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1. Introduction

Geographic Information System (GIS) is a computer-based technology and methodology for
collecting, managing, analyzing, modeling, and presenting geospatial data for a wide range of
applications. GIS plays a vital role in Earth sciences by providing a powerful means of observing the
world and various tools for solving complex problems. The scientific community has used GIS to
reveal fascinating details about the Earth and other planets.

This special issue on recent advances in GIS for Earth sciences includes 12 publications from
esteemed research groups worldwide. The research and review papers in this special issue belong to
the following broad categories: Earth science informatics (geoinformatics), mining, hydrology, natural
hazards, and society.

2. GIS for Geoinformatics

GIS is an important tool used to solve complex spatial problems in geoinformatics. Several
articles dealing with basic algorithms for spatial data analysis are included in this special issue.
Zhou et al. [1] propose an efficient parallel algorithm for polygon overlay analysis. Overlay analysis
is a fundamental operator in spatial data analytics and is widely used in Earth science applications.
The proposed algorithm includes procedures for active-slave spatial index decomposition for
intersection, multi-strategy Hilbert ordering decomposition, and parallel spatial union. The application
of their new parallel algorithm to a land-use map of China consisting of multiple polygons with 15,615
elements and 886,547 points shows that the algorithm can perform polygon overlay analysis with high
efficiency. Therefore, the study contributes to geoinformatics by allowing the processing of large scale
spatial data for spatial data analytics.

Vector maps in GIS have been widely used in various fields, including Earth science. Currently,
huge volumes of vector map data can be easily stolen and distributed without permission from the
original data providers. Pham et al. [2] propose a random encryption algorithm based on multi-scale
simplification and the Gaussian distribution to encrypt vector map data before it is stored and
transmitted. Their experiment using vector maps of Scotland at different scales shows that the
proposed algorithm provides higher security and computational efficiency of storage and transmission
of vector map data than previous methods. Therefore, the algorithm can be applied to improve the
security of online and offline Earth science map services.

QGIS [3], an open-source GIS software, has been utilized in the Earth science community.
Dobesova [4] assesses the visual notation of QGIS’s Processing Modeler, a graphical editor for workflow
design, using the Physics of Notations theory in combination with eye-tracking measurements. The
results from this study provide several practical recommendations to improve the effective cognition
of the QGIS Processing Modeler, including changing the fill color of symbols, increasing the size and
variety of inner icons, removing functional icons, using a straight connector line instead of a curved
line, and providing a supplemental preview window for the entire model.

Appl. Sci. 2020, 10, 3847; doi:10.3390/app10113847 www.mdpi.com/journal/applsci
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Geo-sensor networks produce large amounts of Earth science data that can be processed using
GIS for different purposes and for intelligent decision making. Malik and Kim [5] propose a geo-sensor
framework that can be used by multiple clients to deploy their own geo-sensor networks, bind their
sensor objects to desired locations, generate geo-sensor services for the uploaded networks, and
manage the services with a geo-sensor composite toolbox. The framework is implemented based on
the RESTful and SOAP web services [6]. Performance analysis shows that the lightweight RESTful
web service is the best choice for ease of implementation and access.

3. GIS for Mining

Systematic and strategic mine planning, operation, and environmental management are necessary
to improve mineral productivity, operational efficiency, and stability in the mining environment.
To accomplish these objectives, GIS has been effectively used to design and optimize mine development.
Choi et al. [7] review GIS-based methods and applications utilized in mine development, especially for
mine planning, operation, and environmental management. They observe that GIS-based methods,
including database management, spatial analysis, mapping, and visualization, are effectively used
for all stages of mine development at global, regional, and local scales. In the mine planning phase,
GIS-based methods are adopted for ore reserve estimation, open-pit boundary optimization, mine
infrastructure design, and potential conflict analysis. Various mine operation systems based on GIS
have been implemented in mining sites for ore haulage operations, wireless communication, ore
management, safety monitoring, underground ventilation, and drainage systems. Moreover, various
GIS applications have been developed to support decision-making in mine reclamation planning and
re-utilization designs.

