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1. Introduction

This special issue collects the latest results on differential/difference equations, the mathematics
of networks, and their applications to engineering, and physical phenomena. The Special Issue
has 42 submissions and eight high-quality papers which got published with original research results.
The Special Issue brought together mathematicians with physicists, engineers, as well as other scientists.
Topics covered in this issue:

• Differential/difference equations
• Mathematics of networks
• Fractional calculus
• Partial differential equations
• Discrete calculus
• Mathematical models using dynamical systems

2. Acoustic Wave Equations Using Fractional-Order Differential Equations

In [1], the authors present a newly developed technique, defined as a variational homotopy
perturbation transform method in order to solve fractional-order acoustic wave equations. The basic
idea behind this article is to extend the variational homotopy perturbation method to the variational
homotopy perturbation transform method.

The proposed method is an accurate and straightforward technique to solve fractional-order
partial differential equations, and can be considered as a practical analytical technique to solve
non-linear fractional partial differential equations compared to other analytical techniques existing in
the literature. Several illustrative examples verify the method.

3. Analytical Solutions of Dimensional Physical Models Using Modified Decomposition Method

In [2], the authors present a new analytical technique based on an innovative transformation in
order to solve (2+time fractional-order) dimensional physical models. The proposed method is based
on the hybrid methodology of Shehu transformation along with the Adomian decomposition method.

The solutions of the targeted problems are represented by graphs and are obtained in a series form
that has the desired rate of convergence. The method is, in general, a practical analytical technique
to solve linear and non-linear fractional partial differential equations. Numerical examples are given
using the proposed method.

4. Multi-Switching Combination Synchronization of Fractional-Order Delayed Systems

In [3] the authors investigate multi-switching combination synchronization of three fractional-order
delayed systems. This is actually a generalization of previous multi-switching combination
synchronization of fractional-order systems by introducing time-delays.

Based on the stability theory of linear fractional-order systems with multiple time-delays,
the article provides appropriate controllers to obtain multi-switching combination synchronization of
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three non-identical fractional-order delayed systems. In addition, numerical simulations show that
they are in accordance with the theoretical analysis given.

5. An Overview of Early Developments of the Hardy–Cross-Type Methods

In [4], the authors provide an overview of early developments of the Hardy–Cross-type methods
for computation of flow distribution in pipe networks.

Cross originally proposed a method for analysis of flow in networks of conduits or conductors
in 1936. His method was the first really useful engineering method in the field of pipe network
calculation. Only electrical analogs of hydraulic networks were used before the Hardy–Cross method.
A problem with flow resistance versus electrical resistance makes these electrical analog methods
obsolete. The method by Hardy–Cross is taught extensively at faculties, and it remains an important
tool for the analysis of looped pipe systems. Engineers today mostly use a modified Hardy–Cross
method that considers the whole looped network of pipes simultaneously (use of these methods
without computers is practically impossible).

In addition, in [4] a method from a Russian practice published during the 1930s, which is similar
to the Hardy–Cross method, is also described. Some notes from the work of Hardy–Cross are also
presented. Furthermore, an improved version of the Hardy–Cross method, which significantly reduces
the number of iterations, is presented and discussed.

Finally, the authors present results on tested multi-point iterative methods, which can be used as
a substitution for the Newton–Raphson approach used by Hardy–Cross.

6. Parametrical Non-Complex Tests to Evaluate Partial Decentralized Linear-Output Feedback
Control Stabilization Conditions

In [5], the authors formulate sufficiency-type linear-output feedback decentralized closed-loop
stabilization conditions if the continuous-time linear dynamic system can be stabilized under linear
output-feedback centralized stabilization.

The provided tests are simple to evaluate, while they are based on the quantification of the
sufficient smallness of the parametrical error norms between the control, output, interconnection and
open-loop system dynamics matrices and the corresponding control gains in the decentralized case
related to the centralized counterpart.

The tolerance amounts of the various parametrical matrix errors are described by the maximum
allowed tolerance upper-bound of a small positive real parameter that upper-bounds the various
parametrical error norms. Such a tolerance is quantified by considering the first or second powers of
such a small parameter.

The results are seen to be directly extendable to quantify the allowed parametrical errors that
guarantee the closed-loop linear output-feedback stabilization of a current system related to its nominal
counterpart. Several numerical examples are included and discussed in the article.

7. Transient-Flow Modeling of Vertical Fractured Wells with Multiple Hydraulic Fractures

Massive hydraulic fracturing of vertical wells has been extensively employed in the development
of low-permeability gas reservoirs. The existence of multiple hydraulic fractures along a vertical well
makes the pressure profile around the vertical well complex.

In [6], the authors study the pressure dependence of permeability in order to develop a seepage
model of vertically fractured wells with multiple hydraulic fractures. Both transformed pseudo-pressure
and perturbation techniques have been employed to linearize the proposed model.

The proposed work further enriches the understanding of the influence of the stress sensitivity on
the performance of a vertical fractured well with multiple hydraulic fractures and can be used to more
accurately interpret and forecast the transient pressure.

Some key points in the article are the superposition principle and a hybrid analytical-numerical
method that are used to obtain the bottom-hole pseudo-pressure solution, the type curves for
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pseudo-pressure that are presented and identified, and finally, the discussion that is included on
the effects of the relevant parameters on the type curve and the error caused by neglecting the
stress sensitivity.

8. Policy-Compliant Maximum Network Flows

Computer network administrators are often interested in the maximal bandwidth that can be
achieved between two nodes in the network, or how many edges can fail before the network gets
disconnected. Classic maximum flow algorithms that solve these problems are well-known. However,
in practice, network policies are in effect, severely restricting the flow that can actually be set up.
These policies are put into place to conform to service level agreements and optimize network
throughput, and can have a large impact on the actual routing of the flows.

In [7], the authors model the problem and define a series of progressively more complex conditions
and algorithms that calculate increasingly tighter bounds on the policy-compliant maximum flow
using regular expressions and finite-state automata. This is the first time that specific conditions
are deduced, which characterize how to calculate policy-compliant maximum flows using classic
algorithms on an unmodified network.

9. The Fractional Form of the Tinkerbell Map Is Chaotic

In [8], the authors are concerned with a fractional Caputo-difference form of the well-known
Tinkerbell chaotic map. The dynamics of the proposed map are investigated numerically through
phase plots, bifurcation diagrams, and Lyapunov exponents considered from different perspectives.

In addition, a stabilization controller is proposed, and the asymptotic convergence of the states is
established by means of the stability theory of linear fractional discrete systems. Numerical results are
employed to confirm the analytical findings.
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Abstract: This paper is concerned with a fractional Caputo-difference form of the well-known
Tinkerbell chaotic map. The dynamics of the proposed map are investigated numerically through
phase plots, bifurcation diagrams, and Lyapunov exponents considered from different perspectives.
In addition, a stabilization controller is proposed, and the asymptotic convergence of the states is
established by means of the stability theory of linear fractional discrete systems. Numerical results
are employed to confirm the analytical findings.

Keywords: fractional discrete calculus; discrete chaos; Tinkerbell map; bifurcation; stabilization

1. Introduction

Throughout the last 50 years, chaotic dynamical systems have attracted increasing attention due
to their applicability in a range of diverse and multidisciplinary fields. A dynamical system is said
to be chaotic if its states are extremely sensitive to small variations in the initial conditions. Another
important property of chaotic systems is that they have attractors characterized by a complicated set
of points with a fractal structure commonly referred to as a strange attractor. This chaotic behavior
was first observed in continuous dynamical systems and was thought to be an undesirable property.
The first chaotic system encountered in the modeling of a real-life phenomena is that of Lorenz [1],
which describes atmospheric convection. Soon after, researchers found that chaotic systems can also be
discrete. A number of chaotic maps were proposed throughout the years including the Hénon map [2],
the logistic map [3], the Lozi map [4], the 3D Stefanski map [5], the Rössler map [6], and many more.
Recently, nonlinear oscillations on Riemannian manifolds that can exhibit a chaotic behavior were
introduced in [7,8]. Other related works include an investigation of the chaotic dynamics in a fractional
love model with an external environment, as in [9], and an extension using a fuzzy function [10].

In recent years, with the growing interest in fractional discrete calculus [11], people have started
looking into fractional chaotic maps. Although fractional maps come with considerable added
complexity, they provide better flexibility in the modeling of natural phenomena and lead to richer
dynamics with more degrees of freedom. Among the fractional chaotic maps that have been proposed,
studied, and applied over the last five years are the fractional logistic map [12], the fractional Hénon

Appl. Sci. 2018, 8, 2640; doi:10.3390/app8122640 www.mdpi.com/journal/applsci5
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map [13], the generalized hyperchaotic Hénon map [14], and the fractional unified map [15]. Perhaps
the main concern of the research community has been the possibility of controlling and synchronizing
these types of maps [15–20]. An application of a generalized fractional logistic map to data encryption
and its FPGA implementation was achieved in [21].

In this paper, we are interested in the Tinkerbell discrete-time chaotic system, which is of the form:

{
x (n + 1) = x2 (n)− y2 (n) + αx (n) + βy (n) ,
y (n + 1) = 2x (n) y (n) + γx (n) + δy (n) ,

(1)

where α, β, γ, and δ are system parameters and n represents the discrete iteration step. It is rumored
that the map (1) derives its name from the famous Cinderella story, as the trajectory followed by the
map resembles that of Tinkerbell appearing in the movie adaptation of the fairy tale. The Tinkerbell
map has been studied by many as it exhibits very rich dynamics including a chaotic behavior and a
range of periodic states. For instance, its bifurcation subject to different scenarios and initial settings
has been studied in [22–25]. A more comprehensive study was performed in [26]. The authors
identified conditions for the existence of fold bifurcation, flip bifurcation, and Hopf bifurcation in the
Tinkerbell map.

In order to visualize the dynamics of the map (1), we resort to phase plots, bifurcation diagrams,
and Lyapunov exponent estimation. We assume parameter values α = 0.9, β = −0.6013, γ = 2,
and δ = 0.5 and initial states (x (0) , y (0)) = (−0.72,−0.64). The results are depicted in Figure 1.
The Tinkerbell map’s phase plot is depicted in Figure 1a. Based on Figure 1b, we can see that the
estimated Lyapunov exponents of (1) are given by λ1 ≈ 0.2085 and λ2 ≈ −0.4925. It is well known
that a positive Lyapunov exponent indicates a chaotic behavior. The remaining parts of Figure 1 depict
the bifurcation diagrams of the map (1) with respect to different parameters. These diagrams confirm
that the map exhibits a range of different behaviors.

It should be clear to the reader that the Tinkerbell map has rich dynamics and is heavily dependent
on its parameters, as well as the initial setting. The main objective of this paper is to investigate the
fractional Caputo-difference form of the Tinkerbell map in order to benefit from the added degrees
of freedom due to the fractional nature. It is expected that the fractional form will have even richer
dynamics and may consequently be more suitable for applications that require a higher entropy level
such as data/image encryption.

6
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Figure 1. (a) Attractor of the Tinkerbell map (2) with (α, β, γ, δ) = (0.9,−0.6013, 2, 0.5) and initial
conditions (x (0) , y (0)) = (−0.72,−0.64). (b) Estimated Lyapunov exponents by means of the Jacobian
matrix method. (c) Bifurcation plot with α ∈ [−0.5, 1] as the critical parameter and Δα = 0.0075.
(d) Bifurcation plot with β ∈ [−0.6,−0.1] as the critical parameter and Δβ = 0.0025. (e) Bifurcation
plot with γ ∈ [0, 2.1] as the critical parameter and Δγ = 0.01. (f) Bifurcation plot with δ ∈ [−1, 0.6] as
the critical parameter and Δδ = 0.008.

2. Fractional Tinkerbell Map

In this section, we use recent developments in fractional discrete calculus to define the
Caputo-difference fractional map corresponding to (1). First, let us define the υth fractional sum
of anarbitrary function X (t) [27] as:

Δ−υ
a X (t) =

1
Γ (υ)

t−υ

∑
s=a

(t − s − 1)(υ−1) X (s) , (2)

for t ∈ Na+n−υ and υ > 0, where Na := {a, a + 1, a + 2, ...}. Note that the term t(υ) is known as the
falling function and may be defined by means of the Gamma function Γ as:

t(υ) =
Γ (t + 1)

Γ (t + 1 − υ)
. (3)

7
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Based on this definition of the fractional sum, we may define the Caputo-like fractional
difference operator.

In this section, we would like to produce a fractional difference form of the Tinkerbell map (1).
First, we take the difference form, which for function x (t) : Na → R with fractional order υ �∈ N is
given by:

CΔυ
a x (t) = Δ−(n−υ)

a Δnx (t) . (4)

Substituting yields the final form proposed in [28], which is defined as:

CΔυ
a x (t) =

1
Γ (n − υ)

t−(n−υ)

∑
s=a

(t − s − 1)(n−υ−1) Δnx (s) , (5)

where t ∈ Na+n−υ and n = �υ�+ 1.
We are now ready to examine the fractional map. First, we take the difference form of (1) to obtain:

{
Δx (n) = x2 (n)− y2 (n) + (α − 1) x (n) + βy (n) ,
Δy (n) = 2x (n) y (n) + γx (n) + (δ − 1) y (n) .

(6)

We may replace the standard difference in (6) with the Caputo-difference, which yields:
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

CΔυ
a x (t) = x2 (t − 1 + υ)− y2 (t − 1 + υ)

+ (α − 1) x (t − 1 + υ) + βy (t − 1 + υ) ,
CΔυ

a y (t) = 2x (t − 1 + υ) y (t − 1 + υ) + γx (t − 1 + υ)

+ (δ − 1) y (t − 1 + υ) ,

(7)

for t ∈ Na+1−υ, 0 < υ ≤ 1, a is the starting point, and CΔυ
a is a Caputo-like difference operator. The case

υ = 1 corresponds to the non-fractional scenario (1).

3. Dynamics of the Fractional Tinkerbell Map

In this section, we will employ numerical tools to assess the dynamics of the proposed fractional
Tinkerbell map (7). For that, we will need a discrete numerical formula that allows us to evaluate
the states of the map in fractional discrete time. According to [29] and other similar studies, we can
evaluate (7) numerically as:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

x (n) = x (0) + 1
Γ(υ)

n
∑

j=1

Γ(n−j+υ)
Γ(n−j+1)

[
x2 (j − 1)− y2 (j − 1)

+ (α − 1) x (j − 1) + βy (j − 1)] ,

y (n) = y (0) + 1
Γ(υ)

n
∑

j=1

Γ(n−j+υ)
Γ(n−j+1) [2x (j − 1) y (j − 1)

+γx (j − 1) + (δ − 1) y (j − 1)] ,

(8)

where we assumed a = 0 for simplicity. This yields an initial-value problem similar to that of [30],
which allows us to use a similar discrete integral equation.

Using Formula (8), we may obtain the states of the fractional Tinkerbell map and consequently
produce time series plots of the states, phase-space plots, and bifurcation diagrams. We start with a
simple case where the parameters and initial conditions are identical to those adopted in the standard
case, i.e., (α, β, γ, δ) = (0.9,−0.6013, 2, 0.5) and (x (0) , y (0)) = (−0.72,−0.64). Given the fractional
order υ = 0.98, Figure 2 depicts the discrete time evolution of the states. Since the time series in
Figure 2 do not indicate the existence or absence of chaos definitively, it is more convenient to show
the trajectories followed by the map in state space. Figure 3 shows the phase plots for different values
of the fractional order υ ∈ {0.995, 0.99, 0.97, 0.952}. We see that the overall Tinkerbell shape remains

8
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valid for a short range of fractional orders. As the order gets close to 0.95, the trajectory almost
completely disappears.

Figure 2. Time evolution of the fractional Tinkerbell map’s states with parameters (α, β, γ, δ) =

(0.9,−0.6013, 2, 0.5), initial conditions (x (0) , y (0)) = (−0.72,−0.64), and fractional order υ = 0.98.

Figure 3. Phase plots of the fractional Tinkerbell map (7) for parameters (α, β, γ, δ) = (0.9,−0.6013, 2, 0.5),
initial conditions (x (0) , y (0)) = (−0.72,−0.64), and different fractional orders.

Although the phase plots give an indication of the behavior of the map, it is not until we
visualize the bifurcation of the map subject to different parameters that a more complete picture forms.
We choose the parameter β as the critical parameter and varied it over the range β ∈ [−0.6,−0.1]
in steps of Δβ = 0.0025. The process may be easily repeated for other parameters. The bifurcation

9
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diagrams obtained using the same parameter and initial condition values from earlier are depicted in
Figure 4. We observe that although the general dynamics remain similar, the intervals seem to become
shorter as the fractional order is decreased.

Even though these bifurcation diagrams suggest the existence of chaos in the fractional Tinkerbell
map, they are not definitive. Generally, in order to prove the existence of chaos, we must use multiple
tools including time series, phase portraits, Poincaré maps, power spectra, bifurcation diagrams,
Lyapunov exponents, etc. The next tool at our disposal is Lyapunov exponents. We calculate these
exponents by means of the Jacobian method. It is well known that when λmax is positive and the points
in the corresponding bifurcation diagram are dense, the map is highly likely to be chaotic. Figure 5
shows the largest Lyapunov exponents corresponding to the same bifurcation diagrams depicted in
Figure 4 in the x-β plane. We can observe clearly that for certain ranges of the parameter β, chaos exists.

Figure 4. Bifurcation diagrams of the fractional Tinkerbell map (7) with β ∈ [−0.6,−0.1] being
changed in steps of Δβ = 0.0025, parameters (α, γ, δ) = (0.9, 2, 0.5), initial conditions (x (0) , y (0)) =
(−0.72,−0.64), and different fractional orders.

10
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Figure 5. The largest Lyapunov exponent as a function of parameter β for different values of the
fractional order.

Another interesting aspect is the effect of the fractional order on the dynamics of the map for
a specific set of parameter values. We fix the parameters and initial conditions at (α, β, γ, δ) =

(0.9,−0.6013, 2, 0.5) and (x (0) , y (0)) = (−0.72,−0.64), respectively. Figure 6 shows the bifurcation
plot with the critical parameter υ ∈ [0, 1] being changed in steps of Δυ = 0.005. This is interesting
in that it shows that although the chaotic behavior disappears when the fractional order drops close
to 0.95, it is observed again over intermittent intervals. Chaos does not disappear totally until the
fractional order is very low.

Figure 6. Bifurcation diagram of the fractional Tinkerbell map (7) with υ ∈ [0, 1], Δυ = 0.005,
(α, β, γ, δ) = (0.9,−0.6013, 2, 0.5), and (x (0) , y (0)) = (−0.72,−0.64).

The largest Lyapunov exponent corresponding to the this bifurcation diagram in the x-υ plane is
depicted in Figure 7. From the figure, we observe that for a fractional order larger than 0.952, λmax is
positive, which implies that the fractional Tinkerbell map is chaotic. During the interval (0.6609, 0.952),
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λmax is observed to change intermittently between positive and negative signs, which means that chaos
starts to appear and disappear. Finally, for values lower than 0.6609, chaos disappears completely.
These results agree with the bifurcation diagram in Figure 6.

Figure 7. The largest Lyapunov exponent as a function of the fractional order υ for the same parameters
and initial conditions in Figure 6.

4. Control of the Fractional Tinkerbell Map

In this section, we show that the proposed fractional Tinkerbell can be stabilized by means of a
simple adaptive feedback controller. In order to be able to establish the asymptotic convergence of
the controlled states towards zero, we first need to recall some important results from the literature
concerning the asymptotic stability of fractional discrete systems. Since fractional discrete calculus is
still relatively new, the existing literature related to stability is very limited. There are two main ways
of establishing asymptotic stability. The first relies on the linearity of the system and places conditions
on the eigenvalues of the Jacobian [31]. The second scheme is a generalization of the well-known
Lyapunov direct method [32]. Although, the Lyapunov method is powerful and can support different
types of systems, its has yet to be established for delayed fractional discrete systems, which renders it
unusable for the system at hand. Hence, our objective here is to design the control laws to linearize
the system, which will allow us to use the stability theory of linear systems. The following theorem
summarizes the result of [31].

Theorem 1. The zero equilibrium of the linear fractional discrete system:

CΔυ
a F (t) = MF (t + υ − 1) , (9)

where F(t) = ( f1(t), ..., fn(t))
T, 0 < υ ≤ 1, and M ∈ Rn×n, is asymptotically stable if the eigenvalues λ of

M satisfy:

λ ∈
{

z ∈ C : |z| <
(

2 cos
|arg z| − π

2 − υ

)υ

and |arg z| > υπ

2

}
(10)

for all t ∈ Na+1−υ.

Consider the controlled version of (7) given by:
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

CΔυ
a x (t) = x2 (t − 1 + υ)− y2 (t − 1 + υ) + (α − 1) x (t − 1 + υ)

+βy (t − 1 + υ) + ux (t − 1 + υ) ,
CΔυ

a y (t) = 2x (t − 1 + υ) y (t − 1 + υ) + γx (t − 1 + υ)

+ (δ − 1) y (t − 1 + υ) + uy (t − 1 + υ) ,

(11)
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where ux (t) and uy (t) are adaptive control terms. The following theorem presents the proposed
control laws.

Theorem 2. The states of the controlled 2D fractional Tinkerbell map (11) are guaranteed to converge towards
zero asymptotically subject to: {

ux (t) = y2 (t)− x2 (t) ,
uy (t) = −2x (t) y (t)− γx (t) .

(12)

Proof. Substituting (12) into (11) yields the dynamics:

{
CΔυ

a x (t) = (α − 1) x (t − 1 + υ) + βy (t − 1 + υ) ,
CΔυ

a y (t) = (δ − 1) y (t − 1 + υ) ,
(13)

or more compactly:
CΔυ

a (x (t) , y (t))T = A (x (t) , y (t))T , (14)

with:

A =

(
α − 1 β

0 δ − 1

)
. (15)

The eigenvalues of Aare simply λ1 = α − 1 and λ2 = δ − 1. It is straight forward to see that
these eigenvalues satisfy the conditions of Theorem 1. Consequently, the zero solution of (13) is
asymptotically stable, and the states of the controlled map (11) are asymptotically stabilized.

The result of Theorem 2 can be easily put to the test. Consider, for instance, parameters
(α, β, γ, δ) = (0.9,−0.6013, 2, 0.5), initial conditions (x (0) , y (0)) = (−0.72,−0.64), and fractional
order υ = 0.98. Using a modified version of the numerical formula (8), we obtain the states depicted
in Figure 8. Clearly, the states do converge towards the all-zero solution. Although the convergence
was only established for the commensurate case, experiments have shown that the proposed control
laws are also valid for the incommensurate case. Figure 9 shows the controlled states with the same
parameters and initial conditions from above, but with different fractional orders (υ1, υ2) = (0.99, 0.95).
Again, we see that the states do in fact converge towards zero, indicating successful stabilization.
However, it is apparent that the convergence happens faster in the commensurate case where υ1 = υ2.

Figure 8. Stabilized states of the controlled fractional Tinkerbell map (11) with parameters (α, β, γ, δ) =

(0.9,−0.6013, 2, 0.5), initial conditions (x (0) , y (0)) = (−0.72,−0.64), and fractional order υ = 0.98.
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Figure 9. Stabilized states of the controlled fractional Tinkerbell map (11) with parameters (α, β, γ, δ) =

(0.9,−0.6013, 2, 0.5), initial conditions (x (0) , y (0)) = (−0.72,−0.64), and fractional orders (υ1, υ2) =

(0.99, 0.95).

5. Conclusions

In this paper, we have considered a fractional Caputo-difference form of the standard Tinkerbell
chaotic map, which is well known for its rich dynamics and interesting characteristics. The dynamics
of the fractional Tinkerbell map were investigated numerically using phase plots, bifurcation diagrams,
and Lyapunov exponents. Through this investigation, we observed that the fractional order has a
significant effect on the fractional map’s dynamics. This confirms what has been reported previously
in the literature and suggests that the fractional map is superior to the standard one, as it includes
more degrees of freedom.

We have also introduced a feedback linearization stabilizing controller for the proposed map
and established the asymptotic convergence of the states towards the all-zero solution by means of
the stability theory of linear fractional discrete systems. The success of the proposed scheme was
demonstrated through numerical simulations both in the commensurate and incommensurate cases.

Although feedback linearization is simple to design and implement, its practicality has been
challenged by many in the control and cybernetics research communities. For future work, we plan
to investigate other control schemes that can perform better in terms of the power consumption and
other essential criteria. The main challenge that we anticipate is the limited literature concerning the
stability of fractional discrete systems, especially on the Lyapunov method. This would have to be
addressed in order to be able to establish the convergence of any new control scheme.
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Abstract: Computer network administrators are often interested in the maximal bandwidth that can
be achieved between two nodes in the network, or how many edges can fail before the network
gets disconnected. Classic maximum flow algorithms that solve these problems are well-known.
However, in practice, network policies are in effect, severely restricting the flow that can actually
be set up. These policies are put into place to conform to service level agreements and optimize
network throughput, and can have a large impact on the actual routing of the flows. In this work,
we model the problem and define a series of progressively more complex conditions and algorithms
that calculate increasingly tighter bounds on the policy-compliant maximum flow using regular
expressions and finite state automata. To the best of our knowledge, this is the first time that specific
conditions are deduced, which characterize how to calculate policy-compliant maximum flows using
classic algorithms on an unmodified network.

Keywords: communication networks; maximum flow; network policies; algorithms

1. Introduction

Connecting two nodes in a computer communication network involves setting up paths, possibly
more than one. Often, this is done with resiliency in mind: clearly, having more than one path between
nodes, it might be possible to route around a failed link or node, depending on the paths themselves
and the failed node or link. Also, network operators provide multiple paths between nodes in order to
increase the maximum achievable throughput or flow in between these nodes.

In practice, however, network policies are in effect, effectively restricting the flow that can be set
up between two nodes in the network. Specific restrictions can be implemented to optimize routing,
due to security constraints or because of policies and agreements between different network operators.
As one example, inter-domain paths in the internet often fulfill a valley-free routing constraint [1,2]
which is a simple condition that models real-life business agreements between different operators.
Compared to a policy-free routing model, these conditions severely restrict allowed paths and might
have a large impact on the overall throughput between two nodes when the conditions are strictly
enforced. Conditions also influence path diversity, which in turn has a large impact on the overall
resiliency of the connection.

Calculating the maximum throughput that can be achieved between two nodes in a network can
easily be done via classic techniques solving the maximum flow problem, such as the algorithm of
Ford–Fulkerson or the push-relabel method [3,4]. However, these algorithms do not take into account
policies and do not enforce any condition or constraint at all. In this work, we will adapt generic flow
algorithms, such that the flow that is achieved actually is a policy-compliant maximum flow. Policies
are defined using finite state automata (FSA) [5,6], as their expressive power is sufficient for many
purposes in real life, while still being conceptually simple.

We will define an algorithm that exactly solves the policy-compliant maximum flow problem,
however, at the expense of a large computational footprint. Then, we will continue to adapt the classic
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algorithms and datastructures such that they take into account policies that can be expressed using
FSA. These algorithms, however, do not guarantee exact solutions to the problem anymore; they
merely provide lower bounds to the exact answer. At each step, we are able to tighten the lower
bound, such that it comes closer to the exact solution. However, each step also implies additional
computational work, so we are trading off the quality of the results with the time needed to run
the algorithms.

The rest of the paper is organized as follows. First, in Section 2 we provide some background
about policies and how they can model certain conditions and constraints that are applied in real
life. We also point out some difficulties that arise when trying to adapt the classic algorithms. Then,
in Section 3 we discuss the formal model and the classic algorithms from literature, and how we can
formally model policy-compliant connections. Next, in Section 4 we adapt the algorithms that were
discussed in Section 3 to obtain a series of techniques that allow us to calculate lower bounds to the
problem. Finally, Section 5 discusses the results obtained, and concludes this work, after which we
provide an outlook to future work.

2. Background and Context

Policies are very important in today’s internet. Specific agreements between operators are often
hidden from prying eyes, but they can have a huge impact on how specific paths are set up between
them. It turns out that many network policies, used in practice, can be translated in very simple formal
languages, all belonging to a class of formal languages called “regular languages” [5,6]. This class is
one of the most basic classes of languages used in computer science, as it is non-trivial but contains
a very broad range of languages with widely differing properties that are very useful in practice.

The complexity of properties which we can express using regular languages is larger than would
be expected at first sight. To provide a non-trivial, albeit contrived example, consider a government
that wants to contact its embassy located in another country. Some links are trusted, as they are
operated by friendly states, but some links in between may be eavesdropped upon by a rival state.
Traffic crossing such links needs to be encrypted; once encrypted, traffic may be routed through any
link in the network. The receiving party will need to decrypt the message, before it can be distributed to
internal data-processing departments. The government thus places into force the following conditions:
traffic from the government to the embassy should either be sent through links owned exclusively by
friendly states, or it should pass the encryption box, after which it can be routed through any link.
However, if encrypted, the message has to be decrypted before delivery at the internal departments at
the embassy, i.e., pass through a specific decryption box.

It is clear that enforcing such policies is important, moreover such policies should be formalized
instead of specified in vague terms as above. Regular languages fit that job quite well, as they allow
policies like the one above, next to other much more involved policies, to be specified without any
possibility for misunderstanding. Moreover, once specified, network-routes can be automatically
validated against a set of policies, and compliance can be trivially checked.

Taking into account policies in the network, a natural question is to ask for their impact on the
routing between nodes in the network. More specifically, in this work we are mainly interested in their
impact on the maximum flow achievable between two nodes. Indeed, previously acceptable paths
suddenly do not obey the specific policies, and as such, some routes, maybe all, will become invalid.
Thus, the policy-compliant maximum flow between two nodes needs to be redefined and recalculated.
Gaining insight into the flow-structure between two nodes also tells us something about resiliency
in the network. Operators might be convinced their network has sufficient spare capacity, however,
depending on the policy at hand and the specific structure of the network, a failing link might have
tremendous consequences as re-routing traffic around the failure might invalidate the policy which
is unacceptable.

We thus come to the following main problem-statement that will be treated in this work: how to
calculate or approximate the policy-compliant maximum flow between two nodes?

18



Appl. Sci. 2019, 9, 863

Clearly, policy-compliance and both the theoretical and practical consequences are important in
the design and operation of networks. From a practical point of view, much information can be found
about policies and being compliant, and multiple frameworks for the management and monitoring
of policies exist and are in current use. In contrast, few theoretical models have been developed,
and literature is sparse when taking a more fundamental approach to the problem.

Caesar and Rexford [7] discuss how routing policies came into existence, and how the
protocols have evolved over time and became increasingly complex. They discuss how common
policies are implemented and address the problems that arise in applying and supporting policies.
Feamster et al. [8] discuss fundamental objectives for interdomain routing and traffic engineering and
provide practical guidelines. They show how greater flexibility can be gained in several situations and
demonstrate the manipulation of traffic via small changes in specific routes. The paper by Hu et al. [9]
proposes an approach to overcome the inherent constraints of compliant recovery schemes. Adapting
protocols, they succeed in improving route diversity, in turn increasing resilience.

Klöti et al. [10] proposed a graph-transformation technique that constructs a tensor product
of a graph and a finite state automaton. They show how to model policies using FSA and apply
standard flow maximization algorithms on the transformed graph in order to obtain bounds for
the policy-compliant maximum flow problem. Sobrinho et al. [11] provide a deep mathematical
analysis to gain insight in the inner workings of route-vector protocols. They relate this to a class of
routing policies and quantify how much intrinsic connectivity is lost due to typical routing policies.
Erlebach et al. [12] approximate the maximum number of edge- and node-disjoint valid paths between
two nodes, via an involved mathematical theory and specific approximation-algorithms.

Soulé et al. [13] provide a declarative formal language based on logical formulas and regular
expressions to express network policies in the Merlin framework. After compilation, a constraint
solver allocates paths. Tools are provided to verify whether conditions are violated. Hinrichs et al. [14]
introduce a declarative policy management language. They focus on expressive power so that policies
can be expressed naturally while still being able to enforce policies efficiently. They focus on enterprise
networks, and their design using formal mathematical languages is attractive.

Raghavan et al. [15] provide a practical authenticated source routing system that allows for
fine-grained path selection and enforcement of cryptographic policies. Capabilities can be defined and
composed resulting in complex statements defining specific policies.

Godfrey et al. [16] introduce so-called pathlet routing, pathlets being building blocks which
can be concatenated to obtain end-to-end routes fulfilling policy constraints. Pathlet routing can
handle typical policies, but also other recent multipath routing proposals or source-routing approaches.
Batista et al. [17] propose a policy-based OpenFlow network management framework using the Ponder
policy definition language. They focus on simplicity of the system, trying to infer both static and
dynamic conflicts. In [18] they update their work and propose a more theoretical approach to
conflict detection using first-order mathematical logic to model flows. A Prolog rule-engine applies
condition-action rules to infer problems. Xu and Rexford [19] discuss problems concerning multipath
interdomain routing and introduce MIRO (Multi-path Interdomain ROuting), which gives transit
domains control over the flow across their infrastructure. MIRO remains backwards compatible with
other technologies and offers large flexibility with reasonable overhead.

3. Graph Model and Basic Algorithms

We now introduce basic concepts that are needed in this work. Intuitively, we can think about
a flow network like an oil-producing plant, where oil is drilled at one site and needs to be transported
to an oil depot via a set of pipes. Following the flow from the source to the sink, the oil can be split
or joined at junctions. Most important here is the fact that the path that was followed by a certain
molecule of oil is of no importance: it carries no history and passes through junctions anonymously.
In contrast, in this work, we need to pay attention to the specific path that a certain amount of flow
has followed: it carries its history with itself, see Figure 1. The amount of history that accompanies
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the flow is, however, limited: it is represented via its state, and the number of possible different states
is limited by the size of the automaton (cf. infra). To understand how to model policies using FSA,
we refer to [10].

oil

a
b

c

d
e

f

g

Figure 1. It doesn’t matter for oil whether it followed path abc, path def or path dgc, but in this paper,
we do care about the specific paths followed. Policies about which path is acceptable and which path is
not, are expressed via constraints on the labels across the paths, i.e., abc, def and dgc.

3.1. Flow Networks and Flows

We now introduce flow networks and flows, following the approach taken by Cormen et al. [4].
These definitions might differ from other approaches in several aspects, e.g., the fact that the capacity
function c and the flow f are total functions, allowing more concise and elegant definitions of
constraints. The rationale behind this way of defining the context is included in Cormen et al. [4] and
we refer interested readers to study the mathematical discussions in that book. We thus define a flow
network G = (V, E) as a directed graph together with a capacity function c : V × V → R such that
each edge (u, v) ∈ E has a nonnegative capacity c(u, v) ≥ 0. Note that c is a total function such that,
if (u, v) /∈ E, we have c(u, v) = 0. Moreover, we require that if E contains a certain edge (u, v), then
there is no reverse edge (v, u) present in E. We also disallow loops such that ∀u : (u, u) /∈ E. Two
specific nodes in the graph are now chosen out of V, one vertex being the source s and one vertex
being the sink t. We now want to send a flow from s to t, a flow being a total function f : V × V → R

subject to the following constraints:

• A capacity constraint which expresses that flow can never exceed capacity:

∀u, v ∈ V : 0 ≤ f (u, v) ≤ c(u, v) (1)

• A flow conservation constraint which expresses that for all nodes (except source and sink) the
incoming flow equals the outgoing flow:

∀u ∈ V − {s, t} : ∑
v∈V

f (v, u) = ∑
v∈V

f (u, v) (2)

Note that f (u, v) = 0 if (u, v) /∈ E.
The value | f | of a flow is defined as the flow leaving the source minus the flow arriving at the

source: | f | = ∑v∈V f (s, v)− ∑v∈V f (v, s). Equivalently, we can define the value of the flow just as well
as | f | = ∑v∈V f (v, t)− ∑v∈V f (t, v). Note that one can define the value of the flow using a formula
containing only s but not t, or a formula containing only t but not s; one never needs both s and t in
one formula at the same time, see the book by Cormen et al. [4]. Also note that we allow ∑v∈V f (v, s)
as well as ∑v∈V f (t, v) to be strictly larger than 0. The classic problem, given a flow network G, is to
maximize the flow | f | from s to t under the constraints above. (The |.|-notation denotes flow value, not
absolute value or cardinality.)

3.2. Residual Graphs and Augmenting Paths

One line of solving this so-called maximum flow problem is via the introduction of residual
graphs and the calculation of augmenting paths. In short, we iteratively increase the value of the flow,
starting with ∀u, v ∈ V : f (u, v) = 0. At each step, we calculate an augmenting path in the residual
graph, which is nothing but the original graph, extended with return-edges. We will now formally
define the necessary concepts.
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First, we define the residual capacity c f : V × V → R in the following way. We iterate over all
edges (u, v) ∈ E and for each such edge we define the following:

{
c f (u, v) = c(u, v)− f (u, v)

c f (v, u) = f (u, v)
(3)

If there is no edge between u and v in any direction, i.e., (u, v) /∈ E and (v, u) /∈ E, then both
c f (u, v) = 0 and c f (v, u) = 0.

Next, we define the residual network Gf = (V, Ef ), where Ef = {(u, v) ∈ V × V : c f (u, v) > 0}.
So, for each edge in the original graph we have a residual edge if the capacity of that edge is not filled
up yet, and moreover we add a reverse edge when it carries any flow at all.

This residual graph will now be used to find augmenting paths. Given a flow network G = (V, E)
and a flow f , an augmenting path p is defined as a path from s to t in the residual network, that is
p = [e1, e2, . . . , en], such that

• edges belong to Ef , thus
∀ei : ei ∈ Ef , (4)

• we start in s, thus
∃v : e1 = (s, v), (5)

• succeeding edges are connected, thus

∀i ∈ {1, . . . , n − 1} : ∃u, v, w : ei = (u, v) ∧ ei+1 = (v, w) (6)

• we end in t, thus
∃v : en = (v, t). (7)

In order to increase the flow f , we will change the flow along the edges of the augmenting path p
with the maximum amount possible, namely the residual capacity of the path p which is

c f (p) = min{c f (u, v) : (u, v) ∈ p}. (8)

The flow f can now be increased to a new flow f ′ as follows:

f ′(u, v) =

⎧⎪⎪⎨
⎪⎪⎩

f (u, v) + c f (p) if (u, v) ∈ p,

f (u, v)− c f (p) if (v, u) ∈ p,

f (u, v) otherwise.

(9)

Iteratively finding augmenting paths in a residual graph and increasing the flow will finally
come to a stop when there are no augmenting paths anymore. Then, the maximum flow has been
reached. Depending on the procedure used to find augmenting paths, the above algorithm is called
Ford–Fulkerson or Edmonds–Karp.

