time in the capture area.
Future studies should report sensitivity, precision and F-measure, and F-measure should be used as
the standard for comparing systems.

5. Summary and Conclusions

As focus in fall detection performance evaluation shifts from simulated to real-world fall data,
one must consider if the approach used for evaluating on simulations is optimum for real-world data.
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Through examining the published articles on evaluation of real-world fall detection, two issues have
become apparent:

1. The approaches to quantifying performance are inconsistent and many studies use measures
which provide limited representation of performance.

2. The number of falls is generally small and study populations are diverse, making comparison
between the datasets and results difficult.

It is critical that a consensus is reached on the most appropriate method to evaluate real-world
performance of fall detection systems.

To address the issues with the datasets there needs to be greater collaboration and sharing
of data. The FARSEEING consortium have made substantial steps to facilitate data sharing
and have recorded over 300 falls through collaboration between six institutions [48]. Six of the
22 studies published to date have used parts of this data to develop or test approaches to fall
detection [17,21,23,25,36,40], highlighting the importance of this data. However, further work is
still needed to grow the volume of available data, record more falls, improve standardisation and
further develop fall detection technology. Only through collaboration will the collection of a dataset
large enough for robust development and testing become possible.

To address the issues surrounding how performance is quantified studies should avoid the need
for non-falls. The concept is poorly defined and standardisation seems to be extremely problematic.
The concept of non-falls is only needed to allow the calculation of measures such as specificity and
accuracy, both of which are common in simulation based studies [19]. However, quantification of
the difference in false alarm rate between simulated and real-world tests is not possible due to the
disparity of the data. Therefore, traditional measures such as specificity and accuracy are of little value.
Continued use of these traditional measures may lead to confusion and improper interpretation of
performance. Measures which do not depend on non-falls should be used instead of these traditional
measures. Sensitivity and precision should be the cornerstones of the evaluation with F-measure used
for the objective comparison of systems.
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Abbreviations

The following abbreviations are used in this manuscript:

P Positive cases
N Negative cases
TP True Positives
FP False Positives
FN False Negatives
TP True Positives
NPV Negative Predictive Value
FPRT False Positive Rate over Time
MCC Mathews Correlation Coefficient
ROC Receiver Operating Characteristic
PR Precision-Recall
AUC Area Under Curve
RSS Root Sum of Squares
IQR InterQuartile Range
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