As an example of a GIS application for mining, Liu et al. [8] present a spatiotemporal model tightly
coupled with GIS for simulating methane emissions in underground coal mines. Such a tight coupling
approach is achieved by developing a lattice Boltzmann method (LBM)-based turbulent model with an
underlying shared FluentEntity model within the GIS. A case study demonstrates that the proposed
GIS-based model is capable and effective in providing functionalities for lattice domain decomposition,
simulation, visualization, and analyses, as well as improving computational efficiency compared with
traditional computational fluid dynamics (CFD) methods. The tight coupling approach for integrating
GIS and simulation models is applicable to underground coal mine disasters.

4. GIS for Hydrology

In hydrological studies, GIS has facilitated the development of a dynamic model for analyzing
runoff phenomena as well as a distributed parameter model that considers spatial variability in
parameters related to the runoff process. The topography-based hydrological MODEL (TOPMODEL) is
a distributed parameter model that uses a digital elevation model (DEM) in GIS. However, TOPMODEL
is affected by the resolution of the DEM used. A reliable DEM grid-size resolution that exhibits low
sensitivity to changes in input parameters during runoff simulations is investigated by Park et al. [9].
A case study in the Dongkok and Ieemokjung watersheds in South Korea shows that the efficiency of
TOPMODEL rarely changes up to a DEM grid-size resolution of approximately 40 m, but changes more
noticeably with coarser resolution. The findings of this study are important for understanding and
quantifying the modeling behaviors of TOPMODEL under the influence of varying DEM resolution.

Social media data collected through Twitter, Facebook, Flicker, and Weibo can be used to improve
understanding of urban hydrology. Wang et al. [10] examine rainstorm-related micro-blogging activities
in response to rainstorms in an urban environment at fine spatial and temporal scales. The study
collected hourly precipitation data and a total of 3.32 million Weibo blogs geotagged with Beijing,
China from June to September 2017. The consistency between rainfall amount and human activities
can be explained by the distribution of water ponding sites and major transportation hubs. The results
show that human responses to the rainstorm event are consistent, though with certain time lags, in
virtual and physical spaces at both grid and city scales.
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5. GIS for Natural Hazards

Advances in GIS have popularized its application to spatial analysis of natural hazards.
In particular, GIS has been widely used for landslide susceptibility mapping. Landslide
susceptibility maps generated by GIS can be effectively used for future land planning and monitoring.
Dikshit et al. [11] review studies of rainfall-induced landslides in the Indian Himalayan region to
provide a reference point for the first time for researchers working in this region, and a summary of the
improvements most urgently needed to better address landslide hazard research and management.
Their study reveals that the inclusion of climate change factors and the acquisition of basic input data
of the highest quality for computational models is critical for landslide susceptibility mapping.

Zhao and Chen [12] present an example of GIS-based landslide susceptibility mapping using
ensemble techniques of functional tree-based bagging, rotation forest, and dagging (functional trees (FT),
bagging-functional trees (BFT), rotation forest-functional trees (RFFT), and dagging-functional trees
(DFT)). A landslide inventory map with 263 landslide events is established for Zichang County, China,
and 14 landslide conditioning factors selected to analyze the correlation between the conditioning
factors and the occurrence of landslides. The results show that the prediction rate of the BFT model is
the highest when compared with the accuracy of the four ensemble models.

6. GIS for Society

GIS plays an important role in society, especially for land-use planning. The land is a complex
system providing food, fresh water, and other material resources for humans. It is essential for
habitation, transport, leisure, and other activities. For land-use planning, various factors such as
topography, soil, hydrology, biology, and climate will be considered simultaneously. Xiang et al. [13]
use GIS to assess the spatiotemporal dynamic multi-functionality of land use and to analyze obstacle
indicators in Xiangxi, China using two methods (analytic hierarchy and hierarchical weighting). The
study finds that spatial heterogeneity of land use in Xiangxi is increasingly clear. The production
function of land use in Xiangxi is slowly increasing, with more rapid growth in the southern and
central regions than in the northern regions. Three types of obstacles preventing efficient land use in
Xiangxi are identified by GIS-based spatial analysis.