3.3. Realization of a Flow

Apart from calculating the value of the maximum flow in a flow network, we are also interested
in the actual paths followed by the flow; this set of paths is called the “realization” of the flow.
Augmenting paths are a device to calculate the maximum flow, however, augmenting paths are not
real paths in the flow network as they might comprise edges from Ef that are not in E. Define a path p
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from s to t in G in exactly the same way as an augmenting path, except that edges in the path should
be contained in E instead of Ef . Thus, in addition to (5)–(7), we replace (4) with

∀ei : ei ∈ E. (10)

Given a flow network G and accompanying maximum flow f , it is possible to determine a set

S = {(p1, c1), (p2, c2), . . . , (pn, cn)} (11)

that realizes that flow. Intuitively, we start with no flow in the network at all. Then, for each of the
paths pi we fill all edges of that path with an additional amount ci. After all paths are processed,
we obtain the maximum flow f .

Construction of this set S can be done simultaneously with the calculation of the maximum flow.
During execution of the maximum flow algorithm, we perform the following steps every time a new
augmenting path p with additional flow amount c has been found, starting with an empty set S = {}.

1. We split the augmenting path in forward sections and backward sections. That is,
if p = [e1, e2, . . . , en], we cut it down and obtain [[e1, . . . , ei], [ej, . . . , ek], . . . , [el , . . . , en]] such that
every section [ex, . . . , ey] contains only edges from E or only edges from Ef − E. Without losing
generality, we only discuss the case where the augmenting path p consists of two forward
sections with one backward section in between, thus p = [[e1, . . . , ei], [ej, . . . , ek], [el , . . . , en]] such
that {e1, . . . , ei, el , . . . , en} ⊆ E and {ej, . . . , ek} ⊆ Ef − E.

2. For this backward section [ej, . . . , ek] there must exist a path p′ carrying some flow in the
opposite direction, which the augmenting path p is canceling out. Indeed, as [ej, . . . , ek] are
edges in Ef , they have been introduced in the residual graph Gf thanks to the fact that the
corresponding forward edges in E have already been used in a previously found path. Thus,
if ej = (uj, vj) and ek = (uk, vk), then S will already contain an item (p′, c′) where the path
p′ = [. . . , (vx, vk), (vk, uk), . . . , (vj, uj), (uj, uy), . . .], as the augmenting path p is crossing that
section in the reverse direction, see Figure 2.

3. Remove this item (p′, c′) from S, and add two new paths [e1, . . . , ei, (uj, uy), . . .] and
[. . . , (vx, vk), el , . . . , en], each with amount c. As such, the augmenting path has been cut and
glued together with a previously found path, resulting in two new paths.

4. Now, it might be that c < c′. In that case, path p′ is not to be removed from S entirely, as it still
carries some flow that was not canceled by p. Add (p′, c′ − c) to S.

Thus, each iteration of the maximum flow algorithm results in an augmenting path that is possibly
cut in sections to remove reversed edges from the residual graph. Forward sections are glued together
with sections from previously found paths. When no augmenting paths can be found, the set S will
contain paths and associated flow amounts, that together sum up to the maximum flow. That is,
if upon termination S = {(p1, c1), . . . , (pn, cn)}, we have

f (u, v) = ∑
{(pi ,ci):(u,v)∈pi}

ci (12)

s

e1 ei

el en

tuyujvj
vk ukvx

ej

ek

Figure 2. Three sections: forward, backward and forward.
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Thanks to the fact that every flow has a realization and the fact that it is easy to derive the flow
from a realization, from now on we identify a realization of a flow and the flow itself, and use the two
concepts as one.

4. Policy-Compliant Paths and Algorithms

We now continue to define the concept of policy-compliant paths. Then we want to find the
maximum flow in the network, allowing only the use of such policy-compliant paths. We will provide
algorithms that calculate lower bounds, as well as exact solutions.

4.1. Finite State Automata

We now proceed to define finite state automata [5,6], which are the simplest of all classic automata.
Note that we will only consider deterministic automata, although for finite state automata we have that
non-determinism does not add expressive power, i.e., the class of deterministic finite state automata is
exactly the same as the class of non-deterministic finite state automata.

We define a deterministic finite state automaton as M = (Q, Σ, δ, q0, F), where

• Q is a finite set of internal states,
• Σ is a finite set of symbols, called the input alphabet,
• δ : Q × Σ → Q is the (total) transition function,
• q0 ∈ Q is the start (or initial) state,
• F ⊆ Q is the set of final states.

Such an automaton works as follows. Initially, we start with an input word w ∈ Σ∗, where Σ∗

is the set of strings obtained by concatenating zero or more symbols from Σ. Each of these symbols
of the word w gets consumed, from left to right, while the automaton changes its state accordingly
to its transition function, taking as input the current state and the symbol just read. If the automaton
starts in state q0, and finishes reading the word w while reaching state q, then we say that the word
w is accepted by the automaton if and only if q ∈ F. For convenience, we introduce the extended
transition function δ∗ : Q×Σ∗ → Q, where the second argument is a string rather than a single symbol.
We define δ∗ recursively as follows:

δ∗(q, w) =

{
q if w = λ,

δ∗(δ(q, a), v) if w = av,
(13)

where a ∈ Σ and v, w ∈ Σ∗. Note that we also introduced the empty word λ out of convenience for
this definition. We won’t need it any further in this work.

4.2. Labeled Networks and Policy-Compliant Paths

Given a certain flow network G = (V, E) and an FSA M, we define a labeling function l : E → Σ
that attaches one symbol to every edge of the graph, which becomes a labeled flow network. Before,
we were interested in all paths from source to sink, in order to maximize the total flow value of the
network. Now, we constrain the allowed paths to only those that are accepted by the FSA M. Formally,
we define a policy-compliant path p from s to t in G to be a sequence of edges from E, such that the
symbols that are encountered, in order, constitute a word that is accepted by M. Thus, in addition to
(5)–(7) and (10), we add the following constraint:

δ∗(q0, l(e1)l(e2) . . . l(en)) ∈ F (14)

Thus, we are looking for paths from source to sink that are accepted by the automaton. Now we
can define the policy-compliant maximum flow problem (PCMF) as calculating the maximum flow | f |
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from s to t in a labelled flow network Gf , subject to the constraint that all paths that realize the flow f
are accepted by an FSA M, i.e., they are policy-compliant paths.

4.3. Brute Force Approach

A basic, inefficient way of solving the policy-compliant maximum flow problem is by way of brute
force. In its essence, we first calculate all policy-compliant paths from source to sink, and afterward
try out all different orders in which these paths can be filled up. The maximum flow will be reached
by at least one of these orderings. As such, this approach will result in the exact solution, however,
at the expense of large computational complexity and memory requirements. Indeed, as we employ
our search via e.g., a depth-first-search, it might be the case that we need to visit a certain vertex
u ∈ E more than once, because the internal state of the FSA might be different. Effectively, we need to
build a new graph GBF that contains tuples of vertices and states. After appropriately defining the
edges between these tuples, a typical depth-first-search might be used to enumerate successively all
policy-compliant paths. More formally, we perform the following steps.

1. Define GBF as the graph with VBF = {(u, q) : u ∈ V ∧ q ∈ Q} and EBF = {((u1, q1), (u2, q2)) :
u1, u2 ∈ V ∧ q1, q2 ∈ Q ∧ (u1, u2) ∈ E ∧ δ(q1, l((u1, u2))) = q2}. That is, the vertices of GBF are
all possible tuples of vertices in V and states in Q, and the vertices in GBF are connected if and
only if the corresponding vertices u1 and u2 in V were connected by an edge e ∈ E, such that the
FSA changes its state from q1 to q2 when reading the symbol l(e) associated with the original
edge. Thus, we are defining GBF as the Cartesian product of V and Q.

2. Start a depth-first-search from (s, q0) to all (t, q) such that q ∈ F. This will produce all paths
of the form p = [e1, . . . , en] with ∀ei : ei ∈ EBF while ∃v ∈ VBF : e1 = ((s, q0), v) and ∃v ∈
VBF : ∃q ∈ F : en = (v, (t, q)). Every such path corresponds to a policy-compliant path in G,
and every policy-compliant path in G will be found this way. Collect all paths found by this
depth-first-search in the set BF = {p1, . . . , pn}.

3. Generate all permutations of the elements in this set BF; this results in n! sequences of the n
paths. Each of these sequences will correspond to an ordering in which we fill the paths to their
residual capacity at that time. Note that it is not necessary to generate all permutations at once.
It is sufficient to do this iteratively via e.g., the Steinhaus–Johnson–Trotter algorithm.

4. Each such sequence s = [ps
1, . . . , ps

n] contains exactly the same items as BF itself. We define
an empty flow fs(u, v) = 0 and iterate through this sequence: for each path ps

i = [es
i,1, . . . , es

i,m] we
calculate mins

i = min{c(es
i,j)− fs(es

i,j) : 1 ≤ j ≤ m} which represents the largest amount of flow
that can be accommodated along the path ps

i at that moment. The flow fs can now be increased
to a new flow f ′s as follows:

f ′s(u, v) =

{
fs(u, v) + mins

i if (u, v) ∈ ps
i ,

fs(u, v) otherwise.
(15)

5. After all paths ps
i are processed, the final flow fs will be a lower bound for the policy-compliant

maximum flow for the network G. Thus, max{| fs|} will be the value of the policy-compliant
maximum flow.

It is clear that this approach results in the exact value of the solution to the policy-compliant
maximum flow problem. However, except for small networks and automata it will quickly take too
much space and time to execute.

4.4. First Lower Bound

To cut down on the needed computational resources, we start from the classic Ford–Fulkerson
or Edmonds–Karp algorithm. In its essence, these algorithms start with an empty flow, after which a
new augmenting path is looked for in the residual graph. If found, this augmenting path gives rise to
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an augmented flow, after which the residual graph is updated. Then, a new iteration is started. Once
no new augmented paths can be found, the algorithm has reached the maximum flow.

In order to apply this approach to the policy-compliant maximum flow problem, it will be
necessary to keep track of how the flow actually is realized, throughout the execution of the
algorithm. This relates to the fact that flows cannot merge and split anonymously anymore,
as discussed previously.

As a first step, it will be necessary to keep track of the different state-transitions that occur when
flow crosses an edge e = (u, v) ∈ E in a path p and changes state during that transition from state
qu ∈ Q in vertex u to state qv ∈ Q in vertex v. To that aim, we define transitions t to be members
of the set Q × Q = {(qu, qv) : qu ∈ Q ∧ qv ∈ Q}. For every edge e ∈ E we will now keep track
of all transitions that cross that edge, and thus define the total function T : V × V × Q × Q → R.
This function keeps track of the amount of flow that crosses the edge (u, v) while changing state
from qu to qv as the value T(u, v, qu, qv). As a direct consequence, we have at all times ∀u, v ∈ V :
∑qu ,qv∈Q T(u, v, qu, qv) = f (u, v) ≤ c(u, v) which expresses the fact that a flow over an edge can be
split up in different transitions, the amount of which add up exactly to the amount of flow crossing
that very edge.

Keeping track of this function T allows the algorithm to discriminate between the different states
in one single vertex, and the amount of the flow that is actually passing through that vertex having that
state at that moment. This information is then used to glue together already found policy-compliant
paths and a newly found augmenting path. In detail, this procedure works as follows.

1. Beginning with a labeled network G and a FSA M, we start a new flow and set f (u, v) = 0 for
all vertices u and v. Moreover, we set T(u, v, qu, qv) = 0 for all vertices u, v ∈ V and all states
qu, qv ∈ Q.

2. Finding the first policy-compliant augmenting path can be straightforwardly done. Indeed,
as the residual graph Gf is still the same as the original graph G (because ∀u, v : f (u, v) = 0),
the augmenting path that is found in the first iteration will be a path containing only forward
sections. The flow is then updated according to (9).

3. From the second iteration on, we need to take into account the reverse edges in the residual
graph with great care. Now, it is not sufficient anymore to simply look for policy-compliant
paths containing only forward sections, as an augmenting path may now contain reverse edges
from the residual graph. In general, we will look for an augmenting path p = [e1, . . . , en] where
ei ∈ Ef , that can have multiple forward and backward sections, and which can thus be split
as p = [[e1, . . . , ei], [ej, . . . , ek], . . . , [el , . . . , en]], such that each section [ex, . . . , ey] only contains
edges from either E or Ef − E. We will now determine the constraints that are to be applied to
ensure that the newly found augmenting path p can be split up and glued together with other
policy-compliant paths that are already part of the flow f .

4. For simplicity, we discuss the case where the augmenting path p consists of two forward
sections with one backward section in between, that is p = [[e1, . . . , ei], [ej, . . . , ek], [el , . . . , en]]

such that {e1, . . . , ei, el , . . . , en} ⊆ E and {ej, . . . , ek} ⊆ Ef − E. To identify the vertices involved,
suppose that ej = (uj, vj) and ek = (uk, vk), so p = [[e1, . . . , ei], [(uj, vj), . . . , (uk, vk)], [el , . . . , en]],
see Figure 2. Starting from state q0, the start state of the automaton, we will reach state
quj = δ∗(q0, l(e1) . . . l(ei)) after we crossed all edges [e1, . . . , ei] in the first forward section of
the augmenting path.

5. The first forward section of the augmenting path that we have found will be cut at this point, at
the cut-vertex uj. For this first approach to obtain a lower bound for the PCMF problem, we assert
the overly restrictive constraint that ∃uy ∈ V and ∃quy ∈ Q such that

(uj, uy) ∈ E ∧ T(uj, uy, quj , quy) > 0. (16)
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Choose such an edge e = (uj, uy) ∈ E and state quy ∈ Q. When the augmenting path p is cut at
vertex uj, we can glue the new flow that comes in via the forward section [e1, . . . , ei] to the flow
that leaves vertex uj in state quj via edge e = (uj, uy) and reaches state quy at the other end in
vertex uy. This flow is already available and does not concern us anymore.

6. Now, we need to cancel flow that used to cross the edges [(vk, uk), . . . , (vj, uj)], that is the
backward section of the augmenting path p, crossed in the opposite direction. This gives
rise to a second condition for this algorithm to find augmenting paths. This section contains
a flow, reaching state quj at the end. Tracing back where this flow comes from, we require
that there must exist some flow passing vertex vk in state qvk ∈ Q which crosses the edges
[(vk, uk), . . . , (vj, uj)] finally reaching vertex uj in state quj . This observation immediately
translates to the following condition:

∃qvk ∈ Q : δ∗(qvk , l((vk, uk)) . . . l((vj, uj))) = quj . (17)

Choose such a qvk ∈ Q. Then, the flow that is already present in the network and passes vertex vk
in state qvk will be canceled over the section [(vk, uk), . . . , (vj, uj)].

7. We now need to consider the last forward section [el , . . . , en]. This section starts in vertex vk and
ends in the sink t, thus ∃v ∈ V : el = (vk, v) and ∃v ∈ V : en = (v, t). We know that, having
reached state qvk in vk, we will cross edges [el , . . . , en] and need to reach some state qt ∈ F to
obtain a policy-compliant augmenting path. This immediately gives rise to the third and last
condition, which can be stated as

δ∗(qvk , l(el) . . . l(en)) = qt ∈ F. (18)

8. Suppose all conditions (16)–(18) for this augmenting path are fulfilled, which means that we have
found an augmenting path that can be joined with the already available policy-compliant paths
to increase the total policy-compliant flow. We now need to calculate the amount of flow that can
be sent over this augmenting path. First, define cuj = min{c f (u, v) : (u, v) ∈ [e1, . . . , ei]} to be the
capacity that is at most available along the first forward section of the augmenting path and thus at
the endpoint uj of this section. Likewise, define cvk = min{c f (u, v) : (u, v) ∈ [el , . . . , en]} to be the
amount of flow that is at most available along the second forward section of the augmenting path,
and thus the maximum amount of flow that can be diverted at the starting point vk of this section.
For the backward section of the augmenting path, define cvkuk = T(vk, uk, qvk , quk ), . . . , cvjuj =

T(vj, uj, qvj , quj), to determine the already crossing flow over the backward edges, taking into
account the state-transitions which we derived above. Taking everything together, we have

c f (p) = min{cuj , cvkuk , . . . , cvjuj , cvk} (19)

(cf. (8)). This denotes the additional flow c f (p), under the assumption that c f (p) > 0, that can
now be sent over the newly found augmenting path p, such that the resulting flow f can be
realized via only policy-compliant paths.

9. We now want to update the value of the flow f . This can be done via (9). However, we also need
to update the specific values of the function T, for all edges involved in the augmenting path. First,
we update T for all edges e = (ux, uy) in the forward section [e1, . . . , ei] via T′(ux, uy, qux , quy) =

T(ux, uy, qux , quy) + c f (p). Thus, for such an edge e = (ux, uy) we add an additional c f (p) units
of flow that change state from qux to quy while crossing edge e. For all edges [(vk, uk), . . . , (vj, uj)],
which are crossed in the reverse direction in the backward section of the augmenting path,
we set T′(ux, uy, qux , quy) = T(ux, uy, qux , quy) − c f (p), actually canceling out the pre-existent
transitions in that section. Finally, for the edges in the final forward section [el , . . . , en] we update
the transitions via T′(ux, uy, qux , quy) = T(ux, uy, qux , quy) + c f (p). This concludes the updates of
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the transitions-function T and the work that needs to be done when an augmenting path has
been found.

10. Iterate steps (3)–(9), that is, keep searching for augmenting paths that fulfill conditions (16)–(18)
and update the flow f according to (9) and the transition-function T via the equations above.
Once no more augmenting paths are found, stop iterating.

11. The resulting flow f can be realized via a set {p1, . . . , pn} of n policy-compliant paths pi. Thus,
the value | f | is a lower bound for the value of the policy-compliant maximum flow problem.

4.5. Second Lower Bound

Although the approach described above results in correct lower bounds for the policy-compliant
maximum flow problem, we point out that the conditions (16)–(18) that are imposed upon augmenting
paths are very restrictive. Indeed, it is easy to describe specific cases where the approach misses
additional augmenting paths due to these conditions, which can easily be relaxed at the expense of
additional computational work. The next approach, which will result in a second lower bound that is
tighter than the first bound, starts by relaxing condition (16).

In its essence, this condition says that for an augmenting path, containing a backward section,
it is necessary to glue the immediately previous forward section to a pre-existent policy-compliant
path at the cut-vertex, via an exact match of the state in that cut-vertex. Clearly, this is too restrictive
a condition as it would be sufficient if the augmenting flow arriving at that vertex could be continued
via the same edges, however taking different intermediate states in between.

1. To make this formal, consider the augmenting path p = [e1, . . . , en] where ei ∈ Ef ,
which may have multiple forward and backward sections, and which can thus be split as
p = [[e1, . . . , ei], [ej, . . . , ek], . . . , [el , . . . , en]], such that each section [ex, . . . , ey] only contains
edges from either E or Ef − E. For simplicity, we once more discuss the case where
the augmenting path p consists of two forward sections with one backward section in
between, that is p = [[e1, . . . , ei], [ej, . . . , ek], [el , . . . , en]] such that {e1, . . . , ei, el , . . . , en} ⊆ E
and {ej, . . . , ek} ⊆ Ef . To identify the vertices involved, say that ej = (uj, vj) and ek =

(uk, vk), so p = [[e1, . . . , ei], [(uj, vj), . . . , (uk, vk)], [el , . . . , en]]. The state at uj is defined as
quj = δ∗(q0, l(e1) . . . l(ei)).

2. For flow f , suppose that the policy-compliant paths P = {p1, . . . , pn} are the part of the realization
of f that crosses uj. Thus, ∀pi ∈ P : ∃vi ∈ V : (uj, vi) ∈ pi. For each of these policy-compliant
paths pi, the state upon arriving in uj is denoted by qi

uj
. Moreover, there might be more than

one path pi ∈ P that arrives in uj with state qi
uj

, that is for some i and j it might be the case that

i �= j and qi
uj

= qj
uj . The amount of flow that policy-compliant path pi carries is denoted by ci,

thus ∀pi ∈ P : (pi, ci) ∈ S, cf. (11).
3. Now, instead of stating in the first condition (16) that there must be a policy-compliant path

pi ∈ P such that quj = qi
uj

with ci > 0 it is, in fact, sufficient that there exists a path pi ∈ P such
that following the rest of the policy-compliant path pi after crossing uj results in a final state at the
sink t even though quj �= qi

uj
. More formally, if pi = [ei

1, . . . , ei
k, ei

l , . . . , ei
n] such that ei

k = (ux, uj)

and ei
l = (uj, uy) for some ux ∈ V and uy ∈ V, then it is sufficient to impose, instead of (16),

simply that
∃pi ∈ P : δ∗(quj , l(ei

l) . . . l(ei
n)) ∈ F. (20)

Choose such a pi ∈ P. That way, we are confident that the prefix l(e1) . . . l(ei) can
be joined together with a suffix l(ei

l) . . . l(ei
n) such that for the whole word holds that

δ∗(q0, l(e1) . . . l(ei)l(ei
l) . . . l(ei

n)) ∈ F.
4. At this point, we have to be careful which policy-compliant flows crossing the backward section

[ej, . . . , ek] we are going to cancel. Indeed, as the first section [e1, . . . , ei] is glued together with
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some policy-compliant path pi ∈ P at vertex uj via condition (20), we are looking for states
qvk ∈ Q at vertex vk such that, instead of (17) the following formula holds:

∃qvk ∈ Q : δ∗(qvk , l((vk, uk)) . . . l((vj, uj))) = qi
uj

. (21)

Indeed, after crossing section [ej, . . . , ek] in reverse direction we want to end in state qi
uj

instead
of quj .

5. Having fulfilled the condition to allow canceling flow across the backward section of the
augmenting path, we now need to check whether the flow arriving in vk in state qvk can actually
be diverted via the last forward section [el , . . . , en] to the sink t reaching state qt which needs to
be a final state. This is accurately expressed by (18) which we can leave unmodified.

6. Suppose conditions (18), (20) and (21) have been fulfilled. Then calculate the residual capacity
(19). Update flow f via (9) across the augmenting path using the value for the residual capacity,
and update transitions-function T across the augmenting path as done previously.

7. Finally, we need to update the transitions-function T across the final part of the policy-compliant
path pi, cf. (20). This final part consists of the edges [ei

l , . . . , ei
n], and thus we need to update T

for all edges (ux, uy) in this partial path. We update T via the formulae T′(ux, uy, qi
ux , qi

uy) =

T(ux, uy, qi
ux , qi

uy)− c f (p) and T′(ux, uy, qux , quy) = T(ux, uy, qux , quy) + c f (p), where we use the
notation qi

ux for the state that is reached at vertex ux when starting in state qi
uj

in vertex uj,
while qux denotes the state that is reached at vertex ux when starting in state quj in vertex uj.
After these updates, the augmenting path is processed entirely, and a new iteration can start.

Note that, in comparison to the approach for obtaining the first lower bound, condition (20)
not only has merits for being more relaxed, it also carries a serious drawback as checking whether
condition (20) holds involves more computational work than (16). One possible approach to check
whether (20) actually holds, is by a depth-first walkthrough of the realization associated with the
flow f . However, this is complicated by the fact that the flow might have multiple valid realizations,
some of which are compatible with (20), while some are not. We discuss this now in detail.

1. Consider the augmenting path p = [[e1, . . . , ei], [(uj, vj), . . . , (uk, vk)], [el , . . . , en]] from above,
where the state at uj is defined as quj = δ∗(q0, l(e1) . . . l(ei)). Suppose there exist two

policy-compliant paths pi ∈ P and pj ∈ P, such that their states in vertex uj are qi
uj

and qj
uj

respectively. Suppose that the realization of the flow that gave rise to these paths pi and pj is such
that pi = [. . . , (uj, u1), (u1, u3), (u3, u4), (u4, t)] and pj = [. . . , (uj, u2), (u2, u3), (u3, u5), (u5, t)]
and moreover that l((uj, u1)) = a, l((u1, u3)) = b, l((u3, u4)) = c, l((u4, t)) = d, l((uj, u2)) = e,
l((u2, u3)) = f , l((u3, u5)) = g and finally l((u5, t)) = h with {a, b, c, d, e, f , g, h} ⊆ Σ. Then,
as pi and pj are policy-compliant paths in the set P, it directly follows that δ∗(qi

uj
, abcd) ∈ F and

δ∗(qj
uj , e f gh) ∈ F, see Figure 3.

uj

u1

u3

u4

t

u2 u5

a b c d

e f g h

Figure 3. Fulfilling condition (20).

2. Suppose that moreover it holds that δ∗(qi
uj

, abgh) ∈ F and δ∗(qj
uj , e f cd) ∈ F, that is, for the paths

pi and pj it doesn’t really matter which way they take in the second diamond. However, suppose
that δ∗(quj , abgh) ∈ F as well as δ∗(quj , e f cd) ∈ F but δ∗(quj , abcd) /∈ F and also δ∗(quj , e f gh) /∈ F.
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3. Now, there is no way to fulfill condition (20), as no policy-compliant path through uj that
is part of the realization of f allows the prefix l(e1) . . . l(ei) to be extended by a suffix
to arrive at a final state in the sink. However, if the realization of the flow f was
such that it contained the policy-compliant paths [. . . , (uj, u1), (u1, u3), (u3, u5), (u5, t)] and
[. . . , (uj, u2), (u2, u3), (u3, u4), (u4, t)], then the prefix of the augmenting path p could have been
extended via a matching suffix to a final state. In short, condition (20) would have been fulfilled.

Thus, although the relaxed condition (20) can be used to generate augmenting paths that would
go unnoticed if applying (16), it suffers from the fact that previous decisions (like how to route
policy-compliant paths in case of multiple possibilities) can have a large impact on the number of
augmenting paths that can be found later on. As such, we have no guarantee that this second approach
will always calculate the exact value for the policy-compliant maximum flow problem, but merely
a lower bound. However, as (20) and (21) are fulfilled everytime (16) and (17) are fulfilled, we can
immediately derive that the second lower bound will be tighter than the first lower bound.

4.6. Third Lower Bound

Considering the approaches taken to calculate the first and the second lower bound, observe that
at several times choices have to be made, e.g., when fulfilling condition (17). Apart from the fact that
some of the conditions might be overly restrictive, we face the fact that we might miss augmenting
paths during the search when we make a bad choice, as well as the fact that we might need additional
iterations to reach the point where no more augmenting paths can be found. For example, consider (17)
and suppose that multiple states exist that fulfill the condition. By choosing one of them, an already
present policy-compliant path is chosen too, which implies that the amount of flow that can be canceled
has an upper bound that is equal to the minimum value of residual capacity across the backward section.
In turn, this restricts the total amount of flow that can be sent over the augmenting path due to (19).

Thus, in order to allow as much flow as possible to be sent over the augmenting path that is
constructed, one can check at the same time whether other transitions can be applied in parallel,
such that the total amount of flow that is canceled across the backward section is maximized. First, we
want to allow multiple pre-existing policy-compliant paths that cross the cut-vertex to be involved in
the process, such that we do not have to choose at all which path we want to work with in (20). Multiple
policy-compliant paths might fulfill the condition, even reaching the same state in the cut-vertex but
following another way to the sink. Also, we want to allow multiple states at the end of the backward
section to be involved in the process, such that we do not have to choose at all which state we want to
work with in (21). Multiple states might fulfill the condition, and they even might be equal to each
other even though they are part of different policy-compliant paths. We need to match the possibilities
in both sets to maximize the flow that we can cancel along the backward section in the middle of the
augmenting path. This being, of course, under the additional condition (18).

We start again with augmenting path p, set P and set S. Now select a subset P′ ⊆ P such that

∀pi ∈ P′ : δ∗(quj , l(ei
l) . . . l(ei

n)) ∈ F (22)

∀pi ∈ P′ : δ∗(qi
vk

, l((vk, uk)) . . . l((vj, uj))) = qi
uj

(23)

∀pi ∈ P′ : δ∗(qi
vk

, l(el) . . . l(en)) ∈ F (24)

Σpi∈P′ci ≤ min(cuj , cvk ). (25)

This set P′ can be iteratively built, starting from the empty set and choosing and adding pi’s while
(25) holds. Once the iteration comes to a stop, augment the flow along the path p with the value Σpi∈P′ci
and update f and T. As the conditions (18), (20) and (21) imply that (22)–(24) will also hold, we obtain
once more a tighter bound. However, there is no guarantee that the policy-compliant maximum flow
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will be reached. This is the most generic specification of a solution to the policy-compliant maximum
flow problem that we derived.

4.7. Implementation and Experimental Results

Implementing classical maximum flow algorithms is not difficult as they are well-studied. Typical
approaches include augmenting path algorithms, push-relabel algorithms and others. They have varying
complexities in solving the problem. In practice, execution times are also dependent on the structure
and density of the network. We chose an augmenting path approach. Finite state automata are typically
implemented in a table-driven way, and it is quite straightforward to implement them efficiently, like we
did. However, combining a maxflow algorithm with an FSA multiplies the complexities of both. Indeed,
sending a flow over an edge multiple times was now allowed, as the states at the beginning and the end
of the edge when crossing it for the first time might be different from the states while crossing it a second
time. Thus, utmost care is needed to implement these algorithms correctly. All code is freely available in
Supplementary Materials.

Although this paper is mainly intended as a theoretical study, we performed a large number of
experiments validating our approach and formulas, in order to build some insights in the practical
use of our approach, execution times and the accuracy reached. However, these values must be
interpreted as rough estimates, and can only serve as rules-of-thumb, as much is dependent on the
actual networks and finite state automata used in the experiments. Indeed, for evaluating the work,
a network generator was implemented which allowed for the use of random networks having differing
numbers of vertices and edges. Of course, the higher the density of edges, the more paths can be
found and the higher the calculation time for the varying parts of the algorithms. We experimented
with graphs having up to 256 vertices, with a random choice of edges (from one to the maximum
number, i.e., n(n − 1)/2). Also, we implemented an FSA generator, which allowed experimenting with
different policies, all expressed as regular expressions. The maximal number of states allowed was
maximally of the same order as the number of vertices, and clearly it holds that allowing more states
leads to higher computational times. Indeed, a flow can reach a vertex in about O(|V|) possible states,
which also means that an algorithm looking for augmenting paths can be in about O(|V|2) states itself.
Also, the flow over any edge is now parameterized by the states of both endpoints of the edge; as we
use up to |V| possible states this results in the memory-use for function T scaling in the order O(|V|4).

For our experiments with networks with up to 32 vertices and FSAs with up to 32 states, we found
that running the brute-force algorithm either finished within a second, or did not finish even after
30 min, after which we always stopped the experiments. Careful investigation shows that the density
of the network, combined with the structure of the FSA, is of prime importance to whether or not the
algorithm finishes fast. For all the randomly generated experiments where the brute-force approach
finished and provided us with the maximal value, the first lower bound also reached that same
maximal value, but even in the worst observed cases in less than a millisecond, which is three orders
of magnitude faster than the brute-force approach. The first lower bound algorithm could not find
the maximal value only for specifically designed networks and FSAs, such as the network in Figure
3, aimed specifically at fooling the algorithm. For random experiments, the second lower bound
algorithm always gives the same result as the first algorithm, taking only a little bit more time to
execute. The third lower bound tries out much more combinations and comes closer to the brute-force
approach in computational time, and in our random experiments always obtained the same maximal
flow values as the second lower bound. We also executed random experiments with up to 256 vertices
without having the maximal flow value, because the brute-force algorithm did not terminate. For the
subset of these experiments where the three lower bound algorithms did terminate, also no differences
were obtained in the resulting values. Thus, differences in the accuracy of results were never detected
in any random experiment, and could only be obtained with specifically designed and contrived
networks and automata. Runtimes for the first lower bound algorithm, for random networks having
up to 256 vertices, are shown in Figure 4. If the algorithm finished, it typically finished fast (i.e., within
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about 10 s), as can be seen in the figure. If it didn’t finish, we aborted the execution after 30 min
(not depicted).

Concluding, we advise to use the first lower bound algorithm, as it terminates very fast and for
our random experiments always reached the maximal value when known, i.e., when the brute-force
approach also finished. It couldn’t find the maximal value only in contrived examples, specifically
designed to fool the algorithm. Also, we did not encounter random experiments where the three
algorithms gave different results, so there is no reasonable situation where one might recommend
using the second or third algorithm. We would like to stress again that the execution times we obtained
varied wildly, being highly dependent on the structure of the network, the accompanying FSA and the
combinatorial combination of the two.
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Figure 4. Runtimes for the first lower bound algorithm, for random networks with up to 256 vertices.

5. Conclusions and Future Work

Knowing the maximum throughput between two nodes in a network is key knowledge for
a network operator. In practice, network policies severely complicate this task and often leave the
question open-ended. We put forward a formal model with which it is possible to model real-life policy
constraints, and we analyzed the impact of policies on throughput. As exact solutions are difficult
to obtain, we defined a series of conditions and algorithms that allow us to calculate a sequence of
increasingly tighter bounds on the exact value. These algorithms are built upon classic algorithms
like Ford–Fulkerson to solve the generic maximum flow problem, which are adapted to our needs
and augmented with specific functions to ease bookkeeping of additional data like transitions or the
specific realization associated with the flow.

Although the approach to specify the conditions on the augmenting paths in order to enforce their
policy-compliance is reasonable in combination with Ford-Fulkerson, it requires complex formulae that
express conditions on the augmenting path, end-to-end. Future work in the direction of push-relabel
algorithms would solve this problem: on the basis of local conditions, it might be possible to express
specific constraints that guarantee path-compliancy upon arrival of the flow.

Supplementary Materials: All code is freely available and downloadable at http://www.dna.idlab.ugent.be.
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Abbreviations

The following abbreviations are used in this manuscript:

FSA Finite state automaton
PCMF Policy-compliant maximum flow
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Abstract: Massive hydraulic fracturing of vertical wells has been extensively employed in the
development of low-permeability gas reservoirs. The existence of multiple hydraulic fractures along
a vertical well makes the pressure profile around the vertical well complex. This paper studies
the pressure dependence of permeability to develop a seepage model of vertical fractured wells
with multiple hydraulic fractures. Both transformed pseudo-pressure and perturbation techniques
have been employed to linearize the proposed model. The superposition principle and a hybrid
analytical-numerical method were used to obtain the bottom-hole pseudo-pressure solution. Type
curves for pseudo-pressure are presented and identified. The effects of the relevant parameters (such
as dimensionless permeability modulus, fracture conductivity coefficient, hydraulic-fracture length,
angle between the two adjacent hydraulic fractures, the difference of the hydraulic-fracture lengths,
and hydraulic-fracture number) on the type curve and the error caused by neglecting the stress
sensitivity are discussed in detail. The proposed work can enrich the understanding of the influence
of the stress sensitivity on the performance of a vertical fractured well with multiple hydraulic
fractures and can be used to more accurately interpret and forecast the transient pressure.

Keywords: gas flow; stress-sensitive porous media; multiple hydraulic fractures; vertical fractured
well

1. Introduction

Gas flow in porous media has recently attracted much attention and stimulated great interest
in the development of oil and gas reservoirs [1–15]. In the past decades, many gas reservoirs with
stress-sensitive permeability have been discovered and developed around the world. During the
development process of stress-sensitive reservoirs, the continuously decreasing formation pressure
leads to the decrease of the formation permeability. Therefore, it is critical to investigate the effect
of the stress sensitivity of the permeability on the production. Recently, lots of models have been
established to study the performance of various wells in stress-sensitive reservoirs [16–18].

On the other hand, in order to obtain economic benefit, hydraulic fracturing has been widely
applied in the development of low-permeability gas reservoirs. A great variety of seepage models
of vertical fractured wells have been proposed and the characteristic of pressure response has been
studied in detail. Gringarten et al. [19] established a seepage model of a vertical fractured well with
two symmetrical infinite-conductivity hydraulic fractures, which can be used to identify the linear
flow. Later, by considering the effect of the fluid flow within the hydraulic fractures, a seepage
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model of a vertical fractured well with two symmetrical finite-conductivity hydraulic fractures was
established [20,21], which can identify the bilinear flow. Some researchers pointed out the existence
of two asymmetrical hydraulic fractures in practice and established some seepage models of vertical
fractured wells with two asymmetrical hydraulic fractures [22–27]. In fact, massive hydraulic fracturing
usually creates fractured network or several main hydraulic fractures near the wellbore instead of two
symmetrical/asymmetrical hydraulic fractures [28–31]. Recently, seepage models of vertical fractured
wells with multiple hydraulic fractures have received more attention. Shaoul et al. [32] proposed a
numerical model of a vertical fractured well with multiple hydraulic fractures and investigated the
pressure behavior of a vertical fractured well. Restrepo and Tiab [33] and Wang et al. [34] established
semi-analytical models of a vertical fractured well with multiple infinite-conductivity hydraulic
fractures. Ren and Guo [35] and Luo and Tang [36] proposed semi-analytical models of a vertical
fractured well with multiple finite-conductivity hydraulic fractures. Compared with the pressure
behavior of vertical fractured wells with two hydraulic fractures, the pressure response of vertical
fractured wells with multiple hydraulic fractures is very complex. Although the effect of relevant
parameters on the pressure response of vertical fractured wells with multiple hydraulic fractures has
been studied, and the characteristics of the type of curves is not clearly understood. More important,
little work has focused on vertical fractured wells with multiple hydraulic fractures in stress-sensitive
gas reservoirs. In particular, the effect of relevant parameters on the error caused by neglecting the
stress sensitivity has not been recognized clearly.

In this paper, we propose a seepage model of vertical fractured wells with multiple finite-
conductivity hydraulic fractures. Type curves are identified and analyzed. The effects of relevant
parameters on type curves and the error caused by neglecting the stress sensitivity are discussed in
detail. This work can enrich the understanding of the influence of stress sensitivity on the performance
of vertical fractured wells with multiple hydraulic fractures.

2. Physical Model

Complex geometry patterns of hydraulic fractures for vertical fractured wells can be described by
the multiple-fracture model which is shown in Figure 1. Some assumptions of the present model are
given as follows:

(1) The gas reservoir is a homogeneous and laterally infinite formation with a constant thickness.
The top and bottom boundaries of the gas reservoir are assumed to be impermeable.

(2) The finite-conductivity hydraulic fractures emanate from the wellbore in the horizontal plane
(as shown in Figure 1b) and completely penetrate the formation in the vertical plane. The length of
each hydraulic fracture may be different.

(3) The vertical fractured well produces only from the hydraulic fractures and the production rate
of the vertical fractured well keeps constant.

(4) The permeabilities of both the reservoir and hydraulic fractures change with pressure.
(5) The gas reservoir has a constant temperature and uniform initial pressure.

 
(a) (b) 

Figure 1. Vertical fractured well with multiple hydraulic fractures and its model. (a) Complex geometry
pattern, (b) Multiple fracture model.
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3. Mathematical Model

A semi-analytical model of vertical fractured well with multiple finite-conductivity hydraulic
fractures in stress-sensitive gas reservoirs is established and solved by incorporating various methods
and techniques. The nomenclatures of the present model are listed in Appendix A. The flow chart of
solution methodology is shown in Figure 2.

