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Preface to “Energy-Efficient Computing  
and Communication” 

Improving the energy efficiency in communications and computing systems has become 
one of the most important issues to realize green ICT. Even though a number of studies have 
been conducted, most of them focused on one aspect—either communications or computing 
systems. However, salient features in communications and computing systems should be jointly 
considered, and novel holistic approaches across communications and computing systems are 
required to implement energy-efficient systems. In this regard, this Special Issue aimed to 
gather recent advances in energy-efficient communications and computing technologies. 

Park et al. [1] propose a novel scheme that improves the energy efficiency and network 
throughputs by controlling the topology of the multi-unmanned aerial vehicle (UAV) network. 
The use of UAVs has been researched in various industrial fields, and a number of studies on 
operating multiple autonomous networking UAVs suggest a potential use of UAVs in large-
scale environments. However, achieving efficient performance in multi-UAV operations 
remains challenging in terms of energy efficiency, network overhead, and so on. The proposed 
network topology control scheme functions between the data link layer (L3) and the network 
layer (L2), and the proposed methodology includes swarm intelligence, meaning that whole 
topology control can be achieved with lower cost and effort, and without a centralized 
controller. The experimental results confirm the improvement in performance of the proposed 
method compared to previous approaches.  

Tran et al. [2] implemented a novel one-bit coding metasurface that is capable of focusing 
and steering beams for enhancing power transfer efficiency of electromagnetic (EM) wave-
based wireless power transfer systems. The proposed metasurface includes 16 × 16 unit cells 
that were designed with a fractal structure and the operating frequency of 5.8 GHz. By 
appropriately handling the on/off states of the coding metasurface, the reflected EM wave 
impinged on the metasurface can be controlled. To verify the working ability of the coding 
metasurface, a prototype metasurface with a control board was fabricated and measured. The 
experimental results demonstrate that the coding metasurface is capable of focusing a beam to a 
desired direction. In addition, for practical scenarios, the authors propose an adaptive optimal 
phase control scheme for focusing the beam to a mobile target and proved that the proposed 
adaptive optimal phase control scheme outperforms the random phase control and beam 
synthesis schemes. 

Mobile edge computing (MEC) technology was developed to mitigate the overload 
problem in networks and cloud systems. An MEC system computes the offloading computation 
tasks from resource-constrained Internet of Things (IoT) devices. Several convergence 
technologies with renewable energy resources (RERs) such as photovoltaics have been 
proposed to improve the survivability of IoT systems. Parck et al. [3] propose an MEC 
integrated with RER system, denoted energy-harvesting (EH) MEC. Since the energy supply of 
RERs is unstable forvarious reasons, EH MEC needs to consider the state-of-charge (SoC) of the 
battery to ensure system stability. Therefore, the authors devised an offloading scheduling 
algorithm considering the EH MEC battery as well as the service quality of experience (QoE). In 
the first stage of the scheduling algorithm, a non-convex optimization problem was formulated 
and a greedy algorithm was constructed to obtain approximate optimal solutions. In the second 



x 

stage, based on Lyapunov optimization, a low-complexity algorithm is proposed that considers 
both the workload queue and battery stability. 

Ko et al. [4] propose an energy efficient cooperative computation algorithm (EE-CCA), 
where a pair of IoT devices decides whether to offload some parts of the task to the opponent 
by considering their energy levels and the task deadline. To minimize the energy outage 
probability while completing most tasks before their deadlines, a constraint Markov decision 
process (CMDP) problem is formulated and the optimal offloading strategy is obtained by 
linear programming (LP). The evaluation results demonstrate that the EE-CCA can reduce the 
energy outage probability up to 78% compared with the random offloading scheme while 
completing tasks before their deadlines with high probability. 

Ko et al. [4] propose an energy efficient cooperative computation algorithm (EE-CCA), 
where a pair of IoT devices decides whether to offload some parts of the task to the opponent 
by considering their energy levels and the task deadline. To minimize the energy outage 
probability while completing most tasks before their deadlines, a constraint Markov decision 
process (CMDP) problem is formulated and the optimal offloading strategy is obtained by 
linear programming (LP). The evaluation results demonstrate that the EE-CCA can reduce the 
energy outage probability up to 78% compared with the random offloading scheme while 
completing tasks before their deadlines with high probability. 

For energy-neutral operation (ENO) of wireless sensor networks (WSNs), Choi and Lee 
[6] applied a wireless-powered communication network (WPCN) to a WSN with a hierarchical
structure. In this hierarchical WPSN, sensor nodes with high harvesting energies and good link
budgets have energy remaining after sending their data to the cluster head (CH), whereas the
CH suffers from energy scarcity. The authors applied the simultaneous wireless information
and power transfer (SWIPT) technique to the considered WPSN so that the sensor nodes can
transfer their remaining energy to the CH while transmitting data in a cooperative manner. To
maximize the achievable rate of sensing data while guaranteeing ENO, a novel ENO framework 
is presented that provides a frame structure for SWIPT operation, rate improvement subject to
ENO, SWIPT ratio optimization, as well as clustering and CH selection algorithm. 

Joung et al. [6] propose a power control method for a buffer-aided relay node (RN) to 
enhance the energy efficiency of the RN system. By virtue of a buffer, the RN can reserve the 
data at the buffer when the the channel gain between an RN and a destination node (DN) is 
weaker than that between an SN and RN. The RN then opportunistically forwards the reserved 
data in the buffer according to channel condition between the RN and the DN. By exploiting the 
buffer, the RN reduces transmit power when it reduces the transmission data rate and reserves 
the data in the buffer. Therefore, without any total throughput reduction, the power 
consumption of RN can be reduced, resulting in the energy efficiency (EE) improvement of the 
RN system. For power control, a simple power control method was devised based on a two-
dimensional surface fitting model of an optimal transmit power of RN. 

These papers offer a broad view of the relevant, diversified, and challenging problems 
arising in energy-efficient communications and computing. I would like to express my sincere 
thanks to all the authors, reviewers, and the staff at MDPI. 

Sangheon Pack 
Guest Editors 
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Abstract: In this paper, a power control method is proposed for a buffer-aided relay node (RN) to
enhance the energy efficiency of the RN system. By virtue of a buffer, the RN can reserve the data at
the buffer when the the channel gain between an RN and a destination node (DN) is weaker than that
between SN and RN. The RN then opportunistically forward the reserved data in the buffer according
to channel condition between the RN and the DN. By exploiting the buffer, RN reduces transmit
power when it reduces the transmit data rate and reserve the data in the buffer. Therefore, without
any total throughput reduction, the power consumption of RN can be reduced, resulting in the
energy efficiency (EE) improvement of the RN system. Furthermore, for the power control, we devise
a simple power control method based on a two-dimensional surface fitting model of an optimal
transmit power of RN. The proposed RN power control method is readily and locally implementable
at the RN, and it can significantly improve EE of the RN compared to the fixed power control method
and the spectral efficiency based method as verified by the rigorous numerical results.

Keywords: UAV; relay; cooperative communications; buffer; power control; energy efficiency

1. Introduction

Initiated by the information theoretical perspective research on the cooperative communications
using a relay node (RN) [1–5], various cooperative communication techniques have been studied to
improve communication reliability, such as spectral efficiency (SE) and bit-error-rate (BER), and/or
enlarge the coverage of the communications [6,7]. For example, in works by the authors of [2,3], SE
was considered as a key performance metric of the cooperative networks, and in the work by the
authors of [4], source precoder, relaying matrices, and destination decoder were iteratively optimized
to improve BER performance. There are various retransmission strategies and duplex methods for
the relaying. Amplify-and-forward (AF) relays simply amplify and forward (retransmit) the received
signal [8–12], while decode-and-forward (DF) relays decode, encode, and forward the signal under
certain conditions [2,13]. Full-duplex (FD) relay can transmit and receive the signal simultaneously,
while a half-duplex (HD) relay receives and transmits separately [2].

Recently, unmanned aerial vehicles (UAV) have been rigorously studied as RN or base station
(BS) [14–17]. If the UAV is employed as a relay, i.e., RN, it can forward the ground BS signals to
other UAVs in the air. Here, a highly limited resource, i.e., energy, should be carefully managed to
prolong the battery life of the RN. To this end, energy efficiency (EE) of the cooperative system has to
be emphasized in resource management. For example, in the work by the authors of [18], a resource
allocation strategy including power allocation was studied for a relay system to enhance the EE of
the cooperative system. In the work by the authors of [19], a near-optimal iterative subcarrier pairing

Energies 2019, 12, 3234; doi:10.3390/en12173234 www.mdpi.com/journal/energies1



Energies 2019, 12, 3234

algorithm and power allocation was proposed to improve EE of DF relay networks. For a mobile RN,
SE and EE are considered [20].

Based on the observation that the same achievable rate can be achieved with lower transmit power
of the RN compared to an RN without the buffer, it was shown that the achievable rate can be increased
by employing a buffer at the RN (see works by the authors of [21–24] and the references therein). In the
work by the authors of [24], the frequency and power resources were optimally allocated for multiple
nodes to improve the EE of the buffer-aided relay networks. Adapting the buffer at RN allows the
opportunistic retransmission, and the average achievable rate performance can thus be improved.
Moreover, the packet delay and outage probability can also be reduced by using the buffer [25].

In this study, the EE of a buffer-aided fixed RN system is investigated under the assumption that
the transmit power of the source node (SN) is also fixed. Here, we assume that SN and HD-DF RN
are located at the fixed positions as shown in Figure 1. The RN serves the SN and destination node
(DN) as a signal repeater that forwards the received signals from the SN to DN. This scenario is similar
to the conventional cellular communication scenario using a repeater that forwards the outdoor base
station (i.e., SN) signals to an indoor mobile user (i.e., DN) in a building [26]. Thus, the assumption of
the fixed SN and RN are reasonable and many of studies regarding the cooperative communications
has been performed for the fixed RN [27–30]. For the buffer-aided fixed RN, we propose a method
to control the transmit power of RN based on the RN power consumption model and the distance
between RN and DN to improve the network EE. The achievable rate is derived, and using it and
an RN power consumption model, the EE of the network is formulated. Since it is intractable to
derive the derivative of the EE function with respect to the transmit power and EE is a function of
various power consumption parameters, analytical design of the optimal power control strategy is
formidable. Since analytical optimization methods, e.g., the resource allocation method in the work
by the authors of [24], require the channel state information among the nodes at the transmitter, the
practical implementation is challenging. Even any conventional one-dimensional numerical search
algorithm or a learning-based method, e.g., a reinforcement learning, is not applicable as it requires the
achievable rate at DN at each iteration. This causes a significant network overhead as the achievable
rate information or channel state information is needed to be fed back from DN to RN. Therefore,
we devise a simple power control method based on a model of the optimal transmit power of RN.
To model the optimal transmit power of RN, we extract two essential parameters that determine the
transmit power of RN: (i) constant power consumption Pc at RN and (ii) distance drd between RN
and DN. The optimal transmit power of RN are then modeled with respect to Pc and drd by using a
two-dimensional surface fitting method. For the RN power control, thus, only Pc and drd information
is required at RN. Here, Pc is local information, which can be readily measured at RN. The distance drd
can also be measured at RN based on the received signal strength from DN. Therefore, the proposed
RN power control method is easily implementable at the RN. From the rigorous numerical results, it is
verified that the proposed power control method can significantly improve EE compared to the fixed
power control method regardless of Pc and drd.

SN RN DNthe 1st link the 2nd link

buffer
Ps=23 dBm

Pr 

dsr=0.6 km drd

hsr hrd

Fixed SN: e.g., 
ground BS

Fixed RN: e.g., 
UAV-RN, repeater 

Mobile DN: e.g., 
users, UAVs 

full

b

Figure 1. Buffer-aided relay system model, where Ps and Pr are the transmit power of the source node
(SN) and relay node (RN), respectively; dsr and drd are the distance between SN and RN and between
RN and DN, respectively; and b is the size of the buffer.

2
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2. RN System Model

Consider an RN system as shown in Figure 1, in which SN transmits data to DN through RN.
RN is located at the fixed position dsr km apart from SN. Each node has a single antenna. DN could
be either an UAV in the air or ground user, whose direct link to SN is blocked due to the obstacles
between SN and DN. The channel of the first link between SN and RN is denoted by hsr =

√
ρsr h̄sr.

Here, ρsr is the large-scale fading between SN and RN, and small-scale fading h̄sr is independent
and identically distributed (i.i.d.) random variables with CN (0, 1) distribution, i.e., Rayleigh fading
channels. Similarly, the channel of the second link is modeled as hrd =

√
ρrdh̄rd, where ρrd is the

large-scale fading between RN and DN and h̄rd ∼ CN (0, 1) is the small-scale fading.
At time t, instantaneous achievable rates of the first and second links are written as follows.

Rs(t) =
1
2

log2 (1 + γsr(t)) =
1
2

log2

(
1 +

Psρsr|hsr(t)|2
σ2

r

)
, (1)

Rr(t) =
1
2

log2 (1 + γrd(t)) =
1
2

log2

(
1 +

Prρrd|hrd(t)|2
σ2

d

)
, (2)

where γsr(t) and γrd(t) are the instantaneous signal-to-noise ratios (SNRs) at RN and DN, respectively;
Ps and Pr are the transmit power of SN and RN, respectively; and σ2

r and σ2
d are the variances of the

additive white Gaussian noise (AWGN) at the RN and DN, respectively; without loss of generality,
the average power of the symbols transmitted from SN and RN is assumed to be one.

When the first link is better than the second link, i.e., γsr ≥ γrd and equivalently Rr(t) ≥ Rs(t),
no matter how much information is delivered from SN to RN, the RN can forward no greater than
Rr(t). On the other hand, even if ρsr < ρrd, the RN cannot forward more information than what RN
received, i.e., information causality [1,21]. Thus, the instantaneous achievable rate of the overall link at
time t is written as follows [2,3]:

R(t) = min{Rs(t), Rr(t)}. (3)

Using (3), the average achievable rate for T seconds is obtained as

R(Pr) =
1
T

T

∑
t=1

R(t), (4)

where note that the average achievable rate is a function of the transmit power of RN, i.e., Pr, which will
be designed later.

3. Achievable Rate of RN with a Buffer

An RN employs a buffer that can reserve the information bits. The buffered bits are received from
SN, yet not forwarded to DN if the channel condition of the second link is poor. The bits in the buffer
are forwarded later once the channel condition changes to be good. Considering the limited buffer
size, b, and information causality, we can consider two cases as follows.

• Rs(t) ≥ Rr(t): RN forwards Rr(t) and reserves the remaining bits, i.e., Rs(t) − Rr(t) bits,
at the buffer unless the buffer is full with b bits. Thus, the buffer status at time t will be
min (B(t − 1) + (Rs(t)− Rr(t)), b), where B(0) = 0.

• Rs(t) < Rr(t): RN forwards Rs(t). In this case, since RN can forward more bits up to Rr(t)−
Rs(t), the number of forwarded bits will be Rs(t) + min (B(t − 1), Rr(t)− Rs(t)). Accordingly,
the buffer status will be max (B(t − 1)− (Rr(t)− Rs(t)), 0).

Concretely, by virtue of the buffer, the achievable rate of the overall link with the buffer-aided RN
and the buffer status at time t are written as follows.

3
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RB(t) =

{
Rr(t), if Rs(t) ≥ Rr(t)

Rs(t) + min (B(t − 1), Rr(t)− Rs(t)) , otherwise
(5)

B(t) =

{
min (B(t − 1) + (Rs(t)− Rr(t)), b) , if Rs(t) ≥ Rr(t)

max (B(t − 1)− (Rr(t)− Rs(t)), 0) , otherwise
(6)

For example, Figure 2 shows the status of a buffer with b = 2 for T = 500 when γsr = 10 dB.
From the results, it is clearly observed that the buffer operates as expected. When the first link is better
than the second link, i.e., γsr � γrd, the information amount delivered from SN to RN is greater than
that forwarded from RN to DN. Thus, the buffer is almost always full when γrd = 0 dB, as shown in
Figure 2a. On the other hand, as γrd increases to 10 dB and 20 dB, the information amount forwarded
from RN to DN increases, resulting in the reduction of information bits in the buffer as shown in
Figure 2b,c, respectively. When γrd = 30 dB, the buffer is almost empty as shown in Figure 2d. Here,
we propose that the size of the buffer is critical for the achievable rate of the RN networks.

0 100 200 300 400 500

Transmit time t

0

1

2

3

B
uf

fe
r 

st
at

us

Full buffer

(a)

0 100 200 300 400 500

Transmit time t

0

1

2

3
B

uf
fe

r 
st

at
us

Full buffer

(b)

0 100 200 300 400 500

Transmit time t

0

1

2

3

B
uf

fe
r 

st
at

us

Full buffer

(c)

0 100 200 300 400 500

Transmit time t

0

1

2

3

B
uf

fe
r 

st
at

us

Full buffer

(d)

Figure 2. Buffer status when γsr = 10 dB and buffer size is two bits, i.e., b = 2. (a) γrd = 0 dB.
(b) γrd = 10 dB. (c) γrd = 15 dB. (d) γrd = 25 dB.

4. Buffer Size Design

To determine an efficient buffer size, we evaluate the average achievable rate of RB(t) in
Equation (5), which is defined as

RB(Pr) =
1
T

T

∑
t=1

RB(t). (7)

4
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Figure 3 shows the average achievable rates in Equations (4) and (7) by varying the buffer size b
when γsr = 20 dB. Data transmission time is given as T = 105. Obviously, the relay system without a
buffer is a special case of the relay system with a buffer whose size is zero, i.e., b = 0. By comparing
the rates at b = 0 and b > 0, it is clearly observed that the buffer can improve the achievable rate of the
cooperative systems. It is also observed that the achievable rate increases and it is saturated as buffer
size b increases. As observed in the results, the average achievable rate is almost saturated when the
buffer size b = 10, regardless of γrd. From the results, the size of an effective buffer is determined by
ten for the considered relay system in this study.
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Figure 3. Average achievable rate RB in Equation (7) over the buffer size b bits when γsd = 20 dB.

Now, to justify that the proposed buffer-aided relay system with b = 10 outperforms the
conventional relay system without a buffer, the average achievable rates R(Pr) and RB(Pr) defined in
Equations (4) and (7), respectively, are evaluated over the transmit power of RN, i.e., Pr.

In Figure 4, R(Pr) in Equation (4) and RB(Pr) in Equation (7) are compared across Pr. In simulation,
it is assumed that the channel attenuation follows the model in works by the authors of [31–34] as
follows

ρA = G − 128 + 10 log10(d
−α
A ) dB, (8)

where A ∈ {sr, rd}, G includes the transceiver feeder loss and antenna gains, d−α
A is the path loss

where dA is the distance in kilometer between nodes, and α is a path loss exponent. The transmit
power of SN is fixed as Ps = 23 dBm. In model (8), we set G = 5 dB (2 dB and 0 dB feeder losses at the
transmitter and receiver, respectively; and 7 dBi and 0 dBi gains for the transmit and receive antennas,
respectively [31]), α = 3.76 (for urban or suburban environment [35]), σ2

r = σ2
d = −174 dBm/Hz for

AWGN power [31], and Ps = 23 dBm for small-size BS [34]. On the other hand, the transmit power
of RN varies between 17 dBm and 33 dBm (note that 33 dBm, 21 dBm, and 17 dBm for the transmit
power of micro, pico, and femto BSs, respectively [34].). The distance between GBS and RN is set as
dsr = 0.6 km.

From the results, it is clearly shown that RB(Pr) ≥ R(Pr). For given Ps, the average data rate
increases up to a certain point and is saturated as Pr increases. The saturation point of Pr of the
buffer-aided relay is lower than that of the relay without a buffer. From this, it is verified that
the buffer-aided relay system efficiently utilizes the second-link channel in virtue of opportunistic
forwarding; therefore, the greater average achievable rate is achieved. Thus, from this fact, the transmit
power of RN can be reduced sustaining the throughput such that it is identical to the throughput
without a buffer, i.e., RB(Po

r ) = R(Pr), where Po
r < Pr. Consequently, it is expected that EE of the

network can be improved.
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Figure 4. Average achievable rate when Ps = 23 dBm, b = 10, and dsr = 0.6 km.

5. Proposed Power Control Method for Energy Efficient RN

The EE of the network with respect to RN is defined as a ratio of the average achievable rate and
the power consumption at RN as follows [32–34,36–38].

EE(Pr) =
RB(Pr)

ηPr + Pc
, (9)

where η represents system inefficiency (η > 1) that is caused by overhead power consumption at radio
frequency circuits, and Pc is the power consumption which is independent of transmit power. The first
term in the denominator of Equation (9) is thus the power consumption at the power amplifier of
RN. On the other hand, the second term in the denominator of Equation (9) includes a part of power
consumption for communication at, for example, a power supply, an alternating current to direct
current (AC/DC) converter, a DC/DC converter, and an active cooling system, and the propulsion
power consumption for hovering [39].

To design Pr, such that EE in Equation (9) is maximized, we evaluate the EE over Pr. In Figure
5, the EEs of two relay systems with and without a 10-bit buffer are compared when Ps = 23 dBm,
dsr = 0.6 km, and drd ∈ {0.3, 0.6, 0.9}. For the power consumption parameters, we set them as η = 5.26
and Pc ∈ {10, 20, 30, 40} dBm. Here, the values of simulation parameter are typical for the wireless
communication systems (refer to works by the authors of [32–34,36–38] and references therein), and
they can be adjusted according to the application systems. Note the the proposed power control
framework, which is introduced shortly, is independent of the values of parameters. From the results
in Figure 5, we can verify that the EE can be improved by using a buffer at RN, regardless of drd and Pc.
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Figure 5. EE across Pr when Ps = 23 dBm, dsr = 0.6 km, drd ∈ {0.3, 0.6, 0.9} km, and η = 5.26.
(a) Pc = 10 dBm. (b) Pc = 20 dBm. (c) Pc = 30 dBm. (d) Pc = 40 dBm.

It is also observed from Figure 5 that the EE function is a unimodal function having a unique
maximum of EE. However, to analytically find the optimal Pr maximizing EE is challenging.
Using Equations (1), (5), and (7)–(9), we see that the EE function is intractable, i.e., there is no
closed form of the first derivative of EE with respect to Pr. One can immediately consider a
one-dimensional numerical search algorithms, such as golden section search, quadratic interpolation
method, and inexact line searches, to find the local optimal solution [40], or machine learning based
algorithm, e.g., reinforcement learning [41–43]. However, since the average achievable rate needs to be
fed back from DN to RN for each iteration with adapted Pr to estimate the EE, the iterative approaches
require significant overhead of the networks. In the work by the authors of [24], the EE is analytically
maximized by optimally allocating the frequency and transmit power resources. To this end, however,
the transmitter, namely SN and RN, should know the channel state information among the nodes.
Though the analytical approach can provide the optimal EE performance, this analytical strategy is
challenging to be practically implemented, due to the network overhead. Thus, in this study, we
employ a two-dimensional surface fitting method to model the optimal transmit power of RN as a
function of two essential variables of EE, namely drd and Pc.

In Figure 6, the optimal Po
r ’s are shown for drd ∈ {0.3, 0.6., 0.9} and Pc ∈ {10, 20, 40, 40}, which

are obtained from Figure 5. The optimal transmit power of RN, i.e., Po
r increases as Pc or drd increases.

To fit the optimal points of Po
r to a surface, the multidimensional regression methods are employed [44].

In this study, we employ a polynomial surface fitting method, which is simple to design based on the

7
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least squares method and requires a small amount of memory at the RN. The quadratic polynomial
surface is modeled as follows.

Pr(drd, Pc) = −8.462 + 27.89drd + 0.5436Pc − 21.9d2
rd + 0.5985drdPc − 0.008475P2

c (10)

and it is shown in Figure 7. Similarly, for the optimal points, Po
r ’s of RN without a buffer in Figure 6

can be modeled as a surface. The quadratic polynomial surface of Po
r of RN without a buffer can be

modeled as

Pr(drd, Pc) = −8.12 + 25.1drd + 0.5353Pc − 15.29d2
rd + 0.2674drdPc − 0.003055P2

c . (11)

Figure 6. Optimal power Po
r of RN with and without a buffer over drd and Pc, where Po

r is obtained
from the results in Figure 5.

Figure 7. Surface fitted from Po
r with a buffer in Figure 6 by using a polynomial surface fitting method.
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Using Equations (10) and (11), the RN can determine its transmit power Pr if it knows Pc and
drd. Here, it is worth noting that Pc is local information, which can be readily measured at the RN,
and that the distance drd can also be measured at the RN based on the received signal strength from
DN. Therefore, the proposed RN power control method can be easily implementable at the RN. For
the applications of discrete-level power control, the quantized output of the quadratic polynomial
surfaces in Equations (10) and (11) can be used. In this study, we leave the measurement or prediction
method for Pc and drd as future work. In the next section, the proposed RN power control methods
using Equations (10) and (11) are verified by evaluating the EE performance.

