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Neurodegenerative diseases are among the most serious health problems affecting millions of
people worldwide, and their incidence is dramatically growing together with increased lifespan [1].
These diseases are a heterogeneous group of chronic, progressive disorders characterized by the
gradual loss of neurons in the central nervous system, which leads to deficits in specific brain functions.
The most common neurodegenerative diseases are Alzheimer’s disease (AD), Parkinson’s disease (PD),
amyotrophic lateral sclerosis, multiple sclerosis, and Huntington’s disease. While the etiology of most
neurodegenerative diseases is mainly unknown, it is largely recognized that these disorders share
common molecular and cellular characteristics that contribute to their progression. These include
oxidative stress, mitochondrial dysfunction, protein misfolding, excitotoxicity, dysregulation of calcium
homeostasis, and inflammation [2–5]. There are currently no therapeutic approaches to cure or even
halt the progression of these disorders, and existing treatments remain largely palliative. In this
context, natural products, because of their broad spectrum of pharmacological and biological activities,
are considered promising alternatives for the treatment of neurodegeneration as they might play a role
in drug development and discovery. A number of studies showed health-promoting properties in the
use of natural products as potential therapeutics for neurodegeneration [6–8]. Natural compounds
have been reported to possess different biological activities, including antioxidant, anti-inflammatory,
and antiapoptotic effects [9,10]. Moreover, natural compounds have been recently shown to counteract
protein misfolding and to modulate autophagy and proteasome activity [11,12].

The papers published as part of this Special Issue deal with two different forms of natural products:
extracts and isolated compounds. The study of the bioactivity of the extracts is extremely important as
in vivo natural compounds are usually obtained through the diet as a complex mixture. The importance
of extracts is further supported by the fact that many studies have demonstrated the synergistic effect
of the combination of different natural products [13]. On the other hand, the investigation of the
activity of specifically isolated natural products can be also important to understand their cellular and
molecular mechanisms and to define what are the specific bioactive components in extracts or foods.

Research conducted by Sabti M. and colleagues [14] elucidated the molecular mechanisms
underlying the relaxant and anxiolytic properties of Lippia citriodora (VEE) and verbascoside (Vs),
a phenypropanoid glycoside. Lippia citriodora is a plant from the Verbenaceae family and is cultivated
in North Africa, Southern Europe and the Middle East. In this study both an in vivo mouse model of
anxiety and depression and the in vitro SH-SY5Y cell line were employed. In particular the authors
evidenced a relaxation effect of high doses of VEE associated with the regulation of genes playing
key roles in calcium homeostasis (calcium channels), cyclic AMP (cAMP) production and energy
metabolism. Low doses of VEE and Vs showed an antidepressant-like effect by enhancing brain-derived
neurotrophic factor (BDNF), noradrenalin, serotonin and dopamine expressions. These results were
further confirmed in vitro as both VEE and Vs enhanced cell viability, mitochondrial activity and
calcium uptake in SH-SY5Y cells.

In their manuscript, Lee Y.G. et al. [15] isolated four flavonols, three flavones, four flavanonols,
and one flavanone from a Chionanthus retusus extract, a deciduous tree of the Oleaceae family mainly
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cultivated in Korea, Japan and China. Eight of these flavonoids demonstrated to be effective in
counteracting inflammation by inhibiting nitric oxide (NO) production in RAW 264.7 cells activated by
lipopolysaccharide. In addition, these flavonoids showed a neuroprotective activity counteracting
glutamate-induced cell toxicity increasing heme oxygenase 1 (HO-1) protein expression in mouse
hippocampal HT22 cells.

Similarly, Jang Y. et al. [16] demonstrated that auraptene (AUR), a 7-geranyloxylated coumarin
isolated from citrus fruit, is able to counteract neurotoxin-induced reduction of mitochondrial respiration
and to inhibit reactive oxygen species (ROS) generation in SN4741 mouse embryonic substantia nigra
dopaminergic neuronal cell line. Moreover, they observed, in a MPTP-induced PD mouse model,
that AUR treatment improved movement deficits in association with an increase in the number of
dopaminergic neurons in the substantia nigra.

Chiroma S.M. et al. [17] investigated the neuroprotective effect of Centella asiatica (CA), a plant
from the family of Apiaceae, in a rat model of neurodegeneration induced by d-galactose/aluminum
chloride (d-gal/AlCl3). These authors previously observed that CA extract can attenuate cognitive
deficits in this model of neurodegeneration and can also prevent morphological aberrations in the
CA1 region of hippocampus [18]. In the paper published in this Special Issue, they demonstrated that
CA significantly increased the levels of protein phosphatase 2 and decreased the levels of glycogen
synthase kinase-3 beta. Moreover, CA extract also counteracted apoptosis as it increased the expression
of the Bcl-2 mRNA level.

Finally, Javed H. et al. [19] demonstrated the neuroprotective effect of thymol, a dietary
monoterpene phenol, in a rat model of PD. In particular, neurodegeneration was induced by rotenone
at a dose of 2.5 mg/kg body weight for four weeks. Thymol, co-administered to rotenone for four weeks
at a dose of 50 mg/kg body weight, significantly attenuated dopaminergic neuronal loss, oxidative
stress and inflammation suggesting a protective effect of thymol in rotenone-induced PD.

Along with research papers, different reviews are also presented in this Special Issue.
As previously underlined, proteostasis failure plays a crucial role in the context of ageing

and neurodegeneration. Therefore, natural products targeting the proteostasis elements emerge as
a promising neuroprotective therapeutic approach to prevent or ameliorate the progression of these
disorders. Cuanalo-Contreras K. et al. [20] focused on this aspect and revised the current knowledge
regarding the use of natural products as modulators of different components of the proteostasis
machinery to counteract neurodegeneration. The majority of natural modulators of the proteostasis
network are of plant-origin, however some compounds of marine-animal-origin are also emerging.
They concluded that further studies are required to understand the precise mechanism of action of
the natural proteostasis activators, their off-target effects and their in vivo bioavailability. In their
review, Cho B. et al. [21] focused on the effect on natural products on the proteostasis elements such
as ubiquitin-proteasome system and autophagy (mitophagy) in experimental PD models. Moreover,
in the same experimental models, they also revised the neuroprotective effects of natural products on
mitochondrial dysfunction, oxidative stress, and hormesis. They summarized the efforts to use natural
extracts as lead compounds for the design of novel pharmacological candidates for the treatment
of age-related PD. Finally, they addressed two main limitations in the use of natural compounds
in counteracting neurodegeneration: the differences of experimental design, such as the quality
of the extracts and the forms of dosage, of the studies and the unclear therapeutic mechanism of
natural compounds.

Taking into account these two limitations Di Paolo M. et al. [22] analyzed the ethical framework of
the potential clinical use of natural products to counteract neurodegeneration, with particular attention
paid to the principles of biomedical ethics. They concluded that natural products could represent
a great promise for the treatment of neurodegeneration, where traditional therapies, via synthetic
drugs, only act to alleviate symptoms. However, lack of knowledge on the efficacy and safety of
many natural products underscores the urgent need for further investigation to better characterize the
therapeutic mechanism of natural products in order to promote patient safety and ethical care.
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Park J.Y. et al. [23] revised the current research on the structural diversity, biosynthesis,
and pleiotropic neuronal functions of ascaroside (ascr) pheromones and their implications in animal
physiology. Pheromones are neuronal signals that stimulate conspecific individuals to react to
environmental stressors or stimuli. The authors also discuss the concentration and stage-dependent
pleiotropic neuronal functions of ascr pheromones. They suggest that in the future, translation of
the knowledge of nematode ascr pheromones to higher animals might be beneficial, as it has been
observed that ascr has some anti-inflammatory effects in mice.

Pervin M. et al. [24] discuss the function of (−)-epigallocatechin gallate (EGCG) and its microbial
ring-fission metabolites in the brain as neuroprotective agent. EGCG, the main green tea catechin,
is an ester of (−)-epigallocatechin (EGC) and gallic acid (GA). Despite the great number of studies on the
neuroprotective effects of green tea catechins against neurological disorders, it should take into account
that the concentration of EGCG in systemic circulation is very low and EGCG disappears within
several hours. EGCG undergoes extensive metabolism and recent studies suggest that metabolites
of EGCG may play an important role, alongside the beneficial activities of EGCG, in reducing
neurodegenerative diseases.

Barbalace M.C. et al. [25] focused on the effect of marine algae on neuroinflammation, one of the
main contributors to the onset and progression of neurodegenerative diseases. As pointed out by
Cuanalo-Contreras K. et al., marine organisms represent a vast source of natural compounds, and among
them, algae are an appreciated source of important bioactive components. Barbalace et al. revised the
numerous anti-inflammatory compounds that have been recently isolated from marine algae with
potential protective efficacy against neuroinflammation.

Polyphenols are among the most studied dietary molecules probably for their multiple and often
overlapping reported modes of action. Epidemiological studies suggest a strong association between
polyphenol consumption and reduced prevalence of various neurodegenerative diseases; however,
ambiguity still exists as to the significance of their influence on human health. Renaud J. and Martinoli
M.G. [26] analyzed the characteristics and functions of polyphenols that determine their potential
therapeutic actions in neurodegenerative disorders. In particular, they discuss the properties that may
influence the functionality and bioavailability of dietary polyphenols in the central nervous system
(CNS) with a particular focus on therapeutic applications and limitations.

Among polyphenols, curcumin, a component of Curcuma longa, is currently considered one of the
most effective nutritional antioxidants due to its activity in multiple antioxidant and anti-inflammatory
pathways involved in neurodegeneration. Mhillaj E. et al. [27] provides a summary of the main findings
involving the heme oxygenase/biliverdin reductase system as a valid target in mediating the potential
neuroprotective properties of curcumin. Moreover, they address the pharmacokinetic properties and
concerns about curcumin’s safety profile.

Maher P. [27] focused on a wide class of polyphenols, flavonoids. Among the huge number of
polyphenols, several epidemiological studies have specifically highlighted the potential beneficial
role of flavonoids to counteract neurodegeneration. In particular the author discusses the beneficial
effects of multiple flavonoids in different models of neurodegenerative diseases and identified common
mechanisms of action. As outlined by other authors of this Special Issue, the conclusions state
that further investigations should be carried out in order to use flavonoids in the treatment of
neurodegenerative diseases.

Infante-Garcia C. and Garcia-Alloza M. [28] reviewed natural compounds with a protective
activity against brain neurodegeneration in animal models of diabetes mellitus, taking into account
several therapeutic targets: inflammation and oxidative stress, vascular damage, neuronal loss or
cognitive impairment. Diabetic brain is characterized by micro and macrostructural changes, such as
neurovascular deterioration or neuroinflammation that lead to neurodegeneration and progressive
cognition dysfunction. The authors evidenced that natural compounds and extracts show antioxidant
and anti-inflammatory activities at a central level, as well as a relevant capacity to reduce vascular
damage, contributing altogether to limit neurodegeneration and cognitive derived alterations. In their
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conclusion the authors highlighted that natural products could contribute to expand therapeutic
options to treat or reduce central complications associated with diabetes mellitus.

Andrade S. et al. [29] focus their attention on a specific neurodegenerative disease, AD, and discuss
both the natural compounds already in clinical trial phase and other natural compounds with known
potentially beneficial effects in AD in a preclinical development stage. Regarding the preclinical
studies, only the most recent reported works have been considered. Clinical trials have demonstrated
that different compounds appear to be effective for AD therapy, on the contrary others have failed in
human trials. Natural compounds in earlier phases of research need further studies to uncover their
therapeutic potential for AD.

Berezowska M. et al. [21] reviewed the effects of vitamin D in multiple sclerosis on pathology
and symptoms. Based on specific criteria, they selected ten studies with a size ranging from 40 to
94 people and with a duration of the intervention from 12 to 96 weeks; all the studies compared the use
of vitamin D with a placebo or low dose vitamin D. One trial found a significant effect on Expanded
Disability Status Scale (EDSS) score, three demonstrated a significant change in serum cytokines level,
one found benefits in enhancing lesions and, interestingly, three studies reported no serious adverse
events in the use of vitamin D.

In conclusion, the papers published in this Special Issue, despite addressing different topics,
can be considered an important contribution to the knowledge of the neuroprotective effect of natural
products, and present a great deal of information related to both the benefits but also the limitations of
their use in counteracting neurodegeneration.

Conflicts of Interest: The authors declare no conflicts of interest.
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Abstract: Lippia citriodora ethanolic extract (VEE) and verbascoside (Vs), a phenypropanoid glycoside,
have been demonstrated to exert relaxant and anxiolytic properties. However, the molecular
mechanisms behind their effects are still unclear. In this work, we studied the effects and action
mechanisms of VEE and Vs in vivo and in vitro, on human neurotypic SH-SY5Y cells.TST was
conducted on mice treated orally with VEE (25, 50 and 100 mg/Kg), Vs (2.5 and 5 mg/Kg), Bupropion
(20 mg/Kg) and Milli-Q water. Higher dose of VEE-treated mice showed an increase of immobility
time compared to control groups, indicating an induction of relaxation. This effect was found to
be induced by regulation of genes playing key roles in calcium homeostasis (calcium channels),
cyclic AMP (cAMP) production and energy metabolism. On the other hand, low doses of VEE and
Vs showed an antidepressant-like effect and was confirmed by serotonin, noradrenalin, dopamine
and BDNF expressions. Finally, VEE and Vsenhancedcell viability, mitochondrial activity and
calcium uptake in vitro confirming in vivo findings. Our results showed induction of relaxation and
antidepressant-like effects depending on the administered dose of VEE and Vs, through modulation
of cAMP and calcium.

Keywords: Lippia citriodora; VEE; Vs; relaxation; depression; mitochondria; cyclic AMP; calcium

1. Introduction

The Verbenaceae, commonly known as the verbena or vervain family, is composed of 35 genera
containing around 1200 species [1]. They have been used for centuries as medicinal plants due to
their beneficial effects to cure several ailments. One of the most important genera is Lippia, consisting
of200 species exerting interesting biological activities [2]. Lippia citriodora K., also referred to as
Aloysiatriphylla(L’Herit.), is commonly named lemon verbena, vervain or Louisa (Arabic). This species
is native to South America and has been cultivated in Europe and North Africa mainly in Morocco [3].
All over Morocco, the plant is used as relaxant and sedative [4]. The herbal tea is traditionally used to
alleviate insomnia and restlessness in adults as well as babies [5]. Furthermore, it has been used for its
anti-inflammatory, antioxidant, antispasmodic effects and also used as a remedy for gastrointestinal
disorders [2]. Recent studies have confirmed the antioxidant and spasmolytic activities of the infusion
prepared of lemon verbena [6,7]. Verbena aqueous extract given to rats has proven the hypnotic effect
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of the plant by promoting sleep [8]. Polyphenols extracted from lemon verbena reduced the obesity
burden and restored the mitochondrial activity through AMPK-dependent pathways [9].

Verbascoside (Vs), a major phenypropanoid glycoside, is the most abundant polyphenol in lemon
verbena tea and its yield is reported to be around 3.94% (w/w dry weight of leaves) [10]. Vs contained in
Buddlejia davidii and Lippia multiflora has already been proven to possess an antioxidant activity [11,12].
Vs has also shown an anti-inflammatory effect in vitro on macrophages and THP-1 cells [13,14].
Furthermore, Vs has been reported to exert an antimicrobial activity against Staphylococcus aureus
and a neuroprotective effect, in vitro, on 1-methyl-4-phenylpyridinum ion-induced toxicity using
PC12 cells [15,16]. Interestingly, intraperitoneal administration of Vs and lemon verbena aqueous and
ethanolic extracts to mice promoted sleep and induced muscle relaxation, alongside alleviation of
anxiety [17]. In addition to Vs, hastatoside (Hs) and verbenalin (Vn) are two abundant iridoids in
verbena extract and have been proved to possess sleep-promoting effect [18]. To date, very little is
known about the molecular mechanism by which lemon verbena or its compounds induce relaxation
and act as anti-anxiety remedies.

In the present study, we investigated the effect of lemon verbena and Vs in mice and elucidated
the molecular mechanisms underlying their effects in brain. Interestingly, the transcriptomic analysis
in vivo showed regulation of genes implicated in activation of the mitochondrial function. Therefore,
to confirm this finding we evaluated, in vitro, the effect of VEE and Vs on cells’ ATP production
using SH-SY5Y, a Human neurotypic cell line. Also, we assessed the toxicity of VEE, Vs, Hs, and Vn,
in addition to neuroprotective effect on dexamethasone (Dex) neurotoxicity.

2. Results

2.1. Effect of VEE and Its Compounds on SH-SY5Y Cells’Viability

We performed the MTT assay to assess the effect of VEE on cell viability. We treated the cells
with different concentrations of the extract which were 0.5, 1, 2.5 and 5 μg/mL of VEE. As shown in
Figure 1A, all VEE concentrations increased cell viability significantly in a dose-dependent manner,
with a higher value of 126.68 ± 7.81% at 2.5 μg/mL. The chemical analysis of various Verbenaceae
plants, including Lippia citriodora and Verbena officinalis, showed a high abundance in Vs, also called
acteoside, which is a phenylpropanoid glycoside [19–24]. In our study, we evaluated the cell viability
of SH-SY5Y cells treated with 5, 50 and 100 μM of Vs, Hs and Vn. The results in Figure 1C show an
increase of viable cells in a dose-dependent manner attaining 134.8 ± 3.8% at 100 μM in case of Vs.
On the other hand, Hs and Vn decreased the cell viability significantly (Figure 1C). From these results,
we selected Vs to be evaluated for its neuroprotective and energy metabolism effects.

In order to evaluate the neuroprotective activity, we used dexamethasone (Dex) as neurotoxic agent.
VEE treatment protected SH-SY5Y cells fromDex toxicity with higher increase at 5 μg/mL (42.82% cell
viability) (Figure 1B). Interestingly, cells co-treated with Vs and Dex showed an enhancement of
cell viability by more than 30% compared to Dex-treated cells (Figure 1D). These data indicate
neuroprotective effect exerted by VEE and Vs.
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Figure 1. Relative cell viability of SH-SY5Y cells (A) treated with Lippiacitriodora ethanolic extract (VEE)
at doses of 0.5, 1, 2.5 and 5 μg/mL, (B) co-treated with VEE and dexamethasone(Dex) (50 μM), (C) treated
with verbascoside(Vs), hastatoside(Hs), and verbenalin(Vn) (5, 50 and 100 μM) and (D) co-treated with
Vs and Dex (50 μM). Results were expressed in mean of cell viability ± SD. * P < 0.05; ** P < 0.001;
*** P < 0.0001 compared with negative control group. # P < 0.05; ## P < 0.001; ### P < 0.0001 compared
to Dex-treated group.

2.2. Effect of VEE on the Immobility Time of Mice

The tail suspension test (TST) was used to assess the antidepressant-like effect of VEE 100 mg/Kg
compared to the control groups. Normally, drugs having an antidepressant effect decrease the
immobility time of mice. In the present study, bupropion was used as a positive control, known for its
antidepressant property. Bupropion-treated mice showed a decrease of immobility time on the 4th day
of TST to 39.37 s compared to the initial test performed on the 1st day with a value of 42.52 s, resulting
of the drug’s effect (Figure 2). As for the negative control group, the mice were fed with Milli-Q water
and showed a gradual increase of immobility time to day 7 with 114.4 s compared to the initial test
with a time of 35.48 s, proving an induction of depression on mice by TST, leading the animals to lack
the desire to rectify themselves (Figure 2).

Interestingly, 100 mg/Kg body weight VEE-treated mice showed a highly significant increase
of immobility time compared to negative and positive controls starting from day 4 of the test with
202.64 s, which gradually decreased to attain 177.63 s on the 7th day (Figure 2).The low immobility
time of the depressant mice receiving only water compared the VEE-treated mice suggested that the
effect observed was not a result of the stress induced by TST, but because of the induction of relaxation
by VEE, which is a unique effect of VEE.
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Figure 2. Effect of the oral administration of VEE (100 mg/Kg) and bupropion (20 mg/Kg) on mice
immobility times in tail suspension test compared to the control (water 10 mL/Kg, p.o.). Results were
expressed in mean of immobility time ± SD. * P < 0.05; ** P < 0.001 compared with Control group.

2.3. Elucidation of the Genes Regulated by VEE Treatment

To determine the molecular mechanism underlying the effect of VEE on immobility time, we
analyzed the mice brains using DNA microarray to detect the transcriptomic changes. The analysis of
the data revealed the up-regulation of 62 genes with a fold-change higher than 1.2, while 256 others
were down-regulated below 0.65 fold-change. After annotating the genes, they were clustered in
order to study their interactions and the pathways they are implicated in. Bupropion and VEE
affected interesting pathways controlling the neuronal proliferation, spatial learning and memory,
long-term potentiation and depression, inflammation and reactive oxygen species (ROS) production
(Table 1). Interestingly, VEE treatment regulated genes such as Adenylate cyclase (Ac) implicated
in the production of cyclic-Adenosine monophosphate (cAMP). It up-regulated the expression of
genes implicated in calcium signaling including Inositol 1,4,5-trisphosphate receptor type 2 (Itpr2),
Protein kinase C (Pkc) and Calcium channel voltage-dependent L type alpha 1C subunit (Cacna1c) [25,26]. VEE
treatment increased the expression of Calcium/calmodulin dependent protein kinase IV (CamkIV), one of
the genes stimulating mitochondrial biogenesis [27]. The expression of cGMP-dependent protein kinase
(Prkg1) was affected by verbena treatment, which results in the induction of muscle relaxation [28].
Also, 5 hydroxytryptamine (serotonin) receptor 4 (Htr4) involved in neurotransmitters production was
enhanced, alongside with AdenosineA2a receptor (Adora2), responsible of the development of several
neurodegenerative diseases [29–31]. VEE enhanced the expression of Dopamine receptor D1 (Drd1),
implicated in activation of Ac [32].

As shown in Table 1, out of the all sets of genes, three were highly expressed in the case of
VEE-treated mice, which are Gelsolin (Gsn), Transthyretin (Ttr) and Calcium/calmodulin-dependent protein
kinase 2 inhibitor 1 (Camk2n1). Their expressions were increased 5.26, 3.72 and 2.19 fold, respectively.
Recent studies showed a positive correlation between mitochondrial activity and expression of Ttr and
Gsn [33,34]. As for Camk2n1, it has been shown to possess a role in controlling cell proliferation [35].

VEE treatment decreased the expression of melanin-concentrating hormone receptor 1 (Mchr1) to a
fold-change equal to 0.55, while bupropion did not affect its transcription level. The down-regulation
of this gene was found to enhance the metabolism [36], which implicates an activation of mitochondria.
Also, Mchr1 antagonist exerted an anti-depressant effect [37].

The pro-melatonin-concentrating hormone (Pmch) was drastically down-regulated (Table 1). It has
been previously shown to exert a role in energy metabolism [38].
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Table 1. Genes regulated by VEE involved in induction of relaxation and the activation of energy
metabolism. The ratios were calculated using the data of mice receiving water as reference.

Gene ID Gene Name
Verbena
Ratio

Bupropion
Ratio

Function

Gsn Gelsolin 5.26 1.54 Amyloid beta peptides
aggregation [33,39]Ttr Transthyretin 3.72 3.91

Camk2n1 Calcium/calmodulin-dependent
protein kinase 2 inhibitor 1 2.19 1.03 Tumor suppressor [35]

CaMK4 calcium/calmodulin-dependent
protein kinase IV 1.46 1.20 Long-term memory [40]

Cacna1c Calcium channel, voltage-dependent,
L type, alpha 1C subunit 1.45 1.07 Cytosolic calcium content [26]

Pkc Protein kinase c 1.45 0.98 Adenylate cyclase
activation [32,41]Drd1 Dopamine receptor 1 1.43 1.07

Adora2 Adenosine A2a receptor 1.34 1.1
Cyclic-Adenosine
monophosphate (cAMP)
production [42]

Htr4 5 hydroxytryptamine (serotonin)
receptor 4 1.34 1.25 Modulation of

neurotransmitter release [29]

Itpr2 Inositol 1,4,5-trisphosphate
receptor type 2 1.30 1.22 Intracellular calcium

release [25]

Ac Adenylate cyclase 1.28 0.85 Production of cAMP [43]

Prkg1 cGMP-dependent protein kinase 1 1.25 1.32 Induction of relaxation [28]

Mchr1 melanin-concentrating
hormone receptor 0.55 1.01 Inhibition of cAMP

accumulation [44]

Pmch pro-melanin-concentrating hormone 0.12 0.12 Melanin-concentrating
hormone activity [45]

2.4. Validation of Expressions of Gsn, Ttr, Camk2n1 and Itpr2

The microarray analysis of brains collected from mice treated with 100 mg/Kg of VEE showed
up-regulation of genes implicated in mitochondrial activity, with fold-changes higher than 2. These
genes are Gsn, Ttr, and Camk2n1. Their up-regulations were confirmed and represented in relative gene
expression, with the negative control expression as reference. Expressions of Gsn, Ttr, and Camk2n1
were increased in the case of VEE-treated mice by 305% (relative gene expression), 115% and 110%,
respectively (Figure 3A–C). The Camk2n1 is an inhibitor that alters the transportation of Ca2+, responsible
of the control of the intracellular amount of this ion to avoid its side effects.

Itpr2 is responsible of intracellular calcium release. This gene was up-regulated by VEE treatment.
Its expression was confirmed and showed an enhancement of 160% in VEE-treated mice compared to
the control group. The effect of bupropion was not significant compared to VEE, with an increase of
19% (Figure 3D).

11



Int. J. Mol. Sci. 2019, 20, 3556

Figure 3. Validation of the expression of genes regulated by VEE treatment (100 mg/Kg) which are
(A) Ttr, (B) Camk2n1, (C) Gsn, and (D) Itpr2. Results were expressed in relative gene expression ± SD.
* P < 0.05; ** P < 0.001; *** P < 0.0001 compared with negative control group. # P < 0.05; ## P < 0.001;
### P < 0.0001 compared to bupropion-treated group.

2.5. Antidepressant Effect of Low Doses of VEE and Vs

The control group showed higher immobility time compared to other treatments for 7 days
of testing (Figure 4A). The immobility recorded on the first day was 63.81 s for the control, which
increased to reach 84.33s on day 7. This increase proved induction of depression in mice. Bupropion
treated mice scored an immobility time of 16.96 s on the first day and decreased to 1.56 s on the last
day of the test, proving the antidepressant effect of bupropion. Results obtained on first day showed
a significant difference between the control group and Vs and VEE at a dose of 25 mg/Kg. On the
second day, VEE and Vs treatments decreased the immobility time and the scores were statistically
comparable to the bupropion treated group, while the difference was highly significant compared to
the control. Similar results were observed for the rest of the test, except on day 3 and 5 where the
difference was not significant between the control group and the 25 mg/Kg VEE treated animals.

For decades, depression has been associated with levels of monoamines and catecholamines
in the system [46]. Depressive patients have been found to present Sert and NA (norepinephrine)
deficiency [47,48]. To confirm the antidepressant effect of the treatments on mice we quantified the
amounts of Sert and NA in mice brains. The results showed a low concentration of Sert and NA
for control group with an amount of 18 and 171 ng/100 mg total proteins, respectively (Figure 4B,C).
Bupropion increased significantly Sert level by 61% compared to control group. A similar effect
was observed in case of mice treated with VEE 25 and 50 mg/Kg and Vs 2.5 and 5 mg/Kg showing
improvement of 57.90%, 67.05%, 69.19%and 61.04% total proteins, respectively. An enhancement of
19% was observed in NA level in case of bupropion treated mice. Also, the other treatments increased
NA concentration with a higher rate of 19.35% for Vs 2.5 mg/Kg treated group.
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Figure 4. Effect of the oral administration of VEE (25 and 50 mg/Kg), Vs (2.5 and 5 mg/Kg) and
bupropion (20 mg/Kg) on (A) mice immobility times in tail suspension test compared to the control
(water 10 mL/Kg, p.o.) and their respective expression levels of (B) serotonin, (C) noradrenaline (D)
dopamine and (E) BDNF. Results were expressed in mean of immobility time (s) and protein level ± SD.
* P < 0.05; ** P < 0.001 and *** P < 0.0001 compared with Control group.

One of the important targets of antidepressants is the dopaminergic system. We evaluated the
effect of our treatments on dopamine levels in mice brains. Bupropion showed an increase of dopamine
content by 26% (Figure 4D). The highest dopamine concentration, with an increase of 34.45%, was
observed in mice treated with 25 mg/Kg of VEE. The lowest dopamine enhancement (21.21%) was
obtained for mice treated with 5 mg/Kg of Vs.

Furthermore, we evaluated the concentration of BDNF, which is one of the markers of depression.
Our findings showed an increase of BDNF levels in all treatments. Bupropion enhanced BDNF
expression by 64.34% (Figure 4E). Interestingly, VEE at 25 mg/Kg and Vs at 2.5 and 5 mg/Kg were
found to exert more substantial effect regarding BDNF level with an enhancement of 64.67%, 76.36%
and 69.26%.

2.6. Evaluation of the Mitochondrial Activity of Cells Treated with VEE and Vs

In order to measure the mitochondrial activity, we used the rhodamine 123 that stains the active
mitochondria specifically. Both VEE and Vs induced mitochondrial activation of SH-SY5Y cells in
a dose-dependent manner, with higher effect at lower concentrations. VEE at 0.5 μg/mL increased
mitochondrial activity by 17% and its effect decreased to reach 9.37% for cells treated by 5 μg/mL
(Figure 5A). Mitochondrial activity of cells treated with 5 μM of Vs was 115% compared to control,
while the higher concentration enhanced the function only by 3% (Figure 5B). These results implicated
a stimulation of energy production of VEE and Vs treatments.
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Figure 5. Evaluation of mitochondrial activity of SH-SY5Y cells treated with different concentrations
of (A) VEE and (B) Vs. The intracellular ATP production of SH-SY5Y was assessed in vitro using the
same concentrations of (C) VEE and (D) Vs at 6, 12, 24, 48 and 72 h. Results were expressed in mean
of relative mitochondrial activity or ATP production (%) ± SD. * P < 0.05; ** P < 0.001; *** P < 0.0001
compared with control cells treated with Opti-MEM.
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The same concentrations of VEE and Vs were evaluated for their effect on energy generation by
quantifying ATP level. As Figure 5C shows, VEE treatments were not effective on energy metabolism
at 6 h, but they show a highly significant increase after 12 h, with a maximum of 129.71 ± 2.73%.
The ATP content decreased in a time and dose-dependent manner to reach energy homeostasis
after 72 h. Treating the cells with Vs increased ATP production significantly after 12 h (Figure 5D),
which decreased gradually to attain the normal status at 72 h.These results proved the stimulation
mitochondria by VEE and Vs.

2.7. Effect of VEE and Vs on Intracellular Calcium Levels

Studies have shown a correlation between intracellular calcium uptake and mitochondrial
activation. Transcriptomic analysis showed regulation of genes involved in Ca2+ in cases of mice
treated with VEE. Here, we evaluated the effect of VEE and Vs on Ca2+ levels on SH-SY5Y. VEE
increased Ca2+ uptake after 30 min of treatment in concentration and time-dependent manner, with
higher effect at lower concentrations (Figure 6A). Accordingly, Vs showed similar effect on Ca2+ with
higher activity at lower doses (Figure 6B). These results proved the implication of Ca2+ in the observed
activities, with Vs being responsible for VEE effects.

 

 

Figure 6. Evaluation of intracellular calcium levels of SH-SY5Y cells treated with different concentrations
of (A) VEE and (B) Vs for 1–180 min. Results were expressed as percentage of control cells treated with
Opti-MEM ± SD. * P < 0.05; ** P < 0.001; *** P < 0.0001 compared with control cells.
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3. Discussion

Lemon verbena is a medicinal plant exerting important biological activities such as antidepressant,
antioxidant, sleep-promoting and analgesic effects [24,49–51]. The molecular mechanisms underlying
these effects are still unknown.

The in vitro study showed an increase of cell viability of VEE-treated cells compared to the
non-treated cells, indicating an activation of cellular functionalities. Co-treatment of VEE and Dex
enhanced the cell viability significantly compared to the Dex-treated cells. To determine the compound
responsible for the effect observed, we treated the cells with the three most abundant compounds in
the extract, Vs, Hs and Vn. The viability was enhanced by Vs in comparison to the control, while Hs
and Vn were significantly decreased. The effect observed in the case of the extract is probably due to
Vs. Also, Vs was tested for its neuroprotective effect and was found to alleviate Dex toxicity by more
than 30%. These findings suggest that VEE and Vs have neuroprotective effects.

In the present work, we studied the effect of VEE on mice at the molecular level by analyzing
the expression of all genes. We used the TST to induce psychological stress in mice. The TST results
showed increase of immobility time of VEE-treated mice compared to both control groups. In 2017,
Razavi et al. reported the anti-anxiety and muscle relaxant effects of VEE and Vs in vivo [17]. Another
study showed induction of relaxation in mice and rats treated with essential oil extracted from the
aerial part of verbena [50]. Accordingly, the aqueous extract of this plant was found to have a sedative
effect in rats at high doses (700 and 1000 mg/Kg body weight of extract) [8]. Then, the increase of
immobility time observed in this study may suggest the relaxant and sedative effects of VEE.

The evaluation of the transcriptome in the collected brains showed an enhancement of expression
of genes implicated in the production of cAMP in the case of mice treated with VEE. Drd1 expression was
increased by VEE, while it remained stable in case of bupropion-treated mice. Previously, the enzymatic
activity of Ac was found to be tightly regulated by Drd1 through Gβα [32]. Also, VEE increased
the expression of Ac in mice brains, the enzyme that was down-regulated by Bupropion treatment.
Over-expression and activation of Ac by VEE implies an increase of cAMP generation, which has been
associated with the induction of relaxation effect [52]. Accordingly, the use of apomorphine, a Drd1
agonist, was proved to induce relaxation [53]. Moreover, treatment with the plant extract increased
Prkg1 expression, a gene that has been associated with induction of relaxation [28].

VEE affected the expression of genes modulating calcium homeostasis. Itpr2 is one of the
intracellular Ca2+ release channels, located in the membranes of endoplasmic and sarcoplasmic
reticula. These are organelles are rich in Ca2+ion [25]. VEE up-regulated the expression of Itpr2,
implicating an elevation of the ion in the cytosolic compartment. Ca2+-cytosolic content depends
also on channels facilitating the transport of ion from the extracellular compartment [54]. One of
these channels is Cacna1c which has been over expressed in VEE-treated mice. A previous study
evaluated the transcriptomic changes induced by relaxation in humans and Cacna1c was found
to by over-expressed [54]. Ca2+-induced increase by VEE, up-regulated the expression of Pkc, an
enzyme found to be dependent to Ca2+ concentration in cells, and which activates Ac inducing an
over-production of cAMP [41,55]. On the other hand, calcium homeostasis has been already proved
to play an important role in muscle movement and walking behavior in humans. At the brain level,
the calcium signaling regulates different functions, including signal transmission and also the learning
and memory [56–60]. When accumulated in cytoplasm, the calcium is transported into mitochondria
inducing the activation of enzymes implicated in generation of ATP, including ATP synthase and
NADH+ dehydrogenase [61]. The inhibition of the calcium uptake by the mitochondria was found
to increase the time needed for relaxation [62]. Accordingly, an increase of Ca2+ content has been
proved to induce ATP production through cAMP generation [63]. These results suggest that VEE
has a relaxant effect on mice through the generation of cAMP, which in addition to high intracellular
Ca2+levels, induces activation of mitochondria.

For VEE-treated mice, Gsn, Ttr, and Camk2n1 showed the highest expression levels compared to
the set of genes analyzed by microarray, and the increase was more than 2 fold-changes, while mice
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receiving Bupropion showed a decrease of Ttr expression, whereas Gsn and Camk2n1 expressions
were slightly increased (less than 1.5 fold-change). Mutant mice over-expressing Gsn revealed an
enhancement of respiratory chain activity [33]. Several studies have demonstrated the neuroprotective
role of Ttr [64–68], and its positive correlation to mitochondrial function [34]. These findings proved an
increase of mitochondrial activity, implying an over-production of ATP. VEE-treated group presented
high level of Camk2n1 expression compared to control group, which implicates a controlled cell
proliferation. Previously, a study demonstrated the tumor suppressive effect of Camk2n1 [35].

Pmch and Mchr1 were significantly down-regulated by VEE. Pmch-deficient mice, as well as
Mchr1-deficient mice, were found to be more active than wild type mice, and showing an increase in
metabolic rate [36,38]. A specific Mchr1 antagonist has showed antidepressant and anxiolytic effect [37].
The increase of immobility time of VEE-treated mice is due to the relaxant effect of the plant extract,
and the molecular analysis proved its antidepressant effect.

In order to evaluate the effect of lower doses of VEE and their respective Vs contents, a second
TST was conducted. The treatments used were 25 and 50 mg/Kg of VEE and 2.5 and 5 mg/Kg of
Vs. Interestingly, the results showed a decrease in immobility time compared to the control group,
and scores were statistically comparable to bupropion treated mice. Our findings suggest low doses
have an antidepressant effect. In accordance with the transcriptomic analysis conducted here above,
VEE and Vs might be induced mitochondrial activation through accumulation of cAMP and Ca2+,
to a lesser extent than high dose of VEE, resulting in agitation of mice rather than their relaxation.
To prove the antidepressant effect observed in vivo, we evaluated the levels of different depression
markers. Sert and NA implication in depression has been documented and are considered as targets
of antidepressants [47,48]. In our study, VEE and Vs were found to enhance Sert and NA levels
demonstrating an antidepressant effect of the treatments on mice.

Previous studies found that antidepressants targeting the expressions of Sert and NA only
present limitations. Patients might show movement delay, lack of concentration or even persistence
of anhedonia [69]. Accordingly, drugs acting on the dopaminergic system have been developed.
Dopamine is a catecholamine responsible of expression of emotions such as pleasure and motivation,
and stimulates concentration [69]. Hence, we assessed dopamine levels in brains. The results showed
a highly significant increase of dopamine expression by VEE and Vs compared to control group. These
findings prove the antidepressant activity of VEE and Vs by stimulating the pleasure mechanism.

It has been documented that antidepressants acting on serotonergic and norepinephric mechanisms
lead to enhancement of BDNF levels in rodents [70,71]. We evaluated the effect of treatments on BDNF
in brains. The results showed a highly significant increase of BDNF by VEE and Vs treatments. Also, it
has been documented that Ca2+ and cAMP levels regulate BDNF expression through CREB (cAMP
response element-binding protein) [72].

The results obtained in vivo revealed the activation of mechanisms responsible for the increase
of cytosolic Ca2+ and cAMP generation, messengers inducing the mitochondrial activity. To
confirm this hypothesis, we evaluated the effect of VEE on mitochondrial activity. The results
showed enhancement of mitochondrial function in a concentration-dependent manner. Accordingly,
Vs increased mitochondrial function in a similar tendency as VEE.ATP production in vitro was evaluated
to confirm the effect of VEE and Vs mitochondrial activity. Human neurotypicSH-SY5Y cells treated
with VEE showed a significant increase of ATP content in a dose-dependent manner after12h treatment.
Energy metabolism gradually decreased to regain the initial state. Vs is one of the most important
compounds contained in VEE, and has been proven to induce muscle relaxation in mice [17]. Next,
we evaluated the potential effect of Vs on mitochondrial activity. We observed that Vs-treatment also
showed an increase in ATP production at 12h, which restored to its original condition progressively.
In 2013, Bhasin et al. evaluated the transcriptomic changes in humans in response to relaxation
condition and showed regulation of genes activating energy metabolism [54]. ATP increase has been
found to be regulated positively by activation of mitochondrial calcium uptake, as aresult of different
stimuli such as alimentation, hormones and neurotransmitters [61,73–76]. Our in vitro study showed

17



Int. J. Mol. Sci. 2019, 20, 3556

that VEE and Vs enhanced intracellular calcium levels in a concentration and time-dependent manner
with similar tendency as mitochondrial activation. These results proved the increase of calcium and
energy metabolism related genes regulated by the treatments in vivo.

4. Materials and Methods

4.1. Plant Material and Extraction Method

The leaves of Lippia citriodora were collected in July 2016 from Marrakech Region (Morocco).
The species was authenticated by Prof. Ahmed Ouhammou from Cadi Ayyad University, Faculty of
Sciences Semlalia, Department of Biology, Marrakech, Morocco. A voucher specimen of plant material
(MARK-11186) was deposited in the Herbarium of the same institution. After air drying, the plant
material was crushed by a mortar and extracted with ethanol 70%, with a ratio plant material/solvent
of 10% (w/v). The extraction was carried out in the dark for 2 weeks and vigorously shacked twice a day.
The extract was centrifuged and the supernatant filtered through 0.22 μm Millipore (Mark Millipore,
Carrigtwohill, Ireland) and solvent evaporated by a rotary evaporator. The yield of VEE was 13.3%.

4.2. Chemicals

Vs, Hs and Vn were purchased from Sigma Aldrich, USA. Dulbecco’s Modified Eagle Medium
(DMEM)/F-12 and Opti-MEM were obtained from Gibco, USA. Fetal bovine serum was from Gibco,
South America. Penicillin - Streptomycin were purchased from Biowhittaker, USA. Non-essential amino
acids were from Cosmo Bio Co, LTD, Japan. MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide) and dexamethasone were from Dojindo, Japan. Bupropion was from Wako, Japan.
ATP bioluminescence kit was from TOYO Ink, Japan. ISOGEN kit was purchased from Nippon
Gene, Japan. RIPA lysis buffer was from (Santa Cruz Biotechnology, USA). 2-D Quant was purchased
from GE Healthcare Life Sciences, USA. Calcium Kit II-Fluo 4 was from Dojindo, Japan.

4.3. Cell Culture

The in vitro experiments were conducted on SH-SY5Y cells. This neurotypic cell line was obtained
from America Type Culture Collection, Manassas, USA. Cells were maintained in Dulbecco’s Modified
Eagle Medium (DMEM)/F-12, supplemented with 15% fetal bovine serum, 1% Penicillin (5000 μg/mL)
Streptomycin (5000 IU/mL) and 1% of non-essential amino acids. The culture was incubated at 37 ◦C
in a humidified atmosphere of 5% CO2 incubator. Opti-MEM, a reduced serum medium, was used to
culture cells for the evaluation of cell viability and intracellular ATP.

4.4. Determination of Cell Viability

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to assess cell
viability of SH-SY5Y cells. Briefly, the cells were seeded in a 96-well plate (fibronectin-coated plate)
(BD BioCoat, New York City, NY, USA) with a density of 2 × 105 cell/mL. After 24 h, the medium was
removed and the cells were VEE (0.5, 1, 2.5 and 5 μg/mL), Vs, Hs or Vn (3.1, 31.2 and 62.4 μg/mL) diluted
in Opti-MEM. After 72h incubation period, 10 μL MTT (5 mg/mL) mixed with 100 μL of Opti-MEM
was added to each well and the plate was incubated for further 6 h. The formazan crystals formed by
the mitochondrial activity were solubilized by adding 100 μL of 10 % SDS (w/v). The absorbance was
measured at 570 nm using a microtiter plate reader (Dainippon Sumitomo Pharma Co., Ltd., Tokyo,
Japan). The results were expressed in percentage of relative cell viability.

To evaluate the neuroprotective effect of VEE, Vs, Hs and Vn, the cells were co-treated with DEX
(50 μM), incubated for 72h, then their viability assessed by MTT assay as described above.

4.5. Animals

Male ICR mice, 3 weeks old, weighting between 20 and 30 g were purchased from Charles River
laboratories (Tokyo, Japan). Mice were housed individually and had access to food and water ad libitum,
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in a controlled environment (56% humidity, 23 ◦C temperature, 12/12 h light/dark cycle). Before starting
the oral administration and the tail suspension test, the mice were allowed to acclimatize for one week.
All experiments were performed in strict accordance with NIH guidelines and were approved by the
Animal Ethics Committee of the University of Tsukuba, Japan. The ethical approval code is 16-042
(1/06/2016).

4.6. Tail Suspension Test

The animals were divided into three groups. A negative control group receiving Milli-Q water
(10 mL/Kg; n = 6), a positive control group treated with 20 mg/Kg of Bupropion (n = 7) and VEE-treated
group (n = 7) which received a dose of 100 mg/Kg. The samples were administrated orally every day
for 7 days.

The tail suspension test (TST) is a widely used technique to screen the antidepressant effects of
drugs. The methodology used in this study is as described by Steru et al., 1985 [77]. Briefly, the TST
was performed 60 min after the administration of treatments. The duration of the test was 6 min and
the immobility time was measured on the last 4 min of the test. A mouse was considered immobile only
when it is hanged passively, showing no resistance to the stress applied by the test. The experiment
was recorded using a camera and scored by observing the videos. After completion of the behavioral
test, mice were sacrificed by cerebrospinal dislocation, then the whole brains were collected for the
subsequent analysis.

A second TST was conducted to evaluate the effect of lower doses of VEE (25 mg/Kg, n = 6;
50 mg/Kg, n = 7) and their respective Vs content (2.5 mg/Kg, n = 6; 5 mg/Kg body weight, n = 7) on mice.
HPLC analysis showed that VEE contains 10% of Vs (data not shown). Other control groups (Milli-Q,
n = 6; Bupropion 20 mg/mL, n = 7) were used for the second test. TST was performed according to the
protocol previously described.

4.7. DNA Microarray Analysis

The total RNA was extracted from the brain tissues previously collected using ISOGEN kit and
quantified by Nanodrop 2000 spectrophotometer (Thermo Fisher scientific, Wilmington, NC, USA).

To elucidate the molecular mechanism underlying the effect of VEE on neuronal activities, we
evaluated the total gene expression of brain tissues by performing microarray on RNAs previously
extracted. The experiment was conducted according to the Affymetrix Genechip 3’ IVT PLUS reagent
kit user’s guide. Briefly, the RNAs were reverse transcripted to generate double stranded DNA.
The latter used as a template to synthesize the Biotin-labeled cRNA. After fragmentation of the labeled
cRNA, the mixture was hybridized to the Affymetrix mouse 430 PM array strips (Affymetrix) for 16 h
at 45 ◦C in the hybridization station. In Geneatlas Fluidics station, the hybridized arrays were washed
and stained, then scanned using Geneatlas imaging station. The total number of genes analyzed
by this method is 39,396 genes. All brain samples were analyzed by microarray. The data obtained
were analyzed by Expression Console and Pathway Studio software and DAVID and Consensus
Path databases.

4.8. Real Time Polymerase Chain Reaction (qRT-PCR)

RNA extracts obtained from mice brains were used as templates to validate the microarray results
through evaluation of the expression level of some relevant genes regulated by Verbena treatment. First,
a reverse transcription was performed, using the Superscript IV reverse transcriptase kit (Invitrogen,
Carlsbad, CA, USA) following the manufacturer’s protocol. Briefly, we incubated a mixture of RNA
samples (0.2 μg/μL) and Oligo(dT)12-18/dNTP (0.5 μg/μL; 10 mM) for 5 min at 65 ◦C, and then placed for
1 min on ice. The Reverse transcriptase solution was added and incubated the samples at 42 ◦C for 60
min and then 10 min at 60 ◦C. The cDNA produced is used to evaluate the expression of 3 genes: Gelsolin

“Gsn” (Mm00456679_m1), Transthyretin “Ttr” (Mm00443267_m1), Calcium/calmodulin-dependent protein
kinase II inhibitor 1 “Camk2n1” (Mm01718432_s1) and Inositol 1,4,5-trisphosphate receptor type 2 “Itpr2”
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(Mm00444937_m1). This experiment was conducted using TaqMan Universal PCR mix and TaqMan
Probes and the amplifications were performed in a 7500 Fast Real-time PCR (Applied Biosystems,
Foster City, CA, USA) with the following conditions: 50 ◦C for 2 min, followed by 95 ◦C for 10 min,
and 40 cycles of 95 ◦C for 15 s followed by 60 ◦C for 1 min.

4.9. Quantification of Neurotransmitters and BDNF

To confirm the antidepressant effect of VEE and Vs at lower doses, we quantified the levels of
serotonin (Sert), noradrenaline (NA), dopamine and BDNF in brains. The proteins were measured in
the frontal cortex. First we homogenized 100 mg of tissue in 1 mL of RIPA buffer. The homogenate
was centrifuged for 5 min at 10,000× g and 4 ◦C. The supernatant was collected and stored at −80 ◦C.
The dopamine, Sert and NA were quantified using ELISA kits (Immusmol SAS, Talence, France). BDNF
was measured by colorimetric sandwich ELISA kit (Proteintech, Rosemont, IL, USA). The experiments
were conducted following the manufacturer’s instructions. The results of each treatment group were
corrected by their respective total protein content determined using 2-D Quanti kit.

4.10. Measurement of Mitochondrial Activity

Mitochondrial function was measured using rhodamine 123, a fluorescent dye. The protocol was
as described previously by Matsukawa et al., 2017 [78]. Briefly, treated SH-SY5Y were incubated for
20 min at 37 ◦C after addition of rhodamine 123 (10 μg/mL). Cells were lysed by 1% Triton X-100 and
the fluorescence intensity of rhodamine (excitation/emission 485/528 nm) was measured.

4.11. Measurement of the Intracellular ATP Production

The mitochondrial activity was assessed by measuring the intracellular ATP content of cells using
ATP bioluminescence kit. Cells were cultured (2 × 105 cell/mL) in a 96-well plate (fibronectin-coated
plate) and treated with different concentrations of VEE and Vs for 6, 12, 24, 48 and 72 h. The cells were
lysed and the ATP content measured by adding 100μL of luciferin-luciferase solution. The luminescence
was measured using the microtiter plate reader (Dainippon Sumitomo Pharma Co., Ltd., Japan).

4.12. Measurement of Intracellular Calcium Level

Calcium Kit II-Fluo 4 was used to measure intracellular calcium levels of SH-SY5Y.
The measurement was conducted according to the manufacturer’s protocol. Briefly, SH-SY5Y cells
were seeded in black clear-bottom 96 well plates (Corning, NY, USA) and then treated with loading
buffer (5% Pluronic F-127, 250-mmol/L Probenecid and 1-μg/μLFluo 4 AM in Hanks’–HEPES Buffer)
for 1 h. The supernatant was removed and cells were washed with PBS. Cells were treated with VEE
and Vs as described previously. Fluorescence intensity (excitation/emission 485/528 nm) was measured
every 30 min using a Powerscan HT plate reader.

4.13. Statistical Analysis

Results are expressed as means ± SD, and statistical analyses were performed using a Student’s
t-test using IBM SPSS Statistics 23 software. Differences were determined statistically significant at a
P-value of less than 0.05.

5. Conclusions

Taken together, our findings suggest that, depending on the administered dose, VEE and Vs
induce either relaxation or anti-depression effects. Higher doses of VEE induced relaxation through
regulation of genes, including Itpr2 and Ac, responsible for Ca2+ and cAMP generation. Lower doses of
VEE and their respective Vs amount treatments was found to induce antidepressant-like effects by
enhancing the BDNF, NA, Sert and dopamine expressions, which are cAMP and Ca2+ dependent. VEE
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and Vs increased Ca2+ intracellular levels leading to the enhancement of mitochondrial activity and
ATP concentration. The effects of VEE observed in vivo and in vitro are due mostly to Vs.
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Abbreviations

Ac Adenylate cyclase
Adora2 Adenosine A2a receptor
Cacna1c Calcium channel, voltage-dependent, L type, alpha 1C subunit
Camk2n1 Calcium/calmodulin-dependent protein kinase II inhibitor 1
Camk4 Calcium/calmodulin-dependent protein kinase IV
Dex Dexamethasone
Drd1 Dopamine receptor 1
Gsn Gelsolin
Hs Hastatoside
Htr4 5 hydroxytryptamine (serotonin) receptor 4
Itpr2 Inositol 1,4,5-trisphosphate receptor type 2
Mchr1 Melanin-concentrating hormone receptor
MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
NA Noradrenaline
Pkc Protein kinase c
Pmch Pro-melanin-concentrating hormone
Prkg1 cGMP-dependent protein kinase 1
Sert Serotonin
TST Tail suspension test
Ttr Transthyretin
VEE Verbena ethanolic extract
Vn Verbenalin
Vs Verbascoside
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Abstract: The dried flowers of Chionanthus retusus were extracted with 80% MeOH, and the concentrate
was divided into EtOAc, n-BuOH, and H2O fractions. Repeated SiO2, octadecyl SiO2 (ODS), and
Sephadex LH-20 column chromatography of the EtOAc fraction led to the isolation of four flavonols
(1–4), three flavones (5–7), four flavanonols (8–11), and one flavanone (12), which were identified
based on extensive analysis of various spectroscopic data. Flavonoids 4–6 and 8–11 were isolated
from the flowers of C. retusus for the first time in this study. Flavonoids 1, 2, 5, 6, 8, and 10–12

significantly inhibited NO production in RAW 264.7 cells stimulated by lipopolysaccharide (LPS)
and glutamate-induced cell toxicity and effectively increased HO-1 protein expression in mouse
hippocampal HT22 cells. Flavonoids with significant neuroprotective activity were also found to
recover oxidative-stress-induced cell damage by increasing HO-1 protein expression. This article
demonstrates that flavonoids from C. retusus flowers have significant potential as therapeutic materials
in inflammation and neurodisease.

Keywords: Chionanthus retusus; flavonoid; flower; HO-1; neuroprotection; NO

1. Introduction

With the rapid growth of the aging population, the treatment of age-related diseases has become
an important global issue, including in Korea [1]. Neurodisease is among the various illnesses induced
by aging [2]. Previous studies have revealed the neuroprotective activities of bioactive compounds such
as alkaloids, sterols, and flavonoids [3,4]. Flavonoids perform various neuroprotective actions, such
as suppressing neuroinflammation; protecting neurons; and promoting memory, cognitive function,
and learning [5,6]. Given the many experiments demonstrating their neuroprotective effects, these
compounds may have therapeutic potential in neurodisease [3,6–9].

Flavonoids have a phenylchromane (C6-C3-C6) structure and are synthesized from l-phenylalanine
and l-tyrosine via the shikimic acid pathway [10]. They comprise one of the most widespread and
diverse groups of compounds in nature [11–13]. Among various natural resources, flowers (the
reproductive organs of plants) contain diverse secondary metabolites, including volatiles, pigments,
and flavonoids, which lure pollinating insects and facilitate pollination [14–16]. Sun et al. previously
determined the total flavonoid content of Chionanthus retusus flowers to be 10.7% [17]. Thus, in this
study, we focused on the isolation, identification, and investigation of the potential therapeutic effects
of flavonoids from C. retusus flowers.
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C. retusus (Oleaceae), a deciduous tree with oval leaves, is widely cultivated and distributed
in Korea, China, Taiwan, and Japan, growing to 20–25 m high [18]. This plant has been used
as an antipyretic, treatment for palsy and diarrhea in Oriental medicine and is known to contain
many kinds of secondary metabolites, including flavonoids, lignans, sterols, and terpenoids [18–20].
These compounds have been reported to exert antioxidant, anti-inflammatory, and neuroprotective
effects [6,7,18]. Although numerous active components have been isolated from C. retusus leaves
and stems, the flowers of C. retusus have rarely been studied. This paper describes the isolation of
12 flavonoids from C. retusus flowers, determination of their chemical structures through extensive
analysis of various spectroscopic data, evaluation of their anti-inflammatory and neuroprotective
effects, and the relationship of their structure to their activity.

2. Results and Discussion

2.1. Contents of Total Phenols and Total Flavonoids in C. retusus Flowers

The contents of total phenols and flavonoids in the extract and fractions were determined as gallic
acid and catechin equivalent values, respectively. As shown in Table 1, MeOH extract and EtOAc
fraction (fr.) showed the highest contents compared to other fr.s. MeOH extract and EtOAc fr. showed
a yellowish color on a thin-layer-chromatography (TLC) plate by spraying 10% H2SO4 and baking
(data not shown), suggesting the extract and EtOAc fr. to include high amounts of flavonoids.

Table 1. Total phenols and flavonoids contents of the extract and fractions from Chionanthus
retusus flowers.

Samples Extract EtOAc fr. n-BuOH fr. H2O fr.

Total phenols (mg GA/g DW) 125.4 ± 3.3 245.6 ± 5.2 130.1 ± 2.5 53.1 ± 1.8
Total flavonoids (mg CA/g DW) 119.1 ± 2.7 172.1 ± 2.1 98.2 ± 0.9 18.2 ± 1.2

GA: gallic acid; CA: catechin; fr., fraction.

2.2. Isolation and Identification of Flavonoids from C. retusus Flowers

The dried flowers of C. retusus were extracted with MeOH, and the concentrate was divided
into EtOAc, n-BuOH, and H2O fr.s. Repeated SiO2, octadecyl SiO2 (ODS), and Sephadex LH-20
column chromatography (c.c.). on the EtOAc Fr enabled the isolation of four flavonols (1–4), three
flavones (5–7), four flavanonols (8–11), and one flavanone (12). These compounds were identified
to be quercetin (1) [20], kaempferol (2) [20], astragalin (3) [21], nicotiflorin (4) [22], luteolin (5) [20],
luteolin 4′-O-β-d-glucopyranoside (6) [23], isorhoifolin (7) [24], taxifolin (8) [25], aromadendrin (9) [20],
aromadendrin 7-O-β-d-glucopyranoside (10) [26], taxifolin 7-O-β-d-glucopyranoside (11) [27], and
eriodictyol 7-O-β-d-glucopyranoside (12) [24] based on extensive analysis of data from various
spectroscopic methods, including IR, FAB/MS, 1d-NMR (1H, 13C, DEPT), and 2d-NMR (COSY, HSQC,
HMBC) (Figure 1). The identities of the compounds were confirmed by comparing their NMR and MS
values with those reported in the literature. We determined the stereochemistry of the chiral centers
(C-2 and C-3) in flavonoids 8–12 by examining the coupling constants between H-2 and H-3 in the
1H-NMR spectra. They were mostly observed to be 12 Hz, which suggested that the two protons were
in a 2,3-trans configuration.
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Figure 1. Chemical structures of flavonoids 1-12 isolated from C. retusus flowers.

2.3. Inhibition Effects of Flavonoids 1–12 on NO Production in Lipopolysaccharide (LPS)-Induced
RAW 264.7 Cells

Oxidative stress is not only an important feature of several neurodegenerative processes,
but also actively triggers intracellular signaling pathways that lead to cell death [28].
We first examined the viability of RAW264.7 cells treated with compounds 1–12 using a
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. It did not show cytotoxicity
or cellular proliferation when treated with compounds 1–4 and 6–12 at concentrations of 40 or 80 μM in
RAW264.7 cells. However, compound 5 exhibited cytotoxic effects at 80 μM (Figure 2a). To investigate
the anti-inflammatory effects of compounds 1–12, we appreciated their inhibitory effects on NO
production in LPS-induced RAW 264.7 cells. These cells were pretreated with flavonoids 1–12 and
butein, a positive control, before one day LPS treatment. As shown in Table 2, compounds 1, 2, 5,
and 6 highly inhibited NO production, while compounds 8 and 10–12 showed moderate inhibition
effect. Flavonoids with a catechol structure in the B ring (1, 5, 6, 8, 11, and 12) exerted stronger
anti-inflammatory effects than those with a phenol structure (3, 4, 7, 9, and 10). In addition, as the
number of glucose moieties increased in compounds 1–6, the NO inhibitory effects of these compounds
in RAW 264.7 cells decreased. However, compounds with glucopyranosyl moieties at C-7 (10 and 11)
exhibited higher activity than aglycones (8 and 9). These results indicate that the presence of a catechol
structure in the B ring and a glucopyranosyl moiety in the flavonoid structure were key factors of the
anti-inflammatory effects of these flavonoids.

Table 2. IC50 values of flavonoids 1–12 from C. retusus flowers on NO production in lipopolysaccharide
(LPS)-induced RAW264.7 cells. The cells were pre-treated with each compound for 12 h, and then
stimulated with LPS (1 μg/mL) for 18 h. The production of NO was determined as described in Section 3.
Data shown represent the mean ± SD of three experiments.

No. IC50 (μM) No. IC50 (μM) No. IC50 (μM)

1 37.93 ± 0.03 5 5.99 ± 0.02 9 >100
2 21.25 ± 0.03 6 30.60 ± 0.05 10 71.56 ± 0.08
3 >100 7 >100 11 57.18 ± 0.03
4 >100 8 78.53 ± 0.03 12 60.86 ± 0.01
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Figure 2. Cytotoxicity of compounds 1-12 on (a) RAW264.7 cells and (b) mouse hippocampal HT22
cells. (a) RAW264.7 cells were treated with 40 or 80 μM of compounds 1–12 for 48 h. (b) Mouse
hippocampal HT22 cells were treated with 20 or 40 μM of compounds 1–12 for 24 h. Data are presented
as the mean ± standard deviation of three independent experiments. * p < 0.05 vs. non-treated control.

2.4. Effects of Flavonoids 1–12 on Glutamate-Induced Cell Toxicity in Mouse Hippocampal HT22 Cells

To investigate the protective effects of compounds 1–12 against glutamate-induced oxidative
neuronal cell death, we also examined their effects on the viability of mouse hippocampal HT22
cells. To investigate the potential for cellular proliferation or cytotoxic effects of compounds 1–12, we
first examined the viability of mouse hippocampal HT22 cells treated with compounds 1–12 using
an MTT assay. No cytotoxic effects or cellular proliferation by compounds 1–12 were observed at
concentrations <40 μM (Figure 2b). These cells were pretreated with compounds 1–12 at concentrations
of 20 or 40 μM for 3 h and then were treated with glutamate and reacted for 12 h. Thereafter, cell
viability was assessed with an MTT assay. None of the compounds exhibited toxicity at the highest
concentration (40 μM). Compounds 1, 2, 5, 6, 8, 10, 11, and 12 significantly increased cell viability
following glutamate treatment (Figure 3). Butein derived from Rhus verniciflua, which is known to
protect mouse hippocampal HT22 cells from glutamate-induced death [29], was used as a positive
control and indeed exhibited cytoprotective effects (Figure 3). Flavonoids with a catechol structure
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in the B ring (1, 5, 6, 8, 11, and 12) exerted stronger cytoprotective effects than those with a phenol
structure (3, 4, 7, 9, and 10). In addition, as the number of glucose moieties increased in compounds
1–6, the cytoprotective effects of these compounds in HT22 cells decreased. However, compounds with
glucopyranosyl moieties at C-7 (10 and 11) exhibited higher activity than aglycones (8 and 9). These
results indicate that the presence of a catechol structure in the B ring and a glucopyranosyl moiety in
the flavonoid structure were key determinants of the effects of these flavonoids on mouse hippocampal
HT22 cells.

Figure 3. Effects of compounds 1–12 on glutamate-induced oxidative neurotoxicity in mouse
hippocampal HT22 cells. Mouse hippocampal HT22 cells were pretreated with 20 or 40 μM of
compounds 1–12 and then were treated with glutamate (5 mM) for 12 h. Butein (5 μM) was used
as a positive control. Data are presented as the mean ± standard deviation of three independent
experiments. * p < 0.05, *** p < 0.001 vs. glutamate.

2.5. Effects of Compounds 1, 2, 5, 6, 8, and 10–12 on HO-1 Expression in Mouse Hippocampal HT22 Cells

Heme oxygenase (HO) is an important enzyme in the antioxidant cell system. HO-1, one of the
HO derivatives, decomposes heme in the cell to produce carbon monoxide, iron, and biliverdin [30].
HO-1 expression has been reported to inhibit brain cell damage resulting from oxidative stress [31].
We examined whether compounds 1, 2, 5, 6, 8, and 10–12 affected the protein expression of HO-1,
given their protection against glutamate-induced toxicity in mouse hippocampal HT22 cells. Mouse
hippocampal HT22 cells were treated with compounds 1, 2, 5, 6, 8, and 10–12 at three concentrations
(10, 20, and 40 μM) and then cultured for 12 h. Cobalt protoporphyrin (CoPP), a well-known HO-1
inducer, was used as a positive control. As shown in Figure 4, compounds 1, 2, 5, 6, 8, and 10–12 all
increased HO-1 protein expression in a dose-dependent manner in mouse hippocampal HT22 cells.
Flavonoid aglycones (1, 2, 5, and 8) exhibited higher activity than the glycosides (10–12). The flavonol
and flavanonol with a catechol structure in the B ring (1 and 11) displayed stronger HO-1 expression
than those with a phenol structure (2 and 10). Flavonoids with a hydroxy group at C-3 (8 and 11)
exhibited weaker HO-1 expression than those without (5 and 12). In addition, a flavonoid with a
double bond between C2 and C3 (1) was a weaker inhibitor of oxidative-stress-induced brain-cell
damage than one with a single bond (8). These results indicate that the presence of a hydroxy group at
C-3, the structure of the B ring and the type of C2-C3 bond are key determinants of the extent to which
these flavonoids protect brain cells from damage due to oxidative stress.
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Figure 4. Effects of compounds 1, 2, 5, 6, 8, and 10–12 on HO-1 expression in mouse hippocampal
HT22 cells. Mouse hippocampal HT22 cells were treated with compounds 1, 2, 5, 6, 8, and 10–12

at three concentrations (10, 20, and 40 μM) and then cultured for 12 h. Expression of HO-1 was
measured by Western blot analysis. Cobalt protoporphyrin (CoPP, 20 μM) was used as a positive
control. Representative blots of three independent experiments are shown. * p < 0.05, ** p < 0.01,
*** p < 0.001 vs. non-treated control.

2.6. Effects of Compounds 1, 2, 5, 6, 8, and 10–12 on Cell Viability through HO Signaling Pathway

Compounds 1, 2, 5, 6, 8, and 10–12, which exhibited cytoprotective effects, also increased HO-1
expression (Figures 3 and 4). To investigate whether HO-1 expression regulates cell viability, we
assessed the protective effects of compounds 1, 2, 5, 6, 8, and 10–12 when tin protoporphyrin IX (SnPP)
was used as a HO-1 activity inhibitor. Cells were treated with compounds 1, 2, 5, 6, 8, and 10–12 (40
μM) in the presence or absence of SnPP (50 μM) and then exposed to glutamate (5 mM) for 12 h. When
cells were pre-treated with SnPP, the protective effects of the compounds decreased (Figure 5); that is,
cell viability was significantly lower in SnPP-pretreated cells than in the cells not treated with SnPP.
These results indicate that compounds 1, 2, 5, 6, 8, and 10–12 inhibited oxidative-stress-induced cell
damage by increasing HO-1 protein expression.
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Figure 5. Effects of HO-1 expression induced by compounds 1, 2, 5, 6, 8, and 10–12 on glutamate-induced
oxidative cell damage in mouse hippocampal HT22 cells. Mouse hippocampal HT22 cells were treated
with compounds 1, 2, 5, 6, 8, and 10–12 (40 μM) in the presence or absence of tin protoporphyrin IX
(SnPP, 50 μM) and then exposed to glutamate (5 mM) for 12 h. Data are presented as the mean ±
standard deviation of three independent experiments. ** p < 0.01, *** p < 0.001. # p < 0.05, ## p < 0.01,
### p < 0.001.

3. Materials and Methods

3.1. Plant Materials

The flowers of C. retusus Lindl. And Paxton were gathered near Kyung Hee University, Yong-In,
South Korea, in August 2014, and were identified by Prof. Dae-Keun Kim, College of Pharmacy,
Woosuk University, Jeonju, South Korea. A voucher specimen (KHU-NPCl-201408) has been deposited
at the Natural Products Chemistry Laboratory, Kyung Hee University.

3.2. General Experimental Procedures
The equipment and chemicals used to isolate and identify flavonoids from C. retusus flowers and

evaluate their neuroprotective activity were obtained from the literature [32–35].

3.3. Isolation Procedure of Flavonoids (1–12) from C. retusus Flowers
Dried C. retusus flowers (315 g) were extracted in 80% aqueous MeOH (22.5 L × 4) at room

temperature for 24 h, and then filtered and concentrated in vacuo. The concentrated MeOH extracts
(145 g) were poured into H2O (2.0 L) and successively extracted with EtOAc (2.0 L × 3) and n-BuOH
(1.8 L × 3). Each layer was concentrated under reduced pressure to obtain EtOAc (CFE, 27 g), n-BuOH
(CFB, 24 g), and H2O (CFH, 94 g). Frs. CFE (27 g) was subjected to SiO2 c.c. (Φ 11 × 12 cm) and eluted
with CHCl3-MeOH (CM; 40:1→ 10:1→ 5:1→ 2:1→ 1:1, 600 mL of each), with monitoring by TLC,
yielding 15 frs (CFE-1 to CFE-15).

CFE-5 (3.2 g, Ve/Vt 0.360–0.415) was subjected to ODS c.c. (Φ 5.5 × 7 cm, MeOH-H2O [MH] = 4:1,
1.7 L) to yield 12 Frs (CFE-5-1 to CFE-5-12). CFE-5-1 (1.0 g, Ve/Vt 0.000–0.110) was subjected to ODS
c.c. (Φ 4.0 × 7 cm, MH = 1:1, 1.5 L) to yield 9 Frs (CFE-5-1-1 to CFE-5-1-9). CFE-5-1-3 (95.0 mg, Ve/Vt
0.150–0.260) was subjected to Sephadex LH-20 c.c. (Φ 1.5 × 60 cm, 80% MeOH, 560 mL) to yield 8 Frs
(CFE-5-1-3-1 to CFE-5-1-3-8), along with purified compound 9 (CFE-5-1-3-4, 2.8 mg, Ve/Vt 0.550–0.560,
TLC [SiO2] Rf 0.37, CM = 10:1, TLC [ODS] Rf 0.58, MH = 2:1).

CFE-7 (2.4 g, Ve/Vt 0.430–0.480) was subjected to Sephadex LH-20 c.c. (Φ 3 × 50 cm, 80% MeOH,
1.3 L) to yield 15 Frs (CFE-7-1 to CFE-7-15), along with purified compound 8 (CFE-7-10, 77.4 mg,
Ve/Vt 0.488-0.542, TLC [SiO2] Rf 0.45, CHCl3-MeOH-H2O [CMH] = 10:3:1, TLC [ODS] Rf 0.60, MH
= 3:2) and purified compound 1 (CFE-7-15, 14.6 mg, Ve/Vt 0.885-1.000, TLC [SiO2] Rf 0.47, CMH =
10:3:1, TLC [ODS] Rf 0.74, MH = 4:1). CFE-7-12 (68.5 mg, Ve/Vt 0.650–0.720) was subjected to ODS
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c.c. (Φ 2.0 × 7 cm, MH = 1:1, 620 mL) to yield 3 Frs (CFE-7-12-1 to CFE-7-12-3), along with purified
compound 5 (CFE-7-12-2, 17.4 mg, Ve/Vt 0.194–0.677, TLC [SiO2] Rf 0.50, CMH = 10:3:1, TLC [ODS] Rf

0.50, MH = 4:1).
CFE-9 (2.2 g, Ve/Vt 0.580–0.610) was subjected to Sephadex LH-20 c.c. (Φ 3 × 50 cm, 80% MeOH,

2.2 L) to yield 14 Frs (CFE-9-1 to CFE-9-14). CFE-9-8 (36.5 mg, Ve/Vt 0.480-0.510) was subjected to
ODS c.c. (Φ 2.0 × 5 cm, MH = 2:3, 200 mL) to yield 4 Frs (CFE-9-8-1 to CFE-9-8-4), along with purified
compound 3 (CFE-9-8-2, 10.0 mg, Ve/Vt 0.125–0.425, TLC [SiO2] Rf 0.50, CM = 4:1, TLC [ODS] Rf 0.65,
MH = 3:1).

CFE-12 (2.1 g, Ve/Vt 0.710-0.790) was subjected to Sephadex LH-20 c.c. (Φ 3.0 × 50 cm, 70% MeOH,
2.3 L) to yield 14 Frs (CFE-12-1 to CFE-12-14). CFE-12-5 (200.0 mg) was subjected to SiO2 c.c. (Φ 3.5 ×
14 cm) and eluted with CMH = 10:3:1 (560 mL), with monitoring by TLC, yielding 6 Frs (CFE-12-5-1 to
CFE-12-5-6), along with purified compound 10 (CFE-12-5-3, 119.4 mg, Ve/Vt 0.102–0.250, TLC [SiO2]
Rf 0.50, CMH = 65:35:10, TLC [ODS] Rf 0.50, MH = 2:3). CFE-12-8 (330.0 mg, Ve/Vt 0.370–0.410) was
subjected to ODS c.c. (Φ 3.0 × 5 cm, MH = 2:3, 1.2 L) to yield 8 Frs (CFE-12-8-1 to CFE-12-8-8), along
with purified compound 12 (CFE-12-8-1, 115.5 mg, Ve/Vt 0.000–0.058, TLC [SiO2] Rf 0.50, CMH =
65:35:10, TLC [ODS] Rf 0.70, MH = 3:2). CFE-12-10 (240.0 mg, Ve/Vt 0.460-0.550) was subjected to ODS
c.c. (Φ 3.0 × 5 cm, MH = 2:3, 840 mL) to yield 6 Frs (CFE-12-10-1 to CFE-12-10-6), along with purified
compound 6 (CFE-12-10-4, 72.0 mg, Ve/Vt 0.286–0.414, TLC [SiO2] Rf 0.55, CMH = 65:35:10, TLC [ODS]
Rf 0.45, MH = 3:2).

CFE-13 (3.2 g, Ve/Vt 0.710-0.790) was subjected to Sephadex LH-20 c.c. (Φ 3.0 × 50 cm, 70%
MeOH, 2.3 L) to yield 16 Frs (CFE-13-1 to CFE-13-16), along with purified compound 2 (CFE-13-16,
29.0 mg, Ve/Vt 0.846–0.912, TLC [SiO2] Rf 0.50, CM = 5:1, TLC [ODS] Rf 0.40, MH = 3:1). CFE-13-6
(70.0 mg, Ve/Vt 0.270–0.320) was subjected to ODS c.c. (Φ 2.5 × 6 cm, MH = 2:3, 740 mL) to yield six Frs
(CFE-13-6-1 to CFE-13-6-6), along with purified compound 7 (CFE-13-6-4, 12.0 mg, Ve/Vt 0.657–0.730,
TLC [SiO2] Rf 0.50, CM = 2:1, TLC [ODS] Rf 0.55, MH = 3:2). CFE-13-7 (890.0 mg, Ve/Vt 0.330-0.480)
was subjected to ODS c.c. (Φ 5.5 × 4 cm, MH = 2:3, 2.6 L) to yield 7 Frs (CFE-13-7-1 to CFE-13-7-7),
along with purified compound 11 (CFE-13-7-1, 368.0 mg, Ve/Vt 0.000–0.102, TLC [SiO2] Rf 0.50, CM =
2:1, TLC [ODS] Rf 0.55, MH = 1:3) and compound 4 (CFE-13-7-6, 341.0 mg, Ve/Vt 0.512–0.923, TLC
[SiO2] Rf 0.50, CM = 2:1, TLC [ODS] Rf 0.65, MH = 3:2) (Scheme 1).