 

Figure 2. Flow chart of the solution methodology.

3.1. Flow Model for Stress-Sensitive Gas Reservoirs

The reservoir permeability changes with reservoir pressure and can be described as follows [37]:

k = kie−γ(ψi−ψ), (1)

where ψ is the pseudo-pressure, which is defined as

ψ =
∫ p

0

2p
μZ

dp. (2)

The governing equation of gas flow in stress-sensitive porous media is given as follows [37]:

∂2ψ

∂r2 +
1
r

∂ψ

∂r
+ γ

(
∂ψ

∂r

)2
= eγ(ψi−ψ) φμct

ki

∂ψ

∂t
. (3)

Both gas viscosity μ and total compressibility ct in Equation (3) are functions of pressure. In order
to simplify the proposed model and obtain an analytical solution, many research papers [26,37,38]
treat the values of μ and ct in Equation (3) as constants, which could make the simulation results be
accurate enough for engineering requirements. Following the suggestion by Wang [37], the values of μ

and ct are evaluated at the initial condition, i.e., μ = μ(pi) and ct = ct(pi) in this paper.
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With the assumption of the uniform initial pressure, the initial condition is expressed as

ψ(r, t = 0) = ψi. (4)

The gas reservoir is assumed to be laterally infinite, and thus, the outer boundary condition is

ψ(r → ∞, t) = ψi. (5)

The inner boundary condition for a point source can be written as

lim
r→0

e−γ(ψi−ψ)r
∂ψ

∂r
=

pscq(r = 0, t)T
πkihTsc

. (6)

Introducing the dimensionless variables listed in Table 1, Equations (3)–(6) are rewritten as

∂2ψD

∂r2
D

+
1

rD

∂ψD

∂rD
− γD

(
∂ψD

∂rD

)2
= eγDψD

∂ψD

∂tD
, (7)

ψD(rD, tD = 0) = 0, (8)

ψD(rD, tD = 0) = 0, (9)

lim
rD→0

e−γDψD rD
∂ψD

∂rD
= −qD(rD = 0, tD). (10)

Table 1. Definitions of dimensionless variables.

Nomenclature Definition

Dimensionless pseudo − pressure ψD = πkihTsc
Qsc pscT (ψi − ψ)

Dimensionless transformed pseudo − pressure ξD = πkihTsc
Qsc pscT ξ

Dimensionless time tD = kit
φctμr2

w

Dimensionless distance rD = r
rw

Dimensionless wellbore storage coefficient CD = C
2πφcthr2

w

Dimensionless flow rate qD =
q

Qsc

Dimensionless flow − rate density qfD =
rwqf
Qsc

Dimensionless permeability modulus γD = γ
Qsc pscT
πkihTsc

Fracture conductivity coefficient CfD = kfiwf
kirw

The point source model including Equations (7)–(10) shows strong non-linearity which can be
alleviated by introducing the following expression [16]:

ψD(rD, tD) = − 1
γD

ln[1 − γDξD(rD, tD)]. (11)

The perturbation technique, Laplace transform, and superposition principle [39] were employed
to obtain the pressure distribution in the gas reservoir with a vertical fractured well with multiple
hydraulic fractures producing at a constant rate (see Appendix B):

ξD0(rD, θ, s) =
n

∑
j=1

[∫ LfjD

0
q f D(α, θfj, s)K0(

√
s
√

r2
D + α2 − 2rDα cos

(
θ − θfj

)
)dα

]
. (12)

38



Appl. Sci. 2019, 9, 1359

3.2. Flow Model for Stress-Sensitive Hydraulic Fractures

The dimensionless model for gas flow within stress-sensitive hydraulic fractures is given as (see
Appendix C)

∂2ξfD(xiD, tD)

∂x2
iD

− 2π

CfD
qfD(xiD, tD) = 0, (0 < xiD < LfiD), (13)

∂ξfD(xiD, tD)

∂xiD

∣∣∣∣
xiD=0

= − 2π

CfD
QiD(tD). (14)

QiD(tD) =
∫ LfiD

0
q f D(xiD, tD)dxiD, (15)

n

∑
j=1

QjD(tD) = 1. (16)

According to the relationship between Cartesian coordinate system (xi, yi) and polar coordinate
system (r, θ) (see Figure 3), Equations (13)–(16) can be rewritten in the polar coordinate system as
follows:

∂2ξfD(rD, θfi, tD)

∂r2
D

− 2π

CfD
qfD(rD, θfi, tD) = 0, (0 < rD < LfiD), (17)

∂ξfD(rD, θfi, tD)

∂rD

∣∣∣∣
rD=0

= − 2π

CfD
QiD(tD), (18)

QiD(tD) =
∫ LfiD

0
q f D(rD, θfi, tD)drD, (19)

n

∑
j=1

QjD(tD) = 1. (20)

Figure 3. Schematic of different coordinate systems.

Integrating Equation (17) from 0 to x′ with respect to rD yields

∂ξfD(x′, θfi, tD)

∂rD
− ∂ξfD(0, θfi, tD)

∂rD
=

2π

CfD

∫ x′

0
q f D(x′′ , θfi, tD)dx′′ . (21)

Substituting Equations (18) and (19) into Equation (21) yields
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∂ξfD(x′, θfi, tD)

∂rD
+

2π

CfD

∫ LfiD

0
q f D(rD, θfi, tD)drD =

2π

CfD

∫ x′

0
q f D(x′′ , θfi, tD)dx′′ . (22)

Integrating Equation (22) from 0 to rD with respect to rD yields

ξwHD(tD)− ξfD(rD, θfi, tD) =
2π

CfD

[
rD

∫ LfiD

0
q f D(rD, θfi, tD)drD−

∫ rD

0

∫ x′

0
q f D(x′′ , θfi, tD)dx′′ dx′

]
, (23)

where

ξwHD(tD) = ξfD(0, θfi, tD). (24)

3.3. Coupled Discrete Model

The flow model for gas reservoirs can associate with the flow model for hydraulic fractures by
the following relationship:

ψfD(rD, θfi, tD) = ψD(rD, θfi, tD), (0 < rD < LfiD). (25)

Substituting Equations (11) and (A37) into Equation (25), one can derive

ξfD(rD, θfi, tD) = ξD(rD, θfi, tD). (26)

The zero-order perturbation solution of the ξD is accurate enough in practice, and thus we
can obtain

ξD(rD, θfi, tD) = ξD0(rD, θfi, tD). (27)

Combining Equations (26) and (27) yields that

ξfD(rD, θfi, tD) = ξD0(rD, θfi, tD). (28)

Substituting Equation (28) into Equation (23) leads to

ξwHD(tD)− ξD0(rD, θfi, tD) =
2π

CfD

[
rD

∫ LfiD

0
q f D(rD, θfi, tD)drD−

∫ rD

0

∫ x′

0
q f D(x′′ , θfi, tD)dx′′ dx′

]
. (29)

Taking the Laplace transform of Equation (29), one can obtain

ξwHD(s)− ξD0(rD, θfi, s) =
2π

CfD

[
rD

∫ LfiD

0
q f D(rD, θfi, s)drD−

∫ rD

0

∫ x′

0
q f D(x′′ , θfi, s)dx′′ dx′

]
. (30)

Substituting Equation (12) into Equation (30), one can derive

ξwHD(s)−
n
∑

j=1

[∫ LfjD
0 q f D(α, θfj, s)K0(

√
s
√

r2
D + α2 − 2rDα cos

(
θfi − θfj

)
)dα
]

= 2π
CfD

[
rD
∫ LfiD

0 q f D(rD, θfi, s)drD−
∫ rD

0

∫ x′
0 q f D(x′′ , θfi, s)dx′′ dx′

]
.

(31)

Employing the Laplace transform of Equations (19) and (20), one can obtain

n

∑
i=1

∫ LfiD

0
q f D(rD, θfi, s)drD =

1
s

. (32)

The coupled model consists of Equations (31) and (32), which can be solved by the numerical
discrete method [40]. Each hydraulic fracture is discretized into some segments, and the flow rate in
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each segment is considered to stay the same at a certain time. The discrete schematic of a hydraulic
fracture of a vertical fractured well is shown in Figure 4.

Figure 4. Discrete schematic of the ith hydraulic fracture of a vertical fractured well.

And then, the discrete forms of Equations (31) and (32) can be obtained as follows

ξwHD(s)−
n
∑

i=1

Ni
∑

j=1

[
qfi,jD(s)

∫ ri,j+1D
ri,jD

K0(
√

s
√

r2
mk,vD + α2 − 2rmk,vDα cos(θfk − θfi))dα

]
+

2π
CfD

{
v−1
∑

i=1
qfk,iD(s)·[(v − i) · ΔL2

fkD] +
ΔL2

fkD
8 · qfk,vD(s)− rmk,vD

i=Nk
∑

i=1
qfk,iD(s)ΔLfkD

}
= 0,

(33)

n

∑
i=1

Ni

∑
j=1

[
qfi,jD(s)ΔLfiD

]
=

1
s

, (34)

where 1 ≤ k ≤ n, 1 ≤ v ≤ Nk and ΔLfiD = LfiD/Ni.

Equations (33) and (34) compose
(

n
∑

i=1
Ni + 1

)
linear equations with

(
n
∑

i=1
Ni + 1

)
unknowns.

The unknowns are ξwHD(s) and qfk,vD(s) (1 ≤ k ≤ n, 1 ≤ v ≤ Nk), which can be obtained by solving
the linear equations, and then the wellbore storage and the skin near the wellbore can be taken into
account by the following formula [41]

ξwD(s) =
sξwHD(s) + Sf

s + s2CD
[
sξwHD(s) + Sf

] . (35)

With the aid of the numerical inversion method [42], ξwD(s) in Laplace space is transformed into
ξwD(tD) in real space

ξwD(tD) =
ln 2
tD

N

∑
i=1

ViξwD(s), (N = 8), (36)

where
s =

i ln 2
tD

, (37)

41



Appl. Sci. 2019, 9, 1359

Vi = (−1)
N
2 +i

min (i, N
2 )

∑
k= i+1

2

k
N
2 +1(2k)!(

N
2 − k

)
!k!(k − 1)!(i − k)!(2k − i)!

. (38)

Finally, the dimensionless bottom-hole pseudo-pressure of a vertical fractured well with constant
production rate is obtained by ψwD(tD) = −ln[1 − γD · ξwD(tD)]/γD.

4. Model Validation and Application

Because there is no analytical inversion solution of ξwD(s), it is difficult to discuss the accuracy of
the Laplace transform by comparing the analytical inversion solution with the numerical inversion
solution [43]. In order to validate the proposed model and show how this model was used in practice,
the drawdown test data of a vertical fractured well with four fracture wings were collected from
the published literature [44]. The drawdown test data in the literature [44] were generated by the
reservoir simulator which is based on the implicit finite difference method. The vertical fractured well
produces at a constant production rate of 0.1639 m3/s. Basic parameters of the vertical fractured well
are listed in Table 2. The proposed model is employed to simulate the bottom-hole pressure under
the constant-rate-production condition. The simulated bottom-hole pseudo-pressure and bottom-hole
pressure are compared with the results published in the literature [44]. It is shown from Figure 5 that
the simulated bottom-hole pseudo-pressure and bottom-hole pressure by the proposed model are in
good agreement with the bottom-hole pressure data published in the literature [44], which validates
the proposed model.

Furthermore, the proposed model can be used to predict the bottom-hole pressure under
the constant-rate-production condition. Based on the proposed model, it was easy to obtain the
bottom-hole pressure of the vertical fractured well at any given time. For example, when the vertical
fractured well produces at a constant production rate of 0.1639 m3/s, the bottom-hole pressures are
41.132 MPa, 37.676 MPa, 31.484 MPa at t = 100, 1000, 10000 hours, respectively.

Table 2. Parameters of a vertical fractured well with four fracture wings in the published literature [44].

Parameter Value

Reservoir thickness, h, m 7.62
Reservoir porosity, φ 0.075

Initial reservoir permeability, ki, mD 0.05
Initial fracture permeability, kfi, mD 3927

Initial reservoir pressure, pi, MPa 44.785
Initial reservoir pseudo-pressure, ψi, MPa2/(mPa · s) 9.6321 × 104

Total compressibility, ct, MPa−1 1.43 × 10−2

Wellbore radius, rw, m 0.0762
Gas viscosity, μ, mPa · s 0.0252

Reservoir temperature, T, K 412.04
Fracture width, wf, m 0.0061

Well production rate, Qsc, m3/s 0.1639
Polar angles of the hydraulic fractures, θfj, degree 0, π/2, π, 3π/2

Lengths of the hydraulic fractures, Lfj, m 149.413, 2.987, 149.413, 2.987
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(a) bottom-hole pseudo-pressure 

(b) bottom-hole pressure 

Figure 5. Comparisons of bottom-hole pseudo-pressure and bottom-hole pressure between our
simulation results and the test data [44]. (a) bottom-hole pseudo -pressure, (b) bottom-hole pressure

5. Results and Analysis

5.1. Type Curves and Flow Regimes

The bottom-hole pseudo-pressure of a vertical fractured well with multiple hydraulic fractures in
stress-sensitive gas reservoirs was calculated by the proposed model. Type curves for the bottom-hole
pseudo-pressure were plotted and the characteristics of the bottom-hole pseudo-pressure behavior
was analyzed. The established model in this work was suitable for multiple hydraulic fractures with
arbitrary fracture number, arbitrary fracture length, and arbitrary fracture orientation. In order to
investigate the effect of the hydraulic-fracture distribution on the pseudo-pressure response, without
loss of generality, we mainly focused on the vertical fractured well with four fracture wings which is
shown in Figure 6. The first and second fracture wings were assumed to have the equal length (Xf),
and the third and fourth fracture wings were set to be the equal length (Yf).

Figure 7 shows the type curves for the bottom-hole pseudo-pressure of a vertical fractured
well with multiple hydraulic fractures in stress-sensitive gas reservoirs. The type curves for the
bottom-hole pseudo-pressure consist of the pseudo-pressure curve (x−axis: tD/CD, y−axis: ψwD) and
the pseudo-pressure derivative curve (x−axis: tD/CD, y−axis: ψ′

wD · tD/CD). It is observed that there
are seven possible flow regions in the type curves as follows:
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Figure 6. Schematic of a vertical fractured well with four fracture wings.
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Figure 7. Type curves for the bottom-hole pseudo-pressure of a vertical fractured well with multiple
hydraulic fractures in stress-sensitive gas reservoirs with different values of the γD (n = 4, Lf1 = Lf2 =

Xf = 20 m, Lf3 = Lf4 = Yf = 80 m, θ = 30◦, CfD = 5 × 104, Sf = 10−3, CD = 0.1).

(1) Wellbore storage period (WSP): The produced gas comes from the storage gas in the wellbore,
and the gas in the reservoir has not flowed into the wellbore. Both the pseudo-pressure curve and the
pseudo-pressure derivative curve exhibit as straight lines with the slope being one.

(2) Transitional flow after wellbore storage period (TFAWSP): the gas in the reservoir begins to
flow into the wellbore. This flow period is controlled by both the wellbore storage and skin near the
wellbore. The pseudo-pressure derivative curve appears as a “hump”.

(3) Bilinear flow period (BFP): Linear flows take place within the hydraulic fractures and
perpendicular to the hydraulic-facture surfaces in the reservoir simultaneously. The pseudo-pressure
derivative curve exhibits as a straight line with the slope being 1/4.

(4) Transitional flow after bilinear flow period (TFABFP): The duration of this flow period is
dependent on the difference of the hydraulic-fracture lengths. The shorter the hydraulic-fracture
length is, the earlier the BFP ends. Therefore, this flow period will occur when the BFP of the shorter
hydraulic fracture ends and the longer hydraulic fracture still lies in the BFP. The pseudo-pressure
derivative curve appears as a straight line with the slope in the range of 1/4–1/2.

(5) Linear flow period (LFP): When the BFP of each hydraulic fracture ends, the LFP will appear.
In this period, the linear flow perpendicular to the hydraulic-facture surfaces in the reservoir dominates
in the area near the wellbore. The pseudo-pressure derivative curve appears as a straight line with the
slope being 1/2.
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(6) Transitional flow after linear flow period (TFALFP): When the pressure wave continues to
travel in the reservoir, the interference between the pressure waves from different hydraulic fractures
will take place, which makes the slope of the pseudo-pressure derivative curve be greater than 1/2.
It should be noted that the stress sensitivity begins to obviously affect the type curves in this period.
As the magnitude of the γD increases, the pseudo-pressure and its derivative curves are shifted up.

(7) Pseudo-radial flow period (PRFP): Compared with the previous flow period (i.e., the TFALFP),
much slower growth of the pseudo-pressure drop was observed. The pseudo-pressure derivative
without the effect of the stress sensitivity (i.e., γD = 0) keeps a value of 0.5, while the magnitude of the
pseudo-pressure derivative with the effect of the stress sensitivity (i.e., γD > 0) increases with the time.
Furthermore, the pseudo-pressure and its derivative increase with increasing the value of the γD at a
fixed time. Therefore, if the stress sensitivity of the gas reservoir is stronger, the larger pressure drop is
needed to remain the constant rate of produced well.

In order to quantify the effect of the stress sensitivity on the pseudo-pressure, the relative
difference between the pseudo-pressures with and without the effect of the stress sensitivity is
introduced as follows

δ =
|ψwDl − ψwDnl|

ψwDl
× 100%, (39)

where ψwDnl and ψwDl are the bottom-hole pseudo-pressures with and without the effect of the stress
sensitivity, respectively.

Figure 8 shows the effect of the dimensionless permeability modulus (γD) on the relative
difference between the pseudo-pressures with and without the effect of the stress sensitivity. With
the increase of the time, the relative difference δ first increases very slowly and finally increases
rapidly. Considering the flow regimes, it was found that the impact of the stress sensitivity on the
pseudo-pressure was negligibly small during and before the LFP, while after the LFP, this impact
became more and more obvious with the increase of the time. Furthermore, the δ became larger with
increasing the magnitude of the γD at a fixed time.
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Figure 8. Effect of the γD on the relative difference between the pseudo-pressures with and without
the effect of the stress sensitivity (n = 4, Lf1 = Lf2 = Xf = 20 m, Lf3 = Lf4 = Yf = 80 m, θ = 30◦,
CfD = 5 × 104, Sf = 10−3, CD = 0.1).

5.2. Sensitivity Analysis

Besides the dimensionless permeability modulus (γD), other parameters may have effects on the
type curve and the relative difference between the pseudo-pressures with and without the effect of the
stress sensitivity. Therefore, it is critical to conduct the sensitivity analysis of relevant parameters.
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Figures 9 and 10 show the effects of the fracture conductivity coefficient (CfD) on the type curve
and the relative difference between the pseudo-pressures with and without the effect of the stress
sensitivity, respectively. It is obvious that the impact of the CfD on the type curve takes place in the
early periods (i.e., from the TFAWSP to the LFP), where the values of the pseudo-pressure and its
derivative increase with the decrease of the magnitude of the CfD. Furthermore, it was found from
Figure 9 that as the value of the CfD increases, the duration of the BFP becomes shorter and the start
time of the LFP becomes earlier. As shown in Figure 10, the δ was little affected by the CfD in all
periods, and this was because the main impact of the CfD on the pseudo-pressure occurred in the
early periods, but the effect of the stress sensitivity on the pseudo-pressure was negligibly small in the
early periods.
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Figure 9. Type curves for the bottom-hole pseudo-pressure of a vertical fractured well with multiple
hydraulic fractures in stress-sensitive gas reservoirs with different values of the CfD (n = 4, Lf1 = Lf2 =

Xf = 50 m, Lf3 = Lf4 = Yf = 50 m, θ = 90◦, Sf = 10−3, CD = 0.1, γD = 0.1).
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Figure 10. Effect of the CfD on the relative difference between the pseudo-pressures with and without
the effect of the stress sensitivity (n = 4, Lf1 = Lf2 = Xf = 50 m, Lf3 = Lf4 = Yf = 50 m, θ = 90◦,
Sf = 10−3, CD = 0.1, γD = 0.1).

Figures 11 and 12 show the effects of the length of the hydraulic fractures (Lf) on the type curve
and the relative difference between the pseudo-pressures with and without the effect of the stress
sensitivity, respectively. It is seen from Figure 11 that the Lf has an important effect on the magnitudes
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of the pseudo-pressure and its derivative in the intermediate and late flow periods (i.e., from the BFP
to the PRFP). Decreasing the Lf reduced the duration of the BFP and resulted in the increase of the
pseudo-pressure and its derivative during and after the BFP. Furthermore, it was found from Figure 12
that the δ increased with decreasing the magnitude of the Lf in the late flow period, indicating that the
pseudo-pressure obtained by the conventional model without the effect of the stress sensitivity will
result in a much bigger error when the length of the hydraulic fractures becomes shorter.
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Figure 11. Type curves for the bottom-hole pseudo-pressure of a vertical fractured well with multiple
hydraulic fractures in stress-sensitive gas reservoirs with different values of the Lf (n = 4, Lf = Lf1 =

Lf2 = Lf3 = Lf4 = Xf = Yf, θ = 90◦, CfD = 5 × 104, Sf = 10−3, CD = 0.1, γD = 0.1).
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Figure 12. Effect of the Lf on the relative difference between the pseudo-pressures with and without
the effect of the stress sensitivity (n = 4, Lf = Lf1 = Lf2 = Lf3 = Lf4 = Xf = Yf, θ = 90◦, CfD = 5 × 104,
Sf = 10−3, CD = 0.1, γD = 0.1).

Figures 13 and 14 show the effects of the angle between the two adjacent hydraulic fractures (θ)
on the type curve and the relative difference between the pseudo-pressures with and without the
effect of the stress sensitivity, respectively. As shown in Figure 13, with the decrease of the θ, the start
time of the TFALFP becomes earlier, and the magnitudes of the pseudo-pressure and its derivative in
the TFALFP increase. This is because decreasing the θ results in the earlier and stronger interference
between the hydraulic fractures, which makes the pressure drop increase to remain the constant rate of
the produced well. Whereas the impact of the θ on the type curve is relatively unobvious in the PRFP.
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Furthermore, it is seen from Figure 14 that the δ increases with decreasing the magnitude of the θ

during and after the TFALFP, indicating that the effect of the stress sensitivity on the pseudo-pressure
becomes greater when the θ decreases.
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Figure 13. Type curves for the bottom-hole pseudo-pressure of a vertical fractured well with multiple
hydraulic fractures in stress-sensitive gas reservoirs with different values of the θ (n = 4, Lf1 = Lf2 =

Xf = 50 m, Lf3 = Lf4 = Yf = 50 m, CfD = 5 × 104, Sf = 10−3, CD = 0.1, γD = 0.1).
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Figure 14. Effect of the θ on the relative difference between the pseudo-pressures with and without the
effect of the stress sensitivity (n = 4, Lf1 = Lf2 = Xf = 50 m, Lf3 = Lf4 = Yf = 50 m, CfD = 5 × 104,
Sf = 10−3, CD = 0.1, γD = 0.1).

Introducing the coefficient of β = |Xf − Yf|/(Xf + Yf) to quantify the difference of the
hydraulic-fracture lengths, the effects of β on the type curve, and the relative differences between the
pseudo-pressures with and without the effect of the stress sensitivity are shown in Figures 15 and 16,
respectively. It is obvious that the difference of the hydraulic-fracture lengths becomes larger as the
magnitude of the β increases. The range of the β is from zero to one. As shown in Figure 15, with the
decrease of the β, the end of the BFP takes place later, the duration of the TFABFP becomes shorter,
and the start time of the LFP occurs earlier. The reason for the existence of the TFABFP is that the
difference of the hydraulic-fracture lengths leads to the inconsistency of the end times for the BFP
for each hydraulic fracture. If β is equal to zero, the TFABFP may not even appear. Furthermore,
the difference of the hydraulic-fracture lengths makes the pseudo-pressure and its derivative increase
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in the TFABFP. It is interesting to find in Figure 15 that during the TFALFP, the pseudo-pressure and
its derivative increase as the β decreases. This may be because that for the distribution of the hydraulic
fractures shown in Figure 6, the interference between hydraulic fractures enhances with the decrease
of the β in the TFALFP. As shown in Figure 16, the β has an effect on the error caused by neglecting the
stress sensitivity during and after the TFALFP. Decreasing the β results in the increase of the error.
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Figure 15. Type curves for the bottom-hole pseudo-pressure of a vertical fractured well with multiple
hydraulic fractures in stress-sensitive gas reservoirs with different values of the β (n = 4, Lf1 = Lf2 = Xf,
Lf3 = Lf4 = Yf, Xf + Yf = 100 m, θ = 90◦, CfD = 5 × 104, Sf = 10−3, CD = 0.1, γD = 0.1).
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Figure 16. Effect of the β on the relative difference between the pseudo-pressures with and without
the effect of the stress sensitivity (n = 4, Lf1 = Lf2 = Xf, Lf3 = Lf4 = Yf, Xf + Yf = 100 m, θ = 90◦,
CfD = 5 × 104, Sf = 10−3, CD = 0.1, γD = 0.1).

Figures 17 and 18 show the effects of the hydraulic-fracture number (n) on the type curve and the
relative difference between the pseudo-pressures with and without the effect of the stress sensitivity,
respectively. The distribution of the hydraulic fractures was assumed to be uniform (i.e., the angle
between the two arbitrary adjacent hydraulic fractures was equal). As shown in Figure 17, it is
obvious that the n affects the pseudo-pressure behavior in all periods except for the WSP. Increasing
the n leads to the decrease of the pseudo-pressure and its derivative. Due to the increase of the n,
the angle between the two adjacent hydraulic fractures was reduced, and thus the interference between
hydraulic fractures occurred earlier and the effect of this interference on the pseudo-pressure was
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more significant. Figure 18 indicates that a smaller value of the n leads to a bigger error caused by
neglecting the stress sensitivity during and after the TFALFP.
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Figure 17. Type curves for the bottom-hole pseudo-pressure of a vertical fractured well with multiple
hydraulic fractures in stress-sensitive gas reservoirs with different values of the n (Lf1 = Lf2 = Xf =

80 m, Lf3 = Lf4 = Yf = 80 m, θ = 360◦/n, CfD = 5 × 104, Sf = 10−3, CD = 0.1, γD = 0.1).
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Figure 18. Effect of n on the relative difference between the pseudo-pressures with and without
the effect of the stress sensitivity (Lf1 = Lf2 = Xf = 80 m, Lf3 = Lf4 = Yf = 80 m, θ = 360◦/n,
CfD = 5 × 104, Sf = 10−3, CD = 0.1, γD = 0.1).

6. Conclusions

We have established a non-linear model of a vertical fractured well with multiple hydraulic
fractures in gas reservoirs by incorporating the pressure-dependent permeability. Both transformed
pseudo-pressure and perturbation techniques were employed to linearize the proposed model.
Superposition principle and numerical discrete methods were used to obtain the semi-analytical
solution. Type curves for pseudo-pressure were plotted and discussed in detail. The influence of
relevant parameters on the type curve and the relative difference between the pseudo-pressures with
and without the effect of the stress sensitivity were analyzed. Some main conclusions are listed
as follows:

(1) The type curve of a vertical fractured well with multiple hydraulic fractures was identified
by seven possible flow regions. Compared with the conventional model of a vertical fractured well
with two symmetrical hydraulic-fracture wings, two transitional flow regimes (i.e., the TFABFP and
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TFALFP) were observed, which were caused by the difference of the hydraulic-fracture lengths and
the interference between hydraulic fractures, respectively.

(2) As the time increased, the pressure drops increased, which made the permeability decrease.
The impact of the stress sensitivity on the pseudo-pressure increased with the increase of the time.
Furthermore, the influence of the stress sensitivity on the pseudo-pressure was negligibly small in the
early and intermediate flow periods but becomes very significant in the late flow period.

(3) Some relevant parameters, such as dimensionless permeability modulus, fracture conductivity
coefficient, hydraulic-fracture length, angle between the two adjacent hydraulic fractures, the difference
of the hydraulic-fracture lengths, and hydraulic-fracture number, not only affected the type curve, but
also have an influence of the error caused by neglecting the stress sensitivity.
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Appendix A. Symbol Description

Nomenclature
C wellbore storage coefficient, m3/Pa
CfD fracture conductivity coefficient
cft total compressibility of hydraulic fracture, Pa−1

ct total compressibility of gas reservoir, Pa−1

h reservoir thickness, m
k reservoir permeability, m2

kfi initial fracture permeability, m2

ki initial reservoir permeability, m2

Lfj length of the jth hydraulic fracture, m
n hydraulic-fracture number
p reservoir pressure, Pa
pf fracture pressure, Pa
pi initial reservoir pressure, Pa
psc pressure at standard condition, Pa
q flow rate of point source, m3/s
qf flow-rate density, m2/s
Qi production rate of the ith hydraulic fracture, m3/s
Qsc well production rate, m3/s
r radial distance, r =

√
x2 + y2, m

rw wellbore radius, m
s Laplace transform variable
Sf skin factor
t time, s
T reservoir temperature, K
Tsc temperature at standard condition, K
wf fracture width, m
xi, yi xi- and yi-coordinates, m
Z Z-factor of gas
μ gas viscosity, Pa · s
γ permeability modulus, (Pa · s)/Pa2

ψ reservoir pseudo-pressure, Pa2/(Pa · s)
ψf fracture pseudo-pressure, Pa2/(Pa · s)
ψi initial reservoir pseudo-pressure, Pa2/(Pa · s)
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ψw bottom-hole pseudo-pressure, Pa2/(Pa · s)
ξD dimensionless transformed reservoir pseudo-pressure
ξfD dimensionless transformed fracture pseudo-pressure
ξwD dimensionless transformed bottom-hole pseudo-pressure with wellbore storage and skin
ξwHD dimensionless transformed bottom-hole pseudo-pressure without wellbore storage and skin
φ reservoir porosity
φf fracture porosity
θ polar angle, degree
θfj polar angle of the jth hydraulic fracture, degree
ΔLfi length of discrete segment of the ith hydraulic fracture, m
Subscript
D dimensionless
i, j the jth discrete segment in the ith hydraulic fracture
Superscript
− Laplace space

Appendix B. Pressure Distribution in a Gas Reservoir with a Vertical Fractured Well with
Multiple Hydraulic Fractures Producing at a Constant Rate

With the aid of Equation (11), Equations (7)–(10) can be rewritten as

∂2ξD

∂r2
D

+
1

rD

∂ξD

∂rD
=

1
1 − γDξD

∂ξD

∂tD
, (A1)

ξD(rD, tD = 0) = 0, (A2)

ξD(rD, tD = 0) = 0, (A3)

lim
rD→0

rD
∂ξD

∂rD
= −qD(rD = 0, tD). (A4)

The perturbation technique of γD was employed to obtain that

ξD = ξD0 + γDξD1 + γ2
DξD2 + · · · , (A5)

− 1
γD

ln[1 − γDξD] = ξD +
1
2

γDξ2
D + · · · , (A6)

1
1 − γDξD

= 1 + γDξD + γ2
Dξ2

D + · · · . (A7)

Considering a small value of γD in general, the zero-order perturbation solution was accurate
enough for engineering requirements. So, Equations (A1)–(A4) can be rewritten as

∂2ξD0

∂r2
D

+
1

rD

∂ξD0

∂rD
=

∂ξD0

∂tD
, (A8)

ξD0(rD, tD = 0) = 0, (A9)

ξD0(rD → ∞, tD) = 0, (A10)

lim
rD→0

rD
∂ξD0

∂rD
= −qD(rD = 0, tD). (A11)

Laplace transform was employed to solve the above model and it is defined by

f (s) =
∫ ∞

0
f (tD)e−stD dtD, (A12)

where f is an arbitrary variable in real space.
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Taking the Laplace transform of Equations (A8)–(A11), one can obtain

∂2ξD0

∂r2
D

+
1

rD

∂ξD0
∂rD

= sξD0, (A13)

ξD0(rD → ∞, s) = 0, (A14)

lim
rD→0

rD
∂ξD0
∂rD

= −qD(rD = 0, s). (A15)

The solution of Equations (A13)–(A15) in Laplace space can be derived as

ξD0(rD, s) = qD(rD = 0, s)K0
(
rD

√
s
)
. (A16)

According to Equation (A16), the superposition principle [39] was employed to obtain the pressure
distribution in a gas reservoir with a vertical fractured well with multiple hydraulic fractures producing
at a constant rate

ξD0(rD, θ, s) =
n

∑
j=1

[∫ LfjD

0
q f D(α, θfj, s)K0(

√
s
√

r2
D + α2 − 2rDα cos

(
θ − θfj

)
)dα

]
. (A17)

Appendix C. Derivation of Dimensionless Model for Gas Flow within Stress-Sensitive
Hydraulic Fractures

Considering the effect of the pressure-dependent permeability of hydraulic fractures,
the governing equation for gas flow in the ith hydraulic fracture is

∂2ψf

∂x2
i
+

∂2ψf

∂y2
i
+ γ

[(
∂ψf
∂xi

)2
+

(
∂ψf
∂yi

)2
]
= eγ(ψi−ψf)

φfμcft
kfi

∂ψf
∂t

, (A18)

where 0 < xi < Lfi, −wf
2 < yi <

wf
2 .

The volume within the hydraulic fracture was very small, and thus the compressibility of the
hydraulic fracture was neglected. Then Equation (A18) was reduced to

∂2ψf

∂x2
i
+

∂2ψf

∂y2
i
+ γ

[(
∂ψf
∂xi

)2
+

(
∂ψf
∂yi

)2
]
= 0. (A19)

The flow-rate density of the ith hydraulic fracture is given as

qf(xi, t) =
hTsckie−γ(ψi−ψ)

2pscT

[
∂ψ(xi, yi, t)

∂yi

∣∣∣∣
yi=

wf
2

− ∂ψ(xi, yi, t)
∂yi

∣∣∣∣
yi=− wf

2

]
, (A20)

where 0 < xi < Lfi.
The interface boundary condition between the wellbore and the ith hydraulic fracture is

h
∫ wf

2

− wf
2

Tsck f ie−γ(ψi−ψf)

2pscT
∂ψf(xi, yi, t)

∂xi
dyi

∣∣∣∣∣
xi=0

= Qi(t), (A21)

where Qi(t) is the production rate from the ith hydraulic fracture, which is expressed as

Qi(t) =
∫ Lfi

0
qf(xi, t)dxi. (A22)
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The total production rate of the vertical fractured well is the sum of the production rate of each
hydraulic fracture, and thus we can obtain

n

∑
i=1

Qi(t) = Qsc. (A23)

The gas velocity should be continuous at the interface between the hydraulic fracture and reservoir,
and thus the boundary conditions of the fracture surface are given as

Tsckfie−γ(ψi−ψf)

2pscT
∂ψf(xi, yi, t)

∂yi

∣∣∣∣∣
yi=

wf
2

=
Tsckie−γ(ψi−ψ)

2pscT
∂ψ(xi, yi, t)

∂yi

∣∣∣∣∣
yi=

wf
2

, (A24)

Tsckfie−γ(ψi−ψf)

2pscT
∂ψf(xi, yi, t)

∂yi

∣∣∣∣∣
yi=− wf

2

=
Tsckie−γ(ψi−ψ)

2pscT
∂ψ(xi, yi, t)

∂yi

∣∣∣∣∣
yi=− wf

2

. (A25)

Introducing the following expressions [16]

ψf = ψi +
1
γ

ln[1 − γ · ξf], (A26)

ψ = ψi +
1
γ

ln[1 − γ · ξ], (A27)

Equations (A19)–(A21), (A24), and (A25) can be rewritten as

∂2ξf(xi, yi, t)
∂x2

i
+

∂2ξf(xi, yi, t)
∂y2

i
= 0,

(
0 < xi < Lfi, −wf

2
< yi <

wf
2

)
, (A28)

qf(xi, t) = − hTscki

2pscT

[
∂ξ(xi, yi, t)

∂yi

∣∣∣∣
yi=

wf
2

− ∂ξ(xi, yi, t)
∂yi

∣∣∣∣
yi=− wf

2

]
, (0 < xi < Lfi), (A29)

h
∫ wf

2

− wf
2

Tsck f i

2pscT
∂ξf(xi, yi, t)

∂xi
dyi

∣∣∣∣∣
xi=0

= −Qi(t), (A30)

Tsckfi
2pscT

∂ξf(xi, yi, t)
∂yi

∣∣∣∣
yi=

wf
2

=
Tscki

2pscT
∂ξ(xi, yi, t)

∂yi

∣∣∣∣
yi=

wf
2

, (A31)

Tsckfi
2pscT

∂ξf(xi, yi, t)
∂yi

∣∣∣∣
yi=− wf

2

=
Tscki

2pscT
∂ξ(xi, yi, t)

∂yi

∣∣∣∣
yi=− wf

2

. (A32)

The width of the hydraulic fracture was very small, and thus the pressure changes within the
ith hydraulic fracture in the yi direction can be neglected. Then the average pressure within the ith
hydraulic fracture in the yi direction is introduced as follows:

ξf(xi, t) =
1

wf

∫ wf
2

− wf
2

ξf(xi, yi, t)dyi, (0 < xi < Lfi). (A33)

With the aid of Equations (A31)–(A33), Equation (A28) becomes

∂2ξf(xi, t)
∂x2

i
+

ki

wfkfi

[
∂ξ(xi, yi, t)

∂yi

∣∣∣∣
yi=

wf
2

− ∂ξ(xi, yi, t)
∂yi

∣∣∣∣
yi=− wf

2

]
= 0, (0 < xi < Lfi). (A34)

Substituting Equation (A29) into Equation (A34) yields
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∂2ξf(xi, t)
∂x2

i
− 2pscT

wfkfihTsc
qf(xi, t) = 0, (0 < xi < Lfi). (A35)

According to Equation (A33), Equation (A30) is expressed as

hwf
Tsckfi
2pscT

∂ξf(xi, t)
∂xi

∣∣∣∣
xi=0

= −Qi(t). (A36)

Introducing the dimensionless variables, Equations (A26), (A35), (A36) are rewritten as follows:

ψfD = − 1
γD

ln[1 − γD · ξfD], (A37)

∂2ξfD(xiD, tD)

∂x2
iD

− 2π

CfD
qfD(xiD, tD) = 0, (0 < xiD < LfiD), (A38)

∂ξfD(xiD, tD)

∂xiD

∣∣∣∣
xiD=0

= − 2π

CfD
QiD(tD). (A39)

The dimensionless expressions of Equations (A22) and (A23) are given as

QiD(tD) =
∫ LfiD

0
q f D(xiD, tD)dxiD, (A40)

n

∑
j=1

QjD(tD) = 1. (A41)
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Abstract: This paper formulates sufficiency-type linear-output feedback decentralized closed-loop
stabilization conditions if the continuous-time linear dynamic system can be stabilized under linear
output-feedback centralized stabilization. The provided tests are simple to evaluate, while they are
based on the quantification of the sufficiently smallness of the parametrical error norms between the
control, output, interconnection and open-loop system dynamics matrices and the corresponding
control gains in the decentralized case related to the centralized counterpart. The tolerance amounts of
the various parametrical matrix errors are described by the maximum allowed tolerance upper-bound
of a small positive real parameter that upper-bounds the various parametrical error norms. Such a
tolerance is quantified by considering the first or second powers of such a small parameter. The results
are seen to be directly extendable to quantify the allowed parametrical errors that guarantee the
closed-loop linear output-feedback stabilization of a current system related to its nominal counterpart.
Furthermore, several simulated examples are also discussed.