6. Numerical Results and Discussion

In this section, EE is evaluated by varying Pc and drd. We compare five power control (PC)
schemes:

• EE-based PC w/ a buffer: The proposed RN system with a buffer. The RN transmit power is
controlled by a one-dimensional numerical search. This method can be interpreted as a numerical
approach of the optimal strategy in the work by the authors of [24], for a single pair of RN and
DN. This is optimal yet impractical approach as stated in the previous section.

• EE-based PC w/ a buffer: The proposed RN system with a buffer. The RN transmit power is
controlled by Equation (10).

• EE-based PC w/o a buffer: The conventional RN system without a buffer. The RN transmit power
is controlled by Equation (11). The PC method is designed in this study, yet it is employed to
the conventional RN for the sake of comparison. This method can be interpreted as an EE-based
power control method in [18].

• SE-based PC w/ a buffer: PC is performed to maximize SE [2,3]. Here, the RN employs a buffer.
• SE-based PC w/o a buffer: PC is performed to maximize SE [2,3]. Here, the RN does not employ

a buffer.

In Figure 8, each subfigure shows EE by varying Pc for fixed drd. From the results, the proposed
PC is verified that it can achieve the near-optimal EE regardless of the power consumption model,
i.e., Pc, and the distance drd. Clearly, EE decreases as Pc increases. It is also observed that the proposed
PC can also significantly improve EE for the relay system without a buffer. On the other hand, SE-based
PC methods do not provide comparable EE to the relay system with EE-based PC. Here, note that the
transmit power of RN of SE-based PC methods is fixed as it is independent of the power consumption
model. The fixed parameters of power are as follows: Pr = 13 dBm and Pr = 20 dBm for RN with and
without a buffer, respectively, when drd = 0.3 km in Figure 8a; Pr = 22 dBm and Pr = 30 dBm for RN
with and without a buffer, respectively, when drd = 0.5 km in Figure 8b; Pr = 27 dBm and Pr = 35 dBm
for RN with and without a buffer, respectively, when drd = 0.7 km in Figure 8c; and Pr = 32 dBm
and Pr = 40 dBm for RN with and without a buffer, respectively, when drd = 0.9 km in Figure 8d.
This is because, as previously shown in Figure 6, the transmit power of RN is needed to increase to
improve EE as Pc or drd increases. The SE-based fixed PC may achieve the best EE, e.g., when Pc is
high. However, the fixed PC strategies are inefficient since Pc may vary in time due to the external
environment variation, such as temperature and humidity. Moreover, even Pc is fixed, drd may vary
and accordingly the optimal Pr also varies. To clarify it, the next simulation is performed for fixed Pc

by varying drd.
In Figure 9, each subfigure shows EE by varying drd for fixed Pc. Clearly, EE decreases as drd

increases. The proposed PC can achieve the near-optimal EE regardless of the power consumption
model, i.e., Pc, and the distance drd. It is also observed that the proposed EE-based PC can also improve
EE for the RN system without a buffer, especially, when Pc is small. However, the EE gap between
RN with and without a buffer increases as Pc increases. From this results, we see that the buffer is
more efficient when Pc is large. Though the SE-based PC methods optimize Pr according to drd, their
EE performance is not comparable to the EE of the proposed EE-based PC methods for RN with a
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buffer. As expected, the proposed RN system with a buffer and PC is superior to others regardless of
Pc and drd.
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7. Conclusions

In this study, a relay system has been considered, in which a ground source node (SN) sends
information to a destination node (DN) through an unmanned aerial vehicle relay node (RN) with a
buffer. When the transmit power of SN is fixed, we have proposed a two-dimensional surface fitting
method to simply obtain the near-optimal transmit power of RN to maximize the energy efficiency
(EE) of the RN. To this end, the RN needs its power consumption model and the distance from a DN.
From the rigorous numerical results, it has been verified that the proposed power control method
can significantly improve the EE of RN compared to a fixed power control method based on spectral
efficiency, and achieve near-optimal performance.
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Abstract: For energy-neutral operation (ENO) of wireless sensor networks (WSNs), we apply a
wireless powered communication network (WPCN) to a WSN with a hierarchical structure. In this
hierarchical wireless powered sensor network (WPSN), sensor nodes with high harvesting energies
and good link budgets have energy remaining after sending their data to the cluster head (CH),
whereas the CH suffers from energy scarcity. Thus, we apply the simultaneous wireless information
and power transfer (SWIPT) technique to the considered WPSN so that the sensor nodes can transfer
their remaining energy to the CH while transmitting data in a cooperative manner. To maximize the
achievable rate of sensing data while guaranteeing ENO, we propose a novel ENO framework, which
provides a frame structure for SWIPT operation, rate improvement subject to ENO, SWIPT ratio
optimization, as well as clustering and CH selection algorithm. The results of extensive simulations
demonstrate that the proposed ENO based on SWIPT significantly improves the achievable rate
and reduces the energy dissipated in the network while guaranteeing ENO, in comparison with the
conventional schemes without SWIPT.

Keywords: energy-neutral operation; wireless powered sensor network; simultaneous wireless
information and power transfer; energy harvesting; clustering

1. Introduction

With the emergence of energy harvesting (EH) techniques, sensors can be equipped with EH
modules to acquire additional energy from the ambient resources (i.e., solar radiation, wind, vibrations,
radio-frequency (RF) power, etc.) Such EH sensors do not break down due to energy shortages as long
as the energy consumption is less than the harvested energy, so they can operate perpetually with a
desired performance level, which is called energy neutral operation (ENO) [1].

According to the controllability of energy sources, ENO approaches can be classified as ambient
energy harvesting (AEH) or wireless power transfer (WPT). AEH is the process of transforming any
ambient resource, such as solar radiation or wind, into readily utilizable energy [2]. In AEH, it is
difficult to control the amount of energy supplied due to the random nature of the employed energy
sources. Thus, by predicting the energy source activity, various adaptive energy management schemes,
which control the duty cycles [3], transmission power [4], sampling rates [5], and routing paths [6] of
sensor nodes, have been proposed to guarantee ENO. Meanwhile, WPT uses a controllable RF power
source, such as a power beacon and hybrid access point (HAP) (While a power beacon only acts as a
power transmitter, a HAP acts as both a power transmitter and a communication gateway.) Various
radio resources (e.g., time, bandwidth, waveform, antennas, etc.) can be controlled to transfer the RF
energy efficiently while ensuring ENO [7,8]. Such controllability at the RF power source adds a new
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dimension to the system optimization, and various optimization problems have been addressed to
maximize system performance while ensuring ENO [9,10].

The potential of WPT has recently begun to emerge in two major applications: wireless powered
communication networks (WPCNs) [11] and simultaneous wireless information and power transfer
(SWIPT) [12]. A WPCN consists of a dedicated power source (e.g., HAP) and wireless devices (e.g.,
sensors), where the wireless devices are powered by the RF waves sent from the HAP and then transmit
data to the HAP using the harvested energy. On the other hand, SWIPT is a technique that enables both
wireless information transmission (WIT) and wireless energy transfer (WET) to be attained simultaneously
via the same electromagnetic wave [13]. To this end, one of two mode-switching techniques, namely
power splitting (PS) or time switching (TS), is used to balance the ratio of WIT to WET [14].

One of the main challenges in the operation of wireless sensor networks (WSNs) is the limited battery
time of the sensor nodes. WSNs typically consist of massive numbers of sensor nodes, so it is costly and
impractical to replace their batteries regularly [15]. It is also very serious that sensing errors and link
failures often occur when the battery life of a sensor node is almost over. Therefore, extending the lifetimes
of sensor nodes while maintaining their sensing performance is a major problem in WSNs [16,17].

To address this issue, we apply the WPT technology to a WSN. Firstly, we apply the basic WPCN
concept to a hierarchical network structure, as many WSN applications use this structure to reduce the total
cost of the transmission links [18]. In this wireless powered sensor network (WPSN) with a hierarchical
structure, all of the nodes in the cell harvest wireless energy from the HAP, as in a WPCN. However unlike
in a WPCN, the sensor nodes are clustered and transmit the sensing data to the cluster head (CH) without
directly transmitting the data to the HAP. The CH gathers and aggregates all of the sensing data received
from its member nodes and then transmits the aggregated data to the HAP at one time.

If all of the sensor nodes perform the same task and thus generate sensing data of the same size,
the maximum rate of the sensing data collected in the WSN will be limited by the worst sensor node
with low harvesting energy and poor link budget [19,20]. Thus, all of the sensor nodes only need to
support the same data rate as the worst node so that some sensor nodes may have energy remaining
after transmitting their sensing data to the CH. On the other hand, the CH needs more processing
for the reception and aggregation of multiple sensing data and has to transmit the aggregated data
to the HAP via an uplink; thus, it requires more energy in general (i.e., the CH becomes the highest
energy-consuming node in the cluster with high probability). Considering this situation, we apply
the SWIPT technique to the considered WPSN so that the sensor nodes could transfer their remaining
energy to the CH while transmitting data in a cooperative way. This approach can increase the
sensing data rate in the cluster while guaranteeing the ENO of sensor nodes because the CH receives
additional energy from its member nodes and the sensor nodes give up only the remaining energy.
The objective of our study is to maximize the achievable rate of sensing data while guaranteeing ENO
in the considered WPSN. The main contributions can be summarized as follows:

• We design a frame structure to operate SWIPT in the hierarchical WPSN structure. The frame is
divided into WET, SWIPT, and WIT slots, and each sensor node uses either a PS or TS method in
the allocated SWIPT slot.

• We numerically express the achievable rate of sensing data collected in each cluster subject to
the guarantee of ENO of the sensor nodes and obtain the total energy dissipated in the cluster
depending on the use of SWIPT.

• We develop an algorithm that finds the optimal SWIPT ratio in terms of PS and TS to maximize
the achievable rate of sensing data in the cluster.

• Finally, we design a clustering and CH selection algorithm based on the K-means clustering
algorithm to maximize the achievable rate in the entire network.

The rest of this paper is organized as follows. In Section 2, we survey related previous studies
and explain the originality of our study. In Section 3, we describe the considered WPSN system and
introduce our basic approach. In Section 4, we explain the proposed ENO framework in terms of frame
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structure, the details of ENO, the optimal SWIPT ratio, and clustering and CH selection. In Section 5,
the simulation results are discussed. Finally, we present the conclusions in Section 6.

2. Related Works

In this section, we survey the previous studies on WPT-based ENO, which are directly related to
the proposed approach.

2.1. WPCN

WPCN basically guarantees ENO because all of the devices in the cell use only the energy
supplied by the HAP or power beacon. Thus, most studies on WPCNs have been focused on system
optimization considering resource allocation [21], beamforming [22], cooperative communication [23],
and full-duplex communication [24]. These topics have been investigated in a flat network structure
where the wireless device directly transmits data to the HAP, while hierarchical networks like WSNs
have not been considered.

A few studies have addressed hierarchical structures in WPCNs. For instance, cluster-based
cooperation in a WPCN was proposed in [25], where an HAP with multiple antennas exploited energy
beamforming to focus more transferred power to the CH considering the performance to be limited
by the high energy consumption of the CH. Then, joint optimization of the energy beamforming
design, transmit times of all of the nodes, and transmission power of the CH was performed to
maximize the minimum data rate achievable among all of the nodes (i.e., max-min throughput). In [26],
a WPSN consisting of one HAP, a near cluster, and the corresponding far cluster was considered
and a cluster cooperation concept was proposed. If the sensors in the near cluster do not have their
own information to transmit, acting as relays, they can help the sensors in the far cluster forward
information to the HAP in an amplify-and-forward manner. In [27], a WPSN was divided into several
layers and the exact border of each layer was obtained in order to alleviate the doubly near-far effect,
and the energy broadcasted by the HAP and radius of each layer were optimized jointly. Furthermore,
a multi-hop WPCN based on user-cooperative multi-hop transmission was considered in [28] to
improve the throughput fairness, and the max-min throughput was optimized by resource allocation
(i.e., transmission power and time). In a WPCN environment, these previous studies considered the
WET from the HAP without using SWIPT technology.

2.2. SWIPT in WSN

SWIPT has been applied to WSNs in various ways to overcome their energy limitations. Numerous
surveys of SWIPT in WSNs have been published recently [29–31]. For instance, [29] summarized
the current research on SWIPT-based cooperative sensor networks, in which SWIPT is applied to
WSNs in terms of dual-hop and multi-hop relays. Meanwhile, [30] focused on the integral aspects of
SWIPT in other prominent networks, such as device-to-device networks, vehicular ad hoc networks,
wireless body area networks, WSNs, and so on, and presented open issues and challenges in SWIPT
application. In [31], an overview of SWIPT/WPT-enabled WSNs was provided and future directions
were suggested.

Meanwhile, [32] described a WSN consisting of multiple clusters and a sink node, in which
the CH of each cluster performs SWIPT to give energy to relay nodes with low energies. In [33],
a SWIPT-powered sensor network was considered in which each source node operates SWIPT as
both an information transmitter and an energy transferrer, and the destination node works as an
information receiver while the other nodes work as energy harvesters. Furthermore, [34] focused on
the deployment of a WSN and its routing strategy when SWIPT is applied to the WSN. The basic idea
is to reduce the total recharging cost to enhance the lifespan of the WSN. In addition, [35] proposed
a dynamic routing algorithm for a renewable WSN with SWIPT. SWIPT has been adopted in many
studies to overcome the energy limitations of WSNs, but SWIPT has not yet been applied in the WPCN
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environment. Furthermore, these previous studies were focused on increasing the lifetimes of WSNs
rather than guaranteeing ENO.

2.3. ENO Based on WPT

ENO based on WPT has been investigated in some recent work. For example, the feasibility
of an energy-neutral Internet of Things (IoT) network was studied in [36] by joint utilization of EH
and WPT technologies, and design guidelines for energy-neutral wireless powered networks were
presented. In [37], duty cycle operation for a self-powering dual mode SWIPT system in which a
sensor node adaptively controls single-tone or multi-tone communication mode was introduced and
an adaptive mode switching problem was solved to maximize the achievable rate under ENO to
realize a battery-free IoT network. Meanwhile, an energy management scheme for a WPSN was
proposed in [38], which maximizes the RF energy transfer efficiency while guaranteeing ENO, and the
proposed energy management scheme was implemented in an actual testbed to verify its operation.
In [39], an adaptive duty cycle control algorithm was proposed to prevent the energy storage of a
sensor node from being depleted and its ENO was validated in a multi-antenna WPSN testbed that
dynamically steered a microwave beam towards a sensor node. In addition, the energy neutral Internet
of drones was conceptualized in [40] to overcome the energy limitations for continuous operation of
drones and to enhance the connectivity between drones. Communication and networking architectures
and protocols for drones energized by WPT were presented. Although ENO was considered in
SWIPT-enabled networks or WPCNs in these works, to the best of our knowledge, ENO considering
both SWIPT and WPCNs has not been investigated yet.

3. System Description

Figure 1 illustrates the considered WPSN, which includes one HAP and a number of sensor nodes
in a cell. The HAP is a power source that wirelessly transfers energy to all of the sensor nodes and
also acts as a sink node that collects sensing information in the cell. Only the HAP has a stable energy
supply, but the sensors do not have any embedded energy source or battery. The HAP periodically
broadcasts an RF wave, and all of the nodes in the cell harvest energy from this RF signal. Considering
the hierarchical structure, the sensor nodes are grouped into a number of clusters and one CH is
selected from among the member nodes in each cluster. Thus, all of the sensor nodes send sensing data
to their CH instead of directly to the HAP. The CH aggregates all of the sensing information received
from its member sensor nodes as well as its own sensing information (i.e., data fusion), then sends the
aggregated data to the HAP at once.

HAP
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j

hi

gij

CH
N

WIT

WET hj

Sensor

Cluster 1

giNgi1
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SWIPT
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Figure 1. Considered wireless powered sensor network.
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Assuming that all of the sensors perform the same sensing task, such as temperature, humidity,
or fire sensing, the bit size of the sensing data transmitted by each sensor node is the same. However,
the sensor nodes inherently harvest different amounts of energy depending on their distances from the
HAP and consume different amounts of energy for transmission depending on their distances from
the CH. Incidentally, the maximum rate of sensing data collection in the WSN is limited by the worst
sensor node, which has a low harvesting energy and poor link budget [19,20]. Therefore, all of the
sensor nodes only need to support the same data rate as the worst node so that some sensor nodes may
have energy remaining after transmitting their sensing data to the CH. Since the CH usually requires
more energy for multiple receptions, processing, and uplink transmission to the HAP, the sensor nodes
transfer the remaining energy to the CH while sending their data by using the SWIPT technique,
and the CH acquires additional energy while receiving data from its member nodes.

4. Proposed Energy Neutral Operation

In this section, we propose new protocols and algorithms related to the frame structure, ENO,
SWIPT, clustering, and CH selection, in order to maximize the achievable rate of sensing data while
guaranteeing ENO in the considered WPSN.

4.1. Frame Structure

Figure 2 shows the frame structure for the proposed ENO based on SWIPT. The frame is based
on time division multiple access with time division duplexing (TDMA/TDD) and scheduling-based
resource allocation is used for conflict-free transmission. Firstly, a beacon signal is broadcasted at
the beginning of the frame for frame synchronization and to provide the frame configuration and
scheduling information to all of the nodes in the cell. In compliance with the harvest-then-transmit
protocol [21], the HAP transmits RF energy during the WET slot with length Te. During this WET
period, all of the sensor nodes harvest energy to be used in the current frame.

Te
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Figure 2. Frame structure for the proposed ENO based on SWIPT.

The remainder of the frame is divided and used for each cluster. The resources allocated to each
cluster consist of multiple SWIPT slots for the member nodes in the cluster and one WIT slot for the
CH. The total number of SWIPT slots for a certain cluster is the same as the number of member nodes
in that cluster, and the length of a SWIPT slot is set to Ts. Each SWIPT slot is reserved for each sensor
node through a pre-scheduling mechanism so that access collision does not occur [41]. On the other hand,
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the last WIT slot is dedicated to the CH only for WIT and has a length of Td. Hence, the total length of the
frame depends on the number of clusters and the number of member nodes in each cluster.

The sensor node transmits the sensing data to its CH in the SWIPT slot allocated to itself.
Simultaneously, it transfers the remaining energy (if it exists) to the CH by using SWIPT based
on either the PS or TS method. Each sensor node j uses a portion αj of power or time for WIT and
the remaining portion (1 − αj) for WET. During these SWIPT slots, the CH sequentially receives the
sensing data while receiving additional energy from its member nodes. Then, the CH aggregates all of
the sensing information and transmits the aggregated sensing data to the HAP at the last WIT slot.
Here, the CH uses not only the energy initially provided by the HAP but also the energy additionally
received from its member nodes. It is noted that we do not consider the ambient energy harvesting
between any nodes [42] because the amount of energy harvested is negligible due to the long distance
between nodes and the sensor nodes may inherently stay in sleep state except for its transmit and
receive periods.

4.2. Energy Neutral Operation

We explain the proposed ENO based on SWIPT in detail in this section. The proposed ENO is
performed on a per-cluster basis. Without loss of generality, we can consider only one cluster assuming
that the clustering and CH selection are completed in advance (The clustering and CH selection
algorithm is presented in Section 4.4.). Suppose that there are N sensor nodes in the cluster. Let N be
the set of sensor nodes in the cluster, i.e., N = {1, 2, · · · , N}. We denote the selected CH node as i,
where ∃i ∈ N , and denote the other sensor nodes as j, where ∀j ∈ N \ {i}. For simplicity, we assume
that there is channel reciprocity between any two nodes. As illustrated in Figure 1, hj denotes the
channel power gain between the HAP and any node j, and gij denotes the channel power gain from
sensor node j to CH i.

The energy harvested by node j from HAP is expressed as

Ehar
j = ζ jhjPTe, ∀j ∈ N (1)

where 0 < ζ j < 1 is an EH efficiency of node j, and P is the constant transmission power of the HAP.
The transmission power of sensor node j for transmitting data to the CH during the SWIPT slot is
given by

Pj =
ηjEhar

j

Ts
=

ηjζ jhjPTe

Ts
, ∀j ∈ N \ {i} (2)

where 0 < ηj < 1 is the ratio of the energy used for only transmission except reception, processing,
and circuit operations to the total energy harvested in node j. By Shannon’s theorem, the achievable
rate of transmission from sensor node j to the CH i is expressed as

Rij = Ts log2

(
1 +

gijPj

σ2

)
, ∀j ∈ N \ {i} (bits/Hz) (3)

where σ2 is the noise power at the receiving side, and the unit of this rate has bits/Hz reflecting the
transmission time Ts.

If SWIPT is not used, as in the conventional method, the CH uses only the energy harvested from
the HAP. Thus, the transmission power of CH i for transmitting data to the HAP during the WIT slot
is given by

Pi =
ηiEhar

i
Td

=
ηiζihiPTe

Td
. (4)
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Then, the achievable rate of transmission from the CH i to the HAP is given by

Ri = Td log2

(
1 +

hiPi
σ2

)
(bits/Hz). (5)

The maximum rate of sensing data that can be collected in this cluster is limited by the minimum
rate of the transmission links [19,20]. Therefore, when SWIPT is not used, the achievable rate of sensing
data in this cluster is determined by

RnoSwipt = min
[

min
j∈N\{i}

{
Rij
}

, Ri

]
. (6)

Because the achievable rate of sensing data is determined by the minimum rate of the transmission
links, the sensor nodes with higher Rij can consume only the energy required to satisfy this minimum
rate and then transmit the remaining energy to the CH using the SWIPT technique. When PS-based
SWIPT is applied, node j uses power αjPj for WIT and the remaining power (1 − αj)Pj for WET.
Thus, the achievable rate of transmission from sensor node j to CH i is expressed as

RPS
ij = Ts log2

(
1 +

gijαjPj
σ2

)
= Ts log2

(
1 +

ηjζ j gijhjαjPTe

σ2Ts

)
, ∀j ∈ N \ {i} (bits/Hz).

(7)

On the other hand, when TS-based SWIPT is applied, node j uses time αjTs for WIT and the
remaining time (1 − αj)Ts for WET. Hence, the achievable rate of transmission from sensor node j to
CH i is expressed as

RTS
ij = αjTs log2

(
1 +

gijPj
σ2

)
= αjTs log2

(
1 +

ηjζ j gijhjPTe

σ2Ts

)
, ∀j ∈ N \ {i} (bits/Hz).

(8)

In both the PS and TS methods, the amount of energy that CH i additionally obtains is given by

Eadd
i = ∑

j∈N\{i}
ζigij(1 − αj)PjTs. (9)

Then, when SWIPT is used, the transmission power of CH i is updated as

Pswipt
i =

ηi(Ehar
i + Eadd

i )

Td
. (10)

Moreover, the achievable rate of transmission from CH i to the HAP is represented as

Rswipt
i = Td log2

(
1 + hi P

swipt
i
σ2

)

= Td log2

{
1 + ηihi(Ehar

i +Eadd
i )

σ2Td

}

= Td log2

{
1+

ηiζihi PTe(hi+∑j∈N\{i} ηjζ j(1−αj)gijhj)
σ2Td

}
(bits/Hz).

(11)

Finally, the achievable rates of sensing data when SWIPT is used according to PS and TS are
respectively expressed as

Rswipt =

⎧⎨
⎩

min
[
minj∈N\{i}

{
RPS

ij

}
, Rswipt

i

]
, if PS is used

min
[
minj∈N\{i}

{
RTS

ij

}
, Rswipt

i

]
, if TS is used.

(12)
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In WSNs, energy dissipation can occur because the sensor node does not need to consume more
energy than the energy required to attain the achievable rate of sensing data. This metric is important
for measuring the energy efficiency in WSNs [43]. The amount of energy dissipated in the sensor
node is defined as the difference between the energy harvested and the energy required to satisfy the
achievable rate. In the case without using SWIPT, all of the nodes only need to satisfy RnoSwipt given
as Equation (6). Thus, the amounts of energy dissipated in sensor node j and CH i are respectively
calculated as

EnoSwipt
j =

{
Pj −

σ2

gij

(
2

RnoSwipt
Ts − 1

)}
Ts, ∀j ∈ N \ {i} (13)

EnoSwipt
i =

{
Pi −

σ2

hi

(
2

RnoSwipt
Td − 1

)}
Td. (14)

Therefore, the total amount of energy dissipated in the cluster is expressed as

EnoSwipt = EnoSwipt
i + ∑

j∈N\{i}
EnoSwipt

j . (15)

On the other hand, when SWIPT is used, all of the nodes only need to satisfy RPS or RTS depending
on the SWIPT method used. However, SWIPT is not necessary if Ri ≥ minj

{
Rij
}

because the rate
of the CH is sufficiently high that the CH does not need to receive energy from its member nodes.
In this case, the energy dissipated in the cluster is the same as Equation (15). However, in the opposite
case, i.e., if Ri < minj

{
Rij
}

, the energy dissipated in sensor node j is zero because it transfers all of
the remaining energy to the CH. Thus, the energy dissipated in sensor node j is given by

E swipt
j =

{
0, if Ri < minj

{
Rij
}

EnoSwipt
j , otherwise.