Scheme 1. Isolation procedure of flavonoids from the flowers of Chionanthus retusus. Words in red
indicate fraction number, quantity, and compound number of isolated flavonoids.
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quercetin (1): Yellowish powder (MeOH); m.p. 276–277 ◦C; ultraviolet (UV) (MeOH) λmax (nm) 370,
305, 267, 255; infrared (IR) (KBr) νmax 3350, 1680, 1615 cm−1; positive FAB/MS m/z 303 [M + H]+.

kaempferol (2): Yellowish powder (MeOH); m.p. 278–279 ◦C; UV (MeOH) λmax (nm) 364, 320, 294, 265,
254; IR (KBr) νmax 3345, 1658, 1605 cm−1; positive FAB/MS m/z 309 [M + Na]+.

astragalin (3): Yellowish powder (MeOH); m.p. 230–231 ◦C; [α]21
D +16.0 (c 0.1, MeOH); UV (MeOH) λmax

(nm) 348, 259; IR (KBr) νmax 3350, 2930, 2365, 1655, 1610 cm−1; positive FAB/MS m/z 471 [M + Na]+.

nicotiflorin (4): Yellowish powder (MeOH); m.p. 268–269◦C; [α]21
D −15.0 (c 1.0, MeOH); UV (MeOH)

λmax (nm) 365, 267, 254; IR (KBr) νmax 3365, 2940, 2360, 1655, 1600, 1515 cm−1; positive FAB/MS m/z 639
[M + Na]+.

luteolin (5): Yellowish powder (MeOH); m.p. 329–330 ◦C; UV (MeOH) λmax (nm) 349, 269, 254; IR (KBr)
νmax 3320, 2930, 1600, 1520 cm−1; positive FAB/MS m/z 271 [M + H]+.

luteolin 4′-O-β-d-glucopyranoside (6): Yellowish powder (MeOH); m.p. 178–179 ◦C; UV (MeOH) λmax

(nm) 341, 272; IR (KBr) νmax 3320, 2930, 1600, 1520, 1510, 1480 cm−1; positive FAB/MS m/z 449 [M +H]+.

isorhoifolin (7): Yellowish needles; m.p. 269–270 ◦C; [α]21
D −96.7 (c 1.0, MeOH); UV (MeOH) λmax (nm)

331, 266; IR (KBr) νmax 3365, 2360, 1635, 1600, 1515 cm−1; positive FAB/MS m/z 579 [M + H]+.

taxifolin (8): Yellowish powder (MeOH); m.p. 236–237 ◦C; [α]21
D +23.1 (c 0.1, MeOH); UV (MeOH) λmax

(nm) 330, 280; IR (KBr) νmax 3415, 1625, 1515, 1472 cm−1; positive FAB/MS m/z 327 [M + Na]+.

aromadendrin (9): White powder; m.p. 216–217 ◦C; [α]21
D +58.5 (c 0.3, MeOH); UV (MeOH) λmax (nm)

329, 292, 228; IR (KBr) νmax 3420, 1655, 1518 cm−1; positive FAB/MS m/z 311 [M + Na]+.

aromadendrin 7-O-β-d-glucopyranoside (10): Yellowish powder (MeOH); m.p. 172–173 ◦C; [α]21
D −18.7

(c 0.2, MeOH); UV (MeOH) λmax (nm) 321, 285; IR (KBr) νmax 3435, 1645, 1520, 1365 cm−1; positive
FAB/MS m/z 473 [M + Na]+.

taxifolin 7-O-β-d-glucopyranoside (11): Yellowish powder (MeOH); m.p. 169–170 ◦C; [α]21
D −48.2 (c 0.2,

MeOH); UV (MeOH) λmax (nm) 331, 283; IR (KBr) νmax 3420, 1635, 1450, 1510, 1390 cm−1; positive
FAB/MS m/z 467 [M + H]+.

eriodictyol 7-O-β-d-glucopyranoside (12): Yellowish powder (MeOH); m.p. 173–174 ◦C; [α]21
D −35.5 (c 0.2,

MeOH); UV (MeOH) λmax (nm) 283, 233; IR (KBr) νmax 3455, 1690, 1595, 1510 cm−1; positive FAB/MS
m/z 451 [M + H]+.

1H-NMR (400 MHz, δH) and 13C-NMR (100 MHz, δC) spectroscopic data of flavonoids 1–12, see
Tables 3 and 4.
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3.4. Cell Culture and MTT Assay

Mouse hippocampal HT22 cells were donated by Wonkwang University, Iksan, Korea (Prof.
Youn-Chul Kim). Cytoprotective activity assay was performed, as per the previously described
method [35]. Cell viability was evaluated using the MTT assay reported in the literature [36].

3.5. Macrophage RAW 264.7 Culture, Viability Assay, and NO Measurement

Macrophage RAW 264.7 culture, viability assay, and NO measurement were carried out as per the
previously described method [35].

3.6. Determination of Total Phenols and Flavonoids Contents in C. retusus Flower

Determination of the total phenolic and flavonoid contents of C. retusus flower was carried out as
per the previously described method [37].

3.7. Western Blot Analysis

Pelleted HT22 cells were washed with PBS and lysed with an RIPA buffer from Sigma Chemical
Co. The same amount of protein from each sample was mixed into a sample loading buffer, subjected
to SDS-PAGE, and transferred to a membrane.

3.8. Statistical Analysis

Statistical analysis was performed with GraphPad Prism 5 software (ver. 3.03, San Diego, CA,
USA). Data are presented as the mean ± standard deviation of 3 independent experiments. The mean
differences were derived using one-way ANOVA and Tukey’s multiple comparison test, and statistical
significance was defined as p < 0.05, p < 0.01, and p < 0.001.

4. Conclusions

In conclusion, four flavonols (1–4), three flavones (5–7), four flavanonols (8–11), and one flavanone
(12) were isolated from C. retusus flowers. Flavonoids 4–6 and 8–11 were isolated from the flowers
of C. retusus for the first time in this study. Flavonoids 1, 2, 5, 6, 8, and 10–12 exhibited significant
anti-inflammatory and neurocytoprotective activity, and effectively increased HO-1 protein expression.
The flavonoids that displayed significant neuroprotective activity were found to recover oxidative
stress-induced cell damage by increasing HO-1 protein expression. The relationships between the
structural characteristics of these flavonoids and their anti-inflammatory and neuroprotective activity
were revealed. Further studies are needed to investigate the potential therapeutic effects of flavonoids
in innovative anti-inflammatory and neuroprotective strategies.
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Abbreviations

c.c. column chromatography
CoPP cobalt protoporphyrin
Fr fraction
HO heme oxygenase
IR infrared
SnPP tin protoporphyrin IX
SiO2 silica gel
ODS octadecyl SiO2
PC positive control
TLC thin layer chromatography
UV ultraviolet
Ve/Vt elution volume/total volume
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Abstract: Current therapeutics for Parkinson’s disease (PD) are only effective in providing relief of
symptoms such as rigidity, tremors and bradykinesia, and do not exert disease-modifying effects
by directly modulating mitochondrial function. Here, we investigated auraptene (AUR) as a
potent therapeutic reagent that specifically protects neurotoxin-induced reduction of mitochondrial
respiration and inhibits reactive oxygen species (ROS) generation. Further, we explored the mechanism
and potency of AUR in protecting dopaminergic neurons. Treatment with AUR significantly increased
the viability of substantia nigra (SN)-derived SN4741 embryonic dopaminergic neuronal cells and
reduced rotenone-induced mitochondrial ROS production. By inducing antioxidant enzymes AUR
treatment also increased oxygen consumption rate. These results indicate that AUR exerts a protective
effect against rotenone-induced mitochondrial oxidative damage. We further assessed AUR effects
in vivo, investigating tyrosine hydroxylase (TH) expression in the striatum and substantia nigra
of MPTP-induced PD model mice and behavioral changes after injection of AUR. AUR treatment
improved movement, consistent with the observed increase in the number of dopaminergic neurons
in the substantia nigra. These results demonstrate that AUR targets dual pathogenic mechanisms,
enhancing mitochondrial respiration and attenuating ROS production, suggesting that the preventative
potential of this natural compound could lead to improvement in PD-related neurobiological changes.

Keywords: auraptene; dopamine neuron; Parkinson’s disease; neuroprotection; antioxidant;
mitochondria

1. Introduction

Current therapeutics for Parkinson’s disease (PD) lack neuroprotective properties and are only
effective in providing symptom relief [1]. To overcome the limitations of PD drugs, researchers have
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focused on early pathological changes in PD [1–3], with the goal of developing strategies for early
interventions, prior to the onset of severe motor symptoms, such as bradykinesia, rigidity and resting
tremors, in patients with preclinical or prodromal stage PD [4].

Oxidative stress on dopaminergic neurons causes neurodegeneration and induces behavioral
symptoms of PD. More than 90% of intracellular reactive oxygen species (ROS) are produced by
aberrant electron transfer during mitochondrial respiration [5,6]. There is some evidence to suggest that
mitochondrial alterations lead to PD-like pathologies. For example, genetic mutations in the PD-related
genes, Parkin, DJ-1 or PTEN-induced kinase 1 (PINK1), cause mitochondrial dysfunction in offspring of
familial-type PD patients, and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and rotenone,
which are known to be PD-inducing toxins, inhibit mitochondrial complex I [6]. These two neurotoxins
are suitable to show the effects of auraptene (AUR) in PD models, which results from mitochondrial
dysfunction because both toxins lead to PD by inducing oxidative stress. The accumulation of
α-synuclein, which has neurotoxic effects prior to the onset of PD symptoms, can also cause
mitochondrial alterations and ROS production [7]. Therefore, modulating mitochondrial function
during the pathogenesis of PD could be an effective preventive therapeutic strategy in prodromal
stage PD.

Auraptene (AUR) is a 7-geranyloxylated coumarin isolated from citrus fruit [8].
Natural compounds such as AUR might generally be expected to offer advantages of safety and minimal
adverse effects [9]; notably, AUR is able to cross the blood-brain barrier [10]. We previously showed
that AUR inhibits progression of renal cell carcinoma by altering mitochondrial metabolism [11].
In addition to its anticancer effects, AUR has been used in conjunction with various toxins, including
N-methyl-D-aspartate, lipopolysaccharide (LPS) and scopolamine, to study the neuroprotective effects
of AUR against various neurotoxic defects (e.g., cerebral ischemia and neurodegenerative diseases),
focusing on movement disorders and memory impairments [12–15]. Although AUR treatment
inhibits microglial activation and prevents dopaminergic neuronal loss in an LPS mouse model [14],
the molecular and cellular mechanisms for the protective effects of AUR in PD models are not yet clear,
and the effects of AUR on motor function in PD have not yet been investigated.

In the context of cancer, biosynthetic substrates and energy supplied by mitochondria support
cancer cell proliferation and metastasis. Because AUR treatment suppresses mitochondrial function,
it leads to inhibition of cancer proliferation. However, in the context of neurodegeneration, maintenance
or protection of neurotoxin-induced reduction in mitochondrial respiration increases neuronal activity
and survival. In order to clarify the antioxidative effect by treatment with AUR, we investigated the
alteration of cell viability, antioxidant enzyme expression and ROS generation by using rotenone,
MPP+ in SN4741 cell line. We demonstrated that pretreatment with AUR improves movement deficits
in association with an increase in the number of dopamine neurons in the substantia nigra (SN) of
MPTP-induced PD mouse models which inhibits the mitochondrial complex I. On the basis of these
findings, we suggest that AUR pretreatment acts through protection of a decrease in mitochondrial
respiration by neurotoxins and down-regulation of ROS of dopaminergic neurons to produce its
beneficial PD-related neurobiological changes.

2. Results

2.1. AUR Increases Cell Viability and Protects Against Neurotoxin-Induced Inhibition of
Mitochondrial Respiration

Rotenone and 1-methyl-4-phenylpyridinium (MPP+), the active metabolite of MPTP, are commonly
used neurotoxins in PD models [16,17]. Accordingly, we examined the protective effect of AUR on
neurotoxin-induced cell death in dopaminergic neuron-like SN4741 cells. Using sulforhodamine B
(SRB) assays to assess the viability of SN4741 cells after rotenone or MPP+ treatment, we found that
these toxins caused cell death in a dose-dependent manner (Figure 1A,B). Notably, AUR pretreated
SN4741 cells were resistant to the neurotoxicity of both rotenone and MPP+ compared to cells without
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AUR treatment (Figure 1A,B). At a concentration of 1 μM, AUR alone had no effect on cell viability,
as shown in Figure S1.

Figure 1. Auraptene (AUR) increases SN4741 cell viability and oxygen consumption rate (OCR) in the
presence of neurotoxins. (A,B) SN4741 cells (5 × 103) plated in 96-well plates were incubated in media
containing different concentrations (0, 0.5, 1 or 10 μM) of rotenone (Rot) for 6 h or MPP+ (0, 1, 4, or 8
mM) for 24 h in the presence or absence of AUR (1 μM). Cell viability was measured by sulforhodamine
B (SRB) assay after 6 or 24 h of drug treatment. (C–F), OCR was measured in SN4741 cells cultured
with rotenone (C,D) or MPP+ (E,F), with or without treatment with AUR. (D,F) Basal OCR area under
the curve was calculated using XF24 analyzer software. Values are presented as means ± SD (bars) of
triplicate samples (* P < 0.05, ** P < 0.01, *** P < 0.001 vs. corresponding controls). CN, control.

It has previously been reported that AUR affects mitochondrial complex I and inhibits
mitochondrial respiration in RCC4 renal cell carcinoma cells [8,11]. In this context, effects of AUR on
mitochondrial oxygen consumption rate (OCR), shown in Figure 1C,D, are somewhat counterintuitive.
In these experiments SN4741 cells were pretreated with AUR and then incubated with 0.25 μM rotenone
for 24 h, after which the effects of AUR on mitochondrial respiration were determined by measuring
OCR using an XF24 analyzer. Incubation with rotenone alone for 24 h led to a 67.8% reduction in the
basal OCR area under the curve compared with that of the control group. Notably, treatment with AUR
prior to rotenone treatment attenuated these effects, blunting the inhibitory effect of rotenone by 24.1%
(Figure 1C,D). AUR alone and short-term cotreatment with AUR and rotenone did not change basal
OCR level (Figure S2). Similar results were obtained following MPP+ treatment. The group treated
with MPP+ only exhibited a 17% decrease in basal OCR (Figure 1E), whereas the AUR pretreated
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group showed a basal OCR that was 14.2% higher than that of controls (Figure 1F). Extracellular
acidification rate (ECAR) was also increased in the AUR pretreated, rotenone-exposed group compared
with the rotenone-only group, but was unchanged in the MPP+ group (Figure S3). Taken together, these
results suggest that AUR protects against decreases in cell viability and suppression of mitochondrial
respiration induced by neurotoxins in dopaminergic neuronal cells.

2.2. AUR Induces Antioxidant Enzyme Expression in a Rotenone-Treated Cell Model

Antioxidant compounds protect against cellular responses to ROS, which cause oxidative cellular
damage in PD [18–23]. Given previously reported antioxidant effects of AUR on lymphocytes treated
with H2O2 [24], we hypothesized that AUR affects antioxidant enzyme expression in dopaminergic
neuronal cells. As a first step in determining the effect of AUR on antioxidant systems, we measured
the levels of NRF2 (nuclear factor, erythroid 2 like 2), a transcription factor inducing antioxidant-related
gene [25] in SN4741 cells. We observed that NRF2 protein levels were significantly increased in
rotenone or MPP+-treated cells pretreated with AUR compared with those in cells treated with either
neurotoxin alone (Figure 2A–D). These results indicate that AUR treatment induces NRF2 protein
expression in cells.

To determine whether AUR alters expression of ROS scavengers, we quantified the expression of
transcripts of genes encoding antioxidant enzymes and those involved in glutathione (GSH) production
and recycling using quantitative reverse transcription-polymerase chain reaction (RT-qPCR) [23,26,27].
Specifically, we analyzed transcript levels of Nrf2, Nqo1, Gpx1, Gst, Gclc, Gclm and Gr, as well
as transcript levels of mitochondrial antioxidant enzymes, including Sod1 and Sod2. Nrf2, Nqo1,
and Gpx1 mRNA levels were increased in AUR pretreated cells subsequently treated with rotenone or
MPP+ (Figure 2E,F). In the case of enzymes involved in GSH production and regeneration, Gclc mRNA
was induced by AUR in the presence of MPP+, but not in the presence of rotenone (Figure 2G,H).
In SN4741 cells incubated in the presence of MPP+ for 24 h, both Sod2 mRNA and protein levels
were comparable to those of controls, regardless of AUR pretreatment (Figure S4). Taken together,
these results suggest that AUR prevents neurotoxin-induced oxidative damage in dopaminergic
neurons by enhancing antioxidant enzyme expression.

2.3. AUR Inhibits Rotenone-Induced Cytosolic ROS Production

Rotenone induces ROS production by inhibiting mitochondrial complex I [28]. Because AUR
treatment significantly induced the expression of antioxidant enzyme transcripts, we investigated
whether AUR prevents rotenone-induced ROS production in dopaminergic neuronal cells using the
fluorescent dye DCFDA, which detects cytosolic ROS. We observed a 21.6% decrease in ROS levels in
rotenone-exposed cells pretreated with 1 μM AUR compared with cells treated with rotenone only
(Figure 3A,B), as assessed by flow cytometry. We then examined whether AUR treatment altered
rotenone-induced mitochondrial superoxide production in SN4741 cells by adding the red fluorescent
dye MitoSOX™ (which specifically targets mitochondrial superoxide) to rotenone- and AUR-treated
cells, and quantified the results using flow cytometry. As shown in Figure 3C,D, mitochondrial
superoxide levels in cells treated with rotenone only were comparable to those in AUR pretreated cells.
These results are consistent with qPCR analyses, which showed that AUR specifically increased the
transcription factor NRF2 and expression of its downstream targets, including Nqo1 and Gpx1, without
affecting mitochondrial ROS scavenging enzymes, such as Sod1 and Sod2 (Figure S4). We found that
AUR differentially regulates Gclc expression in the presence of rotenone or MPP+. We pretreated
AUR for 1 h before treatment of neurotoxins to induce antioxidant enzyme expression. Although both
rotenone and MPP+ targets complex I, rotenone showed higher inhibitory effect on mitochondrial
respiration of SN4741 cells than MPP+, causing more ROS generation than MPP+. Increased ROS
could offset against Gclc induction in rotenone treated cells. These results suggest that AUR induces
expression of antioxidant enzymes, which act to effectively remove cellular ROS in dopaminergic
neurons in the presence of neurotoxins, without altering mitochondrial ROS.
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Figure 2. AUR induces expression of genes encoding antioxidant enzymes. (A–D) SN4741 cells were
incubated in media containing different concentrations (0, 0.5 or 1 μM) of rotenone (Rot) or MPP+

(0, 50, 75 or 100 μM), with or without pretreatment for 1 h with 10 μM AUR or DMSO. NRF2 protein
expression was determined by Western blotting after 24 h (A) or 6 h (C) of drug treatment. The band
intensity of NRF2 was measured using the ImageJ program (B,D). (E–H) Expression of mRNA for
NRF2 target antioxidant enzymes (E,F) and GSH recycling-related genes (G,H) were assessed after
a 24 h drug treatment using qPCR. Values are presented as means ± SD (bars) of triplicate samples
(* P < 0.05, ** P < 0.01, *** P < 0.001 vs. corresponding controls).
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Figure 3. AUR protects against rotenone-induced ROS production. (A–D) SN4741 cells were incubated
with rotenone (Rot) for 6 h, with or without AUR pretreatment for 1 h. Cells were stained with DCFDA
or MitoSOX™, and fluorescence intensity was measured by flow cytometry. Total ROS was determined
by measuring DCFDA-stained cells (A,B), and mitochondrial ROS was determined by measuring
MitoSOX™-stained cells (C,D). Median fluorescence intensity (MIF) values are presented as means ±
SD of three experiments (* P < 0.05, ** P < 0.01 vs. corresponding controls). CN, control.

2.4. AUR Protects Neurotoxin-Induced Loss of Tyrosine Hydroxylase Expression

Tyrosine hydroxylase (TH) expression in the SN and projections of TH neurons to the striatum is
reduced in association with progression of PD [29]. It has also been shown that MPTP-induced PD
animal models show a loss of TH-positive neurons [30]. Accordingly, we determined whether AUR
treatment protects against the loss of TH expression in the SN and striatum of MPTP-induced PD
mice. AUR (25 mg/kg) or DMSO (vehicle control) was intraperitoneally injected into B6 mice 1 day
before MPTP treatment (20 mg/kg, four times a day), and was then injected for two additional days.
Using a brain slice preparation, we found a significant decrease in TH immunoreactivity in both the SN
and striatum of mice injected with MPTP for 7 days compared with saline-injected mice. In contrast,
TH immunoreactivity was preserved in AUR-pretreated mice (Figure 4A–D). Specifically, the number
of TH-positive neurons was decreased by 43.4% in MPTP-injected mice compared with saline-injected
mice, and was increased by 32% in AUR-treated mice compared with DMSO injected mice (Figure 4D).

It is known that AUR significantly decreases inflammation in the SN region of LPS-injected
mice [14]. Because the number of reactive astrocytes in the SN is increased in MPTP-induced PD model
mice [31], we examined whether AUR alleviates astrogliosis by immunofluorescence staining for the
astrocyte marker, glial fibrillary acidic protein (GFAP). Because it is clear to show the neuroinflammation
with astrocyte activation in this model as we previously reported [32], we chose the GFAP as a maker of
neuroinflammation by MPTP. Whereas the relative GFAP intensity in the MPTP-only group was 3.3-fold
higher than that in control mice, it was only 2.8-fold higher in the AUR-treated group, indicating a
decrease in the number of reactive astrocytes (Figure 4E). These results suggest that AUR protects
against the MPTP-induced reduction in TH expression and astrocyte activation.
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Figure 4. Pretreatment with AUR reduces MPTP-induced loss of TH expression in the SN and striatum.
(A) Immunohistochemical detection of TH in the striatum of C57BL/6 mice injected with MPTP
(20 mg/kg, i.p.) or saline, together with AUR (25 mg/kg, i.p.) or DMSO. Scale bars: 50 μm. (B) TH
expression was decreased in MPTP-injected mice, an effect that was attenuated by AUR cotreatment.
TH intensity was measured using ImageJ, and results are presented as a percentage of control values.
(C) Immunofluorescence detection of TH in the SN region. TH-positive dopaminergic neurons (red)
and astrocytes (green) were visualized by confocal microscopy. (D,E) Number of TH-positive neurons
was calculated, and relative GFAP intensity was measured using ImageJ. Data are presented as means
± SD of three experiments (n = 10/group; * P < 0.05, ** P < 0.01, *** P < 0.001 vs. corresponding controls).
CN, control. Scale bars: 500 μm.

2.5. AUR Ameliorates MPTP-Induced Motor Deficits

The nigrostriatal dopamine pathway is responsible for motor control, and TH activity is necessary
for the release of dopamine, which regulates movement [33,34]. Because we found that AUR induces
TH expression, we investigated the effect of AUR on movement deficits in MPTP-induced PD mice
(Figure 5A). AUR-treated mice showed improved movement after MPTP injection compared with
DMSO-treated mice, determined by monitoring behavior for 1 h in an open-field test (Figure 5B).
Specifically, the total distance moved was decreased by 20.6% in MPTP-injected mice after 5 days
compared with saline-injected mice (Figure 5C), whereas AUR-treated mice showed a 15.3% increase
in movement distance compared with DMSO-treated mice (Figure 5C). Results presented in heat
map form showed that AUR treatment significantly reduced residence time in the corner of the arena
compared with that observed in mice treated with MPTP only (Figure S5). To further assess motor
dysfunction, we performed vertical-grid tests of MPTP-injected and AUR-treated mice, as described
by Kim et al. [35]. As shown in Figure 5D,E, MPTP-injected mice required 20 s longer to turn and
a total of 25 s more time than control mice to complete the task. The time required to climb down
was decreased by 5 s in MPTP-injected mice because of a 2-fold increase in missed steps compared
with the control mice (Figure 5F,G). We found that AUR injection had no effect on the time to turn or
total time, but restored the time to climb down to normal levels by decreasing missed steps observed
in MPTP-only mice by 7% (Figure 5F,G). These findings suggest that AUR improves grip strength
reduced by MPTP treatment.
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Figure 5. AUR improves MPTP-induced movement disorders. (A) Experimental timeline of AUR
injection into the MPTP-induced mouse model of PD and behavioral tests. Mice were intraperitoneally
injected with MPTP (20 mg/kg) 24 h after AUR (25 mg/kg) administration; AUR was further injected
24 h and 48 h after MPTP injection. Open-field and vertical-grid tests were performed after 7 days
of MPTP injection. (B) Tracks visualizing mouse movements for 1 h are presented. Eight-week-old
MPTP-induced PD mice showed a decrease in movement compared with control mice, whereas
AUR-cotreated mice showed improveed movement (n = 5/group). (C) Total distance moved in 1 h was
determined using EthoVision software and is presented as means ± SD. (D–G) Mice were placed at
the bottom of the vertical grid and allowed to climb upward while movement was recorded. Time to
turn (D), total climbing time (E), time to climb down (F), and percentage of total steps missed (G) were
calculated. Values are presented as means ± SD (n = 5/group; * P < 0.05, ** P < 0.01 vs. corresponding
controls; ns, not significant). CN, control.

Taken together, these results suggest that AUR mitigates motor dysfunction in MPTP-induced
PD mice. As shown in Figure 6, we propose that AUR attenuates the effect of PD-related toxins
on dopaminergic neurons through induction of NRF2 and expression of its target genes encoding
antioxidant enzymes. AUR also increases mitochondrial respiration, which is suppressed in the
presence of PD-related toxins (Figure 6). These protective effects of AUR on dopaminergic neurons
consequently improve neurotoxin-induced motor deficits through preservation of TH expression.
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Figure 6. Schematic representation of the dopaminergic neuron-protective mechanism of AUR in a PD
model. AUR alleviates neurotoxin-induced oxidative stress in dopaminergic neurons by stimulating
the transcription factor NRF2 and inducing expression of downstream genes encoding antioxidant
enzymes. Inhibition of mitochondrial respiration by PD-related toxins is mitigated by AUR treatment.
AUR protects dopaminergic neurons against neurotoxins and ameliorates PD-like behavior.

3. Discussion

The complexity of PD and the variety of causative factors that contribute to its development create
difficulties in identifying specific targets for effective treatments that might achieve complete disease
remission. In the present study, we focused on modulation of mitochondrial energy metabolism
and inhibition of ROS production by damaged mitochondria using the natural compound AUR.
We postulate a dual preventive mechanism of AUR: (1) Induction of expression of genes encoding
antioxidant enzymes, which protect against ROS, and (2) reduction of mitochondrial respiration
by neurotoxins.

The lack of available treatment options for preventing or slowing the progression of PD has
driven increased efforts to delay the occurrence of PD symptoms—the primary concept in current
drug development strategies [36]. One disease-modifying agent, vitamin E, counteracts oxidative
stress, and its intake is inversely correlated with PD occurrence [37]. In addition, the green
tea polyphenol, (–)-epigallocatechine-3-gallate [38], and two Mediterranean plant-based extracts,
Padina pavonica (EPP) and Opuntia ficus-indica (EOFI), ameliorate neurodegeneration in PD [39].
However, the mechanisms by which these treatments affect PD pathogenesis have not been identified.
Unlike these latter studies, we focused specifically on mitochondrial respiration—considered the first
target of environmental causative factors such as paraquat—and ROS overproduction by damaged
mitochondria [36]. We assessed the protective effect of AUR by measuring mitochondrial oxygen
consumption rate (OCR) and antioxidant enzyme expression levels in a neuronal cell line model of
mitochondrial toxicity. We found that the overall changes in cellular metabolism induced by AUR are
just a slight change in mitochondrial respiration. In the AUR-pretreated and MPP+-treated groups,
basal OCR was higher than that of the control. However, there was no significant difference in
behavioral tests such as the open-field test and the vertical grid test between control and AUR-treated
groups (Figure 5). These results suggest that AUR increases OCR of dopaminergic neurons in the
presence of MPP+ and it is consequently sufficient to improve MPTP-induced PD-like behavior to a
normal level. But, additive beneficial effects on behavior or hypermobility were not found. Therefore,
AUR could be used for prevention purposes by reducing adverse effects. Thus, our findings suggest that
AUR, a coumarin from a source as simple and natural as citrus peel oil, could assist in preventing PD.

In general, enhancing mitochondrial respiration is expected to increase ROS generation, because
the mitochondrial respiratory chain is a major source of intracellular ROS production and many
enzymes that convert molecular oxygen to ROS are present in mitochondria [40]. Impairment of
mitochondrial respiration plays a major role in the pathogenesis of PD, and increased ROS levels are
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known to be among the important causes of PD [40]. The key strength of AUR is its dual function
described above, which enables AUR to protect a decrease in mitochondrial respiration caused by
neurotoxins without increasing cellular ROS, although how these two effects are linked is not yet clear.

In a previous study, we reported that AUR suppresses mitochondrial respiration in the renal cell
carcinoma cell line, RCC4 [11]. It has also been reported that AUR acts as a mitochondrial poison
in the T-47D human breast cancer cell line [8]. However, our study suggests that AUR increases
mitochondrial function in PD-like conditions. Although these two observations are seemingly at
odds, they might actually be compatible, given that cancer cells possess exceptional cellular pathways
compared with normal cells. Activation of NRF2 has been reported in several types of cancer cells [41].
NRF2, which is responsive to oxidative stress, is constitutively expressed in normal cells, but its
protein level is low because of KEAP1-mediated ubiquitination and degradation [42]. Considering
that AUR acts, at least in part, through induction of NRF2, its actions on cellular pathways could be
different in cancer cells and normal cells. It is also worth noting that the AUR concentration range was
significantly different between these two studies. In the cancer cell study, cellular metabolism was
targeted by inhibiting translation of the HIF-1α transcription factor using an AUR concentration of
100 μM. At a high concentration, AUR reduced basal OCR to 67% of that in untreated cancer cells,
which show immature mitochondrial function. In the current study, we tested AUR at a concentration
of 1 μM, and found that it increased basal OCR in dopaminergic neuron-like cells in the presence of
neurotoxins. Notable in this context, some antioxidants, including EGCG, have been reported to show
neuroprotective activity at low concentrations, but pro-oxidant activity at high concentrations [38].

We also suggest the potential of AUR in trials of combined therapy with levodopa. Levodopa is
one of the main drugs used for relief of PD symptoms, but it should be used with caution in younger
patients with early PD [36,43]. If there were a drug that could prevent progression of the disease,
it should be used starting as early as possible. Although drugs currently used in combination with
levodopa, such as benserazide and carbidopa, reduce the peripheral effects of levodopa and increase
levodopa concentrations in the brain [36], combination therapy with AUR would provide additional
neuronal protective effects through a different pathway. If an early diagnosis of pre-symptomatic
PD patients is possible in the near future, AUR could be beneficial to delay the loss of dopaminergic
neurons and PD-behavior symptoms. Combining these drugs in a single therapeutic regimen would
seek to relieve symptoms while delaying disease progression.

4. Materials and Methods

4.1. Cell Culture

SN4741 mouse embryonic substantial nigra dopaminergic neuronal cell line was cultured in
RF media containing Dulbecco’s modified Eagle’s medium (DMEM, Welgene, Korea), 10% FBS
(Hyclone, MA, USA), 1% penicillin and streptomycin (Hyclone, MA, USA), 0.6% D-glucose and 0.7%
200 mM·L-glutamine at 33 ◦C under 5% CO2 and 21% O2 condition.

4.2. Measurement of Cell Viability

In the sulforhodamine B assay, SN4741 cells (5 × 103 cells per well) were seeded in triplicate in
96-well plates and incubated overnight. Added to each well were media containing Rot (0, 0.5, 1 and
10 uM, Sigma-Aldrich, MO, USA) for 6 h or MPP+ (0, 1, 4, 8 mM, Sigma-Aldrich, MO, USA) for 24 h
in the presence or absence of AUR 1 uM (Sigma-Aldrich, MO, USA). The media were removed and
cells were fixed with 10% TSA at 4 ◦C for 1 h. After washing, the cells were incubated with 0.4% SRB
(Sigma-Aldrich, MO, USA) solution at room temperature for 20 min. The wells were washed with
1% acetic acid five times and dried in air. After resolving the proteins with 10 mM unbuffered Tris,
absorbance was read at 490 nm using a Multiskan Ascent plate reader.
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4.3. Flow Cytometry

For analyzing ROS generation, the fluorescent dye, MitoSOX™ red reagent (Invitrogen, CA, USA)
and DCFDA (Invitrogen, CA, USA) were used following the manufacturers’ instructions. SN4741
cells (2–4 × 105 cells in 60 mm dish) were incubated with Rot for 6 h and AUR was pretreated for 1 h.
Media was discarded and washed with HBSS and incubated for 30 min in the dark with DCFDA or
MitoSOX™ (5 μM final concentration). Cells were washed with PBS and trypsinized, then resuspended
in PBS/EDTA. After washed with PBS, cells were collected and kept on ice in the dark for immediate
detection with the flow cytometer. Fluorescence was measured on a FACScan (BD Biosciences, NJ, USA)
using excitation/emission wavelengths of 485/535 nm, and 510/580 nm for DCFDA and MitoSOX™,
respectively. The values were expressed as mean fluorescence of the cell population.

4.4. Measurement of Oxygen Consumption Rate (OCR)

SN4741 cells cultured with rotenone or MPP+ ± treatment with AUR 2 uM were plated 2 × 104 cells
at each well. Basal OCR was analyzed by XF24 analyzer (Seahorse, MA, USA). Then, 20 μg/mL
of oligomycin A (an ATPase inhibitor, Sigma-Aldrich, MO, USA), 50 μM of carbonyl cyanide
3-chlorophenylhydrazone (CCCP, an uncoupler, Sigma-Aldrich, MO, USA) and 20 μM rotenone
(a mitochondrial complex I inhibitor, Sigma-Aldrich, MO, USA) were sequentially added into each
well and OCR was measured at 37 ◦C.

4.5. RNA Isolation and Real Time PCR

Total RNA was isolated using Trizol from SN4741 cells treated with Rot (0, 0.5 or 1 uM) or
MPP+ (0, 50, 75 or 100 uM) and AUR for 24 h. cDNA was synthesized from total RNA with
5× RT premix. After mixing cDNA, primers and SYBR mix, mRNA expression was analyzed
using a Rotor Gene 6000 system (Corbett Life Science, Venlo, Netherlands) and normalized to
18s rRNA. Primers used in this study: NRF2, 5′-CCAGAAGCCACACTGACAGA-3′ (forward)
and 5′-GGAGAGGATGCTGCTGAAAG-3′ (reverse); NQO1, 5′-TTCTCTGGCCGATTCAGAGT-3′
(forward) and 5′-GGCTGCTTGGAGCAAAATAG-3′ (reverse); GPX, 5′- GTCCACCGTGTATGCC
TTCT-3′ (forward) and 5′-TCTGCAGATCGTTCATCTCG-3′ (reverse); GST, 5′-GGCATCTGAAG
CCTTTTGAG-3′ (forward) and 5′-GAGCCACATAGGCAGAGAGC-3′ (reverse); Gclc, 5′-AGGC
TCTCTGCACCATCACT-3′ (forward) and 5′- TGGCACATTGATGACAACCT-3′ (reverse); Gclm,
5′-TGGAGCAGCTGTATCAGTGG -3′ (forward) and 5′-AGAGCAGTTCTTTCGGGTCA-3′ (reverse);
GR, 5′-CACGACCATGATTCCAGATG-3′ (forward) and 5′-CAGCATAGACGCCTTTGACA-3′
(reverse); 18s rRNA, 5′-CGACCAAAGGAACCATAACT-3′ (forward) and 5′-CTGGTTGATCC
TGCCAGTAG-3′ (reverse).

4.6. Animal Experiments

Temperature was maintained to 22 ◦C and light condition was adjusted to a 12 h light-dark
cycle. Animal experiments were approved by the Institutional Animal Care and Use Committee of
Chungnam National University. The ethical approval number is CNU-00912 and approval date is
March-1-2017. To establish the MPTP-induced PD mouse model, C57BL/6 mice (8-week-old, male) were
intraperitoneally injected with MPTP (1-methyl-4phenyl-1.2.3.6-tetrahydropyridine, Sigma-Aldrich,
MO, USA, 2 mg/mL in saline, 20 mg/kg for one injection) four times with 2 h intervals in a day.
Control mice were injected with saline. Before 24 h and 48 h of MPTP injection, auraptene (25 mg/kg)
was injected intraperitoneally.

4.7. Immunofluorescence Staining and Immunohistochemistry

Saline and MPTP injected Mice were perfused and fixed with 4% paraformaldehyde (PFA).
The whole brain was dipped in the 4% PFA and then moved to 30% sucrose solution to dehydrate for
three days. The samples were frozen and sectioned, 25 μm of each slice. For the immunofluorescence
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staining, after 15 min of PBS washing, sections were blocked for 1.5 h with 3% donkey serum (Dako,
Glostrup, Denmark) and 0.3% triton x-100 with PBS. Then, sections were incubated with anti-TH
antibody (Millipore, MA, USA), anti-GFAP (1:1000, Abcam, Cambridge, UK) diluted with blocking
solution overnight at 4 ◦C. Sections were washed with PBS and incubated with anti-mouse Alexa 594
and anti-chicken Alexa 488-conjugated anti-IgG secondary antibodies containing solution for 1 h at
room temperature. For immunohistochemistry, brain slices were incubated with anti-TH antibody for
overnight at 4 ◦C and then incubated with a secondary antibody (Dako EnVision+ system-HRP, CA,
USA) for 1 h. The slices were reacted with DAB+ substrate buffer. After mounting with mounting
medium (Dako North America Inc., CA, USA), the slides were visualized using an IX70 confocal
microscope (Olympus, Tokyo, Japan).

4.8. Protein Isolation and Western Blotting

The protein of mice tissues and SN4741 cells, treated with Rot (0, 0.5 or 1 uM) or MPP+ (0, 50,
75 or 100 uM) and pretreated with 10 uM Auraptene or DMSO for 1 h, were extracted using RIPA
buffer (1% Nonidet P-40, 0.1% SDS, 150 mM NaCl, 50 mM Tris–HCl pH 7.5 and 0.5% deoxycholate)
with 10% of phosphatase inhibitor and protease inhibitor (Roche, Basel, Switzerland). Equal amounts
of proteins were loaded on SDS-PAGE gel and run by electrophoresis. After, they were transferred
to polyvinylidene fluoride (PVDF) membrane, blocked by 5% skim milk for 1 h. Then, membranes
were incubated with primary antibody including anti-NRF2 (Santa Cruz Biotechnology, CA, USA) and
anti-α-Tubulin (Santa Cruz Biotechnology, CA, USA) antibody at 4 ◦C overnight. Anti-IgG horseradish
peroxidase antibody (Pierce Biotechnology, MA, USA) correspond with the host of primary antibody
was used as secondary antibody. Protein bands were detected by ECL system (Thermo Scientific,
MA, USA).

4.9. Behavior Test

Open-field test: Mice were placed in a 40 × 40 × 40-box respectively. Movement was recorded for
1 h and analyzed with EthoVision XT 11.5 software.

Vertical grid test: The vertical grid test was performed following the previous study [35].
For performing the vertical grid test, mice were habituated to the apparatus. After habituation
for 3 days, a mouse was placed inside the apparatus and was allowed to turn and climb down.
The movement was recorded.

4.10. Statistical Analysis

All data are represented as mean values ± SEM (error bars). The statistical analysis of data
was performed using Prizm version 5 software (Graphpad, CA, USA). Significance of differences
between two groups were analyzed by one-tailed student’s t-test. A P value <0.05 was considered
statistically significant.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/20/14/
3409/s1.
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Abstract: Alzheimer’s disease (AD) is a progressive neurodegenerative disorder more prevalent
among the elderly population. AD is characterised clinically by a progressive decline in cognitive
functions and pathologically by the presence of neurofibrillary tangles (NFTs), deposition of
beta-amyloid (Aβ) plaque and synaptic dysfunction in the brain. Centella asiatica (CA) is a valuable
herb being used widely in African, Ayurvedic, and Chinese traditional medicine to reverse cognitive
impairment and to enhance cognitive functions. This study aimed to evaluate the effectiveness of
CA in preventing d-galactose/aluminium chloride (d-gal/AlCl3) induced AD-like pathologies and
the underlying mechanisms of action were further investigated for the first time. Results showed
that co-administration of CA to d-gal/AlCl3 induced AD-like rat models significantly increased the
levels of protein phosphatase 2 (PP2A) and decreased the levels of glycogen synthase kinase-3 beta
(GSK-3β). It was further observed that, CA increased the expression of mRNA of Bcl-2, while there
was minimal effect on the expression of caspase 3 mRNA. The results also showed that, CA prevented
morphological aberrations in the connus ammonis 3 (CA 3) sub-region of the rat’s hippocampus.
The results clearly demonstrated for the first time that CA could alleviate d-gal/AlCl3 induced
AD-like pathologies in rats via inhibition of hyperphosphorylated tau (P-tau) bio-synthetic proteins,
anti-apoptosis and maintenance of cytoarchitecture.

Keywords: Alzheimer’s disease; Centella asiatica; hippocampus; protein poshophatase 2; glycogen
synthase kinase 3; B-cell lymphoma 2

1. Introduction

Alzheimer’s disease (AD), is an irreversible neurodegenerative disorder prevalent among the
older age-group of the population around the globe for which there is no cure. With increasing life
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expectancy globally and the resulting increase in aging population, AD is becoming a global healthcare
problem [1]. AD is characterised clinically by progressive decline in cognitive functions such as
memory loss and learning ability, and pathologically by the presence of neurofibrillary tangles (NFTs),
deposition of beta amyloid (Aβ) plaque and synaptic dysfunction in the brain [2]. d-galactose induced
ageing model in animals are characterised by pathological changes which closely resemble those seen
in clinically diagnosed AD patients, including cognitive impairment, cholinergic dysfunction, oxidative
stress and neurodegeneration [3]. Aluminium (Al), a neurotoxic agent has been linked to pathogenesis
of AD, as chronic administration of Al has shown to produce oxidative damage, cholinergic dysfunction
and cognitive impairment in rat brain [4]. Recent studies have reported that co-administration of
d-gal/AlCl3 resulted in hyperphosphorylation of tau, oxidative stress, cholinergic dysfunction, memory
impairment, apoptosis, and hippocampal neurodegeneration in brain of rats [5–9]. Hence, rats which
are continuously co-administered with d-gal and AlCl3 could serve as good model for investigating
AD-like pathologies and for drug screening.

Although, accumulation of Aβ and hyperphosphorylation of tau proteins are involved in the
progression of AD [10], there is a growing evidence showing a major role played by P-tau in
pathogenesis and progression of AD through impairment of the axonal transport of neurotransmitters
and subcellular organelles [11]. Hyperphosphorylation of tau protein is one of the suggested theories
explaining the pathogenesis of AD in humans and experimental animal models. A balance between
the activities of glycogen synthase kinase-3 beta (GSK-3β) which is the main tau kinase and protein
phosphatase 2A as the main tau phosphatase has been described as key contributor in defining tau
phosphorylation/deposphorylation status [12]. Several reports of post-mortem from brains of AD
patients have supported this theory as they demonstrated high level of GSK-3β and reduced activity
of PP2A in tangles bearing neurons [13]. Further, increased phosphorylation of PP2A at Tyr 307 has
also been reported in tangle bearing neurons in the brains of AD patients [14].

Centella asiatica (CA), locally known as “pegaga” in Malaysia is one of the valuable herbal medicine
widely used in the treatment of various chronic ailments and also is proved to be safe and effective [15,16].
It is used in Ayurveda and Chinese traditional medicine to reverse/treat cognitive impairment and to
enhance cognitive functions. These effects of CA have been well documented by studies conducted on
healthy human subjects [17] and in those with mild cognitive deficits [18]. Further, the neuroprotective
and cognitive enhancing effects of CA is well documented on in vitro and in multiple rodents’ models
of neurodegenerative diseases as well as in the settings of cognitive impairments due to variety of
neurotoxic insults [19–23]. It has been recently reported that CA improves learning and memory in rats
by increasing expression of, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)
GluA1 and GluA2 subunits, and NMDAR GluN2B subunits, while reducing the N-methyl-d-aspartate
receptor (NMDAR) GluN2 A subunits in their hippocampus and entorhinal cortex [24]. The present
study describes the effectiveness of CA in preventing d-gal/AlCl3 mediated AD-like neurotoxicity in
rats via PP2A/GSK-3β and apoptosis pathways.

2. Results

2.1. CA Increased the Activity of PP2A and Decreased the Activity of GSK-3β in Hippocampus of Rats Exposed
to d-Gal and AlCl3

Expressions of PP2A from the hippocampus of the rats were assessed by western blot analysis
(Figure 1A). One way ANOVA showed statistically significant differences in the levels of PP2A
expression in the hippocampus of the various rat groups (F (5, 12) = 12.79, p = 0.0002) (Figure 1B).
Tukey’s post hoc revealed decrease in PP2A activities in the hippocampus of model group of rats
(0.43 ± 0.02, p = 0.0001), when compared to control group (1 ± 0). Increased PP2A activities were
observed in the donepezil (0.68 ± 0.05, p = 0.004), CA 200 (0.70 ± 0.04, p = 0.02), CA 400 (0.73 ± 0.14,
p = 0.01) and CA 800 (0.76 ± 0.13, p = 0.005) groups of rats, when compared to the model group
(0.43 ± 0.02). The expression of GSK-3β in the hippocampus of the rats groups were also assessed,
which showed statistically significant differences by one way ANOVA (F (5, 12) = 9.344, p = 0.008)
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(Figure 1C). Tukeys’ post hoc revealed increases in GSK-3β activities in the hippocampus of model
group of rats (1.4 ± 0.07), when compared to the control group (1 ± 0). Further, decreases in GSK-3β
activities were observed in the donepezil (0.62 ± 0.11, p = 0.0001), CA 200 (0.76 ± 0.17, p = 0.0002), CA
400 (0.92 ± 0.32, p = 0.0008) and CA 800 (0.84 ± 0.08, p = 0.0004) groups of rats, when compared to the
model group (1.4 ± 0.07).

(A) 

(B) 

 
(C) 

Figure 1. Expressions of PP2A and GSK3-β in rat’s hippocampus. (A) Immunoblots of Levels of
PP2A and GSK3-β in d-gal and AlCl3 induced rats. (B) Immunoblot analysis showed dose-dependent
increases in PP2A activities. (C) Immunoblot analysis showed decreases of GSK3-β activities. ImageJ
software (NIH, Bethesda, MD, USA) was used for densitometry. Values are expressed as mean ± SD
(n = 3), * p < 0.05 vs. control, # p < 0.05 vs. the model group of rats.

2.2. Effects of CA on Intrinsic Mitochondria Mediated Apoptosis Related Genes of Rat Hippocampus Exposed to
d-Gal and AlCl3

During the intrinsic mitochondria-mediated apoptotic pathway process, Bcl-2 is an anti-apoptotic
factor. In the present study, mRNA expressions of Bcl-2 were assessed using RT-PCR. One way ANOVA
showed statistical significant differences in the expressions of Bcl-2 mRNA (F (5, 12) = 51.58, p = 0.0001)
in the hippocampus of the various rats groups. Tukey’s post hoc revealed fold change decreases in the
expression of Bcl-2 mRNA in the model group of rats (0.17 ± 0.09, p = 0.0001), when compared to the
control group (1 ± 0). Further, increased fold change in the expressions of Bcl-2 mRNA were observed
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in the rat groups administered with donepezil (0.53 ± 0.001, p = 0.004), CA 200 (0.89 ± 0.19, p = 0.0001),
CA 400 (0.71 ± 0.009, p = 0.0001), and CA 800 (0.59 ± 0.10, p = 0.0001), when compared to the model
group of rats (0.17 ± 0.009) (Figure 2).

In the intrinsic mitochondria-mediated apoptotic pathway, Caspase-3 was one of the major
proteases responsible for initiating a caspase cascade leading to apoptosis. In the current study,
expressions of caspase-3 mRNA were determined using RT-PCR. One way ANOVA showed no
statistically significant differences in the expressions of caspase-3 mRNA (F (5, 12) = 0.956, p = 0.48) in
the hippocampus of the various rats groups (Figure 3). Although there was 2.3-fold change increase in
the expression of caspase-3 mRNA in the model group, when compared to the control group, slight
fold change decreases were observed in the CA administered groups of rats.

Figure 2. Effects of CA on mRNA expression of Bcl-2 in the hippocampus of rats. Donepezil and CA
effectively increased Bcl-2 mRNA expressions. Values are expressed as mean ± SD (n = 3). * p < 0.05 vs.
Control, # p < 0.05 vs. Model group of rats.

Figure 3. Effects of CA on mRNA expression of caspase-3 in the hippocampus of rats. No statistically
significant differences were observed, even if there were fold change increases or decreases in the
expressions of caspase-3 mRNA. Values are expressed as mean ± SEM (n = 3).
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2.3. CA Protects against d-Gal and AlCl3 Induced Pyramidal Cells Loss in CA 3 Subregions of
Hippocampus of Rats

As shown in Figure 4A, the observation of CA 3 sub-region of hippocampus of rats of control group
showed cells with well-defined nuclear membrane, clearly visible nucleolus and fewer abnormalities.
Noticeable changes were observed in the CA 3 sub-region of hippocampus of rats of the model group,
which included cells with indistinct nuclear membrane as well as no prominent nucleolus, besides
being darkly stained. Further, the number of normal pyramidal cells were also reduced in the CA 3
sub-regions of the hippocampus in the model group of rats. Interestingly, these pathological changes
observed in the hippocampus of model group of rats were altered in groups where d-gal and AlCl3
were co-administered with donepezil 1 mg/kg·bwt or CA at doses of 200, 400 and 800 mg/kg·bwt.
The extent of histopathological changes observed in the CA 3 sub-regions of the rat’s hippocampus
were estimated semi quantitatively. One way ANOVA was used to analyse the population of normal
pyramidal neurons (F (5, 474) = 36.15, p = 0.0001) (Figure 4B). A statistically significant reductions
in the number of normal pyramidal cells in CA 3 sub-regions of hippocampus were observed in the
model group (13 ± 3.25, p = 0.0001) of rats when compared to control (21 ± 4.20), as revealed by Tukey’s
post hoc test. Whereas, the scenario was reversed in rats administered with donepezil (18.19 ± 4.33,
p = 0.0001), CA 200(17.9 ± 3.90, p = 0.0001), CA 400(20.7 ± 4.65, p = 0.0001), and CA 800(19.9 ± 3.64,
p = 0.0001) when compared to the model group of rats (13 ± 3.25).

(A) 

Figure 4. Cont.
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(B) 

Figure 4. Protective effects of CA against d-gal and AlCl3 induced neurodegeneration in CA3 sub
region of the rat’s hippocampus. (A) Cresyl violet stain showing the control and treatment groups. Red
arrows pointing to normal pyramidal cells while black arrows pointing dead pyramidal cells. (B) Semi
quantitative analysis of the number of normal pyramidal cells in the CA3 region of the hippocampus of
all the rats groups.

3. Discussion

Our previous studies have shown that CA extract can attenuate cognitive deficits in rats induced
by d-gal and AlCl3 and can also prevent morphological aberrations in the CA1 region of their
hippocampus. These effects were confirmed as rats co-administered with CA and d-gal/AlCl3 showed
a better performance in both spatial and non-spatial memory tests. Further, observation of the
ultrastructure also revealed that CA protects the rat’s hippocampus by preventing morphological
alterations of the pyramidal cells and their intracellular organelles [25]. Results of the present
study indicating that CA inhibited P-tau biosynthetic proteins in the hippocampus could be another
mechanism through which CA improves learning and memory in d-gal/AlCl3 mediated AD-like
rats’ model.

Hyperphosphorylation of tau protein is among the top reported factors in AD pathophysiology [26].
Earlier studies have reported that rodents exposed to d-gal/AlCl3 exhibited AD-like features such as
Aβ accumulation, hyperphosphorylation of tau protein and increased acetylcholinesterase (AChE)
activities in their brains [6,8,9,27]. A balance between the activities of PP2A and GSK-3β, the
main phosphatase and kinase has been reported to be the key contributing factor in describing tau
dephosphorylation/phosphorylation status [12,28]. The aforementioned findings have been reinforced
by reports from numerous post-mortem studies done on brains of AD patients which demonstrated
that tangles bearing neurons were associated with decreased activities of PP2A due to increased
phosphorylation at Tyr307 and the presence of high levels of GSK-3β [13,29]. Hence, it seems likely
that PP2A and GSK-3β could be involved in enhancement of the aggregation of tau in the brains
of AD patients [30]. In the present study, exposure of d-gal and AlCl3 to rats has led to decreased
PP2A activities and increases the levels of GSK-3β in the hippocampus of rats in the model group.
Co-administration of CA to d-gal and AlCl3 exposed rat’s reverses these changes as there were increases
in PP2A activities and decreases in GSK-3β levels in the rat’s hippocampus. Hence, from these results it
can be observed that the levels of P-tau in the rats’ hippocampus could be altered by the actions of PP2A
and GSK-3β. Although, few studies have reported that some phosphorylated residues of tau in the
brains of AD patients were not sensitive to the actions of PP2A and GSK-3β [30,31]. As phosphorylation
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of tau could be achieved through other kinases, including cyclin-dependent kinase 5 (cdk5) and protein
kinase A (PKA) [32].

There is growing evidence that neuronal apoptosis plays an important role in the pathogenesis of
AD [33,34]. Among the other conditions which induce apoptosis, production of reactive oxygen species
(ROS), nitric oxide (NO), glucocorticoids and over expression of Bax are known to be major contributory
factors for the release of cytochrome c (Cty c) [2,35]. The Bcl-2 family of proteins, which include
pro-apoptotic proteins like Bax and anti-apoptotic proteins like Bcl-2, strictly regulates the release of Cyt
c [36,37]. Cyt c binds and activates the cytosolic protein Apaf-1 as well as procaspase-9, and together
with adenosine triphosphate (ATP) they form “apoptosome” [38]. Balance between pro-apoptotic and
anti-apoptotic proteins in the cell regulates the activation of intrinsic mitochondria-mediated apoptotic
pathway [1,39]. Initiation of intrinsic mitochondria-mediated apoptotic pathway via pro-apoptotic
Bcl-2 proteins is able to initiate different pathways for cell death [40]. The main upstream events leading
to the initiation of these various pathways is mitochondrial outer membrane permeabilisation (MOMP).
The process is activated by insertion and oligomerization of pro-apoptotic members BAK and BAX into
the membrane, which lead to the subsequent release of apoptotic activating factors such as Cyt c from
mitochondrial inter-membrane space to the cytosol. On the other hand, anti-apoptotic Bcl-2 proteins are
integral intracellular membrane proteins notably present in the mitochondrial outer membrane (MOM),
where they act by inhibiting the process of MOMP through binding with pro-apoptotic Bcl-2 proteins,
thereby preventing apoptosis [41]. Surgucheva reported that decreased concentration of γ-synuclein
(Syn G) in retinal ganglion cells (RGC-5) triggers mitochondrial pathway apoptosis via interaction of
dephosphorylated Bad protein with pro-survival Bcl-2 family members, such as Bcl-2 and BcL-XL [42].
Activation of upstream caspases, such as caspase-9, will trigger downstream effector caspases, such
as caspase-3, which can, in turn, cleave nuclear and cytoskeletal proteins to produce apoptosis [2,43].
For evaluating the extent of apoptosis in the hippocampus of rats exposed to d-gal and AlCl3 and the
protective effects of CA, the expressions of Bcl-2 and caspase-3 were assessed in the present study by
RT PCR. Genetic expression analyses of hippocampus of various rat groups showed that expression of
Bcl-2 was reduced when there was two-fold change increases in casepase-3 expression in rats exposed
to d-gal and AlCl3, when compared to the control group of rats. Similar findings were reported earlier
in mice by Yang [1]. Co-administration of CA to rats exposed to d-gal and AlCl3 ameliorated mRNA
expressions of Bcl-2, while it had less effects on mRNA of caspase-3. The present study is limited in its
scope to the sole use of genetic expressions of intrinsic mitochondria-mediated apoptosis proteins,
and so additional research is required to confirm if the genetic expression changes actually reflect the
expressions of Bcl-2 and caspase-3 proteins in the rat hippocampus.

Neurodegenerative diseases, such as AD, are morphologically featured by progressive loss
of neurons in specific vulnerable regions of the central nervous system. The mechanisms of
neurodegeneration is believed to be multifactorial which includes, mitochondrial dysfunction, oxidative
stress, defective protein degradation and aggregation, genetic, environmental, and endogenous
factors [44,45]. In the present study, exposure to d-gal and AlCl3 readily led to significant morphological
aberrations in the CA 3 sub-regions of the rat’s hippocampus. Such changes includes increased number
of pyknotic cells, alterations of the pyramidal cellular arrangement, and disruption of the nucleus.
These changes could be due to enhanced GSK-3β levels and decreased PP2A levels, besides enhanced
mRNA expression of caspase-3 and decreased mRNA expressions of Bcl-2 in d-gal and AlCl3 induced
rats. However, the neuroprotective role of CA prevents these degeneration at the maximum. Thus,
co-administration of CA together with d-gal/AlCl3 can alleviate the aforesaid degenerative changes
(diminished pyknotic neurons, defective alignment of pyramidal cell layers, and increased density of
normal neurons). Results from the present study clearly suggest that CA has cytoprotective effects and
helped to maintain the normal cytoarchitecture of the CA 3 sub-region in the rat hippocampus.

Numerous approaches have been employed in the treatment of AD, such as the use of compounds
that can prevent or clear Aβ generation [46], the use of antioxidants that elevates antioxidants
defence system or reduces the levels of ROS to protect neurons from Aβ-induced toxicity [47] and
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the use of therapeutics that targets the cholinergic system [48]. Others focused on prevention of
tau phosphorylation [9] while some concentrate on apoptotic pathways [49]. It can be observed
that, the common trend among all these strategies for the prevention and cure for AD is ascribed to
neuronal protection which could be achieved by enhancing oxidative defence system. It could be
observed that most of the strategies focused on treating advanced stages of AD and symptomatic
management of AD [50]. Only strategies that can prevent neuronal degeneration at early stage can
prevent progression of AD. In this study the neuronal degeneration was prevented by co-administration
of CA with d-gal/AlCl3. Studies are also being conducted to evaluate the oxidative defence capacity and
anti-cholinesterase activities of CA on the d-gal/AlCl3 induced AD-like rat models as well. This study
was limited by not measuring the concentration of AlCl3 in the rats’ brains. Deloncle [51] reported that
AlCl3 toxicity was mainly due to its ability to cross the blood brain barrier and its accumulation in
the rat’s brain. Does CA and its compounds has the potential to form coordination compounds with
aluminium to remove it from the system?

In summary, results from the present study demonstrated that CA protected against d-gal and
AlCl3 induced toxicity and neurodegeneration in the hippocampus of rats. These effects of CA can
be attributed to its ability to enhance the expression of PP2A and inhibits the levels of GSK-3β in the
hippocampus, increase the expression of Bcl-2 mRNA and the maintenance of the cytoarchitecture of
pyramidal neurons in the CA 3 sub-region of the rats’ hippocampus (Figure 5).

Figure 5. Proposed mechanism of protective effects of CA against d-gal and AlCl3 induced neurotoxicity
in rats, via the inhibition of GSK-3β and enhancing the expression of PP2A in the hippocampus of the
rats. d-gal/AlCl3 enhances phosphorylation of tau protein, which leads to paired helical forms (PHFs)
formation and subsequently aggregates to form neurofibrillary tangles (NFTs), eventually leading to
the death of the neuron. CA blocks the action of GSK-3β and enhances the activities of PP2A.

4. Materials and Methods

4.1. Ethics Statement

The study protocol was reviewed and approved by the Institutional Animal Care and Use
Committee of the Universiti Putra Malaysia on 20 March 2017, with project identification code
UPM/IACUC/AUP-R096/2016. A total of 36 male albino wistar rats, 2–3 months old (250–300 g) were
obtained from a local vendor (Bistari International, Serdang, Malaysia). They were kept under constant
temperature (25 ± 2 ◦C), 12-h light/dark cycle (lights on 7:00 AM–7:00 PM) and with free access to food
and water. All the experimental procedures were strictly followed as recommended by the animal
ethics committee guide lines, Universiti Putra Malaysia.
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4.2. Chemicals and Reagents

Antibodies for western blotting (PP2A, GSK-3β and Beta actin) were purchased from Cell
Signalling Technology (Danvers, MA, USA). The RNeasy mini kit was purchased from Qiagen (Hilden,
Germany), the RNALater purchased from Thermo Fisher Scientific (Carlsbad, CA, USA), while the
qPCRBIO cDNA synthesis kit and the qPCRBIO SyGreen Mix were purchased from PCR Biosystems
Ltd. (London, UK). Aluminium chloride, d-galactose, donepezil, and cresyl violet were purchased from
Sigma Aldreich (St. Louis, MO, USA), while standardised 60% aqueous ethanol extract of CA (ref. no.
AuRins-MIA-1-0) [24,52] was made available by Prof. Mohd Ilham Adenan from Atta-ur-Rahman
Institute for Natural Product Discovery, Universiti Technology Mara, Puncak Alam, Malaysia. All
other chemicals used were of analytical grades.

4.3. Experimental Design and Treatment Protocol

After one week of acclimatisation, the rats were randomly divided in to six groups (n = 6) and
administered with different treatments for 10 consecutive weeks (Table 1). d-gal, AlCl3, donepezil and
CA were all dissolved in distilled water, the experimental design together with treatments protocol
were previously published [25]. At the end of the experiment, the rats were euthanised by decapitation
so as to avoid contamination of brain tissues by anaesthetics and gases [53]. The rats brains were
removed, rinsed in ice cold saline and kept in −80 ◦C for molecular studies while the remaining brains
were fixed in 10% formalin for cresyl violet staining.

Table 1. AlCl3, d-gal, donepezil and CA treated groups and the control.

Groups Description Treatment i.p Treatment p.o

I Control Saline Distilled water
II Model d-gal 60 mg/kg·bwt AlCl3 200 mg/kg·bwt
III Donepezil d-gal 60 mg/kg·bwt AlCl3 200 mg/kg·bw + Done 1 mg/kg·bwt
IV CA 200 d-gal 60 mg/kg·bwt AlCl3 200 mg/kg·bw + CA 200 mg/kg·bwt
V CA 400 d-gal 60 mg/kg·bwt AlCl3 200 mg/kg·bw + CA 400 mg/kg·bwt
VI CA 800 d-gal 60 mg/kg·bwt AlCl3 200 mg/kg·bw + CA 800 mg/kg·bwt

4.4. Protein Estimation

The total protein concentration in the hippocampal tissues were measured using bicinchoninic
assay (BCA). Bovine serum albumin (BSA) (2 mg/mL) was used as a standard with a working range
between 20–2000 μg/mL.

4.5. Western Blotting Analysis

The hippocampal tissues of the rats were homogenized on ice with AgileGrinderTM tissue
homogenizer ACTGene, Inc. (Piscataway, NJ, USA) using radioimmunoprecipitatation assay (RIPA)
buffer supplemented with phosphatase and protease inhibitors at a ratio of 1:500 and 1:1000 respectively
and spun at 15,000× g for 15 min at 4 ◦C. For SDS-PAGE preparation, 4% of stacking gel (0.65 mL
of 30% acrylamide, 3.05 mL of ddH2O, 1.25 mL of stacking buffer, 0.05 mL of 10% SDS, 0.025 mL
of 10% APS, 0.005 mL of TEMED), and 10% of resolving gel (1.65 mL of 30% acrylamide, 2.05 mL
of ddH2O, 1.25 mL of Resolving buffer, 0.05 mL of 10% SDS, 0.025 mL of 10% APS, 0.005 mL of
TEMED) were used. Twenty microlitres of the 20 μg of the rat brain samples were added to 20 μL of
laemmlli sample buffer supplemented with 1:19 dilution of β-mercaptoethanol and heated at 95 ◦C for
5 min. The samples were vortexed, centrifuged at 1000 rpm for 1 min, and loaded into the SDS-PAGE
20 μL per well. The electrophoresis procedure was initially run using 1-times running buffer (25 mM
Trizma, glysine 192 mM, 0.1% SDS) at 100 V for 60 min, before the voltage was increased to 150 V
for 30 min. The separated proteins were then transferred to 0.25 μM thick polyvinylidene difluoride
(PVDF) membranes (Merck Millipore, Darmstadt, Germany) using 1-times transfer buffer ((10% (v/v)
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methanol, 25 mM Trizma, glysine 192 mM) at 20 V for 2 h. The PVDF membranes were stained with
Ponceau S to observe and confirm the transfer of protein bands, before being incubated for 1 h at room
temperature, with blocking buffer (5% (w/v) skimmed milk or 5% BCA in TBS-Tween 20) to prevent
non-specific proteins binding. The membranes were then incubated overnight at 4 ◦C with primary
antibodies (PP2A, dilution 1:1000, GSK-3β, dilution 1:1000 and β-actin, dilution 1:1000) diluted in
blocking buffer. After the overnight incubation, membranes were washed three times with washing
buffer (TBS-Tween 20) for 5 min each and probed using anti rabbit secondary antibodies (diluted in
blocking buffer (1:2000)) for 1 h. After probing the membranes were then washed three times (5 min
for each wash) with washing buffer and subsequently developed in a dark room by incubating it for
2 min in chemiluminescence HRP substrate (1:1 of WesternBright ECL and WesternBright peroxide).
Gel documentation equipment was used to view the membranes and the image bands of the proteins
of interest were obtained and subsequently analysed using ImageJ software 1.8.0 (NIH, Bethesda,
MD, USA).

4.6. RNA Extraction and cDNA Synthesis

The Qiagen RNeasy mini kit was used for the isolation of RNA from rat hippocampus following
the manufacturer’s manual. The concentration and the purity of the total RNA samples were measured
using Nanodrop spectrophotometer, while their integrity (28S/18S ribosomal RNA ratio) were checked
by agarose gel electrophoresis. The total RNA (100 μg) was then reverse-transcribed into cDNA using
a qPCRBIO cDNA synthesis kit, Biosystems Ltd. (London, UK) adhering strictly to the user’s guide.

4.7. Reverse Transcriptase-Polymerase Chain Reaction (RT-PCR)

To detect the expression of Bcl-2 and caspase-3 in the rats’ hippocampus, RT-PCR were performed.
The primers for the genes of interest (GOI) and reference genes (RG) were designed with Primer 5.6
software according to the sequence in GenBank and manufactured by iDNA Technology (Table 2).
Using 20 μL mixed system PCR reactions were performed, including 10 μL of 2x qPCRBIO SyGreen
Blue Mix, 0.8 μL of forward primer, 0.8 μL of reverse primer, 2 μL of cDNA and 6.4 μL of RNases free
water. An Eppendorf Mastercycler ep realplex 4S PCR was used to perform the RT-PCR based on, heat
activation at 95 ◦C for 2 min, followed by 40 cycles of 15 s denaturation at 95 ◦C, 30 s annealing at 59 ◦C
and 30 s extension at 72 ◦C, while the fluorescence signals were detected at 59 ◦C. Using the obtained CT

values, the fold change of gene expressions were analysed using the Livak method [54]. The average
CT values of each GOI (CT

AVG GOI) were normalised with the average CT values of the reference
genes (CT

AVG RG) (ΔCT = CT
AVG GOI − CT

AVG RG). The ΔΔCT (ΔCT
TREATMENT − ΔCT

CONTROL) were
calculated and the fold change of each gene among the various rat groups were expressed as 2−(ΔΔCT).

Table 2. The nucleotide sequence of PCR primers for amplification and sequence-specific detection of
cDNA (obtained from the GenBank database).

Accession
No.

Gene
Symbol

Primer Sequence Length Tm
Amplicon

Size

L14680.1 Bcl-2
Forward 5′-GGTGGACAACATCGCTCT-3′ 18 57.01 143 bp

Reverse 5′-GAGACAGCCAGGAGAAATCA-3′ 20 57.94

NM_012922.2 Caspase-3 Forward 5′-GAGCGTAAGGAAAGGAGAGG-3′ 20 58.15 140 bp

Reverse 5′-GACATCATCCACACAGACCAG-3′ 21 58.96

AY618569.1 B-Actin
Forward 5′-TGGCTCTGTGGCTTCTACTG-3′ 20 58.16 192 bp

Reverse 5′-TACCTTCCCAACTCCTCACC-3′ 20 58.97

4.8. Cresyl Violet Staining and Scoring

Cresyl violet stain was used to evaluate the protective effects of CA on cell survival in the CA3
region of hippocampus in rats. The protocol followed for the staining procedures as well as the
methods for scoring was published earlier [8,55].
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4.9. Statistical Analyses

The statistical significance was evaluated using one way analysis of variance (ANOVA) by
Graghpad Prism version 6 (ISI, San Diego, CA, USA) software. Tukey’s post hoc analyses was used for
comparisons where applicable and data were presented mean± SD, p< 0.05 were considered significant.

5. Conclusions

For the past few decades, anti-AD therapeutic research were focused on targeting one factor at a
time, but that could not result in to any efficient drug to yet cure the disease. Since AD is a complex
neurodegenerative disease with multiple causative factors, research shifted attention to targeting
more than one factor at a time. Hence, it is necessary to search for natural products that can focus
on multiple causative factors of AD at a time. This work reported for the first time that, CA extract
showed multiple beneficial effects in d-gal/AlCl3 mediated AD-like rat models. Outside this study, it
can be postulated that CA could be used as a source of chemical compounds which could be further
developed in to efficient anti-AD therapeutics.
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Abbreviations

AD Alzheimer’s disease
AlCl3 Aluminium chloride
AMPAR α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor
ANOVA Analysis of variance
ATP Adenosine triphosphate
BAK Bcl-2 antagonist/killer 1
Bax BCL2-Associated X Protein
Bcl-2 B-cell lymphoma 2
CA Centella asiatica
CA3 Connus ammonis 3
Caspase 3 Cysteine-aspartic acid protease 3
Cdk5 Cyclin-Dependent Kinase 5
Cyt c Cytochrome c
ddH2O Double distilled water
d-Gal d-galactose
GSK-3β Glycogen synthase kinase-3 beta
HRP Horseradish peroxidase
mRNA Messenger Ribonucleic Acid
MOM Mitochondrial outer membrane
MOMP Mitochondrial outer membrane permealisation
n Number of rats per group
NFTs Neutofibrillary tangles
NO Nitric oxide
PP2A Protein phosphatase 2
PVDF Polyvinylidene difluoride
ROS Reactive oxygen species
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RT PCR Real time polymerase chain reaction
SD Standard deviation
SDS Sodium dodecyl sulfate
TBST Tri-buffered saline, 0.1% tween 20
SDS-PAGE Sodium dodecyl sulfate polyacrilmide gel electrophoresis
Tyr Tyrosine
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Abstract: Parkinson’s disease (PD), a multifactorial movement disorder that involves progressive
degeneration of the nigrostriatal system affecting the movement ability of the patient. Oxidative
stress and neuroinflammation both are shown to be involved in the etiopathogenesis of PD.
The aim of this study was to evaluate the therapeutic potential of thymol, a dietary monoterpene
phenol in rotenone (ROT)-induced neurodegeneration in rats that precisely mimics PD in humans.
Male Wistar rats were injected ROT at a dose of 2.5 mg/kg body weight for 4 weeks, to induce
PD. Thymol was co-administered for 4 weeks at a dose of 50 mg/kg body weight, 30 min prior to
ROT injection. The markers of dopaminergic neurodegeneration, oxidative stress and inflammation
were estimated using biochemical assays, enzyme-linked immunosorbent assay, western blotting and
immunocytochemistry. ROT challenge increased the oxidative stress markers, inflammatory enzymes
and cytokines as well as caused significant damage to nigrostriatal dopaminergic system of the brain.
Thymol treatment in ROT challenged rats appears to significantly attenuate dopaminergic neuronal
loss, oxidative stress and inflammation. The present study showed protective effects of thymol
in ROT-induced neurotoxicity and neurodegeneration mediated by preservation of endogenous
antioxidant defense networks and attenuation of inflammatory mediators including cytokines
and enzymes.

Keywords: neurodegeneration; oxidative injury; Parkinson’s disease; terpenes, rotenone; thymol

1. Introduction

Parkinson’s disease (PD) is pathologically described by the continued loss of dopaminergic
neuronal cells in the substantia nigra pars compacta (SNc), which results in motor impairments
such as loss of motion, postural and gait instability, resting tremors, and muscle rigidity [1,2].
Accumulating evidence suggests that mitochondrial dysfunction, lipid peroxidation, brain aging,
and genetic susceptibility, which often involve oxidative stress and neuroinflammatory changes, play
a major part in the pathogenesis of PD [3–5]. Oxidative stress and inflammation are the two central
pathways in microglial cells activation that lead to progressive neuronal degeneration and represent an
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important therapeutic target in PD [3–7]. The activation and release of proinflammatory cytokines, such
as IL-1β, IL-6, and TNFα, along with free radical generation including reactive oxygen species (ROS)
and inducible nitric oxide synthase (iNOS), has detrimental effects on the existence of dopaminergic
neurons in the SNc [6,7].

To ensure cellular homeostasis, a balance between pro- and antioxidant systems is typically
required. Hence, the restoration of the cellular antioxidant system using antioxidants is one of
the emerging therapeutic strategies to protect susceptible dopaminergic neurons from oxidative
stress and subsequent inflammation. The adverse effects of anti-inflammatory agents and the
pro-oxidant action of the synthetic antioxidants are of concern in therapeutics. This concern shifted
the focus of drug discovery to explore plant extracts and plant-derived phytochemicals that possess
antioxidant and anti-inflammatory activities for their therapeutic and preventive benefits in PD [8,9].
Therefore, in recent years, the focus of pharmacological therapy has been on the development of novel
nutraceutical-based plant-derived phytochemicals that possess high antioxidant and anti-inflammatory
properties, with a lesser degree of cytotoxic effects [9].

Among numerous plant-derived dietary phytochemicals, thymol has received attention due to its
favorable physicochemical, pharmacokinetic, and pharmacological properties [10]. Thymol, a dietary
monoterpene is chemically known as 2-isopropyl-5-methylphenol and found predominantly in many
edible or culinary plants such as Centipeda minima, Lippia multiflora, Nigella sativa, Ocimum gratissimum,
Satureja hortensis, Satureja thymbra, Thymus spp. (Thymus vulgaris, Thymus pectinatus, Thymus zygis, and
Thymus ciliates), Trachyspermum ammi and Zataria multiflora [10]. Thymol is catalogued as ‘Generally
Recognized as Safe’ for use as a preservative and additive in food, beverages and cosmetic products,
therefore it is considered to be safe for dietary use with minimal toxicity. Thymol exhibits potent
pharmacological properties including antioxidant [11], anti-inflammatory [12], antimutagenic [13],
analgesic [14], and anti-microbial [15] effects. It has been approved for use as a food additive and
flavoring agent in cosmetics and food preparations. Its long-time dietary use, acceptable safety profile,
and low toxicity have generated interest in evaluating its possible therapeutic use in neurodegenerative
diseases. Therefore, in the current study we examined the neuroprotective efficacy and underlying
mechanism of thymol in a rotenone (ROT)-induced rat model of neurodegeneration mimicking PD
in humans. ROT, a plant-derived insecticide, inhibits mitochondrial complex I resulting in loss
of ATP production, increase in oxidative stress, inflammation, prolonged glial cell activation, and
nigrostriatal degeneration that mimics human PD [16–19]. The experimental models of ROT-induced
neurodegeneration in rats, fruit fly or cell lines are popularly employed to screen and evaluate agents
for their potential neuroprotective potential and therapeutic efficacy [20–24].