Keywords: Output-feedback; centralized control; decentralized control; closed-loop stabilization

1. Introduction

Control systems are very important in real world applications and, therefore, they have been
investigated exhaustively concerning their properties of stability, stabilization, controllability control
strategies etc. See, for instance, [1–4] and references therein. Some extra constraints inherent to
some systems, like solution positivity in the case of biological systems or human migrations or
the needed behavior robustness against parametrical changes of disturbance actions add additional
complexity to the related investigations and need the use of additional mathematical or engineering
tools for the research development, [5–7]. A large variety of modeling and design tools have to be
invoked and developed in the analysis depending on the concrete systems under study and their
potential applications as, for instance, the presence of internal and external delays, discretization,
dynamics modeling based on fractional calculus, the existence of complex systems with interconnected
subsystems, [8–13], hybrid coupled continuous/digital tandems, nonlinear systems and optimization
and estimation techniques [14–19] as well as robotic and fuzzy-logic based systems, [20,21]. In particular,
decentralized control is a useful tool for controlling dynamic systems by cutting some links between the
dynamics coupling a set of subsystems integrated in the whole system at hand. It is claimed to keep the
main properties related to the use of centralized control such as stability, controllability, observability,
etc. In summary, a centralized controller keeps all the information on the system and coupling links as
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available to the control designer while decentralized control ignores some of such information or even
cuts on occasions some of coupling signals between the various subsystems integrated in the whole
system at hand. It can be pointed out that the stability studies are often performed trough Lyapunov
theory which requires to find a Lyapunov function (see [20,21] and some references therein). It turns
out that, if the neglected couplings are strong and are not taken into account by the controller, the
stabilization and other properties such as the controllability can become lost. The use of decentralized
stabilization and control tools is of interest when the whole system has physically separated subsystems
that require the implementation of local control actuators but the control has to be global for the whole
system. An ad-hoc example provided in [2–4,19] where decentralized control is of a great design
interest is the case of several coupled cascade hydroelectric power plants allocated in the same river
but separated far away from each other. It has to be pointed out that the term “decentralized control”
versus “centralized control” refers to the eventual cut of links of the shared information between
tandems of integrated subsystems, or coupling signals between them, to be controlled rather than to
the physical disposal of the controller. In other words, if the whole controller keeps and uses all the
information on measurable outputs and control components design to implement the control law, such
a control is considered to have a centralized nature even if its various sub-control stations are not jointly
allocated. It is a common designer´s basic idea in mind for complex control designs to try to minimize
the modeling designs and computational loads without significantly losing the system´s performance
and its essential properties. For instance, in [8], the dynamic characteristic of a discrete-time system is
given as an extended state space description in which state variables and output tracking error are
integrated while they are regulated independently. The proposed robust model predictive control is
much simpler than the traditional versions since the information of the upper and lower bounds of
the time-varying delay are used for design purposes. On the other hand, in [9], a control law might
be synthesized for a hydropower plant with six generation units working in an alternation scheme.
To assess the behavior of the controlled system, a model of such a nonlinear plant is controlled by
a fractional proportional/integral/derivative control device through a linearization of its set points,
the fractional part being relevant in the approach on the controller derivative actions. In addition, a
set of applied complex control problems are studied, for instance, in [10–16] with the aim of giving
different ad hoc simplification tools to deal with the appropriate control methodologies. In particular,
a decentralized control approach is proposed in [16].

In this paper, the decentralized control design versus its decentralized control counterpart, under
eventual output linear feedback, are studied from the point of view of the amount of information that
can be lost or omitted in terms of the total or partial knowledge of the coupled dynamics between
subsystems necessary in the decentralized case to keep the closed-loop stability. The study is made by
using the information on the worst-case deviation, in terms of norms, between the respective matrices
of open-loop dynamics and the respective controller gains under which the closed-loop stability is
kept. This paper is organized as follows. The problem statement is given in Section 2 while the
main stabilization results of the paper are provided in Section 3. The proofs of some of the results of
Section 3, which are technically involved, but conceptually simple, are distributed in various technical
auxiliary that are given in Appendices A and B. It is claimed to give a non-complex method to test
the feasibility of the implementation of decentralized control and conditions for its design, which be
a fast and simpler stability test compared to Lyapunov stability theory [20,21], for instance, under a
partial removal of information or physical cuts of links of coupling dynamics between the various
subsystems or state, control and output components. Section 4 discusses several examples and, finally,
the concluding remarks end the paper.

Notation

n = {1, 2, · · · , n},
R+ = { z ∈ R : z > 0} ; R0+ = { z ∈ R : z ≥ 0},
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sp(A) and det(A) are the spectrum and determinant of A ∈ Rn×n, respectively. For A ∈ Rq×�, being in
general rectangular, ‖A‖ denotes any unspecified norm of A, ‖A‖2 denotes the �2 or spectral norm of a
matrix A, ρ(A) denotes its spectral radius, and ‖.‖∞ denotes the H∞-norm of a stable real rational transfer
matrix or function, Iq denotes the qth identity matrix, and i =

√−1 is the complex imaginary unit.
Let A ∈ Rn×n be symmetric. Then, λmax(A) and λmin(A) are, respectively, the maximum and

minimum eigenvalues of A.
Mn×n

E is the set of Metzler matrices (any off-diagonal entry is non-negative) of nth order.
Zn×n is the set of Z-matrices (any off-diagonal entry is non-positive) of nth order.
Mn×n is the set of M-matrices (Z-matrices which are stable or critically stable) of nth order.
Assume that A =

(
Aij

)
, B =

(
Bij
)
∈ Rn×n. Then, the notations A�B, A � B and A �� B, are,

respectively, equivalent to B≺A, B ≺ A and B ≺≺ A, meaning that Aij ≥ Bij, Aij ≥ Bij (and B � A)
and Aij > Bij; ∀i, j ∈ n, respectively. In particular, A�0, A � 0 and A �� 0 are reworded as A is
non-negative, positive and strictly positive, respectively, and A≺0, A ≺ 0 and A ≺≺ 0 are reworded as
A is non-positive, negative and strictly negative, respectively.

2. Problem Statement

Consider the following linear and time-invariant system under linear output-feedback centralized
control:

.
xc(t) = Acxc(t) + Bc uc(t); xc(0) = xc0 (1)

yc(t) = Ccxc(t) + Dcuc(t) (2)

uc(t) = Kcyc(t) (3)

where xc(t) ∈ Rn is the state vector; uc(t) ∈ Rm is the centralized control vector; yc(t) ∈ Rp is the
output; Ac, Bc, Cc and Dc are the system, control, output and input–output interconnection matrices,
respectively, of orders being compatible with the dimensions of the above vectors; and Kc ∈ Rm×p is the
control matrix. If the system runs in a decentralized control context, we have:

.
xd(t) = Adxd(t) + Bd ud(t) ; xd(0) = xd0 (4)

yd(t) = Cdxd(t) + Ddud(t) (5)

ud(t) = Kdyd(t) (6)

where xd(t) ∈ Rn is the state vector; ud(t) ∈ Rm is the centralized control vector; yd(t) ∈ Rp is the
output; Ad, Bd, Cd and Dd are the system, control, output and input–output interconnection matrices,
respectively, of orders being compatible with the dimensions of the above vectors; and Kd ∈ Rm×p is
the control matrix.

Basically, the differences between centralized and decentralized controls are as follows:

(1) In the centralized control, all control components, or more generally, all subsystems if subsystems
are considered in the model, have a complete information on the output available for feedback.
This means that all control components or block-control inputs are available for controlling each
state component (or each individual substate including several state components in the case of
a more generic decomposition structure). Basically, the matrix Kc has a complete non-diagonal
or block non-diagonal structure. In the decentralized control, the various input components or
block-control inputs are not available for controlling each state component. Thus, Kd does not
have a complete free design structure of its non-diagonal part and in some cases (completely
decentralized disposal) its diagonal or block diagonal.

(2) In a more general context, some control or output links can be cut in the decentralized case
for the sake of computational simplicity or a more economic control design. In our case, the
decentralized input, output and interconnection matrices Bd, Cd and Dd can be distinct from the
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centralized ones and, roughly speaking, to a have a “more diagonal” or “sparser” structure than
their centralized counterparts Bc, Cc and Dc. If the parameterization of the system (or dynamics)
matrix is available to the designer, then some off-diagonal block matrices of Ac could be zeroed or
simply re-disposed in a more sparse structure to construct Ad.

(3) The only strictly necessary condition for the system to be subject to partially (or, respectively,
fully) decentralized control is that some (or, respectively, all) of the off-diagonal entries of Kd are
forced to be zero even if the system, control, output and interconnection matrices remain identical
in Equations (4) and (5) with respect to Equations (1) and (2).

Assumption 1. The system in Equations (1) and (2) is linear output-feedback stabilizable via some centralized
control law (Equation (3)).

Note that Assumption 1 does not hold if the open-loop system in Equations (1) and (2) has unstable
or critically stable fixed modes that cannot be removed via linear feedback.

Proposition 1. If Assumption 1 holds, then there exists a centralized stabilizing controller gain Kc ∈ Rm×p

such that the matrices (Im −KcDc) and
(
Ip −DcKc

)
are non-singular, thus the closed-loop centralized control

system is solvable and given by:

.
xc(t) =

(
Ac + Bc(Im −KcDc)

−1KcCc
)
xc(t); xc(0) = xc0 (7)

yc(t) =
(
Ip −DcKc

)−1Ccxc(t) (8)

and asymptotically stable for any given xc0 ∈ Rn under the generated control law:

uc(t) = (Im −KcDc)
−1KcCcxc(t) (9)

that is, the polynomial p(s) = det
(
sIn −Ac − Bc(Im −KcDc)−1KcCc

)
is Hurwitz.

Proof. The replacement of Equation (3) into Equations (1) and (2) yields Equation (7)–(9). Since the (1)
and (2) is linear output stabilizable, a stabilizing controller gain Kc ∈ Rm×p has to exist such that (7)–(9)
are solvable and the closed-loop dynamics is stable. �

Assumption 2. The system in Equations (4) and (5) is linear output-feedback stabilizable via some decentralized
control law (Equation (6)).

In the same way as Proposition 1, we get the following result:

Proposition 2. If Assumption 2 holds, then there exists a decentralized stabilizing controller gain Kd ∈ Rm×p

such that the matrices (Im −KdDd) and
(
Ip −DdKd

)
are non-singular, thus the closed-loop decentralized control

system is solvable and given by:

.
xd(t) =

(
Ad + Bd(Im −KdDd)

−1KdCd
)
xd(t); xd(0) = xd0 (10)

yd(t) =
(
Ip −DdKd

)−1Cdxd(t) (11)

and asymptotically stable for any given xd0 ∈ Rn under the control law:

ud(t) = (Im −KdDd)
−1KdCdxd(t) (12)

that is, the polynomial p(s) = det
(
sIn −Ad − Bd(Im −KdDd)

−1KdCd
)

is Hurwitz.
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Proposition 3. Assume that Ad = Ac, Bd = Bc, Cd = Cc and Dd = Dc, and that the system in Equations (1)
and (2) is not linear output-feedback stabilizable via some centralized control law (Equation (3)). Then, it is not
stabilizable under any linear output-feedback decentralized control (Equation (6)) either.

Proof. Obviously, if there is no completely free-design matrix Kc that stabilizes Equations (1) and (2),
then there is no Kd with at least a forced zero off-diagonal entry that stabilizes it since Kd has extra
design constraints related to Kc. �

It can be pointed out that decentralized control has also been proved to be useful in applications.
For instance, an integral-based event-triggered asymptotic stabilization of a continuous-time linear
system is studied in [17] by considering actuator saturation and observer-based output feedback are
considered. In the proposed scheme, the sensors and actuators are implemented in a decentralized
manner and a type of Zeno-free decentralized integral-based event condition is designed to guarantee
the asymptotic stability of the closed-loop systems. On the other hand, two decentralized fuzzy
logic-based control schemes with a high-penetration non-storage wind-diesel system are studied in [18]
for small power system with high-penetration wind farms. In addition, several examples concerning
decentralized control are described in [4] to illustrate the theoretical design analysis. A typical described
case is that of tandems of electrical power system with a tandem disposal on the same river which are
not physically nearly allocated. The next section discusses some simple sufficiency-type conditions
which ensure that, provided that the system is stabilizable under linear output-feedback centralized
control, it is also stabilizable under decentralized control in two cases: (a) the system matrix remains
identical but the other parameterization matrices can eventually vary; and (b) the system matrix
can vary as well in the decentralized case with respect to the centralized one. A result elated to the
maintenance of the stability of a matrix under an additive matrix perturbation is summarized through
a set of sufficiency-type conditions simple to test in Theorem A1. Theorem A2 proves sufficiency-type
for the stability of the matrix function A(t) = A0 + Ã(t) with A0 stable and Ã(t) being time-varying.
Appendix B includes calculations and auxiliary results to quantify the tolerance to cut some dynamics
links between subsystems, state components or control centers or components while keeping the
closed-loop stability of the whole coupled system. The results of Appendices A and B are used in the
proofs of the main results in the next section.

3. Main Results

The first set of technical results which follow are concerned with centralized and decentralized
control stabilizability.

Assertion 1. A necessary and sufficient condition for the system to be linear state-stabilizable via some
centralized control law is that rank[sIn −Ac Bc] = n for all Res ≥ 0.

Proof. Assume that rank[sIn −Ac Bc] = n1 < n for some Res ≥ 0. Then, there is some Laplace

transform
[
x̂T(s) , ûT(s)

]T

= Lap
[
xT(t) , uT(t)

]
T � 0 such that [sIn −Ac Bc]

[
x̂T(s) , ûT(s)

]
T = 0 for

some Res ≥ 0 and [sIn −Ac Bc]

[
In

Kc

]
x̂(s) = 0 for any Kc ∈ Rn×n and some x̂(s) � 0 with Res ≥ 0

since rank
(
[sIn −Ac Bc]

[
In

Kc

])
≤ min

(
rank[sIn −Ac Bc] , rank

[
In

Kc

])
≤ min(n1 , n) ≤ n1 < n for some

Res ≥ 0. Therefore, the closed-loop system has some unstable or critically stable solution for
any given (centralized) control gain. This proves the necessary part. Sufficiency follows since, if
rank[sIn −Ac Bc] = n, then x̂(s) ≡ 0 for all Res ≥ 0 and some Kc ∈ Rn×n which can be found so that

min
(
rank[sIn −Ac Bc] , rank

[
In

Kc

])
= min(n, n) = n. �
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Assertion 1. is a particular adapted ad-hoc test for stabilizability of the celebrated Popov–Belevitch
–Hautus rank controllability test [6]. Note that, if there exist unstable or critically stable fixed modes
(i.e., those present in the open-loop system that cannot be removed via feedback control), then neither
centralized nor decentralized stabilizing control laws can be synthesized. Note that the stabilizability
rank test of Assumption 1 can only be evaluated for the critically and unstable eigenvalues of Ac

instead for all the open right-hand complex plane. In all the remaining points of such a plane, the test
always gives a full rank of the tested matrix. The parallel controllability test should always be applied
in the same matrix to any eigenvalues of Ac.

Assertion 2. A necessary condition for the system to be linear state-stabilizable via some partially or totally
decentralized control is that it be stabilizable via centralized control (i.e., Assertion 1 holds).

Proof. It is obvious from Assertion 1 since any gain Kd used for centralized or decentralized is sparser
than a centralized gain counterpart so that the proof follows from Assertion 1. �

Assertion 3. A necessary condition for the system to be linear output-stabilizable via some partially or totally
decentralized control is that it be stabilizable via centralized control (i.e., that Assertion 1 holds).

Proof. It is obvious from Assertions 1 and 2 that, when replacing Kc → (Im −KcDc)−1KcCc and
Kd → (Im −KdDd)

−1KdCd (see Equations (9) and (12)), the second replacement happens under sparser
parameterizations. �

Now, consider the closed-loop system matrices from Equations (7) and (10) for the case A = Ac =

Ad.
Acc = A + Bc(Im −KcDc)

−1KcCc; Adc = A + Bd(Im −KdDd)
−1KdCd

with its parametrical error being:

Ãdc = Acc −Adc = Bc(Im −KcDc)
−1KcCc − Bd(Im −KdDd)

−1KdCd

A first main technical result follows:

Theorem 1. If Assumption 1 holds, assume also that Kc ∈ Rm×p is a centralized linear output-feedback
stabilizing controller gain such that the resulting closed-loop system matrix Acc ∈ Rn×n has a stability abscissa
(−ρcc) < 0. Then, the following properties hold:

(i) Adc ∈ Rn×n is a closed-loop stability matrix under a linear output-feedback stabilizing controller gain
Kd ∈ Rm×p if any of the subsequent sufficiency-type conditions holds:

(1) The H∞-norm of (sIn −Acc)−1Ãdc satisfies ‖(sIn −Acc)−1Ãdc‖∞ < 1,
(2) ‖Ãdc‖2 < 1/ sup

ω∈R0+

‖(iωIn −Acc)−1‖2.

Other alternative sufficiency-type conditions to Conditions 1 and 2 for the stability of Adc are:
(3) ρ

(
A−1

cc Ãdc
)
< 1,

(4) ‖A−1
cc Ãdc‖2 < 1,

(5) ‖Ãdc‖2 < 1/‖A−1
cc ‖2, that is, λmax

(
ÃT

dcÃdc
)
< λmin

(
AT

ccAcc
)
,

in the following particular cases:
(a) Acc ≺ 0 and Ãdc � Acc; and
(b) Acc =

(
Accij

)
∈Mn×n

E and Ãdc =
(
Ãdci j

)
fulfills Ãdci j ≤ Accij ; ∀i, j(� i) ∈ n.

(ii) Assume that Property (i) holds and that the number of inputs and outputs are identical, i.e., p = m,
and decompose both the controller gain matrices as sums of their diagonal and off-diagonal parts leading to
Kc = Kcd + Kcod and Kd = Kdd + Kdod, thus K̃ = Kc −Kd = (Kcd −Kdd) + (Kcod −Kdod). Then, the system
is stabilizable under partially decentralized control linear output-feedback control in the sense that Equations
(4) and (5), is asymptotically stable under a control law (Equation (6)), if Kd ∈ Rm×p is such that, if there
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is at least one non-diagonal zero entry in at least one of its rows in the off-diagonal controller error matrix
K̃od = Kcod −Kdod. If K̃od = 0, then the system is stabilizable under decentralized control.

Proof. Property (i) is a direct translation of the results of Theorem A1 in Appendix A to the closed-loop
system matrices. Property (ii) holds if Property (i) holds with an off-diagonal controller error matrix
between the centralized a decentralized controller gain that has at least one non-diagonal zero at some
row (or its identically zero) so that a feedback from some crossed output to some of the inputs is not
provided to the control law for closed-loop stabilization the stabilization. �

The following result follows for the time-varying case from Theorem 1 and Theorem A2:

Corollary 1. Assume that Adc(t) and then Ãdc(t) are everywhere piecewise-continuous time-varying. Then,
Theorem 1 still holds if Condition 1 is replaced with kcc

ρcc
sup

0≤τ<t
‖Ãdc(τ)‖ < 1; ∀t ∈ R0+ with kcc ≥ 1 and ρcc > 0

being real constants such that e−Acct ≤ kcce−ρcct; ∀t ∈ R0+.

Remark 1. Theorem 1 (ii) has been stated for the case m = p. Note that the case m > p (i.e., there are more
inputs than outputs) is irrelevant for the stabilization from the strict algebraic point of view since the (m− p)
extra inputs would be redundant. In the case that m ≤ p, Theorem 1 (ii) might be directly generalized to a

subsystem´s decomposition philosophy if a number q ≤ m of subsystems of inputs and outputs
(
uT

1 , uT
2 , · · · , uT

q

)T
and

(
yT

1 , yT
2 , · · · , yT

q

)T
with ui ∈ Rmi , yi ∈ Rpi ; ∀i ∈ n with p =

∑q
i=1 pi and m =

∑q
i=1 mi.

Remark 2. Theorem 1 can be easily generalized to cases when some dynamics transmission links between
state, input or output components (or subsystems, in general) can be suppressed by manipulation. In more
general cases, it is possible to extend Theorem 1 to combinations of the subsequent situations with the matrix
decompositions having the same sense (in the various modified contexts) as that of Theorem 1 (ii):

• Case 1. Suppression of some transmission links between the coupled open-loop dynamics

by examining the decompositions: Ac = Acd + Acod, Ad = Add + Adod, and Ã = Ac − Ad =

(Acd −Add) + (Acod −Adod).

(a) If there is at least one non-diagonal zero entry in at least one of its rows in the off-diagonal controller
error matrix Ãod = Acod −Adod which is not a corresponding zero in Acod; and (b) if there is at least
one non-diagonal zero entry in at least one of its rows in the off-diagonal controller error matrix
K̃od = Kcod −Kdod, then the closed-loop system is stabilizable under a partial decentralized control even
if some links of the dynamics between crossed components are cut if Theorem 1 (ii) holds. If only
Condition a is addressed, then the system is stabilizable by centralized control when cutting certain
transmission links between coupled dynamics in the open-loop system. This idea can be extended to
total decentralized control for a purely diagonal open-loop system´s dynamics under full zeroing of the
off-diagonal corresponding error dynamics. It can be also generalized to the “ad hoc” decompositions
between subsystems. Other cases with similar interpretations in the new contexts are:

• Case 2. Suppression of some crossed entries in the open-loop control matrix by examining the
decompositions: Bc = Bcd + Bcod, Bd = Bdd + Bdod, and B̃ = Bc − Bd = (Bcd − Bdd) + (Bcod − Bdod).

• Case 3. Suppression of some crossed entries in the open-loop output matrix by examining the

decompositions: Cc = Ccd + Ccod, Cd = Cdd + Cdod, and C̃ = Cc −Cd = (Ccd −Cdd) + (Ccod −Ddod).
• Case 4. Suppression of some crossed entries in the open-loop interconnection matrix by examining

the decompositions: Dc = Dcd + Dcod, Dd = Ddd + Ddod, and D̃ = Dc −Dd = (Dcd −Ddd) +

(Dcod −Ddod).
• Case 5. Any combinations of Cases 1–4.
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Problem 1. Find a stabilizing decentralized family of control gains by assuming that Ad = Ac, such that
Ã = Ac −Ad = 0 and Assumption 1 holds with Kc being a stabilizing centralized controller gain.

The following more general result for the eventual case Ã � 0 (that is Ac � Ad eventually), follows
from Theorem 1, Theorem A1 and Theorem A2 and Lemmas B1, B2 and B3:

Theorem 2. Define the following error matrices between the centralized and decentralized system
parameterizations:

Ã = Ac −Ad ; B̃ = Bc − Bd; C̃ = Cc −Cd; D̃ = Dc −Dd; K̃ = Kc −Kd (13)

such that ‖ Ã‖ ≤ σ̃Aε, ‖ B̃‖ ≤ σ̃Bε, ‖ C̃‖ ≤ σ̃cε, ‖ D̃‖ ≤ σ̃Dε and ‖ K̃‖ ≤ σ̃Kε for some ε ∈ R0+ and given σ̃A, σ̃B,
σ̃C, σ̃D ∈ R+. Assume that:

(1) Assumption 1 holds;
(2) Kc ∈ Rm×p is a centralized linear output-feedback stabilizing controller gain such that the resulting

closed-loop system matrix Acc ∈ Rn×n has a stability abscissa (−ρcc) < 0 and such that ‖KcDc‖2 < 1 (so
that (Im −KcDc) is non-singular);

(3) Ac = Ad = A; and
(4) Define ε∗ = min (1 , ε, ε1 , ε2), where:

ε =

√
(̃σD‖Kc‖+ σ̃K‖Dc‖)2 + 4σ̃Dσ̃K/‖(Im −KcDc)−1‖ − (̃σD‖Kc‖+ σ̃K‖Dc‖)

2σ̃Dσ̃K
,

ε1 =
‖(Im −KcDc)−1‖

2[‖Kc‖̃σD + ε̃σDσ̃K + ‖Dc‖ σ̃K]
; ε2 = 1/

⎛⎜⎜⎜⎜⎝̃adc sup
ω∈R0+

‖(iωIn −Acc)
−1‖2

⎞⎟⎟⎟⎟⎠,
where

ãdc = (1− ‖KcDc‖)−1×[̃σB‖KcCc‖+ ( ‖Bc‖+ ‖KcCc‖)(‖Kc‖̃σC + ‖Cc‖ σ̃K + C [‖Kc‖̃σD + ‖Dc‖ σ̃K])],

where the non-negative real constant C is given in Equation (A17). Then, the following properties hold:
(i) If σ̃A = 0 (that is, Ac = Ad), then Adc is stable and ε ∈ [0 , ε∗]. (ii) If ‖ Ã‖2 ≤ σ̃Aε, then Adc is stable

and ε ∈ [0 , ε′∗] where ε′∗ = min (1 , ε, ε1 , ε′2) and ε′2 = 1/

⎛⎜⎜⎜⎜⎝(̃adc + σ̃A) sup
ω∈R0+

‖(iωIn −Acc)−1‖2
⎞⎟⎟⎟⎟⎠.

(iii) If Ã(t) is piecewise continuous and bounded, then Property (ii) holds by replacing ‖ Ã‖2 ≤ σ̃Aε by
sup

0≤t<∞
‖ Ã(t)‖2 ≤ σ̃Aε.

Remark 3. Some quantified results are given in Lemmas B.2 and B.3 to modify ε2(and hence ε′2) in Theorem 2
by considering the second power of ε in the calculations of the disturbed parameterization guaranteeing the
closed-loop stability in the decentralized case.

Remark 4. If the corresponding parametrical error matrices of Equation (13) have some zero off-diagonal entries
(or off-diagonal block matrices in the more general case that the system is described by coupled subsystems), then
we have at least a partial closed-loop stabilization under decentralized control or, eventually, cut coupled dynamic
links to the light of the various Cases 1–5 described after Remark 2 such that closed-loop stability is preserved.

Remark 5. Theorem 2 also applies to the case of state-feedback control by replacing the output matrices
Cc , Cd → In and fixing σ̃C = 0.
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Remark 6. Theorem 2 also applies directly to the cases where Equations (1)–(3) are a given nominal asymptotically
stable closed-loop system configuration and Equations (4)–(6) are a perturbed one whose closed-loop asymptotic
stability maintenance related to its nominal counterpart is a suited objective and which is not necessarily of
partial of compete decentralized type.

4. Simulation Examples

This Section contains some numerical simulation examples to illustrate the theoretical results
introduced in Section 3.

Example 1. Consider the interconnected linear system with less inputs than outputs given by, [19]:

.
x1(t) = A11x1(t) + A12x2(t) + B1u1(t)
.
x2(t) = A21x1(t) + A22x2(t) + B2u2(t)

y1(t) = C1x1(t)
y2(t) = C2x2(t)

with x1(t)
T =

[
x11(t) x12(t)

]
, x2(t)

T =
[

x21(t) x22(t)
]

and matrices defined by:

A11 =

[
1 0
0 2

]
, A12 = A21 =

[ −1 0
0 −1

]
, A22 =

[ −1 0
0 −2

]
, B1 =

[
1
2

]
, B2 =

[
2
1

]

C1 = C2 = I2

This system can be cast into the form of Equations (1) and (2) by composing the matrices:

Ac =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 0 −1 0
0 2 0 −1
−1 0 −1 0
0 −1 0 −2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, Bc =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 0
2 0
0 2
0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, Cc = I4, Dc = 0

Note that matrix Ac is unstable with eigenvalues given by {2.36, .1.41,−1.41,−2.23}. A static
feedback output controller of the form of Equation (3) can be designed for this system, which leads to
the following gain:

Kc =

[ −9.3 8.2 −0.015 0.02
0.01 −0.01 0.375 0.25

]
that places the closed-loop poles at {−0.84,−1.1,−2.8,−3.3} and thus stabilizes the closed-loop system.
The static feedback gain Kc corresponds to a centralized controller as it can be readily observed.
The question that arises now is whether a decentralized controller defined by:

Kd =

[ −9.3 8.2 0 0
0 0 0.375 0.25

]

is enough to stabilize the system or not. Note that Kd is a block-diagonal matrix with zero
off-block-diagonal entries. Theorem 1 enables us to guarantee the asymptotic stability of the above
system when the decentralized controller Kd is used. Therefore, Ad = Ac, Bd = Bc and Cd = Cc while
the feedback gain Kd is restricted to the proposed particular structure. In this way, consider now
Acc = Ac + BcKcCc, Adc = Ac + BcKdCc and Ãdc = Bc(Kc −Kd)Cc. Condition 2 of Theorem 1 (i) yields:

0.055 = ‖Ãdc‖2 < 1

sup
ω∈R0+

‖(iωI4 −Acc)
−1‖2

= 0.07
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Consequently, we can conclude from Theorem 1 that the closed-loop system controlled by the
decentralized static output gain Kd is asymptotically stable. Thus, we have been able to easily analyze
the stability of the decentralized case from the stability property of the centralized one. Figure 1 shows
the trajectories of the closed-loop system when the gain Kd is deployed with initial conditions given by
x1(t)

T =
[
−3 −4

]
, x2(t)

T =
[

5 6
]
. It can be observed in Figure 1 that all the states converge to

zero as predicted by Theorem 1.

Figure 1. States evolution when the decentralized controller Kd is employed.

Example 2. Consider the linear system with the same number of inputs and outputs composed of two identical
pendulums THAT are coupled by a spring and subject to two distinct inputs, as displayed in Figure 2, [19].

Figure 2. Two inverted pendulums coupled by a spring.

The mathematical model of such interconnected system is given by:

.
x1(t) = A11x1(t) + A12x2(t) + B1u1(t)
.
x2(t) = A21x1(t) + A22x2(t) + B2u2(t)

y1(t) = C1x1(t)
y2(t) = C2x2(t)

with x1(t)
T =

[
θ1

.
θ1

]
, x2(t)

T =
[
θ2

.
θ2

]
and matrices defined by:

A11 = A22 =

⎡⎢⎢⎢⎢⎣ 0 1
g
l − ka2

ml2 −μ
⎤⎥⎥⎥⎥⎦, A12 = A21 =

⎡⎢⎢⎢⎢⎣ 0 0
ka2

ml2 0

⎤⎥⎥⎥⎥⎦, B1 = B2 =

[
0
1

ml2

]
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C1 = C2 =
[

1 0
]

where g represents the gravity, μ accounts for the friction, m = m1 = m2 are the masses of both
pendulums, k is the spring constant and the meanings of the geometrical parameters are shown in
Figure 2. This linear model corresponds to the linearization of the pendulum nonlinear equations
around the up-right position equilibrium point. The following values were used in simulation, [19]:

g
l
= 1,

1
ml2

= 1, μ = 1,
k
m

= 2,
a
l
= 0.5

This system can be cast into the form of Equations (1) and (2) as:

Ac =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 1 0 0

0.5 −1 0.5 0
0 0 0 1

0.5 0 0.5 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, Bc =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 0
1 0
0 0
0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, Cc =

[
1 0 0 0
0 0 1 0

]
, Dc = 0

A static output feedback controller can be designed for this system to achieve its asymptotic
stability. In this way, the feedback gain

Kc =

[
2.92 0.65
0.64 2.80

]

places the closed-loop poles at {−0.5± 1.5i,−0.5± 1.4i} with negative real parts. Now, we implement a
decentralized controller with feedback gain given by:

Kd =

[
2.92 0

0 2.80

]

Theorem 2 is now used to analyze the stability of the closed-loop system when this controller
is employed. This case is of practical importance and corresponds to the situation when the local
controller has only available for control purposes the information regarding the local output, and not
the output of the complete system. Thus, the centralized and decentralized systems are the same and
only the static feedback gain changes. Theorem 2 conditions are applied with σ̃A = σ̃B = σ̃C = σ̃D = 0,
σ̃K = ‖Kc −Kd‖2 = 0.65 while the stability condition for this special case (see Appendix B) reads:

0.65 = 0.65× 1× 1 = ‖Kc −Kd‖2‖Bc‖2‖Cc‖2 < 1

Accordingly, the closed-loop system attained with the decentralized controller is asymptotically
stable and all the outputs will converge to zero asymptotically. Figure 3 displays the evolution of both
angles from initial conditions x1(t)

T =
[

0.5 −0.5
]
, x2(t)

T =
[

0.15 0.5
]
, where it can be observed

that both pendulums are stabilized in the up-right position with the decentralized controller.
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Figure 3. Evolution of the angles of both pendulums.

Example 3. Consider the linear interconnected system given by:

.
xc(t) = Acxc(t) + Bcuc(t)
yc(t) = Ccxc(t) + Dcuc(t)

with matrices defined by:

Ac =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
−1 0.4 0.3
0.2 −2 0.1
−0.1 0.2 −3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦, Bc =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 0.1 0
0 2 0
0 0 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦, Cc =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 0.1 0
0 1 0.1
0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦, Dc = 0.1I3

This system is controlled by the static output feedback gain given by:

Kc =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0.19 0.05 0.04
0.05 −0.01 0.03
−0.02 0.02 −0.46

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
which places the closed-loop poles at {−1.17,−2,−2.1}. The decentralized system is now given by:

Ad = Ac, Bd =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 0 0
0 2 0
0 0 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦, Cd = I3, Dd = 0

The decentralized system corresponds to the case when some transmission links have been
suppressed from the original open-loop coupled dynamics, as considered in Remark 2. The following
decentralized gain iz employed to stabilize the decentralized system in Equations (4)–(6) parameterized
by the above matrices:

Kd =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0.19 0 0

0 −0.01 0
0 0 −0.46

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
Theorem 2 is used to analyze the stability of the decentralized closed-loop system. To this end, we

calculate:
‖Ac −Ad‖2 = σ̃A = 0

0.1 = ‖Bc − Bd‖2 ≤ σ̃Bε = 2.7× 0.07 = 0.19

0.1 = ‖Cc −Cd‖2 ≤ σ̃Cε = 2.7× 0.07 = 0.19
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0.1 = ‖Dc −Dd‖2 ≤ σ̃Dε = 2.7× 0.07 = 0.19

0.07 = ‖Kc −Kd‖2 ≤ σ̃Kε = 2.7× 0.07 = 0.19

With these values, we can compute ε = 0.31, ε1 = 0.24, ε2 = 0.071 so that 0.07 = ε < ε∗ =
min(1, ε, ε1, ε2) = 0.071. Since ‖KcDc‖2 = 0.05 < 1, we are in conditions of applying Theorem 2 (i) and
we can conclude that the decentralized closed-loop system is asymptotically stable. In this way, the
presented results allow establishing the stability of the decentralized system by a simple method based
on the stability and design of the centralized system. Figure 4 shows the state variables evolution
from the initial state x(t)T =

[
5 −5 1

]
. As shown in Figure 4, the state variables converge to zero

asymptotically, as concluded from Theorem 2.

Figure 4. Evolution of the state space variables when the decentralized controller Kd is used.

5. Concluding Remarks

This paper is devoted to formulating sufficiency-type linear-output feedback decentralized
closed-loop stabilization conditions if the continuous-time linear dynamic system can be stabilized
under linear output-feedback centralized stabilization. The developed stability tests are conceptually
simple to evaluate and they rely on the quantification in terms of worst-case norms of interconnection
and open-loop system dynamics matrices and the corresponding control gains in the decentralized
case compared to the centralized counterpart. The tolerances of the various parametrical matrix
errors have been quantified by considering the first or second powers of a small parameter. Such a
parameter is a design factor to characterize in the worst-case for the allowed tolerances to the
perturbed parameterization norms. Simulated examples are discussed to illustrate the obtained results.
The decentralized control design versus its decentralized control counterpart, under eventual output
linear feedback, has been studied from the point of view of the amount of information that can be lost
or omitted in terms of the total or partial knowledge of the coupled dynamics between subsystems
necessary in the decentralized case to keep the closed-loop stability. A foreseen related future work
relies on the application of the method to some applied control problems such as consensus protocols
under decentralized control and continuous-discrete hybrid controller designs.
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Appendix A Auxiliary Stability Results on Perturbed Matrices under Constant and Time-Varying
Perturbations of Stability Matrices

Theorem A1. Assume that A0 ∈ Rn×n is a stability matrix with stability abscissa (−ρc) < 0. Then,
A = A0 + Ã is a stability matrix if any of the subsequent sufficiency-type conditions holds:

(1) The H∞-norm of (sIn −A0)
−1Ã satisfies ‖(sIn −A0)

−1Ã‖∞ < 1,
(2) ‖Ã‖2 < 1/ sup

ω∈R0+

‖(iωIn −A0)
−1‖2.

Other alternative sufficiency-type conditions to Conditions 1 and 2 for the stability of A are:
(3) ρ

(
A−1

0 Ã
)
< 1,

(4) ‖A−1
0 Ã‖2 < 1,

‖Ã‖2 < 1/‖A−1
0 ‖2, that is, λmax

(
ÃTÃ

)
< λmin

(
AT

0 A0
)
, in the following particular cases:

(a) A0 ≺ 0 and A ≺ −A0; and
(b) A0 =

(
A0i j

)
∈Mn×n

E and Ã =
(
Ãi j

)
fulfils Ãi j ≥ −A0i j ; ∀i, j(� i) ∈ n.