(16)

Moreover, the energy dissipated in CH i is obtained as

E swipt
i =

{
Pswipt

i − σ2

hi

(
2

Rswipt
Td − 1

)}
Td. (17)

Finally, when SWIPT is used, the total amount of energy dissipated in the cluster is expressed as

E swipt = E swipt
i + ∑

j∈N\{i}
E swipt

j . (18)

Note that it is always true that E swipt
j ≥ 0 and E swipt

i ≥ 0 since Rswipt ≤ Rswipt
i , so the ENO of all

of the nodes is guaranteed.

4.3. Optimal SWIPT Ratio

For a given CH i, the optimal SWIPT ratio that maximizes Rswipt is formulated as

−→α ∗ = arg max
−→α

Rswipt

= arg max
−→α

min
[
minj∈N\{i}

{
Rswipt

ij

}
, Rswipt

i

] (19)

where −→α = {αj},∀j ∈ N \ {i}, and Rswipt
ij = RPS

ij or RTS
ij according to the SWIPT method used.

From Equations (7), (8), and (11), as −→α increases, Rswipt
ij increases but Rswipt

i decreases, and vice versa.

Thus, there is a tradeoff between minj

{
Rswipt

ij

}
and Rswipt

i according to −→α . In this case, the optimal
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solution of the given max-min problem is found when minj

{
Rswipt

ij

}
= Rswipt

i [44]. To find the optimal
−→α ∗ that satisfies minj

{
Rswipt

ij

}
= Rswipt

i , we design an iterative algorithm, as shown in Algorithm 1.

Since SWIPT is performed when minj
{

Rij
}
> Ri, we set the initial target rate Rtar

i to minj
{

Rij
}

and adjust
the target rate to make all of the link rates equal. In every step, αj is determined to satisfy Rtar

i according
to the PS or TS method. The computational complexity of the proposed SWIPT algorithm is given by
O(L|N |) where L is the number of iterations for the first loop and |N | is the number of nodes in cluster.

Algorithm 1: SWIPT algorithm

Ensure: i is CH and j ∈ N \ {i}
1: Initialize Rtar

i ← minj{Rij}
2: repeat

3: if PS is used then

4: αj ←
(

2Rtar
i /Ts − 1

)
σ2Ts

ηjζ j gijhjPTe
from Equation (7)

5: else if TS is used then

6: αj ←
Rtar

i

Ts log2

(
1+

ηjζ j gijhj PTe

σ2Ts

) from Equation (8)

7: end if

8: Update Eadd
i according to Equation (9)

9: Update Rswipt
i according to Equation (11)

10: Rtar
i ← Rswipt

i +Rtar
i

2
11: until Rswipt

i ≥ Rtar
i

12: Return αj, ∀j ∈ N \ {i}

4.4. Clustering and CH Selection

Next, we discuss how to form appropriate clusters and select the optimal CH. The proposed
clustering and CH selection algorithm is described in Algorithm 2. When the number of clusters is K, let
Nk be the set of nodes in cluster k ∈ {1, 2, · · · , K}. Without loss of generality, we denote ik as the CH in
cluster k, where ∃ik ∈ Nk, and jk as a sensor node in the cluster k, where ∀jk ∈ Nk \ {ik}. The proposed
algorithm is based on the well-known K-means clustering algorithm [45]. Thus, the initial K clusters
are determined using the K-means algorithm, and the initial CH in each cluster is determined to be the
node closest to the centroid of each cluster. Consequently, the initial cluster and CH are determined by
only the distance among sensor nodes without considering the distance between the sensor node and
the HAP. However, this distance directly affects the amount of energy harvested, so it is necessary to
modify the basic process of the K-means algorithm to make it suitable for the proposed ENO scheme.

The proposed algorithm mainly consists of two parts, similarly to the K-means algorithm.
Firstly, each node reselects the best cluster among the predetermined clusters. After calculating Rikj
and Rik for each CH ik, node j selects the cluster that provides the highest Rikj among the clusters satisfying
Rikj > Rik . This step is included so that SWIPT can be performed without decreasing the rate of the
predetermined clusters. Thereafter, the best CH is reselected in each cluster. For all nodes in each
cluster ∀ik ∈ {Nk}, the rate of cluster k, Rswipt

k , is calculated using Equation (12). Then, the best CH, i∗k ,
is determined as

i∗k = arg max
ik

Rswipt
k

= arg max
ik

min
[
minjk∈Nk\{ik}

{
Rswipt

ik jk

}
, Rswipt

ik

] (20)
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where i∗k can be found by exhaustive searching with a complexity of O(|Nk|). This clustering and
CH selection algorithm is repeated until all of the cluster sets and CHs are no longer changed.
The computational complexity of this algorithm is given by O(N2) because it is based on k-means
algorithm, which has a time complexity of O(n2) where n is the input data size [45].

Algorithm 2: Clustering and CH selection

Ensure: Nk is the set of nodes in cluster k ∈ {1, 2, · · · , K}
ik is the CH in the cluster k, ∃ik ∈ Nk

jk is a sensor node in the cluster k, ∀jk ∈ Nk \ {ik}
1: Initialize Nk and ik ← K-means algorithm [45]
2: repeat

3: /* Select the best cluster in the network */
4: for each node j ∈ {N1 ∪ · · · ∪ NK} do

5: for each CH ik do

6: Determine Rik j from Equation (3)
7: Determine Rik from Equation (5)
8: end for
9: if ∃ik ∈ {ik|Rik j > Rik} �= ∅ then

10: j’s cluster ← argk max{Rik j} for ∃ik ∈ {ik|Rik j > Rik}
11: else

12: j’s cluster ← argk max{Rik j} for ∀ik
13: end if
14: end for

15: /* Select the best CH in each cluster */
16: for each cluster k do

17: for each node ik ∈ {Nk} do

18: Calculate Rswipt
k from Equation (12)

19: end for
20: CH i∗k ← argik

max{Rswipt
k } from Equation (20)

21: end for
22: until ∀Nk and ∀ik are no longer changed

5. Results and Discussion

Table 1 summarizes the parameters used in the simulation. We evaluated the performance by
adjusting the number of nodes in the network, number of clusters, and network size in appropriate
ranges. We consider a square network area in an indoor environment, place the HAP at the center of the
area, and randomly distribute the sensor nodes. Assuming all of the sensor nodes to be homogeneous,
their EH efficiencies (ζ) are all equal to 0.8 [21]. The ratio of energy used for transmission (η) is
set to 0.9 for the sensor nodes and 0.7 for the CH. For ease of exposition, we consider a simple
distance-dependent path loss model given by hi = Gd−γ

i and gij = Gd−γ
ij assuming the channel fading

effect to be averaged out over the frame and all of the channels to be reciprocal [22–24]. Here, di is the
distance between the HAP and CH i, dij is the distance between nodes i and j, G refers to the average
power attenuation at a reference distance of 1 m and is set to −30 dB, and γ is the path loss exponent,
which is set to 2.5 [46]. Moreover, we set the length of the WET slot (Te) to 5 s and set the lengths of the
SWIPT slot (Ts) and WIT slot (Td) both equal to 0.1 s, assuming the aggregated sensing data to have
the same size as the individual sensing data through proper data fusion [47].
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Table 1. Parameter Setup.

Parameter Value

Number of sensor nodes in WPSN N = 100∼500 (default = 300)
Number of clusters K = 2∼20 (default = 10)
Width of the square network W = 10∼50 m (default = 30 m)
Transmission power of HAP P = 46 dBm
EH efficiency ζ j = 0.8, ∀j ∈ N
Ratio of energy used for transmission in sensors ηj = 0.9, ∀j ∈ N \ {i}
Ratio of energy used for transmission in CH ηi = 0.7
Noise spectral density −174 dBm/Hz
Noise figure 9 dB
Channel bandwidth 1 MHz
Channel power gains hi = Gd−γ

i , gij = Gd−γ
ij

Power attenuation at a reference distance of 1 m G = −30 dB
Path loss exponent γ = 2.5
Length of WET slot Te = 5 s
Length of SWIPT slot Ts = 0.1 s
Length of WIT slot Td = 0.1 s
Number of simulation trials 1000

For performance comparison, we consider the following five schemes:

1. LEACH: The CH is chosen randomly based on the stochastic threshold algorithm of the LEACH
protocol [41]. The other sensor nodes are connected to the nearest CH and do not use SWIPT.

2. K-means: The clusters are created using the K-means clustering algorithm, and the CH is chosen
as the node closest to the centroid of each cluster. SWIPT is not used.

3. Non-SWIPT: The clusters are created using the K-means clustering algorithm, but the CH is
chosen as the node that maximize RnoSwipt given by Equation (6). This scheme is the baseline for
checking only the effect of the WPSN without SWIPT. The performance of this scheme is given by
Equations (6) and (15).

4. ENO with PS: The proposed clustering and CH selection algorithm is used, and PS-based SWIPT
is applied. The performance is given by Equations (12) and (18).

5. ENO with TS: This scheme is the same as ENO with PS, except that TS-based SWIPT is applied.

Figure 3 presents the clustering results of an example case when 300 sensor nodes are deployed
randomly and grouped into five clusters in a square network with a width of 30 m. Note that the
LEACH protocol is omitted because the CH is randomly selected and continuously changed in LEACH.
The size of each node point represents the amount of energy dissipated in the sensor node. The smaller
the dot, the less energy is wasted. The results of the K-means algorithm show that the five clusters are
geographically well divided. However, there is dissipated energy in most of the nodes because the
K-means algorithm does not use SWIPT. Since the non-SWIPT scheme uses the K-means algorithm
for clustering, the cluster set is the same, but the selected CH is different. This behavior occurs
because the non-SWIPT scheme considers Ri, as shown in Equation (6), and eventually selects the CH
that provides a higher rate. In this non-SWIPT case, most of the nodes have the dissipated energy
distributions similar to those in the K-means algorithm because SWIPT is not used too. Figure 3c,d
show the proposed SWIPT-based ENO schemes. There is no significant difference between the PS and
TS methods. It is evident that the clustering results obtained using the proposed schemes are different
from those generated using the K-means and non-SWIPT schemes. In addition, there is little energy
dissipation at the nodes in the clusters other than Cluster 1 in the lower left corner. This is because
each node transfers its remaining energy to the CH through SWIPT and the CH uses it to transmit its
data. Meanwhile, SWIPT is not used in Cluster 1 because the rate of the CH is higher than the rates of
the other sensor nodes (i.e., Ri > minj{Rij}), so Cluster 1 has a dissipated energy distribution similar
to that in the non-SWIPT scheme.
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Figure 3. Clustering results of an example case when N = 300, K = 5, and W = 30 m: (a) K-means,
(b) non-SWIPT, (c) ENO with PS, and (d) ENO with TS.

Figure 4 depicts the achievable rate and energy dissipated in each cluster of Figure 3. In the case
of LEACH, both the achievable rate and energy dissipated are the worst because the CH is selected
randomly without considering each link rates (i.e., Rij and Ri). In the K-means case, the performance
is improved because Rij is considered for clustering and CH selection. In the non-SWIPT case,
the performances are better than in the K-means case because Ri is additionally considered for CH
selection. In the case of the proposed ENO with PS/TS, the achievable rate is improved more than in
the non-SWIPT case because SWIPT is performed while considering both Rij and Ri, and the energy
dissipated in each cluster is close to zero except in Cluster 1. This result occurs because each sensor
node in the cluster transfers the remaining energy to the CH using SWIPT. This energy is used by the
CH to increase the achievable rate of the cluster.
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Figure 4. (a) Achievable rate and (b) energy dissipated in each cluster.
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Figure 5 shows the average achievable rate in cluster and the total energy dissipated in network
versus the number of clusters (K) when the number of nodes in network (N) is 300 and the width of the
square network (W) is 30 m. As K increases, the achievable rate increases in all schemes. These increases
occur because the distance between nodes decreases on average as K increases. The LEACH, K-means,
and non-SWIPT schemes show better achievable rates in that order. The proposed ENO with PS and
ENO with TS have similar performances and outperform the other conventional schemes. Moreover,
as K increases, the amount of energy dissipated decreases in all schemes, because the average distance
between nodes decreases and the variance of link rates becomes smaller as K increases. The three
conventional schemes have similar dissipated energy, which is greater than that in the two proposed
ENO schemes.
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Figure 5. (a) Average achievable rate in cluster and (b) total energy dissipated in network vs. number
of clusters (K) when N = 300 and W = 30 m.

Figure 6 shows the average achievable rate in cluster and the total energy dissipated in network
versus the number of nodes in network (N) when K = 10 and W = 30 m. As N increases, the average
achievable rate in cluster does not change much. This lack of variation occurs because the minimum
rate that determines the rate of the cluster does not change significantly even if N increases. Likewise,
the achievable rate improves in the order of LEACH, K-means, and non-SWIPT, and the proposed
ENO with PS and TS shows the best performance. On the other hand, as N increases, the total energy
dissipated increases, because the total energy dissipated is linearly proportional to N. Nevertheless,
the two proposed ENO schemes show significantly lower dissipated energy levels.
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Figure 6. (a) Average achievable rate in cluster and (b) total energy dissipated in network vs. number
of nodes in network (N) when K = 10 and W = 30 m.
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Figure 7 shows the average achievable rate in cluster and the total energy dissipated in network
versus the width of the square network (W) when N = 300 and K = 10. As the network area
increases, the average achievable rate decreases because the average distance between nodes increases.
On the other hand, the total energy dissipation decreases as the network area increases because the
amount of energy harvested in all of the nodes becomes smaller. Likewise, the proposed ENO schemes
show better performances than the conventional schemes according to the change in network size.
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Figure 7. (a) Average achievable rate in cluster and (b) total energy dissipated in network vs. width in
square network (W) when N = 300 and K = 10.

6. Conclusions

In this study, we proposed a novel ENO framework based on SWIPT in a hierarchical WPSN
environment. To maximize the achievable rate of sensing data while guaranteeing ENO, new protocols
and algorithms related to the frame structure, ENO, SWIPT ratios, clustering, and CH selection were
presented. The simulation results showed that the proposed scheme using SWIPT performs much
better in terms of the achievable rate and dissipated energy than the conventional schemes, which
do not use SWIPT. It is also evident that the effect of SWIPT is greater when the number of clusters
is large and the density of nodes is high. Therefore, we expect that the proposed SWIPT-based ENO
can be applied to future WSNs using WPT technologies. In further research, we will investigate the
distributed operations of the proposed algorithms and apply other multiple access protocols [48]
considering access collision instead of the conflict-free TDMA protocol for more practical operation.
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Abstract: The limited battery capacity of Internet of Things (IoT) devices is a major deployment
barrier for IoT-based computing systems. In this paper, we propose an energy efficient cooperative
computation algorithm (EE-CCA). In an EE-CCA, a pair of IoT devices decide whether to offload
some parts of the task to the opponent by considering their energy levels and the task deadline.
To minimize the energy outage probability while completing most of tasks before their deadlines,
we formulate a constraint Markov decision process (CMDP) problem and the optimal offloading
strategy is obtained by linear programming (LP). Meanwhile, an optimization problem of finding
pairs of IoT devices (i.e., IoT device pairing problem) is formulated under the optimal offloading
strategy. Evaluation results demonstrate that the EE-CCA can reduce the energy outage probability up
to 78% compared with the random offloading scheme while completing tasks before their deadlines
with high probability.

Keywords: offloading; Internet of Things (IoT); energy; constraint Markov decision process (CMDP);
optimization

1. Introduction

From the recent advancement of Internet of Things (IoT) devices with high computing power,
complicated computation can be handled without remote servers [1]. However, the development
speed of batteries for IoT devices is inferior to that of computing module, and thus the limited
battery capacity of IoT devices is being a major deployment barrier for IoT-based computing systems.
Therefore, there is an increasing interest on the energy harvesting technique that converts wasted
energy to electricity [2,3]. With this technique, IoT devices do not need to recharge and/or replace
their batteries anymore, and thus the operating expenditure of IoT-based computing systems can be
reduced [4]. However, the energy that can be harvested from external energy sources is generally
uncontrollable and intermittent. Moreover, the harvested energy volume has temporal and spatial
variations. Therefore, it is difficult to provide a reliable power supply to IoT devices. In this situation,
if an IoT device cannot harvest energy for a long time and it processes lots of tasks requiring high
computing power, its energy can be depleted. To mitigate this problem and improve the energy
efficiency of harvesting IoT devices, a number of works (e.g., sleep scheduling, CPU cycle adjustment,
and so on) have been investigated in the literature [5–10]. One of the possible solutions is offloading
tasks to nearby IoT devices [5–7]. IoT-based computing systems have advantages compared to remote
servers-based offloading systems. For example, offloading to remote servers consumes huge resources
in networks when IoT devices generate lots of tasks. In addition, longer latency is needed when
offloading to remote servers. Especially when an energy-scarce IoT device offloads tasks to a nearby
energy-abundant IoT device, energy depletion of the energy-scarce IoT devices probably does not occur.
However, unplanned offloading can cause another energy depletion. For example, when an offloader
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(i.e., an energy-scarce IoT device) always offloads all tasks to an offloadee (i.e., an energy-abundant
IoT device) having lots of own tasks and/or small harvesting rate, the energy of the offloadee can be
depleted within a short duration. Moreover, tasks cannot be completed within their deadlines due to
the high load of the offloadee. Therefore, a sophisticated offloading algorithm should be devised.

In this paper, we propose an energy efficient cooperative computation algorithm (EE-CCA).
In an EE-CCA, each IoT device is paired to its partner and a pair of IoT devices conduct cooperative
computing. Specifically, a centralized controller collects information such as the distribution about
temporal and spatial variations of external energy sources, the task occurrence rates of IoT devices,
and the energy levels of IoT devices. Based on this information, the controller can construct and
distribute offloading decision tables to IoT devices. Then, when a task occurs in IoT devices, they
decide whether to offload some parts of the task to the opponent by following the decision tables.
To minimize the energy outage probability while completing most of the tasks before their deadlines,
we formulate a constraint Markov decision process (CMDP) problem, and the optimal offloading
strategy is obtained by linear programming (LP). Meanwhile, an optimization problem of finding pairs
of IoT devices (i.e., IoT device pairing problem) is formulated under the optimal offloading strategy.
Evaluation results demonstrate that the EE-CCA can reduce the energy outage probability up to 78%
compared with the random offloading scheme while completing tasks before their deadlines with
high probability. In addition, the EE-CCA operates adaptively even when the operating environment
(e.g., inter-task occurrence rate) changes.

The contribution of this paper can be summarized as follows: (1) we develop the cooperative
computation algorithm called EE-CCA for IoT devices, while optimizing the EE-CCA by means of
CMDP formulation; (2) optimal pairs of IoT devices are decided based on the optimization problem;
and (3) extensive evaluation results are presented and analyzed under various environments, providing
valuable guidelines for the design of cooperative computing in energy harvesting IoT.

The remainder of this paper is organized as follows. Related works are summarized in Section 2,
and the EE-CCA is described in Section 3. The CMDP model for cooperative computing and the
optimization problem for the IoT device pairing are developed in Section 4. Evaluation results are
given in Section 5, and followed by the concluding remarks in Section 6.

2. Related Works

A number of studies on the computation offloading have been conducted to improve the energy
efficiency of energy-constraint devices [11–22]. These can be categorized into: (1) framework design [11–16];
and (2) algorithm design [17–22].

Wang et al. [11] proposed an evolutionary mobile network architecture called MobiScud that
integrates the cloud services into the mobile networks by means of software defined networking
(SDN) and network function virtualization (NFV) technologies in a backwards compatible fashion.
Tong et al. [12] organized edge cloud servers into a hierarchical architecture which enables aggregation
of the peak loads across different tiers of cloud servers. Specifically, when the loads exceed the
capacities of lower tiers of edge cloud servers, they can be aggregated and offloaded by other servers
at higher tiers in the edge cloud hierarchy to maximize the amount of mobile workloads being served.
Taleb and Ksentini [13] introduced a follow me cloud concept that enables mobile cloud services
to follow their respective mobile devices by migrating services to the optimal cloud. Liu et al. [14]
proposed convergence of cloud and cellular systems, abbreviated as CONCERT, based on a concept of
control/data plane decoupling and hierarchically placement of the resources within the network to
manage flexibly and elastically networks and cloud services. Puente et al. [15] presented a seamless
approach for the deployment of edge clouds where conventional mobile traffic and computing related
traffic are segregated and handled individually at base stations. However, since these works do not
consider the device-to-device offloading, IoT devices with high computing power cannot be exploited
efficiently. Shukla and Munir [16] proposed a computation offloading architecture where an IoT device
first tries to offload tasks to another IoT device instead of directly offloading to the cloud to process the
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huge amount of data while guaranteeing the task completion before the deadline. However, they did
not provide any optimization method.

Ko et al. [17] proposed a spatial and temporal computation offloading decision algorithm where
an energy-constraint device decides where and when to process tasks by means of a Markov decision
process (MDP) by considering the energy consumption and the transmission cost. Zhao et al. [18]
developed an optimization problem whose objective function is to maximize the probability that task
execution satisfies the given delay bound. The problem was proved to be concave, and an optimal
algorithm was proposed. Tang and Chen [19] studied a social-aware computation offloading game and
designed a distributed computation offloading algorithm to achieve the Nash equilibrium. Similarly,
Chen et al. [20] modeled a multi-user computation offloading game and designed a distributed
computation offloading algorithm that can achieve the Nash equilibrium of the game. Zheng et al. [21]
formulated the mobile users’ offloading decision process under a dynamic environment as a
stochastic game. Then, they proposed a multi-agent stochastic learning algorithm that can run
in a fully distributed manner without any information exchange. Yu et al. [22] developed an
optimal collaborative offloading strategy under a distributed caching scenario. Specifically, they
formulated a problem of users’ allocation as a coalition formation game with the consideration of
relationships between the offloading and caching and then proposed an optimal offloading with a
caching-enhancement scheme. These works improve the performance of computation offloading;
however, no previous studies optimize the performance of IoT-based computing systems.

3. Energy Efficient Cooperative Computation Algorithm (EE-CCA)

Figure 1 shows the system model of this paper. In our system model, there are N IoT devices with
the energy harvesting capability. We assume heterogeneous IoT environment, where IoT devices have
different computing power and current energy level. In real systems, some IoT devices may not have
sufficient computing power and/or harvesting capability. To support this situation, a study on the
robustness of the proposed algorithm (e.g., a resilient multiscale coordination control [23]) should be
conducted, which is one of our future works. In addition, since they are installed at different spots and
the condition of external energy sources is volatile, energy volumes that can be harvested at each IoT
device are different from each other. In addition, with different rates, these IoT devices periodically
generate tasks that can be abstracted into the input data and the completion deadline before which
the task should be completed [24]. In addition, we consider an application where the input data do
not have dependency, e.g., binomial classification that determines whether each input is larger than a
given threshold or not, and therefore the input data can be partitioned and offloaded. When the task
occurs in a particular IoT device, it decides whether to offload some parts of the task (i.e., input data)
to a neighbor IoT device or not with the consideration of the energy level and the deadline of the task.
Note that, even though the formulation of this paper is based on the assumption where IoT devices
can offload all or half of the tasks, it can be easily extended to consider other portions of the task.

Figure 1. System model.
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Intuitively, when an IoT device offloads some parts of the task to a neighbor IoT device, the task
can be processed in a distributed manner, which can reduce the energy consumption of the task owner.
Since IoT devices offload their tasks to nearby IoT devices by exploiting transmission technologies
with low power consumption (e.g., Bluetooth), the energy consumption for transmission of the task
can be neglected compared to that for processing the task. Moreover, if the neighbor IoT device does
not have its own task, the task completion time can be shortened. However, if the task is offloaded to
an energy-scarce IoT device, it causes the energy depletion of the IoT device, and then the offloaded
task cannot be processed due to the energy depletion. In addition, when the neighbor IoT device has its
own task, it should process its own task and the offloaded task simultaneously, and thus its processing
time can increase. Then, both tasks may not be completed within their deadlines. To prevent these
situations, we propose the EE-CCA and its flow chart is shown in Figure 2. First, the controller collects
and/or maintains information such as the distribution about temporal and spatial variations of external
energy sources, the task occurrence rates of IoT devices, and the energy levels of IoT devices (Step 1 in
Figure 2). Based on this information, the controller determines appropriate partners of IoT devices
for cooperative computation and transmits the pairing information to IoT devices (Step 2 in Figure 2).
In addition, the controller constructs an offloading decision table consisting of the current status and
the operation in a centralized manner. If some parameters (e.g., the task occurrence rates of IoT devices)
are changed, the offloading decision table can be reconstructed by the controller and transmitted to
IoT devices again. Therefore, if the parameters are frequently changed, extra signaling overhead can
occur. To mitigate the signaling overhead, several techniques such as aggregation and delta encoding
can be exploited [25]. Note that the offloading decision table can be obtained by CMDP, which will be
elaborated in Section 4. After that, the controller transmits the optimal offloading decision table to
IoT devices (Step 3 in Figure 2). On the basis of this table, IoT devices can conduct the cooperative
computing (i.e., decide whether to offload some parts of the task or not) (Step 4 in Figure 2). By means
of table deployments in IoT devices, the CMDP model can be applied to resource-constrained IoT
devices without any high computation overhead in IoT devices [26].