2. Results

2.1. Thymol Preserved TH+ Dopaminergic Neurons in SNc Regions and Dopaminergic Fibers in Striatum
Regions of the Brain

In the current study, thymol (Figure 1), a monoterpene phenol was used to protect the
dopaminergic neuronal death caused by ROT administration. We performed the immunohistochemical
analysis of TH+ neurons in the SNc and TH-ir fibers in the striatum to observe the effects of thymol on
nigrostriatal dopaminergic loss. The ROT injected animals showed significant (p < 0.001) degeneration
of dopaminergic neurons in the SNc region when compared to rats of the control group received only
vehicle (Figure 2A,C). Thymol administration significantly (p < 0.05) protected against ROT-induced
degeneration of dopaminergic neurons. Dopaminergic neurons venture their axons to the striatum
region wherein the terminal fibers are consisting of the dopamine transporter (DAT). Therefore, it was
essential to examine whether the degeneration of dopaminergic neurons in the SNc region is associated
with the loss of dopaminergic nerve terminals as evaluated by assessing the intensity of striatal TH-ir
dopaminergic nerve terminal fibers. A significant (p < 0.001) loss in TH-ir fibers intensity was observed
in animals challenged with ROT in comparison with animals of the control group received only vehicle.
However, thymol pretreatment to ROT injected animals has produced a significant (p < 0.01) increase in
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the intensity of TH-ir nerve terminals compared to animals injected with ROT alone. This observation
suggests the protective effect of thymol on dopaminergic neurons and nerve fibers (Figure 2B,D).

Figure 1. The chemical structure of thymol.

Figure 2. The illustrative photomicrograph showing expression of TH+ neurons in substantia nigra
par compacta (SNc) (A) and TH-ir dopaminergic fibers in striatum (B). The scale bar is 100 μm.
The expression of TH+ neurons and TH-ir fibers were reduced in the SNc region of rotenone (ROT)
challenged rats as compared to vehicle injected rats in the CONT group. Thymol treatment to ROT
challenged rats showed remarkable expressions of TH+ neurons and TH-ir fibers as compared to
ROT injected rats. Quantification data showed significant (*** p < 0.001) decrease in the number of
TH+ neurons and density of TH-ir fibers in ROT group rats compared to control rats. While thymol
treatment to ROT injected rats showed significant (# p < 0.05; ## p < 0.01) increase in TH+ neurons and
TH fibers density as compared to ROT alone injected rats (C,D).
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2.2. Thymol Inhibited Lipid Peroxidation and Restored GSH and Endogenous Enzymes Activity

The markers of lipid peroxidation, such as malondialdehyde (MDA), and the endogenous
tripeptide antioxidant, glutathione (GSH), endogenous antioxidant enzymes (SOD and CAT) were
measured in homogenates of the mid brain tissues. ROT administration induced a significant (p < 0.001,
Figure 3A) rise in MDA levels in comparison with rats of control group. However, thymol treatment
to the ROT challenged animals produced a significant (p < 0.01) decline in the MDA levels. ROT
challenged rats show significant (p < 0.001) reduction in the levels of GSH as compared to control rats
(Figure 3B). In contrast, thymol treatment significantly (p < 0.01) increase the GSH levels in ROT-injected
rats compared to animals injected with ROT alone. Moreover, ROT injection also significantly decreases
(p < 0.05) endogenous antioxidant enzyme activity such as: SOD and CAT in the ROT injected rats
compared to control rats. However, thymol treatment significantly (p < 0.05) enhanced activity of SOD
(Figure 3C) and CAT (Figure 3D) compared to ROT-injected animals. Further, thymol alone injected
animals did not show any remarkable changes in the antioxidant enzymes activity.

Figure 3. The levels of MDA, GSH and enzymatic activity of SOD and CAT were determined in the
mid brain tissues of rats from different experimental groups. ROT treated rats showed significant
(*** p < 0.01) increase in MDA (A) and decrease in GSH (B) levels when compared to control rats.
Thymol treatment to ROT administered rats showed significantly (## p < 0.05) decreased level of
MDA and increased (## p < 0.01) level of GSH. Moreover, ROT challenge also showed significant
(* p < 0.05) decreased enzymatic activity of SOD (C) and CAT (D) when compared CONT rats. Thymol
treatment to ROT challenged rats significantly (# p < 0.05) increased the activities of SOD and CAT
when compared to ROT alone injected rats. The values are presented as mean ± SEM (n = 6–8).

2.3. Thymol Inhibited Activation of Glial Cells

Prolonged and sustained activation of the glial cells induces the release of inflammatory
mediators including proinflammatory cytokines and inflammatory enzymes, which amplifies the
neuroinflammatory process. We examined ROT-induced glial cells activation (astrocytes and microglia)
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in the striatum region. ROT injections significantly (p < 0.001) enhanced the expression of glial fibrillary
acidic protein (GFAP) and ionized calcium binding adaptor protein (Iba-1) markers, which represent
the number of activated astrocytes and microglial cells, respectively (Figure 4A–D). The increased
expressions of GFAP and Iba-1 are considered the indices of inflammatory response following the
activation of astrocytes and microglia. ROT administration caused a significant (p < 0.001) rise in the
number of activated astrocytes and microglia as compared to rats received vehicle in control group.
However, thymol treatment to ROT-administered rats led to a significant (p < 0.05) decrease in the
quantity of activated astrocytes and microglial cells. Rats treatment with thymol alone did not exhibit
notable activation of astrocytes and microglia when compared to the control animals, that is reasonable
suggestive of its relative safety on astrocytes and microglia and aid in to the neuroprotective actions
on the neurons.

Figure 4. The immunofluorescence staining of GFAP (A) and Iba1 (B) in the striatum region of different
experimental groups. Intense immunoreactivity of GFAP positive astrocytes (A) and Iba-1 positive
microglia (B) were observed in the ROT challenged rats as compared to CONT rats. Thymol treatment
to ROT challenged rats exhibited modest staining of GFAP and Iba-1 when compared to rats injected
ROT (Scale bar 200 μm). Quantification data showed significant (*** p < 0.001) increased percentage
number of activated astrocytes (C) and microglia (D) in ROT injected animals when compared to
CONT rats. However, thymol treatment to ROT injected rats showed significantly (# p < 0.05) reduced
percentage number of activated astrocytes and microglia as compared to rats injected with ROT alone.
The values are presented as percent mean± SEM (n = 3).
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2.4. Thymol Attenuated Activation of Proinflammatory Cytokines

The increased secretion of inflammatory mediators, including proinflammatory cytokines, plays
a key role in the etiopathogenesis and progression of PD. Therefore, the level of proinflammatory
cytokines such as IL-1β, IL-6, and TNF-α, were quantified in ROT-challenged rats. A significant
(p < 0.001) increase in the levels of IL-1β, IL-6, and TNF-α, were observed in ROT challenged rats
compared to vehicle treated control rats (Figure 5A–C). However, thymol treatment to ROT injected
rats significantly reduced the levels of IL-1β (p < 0.01), IL-6 (p < 0.05), and TNF-α (p < 0.01) compared
to ROT alone injected animals (Figure 5A–C). The rats received thymol only did not cause substantial
change in the level of proinflammatory cytokines compared to vehicle treated control animals.

Figure 5. ELISA was used to quantify the level of proinflammatory cytokines; IL-1β, IL-6 and TNF-α
in the mid brain tissues of rats from different experimental groups. The levels of IL-1β (A), IL-6 (B) and
TNF-α (C) were significantly (*** p < 0.001) enhanced in ROT challenged rats when compared to CONT
group rats. Thymol treatment to ROT challenged rats showed a significant (## p < 0.01; # p < 0.05)
decrease in the levels of ROT-induced rise of proinflammatory cytokines. Additionally, the cytokines
levels did no show significant difference in the rats of CONT and thymol alone groups. The values are
presented as mean ± SEM (n = 6–8).

2.5. Thymol Attenuated Expression Levels of COX-2 and iNOS

We also examined the protein expression of inflammatory enzyme mediators such as COX-2 and
iNOS by western blotting (Figure 6A–C). A significant (p < 0.001) rise in the expression of COX-2
and iNOS was observed in the striatal tissues of rats challenged with ROT in comparison with the
vehicle injected rats in CONT group. Thymol treatment to ROT injected rats showed significantly
reduced expression of COX-2 (p < 0.05) and iNOS (p < 0.01) when compared to rats challenged with
ROT alone. However, the rats received thymol only was not found to produce significant alteration in
the expression of COX-2 and iNOS compared to vehicle injected rats in CONT group.
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Figure 6. Striatal tissues were used to determine the expression levels of COX-2 and iNOS using
western blotting (A). ROT challenge causes significant (*** p < 0.001) increase in COX-2 and iNOS
levels when compared to CONT rats. Thymol treatment to ROT challenged rats exhibited significant
(# p < 0.05; ## p < 0.01) decrease in the expression levels ofCOX-2 and iNOS as compared to rats received
only ROT (B,C). Thymol alone treatment did not exhibit noteworthy change in the expression of COX-2
and iNOS when compared to vehicle injected rats of CONT group (n = 4).

3. Discussion

The results of the present study demonstrate that thymol protect against ROT-induced
neurodegeneration, mediating antioxidant and anti-inflammatory actions. The ROT model of
neurodegeneration in rats is seemingly used as an experimental model for the assessment of agents for
preventive and therapeutic efficacy and understanding the pathogenesis of PD [20,21]. The widespread
activation of the microglia was observed in both the SNc and striatum following ROT challenge [18]
and this appears consistent with the biochemical changes in the inflammatory mediators found in
idiopathic PD [25,26], supporting the ROT model of PD. ROT induces nigrostriatal dopaminergic
toxicity to mimic most of the pathological features of human PD including dopaminergic neurons loss,
oxidative and nitrosative stress, impairment of the ubiquitin proteasome system and mitochondrial
function along with α-synuclein aggregation and behavioral abnormalities [16,17,19].

Experimental and epidemiological studies suggest the health promoting properties and
therapeutic benefits of numerous plant extracts, as well as their bioactive constituents, popularly known
as phytochemicals, against various human diseases including PD [8,9,23,24]. Many phytochemicals
have been found effective in treating numerous neurodegenerative diseases including PD [9,23,24,27].
Despite numerous pharmacological studies, there is no report available for the preventive or
therapeutic potential of thymol against ROT induced neurodegeneration in in rats as an experimental
model of PD. Additionally, thymol was found to inhibit β-amyloid (Aβ)-induced cognitive
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impairments in rats [28] that suggests thymol crosses the blood brain barrier and achieve the
concentrations sufficient enough to exert its therapeutic effects on neurons. Therefore, in the current
study we examined the neuroprotective role of thymol against ROT-induced neurodegeneration.

In the present study, a four-week regimen of ROT injections induced a significant degeneration
of TH+ dopaminergic neurons in the SNc region and dopaminergic nerve fibers in the striatum of
brain. TH+ neurons in the SNc region project their nerve terminals to the striatum. Therefore, the
degeneration of dopaminergic neurons in the SNc area results in the diminution of dopaminergic
nerve fibers/terminal in the striatum region. The loss of dopaminergic neurons and nerve terminals
is reflected as one of the main pathological indices of PD. Importantly, thymol treatment protected
the ROT-injected animals from the diminution of dopaminergic neurons and nerve terminals that is
clearly suggestive of the neuroprotective effects of thymol against ROT-induced neurodegeneration.

ROT being highly lipophilic in nature easily crosses the blood brain barrier independent of
any transporter and diffuses into neurons, accumulates in mitochondria and inhibits complex I.
Mitochondrial complex I inhibition leads to loss of ATP production and subsequent rise in the
ROS levels resulting oxidative stress [18,20,21]. Over generation of free radicals including ROS
causes lipid peroxidation that is considered a crucial event in the etiopathogenesis of PD and an
abnormal rise in the formation of MDA, a stable lipid peroxidation product, that has been shown
in experimental and human studies [29,30]. Considerably, the brain tissues are highly susceptible to
oxidative damage due to higher fatty acid contents, increased ROS level, and lessened endogenous
enzymatic and non-enzymatic antioxidant defense components. We observed that thymol treatment
significantly inhibited lipid peroxidation evidenced by reduced MDA levels in the midbrain tissues,
which was induced by ROT injections and is suggestive of thymol’s lipid peroxidation inhibitory
activity. The perturbation of endogenous non-enzymatic and enzymatic antioxidant defenses, such as
GSH and SOD or CAT, has been well demonstrated in the brain tissues of experimental models
and human PD [30]. The imbalance between the endogenous antioxidant defense system and
ROS-induced oxidative stress is often linked with a simultaneous reduction in the GSH levels in
the brain tissues with a concomitant fall in the activity of the intracellular antioxidant enzymes, SOD
and CAT. To demonstrate the action of thymol on antioxidant defenses, we measured the activity
of enzymatic antioxidants, SOD and CAT, and the level of non-enzymatic antioxidants, GSH. The
administration of ROT induced a significant depletion of the levels of GSH and reduction in the
activities of antioxidant enzymes SOD and CAT, whereas thymol treatment significantly restored
the activity of antioxidant enzymes evidenced by improved antioxidant activity and prevented the
depletion of GSH. This is suggestive of that thymol mitigates ROT-induced oxidative damage in brains
attributed to its potent antioxidant and free radical scavenging properties. The reason for potent
antioxidant and free radical scavenging property of thymol is ascribed to the presence of a phenolic
hydroxyl group in its chemical structure that is believed to accountable for absorbing or neutralizing
free radicals and augmenting endogenous antioxidants in protection against the deleterious effects of
free radicals [31].

Chronic low grade sustained neuroinflammation is a contributing element of many
neurodegenerative diseases including PD [4]. Neuroinflammation involves the activation of glial
cells and secretion of classic inflammatory mediators such as proinflammatory cytokines and
inflammatory enzymes; COX-2 and iNOS [32]. Given the crucial role of neuroinflammation in the
onset and progression of PD, numerous studies so far have demonstrated the potential usefulness of
anti-inflammatory drugs to decrease the development of neurodegeneration and lessen the risk factors
for the individuals developing PD [33,34]. Though, the potential adverse effects of anti-inflammatory
drugs limit their therapeutic use. Thymol has been shown to reduce inflammation by mitigating
the onset and progression of the inflammatory processes in different experimental models of human
diseases and appear safe in terms of adverse effects [35–37].

Therefore, we measured the levels of proinflammatory cytokines (IL-1β, IL-6, and TNF-α) in
brain tissues of rats challenged with ROT. We observed that thymol treatment significantly reduced
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the release and activation of proinflammatory cytokines as evidenced by reduced levels in brain
tissues of the rats challenged with ROT. Elevation in the activity and secretions of the proinflammatory
cytokines, TNF-α, IL-1β, and IL-6 showed to participate in dopaminergic neurotoxicity and amplify
the deleterious cascade of neurodegeneration in PD [38]. We also observed that thymol treatment
significantly decreased the number of activated astrocytes and microglia in the striatum region in
ROT-injected animals. The reduction in the number of glial cells following thymol treatment in ROT
challenged rats is suggestive of its anti-inflammatory effects. Additionally, we also measured the
expression of inflammatory enzymes mediators such as iNOS and COX-2, which rises following
the induction of proinflammatory cytokines and increase in NF-κB, a transcription factor, in PD
brains [39]. The COX-2 enzyme, an important physiologic and constitutive component of arachidonic
acid metabolism pathway leads to the oxidation of dopamine to form dopamine-quinone conjugate that
react with cysteinyl residues in proteins causes the alterations in protein structure and function [40].
These alterations further result in to neuronal cell death and suggested to be one of the probable
explanations for the protective effect of COX-2 ablation [41].

Furthermore, activated glial cells, which express iNOS, are believed to enhance the levels of nitric
oxide (NO) [5,42]. NO causes inhibition of the activity of several enzymes of the mitochondrial electron
transport chain and leads the augmented generation of ROS. The crucial role of NO in PD pathogenesis
is convincingly demonstrated in immunohistochemical studies performed on postmortem brain tissues
that displays enhanced expression of iNOS in basal ganglia structures [43]. The current study findings
shows that ROT injections elicited a remarkable increase in the expression of COX-2 and iNOS in the
striatum, compared to control animals. However, the animals that received thymol treatment exhibited
reduced expression of COX-2 and iNOS that is clearly suggestive of the potent anti-inflammatory
effects of thymol.

4. Materials and Methods

4.1. Drugs and Chemicals

The antibodies used in this study included polyclonal rabbit anti-tyrosine hydroxylase (Novus
Biologicals, Littleton, CO, USA), polyclonal rabbit anti-inducible nitric oxide synthase (iNOS),
anti-cyclooxygenase-2 (COX-2), and anti-glial fibrillary acidic protein (GFAP) (Abcam, Cambridge, MA,
USA), polyclonal rabbit anti-ionized calcium binding adaptor molecule-1 (Iba-1) (Wako Chemicals,
Richmond, VA, USA), biotinylated secondary anti-rabbit antibody (Jackson Immunoresearch, West
Grove, PA, USA), and Alexa fluor 488-conjugated goat anti-rabbit secondary antibodies (Life
Technologies, Grand Island, NY, USA). The test compound, thymol was procured from Santa Cruz
Biotechnology Inc, CA, USA. ROT, the chemical to induce PD in rats were purchased from Sigma
Aldrich, St. Louis, MO, USA. The ELISA assay kits for antioxidant enzymes and glutathione (GSH) as
well as other analytical grade reagents were also obtained from Sigma Aldrich, St. Louis, MO, USA.

4.2. Experimental Animals

The animal experiments were performed on five to six months old male adult albino Wistar
rats weighing between 280–300 g. All the animals used in this study were provided by the animal
research facility of College of Medicine and Health Sciences, United Arab Emirates University, Al Ain,
United Arab Emirates. The animals were housed in polyacrylic cages under standard experimental
animal housing conditions. The animals were maintained on a 12 h light/dark cycle and food and
water was fed ad libitum. The animal experiments were performed following the guidelines and
approval of Animal Ethics Committee of United Arab Emirates University, United Arab Emirates
(ERA_2017_5500).
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4.3. Experimental Design

In order to induce PD in rats, ROT was injected intraperitoneally once daily for 4 weeks with
a dosage of 2.5 mg/kg body weight. The doses and schedule of ROT used for PD induction in
rats in the present study was similar to that previously described and published report with slight
modifications [22–24]. Briefly, a stock solution of 50× ROT was prepared in dimethyl sulfoxide
and was used at a concentration of 2.5 mg/mL after dilution of stock in sunflower oil as vehicle.
Thymol was prepared after dilution in sunflower oil at a concentration of 50 mg/2mL. The dose
of thymol was selected based on previous studies [44,45] and was used at 50 mg/kg body weight
through intraperitoneal injection 30 min prior to ROT challenge, once in a daily for a total of 4 weeks.
The animals injected with same amount of oil only (vehicle) were designated as controls.

The animals were grouped in the following four categories as independent experimental groups
of eight rats each. Group I: rats received vehicle injections, designated as normal control group (CONT).
Group II: rats received rotenone and vehicle injections, designated as ROT group (ROT). Group III:
rats received thymol 30 min prior to rotenone and vehicle injections, designated as thymol-treated
group (ROT + Thymol). Group IV: rats received thymol injections alone, designated as thymol
group (Thymol).

4.4. Tissue Collection

Animals of all the experimental groups were euthanized 48 h after the final administration
of thymol or ROT to ensure a sufficient washout period. Prior to their sacrifice, animals received
intraperitoneal injections of anesthesia pentobarbital (40 mg/kg body weight) followed by cardiac
perfusion using phosphate-buffered saline (0.01 M, pH 7.4) to wash out the blood. Following perfusion,
the brain was removed quickly, and the two hemispheres were separated. The midbrain and the
striatum region were dissected out on ice from one of the hemisphere and the tissue was snap frozen
under liquid nitrogen until further use. The other hemisphere was fixed with 4% paraformaldehyde
solution for 48 h and subsequently exchanged with 10% sucrose solution three times a day for three
consecutive days at 4 ◦C prior to cryostat sectioning.

4.5. Sample Preparation for Biochemical Studies

Tissue samples (mid brain) were prepared after lysis of the frozen midbrain tissues in KCL
buffer supplemented with cocktail of protease and phosphatase inhibitor using a hand held
tissue homogenizer separately for each group. The homogenate of each sample was centrifuged
at 14,000 g for 20 min at 4 ◦C to get the post-mitochondrial supernatant for the quantification
of endogenous enzymatic and no-enzymatic antioxidants, markers of lipid peroxidation, and
levels of proinflammatory cytokines employing spectrophotometric assessment and enzyme-linked
immunosorbent assay (ELISA).

4.6. Assessment of Lipid Peroxidation and Glutathione

The markers of lipid peroxidation, malondialdehyde (MDA) (North West Life science Vancouver,
WA, USA) and glutathione (Sigma Aldrich, St. Louis, MO, USA), were estimated following the
manufacturer’s protocol provided with the kit. The data are presented as μM/mg protein.

4.7. Assessment of Antioxidant Enzymes Activity

The activities of endogenous antioxidant enzymes such as superoxide dismutase (SOD) and
catalase (CAT) were estimated following the protocols prescribed in manufacturer’s kits (Cayman
Chemicals Company, Ann Arbor, MI, USA). The activities of SOD and CAT are expressed as U/mg
protein, and nmol/min/mg protein, respectively.
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4.8. Estimation of Proinflammatory Cytokines

ELISA assays were carried out in order to determine the quantity of proinflammatory cytokines
such as interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α) in
midbrain tissues, following the manufacturer’s protocol provided with the kits (R&D Systems,
Minneapolis, MN, USA). The data are presented as pg/mg protein.

4.9. Immunohistochemistry of Tyrosine Hydroxylase (TH)

The immunohistochemical staining for TH was performed as published before [23,24]. Briefly,
14-μm thick coronal brain sections were sliced out at the level of the striatum and SNc using a cryostat
(Leica, Wetzlar, Germany) and TH+ neurons in the SNc and TH-ir fibers in the striatum were evaluated
following a method as described previously [23,24]. The loss of TH+ neurons in the SNc area after ROT
administration was determined by enumerating the TH+ neurons at three different levels (section)
(−4.8, −5.04, and −5.28 mm from the bregma) of the SNc region from each rat. A total three sections
of each level and three rats per group were included in the analysis and the average count for each
group is represented as a percentage. Therefore, in total, nine sections per group were analyzed for
TH+ neurons. The differences in the optical density of TH-ir dopaminergic fibers in the striatum
was measured using Image J software (NIH, Bethesda, MD, USA) in three different fields of each
section (three sections/rat n = 3) with equal areas (adjacent to 0.3 mm from the bregma). An average
of the three sections was calculated and is presented as a percentage compared to the control group.
As background, the optical density was measured from the overlying cortex and the values obtained
were subtracted from the values obtained for striatum. An investigator who was masked to the
experimental groups and treatment was assigned to perform the enumeration of TH+ neurons and
measurement of the optical density of the TH-ir fibers.

4.10. Immunofluorescence Staining of GFAP and Iba-1

Immunofluorescence microscopy was employed on 14-μm thick striatum sections to examine
GFAP positive astrocytes and Iba-1 positive microglia using previously published protocols [23,24].

4.11. Determination of Activated Astrocytes and Microglia in the Striatum

In order to analyze the number of activated astrocytes and microglia, at least three coronal sections
from a similar size of striatum from each animal and total three animals per group were utilized.
The enumeration of activated astrocytes and microglia was undertaken based on the immunostaining
intensity for GFAP and Iba-1 respectively and exhibiting morphological characteristics of hypertrophy
and extended glial processes. The quantification of activated astrocytes and microglia were performed
using Image J software (NIH, Bethesda, MD, USA) on the three randomly chosen equal area of different
fields in each section.

4.12. Western Blot Analysis of COX-2 and iNOS

The tissues dissected from striatum of each experimental group were homogenized in 1X RIPA
buffer supplemented with cocktail inhibitor of protease and phosphatase. The crude lysate was
centrifuged at 14,000 rpm for 20 min in a refrigerated micro-centrifuge. A total of 35 μg of protein
from each tissue sample was electrophoresed on a 10% SDS-polyacrylamide gel following a protocol
as published before [23,24]. The blots were quantitated using image J software (NIH, Bethesda, USA).

4.13. Protein Estimation

The quantity of protein in samples were measured employing the Pierce BCA protein assay
following the manufacturer’s instructions provided with the kit (Thermo Fisher Scientific, Rockford,
IL, USA).
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4.14. Statistical Analyses

The results are presented as the mean ± SEM. Statistical analysis were made using one-way
analysis of variance (ANOVA) followed by Tukey’s test to calculate the statistical significance of
differences between various groups including immunohistochemical cell/fiber count data. The data
with p-values < 0.05 were considered significant.

5. Conclusions

Taken altogether, the present study clearly demonstrates that thymol provides protection against
ROT-induced dopaminergic neurodegeneration, and the neuroprotective effects are attributed to
the antioxidant and anti-inflammatory properties of thymol. Based on the findings of this study,
it can be suggested that thymol or the herbs rich in thymol could be useful in the prevention of
neurodegeneration in PD. Nonetheless, the translation of beneficial effects in humans and identification
of the exact molecular mechanisms require further investigation.
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Abstract: Proteins play crucial and diverse roles within the cell. To exert their biological function
they must fold to acquire an appropriate three-dimensional conformation. Once their function is
fulfilled, they need to be properly degraded to hamper any possible damage. Protein homeostasis or
proteostasis comprises a complex interconnected network that regulates different steps of the protein
quality control, from synthesis and folding, to degradation. Due to the primary role of proteins in
cellular function, the integrity of this network is critical to assure functionality and health across
lifespan. Proteostasis failure has been reported in the context of aging and neurodegeneration, such
as Alzheimer’s and Parkinson’s disease. Therefore, targeting the proteostasis elements emerges as a
promising neuroprotective therapeutic approach to prevent or ameliorate the progression of these
disorders. A variety of natural products are known to be neuroprotective by protein homeostasis
interaction. In this review, we will focus on the current knowledge regarding the use of natural
products as modulators of different components of the proteostasis machinery within the framework
of age-associated neurodegenerative diseases.

Keywords: proteostasis; neurodegeneration; chaperones; autophagy; ubiquitin-proteasome; unfolded
protein response; natural compounds

1. Proteostasis Failure in Aging and Neurodegenerative Diseases

The proteostasis network is composed of a series of interconnected elements that assure correct
protein functionality and degradation [1]. It starts when polypeptide chains are synthetized in
the ribosome and fold with the help of chaperones and co-chaperones. Newly folded proteins are
transported to their appropriate locations and once their life cycle finishes, they are degraded either by
the ubiquitin proteasome system (UPS) or the autophagy machinery. Proteostasis network imbalance
plays a key -if not causative- role in many age-related pathologies [2]. Age is the most relevant risk
factor for neurodegenerative diseases including Alzheimer’s disease (AD), Parkinson disease (PD),
frontotemporal dementia (FTD) and several other forms of proteinopathies [3]. Although there is no
consensus in the field regarding the molecular mechanisms that explain their augmented incidence
in the elderly brain, a common feature of all these diseases is the accumulation of abnormal protein
aggregates in the form of oligomers and inclusions, suggesting that general mechanisms controlling
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proteostasis may underlay the etiology of these diseases [4]. Recent hypotheses suggest that a
progressive reduction in the repair capacity of the proteostasis network may generate a “pathological
aging” that results in protein aggregation and higher incidence of neurodegenerative disease [5–8].
Cerebral aging involves a range of cellular and molecular alterations related to proteostasis impairment
such as increased oxidative stress [9], altered autophagy machinery [10], accumulation of ubiquitinated
protein aggregates [11], and impaired signaling by numerous neurotransmitters and neurotrophic
factors [12]. The endoplasmic reticulum (ER) is an essential compartment of the proteostasis network,
which is also disturbed by the aging process [4]. Importantly, functional studies indicate that altered
proteostasis at the level of the ER is one of the major contributors to aging [4,13]. Several harmful
stimuli, such oxidative stress and disturbances in the secretory pathway may lead to accumulation of
unfolded or misfolded proteins at the ER lumen, thus activating the ER stress response [14].

The most prominent pathological hallmarks of AD are the extracellular accumulation of amyloid
β (Aβ) peptides in the form of plaques and the intracellular accumulation of hyper-phosphorylated
tau (ptau) proteins as neurofibrillary tangles (NFTs) [15], whereas in PD, α-synuclein tends to misfold
and accumulate inside dopaminergic neurons, leading to Lewy bodies formation [16]. Formation of
misfolded proteins as oligomers, proto-fibrils and fibrils leads to the accumulation of amyloid deposition
and spreading to affected areas [17,18]. Several intrinsic and extrinsic factors that alter proteostasis
cause a decreased protein quality control, contributing to the accumulation of damaged proteins.
If not rescued, this condition can lead to protein misfolding disorders, such as AD and PD [19–23].
For instance, a growing amount of evidence indicate that the activity of the molecular chaperones
-Hsp60, Hsp70 and Hsp90- is compromised in age-related neurodegenerative diseases [24,25]. The fact
that the expression of Hsp60 and Hsp70 is decreased in AD animal models [26], suggests that
impairments in the folding pathways play a key role in promoting age-related neurodegeneration.
In prion diseases, reduction of the molecular chaperone GRP78/BiP expression leads to the acceleration
of the pathology [27]. Alterations in the major protein degradation pathways have a major involvement
as well. For instance, the reduction in the activity of the UPS through the manipulation of various
UPS components (Rpt2, Rpt3, ubiquitin) causes deposition of pathological misfolded proteins and
subsequent neurodegeneration in experimental models, resembling what is observed in AD and
PD [28–30]. In addition, neurodegenerative diseases have in common autophagic failure [31,32].
The inhibition of the autophagy response is known to exacerbate protein toxicity and accelerate disease
progression [33–35]. The genetic and pharmacological activation of the autophagy has shown to
improve the clearance of AD and PD misfolded aggregated proteins [36–38]. Therefore, one can
conclude that boosting up the elements of the proteostasis machinery is a promising broad-spectrum
therapeutic approach, with the potential to treat or revert not only age-associated neurodegeneration,
but a variety of protein misfolding disorders.

2. Chaperone System

Chaperones are highly conserved proteins that assist and mediate the achievement of the proper
three-dimensional conformation of proteins. They bind and stabilize unfolded polypeptides, aiding
their folding during synthesis and inter-organelle transport [39]. Chaperones play important roles
during stress response, hence they are known as heat shock proteins (Hsp). Hsp are classified by their
molecular mass (Hsp32, Hsp27, Hsp40, Hsp60, Hsp70, Hsp90). They possess a substrate binding
domain that transiently binds to hydrophobic regions of polypeptides, shielding them from undesired
intermolecular interactions that could interfere with their adequate folding [40]. The capacity of the
Hsp is overloaded during chronic cellular stress, proteotoxic conditions and disease. For instance,
Hsp failure has been observed in the context of neurodegenerative disorders, such as AD, PD and
Huntington’s disease [41]. Notably, the solely over-expression of different Hsp members has been able
to rescue in vivo neuronal toxicity in different models [42–45]. With this in mind, the pharmacological
activation of Hsp represents an interesting therapeutic approach to treat neurodegeneration.
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To date, several natural products have been identified as Hsp modulators. Among them, the
potent phytochemical curcumin, a polyphenol of the plant Curcumin longa, has shown the ability to
induce the in vitro (rat glioma cells, rat liver cells, and mouse fibroblasts) and in vivo (heat-stressed
rats) expression of Hsp27 and Hsp70 under proteotoxic conditions, through the formation of an
intermediate form of Hsf1 (heat shock factor 1) [46,47]. Although the administration of curcumin in
animal models of neurodegenerative diseases has proven to be beneficial [48,49] and has no major side
effects in humans, some clinical trials show no evidence of efficacy in ameliorating memory impairment
nor reducing levels of amyloid in blood, suggesting a low bioavailability of curcumin following oral
administration [50,51]. Several other nutraceuticals have the ability to boost the chaperone system,
such as the proanthocyanidins present in cranberry extract. When administered to an AD nematode
model, they delayed Aβ toxicity through the activation of Hsf1, which is a master regulator of Hsp
expression [52]. Another interesting phytochemical is celastrol (extracted from the thunder god vine,
Tripterygium wilfordii). Celastrol administration to aged mature cortical cultures induced the expression
of Hsp70, Hsp32 and Hsp27 [53]. To highlight the in vivo neuroprotective activity of this natural
product, intraperitoneal as well as subcutaneous administration in AD mice reduced Aβ pathology [54].
No clinical trials have been performed using cranberry extract or celastrol to treat AD.

Paeoniflorin is an herbal compound isolated from the perennial flowering plant Paeonia lactiflora
and the fern Salvinia molesta. This phytochemical bears the ability to induce Hsp expression through
activation of Hsf1 and promotes thermotolerance in mammalian cell culture as well [55]. Another
major constituent of the same herbal medicines is Glycyrrhizin, which can be found in the liquorice
root. Several properties have been attributed to Glycyrrhizin, such as antiviral, anti-inflammatory, and
anti-allergic. In fact, it has been tested in over 20 different clinical trials related with liver diseases
with positive outcomes, but none of them evaluated its effect in neurodegenerative diseases. In the
case of the heat shock response, Glycyrrhizin is not able to promote the expression of Hsp itself,
however it enhances their induction, making it an interesting compound that could potentially be used
in combination with activators of the heat shock response [55]. Some natural occurring antibiotics
have Hsp induction properties too. Geldanamycin is a 1,4-benzoquinone ansamycin natural antibiotic
compound isolated from the bacterial species Streptomyces hygroscopicus. When administered to
mammalian cells expressing huntingtin exon 1 protein, it induces the expression of Hsp40, Hsp70
and Hsp90. The consequent activation of the heat shock response causes a marked inhibition on
huntingtin aggregation [56]. In patients with primary brain tumor or brain metastases, geldanamycin
induces Hsp70 with minimal toxicity [57]. Therefore, this compound bears the potential to treat
disease-associated protein aggregation. Another antibiotic compound isolated from Streptomyces is
herbimycin-A. Herbimicyn-A has the ability to induce the expression of Hsp72 thereby protecting
cell cultures from heat stress [58]. Radicicol is a natural macrocyclic compound biosynthesized and
isolated from the nematophagous fungi Pochonia chlamydosporia. This compound protects primary
cell cultures against stressful conditions, by inducing the heat shock response in a HSF-1 related
manner, following a similar mechanism than Herbimicyn and Geldanamycin [59]. In addition to this
natural antibiotics, several other compounds have shown the ability to boost the chaperone system.
While there are not reports yet on their action in the context of neurodegeneration or even clinical
trials, they represent promising candidates to restore proteostasis balance and may have potential to
delay the onset or treat diseases such AD or PD. One example is withaferin, a lactone derived from
the plant Vassobia breviflora. Withaferin enhanced the heat shock response through Hsp70, Hsp32 and
Hsp27 upregulation in a cancer model [60] and it is reported to ameliorate symptoms in schizophrenia
patients with minimal side effects [61]. Shikonin is another potential candidate to treat proteinopaties.
Its ability to induce Hsp70 in a human lymphoma cell model was discovered through a screening of
chemical inducers derived from medicinal plants. Shikonin is present in the roots of Lithospermum
erythrorhizon and it bears antibacterial, anti-inflammatory and anticancer activities as well [62]. Edible
gastropods seem to be an interesting source of compounds with potential to modulate proteostasis
response. As an example, the derivative 6-bromoindirubin-3-oxime, an indirubin present in mollusks,
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increased proteasome subunits and Hsp70 expression, with a consequent increase in healthspan and
lifespan in Drosophila [63]. Few clinical trials have tested the efficacy and safety of indirubins, such as
indigo naturalis extract. Although it can be considered a safe therapy [64], these studies have been
tested in psoriasis patients and therefore, its bioavailability remains unknown.

3. Autophagy

Autophagy is a highly conserved homeostatic clearance mechanism. Is in charge of the degradation
of damaged proteins, cytosolic components and organelles. It involves the lysosomal system and
contributes to the regulation of metabolism, healthspan and longevity. Cellular autophagy activity
is present at basal levels, however is particularly stimulated under stress conditions, as a protective
mechanism to assure survival and homeostasis [65,66]. Autophagy impairment has been reported in
several pathologies, from neurodegeneration to cancer [67,68]. Autophagy targets the degradation of
misfolded aggregated proteins considered hallmarks of different proteinopathies [67,69]. However,
during disease, the autophagy machinery fails, with deleterious cellular consequences [31]. Several
studies have pinpointed a downregulation of important components of the autophagy pathway
during AD and PD, such as Beclin 1 [70], as well as alteration in vesicle trafficking and inhibition of
autophagic vesicles [71]. Notably, the genetic and pharmacological induction of autophagy has the
ability to reduce the accumulation of misfolded proteins and has been associated to amelioration of
these disorders [36,37,72]. In this regard, polyphenolic compounds are known potent activators of the
autophagy response. As an illustration, the red wine polyphenol quercetin prevents Aβ associated
aggregation and its obnoxious consequences through modulation of autophagy, both in nematodes [73]
and murine models of AD [74] and PD [75]. Currently, there is a clinical trial to determine the brain
penetration of quercetin to potentially treat AD patients using a senolytic therapy. Kaempferol is
another potent polyphenol found in different dietary sources such as grapes and tomatoes. In vitro
kaempferol treatment increases LC3-II, an autophagosome-bound microtubule-associated protein, and
preserved the stratial glutamatergic response in a rat model of PD, positioning this natural product
as an important enhancer of autophagy with promising therapeutic applications [76]. Interestingly,
caffeine elevates LC3-II levels as well and has proven protective actions against AD and PD [77,78].
In fact, some studies suggest that drinking coffee may be associated with a decreased risk to develop
AD and PD [79–81], however, no evidence has been obtained from randomized controlled trials about
the beneficial effect of caffeine in neurodegenerative diseases to our knowledge. Resveratrol is another
compound of interest present in grapes and berries. The fact that it can cross the blood-brain-barrier
makes it an interesting candidate to treat neurodegeneration [82]. Among the many reported activities
of resveratrol, it activates autophagy by up-regulating Sirtuin 1, a potent inductor of autophagy [83,84].
Moreover, in a clinical trial performed in AD patients, resveratrol modulates Aβ deposition and
reduces inflammatory markers with no side effects [85,86]. In addition to this dietary sources, there
is a growing amount of evidence demonstrating the beneficial effects of Mediterranean diet on
age-associated neurodegeneration [87]. Olive oil is a significant component of this dietary regimen.
Olive oil is enriched with the polyphenol oleuropein aglycone. The administration of oleuropein
aglycone improved cognition and reduced amyloid deposition in a transgenic AD mouse model, mainly
through activation of the autophagy [88]. A multitude of studies have study the effect of olive oil in
combination with Mediterranean diet in an effort to evaluate its effect in patients with cognitive decline
and dementia [89], including AD and PD, but none of them analyzed the capability of oleuropein
aglycone to cross the blood-brain barrier (BBB), tolerance, biodistribution or its effect in treating
neurodegenerative disorders. Another dietary molecule, present in high quantities on mushrooms and
aged cheese, is spermidine. This compound induces autophagy and delays aging, the main risk factor
for AD and PD, in humans and mice [90,91]. Glycoconjugate metabolites isolated from traditional
medicine remedies are an interesting group of phytochemical compounds with properties to activate
autophagy. For example, the ginseng derived steroid glycoside Rg2 is a potent inducer of in vitro and
in vivo autophagy in an AMPK-ULK1 dependent [92]. In the same line, a derivative chemical compound
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from the root ginseng, 1-(3,4-dimethoxyphenethyl)-3-(3-dehydroxyl-20(s)-protopanaxadiol-3β-yl)-urea
(DDPU), improved cognition and promoted neuroprotection in the APP/PS1 mouse model of AD.
No clinical trials have been reported. DDPU targets different branches of the proteostasis network, as
it has activity on both the ER stress and autophagy [93]. Berberine is a natural alkaloid isolated from
Rhizoma coptidis, a traditional Chinese herbal medicine, with high distribution when administered
orally, including the CNS, in pre-clinical studies [94]. When berberine was orally administered to
a triple-transgenic AD mouse model, it promoted Aβ clearance through autophagy by increasing
the levels of LC3-II. Phenotipically, berberine treatment significantly improved spatial learning and
memory retention in the treated animals [95]. Corynoxine B joins the list of natural alkaloid molecules
with autophagy-inducer properties in cellular and mouse AD models. Corynoxine B is an oxindole
alkaloid present in the medicinal plant Uncaria rhynchophylla, a widely used Chinese traditional remedy.
This compound was tested in cells expressing the APPSwe mutation and intraperitoneally administered
once a day to Tg2576 mice at 8 months of age. Corynoxine B treatment reduced Aβ levels by increasing
LC3-II, lysosomal activation and changes in APP [96]. Surprisingly, the source of compounds with
potential anti-neurodegenerative capacity is not limited to the ground. The study of marine organisms
has helped to identify several compounds with the ability to modulate proteostasis. Among them,
chromomycin A2, psammaplin A, and ilimaquinone induced the expression of autophagy, in the
context of cancer [97]. It would be extremely interesting to test their effect on neurodegeneration, both
in vitro and in vivo, as it will expand the sources of therapeutic molecules. As stated, autophagy is
a major player in the cellular response to stress and turnover of damaged proteins. In view of its
potential, targeting autophagy through the use of natural products is an emerging and promising field
that requires further exploration.

4. Ubiquitin Proteasome System

The ubiquitin proteasome system (UPS) is the main responsible for degrading intracellular
damaged proteins. Briefly, a subset of enzymes is involved in ubiquitin-tag the proteins that need to
be degraded, this tag is then recognized by the proteasome -a multi-subunit barrel complex- for its
proteolytic degradation [98]. Several natural compounds have been widely explored for their ability to
decrease the activity of the UPS, especially in the context of cancer research [99]. However, relatively
few have been studied for their capacity to activate the UPS. The mechanisms of action among them
vary, for example, the natural compounds olein, linoleic acid, linolenic acid, ceramides, and oleuropein
increase proteasome activity by exerting conformational changes that promote the entry of the substrate
into the proteolytic chamber [100]. A derivative of linoleic acid has been reported to cross the BBB,
tolerable, and safe, but specific studies to determine its potential to treat dementia are still needed [101].
On the other hand, dietary intake of linolenic acid seems to have no effect in other brain disorders
such as stroke [102]. It remains to be determined whether this is due to a low brain penetrance of the
compound in the CNS or lack of therapeutic potential in this specific disorder. Other natural molecules
activate the proteasome by enhancing its catalytic activities, such as the lipid fraction of the algae
Phaeodactylum tricornutum and the triterpene betulinic acid [103–105]. Two clinical trials are currently
ongoing to determine the safety, tolerability and effectiveness of betulinic acid. The compounds present
in the Chinese traditional herb Corydalis bungeana boost in vivo proteasomal activity by upregulation
of the regulatory subunits [106]. In the same line, the polyphenol resveratrol enhances proteasome
activity through increase on the expression of proteasome subunits and proteolysis in the brain of AD
transgenic mice, protecting them against memory loss and enhancing cognition [107]. Quercetin is
another polyphenolic compound that exhibits in vivo enhancing proteasome activity [108] and reduces
Aβ-induced toxicity in a dose-dependent manner when administered to a Caenorhabditis elegans AD
model [73]. Since impaired UPS activity is one of the main features present in all protein misfolding
disorders, it will be interesting to explore the natural chemical space in the lookout for more activators.
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5. Unfolded Protein Response

Three branches of a conserved signaling pathway collectively termed as the unfolded protein
response (UPR) are triggered in response to the ER stress: ATF6 (activating transcription factor 6), PERK
(PKR-like kinase), and IRE1 (inositol-requiring enzyme 1) [14]. UPR activation results in global protein
synthesis reduction [109] and upregulation of genes involved in protein folding [14], which facilitates
proper protein folding, therefore arresting protein aggregation. In the brain of AD, PD and FTD patients,
levels of UPR markers are elevated [110,111]. This could represent an emergency response triggered
by the ability of misfolded proteins to induce neuronal ER stress and activate the UPR [112]. However,
when the ER response is chronically activated, proteostasis cannot be restored with devastating
consequences for the brain, leading to synaptic impairment and neurodegeneration. In this line of
thoughts, recent studies indicate that reduction of ER stress with chemical chaperones alleviate synapse
and memory loss in experimental models of AD [111,112]. Levels of eIF2α phosphorylation are elevated
in AD brains. PERK regulation decreases eIF2α phosphorylation levels and ameliorates memory
impairment in AD and prion-infected mice [113,114]. On the other hand, activation of PERK increases
tau phosphorylation [115], as well as ptau activates UPR [116]. IRE1 leads to the expression of XBP1
(X-box binding protein 1) that upregulates the expression of chaperones, increasing the size of the ER
and promoting the degradation of misfolded proteins through the proteasome system [14,117]. It has
been recently described that IRE1 signaling promotes AD progression whereas its deletion ameliorates
learning and memory impairment as well as reduces amyloid deposition [118]. Furthermore, tau
and Aβ accumulation has been also found associated with UPR activation by inhibition of ATF6 and
ER-associated degradation (ERAD), likely through soluble oligomeric forms [116,119,120].

Few natural occurring compounds have been explored in regards to their ability to modulate
the UPR in the context of neurodegeneration. Among them, Bajijiasu, a dimeric fructose isolated
from the Chinese medicinal herb Morinda officinalis, has shown to exert protection against Aβ induced
neurotoxicity by attenuation of ER stress in the hippocampus and cortex of APP/PS1 mice [121].
No clinical trials have been reported evaluating this compound. Kaempferol is phytoestrogen and
one of the main components of Ginkgo biloba extract with the ability to inhibit ER stress and protect
cells against apoptosis by upregulation of CHOP mRNA levels in vitro [122]. Clinical trial using
G. biloba extracts indicate its symptomatic beneficial effects in patients with MCI, AD, and related
dementia [123–125]. Honokiol is a promising biphenolic lignan isolated from the Magnolia tree
that can cross the blood brain barrier and therefore represents an interesting candidate to treat
neurodegeneration due to its high bioavailability. This lignan modulated ER-stress in the brain of
mice, and reduced the levels of proinflammatory cytokines as well [126]. Its tolerance, safeness,
biodistribution, and effectiveness has not been tested yet to treat brain disorders. More research is
needed to evaluate the effect on neurodegeneration of other known modulators of ER-stress, as the
current literature is quite limited. A special focus should be made on compounds with the ability to
cross the blood brain barrier that can effectively target the cells that are compromised in this diseases.

6. Conclusions

Aging is the main risk factor for a variety of neurodegenerative disorders, such as AD and PD.
Recent studies indicate that there is a dramatic age-associated collapse of proteostasis responses,
leaving the cells vulnerable to physiological and environmental stressors, and more susceptible to
disease. In the case of diseases associated with protein misfolding, the proteostasis machinery takes
initial care of the aberrant protein aggregates. However, as the clearance ability gets compromised, the
accumulated aggregates cause cellular toxicity, tissue dysfunction, and disease. Therefore, boosting up
the proteostasis machinery by the use of natural compounds emerges as a potent pharmacological
tool with promising effects to treat and protect against neurodegenerative disorders. In this study we
compile a list of natural modulators of the proteostasis network (Figure 1). Not surprisingly, majority
of them are of plant-origin. However it is remarkable to note that we report some compounds of
marine-animal-origin as well. It is indeed necessary to explore more alternative sources of natural
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compounds. In addition, further studies are required to understand the precise mechanism of action of
the natural proteostasis activators, their off-target effects and their in vivo bioavailability. We foresee
that the development of innovative, natural and safe therapeutic strategies to tackle the accumulation
of misfolded protein aggregates through the modulation of the proteostasis machinery, will have
exceptional effects to prevent and treat disorders related to age-dependent protein aggregation.

 

Figure 1. Schematic representation of natural compounds that positively regulate different elements of
the proteostasis machinery. There is an extensive heterogeneity of chemical classes that compose the
proteostasis-enhancing compounds, however we observed an enrichment in polyphenolic molecules.
It is noted that oleuropein aglycone, resveratrol, and quercetin target the autophagy and the UPS,
suggesting that they could be used as strong activators to restore the proteostasis network during aging
and disease, whereas chaperones’ modifiers seem to exclusively interfere with this pathway.
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Abstract: Parkinson’s disease (PD) is a well-known age-related neurodegenerative disorder associated
with longer lifespans and rapidly aging populations. The pathophysiological mechanism is a complex
progress involving cellular damage such as mitochondrial dysfunction and protein homeostasis.
Age-mediated degenerative neurological disorders can reduce the quality of life and also impose
economic burdens. Currently, the common treatment is replacement with levodopa to address
low dopamine levels; however, this does not halt the progression of PD and is associated with
adverse effects, including dyskinesis. In addition, elderly patients can react negatively to treatment
with synthetic neuroprotection agents. Recently, natural compounds such as phytochemicals with
fewer side effects have been reported as candidate treatments of age-related neurodegenerative
diseases. This review focuses on mitochondrial dysfunction, oxidative stress, hormesis, proteostasis,
the ubiquitin-proteasome system, and autophagy (mitophagy) to explain the neuroprotective effects
of using natural products as a therapeutic strategy. We also summarize the efforts to use natural
extracts to develop novel pharmacological candidates for treatment of age-related PD.

Keywords: Parkinson’s disease (PD); mitochondrial dysfunction; dynamics; hormesis; proteostasis;
ubiquitin-proteasome system (UPS); autophagy; mitophagy; natural compounds

1. Introduction

Parkinson’s disease (PD) is the second most common neurodegenerative disease. Approximately
1% of the elderly population above 60 years of age suffers from PD, and the prevalence of the disease
increases to 4% in the highest age group [1]. Because the incidence of PD depends strongly on age,
the number of PD patients is estimated to dramatically increase as lifespans also increase. The economic
burden of PD was estimated to be $14.4 billion in the United States in 2010 [2]. However, it increased
up to $51.9 billion in 2017 [3], and is expected to increase more dramatically in the future. The most
effective therapeutic option is the administration of l-3,4-dihydroxyphenylalanine (L-DOPA), which
can cross the blood-brain barrier and be metabolized to dopamine [4]. However, all currently available
drugs, including L-DOPA, only modulate dopamine levels in PD patients’ brains and are of limited
effectiveness in the initial stages of the disease, which can last for 1–5 years [5]. Novel strategies are
therefore needed to prevent and manage PD in the later stages.

PD is histologically characterized by the progressive loss of dopaminergic (DA) neurons in the
substantia nigra pars compacta (SNpc), which innervates basal ganglia and regulates motor control
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through the release of dopamine. The loss of DA neurons occurs before the onset of motor symptoms [6].
At the end stage of PD, neuronal degeneration become widespread, resulting in various symptoms.
Another notable characteristic of PD is Lewy pathology (LP), particularly within the brain stem and
olfactory system during early-stage PD. As the disease progresses, LP spreads to the limbic and
neocortical regions of the brain. LP is usually observed in PD patients’ brains using histopathological
methods [7]. However, LP is also observed in non-PD human brains, making LP a poor predictor of
PD [8].

1.1. Major Pathological Mechanisms of Neurodegeneration in PD

The mechanism of PD pathogenesis has been studied extensively, although questions remain [9,10].
In brief, impairment of quality control in mitochondria and proteins by oxidative stress, and
α-synuclein accumulation, is the primary mechanism associated with degeneration of DA neurons in
PD with neuroinflammation [10]. Because this pathological mode is a common characteristic in other
neurodegenerative diseases, including Alzheimer’s disease and amyotrophic lateral sclerosis, we will
discuss PD-specific pathological mechanisms of mitochondrial quality control and proteostasis.

1.2. Impairment of Mitochondrial Quality Control

Several genes have been identified to be related with early-onset PD, and their physiological roles
have been extensively studied. Parkin and PINK1 are major components for autophagy-mediated
degradation of mitochondria (mitophagy), and their genetic mutations are closely related with
accumulation of dysfunctional mitochondria in early-onset PD [11,12]. In addition, DJ-1 is
critical for the antioxidant process against oxidative stress, which is induced by Ca2+ oscillation
in autonomously pacemaking DA neurons [13,14], and its autosomal recessive mutation is also
related with early-onset PD [15]. These observations suggest a pathological role of mitochondrial
dysfunction in early-onset and potentially sporadic PD. Especially, decreased activity of mitochondrial
respiratory chain complex I has been observed in post-mortem SNpc of sporadic PD patients [16].
Neurotoxins, such as 6-hydroxydopamine (6-OHDA), 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/
1-methyl-4-phenyl-pyridinium (MPTP/MPP+) and rotenone have been frequently used for experimental
PD model. They inhibit the activity of mitochondrial respiratory chain complex I, and aberrantly
induce mitochondrial dysfunction by oxidative stress, thereby mimicking selective loss of DA neurons
in SNpc [17,18]. These indicate that impairment of mitochondrial function is linked with PD pathology.

Impairment on mitochondrial turnover also appears in PD [19]. Mitochondrial turnover is
mediated by two pathways; 1) morphological balance between fusion and fission, and 2) qualitative and
quantitative balance between biogenesis and mitophagy. Mitochondrial fragmentation has been well
known as a common phenomenon in early stage of neuropathology including PD [20]. And reversely,
mdivi-1, a synthetic blockade of mitochondrial fission as an inhibitor of Dynamin-related protein 1
(DRP1) [21], efficiently rescues DA neurons in a genetically- and chemically-induced PD model [22,23],
emphasizing a critical contribution of mitochondrial dynamics in PD pathology. In addition, level
of genes controlled by proliferator-activated receptor gamma coactivator 1-alpha (PGC1α), which is
a master transcription factor for mitochondrial biogenesis, are downregulated in the brains of PD
patients [24]. Reversely, activation of PGC-1α signaling efficiently reduces α-synuclein toxicity [25].
Furthermore, overexpression of Parkin prevented degeneration of DA neuron in PD model through
activating mitophagy [26]. Those studies suggest that the activation of mitochondrial quality control
can be a strategy to prevent and manage sporadic PD.

1.3. Impairment of Proteostasis

The second pathological mechanism of PD is abnormal accumulation of misfolded proteins
by impairment of proteostasis. α-synuclein has been reported to be a major component in Lewy
bodies in PD patients, and its mutation is involved in early-onset PD [10], raising the possibility that
α-synuclein aggregates may play a critical role in PD pathogenesis. Although the physiological role
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of α-synuclein remains to be understood, the detrimental outcome of α-synuclein oligomers and
aggregates has been widely studied. In pathological conditions, α-synuclein can oligomerize and
form insoluble fibrils [27]. The α-synuclein oligomer induces aberrant generation of reactive oxygen
species by inhibiting mitochondrial respiratory complex I, and leads to mitochondrial dysfunction [28].
Enhancement of proteostasis of α-synuclein by preventing aggregation and/or clearing aggregates
can therefore be an effective strategy to cope with PD. A study in transgenic mice expressing human
α-synuclein demonstrated that both the ubiquitin-proteasome system (UPS) and autophagy-lysosome
pathway are responsible for the degradation of α-synuclein in neurons [29]. Rapamycin, an inhibitor
of the mammalian target of rapamycin, consistently promotes degradation of wild-type and mutant
α-synuclein [30] and rescues loss of DA neurons and parkinsonism in a 6-OHDA-induced PD mouse
model [31]. These observations suggest that the activation of proteostasis mechanisms can be an
effective strategy to manage PD through α-synuclein clearance.

Parkin plays a critical role in mitophagy [26] and gene transcription [32] as a PD-related
multifunctional E3 ligase. Parkin targets, ubiquitinates, and degrades other proteins as well as
the substrates involved in mitophagy. For instance, the genetic inactivation of Parkin leads to the
accumulation of ZNF746 (PARIS), a substrate of Parkin, and this process represses PGC-1α signaling,
leading to the degeneration of DA neurons [33]. PARIS accumulates excessively and consistently
in familiar and sporadic PD patients’ brain, indicating a pathophysiological role in PD. Parkin
also ubiquitinates and degrades the aminoacyl-tRNA synthetase complex interacting multifunctional
protein-2, which activates poly(ADP-ribose) polymerase-1 and promotes PAR polymerization, resulting
in neuronal death via “parthanatos” [34,35]. These studies suggest a crucial role for E3 ligase activity
of Parkin in the PD-related degeneration of DA neurons. Activation of UPS by Parkin or other E3
ligase may therefore also offer a crucial neuroprotective effect against PD.

2. Compounds from Natural Products Alleviating Mitochondrial Dysfunction in PD

2.1. Recovery of Redox Homeostasis

We list 84 lead compounds isolated from natural products that have neuroprotective effect
in vitro and/or in vivo experimental PD models according to their chemical class with effect summary
(Table 1). Among them, the reaction of some natural compounds in mitochondrial quality control is
summarized in Figure 1. Oxidative stress has been proposed as a main initial factor in mitochondrial
dysfunction, which appears as an early pathological event in neurodegenerative diseases, including
PD [36]. Mitochondria are the main endogenous source of various free radicals, including reactive
oxygen species/reactive nitrogen species (ROS/RNS) via oxidative phosphorylation and are removed
by redox enzymes including catalase, superoxide dismutase, and heme oxigenase-1 with intracellular
antioxidants such as glutathione (GSH) [37]. However, the failure of redox homeostasis induces
excessive levels of ROS/RNS, leading to mitochondrial dysfunction [36]. Neurotoxins in experimental
PD models, such as 6-OHDA, MPP+/MPTP, rotenone, and paraquat, impair redox homeostasis by
reducing the amount of antioxidants and activity of redox enzymes [38]. Traditionally, many compounds
from natural products that recover redox homeostasis have been suggested for mitochondrial quality
control in PD. Pre- or cotreatment of the compounds efficiently reduces levels of ROS/RNS against
PD-related neurotoxins. Although the compounds, which are classified as polyphenols, terpenes,
saponins, alkaloids, and other classes, exhibit anti-oxidizing activity in vitro, they may work as cellular
activators and/or messengers by increasing the amount of GSH and by enhancing the activity of
redox enzymes. Some mechanistic studies have revealed that nuclear factor erythroid 2-related
factor 2 (NRF2) plays a central role in activating the redox system for neuroprotection against PD.
Upon oxidative stress, NRF2 is stabilized by escaping from the UPS, which is mediated by Kelch-like
ECH-associated protein 1 (KEAP1) and Cullin-3 (CUL3) [39]. Therefore, it accumulates in the nucleus
and binds to promoters of multiple redox enzyme genes as a transcriptional activator, leading to the
expression of redox enzymes as a defensive response. This process is enhanced by the following
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compounds: baicalein [40], luteolin [41], naringenin [42], puerarin [43] and genistein [44], auraptene [45],
resveratrol [46], 11-dehydrosinulariolide [47], tanshinone I/IIA [48,49], astaxanthin [50], notoginsenoside
Rg2/Rd/Re [51,52], ligustrazine [53], fucoidan [54], gastrodin [55], 3,4-dihydroxyphenyl-lactic acid [56],
and salidroside [57]. However, some compounds induce expression of DJ-1, which promotes the
recovery of the redox system via SOD1 and NRF2 signaling [58]. Among them are naringenin [59],
sesamol [59], 11-dehydrosinulariolide [47], salidroside [57], rutin [60], and isoquercitrin [60]. Previous
studies have demonstrated that various polyphenols and terpenes can evoke NRF2 signaling in other
cellular contexts and environments [54]. This implies that other listed compounds can also activate
NRF2 signaling, and their mechanistic study in PD models should be pursued. Taken together, we
suggest that recovery of redox homeostasis is a basic property of natural compounds in PD treatment.

Figure 1. Neuroprotective compounds via mitochondrial quality control in PD. Mitochondrial quality
is controlled by redox systems, structural dynamics, and mitophagy. In addition, it can be enhanced by
hormetic adaptive stress responses. Some natural compounds revert and/or enhance redox system by
NRF2 signaling, and improve mitochondrial quality by controlling structural dynamics and mitophagy.
In addition, some compounds evoke adaptive stress responses mediated by SIRT1, which induce gene
expression involved in redox enzymes, mitochondrial biogenesis/energetics and mitophagy. Therefore,
these compounds protect DA neurons in PD.
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2.2. Enhancement of Mitochondrial Turnover by Structural Dynamics

Recent papers have revealed the importance of structural quality control of mitochondria in
neurodegeneration, including PD [20]. In the intra-/extracellular environment, mitochondria undergo
dynamic morphological changes via controlled fusion and fission, which are mediated by fusion
proteins, mitofusin1/2 and optic atrophy 1 (OPA1), and the fission protein DRP1 [146]. This process
contributes to mitochondrial quality and bioenergetics by the sharing and division of metabolites and
nucleoids in mitochondria (Figure 1). However, PD-related neurotoxins and genetic mutations can
induce excessive fragmentation of mitochondria by enhancing fission or inhibiting fusion, resulting in
excessive mitophagy and eventual mitochondria-mediated neuronal death [19]. As a result of this
discovery, compounds that inhibit mitochondrial fragmentation in PD models have been proposed.
Thymoquinone reverts rotenone-induced upregulation of DRP1 protein in substantia nigra and striatum
in PD model rats [126]. Rutin and isoquercitrin recover the expression of OPA1 in 6-OHDA-treated
PC12 cells [60]. Moreover, other compounds promote mitochondrial turnover by enhancing the overall
activity of fusion/fission or mitophagy. Resveratrol upregulates the expression of both MFN1/2 and
DRP1, resulting in the upscaling of mitochondrial quality by enhanced fusion/fission of mitochondria
in PD models [111,112]. Kaempferol induces mitochondrial fragmentation, which contributes to
efficient mitophagy, thereby protecting neurons from accumulation of abnormal mitochondria [80].
Rosmarinic acid protects membrane integrity in mitochondria against permeabilization by α-synuclein
aggregates [109].

2.3. Natural Compounds Evoking Mitochondrial Hormesis

Hormesis-evoking therapeutic trials in PD have been conducted because the pathology of
sporadic PD is closely linked with mitochondrial aging [147]. Hormesis is an adaptive response
against severe challenges by enhancing functionality and tolerance upon preconditioned mild
intracellular or extra-environmental stress [148]. Especially, mitochondrial hormesis can be evoked
in response to mild mitochondrial stressors, including energetic depletion, calcium, and ROS by
adaptive endoplasmic reticulum (ER)/integrated stress response and mitochondrial unfolded protein
response [149]. This process promotes biogenesis, energetics, antioxidant response, protein quality
control, and mitophagy of mitochondria, thereby extending lifespans with reduced metabolism via
cytokine-mediated systemic regulation. Treatment with epigallocatechin gallate [61], quercetin [73],
resveratrol [113] or fucoidan [123], sesamol/sesamin [128], astragaloside IV [78], panaxatriol saponin [84],
or salidroside [144] in PD models activates sirtuin 1 (SIRT1) signaling, which promotes PGC1α
signaling and Forkhead box O3 signaling, which are involved in the biogenesis/bioenergetics and
mitophagy/redox of mitochondria, respectively [149]. In addition, rutin and oleuropein upregulate
IRE1α and ATF-4 without activating CHOP, PERK, BIP, and PDI in low hormetic doses, thereby
improving cell survival [76]. However, relatively high doses of panaxatriol saponin, rutin, and
oleuropein inhibit cell growth and proliferation, indicating some toxic effect. Therefore, these
hormesis-evoking compounds may require more intensive study on the dose-response [76,84]. SIRT1
signaling also activates the NRF2-mediated activation of the redox system via PGC1α signaling [149].
Therefore, NRF2-activating compounds may have a potential hormetic effect, but this possibility
requires further study.

3. Natural Compounds Ameliorating Proteostasis Impairment in PD

The best-described pathological feature of PD is compromised proteostasis, which can be induced
by oxidative or nitrosative stress resulting from misfolded protein accumulation and other exogenous
neurotoxins [150,151]. In this section, we focus on two major mechanisms involved in proteostasis
impairment with PD onset: UPS and autophagy. Autosomal recessive mutations of Parkin represent
a large proportion of familial PD [152,153], and disruption of Parkin-mediated proteolysis leads to
excessive protein misfolding, which culminates in PD [154]. On the other hand, α-synuclein forms fibril
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aggregates via PD-associated progressive posttranslational modifications, and it is usually degraded
by autophagy-lysosome machinery. However, pathologically excessive α-synuclein aggregates impair
the autophagy-lysosome machinery, leading to the vicious establishment of PD [155]. Researchers
have therefore focused on ameliorating the collapsed protein quality for PD by controlling translation,
chaperone-assisted folding and the degradation of protein. The regulation on proteostasis machinery
by natural compounds is summarized in Figure 2.

Figure 2. Summary of natural product regulation in proteostasis machinery. Natural products have
a potential role to play in the amelioration of PD-induced proteostasis impairment. They regulate
UPS through E3 ligase activity, increasing the autophagy-lysosome pathway, and inhibiting the
posttranslational modifications of α-synuclein.

3.1. Regulation through the Ubiquitin-Proteasome System

One of the protein degradation pathways is UPS. Proteins are polyubiquitinated by E3 ligase
and finally cleared by the proteasome. Some studies have tried to restore the impaired activity of
UPS in PD models by using natural compounds. Salidroside decreases the level of phosphorylated
α-synuclein (pSer129) by recovering proteasome activity in UPS-impaired PD models by 6-OHDA [145].
Because the E3 ligase, which catalyzes the polyubiquitination reaction, provides a key regulatory
function in UPS, the regulation of its activity has been studied as a therapeutic strategy for PD. Some
studies reported on the UPS-mediated regulation of p53, which is a key mediator of neuronal death
in neurodegenerative diseases [156]. In PD patient brains, p53 is accumulated, and is involved in
the degeneration of DA neurons [157]. Generally, MDM2, an E3 ligase, degrades p53, and could be
activated by p53 in a negative feedback loop [158,159]. Upon cellular stress, including DNA damage,
p53 becomes stable through its phosphorylation, mainly at the Ser-15 and -37 residues [160,161]. Due to
its modification, the phosphorylated p53 destabilizes MDM2 and finally disorganizes the UPS function,
leading to the aberrant protein accumulation. Some polyphenols, including flavonoids and lignans,
have been reported to exhibit protective effect on impaired UPS regulating p53. Epigallocatechin gallate,
rottlerin [62], puerarin [71], sesamol, and naringenin [59] inhibit the aberrant accumulation of p53 by
recovering MDM2-mediated UPS, thereby suppressing p53-dependent cell death in PD models [62,71].
On the other hand, Parkin has an E3 ligase function, and its regulation has been investigated [162].
However, regulating Parkin activity through natural products is still under investigation. Another E3
ligase, IDUNA (RNF146), has PAR-dependent E3 ligase activity [163]. It protects against programmed
cell death (called parthanatos) through proteasomal degradation. Recent studies have discovered that
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the natural products liquiritigenin and rhododendrin provide a neuroprotective effect in 6-OHDA
PD models by inducing IDUNA activity. Both products bind to estrogen receptor-β stimulating
transcription of IDUNA [97,164].

3.2. Regulation through the Autophagy-Lysosomal Pathway

Another major protein degradation pathway is autophagy. It is a kind of pro-survival pathway,
which clears misfolded or damaged proteins that cannot be degraded by unfolded protein response.
Several toxin-induced PD models have been used to simulate the epidemiology of PD. Through
exogenous toxins, ER stress evoked from increased ROS generation and decreased ATP synthesis
can directly impair mitochondrial respiratory complex I [165]. Many studies have reported natural
products that can treat these impaired mitochondrial environments by increasing autophagy flux and
targeting specific mechanisms. A well-known natural product, quercetin, is an autophagy enhancer that
plays a protective role in response to ER stress in rotenone-induced PD rat models. Quercetin treatment
ameliorates DNA fragmentation and decreases beclin-1 levels [74]. Triptolide [68], Amurensin G [102]
and celastrol [69] induces autophagy by activating LC3-II upregulation and clears α-synuclein in vitro
and in vivo PD models. Some studies have reported that natural products can elevate autophagic
activity through the modulation of AKT/AMPK/mTOR signaling. An oxindole alkaloid, corynoxine,
has been described as an autophagy inducer. Chen et al. (2014) suggested that corynoxine-induced
autophagy can clear α-synuclein through the Akt/mTOR pathway in neuronal cells and a Drosophila
model [139]. Furthermore, Chen et al. (2017) introduced a model of corynoxine-induced neuronal
autophagy. They established a network-based algorithm of in silico kinome activity profiling, and
predict phosphoproteomic data. They then suggested that corynoxine-induced autophagy could clear
α-synuclein regulated by MAP2K2 and PLK1 kinase activity [166]. Onjisaponin B derived from Radix
Polygalae was reported to have regulatory function of autophagy, enhancing autophagy flux by the
AMPK/mTOR signaling pathway and finally removing α-synuclein A53T mutant proteins [86].

3.3. Inhibition of Protein Aggregation Formation

The most frequently described protein in the pathology of PD is α-synuclein. Aggregates of
α-synuclein can be toxic in cellular environments and can lead to PD [167]. Once α-synuclein
forms a fibril structure, it cannot be easily degraded through the protein degradation pathway.
Inhibition of the formation of α-synuclein aggregates is therefore a promising therapeutic strategy.
Some studies have reported novel natural products that control α-synuclein oligomerization. In
particular, the polyphenol family has demonstrated an ability to directly or indirectly inhibit
α-synuclein oligomerization. Curcumin is a well-known antioxidant that can increase the solubility of
the α-synuclein form of monomers in catecholaminergic cell lines and in vivo models, thereby
inhibiting oligomerization [168–171]. Pretreatment of rosmarinic acid inhibits reduction in the
mitochondrial membrane potential and α-synuclein aggregation through its iron-chelating activity
in an MPTP-induced PD model [110]. In addition, myricetin can inhibit α-synuclein oligomerization
by directly binding to the α-synuclein N-terminal region in vitro [90]. Tanshinone I and tanshinone
IIA decreased the formation of α-synuclein oligomers [65]. Ginsenoside Rb1 dissociates α-synuclein
fibrillation through directly binding to α-synuclein oligomers [88]. Tea polyphenols have been shown
to protect DA neurons against PD in mice models. Additionally, their therapeutic effects have been
reproduced in an MPTP-induced monkey PD model that prevents α-synuclein oligomerization [172].

4. Conclusions and Future Prospects

In this review, we discussed the neuroprotective effects of lead compounds from natural products on
mitochondrial quality control and proteostasis in experimental PD models. Unlike synthetic drugs that
target only single molecules, some polyphenols, terpenes, and saponins have multiple and overlapped
targets in other neurodegenerative diseases, including Alzheimer’s disease as well as PD [173–175].
Natural compounds may serve as preventive supplements for age-related neurodegenerative diseases,
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and can be applied in combinatorial treatments to improve the quality of life of patients. Natural
compounds have been widely tested in α-synuclein- or neurotoxin-induced PD models. However,
studies testing natural compounds for therapeutic purposes may have a limitation in terms of the
differences of experimental design such as the quality of the extracts and the forms of dosage [176].
This could significantly affect the efficacy and toxicity of the natural compounds tested in each setting.
Thus, it is necessary to organize the design of tests of natural compounds in PD models. The main
limitation is the unclear therapeutic mechanism of natural compounds. These lead compounds can be
adopted to design synthetic derivatives, but intensive study is required for further drug development.

Although the bioavailability of the compounds from natural products is limited, they can be easily
obtained from herbs, fruits, and marine organisms, and their intake is relatively safe, particularly via
foods. Some extracts allow for the continuous absorption of multiple compounds at low doses over
a lifetime, potentially evoking hormesis signaling, which may extend lifespans. Thus, further study
is necessary.
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Abstract: Objective: to examine the extent of effect vitamin D in Multiple Sclerosis (MS) on pathology
and symptoms. Methods: A literature search was performed in November 2018 (CRD42018103615).
Eligibility criteria: randomised control trials in English from 2012 to 2018; a clinical diagnosis of MS;
interventions containing vitamin D supplementation (vitamin D3 or calcitriol) in disease activity
compared to a control/placebo; improvement in: serum 25(OH)D, relapse rates, disability status by
Expanded Disability Status Scale (EDSS) scores, cytokine profile, quality of life, mobility, T2 lesion
load and new T2 or T1 Gd enhancing lesions, safety and adverse effects. Risk of bias was evaluated.
Results: Ten studies were selected. The study size ranged from 40 to 94 people. All studies evaluated
the use of vitamin D supplementation (ranging from 10 to 98,000 IU), comparing to a placebo or low
dose vitamin D. The duration of the intervention ranged from 12 to 96 weeks. One trial found a
significant effect on EDSS score, three demonstrated a significant change in serum cytokines level, one
found benefits to current enhancing lesions and three studies evaluating the safety and tolerability
of vitamin D reported no serious adverse events. Disease measures improved to a greater extent
overall in those with lower baseline serum 25(OH)D levels. Conclusions: As shown in 3 out of
10 studies, improvement in disease measures may be more apparent in those with lower baseline
vitamin D levels.

Keywords: Vitamin D; Multiple Sclerosis; symptom

1. Introduction

There is increasing evidence suggesting that specific environmental factors, such as exposure to
infectious agents, smoking, poor diet and inadequate levels of vitamin D can influence the disease
course of multiple sclerosis (MS) [1]. Adequate vitamin D status is documented as associated with
reduced prevalence, activity and progression of disease in MS, and therefore high intake of vitamin
D may be a useful addition to standard treatment [2]. Numerous observational studies investigating
variations in sunlight exposure, latitude and diet have supported the correlation between a high serum
concentration of vitamin D and reduced severity of the disease course in established MS [3,4].

Epidemiologic and experimental studies investigating the effectiveness of vitamin D
supplementation in MS have shown that low serum vitamin D levels may exacerbate MS symptoms
and therefore are associated with higher relapse rates, new lesions, and greater degree of disability [5–9].
Although there has been much research performed into the role of vitamin D in MS risk and progression,
due to heterogeneity of study designs, there have been conflicting results. For example, baseline serum
25(OH)D levels often differ between studies. Reviews on the topic have thus far been inconclusive and
are mainly focused on the role of vitamin D and risk of developing MS, rather than the outcomes after
diagnosis [7]. The only two other systematic reviews to date on vitamin D for the clinical efficiency
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of MS did not use the full range of terms for vitamin D nor was bias assessed [10] and didn’t assess
cytokine outcomes nor looked at the effects of baseline Vitamin D levels on outcomes [11]. The aim
of this review is to assess the evidence from existing randomised controlled trials for the clinical
effectiveness of vitamin D supplementation compared to placebo supplementation in the disease and
symptom management of people with MS as measured by: improvement in: serum 25(OH)D, relapse
rates, disability status by Expanded Disability Status Scale (EDSS) scores, cytokine profile, quality of
life, mobility, T2 lesion load and new T2 or T1 Gd enhancing lesions, safety, and adverse effects.