Proof. Note that

det(sIn −A) = det
(
sIn −A0 − Ã

)
= det

(
(sIn −A0)

(
In − (sIn −A0)

−1Ã
))

= det(sIn −A0) det
(
In − (sIn −A0)

−1Ã
)
;∀s ∈ C

(A1)

and then det(sIn −A) = det(sIn −A0) det
(
In − (sIn −A0)

−1Ã
)
� 0 Then, for all s � sp(A), and also for

all s ∈ sp(A0) if the H∞-norm of (sIn −A0)
−1Ã, which exists since A0 is a stability matrix, satisfies

‖(sIn −A0)
−1Ã‖∞ < 1, which is guaranteed if ‖Ã‖2 < 1/ sup

ω∈R0+

‖(iωIn −A0)
−1‖2. Then, A is a stability

matrix if Conditions 1 or 2 holds. On the other hand, if A0 and A are negative (implying that A ≺ −A0),
or if they are both Metzler-stable (implying for all off-diagonal entries that Ãi j ≥ −A0i j ; ∀i, j(� i) ∈ n),
then their dominant abscissa (perhaps multiple) eigenvalue is real and negative since A0 being a
stability matrix is claimed to guarantee that A is stable. Since A0 is a stability matrix, it is non-singular
with eigenvalues with negative real parts. Then, by the continuity of the eigenvalues with respect
to the matrix entries, A = A0

(
In + A−1

0 Ã
)

is a stability matrix if ρ
(
A−1

0 Ã
)
≤ ‖A−1

0 Ã‖2 ≤ ‖A−1
0 ‖2‖Ã‖2 < 1

leading to the sufficiency of Conditions 3–5 for the stability of A if is A0 stable. The last, sufficient
condition comes directly by upper-bounding Condition 4 by norm product and it is equivalent to
‖Ã‖2 = λ1/2

max

(
ÃTÃ

)
< 1/‖A−1

0 ‖2 = 1/λ1/2
max

(
A−1

0 A−T
0

)
= λ1/2

min

(
AT

0 A0
)
. �

Theorem A2. Assume that A0 ∈ Rn×n is a stability matrix and that A(t) = A0 + Ã(t), where Ã : R0+ → Rn×n

is piecewise-continuous and bounded. Then, A : R0+ → Rn×n is stable if k0
ρ0

sup
0≤τ≤t

‖Ã(τ)‖ < 1; ∀t ∈ R0+,

where (−ρ0) < 0 is the stability abscissa of A0 and k0 = k0(‖A0‖) ≥ 1 is a real constant satisfying
‖eA0t‖ ≤ k0e−ρ0t;∀t ∈ R0+.

Proof. Consider the linear time-varying system:

.
x(t) =

(
A0 + Ã(t)

)
x(t), x(0) = x0 ; ∀t ∈ R0+ (A2)
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where Ã : R0+ → Rn×n is piecewise-continuous and bounded [1]. Such a system is globally
asymptotically stable if and only if A : R0+ → Rn×n is a stability matrix. The state-trajectory solution
of Equation (A2) satisfies:

‖x(t)‖ ≤ ‖eA0t‖ ‖x0‖+
∫ t

0

∥∥∥eA0(t−τ)
∥∥∥ ‖Ã(τ)‖ ‖x(τ)‖ dτ≤ k0e−ρ0t‖x0‖+ k0

ρ0
sup

0≤τ≤t
‖x(τ)‖

= K0e−ρ0t‖x0‖+ k0
ρ0

sup
0≤τ≤t

(
‖Ã(τ)‖

)
‖x(t′)‖; ∀t ∈ R0+

(A3)

Let t′ = t′(t) be defined for each t ∈ R0+ as t′ =
{
z = max

0≤τ≤t
τ : ‖x(z)‖ ≥ ‖x(t)‖

}
. Then,

‖x(t)‖ ≤ sup
0≤τ≤t

‖x(τ)‖ = sup
0≤τ≤t′

‖x(τ)‖ = ‖x(t′)‖ ≤ k0
−ρ0t′‖x0‖+ k0

ρ0
sup

0≤τ≤t
‖Ã(τ)‖ ‖x(t′)‖; ∀t ∈ R0+ (A4)

Since 1 > k0
ρ0

sup
0≤τ≤t

‖Ã(τ)‖; ∀t ∈ R0+, one gets:

‖ x(t)‖ ≤ ‖ x(t′)‖ = sup
0≤τ≤t′

‖x(τ)‖ ≤
(
1− k0

ρ0
sup

0≤τ<∞
‖Ã(τ)‖

)−1

k0e−ρ0t′‖x0‖

≤M = k0

(
1− k0

ρ0
sup

0≤τ<∞
‖Ã(τ)‖

)−1

‖x0‖ ; ∀t ∈ R0+

(A5)

Therefore, x(t) is bounded for any t ∈ R0+ if x0 is finite. Now, assume the following cases.

Case a: For any Ts ∈ R+, the sequence

⎧⎪⎪⎨⎪⎪⎩ sup
nTs≤t<(n+mn)Ts

‖x(t)‖
⎫⎪⎪⎬⎪⎪⎭
∞

n=k

is strictly decreasing for some

finite positive integer k = k(Ts) and some positive sequence {mn} of bounded integer numbers which

satisfies mn+1 > mn − 1 for n ≥ 0. As a result,

⎧⎪⎪⎨⎪⎪⎩ sup
nTs≤t<(n+mn)Ts

‖x(t)‖
⎫⎪⎪⎬⎪⎪⎭
∞

n=k

→ 0 as n→∞ for any

given Ts > 0. Then, one gets from Equation (A3) that ‖x(t)‖ → 0 , as t→∞ since ‖x(nTs + t)‖≤
k0

⎛⎜⎜⎜⎜⎝1 + 1
ρ0

sup
nTs≤τ<t

‖x(τ)‖
⎞⎟⎟⎟⎟⎠; ∀t ∈ (nTs , (n + 1)Ts). The result is proved for this case.

Case b: For some Ts ∈ R+, a sequence

⎧⎪⎪⎨⎪⎪⎩ sup
nTs≤t<(n+mn)Ts

‖x(t)‖
⎫⎪⎪⎬⎪⎪⎭
∞

n=0

can be built, with {mn}∞n=0 →∞ as

m→∞ satisfying sup
(n+mn)Ts≤t<(n+mn)Ts

‖x(t)‖ = sup
nTs≤t<(n+mn+mn+mn )Ts

‖x(t)‖ ≥ sup
nTs≤t<(n+mn)Ts

‖x(t)‖ ; n ≥ 0

(note that the above inequality cannot be strict as n→∞ since it has already been proven that ‖x(t)‖ <
+∞; ∀t ∈ R0+). However, then one gets from Equation (A3) for some tn+1 ∈ [n + mn , n + mn + mn+mn)

since 1 > k0
ρ0

sup
0≤τ≤t

‖Ã(τ)‖; ∀t ∈ R0+:

sup
nTs≤t<(n+mn)Ts

‖x(t)‖ ≤ sup
nTs≤t<(n+mn+mn+mn )Ts

‖x(t)‖≤ K0e−ρ0(tn+1−nTs)‖x(nTs)‖

+K0
ρ0

sup
nTs≤t<(n+mn+mn+mn )Ts

(
‖Ã(τ)‖

)
sup

nTs≤t<(n+mn+mn+mn )T
‖x(t)‖

< K0e−ρ0(tn+1−nTs)‖x(nTs)‖+ sup
nTs≤t<(n+mn+mn+mn )T

‖x(t)‖
(A6)

If n→∞ , mn →∞ , then (tn+1 −mn+mn)→∞ , thus the following contradiction arises:

0 = lim sup
n→∞

⎛⎜⎜⎜⎜⎜⎝ sup
nTs≤t<(n+mn+mn+mn )Ts

‖x(t)‖ − sup
nTs≤t<(n+mn+mn+mn )Ts

‖x(t)‖
⎞⎟⎟⎟⎟⎟⎠ < 0.
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Thus, Case b is not possible and the whole result follows from Case a. �

Note that the stability abscissa of A0, that is, (−ρ0) < 0 is not smaller than the dominant
eigenvalue abscissa.

Appendix B Calculations for solving Problem 1

Assume that the matrix (Im −KcDc) is non-singular with ‖KcDc‖2 < 1 and A = Ac = Ad. Then,
one gets from Equations (10) and (13) that:

Ad + Bd(Im −KdDd)
−1KdCd

= A +
(
Bc − B̃

)(
Im −KcDc − Δ̃0

)−1(
KcDc − Δ̃1

)
= A +

(
Bc − B̃

) [
(Im −KcDc)

(
Im − (Im −KcDc)

−1Δ̃0
)]−1

(
KcCc − Δ̃1

)
= A +

(
Bc − B̃

) (
Im − (Im −KcDc)

−1Δ̃0
)−1

(Im −KcDc)
−1(

KcCc − Δ̃1
)

= A +
(
Bc − B̃

) (
Im + Δ̃2

)
(Im −KcDc)

−1
(
KcCc − Δ̃1

)
(A7)

provided that D̃ and K̃ are such that (Im −KdDd)
−1 =

(
Im −KcDc − Δ̃0

)−1 exists (note that this always

holds if D̃ = 0p×m and K̃ = 0m×p from Assumption 1), where:

Δ̃0 = KdDd −KcDc = K̃
(
D̃−Dc

)
−KcD̃ =

(
K̃ −Kc

)
D̃− K̃Dc (A8)

Δ̃1 = K̃
(
Cc − C̃

)
+ KcC̃ =

(
Kc − K̃

)
C̃ + K̃Cc (A9)

Δ̃2 =
[
Im − (Im −KcDc)

−1Δ̃0
]−1 − Im (A10)

and note that
‖Δ̃0‖ ≤ ε [‖Kc‖̃σD + εσ̃Dσ̃K + ‖Dc‖ σ̃K] (A11)

‖Δ̃1‖ ≤ ε [‖Kc‖̃σC + ε̃σCσ̃K + ‖Cc‖ σ̃K] (A12)

and one gets from Banach´s Perturbation Lemma [7] that

‖Δ̃2‖ ≤ 1 +
1

1− ‖(Im −KcDc)−1Δ̃0‖
≤ 1 +

1

1− ‖(Im −KcDc)−1‖ ‖Δ̃0‖
(A13)

provided that ‖Δ̃0‖ < δ̃0 = 1/‖(Im −KcDc)−1‖. Equivalently, if

q(ε) = σ̃Dσ̃kε
2 + (̃σD‖Kc‖+ σ̃K‖Dc‖)ε− 1/‖(Im −KcDc)

−1‖ < 0 (A14)

since q(ε) is a convex parabola with zeros ε1 < 0 and ε = ε2 > 0, Equation (A14) holds, guaranteeing
that ‖Δ̃0‖ < δ̃0, if ε ∈ [0 , ε), where:

ε =

√
(̃σD‖Kc‖+ σ̃K‖Dc‖)2 + 4σ̃Dσ̃K/‖(Im −KcDc)−1‖ − (̃σD‖Kc‖+ σ̃K‖Dc‖)

2σ̃Dσ̃K
(A15)

Before continuing with the calculations, we give the following auxiliary result:

Lemma B1. If (Im −KcDc) is non-singular with ‖KcDc‖2 < 1 and ‖Δ̃0‖ < δ̃0 = 1/‖(Im −KcDc)−1‖,
equivalently if ε ∈ [0 , ε), with ε defined in Equation (A15), then ‖Δ̃2‖ ≤ C‖Δ̃0‖ < 1 with a norm-dependent
real constant C ≥ 1

2δ0
if ε ∈ [0 , ε1) with

ε1 =
‖(Im −KcDc)−1‖

2[‖Kc‖̃σD + ε̃σDσ̃K + ‖Dc‖ σ̃K]
(A16)

74



Appl. Sci. 2019, 9, 1739

Proof. One gets from Equation (A10) and Banach´s Perturbation Lemma [7] that, if ‖Δ̃2‖ ≤ C‖Δ̃0‖ for
some C ∈ R+, then:

1

1−C‖Δ̃0‖
≥ ‖

(
Δ̃2 + Im

)−1‖ = ‖Im − (Im −KcDc)
−1Δ̃0‖ ≥ 1− ‖(Im −KcDc)

−1‖ ‖Δ̃0‖

provided that C < 1/‖Δ̃0‖. One gets that the above inequality holds if 1/‖Δ̃0‖ > C ≥ 1
2δ0
≥

‖(Im−KcDc)−1‖
1+‖Δ̃0‖ ‖(Im−KcDc)−1‖ and, one gets from Equation (A11) that

‖Δ̃2‖ ≤ εC [‖Kc‖̃σD + εσ̃Dσ̃K + ‖Dc‖ σ̃K] < 1 (A17)

if ε < ε1. �

Now, rewrite the system matrices of closed-loop dynamics of Equations (7) and (10), equivalently
Equation (A7), with A = Ac = Ad and its incremental value as follows:

Acc = A + Bc(Im −KcDc)
−1KcCc (A18)

Adc = A + Bd(Im −KdDd)
−1KdCd (A19)

Ãdc = Acc −Adc = Bc(Im −KcDc)−1KcCc − Bd(Im −KdDd)
−1KdCd

= Bc(Im −KcDc)−1KcCc −
(
Bc − B̃

) (
Im + Δ̃2

)
(Im −KcDc)

−1(
KcCc − Δ̃1

)
= Bc(Im −KcDc)−1KcCc − Bc

(
Im + Δ̃2

)
(Im −KcDc)

−1(
KcCc − Δ̃1

)
+B̃

(
Im + Δ̃2

)
(Im −KcDc)

−1(
KcCc − Δ̃1

)
= Bc(Im −KcDc)−1Δ̃1

−BcΔ̃2(Im −KcDc)−1KcCc + BcΔ̃2(Im −KcDc)−1Δ̃1

+B̃(Im −KcDc)
−1

KcCc − B̃(Im −KcDc)
−1

Δ̃1

+B̃Δ̃2(Im −KcDc)
−1

KcCc − B̃Δ̃2(Im −KcDc)
−1

Δ̃1

(A20)

Now, the following technical result follows directly from Equations (A20), (A11), (A12) and (A17),
the norm upper-bounding values of the control, output interconnection and controller matrix errors
and Lemma B1:

Lemma B2. The following properties hold for any ε ∈ [0 , ε̂) with ε̂ = min(ε , ε1) calculated from Equations
(A15) and (A16):

(i)

‖Ãdc‖ ≤ ‖Bc‖(1− ‖KcDc‖)−1
[
‖Δ̃1‖

(
1 + ‖Δ̃2‖

)
+ ‖KcCc‖‖Δ̃2‖

]
+ε (1− ‖KcDc‖)−1

σ̃B
(
1 + ‖Δ̃2‖

)(
‖KcCc‖+ ‖Δ̃1‖

)
≤ ε‖Bc‖(1− ‖KcDc‖)−1

×[(‖Kc‖̃σC + ε̃σCσ̃K + ‖Cc‖ σ̃K)(1 + ‖KcCc‖+ εC [‖Kc‖̃σD + εσ̃Dσ̃K + ‖Dc‖ σ̃K])C [‖Kc‖̃σD + ‖Dc‖ σ̃K + εσ̃Dσ̃K]]

+ε (1− ‖KcDc‖)−1
σ̃B(1 + εC [‖Kc‖̃σD + εσ̃Dσ̃K + ‖Dc‖ σ̃K])(‖KcCc‖+ ε [‖Kc‖̃σC + ε̃σCσ̃K + ‖Cc‖ σ̃K] )

(A21)

(ii) If, furthermore, ε ≤ 1, then εr ≤ ε for any real r ≥ 1 so that one gets from Equation (A21) by taking the
upper-bound ε2 for ε3 that

‖Ãdc‖ ≤ ε‖Bc‖(1− ‖KcDc‖)−1
(
‖Δ̃10‖+ ‖KcCc‖‖Δ̃20‖

)
+ ε2‖Δ̃20‖ ‖Bc‖(1− ‖KcDc‖)−1

+ε (1− ‖KcDc‖)−1
σ̃B‖KcCc‖+ε2 (1− ‖KcDc‖)−1

σ̃B
(
‖Δ̃10‖+ ‖KcCc‖‖Δ̃20‖

)
+ε3 (1− ‖KcDc‖)−1

σ̃B‖Δ̃20‖‖Δ̃10‖≤ uε + vε2 ≤ (u + v)ε

(A22)
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where Δ̃i = εΔ̃i0 for i = 1, 2 and it has been used that ε3 ≤ ε2, with

u = ‖Bc‖(1− ‖KcDc‖)−1
(
‖Δ̃10‖+ ‖KcCc‖‖Δ̃20‖

)
+ (1− ‖KcDc‖)−1

σ̃B‖KcCc‖
v = (1− ‖KcDc‖)−1

σ̃B‖Δ̃20‖‖Δ̃10‖+‖Δ̃20‖ ‖Bc‖(1− ‖KcDc‖)−1+ (1− ‖KcDc‖)−1
σ̃B
(
‖Δ̃10‖+ ‖KcCc‖‖Δ̃20‖

) (A23)

(iii) If the upper-bound ε is used for ε2 and ε3, one gets that

‖Ãdc‖ ≤ ε‖Bc‖(1− ‖KcDc‖)−1

×[(‖Kc‖̃σC + σ̃Cσ̃K + ‖Cc‖ σ̃K)(1 + C [‖Kc‖̃σD + σ̃Dσ̃K + ‖Dc‖ σ̃K]) + ‖KcCc‖C [‖Kc‖̃σD + σ̃Dσ̃K + ‖Dc‖ σ̃K]]

+ε (1− ‖KcDc‖)−1
σ̃B(1 + C [‖Kc‖̃σD + σ̃Dσ̃K + ‖Dc‖ σ̃K])(‖KcCc‖+ [‖Kc‖̃σC + σ̃Cσ̃K + ‖Cc‖ σ̃K] )

(A24)

which also yields that ‖Ãdc‖ ≤ εãdc + o(ε) in the case that ε < 1 after grouping all the additive contributions of
terms in εi for i ≥ 2 into an additive bounded term, which converges to zero as ε→ 0 , where

ãdc = (1− ‖KcDc‖)−1

×[̃σB‖KcCc‖+ ( ‖Bc‖+ ‖KcCc‖)(‖Kc‖̃σC + ‖Cc‖ σ̃K + C [‖Kc‖̃σD + ‖Dc‖ σ̃K])]
(A25)

�

Now, the following technical result follows directly from Lemma B2 and Theorem A1 (i):

Lemma B3. Define ε2 = 1/

⎛⎜⎜⎜⎜⎝̃adc sup
ω∈R0+

‖(iωIn −Acc)−1‖2
⎞⎟⎟⎟⎟⎠ from Equation (A25) and assume that ‖KcDc‖2 < 1

and that ε2 < min (ε , ε1, 1). Then, Adc is stable if Acc is stable and ε ∈ [0 , ε2]. By using Equations (A22) and
(A23), a better bound of the maximum allowable ‖Adc‖2 is found as ε ∈ [0 , ε3] with ε3 < min (ε , ε20, 1) and

ε20 =
√

u2+4vω−u
2v .

Proof. Note from Theorem A1 (i) that the H∞-norm of (sIn −Acc)−1Ãdc satisfies ‖(sIn −Acc)−1Ãdc‖∞ < 1,
which is guaranteed if ε < ε2, then Adc is stable since Acc is stable. The result follows by taking also into
account, in addition, the constraints in Equations (A15) and (A16) of Lemma B.1 by using ε3 ≤ ε2 ≤ ε.
If the second power of ε is considered and the third one is upper-bounded as ε3 ≤ ε2, we examine
the stability constraint uε + vε2 < ω = 1/ sup

ω∈R0+

‖(iωIn −Acc)−1‖2 by building the convex parabola

θ(ε) = vε2 + uε −ω < 0 whose negative and positive zeros are ε1,2 = −u±√u2+4vω
2v . Hence, the second

part of the result. �
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Abstract: Hardy Cross originally proposed a method for analysis of flow in networks of conduits or
conductors in 1936. His method was the first really useful engineering method in the field of pipe
network calculation. Only electrical analogs of hydraulic networks were used before the Hardy Cross
method. A problem with flow resistance versus electrical resistance makes these electrical analog
methods obsolete. The method by Hardy Cross is taught extensively at faculties, and it remains
an important tool for the analysis of looped pipe systems. Engineers today mostly use a modified
Hardy Cross method that considers the whole looped network of pipes simultaneously (use of these
methods without computers is practically impossible). A method from a Russian practice published
during the 1930s, which is similar to the Hardy Cross method, is described, too. Some notes from
the work of Hardy Cross are also presented. Finally, an improved version of the Hardy Cross
method, which significantly reduces the number of iterations, is presented and discussed. We also
tested multi-point iterative methods, which can be used as a substitution for the Newton–Raphson
approach used by Hardy Cross, but in this case this approach did not reduce the number of iterations.
Although many new models have been developed since the time of Hardy Cross, the main purpose
of this paper is to illustrate the very beginning of modeling of gas and water pipe networks and
ventilation systems. As a novelty, a new multi-point iterative solver is introduced and compared
with the standard Newton–Raphson iterative method.

Keywords: Hardy Cross method; pipe networks; piping systems; hydraulic networks; gas distribution

1. Introduction

Hardy Cross solved the problem of distribution of flow in networks of pipes in his article “Analysis
of Flow in Networks of Conduits or Conductors” [1] published on 13 November 1936.

Networks of pipes are nonlinear systems since the relation between flow and pressure is not linear.
On the contrary, the relation between current and voltage in electrical networks with regular resistors
is governed by the linear Ohm’s law. Electrical circuits with diodes as well as hydraulic networks
are nonlinear systems where resistance depends on current and voltage, i.e., on flow and pressure,
respectively [2]. Nonlinear electrical circuits are electrical circuits containing nonlinear components.
Nonlinear components can be resistive, capacitive, and inductive.

The distribution of flow in a network of pipes depends on the known inputs and consumptions at
all nodes, on the given geometry of pipes, and on network topology. A stable state of flow in a network
must satisfy Kirchhoff’s laws, which are statements of the conservation of mass and energy. Although in
theory an indefinite number of flow distributions that satisfy that the conservation of mass is possible,
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only one distribution from this set also satisfies the conservation of energy for all closed paths formed
by pipes in the network. This state is unique for the given network and in- and outflows [3].

Since the relation between flow and pressure is not linear, Hardy Cross used a relation between
an increment of flow and an increment of pressure, as this relation is linear for the given quantity of
flow. If, however, the increments are fairly large, this linear relation is somewhat in error, such as for gas
compressible flow. However, if the pressure drop in pipes is minor, such as in a municipality network
for natural gas distribution, the Hardy Cross method can be used without significant errors [4–6].
Moreover, the Hardy Cross method can also be used for water pipe networks (district heating [7] and
cooling networks [8]) and ventilation systems [9,10] (a related formulation is presented in Appendix).

The Hardy Cross method is an iterative method, i.e., a method using successive corrections [4].
Lobačev and Andrijašev in the 1930s, writing in Russian, offered similar methods [11,12]. Probably
because of the language barrier and the political situation in Soviet Russia, Hardy Cross was not aware
of Lobačev and Andrijašev’s contributions.

Today, engineers use the most improved version of the Hardy Cross method (the ΔQ method [13];
for Δp, see [14]), which analyzes the whole looped network of pipes simultaneously [15].

As a novel approach presented for the first time here, we tested multi-point iterative methods [16,17]
that can be used as a substitution for the Newton–Raphson approach used by Hardy Cross. This approach,
however, did not in this case reduce the number of required iterations to reach the final balanced solution.

One example of the pipe network for distribution of gas is analyzed using the original Hardy Cross
method [1] in Section 3.1, its related equivalent from Russian literature [11,12] in Section 3.2, the improved
version of the Hardy Cross method [15,17,18] in Section 3.3, and finally the approach which uses multi-point
iterative methods instead of the commonly used Newton–Raphson method in Section 3.4.

2. Network Piping System; Flow Distribution Calculation

2.1. Topology of the Network

The first step in solving a pipe network problem is to make a network map showing pipe diameters,
lengths and connections between pipes (nodes). Sources of natural gas supply and consumption rates
have to be assigned to nodes. For convenience in locating pipes, code numbers are assigned to each
pipe and closed loop of pipes (represented by roman numbers for loops in Figure 1). Pipes on the
network periphery are common to one loop and those in the network interior are common to two loops.
Figure 1 is an example of a pipe network for distribution of natural gas for consumption in households.

 

Figure 1. The network of pipes for natural gas distribution for domestic consumption.

The next step is to write the initial gas flow distribution through pipes in the network.
This distribution must be done according to Kirchhoff’s first law. The choice of initial flows is
not critical, and the criterion should satisfy Kirchhoff’s first law for every node in the network [3].
The total gas flow arriving at a node equals the total gas flow that leaves that node. The same
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conservation law is also valid for the whole network in total (except for gas input and output
nodes that cannot be changed during calculations; see consumption nodes in Figure 1). The sum of
pseudo-pressure drops along any closed path must be approximately zero for the network to be in
balance according to Kirchhoff’s second law. In this paper, the flow distribution, which satisfies both of
Kirchhoff’s laws, will be calculated using the Hardy Cross iterative method.

2.2. A Hydraulic Model

The Renouard formula; Equation (1) best fits a natural gas distribution system built with polyvinyl
chloride (PVC) pipes [19,20]. Computed pressure drops are always less than the actual drop since the
maximal consumption occurs only during extremely severe winter days [21,22].

f = Δp̃2 = p2
1 − p2

2 = 4810·ρr·L·Q1.82

D4.82
(1)

where f is a function of pressure, �r is relative gas density (dimensionless), ρr = 0.64, L is the pipe
length (m), D is the pipe diameter (m), Q is flow (m3/s), and p is pressure (Pa).

As shown in Appendix A, other formulas are used in the case of waterworks systems [23,24] and
ventilation networks [7].

Regarding the Renouard formula (Equation (1)), one has to be careful since the pressure drop
function, f , does not relate pressure drop, but actually the difference of the quadratic pressure at

the input and the output of the pipe. This means that
√

Δp̃2 =
√

p2
1 − p2

2 is not actually pressure
drop despite using the same unit of measurement, i.e., the same unit is used as for pressure (Pa).
The parameter

√
Δp̃2 can be noted as a pseudo-pressure drop. In fact, the gas is actually compressed,

and hence that volume of the gas is decreased, and then such a compressed volume of the gas is
conveying with a constant density through the gas distribution pipeline. The operating pressure for
a typical distribution gas network is 4× 105 Pa abs, i.e., 3× 105 Pa gauge, and accordingly the volume
of the gas decreases four times compared to the volume of the gas in normal (or standard) conditions.
Pressure in the Renouard formula is for normal (standard) conditions.

The first derivative f’ of the Renouard relation (Equation (2)), where the flow is treated as a variable,
is used in the Hardy Cross method.

f ′ =
∂ f (Q)

∂Q
= 1.82·4810·ρr·L·Q0.82

D4.82
(2)

First assumed gas flow in each pipe is listed in the third column of Table 1. The plus or minus
sign preceding flow indicates the direction of flow through the pipe for the particular loop [18,25].
A plus sign denotes counterclockwise flow in the pipe within the loop, while the minus sign clockwise.
The loop direction can be chosen to be clockwise or counterclockwise (in Figure 1, all loops are
counterclockwise).

3. The Hardy Cross Method; Different Versions

The Hardy Cross method is presented here: the original approach in Section 3.1, a version
of the Hardy Cross method from Russian practice in Section 3.2, the modified Hardy Cross
method in Section 3.3, and finally the method that uses multi-point iterative procedures instead
the Newton–Raphson method and which can be implemented in all the aforementioned methods.

3.1. The Hardy Cross Method; Original Approach

The pressure drop function for each pipe is listed in Table 1 (for initial flow pattern, in the fourth
column). The sign in front of the pressure drop function shown in the fourth column is the same as
for flow from the observed iteration. The fifth column of Table 1 includes the first derivatives of the
pressure drop function, where the flow is treated as a variable. The column of the function of pressure
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drops is computed algebraically, while the column of the first derivatives is estimated numerically for
each loop. Flow correction ΔQ has to be computed for each loop x (Equation (3)).

ΔQx =

⎛⎜⎜⎜⎜⎝
∑± f∣∣∣ f ′∣∣∣

⎞⎟⎟⎟⎟⎠
x

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
∑±4810·ρr·L·Q1.82

D4.82∑∣∣∣∣1.82·4810·ρr·L·Q0.82

D4.82

∣∣∣∣
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

x

(3)

For the network from Figure 1, flow corrections for the first iteration in each loop can be calculated
using Equation (4).(∣∣∣− f ′1

∣∣∣+ ∣∣∣ f ′7 ∣∣∣+ ∣∣∣ f ′8 ∣∣∣+ ∣∣∣ f ′9 ∣∣∣+ ∣∣∣− f ′10

∣∣∣+ ∣∣∣− f ′12

∣∣∣)·ΔQI = − f1 + f7 + f8 + f9 − f10 − f12(∣∣∣− f ′2
∣∣∣+ ∣∣∣− f ′11

∣∣∣+ ∣∣∣ f ′12

∣∣∣)·ΔQII = − f2 − f11 + f12(∣∣∣− f ′3
∣∣∣+ ∣∣∣ f ′4 ∣∣∣+ ∣∣∣ f ′10

∣∣∣+ ∣∣∣ f ′11

∣∣∣+ ∣∣∣− f ′14

∣∣∣)·ΔQIII = − f3 + f4 + f10 + f11 − f14(∣∣∣ f ′5 ∣∣∣+ ∣∣∣− f ′9
∣∣∣+ ∣∣∣ f ′13

∣∣∣+ ∣∣∣ f ′14

∣∣∣)·ΔQIV = f5 − f9 + f13 + f14(∣∣∣ f ′6 ∣∣∣+ ∣∣∣− f ′8
∣∣∣+ ∣∣∣ f ′13

∣∣∣)·ΔQV = f6 − f8 + f13

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(4)

In the second iteration, the calculated correction ΔQ has to be added algebraically to the assumed
gas flow (the first initial flow pattern). Further, the calculated correction ΔQ has to be subtracted
algebraically from the gas flow computed in the previous iteration. This means that the algebraic
operation for the first correction is the opposite of its sign, i.e., add when the sign is minus, and vice versa.
A pipe common to two loops receives two corrections simultaneously. The first correction is from
the particular loop under consideration, while the second one is from the adjacent loop, which the
observed pipe also belongs to.

Table 1. Procedure for the solution of the flow problem for the network from Figure 1 using the
modified Hardy Cross method (first two iterations)—First iteration.

Iteration 1

Loop Pipe a Q b f = p2
1 − p2

2
c |f

′
| d ΔQ1

e ΔQ2
f Q1 =Q

I

1 −0.3342 −144518566.8 787025109.2 −0.0994 −0.4336
7 +0.7028 +859927106.7 2226902866.0 −0.0994 +0.6034
8 +0.3056 +306964191.0 1828124435.8 −0.0994 −0.0532 = +0.1530
9 +0.2778 +800657172.4 5245486154.8 −0.0994 −0.0338 = +0.1446

10 −0.1364 −241342976.1 3220265516.7 −0.0994 +0.0142 ‡ −0.2217
12 −0.0167 −6238747.4 679911398.4 −0.0994 +0.0651 ‡ −0.0511

Σ fI = +1575448179.8 13987715480.9

II
2 −0.0026 −80628.9 56440212.4 −0.0651 −0.0677
11 −0.1198 −14582531.0 221537615.9 −0.0651 +0.0142 ‡ −0.1707
12 +0.0167 +6238747.4 679911398.4 −0.0651 +0.0994 ∓ +0.0511

Σ fII = −8424412.4 957889226.7

III

3 −0.2338 −406110098.1 3161336093.1 −0.0142 −0.2480
4 +0.0182 +1530938.1 153093808.5 −0.0142 +0.0040

10 +0.1364 +241342976.1 3220265516.7 −0.0142 +0.0994 ∓ +0.2217
11 +0.1198 +14582531.0 221537615.9 −0.0142 +0.0651 ∓ +0.1707
14 −0.0278 −21840183.8 1429824980.5 −0.0142 −0.0338 ± −0.0757

Σ fIII = −170493836.7 8186058014.8

IV

5 +0.0460 +7523646.2 297674697.0 +0.0338 +0.0798
9 −0.2778 −800657172.4 5245486154.8 +0.0338 +0.0994 ‡ −0.1446

13 +0.0278 +21840183.8 1429824980.5 +0.0338 −0.0532 = +0.0084
14 +0.0278 +21840183.8 1429824980.5 +0.0338 +0.0142∓ +0.0757
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Table 1. Cont.

Iteration 1

Loop Pipe a Q b f = p2
1 − p2

2
c |f

′
| d ΔQ1

e ΔQ2
f Q1 =Q

Σ fIV = −749453158.7 8402810812.8

V
6 +0.0182 +3479197.2 347919720.0 +0.0532 +0.0714
8 −0.3056 −306964191.0 1828124435.8 +0.0532 +0.0994 ‡ −0.1530

13 −0.0278 −21840183.8 1429824980.5 +0.0532 −0.0338 ± −0.0084

Σ fV = −325325177.5 3605869136.3

Iteration 2

Loop Pipe Q1 = Q f = p2
1 − p2

2

∣∣∣f′∣∣∣ ΔQ1 ΔQ2 Q2 = Q

I

1 −0.4336 −232172997.6 974431560.7 −0.0058 −0.4394
7 +0.6034 +651439280.6 1965036192.1 −0.0058 +0.5976
8 +0.1530 +87112249.4 1036457217.8 −0.0058 −0.0178= +0.1294
9 +0.1446 +243990034.4 3070921097.1 −0.0058 −0.0098= +0.1290

10 −0.2217 −584137977.5 4795666298.0 −0.0058 +0.0018 ‡ −0.2257
12 −0.0511 −47725420.6 1700518680.1 −0.0058 −2.1·10−5 ± −0.0569

Σ fI = +118505168.7 13543031045.9

II
2 −0.0677 −30372941.9 816962908.0 +2.1·10−5 −0.0676
11 −0.1707 −27780459.9 296182372.8 +2.1·10−5 +0.0018 ‡ −0.1689
12 +0.0511 +47725420.6 1700518680.1 +2.1·10−5 +0.0058 ∓ +0.0569

Σ fII = −10427981.2 2813663960.8

III

3 −0.2480 −451970989.4 3317464222.8 −0.0018 −0.2497
4 +0.0040 +99061.2 44589235.4 −0.0018 +0.0023

10 +0.2217 +584137977.5 4795666298.0 −0.0018 +0.0058 ∓ +0.2257
11 +0.1707 +27780459.9 296182372.8 −0.0018 −2.1·10−5 = +0.1689
14 −0.0757 −135261698.0 3251481942.9 −0.0018 −0.0098 ± −0.0873

Σ fIII = +24784811.3 11705384072.0

IV

5 +0.0798 +20483898.1 467437803.0 +0.0098 +0.0896
9 −0.1446 −243990034.4 3070921097.1 +0.0098 +0.0058 ‡ −0.1290

13 +0.0084 +2454799.0 534076127.2 +0.0098 −0.0178 = +0.0004
14 +0.0757 +135261698.0 3251481942.9 +0.0098 +0.0018 ∓ +0.0873

Σ fIV = −85789639.2 7323916970.2

V
6 +0.0714 +41857166.9 1067095933.1 +0.0178 +0.0892
8 −0.1530 −87112249.4 1036457217.8 +0.0178 +0.0058 ‡ −0.1294

13 −0.0084 −2454799.0 534076127.2 +0.0178 −0.0098 ± −0.0004

Σ fV = −47709881.5 2637629278.1
a Pipe lengths, diameters and initial flow distribution are shown in Table 2 and Figure 1; b f calculated using the
Renouard Equation (1); c f ′ calculated using the first derivative of the Renouard, Equation (2), where flow is variable;
d calculated using the matrix Equation (10) and entering ΔQ with the opposite sign (using the original Hardy Cross
method for Iteration 1: ΔQI= +0.1126; ΔQII= −0.0088; ΔQIII = −0.0208; ΔQIV = −0.0892; ΔQV= −0.0902; using the
Lobačev method for Iteration 1: ΔQI = −0.1041; ΔQII = −0.0644; ΔQIII= −0.0780; ΔQIV= + 0.1069; ΔQV= −0.1824);
e ΔQ2 is ΔQ1 from the adjacent loop; f the final calculated flow in the first iteration is used for the calculation in the
second iteration, etc.; g if Q and Q1 have a different sign, this means that the flow direction is opposite to that in the
previous iteration, etc. (this occurs with the flow in pipe 13 between Iteration 3 and 4).

The upper sign after the second correction in Table 1 is plus if the flow direction in the mutual
pipe coincides with the assumed orientation of the adjacent loop, and minus if it does not (Figure 2).
The lower sign is the sign in front of correction ΔQ calculated for the adjacent loop (Figure 2).
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Figure 2. Rules for the upper and lower sign (correction from the adjacent loop; second correction).

Details of the signs of corrections were reported by Brkić [18] and Corfield et al. [25].
The algebraic operation for the second correction should be the opposite of its lower sign when its

upper sign is the same as the sign in front of flow Q, and, as indicated by its lower sign, when its upper
sign is opposite to the sign in front of flow Q.

The calculation procedure is repeated until the net algebraic sum of pressure functions around
each loop is as close to zero as the desired degree of precision demands. This also means that the
calculated corrections of flow and the change in calculated flow between two successive iterations is
approximately zero. The pipe network is then in approximate balance and the calculation after the
Hardy Cross can be terminated.

In the original Hardy Cross method, the corrections for the first iteration are:

ΔQI =
1575448179.8
13987715480.9

= +0.1126

ΔQII =
−8424412.4
957889226.7

= −0.0088

ΔQIII =
−170493836.7
8186058014.8

= −0.0208

ΔQIV =
−749453158.7
8402810812.8

= −0.0892

and
ΔQV =

−325325177.5
3605869136.3

= −0.0902

3.2. A Version of the Hardy Cross Method from Russian Practice

As mentioned in the Introduction, two Russian authors, Lobačev [11] and Andrijašev [12],
proposed a similar method to Hardy Cross [1]. These two methods are also from the 1930s. It is not
clear if Hardy Cross had been aware of the contribution of these two authors from Soviet Russia and
vice versa, but most probably the answer to this question is no, for both sides. The main difference
between the Hardy Cross and Andrijašev methods is that in the method of Andrijašev contours can
be defined to include few loops. This strategy only complicates the situation, while the number of
required iterations remains unchanged.