Figure 2. Flow chart.
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4. Constraint Markov Decision Process (CMDP)

To obtain the optimal offloading strategy, we formulate a CMDP model with five elements. (Since
the CMDP model that is a mathematical framework to model decision-making when outcomes need
to be constrained, and they are partially random and under the control of the decision maker [27], it is
suitable to construct the optimal offloading decision table.): (1) decision epoch; (2) state; (3) action;
(4) transition probability; and (5) cost and constraint functions. Subsequently, we convert the CMDP
model to an equivalent LP problem to obtain the optimal policy. After that, the IoT device pairing
problem is formulated under the optimal offloading policy. Important notations for the CMDP model
and IoT device pairing problem are summarized in Table 1.

Table 1. Summary of notations.

Notation Description

St State at the decision epoch t
At Action chosen at the decision epoch t
τ Duration of each decision epoch
S Overall state space

TM
i State for denoting the occurrence and processing status for the task of IoT device i

TM
j State for denoting the occurrence and processing status for the task of IoT device j

TO
i State for denoting the processing status for the offloaded task of IoT device i

TO
j State for denoting the processing status for the offloaded task of IoT device j

Ei State for denoting the energy level of IoT device i
Ej State for denoting the energy level of IoT device j
Di State for denoting whether the timer for the deadline of the task of IoT device i expires or not
Dj State for denoting whether the timer for the deadline of the task of IoT device j expires or not
A Action space
Ai Action space for IoT device i
Aj Action space for IoT device j

EMAX Maximum battery capacity of IoT device
r(S, A) Cost function on the energy outage
ci(S, A) Constraint function on the timer expiration of IoT device i
cj(S, A) Constraint function on the timer expiration of IoT device j

ζE Energy outage probability
ξT

i Timer expiration probability of IoT device i
ξT

j Timer expiration probability of IoT device j

θT
i Upper limit on the timer expiration probability of IoT device i

θT
j Upper limit on the timer expiration probability of IoT device j

ζE
ij Individual energy outage probability of IoT device i when it is paired with IoT device j

xij Decision variable to denote whether IoT device i is paired with IoT device j or not

4.1. Decision Epoch

Figure 3 shows the timing diagram for the CMDP model. A sequence T = {1, 2, 3, ...} represents
the time epochs when successive decisions are made [28]. St and At denote the state and the action
chosen at the decision epoch t ∈ T, respectively. τ represents the duration of each decision epoch.

Figure 3. Timing diagram.

37



Energies 2019, 12, 4050

4.2. State Space

We define the overall state space S as (The state space is constructed based on the assumption
where IoT devices can offload all or half of the task. However, it can be easily extended to consider
other portions of the task to add elements to TM

i , TO
i , TM

j , and TO
j .)

S = TM
i × TO

i × Ei × Di × TM
j × TO

j × Ej × Dj, (1)

where TM
i and TM

j are the states for representing the occurrence and processing status for the task of

IoT devices i and j, respectively. TO
i and TO

j denote the states for the processing status of the offloaded
task of IoT devices i and j, respectively. Ei and Ej are the states for the energy level of IoT devices i
and j, respectively. Di and Dj represent the states for denoting whether the timers for the deadline of
the task of IoT devices i and j expire or not, respectively.

TM
i , TO

i , Ei, and Di are the states for IoT device i, and these states are defined as follows.
First, TM

i is given by

TM
i = {0, 1, 2, 3, 4} , (2)

where TM
i represents the occurrence and processing status for the task of IoT device i. In other words,

TM
i = 0 denotes that the task does not occur in IoT device i, whereas TM

i = 1 refers to the situation
immediately after the task occurs in IoT device i. TM

i = 2 represents the situation where IoT device
i processes all of the task by itself. Meanwhile, TM

i = 3 and TM
i = 4 represent the situations where

half of the task and all of the tasks are offloaded to IoT device j, respectively. Note that, when TM
i = 3,

IoT device i processes the remaining half of the task.
TO

i is represented by

TO
i = {0, 1, 2} , (3)

where TO
i represents the processing status of the offloaded task of IoT device i. Specifically, TO

i = 0
describes the situation where any task is not offloaded to its partner (i.e., IoT device j). Meanwhile,
TO

i = 1 and TO
i = 2 represent the situation where half of the task and all of the tasks are offloaded to

IoT device j, respectively, and it is being processed in IoT device j.
Ei is represented as [29]

Ei = {0, 1, 2, ...EMAX} , (4)

where EMAX is the maximum battery capacity of an IoT device.

Di = {0, 1} , (5)

where Di denotes whether the timer for the deadline of the task of IoT device i expires or not. In other
words, Di = 0 and Di = 1 represent that the timer for the deadline of the task of IoT device i does not
expire and expires, respectively.

TM
j , TO

j , Ej, and Dj are the states for IoT device j, and these states can be defined as similar with
the states for IoT device i. These definitions are omitted in this paper due to the page limitation and
for simple descriptions, which can be found in [30].

4.3. Action Space

When the task occurs in IoT devices, each IoT device can decide whether to offload to its partner or
not and the portion to be offloaded based on the current state information. The action set is constructed
based on the assumption where IoT devices can offload all or half of the task. However, it can be easily
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extended to consider other portions of the task to define additional actions. Therefore, the action set
can be described by

A = Ai × Aj, (6)

where Ai and Aj are the action spaces for IoT devices i and j, respectively, which can be defined as

Ai = {0, 1, 2} (7)

and

Aj = {0, 1, 2} , (8)

where Ai = 0 and Aj = 0 represent that IoT devices i and j do not offload its task, respectively.
Ai = 1 and Aj = 1 denote that IoT devices i and j offload half of the task to its partner, respectively.
In addition, Ai = 2 and Aj = 2 are the actions where IoT devices i and j offload all of the task to its
partner, respectively.

4.4. Transition Probability

The state transition probability of IoT device i is affected by the state of IoT device j. Specifically,
the processing speed of the task occurring in IoT device i (i.e., the transition probability of TM

i )
is dependent on whether the task occurring at IoT device j is processed in IoT device i or not (i.e., TO

j ).

In addition, the transition probability of TO
i is affected by whether IoT device j processes its own task

or not (i.e., TM
j ). Similar to that, the state transition probability of IoT device j is also influenced by

the state of IoT device i (especially TM
i and TO

i ). Therefore, the transition probability with the chosen
action A from the current state S to the next state S′ can be described by

P[S′|S, A] = P[S′
i |Si, TM

j , TO
j , A]× P[S′

j|Sj, TM
i , TO

i , A], (9)

where S′
i and S′

j denote the next state of IoT devices i and j, respectively. In addition, Si and Sj represent
the current state for IoT devices i and j, respectively.

Meanwhile, TM
i and TO

i are influenced by the chosen action A, and these states are dependently
changed with each other. In addition, TM

i is affected by TO
j . For example, when the task of IoT

device j is processed in IoT device i, the processing speed of the task of IoT device i can decrease.
Similarly, TO

i is influenced by TM
j . For example, when IoT device j does not process its own task,

it can focus on processing the offloaded task from IoT device i, and therefore the offloaded task can be
completed within a short duration. Meanwhile, when the task is processed in IoT device i, its energy
level can decrease. That is, the transition of Ei is influenced by TM

i . The timer for the deadline of
the task operates only when the task occurs, and therefore the transition of Di is affected by TM

i and
TO

i . Meanwhile, other states change independently of each other. Therefore, for the chosen action A,
the transition probability from the current state of IoT device i, Si = [TM

i , TO
i , Ei, Di], to the next state

of IoT device i, S′
i = [T′M

i , T′O
i , Ei, Di], can be described by

P[S′
i |Si, TM

j , TO
j , A] = P[T′M

i |TM
i , TO

i , TO
j , A]× P[T′O

i |TO
i , TM

i , TM
j , A]× P[E′

i |Ei, TM
i ]× P[D′

i |Di, TM
i , TO

i ]. (10)
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We assume that the inter-task occurrence time of IoT device i follows an exponential distribution
with mean 1/λi. Then, the probability that the task occurs in IoT device i during a decision epoch can
be calculated as λiτ [27,31]. Therefore, P[T′M

i |TM
i = 0, TO

i = 0, A] can be represented by

P[T′M
i |TM

i = 0, TO
i = 0, TO

j , A] =

⎧⎪⎨
⎪⎩

1 − λiτ, if T′M
i = 0,

λiτ, if T′M
i = 1,

0, otherwise.
(11)

Before receiving the result of the offloaded task, IoT device i does not generate the task. Therefore,
P[T′M

i |TM
i = 0, TO

i �= 0, TO
j , A] can be defined as

P[T′M
i |TM

i = 0, TO
i �= 0, TO

j , A] =

{
1, if T′M

i = 0,
0, otherwise.

(12)

Meanwhile, when the task occurs (i.e., TM
i = 1), IoT device i decides whether to offload to IoT

device j or not and the offloaded portion (i.e., half of the task and all of the task). If IoT device i decides
not to offload it (i.e., when A = 0), the task state will change to 2 representing the situation where
IoT device i processes all of the task by itself (i.e., TM

i = 2). On the other hand, when IoT device i
decides to offload half of the task and all of the task (i.e., when A = 1 and A = 2), the next states of the
occurrence and processing status for the task of IoT device i (i.e., T′M

i ) become 3 and 4, respectively.
Therefore, the corresponding transition probabilities can be represented as

P[T′M
i |TM

i = 1, TO
i , TO

j , A = 0] =

{
1, if T′M

i = 2,
0, otherwise,

(13)

P[T′M
i |TM

i = 1, TO
i , TO

j , A = 1] =

{
1, if T′M

i = 3,
0, otherwise,

(14)

and

P[T′M
i |TM

i = 1, TO
i , TO

j , A = 2] =

{
1, if T′M

i = 4,
0, otherwise,

(15)

respectively.
We assume that the processing time of IoT device i for its own task follows an exponential

distribution with mean 1/μF,S
i when it processes all of its own task and any task of IoT device j is

not offloaded to IoT device i (i.e., TM
i = 2 and TO

j = 0). In this case, the probability that the task is

completed during a decision epoch is μF,S
i τ [27,31]. Then, the probability that a task is not completed

during a decision epoch is 1 − μF,S
i τ. On the other hand, if some portion of the task of IoT device

j is offloaded to IoT device i (i.e., TO
j �= 0), the processing speed of IoT device i for its own task

decreases, and thus it is assumed that the processing time of IoT device i for its own task follows
an exponential distribution with mean 1/μF,D

i (> 1/μF,S
i ). In this case, the probability that the task

is completed (or not completed) during a decision epoch is μF,D
i τ (or 1 − μF,D

i τ) [27,31]. Therefore,
P[T′M

i |TM
i = 2, TO

i , TO
j = 0, A] and P[T′M

i |TM
i = 2, TO

i , TO
j �= 0, A] can be derived as

P[T′M
i |TM

i = 2, TO
i , TO

j = 0, A] =

⎧⎪⎨
⎪⎩

1 − μF,S
i τ, if T′M

i = 2,
μF,S

i τ, if T′M
i = 0,

0, otherwise,
(16)
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and

P[T′M
i |TM

i = 2, TO
i , TO

j �= 0, A] =

⎧⎪⎨
⎪⎩

1 − μF,D
i τ, if T′M

i = 2,
μF,D

i τ, if T′M
i = 0,

0, otherwise.
(17)

Meanwhile, when offloading half of the task to IoT device j (i.e., TM
i = 3), the remained task can

be completed with shorter time. It is assumed that the processing time of the remained task follows
an exponential distribution with mean 1/μH,S

i when any task of IoT device j is not offloaded to IoT
device i (i.e., TO

j = 0), and then the probability that the remained task is completed during a decision

epoch is μH,S
i τ [27,31]. On the other hand, when IoT device i offloads the half of its task to IoT device j

and processes the offloaded task from IoT device j (i.e., TM
i = 3 and TO

j �= 0), the processing time of

the remained task of IoT device i follows an exponential distribution with mean 1/μH,D
i . In this case,

the probability that the remained task is completed during a decision epoch is μH,D
i τ [27,31]. Thus,

the corresponding transition probabilities can be represented as

P[T′M
i |TM

i = 3, TO
i , TO

j = 0, A] =

⎧⎪⎨
⎪⎩

1 − μH,S
i τ, if T′M

i = 3,
μH,S

i τ, if T′M
i = 0,

0, otherwise,
(18)

and

P[T′M
i |TM

i = 3, TO
i , TO

j �= 0, A] =

⎧⎪⎨
⎪⎩

1 − μH,D
i τ, if T′M

i = 3,
μH,D

i τ, if T′M
i = 0,

0, otherwise.
(19)

When the task does not occur, the processing status of the offloaded task of IoT device i does not
change. Therefore, P[T′O

i |TO
i = 0, TM

i �= 1, A] can be denoted as

P[T′O
i |TO

i = 0, TM
i �= 1, TM

j , A] =

{
1, if T′O

i = 0,
0, otherwise.

(20)

Meanwhile, when the task occurs (i.e., TM
i = 1), the processing status of the offloaded task of IoT

device i changes according to the chosen action A. Therefore, corresponding transition probabilities
can be represented as

P[T′O
i |TO

i = 0, TM
i = 1, TM

j , A = 0] =

{
1, if T′O

i = 0,
0, otherwise,

(21)

P[T′O
i |TO

i = 0, TM
i = 1, TM

j , A = 1] =

{
1, if T′O

i = 1,
0, otherwise,

(22)

and

P[T′O
i |TO

i = 0, TM
i = 1, TM

j , A = 2] =

{
1, if T′O

i = 2,
0, otherwise,

(23)

respectively.
When some portion of the task is offloaded (i.e., TO

i = 1 or TO
i = 2), it is processed by IoT device

j. Meanwhile, the processing time of the offloaded task to IoT device j depends on the portion of the
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offloaded task (i.e., TO
i ) and whether IoT device j processes its own task or not (i.e., TM

j ). Specifically,
when half of the task (or all of the task) of IoT device i is offloaded and IoT device j does not process its
own task, we assume that the processing time of the offloaded task follows an exponential distribution
with mean 1/μH,S

j (1/μF,S
j ). On the other hand, if half of the task (or all of the task) of IoT device i is

offloaded and IoT device j processes its own task, the processing time of the offloaded task follows an
exponential distribution with mean 1/μH,D

j (1/μF,D
j ). Then, the probabilities that the offloaded task

is completed during a decision epoch for each case can be derived as μH,S
j τ, μF,S

j τ, μH,D
j τ, and μF,D

j τ,
respectively [27,31]. Therefore, the corresponding transition probabilities can be denoted as

P[T′O
i |TO

i = 1, TM
i , TM

j = 0, A] =

⎧⎪⎨
⎪⎩

1 − μH,S
j τ, if T′O

i = 1,

μH,S
j τ, if T′O

i = 0,
0, otherwise,

(24)

P[T′O
i |TO

i = 2, TM
i , TM

j = 0, A] =

⎧⎪⎨
⎪⎩

1 − μF,S
j τ, if T′O

i = 1,

μF,S
j τ, if T′O

i = 0,
0, otherwise,

(25)

P[T′O
i |TO

i = 1, TM
i , TM

j �= 0, A] =

⎧⎪⎨
⎪⎩

1 − μH,D
j τ, if T′O

i = 1,

μH,S
j τ, if T′O

i = 0,
0, otherwise,

(26)

and

P[T′O
i |TO

i = 2, TM
i , TM

j �= 0, A] =

⎧⎪⎨
⎪⎩

1 − μF,D
j τ, if T′O

i = 1,

μH,S
j τ, if T′O

i = 0,
0, otherwise.

(27)

The IoT device can harvest energy only when its environments provide energy (e.g., when the
wind blows above a certain speed). Therefore, the probability that IoT device i harvests one unit
energy at an arbitrary decision epoch is modeled by a Bernoulli random process with the probability
pH

i [32]. Then, when the IoT device i does not process any task (i.e., TM
i = 0 or TM

i = 1) and its battery
is not fully charged (i.e., Ei �= EMAX), Ei increases by one unit with the probability pH

i . If the battery of
IoT device i is full (i.e., Ei = EMAX), it cannot harvest energy anymore. Therefore, the corresponding
transition probabilities can be represented as

P[E′
i |Ei �= EMAX , TM

i = 0] =

⎧⎪⎨
⎪⎩

1 − pH
i , if E′

i = Ei,
pH

i , if E′
i = Ei + 1,

0, otherwise,
(28)

P[E′
i |Ei = EMAX , TM

i = 0] =

{
1, if E′

i = Ei,
0, otherwise,

(29)

P[E′
i |Ei �= EMAX , TM

i = 1] =

⎧⎪⎨
⎪⎩

1 − pH
i , if E′

i = Ei,
pH

i , if E′
i = Ei + 1,

0, otherwise,
(30)
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and

P[E′
i |Ei = EMAX , TM

i = 1] =

{
1, if E′

i = Ei,
0, otherwise.

(31)

When IoT device i processes the task (i.e., TM
i = 2 or TM

i = 3) and it has energy (i.e., E �= 0),
it consumes one unit energy. On the other hand, if IoT device i does not have any energy, it cannot
process for any task the sensed data, and thus no energy is consumed. In addition, its energy Ei
increases by one unit with the probability pH

i . Therefore, the corresponding transition probabilities can
be expressed by

P[E′
i |Ei �= 0, TM

i = 2] =

⎧⎪⎨
⎪⎩

1 − pH
i , if E′

i = Ei − 1,
pH

i , if E′
i = Ei,

0, otherwise,
(32)

P[E′
i |Ei = 0, TM

i = 2] =

{
1, if E′

i = Ei,
0, otherwise,

(33)

P[E′
i |Ei �= 0, TM

i = 3] =

⎧⎪⎨
⎪⎩

1 − pH
i , if E′

i = Ei − 1,
pH

i , if E′
i = Ei,

0, otherwise,
(34)

and

P[E′
i |Ei = 0, TM

i = 3] =

{
1, if E′

i = Ei,
0, otherwise.

(35)

Meanwhile, when all of the tasks are offloaded to IoT device j (i.e., TM
i = 4), IoT device i does not

consume its own energy. Therefore, the corresponding transition probability can be denoted as

P[E′
i |Ei, TM

i = 4] =

{
1, if E′

i = Ei,
0, otherwise.

(36)

When the task does not occur (i.e., TM
i = 0 or TO

i = 0), the timer for the deadline of the task does
not start, and therefore it does not expire. Therefore, P[D′

i |Di, TM
i = 0, TO

i = 0] can be represented as

P[D′
i |Di, TM

i = 0, TO
i = 0] =

{
1, if D′

i = 0,
0, otherwise.

(37)

We assume that the timer for the deadline of the task of IoT device i follows an exponential
distribution with mean 1/κi [33,34]. Then, when the task is not completed (i.e., TM

i �= 0 or TO
i �= 0),

the probability that the timer expires during a decision epoch is κiτ. Thus, the corresponding transition
probabilities can be represented as

P[D′
i |Di = 0, TM

i �= 0, TO
i ] =

⎧⎪⎨
⎪⎩

1 − κiτ, if D′
i = 0,

κiτ, if D′
i = 1,

0, otherwise,
(38)
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and

P[D′
i |Di = 0, TM

i , TO
i �= 0] =

⎧⎪⎨
⎪⎩

1 − κiτ, if D′
i = 0,

κiτ, if D′
i = 1,

0, otherwise.
(39)

Meanwhile, when the task is completed (i.e., TM
i = 0 and TO

i = 0), the timer is reset and does
not operate, which means that there is no expiration. Therefore, P[Di

′|Di = 1, TM
i = 0, TO

i = 0] can
be denoted as

P[D′
i |Di = 1, TM

i = 0, TO
i = 0] =

{
1, if D′

i = 0,
0, otherwise.

(40)

If the timer expires (i.e., Di = 1) and the task is not completed (i.e., TM
i �= 0 or TO

i �= 0), the timer
remains in the expired state. Therefore, the corresponding transition probabilities can be represented as

P[D′
i |Di = 1, TM

i �= 0, TO
i ] =

{
1, if D′

i = 1,
0, otherwise,

(41)

and

P[Di
′|Di = 1, TM

i , TO
i �= 0] =

{
1, if D′

i = 1,
0, otherwise.

(42)

The transition probability for the states of IoT device j can be defined as similar to that of IoT
device i. These are omitted in this paper due to the page limitation and for simple descriptions, which
can be found in [30].

4.5. Cost and Constraint Functions

4.5.1. Cost Function

To define the cost function, we consider the energy outage of IoT devices. The energy outage
occurs when batteries of IoT devices are empty. Therefore, the cost function can be defined as

r (S, A) =

⎧⎪⎨
⎪⎩

1, if Ei = 0,
1, if Ej = 0,
0, otherwise.

(43)

4.5.2. Constraint Function

To prevent the situation where the task cannot be finished before the timer expiration,
the constraint functions for the timer expiration of IoT devices i and j can be represented by

ci (S, A) =

{
1, if Di = 1,
0, otherwise,

(44)

and

cj (S, A) =

{
1, if Dj = 1,
0, otherwise,

(45)

respectively.
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4.6. Optimization Problem Formulation

Since
t

∑
t′

E [r (St′ , At′)] means the number of energy outages, the average energy outage probability

ζE can be defined as

ζE = lim
t→∞

sup
1
t

t

∑
t′

E [r (St′ , At′)], (46)

where lim denotes the value that a function approaches as the input approaches a specific value.
In addition, sup (i.e., supremum) means the least upper bound.

Meanwhile, the average timer expiration probabilities of IoT devices i and j, denoted as, ξT
i ,

and ξT
j , respectively, can be defined as

ξT
i = lim

t→∞
sup

1
t

t

∑
t′

E [ci (St′ , At′)] (47)

and

ξT
j = lim

t→∞
sup

1
t

t

∑
t′

E
[
cj (St′ , At′)

]
. (48)

Then, the optimization problem in the CMDP model can be formulated as

min
π

ζE, (49)

s.t. ξT
i ≤ θT

i and ξT
j ≤ θT

j , (50)

where θT
i and θT

j are the upper limits on the timer expiration probabilities of IoT devices
i and j, respectively.

The formulated optimization problem can be transformed into an equivalent LP problem [28].
That is, when φ(S, A) represents the stationary probability of state S and action A, the solution of the
LP problem φ∗(S, A) can be mapped to that of the CMDP-based optimization model. The equivalent
LP model can be expressed as

max
φ(S,A)

∑
S

∑
A

φ(S, A)r(S, A), (51)

s.t. ∑
S

∑
A

φ(S, A)ci(S, A) ≤ θT
i , (52)

∑
S

∑
A

φ(S, A)cj(S, A) ≤ θT
j , (53)

∑
A

φ(S′, A) = ∑
S

∑
A

φ(S, A)P[S′|S, A], (54)

∑
S

∑
A

φ(S, A) = 1, (55)
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φ(S, A) ≥ 0. (56)

The objective function in (51) is to minimize the energy outage probability of IoT devices.
Meanwhile, the constraints in (52) and (53) are to maintain the timer expiration probabilities of IoT
devices i and j below θT

i and θT
i , respectively. The constraint in (54) satisfies the Chapman–Kolmogorov

equation. The constraints in (55) and (56) are for the probability properties.
The optimal policy π∗(S, A), which is the probability of taking a particular action at a certain state,

can be obtained from the solution of the above LP problem. The optimal policy can be derived from

π∗ (S, A) =
φ∗ (S, A)

∑
A′

φ∗ (S, A′)
for S ∈ S, ∑

A′
φ∗ (S, A′) > 0. (57)

Note that, if ∑
A′

φ∗ (S, A′) = 0, which means that there is no solution to satisfy all constraints,

IoT devices do not offload any task. LP problem can be solved in polynomial time [35–37]. Therefore,
our proposed algorithm can be implemented to real systems without high computational power.

4.7. IoT Device Pairing Problem

The optimal offloading policy in the previous subsection is obtained given the paired IoT devices
i and j. In this subsection, we formulate an IoT device pairing problem whose objective is to minimize
the summation of energy outage probabilities of all IoT devices.