Different land uses are connected by transport networks to improve accessibility for human
activities. Yu et al. [14] analyze the traffic flow network using GIS to understand the properties
of spatial connectivity, spatial aggregation, and spatial dynamics. The study conducted a series of
experiments to explore the transport system in Beijing city using taxi trajectory points recorded by the
global positioning system (GPS). The results indicate that the interactions of land use show different
characteristics over different time periods. Aggregation patterns of functional areas are dynamic over
time and are strongly associated with the travel behaviors of residents in the city.
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Abstract: Map overlay analysis is essential for geospatial analytics. Large scale spatial data pressing
poses challenges for geospatial map overlay analytics. In this study, we propose an efficient parallel
algorithm for polygons overlay analysis, including active-slave spatial index decomposition for
intersection, multi-strategy Hilbert ordering decomposition, and parallel spatial union algorithm.
Multi-strategy based spatial data decomposition mechanism is implemented, including parallel spatial
data index, the Hilbert space-filling curve sort, and decomposition. The results of the experiments
showed that the parallel algorithm for polygons overlay analysis achieves high efficiency.

Keywords: parallel algorithm; map overlay analysis; Hilbert ordering decomposition; spatial analysis

1. Introduction

Map overlay analysis is a fundamental operator in geospatial analytics and widely used in
geospatial applications [1,2]. Large scale spatial data pressing poses challenges for geospatial map
overlay analytics [3].

The parallel GIS algorithm is an efficient way to conduct map overlay analysis [4–7]. Spatial data
decomposition is the basis of parallel computing architecture based on the spatial data partitioning
mechanism [8]. Spatial data domain decomposition in parallel GIS refers to the decomposition of object
sets in the study area according to a certain granularity and is assigned to different computing units for
processing to achieve high concurrency. Spatial data domain decomposition from the perspective of
geographic data storage mainly refers to the database domain to allocate spatially adjacent geographical
elements to the same physical medium storage according to a certain decomposition principle. The
feature elements form different groups in space in the form of clusters, and the spatially separated
clusters are divided into different storage areas to realize parallelized spatial data extraction mode. The
parallelized map overlay analysis algorithm technology route is based on data division and behavior.

Parallel spatial data decomposition needs to take into consideration the data storage and
geo-computation in each child node from the perspective of the spatial distribution of feature
objects, while spatial data has multidimensionality [9]. In the process of parallel overlay analysis,
the core of parallelization is a fast intersection judgment of geometric objects and the interactive
communication between geospatial data [10,11]. Therefore, the critical principle of layer element
decomposition is to maintain the spatial proximity of data. The main feature of geographic data is
that it has a strong spatial correlation, and its data parallel strategy should be compatible with spatial
data types. The spatial feature is the difference between ordinary numerical parallel computing and
the key technology of parallel GIS system [12,13]. The purpose of spatial data decomposition is to
implement the local process of spatial analysis operations (to reduce the synchronization operation

Appl. Sci. 2019, 9, 4857; doi:10.3390/app9224857 www.mdpi.com/journal/applsci
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between computing nodes). The modeling of spatial elements can be accelerated by computational
localization. With the improvement of computer hardware performance and the increasing cost of
storage, the usual strategy is to exchange storage space for computing time [12,14].

In this paper, we propose an efficient parallel algorithm for polygons overlay analysis. We
decompose vector space data based on space filling-curve (Hilbert curve) to better maintain the spatial
proximity of data decomposition, which is conducive to the parallelization of spatial proximity and
sensitive overlay operations, and with the basis of the original Hilbert ordering decomposition, the
spatial data is decomposed using different sorting strategies. This paper is organized as follows.
Section 2 introduces related work. Section 3 shows the methods of a parallel algorithm for polygons
overlay analysis. The experimental results are given in Section 4. Following this, the last section
contains the conclusion and further work.