Further on, the Andrijašev method can be seen from the example in the paper of Brkić [3].
Here, the method of Lobačev is shown in more detail. In the Hardy Cross method, the influence of
adjacent loops is neglected. The Lobačev method takes into consideration this influence (Equation (5)):

+
(∣∣∣− f ′1

∣∣∣+ ∣∣∣ f ′7 ∣∣∣+ ∣∣∣ f ′8 ∣∣∣+ ∣∣∣ f ′9 ∣∣∣+ ∣∣∣− f ′10

∣∣∣+ ∣∣∣− f ′12

∣∣∣)·ΔQI +
∣∣∣ f ′12

∣∣∣·ΔQII +
∣∣∣ f ′10

∣∣∣·ΔQIII +
∣∣∣ f ′9 ∣∣∣·ΔQIV +

∣∣∣ f ′8 ∣∣∣·ΔQV = − f1 + f7 + f8 + f9 − f10 − f12∣∣∣ f ′12

∣∣∣·ΔQI −
(∣∣∣− f ′2

∣∣∣+ ∣∣∣− f ′11

∣∣∣+ ∣∣∣ f ′12

∣∣∣)·ΔQII −
∣∣∣ f ′11

∣∣∣·ΔQIII = − f2 − f11 + f12

+
∣∣∣ f ′10

∣∣∣·ΔQI −
∣∣∣ f ′11

∣∣∣·ΔQII −
(∣∣∣− f ′3

∣∣∣+ ∣∣∣ f ′4 ∣∣∣+ ∣∣∣ f ′10

∣∣∣+ ∣∣∣ f ′11

∣∣∣+ ∣∣∣− f ′14

∣∣∣)·ΔQIII −
∣∣∣ f ′14

∣∣∣·ΔQIV = − f3 + f4 + f10 + f11 − f14

+
∣∣∣ f ′9 ∣∣∣·ΔQI −

∣∣∣ f ′14

∣∣∣·ΔQIII −
(∣∣∣ f ′5 ∣∣∣+ ∣∣∣− f ′9

∣∣∣+ ∣∣∣ f ′13

∣∣∣+ ∣∣∣ f ′14

∣∣∣)·ΔQIV −
∣∣∣ f ′13

∣∣∣·ΔQV = f5 − f9 + f13 + f14

+
∣∣∣ f ′8 ∣∣∣·ΔQI −

∣∣∣ f ′13

∣∣∣·ΔQIV −
(∣∣∣ f ′6 ∣∣∣+ ∣∣∣− f ′8

∣∣∣+ ∣∣∣ f ′13

∣∣∣)·ΔQV = f6 − f8 + f13

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(5)
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In Equation (5), signs in front of terms from the left side of the equal signs have to be determined
(this is much more complex than in the Hardy Cross method). Thus, in the Lobačev method, if
(
∑

f )x > 0, then the sign in front of
(∑∣∣∣ f ′∣∣∣)

x
has to be positive, and vice versa (for the first iteration,

this can be seen in Table 1; fI = +1575448179.8 > 0, fII = −8424412.4 < 0, fIII = −170493836.7 < 0,
fIV = −749453158.7 < 0, fV = −325325177.5 < 0). The sign for the other terms (these terms are
sufficient in the Hardy Cross method) are determined using further rules and the scheme in Figure 3.

 

Figure 3. Rules for terms from Lobačev equations, which do not exist in the Hardy Cross method.

As shown in Figure 3 if (
∑

f )x > 0 and if the assumed flow coincides with the loop direction,
then the sign of flow in the adjacent pipe is negative and, if the flow does not coincide with the loop
direction, then the sign of flow in the adjacent pipe is positive. Conversely, if (

∑
f )x < 0 and if the

assumed flow coincides with the loop direction, then the sign of flow in the adjacent pipe is positive
and, if the flow does not coincide with the loop direction, then the sign of flow in the adjacent pipe
is negative. This procedure determines the signs in the front of the flow corrections (ΔQ), which are
shown in Figure 3 with black letters (and also in Figure 4 for our pipe network example).

 

Figure 4. Rules for terms from Lobačev equations, which do not exist in the Hardy Cross method
applied for the network from Figure 1.
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If (
∑

f )x from the adjacent loop is positive, while the loop direction and assumed flow do not
coincide, the flow correction from the adjacent loop changes its sign, and, conversely, if (

∑
f )x from the

adjacent loop is positive, while the loop direction and assumed flow coincide, the flow correction from
the adjacent loop does not change its sign. If (

∑
f )x from the adjacent loop is negative, while the loop

direction and assumed flow do not coincide, the flow correction from the adjacent loop does not change
its sign, and, conversely, if (

∑
f )x from the adjacent loop is negative, while the loop direction and

assumed flow do not coincide, the flow correction from the adjacent loop changes its sign. These four
parameters are connected in Figure 3 with the same colored lines. Flow corrections (ΔQ) shown in
Figure 4 with different colors are used with the related signs in Equation (5). They are chosen in
a similar way as explained in the example in Figure 3.

Thus, instead of the simple equations of the original Hardy Cross method, the system of equations
has to be solved in the Lobačev method (Equation (6)).

+13987715480.9·ΔQI + 679911398.4·ΔQII + 3220265516.7·ΔQIII + 5245486154.8·ΔQIV + 1828124435.8·ΔQV = +1575448179.8
+679911398.4·ΔQI − 957889226.7·ΔQII − 221537615.9·ΔQIII = −8424412.4

+3220265516.7·ΔQI − 221537615.9·ΔQII − 8186058014.8·ΔQIII − 1429824980.5·ΔQIV = −170493836.7
+5245486154.8·ΔQI − 1429824980.5·ΔQIII − 8402810812.8·ΔQIV − 1429824980.5·ΔQV = −749453158.7

+1828124435.8·ΔQI − 1429824980.5·ΔQIV − 3605869136.3·ΔQV = −325325177.5

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(6)

Underlined terms in Equation (6) do not exist in the Hardy Cross method.

In the Lobačev method, corrections for the first iterations are ΔQx =
Δ(ΔQx)

Δ , where Δ for the first
iteration is (Equation (7)):

Δ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

13987715480.9
679911398.4
3220265516.7
5245486154.8
1828124435.8

679911398.4
−957889226.7
−221537615.9

0
0

3220265516.7
−221537615.9
−8186058014.8
−1429824980.5

0

5245486154.8
0

−1429824980.5
−8402810812.8
−1429824980.5

1828124435.8
0
0

−1429824980.5
−3605869136.3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= +3.97·10+48 (7)

while ΔQx for the first iteration is (Equation (8)).

Δ(ΔQI) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1575448179.8
−8424412.4
−170493836.7
−749453158.7
−325325177.5

679911398.4
−957889226.7
−221537615.9

0
0

3220265516.7
−221537615.9
−8186058014.8
−1429824980.5

0

5245486154.8
0

−1429824980.5
−8402810812.8
−1429824980.5

1828124435.8
0
0

−1429824980.5
−3605869136.3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= −4.14·10+47 (8)

The correction for the first loop in the first iteration is (Equation (9)).

ΔQI =
Δ(ΔQI)

Δ
=
−4.14·10+47

+3.97·10+48
= −0.1041 (9)

Other corrections in the first iteration are ΔQII = −0.0644, ΔQIII = −0.0780, ΔQIV = +0.1069 and
ΔQV = −0.1824.

The Lobačev method is more complex compared to the original Hardy Cross method. However,
the number of required iterations is not reduced using the Lobačev procedure compared with the
original Hardy Cross procedure.
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3.3. The Modified Hardy Cross Method

The Hardy Cross method can be noted in matrix form. The gas distribution network in Figure 1
has five independent loops (Equation (10)).

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑∣∣∣ f ′I ∣∣∣
0
0
0
0

0∑∣∣∣ f ′II∣∣∣
0
0
0

0
0∑∣∣∣ f ′III∣∣∣
0
0

0
0
0∑∣∣∣ f ′IV ∣∣∣
0

0
0
0
0∑∣∣∣ f ′V ∣∣∣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
x

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ΔQI

ΔQII

ΔQIII

ΔQIV

ΔQV

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑ ± fI∑ ± fII∑ ± fIII∑ ± fIV∑ ± fV

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(10)

Equation (4) provides for each particular loop in the network the same corrections as Equation (10)
using matrix calculation. Epp and Fowler [15] improved the original Hardy Cross method [1] by replacing
some of the zeroes in the non-diagonal terms of Equation (10). For example, if pipe 8 is mutual for loop I and
V, the first derivative of the pressure drop function for the observed pipe, where flow treated as a variable,
will be put with a negative sign in the first column and the fifth row, and also in the fifth column and the
first row (Equation (11)).

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑∣∣∣ f ′I ∣∣∣ − f ′12 − f ′10 − f ′9 − f ′8
− f ′12

∑∣∣∣ f ′II∣∣∣ − f ′11 0 0
− f ′10 − f ′11

∑∣∣∣ f ′III∣∣∣ − f ′14 0
− f ′9 0 − f ′14 − f ′13
− f ′8 0 0 − f ′13

∑∣∣∣ f ′V ∣∣∣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
x

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ΔQI

ΔQII

ΔQIII

ΔQIV

ΔQV

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑ ± fI∑ ± fII∑ ± fIII∑ ± fIV∑ ± fV

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(11)

In the modified Hardy Cross method, corrections for the first iterations are shown in Equation (12),
and the solutions are listed in Table 1.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

+13987715480.9
−679911398.4
−3220265516.7
−5245486154.8
−1828124435.8

−679911398.4
+957889226.7
−221537615.9

0
0

−3220265516.7
−221537615.9
+8186058014.8
−1429824980.5

0

−5245486154.8
0

−1429824980.5
+8402810812.8
−1429824980.5

−1828124435.8
0
0

−1429824980.5
+3605869136.3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
x

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ΔQI

ΔQII

ΔQIII

ΔQIV

ΔQV

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

+1575448179.8
−8424412.4
−170493836.7
−749453158.7
−325325177.5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(12)

This procedure significantly reduces the number of iterations required for the solution of the
problem (Figure 5).

Figure 5. The number of required iterations for the solution using the original vs. the improved Hardy
Cross method.
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The first two iterations for the network in Figure 1 are shown in Table 1. Pipe diameters and
lengths, as well as the first, assumed, and the final calculated flow distributions for the network in
balance are shown in Table 2.

The gas velocity in the network is small (can be up to 10–15 m/s). The network can be the
subject of diameter optimization (as in [4]), which can also be done by using the Hardy Cross method
(diameter correction ΔD should be calculated for known and locked flow, where the first derivative
of the Renouard function has to be calculated for diameter as a variable). The network should stay
unchanged, even if planned gas consumption on nodes 5, 6, 8 and 10 increases, as pipes 4 and 13 will
be useful thanks to increased gas flow.

Similar examples, but for water flow, can be seen in [26]. Optimization of pipe diameters in
a water distributive pipe network using the same approach can be seen in [6].

Table 2. Pipe diameters and lengths, flows, and velocities of gas within pipes.

a Pipe Number Diameter (m) Length (m) b Assumed Flows (m3/h) c Calculated Flows (m3/h) Gas Velocity (m/s)

1 0.305 1127.8 1203.2 1583.6 1.5
2 0.203 609.6 9.2 245.2 0.5
3 0.203 853.4 841.6 899.7 1.9
4 0.203 335.3 65.6 7.5 0.01
5 0.203 304.8 165.6 320.2 0.7
6 0.203 762.0 65.6 322.7 0.7
7 0.203 243.8 2530.0 2149.6 4.6
8 0.203 396.2 1100.0 462.4 1.0
9 0.152 304.8 1000.0 465.0 1.8

10 0.152 335.3 491.2 813.5 3.1
11 0.254 304.8 431.2 609.1 0.8
12 0.152 396.2 60.0 204.8 0.8
13 0.152 548.6 100.0 d−2.6 −0.009
14 0.152 548.6 100.0 312.7 1.2

a Network from Figure 1 (flows are for normal pressure conditions; real pressure in the network is 4× 105 Pa abs,
i.e., 3× 105 Pa); b chosen to satisfy Kirchhoff’s first law for all nodes (dash arrows in Figure 1); c calculated to satisfy
Kirchhoff’s first law for all nodes and Kirchhoff’s second law for all closed path formed by pipes (full errors in
Figure 1); d the minus sign means that the direction of flow is opposite to the initial pattern for assumed flows.

3.4. The Multi-Point Iterative Hardy Cross Method

The here described multipoint method can substitute the Newton–Raphson iterative procedure
used in all the above described methods. Recently, we successfully used this multipoint method
for acceleration of the iterative solution of the Colebrook equation for flow friction modeling [16,17].
On the contrary, for the gas network example in Figure 1, the multipoint method requires the same
number of iterations as the original Newton–Raphson procedure.

For the test, we used the three-point method from Džunić et al. [27]. Flow corrections ΔQI from
Equations (10) and (11) from the first loop I should be calculated using the three-point procedure (Equation (13)):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ΔQI = − (
∑± fI)i

(
∑∣∣∣ f ′I ∣∣∣)i

, where i = 1;

ΔQI = − (
∑± fI)i

(
∑± fI)i−2·(∑± fI)i+1

· (
∑± fI)i+1

(
∑∣∣∣ f ′I ∣∣∣)i

, where i = 2;

ΔQI = − (
∑± fx)i+2

(
∑∣∣∣ f ′I ∣∣∣)i·

⎡⎢⎢⎢⎢⎣1−2· (
∑± fI)i+1
(
∑± fI)i

−
(
(
∑± fI)i+1
(
∑± fI)i

)2⎤⎥⎥⎥⎥⎦·
[
1− (

∑± fI)i+2
(
∑± fI)i+1

]
·
[
1−2· (

∑± fI)i+2
(
∑± fI)i

] , where i > 2;
(13)

Formulas of flow corrections ΔQI depend on the counter i. The algorithm starts from i= 1, in which
the multipoint method is the same as the original Newton–Raphson procedure (Equation (13a)):

ΔQI = −
(
∑± fI)i(∑∣∣∣ f ′I ∣∣∣)i (13a)
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In the second iteration, i= 2, flow corrections ΔQI have a little bit more complicated form (Equation (13b)):

ΔQI = −
(
∑± fI)i

(
∑± fI)i − 2·(∑± fI)i+1

· (
∑± fI)i+1(∑∣∣∣ f ′I ∣∣∣)i (13b)

The symbol (
∑± fI)i represents stored values from the first iteration, whereas (

∑± fI)i+1 represents
values from the second iteration.

For the third iteration, i = 3, flow corrections ΔQI have the most complicated form (Equation (13c)):

ΔQI = −
(
∑± fx)i+2(∑∣∣∣ f ′I ∣∣∣)i·

[
1− 2· (

∑± fI)i+1
(
∑± fI)i

−
(
(
∑± fI)i+1
(
∑± fI)i

)2
]
·
[
1− (

∑± fI)i+2
(
∑± fI)i+1

]
·
[
1− 2· (

∑± fI)i+2
(
∑± fI)i

] (13c)

This iterative process can continue, as the formula from the third iteration is also used for iterations
i = 4, 5, 6, 7, etc. This procedure should be done for all loops in the network separately (in our case for
I, II, III, IV and V). However, to simplify calculations, derivative-free methods can be used [28,29].

4. Conclusions

Hardy Cross simplified mathematical modeling of complex problems in structural and hydraulic
engineering long before the computer age. Moment distributions in indeterminate concrete structures
described with differential equations were too complex for the time before computers. Hardy Cross later
applied these finding from structural analysis to balancing of flow in pipe networks. He revolutionized how
the profession addressed complicated problems. Today, in engineering practice, the modified Hardy Cross
method proposed by Epp and Fowler [15] is used rather than the original version of the Hardy Cross
method [1]. Methods proposed by Hamam and Brameller [30], as well as by Wood and Charles [31]
and Wood and Rayes [32], are used in common practice [33], too. Moreover, the node-oriented method
proposed by Shamir and Howard [34] is also based on the Hardy Cross method.

Professional engineers use a different kind of looped pipeline in professional software [35], but.
even today, engineers invoke the name of Hardy Cross with awe. When petroleum and natural gas or
civil engineers have to figure out what is happening in looped piping systems [36], they inevitably
turn to what is generally known as the Hardy Cross method. The original Hardy Cross method is still
extensively used for teaching and learning purpose [6]. Here, we introduced into the Hardy Cross
method the multi-point iterative approach instead of the Newton–Raphson iterative approach, but it
does not affect the number of required iterations to reach the final solution in our case.

The view of Hardy Cross was that engineers lived in the real world with real problems and that it
was their job to come up with answers to questions in design tasks, even if initial approximations were
involved. After Hardy Cross, the essential idea which he wished to present involves no mathematical
relations except the simplest arithmetic.

For example, ruptures of pipes with leakage can be detected using the Hardy Cross method
because every single-point disturbance affects the general distribution of flow and pressure [37,38].

This paper has the purpose of illustrating the very beginning of modeling of gas or water pipe
networks. As noted by Todini and Rossman [39], many new models have been developed since the
time of Hardy Cross.

Some details about the life and work of Hardy Cross are given in Appendix B.
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Nomenclature

The following symbols are used in this paper:

ρr relative gas density (-); here ρr = 0.64
ρ density of air (kg/m3); here ρ = 1.2 kg/m3

L length of pipe (m)
D diameter of pipe (m)
Q flow (m3/s)
ΔQ flow correction (m3/s)
p pressure (Pa)
Δp pressure correction (Pa)
f function of pressure
f ′ first derivative of function of pressure
λ Darcy (Moody) flow friction factor (dimensionless)
Re Reynolds number (dimensionless)
ε
D relative roughness of inner pipe surface (dimensionless)
Cd flow discharge coefficient (dimensionless)
A area of ventilation opening (m2)
π Ludolph number; π ≈3.1415
i counter

Appendix A Hydraulic Models for Water Pipe Networks and for Ventilation Systems

To relate pressure p [40] with flow Q, instead of Equation (1), which is used for gas distribution
networks in municipalities, for water distribution the Darcy–Weisbach correlation and Colebrook
equation are recommended (Equation (A1)) [23,41–47], and for ventilation systems, the Atkinson
equation (Equation (A2)) [9]:

1√
λ
= −2·log10

(
2.51
Re · 1√

λ
+ ε

3.71·D
)

Δp = 8·ρ·λ·L·Q2

π2·D5

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (A1)

Δp =
ρ

2·C2
d·A2 ·Q2 (A2)

Appendix B The Life and Work of Hardy Cross

Hardy Cross (1885–1959) was one of America’s most brilliant engineers [48–55]. He received
a BSc degree in arts in 1902 and BSc degree in science in 1903, both from Hampden-Sydney College,
where he taught English and Mathematics. Hardy Cross was also awarded a BSc degree in 1908 from
Massachusetts Institute of Technology and an MCE degree from Harvard University in 1911, both in
civil engineering. He taught civil engineering at Brown University from 1911 to 1918. He left teaching
twice to become involved in the practice of structural and hydraulic engineering, from 1908 to 1909,
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and from 1918 to 1921. The most creative years of Hardy Cross were spent at the University of Illinois in
Champaign-Urbana where he was a professor of structural engineering from 1921 to 1937. His famous
article “Analysis of flow in networks of conduits or conductors” was published in 1936 in Urbana
Champaign University Illinois Bulletin; Engineering Experiment Station number 286 [1]. His name
is also famous in the field of structural engineering [53–55]. He developed the moment distribution
method for statically indeterminate structures in 1932 [56]. This method has been superseded by more
powerful procedures, however the moment distribution method made possible the efficient and safe
design of many reinforced concrete buildings for the duration of an entire generation. Furthermore, the
solution of the here discussed pipe network problems was a byproduct of his explorations in structural
analysis. Later, Hardy Cross was Chair of the Department of Civil Engineering at Yale, from 1937 to
the early 1950s.

Related to the moment distribution method for statically indeterminate structures developed by
Hardy Cross in 1932 [56], it need to be noted that in 1922 and 1923, Konstantin A. Čališev, emigrant from
Soviet Russia, writing in Serbian, offered a similar method of solving the slope deflection equations
by successive approximations [57–60]. The method of Hardy Cross is an improved version of the
Čališev’s method, but with important circumstance that Hardy Cross most probably was not aware of
Čališev’s contributions. As noted in [49]: “It was Hardy Cross’s genius that he recognized he could
bypass adjusting rotations to get to the moment balance at each and every node.”, which was the part
that Čališev did not developed.
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Abstract: Multi-switching combination synchronization of three fractional-order delayed systems
is investigated. This is a generalization of previous multi-switching combination synchronization
of fractional-order systems by introducing time-delays. Based on the stability theory of linear
fractional-order systems with multiple time-delays, we propose appropriate controllers to obtain
multi-switching combination synchronization of three non-identical fractional-order delayed systems.
In addition, the results of our numerical simulations show that they are in accordance with the
theoretical analysis.

Keywords: multi-switching combination synchronization; time-delay; fractional-order; stability

1. Introduction

Fractional calculus has attracted researchers from various fields due to fractional dimensions
widely existing in nature and engineering fields [1–3]. Compared to the integer-order dynamical
systems, the fractional-order counterparts can exhibit more complex dynamical behaviors. Some of
the researches on integer-order dynamical systems can be generalized to fractional-order dynamical
systems. Fractional-order dynamical systems have been widely investigated, such as synchronization [4],
identification [5], stabilization [6] and approximate entropy analysis [7,8]. Time-delay is a frequently
encountered phenomenon in real applications, such as physical, communication, economical,
pneumatic and biological systems [9]. Introducing time-delay into a system can enrich its dynamic
characteristics and describe a real-life phenomenon more precisely. Thus, the fractional-order delayed
differential equation (FDDE) is becoming a hot topic for scientists and engineers, and it has many
theoretical and practical applications [10]. Nowadays, the chaotic behavior and synchronization of
FDDE attract intensive research interests. In [11], Bhalekar et al. introduced the fractional-order delayed
Liu system. The fractional-order delayed financial system was presented in [12], and hybrid projective
synchronization between the aforementioned two systems was achieved in [13]. The fractional-order
delayed Chen system was proposed in [14], while its adaptive synchronization was investigated in [15].
The fractional-order delayed porous media was proposed in [16]. In [17], a fractional-order delayed
Newton–Leipnik system was taken as an example to present intermittent synchronizing delayed
fractional nonlinear system.

Due to its wide applications in secure communication, synchronization of fractional-order
delayed chaotic systems are extensively investigated [18–21]. However, all the above-mentioned
and other synchronization schemes are in traditional drive–response ways, which only have unique
drive and response systems. Recently, Luo et al. [22] extended the traditional drive–response
synchronization to combination synchronization, which has two drive systems and one response
system. Compared to the drive–response synchronization, combination synchronization has stronger
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anti-decode and anti-attack abilities in image encryption and secure communication, in which
origin messages are split into two parts and each part can be embedded into two separate drive
systems. There are many works on combination synchronization [23–26]. To further strengthen
the security in secure communication, Vincent et al. [27] proposed multi-switching combination
synchronization scheme, in which the two drive systems are synchronized with the response system
in different states. Based on the nonlinear control technique, Zheng [28] studied multi-switching
combination synchronization of three non-identical chaotic systems. Khan [29] investigated adaptive
multi-switching combination synchronization among three non-identical chaotic systems. In [30],
Ahmad et al. proposed globally exponential multi-switching combination synchronization scheme,
and applied it to secure communications. Multi-switching combination synchronization was applied
in encrypted audio communication in [31]. The previous work on multi-switching combination
synchronization schemes are based on integral-order chaotic systems. To improve the security
in these synchronization schemes, based on fractional-order chaotic systems, Bhat et al. [32]
extended the work in [27] to study multi-switching combination synchronization among three
non-identical fractional-order chaotic systems. Khan et al. [33] investigated multi-switching
combination-combination synchronization among a class of four non-identical fractional-order chaotic
systems. In multi-switching combination-combination synchronization scheme, the state variables of
two drive systems synchronize with different state variables of two response systems simultaneously,
which makes the security of this scheme higher than that in [32].

Since time-delay is a frequently encountered phenomenon in real applications, and the time-delay
can be used as an additional parameter in synchronization to increase security in secure communication,
we consider the work in [32] to investigate multi-switching combination synchronization scheme for
non-identical fractional-order delayed systems by introducing time-delays in fractional-order systems.

The rest of this paper is organized as follows. In Section 2, the concept of fractional calculus and the
stability theory of linear fractional-order systems with multiple time-delays are briefly introduced. The
multi-switching combination synchronization scheme of three non-identical fractional-order delayed
systems is analyzed in Section 3. In Section 4, numerical simulations performed using MATLAB are
presented. Finally, conclusions are drawn in Section 5.

2. Preliminaries

Fractional calculus is a generalization of integration and differentiation to non-integer order
fundamental operator aDr

t , which is defined as

aDr
t =

⎧⎪⎨
⎪⎩

dr

dtr : r > 0,
1 : r = 0,∫ t

a (dτ)−r : r < 0.
(1)

There are several different definitions for the fractional-order differential operator [34]. Because the
Caputo definition is easy to understand and is frequently used in the literature, we apply this definition
in this paper, which is

aDr
t f (t) =

1
Γ(n − r)

∫ t

a

f (τ)
t − τ

r−n+1

dτ (2)

where 1 < r < n.

Lemma 1 ([35]). Suppose f (t) ∈ Cα
a ([a, b]), Dα

a f (t) ∈ Cβ
a ([a, b]), α > 0, β > 0, m − 1 < β < m, n − 1 <

α < n, then
C
a Dβ

t

(
C
a Dα

t f (t)
)
=C

a Dα
t (

C
a Dβ

t f (t)) =C
a Dα+β

t f (t) (3)
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Lemma 2 ([35]). Consider

C
a Dα

t xn =
Γ(n + 1)xn−α

Γ(n + 1 − α)

C

a
Dα

t x (4)

Lemma 3 ([35]). Let φ(t) ∈ R be a continuous and derivable function. Then, for any time instant t ≥ t0

1
2

Dqφ2(t) = φ(t)Dqφ(t), ∀q ∈ (0, 1) (5)

Given the following n-dimensional linear fractional-order system with multiple time-delays [36]:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dq1 y1(t) = α11y1(t − τ11) + α12y2(t − τ12)

+ · · ·+ α1nyn(t − τ1n),

Dq2 y2(t) = α21y1(t − τ21) + α22y2(t − τ22)

+ · · ·+ α2nyn(t − τ2n),
...

Dqn yn(t) = αn1y1(t − τn1) + αn2y2(t − τn2)

+ · · ·+ αnnyn(t − τnn),

(6)

where qi ∈ (0, 1) is the fractional-derivative order, yi(t) is the state, and τij > 0 is the time-delay,
the initial value yi(t) = φi(t) is given by −maxτij = −τmax ≤ t ≤ 0, A = [aij] ∈ Rn×n is the
coefficient matrix.

Performing Laplace transform on the system in Equation (6) yields

Δ(s) · Y(s) = b(s), (7)

where Y(s) = (Y1(s), Y2(s), ..., Yn(s))T is the Laplace transform of y(t) =

(y1(t), y2(t), ..., yn(t))T , b(s) = (b1(s), b2(s), ..., bn(s))T is the remaining non-linear part,
the characteristic matrix of the system in Equation (6) is

Δ(s) =

⎛
⎜⎜⎜⎜⎝

sq1 − α11e−sτ11 −α12e−sτ12 · · · −α1ne−sτ1n

−α21e−sτ21 sq2 − α22e−sτ22 · · · −α2ne−sτ2n

...
...

. . .
...

−αn1e−sτn1 −αn2e−sτn2 · · · sqn − αnne−sτnn

⎞
⎟⎟⎟⎟⎠ . (8)

Theorem 1 ([36]). If all the roots of the characteristic equation det(Δ(s)) = 0 have negative real parts, then
the zero solution of the system in Equation (6) is Lyapunov globally asymptotically stable.

Corollary 1 ([36]). If q1 = q2 = · · · = qn = β ∈ (0, 1), all the eigenvalues λ of the coefficient matrix
A satisfy | arg(λ)| > βπ/2, and the characteristic equation det(Δ(s)) = 0 has no purely imaginary roots
for any τij > 0, i, j = 1, 2, . . . , n, then the zero solution of the system in Equation (6) is Lyapunov globally
asymptotically stable.

3. Multi-Switching Combination Synchronization Scheme

Multi-switching combination synchronization among three non-identical fractional-order delayed
systems is investigated in this section.

The two drive systems are

Dαx(t) = x(t) + x(t − τ) + A(x(t), x(t − τ)),

x(t) = x(0), t ∈ [−τ, 0],
(9)
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and
Dαy(t) = y(t) + y(t − τ) + B(y(t), y(t − τ)),

y(t) = y(0), t ∈ [−τ, 0].
(10)

The response system is

Dαz(t) = z(t) + z(t − τ) + C(z(t), z(t − τ)) + U,

z(t) = z(0), t ∈ [−τ, 0],
(11)

in which, α ∈ (0, 1) is the fractional order, τ > 0 is the time-delay, U = (U1, ..., Un) is the controller
vector, x = (x1, ..., xn)T ∈ Rn, y = (y1, ..., yn)T ∈ Rn and z = (z1, ..., zn)T ∈ Rn are state vectors,
and A : R2n → Rn, B : R2n → Rn and C : R2n → Rn are continuous vector functions.

Define the error state as eklm = fkzk − gl xl − hmym(k, l, m = 1, ..., n). Then, we have the error
state vector

e(t) = Fz − Gx − Hy, (12)

where e(t) is the vector form of eklm, F = diag{ f1, f2, . . . , fn} ∈ Rn×n, G = diag{g1, g2, . . . , gn} ∈ Rn×n

and H = diag{h1, h2, . . . , hn} ∈ Rn×n are real scaling matrix. Accordingly, eklm(t − τ) = fkzk(t − τ)−
gl xl(t − τ)− hmym(t − τ).

Definition 1 ([27]). The systems in Equations (9) and (10) and the system in Equation (11) are defined to be
multi-switching combination synchronization if F, G, H are non-zeros, and k �= l �= m, k = l �= m, k �= l =
m, k = m �= l, such that:

lim
t→+∞

‖ e(t) ‖= lim
t→+∞

‖ Fz − Gx − Hy ‖= 0 (13)

where ‖ . ‖ represents the matrix norm.

Remark 1. If k = l = m, the systems in Equations (9) and (10) and the system in Equation (11) are defined to
be combination synchronization [22].

Remark 2. If the scaling matrix F �= 0, G = 0 or H = 0, the multi-switching combination synchronization
mentioned above is simplified to multi-switching hybrid projective synchronization.

From the systems in Equations (9)–(11), we have the error system as follows

Dαe(t) = FDαz(t)− GDαx(t)− HDαy(t) (14)

To achieve multi-switching combination synchronization among the above systems, a non-linear
controller is constructed:

U = K̃e(t) + GA(x(t), x(t − τ)) + HB(y(t), y(t − τ))− FC(z(t), z(t − τ)), (15)

where K̃ = K − I, I is an n-dimensional unit matrix, K = diag{k1, k2, . . . , kn} is a feedback gain matrix.
Substituting the systems in Equations (9)–(11) and (15) into the system in Equation (14), we have

Dαe(t) = (k̃ + I)e(t) + e(t − τ) = Ke(t) + e(t − τ). (16)

Thus, the multi-switching combination synchronization between the systems in Equations (9)
and (10) and the system in Equation (11) is changed into the analysis of the asymptotical stability of
the system in Equation (16).

In light of Corollary 1, a sufficient condition to achieve multi-switching combination
synchronization between the systems in Equations (9) and (10) and the system in Equation (11)
is obtained as follows.
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Proposition 1. Multi-switching combination synchronization between the systems in Equations (9) and (10)
and the system in Equation (11) can be achieved if there exists a matrix K = diag{k1, k2, . . . , kn} in the system
in Equation (16) such that ki < −1/ sin(απ/2), (i = 1, 2, . . . , n).

Proof. For the system in Equation (16), A = K + I is the coefficient matrix. Since ki <

−1/ sin(απ/2), α ∈ (0, 1), the eigenvalues of A are λi = ki + 1 < 0, (i = 1, 2, . . . , n). Then,
|arg(λ)| > π/2 > απ/2 holds.

Performing Laplace transform on the system in Equation (16) yields

Δ(s) · E(s) = sα−1e(0) + e(0)e−sτ
∫ 0

−τ
e−sτ dx, (17)

where E(s) is the Laplace transform of e(t), e(0) = Fz(0)− Gx(0)− Hy(0), Δ(s) = sa I − K − e−sτ I is
the characteristic matrix. Then,

det(Δ(s)) =
∣∣sα I − K − e−sτ I

∣∣ = (sa − k1 − e−sτ)(sa − k2 − e−sτ) . . . (sa − kn − e−sτ) = 0. (18)

Assume
(sa − ki − e−sτ) = 0, i = 1, 2, . . . , n. (19)

has a root s = wi = |w| (cos(π/2) + i sin(±π/2)). Thus,

|w|α (cos(απ/2) + i sin(±απ/2))− ki − cos(ωτ) + i sin(ωτ) = 0. (20)

From the above equation, we can get

|w|α cos(απ/2)− ki = cos(ωτ),

|w|α sin(±απ/2) = − sin(ωτ).
(21)

Hence,
|w|2α − 2ki cos(απ/2) |w|α + k2

i − 1 = 0. (22)

Since ki < −1/ sin(απ/2), α ∈ (0, 1), the discriminant of the roots satisfies

Δ = (−2ki cos(απ/2))2 − 4(k2
i − 1)

= 4(1 − k2
i sin2(απ/2))

< 0.

(23)

Then, Equation (22) has no real solutions, and Equation (18) has no purely imaginary roots.
In light of Corollary 1, the zero solution of the system in Equation (16) is globally asymptotically

stable, i.e., multi-switching combination synchronization is obtained between the systems in
Equations (9) and (10) and the system in Equation (11).

4. Numerical Examples

Numerical simulations were carried out to illustrate the above proposed multi-switching
combination synchronization scheme. We used the same systems as in [32] with time-delays, which
are fractional-order delayed Lorenz, Chen, and Rössler systems, and the numerical simulations were
carried out in MATLAB.
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The fractional-order delayed Lorenz system [37] was considered as the first drive system
⎧⎪⎪⎨
⎪⎪⎩

Dαx1 = a1(x2 − x1),

Dαx2 = c1x1 − x2 − x1x3,

Dαx3 = x1x2 − b1x3(t − τ).

(24)

The system in Equation (24) exhibits a chaotic attractor, as illustrated in Figure 1. The system in
Equation (24) can be rewritten as

Dαx(t) = x(t) + x(t − τ) + A(x(t), x(t − τ)),

x(t) = x(0), t ∈ [−τ, 0],
(25)

where

A(x(t), x(t − τ)) =

⎛
⎜⎝ a1x2 − (a1 + 1)x1 − x1(t − τ)

c1x1 − 2x2 − x1x3 − x2(t − τ)

x1x2 − (b1 + 1)x3(t − τ)− x3

⎞
⎟⎠ . (26)

(a) (b)

(c) (d)

Figure 1. Chaotic attractor of Lorenz system with α = 0.95, τ = 0.4: (a) x3 − x1 plane; (b) x3 − x2

plane; (c) x2 − x1 plane; and (d) x3 − x1 − x2 space.

The fractional-order delayed Chen system [14] is the second drive system
⎧⎪⎪⎨
⎪⎪⎩

Dαy1 = a2(y2 − y1),

Dαy2 = (c2 − a2)y1 − y1y3 + c2y2,

Dαy3 = y1y2 − b2y3(t − τ).

(27)
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The system in Equation (27) displays a chaotic attractor, as shown in Figure 2. We rewrite the
system in Equation (27) as

Dαy(t) = y(t) + y(t − τ) + B(y(t), y(t − τ)),

y(t) = y(0), t ∈ [−τ, 0],
(28)

where

B(y(t), y(t − τ)) =

⎛
⎜⎝ a2(y2 − y1)− y1 − y1(t − τ)

(c2 − a2)y1 − y1y3 + (c2 − 1)y2 − y2(t − τ)

y1y2 − (b2 + 1)y3(t − τ)− y3

⎞
⎟⎠ . (29)

(a) (b)

(c)

100

y3

0
-100-50

0

y1

50

-50

0

50

y 2

(d)

Figure 2. Chaotic attractor of Chen system with α = 0.95, τ = 0.4: (a) y3 − y1 plane; (b) y3 − y2 plane;
(c) y2 − y1 plane; and (d) y3 − y1 − y2 space.

The fractional-order delayed Rössler system is the response system, given by
⎧⎪⎪⎨
⎪⎪⎩

Dαz1 = −(z2 + z3) + 0.2z1(t − τ) + U1,

Dαz2 = z1 + a3z2 + U2,

Dαz3 = z3(z1 − m3) + b3 + U3.

(30)

where U1, U2 and U3 are determined afterwards. Without the controllers, the system in Equation (30)
exhibits a chaotic attractor, as illustrated in Figure 3. The system in Equation (30) is rewritten as

Dαz(t) = z(t) + z(t − τ) + C(z(t), z(t − τ)) + U,

z(t) = z(0), t ∈ [−τ, 0],
(31)
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where

C(z(t), z(t − τ)) =

⎛
⎜⎝ −(z2 + z3)− 0.8z1(t − τ)− z1

z1 + (a3 − 1)z2 − z2(t − τ)

z3(z1 − m3) + b3 − z3 − z3(t − τ)

⎞
⎟⎠ . (32)

For the systems in Equations (24), (27) and (30), there are eight possible switch combination
synchronization cases.

When k �= l �= m, we have e123, e231, e312 and e132, e213, e321.
When k = m �= l, we have e121, e232, e313 and e131, e212, e323.
When k �= l = m, we have e122, e233, e311 and e133, e211, e322.
When k = l �= m, we have e112, e223, e331 and e113, e221, e332.

(a) (b)

(c) (d)

Figure 3. Chaotic attractor of Rössler system with α = 0.95, τ = 0.4: (a) z1 − z3 plane; (b) z2 − z3 plane;
(c) z1 − z2 plane; and (d) z2 − z1 − z3 space.

We randomly pick two cases
⎧⎪⎪⎨
⎪⎪⎩

e123 = f1z1 − g2x2 − h3y3,

e231 = f2z2 − g3x3 − h1y1, case 1

e312 = f3z3 − g1x1 − h2y2.

(33)

and ⎧⎪⎪⎨
⎪⎪⎩

e112 = f1z1 − g1x1 − h2y2,

e223 = f2z2 − g2x2 − h3y3, case 2

e331 = f3z3 − g3x3 − h1y1.

(34)

In the following, we analyze these two cases in detail.
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Case 1

From the systems in Equations (24), (27) and (30), we have the error dynamical system
⎧⎪⎪⎨
⎪⎪⎩

Dαe123 = f1Dαz1 − g2Dαx2 − h3Dαy3,

Dαe231 = f2Dαz2 − g3Dαx3 − h1Dαy1,

Dαe312 = f3Dαz3 − g1Dαx1 − h2Dαy2.

(35)

such that ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

lim
t→+∞

‖ f1z1 − g2x2 − h3y3 ‖= 0,

lim
t→+∞

‖ f2z2 − g3x3 − h1y1 ‖= 0,

lim
t→+∞

‖ f3z3 − g1x1 − h2y2 ‖= 0.

(36)

Substituting the systems in Equations (24), (27) and (30) into the system in Equation (35) yields
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dαe123 = f1(−(z2 + z3) + 0.2z1(t − τ) + U1)− g2(c1x1 − x2 − x1x3)

− h3(y1y2 − b2y3(t − τ)),

Dαe231 = f2(z1 + a3z2 + U2)− g3(x1x2 − b1x3(t − τ))

− h1(a2(y2 − y1)),

Dαe312 = f3(z3(z1 − m3) + b3 + U3)− g1(a1(x2 − x1))

− h2((c2 − a2)y1 − y1y3 + c2y2).

(37)

Here, we obtain the following results.