Let ζE
ij denote an individual energy outage probability of IoT device i when it is paired with IoT

device j. ξE
ij can be calculated as (We assume that the individual energy outage probability of IoT

device i when it is paired with IoT device j is lower than that when it is not paired (i.e., ξE
ij < EE

ii ).
This assumption is reasonable because paired IoT devices operate by following the optimal policy
obtained by CMDP:

ζE
ij = ∑

S
∑
A

π∗
([

TM
i , TO

i , Ei = 0, Di, Sj

]
, A
)

. (58)

Then, the optimization problem for pairing IoT devices can be defined as

min
xij

∑
i

ζE
ij xij, (59)

s.t. ∑
j

xij = 1, ∀i, (60)

where xij is a decision variable that is 1 if IoT devices i and j are paired and 0 otherwise. The objective
function in (59) is to minimize the summation of energy outage probabilities of all IoT devices.
Meanwhile, the constraint in (60) to ensure that all IoT devices are paired with only one IoT
device. This optimization problem is solved in the controller by using several algorithms (e.g.,
brute-force approach, LP relaxation, and branch-and-bound algorithm), and therefore there is no
burden in IoT devices.

5. Evaluation Results

For performance evaluation, we compare the proposed algorithm, EE-CCA, with the following
four schemes: (1) ALL where IoT devices always offload all of the tasks; (2) HALF where IoT devices
always offload half of the task; (3) NON where IoT devices do not offload any task (i.e., process their
tasks by themselves); and (4) RAND where IoT devices randomly offload their tasks at each decision
epoch. For pair comparison, IoT devices are paired based on the solution of the optimization problem
in Section IV-G. Meanwhile, the objective of this paper is to minimize the energy outage probability
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while maintaining the probability that the task is completed before their deadline above a certain level.
Therefore, the average energy outage probability, ζE, and the average probabilities that the task of IoT
device i and j are completed before their deadline, ηi and ηj, are used as performance measures of the
EE-CCA. Note that ηi and ηj can be calculated by 1 − ξT

i and 1 − ξT
j , respectively.

To improve the reliability of the simulation results, we have conducted over 10,000 simulation
runs with different seed values independently. The default number of IoT devices is set to 6. The other
default parameter settings are summarized in Table 2, where [a b] denotes a random value between
a and b.

Table 2. Default parameter settings.

τ λ μF,S μF,D μH,S μH,D pH κ θT

1 [0.2 0.3] [0.3 0.4] [0.15 0.2] [0.6 0.8] [0.3 0.4] [0.4 0.9] [0.2 0.3] 0.99

5.1. Effect of the Harvesting Probability

Figure 4 shows the effect of the harvesting probability pH
j of IoT device j on the average energy

outage probability and the average probabilities that tasks of IoT devices i and j are completed before
their deadlines. As shown in Figure 4, it can be found that the EE-CCA can reduce significantly the
energy outage probability of IoT devices (see Figure 4a). For example, when PH

i is 0.1, EE-CCA can
reduce the energy outage probability by 78% compared to RAND. while maintaining the probability
that the task is completed before the deadline (i.e., 0.99) (see Figure 4b,c). This is because IoT devices
in the EE-CCA decide whether to offload some parts of the task to the opponent with the consideration
of the energy harvesting probability, the task occurrence rate, and the current energy levels of IoT
devices. For example, IoT device does not offload its task to the partner when the current energy level
of the partner is low and predicted to be decreased due to low harvesting probability and high task
occurrence rate.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
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j
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(a)
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0.98
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(b)
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(c)

Figure 4. Effect of the harvesting probability. (a) average energy outage probability; (b) average
probability that the task of IoT device i is completed before the deadline; (c) average probability that
the task of IoT device j is completed before the deadline.

From Figure 4a, it can be shown that the average energy outage probabilities of all schemes
decrease as pH

j increases. This is because a high battery level of IoT device j can be maintained

regardless of whether to offload or not when pH
j is high. Meanwhile, from Figure 4b,c, it can be seen

that the probabilities that tasks of IoT devices i and j are completed before their deadlines increases with
the increase of pH except specific cases (i.e., NON in Figure 4b and ALL in Figure 4c). This is because
the tasks can be completed only when IoT devices have sufficient energy. In other words, IoT devices
cannot complete their tasks within the deadline if they cannot harvest sufficiently energy. On the
other hand, in NON, IoT device i does not offload its task to IoT device j. Therefore, the harvesting
probability pH

j of IoT device j does not affect the probability ηi that the task of IoT device i is completed
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within the deadline. Similarly, in ALL, all tasks of IoT device j are processed in IoT device i, and thus
ηj is not affected by pH

j .

5.2. Effect of the Inter-Task Occurrence Rate

Figure 5 shows the effect of the inter-task occurrence rate λi of IoT device i. From Figure 5, it can
be found that the average energy outage probabilities of all schemes increase with the increase of
the inter-task occurrence rate. This is because IoT devices consume more energy when tasks occur
frequently. However, the incremental ratio of the EE-CCA is smallest among comparison schemes.
This is because IoT devices in the EE-CCA operate adaptively even when the operating environment
changes. Specifically, as the inter-task occurrence rate of IoT device i increases, it offloads more tasks
to its opponent to avoid the energy depletion.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

i

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

E

EE-CCA
ALL
NON
HALF
RAND

Figure 5. Effect of the inter-task occurrence rate on the average energy outage probability.

5.3. Effect of the Average Deadline

The effects of the average deadline of the task on the average energy outage probability are
demonstrated in Figure 6. From Figure 6, it can be observed that the average energy outage probability
of the EE-CCA decreases with the increase of the deadline. This is because, when a sufficient deadline is
given, IoT devices in the EE-CCA can handle the task within the deadline by themselves even though
they do not offload any tasks to energy-scarce opponents. On the other hand, the other schemes
follow the fixed policy regardless of the deadline of the task, and thus their average energy outage
probabilities do not change according to the deadline.

2 3 4 5 6 7 8 9 10

Average deadline

0

0.05

0.1

0.15

0.2

0.25
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E

EE-CCA
ALL
NON
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RAND

Figure 6. Effect of the average deadline of the task.
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5.4. Comparison between the Optimal IoT Device Pairing and the Random Pairing

Figure 7 shows the average energy outage probabilities of the EE-CCA when pairing IoT devices
based on the optimization problem (denoted by OPTIMAL) and pairing IoT devices randomly (denoted
by RAND) as a function of the number of IoT devices. As shown in Figure 7, the average energy outage
probability of OPTIMAL decreases as the number of IoT devices increases. This can be explained as
follows: a large number of IoT devices means that there are lots of candidate IoT devices to be matched
to a specific IoT device. In this situation, each IoT device can be paired to more appropriate IoT device.
For example, an energy-scarce IoT device can be paired to more energy-abundant IoT device. On the
other hand, since IoT devices are paired randomly in RAND regardless of the number of IoT devices,
its energy outage probability is not affected by that number.

4 6 8 10 12

Number of IoT devices

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

E

RAND
OPTIMAL

Figure 7. Comparison between the optimal pairing and random pairing.

6. Conclusions

In this paper, we proposed an energy efficient cooperative computation algorithm (EE-CCA),
in which a pair of IoT devices decide whether to offload some parts of the task to the opponent with
the consideration of their energy harvesting probabilities, task occurrence rates, and current energy
levels. The optimal offloading decision can be obtained by means of a constraint Markov decision
process (CMDP). Moreover, an optimization problem for IoT device pairing is formulated under
the optimal offloading strategy. The evaluation results demonstrate that the EE-CCA offloads tasks
appropriately, and thus the energy outage probability can be reduced by up to 78% compared to the
random offloading scheme while providing the desired probability that tasks are completed before
the deadline. Moreover, it can be seen that the EE-CCA operates adaptively even when the operating
environment (e.g., inter-task occurrence rate) is changed. In our future works, we will investigate an
incentive mechanism to encourage IoT devices to process tasks. In addition, a study for the robustness
of the proposed algorithm will be conducted for supporting heterogeneous functionality of IoT devices.
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Abstract: Recently, mobile edge computing (MEC) technology was developed to mitigate the
overload problem in networks and cloud systems. An MEC system computes the offloading
computation tasks from resource-constrained Internet of Things (IoT) devices. In addition, several
convergence technologies with renewable energy resources (RERs) such as photovoltaics have been
proposed to improve the survivability of IoT systems. This paper proposes an MEC integrated
with RER system, which is referred to as energy-harvesting (EH) MEC. Since the energy supply of
RERs is unstable due to various reasons, EH MEC needs to consider the state-of-charge (SoC) of
the battery to ensure system stability. Therefore, in this paper, we propose an offloading scheduling
algorithm considering the battery of EH MEC as well as the service quality of experience (QoE). The
proposed scheduling algorithm consists of a two-stage operation, where the first stage consists of
admission control of the offloading requests and the second stage consists of computation frequency
scheduling of the MEC server. For the first stage, a non-convex optimization problem is designed
considering the computation capability, SoC, and request deadline. To solve the non-convex problem,
a greedy algorithm is proposed to obtain approximate optimal solutions. In the second stage,
based on Lyapunov optimization, a low-complexity algorithm is proposed, which considers both
the workload queue and battery stability. In addition, performance evaluations of the proposed
algorithm were conducted via simulation. However, this paper has a limitation in terms of verifying
in a real-world scenario.

Keywords: computation offloading; mobile edge computing; energy harvesting; lyapunov optimization

1. Introduction

In recent years, along with the development of the Internet of Things (IoT) technology, it has
become easier to connect mobile devices to the Internet [1–3]. In particular, IoT-based sensor devices,
which have low computing performance, can overcome their computational limitations with the help
of cloud systems [4,5]. However, the explosive growth of IoT data has resulted in increased traffic
load in networks and cloud systems. This overload reduces the quality of experience (QoE) of the
services and can result in network blackout, which shuts down the network system [6,7]. To solve
these problems, the mobile edge computing (MEC) technology, which is a type of radio access network
(RAN) with cloud computing capabilities, has been developed to assist resource-constrained IoT
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devices [6,7]. In an MEC environment, the MEC server computes the offloaded workload from the
IoT devices and charges the bill accordingly. This paper proposes an energy harvesting (EH) MEC
system, which enhances the survivability of the MEC through energy harvesting if the MEC is installed
in a remote area where grid power supply is not available. In the EH MEC system, the MEC server
is powered by renewable energy resources (RER) such as photovoltaic or wind turbine resources.
Therefore, it is possible to establish a system that deploys IoT sensor nodes and collects information in
places where it is difficult to install electricity facilities such as deserts or unmanned islands. However,
the EH MEC system has important challenges in terms of stability. On the one hand, since the energy
supply from RERs is uncertain with respect to weather or time, the EH MEC system cannot achieve
stable energy unlike conventional grid powered MEC. On the other hand, if EH MEC operation only
considers maximization of the system performance, system black out will occur since the power supply
of EH MEC is unstable, i.e., EH MEC has to consider battery stability [8]. Thus, EH MEC reduces
the energy consumption when the amount of harvested energy is not sufficient even if the system
performance is decreased.

This paper proposes an EH MEC scheduling algorithm that considers the battery stability. Figure 1
shows the proposed MEC system. As shown in the figure, the IoT devices transmit the offloading
requests to the MEC system. Then, the MEC system determines the admission of requests (referred
to as offloading scheduling). If the offloading request is accepted, it is executed by the MEC server.
Otherwise, it is transferred to the cloud system. In addition, the MEC server determines its computation
frequency based on the battery state-of-charge (SoC) (referred to as MEC scheduling). According
to circuit theories, the CPU power is dominated by the dynamic power, which originates from the
toggling activities of the logic gates inside the CPU [9]. Thus, in this paper, we assume that the power
consumption of the computation offloading can be handled by CPU frequency scheduling such as
dynamic voltage frequency scaling (DVFS) [9,10]. In the proposed system, if the SoC of the battery is
sufficient, the MEC server raises the computation frequency for faster offloading service. Otherwise,
the MEC server will lower the frequency to ensure system stability, i.e. to avoid blackout.

Figure 1. Architectural view of the proposed EH MEC system, consisting of RERs, energy storage
system (ESS), a base station, MEC, etc. The IoT devices send their computational workloads to the
base station. If the computation can be performed by the EH MEC system, it is offloaded to the MEC.
Otherwise, it is offloaded to the cloud system.
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The contributions of this paper are summarized as follows:

• EH MEC system: We propose an MEC integrated with RER to improve the survivability of the
system through energy harvesting.The mathematical model of the MEC system includes a battery
state, energy harvesting, offloading request and request deadline.

• Real-time Scheduling: We propose a two-stage scheduling algorithm, consisting of offloading
and MEC scheduling. The optimization problems of the two types of scheduling are modeled as
NP-hard problems. Therefore, they cannot be solved in non-deterministic polynomial time. To
solve this problem, we propose a greedy algorithm to find approximate solutions for offloading
scheduling. For MEC scheduling, a Lyapunov optimization-based scheduling algorithm is
proposed to find the optimal computation frequency in real time.

• Battery Stability: As aforementioned, the EH MEC system has to consider the battery stability to
ensure a stable operation. If the SoC is sufficient, the proposed offloading scheduler increases the
number of permitted requests. Similarly, the MEC scheduler controls the frequency based on the
battery SoC.

The rest of this paper is organized as follows. In Section 2, we review related works on EH MEC
systems. In Section 3, the scheduling algorithms are proposed, and the corresponding optimization
problem is presented. The design of the greedy algorithm, which can obtain approximate optimal
solutions for offloading scheduling, and a low complexity MEC frequency scheduling algorithm based
on Lyapunov optimization are provided in Section 4. Section 5 presents the performance evaluation.
The conclusions of this paper are drawn in Section 6.

2. Related Work

In this section, we review the existing related works to clarify the motivation of the proposed
algorithm. Over the past several years, MEC researchers have focused on maximizing computational
efficiency and minimizing energy consumption of IoT devices [11–16]. In [11], the authors proposed
joint offloading and computation energy efficiency maximization algorithm for MEC system. They
proposed novel computation efficiency indicator and solved the problem by using iterative and
gradient descent method. However, this algorithm did not consider energy harvesting. In [12], energy
efficient task offloading algorithms for non-orthogonal multiple access (NOMA) MEC environment
is presented. This algorithm determined the uplink power control solution, and then solved the task
offloading partition and time allocation. However, this scheme also did not consider energy harvesting.
The authors of [13] proposed the delay constraint offloading algorithm. This algorithm solved the
problem of minimizing energy consumption, assuming that MEC server can charge IoT devices. In [14],
the authors proposed a bound improving branch and bound approach to minimize energy consumption
of IoT device in which orthogonal frequency division multiple access (OFDMA) was considered
for uplink transmission. They focused on the energy consumption of the IoT device, under the
consideration of computation offloading, subcarrier allocation, and computing resource allocation.
In [15], an IoT device offloading scheduling algorithm in wireless power transfer environment is
proposed. In this algorithm, the IoT device decides whether to compute the task itself or offload the
task to MEC server. A cooperative partial computation offloading algorithm is proposed for MEC
and cloud server environment in [16]. The authors proposed the branch and bound approach to solve
the single MEC scenario, and then expanded it to multiple MEC and cloud scenario. For the multiple
scenarios, an iterative heuristic MEC resource allocation algorithm was proposed. The authors of [9]
proposed an algorithm for computation offloading scheduling of MEC server. They minimized the
energy consumption of the MEC server as well as guaranteed the stability of the task buffer. However,
it is difficult to apply this algorithm in EH environment since they did not consider energy harvesting.
These previous studies [11–16] focused on the energy efficiency of IoT devices. However, this paper
focuses on the energy efficiency scheduling of MEC server, i.e., MEC server has to provide stable
offloading service. Due to the advancement in energy harvesting techniques, research about IoT
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systems with energy harvesting attracts significant attention [10,17–19]. In [17], reinforcement learning
based offloading algorithm is proposed. In this algorithm, energy harvesting IoT devices decide their
offloading rates according to battery levels. However, the target of this algorithm is not suitable to
the proposed environment where MEC is harvesting energy. In [18], the authors proposed dynamic
computation offloading algorithm with a special focus on computation capacity of MEC server. In
this algorithm, the energy harvesting is not primarily considered in the offloading scheduling; it
is only mentioned that it can extend network life time. A healthcare IoT system was proposed in
energy harvesting environment by the authors of [19]. This algorithm is also not suitable for the EH
MEC environments since it aims to protect user privacy. The authors of [10] proposed a Lyapunov
optimization based algorithm for energy harvesting IoT devices. They assumed that the IoT device
is equipped with an energy harvesting module and harvests electricity from the module. Each IoT
devices schedules its computation frequency based on the energy harvesting status. All of the works
in [10,17–19] assumed that IoT devices were equipped with energy harvesting modules and tried to
solve the offloading scheduling problem under battery constraints. However, these algorithms are
not suitable for the proposed EH MEC environment where the MEC server is equipped with energy
harvesting module, i.e., our proposed scheme aims at the stable operation of MEC server in energy
harvesting environment, but previous studies aimed at survivability of IoT devices. In [20], the authors
proposed MEC scheduling algorithm in EH MEC environment. They modeled the MEC battery and
harvested energy, and minimized the service delay and operation cost via reinforcement learning.
The energy harvesting model is similar to the model of our proposed algorithm. However, they did
not consider the deadline constraint in their problem formulation. In this paper, we consider the
constraints of service deadline.

3. System Model

In this section, the mathematical modeling of the proposed EH MEC system is presented. To
formulate the system model, this paper assumes that the time is divided into equal time slots indexed
by t such that

t ∈ T where T = {1, 2, 3, · · · , T}. (1)

This paper also assumes that each IoT device requests multiple computation offloading tasks to
the EH MEC server. Therefore, the scheduling is performed for each task, and we define the notations
for the set of received tasks at time t as Rt, i.e.,

Rt = {rt
1, rt

2, rt
3, · · · , rt

R}, (2)

where R is the number of tasks requested in the timeslot. Rt is stored in the request buffer in
the scheduler.

As shown in Figure 1, the energy of the EH MEC system is supplied from the RER and is stored in
the ESS for the operation of the MEC system. Part of the energy is transferred to the small scale battery
and used to operate the MEC server. The amount of energy received by the battery is denoted as et,
and it has a maximum value of Emax

harv, i.e.,

0 ≤ et ≤ Emax
harv, ∀t, (3)

where the ets are i.i.d. in the different timeslots.
The battery level for computation offloading at the beginning of t is denoted as Bt, and it is

assumed that B0 = 0 and Bt < +∞, i.e., Bt is consumed only for computation offloading. In addition,
if we denote the energy consumed by computation offloading at t as Et

offload, then the following
equation holds [10]:

Bt+1 = Bt − Et
offload + et, t ∈ T . (4)
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Based on the defined notations, the optimization problems of the computation offloading
scheduling are formulated as presented in the following subsections.

3.1. Computation Offloading Model

When an IoT device requests computation offloading to the EH MEC system, the EH MEC
system can either allow offloading or pass the request to the cloud server. When the EH MEC system
offloads all computation tasks, the service QoE will increase and the network overhead will be reduced.
However, it is impossible to offload all the computation tasks due to the constraints of the EH MEC in
terms of energy or computing performance. Therefore, the scheduler of the EH MEC system controls
the admission of offloading requests, i.e., it determines whether it needs to be executed by the MEC or
passed to the cloud server.

Figure 2 shows the proposed EH MEC scheduler. As shown in the figure, the proposed EH MEC
scheduler consists of two sub-schedulers (offloading and MEC scheduler), three buffers (request, cloud,
and MEC buffers), and two managers (battery and backhaul managers). At time t, the requests from
the IoT devices are stored in the request buffer, and the request buffer is modeled as Rt. Similarly,
the MEC buffer can be modeled as

Mt = {mt
1, mt

2, mt
3, · · · , mt

M}, (5)

where M is the number of unexecuted tasks in the MEC buffer. Analogously, the cloud buffer can be
modeled as

C t = {ct
1, ct

2, ct
3, · · · , ct

C}, (6)

where C is the number of tasks in the cloud buffer.
Based on the SoC and MEC state, the offloading scheduler performs task scheduling (i.e.,

admission control) and updates the MEC buffer and cloud buffer.
For offloading scheduling, this paper introduces the following mathematical models. A request

for computation offloading rt
i is defined as follows:

rt
i � [Lt

i , dt
i ], (7)

where Lt
i is the input bit size of the task and dt

i is the execution deadline.
In this paper, we assume that dt

i represents only the execution time in the MEC server. If we
denote the number of CPU cycles required to process the bit input in the MEC server as X, then the
number of CPU cycles required to execute rt

i successfully can be obtained as

WR,i = Lt
i · X. (8)

The CPU frequency of the MEC server at t and the delay for the execution of rt
i are denoted as f t

and Dt
R,i, respectively. Therefore, Dt

R,i can be obtained as

Dt
R,i =

WR,i

f t . (9)

In addition, the offloading schedule of Rt can be represented by

S t � [st
1, st

2, st
3, · · · , st

R], (10)

where

st
i =

{
1, if rt

i is allocated to the MEC server,
0, if rt

i is allocated to the cloud server.

57



Energies 2019, 12, 4367

Figure 2. The proposed architecture of the EH MEC scheduler. The EH MEC scheduler includes two
sub schedulers: (1) offloading scheduler; and (2) MEC scheduler.

Based on the above definitions and notations, the execution delay can be computed as follows:

Dt
schedule =

M

∑
m=1

Dt
M,m +

R

∑
r=1

st
r · Dt

R,r, (11)

where Dt
M,i is the execution delay of task mt

i in the MEC buffer and can be computed similarly to
Equation (9). Therefore, the scheduling constraint for the task deadline can be derived as follows:

st
i · Dt

schedule ≤ dt
i , ∀i. (12)

In addition, the energy consumed for executing the task rt
i can be obtained as follows:

Et
R,i = κ × WR,i × ( f t)2, (13)

where κ is the effective switched capacitance, which depends on the chip architecture. Therefore,
the scheduling constraint for energy consumption can be expressed as

Et
offload =

R

∑
r=0

st
r · Et

R,r +
M

∑
m=1

Et
M,m ≤ Bt, (14)
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where Et
M,i is the energy consumption for task mk

i in the MEC buffer and can be computed similarly to
Equation (13).

We assume that the MEC system charges the offloading bill according to the number of instruction
executions, and the offloading pricing per instruction is denoted as p. Therefore, the computation
offloading bill of rt

i , denoted as Pt
R,i, can be obtained as

PR,i = p · WR,i. (15)

This paper also assumes that the EH MEC system wishes to maximize the bill as well as satisfy the
execution delay and energy constraints. Therefore, the objective function of the offloading scheduling
can be derived as follows:

maximize
S t

R

∑
r=1

st
r · Pt

R,i, (16)

subject to

st
r · Dt

schedule ≤ dt
r, ∀r ∈ R, (17)

R

∑
r=0

st
r · Et

R,r +
M

∑
m=1

Et
M,m ≤ Bt. (18)

3.2. MEC Computation Model

Based on the objective function in Equation (16) and constraints in Equations (17) and (18),
the requests of the MEC buffer Mt can be obtained. This section describes the mathematical models
used for the computation of Mt.

To compute more bits, the MEC server increases the CPU frequency f t according to Equation (9).
However, an increase in the amount of computation results in increased energy consumption, which
affects the battery life according to Equation (13).

To maximize the profit of the EH MEC system, it needs to offload more bits. However, it is
impossible to maintain the maximum CPU frequency due to constraints on the battery in the EH MEC
system. Therefore, the frequency scheduling of the MEC scheduler aims to maximize both the profit
and battery stability.