2. Related Work

The most time-consuming operation of polygon overlay analysis continues to be the intersection
of line segments. Ching studied the load balancing problem for the parallel map overlay calculation
based on the line segment set [15] but did not deeply discuss the communication and merge-efficiency
of each node after parallel calculation, and cannot guarantee the constant acceleration ratio of the
whole process.

Parallel spatial data region decomposition needs to take into consideration the storage and
calculation in each child node from the perspective of the spatial distribution of feature objects while
spatial data has multidimensionality. In traditional data partitioning methods, such as token rotation,
hash table segmentation, and simple region partitioning, the spatial relationship between objects is
split during decomposition, which does not reflect the proximity between spatial data.

The purpose of using Hilbert space sorting is to maximize the mapping of high-dimensional data
to low-dimensional data [16,17] and to close the geographically adjacent points in computer storage to
accelerate data extraction and improve the efficiency of data operations in the first-level storage. The
access to spatial data in memory is performed randomly. For spatial data with unbalanced distribution,
if the point data comparison is too dense in a certain area, data redundancy in the index sub-node
is caused. In order to maintain the uniqueness of spatial data mapping, a more detailed division of
the index grid is required. However, if the division is too detailed, it will increase the difficulty and
computational complexity of spatial sorting coding and also increase the size of the spatial query.

The spatial data decomposition can be divided by the spatial indexing mechanism. Based on
the spatial index, the search space of the candidate dataset in the overlay analysis can be effectively
reduced. At the same time, the false intersection can be further filtered in the proximity analysis of the
candidate geometry data into a map overlay object with real intersections. The data decomposition
in the parallel superposition analysis method is based on the vector topology data model. The key
difficulty is how to assign the elements with large spatial proximity to the same node. The vector data
capacity is usually between megabytes to gigabytes, and the current computer hard disk is measured
by the terabyte level storage capacity. The equalization of storage capacity is not a critical issue. The
key problem is also how to effectively equalize the computational tasks of vector data and reduce
unnecessary intersection detection and parameter communication between distributed nodes. Because
the input spatial data will have different feature density, the division of spatial data into distributed
nodes in the GIS parallel algorithm does not have a conventional experience.

Most spatial decomposition methods are based on planar space, where one point on one side of the
plane defines one area while the other side determines another area. However, as points on the plane
can be arbitrarily divided into one area, using the plane to divide the space recursively will eventually
generate a Binary Space Partition Tree (BSP Tree) [18]. Using spatial data decomposition structures to
store objects can easily speed up specific geometric query operations, such as conflict detection, to
determine if two objects are close together or if a ray intersects the object. The quadtree index belongs
to the vertical decomposition mode of the plane [19]. The generation process is to recursively divide
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the geospatial by four points until the termination condition is set by itself (for example, each area
contains no more than two points, if it exceeds four points). Finally, a hierarchical quadtree is formed.
Quadtree decomposition is a typical planar recursive decomposition [20]. This method is suitable for
the case where the data isomorphism and distribution are relatively balanced [21].