2. Methods

The systematic review was registered in PROSPERO (CRD42018103615). A literature search was
performed in November 2018. Table 1 shows the search terms and number of hits for each database.
Reference lists were hand searched for additional papers. Twenty percent of abstracts and papers were
checked by a second reviewer.

Table 1. Key search databases and search terms.

Database Searched Search Terms Used
Number of

Results
Date of Search

PubMed

• “Multiple Sclerosis” or “MS”
• AND
• “vitamin D supplementation” OR “vitamin D” OR

“cholecalciferol” OR “ergocalciferol” OR “calcitrol”

215 01/11/2017

Web of Science • As above 197 04/11/2017

CINAHL • As above 19 12/11/2017

Science Direct • As above 354 12/11/2017

Total 785

Studies were included if they met each of the following criteria: A clinical diagnosis of MS; Direct
relevance of vitamin D supplementation on the management of MS compared to a low dose vitamin D
or a placebo supplement; Primary outcome measurements in one or more of: serum 25(OH)D, relapse
rates, disability status by EDSS scores, cytokine profile, quality of life, mobility, T2 lesion load and
new T2 or T1 Gd enhancing lesions, safety and adverse effects; Randomised control trial (RCT) with a
control and intervention group; Published from 2012 and in English; The published data available in
full text; Only human randomised controlled clinical trials.

The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines
were followed and the flow diagram is presented in Figure 1. Bias was assessed using the RoB 2.0 tool
at a study level. Data were extracted by one reviewer, and a selection of excluded abstracts and all full
papers, and included papers were confirmed by a second reviewer.
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Figure 1. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flow
diagram reporting the number of records identified, included and exclude through the different phases
of a systematic review.

3. Results

Out of 785 studies, ten RCTs were identified as eligible for this review after the application of the
inclusion and exclusion criteria. The information from each selected study was extracted, and detailed
characteristics are shown in Table 2.

3.1. Bias

All studies were considered to have a low risk of bias and therefore systematic error was unlikely
and there was no threat to validity.

3.2. General Characteristics

The studies reviewed in this report were all double-blind RCTs that focused on the role of vitamin
D supplementation in the management of people with MS. Country of origin is shown in Table 2.
Inclusion and exclusion criteria, in addition to other demographic information is shown in Table 3.

3.3. Participants

The studies size ranged from 40 to 94 people with MS. In these ten studies, there was a total of
627 adult participants (463 female and 164 male). Food intake of vitamin D and smoking status were
not reported in any of the RCTs.
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3.4. Study Objectives

Seven studies looked at the effect of vitamin D on immunological and inflammatory
measures [12–18]. Outcomes related to functional ability were assessed in two studies [19,20] and
relapse rate was assessed in four studies [12,19–21]. Disability and/or disease progression was assessed
in five studies [12,18–21] and safety and tolerability of vitamin D supplementation was sought in
four [12,13,20,21]. The studies by [16] and [18], by [15] and [19] and by [14] and [20] were based
on the same trial however measured different outcomes and as such were treated in this review as
separate studies.

3.5. Interventions

The intervention dose varied across studies. All studies evaluated the use of vitamin D
supplements of various doses (ranging from 10 to 98,000 IU), frequency (usually delivered weekly) and
formulation (vitamin D3 and calcitriol). Most studies (n = 9) reported concomitant immunomodulatory
therapy, often interferon-β as well as different requirements relating to vitamin D and calcium
supplementation that were used at baseline. The duration of the vitamin D interventions varied
between studies, ranging from 12 to 96 weeks. The included studies (n = 8) compared vitamin D
supplementation (321 participants) to placebo (264 participants) or versus low dose of vitamin D (n = 2;
42 participants). A variety of clinical and biochemical outcome measures were assessed at the baseline
and the end of the study for intervention and control groups.

3.6. Serum 25(OH)D Levels

Nine of ten studies in this review measured the serum 25(OH)D concentration for both
intervention and control group (low dose vitamin D) as an outcome parameter (Table 4). Across
studies, mean improvements in cytokine profile or EDSS were seen for those with low baseline plasma
Vitamin D levels (n = 3). Key findings and significance are shown in Table 5.

3.7. Immunologic Markers

Seven of the ten studies in the review used change in serum cytokines level as an outcome
parameter with mixed results found and large heterogeneity in markers assessed across studies. Best
support was found for Ashtari et al. [16] and Sotirchos et al. [13] in which significant benefits were
seen in the high dose Vitamin D groups on IL-10, and on IL-17+CD4+T and CD4+T cells these were
also the studies where baseline vitamin D levels were lower than normal.

Golan et al. [12] reported a significant increase in serum IL-17 concentration in people allocated to
the low-dose vitamin D from a mean of 4.01 to 9.14 pg/mL at 48 weeks (p = 0.037) and a heterogeneous
IL-17 response was observed in the high-dose vitamin D group. Therefore, there was a decrease
and thus a beneficial change in 40% of participants and increase and negative change in 45% of
participants after 3 months while 15% had IL-17 levels below the detection threshold at both time
points. Aivo et al. [14] detected a significant increase in LAP (TGF-β) levels in the vitamin D arm
after 48 weeks from a mean of 47 to 55 pg/mL (p = 0.02), while in those receiving placebo, this level
increased but these changes were not significant (p = 0.173). Moreover, no significant difference in
other cytokines concentration was reported in either group. Ashtari et al. [16] found that serum IL-10
concentration changed significantly in people receiving vitamin D for 12 weeks (p = 0.015) from a
median of 12.58 to 13.76 pg/mL. Rosjo et al. [15] indicated no significant differences from baseline
values for any of the inflammation markers between those receiving vitamin D or placebo after 96 weeks
of treatment. Additionally, people with MS on immunomodulatory treatment (mostly consisting of
IFN-b) were observed to have higher mean baseline levels of inflammation markers (IL-1Ra and
CXCL16) compared to those not on therapy. However, there was no clear correlation between vitamin
D supplementation and immunomodulatory treatment and its influence on the inflammation markers.
Toghianifar et al. [18] showed that the proportion of cells including: nTreg, iTreg, Breg, IL4+ Th cells,
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IL5, and LAP (TGFβ) was not affected by a high-dose vitamin D supplementation. No difference in
IL-17 levels between those who received vitamin D, and those who received placebo were observed at
12 weeks. Muris et al. [17] found no beneficial effects of a high-dose vitamin D supplementation on
the circulating regulatory immune cell compartment (the fraction of Treg as the proportion of CD4+
T cells, nTregs, IL10+ Th cells) in those with MS. Sotirchos et al. [13] detected a significant change in
the proportion of proinflammatory IL-17+CD4+T cells in the high-dose group (p = 0.016) from a mean
of 9.32% to 5.62%, while no difference was observed in the low-dose group (p = 0.53). Moreover, a
significant difference in IL-17+CD4+T cells in the high-dose group versus low-dose group was reported
(p = 0.039). Greater reduction in the proportion of IFN-γ+CD4+ T cells and IFN-γ+IL-17+CD4+ T cells
was noted in the high-dose group versus the low-dose group but did not reach statistical significance
(p = 0,12; p = 0.14). Also, a decreased proportion of effector memory CD4+T cell was noted after
high-dose vitamin D supplementation from a mean of 40.56% to 30.69% (p = 0.021). The proportion of
central memory and naive CD4+T cells increased significantly (p = 0.019; p = 0.043) in the high-dose
group from a mean of 50.07% to 60.96% and from 38.94% to 42.2%, respectively.

3.8. Functional Measures

Only one study assessed functional measures and although there were trends for improvements
in the Vitamin D groups, there were no statistically significant changes between the intervention and
placebo groups. Soilu-Hänninen et al. [20] demonstrated that vitamin D supplementation resulted in
fewer new T2 lesions (a mean of 0.5 compared to a mean of 1.1 in the placebo group). However, the
difference between vitamin D and placebo groups was not statistically significantly different (p = 0.286).
Participants assigned to vitamin D demonstrated lower total number of T1 Gd enhancing lesions
(0.6 to 0.1) while in the placebo group no change was reported and a higher decrease in T1 enhancing
lesion volume in the vitamin D group (from 57 mm3 to 3.1 mm3) compared with the placebo group
(from 62 mm3 to 29 mm3) but again the difference between the treatment groups was not statistically
significant (p = 0.004, p = 0.320, respectively). There were no statistically significant differences between
the treatment groups in timed 10 foot tandem walk (TTW10; p = 0.076) (change from a mean of 11.7 to
9.7 in the vitamin D group and from 9.6 to 11.2 in the placebo group) and T25FW (p = 0.932) at the
end of the study (change from a mean of 6.0 to 5.3 in the vitamin D group and from 4.7 to 5.1 in the
placebo group).

3.9. Relapse Rate

Four of ten studies in this review investigated the effect of supplementation with vitamin
D on relapse rates, with no significant differences between the vitamin D and control groups.
Kampman et al. [19] demonstrated that vitamin D supplementation resulted in an increase in
annualised relapse rate (ARR, calculated as the total number of relapses experienced divided by
the sum of participants and duration of follow-up) from 0.11 to 0.14, whereas in placebo group a
decrease from 0.15 to 0.8 was reported. The difference between vitamin D and placebo group after
96 weeks was not significant (p = 0.25). Shaygannejad et al. [21] documented that the relapse rate
decreased significantly after 48 weeks from a mean of 1.04 to 0.32 in people who received vitamin D
(p < 0.001) and from 1.04 to 0.40 in those who received placebo (p < 0.001). The study by Golan et al. [12]
found an increase in ARR in patients with MS following the treatment with high-dose per day from
0.28 to 0.51 and decrease in the low-dose from 0.38 to 0.34 at week 48, but this difference was not
statistically significant (p = 0.32). The study by Soilu-Hänninen et al. [20] found a decrease in ARR in
both treatment arms: in people who received vitamin D from a mean of 0.49 to 0.26 and from 0.51 to
0.28 in those who received placebo, yet with no significant difference between groups.
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3.10. Disability

Five of ten studies reported EDSS score as outcome parameter with only one showing a
benefit after supplementation with vitamin D. Kampman et al. [19] noted that EDSS score did
not differ significantly between the vitamin D and placebo group after 96 weeks (p = 0.97).
Shaygannejad et al. [21] found that EDSS score increased significantly (p < 0.01) in a placebo group
from a mean of 1.7 to 1.94, whereas it did not change in people receiving vitamin D and therefore there
was no significant difference in scores at the end of the trial between intervention and control groups
(p > 0.05). Also, Golan et al. [12] demonstrated that high-dose vitamin D supplementation was not
associated with reduced disability score with no significant change in EDSS score between two groups
(p = 0.26). In contrast, Toghianifar et al. [18] showed a significant difference in EDSS scores between
people allocated to vitamin D group (supplemented with 50,000 IU every five days) and placebo group
after 12 weeks (p = 0.033) in favour of the vitamin D group, and the baseline vitamin D levels in the
participants from this study was below the minimum recommendation. Soilu-Hänninen et al. [20]
found no significant change in EDSS score between two groups (p = 0.071).

3.11. Safety and Tolerability

Four of the ten studies in this review determined the effect of high-dose vitamin D
supplementation among people with MS in terms of safety and tolerability and none of the studies
reported significant differences between control/placebo and vitamin D groups nor were any of the
adverse events serious in either group. Shaygannejad et al. [21] showed that vitamin D treatment use
up to 0.5 μg/day of calcitriol appeared to be safe and well tolerated by those with MS. The adverse
events noted were mild in severity. The most frequently reported included constipation (n = 6 and
n = 4), dyspepsia (n = 6 and n = 2), fatigue (n = 4 and n = 5), and headache (n = 2 and n = 1) in
vitamin D and placebo groups, respectively. There were no significant differences in frequency of
events between people who received vitamin D and those who received placebo. Golan et al. [12]
indicated that a dose of 4370 IU/day over a 48-week period was safe in people with MS. There were no
instances of hypercalcemia and no reports on new adverse events that could be vitamin D supplement
related. Sotirchos et al. [13] found that a dose of 10,400 IU of cholecalciferol per day for 24 weeks
was safe and tolerable in people with MS, with no serious adverse events. Soilu-Hänninen et al. [20]
found no significant differences between the treatment arms in any of the other clinical chemistry
parameters studied. No dose adjustments were necessary. Lack of MxA response (MxA < 50 mg/L)
was detected in three people in both treatment arms at 12 months. Diarrhoea was a side effect in
(n = 5 and n = 2) and fever was noted (n = 2 and n = 5) in the vitamin D group and placebo group,
respectively. All other adverse events occurred in a similar number of participants in both groups.
There was one serious adverse event in the vitamin D group (erysipelas in the interferon injection site
treated with intravenous antibiotics in hospital) and two in the placebo group (elective hip surgery
and elbow fracture).

4. Discussion

This review found some evidence for benefits of vitamin D supplementation, specifically for those
with serum levels at the lower normal range in people with RRMS. Therefore, baseline serum vitamin
D levels may be a predictor of improvements in disease pathology from vitamin D supplementation,
cytokine profile and disability status, but possibly also relapse rate, quality of life, mobility, T2 lesions
load and new T2 and T1 Gd enhancing lesions. Five out of ten studies showed improvement in:
ARR(x2), EDSS(x2), IFN-gamma, IL-17A, IL-9, IL 10, 17+CD4+ T cells, CD161+CD4+ T cells, and
effector memory CD4+ T cells, the proportion of central memory CD4+ T cells and naive CD4+ T,
TTW10, T25FW, and MRI brain lesion markers, and these were shown in the intervention group
compared with the control/placebo group. Another similar review to date differed in that cytokine
outcomes were not assessed and the effects of baseline Vitamin D levels on outcome measures was not
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explored [11]. McLaughlin et al. [11] found that in higher dose vitamin D arms, there were actually
adverse changes in ARR and EDSS and therefore although supplementation may have beneficial
effects, there may be specific doses that should be considered. Jagannath et al. [22] looked at outcome
measures including fatigue and HRQOL yet found conflicting results in part due to the heterogeneity
of the study designs and different doses used. Zheng et al. [23] only looked at changes in ARR and
EDSS score, with no beneficial effect of vitamin D as an add-on therapy on either outcome. Whilst
further research is needed, this review highlights that all studies on the topic should include baseline
vitamin D as part of the assessment. There was also low risk of adverse effects and low risk of bias
for all studies and therefore the validity can be considered high. This review not only includes a
more extensive search strategy and evaluates bias and although some of the included studies between
reviews are similar, the current review is more up to date and encompasses a wider range of symptoms
and pathology in MS.

The present consensus on the use of vitamin D supplementation in the management of MS
is based on the hypothesis that the serum 25(OH)D is associated with prevalence and severity of
the disease course in established MS. Therefore, its measurements are undertaken as part of the
clinical management of MS in order to detect vitamin D insufficiency, correct it with supplementation
at recommended doses and achieve the beneficial immunological effects [4]. All but one study
assessed levels of serum 25(OH) and all reported a significant increase in 25(OH)D levels following
vitamin D supplementation. However, the increase in 25(OH)D levels did not appear to affect all
MS-related outcomes in the reviewed studies. If participants had 25(OH-D) levels at the lower end
of normal at baseline, a high dose vitamin D supplement intervention may contribute to bettering of
physiological mechanisms and resulting symptoms, yet if baseline levels are at the higher end of normal
(i.e., 50 nmol/L) then further benefits may not be experienced. In the study by Ashtari et al. [16] and
Sotirchos et al. [13] participants had levels towards the lower end of normal thereby possibly resulting
in the resulting significant benefit in IL-10 and a variety of mechanistic improvements, respectively.
Toghianifar et al. [18] found a resulting improvement in EDSS score which wasn’t seen in other studies
in this review, and again the participants in this study had baseline 25(OH-D) levels at the lower end of
normal. All other studies had participants with higher baseline levels and also contained more varied
results, with fewer significant changes between groups.

When looking at the immunological outcomes, the reviewed studies reported mixed effects of
vitamin D supplementation. Vitamin D plays an important role in immune system function by reducing
the production of proinflammatory cytokines and inducing the production of anti-inflammatory
cytokines [24]. Only two selected studies detected a significant increase in levels of anti-inflammatory
cytokines in the vitamin D group and therefore findings of studies evaluating the effect of the vitamin
D supplementation on the reduction of proinflammatory cytokines are conflicting. The heterogeneity
of intervention effects on immunologic activity reported in reviewed trials may be explained by
considering possible confounding parameters including dosage and duration of administering
vitamin D supplementation and supports previous findings demonstrating that a more pronounced
immunologic impact of vitamin D supplementation was reported in vitamin D doses up to 40,000
IU per day [24]. Moreover, the fact that almost all participants in above trials were treated by
immunomodulatory treatment, which mostly comprised interferon-beta (IFN-β) therapy (Table 6),
may have altered the cytokine responses to vitamin D and/ or made it more difficult to determine the
isolated effect of vitamin D supplementation and therefore beneficial effects of an increase in 25(OH)D
on the outcome markers examined may be undetectable due to the strong immunomodulatory
effect of IFN-β [25]. It has been suggested that type of therapy a person receives may influence
the observed impact of vitamin D supplementation [26]. Notwithstanding, some studies demonstrated
a synergistic immunomodulatory effect of IFN-β and vitamin D that induce favourable alterations
in the inflammatory profile in people with MS [12,13]. Also, when considering the study conducted
by Golan et al. [12] and Sotirchos et al. [13] including low-dose of vitamin D as a comparator may
reduce the ability to notice minor differences compared to the use of a placebo. Although results
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of studies evaluating changes in immunological profiles in people with MS are not consistent, they
suggest that supplementation of vitamin D promotes the immune regulatory cytokines and reduces
proinflammatory immune parameters. Only two studies assessed changes in functional measures, and
although the relationship between vitamin D and improved outcomes in participants with MS was
found by Soilu-Hänninen et al. [20] T1 enhancing lesions and trends in MRI burden of disease (BOD)
and EDSS, there is currently not enough clinical data to suggest the effectiveness of the treatment.

The correlation between 25(OH)D and reduced relapse rates have been found in several
prospective cohort studies. The study by Laursen et al. [27] reported that the increase in serum
25(OH)D level was associated with decreases in ARR in those with RRMS. Those results were in
line with a previously conducted cohort study by Simpson et al. [28] investigating a role of 25(OH)D
levels in modulating MS clinical course in 145 participants with RRMS that suggests a benefit of
serum 25(OH)D level on relapse rates at levels approximately 100 nmol/L. However, three reviewed
studies evaluating vitamin D supplementation in management of MS have demonstrated no effect of
25(OH)D on relapse rate. Although mean serum 25(OH)D level more than doubled in the high-dose
intervention groups in the study by Kampman et al. [19], Soilu-Hänninen et al. [20] and Golan et al. [12],
they found no significant difference in ARR between groups at the end of the study period (96 and
48 weeks, respectively). Also, Shaygannejad et al. [21] failed to detect significant difference in relapse
rate between the intervention and control groups at 48 weeks although the relapse rate decreased
significantly in the vitamin D group. One possible explanation for the discrepancies between findings
of above trials and previous studies may be related to eligibility criteria for included participants,
vitamin D dosage and form, and duration of the intervention. Other explanations for the results in these
RCTs may be related to the low ARR at baseline which could contribute to the absence of significant
effects. In addition, the study conducted by Kampman et al. [19] enabled participants to continue the
use of vitamin D supplements they used prior the study, which contributed to comparatively high
25(OH)D concentration in the placebo group and a difference between groups could not be detected.

High levels of 25(OH)D (>50 nmol/L) have also been shown to be associated with reduced
disability measured by EDSS in MS [29]. Based on the evidence contained in this review, the
effect of vitamin D supplementation on reducing disability remains unclear. Kampman et al. [19],
Soilu-Hänninen et al. [20], Shaygannejad et al. [21] and Golan et al. [12] reported no significant
change in EDSS score between the intervention and control groups. Conversely, a trial conducted
by Toghianifar et al. [18] demonstrated a significant positive difference in EDSS scores between
participants allocated to vitamin D vs placebo groups. Although the inclusion criteria were limited to
participants with EDSS < 4 that indicate absence of observations in the higher EDSS range, a dose of
50,000 IU vitamin D every five days after 12 weeks was associated with less neurological disability.

Additionally, four studies looked at the safety and tolerability of high dosing regimens of vitamin
D supplementation through the duration of the intervention. Through the studies observed it could be
clearly recognised that vitamin D treatments were relatively safe, well-tolerated, and no concerning
adverse events such as hypercalcemia and hypercalciuria triggered by high doses of vitamin D were
reported. This is consistent with findings from previous studies that demonstrated safety of high-dose
vitamin D below the daily limit of 10,000 IU in MS [30]. All other adverse events occurred in a
similar number of participants in both groups for all studies. There was one serious adverse event
in the vitamin D group (erysipelas in the interferon injection site treated with intravenous antibiotics
in hospital) and two in the placebo group (elective hip surgery and elbow fracture). What can be
concluded from this systematic review is that it seems participants in all studies adhered to the vitamin
D interventions due to a resulting increase in serum levels in all studies (n = 9), and therefore the safety
and tolerability of supplementation at high doses can be considered a reliable outcome.
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5. Limitations

As the reviewed studies took place in different geographic locations, sun exposure was different
amongst groups and makes the comparison less reliable. Of note, all studies recruited participants
with RRMS in order to ensure the homogeneity of the treatment groups in terms of the disease course
and mechanisms. However, it has been demonstrated that immunomodulatory strategies employed
for RRMS are not considered effective when applied in PPMS, suggesting cause for caution when
generalising results to the greater MS population. Disease duration before the commencement of
treatment varied between 4 months to 27 years and the time at which vitamin D intervention is
implemented may affect the effectiveness of the treatment. Some studies assessed clinical endpoints
such as relapse rates, disability scores, and physical changes, while some assessed only biomarker
outcomes. As a result, heterogeneity of outcomes may have affected end-line comparisons and made
doing a meta-analysis unfeasible.

6. Conclusions

Vitamin D supplementation may be a promising treatment and represents a reliable background
for further exploration of potential benefit for MS regarding clinical improvements. A high dose
vitamin D supplement intervention may contribute to bettering of physiological mechanisms if baseline
plasma levels are at the lower end of normal. Further research addressing the matters discussed above
is required before a causal association between vitamin D supplementation and disease activity in
people with MS can be established.

Author Contributions: Methodology, M.B. and S.C.; validation, S.C. and H.D. formal analysis, M.B.; investigation,
M.B.; resources, M.B.; writing—original draft preparation, M.B.; writing—review and editing, S.C. and H.D.;
supervision, S.C.

Funding: H.D. is funded by the Elizabeth Casson Trust and the Oxford Health Biomedical Research Centre.

Conflicts of Interest: There was no conflict of interest.

References

1. Mandia, D.; Ferraro, O.E.; Nosari, G.; Montomoli, C.; Zardini, E.; Bergamaschi, R. Environmental factors
and multiple sclerosis severity: A descriptive study. Int. J. Environ. Res. Public Health 2014, 11, 6417–6432.
[CrossRef] [PubMed]

2. McDowell, T.Y.; Amr, S.; Culpepper, W.J.; Langenberg, P.; Royal, W.; Bever, C.; Bradham, D.D. Sun
exposure, vitamin D intake and progression to disability among veterans with progressive multiple sclerosis.
Neuroepidemiology 2011, 37, 52–57. [CrossRef] [PubMed]

3. Pierrot-Deseilligny, C.; Rivaud-Pechoux, S.; Clerson, P.; de Paz, R.; Souberbielle, J.C. Relationship
between 25-OH-D serum level and relapse rate in multiple sclerosis patients before and after vitamin
D supplementation. Adv. Neurol. Disord. 2012, 5, 187–198. [CrossRef] [PubMed]

4. Bagur, M.J.; Murcia, M.A.; Jimenez-Monreal, A.M.; Tur, J.A.; Bibiloni, M.M.; Alonso, G.L.; Martinez-Tome, M.
Influence of diet in multiple sclerosis: A systematic review. Adv. Nutr. 2017, 8, 463–472. [CrossRef] [PubMed]

5. Runia, T.F.; Hop, W.C.; de Rijke, Y.B.; Buljevac, D.; Hintzen, R.Q. Lower serum vitamin D levels are associated
with a higher relapse risk in multiple sclerosis. Neurology 2012, 79, 261–266. [CrossRef]

6. Wacker, M.; Holick, M.F. Sunlight and vitamin D: A global perspective for health. Dermatoendocrinol 2013, 5,
51–108. [CrossRef]

7. Duan, S.; Lv, Z.; Fan, X.; Wang, L.; Han, F.; Wang, H.; Bi, S. Vitamin D status and the risk of multiple sclerosis:
A systematic review and meta-analysis. Neurosci. Lett. 2014, 570, 108–113. [CrossRef]

8. Harandi, A.A.; Harandi, A.A.; Pakdaman, H.; Sahraian, M.A. Vitamin D and multiple sclerosis. Iran. J. Neurol.
2014, 13, 1–6.

9. Fitzgerald, K.C.; Munger, K.L.; Kochert, K.; Arnason, B.G.; Comi, G.; Cook, S.; Goodin, D.S.; Filippi, M.;
Hartung, H.P.; Jeffery, D.R.; et al. Association of vitamin D levels with multiple sclerosis activity and
progression in patients receiving interferon beta-1b. JAMA Neurol. 2015, 72, 1458–1465. [CrossRef]

10. Pozuelo-Moyano, B.; Benito-Leon, J. Diet and multiple sclerosis. Rev. Neurol. 2014, 58, 455–464.

138



Int. J. Mol. Sci. 2019, 20, 1301

11. McLaughlin, L.; Clarke, L.; Khalilidehkordi, E.; Butzkueven, H.; Taylor, B.; Broadley, S.A. Vitamin D for the
treatment of multiple sclerosis: A meta-analysis. J. Neurol. 2018, 265, 2893–2905. [CrossRef]

12. Golan, D.; Halhal, B.; Glass-Marmor, L.; Staun-Ram, E.; Rozenberg, O.; Lavi, I.; Dishon, S.; Barak, M.;
Ish-Shalom, S.; Miller, A. Vitamin D supplementation for patients with multiple sclerosis treated
with interferon-beta: A randomized controlled trial assessing the effect on flu-like symptoms and
immunomodulatory properties. BMC Neurol. 2013, 13, 60. [CrossRef]

13. Sotirchos, E.S.; Bhargava, P.; Eckstein, C.; Van Haren, K.; Baynes, M.; Ntranos, A.; Gocke, A.; Steinman, L.;
Mowry, E.M.; Calabresi, P.A. Safety and immunologic effects of high- vs low-dose cholecalciferol in multiple
sclerosis. Neurology 2016, 86, 382–390. [CrossRef]

14. Aivo, J.; Hanninen, A.; Ilonen, J.; Soilu-Hanninen, M. Vitamin D3 administration to ms patients leads to
increased serum levels of latency activated peptide (lap) of TGF-β. J. Neuroimmunol. 2015, 280, 12–15.
[CrossRef]

15. Rosjo, E.; Steffensen, L.H.; Jorgensen, L.; Lindstrom, J.C.; Saltyte Benth, J.; Michelsen, A.E.; Aukrust, P.;
Ueland, T.; Kampman, M.T.; Torkildsen, O.; et al. Vitamin D supplementation and systemic inflammation in
relapsing-remitting multiple sclerosis. J. Neurol. 2015, 262, 2713–2721. [CrossRef]

16. Ashtari, F.; Toghianifar, N.; Zarkesh-Esfahani, S.H.; Mansourian, M. Short-term effect of high-dose
vitamin D on the level of interleukin 10 in patients with multiple sclerosis: A randomized, double-blind,
placebo-controlled clinical trial. Neuroimmunomodulation 2015, 22, 400–404. [CrossRef]

17. Muris, A.H.; Smolders, J.; Rolf, L.; Thewissen, M.; Hupperts, R.; Damoiseaux, J.; SOLARIUM Study Group.
Immune regulatory effects of high dose vitamin D3 supplementation in a randomized controlled trial in
relapsing remitting multiple sclerosis patients receiving ifnbeta; the solarium study. J. Neuroimmunol. 2016,
300, 47–56. [CrossRef]

18. Toghianifar, N.; Ashtari, F.; Zarkesh-Esfahani, S.H.; Mansourian, M. Effect of high dose vitamin D intake
on interleukin-17 levels in multiple sclerosis: A randomized, double-blind, placebo-controlled clinical trial.
J. Neuroimmunol. 2015, 285, 125–128. [CrossRef]

19. Kampman, M.T.; Steffensen, L.H.; Mellgren, S.I.; Jorgensen, L. Effect of vitamin D3 supplementation on
relapses, disease progression, and measures of function in persons with multiple sclerosis: Exploratory
outcomes from a double-blind randomised controlled trial. Mult. Scler. 2012, 18, 1144–1151. [CrossRef]

20. Soilu-Hanninen, M.; Aivo, J.; Lindstrom, B.M.; Elovaara, I.; Sumelahti, M.L.; Farkkila, M.; Tienari, P.; Atula, S.;
Sarasoja, T.; Herrala, L.; et al. A randomised, double blind, placebo controlled trial with vitamin D3 as an
add on treatment to interferon beta-1b in patients with multiple sclerosis. J. Neurol. Neurosurg. Psychiatry
2012, 83, 565–571. [CrossRef]

21. Shaygannejad, V.; Janghorbani, M.; Ashtari, F.; Dehghan, H. Effects of adjunct low-dose vitamin D on
relapsing-remitting multiple sclerosis progression: Preliminary findings of a randomized placebo-controlled
trial. Mult. Scler. Int. 2012, 2012, 452541. [CrossRef] [PubMed]

22. Jagannath, V.A.; Filippini, G.; Di Pietrantonj, C.; Asokan, G.V.; Robak, E.W.; Whamond, L.; Robinson, S.A.
Vitamin D for the management of multiple sclerosis. Cochrane Database Syst. Rev. 2018, 9, CD008422.
[CrossRef] [PubMed]

23. Zheng, C.; He, L.; Liu, L.; Zhu, J.; Jin, T. The efficacy of vitamin D in multiple sclerosis: A meta-analysis.
Mult. Scler. Relat. Disord. 2018, 23, 56–61. [CrossRef] [PubMed]

24. Burton, J.M.; Kimball, S.; Vieth, R.; Bar-Or, A.; Dosch, H.M.; Cheung, R.; Gagne, D.; D’Souza, C.; Ursell, M.;
O’Connor, P. A phase i/ii dose-escalation trial of vitamin D3 and calcium in multiple sclerosis. Neurology
2010, 74, 1852–1859. [CrossRef] [PubMed]

25. Loken-Amsrud, K.I.; Holmoy, T.; Bakke, S.J.; Beiske, A.G.; Bjerve, K.S.; Bjornara, B.T.; Hovdal, H.; Lilleas, F.;
Midgard, R.; Pedersen, T.; et al. Vitamin D and disease activity in multiple sclerosis before and during
interferon-beta treatment. Neurology 2012, 79, 267–273. [CrossRef] [PubMed]

26. Mosayebi, G.; Ghazavi, A.; Ghasami, K.; Jand, Y.; Kokhaei, P. Therapeutic effect of vitamin D3 in multiple
sclerosis patients. Immunol. Investig. 2011, 40, 627–639. [CrossRef] [PubMed]

27. Laursen, J.H.; Sondergaard, H.B.; Sorensen, P.S.; Sellebjerg, F.; Oturai, A.B. Vitamin D supplementation
reduces relapse rate in relapsing-remitting multiple sclerosis patients treated with natalizumab. Mult. Scler.
Relat. Disord. 2016, 10, 169–173. [CrossRef]

139



Int. J. Mol. Sci. 2019, 20, 1301

28. Simpson, S., Jr.; Taylor, B.; Blizzard, L.; Ponsonby, A.L.; Pittas, F.; Tremlett, H.; Dwyer, T.; Gies, P.; van der
Mei, I. Higher 25-hydroxyvitamin D is associated with lower relapse risk in multiple sclerosis. Ann. Neurol.
2010, 68, 193–203.

29. Thouvenot, E.; Orsini, M.; Daures, J.P.; Camu, W. Vitamin D is associated with degree of disability in patients
with fully ambulatory relapsing-remitting multiple sclerosis. Eur. J. Neurol. 2015, 22, 564–569. [CrossRef]

30. Smolders, J.; Peelen, E.; Thewissen, M.; Cohen Tervaert, J.W.; Menheere, P.; Hupperts, R.; Damoiseaux, J.
Safety and t cell modulating effects of high dose vitamin D3 supplementation in multiple sclerosis. PLoS ONE
2010, 5, e15235. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

140



 International Journal of 

Molecular Sciences

Review

Natural Products in Neurodegenerative Diseases:
A Great Promise but an Ethical Challenge

Marco Di Paolo, Luigi Papi, Federica Gori and Emanuela Turillazzi *

Section of Legal Medicine, Department of Surgical Pathology, Medical, Molecular and Critical Area, University of
Pisa, 56124 Pisa, Italy; marco.dipaolo@unipi.it (M.D.P.); luigi.papi@unipi.it (L.P.); gori.federica@virgilio.it (F.G.)
* Correspondence: emanuela_turillazzi@inwind.it; Tel.: +39-050-2218520; Fax: +39-050-2218513

Received: 31 August 2019; Accepted: 16 October 2019; Published: 18 October 2019

Abstract: Neurodegenerative diseases (NDs) represent one of the most important public health
problems and concerns, as they are a growing cause of mortality and morbidity worldwide, particularly
in the elderly. Despite remarkable breakthroughs in our understanding of NDs, there has been little
success in developing effective therapies. The use of natural products may offer great potential
opportunities in the prevention and therapy of NDs; however, many clinical concerns have arisen
regarding their use, mainly focusing on the lack of scientific support or evidence for their efficacy
and patient safety. These clinical uncertainties raise critical questions from a bioethical and legal
point of view, as considerations relating to patient decisional autonomy, patient safety, and beneficial
or non-beneficial care may need to be addressed. This paper does not intend to advocate for or
against the use of natural products, but to analyze the ethical framework of their use, with particular
attention paid to the principles of biomedical ethics. In conclusion, the notable message that emerges
is that natural products may represent a great promise for the treatment of many NDs, even if many
unknown issues regarding the efficacy and safety of many natural products still remain.

Keywords: neurodegenerative diseases; natural products; ethics; patients’ autonomy; beneficence;
nonmaleficence; medical liability

1. Introduction

Neurodegenerative diseases (NDs) include a number of chronic progressive disorders of the central
nervous system that are caused by the degradation and subsequent loss of neurons. NDs represent one
of the most important public health problems and concerns, as they are a growing cause of mortality
and morbidity worldwide, particularly in the elderly. The aging of the population has contributed to
the increase of NDs [1,2], and age-related diseases such as NDs are becoming extremely important, due
to their irreversibility, lack of effective treatment, and accompanied social and economic burdens [3].

Traditionally, classifications of NDs included Parkinson’s disease, which is well characterized
by a loss of dopaminergic nigrostriatal neurons; Huntington’s disease, in which the loss of spiny,
medium-sized striatal neurons occurs; and Alzheimer’s disease (AD), due to diffuse cerebral atrophy.
Other disorders such as primary dystonia or essential tremor were also referred to as NDs [4].
NDs recognize a broad, often overlapping, spectrum of symptoms, varying from memory and cognitive
deficits to the impairment of a person’s ability to move, speak, and breathe; they also share some
clinical characteristics such as a relentless progression over years, sometimes even decades [5].

Beyond the known differences in the pathogenic mechanisms of individual diseases,
neurodegeneration, understood as the chain of events leading to gradual loss of neurons’ functional
properties until cell death, represents the key point of this group of diseases [4], and attracts research
efforts in trying to understand precise pathogenic mechanisms and achieve valid therapies.

In fact, despite remarkable breakthroughs in our understanding of NDs, there has been little
success in developing effective therapies [6]. The therapies currently available seem to be inadequate
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for NDs, as they only act to alleviate symptoms but cannot stop the progress of the disease. The use of
natural products (NPs) is growing, probably due to several factors [7,8] (Figure 1).

Figure 1. Factors responsible for increased use of NPs.

They may offer great potential opportunities in the prevention and therapy of NDs [9], and
scientists are increasingly exploring options with herbal drugs and natural products [10]. As for many
traditional drugs, many clinical concerns have arisen regarding the use of NPs, mainly focusing on the
lack of scientific support or evidence for their efficacy and patient safety. These clinical uncertainties
raise critical questions from a bioethical and legal point of view, as considerations relating to patient
decisional autonomy, patient safety, and beneficial or non-beneficial care may need to be addressed,
meaning that many intriguing points may arise regarding the use of NPs [11,12].

This paper does not intend to advocate for or against the use of natural products but to analyze
the ethical framework of their use, with particular attention paid to the principles of biomedical ethics
as described by Beauchamp and Childress [13], then addressing the strict intertwining of bioethics,
safety, and responsibility related to the use of natural products.

2. Natural Products in Neurodegeneration

Despite specific clinical and etiopathogenic differences, NDs show some common features such
as abnormal protein deposition, abnormal cellular transport, mitochondrial deficits, inflammation,
intracellular Ca2+overload, uncontrolled generation of ROS, and excitotoxicity, thus suggesting the
existence of converging pathways of neurodegeneration and reinforcing the importance of these
pathways as common targets for intervention strategies [14]. Furthermore, reactive astroglia and/or
microglia have been implicated in the pathogenesis of all major neurodegenerative disorders [15].

Over the years, target-based therapies such as neurotransmitter modulators, direct receptor
agonists/antagonists, second messenger modulators, stem cell-based therapies, hormone replacement
therapy, and neurotrophic factors, as well as regulators of mRNA synthesis and their translation into
disease-causing mutant proteins, have been introduced and implemented [14].

However, there are currently no therapeutic strategies capable of either preventing or reducing
the progression of NDs; many of the approved drug regimens for NDs help to treat the symptoms
but do not cure the disease itself. As many of the traditional symptomatic therapies may lose their
effectiveness over time, produce disruptive symptoms of their own, and show severe side effects [16],
there is an urgent need to develop more effective and safer therapies that can be employed over a long
duration of NDs.
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Several natural agents have been proposed to complete and/or assist the traditional
pharmacological agents in the treatment of neurodegenerative disorders, and the general idea of this is
provided, among others, by Srivastava and Yadav [17]. Their use in NDs is widely reported in the
literature [18–21], as these products show several different neuroprotective activities. Mitochondrial
dysfunction, apoptosis, excitotoxicity, inflammation, oxidative stress, and protein misfolding are
among the main neuroprotective targets of natural products [21–25].

Animal-based products such as omega-3 fatty acids inhibit cellular toxicity and show
anti-inflammatory effects in AD [26]. Plant derived products like Lunasin, Polyphenols, Alkaloids,
and Tannins are potential therapeutic candidates for AD [25]. Resveratrol and flavonoids seem to
be dietary components with specific neuroprotective action and positive effects on human cognitive
decline [27,28].

It is beyond the scope of this paper to analyze the pharmacological and pharmacodynamic profiles
of the various natural products proposed for the treatment of NDs. However, some general concepts
are necessary because, in addition to having important clinical repercussions, they reflect heavily on the
bioethical—and even possibly legal—implications of the administration of natural products in NDs.

It can be said that natural products may be very promising due to their anti-neurodegenerative
action, with the potential to treat a large number of patients worldwide.

A general belief that NPs are safe exists: Many patients take NPs, presumably based on the
assumption that they are effective, safe, and less toxic than traditional drugs [29]. Very often, patients
assess NPs as safer than biomedicine on the basis of being “natural”. A factor promoting the
consumption of herbal products may be the preconception that botanicals are natural and “natural is
good” and consequently safe.

However, as drugs, they either may have adverse effects or may be not effective [30]. Because
natural products may derive from diverse biological sources, their conversion into therapies is not
trivial. Challenges may include concerns regarding their stability and neuroavailability [22], difficulty
in adequately identifying and quantifying the active principle, and, finally, the difficulty of organizing
large clinical trials to test these complex products.

Product characterization may be a key problem for NPs, as for many of them, the specific
bioactive components have not been identified or are not fully characterized [21]. Herbal products
contain complex active components or phytochemicals such as flavonoids, alkaloids, and isoprenoids.
Therefore, it is frequently difficult to determine which component of the herb has the most biological
activity [31]. A further complication is the fact that several natural compounds have limited stability
and are easily degradable and may be metabolized to inactive products [22,32,33]. Concerns regarding
compound solubility, restricted passage through the blood–brain barrier, and availability exist [22,33,34].
Furthermore, the evidence for the potential protective effects of selected herbs is generally based on
experiments demonstrating a biological activity in a relevant in vitro bioassay or experiments using
animal models [35]. However, in order to further widen their acceptance and use, clinical trials should
be encouraged [36–38], since for many products, a translation to clinical trials may offer challenges that
need to be addressed [39].

Firstly, in clinical trials, single compounds are more frequently investigated, while the investigation
of plant extracts containing a variety of secondary metabolites is more common in studies prior to
clinical studies. The combination of the various active principles in extracts can lead to additional
or synergistic effects, giving better antioxidant/disease-modifying activity [39]. Moreover, natural
antioxidants (i.e., from natural products or plant extracts) could also share this multi-target drug
profile, and the combination of single compounds or extracts also needs to be further investigated.

Concerns regarding the purity and potency of herbal products exist. Product quality is influenced
by many factors, including which portion of the plant is used (i.e., the root, stem, leaves, flowers), the
time of harvest (i.e., young versus old plants), the handling of the product, and the proper identification
of the plant. Furthermore, labelling may be inaccurate [39]. Of course, the concerns regarding the
quality of herbal products cannot be generalized, and it is beyond question that high-quality products
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also exist in the legal market and that many manufacturers are beginning to significantly improve their
quality standards. Nevertheless, the quality of herbal products still varies from one product to another,
and many companies still sell low-quality products [40]. The focus on the quality of the products on
the market is closely linked to the regulatory framework for such preparations [41], since a product
marketed without any medical, pharmaceutical, or other regulation is bound to be very different from
one which is regulated, for example, in the context of a licensing or registration scheme.

Conclusively, natural products have recently gained greater attention as alternative or integrative
therapeutic agents against AD and other NDs [42]. However, critics have raised concerns that the
popularity of natural products is growing without scientific support or evidence of their efficacy and
safety [11].

These uncertainties justify both paying a great deal of attention to these products, and the careful
monitoring of their use by clinicians. At the same time, the use of NPs often requires clinicians to make
decisions under conditions of uncertainty, thus involving questions about which ethical principles
clinical decision-making should rely on, what kind of information should be provided to patients, and
what obligations arise on the part of physicians (Figure 2).

Figure 2. Main ethical topics of Natural Products (NPs) use in NDs.

3. Natural Products: On the Cutting Edge of Ethics?

3.1. Patient Autonomy

Autonomy is a fundamental bioethical principle requiring that a person has the capacity and
opportunity to act autonomously; that is, to freely and voluntarily make choices. In a health-care setting,
when a patient exercises her/his autonomy, she/he decides which of the options for dealing with her/his
health-care problems will be best, given her/his values, concerns, and goals. A patient who makes
autonomous choices is able to opt for what she/he considers will be best, all things considered [43].

It is increasingly clear that several gaps may exist regarding the use of natural products that may
lead to a failure to provide adequate information regarding natural products and leave patients in
the dark. The goal of the informed consent process is to provide sufficient information to a patient so
that she/he can make the voluntary decision whether or not to take a natural product as an alternative
or in combination with other types of drug treatment. Obtaining consent involves informing the
subject about the potential risks and/or benefits of the proposed product and the alternative treatments
available, if any. A description of any foreseeable risks or discomforts to the subject, an estimate of their
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likelihood, a description of any benefits that may reasonably be expected from the natural product,
and, finally, the disclosure of any appropriate alternative procedures or courses of treatment that might
be advantageous to the patient, should be the milestones of the informative process.

Unfortunately, several disturbing points about the use of natural products can compromise
patient autonomy.

First of all, there is a lack or scarcity of basic information regarding the safety and effectiveness of
many natural products used in NDs. In their analysis of the risks of complementary and alternative
medicine, White et al. [44] clearly highlighted that natural products, such as plant extracts, may
be pharmacologically complex, and so have multiple physiological effects which may represent a
beneficial synergy or harmful interaction, depending on the specific context. Natural products may
have pharmacological effects, just as with synthetic pharmaceuticals [45]; however, they are generally
perceived as safe due to being natural, and patients themselves are less likely to report harmful
incidents that may be associated with natural products than with conventional drugs [46]. Furthermore,
in many cases of natural products, the associated risks are really unknown, and there is a limitation of
currently available information concerning their safety and efficacy [47].

The informative process regarding the use of natural products, both as primary treatment and as
adjunct treatment, may be complex and multifaceted as the evidence regarding natural products safety
and efficacy is still not consolidated, even if it is growing, and many disturbing points (insufficient
detailed knowledge of natural products pharmacology and drug interactions) may represent great
challenges in obtaining real, informed consent regarding the use of natural products themselves, since
they are not embedded in well-understood scientific paradigms. Taking these concerns to extremes,
some authors even went as far as to state that it is unethical for medical professionals to offer or endorse
“alternative medicine” treatments for which there is no known causal mechanism [48].

As the ethical concept of treating patients as people with respect and with the understanding of the
individual’s right to self-determination (autonomy) is fundamental [49,50], removing any ambiguity
from the informative process is, at the moment, the only ethically correct answer. When uncertainties
regarding efficacy and safety exist, as for many natural products, honest information should include
telling patients about the degree of uncertainty associated with the efficacy and safety of the treatment,
as well as the availability and risk–benefit ratio of other treatment options [51], so that patients could
become comfortable with uncertainties and accept or refuse treatment with natural products. As such,
the use of natural products in NDs could even result in a net gain in patient autonomy, as it provides
patients with different therapeutic options with respect to traditional drug therapies. In other words,
despite the existing gaps of knowledge on the efficacy and safety of NPs, patients affected by NDs
should be able to freely choose to undergo treatments with NPs, with the hope of improving their
quality of life or lengthening survival.

The final thought is that also in treatments through natural products does the culture of respect of
patient autonomy, preference, and choice provide the underpinning needed to establish an effective
physician–patient relationship, in which there may also be space for a conscious adherence to therapies
which, although not yet rigorously validated, may nevertheless represent for the patient a beneficial
alternative or supplement to traditional treatments—unfortunately, of poor effectiveness.

This paves the way for further reflection concerning the accurate assessment of patients’ cognitive
ability to give informed consent. A proper informative process requires that the patients “understand”
the information given by the physician and appreciate the consequences of their decision. In patients
affected by NDs, it may be difficult to evaluate whether the patient is able to understand the information
presented and consent to or refuse the proposed treatment [52]; in other words, the assessment of the
decision-making capacity, defined as the ability to understand and reason through the decision-making
process, may be challenging in ND patients. This may represent a problem of great magnitude if we
only consider that the numbers of older adults with cognitive impairment due to NDs is estimated to be
high and rapidly increasing [53]. Case by case, the physician has the legal and ethical duty to explore
the real existence of incompetence and if—and to what extent—it may affect the capacity for decision

145



Int. J. Mol. Sci. 2019, 20, 5170

making for consent to treatment. Legal standards for decision-making capacity may be different
across national jurisdictions; however, they generally include the capacity to understand the relevant
information regarding a proposed treatment, its consequences, and alternatives [54,55]. A personalized,
patient-targeted approach, grounded on the individual patient’s characteristics and clinical situation,
should guide physicians while assessing the patient’s level of decisional capacity [53–55]. If the
physician believes that a patient is incompetent to make a treatment decision, advance directives or
legal proxies must be considered according to the existing national regulatory framework.

3.2. Beneficence/Nonmaleficence/Justice

The ethical concepts of beneficence, nonmaleficence, and justice warrant a shared discussion
concerning the use of natural products, as they appear to be strictly interconnected.

Beneficence and the twin concept of nonmaleficence demand that patients should not be harmed
by a treatment, both entreating the physician to avoid the causation of harm, and to provide benefits as
well as balance benefits, burdens, and risks. The justification for the use of natural products seems to
be that providing ND patients with these products provides them with benefits and could improve
their quality of life, and even prolong their lives.

The central ethical challenge in the use of NPs is thus to determine when evidence has reached
a sufficient level of certainty to warrant clinical introduction. In considering the available evidence,
relevant factors include the scope of estimated benefit, the existence of alternative treatments, the nature
and scope of potential harms, and the overall quality of evidence. When only limited evidence supports
the use of natural products, the appropriate support of clinician (and patient) choice remains an ethical
concern. Rarely does a single response exist. The clinically (and, of consequence, ethically) justified
use of any natural product must be individualized to the patient’s circumstances, including the stage
of the disease, the severity of symptoms affecting the quality of life, and the existence/absence of
valid therapeutic alternatives. Given the evidence gaps that still exist for many NPs, clinicians should
consider what uncertainties they (and patients) are most comfortable with.

In the use of NPs, the physician’s ethical obligation of beneficence/nonmaleficence (an obligation
to maximize benefit and minimize harm) does not differ from standard clinical practice, where every
drug is always potentially risky. When the risk of harm is disproportional to the potential benefit,
providing the patient with this product may be questionable in the light of the ethical principles of
beneficence/nonmaleficence.

Justice demands that all patients be treated fairly since “justice [is] fair, equitable, and appropriate
treatment in light of what is due or owed to persons. Injustice involves a wrongful act or omission that
denies people resources or protections to which they have a right” [13].

As mentioned above, this may be an option for ND patients who set their hopes on NPs as an
alternative or supplement to the traditional synthetic drugs; however, this principle is only valid if and
when patients do indeed get access to NPs.

Data from the literature recall the fact that the use of natural products within complementary
and alternative medicine has been shown to be a popular choice of therapy among patients [29,56–59].
It has been reported that 80% of the world’s population uses natural products, rising to 95% of the
population in developing countries [56]. The use of herbal medicine was commonly reported across
the European Union according to the CAMbrella consortium [57]. Patients with chronic diseases that
are mostly resistant to conventional therapies tend to choose alternative and integrative therapies [58].

However, differences in NP utilization emerge for reasons that have to be discussed, as they seem
to be unacceptable from an ethical point of view, thus representing red flags regarding the justice
principle. Differences in utilization could be either for acceptable reasons (e.g., personal preferences
and choices) or unacceptable reasons, such as costs and opportunities.

As Nissen et al. outlined [56], herbal and natural products may be the only available treatment
for low-income people in developing countries; on the other hand, in high-income countries, natural
products are often provided outside public healthcare services or insurance coverage, thus being mostly
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used by educated citizens of working age and with an above-average income. It has been reported
that in industrialized societies, the use of complementary medicine has been found to be associated
with higher income and higher education, and people who have lower incomes and educational
levels tend not to use complementary medicine [60]. As with many other services of alternative and
complementary medicine, in most countries worldwide, NPs seem to be mostly provided outside the
public health system, and patients have to pay themselves for these products [56,58].

Immediate questions of ethics arise: If NPs in NDs represent a clinically prospective option,
why do people who have free traditional health-care services or insurance coverage for traditional
treatments have to pay out-of-pocket for NPs? Additionally, in those countries where inadequate and
expensive conventional medical services exist, conventional medical care may not be accessible to the
poorest minorities. In these situations, NPs are not alternative nor integrative [60]: They may represent
the only therapeutic option, thus facilitating a “separate but unequal care system” [61]. In other words,
the above dimensions of the use of NPs point out issues of inequity in gaining access to NPs, as whether
patients affected by NDs who set their hopes on NPs are able to access them may be determined by
economic and financial factors outside the patients’ control, making this access unfair.

A further argument that may be subject of ethical discussion is that public funding should not
be allocated to research of implausible treatments, representing a potential waste of resources both
human and economic, and an additional expense over and above other healthcare costs. One of the
key themes is that, given the scarcity of resources that can be allocated to research, every effort should
go to those areas where reasonable, good evidence also exists [60].

However, this may represent a double-edged sword, ethically speaking: The further development
of NPs is achievable only on a broad base of quality research. For example, the National Centre
for Complementary and Alternative Medicine experience in the United States has shown that when
funds are available and priorities are set, research on alternative and complementary medicine will
grow exponentially [60,61]. The status of the research on complementary and alternative medicine
in the European Union is not encouraging: Complementary and Alternative Medicine research in
Europe is not well-funded by the countries or research organizations, and is in large part charitably
supported [57].

This seems to feed a vicious circle, since the conduct of high-quality research on complementary
and alternative medicine requires a commitment by the research community, as well as sustained
financial support from governments and industry [62]. Implementing research on the use of NPs,
as well as other alternative and complementary medicine, is pivotal to the achievement of “high-quality”
evidence in support of the use of NPs.

4. Medical Liability Scenarios

As the use of alternative therapies and natural products grows, there is likely to be heightened
concern about the liability implications of delivering these therapies. It has been reported that
complementary and integrative medicine (in which the use of NPs is included) have not, until now,
been the subject of serious malpractice litigation [63]; however, herbal medicines and other supplements
are one of the more controversial fields of medicine [64].

Generally speaking, medical malpractice occurs if a physician fails to meet the standard of care
established and negligently injures the patient, requiring three elements: (1) The patient suffered
damage; (2) the negative event proceeded directly by the action or inaction of the healthcare provider;
and (3) the physician was negligent, which essentially entails showing that she/he took less care than
that which is customarily practiced by the average member of the profession in good standing, given
the circumstances of the doctor and the patient [65].

These elements are long-established fundamental principles; however, the manner in which these
principles will be applied to the use of NPs can raise important questions.

First of all, what is the standard of care for these treatments? Has the physician met the applicable
standard of care while treating the patient with NPs? This may represent a difficult conceptual passage,
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as the issue of standard of care (i.e., the degree of care, diligence, and skill which is provided by a
reasonable physician under like or similar circumstances) is not clearly defined for complementary and
alternative treatments [64,66]. In some activities included in alternative or complementary practices,
it may be difficult to establish the standard appropriate in the discipline, as a well-established scientific
base and standardized protocols are generally lacking.

However, we can speculate that a physician who prescribes NPs would be held to a common
standard in medical practice when assessing what she/he knew or should have known regarding the
safety and the efficacy of the prescribed remedies [64,66]. Prescriptions of natural products, although
not negligent per se, could represent a deviation from the standard of care, if it is demonstrated that
this prescription was not something a reasonable physician would have done in similar circumstances
and with the same patient.

The conceptual framework of potential alleged malpractice claims regarding the use of natural
products focuses on some key points: (i) Whether the evidence in the scientific literature supports,
does not support, or is inconclusive regarding the use of a natural product along the dimensions of
safety and efficacy; and (ii) an accurate evaluation of the risk–benefit balance, including the stage and
severity of the illness, the curability of the illness with conventional therapy, its potential toxicity, and
adverse effects [63,64,67,68].

Although a standard of care for the use of NPs has not yet been clearly defined, as many therapies
based on natural products have not yet been the subject of rigorous, controlled studies, the care
provided through these products could be judged by either the clinician’s duty to carefully consider
findings from conventional medicine, the clinical status of that patient, the existing evidence on the
natural products proposed, the reported adverse events, and, finally, the duty of carefully monitoring
the clinical evolution of the patient.

As a concluding statement, it would seem appropriate to reiterate the words of Cohen,
who suggested that “If evidence supports safety, but evidence regarding efficacy is inconclusive—accept
but monitor; if the medical evidence supports efficacy, but evidence regarding safety is
inconclusive—accept but monitor; and the medical evidence indicates either serious risk or
inefficacy—avoid and discourage” [69].

5. Concluding Remarks

In conclusion, the notable message that emerges is that NPs may represent a great promise for the
treatment of many NDs, where traditional therapies via synthetic drugs only act to alleviate symptoms,
but cannot stop the progress of the disease, and thus are substantially inadequate.

It is, however, problematic for this message that there are still many unknown issues regarding
the efficacy and safety of many natural products. There is much yet to be investigated, characterized,
and learned. This message strongly underscores urgent needs. Clinicians must routinely inquire
about all product use—conventional, complementary, and alternative—to promote patient safety and
ethical care.

The evaluation of patient safety and of the efficacy of natural products should represent the
guiding principle of physicians’ conduct.

Finally, researchers should actively start to expand the knowledge base regarding natural product
safety and efficacy, emphasizing that fundamental research to advance the understanding of the basic
biological mechanisms of action of these products is pivotal.
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Abstract: Pheromones are neuronal signals that stimulate conspecific individuals to react
to environmental stressors or stimuli. Research on the ascaroside (ascr) pheromones in
Caenorhabditis elegans and other nematodes has made great progress since ascr#1 was first isolated
and biochemically defined in 2005. In this review, we highlight the current research on the structural
diversity, biosynthesis, and pleiotropic neuronal functions of ascr pheromones and their implications
in animal physiology. Experimental evidence suggests that ascr biosynthesis starts with conjugation
of ascarylose to very long-chain fatty acids that are then processed via peroxisomal β-oxidation to
yield diverse ascr pheromones. We also discuss the concentration and stage-dependent pleiotropic
neuronal functions of ascr pheromones. These functions include dauer induction, lifespan extension,
repulsion, aggregation, mating, foraging and detoxification, among others. These roles are carried
out in coordination with three G protein-coupled receptors that function as putative pheromone
receptors: SRBC-64/66, SRG-36/37, and DAF-37/38. Pheromone sensing is transmitted in sensory
neurons via DAF-16-regulated glutamatergic neurotransmitters. Neuronal peroxisomal fatty acid
β-oxidation has important cell-autonomous functions in the regulation of neuroendocrine signaling,
including neuroprotection. In the future, translation of our knowledge of nematode ascr pheromones
to higher animals might be beneficial, as ascr#1 has some anti-inflammatory effects in mice. To this end,
we propose the establishment of pheromics (pheromone omics) as a new subset of integrated disciplinary
research area within chemical ecology for system-wide investigation of animal pheromones.

Keywords: ascaroside pheromone; C. elegans; dauer; neuronal signaling; sexual behavior; survival
signals; stress response

1. What Are Pheromones?

Pheromones are neuronal signaling molecules synthesized by various organisms and then
excreted into the environment, where they typically stimulate individuals of the same species to react
to environmental changes (e.g., temperature shifts, biological stimuli, or nutritional changes) [1,2].
It is thought that most organisms, from prokaryotes to higher animals such as humans, can produce
and use pheromones for communication between conspecific individuals. In most cases, pheromones
trigger neuronal events that are linked to various behavioral responses. The outcomes of such neuronal
stimulation are the modulation of developmental and/or physiological programs that can support
adaptation to new environments [3]. For example, approximately 1500 insect pheromones have been
identified since bombykol was discovered in 1959 [4]. These pheromones mediate common behaviors
such as courtship rituals, mating, aggregation, dispersal (e.g., spacing or epideictic pheromones), alarm,
recruitment (e.g., trailing pheromones), and maturation [2,4]. In mammals, pheromones are used for
marking territories, and for signaling mating and feeding preparedness [5,6].
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In humans, there have been numerous reports of putative pheromones; however, their existence
has not been experimentally confirmed. For example, a putative human pheromone was proposed
to be excreted from the apocrine gland in the male underarm, although its functions have not been
characterized [7,8]. Unlike other mammals, humans lack a functional vomeronasal organ (VNO),
which processes pheromonal signals in mice and other vertebrates [8–10]. The absence of this key
VNO function makes the discovery of human pheromones even more challenging.

The Caenorhabditis elegans dauer pheromone, which is part of an important chemical language
throughout this nematode’s lifespan, has long been known. In 1975, Cassada and Russell first
reported the existence of dauer larvae, an alternative developmental stage that prolongs survival under
environmental conditions that do not support growth [11]. The observation of dauer larvae might
have provoked the search for dauer pheromones. In 1982, the first biological evidence of a nematode
pheromone was reported by the Riddle group, who showed that a partially purified C. elegans extract
could trigger dauer formation in L1/L2 larvae [12]. Indeed, this pioneering work inspired worm
biologists to continue to search for pure dauer pheromones.

2. Structural Diversity of Ascaroside (ascr) Pheromones

2.1. Daumone, the First Chemically Characterized Ascr Pheromone

In 2005, the Paik group isolated and chemically characterized the first C. elegans pheromone, which
they named dauer pheromone, or daumone (now often referred to as ascr#1) [13]. Via an activity-guided
purification procedure using 300 L of cultured worms, they isolated pure daumone, which has the
molecular formula C13H24O6 and an Mr of 276 (Figure 1). Determination of the stereochemical structure
of purified daumone, [(2)-(6R)-(3,5-dihydroxy-6-methyltetrahydro-pyran-2-yloxy) heptanoic acid],
revealed that it contains one ascarylose (a 3,6-dideoxy sugar also known as rhamnose) linked to the C7
of a methylated short-chain fatty acid (mSCFA) (Figure 1).

 
Figure 1. The chemical structure of daumone, the first characterized ascaroside (ascr) pheromone
(ascr#1), contains an ascarylose sugar and a methylated short-chain fatty acid (mSCFA) linked by an
ether bond [(2)-(6R)-(3,5-dihydroxy-6-methyltetrahydropyran-2-yloxy) heptanoic acid] [13].

They also demonstrated that natural and chemically synthesized daumone could equally induce
dauer formation in the wild-type C. elegans laboratory strain (N2) and in Caenorhabditis briggsae.
The discovery of daumone, which is indeed a bona fide signaling molecule, not only settled a long-time
dispute as to whether the C. elegans pheromone acted as a signal or a crowd cue [14], it also opened a
new avenue for investigating the chemical biology of ascr pheromones on molecular and system-wide
scales. As additional dauer pheromone derivatives (collectively called ascarosides) were identified,
daumone was later renamed ascaroside #1 (ascr#1) as per Edison’s suggestion [15], which was based
on the presence of an ascarylose sugar moiety linked to an mSCFA. In this review, we use “ascr
pheromones” rather than ascarosides to distinguish between the pheromones and non-pheromonal ascr
derivatives or metabolites, consistent with the terminology used for steroid hormones (i.e., steroids vs
steroid hormones). This distinction is important, given that more than 200 ascaroside-like compounds
with unknown functions have now been identified via metabolomic methods [16,17].
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Historically, non-pheromonal ascarosides were first identified among the neutral lipids of parasitic
nematodes such as Ascaris lumbricoides and Parascaris equorum [18,19]. These compounds typically
consist of a glycone moiety (one or two ascarylose units, i.e., a 3,6-dideoxy sugar) and an aglycone
moiety, a very long chain fatty acid (VLCFA) that contains greater than or equal to 25 carbon atoms [20].
They were mainly recovered from the eggs and reproductive tract tissue of female A. lumbricoides
nematodes, and they were shown to confer the eggs with chemical resistance against external toxic
insults [21]. Therefore, unless otherwise stated, our discussion will be limited to ascr pheromones and
their potential neuronal functions.

2.2. Identification of Diverse Ascr Pheromones in Nematodes

In the 15 years since the discovery of the first ascr pheromone, several groups have intensely
investigated their chemical biology. For instance, the Clardy group energized the pheromone research
community by identifying two additional ascr pheromones (i.e., ascr#2 and 3) in cultured worms [22].
Ascr#2 and 3 contain essentially the same structural backbone as ascr#1 (C7-SCFA) but differ in the
number of carbons in the mSCFA moiety linked to the 3,6-dideoxy ascarylose sugar (ascr#2: C6-mSCFA
with a methyl ketone, ascr#3: α-βunsaturated C9-mSCFA) (Figure 2). To distinguish the ascr pheromone
families in this article, we classify them into two groups: the simple ascr pheromones, which contain
only ascarylose and mSCFA, and the modular ascr pheromones, which contain modified ascarylose.
Other simple and modular ascr pheromones have now been identified and characterized [16,23–27].
In particular, the Schroeder group detected small amounts of several ascarosides (i.e., ascr#6.1, 6.2, 7,
and 8) among the metabolites of the wild-type N2 strain by comparing its two-dimensional nuclear
magnetic resonance spectrum with that of the ascaroside biosynthesis-defective daf-22(m130) strain [25].
These ascr pheromones contain an unsaturated seven-carbon mSCFA linked to a p-aminobenzoate
subunit (i.e., ascr#8) or β-glucose (i.e., glas#10) [25] (Figure 2).

 
Figure 2. Structural diversity among the known ascr pheromones. Several ascr pheromone analogs
modified at various positions (red circles labeled R1–5) have been identified [13,16,17,22–27].

The indole carboxy (IC) ascarosides (icas, e.g., icas#1, 3, 7, 9, and 10) contain a unique indole-3-carbonyl
unit attached to the 4′-position of ascarylose [24,27] (Figure 2). Profiling of worm extracts via
MS/MS fragmentation and GC-EIMS led to the identification of approximately 200 additional ascr
derivatives [16,17]. Notably, structural variations were found in the carbon chain lengths of the mSCFA
moiety (e.g., ascr#18, 21, 22, and 25). More examples are the presence of hydroxybenzoyl (hbas#3) or
2-methyl-2-butenoyl moieties (mbas#3) attached to the 4′-position of the ascarylose, ω-linkages at the
terminal carbons of the mSCFA moieties, and 2′-hydroxylation of the mSCFA (Figure 2).
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Most functionally characterized ascr pheromones are ω-1 linked, i.e., a methyl group is attached to
the C1 position at the link between the mSCFA and the ascarylose; however, ω-linked ascr pheromones
lacking this linkage have also been reported [16,23] (Figure 2). The structural diversity in the
mSCFA is likely generated via the multi-cycled peroxisomal β-oxidation that occurs during ascaroside
biosynthesis, although other mechanisms are possible [16,28–36]. Some structural derivatives of ascr
pheromones contain other functional groups (e.g., a methyl group, amino acid precursor, glucose, or
benzoyl group) linked to the 2′- or 4′-position of the ascarylose moiety or to the 1′-position of the
mSCFA moiety, generating a collection of highly diverse ascaroside structures (Figure 2). It is worth
noting that ascr pheromone-like derivatives have also been identified in other nematode genera [37–42].
Moreover, the Sternberg group showed that the difference of ascaroside blends between many nematode
species was observed with respect to variance of ascr pheromone composition [39]. As most known
ascr derivatives share a common structural backbone but differ in their mSCFA moieties or ascarylose
modifications (Figure 2), determining their individual functions will be a daunting task.

3. Ascr Pheromone Biosynthesis and Metabolic Regulation

3.1. Ascr Pheromone Biosynthesis

Initially, it was proposed that the ascr pheromone precursors are produced via two distinct reaction
pathways, peroxisomal β-oxidation for the SCFA moiety and de novo biosynthesis for the ascarylose
moiety (both the simple and modified forms). To produce mature, active ascr pheromone, the SCFA and
ascarylose moieties would then be conjugated by UDP (uridine diphosphate)-glucuronosyl transferase
(UGT) [29]; however, an alternative pathway has now been proposed. In this alternative pathway,
a VLCFA-conjugated ascarylose is first produced and then subsequently subjected to peroxisomal
β-oxidation to produce active ascr pheromone [43,44]. This proposal was supported by genetic
screens and metabolomic experiments. In maoc-1, dhs-28, and daf-22 mutant strains, most of the
ascarosides with fatty acid chain lengths of less than nine carbons are not synthesized, whereas
non-pheromonal FA-conjugated ascarylose (e.g., VLCFA-, VLCFA-CoA-, and LCFA (long-chain fatty
acid linked ascarylose)) accumulates in the worm body [16,17,29,30,43].

Naturally, the source of the ascarylose moiety was an interesting question. The Paik group
previously demonstrated that the ascarylose was not derived from the Escherichia coli consumed by the
worms, but rather that it was de novo synthesized [29]. Sorting out this issue was necessary because
ascarylose (a glycoconjugate of ascaroside) is found in the lipopolysaccharide (LPS) of Gram-negative
bacteria, and it represents a unique class of sugars with a 3,6-dideoxy sugar structure [45]. In bacteria
such as Yersinia pseudotuberculosis, ascarylose is produced via a continuous chain of five enzymatic
reactions in which CDP-D-glucose is produced from glucose-1-phosphate [46–48]. However, in the
course of studying egg shell formation, a gene responsible for ascarylose biosynthesis was found in C.
elegans [49], supporting the earlier argument in favor of de novo ascarylose biosynthesis [29]. However,
additional work is needed to elucidate the detailed mechanism of this step in C. elegans.

UGT might be an ideal candidate for catalyzing the conjugation of ascarylose to VLCFAs,
as occurs during detoxification reactions in mammals [50,51]. The basis of this prediction is that
during detoxification, UGT transfers the monosaccharide glucuronic acid to lipophilic metabolites
(e.g., steroids and bile acids) and xenobiotics (e.g., environmental toxins) to render them water-soluble
for release [52–54]. However, it remains unknown in C. elegans whether an enzyme similar to UGT
might catalyze the linkage of fatty acids to ascarylose or cooperate with other enzymes to specifically
synthesize ascarosides. For instance, the enzyme encoded by dgtr-1, which is involved in egg shell
formation, is also thought to be required for ascaroside synthesis because of its homology to the DGAT2
family of acyl-CoA:diacylglycerol acyltransferases, which catalyze the addition of fatty acyl-CoA to
diacylglycerol to form triacylglycerol [49].

During the biosynthesis of modular ascarosides (e.g., icas, mbas, hbas, and osas), several
organic moieties (e.g., amino acid metabolites) are attached to the 4′-position of ascarylose. Using
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deuterium-labeled tryptophan and axenic in vitro culturing, the Schroeder group found that the indole
carbon atom of icas is derived from l-tryptophan, while the 4-hydroxybenzoyl group of hbas is derived
from l-tyrosine or l-phenylalanine. Furthermore, the tigloyl group of mbas and the octopamine
succinyl group of osas are derived from l-isoleucine and l-tyrosine, respectively [16,55]. It has also been
suggested that lysosomal ACS-7, an acyl-CoA synthase, catalyzes the linkage of indole-3-carboxy (icas)
or N-succinyl octopamine groups to ascr [32]. However, the Butcher group showed that ACS-7 appears
to transport icas to the peroxisomes during the biosynthesis of the short-chain ascaroside icas [36].
This dispute on the function and cellular location of ACS-7 remains to be resolved. Based on the
findings discussed above, a working model for the biosynthesis of both simple ascr (no attached organic
moieties) and modular ascr (various attached organic moieties) in C. elegans can be proposed (Figure 3).
In this scheme, cytochrome P450 generates (ω-1) or ω-oxygenated VLCFA or LCFA precursors that are
then linked to ascarylose to form FA-linked ascarosides (e.g., LCFA). The FA-linked ascarosides then
enter the peroxisomal β-oxidation pathway to produce active mSCFA ascr pheromones [16,49].

Figure 3. Schematic working model of the ascr pheromone biosynthetic pathway. CYP alters the very
long chain fatty acid (VLCFA) produced via elongation of C16 or C18 fatty acids to produce ω-1 or
ω-oxygenated VLCFA substrates. Ascarylose is then linked to the ω-1- or ω-oxygenated VLCFAs to
form VLCFA-linked ascarosides. Finally, an ascr pheromone containing a shortened fatty acid chain is
produced via peroxisomal β-oxidation. In this case, amino acid precursors are linked to specific ascr
pheromones. CYP: cytochrome P450, GT: glucuronyltransferase. (?): Names of these enzymes are not
known in C. elegans.

Peroxisomal β-oxidation is a central metabolic pathway in animals that supplies SCFA components
for energy production in mitochondria as well as the main carbon chain precursors for ascr pheromones.
The presence of peroxisomes in the intestine and hypodermis of C. elegans and the target signals
of their peroxisomal proteins have been revealed [56,57]. This topic has been covered in detail by
recent publications, and the field is still evolving; therefore, this discussion focuses on important
developments related to the production of the mSCFA moieties used in ascr pheromones, as the
mSCFAs are a key driver of the structural and functional diversity of ascr pheromones. Research
on the ascr biosynthetic pathway has progressed well since the discovery of the nematode acyl-CoA
oxidases (ACOX-1 or ACOX-1.1) [30]. ACOXs catalyze the first reaction of peroxisomal β-oxidation
by producing enoyl-CoA from acyl-CoA, and they contribute to maintaining the ascr pheromone
pool synthesized in response to sudden environmental shifts [30]. Some ascr pheromones (i.e., ascr#2,
and 3) are not synthesized by the acox-1 (ok2257) mutant strain [30], whereas the synthesis of others
(ascr#1, 9, 10, oscr#9, and 10) is elevated [16]. These observations suggest that the acox-1 gene produces
multiple ACOX isoforms, which were later found to have different substrate specificities [33–35].
The Butcher group used CRISPR/Cas9 genome editing to elegantly produce various mutant derivatives
of the ACOX isoforms and found that the different ACOX isoforms can form various homo- and
heterodimers with distinct substrate preferences that produce different ascr pheromones. For example,
the ACOX-1.1/ACOX-1.4 heterodimer produces ascr#1 while the ACOX-1.1/ACOX-1.3 heterodimer
produces ascr#2 [35]. This mechanism for the biosynthesis of such diverse ascr pheromones by the
ACOX isoforms is supported by the observation that ACOXs might act on (ω-1)- and ω-oxygenated
VLCAs prior to their cyclic stepwise breakdown during peroxisomal β-oxidation. Furthermore, this
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finding also confirms an earlier report that the ACOXs help to define the ascr pheromone population
produced by C. elegans [30]. For the second and third reactions of the peroxisomal β-oxidation
pathway, MAOC-1 hydrates enoyl-CoA to produce hydroxyacyl-CoA and DHS-28 dehydrogenates
hydroxyacyl-CoA to produce 3-ketoacyl-CoA [16,28,29]. Finally, mature mSCFA-containing ascr
pheromones are produced via the thiolase activity of DAF-22, a homolog of human SCPx.

3.2. Transcriptional Regulation of Ascr Pheromone Biosynthesis by Environmental Stressors

Although sequence of the biosynthesis of ascr pheromones is known well, it remains unknown
how these enzymes are transcriptionally regulated by environmental changes (e.g., temperature
increases, nutrition deprivation). To address this question, it was essential to quantify the levels of
the approximately ~200 ascr derivatives currently known in C. elegans, and to accurately measure
the changes in the levels of the ascr pheromones under various physiological states via a standard
quantification method [58–60]. The Paik group developed the “PheroQu” method, a multiple reaction
monitoring (MRM)-based ascr pheromone quantification method that uses ultra-performance liquid
chromatography coupled to mass spectrometry (MS) with only 20 worms. This method enables
accurate quantification of the levels of various ascrs in the worm body and in the medium during larval
development [59]. With this method, it was found that the biosynthesis of several ascr pheromones
(ascr#1-3) is robustly influenced by developmental stage, growth condition, and environmental stress
(e.g., heat) throughout the life cycle [59].