To model the battery stability, a virtual queue Zt is introduced. Zt represents the amount of
uncharged battery. Based on the definition of Bt, Zt is greater than or equal to 0, i.e., 0 ≤ Zt < +∞.
Based on Equation (4), the following equation is derived:

Zt+1 = (Zt + Et
offload − et)+, t ∈ T , (19)

where
α+ � max (0, α). (20)

Note that the battery should always be stable. Therefore, one constraint on the battery stability
can be derived as follows:

lim
t→∞

1
t

t−1

∑
τ=0

E[Zτ ] < +∞ (21)

The number of CPU cycles needed to execute xt
i successfully is denoted as WM,i, and it can be

obtained in a similar manner as that in Equation (8). Accordingly, the required number of execution
instructions at the MEC server at time t, which is denoted as It, can be obtained as follows:

It =
M

∑
i=1

WM,i, (22)
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where 0 ≤ It ≤ fmax.
Based on the defined notations, the number of execution cycles from the MEC buffer at time t can

be obtained as
Qt = min(It, f t). (23)

A mathematical approach for maximizing the time-averaged expected number of execution cycles
from the MEC buffer can be obtained as follows:

maximize lim
t→∞

1
t

t−1

∑
τ=0

Qτ . (24)

Assuming that the computation frequency of the MEC server can be changed dynamically,
the frequency scheduling vector can be defined as

−→
f t = [ f t

1, f t
2, · · ·, f t

k ], (25)

where k is the number of frequency selections and f t
i is an indicator function: if its frequency is

selected, f t
i = 1; otherwise, f t

i = 0. Since the MEC should select only one frequency at t, the following
constraints are derived:

∀t ∈ {0, · · ·, ∞}, (26)
k

∑
i=1

f t
i = 1, (27)

f t
i ∈ {0, 1}. (28)

Moreover, the selected frequency should guarantee the request deadline. Therefore, the minimum
frequency scheduling vector required to guarantee all the request deadlines is denoted as kth, and the
following constraints can be derived:

kth−1

∑
i=1

f t
i = 0, (29)

k

∑
i=kth

f t
i = 1, (30)

and Equation (27) can be replaced by Equations (29) and (30).
To change

−→
f t into a scalar value, this paper introduces the frequency selectable vector

−→
F , which

is defined as follows: −→
F = [F1, F2, F3, · · ·, Fk]. (31)

Then, f t can be calculated as
f t =

−→
f t · (−→F )T . (32)

Accordingly, Equations (20) and (24) are, respectively, modified as follows:

Zt+1 = Zt + Et
offload[ f t]− et, t ∈ T , (33)

maximize lim
t→∞

1
t

t−1

∑
τ=0

Qτ [ f τ ]. (34)

Finally, the objective function, considering both the MEC buffer and battery stability, can be
obtained as follows:

maximize lim
t→∞

1
t

t−1

∑
τ=0

Qτ [ f τ ], (35)

60



Energies 2019, 12, 4367

subject to

lim
t→∞

1
t

t−1

∑
τ=0

E[Zτ ] < +∞. (36)

4. Proposed Scheduling Algorithm

4.1. Computation Offloading Scheduling

In Section 3.1, the mathematical models and optimization problem are designed. As shown in
Equation (11), Dt

schedule is a function of st
r. The constraint of the task deadline in Equation (12) is

non-convex since there exists a multiplication of the function Dt
schedule by st

r. Therefore, the proposed
optimization problem for offloading scheduling is NP-hard and cannot be solved in non-deterministic
polynomial time. To solve this problem, this paper presents a novel greedy scheduling algorithm for
obtaining approximate solutions.

Algorithm 1 presents the proposed greedy algorithm for offloading scheduling. The greedy
algorithm consists of offloading request sorting and offloading request scheduling. First, the sequence
of offloading request scheduling based on offloading request sorting is determined. The scheduling
sequence is determined based on the deadline of the requests. From Equations (11) and (12), it is
obvious that a computation request having a longer deadline in the MEC buffer will be satisfied
if a request with a shorter deadline is satisfied. Therefore, the proposed algorithm sorts Rt in the
descending order of dt

i (Line 1 in Algorithm 1). Second, the algorithm alternatively schedules each
request by checking the following constraints. If rt

i is scheduled to the MEC server, the constraints of
the delay and the battery should be satisfied (Line 4 in Algorithm 1). To check the delay, the expected
delay can be modified by Equation (11) and expressed as follows:

D̂t
schedule =

M

∑
m=1

Dt
M,m + Dt

R,i, (37)

Of course, the expected delay should satisfy the execution deadline as follows:

D̂t
schedule ≤ dt

i . (38)

To check the battery SoC, Equation (18) can be modified as follows:

Et
R,i +

M

∑
m=1

Et
M,m ≤ Bt, (39)

i.e., the sum of energy consumption for the MEC tasks and the request should not be larger than the
current battery capacity.

Algorithm 1 The Greedy Algorithm.

1: Step 1: Offloading request sorting (descending order of dt
i )

2: Step 2: Offloading request scheduling
3: for i = 1 → N do
4: Determine if rt

i satisfies both Equations (38) and (39).
5: if rt

i satisfies the both Equations then
6: Update Mt

7: else
8: Update C t

9: end if
10: end for
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If rt
i is suitable for allocation to the MEC, it is transferred to the MEC buffer and Mt is updated

(Lines 5 and 6 in Algorithm 1). Otherwise, rt
i is transferred to the cloud buffer and C t is updated

(Lines 7 and 8 in Algorithm 1).

4.2. MEC Scheduling

In Section 3.2, the mathematical models and the corresponding optimization problem are designed.
As shown in Equations (35) and (36), the proposed objective function and the constraints considered
in this paper form an NP-hard problem. Our objective function is a time domain function; therefore,
the Lyapunov drift optimization technique is suitable for solving this problem since we can observe
the tradeoff between the performance and battery stability. Let Θt denote the vector of the uncharged
battery queues at time t, and the quadratic Lyapunov function is defined as

Lt =
1
2
(Θt)TΘt =

1
2
(Zt)2, (40)

where (Θt)T denotes the transpose of Θt; however, it should be noted that Θt has only one queue
vector, and therefore Equation (40) can be derived. Let Δt be a conditional quadratic Lyapunov function,
which can be formulated as E[Lt+1 − Lt | Θt], i.e., the drift on t [21]. The dynamic policy is designed to
solve the proposed optimization formulation by observing only the current uncharged battery queue
Zt, which is maximized as follows:

Qt − VΔt, (41)

where V is a positive constant value parameter used to control the drift policy, which affects the
reward–battery tradeoffs [21]. Next, we select a frequency at each time slot t. By selecting a frequency,
we receive a reward. This selection can be represented as follows:

argmax
f t∈Fk

Qt[ f t]− V · Zt · (Et
offload[ f t]− et), (42)

where et is the energy harvested at t and has a constant value. Since it does not impact the results,
Equation (42) can be updated as follows:

argmax
f t∈Fk

Qt[ f t]− V · Zt · (Et
offload[ f t]). (43)

Since Equation (43) is in the closed form, the proposed algorithm can dynamically control
−→
f t and

find the optimal
−→
f t in polynomial time.

5. Performance Evaluation

The performance of the proposed scheduling algorithms was evaluated. Through intensive
MATLAB-based simulations, the following performances were verified: (1) design of the proposed
algorithms; and (2) adaptation of the EH MEC environments.

5.1. Design of the Proposed Algorithm

To verify the proposed greedy algorithm, small-scale topologies (R = 25) were generated in
a random manner. In addition, the following parameters were considered. Each request size (Lt

i )
followed a uniform distribution ([5,000, 15,000] bits), and the request deadline (dt

i ) followed a uniform
distribution ([1, 2] seconds). The battery size was assumed to be 100 Wh (=360,000 J), and the SoC of
the battery followed a uniform distribution ([30, 95]%). The value of κ was set to 7.4× 10−27, and it was
derived using an Intel i7 Processor. X was set to 740, i.e., the MEC server required 740 cycles to compute
1 bit. To approximately measure the greedy algorithm, the small-scale topologies were simulated
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10,000 times with the above mentioned parameters. In the small-scale topologies, the optimal solution
can be computed using the brute-force method since there are only a few offloading requests.

Figure 3 shows the difference in offloading bit size between the optimal solution and the greedy
algorithm. As shown in the figure, the proposed algorithm guarantees more than 96% of the optimal
value. Moreover, more than 99% of the difference between the greedy algorithm and the optimal
solution are less than 700 bytes.

Figure 3. Difference vs. CDF.

This study also verified that the proposed MEC scheduling algorithm is well designed, i.e.,
the proposed Lyapunov drift optimization techniques can control the tradeoff between the performance
and the battery stability according to V. For the verification of the MEC scheduling algorithms,
the following simulation parameters were considered. The battery size of the MEC server was
assumed to be 100 Wh (=360,000 J), and the SoC of the battery at the beginning of the simulation was
assumed to be 50%.The number of IoT devices was 480, and each IoT device randomly generated the
offloading request according to the Poisson distribution (the mean of the inter-arrival time was 1 s).
The deadline of each request was randomly generated according to the uniform distribution using [1,2].
The number of timeslots was 86,400, and the time unit was 1 s, i.e., we simulated one day.

Figure 4 shows the changes in average battery amount and total bill according to V. As shown
in the figure, the average battery amount increases with increasing V. On the other hand, the total
bill decreases with increasing V. In the proposed optimization problem of MEC scheduling, there
is a tradeoff between battery stability and the bill. Therefore, we can verify that the proposed
Lyapunov-based MEC scheduling algorithm works well. In addition, the algorithm efficiently controls
the priority between the battery stability and the bill.

Figure 4. Average battery amount and total bill vs. V.
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5.2. Adaptation of the Proposed Scheduling

This study verified the performance of the proposed scheduling algorithm in EH MEC
environments. For evaluating the energy harvesting, actual measurement parameters from renewable
energy resources were used. These measurement parameters were the actual field data recorded at an
industrial complex that has factories making mineral waters and relevant research facilities on Jeju
Island of South Korea for spring, summer, and autumn of 2017. Through the performance evaluation,
we can confirm how the proposed algorithm works according to the amount of energy harvested.

Figure 5 shows the accept ratio of offloading requests according to the timeslot. In the proposed
offloading scheduling algorithm, which is presented in Section 4.1, the scheduler determines the
admission of requests by considering the request deadline as well as the MEC battery stability.
Therefore, the proposed scheduler increases the accept ratio if the battery is sufficiently stable. As
shown in the figure, the accept ratio changes according to the amount of energy harvested. At
the beginning of the simulation, the requests are constantly accepted. Then, the accept ratio rapidly
increases at t = 40,000 where energy harvesting begins, and then it fluctuates according to the amount of
energy harvested. In addition, a higher V indicates an increasing CPU frequency; hence, the scheduler
can accept more requests. Therefore, the total bill of the MEC server increases with decreasing V, as
shown in Figure 4.

Figure 5. Request accept rate vs. timeslot.

Figure 6 shows the CPU cycles according to timeslot. As shown in the figure, the proposed
scheduler efficiently controls the CPU frequency according to the amount of energy harvested. This
is because the increase in energy harvesting stabilizes the battery, which results in greater battery
stability. Consequently, it increases the CPU frequency to accept more requests. In addition, the figure
shows the difference in number of CPU cycles with V, and a higher V relatively decreases the CPU
frequency to stabilize the battery more. From t = 0 to t = 40,000, where the energy is not sufficiently
harvested, the differences among different values of V are greater than the differences from t = 40,000
to t = 60,000, where the energy is sufficiently harvested. This is because, when the battery is not
sufficiently stable, the offloading scheduler increases the number of rejected requests, and the MEC
scheduler schedules the frequencies differently according to V. When the battery is sufficiently stable,
however, the offloading scheduler increases the number of accepted requests and the MEC scheduler
increases the CPU frequency to the maximum depending on the consumption of the battery, i.e., the
CPU frequency is maximized depending on the boundaries that the battery can support.
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Figure 6. CPU cycles vs. timeslot.

Figure 6 shows the battery amount according to the timeslot. Similar to the previous plots,
the battery amount changes according to the amount of energy harvested as shown in Figure 7. We
can see that the battery amount with V = 2.6 × 102 more rapidly compared to decreases in the battery
amount with other values of V. This is because the energy consumption is quadratic with respect
to the increase in CPU frequency. As shown in Figure 6, the CPU frequencies among different Vs
are similar at 40,000 < t < 60,000. However, their battery amounts are different since the number of
accepted requests are different.

Figure 7. Battery amount vs. timeslot.

The evaluation measured the computation time of the proposed scheduling algorithm to verify its
applicability. Figure 8 shows the computation time of the proposed algorithm against the number of
IoT devices. As shown in the figure, the computation time is less than 0.4 ms when the number of IoT
devices is 1000. In addition, the computation time increases linearly with the number of IoT devices.
Thus, the complexity of the proposed scheduling algorithm is linear with the number of IoT devices.
This is because the proposed scheduling algorithm is designed based on Lyapunov drift optimization,
which can solve the problem in polynomial time. Therefore, the proposed algorithm can schedule the
computation offloading sufficiently in real-time.
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Figure 8. Computation time (ms) vs. number of IoT devices.

6. Conclusions

This paper proposes optimization formulations and their corresponding algorithms for
computation offloading scheduling in an EH MEC system. For the admission control of the offloading
requests, an offloading scheduling algorithm was designed to consider both the QoE of the offloading
request and the system stability. The optimization problem of the offloading scheduling was formulated
as a non-convex problem, and a greedy algorithm was proposed to solve the problem in polynomial
time. The performance evaluation showed that the proposed greedy algorithm achieves a near-optimal
performance, providing solutions that are close to the optimal solutions. To improve the survivability
of the EH MEC, the proposed optimization problem of MEC scheduling considers the battery stability
as well as the workload queue. Since the proposed problem of MEC scheduling is non-convex,
a Lyapunov optimization-based algorithm was proposed for low-complexity scheduling. Through
intensive simulations, we verified that the proposed two-stage algorithm efficiently controls the
offloading requests and the CPU frequency in EH environments. However, this paper has a limitation
in terms of verifying in a real-world scenario. Thus, it is essential to note that the proposed algorithm
needs to be enhanced by conducting real-world testing in energy harvesting mobile edge computing.
In addition, designing a scheduling algorithm by considering the offloading communication overhead
is an interesting future research direction.
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Abstract: We propose and implement a novel 1-bit coding metasurface that is capable of focusing
and steering beam for enhancing power transfer efficiency of the electromagnetic (EM) wave-based
wireless power transfer systems. The proposed metasurface comprises 16 × 16 unit cells which
are designed with a fractal structure and the operating frequency of 5.8 GHz. One PIN diode is
incorporated within each unit cell and enables two states with 180◦ phase change of the reflected
signal at the unit cell. The two states of the unit cell correspond to the ON and OFF states of the PIN
diode or “0” and “1” coding in the metasurface. By appropriately handling the ON/OFF states of the
coding metasurface, we can control the reflected EM wave impinged on the metasurface. To verify
the working ability of the coding metasurface, a prototype metasurface with a control board has been
fabricated and measured. The results showed that the coding metasurface is capable of focusing
beam to desired direction. For practical scenarios, we propose an adaptive optimal phase control
scheme for focusing the beam to a mobile target. Furthermore, we prove that the proposed adaptive
optimal phase control scheme outperforms the random phase control and beam synthesis schemes.

Keywords: 1-bit unit cell; coding metasurface; adaptive beam focusing; wireless power transfer

1. Introduction

In the last decade, due to the increasing number of wireless and mobile devices being used,
charging these devices has become a crucial problem, which is now capturing massive attention.
The traditional charging method with cords is not preferable for futuristic systems and devices
(e.g., Internet of Things, wireless sensor networks (WSN)). Wireless power transfer (WPT), allowing us
to charge a device without any wire, is emerging as a promising technology for resolving the battery
charging problem.

Since the first demonstration of WPT by Tesla in early 1900, engineers and researchers have recently
come up with various techniques to transfer power wirelessly [1–3]. Among them, electrical methods,
consisting of inductive coupling, magnetic resonant coupling, and electromagnetic (EM) radiation, are
pervasive. While the first two methods are able to provide high transmission efficiency within a short
range, EM radiation is capable of providing long-range WPT but with low efficiency [2]. Achieving
both long range and high efficiency is still the main challenge in WPT which requires optimal solutions.
For the case of EM radiation, beam forming and focusing is a potential solution for both long distance
and high efficiency, which is enabled using phased-array antennas (PAA).

Recently, a novel concept of coding and digital metasurface has emerged as a promising and
alternative technique that can perform beam focusing, multibeam, or scattering [4,5]. A metasurface
consists of hundreds to thousands of unit cells which have different reflection responses to incident
EM waves. In contrast to PAA, which depends on power-hungry and active components, coding
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metasurface enables beam synthesis by just turning ON or OFF the PIN diode integrated with each
unit cell in the metasurface. By doing that, we can actually control the reflected signal outgoing from
the metasurface.

The term coding metasurface was first coined by Cui and colleagues in 2014 [4]. Since then,
several works and progress have been made in this area [5–7]. Different designs of 1-bit unit cell
and metasurface have been proposed in [8–13]. Yang and colleagues proposed a simple rectangular
element but working effectively in metasurface. The authors first designed and fabricated 10 × 10
array to demonstrate the working ability of the unit cell and metasurface [8,9]. Afterwards, this
work was extended to 1600 element metasurface [10–12]. In these papers, the authors theoretically
and experimentally demonstrated that the 1-bit metasurface is capable of digital beam focusing,
multibeam focusing, scattering, and broadside beam synthesis. A 1-bit digital reconfigurable reflective
metasurface with 20 × 20 cells is presented for beam-scanning in [13]. In that work, the authors used a
varactor diode instead of a PIN diode for achieving wider bandwidth. Some works have also focused
on designing 2-bit metasurface [14,15]. For instance, a dynamic beam manipulation based on 2-bit
digitally controlled coding metasurface was proposed in [14] by Huang and colleagues. To enable a
2-bit operation, the authors used two PIN diodes in each meta-atom to produce four phase responses
of 0, π/2, π, and 3π/2, which correspond to four basic digital elements “00”, “01”, “10”, and “11”.
Experiments and measurements were conducted, which demonstrate one-beam deflection, two- and
four-beam splitting, and beam diffusion by real-time control of the bias voltage. Another work is a
transmission-type 2-bit programmable metasurface for single-sensor and single-frequency microwave
imaging in [15]. The authors designed the unit-cell with two layers, in which each layer contains a
switchable diode for providing 2-bit control ability. Recently, there has been an increasing number of
research works which focus on using metasurface in wireless power transfer [16–22]. Nevertheless,
these works are just able to do fixed focusing and are definitely inapplicable for mobile devices.

For an adaptive beam focusing, the channel between each unit cell of the metasurface and the
receiver should be estimated. The authors in [23–25] theoretically analyzed and proposed the method
for estimating the channel in intelligent surface or programmable metasurface. The method enables
channel estimation by setting a single unit cell in “ON” state and the others in “OFF” state in a
training time. However, this method might be impractical, especially when it comes to huge number of
unit cells in the metasurface, as the reflected signal from one unit cell is too feeble compared to the rest.

In this paper, we propose a novel 1-bit coding metasurface that can dynamically perform beam
focusing to the desired direction for WPT applications. Indeed, the proposed metasurface consists
of 16 × 16 unit cells which are designed to operate at 5.8 GHz with two states (ON/OFF states)
corresponding to a 0◦ or 180◦ phase shift of the reflected signal. To obtain the unit cell for a real
metasurface, we applied the fractal structure in designing the unit cell. Therefore, the unit cell has ca
ompact size with dimensions of 11× 11× 1.52 mm3. In order to electrically steer the beam, appropriate
ON/OFF states of the unit cells in the metasurface should be set by a control board. The beam-focusing
ability of the proposed coding metasurface has been validated by the experiment. The experimental
results showed that the metasurface can steer and focus the beam within the range of (60◦, 0◦) in the
elevation angle. For practical scenarios, an optimal phase control scheme is proposed and applied to
adaptively track the mobile devices. The experimental results showed that the optimal phase control
scheme performs better than the random phase control and beam synthesis schemes.

2. Coding Metasurface Theory

In contrast to the existing metasurfaces that change the design structure of each unit cell to acquire
the desired reflective phase shift, the coding and digital metasurface manipulates and reflects the
impinged EM wave via different states of identical unit cells with the help of PIN diodes. For the
theoretical analysis, we considered a coding metasurface with M × N 1-bit unit cells as shown in
Figure 1. Specifically, as incident with an EM wave, the unit cell can operate in two states with the
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same reflected magnitude but 180◦ phase change. There are possibly two types of illuminating sources
(plane wave and a point source) to be considered.

Figure 1. The coding metasurface model.

With x- or y-polarized EM wave incidence, the scattering field from the coding metasurface can
be theoretically expressed as [12]

E(θ, ϕ) =
M−1

∑
m=0

N−1

∑
n=0

Amnejαmn · Γmnejφmn · fmn(θ, ϕ) · ejk0(mdx sin θ cos ϕ+ndy sin θ cos ϕ), (1)

where Amn, αmn are the relative illuminating amplitude and phase with respect to each unit cell in the
metasurface (Amn = 1, αmn = 0◦ if the source is plane wave), Γmn, φmn are the reflection amplitude and
phase of mnth unit cell, fmn(θ, ϕ) is the scattering pattern of the unit cell, and dx and dy indicate the
unit cell spacing in x and y directions.

According to Equation (1), the scattering EM wave from the metasurface can be controlled and
formed by adjusting the reflection amplitude (Γmn) and phase (φmn) of each unit cell. Therefore, we can
say that the metasurface may possibly be encoded via these two parameters. Assuming that the
reflection magnitude is identical, the reflection phase matrix with respect to the coding metasurface
can be described by:

Φ =

⎡
⎢⎢⎢⎢⎣

φ11 φ12 . . . φ1n
φ21 φ22 . . . φ2n

...
...

. . .
...

φm1 φm2 . . . φmn

⎤
⎥⎥⎥⎥⎦

M×N

. (2)

One should obtain the appropriate Φ matrix for a specific beam pattern synthesis. To focus the
beam to the desired direction, the phase compensation of each unit cell can be calculated by [21]:

φmn = k(|f − rmn|+ |d − rmn|), (3)

where k is the wavenumber, f is the location of the EM source, d is the location of the focusing point,
and rmn is the position of the mnth unit cell.

2.1. Phase Quantization

The above computed phase is the ideal phase shift of each unit cell. However, only a limited
phase shift can actually be provided with the coding unit cell. Hence, it is inevitable that we have to
consider the phase quantization for the coding metasurface [13]. One can realize from Equation (3) that
the phase compensation might be not within the range between 0 and 2π. Then, it should be shifted to
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be in the range of [0, 2π] before being quantized. Considering 1-bit coding unit cell, the shifted and
quantized phase can be given as:

¯φmn = φmn − 2π

[
φmn

2π

]
, (4)

ˆφmn =

{
π if π/2 ≤ ¯φmn ≤ 3π/2

0 elsewhere.
(5)

After quantization, the reflection phase of the unit cell has just two states: 0◦ or 180◦,
corresponding to the coding “1” and coding “0”, respectively. To demonstrate the focusing ability
of the coding metasurface, we computed the ideal phase and quantized phase distribution of the
16 × 16 coding metasurface using the above phase compensation method and the corresponding
beam pattern as presented in Figure 2. The metasurface is assumed to be placed in XOY plane and
is excited by a point source. Although the relative power generated by the ideal phase distribution
(245) is much higher compared to one of the quantized phase distribution (around 170), both cases
are capable of performing good beam steering. It is clear that beam synthesis can be acquired by 1-bit
coding metasurface.

Figure 2. Reflection phase distribution and 3D pattern of the coding metasurface with an
electromagnetic (EM) source located at (0 cm, 0 cm, 10 cm) and beam focusing at (0◦, 30◦): (a) ideal
reflection phase distribution; (b) quantized phase distribution; (c) the beam pattern w.r.t ideal phase
distribution; (d) the beam pattern w.r.t quantized phase distribution.

72



Energies 2019, 12, 4488

2.2. Optimal Phase Control for Adaptive WPT

Due to the imperfection of the manufacturing and experimental setting, the beam may not exactly
be directed to the desired direction, which reduces the power received at the receiver. Moreover, in the
practical scenarios, the coding metasurface should perform adaptive beam tracking according to the
position of the mobile receiving devices. In order to tackle the above-mentioned problem, we propose
an optimal phase control scheme allowing us to localize the receiver and focus the power toward that
desired position based on the experimental data. The procedure of obtaining the adaptive optimal
phase is presented in Figure 3.

Figure 3. The block diagram of the proposed adaptive optimal phase control scheme.

Each unit cell in the metasurface can be considered as an antenna element in an array antenna.
Therefore, we can mathematically express the system model as below:

y =
M

∑
i=1

hixi + n, (6)

where M is the number of unit cells in the metasurface, n is the additive white Gaussian noise, and hi
is the channel corresponding to the ith unit cell with the state xi.

For adaptive beam focusing, we have to know the channel to obtain the optimal phase at
the metasurface. Analogous to the multiple input single output (MISO) system, we can estimate
the channel from each unit cell to the receiver using predefined pilots. Recently, researchers in [23–25]
attempted to estimate the channels of the intelligent surface by sending data with one unit cell in “ON”
state and the others in “OFF” state at a given training time. However, this method would be impractical,
especially when it comes to a huge number of unit cells in the metasurface, as the reflected signal
from only one “ON” unit cell is too feeble compared to the rest. Consequently, this leads to unfeasible
measurement of the change in the received signal at different training times. Therefore, to tackle
this problem, we used 256 independent ON/OFF patterns of the metasurface, which is based on the
Hadamard matrix, as training pilots. Then, the adaptive optimal phase control scheme is proposed
with the following steps:

• Training: sending the signal with 256 independent ON/OFF patterns;
• Channel estimation: 256 channels between each unit cell of the metasurface is estimated by

multiplying the received signals with the inversion of 256 transmitting patterns;
• Optimal phase calculation: optimal phase of each unit cell is obtained by taking the phase of the

channel after being conjugated;
• Phase quantization: quantizing the phase based on Equation (5);
• Optimal ON/OFF pattern: mapping the quantization phases with the ON/OFF state (180◦ to

“ON”, 0◦ to “OFF”).