Theorem 2. Multi-switching combination synchronization between the systems in Equations (24) and (27)
and the system in Equation (30) can be achieved with the following controllers

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U1 =
1
f1
{(k1 − 1)( f1z1 − g2x2 − h3y3) + g2(c1x1 − 2x2 − x1x3 − x2(t − τ))

+ h3(y1y2 − (b2 + 1)y3(t − τ)− y3)− f1(−(z2 + z3)− 0.8z1(t − τ)− z1)},

U2 =
1
f2
{(k2 − 1)( f2z2 − g3x3 − h1y1) + g3(x1x2 − (b1 + 1)x3(t − τ)− x3)

+ h1(a2(y2 − y1)− y1 − y1(t − τ))− f2(z1 + (a3 − 1)z2 − z2(t − τ))},

U3 =
1
f3
{(k3 − 1)( f3z3 − g1x1 − h2y2) + g1(a1x2 − (a1 + 1)x1 − x1(t − τ))

+ h2((c2 − a2)y1 − y1y3 + (c2 − 1)y2 − y2(t − τ))

− f3(z3(z1 − m3) + b3 − z3 − z3(t − τ))}.

(38)

Supposing F �= 0 and G = 0 or H = 0, we have the following results.
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Corollary 2. (i) Supposing that fi �= 0, gi = 0 and hi �= 0 (i = 1, 2, 3), multi-switching hybrid projective
synchronization between the systems in Equations (27) and (30) can be achieved with the following controllers

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U1 =
1
f1
{(k1 − 1)( f1z1 − h3y3) + h3(y1y2 − (b2 + 1)y3(t − τ)− y3)

− f1(−(z2 + z3)− 0.8z1(t − τ)− z1)},

U2 =
1
f2
{(k2 − 1)( f2z2 − h1y1) + h1(a2(y2 − y1)− y1 − y1(t − τ))

− f2(z1 + (a3 − 1)z2 − z2(t − τ))},

U3 =
1
f3
{(k3 − 1)( f3z3 − h2y2) + h2((c2 − a2)y1 − y1y3 + (c2 − 1)y2 − y2(t − τ))

− f3(z3(z1 − m3) + b3 − z3 − z3(t − τ))}.

(39)

(ii) Similarly, supposing that fi �= 0, gi �= 0 and hi = 0 (i = 1, 2, 3), multi-switching hybrid projective
synchronization between the systems in Equations (24) and (30) can be achieved with the following controllers

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U1 =
1
f1
{(k1 − 1)( f1z1 − g2x2) + g2(c1x1 − 2x2 − x1x3 − x2(t − τ))

− f1(−(z2 + z3)− 0.8z1(t − τ)− z1)},

U2 =
1
f2
{(k2 − 1)( f2z2 − g3x3) + g3(x1x2 − (b1 + 1)x3(t − τ)− x3)

− f2(z1 + (a3 − 1)z2 − z2(t − τ))},

U3 =
1
f3
{(k3 − 1)( f3z3 − g1x1) + g1(a1x2 − (a1 + 1)x1 − x1(t − τ))

− f3(z3(z1 − m3) + b3 − z3 − z3(t − τ))}.

(40)

Corollary 3. Supposing that fi �= 0, gi = 0 and hi = 0 (i = 1, 2, 3), the system in Equation (30) can be
stabilized to its equilibrium O(0, 0, 0) with the following controllers

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

U1 =
1
f1
{(k1 − 1)( f1z1)− f1(−(z2 + z3)− 0.8z1(t − τ)− z1)},

U2 =
1
f2
{(k2 − 1)( f2z2)− f2(z1 + (a3 − 1)z2 − z2(t − τ))},

U3 =
1
f3
{(k3 − 1)( f3z3)− f3(z3(z1 − m3) + b3 − z3 − z3(t − τ))}.

(41)

Case 2

From the systems in Equations (24), (27) and (30), we have
⎧⎪⎪⎨
⎪⎪⎩

Dαe112 = f1Dαz1 − g1Dαx1 − h2Dαy2,

Dαe223 = f2Dαz2 − g2Dαx2 − h3Dαy3,

Dαe331 = f3Dαz3 − g3Dαx3 − h1Dαy1.

(42)

such that ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

lim
t→+∞

‖ f1z1 − g1x1 − h2y2 ‖= 0,

lim
t→+∞

‖ f2z2 − g2x2 − h3y3 ‖= 0,

lim
t→+∞

‖ f3z3 − g3x3 − h1y1 ‖= 0.

(43)
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Substituting the systems in Equations (24), (27), and (30) into the system in Equation (42) yields:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dαe112 = f1(−(z2 + z3) + 0.2z1(t − τ) + U1)− g1(a1(x2 − x1))

− h2((c2 − a2)y1 − y1y3 + c2y2),

Dαe223 = f2(z1 + a3z2 + U2)− g2(c1x1 − x2 − x1x3)

− h3(y1y2 − b2y3(t − τ)),

Dαe331 = f3(z3(z1 − m3) + b3 + U3)− g3(x1x2 − b1x3(t − τ))

− h1(a2(y2 − y1)).

(44)

Here, we have the following similar results.

Theorem 3. Multi-switching combination synchronization between the systems in Equations (24) and (27)
and the system in Equation (30) can be achieved with the following controllers

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U1 =
1
f1
{(k1 − 1)( f1z1 − g1x1 − h2y2) + g1(a1x2 − (a1 + 1)x1 − x1(t − τ))

+ h2((c2 − a2)y1 − y1y3 + (c2 − 1)y2 − y2(t − τ))− f1(−(z2 + z3)− 0.8z1(t − τ)− z1)},

U2 =
1
f2
{(k2 − 1)( f2z2 − g2x2 − h3y3) + g2(c1x1 − 2x2 − x1x3 − x2(t − τ))

+ h3(y1y2 − (b2 + 1)y3(t − τ)− y3)− f2(z1 + (a3 − 1)z2 − z2(t − τ))},

U3 =
1
f3
{(k3 − 1)( f3z3 − g3x3 − h1y1) + g3(x1x2 − (b1 + 1)x3(t − τ)− x3)

+ h1(a2(y2 − y1)− y1 − y1(t − τ))− f3(z3(z1 − m3) + b3 − z3 − z3(t − τ))}.

(45)

Corollary 4. (i) Supposing that fi �= 0, gi = 0 and hi �= 0 (i = 1, 2, 3), multi-switching hybrid projective
synchronization between the systems in Equations (27) and (30) can be achieved with the following controllers

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U1 =
1
f1
{(k1 − 1)( f1z1 − h2y2) + h2((c2 − a2)y1 − y1y3 + (c2 − 1)y2 − y2(t − τ))

− f1(−(z2 + z3)− 0.8z1(t − τ)− z1)},

U2 =
1
f2
{(k2 − 1)( f2z2 − h3y3) + h3(y1y2 − (b2 + 1)y3(t − τ)− y3)

− f2(z1 + (a3 − 1)z2 − z2(t − τ))},

U3 =
1
f3
{(k3 − 1)( f3z3 − h1y1) + h1(a2(y2 − y1)− y1 − y1(t − τ))

− f3(z3(z1 − m3) + b3 − z3 − z3(t − τ))}.

(46)

(ii) Supposing that fi �= 0, gi �= 0 and hi = 0 (i = 1, 2, 3), hybrid projective synchronization between the
systems in Equations (24) and (30) can be achieved with the following controllers

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U1 =
1
f1
{(k1 − 1)( f1z1 − g1x1) + g1(a1x2 − (a1 + 1)x1 − x1(t − τ))

− f1(−(z2 + z3)− 0.8z1(t − τ)− z1)},

U2 =
1
f2
{(k2 − 1)( f2z2 − g2x2) + g2(c1x1 − 2x2 − x1x3 − x2(t − τ))

− f2(z1 + (a3 − 1)z2 − z2(t − τ))},

U3 =
1
f3
{(k3 − 1)( f3z3 − g3x3) + g3(x1x2 − (b1 + 1)x3(t − τ)− x3)

− f3(z3(z1 − m3) + b3 − z3 − z3(t − τ))}.

(47)
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Corollary 5. Supposing that fi �= 0, gi = 0 and hi = 0 (i = 1, 2, 3), the system in Equation (30) can be
stabilized to its equilibrium O(0, 0, 0) with the following controllers

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

U1 =
1
f1
{(k1 − 1)( f1z1)− f1(−(z2 + z3)− 0.8z1(t − τ)− z1)},

U2 =
1
f2
{(k2 − 1)( f2z2)− f2(z1 + (a3 − 1)z2 − z2(t − τ))},

U3 =
1
f3
{(k3 − 1)( f3z3)− f3(z3(z1 − m3) + b3 − z3 − z3(t − τ))}.

(48)

The system parameters are given as a1 = 10, b1 = 8
3 , c1 = 28, a2 = 35, b2 = 3, c2 =

28, a3 = 0.4, b3 = 0.2, m3 = 10, thus the systems in Equations (24), (27) and (30) exhibit chaotic
behaviors, respectively. We assume f1 = f2 = f3 = 1, g1 = g2 = g3 = 1 and h1 = h2 = h3 = 1,
and the initial values are (x1(0), x2(0), x3(0)) = (−20, 2, 3), (y1(0), y2(0), y3(0)) = (7, 4.04, 20) and
(z1(0), z2(0), z3(0)) = (1, 2, 40), respectively. Multi-switching combination synchronization between
the systems in Equations (24), (27) and (30) can be realized with K = diag{−10,−10,−10}. Figure 4
illustrates synchronization errors e123, e231, e312. Figure 5 shows synchronization states x2 + y3 vs. z1,
x3 + y1 vs. z2 and x1 + y2 vs. z3 of the drive systems in Equations (24) and (27) and the response
system in Equation (30). Figure 6 displays synchronization errors e112, e223, and e331. Figure 7 illustrates
synchronization states x1 + y2 vs. z1, x2 + y3 vs. z2 and x3 + y1 vs. z3 of the drive systems in
Equations (24) and (27) and the response system in Equation (30). In Figures 4–7, we can see that
the multi-switching combination synchronization errors converge to zero, i.e., the multi-switching
combination synchronizations for Cases 1 and 2 are achieved, respectively.

The feedback gain matrix K is an important factor to affect the convergence of the error systems.
With the increase of the absolute value of ki, the convergence time will be shortened. Thus, we carried
out one more simulation with K = diag{−40,−40,−40}. Figures 8 and 9 illustrate the synchronization
errors for Cases 1 and 2, respectively. By comparing Figures 4 and 8, as well as Figures 6 and 9, it is
easy to see that convergence times are shortened obviously.

(a) (b)

(c)

Figure 4. Synchronization errors among the systems in Equations (24), (27) and (30) with k1 = k2 =

k3 = −10: (a) e123; (b) e231; and (c) e312.
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(a) (b)

(c)

Figure 5. Responses for states between the systems in Equations (24) and (27) and the system in
Equation (30): (a) x2 + y3 vs. z1; (b) x3 + y1 vs. z2; and (c) x1 + y2 vs. z3.

(a) (b)

(c)

Figure 6. Synchronization errors among the systems in Equations (24), (27) and (30) with k1 = k2 =

k3 = −10: (a) e112; (b) e223; and (c) e331.
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(a) (b)

(c)

Figure 7. Responses for states between the systems in Equations (24) and (27) and the system in
Equation (30): (a) x1 + y2 vs. z1; (b) x2 + y3 vs. z2; and (c) x3 + y1 vs. z3.

(a) (b)

(c)

Figure 8. Synchronization errors among the systems in Equations (24), (27) and (30) with k1 = k2 =

k3 = −40: (a) e123; (b) e231; and (c) e312.
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(a) (b)

(c)

Figure 9. Synchronization errors among the systems in Equations (24), (27) and (30) with k1 = k2 =

k3 = −40: (a) e112; (b) e223; and (c) e331.

5. Conclusions

We extended previous work [32] to investigate multi-switching combination synchronization
among three non-identical fractional-order delayed systems by introducing time-delays. Based on the
stability theory for linear fractional-order systems with multiple time-delays, we designed appropriate
controllers to obtain multi-switching combination synchronization among three non-identical
fractional-order delayed systems. The simulations are in accordance with the theoretical analysis.

On the one hand, when applying multi-switching combination synchronization of fractional-order
delayed chaotic systems in secure communications, fractional-order and time-delay can enrich systems’
dynamics. On the other hand, the origin information can be separated into two parts and embedded
different parts in separate drive systems via combination synchronization scheme. Besides, because
the switched states are unpredictable, this synchronization scheme can increase the security of the
transmitted information in secure communication. Thus, the communication security will be enhanced,
which makes multi-switching combination synchronization of fractional-order delayed chaotic systems
able to find better applications in security communication.
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Abstract: In this article, a new analytical technique based on an innovative transformation is used to
solve (2+time fractional-order) dimensional physical models. The proposed method is the hybrid
methodology of Shehu transformation along with Adomian decomposition method. The series form
solution is obtained by using the suggested method which provides the desired rate of convergence.
Some numerical examples are solved by using the proposed method. The solutions of the targeted
problems are represented by graphs which have confirmed closed contact between the exact and
obtained solutions of the problems. Based on the novelty and straightforward implementation of
the method, it is considered to be one of the best analytical techniques to solve linear and non-linear
fractional partial differential equations.

Keywords: Shehu transformation; Adomian decomposition; analytical solution; Caputo derivatives;
(2+time fractional-order) dimensional physical models

1. Introduction

Fractional calculus is considered to be a powerful tool for modeling complex phenomenon.
Recently, the researchers have shown the greatest interest towards fractional calculus because
of its numerous applications in different fields of sciences. Despite complicated background of
fractional calculus, it came into being from simple question of L’Hospital. The first order represent
slope of a function, what will it represent for fractional order ( 1

2 )? To find the answer of this
question, the mathematicians have managed to open a new window of opportunities to improve
the mathematical modeling of real world problems, which has given birth to many new questions and
intriguing results. These newly established results have numerous implementation in many areas of
engineering [1,2], such as fractional-order Buck master and diffusion problems [3], fractional-order
telegraph model [4,5], fractional KdV-Burger-Kuramoto equation [6], fractal vehicular traffic flow [7],
fractional Drinfeld-Sokolov-Wilson equation [8], fractional-order anomalous sub-diffusion model [9],
fractional design of hepatitis B virus [10], fractional modeling chickenpox disease [11], fractional
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blood ethanol concentration model [12], fractional model for tuberculosis [13], fractional vibration
equation [14], fractional Black-Scholes option pricing equations [15], fractionally damped beams [16],
fractionally damped coupled system [17], fractional-order heat, wave and diffusion equations [18,19],
fractional order pine wilt disease model [20], fractional diabetes model [21] etc.

Nowadays, the focus of the researchers is to develop different numerical and analytical techniques
for the solution of fractional-order models. Therefore, different types of analytical and numerical
methods have been developed and used for the solution of different fractional models. The analytical
algorithm, the history of integral transform traced back to the time when Laplace started work
an integral transform in 1780s and Joseph Fourier in 1822. Integral transformations are without
question one of the most useful and effective methods in theoretical and applied mathematics,
with numerous uses in quantum physics, mechanical engineering and several other areas of science.
Moreover, the integral transform is used in chemistry, architecture, and other social sciences to evaluate
various models [22]. In recent years, different integral transform such as Laplace transform [23–25]
, Fourier transform [26,27], Hankel transform [28], Mellin transform [29], Z-transform [30], Wavelet
transform [31], Elzaki transform [32,33], Mahgoub transform [34], Aboodh transform [35], Mohand
transform [36], Sumudu transform [37,38], Hermite transform [39] etc have been used for the solution
of different physical models.

Originality of the paper: In this article, we have applied a new analytical technique, which is
based on generalization of sumudu and laplace transform with Adomian decomposition method
(ADM) to solve (2+time fractional-order) dimensional physical models. In the present research
we have analyzed the fractional view of some important physical problems by using Shehu
decomposition method (SDM). Some important fractional-order problems are solved, which provide
the best information about the targeted physical problems as compare to integer-order problems
solution. The results of the integer-order problem are compared with the fractional-order problems.
In conclusion, in the present research work, we provided and improved the existing physical models
of integer-order by using the idea of fractional calculus. The modified mathematical models of
fractional-order derivative are solved by using a new and sophisticated analytical method. Moreover,
the proposed analytical method has provided the solutions of the problems that have a very close
contact with the exact solutions of the problems. The methodology can be extended towards other
fractional-order partial differential equations, that are frequently occurred in science and engineering.

The rest of the paper is organized as: In Section 2, we presented the basic definitions and
theorem of the proposed method. In Section 3, we have discussed the implementation of proposed
transformation. In Section 4 we evaluated the numerical examples by using the proposed technique
and discussed the plots. In Section 5 we lastly summarized our results.

2. Preliminaries Concepts

In this section, we present some fundamental and appropriate definitions and preliminary
concepts related to the fractional calculus and the Shehu transformation.

Definition 1. Shehu transform
Shehu transformation is new and similar to other integral transformation which is defined for functions of

exponential order [40]. We take a function in the set A define by

A = {u(τ) : ∃, ρ1, ρ2 > 0, |u(τ)| < Me
|τ|
ρi , i f τ ∈ [0, ∞), (1)

The Shehu transform which is represented by S(.) for a function u(τ) is defined as

S{u(τ)} = V(s, μ) =
∫ ∞

0
u(τ)e

−sτ
μ u(τ)dτ, τ > 0, s > 0. (2)
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The Shehu transform of a function u(τ) is V(s, μ): then u(τ) is called the inverse of V(s, μ) which is
expressed as

S−1 {V(s, μ)} = u(τ), f or τ ≥ 0, S−1is inverse Shehu trans f orm. (3)

Definition 2. Shehu transform for nth derivatives
The Shehu transformation for nth derivatives is defined as [40]

S
{

u(n)(τ)
}
=

sn

μn V(s, μ)−
n−1

∑
k=0

(
s
μ

)n−k−1
u(k)(0). (4)

Definition 3. Caputo operator of fractional partial derivative
The fractional Caputo operator is represented as [41]

Dβ
τ f (τ) =

⎧⎨
⎩

∂n f (τ)
∂τn , β = n ∈ N,

1
Γ(n−β)

∫ τ
0 (τ − φ)n−β−1 f (n)(φ)∂φ, n − 1 < β ≤ n, n ∈ N.

(5)

Definition 4. Shehu transform for fractional order derivatives
The Shehu transformation for the fractional order derivatives is expressed as

S
{

u(β)(τ)
}
=

sβ

μβ
V(s, μ)−

n−1

∑
k=0

(
s
μ

)β−k−1
u(k)(0), 0 < β ≤ n, (6)

In Table 1 show different special functions of Shehu transformation.

Table 1. The Shehu transform of some special functions.

Functional Form Shehu Transform Form

1 u
s

t u2

s2

eτ u
s−au

sin(τ) u2

s2+u2

cos(τ) us
s2+u2

τn

n! for n = 0, 1, 2, · · · ( u
s )

n+1

τn

Γ(n+1) for n = 0, 1, 2, · · · ( u
s )

n+1

Theorem 1. If the function u(τ) is piecewise continues at every finite interval of 0 ≤ τ ≤ β and of exponential
order α for τ > β, then there’s the Shehu transform u(s, μ) [40].

Proof. For any natural number β, we deduct algebraically:

∫ ∞

0
exp(− sτ

μ
)u(τ)dτ =

∫ β

0
exp(− sτ

μ
)u(τ)dτ +

∫ ∞

β
exp(− sτ

μ
)u(τ)dτ, (7)

since the function u(τ) continues in a piecewise manner at every finite interval 0 ≤ τ ≤ β, there’s the
first integral on the right hand side. We suggest the following situation to validate this statement,
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|
∫ ∞

α
exp(− sτ

μ
)u(τ)dτ| ≤

∫ ∞

α
|exp(− sτ

μ
)u(τ)|dτ

≤
∫ ∞

α
exp(− sτ

μ
)|u(τ)|dτ

≤
∫ ∞

α
exp(− sτ

μ
)Nexp(βτ)dτ

= N
∫ ∞

α
exp(− (s − βu)τ

u
)dτ

= − Nu
(s − βu)

lim
γ−→∞

[
exp(− (s − βu)τ

u
)dτ

]γ

0

=
Nu

(s − βu)
.

(8)

The proof is complete.

3. Implementation of Shehu Transform

In this section, we have considered a time fractional (2+time fractional-order) dimensional
physical model in the form

uβ
τ(�,�, τ) = κu��(�,�, τ) + £u(�,�, τ) + ℵu(�,�, τ), β ∈ [1, 2] (9)

with initial condition
u(�,�, 0) = u(�,�), (10)

while κ is a non-linear operator and £ linear operator.
Applying the Shehu transform to both sides of the Equation (9) we obtain

S
{

uβ
τ(�,�, τ)

}
= S {κu��(�,�, τ) + £u(�,�, τ) + ℵu(�,�, τ)} , β ∈ [1, 2]. (11)

Using the differential property of Shehu transformation we have,

sβ

μβ

{
V(s, μ)− μ

s
u(0)− μ2

s2 u
′
(0)
}

= S {κu��(�,�, τ) + £u(�,�, τ) + ℵu(�,�, τ)} . (12)

Simplifying Equation (12), we obtain

V(s, μ) = +
μβ

sβ
S {κu��(�,�, τ) + £u(�,�, τ) + ℵu(�,�, τ)}+ μ

s
u(0) +

μ2

s2 u
′
(0). (13)

Applying the inverse Shehu transformation, we get

u(�,�, τ) = S−1
{

μβ

sβ
S {κu��(�,�, τ) + £u(�,�, τ) + ℵu(�,�, τ)}

}
+ u(0) + τu

′
(0). (14)

The nonlinear term ℵu(�,�, τ) is evaluated by using the procedure of Adomian polynomial
decomposition given by

ℵu(�,�, τ) =
∞

∑
m=0

Am(u0, u1, · · · ), m = 0, 1, · · · (15)

where,

Am(u0, u1, · · · ) = 1
m!

[
dm

dλm ℵ
(

∞

∑
i=0

λiui

)]
λ=0

, m > 0. (16)
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With the help of Equation (16), Equation (15) can be written as

u(�,�, τ) = S−1

{
μβ

sβ
S

{
κu��(�,�, τ) + £u(�,�, τ) +

∞

∑
m=0

Am

}}
+ u(0) + τu

′
(0). (17)

Finally, we obtain the recursive relation as

u0(�,�, τ) = u(0) + τu
′
(0), m = 0

um(�,�, τ) = S−1

{
μβ

sβ
S

{
κu(m−1)��(�,�, τ) + £u(m−1)(�,�, τ) + ℵu(m−1)(�,�, τ) +

∞

∑
m=0

Am

}}
, m ≥ 1.

(18)

4. Applications and Discussion

Example 1. Consider the (2+time fractional-order) dimensional hyperbolic wave model:

uβ
τ(�,�, τ) =

1
12

�2u��(�,�, τ) +
1
12

�2u��(�,�, τ), β ∈ (1, 2) (19)

with initial conditions
u(�,�, 0) = �4, uτ(�,�, 0) = �4. (20)

If β = 2, then the exact solution of Equation (19) is

u(�,�, τ) = �4 sinh(t) +�4 cosh(t), (21)

Taking the Shehu transform of Equation (19) we obtain

sβ

μβ

{
V(s, μ)− μ

s
u(0)− μ2

s2 u
′
(0)
}

= S
{

1
12

�2u��(�,�, τ) +
1

12
�2u��(�,�, τ)

}
. (22)

Simplifying Equation (22), we get

V(s, μ) =
μβ

sβ
S
{

1
12

�2u��(�,�, τ) +
1
12

�2u��(�,�, τ)

}
+

μ

s
u(0) +

μ2

s2 u
′
(0). (23)

Applying inverse Shehu transform, we get

u(�,�, τ) = u(0) + u
′
(0)τ + S−1

{
μβ

sβ
S
{

1
12

�2u��(�,�, τ) +
1
12

�2u��(�,�, τ)

}}
. (24)

Thus we get the following recursive scheme

u0(�,�, τ) = u(0) + u
′
(0)τ = �4 +�4τ, (25)

um+1(�,�, τ) = S−1
{

μβ

sβ
S
{

1
12

�2um��(�,�, τ) +
1
12

�2um��(�,�, τ)

}}
. (26)

Using Equation (26), for m = 0, 1, 2, 3, · · · we get the following values
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u1(�,�, τ) = �4 τβ

β!
+�4 τβ+1

(β + 1)!
,

u2(�,�, τ) = �4 τ2β

(2β)!
+�4 τ2β+1

(2β + 1)!
,

u3(�,�, τ) = �4 τ3β

(3β)!
+�4 τ3β+1

(3β + 1)!
,

u4(�,�, τ) = �4 τ4β

(4β)!
+�4 τ4β+1

(4β + 1)!
,

(27)

...

Now using the values of u0, u1, u2, u3, · · · , we get Shehu transformation solution for example 1

u(�,�, τ) = �4 +�4τ +�4 τβ

β!
+�4 τβ+1

(β + 1)!
+�4 τ2β

(2β)!
+�4 τ2β+1

(2β + 1)!
+�4 τ3β

(3β)!
+

�4 t3β+1

(3β + 1)!
+�4 τ4β

(4β)!
+�4 τ4β+1

(4β + 1)!
+ · · ·

(28)

After simplification, we get

u(�,�, τ) = �4
{

1 +
τβ

β!
+

τ2β

(2β)!
+

τ3β

(3β)!
+

τ4β

(4β)!
+ · · ·

}
+�4

{
τ +

τβ+1

(β + 1)!
+

τ2β+1

(2β + 1)!
+

τ3β+1

(3β + 1)!
+

τ4β+1

(4β + 1)!
+ · · ·

}
.

(29)

In particular, when β → 2, the analytical solution of Shehu transform become as

u(�,�, τ) = �4
{

1 +
τ2

2!
+

τ4

(4)!
+

τ6

(6)!
+

τ8

(8)!
+ · · ·

}
+�4

{
τ +

τ3

(3)!
+

τ5

(5)!
+

τ7

(7)!
+

τ9

(9)!
+ · · ·

}
, (30)

which provide the close form solution as

u(�,�, τ) = �4 cosh(τ) +�4 sinh(τ). (31)

Figures 1 and 2 represent the exact and analytical solutions of Example 1. The solutions-graphs have
confirmed the closed contact between the exact solution and the analytical solution obtained by the proposed
method. In Figure 3, the solution of Example 1 are calculated at different fractional-order β of the derivative.
It is investigated that the solutions at different fractional-orders β are convergent to an integer-order solution
of Example 1. Figure 4 represent the solution verses time graph for Example 1. It is observed that as the time
fractional-order varies toward time integer-order, the time fractional-order solutions also approaches to the
solution of an integer-order problem of Example 1. All the above solution analysis of Example 1 indicate that
SDM is an efficient and effective method to solve fractional-order partial differential equations that are frequently
arising in science and engineering.
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Figure 1. Represents the exact solution of Example 1 at β = 2.

Figure 2. Represents the analytical solution of Example 1 at β = 2.

Figure 3. Represents the solution at different fractional order of Example 1.
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Figure 4. Represents the solution at different fractional order of Example 1.

In Table 2, the solutions of Shehu transform decomposition method (SDM) and Adomian decomposition
method (ADM) are compared with each other. The comparison has shown that the solutions of proposed method
are in strong agreement with the solution of ADM.

Table 2. Comparison of SDM and ADM [42] of Example 1 at τ = 0.1.

SDM (m = 5) SDM (m = 3) SDM ( m= 5) ADM (m = 5) AE of SDM

� � β = 1.75 β = 2 β = 2 β = 2 β = 2

1 1 1.111568974 1.105195833 1.10519608 1.10519609 2.51 × 10−5

2 2 17.78510358 17.68313333 17.6831373 17.6831374 4.02 × 10−4

3 3 90.03708688 89.52086250 89.5208829 89.5208828 2.03 × 10−3

4 4 284.5616573 282.9301334 282.930198 282.930199 6.44 × 10−3

5 5 694.7306086 690.7473959 690.747553 690.747552 1.57 × 10−2

Example 2. Consider the (2+time fractional-order) dimensional Heat model:

uβ
τ(�,�, τ) = u��(�,�, τ) + u��(�,�, τ), β ∈ (0, 1] (32)

with initial condition
u(�,�, 0) = sin(�) cos(�). (33)

If β = 1, then the exact solution of Equation (32) is

u(�,�, τ) = e−2τ sin(�) cos(�). (34)

Taking Shehu transform of Equation (32)

sβ

μβ

{
V(s, μ)− μ

s
u(0)

}
= S {u��(�,�, τ) + u��(�,�, τ)} , (35)

Simplifying Equation (35), we get as

V(s, μ) =
μ

s
u(0) +

μβ

sβ
S {u��(�,�, τ) + u��(�,�, τ)} . (36)

Applying inverse Shehu transform, we get
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u(�,�, τ) = u(0) + S−1
{

μβ

sβ
S {u��(�,�, τ) + u��(�,�, τ)}

}
. (37)

Thus we get the following recursive scheme

u0(�,�, τ) = u(0) = sin(�) cos(�), (38)

um+1(�,�, τ) = S−1
{

μβ

sβ
S {um��(�,�, τ) + um��(�,�, τ)}

}
, (39)

Using Equation (39), for m = 0, 1, 2, 3, · · · we get the following values

u1(�,�, τ) = −2 sin(�) cos(�) τβ

(β)!
,

u2(�,�, τ) = 4 sin(�) cos(�) τ2β

(2β)!
,

u3(�,�, τ) = −8 sin(�) cos(�) τ3β

(3β)!
,

u4(�,�, τ) = 16 sin(�) cos(�) τ4β

(4β)!
,

(40)

...

Now using the values of u0, u1, u2, u3, · · · , we get Shehu transformation solution for example 2

u(�,�, τ) = sin(�) cos(�)− 2 sin(�) cos(�) τβ

(β)!
+ 4 sin(�) cos(�) τ2β

(2β)!
+

− 8 sin(�) cos(�) τ3β

(3β)!
+ 16 sin(�) cos(�) τ4β

(4β)!
+ · · ·

(41)

After simplification, we get

u(�,�, τ) = sin(�) cos(�)
{

1 − 2
τβ

(β)!
+ 4

τ2β

(2β)!
+−8

τ3β

(3β)!
+ 16

τ4β

(4β)!
+ · · ·

}
, (42)

which converge to the solution

u(�,�, τ) = sin(�) cos(�)Eβ(−2τβ), (43)

For particular case β → 1, the Shehu transform solution become as

u(�,�, τ) = sin(�) cos(�)e−2τ . (44)

Figures 5 and 6 show the exact and analytical solution of Example 2 respectively. The graphical
representation have confirmed the closed contact of the obtained solution with the exact solution of Example 2.
Similarly, Figures 7 and 8 represents the fractional-order solution of Example 2 for two and three space. Both
graphs support the convergence phenomena of fractional-order problems to an integer-order problem of Example 2.
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Figure 5. Represents the exact solution of Example 2 at β = 1.

Figure 6. Represents the analytical solution of Example 2 at β = 1.

Figure 7. u(�,�, τ) Represents the solution at different fractional order of Example 2.
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Figure 8. u(�,�, τ) Represents the solution at different fractional order of Example 2.

Example 3. Consider the (2 + time f ractional) dimensional diffusion model:

uβ
τ(�,�, τ) = u��(�,�, τ) + u��(�,�, τ), β ∈ (0, 1] (45)

with the initial condition
u(�,�, 0) = e�+�. (46)

If β = 1, then the exact solution of Equation (45) is

u(�,�, τ) = e�+�+2τ (47)

Taking Shehu transform of Equation (45)

sβ

μβ

{
V(s, μ)− μ

s
u(0)

}
= S {u��(�,�, τ) + u��(�,�, τ)} . (48)

Simplifying Equation (46), we get as

V(s, μ) =
μ

s
u(0) +

μβ

sβ
S {u��(�,�, τ) + u��(�,�, τ)} . (49)

Applying inverse operator of Shehu transform, we get

u(�,�, τ) = u(0) + S−1
{

μβ

sβ
S {u��(�,�, τ) + u��(�,�, τ)}

}
. (50)

Thus we get the following recursive scheme

u0(�,�, τ) = u(0) = e�+�,

um+1(�,�, τ) = S−1
{

μβ

sβ
S {um��(�,�, τ) + um��(�,�, τ)}

}
, (51)

Using Equation (51), for m = 0, 1, 2, 3, · · · we get the following values
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u1(�,�, τ) = 2e�+� τβ

(β)!
,

u2(�,�, τ) = 4e�+� τ2β

(2β)!
,

u3(�,�, τ) = 8e�+� τ3β

(3β)!
,

u4(�,�, τ) = 16e�+� τ4β

(4β)!
,

(52)

...

Now using the values of u0, u1, u2, u3, · · · , we get Shehu transformation solution for Example 3

u(�,�, τ) = e�+� + 2e�+� τβ

(β)!
+ 4e�+� τ2β

(2β)!
+ 8e�+� τ3β

(3β)!
+ 16e�+� τ4β

(4β)!
+ · · · . (53)

After simplification, we get

u(�,�, τ) = sin(�) cos(�)
{

1 + 2
τβ

(β)!
+ 4

τ2β

(2β)!
+ 8

τ3β

(3β)!
+ 16

τ4β

(4β)!
+ · · ·

}
. (54)

The close form solution become as

u(�,�, τ) = sin(�) cos(�)Eβ(2τβ). (55)

When β → 1 the calculated result provide the exact solution in the close form

u(�,�, τ) = sin(�) cos(�)e2τ . (56)

Figures 9 and 10 show the exact and analytical solutions of Example 3. Both figures are almost coincident
confirming the close contact of both exact and obtained solution. Figures 11 the SDM solutions at different
fractional-order β are calculated for Example 3. The convergence phenomena of fractional-order solution towards
exact solution is observed. The method is found to be very simple and straightforward to solve fractional-order
different equations.

Figure 9. Exact solution of Example 3 at β = 1.
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Figure 10. Represents the analytical solution of Example 3 at β = 1.

Figure 11. The solution graph at different fractional order β.

Example 4. Consider the (2 + time f ractional) dimensional telegraph model:

uβ
τ(�,�, τ) =

1
2

u��(�,�, τ) +
1
2

u��(�,�, τ)− 2ut(�,�, τ)− u(�,�, τ), β ∈ (1, 2], (57)

with initial conditions

u(�,�, 0) = sinh(�) sinh(�), uτ(�,�, 0) = −2 sinh(�) sinh(�). (58)

If β = 2, then the exact solution of Equation (57) is

u(�,�, τ) = sinh(�) sinh(�)e−2τ . (59)

Taking Shehu transform of Equation (57)

sβ

μβ

{
V(s, μ)− μ

s
u(0)− μ2

s2 u
′
(0)
}

= S
{

1
2

u��(�,�, τ) +
1
2

u��(�,�, τ)− 2ut(�,�, τ)− u(�,�, τ)

}
, (60)

Simplifying Equation (60), we get as

V(s, μ) =
μβ

sβ
S
{

1
2

u��(�,�, τ) +
1
2

u��(�,�, τ)− 2ut(�,�, τ)− u(�,�, τ)

}
+

μ

s
u(0) +

u2

s2 u
′
(0), (61)
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Applying inverse of Shehu transform, we get

u(�,�, τ) = u(0) + τu
′
(0) + S−1

{
μβ

sβ
S
{

1
2

u��(�,�, τ) +
1
2

u��(�,�, τ)− 2ut(�,�, τ)− u(�,�, τ)

}}
. (62)

Thus we get the following recursive scheme

u0(�,�, τ) = u(0) + τu
′
(0) =

sinh(�) sinh(�)− 2t sinh(�) sinh(�),

um+1(�,�, τ) = S−1
{

μβ

sβ
S
{

1
2

um��(�,�, τ) +
1
2

um��(�,�, τ)− 2umτ(�,�, τ)− um(�,�, τ)

}}
, (63)

Using Equation (63), for m = 0, 1, 2, 3, · · · we get the following values

u1(�,�, τ) = 4 sinh(�) sinh(�) τβ

(β)!
,

u2(�,�, τ) = −8
β(β − 1)! sinh(�) sinh(�)τ2β

(2β − 1)!(β)!
,

u3(�,�, τ) = 16
β(2β − 1)(β − 1)!(2β − 2)! sinh(�) sinh(�)τ3β−2

(β)!(2β − 1)!(3β − 2)!
,

(64)

...

Now using the values of u0, u1, u2, u3, · · · , we get Shehu transformation solution for Example 4

u(�,�, τ) = sinh(�) sinh(�)− 2τ sinh(�) sinh(�) + 4
sinh(�) sinh(�)τβ

(β)!
− 8

β(β − 1)! sinh(�) sinh(�)τ2β

(2β − 1)!(β)!
+

16β(2β − 1)(β − 1)!(2β − 2)! sinh(�) sinh(�)τ3β−2

(β)!(2β − 1)!(3β − 2)!
+ · · · .

(65)

After simplification, we get

u(�,�, τ) = sinh(�) sinh(�)
{

1 − 2τ + 4
τβ

β!
− 8

β(β − 1)!τ2β

(2β − 1)!(β)!
+

16β(2β − 1)(β − 1)!(2β − 2)!τ3β−2

(β)!(2β − 1)!(3β − 2)!
+ · · ·

}
. (66)

For particular case β → 2, the Shehu transform solution become as

u(�,�, τ) = sinh(�) sinh(�)
{

1 − 2τ + 4
τ2

2!
− 8

τ3

3!
+ 16

τ4

4!
+ · · ·

}
. (67)

The calculated result provide the exact solution in the close form

u(�,�, τ) = sinh(�) sinh(�)e−2τ . (68)

Figures 12 and 13, display the exact and analytical solutions of Example 4. The solution graph of SDM
is very similarly to the exact solution of Example 4. In Figure 14, we plotted the solutions of Example 4 at
different fractional-order β. The fractional-order solutions are found to be convergent towards the exact solution
of Example 4. It is investigated from the solution analysis that the present method is a sophisticated technique to
solve fractional-order problems.
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Figure 12. Exact solution of Example 4 at β = 2.

Figure 13. analytical solution of Example 4 at β = 2.

Figure 14. The solution graph at different fractional order β. of Example 4.

Example 5. Consider the non-linear (2 + time f ractional) dimensional Burger’s model:

uβ
τ(�,�, τ) = u��(�,�, τ) + u��(�,�, τ) + u�(�,�, τ)u(�,�, τ), β ∈ (0, 1], (69)

with initial condition
u(�,�, 0) = �+�. (70)
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If β = 1, then the exact solution of Equation (69) is

u(�,�, τ) =
�+�
1 − τ

. (71)

Taking Shehu transform of Equation (69)

sβ

μβ

{
V(s, μ)− μ

s
u(0)

}
= S {u��(�,�, τ) + u��(�,�, τ) + u�(�,�, τ)u(�,�, τ)} , (72)

The simplifying Equation (72), we get as

V(s, μ) =
μ

s
u(0) +

μβ

sβ
S {u��(�,�, τ) + u��(�,�, τ) + u�(�,�, τ)u(�,�, τ)} , (73)

By applying inverse of Shehu transform, we get

u(�,�, τ) = u(0) + τu
′
(0) + S−1

{
μβ

sβ
S {u��(�,�, τ) + u��(�,�, τ) + u�(�,�, τ)u(�,�, τ)}

}
, (74)

Thus we get the following recursive scheme

u0(�,�, τ) = u(0) = �+�, (75)

um+1(�,�, τ) = S−1
{

μβ

sβ
S {um��(�,�, τ) + um��(�,�, τ) + um�(�,�, τ)um(�,�, τ)}

}
. (76)

For nonlinear term, use the Equation (12) in recursive scheme (76), we obtain

um+1(�,�, τ) = S−1

{
μβ

sβ
S

{
um��(�,�, τ) + um��(�,�, τ) +

∞

∑
m=0

Am(u0, u1, · · · )
}}

. (77)

Using Equation (77), for m = 0, 1, 2, 3, · · · we get the following values

u1(�,�, τ) = (�+�) tβ

(β)!
,

u2(�,�, τ) = 2(�+�) τ2β

(2β)!
,

u3(�,�, τ) = 4(�+�) τ3β

(3β)!
+ (�+�)(2β)!

t3β

β!β!(3β)!
,

(78)

...