Upon an increase in ambient temperature, the levels of ascr pheromones increase up to two-fold [30].
It was later found that heat-shock factor 1 (HSF-1) regulates the transcription of ascaroside synthesis
genes (e.g., acox-1, dhs-28, and daf-22) in response to external temperature. This finding was supported by
chromatin immunoprecipitation assays and increased production of chemically detectable ascarosides
(e.g., ascr#1 and 3) [31]. Based on this observation, it appears that C. elegans requires transcriptional
regulation to ensure that a sufficient ascr supply is available upon encountering sudden environmental
changes or stress signals, such as poor nutrition or high population density, to prepare for dauer entry.
Related to this concept, the Butcher group recently reported that poor nutrition and high temperature
can lead to the transformation of one type of ascr (e.g., aggregation-inducing medium-chain icas) into
another type (e.g., dauer-inducing short-chain icas), providing evidence of flexibility in the structure
and function of ascr pheromones in response to environmental stress [33,36]. Thus, via combinatorial
usage of the products of the acox gene family, C. elegans has multiple options for adapting to new
environments without expending metabolic energy and resources [36].

4. Pleiotropic Neuronal Functions of Ascr Pheromones

4.1. Roles of Ascr Pheromones in Development and Aging

The ascr pheromones influence a variety of functions in the chemosensory neurons that control
development, aging, and behaviors in conspecific individuals. Depending on their concentration
in the media, they also trigger other important behaviors (e.g., dauer-induction, lifespan extension,
mating attraction, repulsion, aggregation, and foraging) that are essential for survival under stressful
conditions [26,36,61,62]. Perhaps the best-known function of ascr pheromones is their ability to induce
dauer entry, which is a unique system for prolonged survival in C. elegans. Reports from several
groups showed that there are robust changes in the expression levels of various genes in dauer larvae
and dauer entry and exit [63–66]. These findings indicate that ascr pheromones exert their biological
functions via some less-characterized signaling pathways involved in neuronal transmission [13,15,26].

By taking advantage of the availability of ascr pheromones, the Paik group characterized the
real-time metabolic molecular landscape during dauer formation. These data revealed the metabolic
changes underlying the worm’s adaptation during the developmental shift to diapause. They measured
the genome-wide gene expression changes via DNA microarrays that cover 22,250 unique genes.
Their results suggested the presence of a unique adaptive metabolic control mechanism that requires
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both stage-specific expression of specific genes as well as tight regulation of different modes of fuel
metabolite utilization to sustain the energy balance for prolonged survival under adverse conditions [63].
A comprehensive web-based dauer metabolic database for C. elegans is available (www.DauerDB.org)
for use by the research community and might be broadly useful as a molecular atlas for related
nematodes. In addition, using the chemically available pure ascr pheromones, the Lee group routinely
produced C. elegans dauer larvae and explored that IL2 neurons mediate a phoretic behavior of dauer
larvae, called nictation [67]. Furthermore, the same group also characterized nictation as a means of
dispersal and survival strategy under harsh conditions through interspecific interaction of C. elegans
dauer larvae [68].

The clarification of the molecular pathways involved in dauer induction raised questions about the
presence of ascr pheromone receptors, which should mediate pheromone sensing to elicit dauer entry.
At least three putative pheromone receptors that directly trigger the relevant signaling pathways have
been identified in several nematode species. The first ascr pheromone receptor was reported by the
Sengupta group, who discovered that the G protein-coupled receptors (GPCRs) SRBC-64 and SRBC-66
are expressed in ASK neurons where they are required for pheromone-induced dauer formation [69].
However, srbc-64(tm1946) and srbc-66(tm2943) mutant worms failed to form dauer larvae in response
to ascr#1–3 but entered the dauer stage normally in response to ascr#5 [69]. The decrease in the
calcium level in the ASK neurons in response to ascr pheromone observed in adult wild-type worms
was not detected in the srbc-64(tm1946) and srbc-66(tm2943) strains. These mutants did not exhibit
long-term responses to pheromones, indicating that other pheromone receptors function via competing
signaling cascades depending on the developmental stage [70]. The Bargmann group reported that
two other GPCRs, SRG-36 and SRG-37 (which belong to the serpentine receptor class), might act as
ascr#5-specific ascr pheromone receptors that relay the same dauer entry signals in the ASI neurons [71].
They took advantage of two C. elegans strains (LSJ2 and CC1) that had been propagated for long
periods of time in liquid axenic media that, unlike the wild-type N2 strain, did not form dauer larvae
in response to ascr pheromones (ascr#1, 2, 3, and 5). Quantitative trait locus (QTL) mapping and
whole-genome sequencing revealed single-nucleotide polymorphisms in srg-36 and srg-37 in LSJ2
and CC1, respectively, that specifically prevented the response to ascr#5. In C. briggsae, another
nematode species, the receptor encoded by an srg gene paralogous to srg-36 and srg-37 responds to
ascr#5 [71]. These results indicate that remodeling of the chemoreceptor repertoire in nematodes allows
adaptation to the external environment and that changes in paralogous genes may have common
effects across species. In 2012, the Riddle group found that DAF-37 and DAF-38 (also GPCRs) function
as a heterodimer to respond to ascr pheromones [72]. DAF-37 responds specifically to ascr#2, and
its expression in ASI neurons regulates ascr#2-mediated dauer formation, whereas its expression in
ASK neurons regulates adult behavior. DAF-38, on the other hand, plays a cooperative role in sensing
ascr#2, 3 and 5 [72]. Other candidate molecules involved in pheromone-induced dauer formation were
identified using a forward genetic screen; however, they seem to function in pheromone signaling
rather than as pheromone receptors [73,74]. The findings that different pheromone-responsive receptors
are expressed in different neurons suggest that additional receptor molecules in other neurons might
remain to be identified.

The Scheroder group recently found that ascr#2, a ligand of the DAF-37 ascr receptor, mediates an
approximately 20% lifespan extension in a sirtuin-dependent manner [75]. This finding revolutionized
our thinking on how dauer formation is involved in lifespan extension in C. elegans. This new
concept, known as ascr-mediated increases of lifespan (AMILS), represents a new paradigm for
chemosensation-based non-dauer lifespan extension as it is independent of DAF-16-governed insulin
signaling and DAF-12. Given the availability of other ascr pheromones, it would be interesting to
investigate whether AMILS is specific to ascr#2 or whether it exists in other nematode genera or can be
regulated by other ascr pheromones.
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4.2. Neuronal Effects of Ascr Pheromones on Nematode Social Behaviors

As described above, ascr pheromones have a wide spectrum neuronal functions that not only
mediate dauer entry, but also influence adult behaviors and phenotypes, including lifespan extension.
For example, very low concentrations (fM–pM) of ascr pheromones attract males, whereas higher
concentrations (nM–μM) promote dauer entry [26] (Figure 4). Ascr#3, in particular, seems to act
as a strong male-attracting pheromone, and various concentrations of ascr#2–4 appear to exhibit
strong synergistic roles in amphid single-ciliated sensory neurons (ADF/ASK) and cephalic companion
neurons (CEM) [26,76,77]. Ascr#8 is also an important male-attracting pheromone at both low and high
concentrations [25,76]. These findings clearly confirm that ascr pheromones have neuronal functions
that trigger diverse behaviors to ensure prolonged survival in response to environmental changes.

Figure 4. The pleiotropic neuronal functions of major ascr pheromones (e.g., ascr#1–3) exerted at their
environmental concentrations.

Interestingly, although ascr#1–3 induce dauer entry of L1 worms at higher concentrations
(nM–μM), similar concentrations act as chemorepellents after the L1 stage that stimulate
hermaphrodite repulsion [26,62,77–80]. These observations suggest that these pheromones act in a
concentration-dependent and stage-specific manner. These repulsive responses appear to be transmitted
via the GPA-3-DAF-16/FOXO signaling pathway in sensory neurons, and they affect long-term memory
via glutamate signaling regulated by DAF-16 [78]. Note that this behavior is distinct from male
attraction behavior because the genetic sex modulates the sensitivity of the ADF neurons to ascr
pheromones [77]. The ascr#3-dependent avoidance behavior is stimulated by ascr#3 sensing in the
ADL neurons followed by signal propagation to the interneurons, which then regulate the magnitude
of the behavioral changes stimulated by pheromone contact in relation to feeding state or early larval
development [79,80]. Furthermore, mbas#3 (an ascaroside linked to a tigloyl group) and osas#9 (an
ascaroside linked to a succinyl octopamine group) also have repulsive effects similar to those of ascr#3

and icas#3 [55,81].
At low concentrations (< 10 nM), ascr#2, 3, and 5 can attract hermaphrodites only in specific social

strains or strains lacking NPR-1 (e.g., the npr-1(ad609) mutant), an important regulator of aggregation
behavior [62]. At low concentrations, some IC group-containing ascr pheromones (e.g., icas#1, icas#3,
and icas#9) induce aggregation in solitary N2 hermaphrodites as well as in naturally isolated social
strains (e.g., CB4856 and RC301), while they induce male attraction at higher concentrations [27].
These responses require the ASK sensory neurons and downstream AIA neurons, but not the RMG
neuron required for attraction in npr-1(ad609) mutants as previously reported. Like the icas pheromones,
ascr#1, 2, 3, and 5 can act as chemorepellents or aggregation-inducing pheromones, suggesting that
their activity is determined by their environmental concentrations. At low concentrations, they induce
attraction, whereas at higher concentrations they induce repulsion. One group reported that this
behavioral change also depends on the oxygen concentration [82]. In this study, the authors found that
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RMG neurons control the oxygen concentration via the URX neurons, resulting in switching between
attraction signals in ASK neurons and repulsion signals in ADL neurons. The discovery of the icas#9

receptors, encoded by srx-43 and srx-44, via QTL mapping and whole-genome sequencing [61,83]
revealed that SRX-43 is expressed in ASI neurons, whereas SRX-44 is expressed in ASJ and ADL
neurons, and that roaming behavior is determined by the site of their expression [83].

In several asexual species, the rate of sexual reproduction increases in stressful environments,
functioning as a survival strategy to generate genetic variation via recombination during outcrossing [84–92].
In C. elegans, ascr pheromones induce male mating or aggregation behavior in the early survival state.
For example, two naturally occurring strains (CB4856 and JU440) exhibit increased male frequency
during the dauer stage that is not observed in the N2 laboratory strain N2. This effect is due to an
increase in the male mating rate and increased male survival during the dauer period [93]. The male
attraction behavior in response to ascr pheromones is thought to induce an increase in male frequency
in dauer-inducing environments [15]; thus, it is likely that larger male populations are beneficial
for survival in unfavorable external environments. One study reported that the hermaphrodite
reproductive rates of some other naturally isolated strains are regulated by secreted pheromones [94].
In fact, ascr#3 and 10 are secreted at different rates by males and hermaphrodites [95]. A combination of
ascr pheromones secreted by males has been reported to not only affect the hermaphrodite reproductive
system, but also to increase heat stress resistance [96]. This male-secreted pheromone also has a
male-killing effect, thereby regulating the population size of the species [97]. In sum, the functions and
structure of some ascr pheormones are listed in Table 1.

Table 1. The functions and structure of some ascaroside pheromones *.

Name Chemical Structure
Discovered
Receptors

Functions References

ascr#1

 

SRBC-64
SRBC-66

Dauer inducing activity
Repulsion activity [13,69,78]

ascr#2

 

DAF-37
DAF-38
SRBC-64
SRBC-66

Dauer inducing activity
Repulsion activity

Male attraction activity
Foraging activity

[22,26,61,62,69,72,
78,82]

ascr#3
 

SRBC-64
SRBC-66

Dauer inducing activity
Repulsion activity

Male attraction activity
Foraging activity

[22,26,61,62,69,76–
80,82]

ascr#4

 

Unknown Dauer inducing activity
Male attraction activity [26]

ascr#5
 

SRG-36
SRG-37

Dauer inducing activity
Repulsion activity [23,62,71,82]

ascr#6.1
 

Unknown Dauer inducing activity [25]
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Table 1. Cont.

Name Chemical Structure
Discovered
Receptors

Functions References

ascr#8
 

Unknown
Dauer inducing activity
Male attraction activity

Foraging activity
[25,61,76]

icas#3

 
Unknown Male attraction activity

Aggregation activity [27]

icas#9

 
SRX-43SRX-44

Dauer inducing activity
Male attraction activity

Aggregation activity
Foraging activity

[24,27,61,83]

hbas#3
 

Unknown Hermaphrodite attraction
activity [16]

mbas#3
 

Unknown Repulsion activity [16,81]

osas#3

 

Unknown Repulsion activity [55]

* The ascr pheromones listed here were selected based on their identified functions, and citation frequencies.

The concentrations of the ascr pheromones produced by worms and their main functional changes
in response to external environmental conditions are outlined in Figure 4. Under favorable conditions,
the ascr pheromone concentrations are too low to exert any effects, perhaps due to other environmental
factors. However, ascr pheromone synthesis gradually increases as worms encounter unfavorable
stress conditions (e.g., high temperature, food limitation, and high population density) [30,59]. It has
been hypothesized that ascr pheromones stimulate male mating or aggregation at relatively low
concentrations under normal growth conditions, while under stressful conditions that trigger increased
ascr pheromone production (and thus higher concentrations), worms may exhibit a repulsive response
to ascr pheromone and enter the dauer state. However, the structural basis for the functional differences
between ascr pheromones has not yet been clarified.

5. Implications of Ascr Pheromone Metabolism in Neuroprotection

5.1. Implications of Ascr Pheromone Biosynthesis Gene Deficiencies in Neuronal Disorders

Several ascr pheromone biosynthesis defects have been identified in mutant worms deficient
for peroxisomal β-oxidation enzymes [16,28–36,98]. The physiological consequences of impaired
DAF-22-dependent peroxisomal β-oxidation of VLCFAs or fatty acyl-CoAs involved in the production
of various aglycone units (mSCFAs with less than nine carbon atoms) required for pheromone
biosynthesis indicate that peroxisomal β-oxidation of VLCFAs is an essential detoxification process for
clearing harmful peroxisomal fatty acids to maintain cellular homoeostasis. This function indicates
that ascr pheromones not only regulate stress avoidance, they also maintain cellular homeostasis
via the production of excretable FA-ascarylose conjugates (ascarosides) [29]. Here we examine the
pleiotropic neuronal functions of ascr pheromones from two different angles, ascr metabolic deficiency
and chemotactic responses.
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In mammals, it is well known that peroxisomal malfunctions induce developmental defects
and neurodevelopmental diseases. These diseases include Zellweger syndrome (ZS) and X-linked
adrenoleukodystrophy (X-ALD), which involve severe neurological problems that often lead to
death in infants and young children [99–104]. In humans, a single defect in an enzyme involved in
peroxisomal fatty acid β-oxidation leads to ZS, which involves abnormal symptoms such as neonatal
hypotonia, craniofacial dysmorphia, seizures, and developmental delay [100,103–105]. Mechanistically,
it was suggested that the defect in peroxisomal fatty acid β-oxidation results in the accumulation
of VLCFAs in the form of triacylglycerols, which are harmful to animals [29,105]. Furthermore,
decreased docosahexaenoic acid (DHA; C22:6 (n-3)) levels, plasmalogen depletion, and abnormal
neurons myelination (e.g., degenerative loss of myelin (demyelination) or abnormally formed myelin
(dysmyelination)) have been suggested to underlie the neuropathologies associated with peroxisomal
disorders [106]. In C. elegans, ascaroside biosynthesis appears encompass two important physiological
roles that affect the worm’s quality of life: (1) a social function in which pheromone production affects
the behavior and physiology of other individuals, and (2) protection of metabolic homeostasis via the
removal of toxic VLCFAs in peroxisomes (Figure 5) [29].

Figure 5. A schematic diagram for the dual role of peroxisomal fatty acid (FA)β-oxidation. By shortening
VLCFAs, peroxisomal fatty acid β-oxidation can exert physiological functions such as detoxification and
maintenance of metabolic homeostasis. In Caenorhabditis elegans, shortened FAs are used to synthesize
ascr pheromones, which are important for social communication.

In addition to neurodevelopmental defects, deficiencies in peroxisomal fatty acid β-oxidation
seem to be related to other pathologies. In C. elegans, animals deficient in peroxisomal fatty acid
β-oxidation, such as the dhs-28(tm2581) and daf-22(ok693) mutant strains, exhibit short lifespans and
developmental delays, and are more susceptible to environmental stresses, limiting the worm’s survival
under harsh conditions [29,107]. In particular, it has recently been suggested that peroxisomal fatty
acid β-oxidation has distinct functions in neuronal cells for maintaining normal development and
nervous system function [101,106,107]. More interestingly, it was revealed that neuronal peroxisomal
fatty acid β-oxidation has an important cell-autonomous function to regulate neuroendocrine signaling
activities [107]. The C. elegans SCPx gene daf-22 is expressed in a subset of chemosensory neurons,
i.e., the ASK neurons, where its activity is required for exogenous pheromone-induced dauer entry [107].
A deficiency in neuronal peroxisomal fatty acid β-oxidation activates the lipid-induced endoplasmic
reticulum (ER) stress response, which then increases the expression of insulin-like peptides in neurons
and abnormally enhances insulin/IGF-1 signaling activity to eventually interrupt dauer entry [107].
Meanwhile, ER stress-mediated dauer diapause is also regulated by other sensory neurons, such as the
ASI neurons [108]. It has been suggested that the mutated DAF-28 peptide in the daf-28(sa191) mutant
strain triggers ER stress and activation of the unfolded protein response (UPR) to induce constitutive
dauer entry [108–111].
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From these studies, it can be inferred that peroxisomal fatty acid β-oxidation is important
for neuroprotection via the regulation of metabolic homeostasis (e.g., balance in fatty acid levels),
myelination of neuronal cells, and the regulation of cellular signaling; these neuroprotective functions
could influence aging, neurodevelopment, and stress resistance. Therefore, it is important to investigate
the mechanisms underlying the roles of neuronal peroxisomal fatty acid β-oxidation in neuroprotection
and aging in the future. It would also be worthwhile to elucidate the links between neuronal
peroxisomal disorders and alterations in neuronal function and neurodevelopment (Figure 6).

. 

Figure 6. The protective ways in the sensory neurons and their outputs. In C. elegans, ascr pheromone
sensing affects the expression of neuropeptides, such as insulin and TGF-β. Peroxisomal fatty acid
β-oxidation in sensory neurons regulates neuroendocrine signaling (e.g., insulin/IGF-1 signaling) via
regulation of insulin-like peptide expression by suppressing the lipid-induced endoplasmic reticulum
(ER) stress response. By regulating insulin/IGF-1 signaling, peroxisomal fatty β-oxidation controls
both exogenous pheromone-induced dauer entry and aging. Furthermore, pathogens regulate TGF-β
expression and ER stress via unfolded protein responses (UPRs). TGF-β expression triggered by
pathogens stimulates avoidance behavior. Similarly, such signaling in the nervous system can influence
neuroprotection, neurodevelopment, and stress resistance, either directly or via neuroendocrine
signaling pathways.

5.2. Implications of Ascr Pheromone Signaling in Chemotactic Responses

Ascr pheromones induce a variety of behaviors [112]; however, these behaviors are controlled
not only by the ascr pheromones but also by various other associated factors and environmental
conditions. In general, food signals play important roles in determining behaviors and developmental
choices in the presence of ascr pheromones in C. elegans. For example, calcium/calmodulin-dependent
protein kinase I (CMK-1) regulates pheromone-mediated dauer entry in ASI/AWC neurons depending
on the feeding state, although not directly via a pheromone-binding receptor [113]. Furthermore,
gut-to-neuron signaling induced by feeding conditions affects TGF-β and insulin expression via target
of papamycin complex 2 (TORC2), which leads to dauer entry or behavioral changes [114]. Repulsive
behavior in response to feeding status is also induced by pheromone-mediated insulin signaling [80].
The combination of these two signals determines the choice between dauer entry or progression to the
reproductive state via downstream regulation of DAF-12 and the associated let-7 microRNA family
and hunchback-like-1 (HBL-1) [115]. Ascr pheromones are also involved in chemotactic behavior
by regulating endogenous peptide signaling [116]. C. elegans exhibits chemotactic attraction toward
odorants such as benzaldehyde; however, after prolonged exposure, the chemotactic behavior shifts to
a dispersion behavior, and this shift is called olfactory adaptation or food-odor associative learning.
The results of the study of Yamada et al. also suggest that NEP-2 (a homolog of the extracellular
peptidase neprilysin) and SNET-1 (an NEP-2 suppressor peptide) regulate olfactory adaptation, and that
an ascr pheromone that inhibits snet-1 expression is essential for olfactory adaptation [116].
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Factors associated with ascr pheromones and their sensing have also been implicated in other
physiological processes, such as aging [117–120]. This change in longevity is not only affected by ascr
pheromones, but rather it is also influenced by a combination of other factors, including nutritional
state and population density [75,121]. These pheromones act as a kind of warning signal by which
C. elegans is informed in advance of ongoing changes in growth conditions (e.g., the ratio between food
and pheromones). Triggering of this warning signal is also caused by other factors in addition to ascr
pheromones. Typically, pathogen-induced avoidance in C. elegans has been studied in the context of
the innate immune system [122,123]. Interestingly, it appears that the signaling in response to exposure
to food bacteria and pathogenic bacteria and the downstream effects are similar, with the difference
being the toxicity of the organisms to the worms [124]. Several factors simultaneously play important
roles in ascr pheromone-mediated signaling and pathogen avoidance. First, NPR-1, which controls
aggregation via ascr pheromones [62], also plays an important role in pathogen avoidance [125–127].
Like pheromones, pathogens are also recognized by sensory neurons [128,129]. Furthermore, the TGF-β
ligand and insulin, which also play important roles in dauer entry, also appear to be involved in
pathogen avoidance [130–132]. However, DAF-7, a TGF-β ligand, acts in the ASI/ASJ neurons during
pathogenic avoidance but primarily in the ASI neurons during ascr pheromone sensing [130,131].
Finally, ER stress or UPR activation in sensory neurons can also be induced by pathogens [133–136].
It is plausible to predict that these physiological effects might involve the same factors to promote the
survival of the nematode (Figure 6). Indeed, it has been reported that the use of ascr pheromone in a
mammalian system has a therapeutic effect on hepatic inflammation [137,138]. Furthermore, ARTD,
a combination of artemisinin and ascr pheromone, can also be used as an effective therapeutic agent in
osteoclasts, where it shows a potent cancer inhibitory effect [139]. Thus, this relationship deserves
further investigation in the future.

6. Conclusions and Future Directions

In this comprehensive review, we have highlighted some of the major achievements from the
past 15 years since the discovery of the first ascr pheromone (ascr#1) [13]. The rapid developments
in the ascr field have increased the depth of our knowledge with respect to biosynthetic pathways,
ascr receptor-mediated neuronal signaling pathways, and potential neuro-physiological effects in
animals. We would also like to add a few words on our views of the future of the ascr pheromone field.

(i) Translational research: Given that their biosynthesis has been thoroughly investigated, now
is a good time to construct a chemical biology map or database to catalog the structure-function
relationships of the more than 200 members of the ascr family. Since some factors involved in ascr
biosynthesis also have important neuronal functions in mammals, translation of what we know about
nematode ascr pheromones into studies of metabolic diseases might be a promising future step.
Some physiological functions of ascr pheromones are also involved in mammalian aging and disease;
thus, these pheromones may have implications in human disease. It will also be interesting to unravel
the roles of ascr#1 in disease model animals or mammalian cells [137–139].

(ii) Neuronal pheromone sensing and signaling: Ascr pheromone biosynthesis and their recognition
and processing are equally interesting. Previous studies showed that pheromone sensing occurs in
sensory neurons, and three receptors specific to some ascr pheromones have been found. However,
as the number of newly discovered ascr pheromones increases, how they are sensed and responded
to via potential common sensing and signaling pathways remains to be resolved. For example,
several GPCRs act as ascr pheromone receptors; however, additional GPCRs have been found in
other species [140,141]. Furthermore, several physiological effects induced by ascr pheromones are
synergistic, i.e., single pheromones do not always act alone [23,26]. Thus, ascr pheromone sensing
and signaling are likely complex and elaborately intertwined and untangling of these knots could
provide important clues for understanding neuronal signaling in other species. Given that different
ascr pheromones appear to mediate different behaviors across the nematode species depending on
environmental conditions, it is reasonable to ask the question, what is the lowest common denominator
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that underlies the diverse biological functions of ascr pheromones? Fully addressing this question will
require additional research on the chemical biology of pheromones in the future.

(iii) Neuronal ascr signaling and behavior: Ascr pheromones were originally found while searching
for the factors that influence dauer entry, and they have since been reported to be involved in various
behaviors in addition to dauer entry. Interestingly, the effects associated with ascr pheromones are
almost exclusively influenced by external environmental cues, many of which involve stress (e.g., poor
nutrition, overcrowding, and heat). Therefore, it will be interesting to clarify the biological links
between ascr function and stress responses as well as neuroprotection (i.e., the innate immune response,
see Section 5.2.).

(iv) Creation of pheromics:In a literature survey of ascr pheromone publications, we noticed many
interdisciplinary pheromone research projects and a boom in omics technologies. Examples include,
but are not limited to, molecular genetics, chemical biology, metabolomics, proteomics, and genomics.
At this juncture, it could be beneficial to create the field of “pheromics” (pheromone omics) as a new
subset of integrated disciplinary research area within chemical ecology with the goal of establishing
and supporting a community of researchers involved in the systematic study of the pheromones of
living organisms.
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Abstract: Over the last three decades, green tea has been studied for its beneficial effects, including
anti-cancer, anti-obesity, anti-diabetes, anti-inflammatory, and neuroprotective effects. At present, a
number of studies that have employed animal, human and cell cultures support the potential
neuroprotective effects of green tea catechins against neurological disorders. However, the
concentration of (−)-epigallocatechin gallate (EGCG) in systemic circulation is very low and EGCG
disappears within several hours. EGCG undergoes microbial degradation in the small intestine and
later in the large intestine, resulting in the formation of various microbial ring-fission metabolites
which are detectable in the plasma and urine as free and conjugated forms. Recently, in vitro
experiments suggested that EGCG and its metabolites could reach the brain parenchyma through the
blood–brain barrier and induce neuritogenesis. These results suggest that metabolites of EGCG may
play an important role, alongside the beneficial activities of EGCG, in reducing neurodegenerative
diseases. In this review, we discuss the function of EGCG and its microbial ring-fission metabolites in
the brain in suppressing brain dysfunction. Other possible actions of EGCG metabolites will also
be discussed.

Keywords: blood–brain barrier; catechin; cognition; epigallocatechin gallate; green tea; microbiota;
5-(3,5-dihydroxyphenyl)-γ-valerolactone

1. Introduction

Tea is derived from the leaves and buds of the plant Camellia sinensis L. (Theaceae). Among the
different types of tea, such as green tea, black tea, and oolong tea, the health benefits of green tea have
been most extensively studied [1,2]. These include anti-cancer [3,4], anti-obesity [5–7], anti-diabetes [8,9],
and neuroprotective effects [10–12]. The antioxidant and metal chelating [13,14], anti-carcinogenic [15],
anti-apoptotic [16,17], pro-apoptotic, and anti-inflammatory [14,18] properties of catechins are greatly
associated with their beneficial health effects, including suppressing neurodegenerative diseases.

Compared to other beverages, green tea is rich in catechins. According to Khokhar et al., 100 mL
of green tea (1 g of dry tea leaves brewed for 5 min in 100 mL of hot water) contains on average
67 ± 11 mg of total catechins, including about 30 mg of (−)-epigallocatechin gallate (EGCG), whereas
black tea contains 15.4 mg of catechins [19]. In green tea catechins, the main active molecule, EGCG
(Figure 1), an ester of (−)-epigallocatechin (EGC) and gallic acid (GA), represents 50–80% of the
total catechin content, followed by EGC, (−)-epicatechin gallate (ECG), (−)-epicatechin (EC), and
(+)-catechin (C) [20]. Numerous beneficial effects of EGCG have been reported on cognitive function
and oxidative damage [21–24]. Several epidemiological studies also showed the association between
drinking tea and the beneficial effects on cognitive function [25–28]. For example, a cross-sectional
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study by Kuriyama et al. showed that daily ingestion of one or two cups of green tea significantly
reduced cognitive impairment [25]. In another clinical study by Ide et al., the consumption of green tea
(2 g/day) for 3 months significantly improved cognitive function and also reduced the progression of
cognitive dysfunction [29].

Male Wistar rats that orally ingested EGCG showed a peak concentration at 1–2 h in systemic
circulation, and it remained present in trace amounts after 4 h [30]. Much of orally ingested EGCG
undergoes intestinal microbial degradation in the small intestine to EGC and GA, and later in the large
intestine, resulting in the formation of various colonic microbial ring-fission metabolites, which are
detectable in the plasma and urine [31–34]. These metabolites can exhibit biological activities, and
some of them may be attributed to the action of EGCG.

This review discusses the function of EGCG and its metabolites as well as their possible action
in the brain in suppressing brain dysfunction. In addition, recent data of other functions of EGCG
metabolites are described.

 

Figure 1. Chemical structures of EGCG metabolites based on data from Takagaki et al. [41].

2. Bioactivity of EGCG and Its Metabolites in the Brain

2.1. Absorption and Bioavailability of EGCG

EGCG is poorly absorbed by the body, it reaches the blood circulation at a very low micromolar
concentration, and then it disappears from plasma within several hours [30,35–38]. The oral
bioavailability of EGCG is estimated to be about 0.1 to 0.3% in rats and humans [25,26,30,35].
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Catechin Ring-Fission Products

EGCG was found to be hydrolyzed by intestinal microbiota to produce EGC and GA. EGC was
further degraded to some kinds of ring-fission metabolites in the gut tract. In the large intestine,
there are 11 colonic microbial ring-fission metabolites of EGC (EGC-M1–M11) (Table 1, Figure 1) as
described by Takagaki et al., i.e. 1-(3,4,5-trihydroxyphenyl) 3-(2,4,6-trihydroxyphenyl)-propan-2-ol
(EGC-M1), 4-dehydroxylated epigallocatechin (EGC-M2), 1-(3,5-dihydroxyphenyl)- 3-(2,4,6-
trihydroxyphenyl)-propan-2-ol (EGC-M3), 4-hydroxy-5-(3,5-dihydroxyphenyl) valeric acid (EGC-M4),
5-(3,5-dihydroxyphenyl)-γ-valerolactone (EGC-M5), 4-hydroxy-5-(3,4,5-trihydroxyphenyl) valeric acid
(EGC-M6), 5-(3,4,5-trihydroxyphenyl)-γ-valerolactone (EGC-M7), 3-(3,5-dihydroxyphenyl) propionic
acid (EGC-M8), 5-(3,5-dihydroxyphenyl) valeric acid (EGC-M9), 5-(3,4,5-trihydroxyphenyl) valeric
acid (EGC-M10), and 5-(3-hydroxyphenyl) valeric acid (EGC-M11) [39–41]. Among them, EGC-M5 and
EGC-M7 were found to be the main metabolites in mice, rat, and human plasma, urine, and bile [42].

Table 1. Microbial ring-fission metabolites of EGCG in rat.

EGCG Metabolites (Microbial Ring-Fission) Abbreviation

1-(3,4,5-trihydroxyphenyl)-3-(2,4,6-trihydroxyphenyl)-propan-2-ol (EGC-M1)
4-dehydroxylated epigallocatechin (EGC-M2)

1-(3,5-dihydroxyphenyl)-3-(2,4,6-trihydroxyphenyl)-propan-2-ol (EGC-M3)
4-hydroxy-5-(3,5-dihydroxyphenyl) valeric acid (EGC-M4)

5-(3,5-dihydroxyphenyl)-γ-valerolactone (EGC-M5)
4-hydroxy-5-(3,4,5-trihydroxyphenyl) valeric acid (EGC-M6)

5-(3,4,5-trihydroxyphenyl)-γ-valerolactone (EGC-M7)
3-(3,5-dihydroxyphenyl) propionic acid (EGC-M8)

5-(3,5-dihydroxyphenyl) valeric acid (EGC-M9)
5-(3,4,5-trihydroxyphenyl) valeric acid (EGC-M10)

5-(3-hydroxyphenyl) valeric acid (EGC-M11)

Adapted from Takagaki et al. [41].

The intestinal microbial ring-fission metabolites of EGCG are present in plasma as free and
conjugated forms [31], and in vitro data suggested that they could reach the brain parenchyma through
the blood–brain barrier (BBB) and induce neuritogenesis [43], suggesting that they might be important
in suppressing neurodegenerative diseases.

The bioavailability of a compound or its metabolites can be determined by quantifying the
concentration at the systematic blood flow and at the target organ [44]. It is very important to know the
metabolic process and bioavailability of green tea catechins to evaluate their biological activity as well
as to understand their beneficial effects on human health. EGCG has much lower bioavailability than
other components in catechins [36,45]. For example, after intragastric administration of decaffeinated
green tea (200 mg/kg) to male Sprague–Dawley rats, 13.7% of EGC, 31.2% of EC, and 0.1% of EGCG
appeared in the blood [36]. The bioavailability of EGCG is significantly different depending on the route
of administration, such as intravenous, intragastric, or through peroral ingestion, since intravenously
ingested EGCG can equally reach all tissues in a free state (without conjugate) compared to intragastric
and peroral administration as a result of the high levels of EGCG in intravenous ingestion. It is much
easier for tissues to absorb free EGCG (without conjugate) in intravenous ingestion compared to
other routes of administration [38]. On the other hand, the absorption rate of EGCG in plasma was
much better in peroral administration [46] compared to intragastric intubation, although the detailed
mechanism is not clear [36]. Mice and rats show a difference in bioavailability. For example, in the
mice model, there is higher absorption of EGCG (26.5%) [38] than in the rat model (1.6%) [36].

Aglycons (without sugar residues) from plant polyphenols are easily absorbed in the small
intestine [47]. However, the majority of polyphenols in plants exist as a form of glycosides, esters, or
polymers, and they cannot be absorbed directly from the intestine. Therefore, they are hydrolyzed by

175



Int. J. Mol. Sci. 2019, 20, 3630

intestinal enzymes or gut microbiota. EGCG, the ester of epigallocatechin and GA, is metabolized by
intestinal microbiota in rats [39,40,48,49].

In mice, the bioavailability of a single dose of pure EGCG was first reported by Lambert et al.
The authors found that after intravenous (21.8 μmol/kg) and intragastric (163.8 μmol/kg) administration
of EGCG to male CF-1 mice, the plasma levels of total EGCG reached about 2.7± 0.7 and 0.28 ± 0.08 μM,
respectively. The levels of free EGCG in the liver, lung, small intestine, and colon were about 3.56, 2.66,
2.40, and 1.20 nmol/g, respectively. The levels of total EGCG in the small intestine and colon were 45.2
and 7.9 nmol/g, but the levels in the liver and lung could not be determined as the concentration was
too low [38]. On the other hand, in male Sprague–Dawley rats, the plasma bioavailability of EGCG
was 0.1~1.6%, suggesting that the rate of absorption in mice is much higher than in rats [36].

After [4−3H]EGCG (4 mg, 7.4 MBq/kg) was administered to male Wistar rats by intragastric gavage,
the absorption, distribution, and excretion in blood, tissues, urine, and feces of EGCG and its metabolites
were determined by tracing radioactivity using high-performance liquid chromatography (HPLC)
analysis [31]. The results show that the radioactivity of EGCG mostly disappeared in the stomach by 72 h.
Peak radioactivity in the small intestine, cecum, and large intestine was detected at 4 h (40.5% of the dose),
8 h (46.4% of the dose), and 8 h (13.2% of the dose), respectively, and the radioactivity was markedly
reduced by 24 h and had almost disappeared by 72 h in these tissues. The level of radioactivity in the
blood was low at 4 h, began to increase after 8 h, peaked at 24 h, and thereafter decreased. The urinary
levels of two major radioactive metabolites, 5-(5-hydroxyphenyl)-γ-valerolactone 3-O-β-glucuronide
and EGC-M5 were 68% and 16.8% of the ingested radioactivity after 48 h. The authors suggested that
intragastrically ingested EGCG is absorbed in the intestine within several hours (<8 h), and thereafter
the EGCG metabolites and conjugates are absorbed from the large intestine (>8~48 h), distributed to
various tissues via blood circulation, and finally excreted via urine [31]. The degradation of EGCG
by gut microbiota could be an important factor in decreasing its bioavailability [50]. When male
C57BL/6J mice were given water containing (per mL) ampicillin (1 mg), sulfamethoxazole (1.6 mg),
and trimethoprim (0.32 mg) for 11 days and then given a 0.32% Polyphenon E diet containing 643 mg
EGCG, 29 mg EGC, 74 mg ECG, 90 mg EC, 45 mg gallocatechin gallate, and 6 mg caffeine per
g of Polyphenon E, the levels of EGCG in blood, liver, and urine increased. On the other hand,
antibiotic treatment decreased the urinary levels of EGC-M7, the ring-fission metabolites of EGCG, and
5-(3,4-dihydroxyphenyl)-γ-valerolactone, a ring-fission metabolite of EC. This finding suggests that
antibiotic treatment eliminated catechin-degrading microbiota in the gut and therefore, increased the
levels of EGCG as well as decreased the ring-fission metabolites due to the presence of a low content of
microbiota in the gut [50].

In male Sprague–Dawley rats that were given EGCG orally at 150 mg/kg, the plasma and the
tissue distribution of EGCG were detected by developed HPLC with electrochemical detection [46].
After 2 h and 5 h of administration of EGCG, the levels of free (without conjugated) and total EGCG
(with glucuronides, sulfates, and glucuronides/sulfates) in rat plasma were 0.7, 0.28, 0.82, and 0.5 μM,
respectively. The authors also reported unpublished data showing that the plasma level of EGCG in
rats 24 h after administration is 0.05 μM, suggesting that the EGCG level was markedly reduced 24 h
after administration. The tissue levels of free EGCG in the small intestine and colon were 21.15 and
10.75, as well as 4.75 and 24.41 nmol/g at 2 and 5 h, respectively. They showed that the levels of free
EGCG in the kidney, liver, spleen, lung, and brain were 1.02 and 0.54, 1.02 and 0.54, 0.1 and 0.12, 0.4
and 0.14, and 0.19 and 0.18 nmol/g at 2 and 5 h, respectively. These results indicate that the levels of
EGCG in plasma and other tissues were high at 2 h and began to decrease 5 h after administration.
Moreover, the plasma level of EGCG was very low 24 h after ingestion [46].

A human study by Warden et al. showed that after drinking black tea containing 16.74 mg of
EGCG, 15.48 mg of EGC, 36.54 mg of EC, and 31.14 mg of ECG, the plasma concentration of EGCG was
at the peak level between 5 and 8 h, but returned to baseline levels by 24 h. After tea ingestion over
6 h, the ingested catechins detected in plasma, urine, and feces were about 0.16%, 1.1%, and 0.42%,
respectively, suggesting that level of absorption of catechins in humans is also quite low [51].
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Microflora-mediated ring fission metabolites have also been identified in humans. EGCG was
found to be hydrolyzed in the small intestine by intestinal microflora to produce EGC and GA
and further degraded in the large intestine to produce various kinds of microbial ring fission
metabolites [34,52,53]. In a human urinary metabolite profile, the ring-fission metabolites of tea
catechins, such as 5-(3, 4-dihydroxyphenyl)-γ-valerolactone, EGC-M5, EGC-M7, and their glucuronide
and sulfate conjugates, were found to be the major urinary metabolites at 12–24 h after ingestion
of tea (200 mL of reconstituted green tea (from 3 g of tea solids)) in healthy male volunteers [34].
Two catechin ring-fission metabolites, EGC-M7 and 5-(3,4-dihydroxyphenyl)-γ-valerolactone, appeared
in urine (4–8 μM) and in plasma (0.1–0.2 μM) approximately 13 h after ingestion of 20 mg/kg
of decaffeinated green tea [53]. In addition, the cumulative urinary excretion of these microbial
ring-fission metabolites was as high as 8–25 times the levels of ECG and EC [53]. A recent study
on colonic ring-fission metabolism in humans identified various urinary metabolites derived from
green tea flavan-3-ol (639 μmol of monomeric catechin and 88 μmol of oligomeric catechin), including
EGC-M5, EGC-M7, 5-(4,5-dihydroxyphenyl)-γ-valerolactone, and 5-(hydroxyphenyl)-γ-valerolactone,
with their glucuronide and sulphate conjugates [54]. The excretion rates of these ring-fission
metabolites were as follows: EGC-M5-disulphate (163 μmol), EGC-M5-glucuronide (34.4 μmol),
EGC-M7-sulphate (27.7μmol), EGC-M7-glucuronide (12.1μmol), methyl-EGC-M7-sulphate (54.7μmol),
methyl-EGC-M7-glucuronide (2.7 μmol), 5-(4,5-dihydroxyphenyl)-γ-valerolactone-disulphate
(87.6 μmol), 5-(4,5-dihydroxyphenyl)-γ-valerolactone-glucuronide (16.8 μmol), 5-(hydroxyphenyl)-γ-
valerolactone-sulphate (19.7μmol), and 5-(hydroxyphenyl)-γ-valerolactone-glucuronide (6.6μmol) [54].
In this study, the bioavailability of green tea flavan-3-ols was about 62% (the ratio between total
metabolic excretion and total intake of flavan-3-ols) in 48 h which is higher than that reported previously
(39%) in 24 h [52]. This study examined a more complete 48 h metabolic excretion profile and quantified
a wider range of colonic microbial metabolites [54].

2.2. Blood–Brain Barrier Permeability of EGCG and Its Metabolites

The BBB is a dynamic system that separates circulating peripheral blood from brain neural tissue
in the central nervous system. It is composed of endothelial cells connected through gap junctional
proteins, astrocytes, pericytes, and extracellular matrix and works together to regulate the movement
of ions, molecules, and cells between the blood and the brain to create a unique microenvironment for
proper neuronal function [55]. Therefore, the BBB plays a significant role in transporting intravascular
substances into the brain.

After male Sprague–Dawley rats were administrated EGCG at 50 mg/kg, the concentration of
EGCG in various brain regions was measured by liquid chromatography tandem mass spectrometry
(LC-MS/MS) [56]. The concentration of EGCG in various brain regions was about 5 ng/mL (0.01
μM) and ~4.95% of the orally administered EGCG (100 mg/kg) reached the systemic circulation.
However, it was unclear whether EGCG was transferred from blood vessels into the parenchyma [56].
The concentration of EGCG in rat brain tissue (extracted consecutively with ethyl acetate and methanol)
was determined to be about 0.5 nmol/g by chemiluminescence-detection HPLC (CL-HPLC) at 60 min
after oral administration (500 mg/kg) in male Sprague–Dawley rats [57].

When the blood-to brain distribution ratios of C and EC which were administered (20 mg/kg)
to male Sprague–Dawley rats via the femoral vein, which was measured by microdialysis sampling
coupled with CL-HPLC, the ratios of C and EC were 0.0726 ± 0.0376 and 0.1065 ± 0.0531, respectively,
as determined using the area under the curve for brain and blood [58]. In another study, the transport
efficiency of C and EC at 30 mM was determined using two BBB cell lines, RBE-4 (rat brain endothelial
cell) and hCMEC/D3 (human brain endothelial cell). Results showed that both C and EC effectively
crossed the barrier in a time-dependent manner, and that the percentage of transport efficiency (% in
1 h) of EC (15.4 ± 0.6) was significantly higher than C (7.4 ± 0.7) [59].

Recently, we determined in vitro BBB permeability of EGCG and its metabolites (Table 2) by
LC–MS/MS using a BBB kit (RBT-24, PharmaCo-Cell, Nagasaki, Japan) consisting of co-cultures of
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endothelial cells, pericytes, and astrocytes [43,60]. The in vitro BBB permeability (%, in 0.5 h) of EGCG,
EGC, and GA was 4.00 ± 0.17, 4.96 ± 0.55, and 9.42 ± 1.01, respectively (the data from [43] are modified).
GA exhibited a higher permeability than EGCG and EGC, perhaps due to the smaller molecular size
of GA (MW 170.12) compared to EGCG (MW 458.372) and EGC (MW 306.27). The BBB permeability
of EGC was lower than that of EC, and between EC and C. Lower BBB permeability of EGC than
that of EC may be due to one more hydroxyl bond of EGC than EC, which affects its permeability.
On the other hand, BBB permeability may be influenced by the presence of hydrophobicity of the
galloyl bond [43,59,60].

The BBB permeability (%, in 0.5 h) of microbial ring-fission metabolites EGC-M5, and its
conjugates, such as glucuronide of EGC-M5 (EGC-M5-GlcUA) and sulfate of EGC-M5 (EGC-M5-Sul),
were 5.34 ± 0.23, 3.72 ± 0.01, and 4.34 ± 0.40, respectively. EGC-M5, with a smaller molecular size (MW
208.07), exhibited a slightly higher permeability than its conjugates EGC-M5-GlcUA (MW 384.11) and
EGC-M5-Sul (MW 287.02), suggesting that the smaller molecular size of EGC-M5 caused its higher
permeability [43].

Table 2. BBB permeability of EGCG metabolites.

Sample Permeability Coefficient (10−6cm s−1) BBB Permeability (%) (30 min)

EGCG 13.45 ± 0.57 4.00 ± 0.17
EGC 16.70 ± 1.86 4.96 ± 0.55
GA 31.73 ± 3.39 9.42 ± 1.01

EGC-M5 17.99 ± 0.79 5.34 ± 0.23
EGC-M5-GlcUA 12.53 ± 0.02 3.72 ± 0.01

EGC-M5-Sul 14.61 ± 1.35 4.34 ± 0.40
PG 13.79 ± 1.62 4.10 ± 0.48

PG-GlcUA 9.28 ± 1.41 2.76 ± 0.42

Data are expressed as the mean ± SEM (n = 3) [43]. (Data of Ref. 43 are modified).

2.3. Neuritogenic Activity of EGCG and Its Microbial Ring-Fission Metabolites

Since EGCG and its microbial ring-fission metabolites were able to reach brain parenchyma
through the BBB, findings on how these bioactive compounds work in the brain and verification of
their neuritogenic activity were needed. Human neuroblastoma SH-SY5Y cells (ATCC, CRL-2266) were
used to assess neuritogenic activity as they are often used as in vitro models of neuronal function and
differentiation [61]. In brief, SH-SY5Y cells were plated as 2.5 × 104 cells/mL in a 24-well plate (500 μL of
cell suspension/well). EGCG and its metabolites, which were dissolved in 0.01% DMSO, were added to
the culture medium to make a final concentration of 0.01–1.0 μM, and cultured for ~72 h. Neurite length
was measured by ImageJ software (Ver. 1.50i) [43,60]. Neurite length was significantly prolonged in
cells treated with EGCG and EGC-M5 at 0.05 μM compared to control cells. In addition, SH-SY5Y cell
growth was significantly enhanced by 0.05 μM EGCG and its metabolites compared to control cells,
but this effect was reduced at higher concentrations (≥ 1.0 μM). Since the data of BBB permeability
suggest that 4.0% (0.5 h) of EGCG can pass through blood to brain parenchyma, it may be possible
to speculate how much EGCG is needed in the blood for ~0.05 μM EGCG to reach the brain [43,60].
The plasma concentration of EGCG in humans is 0.02 μM after drinking black tea containing 16.74 mg
of EGCG [51]. After a few hours of circulation of blood containing 0.02 μM EGCG, its accumulation
is ~0.05 μM in the brain. Although EGCG reaches in only trace amounts after 8 h or more of the
EGCG intake, EGC-M5, a metabolite of EGCG, can be found in the blood. Whereas the levels of EGCG
metabolites such as EGC-M5 and its conjugates in blood have not been determined, they are thought to
be circulating in the blood for several hours. Since the BBB permeability of EGC-M5 is slightly higher
than that of EGCG and the bioavailability of catechins is reported to be 39% in 24 h [52] and 62% in
48 h [54], EGC-M5 transferred from blood into the brain may also have a role in neuritogenesis. It is
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necessary to further investigate whether EGCG and its metabolites reach concentrations that cause
neuritogenesis in vivo after consuming several cups of green tea per day in humans.

3. Bioactivity of Catechin Ring-Fission Metabolites

Catechin metabolites show several biological activities, including anti-oxidative, anti-inflammatory,
anti-cancer, immunomodulatory, anti-thrombotic, and blood pressure-lowering activities (Table 3).

Table 3. Bioactivity of catechin metabolites.

Catechin Metabolites Bioactivity Reference

5-(3,4-dihydroxyphenyl)-γ-valerolactone Anti-oxidative [63]
5-(3,4-dihydroxyphenyl)-γ-valerolactone Anti-oxidative [65]

5-(3-hydroxyphenyl)-γ-valerolactone Anti-oxidative [63]
(EGC-M1) Anti-cancer [62]
(EGC-M4) Anti-oxidative [63]
(EGC-M5) Antidiabetic effect [41]
(EGC-M5) Neuritogenic activity [43]
(EGC-M5) Blood–brain barrier penetrating activity [43]
(EGC-M5) Anti-oxidative [63]
(EGC-M5) Immunomodulatory activity [66]
(EGC-M5) Blood pressure lowering activity [67]
(EGC-M6) Antidiabetic effect [41]
(EGC-M6) Anti-cancer [62]
(EGC-M7) Antidiabetic effect [41]
(EGC-M7) Anti-cancer [64]
(EGC-M7) Anti-inflammatory [64]
(EGC-M7) Blood pressure lowering activity [67]
(EGC-M9) Anti-oxidative [63]

(EGC-M10) Anti-oxidative [63]
(EGC-M10) Anti-cancer [62]
(EGC-M11) Antidiabetic effect [41]
(EGC-M11) Anti-oxidative [63]

Hara-Terawaki et al. evaluated anti-cancer effects of catechin metabolites against human cervical
cancer cells (HeLa cells) [62]. The authors screened the inhibitory activities of 11 kinds of metabolites
(EGC-M1-M11) produced from EGCG by intestinal microbiota on proliferation of HeLa cells. Among the
11 metabolites, EGC-M1, EGC-M6, and EGC-M10 inhibited the proliferation of HeLa cells at a final
concentration of 50 μg/mL [62]. Another study by Takagaki et al. investigated the anti-oxidative activity
of catechin metabolites by flow injection analysis coupled to an on-line antioxidant detection system with
the 2, 20-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) radical cation. The radical scavenging abilities
of EGCG metabolites, such as EGC-M4, EGC-M5, EGC-M9, EGC-M10, and EGC-M11, as well as 5-(3, 4
dihydroxyphenyl)-γ-valerolactone, and 5-(3-hydroxyphenyl)-γ-valerolactone), which are ring-fission
metabolites produced from EC or ECG, were found to be stronger than those of parental catechins [63].
Two ring-fission metabolites of tea catechins were tested for their anti-cancer and anti-inflammatory
activities against a panel of immortalized and malignant human cell lines [64]. EGC-M7 had significantly
strong inhibitory activity at 15–73 μM than 5-(3,4-dihydroxyphenyl)-γ-valerolactone at 50 μM against
human colon cancer cells (HT-29 and HCT-116), human esophageal squamous cell carcinoma (KYSE150),
human normal immortalized intestinal cells (INT-407), and rat intestinal epithelial cells (IEC-6).
EGC-M7 also showed anti-inflammatory activity at 20 μM by inhibiting nitric oxide production (50%)
in lipopolysaccharide (LPS)-stimulated murine macrophage (RAW264.7) cells [64]. The anti-oxidant
activity of a ring-fission metabolite 5-(3,4-dihydroxyphenyl)-γ-valerolactone from (−)-epicatechin was
described by Unno et al. [65]. In another study, EGC-M5 was found to have immunomodulatory
activity by enhancing the activity of CD4+ T cells and the cytotoxic activity of natural killer cells in
BALB/c mice [66]. EGCG microbial metabolites were found to have blood pressure lowering activity
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in rats. A single oral intake of EGCG metabolites, EGC-M5 and EGC-M7, was examined to observe
systolic blood pressure (SBP) using spontaneously hypertensive rats. There was a significant decrease
in SBP 2 h after administration (150 mg/kg) of EGC-M7 and 4 h after administration (200 mg/kg) of
EGC-M5, compared to the control group [67]. More recently, EGCG microbial metabolites were found
to have antidiabetic effects in vitro and in vivo [41]. Glucose uptake ability of EGCG metabolites
was measured with differentiated rat L6 myoblast cells by using 2-deoxyglucose. The treatment
with EGC-M5, EGC-M6, EGC-M7, and EGC-M11 at 3 μM for 15 min significantly increased glucose
uptake by 164.2%, 165.2%, 167.6%, and 146.3%, respectively, compared to control cells [41]. Moreover,
oral administration of EGC-M5 at 32 mg/kg of body weight significantly suppressed postprandial
hyperglycemia at 15 min (150.5 ± 13.6 mg/dL) and 30 min (108.5 ± 17.2 mg/dL) after oral glucose
loading, compared to the saline control group [41].

The above studies indicate an important contribution of intestinal microflora-derived ring fission
metabolites of catechins on protection against various diseases, including neurodegenerative diseases.

4. Conclusions and Future Expectation

Several studies including animal, human, and cell cultures support the potential neuroprotective
activities of green tea catechins against neurological disorders. Very recently, EGCG was found
to be safe and potential in improving cognition using both preclinical (mice) and clinical (human)
studies [68]. The concentrations of EGCG, which is the main and the most active component among
catechins, are very low in human and rat plasma and EGCG disappears within several hours from
systemic circulation (<8 h) due to fast and extensive metabolism (methylation, glucuronidation, and
sulfation) and microbial metabolism and degradation, resulting in the formation of various microbial
ring-fission metabolites, which are detectable (>8 h) in the plasma and urine [30,31,33]. These microbial
ring-fission metabolites show much higher bioavailability [52,55]. Intact EGCG and its metabolites
reached the brain parenchyma through the BBB and induced neuritogenesis at a low concentration
(0.05 μM) [43,60].

Based on our and other findings, we propose a possible action of EGCG and its metabolites
in the brain as follows. When humans drink green tea, intact EGCG at a very low micromolar
level reaches the brain parenchyma through the BBB and may induce neurite outgrowth, and after
EGCG disappears, metabolized EGCG may promote neurite outgrowth, resulting in the prevention of
cognitive dysfunction [43,60]. On the other hand, EGCG and its metabolites that reached the brain
may reduce oxidative damage, since the levels of lipid peroxidation were significantly reduced in
the brain of senescence-accelerated mouse prone 10 (SAMP10) that ingested EGCG [60]. In addition,
EGCG metabolites have anti-oxidant activity [63,65]. Thus, microbial ring-fission metabolites may
play an important role in suppressing brain dysfunction. However, differences in intestinal microbiota
may have great importance on the variability of metabolites as well as the absorption rate among
humans [52–54,69]. To date, there are no findings on the neuroprotective action of microbial ring-fission
metabolites of EGCG in vivo. It is becoming epidemiologically clear that intake of green tea suppresses
cognitive decline [11,70,71]. In the future it will be necessary to examine not only the relationship
between green tea intake and brain function but also the relationship between brain function and the
concentrations of EGCG and its metabolites in the blood.
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Abstract: Neuroinflammation is one of the main contributors to the onset and progression
of neurodegenerative diseases such as Alzheimer’s and Parkinson’s diseases. Microglial and
astrocyte activation is a brain defense mechanism to counteract harmful pathogens and damaged
tissues, while their prolonged activation induces neuroinflammation that can trigger or exacerbate
neurodegeneration. Unfortunately, to date there are no pharmacological therapies able to slow
down or stop the progression of neurodegeneration. For this reason, research is turning to the
identification of natural compounds with protective action against these diseases. Considering the
important role of neuroinflammation in the onset and development of neurodegenerative pathologies,
natural compounds with anti-inflammatory activity could be good candidates for developing effective
therapeutic strategies. Marine organisms represent a huge source of natural compounds, and
among them, algae are appreciated sources of important bioactive components such as antioxidants,
proteins, vitamins, minerals, soluble dietary fibers, polyunsaturated fatty acids, polysaccharides,
sterols, carotenoids, tocopherols, terpenes, phycobilins, phycocolloids, and phycocyanins. Recently,
numerous anti-inflammatory compounds have been isolated from marine algae with potential
protective efficacy against neuroinflammation. This review highlights the key inflammatory processes
involved in neurodegeneration and the potential of specific compounds from marine algae to
counteract neuroinflammation in the CNS.

Keywords: neuroinflammation; neurodegeneration; algae; seaweeds; neurodegenerative diseases

1. Introduction

Neurodegeneration refers to a progressive and permanent loss of neurons in specified regions of
the brain and spinal cord. It is the pathological condition that characterizes many neurodegenerative
diseases, including Alzheimer’s disease (AD), Parkinson’s disease (PD), multiple sclerosis (MS),
Huntington’s disease (HD), amyotrophic lateral sclerosis (ALS) [1], and traumatic brain injury
(TBI) [2]. The main cellular and molecular events that trigger neurodegeneration are oxidative stress,
abnormal protein deposition, damaged mitochondrial function, induction of apoptosis, impairment of
proteostasis, and neuroinflammation [3]. Since the first identification of the main neurodegenerative
disorders, research on the molecular mechanisms underlying these pathologies has focused on major
anatomical changes such as neuronal loss and protein aggregation [4]. In recent years, more and
more studies have highlighted the key role of the immune system in the initiation and progression
of neurodegeneration [5,6] due to changes in cytokine signaling, immune cell proliferation and
migration, altered phagocytosis, and reactive gliosis as common features of neurodegeneration [4].
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Neuroinflammation, or, more specifically, the activation of the neuroimmune cells microglia and
astrocytes into proinflammatory states, is an effective endogenous defense that protects the central
nervous system (CNS) against microorganisms and injuries. It is usually a positive mechanism that
aims to eliminate threats and restore homeostasis [7]. However, prolonged neuroinflammatory events
can lead to a series of events that conclude with progressive neuronal damage that characterizes
many neurodegenerative disorders [8]. The glial cells, microglia and astrocytes, have a pro- and
anti-inflammatory role and are involved in different functions under physiological and disease
conditions, such as phagocytosis, steroid release, free radical reduction, and cellular repair [9].
Glial cells exert a proinflammatory action through the production of cytokines and reactive oxygen
species (ROS) that lead to synaptic dysfunction, loss of synapses, and neuronal death resulting
in CNS injury. Until now, most research has been focused on microglial cells as key actors of
neuroinflammation in neurodegeneration, but recently new scientific evidence has shown the important
contribution of astrocytes to the inflammation that characterizes neurodegenerative diseases [10–12].
Unfortunately, to date there are no pharmacological therapies able to slow down or stop the
progression of these devastating pathologies. For this reason, research is turning to the identification
of natural compounds with protective action against these diseases. Considering the important
role of neuroinflammation in the onset and development of neurodegenerative pathologies, natural
compounds with anti-inflammatory activity could be good candidates to develop effective therapeutic
strategies. Marine organisms represent a huge source of natural compounds, some of which have
different structural characteristics from those of terrestrial origin. Marine-derived natural compounds
could produce different pharmacological effects, like anti-diabetic [13], anti-inflammatory [14],
antioxidant [15], anticancer [16], and anti-obesity [17] activities, and open the way for the development
of new drugs [18]. Of note, seven marine-derived natural compounds have been approved for clinical
use [19].

Among marine organisms, algae are one of the most valuable resources of the sea. Epidemiological
studies comparing Japanese and Western diets show an association between algae consumption
and a lower incidence of chronic degenerative diseases [20]. Algae are appreciated sources of
important bioactive components such as antioxidants, proteins, vitamins, minerals, soluble dietary
fibers, polyunsaturated fatty acids, polysaccharides, sterols, carotenoids, tocopherols, terpenes,
phycobilins, phycocolloids, and phycocyanins [20]. Recently, Fernando et al. [21] summarized
the latest knowledge about the potential anti-inflammatory activity of marine algae derivatives,
evidencing their potential protective efficacy against neuroinflammation too. In particular, marine
algae have been shown to counteract neuroinflammation by acting at different cellular levels: inhibiting
pro-inflammatory enzymes such as COX-2 and iNOS [22], modulating MAPK pathways [23], and
NK-kB activation [24], among others. Currently there are no clinical trials on the effects of marine
algae against neuroinflammation but, given their important biological activities, as demonstrated by
in vitro and animal studies, we believe that they will be carried out in the near future. Moreover,
as anti-inflammatory drugs can trigger complications and important side effects [25,26], identifying
novel anti-inflammatory agents from marine algae could be a valid solution to overcome this problem.
In fact, anti-inflammatory natural compounds have been demonstrated to be safe thanks to their long
use in folk medicine [27].

This review highlights the key inflammatory processes involved in neurodegeneration and the
potential of marine algae and specific compounds from marine algae to counteract neuroinflammation
in the CNS. The most recent and relevant results on the promising anti-inflammatory activities of
marine algae related to neuroprotection have been selected.

2. Methods

A PubMed search was conducted. The combinations of terms that we used for this search
were “marine algae and neuroinflammation,” “marine algae and clinical studies,” “marine algae
and inflammation,” “marine algae and toxicity,” and “marine algae.” We also combined the terms
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marine algae and neuroinflammation with fucosterol, phlorotannins, astaxanthin, polysaccharides,
glycoprotein, chlorophyll, lutein, zeaxanthin, violaxanthin, neoxanthin, or β-carotene. No restrictions
were placed on the date of the articles or the language of publication. Studies with a clearly described
methodology were included.

3. Molecular Mechanisms of Neuroinflammation

Neuroinflammation is a defense process aimed to protect both the brain and the spinal cord from
tissue damage or pathogen invasion [8]. Generally, inflammatory processes involve numerous cellular
types and mediators with the aim of separating, via the formation of a glial scar, damaged tissue from
healthy tissue [28]. When an insult occurs at brain level, the immune response is mediated through
cross-talk between the CNS and the periphery. In fact, due to inflammation, blood-brain barrier (BBB)
permeability is increased and leucocytes can infiltrate into the CNS [9].

At the brain level, microglia, astrocytes, and oligodendrocytes constitute the neuroglial cells [29].
Microglia have been demonstrated to be derived from primitive macrophages [30] and are now
considered the resident immune system of the brain [31]. In non-activated conditions, microglia
contribute to brain homeostasis [32] by modulating neuronal survival and maintenance thanks to
the ability to release neurotrophic factors such as basic fibroblast growth factor and nerve growth
factor (NGF) [33]. Acting as immune cells, microglial cells are also responsible for the phagocytosis
of cell debris and contribute to the apoptosis of defective cells [34,35]. More recently, astrocytes,
which are known to be involved in CNS homeostasis by sustaining synapse plasticity, have also been
demonstrated to participate in protective signaling pathways such as those modulated by glycoprotein
gp130, which is crucial for glial cells’ survival [36], and by the transforming growth factor beta (TGFβ),
whose signaling has been shown to exert immunosuppressive effects and to inhibit nuclear factor κB
(NF-κB) nuclear translocation [37].

Beside their neuroprotective properties, the microglia supervise the brain environment by
modulating the immune functions in response to tissue damage, degeneration, and pathogen
infections [38]. Their activation can be triggered by different stimuli such as lipopolysaccharide
(LPS), a well-known toll-like receptor (TLRs) ligand [39], and they represent the first line of defense
against infections [40]. Microglia activation results in both morphological and biochemical changes:
cells lose their shape and begin to secrete inflammatory biomarkers such as cytokines, eicosanoids,
nitric oxide, and ROS [41,42].

Even though neuroinflammation does not usually trigger neurodegenerative diseases, it is directly
involved in neuronal dysfunctions and contributes to neuronal death and to neurodegenerative
disease progression [43]. In fact, diseases such as PD, AD, ALS, and MS, as well as ischemia and TBI,
are associated with chronic inflammation and long-lasting microglia activation [44]. Such chronic
inflammatory states result in an abnormal increased cytokine levels [45], the production of neurotoxic
mediators, and oxidative stress that triggers a pro-inflammatory cycle [46] and amplifies degenerative
processes such as abnormal protein deposition, mitochondrial dysfunction, and BBB permeability
impairment [44,47,48].

Chronic inflammation in neurodegenerative diseases is sustained by TLRs activation at the
glial level [49]. Among TLRs, TLR4 is the most expressed in microglia [50]; its activation has
been demonstrated to be responsible for chronic inflammation in AD, where Aβ-oligomers interact
with TLR4 and increase its expression [51,52], and in PD, where TLR4 protein expression is also
increased in both in vitro and in vivo model systems [53]. Moreover, TLR4 has been found to be
responsible for inflammation in spinal cord injury and stroke [54]. TLR4 activation triggers two
different downstream proinflammatory signaling pathways, leading to cytokine expression. Among
these pathways, the phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) pathway, mammalian
target of rapamycin (mTOR) activation, and mitogen-activated protein kinases cascades (MAPKs)
are the main ones involved and lead to NF-κB activation [7,55,56]. Once activated, PI3K triggers
Akt phosphorylation, which in turn activates mTOR. The mTOR pathway plays a pivotal role in the
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regulation of NF-κB and inflammation [57]. NF-κB signaling is considered particularly important in
every neuroinflammation-related disease. After initial TLR4 activation, the sequence of events that
leads to the translocation of NF-κB to the nucleus includes the activation of the protein IκB kinase,
phosphorylation of the IκB inhibitory protein, and the consequent release of active NF-κB [58]. As a
dimer, NF-κB translocates to the nucleus, where it activates the transcription of its target genes such as
inducible nitric oxide synthase (iNOS), cyclooxygenase (COX2), tumor necrosis factor alpha (TNF-α),
interleukin (IL)-6, and IL-1β by binding to p65-responsive element [56]. During neuroinflammation,
NF-κB signaling is also stimulated in astrocytes [59], where its translocation to the nucleus and the
subsequent cytokines expression is triggered by IL-17-receptor [60] and lactosyl ceramide, a lipid
mediator produced by astrocytes [61]. Astrocytes’ contribution to neuroinflammation and neurotoxicity
has, thus, been demonstrated in models of different neurodegenerative diseases such as brain injury [62]
and spinal cord and nerve injury [63,64], where NF-κB inactivation resulted in positive outcomes.

MAPKs are proteins involved in the regulation of multiple cellular functions. In particular, they
are involved in the regulation of apoptosis, cell differentiation, and proliferation.

In activated microglia, increased signaling of p38 MAPK and c-Jun N-terminal kinases (JNK)
has been described [65]. These MAPKs induce, through the transcription factor activating protein-1
(AP-1), the transcription of proinflammatory genes such as COX2, TNF-α, and IL-6. The involvement
of p38 and JNK signaling in the LPS-activated MG6 microglial cell line has recently been confirmed,
showing that LPS treatment strongly induces phospho-p38/p38 and phospho-JNK/JNK ratio, the AP-1
translocation to the nucleus, iNOS protein expression, and NO production [65].

PI3K/Akt and MAPK are not the only pathways involved in neuroinflammation; the Janus
Kinase/Signal Transducers and Activators of Transcription (JAKs/STATs) signaling pathway represents
a further pathway able to trigger inflammation in the CNS [66]. Several cytokines trigger this pathway
by binding their specific receptors and promoting JAK kinase activity, both in microglia and astrocytes.
Once activated, JAK phosphorylates STAT, which dimerizes and translocates to the nucleus, where it
promotes the expression of cytokine-responsive genes. At least four JAK and seven STAT proteins have
been identified [67]. Specific combinations of JAKs and STATs are involved in the response to different
cytokines, allowing each cytokine to transduce its own message [66]. JAKs/STATs are involved in the
inflammatory response occurring in most neurodegenerative diseases. In MS, endoplasmic reticulum
stress induces astrocyte activation through JAK1/STAT3 signaling [68]. IL-6 and IFN-γ, two major
activators of JAKs/STATs signaling, are elevated in PD [69]; moreover, in primary microglial cell culture
it has been demonstrated that the inhibition of JAK 1/2 prevents the release of NO, TNF-α, and IL-1β
induced by α-synuclein treatment [70,71].

Besides classical inflammatory pathways, non-classical pathways, such as the Hippo pathway,
have been related to neuroinflammation and in particular to astrocyte activation [72]. In its typical
sequence of events, the Hippo pathway involves numerous kinases such as Mst 1/2, Sav1, and Last 1/2.
Last 1/2 phosphorylates and thus inactivates by proteasomal degradation or cytoplasmic retention, two
transcription factors: YAP and TAZ. When dephosphorylated YAP and TAZ migrate to the nucleus,
where they promote the expression of downstream genes [73]. YAP has been found to be highly
expressed in astrocytes and its deletion induced astrocytic activation in both cell cultures and in vivo
studies [72]. In astrocytes, IFNβ induced YAP activation, which, in turn, promoted the expression of
the suppressor of cytokine signaling 3 (SOCS3), a negative regulator of JAK-STAT. In fact, YAP(-/-)
astrocytes showed hyperactivation of the JAK-STAT pathway and astrocyte activation [72].

Neuroinflammation represents a crucial aspect of neurodegenerative disease progression.
Targeting neuroinflammatory pathways seems to be a promising strategy to counteract
neurodegenerative diseases. As different pathways are involved in the onset of neuroinflammation,
compounds with different molecular targets are the best candidates to fight this condition. On these
bases, beside drug development, the study of natural bioactive compounds, thanks to their varied and
complex structures, can help with the identification of effective anti-inflammatory agents.
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4. Marine Algae

Algae are photosynthetic eukaryotic organisms that present a complex and controversial taxonomy.
More than 20,000 species of algae have been identified, and on the basis of their size they are divided in
macroalgae (seaweeds) and microalgae. Macroalgae are multicellular marine plants, while microalgae
are small unicellular or simple multicellular species [74]. Marine macroalgae can be classified into three
classes according to their pigments: Brown (Phaeophyta) Green (Chlorophyta), and Red (Rhodophyta).
The pigments responsible for the algae’s color are: fucoxanthin (Phaephyta); chlorophyll a, b, lutein,
zeaxanthin violaxanthin neoxanthin, and β-carotene (Chlorophyta); phycobilliproteins and lutein,
zeaxanthin, and β-carotene (Rhodophyta). The classification of microalgae is extremely complex
considering the thousands of species present even in small areas of water.

Microalgae are classified into groups based on different characteristics: pigment composition,
morphological variations (rounded, oval, cylindrical, and fusiform cells), the presence of thorns,
cilia, flagella etc. In addition, they can be classified based on their sizes: picoplankton (0.2–2 μm),
nanoplankton (2–20 μm), and microplankton (20–200 μm). Recently, Corrêa et al., at the 16th IEEE
International Conference on Machine Learning and Applications in 2017, proposed a deep learning
technique to solve the problem by using as input low-resolution images [75].

Marine algae are composed of various substances: carbohydrates, lipids, proteins, amino acids,
vitamins, minerals, and secondary metabolites such as phytosterols and polyphenols [76]. The chemical
composition of macroalgae is considerably different between species and dependent on the season
(sunlight), habitat (salinity, depth in the sea), and environmental conditions.

4.1. Carbohydrates

Among the various components, carbohydrates are the most abundant constituents of marine
algae. Moreover, polysaccharides are usually the major component of red, green, and brown
algae [77,78], and monosaccharides and oligosaccharides are also present. The storage polysaccharide
is laminarin in brown algae and floridean in starch (more branched than amylopectin) in green
and red algae. Algae cell walls are characterized by the presence of uncommon polysaccharides
that can be sulfated, acetylated, etc. Marine algae carbohydrates are promising compounds in
various fields, such as food, pharmaceutical, and biomedical. Noteworthy therapeutic applications
are due to their antiviral, antibacterial, and antitumoral activities, antioxidant, antilipidemic, and
antiglycemic properties, and anti-inflammatory and immunomodulatory characteristics. In particular,
alginate-derived oligosaccharides inhibit neuroinflammation [79]. Laminarin (a polysaccharide
composed of (1,3)-β-d-glucan with β(1,6) branching), particularly abundant in Laminaria species, has
been demonstrated to possess antibacterial and chemopreventive activities, together with prebiotic
activity [80], important in modulating gut microbiota, which in turn can regulate neuroinflammation [81].
Algae polysaccharides have been also utilized in the cosmeceutical industries due to their chemical
and physical properties exhibiting potential benefits for skin [82].

Table 1 shows the different carbohydrates of brown, green, and red macroalgae.
The oligosaccharides derived from polysaccharides are also important. They are produced by chemical
or enzymatic hydrolysis and present numerous activities such as antioxidant, anti-inflammatory, and
anti-melanogenic [83–87]. Microalgae also produce polysaccharides, and release in particular sulfated
polysaccharides (carrageenan, ulvan, and fucoidan) [88–90]. Polysaccharides found in the cell wall vary
among microalgae genera and species. Microalgae present an advantage with respect to macroalgae
because they are easy to grow and culture and do not depend on the climate or season.
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Table 1. Carbohydrates in marine algae.

Carbohydrates Brown Macroalgae Red Macroalgae Green Macroalgae

monosaccharides

glucose, galactose,
xylose, fucose, uronic
acid, glucuronic acid

mannuronic acid,
guluronic acid

glucose, galactose,
mannose

glucose, mannose, xylose,
rhamnose, glucuronic acid,

uronic acid

polysaccharides
laminarin alginate,

fucoidan (sulphated),
cellulose, mannitol

carrageenans (sulfated),
agar (sulfated), floridean
starch, cellulose, lignin,

funoran

ulvan (sulfated), mannan,
galactans (sulfated),

xylans, floridean starch,
cellulose, lignin

To date the ability of algae-derived polysaccharides to counteract neuroinflammation has not yet
been fully explored.

4.2. Lipids

Algae contain different types of lipid phospholipids, non-polar glycerolipids, glycolipids, betaine
lipids, and some unusual lipids, e.g., sulfolipid (sulfoquinovosyldiacylglycerol) sterols [91].

Marine macroalgae have a low lipid content but the proportion of long-chained polyunsaturated
fatty acids (PUFA) is relatively high. In macroalgae, PUFAs are represented by omega-3 and omega-6
fatty acids. The content of PUFAs is generally higher in those living in cold water. Eicosapentaenoic
acid (EPA) is the principal fatty acid. PUFAs have health benefits: they regulate blood clotting and
blood pressure and develop functions of the brain and nervous systems [92,93]. They also decrease the
risk of many chronic diseases such as arthritis, diabetes, and obesity [94,95], and regulate the signaling
of microglia, mostly in the context of neuroinflammation and behavior [93].

Sterols. Among macroalgae, cholesterol is the most representative sterol in all the red algae;
fucosterol, which has anti-inflammatory activity, is the chief sterol in brown algae [96], and in green
algae the dominant sterol is isofucosterol clionasterol. Microalgae are characterized by the presence of
unusual dihydroxysterols, pavlovols, crinosterols, and stigmasterols. It has been proposed that sterols,
due to their ability to cross the blood-brain barrier, can prevent neuroinflammation [97,98], but there
are few reports of the neuroprotective activities of algae-derived phytosterols.

4.3. Proteins and Amino Acids

Macroalgae and microalgae have been used as a source of human nutrition for thousands of
years by some indigenous populations. This is due to their significant protein content, which is even
greater than some ground plant sources. Algae proteins are rich in aspartic and glutamic acid, the
latter contributing to the typical taste (umami). Green macroalgae, and especially red macroalgae,
have a higher protein content than brown macroalgae. Macroalgae also contain a number of bioactive
amino acids and peptides (e.g., taurine, carnosine, and glutathione and mycosporine-like) [99] that
have been demonstrated to exert antioxidant and antiapoptotic effects in the rat brain [100]. Lectins
are a group of glycoproteins isolated from algae [101] that present several properties including
anti-inflammatory [102,103] antibiotic, cytotoxic, mitogenic, antinociceptive, and anti-viral due to their
ability to bind to specific glycan structures [104]. Marine algae, with their high protein content, are
now considered a precious source of bioactive peptides, obtained after enzymatic digestion, with
considerable health potential. These biopeptides have been demonstrated to exhibit antioxidant,
anticancer, antihypertensive, antiatherosclerotic, and immunomodulatory activities [105]. In the future
it is desirable that research address the potential neuroprotective role of these biopeptides, elucidating
their mechanism of action.