3. Design of Coding Metasurface

3.1. Unit Cell Design

In order to have a good performance coding metasurface, a unit cell should be precisely designed
to have particular characteristics. As the ISM (industrial, scientific, and medical) band is free and
pervasive, we selected 5.8 GHz which is in the ISM band as the target operating frequency in this
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work. The final 1-bit unit cell structure is presented in Figure 4. The unit cell is designed on
a substrate of Taconic RF-35 with a permittivity of 3.5 and loss tangent of 0.0018. A PIN diode
(SMPA1320-079LF-203195B) is integrated with each unit cell to connect the main unit cell with the
ground plane through a metal via hole. Thus, it can enable the two states of the unit cell. The operation
of the unit cell is ensured by a bias line which is connected to the control board.

Figure 4. Unit cell structure.

The equivalent circuit for the two states of the PIN diode is given in Figure 4. As can be seen, in an
ON state, the PIN diode behaves as a series circuit of a resistance and an inductance, whereas it acts as
a series circuit of a capacitance and an inductance. Under an EM wave illumination, the impedance of
the PIN diode can be described as:

Zpin(ω) =

{
R + jωL ON state

jωL + 1
jωC OFF state.

(7)

where R = 0.9 Ω, L = 0.7 nH, and C = 0.23 pF. The EM wave will be reflected at the PIN diode and be
re-radiated at unit cell surface with the reflection coefficient, which is calculated as:

Γ(ω) =
Zpin(ω)− ZR

Zpin(ω) + ZR
= |Γ|ejφ (8)

where ZR is the radiation impedance of the unit cell. One should find the structure which provides
an appropriate value of ZR to obtain a 180◦ phase change between ON and OFF states at the
objective frequency. In order to easily figure out the proper value of radiation impedance and reduce
the uncontrolled reflection from the unit cell, the unit cell structure should be designed to resonate at
the objective frequency. Normally, a rectangular patch with approximately half wavelength dimensions
is used as a resonant structure. However, in this work, we used the fractal structure to achieve compact
size (a quarter wavelength) but provided the same performance as the rectangular patch. The detailed
dimensions of the unit cell are given in the Table 1.

Table 1. The unit cell dimensions.

Parameter Value (mm) Parameter Value (mm)

W 11 h 1.52
a 1.83 b 1.52
c 0.25
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The unit cell is simulated using commercial software CST studio suite and the simulated reflection
magnitude and phase of the unit cell are shown in Figure 5. It is obvious that at 5.8 GHz, while the
reflection magnitude is almost identical between the ON and OFF state, the reflection phase between
the two cases has 180◦ change. The maximum unit cell loss is around 0.5 dB for the OFF state. It is
evident that the proposed 1-bit unit cell is suitable for the coding metasurface. As the phase change
between ON/OFF states is relative, we can simply state that a unit cell with an ON state corresponds
with a 180◦ phase reflection and one with an OFF state has a 0◦ phase reflection.

Figure 5. The simulation results of the unit cell: (a) reflection magnitude; (b) reflection phase.

3.2. Coding Metasurface Construction

With the proposed unit cell, a 1-bit 16 × 16 coding metasurface is constructed and fabricated
using printed circuit board technology, as shown in Figure 6. The metasurface has a total size of
176 mm × 176 mm and is precisely attached to the output pins of the control board as a sandwich structure.
To enable the beam focusing ability, the control board plays a crucial role in coding metasurface, which
provides an exact voltage to turn the PIN diode in each unit cell ON and OFF. The block diagram and
prototype of the control board are presented in Figure 7.

Figure 6. The 1-bit 16 × 16 coding metasurface model and prototype: (a) metasurface model;
(b) experimental set-up.
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Figure 7. The control board of the coding metasurface: (a) block diagram; (b) the prototype.

As the coding metasurface has 256 unit cells, the control board has to control 256 output pins
independently. In order to reduce the complexity of wiring the control board, we used two 8-bit shift
registers (SR1 and SR2) to independently set the data for each row. Then, the data will be stored in the
D flip flip (DFF), which is enabled by two 3 to 8 line decoders (DEC1 and DEC2). Therefore, by selecting
the appropriate row, the data can be independently loaded to the intended row. Consequently, we can
control the coding metasurface with any ON/OFF state of the unit cell. The LED is parallel connected
to the PIN diode to indicate the state of the unit cell, which gives an observable view of the active
ON/OFF pattern of the coding metasurface. All the input data are provided by the data acquisition
(DAQ) that is controlled by a LabVIEW program.

4. Results

4.1. Simulation Results

Before fabricating the prototype, a 16 × 16 coding metasurface is modeled and simulated using
CST Studio software to verify the theory. In this simulation, the metasurface is in the XOY plane, and a
horn serves as an EM source, which is located at (−5.7 cm, 0 cm, 10 cm) or at (−30◦, 0◦) with respect to
the metasurface. Then, an ON/OFF pattern matrix for steering to (40◦, 0◦) is loaded to the PIN diode
of each unit cell. Finally, the simulation results are exported and shown in Figures 8 and 9.

Figure 8. The simulation results: (a) The 3D gain total with the horn and metasurface; (b) the 2D
radiation pattern.
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It is clearly observed that the coding metasurface is capable of steering the beam to the desired
direction with 1◦ error in the test case. Furthermore, the surface current distribution in Figure 9 is
almost coincident with the input ON/OFF coding pattern. Specifically, we can notice that the current
distribution of the unit cell in OFF state is considerable compared to the one with the ON state.

As the proposed system transfers the power via EM waves, human exposure and the specific
absorption rate (SAR) level should be considered. Figures 10 and 11 present the simulation SAR level
(averaged over 1 gram of human tissue) and beam shape when a human head is exposed closely to the
metasurface. In this simulation, the metasurface is encoded to focus the beam to (30◦, 0◦) at the human
head, which is placed 50 cm away from the metasurface. The transmitted power is 27 dBm. Figure 10
demonstrates that SAR level at the operating frequency is within the specified limit of 1.6 W/kg
regarding to FCC limit. In addition, in the case of human exposure, the beam shape is a bit wider
compared to the one without a human head. This results in degrading the gain from 17.3 to around 15
dBi, as shown in Figure 11.

Figure 9. The ON/OFF coding pattern of the coding metasurface: (a) calculated phase distribution matrix;
(b) simulated current distribution.

Figure 10. Simulation SAR results with a human head (50 cm away from the metasurface).
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Figure 11. Effect of human exposure in beam shaping: (a) without a human head; (b) with a
human head.

4.2. Experimental Results

To demonstrate the capability of the proposed coding metasurface, after fabricating, several tests
were done with the prototype.

4.2.1. Beam Steering with Beam Synthesis Scheme

In the first test, we applied ON/OFF coding patterns, which were calculated using the beam
synthesis scheme, to verify the beam steering capability of the metasurface. The metasurface is attached
to a holder which is perpendicular to the horizontal plane as shown in Figure 7b. A horn antenna
working as an EM source is placed at (10 mm, −5.7 mm, 0 mm) with respect to the metasurface to
avoid blocking the reflected signal. The measured results are presented in Figure 12.

Figure 12. The measured normalized radiation pattern.

We can observe that the coding metasurface can perform beam focusing and steering to a specific
direction with the elevation angle (θ) range of 0◦ to 60◦. As a matter of fact, the steerable elevation
angle can range from −60◦ to 60◦ and the azimuth angle, which the main beam can be focused on, is
(0◦, 360◦) by properly assembling the feed horn. However, in the limitation of this paper, we would
not demonstrate these results. Further, there are constant errors of about 2◦ occurred in every cases
that may be caused by the imperfection of the experimental setup. Moreover, similar to the theory,
the grating lobe appears in the case of steering the beam to 50◦ and 60◦. It is the limitation of the planar
metasurface. In addition, the half-power beamwidth (HPBW) ranging from 13◦ to 27◦ is likely large
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due to the small size of the coding metasurface. A much sharper beamwidth can be attained with a
larger coding metasurface.

4.2.2. Adaptive Beam Steering with Optimal Phase Control

To validate the effectiveness of the optimal phase control scheme, firstly, we present the optimal
quantized phase distribution and the corresponding beam pattern which is compared to the one from
the beam synthesis scheme in Figure 13. It can be observed from Figure 13b that a better beam pattern
with a higher transmission coefficient is achieved with optimal phase distribution in comparison with
the one of a beam synthesis scheme.

Figure 13. Optimal phase control scheme results: (a) optimal quantized phase distribution for steering
beam at (30◦, 0◦); (b) comparison of beam pattern between optimal phase control (Optimal) and the
beam synthesis (BS) schemes.

Furthermore, we measured and compared the efficiency of power transfer between the optimal
phase and random phase control schemes in Figure 14a. We also compared the optimal phase control
and the beam synthesis schemes in Figure 14b. As can be seen from Figure 14, the proposed scheme
demonstrates much higher efficiency in comparison with the random phase control scheme. At the
same time, it is clear that the optimal one outperforms the beam synthesis scheme as indicated in
Figure 14b. While around 4% efficiency is observed in the optimal phase control scheme at 50 cm with
the steering angle of 30◦, only around 3% efficiency is achieved in beam synthesis scheme. By extending
the size of the coding metasurface, higher power transfer efficiency will be achieved.

The above results were acquired considering only line of sight transmission. However, in actual
WPT scenarios, obstacles such as humans and animals might be exposed between the transmitter
(Tx) and the receiver (Rx). Hence, this would have a severe effect on power transmission efficiency.
To comprehend this problem, we investigated the power transfer efficiency as a human hand and body
inserted between Tx and Rx, and the results are indicated in Figure 15. It is evident that the efficiency
declines almost 1% with hand blocking and almost drops to 0% with human body blockage.

Actually, we can redo the training to get the optimal phase to enhance the efficiency when the
human phantom is inserted. We did re-training with a human body exposed in some positions and
compared with the results without re-training as presented in the Table 2. It is clear that remarkable
improvement can be achieved by re-training the programmable metasurface when humans are exposed
between Tx and Rx.

Table 3 shows the comparison of the proposed system with the previous works. With a fixed
beam and large dimensions, the reflect array in [26] provides a higher efficiency compared to the
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phased array in [27] and our work. This results not only from the large size of the surface but also from
the almost ideal phase distribution used in focusing to a fixed position in this work. This shows the
potential of using a metasurface in WPT. The phased array in [27] outperforms our work in transfer
distance operating in the lower frequency, which suffers lower loss from transmission path but leads
to a physically large system. The performance of our proposed programmable metasurface can be
enhanced with a larger size of the metasurface.

Figure 14. Power transmission efficiency comparison: (a) optimal phase control and random phase
control schemes with the steering angle at (30◦, 0◦); (b) optimal phase control (optimal) and beam
synthesis (BS) schemes at different distances.

Figure 15. Performance comparison between no block, block with a human body and hand (Rx is
100 cm away from the metasurface (Tx)): (a) transmission coefficient; (b) efficiency.

Table 2. Transmission coefficient enhancement as re-training with human body exposure.

Position
Transmission Coefficient (dB)

Improvement (dB)
without Re-Training Re-Training

1. Close to Tx −61.4 −54.86 6.54
2. In the middle −46 −43.83 2.17
3. Close to Rx −59.4 −54.5 4.9

Table 3. Comparison of the proposed system with previous works.

Reference Operating Frequency Dimensions Method Adaptability Distance Efficiency

[27] 920 MHz 5.2λ × 2.6λ Phased array Yes 6 m 1.2%
[26] 5.8 GHz 23.59λ × 24.55λ Reflectarray No 6 m 25%

Our work 5.8 GHz 3.4λ × 3.4λ Coding metasurface Yes 1 m 1.5%
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5. Conclusions

In this paper, a novel 1-bit coding metasurface is proposed and implemented for WPT systems.
The coding metasurface is capable of adaptively focusing and steering beam to enhance power transfer
efficiency in WPT systems. The proposed metasurface comprises 16 × 16 compact unit cells which
were designed with a fractal structure and an operating frequency of 5.8 GHz. Indeed, both simulations
and experiments were conducted to validate the theory. It was demonstrated that the proposed coding
metasurface is able to focus the beam to the desired direction with a wide range from −60◦ to 60◦ in
the elevation angle. For the adaptive beam to be focused on the mobile receiver, the adaptive optimal
phase control scheme was proposed and applied. The results prove that the optimal one surpasses
the random phase control and beam synthesis schemes. At 50 cm, the coding metasurface with the
optimal phase control scheme can provide approximate 4% of power transfer efficiency, while it is just
about 3% in the beam synthesis scheme.
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Abstract: Following striking developments in Unmanned Aerial Vehicle (UAV) technology, the use of
UAVs has been researched in various industrial fields. Furthermore, a number of studies on operating
multiple autonomous networking UAVs suggest a potential to use UAVs in large-scale environments.
To achieve efficiency of performance in multi-UAV operations, it is essential to consider a variety of
factors in UAV network conditions, such as energy efficiency, network overhead, and so on. In this
paper, we propose a novel scheme that improves the energy efficiency and network throughputs by
controlling the topology of the network. Our proposed network topology control scheme functions
between the data link layer (L3) and the network layer (L2). Accordingly, it can be considered to be
layer 2.5 in the network hierarchy model. In addition, our methodology includes swarm intelligence,
meaning that whole topology control can be generated with less cost and effort, and without a
centralized controller. Our experimental results confirm the notable performance of our proposed
method compared to previous approaches.

Keywords: UAV network; topology control; space division; energy efficiency

1. Introduction

The biggest advantage of Unmanned Aerial Vehicles (UAVs) is three-dimensional mobility
with a high degree of freedom, and the relatively low cost of the devices, which leads to the
possibility of large-scale operation [1]. For instance, [2] expands the network infrastructure by using
UAVs as an Access Point (AP) with mobility, and [3] deploys a scalable surveillance network with
three-dimensional vision of UAVs. To operate these UAV applications well, there are numerous
requirements regarding the networking. In particular, since the UAV network needs to be operated
under various conditions, it needs to be resilient to dynamic changes of topology, intermittent links
failures, resource constraints, three-dimensional mobility, equality on link replacement, and so on [4].
Furthermore, to fully use the multi-UAV large-scale, fast, and flexible mobile wireless network,
designing a high-performance multi-hop UAV network is regarded as one of the core objectives of the
UAV industry, which has been continuously addressed [5–8]. Compared to the importance of these
network design trends, research into UAV networks has suffered from the lack of applicability or the
reliability, due to the variety of environments and the hardware specifications. In particular, from
the point of the view of energy efficiency of multi-hop UAV networks, there are serious leaks in the
power consumption of communications, which also has the potential to degrade the throughput of the
entire network.

In a conventional UAV network configuration, one UAV transmits the messages with the same
power level to all UAVs in its transmission range. As shown in Figure 1a, a UAV makes the link
connection to all UAVs which are in its transmission range, with the same transmission power PTx.
Indeed, constructing full connections provides strong stability to the network. However, such topology
with indiscriminate transmissions generates an inefficient UAV network by continuously generating
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more power consumption than actually needed, which highly reduces each UAV’s network operating
time. Also, the transmission power exceeding the minimal requirement on the links of the UAVs
increases the possibility of the interference or unexpected silence of the wireless medium, which
drops the channel use. Although there were some studies actively controlling the transmission
power [9–11], the targeted network topology is constrained such as WLAN, and the existence of the
centralized coordinators could limit the extensibility of multi-UAV operation. To resolve the power
consumption problem, constructing a Minimum Spanning Tree (MST) of the network and minimizing
the transmission power can be desirable. Figure 1b shows the graphical representation of the network
topology, which is shaped like a MST. PTx,i refers to the transmission power of i-th UAV, which is
managed by the central or global controller. The root of the tree might be the gateway or the sink
node of the UAV network. Although this centralized way can highly reduce power consumption with
less routing overhead [12], its resulting topology can also bring connectivity issues. If all UAVs are
connected by only a few paths, the energy consumption per hop is reduced but the overall network
connectivity becomes unstable due to there being fewer options to route, and this is critical in UAV
networks which have high mobility. Furthermore, increasing hop count can cause higher power
consumption compared to a smaller hop count connection, and increase the forwarding overhead.

(a) (b)

Figure 1. Existing network topologies. (a) Conventional topology constructed by the Tx threshold;
(b) Conventional topology constructed by the global MST.

To find the proper design of the network topology, we propose a novel distributed topology
control scheme such that each UAV variably adjusts the transmission power while maintaining the
efficient link connections through the space partition method. The core motivation of our concept
is the intermediate layer design between the data link layer (L2) and the network layer (L3). As the
network layer constructs a routing table using all its nearby UAVs, the number of the available links is
too large in a dense environment, so some links might be inefficient due to the relatively large distance,
interference, or hidden terminals. On the other hand, although the data link layer can control the
transmission power, it cannot consider the packet-level power control by itself; the data link layer does
not know the proper power for each hop. If a layer that designs the topology of the network prunes the
links and determines proper transmission power, then it can help the network layer design a more
efficient routing table, while making the data link layer transmit with more efficient power. We called
this concept of the intermediate layer the topology control layer (L2.5). By explicitly controlling the
available links of the UAVs, it can reduce the power consumption while maintaining the robustness of
the network connection.

Pruning the links in the topology control layer is based on the space partition, to gain the
advantage in the link cost. Figure 2 shows the graphical representation of our proposed topology
control scheme. Periodically, each UAV equally divides its transmission space into several partitions.
Then, from each partition, the UAV picks one or more nearby UAVs and removes the other links.
In Figure 2, PTx,k refers to the determined transmission power of the link between the UAV itself and
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the neighbor UAV, which is one of the nearest ones in the k-th quadrant. By doing so, the UAV network
can maintain its topology where each UAV has multiple links with nearby neighbors, which has a
chance to dynamically control the transmission power at each hop.

Figure 2. Example of topology control layer with 4 partitions.

Based on the suggested topology control method, we implemented the simulation to legitimize
the performance improvements in the UAV network. From the numerical analysis, it is shown that
topology control layer has a gain in throughput, network stability, and energy efficiency in the UAV
network. Our contribution can be summarized as follows.

• With our proposed network topology control method, a UAV network can be formed with
energy-efficient network properties.

• Our scheme does not require the UAV or the Network Manager to know the whole information
about all UAVs, such as position, routing path, and so on. Instead, by using the concept of swarm
intelligence, each UAV is only concerned about their next one-hop connection in each partition,
which will consequently make the effective network topology.

• The number of the partitions can be varied for each UAV. The number of the divided spaces can
be customized with network density.

• Our research can be compatible with other network layers in the OSI model. Also, the topology
control layer acts just between the data link layer (L2) and network layer (L3), which possibly can
be expressed as L2.5.

In the following sections, we provide further explanation of our research. In Section 2,
we introduce previous research on UAV networking technology. In Section 3, we present our
methodology that explains the system overview. The evaluation of our methodology is presented in
Section 4, and Section 5 lists the discussions about the simulation results. Finally, we conclude our
work in Section 6.

2. Related Work

Since UAV networking is an intensive technology that requires a variegated research domain,
various research is being actively conducted in several ways. In this paper, recent research focusing on
the various topics on UAV formation, energy-efficiency design, and the transmission power control is
introduced in detail.

• UAV formation: The construction of an appropriate formation with many UAVs is progressing in
various aspects. In fact, UAV positioning algorithms have been studied in consideration of network
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throughput [13], obstacle collision avoidance [14], and mission conditions [15]. Sabino et al. [16]
proposed the multi-UAV placement scheme through the genetic algorithm. It should be noted
that UAV formation control algorithms can be joined with our proposed system, since our system
aims to improve the network topology of UAVs, which have the potential to frequently change
their shape in three-dimensional space. With our dynamic topology control scheme, the UAV
network can sustain an energy-efficient network while changing each UAV’s position according
to their mission.

• Energy Efficiency: Research to improve the energy efficiency of the UAV network is proceeding
by way of reducing the energy in the operation of UAV itself (e.g., optimized path planning
for efficient aircraft propulsion), and the arrangement to minimize the energy on the entire
network (e.g., optimal network recovery with additional UAV) [17]. In this paper, we compose an
energy-efficient topology that is based on network management, which can be applied a priori to
other related previous research.

• Transmission Power Control: Many studies have been made to change transmission strength
according to its conditions for effective communication. For example, power-controlled multiple
access MAC protocols (PCMA) were presented to improve the channel use [18], and a tunable
circuit system was studied to generate range-adaptive transmit signals [19]. However, these
studies have not been used for UAV networks with mobility characteristics. Moreover, these
studies are still inefficient since all nodes in the transmission range attempt to connect without
any adjustment. However, our research uses the transmission power control in the UAV network
and forms the network by controlling the number of the available links.

• 3D topology control schemes: Emerging research on the unmanned vehicle system emphasizes
the importance of the dynamic network control problem for expanding its usage. Continuously
adapting the network topology in the 3D space has been largely studied for both energy efficiency
and network quality. Zhang et al. [20] proposed a cluster sleep–wake scheduling algorithm for
underwater sensor networks. One of the main differences with our system is that this algorithm
produces an on–off schedule of the links, while our one results in selected links which guarantee
global connectivity (Section 3.3). Also, it adopts a centralized partitioning concept, while each UAV
partitions the space, centering itself, in our algorithm. Our distributed concept has the advantage
of scalability of the network, since the processing overhead remains the same with larger-scale
networks. Kim et al. [21] addresses the 3D topology control method considering interference.
In this paper, Cone-Based Topology Control (CBTC) has been introduced for partitioning each
node’s space. The major difference with our work is the group of the selecting nodes. Our system
selects the adjacent UAVs of the MST constructed in each partition (Section 3.2), while CBTC
selects only the nearest one in each partition. This difference shows the limitation of the number
of partitions, where CBTC restricts the angle of the division section while our system does not.
The flexibility of the number of partitions results in the variety of the partition models, which
enlarges the adaptability of the network scale (e.g., density of the UAVs).

In summary, there has been research considering the energy consumption of the wireless UAV
network. However, due to the lack of the cooperability and the compatibility with the other OSI
layers, the UAV network is not fully beneficial when previous strategies are applied. In addition, some
attempts at controlling the mobility of the UAV for networking energy efficiency might not be helpful
when operating the UAVs in a practical scenario, since each UAV’s position decision will suffer from
the confliction between the power efficiency and the mission performance. Our design adopts the
distributed and reactive method, where each UAV collects neighbors’ locations and determines their
available links and the transmission power for energy-efficient networking.
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3. System Design

In this section, we address the design of the topology control layer. Our concept is an additional
layer between the data link layer and the network layer, so it coordinates these layers to improve
the energy efficiency of the network, by controlling the topology. Also, our design targets the
distributed manner of the system, whose result guarantees a topology with high efficiency and
complete connectivity. The following subsections explains our system components in detail.

3.1. Topology Control Layer

The topology control method that we propose is individually applied to each UAV in the network
separately, but the final network appears as a comprehensive network topology. As shown in Figure 3,
our topology control process is functioning between the network layer (L3) and the data link layer
(L2). Since the topology control is compatible with various routing protocols in the network layer and
many other flow control models in the data link layer, it can be well used in the conventional OSI
network system. We assume that each UAV is equipped with a global navigation module, such as
GPS, to determine the relative position between the UAVs. The topology control layer periodically
broadcasts its position information, so each UAV can seize the nearby UAV positions. For example,
as shown in Figure 3, let us assume that a UAV collects the positions of the four neighbor UAVs, from
the beacon message reception by L2. The topology control layer filters out the link among these four
available links, such as L2 and L3, and reports the information of the link L1 and L4 to the L3. L3
operates its routing algorithm and creates the routing table. After L3 determines the link to send the
packet, the topology control layer forwards the designated transmission power to L2, so the packet
reaches the next hop or the destination with a proper amount of signal power. Note that if P1 < P4, then
there is a possibility that UAV 0 does not interfere with UAV 1 while using L4, which has advantages
in the congestion release of the wireless medium.

Figure 3. Topology control layer as L2.5 in the Network OSI model.

Compared to the fully connected topology (e.g., Figure 1a), some advantages can be made when
adopting topology control layer. First, transmission power per each link is adapted. Of course,
enough of the transmission power is needed for higher throughput, but excessively large power can
be redundant at the viewpoint of the network lifetime. Second, a routing table is simplified and more
effective. Due to the link filtering of the topology control layer, the number of the routes decreases,
so the routing table calculation overhead also decreases. On the other hand, compared to the global
MST topology (e.g., Figure 1b), there are other improvements, as in the case of fully connected topology.
Due to the packet-level power control, each UAV can handle more links than the MST case. Also, there
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are more capabilities to cope with the congestion or the failure of the links, since the topology control
layer periodically observes the neighboring UAVs and considers the substitute route for networking.