Now using the values of u0, u1, u2, u3, · · · , we get Shehu transformation solution for example 5

u(�,�, τ) = �+�+ (�+�) τβ

(β)!
+ 2(�+�) τ2β

(2β)!
+ 4(�+�) τ3β

(3β)!
+ (�+�)(2β)!

τ3β

β!β!(3β)!
+ · · · . (79)

After simplification, we get

u(�,�, τ) = (�+�)
{

1 +
τβ

(β)!
+ 2

τ2β

(2β)!
+ 4

τ3β

(3β)!
+ (2β)!

τ3β

β!β!(3β)!
+ · · ·

}
. (80)

For particular case β → 1, the Shehu transform solution become as

u(�,�, τ) = (�+�)
{

1 + τ + τ2 + τ3 + · · ·
}

. (81)
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The calculated result provide the exact solution in the close form

u(�,�, τ) =
�+�
1 − τ

. (82)

Figures 15 and 16 are plotted to discuss the exact and analytical solutions of Example 5. The SDM solutions
are in good contact with the exact solution of the Example 5. Figures 17 and 18 are plotted to analyze the
fractional-order solutions of Example 5 at fractional-order β = 0.75 and 0.50 respectively. The graphical analysis
has verified the applicability of the proposed method.

Figure 15. Exact solution of Example 5 at β = 1.

Figure 16. Represents the analytical solution of Example 5 at β = 1.

Figure 17. The solution of fractional-order β = 0.75 of Example 5.
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Figure 18. The solution of fractional-order β = 0.5 of Example 5.

5. Results and Discussion

In the present research work, we implemented a new analytical technique SDM for the solution of
some important problems which are frequently arising in science and engineering, such as hyperbolic
wave equation, heat equation, diffusion equation, telegraph and Burgers equations. The Caputo
definition of fractional-derivative is used to define fractional-derivative. The proposed method is
the combination of Shehu transformation and Adomian decomposition method which is known as
Shehu decomposition method. For applicability and novelty of present method, we applied it different
physical problems for applied sciences. These problems have been solved by using SDM for both
fractional and integer-order of the targeted problems. In this connection some figure analysis have
been done to demonstrate the obtained results in a sophisticated manner. It is investigated that SDM
solution have a very close contact with the exact solution of the problems. It is also observed that the
fractional-order problems are convergent towards the solution of an integer-order problem. Moreover,
the high rate of convergence of the current method is noted during the simulation. It is calculated
that the SDM can be considered as one of the best analytical technique to solve fractional partial
differential equations.

6. Conclusions

In the present article, we presented some fractional-view analysis of physical problems, arising
in science and engineering. A new and sophisticated analytical technique, which is known as
Shehu transform decomposition method is implemented for both fractional and integer-orders of the
problems. The Caputo definition of fractional derivative is used to express fractional-order derivative.
For applicability and reliability of the proposed methods, some illustrative examples are presented
from different areas of applied science. It has been investigated through graphical representation that
the present technique provides an accurate and deserving analysis about the physical happening of
the problems. It is observed through simulations of the present algorithm that as fractional-order
of the derivative approaches to integer order of the problem then fractional-order solutions are
convergent to integer-order solutions. Moreover, the present method is preferred as compared to other
method because of its better rate of convergence. This direction motivates the researchers towards the
implementation of the current method for other non-linear fractional partial differential equations.
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Abstract: In the present research work, a newly developed technique which is known as variational
homotopy perturbation transform method is implemented to solve fractional-order acoustic wave
equations. The basic idea behind the present research work is to extend the variational homotopy
perturbation method to variational homotopy perturbation transform method. The proposed scheme
has confirmed, that it is an accurate and straightforward technique to solve fractional-order partial
differential equations. The validity of the method is verified with the help of some illustrative
examples. The obtained solutions have shown close contact with the exact solutions. Furthermore,
the highest degree of accuracy has been achieved by the suggested method. In fact, the present
method can be considered as one of the best analytical techniques compared to other analytical
techniques to solve non-linear fractional partial differential equations.

Keywords: homotopy perturbation method; variational iteration method; Laplace transform method;
acoustic wave equations

1. Introduction

Recently, fractional calculus and fractional differential equations (FDEs) have attracted the
attention of scientists, mathematicians and engineers. A number of important implementations have
been evaluated in various fields of sciences and engineering, such as material engineering, viscoelastic,
electrochemistry, electromagnetic and dynamics physics which are described by fractional partial
differential equations (FPDEs) [1]. Analytical approaches to solve FDEs are of great interest. There is no
technique which provides an exact solution to the FDEs. Approximate approaches must be obtained by
using techniques of series solution or linearization [2], followed by the application of proper numerical
discretization [3–5] and system solvers [6–8]. Non-linear phenomena appear in a number of fields
of engineering and sciences, such as solid state physics, chemical kinetics, non-linear spectroscopy,
fluid physics, computational biology, quantum mechanics and thermodynamics etc. The concept
of non-linearity is designed by various higher-order nonlinear partial differential equations (PDEs).
For all of the physical systems, fundamental phenomena are covered by their nonlinear concepts [9,10].
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Appl. Sci. 2020, 10, 610

In this paper, Laplace Variational Homotopy Perturbation Method (LVHPM) is implemented to solve
the following linear and non-linear fractional-order regularized long wave equations.

∂βυ

∂ηβ
+

1
2

∂υ2

∂ξ
− ∂

∂η

(
∂2υ

∂ξ2

)
= 0, 0 < ξ ≤ 1, 0 < β ≤ 1, η > 0, (1)

with initial condition
υ(ξ, 0) = ξ,

∂βυ

∂ηβ
+

∂υ

∂ξ
+ υ

∂υ

∂η
− ∂

∂η

(
∂2υ

∂ξ2

)
= 0, 0 < ξ ≤ 1, 0 < β ≤ 1, η > 0, (2)

with initial condition

υ(ξ, 0) = 3α sec h2(βξ), α > 0, β =
1
2

√
α

1 + α
.

∂βυ

∂ηβ
+

∂υ

∂ξ
− 2

∂

∂η

(
∂2υ

∂ξ2

)
= 0, 0 < ξ ≤ 1, 0 < β ≤ 1, η > 0, (3)

with initial condition
υ(ξ, 0) = e−ξ ,

and

∂βυ(ξ.η)
∂ηβ

+
∂4υ(ξ.η)

∂ξ4 = 0, 0 < ξ ≤ 1, 0 < β ≤ 1, η > 0, (4)

with initial condition
υ(ξ, 0) = sin ξ. (5)

Equation (1) is known as the fractional-order non-linear regularized long wave equation (RLWE);
Equation (2) is known as the fractional-order non-linear general regularized long wave equation
(GRLWE) and Equations (3) and (4) are known as fractional-order linear regularized long wave
equations (RLWEs) [11].

The Benjamin Bona Mahony equation (BBME) also identified the regularized long wave (RLW)
equation. This equation is the updated version of Korteweg–de Vries equation (KdV) for the modeling
of tiny amplitude lengthy surface gravitational waves spreading unidirectionally in two dimensions.
RLW equations have several implementations in certain areas of science, such as ion-acoustic waves
in plasma, longitudinal dispersive waves in elastic rods, magneto-hydrodynamic waves in plasma,
rotating tube flow and stress waves in compressed gas bubble mixes, etc. The RLW equations are
described as useful models in applied physics and engineering for many significant physical structures.
They also design many liquid flow nature issues where diffusion is significant, either in viscous or
shock situations. It can be used to model any dissipation-related non-linear wave diffusion problem.
Chemical reaction, heat conduction, mass diffusion, viscosity, thermal radiation or other sources may
result from this dissipation, depending on problem modeling [12].

The RLW problem is a family of non-linear growth models that provides excellent designs for
predicting natural phenomena. The algorithm was initially introduced to define the undular bore
behavior [13]. It was also obtained from the research of acoustic plasma waves of water and ion.
An analytical solution for the RLW equation was identified under restricted initial and boundary
conditions in [14]. The fractional RLW equations also define numerous significant ocean science and
engineering phenomena such as long-wave and small frequency shallow water waves. The non-linear
waves modeled on the fractional equations of RLW are of significant interest for several scientists
in ocean shallow waves of liquid. The mathematically modeled non-linear waves in the ocean were
the fractional RLW equations. Indeed, huge surface waves identified as the tsunami are described
as fractional RLW equations. The huge internal waves in the interior of the ocean, resulting from
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the difference in temperature, that may destruct marine ships could be defined as fractional RLW
equations in the current, highly efficient method.

In recent decades, many researchers and scientists have used analytical methods to solve these
types of problems such as homotopy perturbation Sumudu transform method (HPSTM) [11], Adomian
decomposition method (ADM) [15,16], least-squares method [17], optimal homotopy perturbation
method [18], variational iteration method (VIM) homotopy perturbation method (HPM) [19] and He’s
homotopy perturbation method [20]. It is observed that these methods have certain deficiencies like
calculation of Adomian polynomials, determination of Lagrange multiplier, divergent results and a
huge volume of calculations. As a result, a modified analytical technique which is known as VHPTM
was introduced to solve differential equations of fractional-order. VHPTM is the combination of three
well-known techniques namely, homotopy perturbation method, Laplace transform and variational
iteration method. The present method uses the Lagrange multiplier that can limit the consecutive
implementation of integral operator and unmanageable computational cost. It is still maintaining
higher degree of accuracy. VHPTM [21–24] has an excellent scheme and absorbs all the beneficial
characteristics of VIM and HPM.

Finally, He’s polynomials have been used in the correction fractional formula to develop the
homotopy perturbation method. It is observed that the proposed method is implemented without
any use of transformation, discretization and it was found to be free from the generating round off
error. Usually, the method of variable separable needs both initial and boundary points to operate,
but the present method provides an analytical solution by using initial conditions only. There is a
clear advantage of the suggested method that it works without any use of Adomian polynomials, as
required by the Adomian decomposition method. Results of the analysis show that the suggested
method produces the solution in a series of fast convergence that can result in a closed solution [25–30].

2. Preliminaries Concepts

Definition 1. Laplace transformation of ρ(η), η > 0 represented as [13]

Q(s) = L[ρ(η)] =
∫ ∞

0
e−sηρ(η)dη.

Theorem 1. The convolution of Laplace transform is

L[ρ1 × ρ2] = L[ρ1(η)]×L[ρ2(η)],

here ρ1 × ρ2, define the convolution between ρ1 and ρ2 ,

(ρ1 × ρ2)η =
∫ τ

0
ρ1(τ)ρ2(η − τ)dη.

Laplace transform of fractional derivative

L
(

Dβ
η ρ(η)

)
= sβQ(s) −

n−1

∑
k=0

sβ−1−kρ(k)(0), n − 1 < β < n.

where Q(s) is the Laplace transformation of ρ(η).

Definition 2. The Riemann-Liouville fractional integral operator of order β ≥ 0 of a function f ∈ Cμ, μ ≥ −1
is described in [21]

Iβ
ξ g(ξ) =

1
Γ(β)

∫ ξ

0
(ξ − s)β−1g(s)ds,

135



Appl. Sci. 2020, 10, 610

where Γ represent the gamma function as,

Γ(β) =
∫ ∞

0
e−ξ ξβ−1dξ β ∈ C.

Definition 3. The fractional derivative of g(η) in the Caputo sense is defined as

Dβg(η) =
∂βg(η)

∂ηβ
=

⎧⎨
⎩

Im−β
[

∂mg(η)
∂ηm

]
, if m − 1 < β < m, m ∈ N

∂mg(η)
∂ηm , β = m.

Lemma 1. If m̃ − 1 < β ≤ m̃ with m̃ ∈ N and g ∈ Cη with η ≥ −1, then

Iβ Iag(ξ) = Iβ+ag(ξ), a, β≥0.

Iβξλ =
Γ(λ + 1)

Γ(γ + λ + 1)
ξβ+λ, β > 0, λ > −1, ξ > 0.

IβDβg(ξ) = g(ξ)−
m̃−1

∑
k=0

g(k)(0+)
ξk

k!
, for ξ > 0, m̃ − 1 < β ≤ m̃.

Definition 4. Function of Mittag-Leffler, Eα,β(η) for α, β > 0 is defined as

Eα,β(η) =
∞

∑
k=0

ηk

Γ(kα + β)
, α, β > 0, η ∈ C.

3. The Procedure of VHPTM

To demonstrate, the fundamental concept of the present method [21,22], we are considering

Dβ
η υ(ξ, η) + R̄υ(ξ, η) + N̄υ(ξ, η) = f (ξ, η), (6)

with initial condition
υ(ξ, 0) = g(ξ),

where f (ξ, η) is an inhomogeneous term, R̄ and N̄ are particular linear and non-linear differential
operators and Dβ

η υ(ξ, η) is the Caputo fractional derivative of υ(ξ, η).
By taking Laplace transform of Equation (6) on both sides, we get

£η{υ(ξ, η)} −
m−1

∑
k=0

sβ−1−k ∂kυ(ξ, η)

∂kη
|t=0 = −£ {R̄υ(ξ, η) + N̄υ(ξ, η)− f (ξ, η)} ,

where υ(s) = £η(υ(ξ, η)) =
∫ ∞

0 e−sηυ(η)dη.
We can build a functional correction according to the variation iteration method

£η{υj+1(ξ, η)} = £{υj(ξ, η)}+ λ(s)
[
sβ£
{

υη(ξ, η)− ∑m−1
k=0 sβ−1−k ∂kυ(ξ,η)

∂kη
|t=0 + £ {R̄υ(ξ, η) + N̄υ(ξ, η)− f (ξ, η)}

}]
, (7)

where λ(s) is the Lagrange multiplier. Here we put λ(s) = −1
sβ [22].

Applying inverse Laplace of Equation (7)

υj+1(ξ, η) = υj(ξ, η)− £−1
[

1
sβ

£
{

sβ ∂υ

∂η
+ R̄υj(ξ, η) + N̄υj(ξ, η)− f (ξ, η)

}]
. (8)
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The basic idea in the procedure of homotopy perturbation method is that the solution can be
written as a series in powers of p:

υ(ξ, η) =
∞

∑
j=0

pjυj(ξ, η) = υ0 + pυ1 + p2υ2 + p3υ3 + · · · , (9)

where the non-linear expression can be expressed as

N̄υ(ξ, η) =
∞

∑
j=0

pj H̄j(υ). (10)

H̄j is He’s polynomials,

H̄j(υ0 + υ1 + · · ·+ uj) =
1
j!

∂j

∂pj

[
N̄

(
∞

∑
i=0

piυi

)]
. (11)

The technique of fractional VHPTM of Equation (8) with He’s polynomials.

∞

∑
j=0

pjυj(ξ, η) =
∞

∑
j=0

pjυj(ξ, η) + £−1

[
λ(s)£

{
∞

∑
j=0

pj ∂βυj

∂ηβ
(ξ, s) +

∞

∑
j=0

pjR̄υj(ξ, η) +
∞

∑
j=0

pjH̄j(υ)− f (ξ, η)

}]
. (12)

By comparing the coefficients of like power of p on both sides of Equation (12), we get the VHPTM
solution of the given problem.

Theorem 2. Let ξ and Y be two Banach spaces and T : ξ → Y be a contractive nonlinear operator, such that
for all υ; υ∗ ∈; ξ, ||T(υ)− T(υ∗)|| ≤ K||υ − υ∗||, 0 < K < 1 y [31]. Then, in view of Banach contraction
theorem, T has a unique fixed point υ, such that Tυ = υ: Let us write the generated series (12), by the Laplace
decomposition method as

ξm = T(ξm−1), ξm−1 =
m−1

∑
m=1

υj, m = 0, 1, 2, · · ·

and supposed that ξ0 = υ0 ∈ Sp(υ), where Sp(υ) = {υ∗ ∈ ξ : ||υ − υ∗|| < p} then, we have

(B1)ξm ∈ Sp(υ)

(B2) lim
m→∞

ξm = υ.

Proof. (B1) In view of mathematical induction for m = 1, we have

||ξ1 − υ1|| = ||T(ξ0 − T(υ))|| ≤ K||υ0 − υ||.

Let the result be true for m − 1, then

||ξm−1 − υ|| ≤ Km−1||υ0 − υ||.

We have
||ξm − υ|| = ||T(ξm−1 − T(υ))|| ≤ K||ξm−1 − υ|| ≤ Km||υ0 − υ||.

Hence, using (B1), we have

||ξm − υ|| ≤ Km||υ0 − υ|| ≤ Km p < p,

which implies that ξm ∈ Sp(υ).
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(B2): Since ||ξm − υ|| ≤ Km||υ0 − υ|| and as a limm→∞ Km = 0.
Therefore; we have limm→∞ ||ξm − υ|| = 0 ⇒ limm→∞ ξm = υ.

4. Numerical Examples

4.1. Example

We consider time fractional-order non-linear RLW equation

∂βυ

∂ηβ
+

1
2

∂υ2

∂ξ
− ∂∂2υ

∂η∂ξ2 = 0, 0 < ξ ≤ 1, 0 < β ≤ 1, η > 0, (13)

initial condition is
υ(ξ, 0) = ξ, (14)

By using Equation (12), the fractional PDE given in Equation (13) can be written as

∞

∑
j=0

pjυj+1(ξ, η) =
∞

∑
j=0

pjυj(ξ, η) + £−1

[
λ(s)£

{
sβ

∂υj(ξ, η)

∂η
+

1
2

∂υ2
j (ξ, η)

∂ξ
− ∂∂2υj(ξ, η)

∂η∂ξ2

}]
, (15)

where λ(s) is the Lagrange multiplier

λ(s) =
−1
sβ

.

Applying VHPTM using He’s polynomials,

∞

∑
j=0

pjυj+1(ξ, η) =
∞

∑
j=0

pjυj(ξ, η)−
∞

∑
j=0

pj£−1
[

1
sβ

£
{

sβ

(
∂υ0

∂η
+ p

∂υ1

∂η
+ p2 ∂υ2

∂η
+ · · ·

)

+
1
2

∂

∂ξ

{
υ2

0 + p(2υ0υ1) + p2(2υ0υ2 + υ2
1) + · · ·

}
−
{

p0 ∂∂2υ0

∂η∂ξ2 + p1 ∂∂2υ1

∂η∂ξ2 + p2 ∂∂2υ2

∂η∂ξ2 + · · ·
}}]

,

(16)

Comparing the coefficients of p

υ0(ξ, η) = ξ,

p1υ1(ξ, η) = p1υ0(ξ, η)− p1£−1
[

1
sβ

£
{

sβ ∂υ0(ξ, η)

∂η
+

1
2

∂

∂ξ
υ2

0(ξ, η)− ∂∂2υ0(ξ, η)

∂η∂ξ2

}]
,

υ1(ξ, η) = ξ − ξ
ηβ

Γ(β + 1)
,

p2υ2(ξ, η) = p2υ1(ξ, η)− p2£−1
[

1
sβ

£
{

sβ ∂υ1(ξ, η)

∂η
+

1
2

∂

∂ξ
(2υ0υ1)− ∂∂2υ1

∂η∂ξ2

}]
,

υ2(ξ, η) = ξ − ξ
ηβ

Γ(β + 1)
+ 2ξ

η2β

Γ(2β + 1)
,

p3υ3(ξ, η) = p3υ2(ξ, η)− p3£−1
[

1
sβ

£
{

sβ ∂υ1

∂η
+

1
2
(2υ0υ2 + υ2

1)−
∂∂2υ2

∂η∂ξ2

}]
,

υ3(ξ, η) = ξ − ξ
ηβ

Γ(β + 1)
+ 2ξ

η2β

Γ(2β + 1)
− ξ

Γ(2γ + 1)η3β

(Γ(2γ + 1))2Γ(3β + 1)
− 4ξ

η3β

Γ(3β + 1)
,

·
·
·
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The analytical expression is therefore obtained in the following way

υ(ξ, η) = ξ − ξ
ηβ

Γ(β + 1)
+ 2ξ

η2β

Γ(2β + 1)
− ξ

Γ(2γ + 1)η3β

(Γ(γ + 1))2Γ(3β + 1)
− 4ξ

η3β

Γ(3β + 1)
+ · · · . (17)

If β = 1 the series form is

υ(ξ, η) = ξ
(

1 − η + η2 − η3 + · · ·
)

. (18)

The exact solution at β = 1

υ(ξ, η) =
ξ

1 + η
. (19)

Figure 1, shows the plot of exact and VHPTM solutions of example 4.1, at integer-order β = 1. It is
confirmed from the figure that both exact and VHPTM solutions are in good contact with each other.
In Figure 2, the VHPTM solutions at different fractional-orders β = 1, 0.8, 0.6 and 0.4 are calculated.
Investigations show that the solutions at different fractional-orders are convergent to the solution of
an integer problem as the fractional-order approaches to an integer-order.

Figure 1. Variational homotopy perturbation transform method solution of example 4.1 for β = 1.

In Table 1, we compared the solutions of VHPTM and VIM at an integer-order β = 1 for
example 4.1. In addition, the solutions at fractional-orders β = 0.55 and β = 0.75 are listed in
the table. It is observed that VHPTM solutions are almost identical with each other. The results given
in the table support the applicability of the VHPTM.
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Figure 2. Variational homotopy perturbation transform method solution of example 4.1 at different
fractional order β = 1, 0.8, 0.6, 0.4.

Table 1. Comparison of VHPTM and variational iteration method (VIM) [19] of example 1 at η = 0.1.

VHPTM VHPTM VHPTM Exact Absolute Error Absolute Error

ξ β = 0.55 β = 0.75 β = 1 V IM(β = 1) V HPT M(β = 1)

0.1 0.0966295721 0.0993928867 0.0999000999 0.0999001000 1 × 10−10 1 × 10−10

0.2 0.1932591443 0.1987857735 0.1998001998 0.1998002000 2 × 10−10 2 × 10−10

0.3 0.2898887165 0.2981786602 0.2997002997 0.2997003000 3 × 10−10 3 × 10−10

0.4 0.3865182887 0.3975715470 0.3996003996 0.3996004000 4 × 10−10 4 × 10−10

0.5 0.4831478608 0.4969644337 0.4995004995 0.4995005000 5 × 10−10 5 × 10−10

0.6 0.5797774330 0.5963573204 0.5994005994 0.5994006000 6 × 10−10 6 × 10−10

0.7 0.6764070052 0.6957502072 0.6993006993 0.6993007000 7 × 10−10 7 × 10−10

0.8 0.7730365774 0.7951430939 0.7992007992 0.7992008000 8 × 10−10 8 × 10−10

0.9 0.8696661495 0.8945359807 0.8991008991 0.8991009000 9 × 10−10 9 × 10−10

1 0.9662957217 0.9939288674 0.9990009990 0.9990010000 10 × 10−09 10 × 10−09

4.2. Example

We consider time fractional-order non-linear GRLW equation

∂βυ

∂ηβ
+

∂υ

∂ξ
+ υ

∂υ

∂ξ
− ∂∂2υ

∂η∂ξ2 = 0, 0 < ξ ≤ 1, 0 < β ≤ 1, η > 0, (20)

with initial condition

υ(ξ, 0) = 3α sec h2(βξ), α > 0, β =
1
2

√
α

1 + α
. (21)

By using Equation (12), the fractional PDE given in Equation (20) can be written as

∞

∑
j=0

pjυj+1(ξ, η) =
∞

∑
j=0

pjυj(ξ, η) + pj£−1

[
λ(s)£

{
sβ

∂υj(ξ, η)

∂η
+

∂υj(ξ, η)

∂ξ
+ υj(ξ, η)

∂υj(ξ, η)

∂ξ
− ∂∂2υj(ξ, η)

∂η∂ξ2

}]
, (22)

where λ(s) is the Lagrange multiplier

λ(s) =
−1
sβ

.

140



Appl. Sci. 2020, 10, 610

Applying VHPTM using He’s polynomials,

∞

∑
j=0

pjυj(ξ, η) =
∞

∑
j=0

pjυj(ξ, η)− p£−1
[

1
sβ

£
{

sβ

(
∂υ0

∂η
+ p

∂υ1

∂η
+ p2 ∂υ1

∂η
+ · · ·

)
+

{
∂υ0

∂ξ
+ p1 ∂υ1

∂ξ
+ p2 ∂υ2

∂ξ
+ · · ·

}

+

{
υ0

∂υ0

∂ξ
+ p(υ0

∂υ1

∂ξ
+ υ1

∂υ0

∂ξ
) + p2(υ0

∂υ2

∂ξ
+ υ1

∂υ1

∂ξ
+ υ2

∂υ0

∂ξ
) + · · ·

}
−
{

∂∂2υ0

∂η∂ξ2 + p1 ∂∂2υ1

∂η∂ξ2 + p2 ∂∂2υ2

∂η∂ξ2 + · · ·
}}]

.

(23)

Comparing the coefficients of p

υ0(ξ, η) = 3α sec h2(βξ),

p1υ1(ξ, η) = p1υ0(ξ, η)− p1£−1
[

1
sβ

£
{

sβ ∂υ0

∂η
+

∂υ0

∂ξ
+ υ0

∂υ0

∂ξ
− ∂∂2υ0

∂η∂ξ2

}]
,

υ1(ξ, η) = 3α sec h2(βξ) + 3αβ{1 + 6αβ + cosh(2βξ)} sec h4(βξ) tanh(βξ)
ηβ

Γ(β + 1)
,

p2υ2(ξ, η) = p2υ1(ξ, η)− p2£−1
[

1
sβ

£
{

sβ ∂υ1

∂η
+

∂υ1

∂ξ
+ υ0

∂υ1

∂ξ
+ υ1

∂υ0

∂ξ
− ∂∂2υ1

∂η∂ξ2

}]
,

υ2(ξ, η) = 3α sec h2(βξ) + 3αβ{1 + 6αβ + cosh(2βξ)} sec h4(βξ) tanh(βξ)
ηβ

Γ(β + 1)

− 3
32

αβ2{−8 − 96α − 576α2 + 3(−3 − 16α + 144α2) cosh(2βξ) + 48α cosh(4βξ) + cosh(6βξ)}

sec h8(βξ)
η2β

Γ(2β + 1)
,

·
·
·

The analytical expression is therefore obtained in the following way

υ(ξ, η) = 3α sec h2(βξ) + 3αβ{1 + 6αβ + cosh(2βξ)} sec h4(βξ) tanh(βξ)
ηβ

Γ(β + 1)

− 3
32

αβ2{−8 − 96α − 576α2 + 3(−3 − 16α + 144α2) cosh(2βξ) + 48α cosh(4βξ) + cosh(6βξ)}

sec h8(βξ)
η2β

Γ(2β + 1)
+

1
32

αβ3{−85 − 1416α − 8496β2 − 2937β3 + 4(−31 − 432α − 1584α2 + 3456α3)

cosh(2βξ)− 4(11 + 54α − 540α2) cosh(4βξ)− 4 cosh(6βξ) + 96α cosh(6βξ) + cosh(8βξ) + sec h8(βξ)

tanh(βξ)} η3β

Γ(3β + 1)
+ · · ·

(24)

The exact solution at β = 1

υ(ξ, η) = 3α sec h2(β(ξ − (1 + α)η)). (25)

In Figure 3, we compared the analytical solution of VHPTM with the exact solution of example 4.2.
The comparison has shown the close contact between VHPTM solution and exact solution of the
problems. Figure 4, represents VHPTM solution at different fractional-orders β = 1, 0.8, 0.6 and 0.4 The
convergence analysis of fractional-order problems are convergent towards the integer-order problem
of example 4.2, as observed.
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Figure 3. Variational homotopy perturbation transform method solution of example 4.2 for β = 1.

Figure 4. Variational homotopy perturbation transform method solution of example 4.2 at different
fractional order β = 1, 0.8, 0.6, 0.4.

4.3. Example

We consider time fractional-order linear RLW equation

∂βυ

∂ηβ
+

∂υ

∂ξ
− 2

∂∂2υ

∂η∂ξ2 = 0, 0 < ξ ≤ 1, 0 < β ≤ 1, η > 0, (26)

initial condition is
υ(ξ, 0) = e−ξ , (27)
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By using Equation (12), the fractional PDE given in Equation (26) can be written as

∞

∑
j=0

pjυj+1(ξ, η) =
∞

∑
j=0

pjυj(ξ, η) + pj£−1

[
λ(s)£

{
sβ

∂βυj

∂ηβ
(ξ, η) +

∂υj

∂ξ
− 2

∂∂2υj

∂η∂ξ2

}]
, (28)

where λ(s) is the Lagrange multiplier

λ(s) =
−1
sβ

.

Applying VHPTM using He’s polynomials,

∞

∑
j=0

pjυj(ξ, η) =
∞

∑
j=0

pjυj(ξ, η)− p£−1
[

1
sβ

£
{

sβ

(
∂υ0

∂η
+ p

∂υ1

∂η
+ p2 ∂υ2

∂η
+ · · ·

)

+
∂

∂ξ

{
υ0 + pυ1 + p2υ2 + · · ·

}
− 2
{

∂∂2υ0

∂η∂ξ2 + p1 ∂∂2υ1

∂η∂ξ2 + p2 ∂∂2υ2

∂η∂ξ2 + · · ·
}}]

.

(29)

Comparing the coefficients of p

υ0(ξ, η) = e−ξ ,

p1υ1(ξ, η) = p1υ0(ξ, η)− p1£−1
[

1
sβ

£
{

sβ ∂υ0

∂η
(ξ, η) +

∂υ0

∂ξ
− 2

∂∂2υ0

∂η∂ξ2

}]
,

υ1(ξ, η) = e−ξ + e−ξ ηβ

Γ(β + 1)
,

p2υ2(ξ, η) = p2υ1(ξ, η)− p2£−1
[

1
sβ

£
{

sβ ∂υ1

∂η
(ξ, η) +

∂υ1

∂ξ
− 2

∂∂2υ1

∂η∂ξ2

}]
,

υ2(ξ, η) = e−ξ + e−ξ ηβ

Γ(β + 1)
+ e−ξ η2β

Γ(2β + 1)
,

p3υ3(ξ, η) = p3υ2(ξ, η)− p3£−1
[−1

sβ
£
{

sβ ∂υ2

∂η
(ξ, η) +

∂υ2

∂ξ
− 2

∂∂2υ2

∂η∂ξ2

}]
,

υ3(ξ, η) = e−ξ + e−ξ ηβ

Γ(β + 1)
+ e−ξ η2β

Γ(2β + 1)
+ e−ξ η3β

Γ(3β + 1)
.

·
·
·

The analytical expression is therefore obtained in the following way

υ(ξ, η) = e−ξ + e−ξ ηβ

Γ(β + 1)
+ e−ξ η2β

Γ(2β + 1)
+ e−ξ η3β

Γ(3β + 1)
+ · · · . (30)

If β = 1 the series form is

υ(ξ, η) = e−ξ

(
1 + η +

η2

2!
+

η3

3!
+ · · ·

)
(31)

The exact solution at β = 1
υ(ξ, η) = eη−ξ . (32)

In Table 2, the analytical solutions of VHPTM and HPSTM are compared in terms of absolute
error. The accuracy has been measured for both the methods. By comparison it has shown that the
proposed method VHPTM has a higher degree of accuracy than HPSTM.
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In Figure 5, the graphs of exact and approximate solutions of example 4.3 are plotted.
The graphical representation has confirmed that exact and VHPTM solutions are coincident. The exact
and approximate solutions are closed to each other and verify the validity of the proposed method.
The solution of example 4.3 at different fractional-orders β = 1, 0.8, 0.6 and 0.4 are shown graphically in
Figure 6. The obtained solutions support the convergence phenomena of the solution of fractional-order
problems to the solution of integer-order problem for the example 4.3.

Table 2. Comparison of VHPTM and HPSTM [11] of example 4.3 at η = 0.0000001.

VHPTM Exact Absolute Error Absolute Error

ξ β = 1 HPST M(β = 1) V HPT M(β = 1)

0.1 0.9048374271 0.9048374180 8.396197700×10−09 9.1000000×10−10

0.2 0.8187307613 0.8187307531 2.343247660×10−09 8.2000000×10−09

0.3 0.7408182281 0.7408182207 1.098518064×10−08 7.4000000×10−09

0.4 0.6703200527 0.6703200460 2.435301980×10−08 6.7000000×10−09

0.5 0.6065306658 0.6065306597 3.925301546×10−08 6.1000000×10−09

0.6 0.5488116416 0.5488116361 5.222691016×10−08 5.5000000×10−09

0.7 0.4965853088 0.4965853038 6.061930396×10−08 5.0000000×10−09

0.8 0.4493289686 0.4493289641 6.351737693×10−08 4.5000000×10−09

0.9 0.4065696638 0.4065696597 6.159048138×10−08 4.1000000×10−09

1 0.3678794449 0.3678794412 5.612475460×10−08 3.7000000×10−09

Figure 5. Variational homotopy perturbation transform method solution of example 4.3 for β = 1.
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Figure 6. Variational homotopy perturbation transform method solution of example 4.3 at different
fractional order β = 1, 0.8, 0.6, 0.4.

4.4. Example

We consider time fractional-order linear RLW equation

∂βυ(ξ.η)
∂ηβ

+
∂4υ(ξ.η)

∂ξ4 = 0, 0 < ξ ≤ 1, 0 < β ≤ 1, η > 0, (33)

with initial condition
υ(ξ, 0) = sin ξ, (34)

By using Equation (12), the fractional PDE given in Equation (33) can be written as

∞

∑
j=0

pjυj+1(ξ, η) =
∞

∑
j=0

pjυj(ξ, η) +
∞

∑
j=0

pj£−1

[
λ(s)£

{
sβ

∂βυj(ξ.η)

∂ηβ
(ξ, η) +

∂4υj(ξ.η)
∂ξ4

}]
, (35)

where λ(s) is the Lagrange multiplier

λ(s) =
−1
sβ

,

Applying VHPTM using He’s polynomials,

∞

∑
j=0

pjυj(ξ, η) =
∞

∑
j=0

pjυj(ξ, η)− p£−1
[

1
sβ

£
{

sβ

(
∂υ0

∂η
+ p

∂υ1

∂η
+ p2 ∂υ2

∂η
+ · · ·

)

+
∂4

∂ξ4

{
υ0 + pυ1 + p2υ2 + · · ·

}}] (36)

Comparing the coefficients of p
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υ0(ξ, η) = sin ξ,

p1υ1(ξ, η) = p1υ0(ξ, η)− p1£−1
[

1
sβ

£
{

sβ ∂υ0(ξ.η)
∂η

(ξ, η) +
∂4υ0(ξ.η)

∂ξ4

}]
,

υ1(ξ, η) = sin ξ − sin ξ
ηβ

Γ(β + 1)
,

p2υ2(ξ, η) = p2υ1(ξ, η)− p2£−1[
1
sβ

£{sβ ∂υ1(ξ.η)
∂η

(ξ, η) +
∂4υ1(ξ.η)

∂ξ4 }],

υ2(ξ, η) = sin ξ − sin ξ
ηβ

Γ(β + 1)
+ sin ξ

η2β

Γ(2β + 1)
,

p3υ3(ξ, η) = p3υ2(ξ, η)− p3£−1
[

1
sβ

£
{

sβ ∂υ2(ξ.η)
∂η

(ξ, η) +
∂4υ2(ξ.η)

∂ξ4

}]
,

υ3(ξ, η) = sin ξ − sin ξ
ηβ

Γ(β + 1)
+ sin ξ

η2β

Γ(2β + 1)
− sin ξ

η3β

Γ(3β + 1)
.

·
·
·

The analytical expression is therefore obtained in the following way

υ(ξ, η) = sin ξ − sin ξ
ηβ

Γ(β + 1)
+ sin ξ

η2β

Γ(2β + 1)
− sin ξ

η3β

Γ(3β + 1)
+ · · · . (37)

If β = 1 the series form is

υ(ξ, η) = sin ξ

(
1 − η +

η2

2!
− η3

3!
+ · · ·

)
. (38)

The exact solution at β = 1
υ(ξ, η) = sin ξe−η . (39)

In Figure 7, the exact and VHPTM solution for example 4.4 are plotted. It can be seen from
the figure that exact and VHPTM solutions are in closed contact with each other. In Figure 8,
the VHPTM solutions for the example 4.4 at different fractional-orders are calculated. The convergence
of fractional-order solutions towards integer-order solution has proved the applicability of the
proposed method.

Figure 7. Variational homotopy perturbation transform method solution of example 4.4 for β = 1.
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Figure 8. Variational homotopy perturbation transform method solution of example 4.4 at different
fractional order β = 1, 0.8, 0.6, 0.4.

5. Results and Discussion

Several numerical examples are considered checking the applicability and reliability of the
proposed method. The graphical representations of the solutions of examples 1 to 4, have provided the
information about the accuracy and reliability of the proposed method. All the results of examples
1–4, confirmed strong agreement of VHPTM solutions with the exact solutions of the problems. The
graphs represented the solutions for each problems at different fractional-order β = 1, 0.8, 0.6 and
0.4. Investigations show that solutions of fractional-order problem are convergent to the solution of
integer-order problems. Moreover, the simple and straightforward implementation of the suggested
method is also observed throughout the simulation. From the above properties of the present method,
we expect that it can be modified for other fractional-order differential equations which arise in science
and engineering.

6. Conclusions

In this article, the fractional view of acoustic wave equation is discussed by using a modified
analytical technique. The solution graphs are plotted to provide clear pictures and analysis of the
obtained results. The graphical representation has suggested the greatest rate of convergence as
compared to other analytical methods. The fractional-order analysis of the acoustic wave equation is
important to investigate the behaviour of the dynamics as compared to the classical one. Therefore,
in the present application scenario, the proposed method has played a significant role to describe
sophisticated solutions of fractional-order partial differential equations arising in different areas of
sciences and engineering. Moreover, the present method uses the variational parameters which reduces
the calculations’ complexity. Also, the He’s polynomials have been used to obtain the solutions in an
accurate way as compared to Adomian polynomials. The rate of convergence of the suggested method
is found to be higher than other existing methods. Hence, it is concluded that the present method can
be extended to solve other fractional non-linear partial differential equations.
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