190



Int. J. Mol. Sci. 2019, 20, 3061

4.4. Phenols

Phenolic compounds are a class of chemical compounds characterized by hydroxyl groups directly
attached to aromatic hydrocarbon rings. The simplest is composed of one aromatic ring and is called
phenol. Phenolic compounds can be single phenols or polyphenols, depending on the number of
phenol units in the molecule.

Phenols are largely represented in all the organisms belonging to the Plant kingdom; however, the
phenols present in marine algae are different to those produced by terrestrial plants [104].

The best known polyphenols in marine algae are phloroglucinols and phlorotannins. Phlorotannins
can be classified into subclasses: eckols, fuhalols, fucophlorethols, phlorethols, fucols, and ishofuhalols.

The largest proportion of phenolic compounds is in green and red algae (bromophenols, phenolic
acids, and flavonoids). Phlorotannins are found only in marine brown algae [106,107].

Phenols and polyphenols from marine algae have attracted much attention for their anticancer,
antioxidant, antimicrobial, and anti-inflammatory activities [108]. To, date several mechanisms
behind microglial activation have been reported (see Section 3), and research is moving towards
the discovery of alternative anti-inflammatory compounds from natural renewable sources that
could potentially counteract neuroinflammation and, therefore, neuronal injury in neurodegenerative
diseases, characterized by complex and deeply related phenomena. Marine algae rich in phenols are
good candidates for potential application in the nutraceutical sector.

4.5. Isoprenoids

Carotenoids and terpenoids are two important classes of isoprenoids belonging to the marine
algae. Carotenoids contains eight isoprene units, while terpenoids contain five isoprene units.

The carotenoids that consist of only hydrocarbons are carotenes, while those with oxo, hydroxyl,
or epoxy groups are called xanthophylls. The most diffuse carotenoids in marine algae are: β-carotene,
fucoxanthin, astaxanthin, canthaxanthin, and lutein. Fucostantin is mostly present in brown algae and
in planktonic microalgae, while β-carotene is predominant in green microalgae [109,110].

The potential health-promoting effects of these carotenoids are: antioxidant activity,
anti-inflammatory effects, anticancer activity anti-obese effect, antidiabetic activity, hepatoprotective
effect, antiangiogenic effect, and cerebrovascular protective effect [111–113]. In particular, fucoxanthin
has been demonstrated to decrease inflammation and oxidative damage [114] and astaxanthin has
been demonstrated to decrease the expression of IL-6 in activated microglial cells [115], all factors
implicated in the pathogenesis of neurodegenerative diseases.

Brown macroalgae are considered one of the principal source of biologically and ecologically
relevant terpenoids, mainly diterpenes and meroditerpenes [116]. In Sargassum, meroterpenoids
prevail, in particular sargachromenol, which presents anti-inflammatory and neuroprotective effects.
Also, green algae are a source of terpenes, in particular the genus Caulerpa, which is represented by
about 60 species living in tropical and subtropical waters that biosynthesize acyclic and monocyclic
sesqui- and diterpenes [117] with neuroprotective activities.

5. Marine Algae and Neuroinflammation

As previously mentioned, activated microglia are a critical modulator of the neuroinflammation
process, triggering a self-feeding loop with the neighboring astrocytes through the release of
pro-inflammatory cytokines, including TNF-α and IL-1β [118]. In this context, a persistent and
unrestrained neuroinflammatory loop harms neuronal cells and can promote neurodegenerative
diseases [119]. Recent years have been characterized by a huge boost in nutritional research to
discover natural compounds with anti-inflammatory properties and potential neuroprotective capacity.
Marine algae have been part of a healthy diet in East Asia for centuries and represent a rich reservoir
of structurally different bioactive compounds with great potential for pharmaceutical applications.
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Increasingly, reports have shown the anti-inflammatory action of marine algae [120], as well as of their
major components such as phlorotannins and pigments [121–123].

The methanol extract of Ulva conglobata, a green alga consumed as a marine vegetable, has been
demonstrated to possess anti-inflammatory potential [22]. In particular, the extract was tested in
hippocampal neuronal HT22 cells and microglial BV2 cells. In HT22 cells, 40 and 50 μg/mL Ulva
conglobata extract was able to significantly restore cellular viability compared to glutamate-treated cells.
Moreover, Ulva conglobata extract effectively suppressed IFN-γ-induced microglial activation, and
50μg/mL inhibited NO release and reduced the expression of iNOS and COX-2 enzymes. Kim et al. [124]
found that the hexane fraction of brown seaweed Myagropsis myagroides ethanolic extract exhibits the
highest anti-inflammatory activity among different solvent fractions. In LPS-stimulated BV-2 cells,
25 μg/mL Myagropsis myagroides extract had the potential to revert the induction of pro-inflammatory
mediators such as NO, PGE2, and the cytokines IL-6 and TNF-α through the prevention of NF-κB
nuclear translocation and MAPKs phosphorylation. Surprisingly, they did not identify the active
compound responsible for these effects. Meanwhile, another report from the same authors suggested
that the anti-inflammatory activity of Myagropsis myagroides ethanolic extract in LPS-stimulated
BV-2 cells could be completely ascribed to the presence of sargachromenol [125]. A study assessed
the anti-neuroinflammatory capacity of three extracts obtained from Malaysian seaweed: Padina
australis, Sargassum polycystum, and Caulerpa racemosa [126]. All the extracts reduced the elevation of
inflammatory mediators like NO, TNF-α, IL-6, and IL-1β, with the brown seaweeds (Padina, Sargassum)
showing stronger inhibitory activity compared to the green seaweed (Caulerpa).

The so-called “cholinergic hypothesis” suggests a correlation between memory impairment in
AD and the reduction of neurotransmitter acetylcholine [127]. The preservation of acetylcholine
levels could be useful in view of a multitarget therapy. Fucosterol, a sterol mainly found in brown
algae including Padina australis, was isolated to investigate its cholinesterase and inflammatory
inhibitory properties [128]. It was observed that fucosterol inhibits acetylcholinesterase (AChE)
and butyrylcholinesterase (BChE), both responsible for acetylcholine hydrolysis, and significantly
prevents the production of pro-inflammatory mediators in LPS-induced C8-B4 microglial cells and in
Aβ-induced BV-2 microglial cells.

Ecklonia cava, an edible brown alga used for the production of food ingredients, animal feed, and
fertilizers, has been shown to possess anti-inflammatory activity [129,130].

Three of the major phlorotannins that can be found in Ecklonia cava eckol, dieckol, and 8,8’-bieckol,
were investigated for their protective effects against Aβ25-35-induced neuroinflammatory damage in
PC12 cells [130]. The results indicated that all phlorotannins tested possess antioxidant and protective
effects against Aβ damage, while dieckol has the strongest ability to combat apoptosis and Ca2+

overload and more effectively inhibits the increase of inflammatory markers and the protein levels
of p65, the best studied NF-κB subunit. Therefore, the neuroprotective property of dieckol with a
diphenyl ether linkage was greater than that of 8,8’-bieckol with a biaryl linkage, although these two
compounds are both dimers of eckol.

These data were further confirmed by Jung et al. [129], who isolated dieckol from Ecklonia cava
extract, reporting its potential as an anti-inflammatory agent by reducing the release and stimulation
of pro-inflammatory cytokines and enzymes together with an intracellular scavenging activity. Also, a
component from Ecklonia stolonifera, phlorofucofuroeckol B, was identified as a potent suppressor of
inflammation, inhibiting IκB-α/NF-κB and Akt/ERK/JNK pathways [23]. A study conducted by Kim
et al. [131] demonstrated, for the first time, that floridoside, a natural glycerol galactoside from the
red alga Laurencia undulata, possesses the potential to counteract the neuronal damage induced by
neuroinflammation in vitro, preventing ROS and NO overload due to iNOS and COX-2 overexpression.
Among algae pigments, fucoxanthin is one of the main carotenoids found in brown algae [132]. In an
Aβ42 -induced microglial activation model, fucoxanthin significantly reduced the rates of inflammatory
and oxidative damage, protecting DNA from oxidation and attenuating the increasing of inflammatory
enzymes [114]. Astaxanthin, a red carotenoid pigment, occurs naturally in plants and marine seaweeds,
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but also in shellfish and crustaceans [133]. It has been shown to possess a variety of pharmacological
effects, including anti-inflammatory and antioxidative activity [133–136].

Increasing evidence correlates a neuronal inflammation status with the development of
depression [137,138]. In a rat model of LPS-induced depressive-like behaviors, 80 mg/kg astaxanthin
had an antidepressant-like effect due to the restoration of LPS-induced alterations of brain inflammatory
markers (i.e., IL-1β, IL-6, and TNF-α), as well as iNOS, nNOS, and COX-2 expression via the modulation
of NF-κB activation [24].

In addition, Zhang et al. [139] found that astaxanthin administration could alleviate early brain
injury via suppressing the inflammation damage induced by subarachnoid hemorrhage. In particular,
75 mg/kg astaxanthin significantly reduced the elevated cortical levels of inflammatory mediators,
together with the degree of neutrophil infiltration.

A food supplement approved by the U.S. Food and Drug Administration (FDA), named
Aquamin, is a natural multi-mineral derived from the marine red seaweed Lithothamnion corallioides.
Aquamin was evaluated for its anti-neuroinflammatory potential, and in cortical glial-enriched
cells was able to suppress the release of LPS-induced TNF-α and IL-1β. Recently, several authors
suggested that anti-inflammatory and antioxidative agents could prevent the deposition of Aβ and the
subsequent brain damage [140,141]. Indeed, in the promoter of neuronal beta-secretase 1 (BACE1),
the enzyme involved in Aβ buildup, NF-κB DNA consensus sequences are present [142]. So, it
could be beneficial in treating AD to reduce microglia-mediated neuroinflammation and increase
microglia scavenger activity for toxic Aβ aggregates [143]. The ethanol extract of Nannochloropsis
oceanica demonstrated anti-inflammatory, antioxidative, and anti-amyloidogenesis activities in a
mouse model of LPS-induced AD [141]. The authors recently found that the main component of
Nannochloropsis oceanica is eicosapentaenoic acid (EPA), suggesting that it could be responsible for
the neuroprotective effects. The depolymerization of the polysaccharide alginate, found in many
marine brown algae, produces alginate-derived oligosaccharide with various biological activities
depending on the degradation method used [79]. The alginate-derived oligosaccharide produced by
enzymatic depolymerization showed anti-inflammatory activity by repressing the LPS and Aβ-induced
production of inflammatory cytokines and mediators in microglial cells. These effects have been
associated with the inactivation of the TLR4/NF-κB axis [79]. Interestingly, the interaction between
this oligosaccharide and TLR4 promotes the uptake of toxic Aβ aggregates. Regarding the possibility
of alginate-derived oligosaccharide crossing the BBB, the authors declared an average molecular
weight of 1500 Da and previous works demonstrated that oligosaccharides produced by enzymatic
depolymerization are able to pass through the BBB easily [25,144]. Differently, Bi et al. [13] synthesized
a seleno-polysaccharide from alginate-derived polymannuronate. Using in vitro/in vivo models of
microglia and astrocyte activation, the pre-treatment with seleno-polymannuronate reduced the
overgeneration of proinflammatory mediators, including NO, PGE2, TNF-α, IL-6, and IL-1β as well
as iNOS and COX-2, by suppressing the MAPK/NF-κB signaling pathway. Cui et al. [145] assessed
whether fucoidan, a class of fucose-enriched sulfated polysaccharides isolated from Laminaria japonica,
protects dopaminergic neurons from inflammation-mediated damage in a PD inflammatory rat model
induced by an intranigral injection of LPS. Fucoidan was able to improve behavioral deficits in
mice by protecting them from the loss of dopaminergic neurons. Other important anti-AD and
anti-inflammatory effects have been manifested by the glycoproteins purified from brown alga Undaria
pinnatifida [146]. Undaria pinnatifida displayed dose-responsive inhibition for AChE and BChE with
an IC50 of 63.56 and 99.03 μg/mL, respectively, and has been shown to inhibit BACE1, acting on the
neurotransmitter acetylcholine and on the formation and accumulation of Aβ aggregates. Moreover,
Undaria pinnatifida promotes cell survival and neurite extension, preventing inflammation status.

Epidemiological studies demonstrate a negative correlation between the use of non-steroidal
anti-inflammatory drugs (NSAIDs) and the incidence of inflammation in the nervous system, which in
turn participates in the development of neurodegenerative diseases [120]. The NSAIDs’ mechanism
of action involves the inhibition of the inflammatory mediator release. Marine algae can control the
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inflammatory process in microglia, suggesting their potential role as neuroprotective agents. Moreover,
the signaling pathways involved in the neuroprotective activity of algae are multiple. The complexity
of neurodegenerative diseases makes them difficult to counteract with single-target molecules. In
this context, marine algae, with their pleiotropic effects, have a great potential for application as
anti-neuroinflammatory agents. However, further studies are needed, along with clinical trials to
confirm marine algae’s anti-neuroinflammatory activity.

6. Conclusions

The wide range of biological and bioactive molecules found in marine algae represents a challenge
for researchers involved in the study of neuroinflammation/neurodegeneration processes. Marine
algae extracts and many marine algae constituents belonging to different chemical classes have been
demonstrated to exert preventive/protective effects against neuro-inflammation (Table 2). In particular,
they have been demonstrated to be effective in reducing inflammatory mediators like NO, TNF-α,
IL-6, and IL-1β, in downregulating inflammatory enzymes like iNOS and COX-2, and in modulating
the signaling pathways that lead to NF-κB activation. Moreover, most of the compounds isolated
from marine algae have also shown antioxidant activity. Oxidative stress represents a hallmark
of neuroinflammation and its counteraction could be a successful strategy in the prevention of
neurodegeneration. ROS production is strictly related to neuro-inflammation, and marine algae
compounds with both antioxidant and anti-inflammatory activities are good candidates to counteract
neurodegeneration thanks to their pleiotropic activity. A better knowledge of these molecules should
be associated with an implementation in the extraction and purification procedures in order to obtain
marine algae extracts with standardized concentrations to be applied in in vitro studies. In fact, the
choice of an appropriate extraction method can deeply influence the presence and concentration of
the bioactive compounds. Moreover, the ability of marine algae constituents to cross the blood-brain
barrier has not been investigated, which calls into question the possibility of developing them as
neuroprotective agents. Also, studies on potential adverse effects are lacking. Although still in
their infancy, studies on the anti-neuroinflammatory effects of marine algae compounds should be
corroborated by clinical trials. Currently there is a paucity of information reported in the literature,
which only contains studies on in vitro or animal models. Human studies could strengthen the choice of
marine algae products as potential nutraceutical compounds for the prevention of neuro-inflammation.

Table 2. Studies showing anti-neuroinflammatory activities of marine algae.

Marine Algae
Extract/Bioactive

Compound
Treatment Conc. Experimental Model Key Findings

Ulva conglobata
methanol extract 10-50 μg/mL

mouse hippocampal
HT-22 cells; mouse

microglial BV-2 cells

Restoration of cellular viability in
HT-22 cells; downregulation of

COX-2 and iNOS in BV-2 cells [22]

Exane fraction of
Myagropsis myagroides

ethanolic extract
5-25 μg/mL mouse microglial

BV-2 cells

Decreased release of inflammatory
cytokines, inactivation of NF-κB
and reduced mRNA and protein
levels of iNOS and COX-2 [124]

Myagropsis myagroides
ethanolic extract 5–25 μg/mL mouse microglial

BV-2 cells

Reduction in NO, PGE2, IL-6,
IL-1β and TNF-α release;

inhibition of ERKs-JNKs/NF-κB
axis [125]

Padina australis,
Sargassum polycystum
and Caulerpa racemosa

extracts

0.05–0.4 mg/mL mouse microglial
C8-B4 cells

Decreased release of
pro-inflammatory mediators (NO,

PGE2, IL-6, IL-1β and TNF-α)
[126]
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Table 2. Cont.

Marine Algae
Extract/Bioactive

Compound
Treatment Conc. Experimental Model Key Findings

Fucosterol from
Padina australis 0.004–192 μM mouse microglial

C8-B4 and BV-2 cells

Inhibition of AChE and BChE;
reduction in release of NO, PGE2,

IL-6, IL-1β and TNF-α in
LPS-stimulated C8-B4 cells;

prevented production of NO, IL-6
and TNF-α in Aβ42-stimulated

BV-2 cells [128]

Eckol, dieckol and
8,8’-bieckol from

Ecklonia cava
1–50 μM rat neuronal PC12

cells

Antioxidant activity;
anti-apoptotic effects; decrease in

key inflammatory proteins
(COX-2, iNOS, IL-1β and TNF-α)

[130]

Dieckol from Ecklonia
cava 50–300 μg/mL mouse microglial

BV-2 cells

Inhibition of LPS-induced iNOS
and COX-2 protein and mRNA
expression; suppression of p-38/

NF-κB pathway; ROS scavenging
activity [129]

Phlorofucofuroeckol
B from Ecklonia

stolonifera
10–40 μM mouse microglial

BV-2 cells
Inhibition of IκB-α/NF-κB and
Akt/ERK/JNK pathways [23]

Floridoside from
Laurencia undulata 1–50 μM mouse microglial

BV-2 cells

Inhibition of LPS-induced NO and
ROS production; downregulation
of COX-2 and iNOS mRNA and

protein levels by reducing p38 and
ERK phosphorylation [131]

Fucoxanthin 5–50 μM mouse microglial
BV-2 cells

Attenuation of Aβ42-induced
cytokines release (NO, PGE2, IL-6,
IL-1β and TNF-α) and enzymes
upregulation (COX-2, iNOS) by

suppressing MAPKs
phosphorylation; protection from
H2O2-induced ROS release and

DNA damage by recovering
antioxidant enzymes [114]

Astaxanthin 20–80 mg/Kg male ICR mice

Reversed LPS-induced
depressive-like behaviors;

attenuation of cytokines level
(IL-6, IL-1β and TNF-α) and

antagonization of iNOS, nNOS
and COX-2 expression in the
hippocampus and prefrontal

cortex [24]

Astaxanthin 75 mg/Kg male
Sprague-Dawley rats

Amelioration in cerebral edema,
blood-brain barrier disruption,
neurological dysfunction and

neuronal degeneration after the
induction of subarachnoid

hemorrhage; downregulation of
NF-κB activity, and intercellular
adhesion molecule-1, IL-1β and

TNF-α expression [139]
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Table 2. Cont.

Marine Algae
Extract/Bioactive

Compound
Treatment Conc. Experimental Model Key Findings

AquaminTM 0.05–2 mg/mL

cortical glial-enriched
cultures from

Sprague-Dawley rat
pups

Attenuation of LPS-induced IL-1β
and TNF-α secretion [147]

Nannochloropsis
oceanica ethanol

extract
50–100 mg/Kg male ICR mice

Decrease of ROS and
malondialdehyde levels;

improvement of LPS-induced
memory impairment; suppression

of Aβ42 generation by
downregulating APP and BACE1

expression [141]

Alginate-derived
oligosaccharide 50–500 μg/mL mouse microglial

BV-2 cells

Inhibition of LPS/ Aβ42-induced
NO and PGE2 production, COX-2

and iNOS expression, and
cytokines secretion; attenuation of
TLR4 and NF-κB overexpression;
promotion of Aβ phagocytosis

[79]

Seleno-polymannuronate 0.5 mg/mL,
0.8 mg/mL

primary microglia
and astrocytes from
BALB/c mouse pups;
female BALB/c mice

In LPS-activated primary cells,
attenuation of NF-κB and MAPK
signaling with the reduction of

NO, PGE2 production,
downregulation of COX-2 and

iNOS expression, and IL-6, IL-1β
and TNF-α secretion; decrease of
Iba1- and GFAP-positive cells in
the brain of a mouse model of

LPS-induced inflammation [13]

Fucoidan 7.5 mg/Kg, 15 mg/Kg;
31.25–125 μg/mL

male
Sprague-Dawley rats;

primary microglia
from neonatal

Sprague–Dawley rats

Improvement of behavioral
deficits and prevention of
dopaminergic neuron loss;

inhibition of ROS and TNF-α
release [145]

Glycoprotein from
Undaria pinnatifida 5–45 μg/mL

primary
hippocampal cells
from embryonal

Sprague–Dawley rats

Inhibition of AChE, BChE and
BACE1; promotion of cell survival

and neurite extension [146]
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Abbreviations

AChE Acetylcholinesterase
AD Alzheimer’s disease
ALS Amyotrophic lateral sclerosis
AP-1 Activating protein 1
A- Amyloid beta
BACE1 Beta-secretase 1
BBB Blood-brain barrier
BChE Butyrylcholinesterase
CNS Central nervous system
COX-2 Cyclooxygenase-2
EPA Eicosapentaenoic acid
HD Huntington’s disease
IL Interleukin
iNOS Inducible nitric oxide synthase
JNK c-Jun N-terminal kinases
LPS Lipopolysaccharide
MAPKs Mitogen-activated protein kinases cascade
MS Multiple sclerosis
NF-κB Nuclear factor κB
NGF Nerve growth factor
nNOS Neuronal nitric oxide synthase
NO Nitric oxide
NSAIDs Non-steroidal anti-inflammatory drugs
PD Parkinson’s disease
PGE2 Prostaglandin E2
PUFA Polyunsaturated fatty acids
TBI Traumatic brain injury
TGFβ Transforming growth factor beta
TLRs Toll-like receptor
TNF-α Tumor necrosis factor alpha
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Abstract: Over the last two decades, the increase in the incidence of neurodegenerative diseases due
to the increasingly ageing population has resulted in a major social and economic burden. At present,
a large body of literature supports the potential use of functional nutrients, which exhibit potential
neuroprotective properties to mitigate these diseases. Among the most studied dietary molecules,
polyphenols stand out because of their multiple and often overlapping reported modes of action.
However, ambiguity still exists as to the significance of their influence on human health. This review
discusses the characteristics and functions of polyphenols that shape their potential therapeutic
actions in neurodegenerative diseases while the less-explored gaps in knowledge of these nutrients
will also be highlighted.
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1. Introduction

It is widely acknowledged that nutrition plays a key role in the occurrence and progression of
non-communicable diseases. A body of epidemiological evidence shows that a diet rich in fruit and
vegetables reduces the incidence of cardiovascular diseases [1–4], type 2 diabetes [5,6], stroke [7,8]
and numerous cancers [9–11]. Other studies find an inverse association between the consumption of
green tea and cognitive decline [12,13]. These observed health benefits are thought to be at least partly
attributable to a class of non-essential nutrients named polyphenols, found abundantly in fruits and
vegetables [14,15].

Together with cancer and cardiovascular diseases, neurodegenerative disorders constitute a
potential application for the benefits of polyphenols [16,17]. This includes Parkinson’s and Alzheimer’s
diseases which lack clear etiopathogenetic origins and arise from the interaction between aging,
environment and genetic risk factors. The etiology of these diseases is further complicated by a
number of proposed causative mechanisms, including oxidative stress, neuroinflammation, protein
aggregation, iron toxicity and mitochondrial dysfunction. Polyphenols are reported to improve many
of these factors at a cellular level, which makes their use in complex neurodegenerative disorders
compelling. In this review, the properties that may influence the functionality and bioavailability of
dietary polyphenols in the central nervous system (CNS) are discussed with a particular focus on
therapeutic applications and limitations.
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2. Chemico-Structural Characteristics

2.1. Classification

Plant polyphenols were originally classified in the early literature as “vegetable tannins” owing
to their tanning action on animal skins [18]. The first comprehensive description, referred to as the
White–Bate-Smith–Swain–Haslam (WBSSH) definition, recommended that the term polyphenol be
exclusively used to describe water-soluble phenolic compounds having a molecular mass ranging
between 500 to 4000 Da, possessing at least 12 phenolic hydroxyl groups and 5 to 7 aromatic rings per
1000 Da [19]. A less restrictive interpretation was proposed offering a broader view of the WBSSH
definition to include simpler phenolic compounds with potential biological activities others than
tanning [20]:

“The term “polyphenol” should be used to define compounds exclusively derived from the
shikimate/phenylpropanoid and/or the polyketide pathway, featuring more than one phenolic unit
and deprived of nitrogen-based functions. This definition lets out all monophenolic structures as
well as all their naturally occurring derivatives such as phenyl esters, methyl phenyl ethers and
O-phenyl glycosides.”

A majority of plant polyphenols originate from phenylalanine which is deaminated to cinnamic
acid, which then enters the phenylpropanoid pathway [21]. Plant metabolism utilizes the
phenylpropanoid unit C6-C3, a phenol ring with a 3-carbon side chain, as a building block to construct
polyphenols. Classification of the resulting molecules is dictated by the number of phenol rings (C6) they
contain and the structural elements binding these rings to one another. The main subclasses, varying
in complexity, are phenolic acids (C6-C3 and C6-C1), flavonoids (C6-C3-C6), stilbenes (C6-C2-C6)
and lignans (C6-C3-C3-C6). Within these subclasses, hydroxylations and O-glycosylations at various
positions as well as cis-trans isomerization give rise to the thousands of polyphenols (estimated to be
>8000) identified to date, resulting in a complex range of molecules with potential pharmacological
values. Details of these polyphenols alongside their occurrence in various food products are available
on databases such as Phenol-Explorer managed by the Institut National de la Recherche Agronomique
(www.phenol-explorer.eu).

2.2. Structure versus Biofunctionality in Neuroprotection

The structural properties shared by polyphenols are important to their potential therapeutic
applications, particularly in neuroprotection. These include the presence of phenol rings, variable
hydroxylation patterns and conjugated double bonds all of which grant polyphenols metal-chelating,
fibril-destabilizing, estrogen-like, enzyme-binding and antioxidative properties. These modes
of action allow polyphenols to provide a defense against many pathophysiological aspects of
neurodegenerative diseases, namely oxidative stress, neuroinflammation, protein aggregation, iron
toxicity and mitochondrial dysfunction. These are detailed below:

The redox properties of divalent metals, such as copper, zinc and iron, are essential for cellular
homeostasis. When in excess, however, these metals generate surplus reactive oxygen species. This
excess can be reversed by chelation with polyphenols that possess at least one galloyl or catechol group
(hydroxyl groups in the ortho-position) which are powerful bidentate chelators of divalent metals [22],
whereas polyphenols having only a phenol substitution (one hydroxyl function) or possessing a
resorcinol group (meta-position hydroxyl pair) are less potent monodentate chelators [23,24]. For
chelation to occur, a deprotonation step of the phenolic group is necessary and has been shown to be
possible at physiological pH [23].

Self-assembly of amyloidogenic fibrils including tau, beta amyloid (Aβ) and α-synuclein all
neuropathologically relevant proteins involves interactions between aromatic residues [25]. Using
similar aromatic interactions, as described above, phenol moieties in polyphenols can interfere with
fibril assembly [26], possibly by weakening cross-β structures. This interference seems to arise from
hydrophobic and π stacking interactions [27], although the formation of covalent bonds through
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Schiff base reactions has also been proposed for the green tea polyphenol epigallocatechin-3-gallate
(EGCG) [28,29]. Analysis of binding energies between polyphenols and protein fibrils has also shown
favorable entropic and enthalpic dynamics that suggest the stabilization of H-bonds [30].

Polyphenols, referred to as phytoestrogens, have the ability to bind estrogen receptors (ERs),
usually with a greater affinity for ERβ [31,32]. Depending on structure, dose, cell type and estrogen
response element (ERE) sequence, different polyphenols have a weak or strong antagonistic or agonistic
effect on ERs, resulting in a wide spectrum of activities in cells [33–36]. To enable binding to ERs,
a structure should be composed of a phenolic ring with a configuration resembling that of estradiol, as
found in flavonoid isoflavones or the stilbene resveratrol, for instance. Also, a specific hydroxylation
pattern and an adequate distance between substituted hydroxyl groups are necessary to bind ERs.

Polyphenols can also share structural similarities with endogenous ligands, such as cyclic
adenosine monophosphate (cAMP) or nucleoside triphosphates, endowing them with the aptitude
to activate or inhibit key enzymes [37,38]. To date, the modulatory effects of several polyphenols
on enzymes have been confirmed in cellular or animal models, these include resveratrol on cAMP
phosphodiesterases [39], theaflavins on the adenosine triphosphate (ATP) synthase and respiratory
chain [40] and curcumin on glyoxalase 1 [41]. The presence of appropriately spaced ketone and
hydroxyl groups in a planar configuration, bestow some polyphenols, such as curcumin, with the
ability to mimic an enediolate intermediate in physiological conditions [42] is an example of structural
elements that make enzyme binding possible.

Apart from the functions described above which result from the unique chemical structures of
polyphenols, the most vastly studied characteristic of this class of chemicals is their antioxidative action.
Polyphenols are thought to exert their antioxidative action directly, by scavenging free radical species
firsthand, and/or indirectly, by activating endogenous antioxidative pathways. Direct antioxidative
effects usually occur through H-atom transfer from polyphenols’ (ArOH) hydroxyl (OH) groups to the
free radicals (R•):

ArOH + R• → ArO• + RH (1)

The existence of multiple conjugated double bonds in polyphenols allows unpaired electron to be
delocalized over the aromatic ring, yielding a much more stable and much less reactive, polyphenolic
radical (ArO•) (Equation (1)). Some polyphenols also exert indirect antioxidative effects through the
Kelch-like ECH-associated protein 1/nuclear factor erythroid 2-related factor 2/antioxidant response
elements (Keap1/Nrf2/ARE) regulatory pathway made possible by the presence of electrophilic
functions (α,β-unsaturated carbonyl group, 1,2- and 1,4-quinones or other groups) that alkylate
thiol sensors in the cysteine pocket of Keap1 [43,44]. Others, like stilbenes, engage their resorcinol
hydroxyl functions in hydrogen bonds with the Kelch pocket of Keap1 [45]. Both these events lead to
the disruption of the Keap1/Nrf2 complex, allowing Nrf2 to translocate to the nucleus where it can
trigger the expression of antioxidant proteins like heme oxygenase-1 via binding of adenylate and
uridylate (AU)-rich elements (AREs). This cysteine-modifying function of polyphenols may also have
implications for the activity of various other enzymes [44].

3. Factors Influencing Pharmacokinetics and Bioavailability

To be effective in the prevention or amelioration of neurodegenerative diseases, polyphenols must
be bioavailable. Extensive reports on the bioavailability of the most common dietary polyphenols can
be found elsewhere [46–48]. In this review, we will first discuss the obstacles that hinder polyphenol
bioavailability and address CNS permeability in particular.

3.1. Food Matrix or Vehicle

Oral administration is the most usual route if polyphenols are given pharmacologically but this
often conflicts with bioavailability. Particular factors include interaction with vehicle, transformations
by digestive and microbial enzymes and absorption by the gastrointestinal tract [49].
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Food matrices are central to the efficacy of polyphenols [50]. Few studies have been conducted and
inconsistent results have been obtained, demonstrating either a negligible [51,52] or a significant [53–56]
contribution of the food matrix to polyphenol absorption. Indeed, peculiar factors such as the type
of lipid matrix used may mediate in the release of polyphenols in the gastrointestinal tract [57,58].
Ethanol may also play a role in polyphenols absorption with studies showing improved bioavailability
of quercetin in rats when administered in 30% ethanol, an alcohol content that is unsustainable in
the diet [59]. In humans administered normal or dealcoholized red wine there was no differences in
plasma levels of catechin but increased catechin excretion with red wine probably due to a diuretic
effect of alcohol [60]. However, matrix effects are too peculiar to be fully reviewed here.

3.2. Gastrointestinal Transformations and Absorption

Absorption and metabolism of polyphenols have extensively studied (see for review,
References [61,62]). Whereas aglycones are normally well absorbed by the small intestine, nutritional
polyphenols are more commonly present as glycosides, esters and polymers, which cannot be efficiently
assimilated in the upper portion of the gut.

Molecules not absorbed in the upper gastrointestinal tract continue to the colon to become
substrates for the gut microbiota, responsible for a very wide array of reactions, some of which yield
monomers or aglycones from glycosylated polyphenols (see for review [63]). Smaller, better-absorbed
phenolic acids may also be produced by the gut microbiota. For example, microbiotic degradation
of quercetin mainly generates 3,4-dihydroxyphenylacetic, 3-methoxy-4-hydroxyphenylacetic
(homovanillic acid) and 3-hydroxyphenylacetic acid [64]. In volunteers challenged with 75 mg
of rutin, a quercetin glycoside, the total urinary excretion of microbial metabolites accounted for as
much as 50% of the ingested dose [65]. Importantly, the sum of these gastrointestinal transformations
and food matrix interactions can either increase or decrease the absorption of the resulting metabolites
in the bloodstream.

3.3. Plasma Bioavailability, Transformations and Cellular Uptake

Once in the blood stream, enzymes in the liver and kidneys further modify polyphenols into
various conjugated forms, a process that serves to detoxify potentially harmful substances. Molecules
are rendered more hydrophilic in order to facilitate their urinary elimination, which usually lowers
bioavailability [66,67]. While metabolites usually constitute the greatest fraction of circulating
polyphenolic species, some forms undergo enterohepatic recirculation via biliary secretion, followed
by deconjugation into free polyphenols by the gut microbiota and reabsorption in the colon [68–70].
Additional hepatic reactions may also occur which revert circulating metabolites back to the free
form [71–73], as is the case for the conversion of resveratrol sulphate to bioactive resveratrol by
sulphatases in humans [73]. Moreover, glucuronide and sulphate metabolites retain some of their
beneficial effects in vitro [74,75]. Thus, chronic administration of polyphenols may be an efficient
strategy to increase plasma bioavailability in humans, as reported for epigallocatechin-3-gallate
(EGCG) [76].

The final step in the action of polyphenols is cellular uptake, which depends not only on how
they have been metabolized but also on their interaction with circulating proteins, fatty acids and
lipoproteins [77] with the bioefficacy of therapeutic agents heavily relying on binding to such serum
transporters [78]. Resveratrol for example, is lipophilic which requires transformation into a more
hydrophilic form, by sulphation, glucuronidation or binding to proteins enabling circulation in
appropriate concentrations [79]. The formation of complexes between resveratrol and transporter
proteins, principally albumin [80–82] and lipoproteins [83–86], impedes its uptake by cells [79]. Fatty
acids are also known to improve the ability of resveratrol to bind transporter proteins [87].

While the binding by transporter proteins diminishes the availability of the free form of the
polyphenol, it is thought to provide a polyphenol reservoir, important in the systemic distribution of
bound species [77]. Some studies have proposed that these complexes are retained at the cell membrane
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by albumin and lipoprotein receptors, offering a carrier-mediated mechanism by which polyphenols
may gain entry to cells [77] in addition to passive diffusion [79]. There is also the possibility that
polyphenols need not enter cells to have an effect, as when free resveratrol binds integrin αVβ3 [88] to
produce an angiosuppressive effect (Belleri et al., 2008) and when it triggers p53-dependent apoptosis
of breast cancer cells [89].

3.4. Accumulation in the Brain Parenchyma

Drugs targeting the brain must ultimately be able to accumulate in the brain parenchyma, in
a biologically active form and in sufficient concentrations. Three important obstacles stand in the
way of this: the blood-brain barrier (BBB), efflux transporters and multidrug resistance-associated
proteins [90,91]. Youdim and colleagues were the first to demonstrate polyphenols crossing the
BBB in an in vitro model, describing superior penetration of lipophilic (methylated conjugates) in
comparison to hydrophilic molecules (sulphated or glucuronidated) [92,93]. Another study identified
a stereoselective process in the passage of flavonoid catechins across the BBB [94]. Yet, the exact
mechanisms polyphenols use by to traverse the BBB in vivo, either via diffusion or via transporters,
remains to be elucidated.

Although information on transport of polyphenols into the brain is limited compared to the
measurement of plasma levels, an increasing number of studies have measured polyphenols and
metabolites in the brains of rodents and pigs [95], as reviewed elsewhere [90,96,97]. Entry into the CNS
of the most commonly studied polyphenols has been reported several times, for resveratrol [67,98–101],
EGCG [102,103] and quercetin [93,104–106].

However, differences in uptake are reported depending on the route of administration and the
methods used for measurement. For example, in one study, orally administered tritiated resveratrol in
rats (50 mg/kg b.w.) was reported to reach 1.7% of the ingested dose in the plasma and below 0.1% in
the brain after 2 h [67]. Interestingly, 18 h after administration, the CNS retained 43% of the resveratrol
measured at 2 h, mainly in the free form. Despite this retention in the brain, resveratrol levels, measured
by high-performance liquid chromatography (HPLC) are lower than in the liver, kidney, testes and
lungs [99]. However, another study was unable to detect brain resveratrol or metabolites in rats
fed a 0.2% resveratrol diet for 45 days using HPLC with a detection limit of 0.5 pmol/mL/mg [107].
Other studies have also used chromatographic methods to measure resveratrol in rat brains using
different protocols. In one study, 15 mg/kg b.w. of resveratrol were administered intravenously (i.v.),
a relatively high dose, with brain tissue concentrations reaching ~0.17 nmol/g after 90 min [99]. Another
study administered escalating oral doses of resveratrol (100–400 mg/kg b.w.) for 3 days and detected
~1.7 nmol/g in the brain by liquid chromatography-mass spectrometry [100].

Some polyphenols are extensively transformed before they reach the brain, which may dampen
their bioavailability, as discussed above. As an example, curcumin is highly lipophilic and, in theory,
should easily gain entry to the brain [108]. However, before reaching the BBB, the free form of curcumin
is rapidly conjugated, rendering it only sparingly bioavailable to the CNS [109]. Conversely, catechins
efficiently cross the BBB after oral administration but are found in glucuronidated and 3′-O-methyl
glucuronidated forms in the brain [102,110]. To date, it remains unclear whether conjugation occurs
before or after entry into the brain. Nevertheless, strategies exist to boost CNS concentrations of the
aglycone form, for example by continuous administration aimed at promoting tissue accumulation [103].
Following 24 h of continuous intragastric administration, EGCG levels in the CNS reached 5–10% of
concentrations measured in the plasma [103]. These results imply, however, that a very high plasma
concentration is needed for EGCG to accumulate in therapeutically reasonable concentrations in the
brain. The necessity of maintaining high circulating concentrations may raise questions regarding the
safety and tolerability of polyphenols.
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3.5. Synergistic Effects

Some polyphenols interact beneficially when administered in combination. Synergistic
pharmacokinetics are at the basis of emerging multi-drug therapies [111–113] developed to surmount
problems of low efficacy, acquired resistance and undesirable side effects in standalone treatments.
Polyphenols synergize via multiple mechanisms, extensively reviewed elsewhere [114–116]. Although
synergistic chemosensitization properties of polyphenols are well known, for example EGCG-induced
downregulation of endoplasmic reticulum stress response elements rendering temozolomide
treatments more efficient in a mouse model of glioma [117], what follows will concentrate solely on
neuroprotective mechanisms.

Underlying the efficacy of herb and plant extracts, different polyphenols may concurrently regulate
the same or separate targets in cells, resulting in a concerted agonistic effect. For instance, combinations
of resveratrol and quercetin [118,119] or epicatechin and quercetin [120] synergize to protect against
amyloid-like aggregation, oxidative stress and oxygen-glucose deprivation in vitro. An earlier report
of synergy between polyphenols showed that treatment of neuronal PC12 cells with suboptimal doses
of resveratrol in combination with catechin conferred greater protection against Aβ toxicity than
the sum of their individual actions [121]. However, when measuring their free radical scavenging
activities, the authors found their combined antioxidative effect to be merely additive, suggesting that
their synergistic neuroprotective competences at combined subliminal doses may depend on other
cellular mechanisms [121]. Very few studies have addressed neuroprotective synergy in vivo though a
combination of polyphenols was found to synergistically rescue photoreceptors in an animal model of
retinal degeneration [122].

Synergy can also occur between polyphenols, drugs and hormones. Many in vitro reports support
this, as is the case for the potentiation of neurite outgrowth by a subeffective dose of brain-derived
neurotrophic factor (BDNF) in conjunction with green tea catechins [123,124], as well as the protection
of primary neurons and astrocytes by a cocktail of suboptimal doses of resveratrol and melatonin via
upregulation of heme oxygenase-1 [125]. One of the first reports of polyphenol-drug synergy in rodents
showed EGCG favorably interacting with rasagiline, an irreversible inhibitor of dopamine-metabolizing
monoamine oxidase B (MAO-B) for the treatment of Parkinson’s disease [126,127]. When administered
alone in suboptimal doses, neither EGCG nor rasagiline were capable of rescuing nigrostriatal neurons
in a 1,2,3,6-tetrahydropyridine (MPTP)-injured mouse model of Parkinson’s disease [128]. However,
in combination these agents in low doses promoted the survival of the dopaminergic nigrostriatal
pathway, demonstrating their synergistic effect. Interestingly, the ability of rasagiline to promote the
expression of BDNF in concert with EGCG-induced induction of protein kinase C produced a sum
agonistic effect converging at their downstream effector Akt/protein kinase B, thought to account
for their neuroprotective action. Other examples of polyphenol-drug synergies exist for valproate
and resveratrol in ischemic stroke [129] as well as for glatiramer acetate and EGCG in experimental
autoimmune encephalomyelitis [130].

Many polyphenols readily regulate absorption in the gastrointestinal tract, clearance at the level
of the kidneys and detoxification in the liver by modulating the activity of transport proteins or
metabolic enzymes, which may improve their own oral availability. This property has potential for
use in Parkinson’s disease by minimizing levodopa methylation in the liver by inhibiting human
catechol-O-methyl transferase (COMT), thereby enhancing bioavailability of the drug [131]. Flavonoids
are also known to be potent inhibitors of cytochrome P450 (CYP) enzymes [132,133] whose activity
reduces polyphenol bioavailability. This potential to enhance bioavailability of metabolism-sensitive
drugs constitutes a clear example of polyphenol synergy that may be relevant in human treatment.

4. Safety and Tolerability

In addition to favorable pharmacokinetics, polyphenols must be safe and well-tolerated in humans.
Several investigations have already addressed safety and tolerability issues (see for review [134–137]).
What follows is a summary of these findings.
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4.1. Side Effects from Dosage and Chronicity

Virtually all investigations performed in humans using a wide array of polyphenol preparations
found that they are safe and tolerable in the short- [138,139], medium- [46,140] and long-term [141–143].
Generally, side effects are uncommon and are mild and transient and include minor gastrointestinal
problems and, more rarely, headaches, dizziness and rashes. In a phase II trial, 24 Alzheimer’s
patients were administered 2 or 4 g of curcuminoids daily for 48 weeks and 3 withdrew due to minor
gastrointestinal issues [143]. A study using a single 5 g/70 kg b.w. intake of resveratrol, representing
1/40 of the nephrotoxic dose and 1/4 of the highest dose reported to be safe in rats [144], did not show
any serious adverse effects [138]. A great number of investigations have also addressed the safety of
specific diets enriched in polyphenol-rich foods. Of particular interest, black cohosh, soy and red clover
regimens aimed at reducing menopausal symptoms in women have proven to be safe, with occasional
mild gastrointestinal issues, musculoskeletal and connective tissue troubles, as well as weight gain
(see for review, Reference [134]).

4.2. Adverse Pharmacological Interactions

While a consensus has been reached on the safety and tolerability of polyphenols in most
individuals, certain contexts preclude their use. Grapefruit juice is an example of the possible
effects of polyphenols under specific conditions. Apigenin, naringenin, nobiletin and hesperetin in
grapefruit juice potently inhibit the detoxifying enzymes, members of the CYP family, responsible
for the metabolism of several prescription drugs [132,145–148]. Interestingly, enzymatic inhibition
is apparently irreversible following the ingestion of 200–300 mL of juice, leading to increased drug
bioavailability and toxicity for up to 24 h after intake. Medical professionals are now mindful of the
risks of consuming grapefruit juice in individuals already taking antidepressants such as buspirone
(Buspar) and sertraline (Zoloft), beta-blockers, anti-cancer agents, fexofenadine (Allegra) or certain
statins (atorvastatin) among other drugs [149–152]. Several other adverse interactions exist between
polyphenols and drugs [153,154] and have been extensively discussed elsewhere [136].

4.3. Tumorigenicity

As previously discussed, certain polyphenols, termed phytoestrogens, are biofunctional due to
their resemblance to steroid hormones. Members of the flavonoid and stilbene subclasses indeed
possess the capacity to bind ERs [155] and testosterone receptors [156], albeit with much lower affinities
than endogenous ligands. Many studies find phytoestrogens to be safe with respect to incidences of
cancers [157,158] and support their role in inhibiting aberrant cell proliferation [159–165]. Nevertheless,
a few publications draw attention to the possible carcinogenic actions of some phytoestrogens that
should not be ignored [166]. In particular, soy genistein and daidzein (0.001–10 μM) may stimulate the
growth of malignant breast tumors, both in vitro and in vivo [166,167].

In the case of the stilbene resveratrol, studies confirm its ability to bind both ERs [168], however
with 7000 times less affinity than estradiol [33]. Interestingly, its effects are apparent for select EREs
regulated by ERα but not for EREs dependent on ERβ activation. Unlike other ERα agonists, resveratrol
does not appear to provoke mammary or uterine tissue proliferation in rats [169] and even promotes
neuronal differentiation in vitro [170]. In light of this, resveratrol’s favorable effects may in fact partially
hinge on tissue-specific expression profiles of ERα and ERβ [171]. More recently, a study delineated
the discriminatory ability of resveratrol to impede inflammation without promoting cell proliferation
through pathway-selective ERα activation [172]. Crystallographic studies of the ligand-binding domain
revealed resveratrol to bind in the opposite orientation to estradiol, which may be at the core of its
pathway selectivity and its proven safety in humans [135], particularly with regard to carcinogenesis.

211



Int. J. Mol. Sci. 2019, 20, 1883

5. Clinical Progress

The therapeutic potential of polyphenols is clear from the overwhelming body of literature
supporting their beneficial effects in countless preclinical disease settings (see for review [16,17]).
Notwithstanding the weight of epidemiological, anecdotal and fundamental evidence, translation
from bench-to-bedside has proven challenging despite relentless efforts to test polyphenols in human
trials (see [90] for a review). Currently, only a single trial looking at polyphenols in neurodegenerative
disease has reached phase III clinical testing [173]. In this randomized, double-blind, placebo-controlled
parallel group study, disease progression will be assessed after 48 weeks of daily oral EGCG treatments
in multiple system atrophy patients.

The example of a standardized Ginkgo biloba extract, rich in flavonoids, yielded particularly
disappointing results with numerous failed phase I trials [106,174–176]. These studies addressed
dementia prevention in large cohorts of healthy or mildly cognitively impaired elderly individuals
administered oral Ginkgo biloba twice daily for several years [177] but no reduction in the incidence of
cognitive decline or Alzheimer’s disease was found [178–182]. Other phase I and II clinical attempts
have also been unsuccessful in confirming the putative positive effects of curcumin in Alzheimer’s
disease patients [143,183]. The reasons behind these results may be due to preclinical models failing to
fulfill their predictive purpose or clinical trials may simply be incapable of detecting the beneficial
effects of polyphenols due to a flawed approach. What is important to keep in mind is that successful
clinical trials are not common, on account of the inherent difficulty of translating applications between
rodents and humans.

To address this, the required recruitment profile for testing Ginkgo biloba extracts was re-evaluated,
yielding positive results in a new round of clinical trials, this time performed in full-blown Alzheimer’s
disease and vascular dementia. These trials successfully uncovered the benefits of several months of a
daily Ginkgo biloba treatment on cognition and neuropsychiatric symptoms [141,142]. Changing the
endpoints and focusing on prefrontal dopaminergic functions in elderly humans with self-reported
mild cognitive decline was another fruitful strategy to reveal the beneficial effects of Ginkgo biloba [184].
Nevertheless, the cholinesterase inhibitor rivastigmine, commercially known as Exelon, has been
shown to be more efficient than Ginkgo biloba in treating Alzheimer’s disease and remains the drug of
choice to ameliorate cognitive impairment in mild to moderate forms of the disease [185].

Several other phase I trials have been successful in confirming small positive effects in healthy
individuals. A variety of polyphenols, including resveratrol, were found to increase cerebral blood
flow without, however, improving cognitive performances in young adults, whether administered in
a single dose [186–188] or chronically over 28 days [189]. However, other groups found that longer
chronic interventions in elderly humans using either cocoa flavanols or resveratrol enhanced dentate
gyrus-related cognitive functions [190] and hippocampal-related memory functions [191], respectively.
In Alzheimer’s disease patients, resveratrol reached phase II trials on the basis of its modulatory
role on neuroinflammation, cognitive decline and cerebrospinal fluid (CSF) levels of Aβ40 [192,193].
Following a twice-daily oral regime for one year, resveratrol and its metabolites were present in the
CSF, validating its ability to cross the BBB in humans [192]. Despite its relatively low bioavailability,
resveratrol remains a candidate for potential use in human neurodegenerative diseases.

6. Future Strategies for Pharmaceutical Development for Neuroprotection

Polyphenols have interesting properties that justify efforts to translate their potential
neuroprotective effects into treatment for human neurodegenerative diseases. However, their
questionable bioavailability, modest effects in humans and the impossibility of applying patent
protection on natural molecules detracts from the appeal of polyphenols for pharmaceutical use.
Nevertheless, several strategies have been used by drug development in recent years to tackle
these issues.

212



Int. J. Mol. Sci. 2019, 20, 1883

6.1. Alternative Preparations and Prodrug Approches

The engineering of novel structural analogues inspired by existing polyphenols or formulating
specific preparations of polyphenols, such as the well-defined Ginkgo Biloba extract 761, may be
patentable options. Among the latest innovations, chemical engineering of pro-drug polyphenolic
structures has shown promising results. For instance, acetylation of EGCG or resveratrol via
esterification of their hydroxyl moieties yields stable pro-drugs in vivo whose acetyl groups can
be hydrolyzed intracellularly by esterases to release the free polyphenol within the cell [194–196].
This strategy minimizes polyphenol auto-oxidation and allows better lipophilicity-dependent cellular
uptake [197–199]. Production of conjugates with improved bioefficacy has also been a good approach
to promote polyphenols absorption and activity. For example, the glutamoyl diester of curcumin is a
more potent neuroprotective agent than curcumin [200] and similar approaches have been deployed
for resveratrol [201,202]. More importantly, prodrugs of resveratrol are promising as recently reviewed
in Biasutto et al. [203], for delivery to the brain parenchyma.

6.2. Alternative Drug Delivery Systems

Another favorable approach is the development of novel encapsulation technologies. Progress
in vehicle formulation has allowed polyphenols to be contained in lipid nanocapsules [204–206],
nanoparticles [206,207], exosomes [208], nanocomposites [209], emulsified formulations [206,210,211]
or in gel form [212]. Several reports demonstrate increased bioavailability for encapsulated polyphenols
in rodents [213,214]. Another unusual approach is the administration of biologically compatible carbon
nanotubes [215] grafted with polyphenols, such as gallic acid [216]. This method was shown to enhance
the antioxidative properties of grafted agents [216] and to improve their ability to traverse biological
barriers [215,217], although the application of such conjugates is still not common, and the outcomes
have not been sufficiently addressed. Possible health concerns of using carbon nanotubes also warrant
further investigations [215,218]. Another simple tactic consists in improving solubility of polyphenols
in circulation, such as for the lipophilic resveratrol [219], via coupling to cyclodextrins, which have
the capacity to form inclusion complexes and this approach has already been exploited in other drug
delivery strategies [220]. Overall, each of these methods has advantages and disadvantages but brain
accessibility is generally augmented owing to improved BBB infiltration by lipophilic vehicles, brain
targeting by encapsulation and blocking the metabolism of polyphenols [221].

6.3. Alternative Administration Routes

In order to target the human brain more efficiently, the route of administration is another variable
that can be altered. The most promising of these is intranasal administration, usually paired with one
of the previously described encapsulation techniques, which has proved successful for brain-targeted
drugs in humans, at least for increased bioavailability and the avoidance peripheral side effects [222,223].
Notable examples are the administration of insulin for the treatment of Alzheimer’s disease [224]
and apomorphine for the treatment of Parkinson’s disease [225]. The mechanisms by which drugs
can be delivered to the brain parenchyma are only beginning to be explored. It would appear
that drugs administered nasally either enter the brain through retrograde axonal transport at the
level of the olfactory sensory cells or by penetration into the CSF across the nasal epithelium [226].
Although studies with polyphenols are scarce in preclinical models [227–229], intranasal curcumin
administration has gained attention (see for review [230]) due to its very poor oral bioavailability [231]
but promising neuroprotective actions. Curcumin is highly lipophilic and may easily cross the
BBB [108] if it is delivered into the bloodstream and protected from enzymatic modifications [232].
While it is generally recognized as a safe route, intranasal administration sometimes leads to minor
adverse effects, principally nasal irritation, constituting a potential problem in the development of
intranasal polyphenol administration [225,233]. More unusual administration systems for polyphenols
include rectal suppositories for efficient systemic distribution, bone-marrow administration for
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immunomodulatory effects and controlled-release implant strategies for targeting tumors. Intrathecal
administration for direct distribution in the CSF of curcumin remains a favorable yet invasive option
for brain targeting (see for review, Reference [230]).

7. On the Topic of Dose-Response

To prove that polyphenols can accumulate in high-enough concentrations in target tissues as the
brain is linked to the antioxidative properties of polyphenols in vitro [234,235].

More recently, the physiological significance of the direct antioxidative actions of polyphenols is
met with skepticism, particularly with regard to the action in the brain, due to limited gastrointestinal
absorption, propensity to undergo biotransformation and rapid excretion by the kidneys [97,236].
On the one hand, H-atom transfer must always occur faster than at least one of the reactions
of free-radical-production cascades (e.g., the limiting step in lipid peroxidation) and this is
improbable [237]. On the other hand, polyphenol concentrations, which rarely exceed micromolar
concentrations in plasma or tissues [238] are substantially inferior to those of endogenous antioxidants
such as ascorbate (30–100 μM) and urate (140–200 μM) [239]. Consequently, it is argued that their
contribution to the total antioxidative capacity of the plasma never exceeds 2% and may therefore be
irrelevant in a physiological context [236,240]. In fact, direct antioxidative effects of polyphenols have
not been measured in the brain [97]. Also, studies demonstrating the anti-inflammatory properties of
polyphenol analogues, other than direct antioxidative actions, challenges the idea that their health
effects stem from their ability to hamper oxidative stress [201,202].

Nowadays, it is acknowledged that high circulating concentrations of polyphenols may not be
required to achieve certain clinical endpoints. Indeed, by interacting with various enzymatic targets,
for instance Keap1, very small doses of polyphenols may benefit from the cascades of events that ensue
in cells. Despite this, efforts continue to focus on enhancing bioavailability rather than on identifying
an adequate dose-response framework that could predict the behavior of this class of molecules. This
oversight may partly account for the apparent difficulty of translating preclinical findings into actual
positive outcomes in humans. Where disappointingly modest clinical benefits have been shown, is
increasing the dose always a judicious strategy? The answer may not be as obvious as once thought.

Explanations have been proposed to explain the bioefficacy of polyphenols at very low doses.
One of these is that polyphenols exert their biological effects in a non-linear fashion by exhibiting
a biphasic dose-response profile. One such model predicts J or inverted U dose-response curves
depending on the endpoint [241,242]. The biphasic theory stipulates low-dose stimulatory and
high-dose inhibitory effects [243,244]. It direct stimulatory effects at low concentrations followed by
biological overcompensation at higher doses [245]. In neuroprotection, hormesis predicts very low
doses as beneficial and higher doses as potentially harmful. The application of this theory is thus
intimately linked with whether polyphenols are indeed stressors that induce a defense response in
cells. This has yet to be confirmed for polyphenols.

At present, the biphasic hypothesis explaining the bioefficacy of polyphenols at very low doses
is gaining momentum, resveratrol constituting the best example. A wealth of reports support
the hormetic action of resveratrol in various applications, ranging from cancer to neuroscience,
extensively reviewed elsewhere [246]. In some instances, resveratrol stimulates cancer cell proliferation
at very low doses but inhibits carcinogenesis in higher concentrations [247]. Other reports show
resveratrol inducing atherosclerotic lesions at high doses, while it remains cardioprotective at lower
concentrations [248]. In neurons, resveratrol promotes survival at very low concentrations but is
neurotoxic at higher doses [121,249]. One study performed in mice and primary cortical neurons
proposed a mechanism possibly underlying the biphasic response of energy-depleted neurons to
resveratrol, showing protection at low doses and toxicity at higher doses [250]. The authors explained
resveratrol’s bimodal effects via its stimulatory action on silent mating type information regulation
2 homolog 1 (SIRT1), whose low-grade activity can suppress oxidative stress [251]. However, when
stimulated by greater doses of resveratrol, SIRT1 expends too much-reduced nicotinamide adenine
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dinucleotide (NAD+) where neurons are already energetically depleted, causing energy failure. During
an ischemic event, resveratrol administration could be either beneficial or detrimental, depending on
dosage and timing and the bioenergetic status of neurons.

At present, these studies are usually performed in pre-clinical models and do not necessarily reflect
what could occur in humans. The best-documented evidence of biphasic dose-responses in humans
is for radiation, for instance in cancer treatments or in atomic bomb survivors [252,253]. However,
reservations remain on the significance of such a dose-response relationship in the human brain, as it is
highly unlikely that polyphenols could ever increase bioavailability in the parenchyma beyond low
concentrations. This means that the observed bioefficacy of polyphenols may already be optimal where
modest benefits are found in trials. Indeed, one distinct feature of the biphasic hypothesis provides
that beneficial effects at low doses stem from cellular overcompensation mechanisms in response to the
polyphenol-induced stress [254]. Beyond the optimal concentration at which maximal benefits are
seen this compensation reaction is slowly overwhelmed by the increasing stress polyphenols directly
exert on the cell. Even at the optimal concentration, these beneficial effects are thus thought to be at
best partial. If this theory holds true, this could explain the results of clinical trials to date, even upon
increasing dosages.

8. Concluding Remarks

The chemical structure of polyphenols confers them metal-chelating, fibril-destabilizing,
estrogen-like, enzyme-binding and indirect antioxidative effects supporting their usefulness in
neurodegenerative diseases. Epidemiological evidence shows a strong association between polyphenol
consumption and reduced occurrence of various neurodegenerative diseases. Preclinical models lend
them neuroprotective properties. Some clinical trials have even been successful in revealing small
but measurable improvements in human health and have confirmed their safety in various settings.
Nevertheless, the limited bioavailability of polyphenols together with their apparent bioefficacy
remains under-explored. Investigators must demonstrate that polyphenols exert significant health
benefits. However, in neurodegenerative diseases, polyphenol trials consistently fail in early clinical
testing. To overcome this, researchers must optimize the design of their trials, subjects (disease
stage, participant profile, cohort age and medical history), polyphenol administration (polyphenol
formulation, route, dosage, frequency and duration) and endpoints (motor symptoms, cognitive decline,
neuroinflammation, neuron integrity, CNS vascular health, etc.). As reviewed here, polyphenols
are sensitive to a great number of physiological conditions that impinge on their bioavailability and
biofunctionality, which may account for the markedly high inter individual variation observed in
clinical investigations, which cannot be explained by biphasic dose-response theories.

Despite a large amount of information from many pre-clinical disease models and applications,
a working theoretical framework that could aid in predicting outcomes in humans cannot be agreed.
A priority would consist of determining the maximal health benefits that could be achieved from
polyphenol monotherapies as they most usually stand alone in trials. Can we really expect standalone
treatments to fulfill hard-to-reach clinical endpoints? If epidemiological evidence is strong for the
protective effects of consuming complex mixtures of polyphenols in food, it may be unjustified to
expect single molecules to be as effective. Perhaps concentrating on the concerted effects between
polyphenols with each other or with other drugs that show partial benefits, such as the MAO-B inhibitor
rasagiline [127] or levodopa [131], may overcome the as yet modest effects in humans. Evaluating
polyphenols in preventive clinical paradigms may also constitute a more realistic strategy.

Besides, recent nutrigenomics data show that the interaction between genes and food bioactive
compounds can positively or negatively influence an individual’s health and possibly will aid with the
prescription of customized diets according to an individual’s genotype. Thus, the next approaches
to clinical research with polyphenols should consider that dietary bioactive compounds such as
polyphenols can be attributed to epigenetic mechanisms such as the regulation of histone deacetylases
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(HDAC) and histone acetyltransferase (HAT) activities and acetylation of histones and non-histone
chromatin proteins [255,256].

Author Contributions: Conceptualization, J.R. and M.-G.M.; Supervision, M.-G.M.; Validation, M.-G.M.;
Visualization, J.R.; Writing—original draft, J.R.; Writing—review & editing, M.-G.M.

Funding: This research was funded by the Natural Sciences and Engineering Research Council (NSERC) of
Canada (no. 04321) to M.-G.M. J.R. is recipient of a Vanier Graduate Scholarship from the NSERC and a Doctoral
Training Scholarship from the Fonds de recherche en santé du Québec.

Acknowledgments: The authors would like to thank Lynda M. Williams (Rowett Institute, University of Aberdeen,
Scotland, UK) for revising the manuscript and helpful suggestions.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

Aβ beta amyloid
AREs uridylate (AU)-rich elements
ATP adenosine triphosphate
BBB blood-brain barrier
BDNF brain-derived neurotrophic factor
COMT catechol-O-methyl transferase
CNS central nervous system
CSF cerebrospinal fluid
cAMP cyclic adenosine monophosphate
CYP cytochrome P450
EGCG epigallocatechin-3-gallate
ERs estrogen receptors
ERα estrogen receptor alpha
ERβ estrogen receptor beta
ERE estrogen response element
HPLC high-performance liquid chromatography

Keap1/Nrf2/ARE
Kelch-like ECH-associated protein 1/nuclear factor erythroid 2-related
factor 2/antioxidant response elements

MAO-B monoamine oxidase B
NAD+ nicotinamide adenine dinucleotide
ArO• polyphenolic radical
SIRT1 silent mating type information regulation 2 homolog 1
WBSSH White–Bate-Smith–Swain–Haslam
MPTP 1,2,3,6-tetrahydropyridine
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118. Gazova, Z.; Siposova, K.; Kurin, E.; Mučaji, P.; Nagy, M. Amyloid aggregation of lysozyme: The synergy
study of red wine polyphenols. Proteins 2013, 81, 994–1004. [CrossRef] [PubMed]
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Abstract: Curcumin is a natural polyphenol component of Curcuma longa Linn, which is currently
considered one of the most effective nutritional antioxidants for counteracting free radical-related
diseases. Several experimental data have highlighted the pleiotropic neuroprotective effects of
curcumin, due to its activity in multiple antioxidant and anti-inflammatory pathways involved in
neurodegeneration. Although its poor systemic bioavailability after oral administration and low
plasma concentrations represent restrictive factors for curcumin therapeutic efficacy, innovative
delivery formulations have been developed in order to overwhelm these limitations. This review
provides a summary of the main findings involving the heme oxygenase/biliverdin reductase system
as a valid target in mediating the potential neuroprotective properties of curcumin. Furthermore,
pharmacokinetic properties and concerns about curcumin’s safety profile have been addressed.

Keywords: curcumin; free radicals; heme oxygenase; neuroprotection; safety profile

1. Introduction

Curcumin (1,7-bis[4-hydroxy 3-methoxy phenyl]-1,6-heptadiene-3,5-dione) is a polyphenol
compound contained in the rhizome of Curcuma longa Linn. Indeed, turmeric contains several
polyphenols, the most abundant being curcumin (~77%), demethoxycurcumin (~15%), and
bis-demethoxycurcumin (~3%) [1]. Considering that curcumin prevails over the other congeners, most
of the literature in this field has explored the beneficial effects of this compound, although a few papers
have studied the physical and biological properties of related curcuminoids [2,3].

In addition to the culinary use due to its spicy and pleasant taste, curcumin has been considered
for thousands of years, by traditional Indian medicine, as an effective remedy in the treatment of several
diseases [4–6]. Chemically speaking, the curcumin structure presents two aromatic rings holding
o-methoxy phenolic groups, linked by an α,β-unsaturated β-diketone moiety (Figure 1) [7].

These three reactive functional sites are responsible for the multiple different biological effects
of curcumin. Indeed, literature data have reported that the antioxidant activity of curcumin as
a free radical scavenger is mediated primarily by the phenolic groups, which undergo oxidation
through electron transfer and hydrogen abstraction mechanisms (reviewed in [8]). On the other hand,
many studies have demonstrated that curcumin exerts beneficial effects by enhancing the cell stress
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response in several experimental models, thus supporting the adjuvant role proposed for this dietary
supplement in free radical-derived disorders, mainly neurodegenerative diseases [6,9]. In this light,
several research studies underlined the pivotal role played by the heme oxygenase/biliverdin reductase
system (HO/BVR) as a determinant of curcumin’s neuroprotective effects (see below). Unfortunately,
despite the huge amount of preclinical studies confirming the pleiotropic effects of curcumin due to HO
modulation, the clinical evidence is not strong enough to include chronic curcumin supplementation
as an effective strategy to prevent or contrast neurodegeneration. One of the reasons behind the
dichotomy between preclinical and clinical results has been identified in curcumin pharmacokinetics
in humans; first of all, the poor bioavailability after ingestion and the effective concentrations reached
in tissues. However, several efforts have been made over recent years to overcome these limitations,
with encouraging results.

The aim of this review is to summarize the preclinical and clinical outcomes which have appeared
in the scientific literature, supporting or contrasting the claimed therapeutic efficacy of curcumin in
neurodegeneration. The reason why the focus has been on the HO/BVR system depends on the several
lines of evidence highlighting its role as a determinant of curcumin neuroprotection. Finally, some
safety issues related to curcumin supplementation have been also reported.

Figure 1. Chemical structure of curcumin.

2. The Heme Oxygenase/Biliverdin Reductase Pathway

Heme oxygenase catalyzes the oxygen- and NADPH-dependent oxidation of hemoproteins’
heme moieties at the alpha-meso carbon bridge, yielding equimolar amounts of ferrous iron, carbon
monoxide (CO), and biliverdin (BV), the latter being further reduced into bilirubin (BR) by biliverdin
reductase [10,11]. Heme oxygenase exists as two main isoforms, named HO-1 and HO-2. Although
these isozymes share the same mechanism of action, their regulation and distribution are quite different.
Heme oxygenase-1 is the inducible isoform and both its gene transcription and protein levels increase
in response to free radicals, e.g., reactive oxygen species and reactive nitrogen species (ROS and RNS,
respectively) [11]. Furthermore, HO-1 is the major isoform detected in both the liver and spleen, even if
it is expressed, at lower levels, in some brain areas, such as the hippocampus and hypothalamus [11,12].
Conversely, the constitutive isoform HO-2 is involved in the physiological turnover of heme and is
mainly detectable in neurons and testes [13,14].

The cytoprotective effects of the HO/BVR system depend on several factors: (i) the degradation
of heme, which may become toxic under unbalanced redox conditions; (ii) the generation of CO,
which improves mitochondrial biogenesis, counteracts NADPH oxidase-induced ROS generation,
activates pro-survival systems (e.g., the protein kinase B/Akt and extracellular signal-related kinase
(ERK)/p38 mitogen-activated protein kinase (MAPK) signaling pathways), modulates the release of
neuroinflammatory mediators (e.g., interleukin-1β and prostaglandins), dilates cerebral and peripheral
vessels, and inhibits platelet aggregation; (iii) the antioxidant and antiviral activities of BR [14–20].
Interestingly, the modulation of both mitochondrial respiratory chains and NADPH oxidase accounts
for CO’s antiproliferative effects [21].

Under oxidative stress and inflammatory conditions, several transcription factors, including
nuclear factor erythroid 2-related factor 2 (Nrf2), nuclear factor k-light-chain-enhancer of activated
B cells (NF-kB), and hypoxia-inducible factor 1 (HIF1), are established as pivotal regulators of HO-1
induction in the brain [22,23]. Among these transcription factors, Nrf2 plays the conservative role of
a positive regulator of HO-1 induction in the development and progression of many diseases [24].
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Conversely, a few negative regulators, such as Keap-1 and Bach1, can modulate the crosstalk between
the Nrf2 and HO-1 [25,26].

3. Curcumin, Neuroprotection, and the HO/BVR Pathway

Over the last 15 years, many papers have appeared in the scientific literature dealing with the
cytoprotective effects of curcumin through the up-regulation of HO-1 (see Table 1).

Table 1. Contribution of HO-1 up-regulation to the biological effects of curcumin in preclinical in vitro
and in vivo models.

Preclinical Model
Curcumin

(Concentration or Dose)
Effect(s) Reference(s)

Endothelial cells 2–30 μM
Enhancement of cellular resistance against
oxidative damage.
Alleviation of vasodilator dysfunction

[27–30]

Renal tubule cells 1–50 μM Cytoprotection.
Inhibition of fibrosis. [31–33]

Anti-Thy 1
glomerulonephritis rats

Nephrectomized rats

100 mg/kg i.p.
75 mg/kg per os

Reduction of renal fibrosis and proteinuria.
Inhibition of lipid peroxidation, inflammation
and renal fibrosis. Amelioration of renal
function.

[34,35]

Hepatocytes 1–50 μM Cytoprotection against cold/rewarming- or
ethanol-induced damages. [36–38]

Monocytes 1–20 μM Activation of ARE-modulated genes via PKCδ.
Inhibition of inflammation. [39,40]

Macrophages 0.5–50 μM Inhibition of inflammation. [41–43]

Cardiac myoblasts 5–30 μM Inhibition of apoptosis.
Cytoprotection against cold-storage damage. [44,45]

Smooth muscle cells 1–20 μM Inhibition of proliferation. [46]

LPS-treated mice 30 mg/kg i.p. Prevention of pulmonary sequestration of
neutrophils. [47]

Pancreatic islets 6–10 μM
Inhibition of islet damage during
cryopreservation.
Improvement of insulin secretion.

[48,49]

Rat testicular injury

200 mg/kg i.v.
200 mg/kg per os for
30 days before and
45 days after injury.

Inhibition of lipid peroxidation and increase in
testicular spermatogenesis.
Reduced lipid peroxidation; improvement of
serum testosterone level.

[50,51]

Fibroblasts 5–25 μM Induction of apoptosis and modulation of
pathological scar formation. [52]

High-fat-diet-fed mice 50 mg/kg per os Improvement in muscular oxidative stress and
glucose tolerance. [53]

Bladder cancer cells 10 μM Modulation of cancer cell proliferation. [54]

Breast cancer cells 5–20 μM Inhibition of tumor invasion. [55]

Hepatoma cells
expressing HCV 5–25 μM Inhibition of HCV replication. [56]

Lung cancer cells
expressing influenza

virus
0.1–10 μM Inhibition of virus-induced lung injury. [57]

Keratinocytes 1–30 μM Anti-inflammatory activity. [58]

Metabolic syndrome in
rats 5 mg/kg i.p. for 6 weeks

Prevention of hyperinsulinemia and
amelioration of endothelial-dependent
relaxation.

[59]

ARE, antioxidant responsive element; HCV, hepatitis C virus; i.p., intraperitoneal route of administration; i.v.,
intravenous route of administration; PKC, protein kinase C.
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The following are the main studies supporting the neuroprotective effects of curcumin via the
modulation of the HO/BVR pathway.

Scapagnini et al. [60] have shown how curcumin (5–25 μM) up-regulates HO-1 in cultured
rat hippocampal neurons and, thus, the polyphenol enhances the cell stress response against
glucose oxidase-mediated oxidative damage. Shin et al. [61] reported that curcumin (200 mg/kg
by intraperitoneal route (i.p.)) reduced kainic acid-induced seizures in mice through the increased
expression of HO-1 and endothelial nitric oxide synthase (eNOS) in hippocampal astrocytes, whereas
Park and Chun [62] demonstrated that curcumin (0.1–10 μM) reduces oxidative stress, apoptosis, and
mitochondrial damage through the direct involvement of HO-1 in BV-2 microglial cells.

These early studies were followed by several others describing the neuroprotective effects of
curcumin in neurovascular disorders. Curcumin (100 mg/kg i.p. or 5–30 μM), via HO-1 over-expression,
was neuroprotective in a rat model of focal ischemia [63] and in rat cerebellar granule neurons exposed
to hemin [64]. In an experimental system of rat hypoxic-ischemic brain injury, curcumin (150 mg/kg
per os for three days) overexpressed HO-1 with a mechanism related to Nrf2 nuclear translocation [65].
In addition, curcumin (1–100 μM) has been shown to up-regulate HO-1 and, through this mechanism,
it prevents oxygen glucose deprivation-induced damage in rat brain microvascular endothelial cells,
a model mimicking the blood–brain barrier (BBB) function [66].

With regard to neurodegenerative diseases, in a rodent model of Alzheimer’s disease (AD), e.g., the
SAMP8 mouse, 500 mg/kg of curcumin in a five month diet increased HO-1 gene expression, together
with regulators of mitochondrial function, e.g., the translocator protein (TSPO) [67]. Similarly, by
up-regulating HO-1, curcumin (1.25–20 μM) inhibited programmed cell death and prevented the loss of
mitochondrial function in SH-SY5Y neuroblastoma cells transfected with appoptosin, a pro-apoptotic
protein overexpressed in AD [68]. Concerning neurodegenerative diseases, curcumin (100 mg/kg
twice a day for 50 days intragastrically) contrasted extrapyramidal symptoms and increased HO-1
expression, through Akt/Nrf2 phosphorylation, in the substantia nigra pars compacta of rats treated
with rotenone, a pharmacological tool able to destroy dopaminergic neurons and, therefore, used to
induce experimental Parkinson’s disease (PD) [69]. It is no longer a hypothesis that the cytoprotective
effects of curcumin against neuroinflammation depend on the inhibition, HO-1-mediated, of cytokine
release and iNOS overexpression in rat microglia [70,71].

Finally, curcumin (15 μM or 200 mg/kg for four days) has been shown to counteract both hydrogen
peroxide-induced damage in human retinal pigment cells [72] and cisplatin-induced ototoxicity in
outer hair cells [73].

As far as the modulation of HO-2 by curcumin and the potential neuroprotective features, only
limited evidence is available. As shown by Yin et al. [74], curcumin (5 μM) up-regulated HO-1 but
down-regulated HO-2 in APPswe transfected SH-SY5Y. In the same experimental system, curcumin was
able to activate phosphoinositide 3-kinase (PI3K) and Akt [74]. By keeping this in mind, it is necessary
to draw the conclusion that in selected experimental settings, the neuroprotective outcomes of curcumin
strictly depend on the fine-tuning of the HO-1/HO-2 balance, in concert with the modulation of other
pro-survival systems, such as PI3K and Akt.