Now, we should consider how to filter the links from the available ones. If the criteria of the filter
are only the distances from the destination UAVs, then a part of the UAV network can be isolated due
to unexpected link pruning, as shown in Figure 4. Section 3.2 discusses our strategy to build stabilized
and efficient topologies by collecting only the positions of nearby UAVs.

Figure 4. Wrong case of the link pruning.

3.2. Space Partition Method

To distribute the neighbor links direction evenly, we propose a novel space partition method as a
solution of the link selection problem. Assuming that the maximum transmission range of a UAV is
shaped as a sphere, the spherical space can be divided into several partitions with the same volume,
which includes the origin of the sphere. By selecting the closest links from each partition, the UAV
gets a set of links that are evenly distributed in all directions. With this observation, we designed an
algorithm for the proposed space partition scheme as shown in Algorithm 1.

Figure 5 shows the overall steps of Algorithm 1. Our proposed system runs two processes in
parallel, the one addressed at lines 3 to 11, and the other one addressed at lines 13 to 32. The system
globally allocates a memory to monitor the location of the nearby UAVs in the maximum transmission
range, named P. The function NeighborUpdation periodically broadcasts the beacon message
containing its position information, and receives the nearby UAV’s beacon message to update P.
With the updated position information, the function LinkSelection prunes the links according to the
space partition method and designates the transmission power of each link. We address the sequence
of the algorithm in detail.

At first, the algorithm should secure a set of vectors S, which contains the vectors, each of which
projects the partitioned surface of a sphere, known as partition vector. To get S, we divide the sphere
sized with the maximum transmission range into n partitions. For the uniform distribution of the links,
we set ground rules for partitioning:

• The partitions should have the same volume.
• The partitions should contain the origin of the sphere.
• The partitions should have the same area of the surface.
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Algorithm 1 Topology control layer.

1: P ← φ � Neighbors’ position vectors
2:

3: function NEIGHBORUPDATION

4: while exception occurred do

5: −→p0 ← UpdatePos()
6: BroadcastPosition(−→p0 )
7: P′ ← ReceiveBeaconMessages()
8: Update P with P′

9: Sleep for a cycle
10: end while

11: end function

12:

13: function LINKSELECTION

14: S ← Normal vectors of n planes. � Partition vectors
15: while exception occurred do

16: Ai ← φ where 0 < i < n
17: Hi ← φ where 0 < i < n
18: Txi ← 0 where 0 < i < n
19: for −→p in P do

20:
−→
d ← −→p −−→p0

21: −→s ∗ ← arg max−→s ∈S
−→s · −→d

22: h ← IndexOf(−→s ∗)
23: append IndexOf(−→p ) in Ah
24: end for

25: for i where 0 < i < n do

26: Construct an MST of the components in Ai regarding −→p0 as a root
27: Hi ← the children of −→p0
28: Txi ← GetTxOfRange(Hi)
29: end for

30: Sleep for a cycle
31: end while

32: end function

(a) (b)

Figure 5. Graphical representation of Algorithm 1. (a) Finding the belonging partition of a link;
(b) Select the nearest link from each partition.

The examples of the partitioning are represented in Figure 6, where n = {2, 4, 8, 12, 20}.
For visibility, we expressed the partitions as the shape of the original ingredients of the solid figure,
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such as cube, icosahedron, and so on. The actual partitions are the ones trimmed by the sphere
inscribed in the colored solid. For instance, if n = 2, a set S is composed of two vectors, which are
(1, 0, 0) and (−1, 0, 0), respectively. On the other hand, if n = 8, a set S is composed of eight vectors,
which are (±1,±1,±1). In the cases of n = 12 and n = 20, we used known regular polyhedrons which
have the same area of the faces and can be closely fitted to the sphere, such as dodecahedron and
icosahedron, respectively. The normal vectors of each case can be derived from the known equations,
such as

S = {(±1,±1,±1),

(0,±(1 + h),±(1 − h2)),

(±(1 + h),±(1 − h2), 0),

(±(1 − h2), 0,±(1 + h))}

where h =

√
5 − 1
2

,

when n = 20.
Topology control layer periodically updates the position of nearby UAVs by NeighborUpdation,

and determine what partition each UAV belongs to, in LinkSelection. For each UAV’s position −→p ,
the algorithm derives

−→
d = −→p −−→p0 , and selects a normal vector s∗ from S which results the maximum

inner product value with
−→
d (Figure 5a). After categorizing all links, the algorithm constructs an MST

composing the UAV itself and the other UAVs in each partition, then collects the one-hop links from
them (Figure 5b). Finally, the UAV reserves the number of the selected links, each of which is the
nearest UAV in a partition. In the aforementioned case of Figure 4, the far-range link will be one of the
selected one, since the neighbor UAV is within a transmission range, and it will be the only one link of
a specific partition.

After the suggested topology control process, multi-hop communication can be performed with
any desired routing protocol. For instance, the shortest path algorithm, such as the Dijkstra or
Bellman–Ford algorithm, can be used to derive the routing path to the other UAV connections in
distributed routing protocols. As an overall assessment, our topology control method can reduce the
number of unnecessary links by effectively dividing the surrounding space into several partitions. Also,
it has an advantage in transmission power because each UAV only needs to consider the nearest UAVs.

3.3. Connectivity Proof

We show the connectivity of the resulting topology of Algorithm 1 derived from the given
deployment of UAVs. We preliminarily assume that any of the deployed UAVs has one or more nearby
UAVs in its maximum transmission range. We first prove local connectivity among the neighbors in
the maximum transmission range of UAV. Then, we eventually prove global connectivity by finding
a knock-on path from two arbitrary UAVs u to v, referred to P(u, v) =< u, h1, h2, h3, . . . , hm, v >.
This global connectivity is significantly derived from UAVs’ previous local connections. In terms of the
resulting topology of our system, we derive the following two theorems about connectivity.

Theorem 1 (Local connectivity). The result of Algorithm 1 guarantees the connectivity between a UAV and
its neighbor UAVs within the maximum transmission range.
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(a) (b) (c)

(d) (e)

Figure 6. Space partition with respect to n. (a) Space partition when n = 4; (b) Space partition when
n = 6; (c) Space partition when n = 8; (d) Space partition when n = 12; (e) Space partition when
n = 20.

Proof of Theorem 1. This theorem shows the UAV connectivity between an arbitrary UAV u and
its neighbor UAVs, all of which are within one maximum transmission range from the UAV u
itself. Let MTRu refer to a set of the UAVs located within the maximum transmission range, where
w ∈ MTRu. Also, let NHu refer to a set of selected links by u in Algorithm 1, where NHu ⊂ MTRu.

∀w ∈ MTRu,

Case (i) : w ∈ NHu

P(u, w) = < u, w >

Case (ii) : w /∈ NHu

there always exists w1 such that w1 ∈ NHu and

P′ =< u, w1 > is a subpath of Pu(u, w),

which is derived by an MST constructed in line 26 of Algorithm 1.

We let u = w0, and applying Algorithm 1 to each wi,

then there exists wk−1 such that wk = w.

By chaining all the discovered subpaths,

PTotal = P′(w0(= u), w1) ∪ P′′(w1, w2) ∪ ... ∪ Pk(wk−1, wk(= w)) = P(u, w).

Thus, the path P(u, w) = < u, w1, w2, . . . , wk−1, w > exists.

Figure 7 graphically represents the above sequence. By this procedure, the connectivity with all
UAVs in every partition of arbitrary chosen UAV u is always guaranteed. Thus, the connection is
guaranteed for all UAVs in the maximum transmission range of UAV u.
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Figure 7. Finding routing path of the topology control layer.

Theorem 2 (Global connectivity). The result of Algorithm 1 guarantees the connectivity of two arbitrary
UAVs network-wide.

Proof of Theorem 2. We prove the global connectivity with Theorem 1. We let G(V, E) refer to the
graph representing a fully connected UAV network, where V is the set of UAVs and E is the set of
edges defined by the reachability between two UAVs with the maximum transmission range. Also,
GTC(V, ETC) refers to the graph representing the resulting network topology of topology control
layer, where ETC is the set of edges that Algorithm 1 selects. The other notations mean the same as
aforementioned.

Assume there is a path P(u, v) = < u(= h0), h1, h2, . . . , v(= hn) > in G(V, E).

Each pair of subsequent UAVs in P(u, v), such as (hi, hi+1)(i = 0, 1, . . . , n − 1),

is replaced with a path < hi, w1, w2, . . . , wk−1, hi+1 >,

owing to Theorem 1.

Therefore, if P(u, v) is in G(V, E), then P(u, v) is also in GTC(V, ETC).

3.4. Swarm Intelligence Point of View

We designed our proposed topology control to inherently contain the concept of swarm
intelligence (SI). We made a simple rule for each UAV in the network, but the overall topology
consequently shows robust connectivity, as proven in Section 3.3. Also, the ingredients to make
decisions can be fairly collected in a distributed manner, where every UAV equally broadcasts its
location. With changes to nearby environments, the UAV can dynamically change its link selections and
designate the proper transmission power of the targeted end-to-end connections. Our accomplished SI
concept yields the following advantages.
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• Scalability. Compared to centralized methods, our proposed system does not need any
centralized protocols or regulations. This feature prominently appears when the maximum hop
count increases due to a large-scale network, where farthest UAVs take much longer to update
its network configuration in the centralized system. In the topology control layer, each UAV
determines the next available hops by itself, so the network size does not affect the network
configuration delay.

• Mobility. Considering the high mobility of the UAV, our distributed concept based on the
location has strong advantage during network topology changes. Since each UAV periodically
updates its available neighbors, a network layer can rapidly drop or append the available links
without hesitation.

• Simplicity. In the case of the micro UAVs, the computational resource is too small to input the
high intelligence necessary for networking [22]. Our proposed system is composed of simple
calculations augmented at the existing network stack, so it has much less occupancy of the system
resources, which also contributes to the energy efficiency.

4. Evaluation

We implemented our proposed space partition method (Algorithm 1) and the network topology
simulation written in Python, and measured the numerical data to plot the results using MATLAB.
We used OpenCV library to display the network topology for various cases. Also, we compared our
scheme with the following network topologies to present the advantages of applying the topology
control process to the UAV fleet network.

1. Fully connected (FC): UAV networking that is fully connected with all UAVs that are in their
transmission range.

2. Simple MST (SMST): UAV networking appending the simple minimum spanning tree method.
3. Topology Control (TC): UAV networking with a proposed topology control method. For each n

value, we abbreviate the TC with n partitions as TC-n.

To examine the performance of the resulting topologies, we simulated a routing scenario for each
case. We randomly sampled 50% of the existing UAVs, and searched the optimal route from each to all
the other ones. We adopted Dijkstra algorithm [23] to find the shortest path to the target destinations.
As mentioned in Section 3.1, our topology control algorithm can be any other path-finding algorithms,
such as congestion-free ad hoc routing strategies discussed in [24]. Also, we set the distance between
the UAVs as a link cost used in our Dijkstra algorithm, so the result of the algorithm is the most
energy-efficient paths with respect to the topology of FC, SMST, and TC-n.

We claim that our exhaustive search can thoroughly validate the performance of the network
topology, along with the stability, energy efficiency, and the network traffic. Commonly used routing
protocols aim to optimize the routing table of each device. Analysis of the Dijkstra algorithm result
shows the best path of each end-to-end connection derived from the network topology, so we derive
the statistics from the optimal path to every UAV in the network. We evaluate the network topologies
by the following metrics.

• Node degree: We exploit one of the general terms used in the graph theory. In this paper, the term
node degree refers to the number of the edges which are incident to a UAV. At the viewpoint
of the network topology, high node degree implies high stability of the network. If one of the
connected neighbor UAVs fails (due to the emergency landing or return to home), the UAV
should use the other connections to sustain the network connectivity. However, if UAVs have
low degrees, the network has higher potential to lose the whole connectivity even with the loss of
some centric nodes.

• Hop count: Hop count of an end-to-end connection is the number of the edges of the optimal
path between them, which can be derived by the aforementioned Dijkstra algorithm. Higher
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hop count not only increases the delay of the connection but also has the potential to drop the
end-to-end throughput, since the packet is repeatedly propagated through the wireless medium
per each hop. Thus, lower hop count results in less use of the wireless medium with low latency,
which results in the overall throughput improvement of the UAV network.

• Power consumption: As discussed in Section 3, our proposed system determines the transmission
power of each link. We summed the amounts of the transmission power required at all links on
each end-to-end connection. In the case of FC, we assumed there is no power control method
equipped, so the expected power consumption is the multiplication of the average hop count by
the maximum transmission power. On the other hand, in other cases, the transmission power of
each link is calculated from the distance using the Friis equation. Please note that excessively high
hop count results in the higher power consumption of the end-to-end communication, despite the
low power consumption due to the short distance of the links.

We evaluate the network topologies while varying the number of UAVs, maximum transmission
power, shape of the formation, and the number of the partition n. Default value of each parameter is
listed in Table 1. The following subsections discuss the evaluation result while varying the parameters.

Table 1. Simulation parameters.

Item Value

Space size 1000 m × 1000 m × 1000 m
Number of UAVs 50

Maximum transmission power 20 dBm
Frequency band 2.4 GHz

Antenna gain 2.5 dBi
Receive signal threshold −70 dBm

4.1. Regular Formations

To effectively show the resulting shape of the network topology of our system, we first conducted
the evaluation with the regular formation of the UAVs, such as grid-shape or sphere-shape. Figure 8
shows the three-dimensional representation of each network topology. In the case of the grid formation,
we deployed 4× 4× 4 UAVs with the default size of the map space, and the same distance of the width,
height and depth between the nearby UAVs. In the case of the sphere formation, we deployed 66 UAVs
in the surfaces of 3 concentric spheres. As shown in the Figure 8a, if all UAVs fully connect to the
nearby UAVs in its maximum transmission range, the topology gets highly complex and this may lead
to high interference in the wireless medium. On the other hand, the case shown in Figure 8b shows
an MST including the network, which could lead to the high hop count of some connections, such
as the route from 51 to 46, which has 17 hops. The topology result of our proposed topology control
layer is shown in Figure 8c, which represents visually expected connections at this grid formation.
The reason for the result is that the topology control layer only leaves the nearest link from each
partition. While the fully connected cases in Figure 8a,d suggest the intensive traffic on the center of
the network, the TP-6 cases in Figure 8c,f reduce this potential by filtering the further connections of
each UAV and controlling the transmission power of each link. As shown in the topologies in Figure 8,
we showed how our proposed system forms the topology of the UAV network, compared to the other
comprehensive or centralized methods.
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(a) (b) (c)

(d) (e) (f)

Figure 8. Network topologies in regular formations. (a) FC network topology of grid formation;
(b) SMST network topology of grid formation; (c) TC-6 network topology of grid formation; (d) FC
network topology of concentric spheres formation; (e) SMST network topology of concentric spheres
formation; (f) TC-6 network topology of concentric spheres formation.

Figure 9 shows the evaluation results of the network topologies shown in Figure 8. We measured
the average and the confidence interval of the power consumption, hop count of end-to-end
connections, and the node degree of the UAVs. As shown in Figure 9a, TC-6 outperforms the other
cases FC and SMST, while showing less than a half of the power consumption of the other cases. It is
remarkable that TC-6 shows much less power consumption than SMST, which grants centralized
optimal topology of the whole UAV network. The reason for this outperformance is mainly due to
the advantage in the hop counts (Figure 9b), since larger hop count of the SMST case leads to more
frequent transmissions, which incurs the large amount of the power consumption despite the low
transmission power. By numerical comparison, we showed our proposed topology control layer can
reduce the power consumption of the UAV network, through the efficiently constructed network
topology. In the following graphs, for better visibility, we omitted the confidence interval of the results,
which shows almost similar tendencies to the remaining evaluations.
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Figure 9. Numerical results in regular formations. (a) Average power consumption; (b) Average hop
count; (c) Average node degree.

To show the differences in the network topology while varying n at the general case, we ran
our proposed system in a random formation, as shown in Figure 10. In this figure, we deployed
20 UAVs in the map with uniform random distribution. As shown in the subfigures, when n increases,
the shape of the network topology gets closer to the FC case, as TC-20, shown in Figure 10f. Please
note that UAVs select at most n UAVs as their next hops in each partition, which has smaller size at
larger n. The case of larger n has more chance to grab the UAVs in the transmission range as their
next hops, so larger n acts as similar to the FC case. However, the expected power consumption of the
end-to-end connection is smaller than the FC case even though larger n cases, since topology control
layer designates the transmission power of the links. In the following subsections, we evaluate our
system while varying the numerical parameters, to show how the parameters affect the performance
of the topology control layer.

4.2. Network Size

Figure 11 shows the average of the power consumption, hop count and degree while varying the
number of the UAVs from 20 to 100. We compared the case of FC, SMST, and TC-4 for each performance
metric. The other parameters for the simulations are set as default, listed in Table 1. As shown in
Figure 11a, TC-4 shows higher decrement ratio of the power consumption than the other cases. This is
due to the unique property of the topology control layer, which adopts the transmission power of each
link, while sustaining the number of the nearby links. Increasing the number of the UAVs leads to the
decreases of the average distances between the UAVs. In the case of SMST, this decrement results in
the low transmission power of the links just as TC-4, due to centralized topology generation. However,
due to the properties of the minimum spanning tree, higher density of UAVs inevitably causes higher
hop counts, which is shown in Figure 11b. As mentioned before, increasing hop count consequently
increases the power consumption of the end-to-end connection, which results in relative inefficiency
as in Figure 11a. On the other hand, the case of FC sustains smaller hop count and larger degree
(Figure 11c) than the other cases, but it has much higher power consumption due to the fixed and
excessive amount of the transmission power. Furthermore, a larger degree of UAVs indicates higher
robustness, but also brings the potential for more congestion and the collision of the frames. Figure 11c
shows that the case of FC steadily increases the degree of UAVs, which leads to the degradation of the
throughput and the efficiency of the transmission. In summary, the results in Figure 11 proved that the
topology control layer yields a moderated degree and hop count, which results in it outperforming the
power efficiency of the UAV network.
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(a) (b) (c)

(d) (e) (f)

Figure 10. Network topology of a random formation while varying n. (a) FC network topology of
random formation; (b) SMST network topology of random formation; (c) TC-2 network topology of
random formation; (d) TC-4 network topology of random formation; (e) TC-8 network topology of
random formation; (f) TC-20 network topology of random formation.

20 40 60 80 100

Number of UAVs

0.05

0.1

0.15

0.2

0.25

0.3

A
ve

ra
ge

 p
ow

er
 c

on
su

m
pt

io
n 

(m
W

)

FC
SMST
TC-4

(a)

20 40 60 80 100

Number of UAVs

0

2

4

6

8

10

12

14

H
op

 c
ou

nt

FC
SMST
TC-4

(b)

20 40 60 80 100

Number of UAVs

0

10

20

30

40

A
ve

ra
ge

 n
od

e 
de

gr
ee

FC
SMST
TC-4

(c)

Figure 11. Numerical results while varying the number of UAVs. (a) Average power consumption;
(b) Average hop count; (c) Average node degree.

4.3. Number of Partitions

We also measured the results while varying the number of the partitions, where
n = {2, 4, 6, 8, 12, 20}. As shown in the subfigures in Figure 12, the cases of TC-n outperform the
other cases (FC, SMST) in power consumption. In the case of the hop count and the degree, TC-n
shows the medium values between the FC and the SMST, since the topology control layer prunes the
links regarding to the number of the partitions. On the other hand, as n increases, hop count decreases
and the degree increases. Due to the increase of the possible links in larger n, there are more chances
to decrease the hop count with the larger number of partitions. Furthermore, it is notable that the
average power consumption of end-to-end connection is minimum at n = {6, 8}, regardless of the
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number of the UAVs. However, it is hard to conclude that the network is optimal at a certain n, since
the larger n results in lower hop count, which leads to the improvement of the expected throughput.
In conclusion, the results in Figure 12 show that there is an optimal n value for the desired objective of
the UAV network.
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Figure 12. Numerical results while varying n. (a) Average power consumption; (b) Average hop count;
(c) Average node degree.

4.4. Transmission Range

We varied maximum transmission power of 50 UAVs, in various n values. Figure 13 shows the
numerical results compared to FC and SMST cases. In Figure 13a, we cut the transmission power over
0.5 mW for visuality. The results in this figure have several considerations. At first, while FC cases
have exponentially increasing power consumption when the maximum transmission power increases,
the cases of SMST and TC-n have mostly constant power consumptions. This result indicates that
SMST and TC-n can sustain similar efficiency in various cases of the maximum transmission power.
Then, the outperformance of the TC-n against the SMST originates from the packet-level power control
and the partitioning-based link pruning, as mentioned in the former subsections. Secondly, there
is a saturation while increasing the maximum transmission power, after about 22 dBm, both in the
hop counts and the degrees. The reason for this phenomenon is that the nearest neighbors of certain
directions are selected despite the transmission range expansion. For this reason, the saturation starts
earlier when n is smaller, as shown in Figure 13b,c. The saturation indicates that our topology control
layer outperforms results even at the smaller transmission range.

We summarize our simulation results as follows.

• We evaluated our proposed system topology control layer while varying the network size, number
of partitions, and the transmission power. In every evaluation, our system shows outperforming
results in average power consumption, while sustaining moderate values of the average node
degrees and the hop counts.

• While varying the network size, the topology control layer shows a larger decrement in power
consumption, because our system keeps a proper number of links and fits the transmission power
of them.

• While increasing the number of the partitions, hop count shortly decreases and degree shortly
increases due to the larger number of the selected links. In Figure 12a, TC-6 and TC-8 nearly show
the lowest amount of the average power consumption regardless of the number of UAVs.

• Increasing the transmission range results in great advantages in power consumption, compared
to the FC case. Also, we found that power consumption of lower n is relatively small in
a large transmission range, while the consumption of higher n is relatively small in small
transmission ranges.
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Figure 13. Numerical results while varying maximum transmission power. (a) Average power
consumption; (b) Average hop count; (c) Average node degree.

From the aforementioned statements, we claim that the topology control layer can contribute to
the energy-efficient communication in the UAV network, in wide range of the environments.

5. Discussions

This section addresses additional discussions for topology control layer. We listed our
considerations as following.

• Multi-input, Multi-output (MIMO) adaptation. MIMO targets concurrent communications
in several directions, which fits our concept well. Through the combination with MIMO
technology, each UAV can use the links of several partitions concurrently, which leads to great
improvement in network throughput. If MIMO capacities (number of the available concurrent
transmissions) differs from the number of the partitions (n), the difference can be handled by the
partition scheduling.

• Link space improvement. If UAVs are flying in obstacle-rich environments such as an urban
canyon, the relative distance between the UAVs does not directly refer to the link cost. Also,
with the link quality improvement strategies such as packet recovery mechanism [25], a simple,
distance-based space partition method cannot result in optimal network topology. To embrace
these cases, we can design the space considering more than the positions, which can result in a
more than 3-dimensional space. By formatting the partition vectors for the augmented space,
our topology control layer can operate as Algorithm 1.

• n granularity. In Section 3.2, we listed some of the n values, based on the regular polyhedrons
derived before. If we can design more S with variable n values following the basic rules in
Section 3.2, there are more possibilities to control n in detail, which is advantageous according
to Section 4.4.

• Empirical evaluation. In Section 4, we measured the performance of the network topologies with
our own simulator, which is specialized to measure the property of the topology with power
consumption. In this paper, we intended to focus on the clarified improvements in terms of
the network topology, so we developed a simulator letting the numerical results be directly
derived from the resulting network topology. By inserting our intermediate layer in practical
network designs, we can evaluate our proposed scheme into a variety of network environments,
by actually implementing devices or the public domain network simulator such as Network
Simulator 3 (ns-3).

• Applications. As our topology control scheme acts as an intermediate layer between the data
link layer and the network layer, it can be broadly used in a wireless network domain. In the
case of the UAV network, our system can contribute to performance improvements in multi-UAV
surveillance [3], where extending the mission time and guaranteeing the quality of the video
transmission service are essential. In addition, our topology control can be deployed in the
Wireless Sensor Network (WSN) scenario since the WSN nodes commonly have intensive power
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constraints. Due to the compatibility of the system, our proposed scheme can be the breakthrough
to solve energy-efficiency and performance-degradation problems in wireless network domains.

6. Conclusions

This study proposed a topology control method for energy-efficient UAV networks. Our system
acts as an intermediate layer between the network and data link layer, so it is tolerant of any other
network environments. By numerical evaluations, we showed that our space partition method highly
reduces the power consumption of the end-to-end connections, while maintaining the node degree and
the hop count in a proper amount. We hope that our approach based on the space partition inspires
UAV network research domains.
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