An accurate analysis of both previous paragraphs and Table 1 has drawn attention to the fact
that the concentrations of curcumin responsible for protective effects on various organs and tissues,
primarily on the brain, were obtained with polyphenol concentrations in the micromolar size range.
That said, curcumin, per os, has about a 60% bioavailability, due to a marked first-pass metabolism [9,75].
This implies a low concentration of curcumin in both blood and tissues, even at high doses. Curcumin
plasma levels up to 0.16 μM have been detected in humans treated with polyphenol at supra-maximal
doses (10–12 g/day), whereas at the lowest doses, curcumin (450–3600 mg/day for one week) reached
the plasma concentration of about 0.003 μM [76,77]. In chronic administrations, curcumin (1–4 g/day
for six months) exhibited plasma concentrations in the range of 0.06–0.27 μM [78]. With regard to
tissue levels, the available data are quite limited. In patients suffering from colorectal cancer and
treated with curcumin (1.8 to 3.6 g/day for seven days), concentrations of polyphenol in colorectal
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tumor tissue and normal tissue were about 7 nmol/g and 20 nmol/g, respectively [79]. These data lead
to the conclusion that the plasma concentrations of curcumin that can be reached in the plasma, even
after high dose chronic supplementation, are at least two–three orders of magnitude lower than those
at which the polyphenol has shown therapeutic effects in in vitro preclinical models. The calculation of
the concentrations of curcumin in the tissues is more difficult and may appear less accurate. In the brain,
which is protected by BBB, the achievable curcumin concentrations are even lower than those detected
in the blood and other tissues. These analytical data have important consequences also from a functional
point of view. In subjects with AD, supplementation with curcumin (1–4 g/day for six months) reduced
neither peripheral biomarkers of inflammation (e.g., isoprostanes) nor amyloid-β-peptide (Aβ) serum
levels; importantly, curcumin did not improve cognitive functions—evaluated through the mini-mental
status examination test—in AD patients [78]. Concerning the contribution of the HO/BVR system to
the cytoprotective effects of curcumin, the study by Klickovic et al. [80] is significant, showing how 10
healthy male subjects treated with 12 g curcumin per os, did not have any significant induction of HO-1
gene and protein in peripheral blood mononuclear cells up to 48 h from treatment.

In order to overcome limitations due to the poor bioavailability after ingestion and the low
plasma concentrations, new formulations of curcumin complexed with liposoluble matrices have been
developed (for an extensive review on this topic see [81]) (Table 2).

Table 2. The main pharmacokinetic parameters of curcumin and some of its novel formulations
(adapted from [82]).

Formulation AUC Cmax Tmax T1/2

Curcumin ~312 ng/mL·h a ~ 245 nM a 0.5 h a ~1.0 h a

Curcumin-PLGA ~3224 ng/mL·h b ~ 710 nM b 2.0 h b

Curcumin-TMC ~12,760 ng/mL·h c ~3.3 μM c 2.0 h c ~12 h c

Curcumin-SLN ~42,000 ng/mL·h d ~38 μM d 0.5 h d

a Male Sprague-Dawley rats treated with 250 mg/kg curcumin per os; b male Sprague-Dawley rats treated with
100 mg/kg curcumin-PLGA per os; c Balb/c mice treated with 50 mg/kg curcumin-TMC per os; d male Wistar rats
treated with 50 mg/kg curcumin-SLN per os; AUC, area under the curve; Cmax, peak plasma concentration; PLGA,
poly(lactic-co-glycolic) acid; SLN, solid lipid nanoparticles; Tmax, time necessary to reach the Cmax; T1/2, half-life;
TMC, N-trimethyl chitosan.

Among the matrices complexed with curcumin, the ones that are better characterized, from
a pharmacokinetic viewpoint, are poly(lactic-co-glycolic) acid (PLGA) derivatives, solid lipid
nanoparticles (SLN), and N-trimethyl-chitosan (TMC) [82,83]. Preclinical studies in rodents (Table 2)
have shown how the complexation of curcumin with these different carriers increases the Cmax of both
SLN and TMC (155 times and 13 times greater than curcumin, respectively) markedly, suggesting a
more effective absorption of the active ingredient [82]. Furthermore, the increase in the area under the
curve demonstrates how the presence of SLN or TMC can improve curcumin bioavailability by about
135 times and 41 times, respectively [82]. Finally, an approximately 10-fold increase in the half-life
(T1/2) of curcumin in the case of formulations based on SLN and TMC implies an extension of the
time of persistence of the active agent in the body and, therefore, a more prolonged pharmacological
action [82]. Unfortunately, no studies are available in the literature on the interaction of such novel
curcumin liposoluble formulations and HO. Indeed, few studies which have been carried out using
novel gelatin-based water-soluble formulations of curcumin and remarkable results have been reported.
The oral administration of water-soluble curcumin (2–10 mg/kg per os for 45 days) increased plasma
insulin levels and improved glucose absorption in diabetic rats by up-regulating HO-1 expression
in the pancreas and liver [84]. The same authors supported the beneficial effects of water-soluble
curcumin (2–10 mg/kg per os up to one week) in an experimental model of erectile dysfunction. At a
dose of 10 mg/kg, water-soluble curcumin over-expressed HO-1 and soluble guanylyl cyclase (sGC) as
early as 1 h after treatment, with a concomitant increase in intracavernosal pressure. These effects were
maintained over one week from treatment [85].
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Although not strictly related to any modulation of the HO system, it is worth mentioning a
novel formulation of curcumin complexed with exosomes; these latter are extracellular microvesicles
(diameter ranging from 30 to 100 nm) able to carry several types of agents, thus enhancing their
bioavailability [86]. Interestingly, curcumin-exosome has been shown to improve cognitive function in
a preclinical model of AD, through the inhibition of tau hyperphosphorylation via Akt activation [87].

4. Curcumin’s Safety Profile

In any case, regardless of whether it is pure curcumin or new liposoluble or water-soluble
formulations, it is worth considering the possibility that the administration of high doses of curcumin
causes toxic effects. An organic extract, called turmeric oleoresin, containing a high percentage of
curcumin (79–85%), at the concentration of 50,000 ppm (equivalent to 2600 mg/kg and 2800 mg/kg in
male and female rats, respectively) has been shown to increase the incidence of ulcers, hyperplasia,
and inflammation in the forestomach, cecum, and colon of male and female rats supplemented for
two years [88]. Increased evidence of small intestine carcinomas in male mice supplemented with
curcumin (0.2 mg/kg) has also been described [88]. Furthermore, curcumin (0.5–2% with the diet for
either 2 or 12 weeks) exhibited iron-chelating activity in mice, thus suggesting its involvement in the
onset of hypochromic anemia [88]. Finally, curcumin (1 g or 4 g per os for one or six months) modestly
increased cholesterol plasma levels in Chinese subjects aged 50 years or older [89]. Regarding the
interaction with drug-metabolizing enzymes, curcumin has been shown to inhibit not only several
subtypes of cytochrome P450 (CYP), such as CYP1A2, CYP2A6, CYP2B6, CYP2C9, CYP2D6, and
CYP3A4, but also uridine dinucleotide phosphate glucuronosyltransterases (UGT), sulfotransferase,
glutathione-S-transferase, and organic anion transporting polypeptides (OATP) [9,75,90]. Among
the drugs metabolized by these enzymes, whose blood levels may be altered by curcumin and for
which further research is needed to assess the effects in cases of chronic supplementation, there are
midazolam, talinolol, nifedipine, rosuvastatin, docetaxel, warfarin, clopidogrel, and norfloxacin ([90]
and references therein).

In April 2017, the European Food Scientific Agency (EFSA) pointed out that there is no scientific
evidence strong enough to justify the use of curcumin in inflammatory diseases, such as osteoarthritis
and rheumatoid arthritis [91].

5. Conclusions

In this review, we have summarized the conflicting preclinical and clinical results on the
neuroprotective effects of curcumin. Furthermore, we have made our best efforts to provide a critical
analysis of the pharmacological issues responsible for this divergence, which have precluded the
full development of curcumin supplementation as a useful strategy in neurodegenerative diseases.
The intriguing results, in terms of improved absorption and bioavailability, obtained with lipid- and
water-soluble curcumin formulations, should prompt researchers to transfer this technology to clinical
studies, with the hope of overwhelming the pharmacokinetic limitations experienced with standard
curcumin. The contribution of pharmaceutical companies to scale up and transpose into clinics these
encouraging preclinical results is more than welcome.
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Abstract: Neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s disease
(PD), Huntington’s disease (HD), and amyotrophic lateral sclerosis (ALS), currently affect more than
6 million people in the United States. Unfortunately, there are no treatments that slow or prevent
disease development and progression. Regardless of the underlying cause of the disorder, age is the
strongest risk factor for developing these maladies, suggesting that changes that occur in the aging
brain put it at increased risk for neurodegenerative disease development. Moreover, since there are a
number of different changes that occur in the aging brain, it is unlikely that targeting a single change
is going to be effective for disease treatment. Thus, compounds that have multiple biological activities
that can impact the various age-associated changes in the brain that contribute to neurodegenerative
disease development and progression are needed. The plant-derived flavonoids have a wide range of
activities that could make them particularly effective for blocking the age-associated toxicity pathways
associated with neurodegenerative diseases. In this review, the evidence for beneficial effects of
multiple flavonoids in models of AD, PD, HD, and ALS is presented and common mechanisms of
action are identified. Overall, the preclinical data strongly support further investigation of specific
flavonoids for the treatment of neurodegenerative diseases.

Keywords: oxidative stress; cognitive dysfunction; inflammation; cell death; synapse loss; protein
aggregation; neurodegenerative disease

1. Introduction-What Is Neurodegeneration?

Before reviewing the potential beneficial effects of natural products, and in the case of this review,
specifically flavonoids, on neurodegeneration, it is essential that a definition of neurodegeneration be
established. Over 15 years ago, Przedborski et al. [1] published a comprehensive discussion of this
topic that is still highly relevant today. They defined neurodegeneration generally as “any pathological
condition primarily affecting neurons”. More specifically, they characterized neurodegenerative
diseases as a large, heterogeneous group of neurological disorders that affect distinct subsets of
neurons in specific anatomical locations. They also noted that a number of disorders that are either not
primary neuronal diseases or where neurons die of a known cause, such as hypoxia or poison, are
not neurodegenerative diseases. While hundreds of neurodegenerative disorders are known, most of
the attention has focused on four: Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s
disease (HD), and amyotrophic lateral sclerosis (ALS), although others, such as frontotemporal
dementia (FTD), are as common, if not more so, than either HD or ALS [2]. In the United States, there
are currently 5.8 million people with AD [3], over 700,000 with PD [4], ~30,000 with HD [5], ~16,000
with ALS [6], and 50,000–60,000 with FTD [2]. For AD, PD, and ALS, there are both genetic and sporadic
forms of the disease, with the vast majority of the cases of all three being sporadic. In contrast, FTD has
a stronger genetic component [2] and almost all cases of HD are dominantly inherited [5]. Regardless,
for all of these diseases and irrespective of the cause, the strongest risk factor for developing any of
them is increasing age. This suggests that changes that occur in the aging brain put it at increased risk
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for the development of a neurodegenerative disease and that the identification of those changes could
provide a means to develop therapeutics that can at least slow, if not prevent, disease development
and/or progression.

1.1. Aging and Age-Associated Changes in the Brain

Among the pathophysiological changes that occur in the aging brain, those that have been
identified as potentially contributing to neurodegeneration include increases in oxidative stress,
alterations in energy metabolism, loss of neurotrophic support, alterations in protein processing
leading to the accumulation of protein aggregates, dysfunction of the neurovascular system, and
immune system activation [7,8]. Given this multiplicity of changes, it is unlikely that targeting a
single change will prove effective at preventing nerve cell damage and death. In addition, there is a
strong possibility that the relative contributions of each of these changes will vary among individuals.
Importantly, these changes interact with lifestyle, environmental, and genetic risk factors with varying
degrees of penetrance. For example, although AD is defined in terms of plaque and tangle pathology,
it is most frequently associated with other detrimental events, such as microvascular damage and
inflammation [9]. Thus, it is likely it will be necessary to use combinations of drugs directed against
different targets in order to effectively prevent these age-related changes to the brain. However, this
approach is subject to a number of potential problems, including pharmacokinetic and bioavailability
challenges, which in central nervous system (CNS) diseases are exacerbated by the difficulty of
getting multiple compounds across the blood brain barrier and the potential for adverse drug–drug
interactions. A better approach is to identify small molecules that have multiple biological activities that
can impact the multiplicity of age-associated pathophysiological changes to the brain that contribute
to neurodegenerative disease development and progression [10].

1.2. Approaches to Drug Discovery for Neurodegenerative Diseases

Since the 1990s, the combination of molecular and structural biology, combinatorial chemistry, and
high throughput screening has dominated the drug discovery process [11]. This approach provides a
rapid process for the discovery of drug candidates with high selectivity and high affinity for a specific
molecular target. However, it has not produced the successes that were initially expected, especially
with respect to complicated problems such as neurodegenerative diseases. Prior to the development
of this target-based drug discovery approach, new drugs were discovered by evaluating chemicals
against observable characteristics or phenotypes, in biological systems such as cells or animals. While
this approach has fallen out of favor with the pharmaceutical industry, surprisingly a recent study
showed that it still continues to be more successful than target-based approaches for the identification
of first-in-class small molecule drugs [12]. It has been argued that this is because target-based discovery
is based on a priori assumptions that do not take into account the complexities of biological systems or
diseases [7,12].

The ideal phenotypic drug screening paradigm would employ the ultimate end
user—humans—and this is how most of the natural product-based, first-in-class drugs were originally
discovered. However, this is no longer an ethically viable approach. Laboratory animals, primarily
disease models in mice, are currently used for preclinical testing but using them for the initial screening
of drug candidates is impractical due to cost and time constraints, as well as the drive to reduce
animal use in research. A reasonable alternative is to create cell-based assays that define molecular
toxicity pathways relevant to age-associated neurodegeneration and select drug candidates that work
in multiple assays, not just one [7]. In this way, the screening paradigms have disease relevance,
reproducibility, and reasonable throughput. Many arguments can be made against the relevance of
any single cellular screening assay based on the cell type or the nature of the toxic insult. Thus, to
account for individual weaknesses, phenotypic screening paradigms for neurodegenerative diseases
should combine multiple assays that address the different toxicities associated with the aging brain.
This enables the identification of potent, disease-modifying compounds for preclinical testing in

244



Int. J. Mol. Sci. 2019, 20, 3056

animal models of neurodegenerative diseases. In general, for screening for drug candidates against
neurodegenerative diseases, these assays will utilize primary neurons, neuron-like cell lines, or
microglial cell lines that are subjected to a toxic insult that has been observed to occur in the aging
brain. However, the critical question still remains of what exactly should be screened.

1.3. What to Start with

One excellent source for multi-target compounds is the original pharmacopeia—plants. The
earliest records describing the use of plants for medicinal purposes date back to 2600–2900 BC [13].
Still today, ~25% of all prescribed drugs are thought to be derived from plants [14]. Plants synthesize a
huge array of compounds called secondary metabolites that are not required for plant growth. These
compounds are derived from a limited number of basic chemical scaffolds, which are modified by
specific types of substitutions. It has been suggested [14] that these compounds, as well as receptors,
enzymes, and regulatory proteins, originated from a relatively small number of parental molecules,
which may have co-evolved to interact with one another. Although their biological functions and
structures have since diverged, structural features shared from their common past may be the reason
that they interact with medically relevant targets.

1.4. Why Focus on Flavonoids

Among the huge number of plant-derived secondary metabolites, several epidemiological
studies have specifically highlighted the potential beneficial role of flavonoids for the prevention
of neurodegenerative diseases. The over 5000 different flavonoids can be divided into six groups
(flavones, flavonols, flavanones, flavanols, anthocyanidins, and isoflavones) based on the degree of
oxidation of the central C ring, the hydroxylation pattern of the rings, and the substitution at the
3 position (Figure 1). Within each group, diversity is generated by the arrangement of the hydroxyl
groups combined with glycosylation or alkylation [15].

A retrospective study that looked at flavonoid intake versus disability adjusted life years (a measure
of the burden that a disease has on those affected in a population) due to dementia in 23 developed
countries found that total combined flavonoid intake was significantly and negatively correlated with
dementia [16]. Among the flavonoid groups, only flavonol consumption showed a significant, negative
correlation with dementia. Consistent with these results, a prospective cohort study [17] found that the
risk ratio for dementia (risk of dementia in the high flavonoid group (dementia patients/total people in
the group)/risk of dementia in the low flavonoid group (dementia patients/total people in the group))
between the highest and lowest tertiles of flavonoid intake was 0.49.

A very large epidemiological study (total of ~130,000 people followed for 20–22 years) published
several years ago [18] examined whether higher intakes of total flavonoids were associated with a lower
risk of PD. Five major sources of dietary flavonoids (tea, berry fruits, apples, red wine, and orange or
orange juice) were examined using a food composition database and a food frequency questionnaire.
In men, those with the highest quintile of flavonoid consumption had a 40% lower risk of developing
PD as compared to those in the lowest quintile. However, a significant relationship between overall
flavonoid consumption and PD risk was not seen in women.

Flavonoids were historically characterized on the basis of their antioxidant and free radical
scavenging effects. However, more recent studies have shown that flavonoids have a wide range of
activities that could make them particularly effective for blocking the age-associated toxicity pathways
associated with neurodegenerative diseases [19–22].

In the following paragraphs, the results of pre-clinical, and in a few cases, clinical studies, that
looked at the beneficial effects of different flavonoids in animal models of AD, PD, HD, or ALS, and
when information is available, their possible modes of action, will be described. Although the goal
was to be as comprehensive as possible, some studies may have been missed inadvertently. Several
recent reviews also cover a subset of these topics [20–22]. There are no studies on flavonoids in models
of FTD, although mouse models of the disease do exist [23].
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For each disease, a brief overview is given followed by a description of the models used to study
the effects of flavonoids on the disease, and then the flavonoid results based on the subclasses of
flavonoids are discussed. The focus is primarily on studies employing single flavonoids and the
analysis mainly utilizes primary reports.

 

Figure 1. Structures of Representative Flavonoids from the Six Classes.

1.5. Flavonoids and Alzheimer’s Disease (AD)

Alzheimer’s disease is the most common type of dementia. It is characterized pathologically
by the presence of both extracellular neuritic plaques containing amyloid beta (Aβ) peptide and
intracellular neurofibrillary tangles containing tau [24]. Clinically, AD results in a progressive loss of
cognitive ability and eventually daily function activities [25,26]. Current approved therapies are only
symptomatic, providing moderate improvements in memory without altering the progression of the
disease pathology [27,28]. Although a large number of clinical trials have been conducted in recent
years with drug candidates designed to directly or indirectly reduce the amyloid plaque load, all of
these trials have failed [29].
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Three different types of models have been used to study the possible beneficial effects of flavonoids
in AD: interventional, transgenic, and sporadic. For the interventional studies, Aβ is injected directly
into the cerebral ventricles in the brains of the rodents (intracerebroventricular (icv) injection). There
are numerous transgenic models of AD that are based on the mutations associated with the rare
genetic form of the disease (familial AD or FAD). The models develop different degrees of cognitive
impairment, levels of plaques and tangles, synaptic loss, gliosis, and nerve cell death depending on
the type and number of mutations (1–5) [30]. Although AD drug discovery has largely focused on
these FAD models, this form of the disease accounts for only ~1% of the total cases [31], and may be
quite distinct from the much more prevalent, old-age-associated, sporadic form of AD. Importantly,
while many therapies directed against the amyloid pathway are effective in FAD transgenic mice,
to date none has translated into the clinic [29]. Since old age is by far the greatest risk factor for
AD [31,32], animal models that incorporate aging into disease development may prove more useful for
the development of therapies. One mouse model of aging that also develops characteristics of AD is the
senescence-accelerated prone 8 (SAMP8) mouse that was developed in Japan by selective breeding of a
rapidly aging phenotype. These mice exhibit a progressive, age-associated decline in brain function
similar to human AD patients [33–35]. As they age, SAMP8 mice develop an early deterioration in
learning and memory, as well as a number of pathophysiological alterations in the brain, including
increased oxidative stress, inflammation, vascular impairment, gliosis, Aβ accumulation, and tau
hyperphosphorylation. Using an integrative multiomics approach, we recently identified a number of
behavioral and physiological changes that are altered with aging in these mice [36]. Although much
less widely used, the senescence-accelerated OXYS rat also spontaneously develops all of the brain
changes associated with AD, including structural alterations, neuronal loss, Aβ accumulation, tau
hyperphosphorylation, and cognitive impairment [37].

The flavone 7,8-dihydroxyflavone (7,8-DHF) has been tested by several labs in the 5 x FAD
model (multiple AD-linked mutations in the amyloid precursor protein (APP) and presenilin 1 (PS1)).
Improvement in performance in the Y maze, a test for working memory, was seen following short term
(10 days) intraperitoneal (ip) injection of 7,8-DHF (5 mg/kg) into 12–15 months old 5 x FAD mice [38].
Chronic oral administration of 7,8-DHF (5 mg/kg/day) from 2–6 months of age in this same model
also improved memory and reduced synapse loss [39]. In contrast, in a 2 x FAD model (AD-linked
mutations in APP and PS1), daily ip administration of 7,8-DHF (5 mg/kg) for 4 weeks beginning at
6 weeks of age showed no effect on learning and memory impairments in the Morris water maze [40].
However, in the first two studies [38,39], clear activation of TrkB, the proposed target of 7,8-DHF,
was seen, while in the third study [40], this was not examined. Thus, the lack of effects on memory
could be due to a failure to activate TrkB in this study. Further studies on this flavone and AD are
clearly warranted.

The flavone apigenin has been tested in a 2 × FAD model (AD-linked mutations in APP and
PS1), where oral administration (40 mg/kg/day) for 12 weeks beginning at 4 months of age resulted
in improved learning and memory, reduced deposition of insoluble Aβ, a decrease in markers of
oxidative stress, and an increase in the activity of the ERK-CREB pathway, an indicator of neurotrophic
activity [41].

In a 1 × FAD model (AD-linked mutation in APP), a four month daily ip treatment with the
citrus flavone nobiletin (10 mg/kg) improved memory and reduced the levels of both soluble and
insoluble Aβ [42]. Consistent with these results, three months of daily ip injections of nobiletin (10 and
30 mg/kg) starting at 6 months of age in the 3 × FAD model (AD-linked mutations in APP, PS1, and
tau) resulted in an improvement in memory on multiple tests and a reduction in soluble Aβ levels, as
well as reactive oxygen species (ROS) in the mice treated with 30 mg/kg [43]. Similarly, 2 months of
daily ip injections of nobiletin (10 and 50 mg/kg) starting at 4–6 months in the SAMP8 mice improved
memory in multiple assays and reduced some markers of oxidative stress at both doses [44].
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Daily ip injections of the flavone baicalein (10 mg/kg) beginning at 6 months of age also prevented
deficits in working memory and reduced the production of Aβ in a 1 x FAD model (AD-linked mutation
in APP) [45].

The flavonol fisetin has been tested in all three types of AD models (icv Aβ injection, 2 × FAD
mice, SAMP8 mice), where it consistently prevented the loss of cognitive function [46–48]. Both oral
administration (25 mg/kg/day) [46,47] and daily ip injections (20 mg/kg) [48] proved effective. In all
of the models, fisetin was found to maintain the levels of synaptic proteins and to reduce markers
of inflammation. It also reduced markers of oxidative stress and particularly lipid peroxidation and
activated the ERK pathway, which is involved in both memory [49] and neurotrophic factor production
and signaling [50]. However, the effects on the levels of soluble and insoluble Aβ varied between the
different models, suggesting that this may not be the critical target.

Another flavonol, quercetin, was also shown to have similar benefits in multiple models of AD [51]
following either oral administration (SAMP8) (25 mg/kg/day) [52] or ip injection (25 mg/kg every
2 days) (3 x FAD) [53]. Similar to fisetin, not only was quercetin able to reduce cognitive impairment
but also modulated multiple targets in the brains of the treated mice, including the levels of soluble
and insoluble Aβ and the activation of astrocytes or microglia, indicators of an on-going inflammatory
response. Interestingly, in the study on SAMP8 mice [52], the effects of the administration of free
quercetin (25 mg/kg/day) to those of nanoencapsulated quercetin particles (25 mg/kg/every 2 days)
were compared. An almost 2-fold higher level of quercetin was found in the brains of the quercetin
nanoparticle-treated mice, which correlated with significant effects on learning and memory, as well as
astrogliosis [52]. Rutin, a glycoside of quercetin that combines quercetin with rutinose, was also found
to have beneficial effects in rats injected icv with Aβ [54]. Daily ip injection of rutin (100 mg/kg) for
3 weeks after Aβ administration prevented memory loss, reduced lipid peroxidation, and increased
markers of neurotrophic factor activity [54]. A recent review covered some of these same studies in
more detail [20].

Similar to the results with the quercetin nanoparticles, it was found that daily ip injection
of a mixture of anthocyanins (glycosylated form of anthocyanidins) from Korean black soybeans
encapsulated in gold nanoparticles (10 mg/kg/day) were much more effective at reducing memory
impairments, loss of synaptic proteins, and neuroinflammation in icv Aβ-injected mouse brains than
the free anthocyanins [55,56].

Non-fermented teas, such as green tea, contain high levels of catechins (flavanols), including
(−)-epigallocatechin gallate (EGCG), (−)-epigallocatechin, (−)-epicatechin gallate, (−)-epicatechin,
and (+)-catechin. Studies on EGCG in both a 1 x FAD mouse model (50 mg/kg/day) [57] and the
SAMP8 mouse (15 mg/kg/day) [58] found that long-term, oral administration improved cognitive
function, reduced the levels of soluble Aβ, and prevented the decrease in some synaptic proteins.
In addition to these animal studies, over 10 clinical studies have been conducted on green tea and
AD [59]. These include cross-sectional and longitudinal studies where the frequency of drinking green
tea and cognitive function were assessed either at a single time point or over time and interventional
studies where participants were given a green tea extract and followed over time. Most, but not all,
of the longitudinal and cross-sectional studies showed an inverse relationship between green tea
consumption and cognitive dysfunction. Furthermore, a meta-analysis showed a dose-dependent
effect of green tea consumption on cognitive impairment. However, the interventional studies had
many fewer participants and the results were less consistent.

Other flavonoids that have shown benefits in animal models of AD include the flavanone glycoside
hesperidin (100 mg/kg/day) [60,61] and the isoflavone puerarin (30 mg/kg/day) [62].

In summary, multiple flavonoids have shown significant benefits in three distinct models of
AD (Table 1). All of the flavonoids described above improved cognitive function, and where
examined, reduced markers of inflammation, oxidative stress, and synaptic dysfunction, and increased
neurotrophic factor signaling. In addition, many reduced the accumulation of soluble or insoluble Aβ.
Together these results support the idea that multi-target compounds, such as flavonoids that act on
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several different pathophysiological changes that occur in the aging brain and that are exacerbated in
AD, have a strong potential for the treatment of the disease. Unfortunately, very few human studies
have been performed, so whether this potential will ever be realized is not clear. In addition, the
significantly enhanced effects seen with the nanoparticles of quercetin [52] and anthocyanins [55,56]
strongly suggest that if flavonoids are to be used pharmacologically, then the formulation needs to be
more carefully considered.

Table 1. Flavonoids that have shown efficacy in preclinical models of Alzheimer’s disease (AD),
Parkinson’s disease (PD), Huntington’s disease (HD), or amyotrophic lateral sclerosis (ALS).

AD PD HD ALS

Flavones

7,8-DHF X X X X

Apigenin X X

Baicalein X X

Chrysin X X

Luteolin X

Morin X

Nobiletin X X

Flavonols

Fisetin X X X X

Kaempferol X

Myricetin X

Myricitrin X

Quercetin X X X

Rutin X X X

Flavanols

Catechin X

Epicatechin X

ECGC X X X

Flavanones

Hesperetin X

Hesperidin X X X

Naringenin X

Naringin X

Anthocyanidins

Anthocyanins X X

Isoflavones

Genistein X X

Puerarin X X

1.6. Flavonoids and Parkinson’s Disease (PD)

Parkinson’s disease (PD) is a chronic, progressive neurodegenerative disease and the second
most common neurodegenerative disease after Alzheimer’s. The characteristic features of PD include
resting tremor, bradykinesia (slowness of movement), rigidity, and postural instability [63]. PD is also
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associated with a variety of non-motor symptoms that contribute to disability. The majority of PD cases
are sporadic with only about 10% of PD patients reporting a family history of the disease [64]. Age is
the greatest risk factor for disease development. The pathological hallmark of PD is the degeneration
of the dopaminergic (DA) neurons in the substantia nigra pars compacta (SNc) [63]. Since these
neurons synapse with neurons in the striatum, their demise leads to the depletion of striatal dopamine.
PD is also characterized by the presence of cytoplasmic protein aggregates, called Lewy bodies, in
the remaining DA neurons of the SNc. Currently, there is no test to diagnose PD prior to the onset
of motor symptoms and available treatments only improve the symptoms but do not stop disease
progression. Importantly, by the time that the first symptoms appear, striatal dopamine is reduced by
~80%, and ~60% of the DA neurons of the SNc have died [65]. Thus, both better methods of diagnosis
and treatments that can begin before overt disease onset are needed.

Animal models of PD generally involve treatment with a toxin, such as a pesticide or other
toxic compound that has been associated with PD in vivo. The two most widely used models are
6-hydroxydopamine (6-OHDA) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) [66,67].
Both the herbicide paraquat and the pesticide rotenone have also been used to model PD. However,
none of these models recapitulates all of the aspects of human PD [66,67] and most are very rapid onset,
as compared to the age-dependent development of PD in human patients. Although animal models in
which one or more of the genes associated with familial PD are mutated have been developed [67],
most of these genetic PD models lack nigrostriatal degeneration and there is also a problem with
inconsistent phenotypes between different mouse lines with the same mutation [67]. Thus, they have
not been used extensively for testing of potential therapeutic compounds.

Quite a large number of different flavonoids from most of the different classes have been tested in
the different rodent toxin models of PD (Table 1). Some of these results have been recently reviewed [22]
and these and others are described below.

The flavone baicalein has been tested in several different models in rodents, including the
MPTP model using both ip injection in rats (40 mg/kg/day) [68] and oral administration in mice
(200 mg/kg/day) [69], and the rotenone model using ip injection in rats (2.5 mg/kg/day) [70]. In all
cases, baicalein attenuated the loss of DA neurons, while in the mouse MPTP model and the rotenone
model, it also reduced behavioral impairments and markers of oxidative stress [70]. In addition, in the
MPTP models, it reduced markers of inflammation [68,69].

The flavone 7,8-DHF has also been tested in several different PD models. Oral pre- and
post-treatment (12-16 mg/kg/day) in the 6-OHDA model in rats improved behavior and reduced the
loss of DA neurons in the SNc [71]. Pre- and post-treatment ip injection of 7,8-DHF (5 mg/kg/day) also
reduced motor function impairment and prevented DA neuron loss in the MPTP model in mice [72].
The 7,8-DHF was also able to prevent further decreases in motor function and tyrosine hydroxylase
(TH) levels when it was given by ip injection (5 mg/kg/day) after MPTP treatment in a slower model of
disease progression in mice [73]. Similarly, oral administration of 7,8-DHF (30 mg/kg/day) prevented
the MPP+-induced progressive loss of DA neurons in a monkey model of PD [74]. The 7,8-THF was
also reported to activate the TrkB receptor, thereby activating neurotrophic factor signaling pathways,
and all of the rodent studies [71–73] showed a maintenance of TrkB activation by 7,8-DHF in the
presence of the different toxins.

Several other flavones have also shown protective effects in PD models, including apigenin using
both ip injection (10 and 20 mg/kg/day) in the rotenone model in rats [75] and oral administration (5,
10, and 20 mg/kg/day) in the MPTP model in mice [76], oral administration of chrysin (10 mg/kg/day)
in the 6-OHDA model in mice [77], oral administration of luteolin (10 and 20 mg/kg/day) in the MPTP
model in mice [76], oral administration of nobiletin (10 mg/kg/day only) in the MPTP model in rats [78],
and daily ip injection of morin (50 mg/kg) in the MPTP model in mice [79]. All five flavones helped
to preserve the DA neurons and reduced markers of inflammation, while apigenin, chrysin, and
luteolin prevented toxin-mediated decreases in neurotrophic factor gene expression. Apigenin, chrysin,
luteolin, and morin also reduced toxin-induced behavioral alterations.

250



Int. J. Mol. Sci. 2019, 20, 3056

The flavonol quercetin has also been tested in several different models, and except for a study using
oral pre-administration (20 mg/kg/day) in the 6-OHDA model [80], has shown positive results. However,
in a more recent study in the same model, oral administration of quercetin (50 mg/kg/day) did show a
beneficial effect where it reduced the loss of striatal dopamine and the increase in markers of oxidative
stress [81]. Using the rat model of rotenone toxicity [82], quercetin was found to attenuate striatal
dopamine depletion in a dose-dependent manner when given by ip injection (50 and 75 mg/kg/day)
for 4 days after the administration of the toxin. Quercetin also reduced rotenone-induced behavioral
changes and the loss of tyrosine hydroxylase (TH) immunoreactivity in both the SN and striatum. TH
immunoreactivity is a marker for the integrity of the nigrostriatal pathway. Oral administration of
quercetin (100 and 200 mg/kg/day) prior to the administration of the toxin improved motor function in
MPTP-treated mice in a dose-dependent manner [83], which correlated with a significant increase in
striatal dopamine levels and a significant decrease in a marker of lipid peroxidation. More recently,
quercetin was tested in the MitoPark transgenic mouse model of PD [84]. These mice have a conditional
disruption of mitochondrial transcription factor A, specifically in DA neurons, and recapitulate several
aspects of human PD, including adult onset, slow impairment of motor function, and degeneration
of the nigrostriatal pathway [85]. Oral administration of quercetin (25 mg/kg/day) to these mice for
6–8 weeks beginning at 12 weeks of age moderately but significantly reduced behavioral deficits,
striatal dopamine loss, and nigrostriatal degeneration. The quercetin glycoside rutin was also tested in
the 6-OHDA model in rats, where daily ip injection (10 and 30 mg/kg) was shown to partially reduce
motor deficits when treatment was initiated beginning 3 weeks before administration of the toxin [86].
This correlated with a moderate but significant increase in striatal dopamine levels, as well as an
increase in brain GSH levels. In contrast, markers of both lipid and protein oxidation were reduced.

Although the flavonol fisetin (20 mg/kg/day) did not show positive effects in the same 6-OHDA
study in rats where quercetin also failed to show a beneficial effect [80], a more recent study using
MPTP-treated mice found that oral administration of fisetin (10-25 mg/kg/day) prior to treatment with
the toxin dose-dependently increased striatal dopamine levels and largely prevented the loss of TH
immunoreactivity in the striatum [87]. Oral administration of the flavonol kaempferol (25, 50, and
100 mg/kg/day) had similar, dose-dependent effects in the same model when started prior to treatment
with MPTP [88].

Both the flavonol myricetin (2.5 μg/day) and its glycoside myricitrin (60 mg/kg/day) maintained
TH-positive neurons in the 6-OHDA model in rodents when administered by ip (myricitrin) or icv
(myricetin) injection [22]. Myricitrin also reduced markers of inflammation and improved motor
function, while myricetin increased dopamine levels.

Several flavanols have also shown benefits in PD models. Daily ip injection of catechin (10 and
30 mg/kg) in the 6-OHDA model in rats [89], oral administration of EGCG (25 mg/kg/day) in the MPTP
model in mice [90], and oral administration of epicatechin (100 mg/kg/day) in the MPTP model in
rats [91] all reduced toxin-induced behavioral deficits. For both catechin and EGCG, these functional
improvements correlated with a reduction in striatal dopamine loss.

Flavanones have also shown benefits in PD models, including naringenin in the MPTP model
in mice [92] and the 6-OHDA model in rats (oral; 50 mg/kg/day) [80] and hesperetin in the 6-OHDA
model in rats [93]. Oral administration of naringenin (25, 50, and 100 mg/kg/day) increased dopamine
levels and reduced the loss of TH immunoreactivity, while also lowering markers of inflammation
and oxidative stress [92]. The glycoside of naringenin, naringin (ip; 80 mg/kg/day), was tested using
both pre- and post-treatment in the 6-OHDA model in rats [94]. While pre-treatment protected against
the toxin-induced loss of DA neurons and prevented microglial activation, post-treatment had no
beneficial effects [94]. Oral administration of hesperetin (50 mg/kg/day) reduced 6-OHDA-induced
behavioral deficits and prevented the loss of DA neurons [93]. These effects correlated with a reduction
in some, but not all, inflammatory markers and lower levels of indices of oxidative stress, as well
as an increase in GSH levels. Similarly, oral administration of the hesperetin glycoside, hesperidin
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(50 mg/kg/day), reversed behavioral deficits, reduced striatal dopamine loss, and decreased markers of
oxidative stress in the brains of 6-OHDA-treated aged mice [95].

The isoflavones genistein and puerarin have also been tested in rodent PD models. Genistein
administered by ip injection improved neuronal survival in both the 6-OHDA model in rats
(10 mg/kg/day) and the MPTP model in mice (10 mg/kg/day) [22]. Daily ip injection of puerarin
(0.12 mg/kg) reduced DA neuronal loss in the MPTP model in mice, which correlated with decreases
in markers of oxidative stress and inflammation and increases in markers of neurotrophic factor
signaling [62].

In summary, a wide range of flavonoids have shown significant benefits in multiple rodent
toxin-based models of PD. Where examined, they reduced markers of inflammation and oxidative
stress and increased markers of neurotrophic factor signaling. Together, these effects contributed to the
prevention of nerve cell death and the reduction in behavioral deficits. In addition, many prevented
increases in α-synuclein, a protein associated with neuronal damage and death in PD. Thus, similar
to the situation with AD, the flavonoids appear to have multiple targets in the PD models, further
supporting the idea that multi-target compounds are likely to provide the best treatments for this
neurodegenerative disease. However, as genetic models of PD become more reproducible, it will be
important to test some of the most promising flavonoids in these models as well to provide further
evidence for potential clinical efficacy.

1.7. Flavonoids and Huntington’s Disease (HD)

Huntington’s disease is a late onset, progressive, and fatal neurodegenerative disorder
characterized by movement and psychiatric disturbances, as well as cognitive impairment. There is,
at present, no cure. HD is an autosomally dominant inherited disease that is caused by an unstable
expansion of a trinucleotide repeat (CAG) that encodes an abnormally long polyglutamine tract in the
huntingtin protein. The age at disease onset inversely correlates with the CAG repeat number. The
identification of the disease-causing mutation has allowed the development of a number of cellular
and animal models of HD, and these have been used to try to elucidate the mechanisms underlying
disease development and progression [96–99].

Both chemical and genetic rodent models of HD have been used to test the potential preventive
role of flavonoids in HD development or progression, although no single model broadly replicates
both the behavioral and neuropathological changes seen in humans [100]. The chemical approach
uses 3-nitropropionic acid (3-NP), which when administered systemically at low doses to rats or mice
causes selective degeneration of striatal neurons—the same neurons that are lost in HD [101]. The
genetic models can be divided into three groups: N-terminal transgenic animals that carry only the 5’
portion of the human HTT gene, which contains the CAG repeats; full length transgenic animals that
carry the full length HTT sequence, including the CAG repeats; and knock-in models, in which CAG
repeats are engineered directly into the mouse Htt genomic locus [100]. These genetic models differ in
the time of disease onset and disease severity, with the N-terminal transgenic animals showing the
most severe phenotypes.

While there have only been a limited number of studies on the potential beneficial effects of
flavonoids in HD models, the published results suggest that specific flavonoids could be of potential
clinical use (Table 1). Oral administration of the flavone chrysin (50 mg/kg/day) improved behavior
and reduced markers of oxidative stress and cell death, and enhanced the survival of striatal neurons
in the 3-NP model of HD in rats [102].

Chronic oral administration of 7,8-DHF (5 mg/kg/day) to the R6/1 N-terminal transgenic mouse
model of HD delayed the development of motor and cognitive deficits, prevented the loss of
striatal volume, enhanced a marker of neurotrophic factor signaling, and reduced some markers of
inflammation [103]. However, the effects on lifespan, which is greatly reduced in this mouse model of
HD, were not assessed.
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The flavonol fisetin was tested in the R6/2 mouse model of HD, which like the R6/1 model, is
a N-terminal transgenic line that has an aggressive disease phenotype and shortened lifespan [104].
Fisetin was fed to genotyped R6/2 mice and their wild type littermates in the food beginning at
~6 weeks of age (25 mg/kg/day). The mice were tested on the rotarod from ~7–13 weeks of age and
survival was followed. At the time of acquisition of the animals, rotarod performance was already
impaired in the R6/2 mice as compared to their wild type littermates. Motor performance in the rotarod
test declined significantly more rapidly in the animals on the control diet as compared to those on the
fisetin diet. Similarly, while the median life span of the R6/2 mice on the control diet was 104 days, that
of fisetin-fed mice was increased by ~30% to 139 days. The in vivo mechanisms underlying the effects
of fisetin were not explored in this study.

The closely related flavonol quercetin was tested by two different groups in the 3-NP model in
rats. In the first study, which used oral administration [105], quercetin (25 mg/kg/day) was found to
reduce motor deficits, improve mitochondrial function, and attenuate some markers of oxidative stress.
Although there was some suggestion of beneficial effects on striatal neuronal survival, the results were
not clear. In the second study, which used daily ip injection of quercetin (50 mg/kg) [106], it was also
found to improve motor function, as well as reduce a marker of inflammation, but it did not prevent
the loss of striatal neurons. The quercetin glycoside, rutin, was also tested in the 3-NP model in rats
but using a different protocol for 3-NP treatment in conjunction with oral administration [107]. Similar
to quercetin, rutin (25 and 50 mg/kg/day) prevented 3-NP-induced impairments in motor function and
decreased markers of inflammation. It also reduced markers of oxidative stress.

In contrast to quercetin, daily ip injection of the flavonol kaempferol (25 mg/kg) in 3-NP-treated
rats not only reduced motor deficits but also attenuated the loss of striatal neurons [108]. These effects
correlated with a reduction in markers of oxidative stress.

The flavanone glycoside hesperidin was also tested in the 3-NP model in rats [109] using oral
administration (100 mg/kg/day). Similar to the other flavonoids in this model, hesperidin reduced
motor deficits, as well as markers of inflammation and oxidative stress. The isoflavone genistein
was also found to be protective in the 3-NP model in rats when given by daily ip injection (10 and
20 mg/kg) [110]. Genistein also reduced motor deficits and decreased markers of oxidative stress,
inflammation, and nerve cell death.

Dietary supplementation with mixed berry anthocyanins (~100 mg/kg/day) was shown to delay
the loss of motor function in the R6/1 N-terminal transgenic mouse model of HD [111]. However, this
effect was only seen in female HD mice. The effects on lifespan were not examined.

In summary, a number of different flavonoids have shown benefits, particularly with regard to
preserving motor function, in both chemical and transgenic models of HD. However, since most, if not
all, of the studies with the 3-NP model involve pretreatment with the flavonoid, it is not clear if some
of the effects of the flavonoids could be due to directly inhibiting the actions of 3-NP itself rather than
reducing the consequences of 3-NP treatment. Thus, it would be worth testing those flavonoids that
showed promise in the 3-NP assay in a transgenic model of HD. Similar to the effects of the flavonoids
in AD models, the flavonoids appear to have multiple targets in the HD models, including reducing
markers of inflammation and oxidative stress.

1.8. Flavonoids and Amyotrophic Lateral Sclerosis (ALS)

ALS is a fatal neurodegenerative disease that is characterized by the loss of the motor neurons that
control the voluntary movement of muscles, resulting in paralysis and death, usually within 5 years of
a diagnosis [112]. Approximately 10% of ALS cases are due to heritable gene mutations but different
gene mutations are increasingly being found in patients with no family history of ALS, suggesting
that the genetic component is more complicated than originally thought [113]. Moreover, there are
overlaps between ALS and FTD [114]. Although there are three FDA-approved drugs for ALS, they
all have very modest effects on survival (https://alsnewstoday.com/approved-treatments/) (access on
21 June 2019).
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The most commonly used mouse model of ALS is based on Cu/Zn superoxide dismutase 1 (SOD1),
the first gene mutation that was shown to cause ALS [113]. SOD1 mutations are found in ~20% of
patients with the familial form of ALS. The most extensively used form of these mouse models is in the
SOD1-G93A transgenic mouse. Although the different SOD1 transgenic mouse lines are not identical,
they all show protein aggregation, motor neuron loss, axonal denervation, progressive paralysis, and
reduced lifespan [113].

Despite the absence of effective treatments for ALS and the promising results with flavonoids in
other neurodegenerative diseases as described above, very few flavonoids have been tested in animal
models of ALS (Table 1). In all studies, the SOD1-G93A model was used.

Three times per week ip injection of the SOD1-G93A mice with 7,8-DHF (5 mg/kg) beginning at 1
month of age reduced the age-dependent decrease in motor performance and preserved total motor
neuron count and dendritic spine density on motor neurons [115]. However, effects on lifespan were
not examined.

Oral administration of the flavonol fisetin (9 mg/kg) beginning at 2 months of age significantly
delayed the development of motor deficits, reduced their rate of progression, and increased
lifespan [116]. This correlated with a significant increase in the motor neuron count in the spinal
cord. At the molecular level, fisetin increased the levels of both phospho-ERK and the antioxidant
protein heme oxygenase 1. Interestingly, fisetin also increased ERK phosphorylation in a transgenic
AD model [46] and in HD flies [104], suggesting that this may at least partly contribute to its beneficial
effects in these different models of neurodegenerative diseases.

Several studies have shown that oral administration of the flavanol EGCG (5.8–10 mg/kg) [117,118]
can also delay symptom onset and extend lifespan in the SOD1-G93A mice. Consistent with these
observations, EGCG increased motor neuron survival. These effects were correlated with a decrease in
multiple markers of inflammation.

In summary, while there have been few studies with flavonoids in models of ALS, the published
results suggest that this is an area that warrants further exploration, especially as all of the flavonoids that
have shown benefits in the transgenic ALS model have also had positive effects in other age-associated
neurodegenerative diseases.

2. Summary and Outlook

A number of different flavonoids from all of the six groups have been shown to have beneficial
effects in models of AD, PD, HD, and ALS (Table 1). While many flavonoids have only been tested in
models of one neurodegenerative disease, others, such as fisetin and 7,8-DHF, have shown efficacy
in models of all four of the diseases highlighted in this review. These results strongly support
the idea that common changes associated with the aging brain underlie the development of these
diseases and that compounds that can address these changes have the best chance of clinical success.
These changes include increases in oxidative stress, alterations in protein processing, decreases in
neurotrophic factor signaling, synaptic dysfunction, increased inflammation, and cell death, which
together contribute to behavioral impairments and cognitive dysfunction (Figure 2). As discussed in
this review, flavonoids have the potential to reduce or prevent all of these changes. However, it appears
that more work is needed before these compounds are taken seriously as possible therapeutics for
neurodegenerative disease treatment. This includes developing better approaches to administration,
such as nanoparticles [52,55,56] or other types of formulations [119] that will improve their ability
to get into the brain and comparing different flavonoids head to head in the same model in order
to determine which ones might have the best chance of clinical success. In addition, there may be
synergism between the actions of some of the flavonoids, and this possibility is worth exploring both
in vitro and in vivo.
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Figure 2. Flavonoids alter multiple pathways implicated in brain aging and neurodegenerative diseases.
As discussed in this review, flavonoids can increase brain cell function and neuronal survival by
reducing oxidative stress, activating neurotrophic factor signaling pathways, preventing alterations in
protein processing, reducing synaptic dysfunction, and inhibiting inflammatory responses. Flavonoids
can also enhance cognitive function and modulate behavioral impairments. Therefore, they have the
potential to act as multi-factorial therapeutics for reducing the impact of neurodegenerative diseases.
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Abbreviations

Aβ Amyloid beta peptide
AD Alzheimer’s disease
ALS Amyotrophic lateral sclerosis
APP Amyloid precursor protein
CNS Central nervous system
CREB cAMP response element binding protein
DA dopaminergic
DHF dihydroflavone
EGCG (−)-epigallocatechin gallate
ERK Extracellular signal regulated kinase
FAD Familial Alzheimer’s disease
FTD Fronto-temporal dementia
GSH glutathione
HD Huntington’s disease
ip Intraperitoneal
icv Intracerebroventricular
MPTP 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
3-NP 3-nitropropionic acid
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6-OHDA 6-hydroxydopamine
PD Parkinson’s disease
PS1 Presenilin 1
ROS Reactive oxygen species
SNc Substantia nigra pars compacta
SOD Superoxide dismutase
TH Tyrosine hydroxylase
TrkB Tyrosine receptor kinase B
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Abstract: Diabetes mellitus is a chronic metabolic disease with a high prevalence in the Western
population. It is characterized by pancreas failure to produce insulin, which involves high blood
glucose levels. The two main forms of diabetes are type 1 and type 2 diabetes, which correspond
with >85% of the cases. Diabetes shows several associated alterations including vascular dysfunction,
neuropathies as well as central complications. Brain alterations in diabetes are widely studied; however,
the mechanisms implicated have not been completely elucidated. Diabetic brain shows a wide profile
of micro and macrostructural changes, such as neurovascular deterioration or neuroinflammation
leading to neurodegeneration and progressive cognition dysfunction. Natural compounds (single
isolated compounds and/or natural extracts) have been widely assessed in metabolic disorders and
many of them have also shown antioxidant, antiinflamatory and neuroprotective properties at central
level. This work reviews natural compounds with brain neuroprotective activities, taking into account
several therapeutic targets: Inflammation and oxidative stress, vascular damage, neuronal loss or
cognitive impairment. Altogether, a wide range of natural extracts and compounds contribute
to limit neurodegeneration and cognitive dysfunction under diabetic state. Therefore, they could
broaden therapeutic alternatives to reduce or slow down complications associated with diabetes at
central level.

Keywords: type 2 diabetes; inflammation; vascular damage; learning; memory; neuroprotection;
natural extract; natural compound

1. Type 2 Diabetes Mellitus: Central Complications

Metabolic disorders include a broad range of alterations. Moreover, the terminology used to
refer to many of the diseases and complications is confusing in many cases [1,2]. Among these,
diabetes mellitus (DM) plays a preponderant role, due to its prevalence and societal and economical
burden. In 2013 over 380 million people suffered diabetes and it is estimated that by 2035 there will
be 592 million diabetic patients [3]. World Health Organization (WHO) defines DM as a chronic
metabolic disease caused by inherited and/or acquired deficiency in the production of insulin by the
pancreas, or by the ineffectiveness of the insulin produced. Such a deficiency results in increased
concentrations of glucose in the blood, which in turn damage many of the body’s systems, in particular
the blood vessels and nerves [4]. The two main forms of diabetes are type 1 diabetes (T1D) and
type 2 diabetes (T2D), which account for >85% of the cases [3]. T1D and T2D differentially impact
populations based on age, race, ethnicity, geography and socioeconomic status [5]. T1D is the most
frequent type of diabetes in children and adolescents [6]. T1D patients suffer the destruction of over
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90% of β-pancreatic islets, with consequent reduction of insulin and glycaemia control. On the other
hand, T2D affects adults preferentially. However, the prevalence of T2D in adolescents and young
adults is dramatically increasing [7]. T2D is characterized by an initial stage of insulin resistance.
To compensate hyperglycaemia, β-pancreatic cells respond by increasing insulin production and
establishing a prediabetic state. When exhausted β-pancreatic cells can no longer overproduce insulin,
diabetes evolves. T2D is associated to a large list of risk factors, including familiar risk, previous
gestational diabetes or life styles, among others [8].

While peripheral micro and macrovascular complications associated with T2D, such as neuropathies,
retinopathies or nephropathies, have been widely studied [9], only in recent years attention has been
paid to central complications associated with long-term metabolic alterations [10]. The mechanisms
implicated have not been completely elucidated; however, cognitive impairment, vascular dementia,
Alzheimer’s disease, stroke or anxiety/depression have been related to diabetes [1,11]. In this
sense, the diabetic brain (with controlled or uncontrolled hyperglycemia) show brain injury with
a wide profile of micro and macrostructural changes, leading to neurodegeneration, neurovascular
deterioration, neuroinflammation and progressive cognition dysfunction [12–19]. However, the study
of central complications associated with T2D has been probably hampered by the difficulty of the
measurements [2], the lack of ideal animal models, or the fact that T2D is a complex disorder and,
therefore, it is likely that multiple different, synergistic processes may interact to promote central
alterations. Accordingly, the vast majority of the research are epidemiological studies in which T2D is
identified as a risk factor for Alzheimer’s disease or vascular dementia [20–23]. Only a few studies
have captured quality data regarding metabolic and cognitive status to allow reliable diagnosis of both
T2D and dementia subtype. Main limitations are due to the fact that many of the studies rely on self
reported diabetes, underestimating the prevalence by up to 50%, medical records are incomplete or may
even include undiagnosed diabetics as control samples [2]. Moreover, patients with diabetes are often
presumed to have dementia of vascular origin. However, the main limitation might be to determine
the effects of medication, since treatments for T2D may also affect brain-associated complications [2].
Hence, in order to accurately delineate the pathogenesis of cognitive impairment in people with T2D,
large-scale, prospective epidemiological studies are still required [24].

2. Natural Compounds and Central Complications in DM

The wide and countless number of natural compounds from plants, animals, fungi, microorganisms
and other natural resources provides a rich and a unique source in the search of new drugs [25].
The potential health risk in the indiscriminate use of natural products cannot be obviated [26].
However, plant compounds, including different natural products (single isolated compounds) and/or
natural extracts (including different compounds and/or secondary metabolites), have been long
analyzed and assessed in relation with different pathologies. Usually, biological activity in plants’
natural extracts is mainly due to secondary metabolites. Plant secondary metabolites include two
extensive categories: Nitrogen-containing compounds and those without it [27,28]. In line with these
observations, several studies have shown a wide range of biological activities in these extracts, including
anti-inflammatory [29,30], anti-microbial [31], anti-diabetic [18,32] or neuroprotective [27,33,34]
properties, among others.

One of the most extensive group of secondary metabolites in the plant kingdom are polyphenols [35].
Structurally, they are characterized by the presence of at least one hydroxyl functional group (-HO)
linked to an aromatic ring [36]. Polyphenols classification is referred to the number of phenol rings in
the molecule, and the main subgroups include phenolic acids, stilbenes, flavonoids, coumarins and
lignans [35]. The wider group of polyphenols in plants is represented by flavonoids, which account
for over 10,000 different compounds [28,35]. As other natural compounds, flavonoids have shown
several properties including antioxidant, neuroprotective [37] or anti-diabetic [38–40] effect. Another
particularity of polyphenols is their role in human nutrition, which extends their utility, including not
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only a pharmacological, but also a nutritional perspective. This singularity of polyphenols contributes
to further study of these compounds in other fields, such as human diet supplements [35,41].

As mentioned above, DM, or even prediabetes state, are associated with an increased risk
to suffer neurodegenerative diseases, specially vascular dementia and Alzheimer’s disease [42,43].
Therefore diabetic control may be an important and modifiable risk factor to reduce diabetes-associated
neurodegeneration [44]. In this sense, while the number of articles published worldwide in relation
with antidiabetic natural products is growing each year, most of them focus on metabolic control
and related alterations [45]. On the other hand, studies on the effect of natural products and extracts
on central complications associated with DM are more scarce. This is mainly due to the difficulty
to identify individual components in complex extracts, the capability of different molecules to cross
the blood brain barrier, or even discriminate the direct effect of diabetes on the pharmacokinetics,
bioavailability and brain distribution of the compounds and metabolites [46]. However, given the
well established complications of DM on the central nervous system, there are different targets of
interest that may be covered by natural compounds, including vascular damage, neuroinflammation,
neurodegeneration or cognition. Following this idea, several natural compounds and extracts have
been reported to show neuroprotective effects [34,38].

2.1. Natural Compounds and DM-Related Vascular Injury

2.1.1. Vascular Damage and DM

Vascular complications are the leading cause of morbidity and mortality in diabetic patients.
Vascular alterations are derived from the chronic hyperglycemic state that can affect both large
and small blood vessels, characterizing diabetes macro and microangiopathy, respectively [47].
Several vascular alterations including irreversible non-enzymatic glycation of proteins, cellular redox
potential alteration, increased oxidative stress or inflammatory response, as well as endothelial
dysfunction or hypercoagulability contribute to vascular abnormalities associated to DM [47–49].
These underlying alterations may support the fact that diabetic patients present arterial stiffness as
well as increased risk of atherosclerosis and cerebral stroke [50–52]. In line with these observations,
previous studies have reported that DM patients have smaller brain volumes and white matter
lesions, which have been associated to neurovascular unit dysfunction and blood brain barrier
alterations. In this context T2D could cause loss of homeostasis of the cerebral microenvironment,
leading to vascular damage and astrocyte alterations [53]. In addition, preclinical studies in diabetes
animal models have shown exacerbated neurovascular damage, and ultrastructural abnormalities,
characterized by mural endothelial cell tight and adherens junction or perycite attenuation or loss [54].
Likewise, studies in mouse models reveal brain overspread microbleeding, reproducing small vessel
disease [55,56]. DM not only exacerbates neurovascular damage but also hinders the brain repair
process, likely contributing to the impairment of stroke recovery [57]. In this sense, in vitro and
in vivo experimental models have showed that the integrity of the blood brain barrier is affected in
diabetic conditions [58–60]. Concretely, diabetes disrupts the blood brain barrier endothelium by
downregulation of cell junction proteins [61–63] and upregulation of integrin expression [64,65], leading
to abnormal vascular permeability [66,67]. In addition, this effect might be mediated by oxidative
stress, which induces blood brain barrier disruption through osmotic damage and pericyte loss [68],
ultimately leading to the leak of toxic substances and further damage to the nervous structures [69].
Interestingly, microvascular alterations seem to be present also in prediabetic animal models [70],
suggesting that early hyperinsulinemia and insulin resistance are enough to induce vascular damage.

2.1.2. Natural Compounds and Extracts in Vascular Damage Associated with DM

In order to try and reverse many of these complications different natural compounds and extracts
have been used in animal models. In this sense berberine, a protoberberine present in a number of
medicinal plants [71], and the main active component of Coptis chinensis French has been used for
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years, and studies in patients have shown its capability to regulate glucose and lipid metabolism [72].
Moreover, at central level it has also been reported that berberine may reduce diabetes induced ectopic
expression of miR-133a in endothelial cells, which is involved in endothelial dysfunction in DM.
In addition, berberine may inhibit acetylcholine-induced vasorelaxation in the middle cerebral artery,
guaranteeing better blood supply to the brain in streptozotozin (STZ)-treated rats, as a T1D model [73].
It has also been reported that patchouli alcohol, a natural tricyclic sesquiterpene in the traditional
Chinese herb Pogostemonisherba [74], reduces ishcemia/reperfusion damage after middle cerebral
artery occlusion in ob/ob mice by limiting infarct volume, protecting blood brain barrier function and
decreasing inflammatory markers [74]. In line with these observations, Mangifera indica Lin extract,
rich in natural polyphenols, reduces spontaneous central bleeding detected in db/db mice. While the
actual size of the microbleeds is not affected, Mangifera indica extract reduces the appearance of new
vascular lesions [18]. In addition, poor cerebral perfusion may contribute to cognitive impairment in
diabetic state and resveratrol, a natural phenol isolated from plants like Polygonum cuspidatum, Paeonia
lactiflora and Vitis amurensis, among others [75], may improve neurovascular coupling capacity in
T2D patients [76] and reduce blood brain barrier permeability and vascular endothelial growth factor
expression in the hippocampus of diabetic rats [77] (Table 1 and Figure 1).

 

Figure 1. Central activities of natural compounds and extracts.

2.2. Natural Compounds and Neuroinflammation Associated with DM

2.2.1. Brain Neuroinflammation and DM

Inflammation is an immune response against several conditions including disease and infection.
Acute inflammatory events are resolved efficiently and inflammation levels return to baseline in
physiological conditions. However, in chronic inflammation the resolution phase is not achieved
due to excessive pro-inflammatory signalling and it can provoke relevant detrimental effects [78].
Following this idea, insulin resistance and diabetes are closely associated with chronic inflammation [79].
Moreover, the finding two decades ago that proinflammatory cytokines like tumor necrosis factor-α
(TNF-α), among others, are overexpressed in adipose tissue of obese mice provided a relation between
obesity, diabetes and chronic inflammation [79–81].

Inflammation in the central nervous system is complexly regulated and astrocytes [82], blood
inflammatory cells and even neurons seem to participate and mediate inflammation in the injured
brain. However, microglia still play the most significant role at this level [83]. Microglia are a specific
type of macrophage in the brain; they are held without external replenishment and they are not
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in contact with plasmatic proteins, which contributes to keep an immupriviledged environment in
the central nervous system [84]. The classical dual role of microglia as a protective (with a typical
anti-inflammatory profile) or damaging agent (with a proinflammatory response) has been recently
reviewed and microglia-mediated responses seem to be more prone towards neuronal survival,
regeneration [85] and overall neuroprotection [86]. The role of microglia in neurodegenerative diseases
has been long studied and they also seem to be highly activated in metabolic disease models, ranging
from prediabetic [87], T1D [88], T2D [55,56] models, or even diabetic mothers offspring [89]. Under
diabetic conditions, hyperglycemia leads to increased mitochondrial respiration in pericytes, astrocites
as well as endothelial cells [90]. This causes an increase in the production of reactive oxygen species
that may consequently lead to neurovascular damage and blood brain barrier dysfunction, contributing
to the inflammatory process. Increased levels of reactive oxygen species may also affect protein fuction,
signaling pathways or induce upregulation of inflammatory cytokines [90]. Therefore, previous studies
have shown that, in metabolic alterations, microglia mediated neuroinflammation may contribute
to the neurodegenerative process by promoting the release of cytokines and chemokines including
TNF-α [91,92]. In line with these ideas, studies in patients with metabolic disorders have detected
a decrease in mRNA levels of the IL10-mediated anti-inflammatory defense, while iNOS-mediated
inflammatory activity seems to be favored in the cortex from obese patients [93].

2.2.2. Effect of Natural Compounds on DM-Related Inflammation

Antioxidant and anti-inflammatory activities are probably the most widely explored roles of
natural compounds and extracts [30,94,95]. Following this idea, many studies have previously used
products of natural origin to counterbalance oxidative stress, neuroinflammation and alterations
in related markers and cytokines. Even though the role of flavonoids in neuroprotection might
be due to different mechanisms of action it is mediated, at least in part, by direct scavenging of
free radicals as antioxidant action [35,96]. Several plants extracts constitute a relevant source of
polyphenols. While in many cases they share common mechanisms and show potent anti-inflammatory
and antioxidant activities, not all of them have been completely characterized. Concretely quercetin,
present in many fruits and vegetables, may enhance glyoxalase pathway activity, inhibit advanced
glycation end products (AGEs) formation and reduce oxidative stress [97]. Quercetin is a flavonoid
present in a wide variety of plants, including Rosa canina, Opuntia ficusindica and Allium cepa [75].
Oral administration of quercetin to diabetic rats has shown antioxidant effects, increasing superoxide
dismutase (SOD) and catalase activity, while also restoring the blood levels of vitamin C and E, which
finally contribute to ameliorate the diabetes-induced in oxidative stress [98]. On the other hand, it has
been described that quercetin also protects neuronal PC12 cells against high-glucose-induced oxidative
stress, inflammation and apoptosis [99]. While the final underlying mechanisms involved in quercetin
neuroprotective effects are not completely known, a recent study has shown that neuroprotection
might mediated by phosphorylation regulation of Nrf2/ARE/glyoxalase-1 pathway in central neurons
under chronic hyperglycemia, reducing AGEs and oxidative stress [38]. In line with these observations
mangiferin, which is mainly present in Mangifera indica L. but also in Chinese herbal medicines like
Rhizoma Anemarrhenae and Rhizoma Belamcandae, has anti-inflammatory [100] and antioxidant [100,101]
activities. Mangiferin also enhances the function of glyoxalase-1 through activation Nrf2/ARE pathway
in neurons exposed to chronic high glucose [101]. In addition, Mangifera indica L. extracts with a high
content in mangiferin and quercetin reduce microglia activation and associated inflammation in db/db
mice after long-term treatment [18].

On the other hand curcumin, a bright yellow compound isolated from the rhizome of Curcuma longa [75]
has shown neuroprotective effects in diabetic rats reducing blood glucose, oxidative stress markers and
astrocyte activation in the hippocampus [102]. A recent study has reported the potent neuroprotective
effect of J147, a novel curcumin derivative developed to increase curcumin bioavailability and blood
brain barrier permeability [103]. J147 reduces inflammation by decreasing TNF-α pathway activation
and several other markers of neuroinflammation in mice treated with STZ [103], supporting that
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different curcumin extracts and derivates are potent antioxidants with the capability to limit associated
central complications in diabetes. Resveratrol has a well established antioxidant activity. It reduces
astrocytic activation as well as TNF-α, IL-6 transcripts the hippocampus of diabetic rats [77]. Resveratrol
also normalizes malonedialdehyde and oxidezed glutathione levels in diabetic rats and it strengthens
the action of antioxidants enzymes SOD and catalase [104]. Ficus deltoidea leaf extract also increases
SOD and glutathione peroxidase values, while reducing thiobarbituric acid reactive substances [105].
Similar outcomes have been reported for saffron extracts with antidiabietic activity, which also
modulate antiinflamatory pathways at central level [106]. Likewise, Scoparia dulcis plant extract also
increases activities of plasma SOD, catalase or glutahione peroxidase or glutathione-S-transferase
while reduces gluthatione in the brain from STZ diabetic male rats [107]. Similar outcomes have been
described for chrysin, a flavonoid isolated from Oroxylum indicum, Passiflora caerulea, Passiflora incarnata,
Teloxys graveolens and Artocarpus heterophyllus that also ameliorates oxidative stress by reducing catalase
levels, SOD and glutathione in the cerebral cortex and hippocampus of diabetic rats [108].

One of the most widely studied preparations is Gingko biloba extract EGb 761, which has been
described to scavenge reactive nitrogen and oxygen species, as well as peroxyl radicals [35,96,109].
A similar scavenging effect has been described for green tea extracts [35,110]. In this sense, tea extract,
teasaponin, also reduces proinflammatory citokines and inflammatory signaling in the hypothalamus
from mice on high fat diet [111]. For its part, Clitorea ternatea leaf extract, has showed protection against
oxidative stress increasing SOD, total nitric oxide, catalase and glutathione levels in the brain of diabetic
rats [112]. Similar antioxidant effects have been reported for grape seed extracts (Vitis vinifera sp.), rich
in flavonoids like proanthocyanidins, showing beneficial effects on oxidative stress in the hippocampus
of STZ-induced diabetes rats, to a larger extend than a classical antioxidant as viatamin E [113].
The expression of inflammatory TNF-α, and NF-κB genes are significantly reduced and other studies
have also reported the role of grape seed extract in modulating AGEs/RAGE/NF-kappaB inflammatory
pathway in the brain [114]. Urtica dioica leaves extract, rich in scopoletin, rutin, esculetin and quercetin,
has also shown antioxidant and anti-inflamatory activities in the hippocampus from STZ-induced diabetic
mice [115,116]. In addition, the number of astrocytes in the hippocampus from diabetic rats is reduced
after treatment with Urtica dioica extract, supporting its anti-inflammatory role at different levels [117].

Gallic acid, is a type of phenolic acid, which is isolated from several plants including Phaleria
macrocarpa, Peltiphyllum peltatum, and Pistacia lentiscus. Gallic acid may inhibit hippocampal
neurodegeneration via its potent antioxidant and anti-inflammatory effects in diabetic rats [118].
Similarly, Scoparia dulcis extract also reduces thiobarbiyutic acid reactive substances and hydroperoxides
formation in the brain from diabetic rats, supporting its role in protection against lipid peroxidation
induced membrane damage [107]. Luteolin can also reduce neuroinflammation by reducing plasma
and brain cytokines in a prediabetic mouse model [119]. Moreover, similar antioxidant and
anti-inflammatory effects have been reported for luteolin in diabetic mice [120]. Other studies
in prediabetic models have shown a protective role for Withania somnifera, which may reduce gliosis
and microgliosis as well as expression of inflammation markers such as PPARγ, iNOS, MCP-1,
TNF-α, IL-1β, and IL-6 [121]. In line with these observations, oral administration of an hexanic
extract of Eryngium carlinae inflorescences to diabetic rats not only reduced glucose levels but also
limited overall oxidation, by reducing lipid peroxidation, protein carbonylation and reactive oxigen
species production, while increasing catalase activity in the brain [122]. Morin is another flavonoid
isolated from Maclura pomifera and Maclura tinctoria, with similar properties [123,124]. Additionally,
the flavonoid rutin has also shown antioxidant properties in the diabetic rat retina [125]. In line
with these observations, berberine has been shown to reduce oxidative stress and astrogliosis in the
hippocampus from diabetic rats [126]. A natural extract from Centella asiatica, rich in ascorbic acid,
asiatic acid, oleanolic acid, stevioside, stigmasterol andα-humulene protects diabetes tissues from stress
via antioxidant and anti-inflammatory mechanisms eliciting brain reduced levels of malondialdehyde,
TNF-α, IFN-γ, IL-4 or IL10 [127]. Similar outcomes have been reported for Ixeris gracilis extract
used in mice with alloxan-induced diabetes [128]. Specific assessment of mitochondrial status in
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STZ-induced diabetes has also revealed the capacity of Malvastrum tricuspidatum extract to restore
oxidative damage [129] (Tables 1 and 2, and Figure 1).

2.3. Natural Compounds and Brain Neurodegeneration in DM

2.3.1. Neurodegeneration in Diabetic Brain

A wide range of clinical [15,19,130,131] and preclinical studies [70,88,132] have shown an association
of prediabetes and diabetes with brain atrophy. In this sense, magnetic resonance studies have shown
that both T1D and T2D patients have reduced grey matter density and white matter lesions, as well
as cortical and hippocampal atrophy [133,134]. However, it seems that brain atrophy is more severe
in T2D patients, probably given that this population is older on average [135–137]. As previously
pointed out, the prediabetes process seems to be enough to induce brain atrophy in patients [138]
and synaptic loss is also detected in animal models when prediabetes is combined with other central
complications [132]. Likewise, animal models of metabolic alterations show neuronal simplification,
synaptic alterations [44], reduced neuronal density and overall brain atrophy [55,56].

Neurodegeneration in diabetes is mediated by multiple neuropathogenic factors including
hyperglycemia mediated damage, but also hypoglycemic episodes, cerebrovascular alterations or
insulin derregulation in the brain or among others [139]. In this sense, dysfunction of insulin/insulin
receptor mediated signaling might be responsible for alterations in synaptic plasticity, cognition and
memory [139,140]. Once more, oxidative stress mediated by free radicals is related with the diabetes
neurodegenerative process [141], given that hyperglycemic state reduces antioxidants levels and
consequently increases the production of free radicals [139]. Neurons are especially vulnerable to
oxidative stress and this can induce mitochondrial oxidative damage, resulting in apoptosis and/or
necrosis [142]. On the other hand, several proteins implicated in neurodegeneration, such as tau protein,
which is hyperphosphorylated in diabetic mouse models, may also underlie neuronal death [70,88,143].
In overall terms, neurodegeneration is perceived as a cause of cognitive dysfunction observed in
diabetes conditions.

2.3.2. Effect of Natural Compounds and Extracts on Brain Neurodegeneration Associated with DM

The majority of the studies on natural compounds and extracts have focused on their antioxidant and
anti-inflammatory activities. However, neurodegeneration is a multifactorial pathogenic process and it is
feasible than various, concomitant underlying mechanisms are responsible for their final neuroprotective
effect. In this sense, polyphenols are able to modulate the activity of multiple involved targets, which
contribute their pleiotropic effects (anti-inflamatory, antioxidant or inmunomodulatory) [144], and,
indeed, phenolic compounds have shown their neuroprotective role in vitro, in animal models and
in clinical studies [145–148]. In line with these observations, flavonoids are not only implicated in
scavenging of free radicals and reducing oxidative stress [35,96], but they can also modulate brain
signaling cascades implicated in neuronal apoptosis, alter the expression of specific genes and modify
mitochondrial activity [149].

Mangifera indica extract has shown its capability to limit brain atrophy in db/db mice. Cortex and
hippocampus are largely preserved after long-term administration [18]. Interestingly, oral treatment
with Mangifera indica also reduces tau hyperphosphorylation, an early marker of neuronal damage, and
it also preserves compromised neuronal population in this model [18]. In line with these observations
quercetin has also been shown to protect neuronal PC12 cells against high-glucose-induced oxidative
stress, inflammation and apoptosis [99], as described for gallic acid in diabetic mice [118]. Curcumin
protects against structural alterations of the hippocampus associated with diabetes, by reducing
disorganization of small pyramidal cells in CA1, cellular loss in the pyramidal cells of CA3 and
degenerated granule cells in the dentate gyrus [102]. In addition, curcumin derivate, J147, has been
shown to upregulate nervous system development functions in diabetic mice. Moreover, functions
related with neuron growth, such as proliferation, axon growth and long-term potentiation are the

269



Int. J. Mol. Sci. 2019, 20, 2533

most significantly changed [103]. Luteolin also shows neuroprotective activity by increasing the levels
of brain-derived neurotrophic factor, the action of synapsin I and postsynaptic density protein 95 in
the cortex and hippocampus from mice on high fat diet [119]. Likewise, resveratrol has also been
widely assessed and chronic treatment improves neuronal injury, not only through attenuation of
oxidative stress and neuroinflammation, but also by reducing synaptic loss and increasing synaptic
plasticity markers SYN and GAP-43 [150], as well as by inhibiting hippocampal apoptosis through
the Bcl-2, Bax and caspase-3 signaling pathways in STZ-induced diabetic rats [151]. Gallic acid may
inhibit hippocampal neurodegeneration in diabetic mice not only through its potent antioxidant and
anti-inflammatory activities, but also due to its anti-apoptotic properties [118].

Other mechanisms of action have been presented for different compounds and extracts, many
of which have focused on the hippocampus, a key area in learning and memory. In this sense
Astragalus Polysacharin extract may upregulate phosphorylation levels of N-methyl-d-aspartate receptor,
calcium/calmodulin-dependent protein kinase II and cAMP response element-binding protein, as well
as reduce the number of dead cells in the CA1 region of the hippocampus from STZ-treated diabetic
rats [152]. On the other hand, antioxidants present in bilberry fruits, rich in anthocyanins, influence the
morphology of and possibly exhibit beneficial and neuroprotective effects on hippocampal neurons
during diabetes [153]. Pouteria ramiflora extract administration to STZ-treated rats exerts hippocampal
neuroprotection by restoring myosin-Va expression and the nuclear diameters of pyramidal neurons
of the CA3 and the polymorphic cells of the hilus [154]. In a T1D rat model, Garcinia kola seeds
limit neuronal loss in regions involved in cognitive and motor functions, including the motor cortex,
the medial septal nucleus an cerebellar Purkinje /granular cell layers [155]. Urtica dioica leaves extract
also seems to exert it neuroprotective activities by modulating different pathways. It downregulates
iNOS, while it upregulates BDNF, TrKB, cyclin D1, Bcl2, autophagy5 and autophagy7 mRNA expression
and reduces TNF-α expression in diffrent hippocampal regions. In addition, an overall reduction
of neuronal damage and DNA fragmentacion has been observed in the hippocampus from diabetic
mice [156]. Other studies have also shown that Urtica dioica extract may limit granule cell loss of the
dentate gyrus from young diabetic rats. While the positive effect is not observed when the extract
is used preventively, it seems to ameliorate hippocampus cell loss when used as a treatment [157].
Similar outcomes have been observed after ginger extract administration, in combination with insulin,
to male diabetic rats, showing changes in the expression of cyclin D1 gene and reducing apoptosis
in hippocamapal cells [158]. Apart from its well established antioxidant activity, grape seed extract
reduces caspases 3 and 9 expression in the hippocampus, ameliorating apoptosis in diabetic rats [113].
Another way of maintaining hippocampus integrity has been observed with an aqueous extract of
Anemarrhena rhizome, capable of increasing cell proliferation and neurpeptide Y expression in the
dentate gyrus from diabetic rats [159]. Lingonberry extract also exerts neuroprotective activity in
diabetic rats by reducing oxidative stress, but also by restoring the density of purinergic receptors
in the cortex [160]. In addition, in T2D mice with cerebral ischemic injury, chronic treatment with a
water-soluble extract from the culture medium of Ganoderma lucidum mycelia reduced neuronal cell
death and vacuolation in the ischemic penumbra, with reduced number of TUNEL, cleaved caspase-3
cells and the expression of receptor-interaging protein kinase 3 mRNA and protein, confering resistance
to apoptosis and necroptosis [161] (Tables 1 and 2, and Figure 1).

2.4. Natural Compounds and Cognitive Impairment in DM

2.4.1. Cognitive Dysfunction Associated with Diabetes

Substantial epidemiological evidence supports that cognitive dysfunction is a common complication
of diabetes [162–164]. It has been estimated that 20–70% of patients with DM show cognitive decline, and
60% present at higher risk of dementia [11,12]. Following this idea, it is noteworthy that even prediabetic
adults shown accelerated cognitive decline, associated with smaller total brain tissue volume [131].
Different stages of cognitive dysfunction have been associated with diabetes, depending on affected

270



Int. J. Mol. Sci. 2019, 20, 2533

cognitive features, age or prognosis, andprobably with different underlying mechanisms [165–167].
Previous studies in patients have reported a wide range of diabetes-associated cognitive decrements
ranging from subtle changes in cognitive function (that might give rise to cognitive complaints,
but should not affect activities of daily life) and mild cognitive impairment, to severe forms like
dementia [162,168]. Several factors, including vascular injury, insulin resistance, inflammation and
depression, are potential risk factors for cognitive dysfunction in diabetic patients [168–170]. These data
are also supported by studies in animal models, where severe cognitive impairment is observed in
diabetic animal models that are also dependent on the model under study, the age and evolution of the
disease [70,171].

2.4.2. Effect of Natural Compounds and Extracts on Cognitive Impairment Associated with DM

As previously discussed, the mechanisms of action of natural compounds and extracts remain
largely elusive, and it is feasible that a combination of different positive effects, including antioxidant,
anti-inflammatory, vascular protection, antiapoptotic or proregenerative activities are responsible
for observed beneficial effects in DM associated cognitive alterations. Concretely, mangiferin has
been shown to counterbalance learning and memory impairments in diabetic rats, treated with STZ,
when assessed in the Morris water maze [172]. Similarly, db/db mice on long-term Mangifera indica
extract, with a high content of mangiferin, significantly improve their performance in the Morris water
maze [18]. Moreover, episodic memory alterations are also ameliorated in a very demanding version
of the new object discrimination test, and “what”, “where” and “when” paradigms are significantly
improved [18]. Quercetin also ameliorates STZ-induced spatial learning and memory impairment in the
Morris water maze [173,174], reducing the time spent in target quadrant in the test trial and increasing
escape latendcy in the elevated plus maze. Similar results have been reported when chrysin [108] or
Andrographis paniculata extract [175] are administered to STZ-treated rats. Similar outcomes have been
reported when Hedera nepalensis extract is administered to STZ-aluminium trichloride rat model [176].
Likewise, grape seed proanthocyanidin extract [177], kola nut extract [178] or Garcinia kola seeds [155]
also improve cognitive impairment in diabetic rat models. Andrographis paniculata extract, enriched in
andrographolide, improves cognitive function in STZ-treated rats and the effect seems to be mediated
by reducing oxidative stress and acetylcholinesterase activity [175]. Similar underlying mechanisms
have been described for Clitorea ternatea leaves extract, which also improve spatial working memory,
spatial reference memory, and spatial working-reference in the Y maze, the Morris water maze and
radial arm maze, respectively, in diabetic rats [112]. In addition, studies with Brassica juncea extract [179]
or resveratrol [150] have reported positive effects on learning and memory in diabetic rats. Equally,
hydroalcoholic extract of Teucrium polium also limits cognitive impairment in the passive avoidance
test while reducing oxidative stress markers in diabetic rats [180]. In addition, cognitive impairment
is ameliorated in mice models after administration of Rosa canina hydro-alcoholic extract [181] or
Ludwigia octovalvis extract [182]. Other studies on diabetic mice have shown that Flos puerariae extract
also improves cognitive impairment after STZ administration, by reducing oxidative stress and
restoring cholinergic activity (enhancing cholinacetyltransferase and alleviating acetylcholinesterase
activities) in the the cortex from STZ-treated mice [183], and similar outcomes have been reported with
Withania somnifera and Aloe vera extracts [184]. Bacopa monnieri [185] and Urtica dioica [115,186] extracts
restore memory deficits in different diabetic mouse models. Additionaly, cognitive impairment in
early metabolic alterations, such as prediabetic mice on a high fat diet, improve in the Morris water
maze and the step-through task after luteolin [119] or Ludwigia octovalvis extract administation [182]
(Tables 1 and 2, and Figure 1).

Conclusions: Altogether, natural components and extracts show antioxidant and anti-inflammatory
activities at central level, as well as a relevant capacity to reduce vascular damage, contributing
altogether to limit neurodegeneration and cognitive derived alterations. Therefore, while the ultimate
underlying mechanisms remain largely unknown, they could contribute to expand therapeutic options
to treat or reduce central complications associated with DM.
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Abstract: Alzheimer’s Disease (AD) is a neurodegenerative disorder related with the increase of age
and it is the main cause of dementia in the world. AD affects cognitive functions, such as memory,
with an intensity that leads to several functional losses. The continuous increase of AD incidence
demands for an urgent development of effective therapeutic strategies. Despite the extensive research
on this disease, only a few drugs able to delay the progression of the disease are currently available.
In the last years, several compounds with pharmacological activities isolated from plants, animals
and microorganisms, revealed to have beneficial effects for the treatment of AD, targeting different
pathological mechanisms. Thus, a wide range of natural compounds may play a relevant role in the
prevention of AD and have proven to be efficient in different preclinical and clinical studies. This
work aims to review the natural compounds that until this date were described as having significant
benefits for this neurological disease, focusing on studies that present clinical trials.

Keywords: neurodegenerative disease; bioactive compound; natural extract; β-amyloid peptide; tau
protein; clinical trial; human studies; animal studies; in vitro studies

1. Introduction

Neurodegenerative diseases induce alterations in the central nervous system with psychological and
physiological negative effects [1]. Alzheimer’s disease (AD) is known as a neurodegenerative disorder
with major importance and the principal cause of dementia among the elderly [2,3]. Microscopically,
intraneuronal neurofibrillary tangles (NFTs) and extracellular senile plaques (or amyloid plaques)
characterize the AD. While senile plaques are constituted by extracellular deposits of β-amyloid (Aβ)
peptide, the hyperphosphorylation and abnormal deposition of tau protein compose the NFTs [4].

Aβ derives from the amyloid precursor protein (APP), proteolytic cleavage of amyloid precursor
protein (APP), an integral membrane protein that possesses the general properties of a cell surface
receptor [5], by the consecutive action of β- and γ-secretases (amyloidogenic pathway). However,
this amyloidogenic pathway can be stopped by the competition of α-secretase with γ-secretase
(non-amyloidogenic pathway) [6]. The amyloid cascade hypothesis (ACH) suggests that the imbalance
between the Aβ generation and its clearance causes the dysfunction and consequently cell death.
Aβ polymerizes in a variety of structurally different forms including oligomeric, protofibrillar, and
fibrils, forming the senile plaques [7]. Several findings suggest that oligomers play an important role
in the ACH [8]. Nowadays, it is proved that Aβ oligomers, including protofibrils and prefibrils, are
more toxic than fibrils [9]. Tau protein is also related with the ACH. First, tau monomers aggregate
and form oligomers that aggregate into a β-sheet conformation, forming NFTs [10]. NFTs accumulate
inside the neurons, resulting in their death. The ACH suggests that toxic concentrations of Aβ cause
changes in tau protein and subsequent formation of NFTs, leading to synaptic and neuronal loss [11].
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Though a direct relationship between the degree of AD and the amount of Aβ aggregates and tau
levels have been established, numerous other mechanisms of neurodegeneration have been suggested,
such as neuroinflammation [12], oxidative stress [13], genetic [14] and environmental factors [15]. So,
there is an urgent need to develop efficient therapies that target the various pathogenic mechanisms
associated with AD. Based on these mechanisms, different therapeutic molecules can act through
different pathways [16–18]. However, the currently available medications only control the symptoms
in an early stage of the disease [11].

Therefore, it is fundamental to seek for new strategies for AD therapy [19–22]. Natural compounds
were the first molecules used as therapeutic agents [23]. Nowadays, the study of these natural
compounds revealed that they present neuroprotective effects, arousing an increasing interest in the
scientific community and in the pharmaceutical industry [24,25]. A diversity of natural compounds
from different origins was described to be suitable to prevent and attenuate several pathologies,
including neurological diseases, such as AD [26–28]. Several in vitro and in vivo studies have proven
the therapeutic potential of natural compounds, however, just a small percentage has reached the
clinical trials stage [29]. Since several causes are related with this disease, the preventive properties of
the natural compounds can be associated with several mechanisms as shown in Figure 1 [6,30–34].

Figure 1. Schematic representation of the several mechanisms associated with Alzheimer’s Disease
(AD) therapy. Down and up oriented arrows indicate the decrease and the increase of the fenomena,
respectively.

In this review, the natural compounds already in clinical trials phase are described and the reported
results are presented and discussed. Other natural compounds with known potentially beneficial effects in
AD in a preclinical development stage with in vitro and in vivo studies are also described. For preclinical
studies, only the most recent reported works are cited. The systematic literature search was conducted
using PubMed, Science direct, Google Scholar, Scopus and Web of Science as online databases until April
2019. Only papers written in English were considered with unlimited publication date.

288



Int. J. Mol. Sci. 2019, 20, 2313

2. Natural Compounds in Clinical Trials and Their Effects on AD

Natural compounds are an emerging approach for AD therapy. For the assessment of their
therapeutic efficiency and potential side effects, human trials have been performed in the last years.
The first natural product studied in a clinical trial was nicotine in 1992. However, no clinical trials
were performed in the last two decades for this molecule. During the 90s, several other compounds
were studied in clinical trials for AD therapy, such as vitamins. These molecules are still being tested
in human trials up until this date. In the last years, other natural compounds are gaining interest
by the scientific community and have achieved the clinical trials phase, such as bryostatin, which
effects started to be evaluated in humans in 2017. A detailed report of these findings is described below.
The natural compounds were divided into two groups: bioactive compounds and natural extracts, and
they are summarized in Tables 1 and 2, respectively. Here, a bioactive compound refers to a therapeutic
molecule while a natural extract is the mixture of several molecules. The compounds are listed from
the ones with more participants and longer duration.

Table 1. Bioactive compounds in clinical trials for AD therapy.

Bioactive Compound Condition of Participants
Number of

Subjects
Duration Outcomes Ref.

Vitamin D
Mild cognitive impairment 8 8 weeks Reduction of Aβ level [35]

Mild cognitive impairment
and early AD 48 20 months Reduction of Aβ level;

Improvement of cognitive functions [36]

Vitamin D and
memantine Moderate AD 43 24 weeks Improvement of cognitive functions [37]

Vitamin D and
antioxidants Mild to moderate AD 78 16 weeks Reduction of oxidative stress [38]

Vitamin E and vitamin C AD 20 1 month Reduction of oxidative stress [39]

Vitamin E and selegiline Moderate AD 341 2 years Delay of AD progression [40]

Vitamin E and donepezil Mild cognitive impairment 769 5 years No effectiveness in delaying
AD progression [41]

Vitamin E and
memantine Mild to moderate AD 613 5 years Delay of AD progression [42]

Vitamin E and selenium Healthy patients 3786 13 years No prevention of dementia [43]

Docosahexaenoic acid
(DHA) and
eicosapentaenoic acid

AD 204 12 months
Safe and well tolerated;
No effectiveness in delaying
cognitive decline

[44]

DHA

AD 295 18 months No effectiveness in delaying
cognitive decline [45]

Cognitive impairments 485 24 weeks Improvement of cognitive functions [46]

Mild cognitive impairment 36 1 year Safe and well tolerated;
Improvement of memory [47]

Homotaurine Mild to moderate AD

1052 78 weeks Improvement of cognitive functions [48,
49]

58 3 months No harmful effects on vital signs;
Side effects [50]

10 4 weeks Improvement of the central
cholinergic transmission [51]

Huperzine A
AD

103 8 weeks Safe and well tolerated; Improvement
of memory and behaviour [52]

60 60 days Safe and well tolerated;
Reduction of oxidative stress [53]

Mild to moderate AD 177 16 weeks Safe and well tolerated; Improvement
of cognitive functions [54]

Bryostatin AD
9 46 weeks Safe and well tolerated: Improvement

of cognitive functions [55]

150 12 weeks Improvement of cognitive functions [56]

Melatonin

AD
150 12 weeks Improvement of memory [57]

14 22 to 35 months Improvement of cognitive functions [58]

Mild cognitive impairment 50 9 to 18 months Improvement of cognitive functions [59]

Mild to moderate AD 80 24 weeks Safe; Improvement of
cognitive functions [60]
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Table 1. Cont.

Bioactive Compound Condition of Participants
Number of

Subjects
Duration Outcomes Ref.

Resveratrol Mild to moderate AD
119 52 weeks Side effects; No effectiveness in

reducing biomarkers levels [61]

39 1 year Safe and well tolerated;
No effectiveness in treat AD [62]

Nicotine AD

70 2 weeks Improvement of perceptual and
visual attentional deficits [63]

6 9 weeks Safe; Improvement of learning [64]

8 10 weeks Improvement of
attentional performance [65]

Curcumin AD 34 6 months Safe and well tolerated [66]

Table 2. Natural extracts and other natural products in clinical trials for AD therapy.

Natural Extracts and
Other Products

Condition of Participants
Number of

Subjects
Duration Outcomes Ref.

Ginkgo biloba

Mild to moderate
dementia

410 24 weeks Safe; Improvement of
neuropsychiatric symptoms

[67,
68]

410 24 weeks Improvement of cognitive and
functional functions [69]

AD or vascular dementia 404 24 weeks
Improvement of cognitive functions and
functional abilities; Improvement of
neuropsychiatric symptoms

[70]

Mild cognitive impairment 160 24 weeks Safe and well tolerated; Improvement of
cognitive functions [71]

Saffron Mild to moderate AD 46 16 weeks Safe; Improvement of cognitive functions
and memory [72]

Lemon balm Mild to moderate AD 40 4 months Improvement of cognition function
and agitation [73]

Green tea Severe AD 30 2 months Improvement of cognitive functions [74]

Papaya AD 20 6 months Reduction of oxidative stress [75]

Sage Mild to moderate AD 20 4 months Improvement of cognitive functions;
No side effects except agitation [76]

Coconut AD 44 21 days Improvement of cognitive functions [77]

Apple Moderate to severe AD 21 1 month

No improvement of cognitive functions;
Improvement behavioural and psychotic
symptoms; Reduction of anxiety, agitation
and delusion

[78]

Blueberry Early memory failures 9 12 weeks Improvement of learning; Reduction of
depressive symptoms [79]

Colostrinin AD n. d. 15 weeks Improvement of cognitive and
daily functions [80]

n. d.—The information was not provided by the authors.

2.1. Bioactive Compounds

Vitamins have been described as therapeutic compounds for AD. Among them, vitamin C, E
and D have aroused great interest. Vitamin C (Figure 2A) is found in several vegetables and fruits,
mostly citrus fruits. In vivo studies reported that vitamin C prevented the neuroinflammation [81]
and the brain oxidative damage due to its potent antioxidant activity [82]. Also, it was observed in
an AD mouse model that Vitamin C reduced the Aβ oligomers formation and tau phosphorylation,
improving the behavioral decline. The reduction of Aβ levels [83] and Aβ plaque burden [84] was also
observed in vivo.

On the other hand, vitamin E, which is present in several fruits and vegetables (Figure 2B), also
showed in vivo antioxidant and anti-inflammatory effects [85]. Other in vivo study revealed that
vitamin E reduced the Aβ levels [86].

Other vitamin with reported beneficial effects for AD, is vitamin D. Adding to several benefits of
vitamin D [87], its therapeutic effect in AD has also been studied in last years. Although the major
source of vitamin D is sunlight exposure (vitamin D3, Figure 2C) [88], around 20% can be obtained
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from food, including fatty fish and fish-liver oils (vitamin D2, Figure 2D) [89]. In vivo studies revealed
that vitamin D is an anti-inflammatory compound [90] with the ability to inhibit the activity of β and
γ-secretases, reducing the Aβ production and amyloid plaques and to increase the Aβ degradation [91].
As result, an improvement on learning and memory performance was verified in AD rats [92,93]. Also,
low plasma Aβ is linked to the incidence of AD.

Figure 2. Chemical structures of: (a) vitamin C, (b) vitamin E, (c) vitamin D3 and (d) vitamin D2.

Clinical trials revealed that vitamin D increased plasma Aβ in mild cognitive impairment patients,
suggesting a reduction in Aβ levels in the brain. In fact, Miller et al. (2016) studied the effect of
vitamin D supplementation on the plasma levels of Aβ in eight patients over 60 years old in a pilot
study. Patients were randomly divided in two groups, treatment and placebo groups. Patients from
the treatment group were administered with 50,000 IU per week for eight weeks. The obtained results
showed that vitamin D intake increased plasma Aβ levels, suggesting a decrease in Aβ brain levels [35].

SanMartin et al. (2017) evaluated the role of vitamin D in the Aβ clearance from the brain.
Patients with mild cognitive impairment and very early AD (n = 47) were orally supplemented with
vitamin D at 50,000 IU once a week for six weeks, followed by 1500–2000 IU daily for 18 months.
The obtained results showed that lymphocyte susceptibility to death, Aβ plasma levels and cognitive
status improved after six months of vitamin D supplementation in cognitive impairment patients,
but not in very early AD patients. Thus, supplementation with vitamin D proved to be beneficial in
cognitive impairment patients. The lack of effects in very early AD patients suggest that vitamin D
intake is not able to delay the progression of the disease in a more advanced stage [36].

Co-therapy with vitamin D and other molecules for AD therapy has also been explored in clinical
trials. In fact, Annweiler et al. (2012) conducted a double-blind, placebo-controlled pilot trial with
43 white patients over 60 years with moderate AD symptoms [37]. The main goal of this trial was
to evaluate the combination of neuroprotective effects of memantine and vitamin D in preventing
neuronal loss and cognitive decline. Memantine was selected because is one of the most prescribed
drugs for AD therapy [94]. Patients were randomly divided in three groups, being administered with
memantine plus vitamin D (n = 8), or memantine alone (n = 18), or vitamin D alone (n = 17). Patients
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were administered with drugs for 24 weeks. Memantine was administered orally at 5 mg per week for
the first four weeks and then 20 mg per day for the rest of the trial. Patients received a drinking solution
of vitamin D at 100,000 IU every four weeks. After the study, patients co-treated with memantine and
vitamin D showed better cognitive performance than patients treated with vitamin D or memantine
alone [37].

Co-supplementation with vitamin D and other natural compounds was also studied in clinical
trials. In fact, Galasko et al. (2012) conducted a double-blind, placebo-controlled clinical trial to
evaluate what antioxidant supplementation affected the levels of AD’s histopathological marks, such
as Aβ peptide and tau protein [38]. Patients with mild to moderate AD (n = 78) received placebo or
daily supplement containing 800 IU of vitamin E, 500 mg of vitamin D, 900 mg of α-lipoic acid and
400 mg of coenzyme Q for 16 weeks. The attained results showed that the co-supplementation did not
affect amyloid or tau levels, but a reduction on levels of an oxidative stress biomarker, the cerebrospinal
fluid F2-isoprostane, was verified.

Also, co-supplementation with multivitamins was evaluated in clinical trials. In fact, Kontush et al.
(2001) evaluated the efficiency of supplementation with both vitamin E and vitamin C to decrease
oxidation of lipoproteins in AD patients [39]. Lipid oxidation is related with AD progression. Twenty
patients with AD were randomly divided in two groups. The first group received a daily supplement
for one month of 400 IU vitamin E alone, and the second group received a daily combination of 400 IU
vitamin E and 1000 mg of vitamin C. The obtained results proved that combined supplementation was
more efficient in maintaining active doses of vitamins in the plasma and decreasing lipid oxidation.

Co-therapy of different drugs with vitamin E was also studied in clinical trials. Sano et al. (1997)
evaluated the effects of vitamin E and selegiline co-administration [40]. Selegiline is a monoamine
oxidase inhibitor, that prevents dopamine degradation [95]. For that, a double-blind, placebo-controlled
clinical trial was conducted with 341 patients with moderate AD’s symptoms for two years. The patients
were randomly divided in four groups, a placebo group, one receiving vitamin E, one receiving selegiline,
and another one receiving both drugs. Vitamin E was daily administered at a dose of 2000 IU per day,
and 10 mg of selegiline daily. Co-therapy proved to efficiently slow the progression of the disease [40].

The combined effect of donepezil and vitamin E was also studied. Donepezil is a drug used for AD
therapy to control the symptoms. To compare the effects of this drug with vitamin E on the outcome
effects on patients with mild cognitive impairment, a double-blind, placebo-controlled clinical trial was
conducted by Petersen et al. (2005) [41]. Patients over the age of 55 (n = 769) were randomly divided in
three groups, placebo, vitamin E alone or donepezil alone. The daily dose of vitamin E was 1000 IU,
and after six weeks the dose was increased to 2000 IU, for five years. Vitamin E proved to not be able to
delay the disease progression.

Dysken et al. (2014) studied the combination effects of vitamin E and memantine [42]. For that, a
double-blind, placebo-controlled clinical trial was conducted with 613 patients with mild to moderate
AD’s symptoms for five years. The patients were randomly divided in three groups, one receiving
vitamin E, one receiving memantine, and another one receiving both vitamin E and memantine.
The used doses for vitamin E were 2000 IU per day, and 20 mg of memantine daily. Treatment with
vitamin E alone proved to be more efficient in slowing disease cognitive decline comparatively with
the placebo group. However, no differences were verified for co-therapy comparatively with treatment
with memantine alone.

Kryscio et al. (2017) intended to assess if vitamin E and selenium intake could prevent
dementia in healthy men over 60 [43]. Although no evidence exists to support the use of selenium
in the treatment of AD, some works suggest that this product has a preventive potential [96].
A double-blind, placebo-controlled clinical trial involving 3786 male patients was conducted for 13
years. The participants were randomly divided into four groups. The first group received vitamin E,
to the second only selenium was administered, the third group received a combination of vitamin E
and selenium, and the fourth received placebo. The conclusions of this trials were that neither of the
supplementation regimen proved to be able in preventing dementia [43].
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Docosahexaenoic acid (DHA) is a polyunsaturated fatty acid from marine fish and algae [97] and
its structural formula is presented in Figure 3. DHA demonstrated to have an antioxidant activity
reducing the lipid peroxide and reactive oxygen species (ROS) levels in the brain of AD rats, improving
the learning [98]. In addition, in vivo experiments showed that DHA reduces the Aβ levels, Aβ

accumulation and plaque burden [99]. Some in vitro experiments demonstrated that DHA decreases
the β- and γ-secretase activity and increases the α-secretase activity [100]. An in vitro study suggests
that DHA reduced soluble Aβ oligomers levels and inhibited the formation and polymerization of Aβ

fibrils [101]. Furthermore, DHA stimulated the Aβ degradation [102] and disaggregation of preformed
Aβ fibrils in vitro [103].

Figure 3. Chemical structure of docosahexaenoic acid (DHA).

The effects of supplementation with DHA in AD patients were studied in different clinical trials.
In fact, Freund-Levi et al. (2006) conducted a double-blind, placebo-controlled clinical trial with 204 AD
patients [44]. The main goal of this study was to evaluate the efficacy of dietary co-supplementation of
DHA with other fatty acid, the eicosapentaenoic acid, on the cognitive functions of patients with mild
to moderate AD. The patients were randomly divided in two groups, treatment and placebo. Patients
on treatment group received a daily dose of 1.7 g of DHA and 0.6 g of eicosapentaenoic acid for six
months. After this period, all patients received fatty acid co-supplementation for six more months.
Despite the treatment being safe and well tolerated, the supplementation with these fatty acids did not
delay the rate of cognitive decline of the patients.

Quinn et al. (2010) conducted a double-blind, placebo-controlled clinical trial to evaluate the
efficacy of supplementation with DHA on the cognitive and functional decline in AD patients [45].
A daily dose of 2 g of DHA or placebo was administered to 295 patients for 18 months. The extent of
brain atrophy was measured, and the results showed that DHA did not alter the patients’ condition.
The attained results also proved that administration of DHA did not slow the rate of cognitive and
functional decline.

The same group conducted a double-blind, placebo-controlled, clinical study in the same year to
evaluate the ability of DHA to improve the cognitive functions of 485 participants with age-related
cognitive decline [46]. The subjects were randomly assigned to a daily oral administration of 900 mg of
DHA orally or placebo for 24 weeks. The attained results proved that supplementation with DHA
improved cognitive health, since the participants showed enhanced learning and memory functions.

Lee et al. (2013) studied the effects of DHA administration using fish oil on the cognitive function in
patients over 60 diagnosed with mild cognitive impairment [47]. The participants (n= 36) were randomly
divided in two groups, placebo and treatment group. The treatment group was orally administered
with 430 g of DHA three times a day, for one year. No significant side effects were verified, suggesting
the potential of DHA to improve memory functions. However, studies with more patients and longer
intervention periods, are necessary to define the optimal dosage.
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Homotaurine, also known as tramiprosate, is an aminosulfonate metabolite extracted from
marine red alga Grateloupia livida and its structural formula is presented in Figure 4 [104]. In in vitro
experiments, homotaurine proved to efficiently inhibit the Aβ aggregation [105] and reduce the Aβ

plaque formation. This compound was also able to reduce the Aβ levels in vivo [106]. Additionally,
the compound stabilized Aβ monomers and inhibited the Aβ oligomers formation in vitro [107].

Figure 4. Chemical structure of homotaurine.

Aisen et al. (2011) conducted a phase III double-blind, placebo-controlled trial with 1052
patients with mild to moderate AD symptoms to evaluate the effect of homotaurine in slowing
AD progression [48,49]. This compound was the first inhibitor of Aβ aggregation that has reached a
phase III clinical trial. The participants were randomly divided in three groups. The first group was the
placebo group, and the other two groups received daily treatment with homotaurine at dose of 100 and
150 mg for 78 weeks, respectively. The authors proved that homotaurine administration had beneficial
effect on cognition [108,109]

The safety and tolerability of this compound administered to 58 patients with mild to moderate
AD symptoms, were studied previously in a phase II clinical trial conducted by the same group [50].
Patients received placebo, 100 or 150 mg of homotaurine for three months. No harmful effects on vital
signs were verified and the most frequent side effects were nausea, vomiting, and diarrhoea.

Martorana et al. (2014) conducted a study with 10 patients with mild cognitive impairment with ages
between 59 and 74 [51]. The participants were administered daily with 100 mg of homotaurine for four
weeks. The obtained results showed that homotaurine improved the central cholinergic transmission.

Huperzine A is isolated from Huperzia serrata (Thunb.) Trevis. (Lycopodiaceae) and its structural
formula is presented in Figure 5. This compound demonstrated to have antioxidant properties.
Huperzine A was able to reduce ROS and lipid peroxidation in an AD rat model [110]. Also, this
product presents the in vitro ability to increase the α-secretase activity, significantly decreasing the Aβ

levels, suggesting a blocking action in the Aβ production [111].

Figure 5. Chemical structure of huperzine A.

Xu et al. (1995) evaluated the efficacy and safety of huperzine A in AD patients. Four tablets
of huperzine A (200 μg) or placebo were administered orally to 103 patients, twice a day, for eight
weeks [52]. The results showed that the administration of huperzine A improved the memory and
behaviour of AD patients. Also, the obtained results for the compound were better than for placebo.
Huperzine A did not induce side effects.
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To further compare the efficacy and safety of huperzine A administered into capsules and tablets
in AD patients, the same group conducted a new trial four years later [53]. In this study, 200 μg of
huperzine A or placebo into capsules and tablets were administered twice a day to 60 patients, for
60 days. Both groups revealed a reduction in ROS levels in the plasma and erythrocytes of AD patients,
without side effects besides nausea. This trial suggests that huperzine A in capsules and tablets is safe
to be used in AD patients.

Later, Rafii et al. (2011) studied the safety and efficacy of two concentrations of huperzine A, 200
and 400 μg twice a day, in patients with mild to moderate AD in a phase II clinical trial [54]. Placebo
or huperzine A was administered to 177 patients for 16 weeks. The results demonstrated that at
400 μg/day huperzine A was not efficient, not being able to treat AD. However, at the concentration
of 800 μg/day, the compound improved the cognition of AD patients. Huperzine A was safe at both
studied doses.

Bryostatin is a macrolide lactone extracted from bryozoan Bugula neritina [112]. The structural
formula of the compound is presented in Figure 6. An in vivo study showed that bryostatin reduced
the Aβ production by the stimulation of α-secretase activity, reducing the mortality of AD mice
model [113]. Also, bryostatin revealed to enhance the learning and memory in AD mice model [114].

Figure 6. Chemical structure of bryostatin.

Recently, Nelson et al. (2017) evaluated the safety, tolerability and effects on cognitive function
of bryostatin on AD patients in a phase II clinical trial [55]. A single dose of bryostatin at 25 μg/m2

was administered to six patients, while three patients received placebo. Bryostatin proved to improve
cognitive functions and to be safe and well tolerated.

Another phase II clinical trial was performed with the same goals [56]. Farlow et al. (2018)
administered 20 or 40 μg of bryostatin or placebo to 150 AD patients, for 12 weeks. This study confirmed
the safety of both doses of bryostatin. Also, an improvement of cognitive functions was observed using
doses of 20 μg of bryostatin.

Melatonin is collected from animals, plants, fungi and bacteria and its structural formula is presented
in Figure 7. This compound demonstrated to have antioxidant properties due to its ability to decrease ROS
in vivo [115]. In addition, an in vivo study reported the beneficial effects on neuroinflammation [116].
Further, an in vitro study proved the ability to inhibit the β-sheet conformation and, consequently, Aβ

fibrils [117], decreasing the Aβ levels in the brain of AD rat model [118]. Another in vitro study proved
that melatonin inhibits β- and γ-secretase activity and enhances the α-secretase activity, blocking the
Aβ monomers production [119].
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Figure 7. Chemical structure of melatonin.

Brusco et al. (1998) evaluated the efficacy of melatonin in monozygotic twins with AD, with
similar cognitive and neuropsychologic impairments [57]. Only one of the twins orally received daily
6 mg of melatonin for 36 months. The results suggest that melatonin improved the memory of the
treated patient. Also, the clinical evaluation revealed that the twin that did not receive the treatment
presented a more advanced state of the disease.

Later, the same group studied the effect of melatonin in cognitive dysfunctions of 14 AD
patients [58]. The patients received 9 mg of melatonin daily for 22 to 35 months. The results showed
an improvement in cognitive functions, after the treatment.

The same results were obtained by Furio et al. (2007) that performed a clinical trial with 50
outpatients diagnosed with mild cognitive impairment, where half of patients received 3 to 9 mg of
melatonin for 9 to 18 months [59].

Wade et al. (2014) investigated the ability of 2 mg of melatonin to improve the cognitive functions
of patients with mild to moderate AD [60]. Melatonin or placebo was administered to 80 patients for
24 weeks. Placebo was also administered two weeks before and after melatonin treatment. The results
revealed an improvement in cognitive functions of AD patients treated with melatonin, comparing to
placebo. Also, treatment was safe for both groups. Thus, these clinical trials suggested that melatonin
administration can be a suitable therapeutic strategy for the treatment of AD.

Resveratrol is a naturally occurring non-flavonoid polyphenol present in grapes (Vitis vinifera L.
(Vitaceae)) and red wine and its structural formula is presented in Figure 8 [120]. In vitro experiments
demonstrated that resveratrol induces the inhibition of studies proved a reduction of Aβ fibrils
formation [121] and induced the in vitro Aβ disaggregation by an intracellular proteasomal action [108].
In vitro results showed that resveratrol has the ability to reshape toxic aggregates into a non-toxic
aggregate type [109]. As result, resveratrol decreased the Aβ levels [122] and plaque levels in brain
of AD rats [123]. In addition, in vivo evidence suggests that resveratrol has anti-inflammatory [122]
and antioxidant effects [124]. Also, an in vitro study showed that resveratrol prevents the tau
hyperphosphorylation [125].

Figure 8. Chemical structure of resveratrol.
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Turner et al. (2015) performed a phase 2 clinical trial for 52 weeks in mild to moderate AD patients.
The group studied the safety, tolerability and the ability of resveratrol to reduce the biomarkers of
the disease (Aβ and tau). Here, 119 individuals were orally administered once a day with placebo or
500 mg of resveratrol, with an increase of 500 mg each 13 weeks. Although this study suggests that
resveratrol can cross the blood-brain barrier (BBB), the results were not satisfactory. Besides inducing
some side effects like nausea, diarrhea, and weight loss, the brain volume and biomarkers levels were
lower in the placebo group than resveratrol group [61].

Recently, Zhu et al. (2018) evaluated the safety, tolerability and efficacy of a mixture containing
5 mg of resveratrol, 5 g dextrose and 5 g of malate. Fifteen mL of the mixture or placebo were orally
administered twice a day to 39 patients with mild to moderate AD for one year. The administration was
done together with an 8 oz glass of commercial grape juice. The results revealed that the preparation
was safe and well tolerated. However, no evidence was observed concerning the efficacy of the product
for AD therapy [62].

Nicotine is extracted from the tobacco plant leaves (Nicotiana tabacum L., Solanaceae) and its
structural formula is presented Figure 9. Nicotine presents the ability to delay the amyloidogenesis
by inhibiting the β-sheet structures in vitro [126], decreasing in vivo β-secretase expression [127] and
inhibiting in vivo Aβ aggregation [128]. An in vitro study revealed that nicotine inhibits the Aβ fibrils
formation and their length, and disaggregate Aβ fibrils [129], causing an in vivo decrease of Aβ [127]
and plaque amounts [128]. In addition, an in vitro study suggested valuable effects of nicotine due
to their antioxidant properties [130]. Also, the decrease of APP containing Aβ peptide observed in
in vivo experiments can be the reason to the diminution of Aβ and amyloid plaque levels [131].

Figure 9. Chemical structure of nicotine.

Jones et al. (1992) studied the effect of nicotine on AD patients [63]. Three acute doses of nicotine
(0.4, 0.6 and 0.8 mg) were subcutaneously administered to 22 AD patients and 48 controls. The results
revealed that nicotine improved the perceptual and visual attentional deficits observed in AD patients.

The effect of nicotine on behaviour, cognition, and physiology of six AD patients was evaluated
in a pilot study proposed by Wilson et al. (1995) [64]. Placebo, nicotine and washout were
sequentially administered for seven, eight and seven days, respectively. After nicotine administration,
an improvement in learning was observed, which persisted with washout. Memory, behaviour and
cognition were not affected. Also, the safety of nicotine was proved.

The clinical and neuropsychological effects of nicotine was evaluated in eight AD patients by
White et al. (1999) [65]. Transdermal nicotine was administered for two periods of four weeks, separated
by two weeks of washout. A nicotine patch was used daily for 16 h with the following doses: 5 mg/day
in the first week, 10 mg/day in the second and third week, and finally, 5 mg/day in the fourth week.
The results suggest that nicotine significantly improved the attentional performance. However, the
limited sample of the study does not allow conclusive results.

Curcumin is an active component founded in the root of Curcuma longa L. (Zingiberaceae) and its
structural formula is presented in Figure 10. This compound presents the in vivo ability to prevent
the Aβ aggregation and disaggregate preformed Aβ fibrils [132,133]. Also, curcumin presents in vitro
and in vivo anti-inflammatory and antioxidant beneficial effects, respectively [134,135]. Also, in vitro
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experiments showed that curcumin decreases β and γ-secretase levels [133,136,137]. As result, the
spatial learning of AD rat model was improved, as well as the memory impairment [133].

Figure 10. Chemical structure of curcumin.

Baum et al. (2008) performed a clinical trial to study the safety of curcumin on AD patients [66].
For six months, the authors administered 1 g, 4 g of curcumin or placebo in 34 AD patients. The results
proved that curcumin did not produce side effects in AD patients, but the authors revealed the necessity
of additional trials to confirm the efficacy of curcumin in AD treatment.

2.2. Natural Extracts and Other Natural Products

Ginkgo biloba (Ginkgo biloba L., Ginkgoaceae) has been studied as therapeutic drug for AD
and other neurological diseases therapy. In vitro evidence revealed that ginkgo biloba extract can
prevent Aβ aggregation, decrease Aβ fibrillogenesis and destabilize preformed fibril [138]. Substantial
in vivo experimental evidence indicates that ginkgo biloba has antioxidant [139] and anti-inflammatory
properties, ameliorating the cognitive and memory impairment in an AD rat model [140]. In vivo
studies showed that ginkgo biloba favors the non-amyloidogenic via of APP by increasing α-secretase
activity, inhibiting the Aβ production [141,142].

Several clinical trials have been carried out in the last 10 years to test the viability of the compound
in treating patients with dementia. Bachinskaya et al. (2011) examined the effect of gingko biloba extract
EGb 761® on neuropsychiatric symptoms of dementia [67,68]. Outpatients with mild to moderate
dementia (AD with or without cerebrovascular disease or vascular dementia) (n = 410) were considered
in this study. Patients received 240 mg of extract or placebo once daily for 24 weeks. The treatment
with gingko biloba was safe and improved the neuropsychiatric symptoms, which include apathy,
irritability, depression, among others.

Also, with the same conditions, Herrschaft et al. (2012) revealed that the treatment with gingko
biloba improved the cognition and the life quality of patients [69].

Ihl et al. (2012) performed a similar 24-week randomised controlled trial involving 404
outpatients [70]. Patients were diagnosed with AD (n = 333) or vascular dementia (n = 71). In addition
to confirming the improvement of neuropsychiatric symptoms observed in the previous trial, the
extract improved the cognitive functions and functional abilities of patients.

Gavrilova et al. (2014) also conducted a clinical trial to study the effects of gingko biloba
in neuropsychiatric symptoms and cognition in 160 patients with mild cognitive impairment [71].
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The patients received 240 mg of EGb 761® or placebo for 24 weeks. The trial proved that the extract
improved the neuropsychiatric symptoms and cognitive functions of patients. Also, the extract was
safe and well tolerated. Taking together, the last clinical trials proved that a 240 mg daily dose of
ginkgo biloba extract is safe in the treatment of dementia.

Saffron (Crocus sativus L., Iridaceae) is a stem-less herb with antioxidant [143] and anti-inflammatory
activities in vivo [144]. This product inhibited the in vitro Aβ aggregation and fibrillogenesis [145].

Akhondzadeh et al. (2010) evaluated the efficacy of 30 mg saffron in the treatment of mild to
moderate AD [72]. Saffron or placebo were orally administered daily for 16 weeks, to 46 patients.
The phase II study showed that the administration of saffron improved the cognition and memory of
AD patients. Also, no side effects differences were observed with saffron or placebo administration.
Thus, saffron seems to be safe in the treatment.

Lemon balm (Melissa officinalis L., Lamiaceae) from the mint family that is native to Europe with
antioxidant activity in vitro [146]. In vivo studies proved the ability of lemon balm extract to improve
the memory of an AD model, probably due to the inhibition of β-secretase activity [147]. To assess the
efficacy and safety of Melissa officinalis extract on patients with mild to moderate AD, Akhondzadeh et al.
(2013) administered to 40 patients 60 drops of extract or placebo, for four months [73]. The results
proved that Melissa officinalis extract ameliorated the cognition and agitation of AD patients.

Green tea (Camellia sinensis (L.) Kuntze, Theaceae) from steaming and drying of leaves of the
Camellia sinensis plant proved to be a rich source of antioxidants in in vivo studies [148]. In addition, the
green tea prevented the spatial learning and memory destruction in an AD mice model by decreasing
Aβ oligomers levels [149] and hyperphosphorylated tau protein [150].

Recently, Arab et al. (2016) developed a clinical trial with 30 patients to study the antioxidant
activity of green tea in patients with severe AD and its ability to improve cognitive functions [74].
Patients received daily 2 g of green tea through the ingestion of pills, for two months. The results
showed an improvement on cognitive functions, confirming the effects of the antioxidant activity of
green tea.

Papaya (Carica papaya L., Caricaceae) is a fruit often used in medicine that has amino acids,
β-carotene, oligosaccharides and vitamins, with benefits in AD.

A clinical trial performed by Barbagallo et al. (2015) studied the antioxidant activity of fermented
papaya powder extract in AD patients [75]. AD patients (n = 20) received 4.5 g of extract daily for six
months, while the 12 controls did not receive any treatment. The results showed that the supplementation
with fermented papaya powder reduced the ROS generation and nitric oxide production in AD patients,
with no significant changes in controls. Thus, the papaya can be used as antioxidant in the AD therapy.

Sage (Salvia officinalis L., Lamiaceae) is a medicinal plant with a long-standing reputation in
European medical herbalism due to its anti-inflammatory and antioxidant properties observed
in vivo [151].

Akhondzadeh et al. (2008) developed a clinical trial to evaluate the efficacy and safety of
Salvia officinalis extract in the treatment of patients with mild to moderate AD [76]. Patients received
daily 60 drops of sage extract or placebo for four months. The results showed that sage extract improved
cognitive functions. Also, after the treatment, any group revealed side effects except agitation, that
seems to be more pronounced in placebo group. This study proved that sage can be useful in the
therapy of mild to moderate AD.

Coconut (Cocos nucifera L., Arecaceae) demonstrated to be able to reduce the Aβ deposition and
aggregation and the oxidative stress in a transgenic Caenorhabditis elegans AD model [152]. Coconut
oil also enhanced the memory of rats [153]. Also, in vitro studies demonstrated that the coconut oil
reduced de APP expression, decreasing the Aβ secretion [154] and protected neuronal cells against
Aβ-induced neurotoxicity.

Ortí et al. (2018) performed a clinical trial with 44 AD patients [77]. Half of individuals received
daily 40 mL of coconut oil, distributed by the breakfast (20 mL) and lunch (20 mL), for 21 days. Before
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and after the oil administration, cognitive function was evaluated. The trial revealed that the patients
treated with coconut oil demonstrated an improvement of cognitive functions.

Apple (Malus domestica Borkh., Rosaceae) showed to be a promising approach to prevent AD.
In vivo evidence demonstrated that the apple extract prevents the oxidative stress and reduces the Aβ

levels, improving the memory of AD rats [155]. Besides, in vivo studies demonstrated that apple juice
is able to reduce γ-secretase expression, which leads to the reduction of Aβ production [156].

Remington et al. (2010) performed an open-label pilot clinical trial with 21 patients with moderate
to severe AD [78]. The authors administered two 4-oz of apple juice daily for one month. Although the
results suggest that there was no modification in the degree of dementia, a significant improvement in
behavioural and psychotic symptoms was observed, with reduction of anxiety, agitation, and delusion.
This study suggests that the supplementation with apple juice can attenuate the AD-related decline.

Blueberry (Vaccinium myrtillus L., Ericaceae) is a fruit composed by several polyphenols named
anthocyanins, with antioxidant [157] and anti-inflammatory properties in vivo [158]. In vitro works
suggested that blueberries increase the Aβ clearance [159] and inhibit the Aβ aggregation, decreasing
the amount of toxic species [157]. As a result, an improvement in cognitive functions and motor
performance was observed in an AD mouse model [160].

Krikorian et al. (2010) evaluated the effects of daily administration of wild blueberry juice in a
group of nine elderly subjects with early memory failures [79]. The daily consumption of blueberry
juice was proportional with body weight, varying between 6 and 9 mL/kg. After 12 weeks of treatment,
an improvement in learning was observed as well as a reduction of depressive symptoms. The study
suggests that the blueberry supplementation can confer neuroprotection.

Colostrinin, a milk form produced by mammary glands [161], presents in vitro antioxidant and
anti-inflammatory activities, and inhibits the Aβ fibrils formation and disassembles Aβ aggregates [162].
Also, the ability of colostrinin to inhibit tau phosphorylation and eliminate Aβ was proved in vitro [163].

The effect of colostrinin on AD patients was studied in a clinical trial conducted by Szaniszlo et al.
(2009) [80]. Patients over 50 received 100 μg of colostrinin or placebo for 15 weeks. The results showed
an enhancement in cognitive and daily function of AD patients treated with colostrinin. Thus, this
compound can be a suitable approach for AD therapy.

3. Preclinical In Vivo Studies of Natural Compounds and Their Effects on AD

Besides the natural compounds that have been studied in clinical trials, several other products
have proved to have a potential beneficial effect in AD therapy in a preclinical stage, namely in in vivo
studies. The preclinical phase involving in vivo studies is conducted to assess if the new compounds
are safe and effective, before they can proceed to the clinical trials phase. A detailed report of animal
studies results is described below. The natural compounds were divided into two groups: bioactive
compounds and natural extracts and organized by the number of mechanisms associated with AD
therapy, from the highest to the least.

3.1. Bioactive Compounds

Epigallocatechin gallate (EGCG) is a polyphenol found in green tea with several neuroprotective
effects in AD. In vivo evidence suggests that EGCG decreased β- and γ-secretase actions and enhanced
the α-secretase activity, leading to the decrease of Aβ levels improving the memory [164]. Besides
that, EGCG inhibited the in vitro Aβ aggregation [165] and the in vivo Aβ oligomerization [166].
Moreover, EGCG inhibited the in vitro tau aggregation [167] and increased the in vivo clearance of
phosphorylated tau [168]. Lastly, EGCG has been reported in in vivo experiments to demonstrate
antioxidant [169] and anti-inflammatory actions [170].

Retinoic acid is a terpenoid and a metabolite of vitamin A. In vitro studies revealed that retinoic acid
inhibited Aβ fibrils formation and their extension and destabilized Aβ fibrils [171]. In vitro evidence
demonstrated that retinoic acid decreases the Aβ levels by inhibiting β- [172] and γ-secretase [173] and
increasing α-secretase activity [172]. An in vivo study reported the ability of retinoic acid reducing
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brain Aβ deposition, APP phosphorylation and tau phosphorylation. This work also proved the
anti-inflammatory activity of this compound, improving the learning and memory of AD mice
model [174].

Caffeine is perhaps the most consumed psychoactive compound. It is present in the coffee bean,
but it can be also found in some teas, cocoa drinks, candy bars, among other herbs. In vivo studies
suggest that caffeine reduced the β-secretase and γ-secretase levels, decreasing the Aβ production [175].
An in vitro study showed that the inhibition of the β-sheets conformation can be related with the ability
of caffeine to reduce Aβ levels [176]. Also, it was observed in vivo that this natural product promotes
Aβ clearance [177]. In vivo evidence suggested that caffeine have anti-inflammatory and antioxidant
properties [178]. In vivo studies demonstrated that the improvement observed in the memory could
result from hippocampal tau phosphorylation reduction [179].

Baicalein is a naturally occurring flavonoid from the roots of Scutellaria baicalensis Georgi
(Lamiaceae). In vitro studies suggested that baicalein inhibits the ROS production, reducing the
oxidative stress [180]. In vitro results proved that baicalein inhibits Aβ fibrillation and oligomerisation
and disaggregates Aβ fibrils [181]. In vivo studies proved that baicalein is able to increase the
α-secretase and decrease the β-secretase activities, reducing the Aβ production [182,183]. Also, the tau
phosphorylation in AD model mice was prevented and the cognitive function improved [183].

Berberine is an isoquinoline alkaloid found in rhizoma coptidis, an herb frequently used in
Chinese herbal medicine. In vivo evidence suggests that berberine inhibited the β-secretase expression,
reducing the Aβ production. Also, berberine stimulated the Aβ clearance and inhibited the Aβ plaque
deposition and hyperphosphorylation of APP and tau [184]. Berberine has been also described as
having in vivo anti-inflammatory and antioxidative activities [185].

Kaempferol is a polyphenolic flavonoid found in fruits, vegetables and herbs. In vivo studies
proved its antioxidant effect, improving the learning and memory of a transgenic drosophila AD
model [186]. Also, in vitro evidence showed that kaempferol has anti-inflammatory activity [187],
inhibits Aβ aggregation [188] and destabilizes Aβ fibrils [189]. Also, another in vitro study proved
that kaempferol inhibits the β-secretase activity [190].

Quercetin is a flavonol, naturally occurring polyphenolic compounds present in fruits, vegetables
and herbs. In vivo studies showed that quercetin improved the memory and cognitive impairments
of an AD model and reduced the oxidative stress [191]. Moreover, in vitro evidence suggested that
quercetin prevents the Aβ aggregation [192], inhibits the Aβ fibrils formation and destabilizes Aβ

fibrils [193], decreasing the Aβ levels in brain of AD model mice [194]. Additionally, this compound
was reported in in vivo studies as inhibitor of β-secretase and taupathy [195].

Fisetin is a flavonoid extracted from Rhus succedanea L. (Anacardiaceae) and also found in some
fruits and vegetables. Fisetin proved to inhibit Aβ aggregation in vivo [196] and fibril formation
in vitro [188], reducing the in vivo Aβ accumulation [197]. Also, an in vivo experiment described fisetin
as aβ-secretase inhibitor and anti-inflammatory product [197]. Additionally, fisetin promotes the in vitro
degradation of phosphorylated tau [198] and reduced the in vivo tau hyperphosphorylation [197].

Oleuropein is a polyphenol present in extra virgin olive oil with antioxidant [199] and
anti-inflammatory properties in vivo [200]. The Aβ levels and amyloid plaque load were reduced
in vivo, resulting in an amelioration of cognitive functions [201]. Also, the compound inhibited the Aβ

aggregation in vivo [200], favouring the formation of non-toxic aggregates in vitro [202]. Additionally,
in vitro evidence suggested that oleuropein decreased the Aβ oligomers levels through the promotion
of α-secretase activity [203]. Lastly, oleuropein was described as tau aggregation inhibitor in vitro [204].

Tannic acid is a polyphenol found in herbs and fruits. An in vivo experiment showed that tannic
acid is a natural inhibitor of β-secretase with anti-inflammatory properties, preventing the cognitive
impairment of AD mice [205]. One in vitro study affirmed that tannic acid inhibits Aβ formation
associated with less amyloidogenic APP proteolysis, inhibits Aβ fibrils formation as their extension
and still destabilizes Aβ fibrils [206]. Another in vitro study demonstrated that tannic acid inhibits the
tau aggregation [207].
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Crocin is a carotenoid mainly found in the stigma of saffron flower. In vitro experiments showed
that crocin inhibits the Aβ fibril formation [208] through the inhibition of the Aβ fibrillogenesis [145].
Also, in vitro evidence suggests that crocin reduces the number of fibrils as well as their length [208].
An in vitro study confirmed that crocin can also disrupt Aβ aggregates [209]. Also, the therapeutic
effects of crocin can be linked to its antioxidant [210] and anti-inflammatory activities [211] observed in
in vivo studies.

Epicatechin represents one of the antioxidants from the flavonoids family. High amounts of this
compound can be found in cocoa beans, green tea and grapes. In vivo data showed that epicatechin
has antioxidant [212] and anti-inflammatory activities [213]. Further, in vitro studies suggest that
epicatechin is an inhibitor of β-secretase [214]. As result, epicatechin decreased the Aβ levels in an AD
mice model [212]. Also, epicatechin has the in vitro ability to inhibit tau aggregation [215] and fibril
formation changing the secondary structure [216].

Gallic acid is a phenolic acid present in fruits, vegetables and herbs. Gallic acid proved to have
antioxidant [217] and anti-inflammatory activities, improving the learning and memory in vivo [218].
Also, gallic acid can reduce the in vitro Aβ aggregation by the inhibition of conformational transition to
β-sheet [219]. An in vivo experiment observed a reduction in Aβ levels after gallic acid administration
due to the increase of α-secretase action, promoting the non-amyloidogenic route and consequently
the decreases the Aβ oligomerization [220].

Ferulic acid is a phenolic compound naturally present in numerous fruits and vegetables. In vivo
results revealed that ferulic acid is an antioxidant [221] and anti-inflammatory compound [222]. Also,
it can reduce the in vivo Aβ production by reducing the β-secretase activity [222]. The decrease of
β-sheets structures was also observed in an in vitro experiment, inhibiting the Aβ aggregation [223].
Additionally, ferulic acid decreased the Aβ deposition and improved the cognitive performance of an
AD mouse model [224]. Also, ferulic acid decreased the Aβ fibrils levels in vitro [225].

Rutin is a bioflavonoid extracted from some vegetables and fruits. This product is a glycoside of
the flavonoid quercetin with antioxidant and anti-inflammatory properties in vivo [226]. The same
in vivo study showed that this compound inhibited the Aβ aggregation [226]. Also, rutin decreased
the Aβ fibrils formation in vitro [193]. This can be due to its ability to inhibit the β-secretase activity
in vitro [193]. Also, rutin disaggregated Aβ fibrils in vitro [193].

Salvianolic acid B is a phenylpropanol founded in the Salvia miltiorrhiza Bunge (Lamiaceae)
root. In vivo experiments showed a strong antioxidant and anti-inflammatory activities, improving
the memory and learning of an AD mouse model [227]. Also, salvianolic acid B inhibited the Aβ

aggregation and disaggregated preformed Aβ fibrils in vitro [228]. Another in vitro work suggested
that salvianolic acid B inhibits the β-secretase which leads to the inhibition of Aβ production [229].

Myricetin is a flavonoid extracted from several fruits, vegetables and herbs. In vitro proofs showed
that myricetin prevents Aβ aggregation and consequent fibrillation [189,230] due to its capacity to
inhibit β-secretase and increase the α-secretase activity [231]. Also, myricetin blocked the structural
changes on Aβ in vitro, inducing a reduction in Aβ levels [231]. Also, the disaggregation of Aβ fibrils
was observed in vitro [189]. As result, an in vivo study showed that myricetin enhanced the learning
and memory impairments in an AD rat model [232].

Naringenin is a natural compound present in citrus fruits and tomatoes. It is the major flavanone
constituent found in Citrus junos Siebold ex Tanaka, Rutaceae. An in vitro study revealed that
naringenin inhibited the APP and β-secretase activity and reduced the levels of phosphorylated
tau [233]. As result, brain levels of Aβ were reduced in vivo [234]. In vivo evidence also proved the
antioxidant [235] and anti-inflammatory activities of the compound, improving motor coordination,
learning and memory of AD rats [236].

Luteolin, a polyphenol flavonoid found in fruits, vegetables and herbs, exhibits potent
anti-inflammatory activity in vitro [237] and antioxidant activity against induced-oxidative stress in a
in vivo AD model [238], ameliorating the spatial learning and memory impairment [239]. An in vitro
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study also proved that this compound is a potent inhibitor of β-secretase [240]. Another in vitro study
demonstrated that luteolin is able to reduce tau hyperphosphorylation [241].

Asiatic acid is a pentacyclic triterpene found in plants. Asiatic acid demonstrates an ability to
inhibit the β-secretase and increase the α-secretase activity in vitro. Also, it demonstrates an ability to
activate Aβ clearance [242], which explains the substantial reduction in Aβ levels in AD mice [243].
Numerous in vivo works suggest that asiatic acid has antioxidant properties, clearing free radicals and
decreasing lipid peroxidation, improving the learning and memory [244].

Puerarin is an isoflavanone glycoside isolated from Pueraria lobata (Willd.) Ohwi (Leguminosae)
used to treat some diseases. In vivo studies found that puerarin inhibited the tau phosphorylation
and reduced Aβ levels, ameliorating the spatial learning and memory in an AD mice model [245].
The beneficial effects of puerarin were suggested in in vivo experiments to be connected to its ability to
reduce the oxidative stress [246] and neuroinflammation [247].

Oleocanthal is one of the main active components of extra virgin olive oil. In vitro evidence
suggests that this compound changes the structure of tau protein, inhibiting its aggregation [248] and
fibrillization [249]. In vivo results proved that oleocanthal enhances the Aβ clearance, reducing the
amyloid load. Also, the anti-inflammatory activity of the compound was verified [250].

Viniferin (trans ε-viniferin) is a polyphenol present in a variety of vines, including Vitis vinifera L.,
Vitaceae. In vitro evidence proved the anti-inflammatory [251] and antioxidant [252] activities of the
compound. Also, viniferin disaggregated Aβ [251] and inhibited the Aβ aggregation, reducing the
fibril formation [253].

Scyllo-inositol, also known as scyllo-cyclohexanehexol, is one of the stereoisomers of inositol,
found in dogwood Cornus florida L. (Cornaceae) and coconut palm Cocos nucifera L. (Arecaceae).
An in vivo study showed that this compound decreases the Aβ levels and inhibits the Aβ aggregation,
improving the memory of AD rat model [254]. In vitro evidence demonstrated that scyllo-inositol
induces structural modifications in Aβ, stabilizes Aβ oligomers and inhibits fibril formation [255].

Honokiol is a poly-phenolic product found in Magnolia officinalis Rehder & E.H.Wilson,
Magnoliaceae. In vivo evidence suggested that honokiol is an antioxidant [256] and anti-inflammatory
compound [257]. In vivo studies revealed that honokiol inhibits the β-secretase activity, reducing the
Aβ production and senile plaque deposition. Also, the Aβ degradation was enhanced by honokiol [257].
As result, honokiol decreased Aβ-induced hippocampal neuronal apoptosis, improving learning and
memory of AD mice model [256].

Apigenin is a flavonoid found in plants, fruits and vegetables. Numerous in vitro and in vivo
works showed its anti-inflammatory [258] and antioxidant [259] properties, respectively. An in vivo
experiment proved that apigenin changes APP processing by the β-secretase inhibition preventing the
Aβ deposition and consequently, improving the memory impairments [259].

Caffeic acid is a phenolic acid present in food, beverages and Chinese herbal medicines with
antioxidant and anti-inflammatory properties in vivo. This compound improved the learning of AD rat
models [260]. In vitro studies showed that caffeic acid reduced the tau phosphorylation and protected
the PC12 cells against Aβ-induced toxicity [261].

β-carotene belongs to the carotenoid family. One in vitro study reported that β-carotene has an
anti-aggregation activity and destabilizes Aβ [171]. Another in vivo study demonstrated the β-carotene
has the ability to reduce oxidative stress, by reducing the ROS production [262].

Rosmarinic acid is a phenolic carboxylic acid found in rosemary, lemon balm and peppermint,
among others. An in vivo study proved that this compound has antioxidant properties, protecting
an AD mouse model against memory deficits [263]. Also, rosmarinic acid inhibited the tau
hyperphosphorylation [264] and fibrillization in vitro [265].

Nordihydroguaiaretic acid (NDGA) is a compound found in Larrea divaricata Cav. (Zygophyllaceae)
with in vivo antioxidant properties [266]. An in vitro study reported that NDGA inhibits the Aβ

fibrils formation, reducing the number of fibrils and small amorphous aggregates. Additionally, this
compound disrupts Aβ fibrils [267].
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Osthole is a coumarin isolated from Cnidium monnieri (L.) Cusson (Apiaceae). An in vivo study
showed that this compound significantly enhanced the memory of an AD rat model, that can be linked
to its antioxidant activity [268] and with a reduction of Aβ levels found in the brain. This reduction can
be due to the inhibition of β-secretase in vitro [269]. Also, in vitro evidence suggests that this product
decreases the phosphorylated tau levels [270].

Ellagic acid is a polyphenol extracted from Punica granatum L. (Lythraceae). An in vitro study
proved that this compound inhibits of β-secretase activity preventing neurotoxicity [271]. Ellagic acid
has antioxidant and anti-inflammatory properties, that improve learning and memory injuries in AD
rat model [272].

Glycine betaine is an organic osmolyte, which could be isolated from vegetables and marine
products. In vivo evidence revealed that glycine betaine reduces tau hyperphosphorylation and Aβ

production, improving memory deficits [273]. Also, glycine betaine inhibited the β-secretase activity
and activated the α-secretase activity in vitro, thereby inhibiting the Aβ production [274].

Hydroxytyrosol is a phenolic compound extracted from the olive leaf and oil. In vivo studies
demonstrated that it is a compound with antioxidant and anti-inflammatory properties [275]. Also,
hydroxytyrol showed to reduce the levels of Aβ plaques in an AD mice model [276].

l-theanine is an amino acid present in green tea. An in vivo work showed that l-theanine
decreased the oxidative stress and the Aβ levels [277]. Also, this natural product proved to inhibit tau
hyperphosphorylation in vitro [278].

13-Desmethyl spirolide C is a marine compound belonging to the cyclic imine group produced
by the dinoflagellate Alexandrium ostenfeldii and accumulate in shellfish. An in vitro study revealed
that 13-desmethyl spirolide C is a spirolide that can reduce intracellular Aβ accumulation and
hyperphosphorylated tau levels [279]. The reduction of intracellular Aβ levels was also observed in an
in vivo study [280].

Gossypin is a flavonoid found in Hibiscus vitifolius L. (Malvaceae) and has been reported in in vivo
experiments to exhibit anti-inflammatory [281] and antioxidant actions [282].

Gypenosides are triterpenoid saponins extracted from Gynostemma pentaphyllum (Thunb.) Makino
(Cucurbitaceae) and they are reported in an in vivo study to be products with antioxidant and
anti-inflammatory activities, improving the cognitive impairment [283].

1,2,3,4,6-Penta-O-galloyl-β-d-glucopyranose (PGG) is a polyphenol and the main constituent
of the Paeonia x suffruticosa Andrews (Paeoniaceae) root, a tree peony native to China and used in
traditional medicine practices. In vivo experiments proved that PGG inhibits the Aβ oligomerization,
which prevents Aβ fibril formation, resulting in the decrease of Aβ levels and improvement of memory.
PGG is also able to promote the destabilization of Aβ fibrils [284].

Enoxaparin is a low molecular weight heparin present in the intestinal mucosa of pigs. Enoxaparin
reduced the Aβ load through the decreasing of β-secretase activity [285]. Also, enoxaparin has
anti-inflammatory activity in vivo [286], improving the cognition of an AD mice model [287].

Morin, a natural flavonoid mainly found in Maclura pomifera (Raf.) C. K. Schneid. (Moraceae),
Maclura tinctoria (L.) D. Don ex Steud. (Moraceae) and leaves of Psidium guajava L. (Myrtaceae),
promoted the inhibition of β-secretase activity in vitro [190]. Besides, morin is able to reduce tau
hyperphosphorylation in vivo [288].

Naringin is a flavonoid present in citrus fruits, namely in grapefruit. In vivo studies suggested
that the antioxidant and anti-inflammatory activities of this compound improved the learning and
memory of AD rats [289].

Vanillic acid is a phenolic acid extracted from the plant Angelica sinensis (Oliv.) Diels (apiaceae)
with antioxidant and anti-inflammatory activities in vivo. As a result, an improvement in learning and
memory of AD rats was observed [290].

Punicalagin is an ellagitannin found in the fruit peel of pomegranate (Punica granatum L.
(Lythraceae)). In vivo studies suggest that punicalagin has potential as a nutritional preventive
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strategy in AD due to its anti-inflammatory activity. This natural product favors the anti-amylogenic
route through the inhibition of β-secretase, reducing Aβ levels [291].

Piperine is a nitrogenous alkaloid found in fruits of the family piperaceae, including in piper nigrum
L. and piper longum L. This compound has been used in traditional medicine to cure several diseases.
In vivo trials reported that the reduction of lipid peroxidation can be linked with the neuroprotective
effects of this compound [292], resulting in a significant improvement in memory of AD rat model [293].

Rhodosin is a flavonol extracted from the root of Sedum roseum (L.) Scop. (Crassulaceae) that
improved the learning and memory injuries in an AD rat model due to its antioxidant activity [294].

3.2. Natural Extracts and Other Natural Products

Garlic (Allium sativum L., Amaryllidaceae) is frequently used in culinary and medicine. Several
studies showed that the administration of aged garlic extract significantly improves the memory
deficit by several pathways. In vitro studies demonstrated that aged garlic extract has antioxidant
properties [295], inhibits Aβ fibril formation through the inhibition of Aβ aggregation [296] and
it is able to defibrillate Aβ fibrils [296]. In addition, in vivo evidence showed that aged garlic
extract has anti-inflammatory properties [297], increases the α-secretase activity and inhibits tau
hyperphosphorylation [298].

Cinnamon (Cinnamomum verum J. Presl., Lauraceae) is one of the most used spices and has been
traditionally applied in the treatment of some diseases and their symptoms. Cinnamon extract is
found to inhibit in vitro tau aggregation and promote the disassembly of tau filaments [215]. Other
in vitro studies suggested that the potential therapeutic effect of cinnamon against AD can also be due
to its anti-inflammatory activity [299]. In vivo evidence showed that cinnamon extract has antioxidant
activity [300], prevents Aβ oligomerization [301], reducing the Aβ level and correcting the cognitive
impairment of transgenic mice [300].

Olive (Olea europaea L., Oleaceae) is the source of olive oil, one of the most important ingredients in
the Mediterranean diet. In vivo studies showed that extra virgin olive oil ameliorated behavioural
impairments. Also, the oil reduced the Aβ and phosphorylated tau levels [302]. This decrease can
be due to the increase of Aβ clearance and APP modulation [303]. In vivo studies also proved its
antioxidant activity, protecting against Aβ-induced cytotoxicity [304].

Walnut (Juglans regia L., Juglandaceae) is a dried fruit composed by fatty acids, vitamins, alpha
tocopherol, and polyphenols, in particular ellagic acid. An in vitro study showed that walnut extract
inhibited the Aβ fibril formation through the inhibition of Aβ fibrillation, and also defibrillated Aβ

fibrils [305]. Additionally, in vivo studies demonstrated that walnut extract reduced the oxidative
stress and neuroinflammation induced by Aβ in an AD mice model [306].

Grapes (Vitis vinifera L., Vitaceae) are composed by several polyphenols including catechin,
epicatechin, epigallocatechin and epicatechin gallate. In vivo studies have revealed that grape
seed extract increases the memory performance and reduces ROS production, thereby protecting
the central nervous system [307]. An in vitro work revealed that grape seed extract blocks the Aβ

fibril formation [308] through the inhibition of Aβ aggregation [309]. Therefore, the amount of
amyloid plaques in the brain of AD mice was reduced. Besides, grape seed extract can attenuate the
neuroinflammation in vivo [310]. In vivo works proved that the grape skin extract has antioxidant
property [311] and inhibits the in vitro Aβ fibril formation [121,312].

Pomegranate (Punica granatum L., Lythraceae) is a fruit with a variety of antioxidant polyphenols.
Pomegranate juice reduced the Aβ levels and amyloid plaques in an AD mouse model, improving
spatial learning and cognitive performance [313]. Further in vivo analysis revealed that these results
could be the product of the inhibition of γ-secretase activity [314]. In addition, in vivo studies
demonstrated that pomegranate has anti-inflammatory [315] and antioxidant activities [316].

Skullcap (Scutellaria baicalensis Georgi, Lamiaceae) is a native American plant commonly
used in traditional Chinese medicine. An in vivo study found that skullcap was able to protect
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hippocampal neurons against Aβ-induced damage through the attenuation of oxidative stress and
neuroinflammation [317].

Strawberry (Fragaria x ananassa (Weston) Duchesne, Rosaceae) is known to contain high phenolic
contents. In vivo studies showed that strawberries have anti-inflammatory [318] and antioxidant
activities, protecting against oxidative stress [319].

Moringa (Moringa oleifera Lam., Moringaceae), an Asian and African plant, presents several
nutrients, including β-carotene, vitamin C and E and phenols, including quercetin and kaempferol.
In vivo studies showed that this plant improved the memory and learning due to its antioxidant
activity [320].

4. Preclinical In Vitro Studies of Natural Compounds and Their Effects on AD

Besides the aforementioned natural compounds studied in human and animal studies, several
other products have gained an increasing interest in scientific community for AD therapy. In fact,
different compounds were tested in vitro and showed promising results. Some compounds proved to
be efficient in preventing the formation of Aβ aggregates and disassembling Aβ fibrils, such as the
case of tetracycline [321], methyl caffeate [322], retinol [171] and gou teng [323]. Also, other products
demonstrated to be able to promote Aβ clearance, including withanolide A [242] and retinal [171].

The reduction of Aβ levels can occur through changes in the structure of Aβ aggregates induced by
natural compounds such as piceatannol [324]. This product is also able to decrease Aβ levels through
the activation of α-secretase. Withanolide A also promotes α-secretase expression and simultaneously
inhibits β-secretase activity [242]. Other products proved to be inhibitors of β-secretase activity
such as bastadin 9 [325], dictyodendrin [326], epicatechin gallate [327], gracilin [328], ianthellidone
F [329], lamellarin O [329], neocoylin [330], tasiamide B [331], topsentinol K trisulfate [332] and
xestosaprol [333].

Besides these mechanisms, natural compounds can prevent AD progression by other mechanisms.
For example, yessotoxin [334], gambierol [335], gracilin [328], gymnodimine [336], palinurin [337]
and schisandrone [338] reduced tau hyperphosphorylation. In addition, some compounds revealed
to be able to suppress the oxidative stress by the scavenging of ROS and inflammatory response
induced by Aβ, such as schisandrone [294], piceatannol [339], gracilin [340], sophocarpidine [294] and
tetrahydroaplysulphurin-1 [340].

Despite the verified good outcomes, the study of some of these compounds was abandoned.
For example, tetracycline was studied in 2001 but no more studies were reported for this compound.
Also, for epicatechin gallate no studies were reported since 2003, and for retinal and retinol since 2004.

5. Discussion

Several bioactive compounds and natural extracts that were described herein to treat and prevent
AD were revised and discussed. Until this date, most of the studied natural compounds are mainly
derived from vegetable sources, with just a few molecules isolated from animals and marine organisms.
Since AD is a multifactorial disorder, different therapeutic mechanisms were associated with these
natural compounds.

The approval process for a new compound to become clinically available is an extremely lengthy
process, and it is divided into different phases. Before tests on humans, new compounds must be
evaluated in preclinical studies. Several natural compounds proved to be promising for AD therapy
in in vitro and in vivo studies, as discussed in this work. However, due to physiological differences
between tested animals and humans, clinical trials are still necessary to validate the safety and
efficacy of these compounds. Clinical studies are of outmost importance for the development of new
therapeutic compounds, drugs and devices. Human studies allow to assess safety, tolerance and
effective therapeutic doses for treating diseases. Some of the performed clinical trials described in this
review did not show significant improvement in the delay or treatment of the symptoms. However,
even if the trials do not exhibit positive outcomes, the obtained results can be still used to guide the
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scientists in the right path for drug discovery. Also, some of the conducted clinical trials with natural
compounds for AD therapy, showed no conclusive results due to the limited size of samples. However,
several compounds proved to be safe in human studies and were allowed to proceed to subsequent
phases. To this date, homotaurine is the only compound that reached phase III of clinical trials for
AD therapy.

Despite only a few natural products having been studied in clinical trials, numerous compounds
proved to have beneficial properties in preclinical studies, as shown in Figure 11. Based on the works
mentioned in this review, 21% of natural compounds achieved the clinical trials phase. However,
it needs to be taken into account that since these types of products are commonly consumed in the
daily life, it is easier to reach the phase I of clinical trials as they are supposed to be safe for humans.
Unfortunately, not all these natural products demonstrated significant effects in the AD treatment.
However, they could be used for AD prevention. In the next few years, it is expected that the number
of natural compounds being studied in clinical trials for the prevention and treatment of AD will
significantly increase. Since the enrichment of several food and beverages is a recent trend, fortification
strategies using natural products could be a promising approach for AD prevention. In fact, some
groups have studied the combination of different natural compounds. In 2009, a group started clinical
trials for a beverage with supplementation of a mixture of natural compounds to be consumed by
AD patients [341]. This supplement, commercially called Souvenaid®, demonstrates beneficial effects
in the patients. This product is already commercially available in some countries being partially
financially supported by the public health care systems.

Figure 11. Number of natural products studied in different development phases.

Still, the neuroprotective effects of natural compounds depend of their ability to cross BBB.
The low bioavailability of drugs and the difficulty to cross the BBB remains the major obstacles for the
development of new therapies [342]. Drug delivery systems (DDS) targeting the brain seem to be a
promising strategy to increase the bioavailability of compounds and the transport across the BBB [343].
DDS can protect the natural compounds from biological degradation and transport the molecules
to the brain by masking their limiting physicochemical properties [344]. Thus, low doses of natural
compounds are slowly released in the brain, increasing the efficiency of the therapeutic effects.
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Among the studied natural compounds, only a small percentage have been encapsulated in DDS for
brain targeting. Only the encapsulation of curcumin [345–348], epigallocatechin gallate [349,350], grape
extracts [312], huperzine A [351], piperine [352], quercetin [353] and resveratrol [312] in functionalized
DDS was reported in the literature. Therefore, some of these compounds seem to be the most promising
for the AD treatment. One interesting approach could be the co-encapsulation in the same DDS of
more than one natural compound with different therapeutic mechanisms, obtaining a synergistic effect.
In the future, in addition to being necessary further studies to understand how natural compounds
exert their therapeutic effects on AD, further experiments to target the drugs to the brain need to
be performed.

6. Conclusions

AD is a disabling disorder with a major negative impact on our current society. At this moment,
no drugs have been developed to prevent or treat AD. The existing molecules only aim to control the
symptoms. With the increase of average life expectancy, it is fundamental to discover and develop
new molecules able to prevent and treat AD. Several natural products have proven to be promising
for AD therapy in clinical and preclinical studies. Clinical trials have shown that several compounds
appear to be effective for AD therapy, whereas others have failed in human trials. Natural compounds
in earlier phases of research need further studies to uncover their therapeutic potential for AD.
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