The decomposition of the spatial index is determined by geometric objects (object priority).
Decomposing spatial regions into sub-regions according to spatial objects are also called bucket.
Therefore, this method is usually called bucket partitioning. The object-oriented data decomposition
method needs to follow certain principles. The most classic strategy is that the B-tree rule uses a
separate point or line to decompose the spatial extent recursively [22]. Another classic decomposition
principle is to keep the outer bounding rectangle of the object to be the smallest, and R-tree is its
important implementation [23]. Use the R-tree spatial data domain to decompose the main packing
or bucket mode of the R-tree. R-tree optimization is mainly for the packing and sorting of sub-node
index packets. Kamel and Faloutsos proposed the MBR sorting method based on the Hilbert curve [24].
Roussopoulos proposed a sorting method based on Nearest-X in a certain direction. In the classic R-tree
implementation, Guttman (1984) proposed two heuristic tree node decomposition methods, including
Quadratic-Split and Linear-Split [23]. The performance of the R-tree depends on the quality of the data
outsourcing the rectangular clustering algorithm in the node. The Hilbert R-tree uses the space filling
curve, especially the Hilbert curve, to organize the data outsourcing the rectangle linearly. The Hilbert
R-tree comes in two forms: one is a static database form, and the other is a dynamic database form. In
the paper research scheme, the Hilbert fill curve is used to achieve better ordering of high-dimensional
data in nodes. This order ensures that similar objects outsourcing rectangles are grouped into groups,
keeping the area and perimeter of the resulting outer rectangle as small as possible, so the Hilbert
curve is a good sorting method in the sense of this layer. The compact Hilbert R-tree is suitable for
static databases [25], and there are few update operations in the static database or no update operations
at all. The dynamic Hilbert R-tree is suitable for dynamic databases [26–28], which require real-time
insert, delete, and update operations. The dynamic Hilbert R-tree uses an elastic segmentation delay
mechanism to increase space utilization. Each node in the tree has a well-defined set of sibling nodes.
By establishing the order of the nodes in the R-tree and adjusting the Hilbert R-tree data partitioning
strategy, the ideal space utilization degree can be achieved. The Hilbert R-tree is ordered based on the
Hilbert value of the center point of the object rectangle, and the point Hilbert value is the length from
the start of the Hilbert curve to the point. In contrast, other R-tree variants do not have control over
space utilization. Leutenger proposed a new R-tree variant, the Sort-Tile-Recursive tree (STR-tree). The
algorithm uses the recursive idea. For the set of spatial rectangles with r in the k-dimensional plane,
let the maximum capacity of the leaves of the R-tree be n, and the rectangles are sorted according
to the x value of the center point. The concept of the tile is to use

√
(r⁄n) vertical cuttings. The line

divides the sorted rectangle so that each strip can be loaded close to
√

(r⁄n) nodes. Each slice continues
to be sorted according to the y value of the center point of the rectangle, and a leaf node is pressed
every n rectangle; the top-down reclusiveness processes the slice to generate the entire R-tree. One of
the measures of efficiency and accuracy of the R-tree index is the area and perimeter of the sub-node
MBR in the tree. The smaller the area and perimeter, the higher the spatial aggregation. Therefore,
the analysis of the R-tree proposed by Guttman (1984) has some shortcomings: long loading time,
insufficient subspace optimization, and long data extraction time for the spatial query.

No matter the equilibrium grid decomposition, quadtree decomposition, and traditional R-tree
decomposition, the problem of large spatial distribution and density imbalance cannot be avoided.
The regularized partitions of these decomposition methods are divided into different degrees.

In the algorithm of parallel overlay analysis, a lot of frequent data extraction from the cluster
environment and the intersection of geometric objects are involved [6]. In the single-disk and
single-processor environment, the traditional spatial data extraction method uses the index structure
of the spatial database. However, the single-point spatial index storage and access mechanism in
multi-disk and multi-processor environments cannot meet the requirements of high-performance
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computing for data extraction speed [29]. Therefore, it is necessary to implement a fast filtering
and extraction mechanism for spatial data matching with a distributed shared-nothing mode in
the computing environment of parallel overlay analysis. Spatial index is an important criterion for
measuring the quality of the spatial database. In the spatial database, there are usually millions of
data tables. If the traditional spatial indexing method of the database is adopted, the data query
efficiency will be seriously reduced. At the same time, spatial data has spatial object uncertainty, and
the intersection, inclusion, and separation are complex. It is difficult to classify and sort spatial data by
processing ordinary data. The spatial index of the spatial database field can be divided into two types:
embedded and external [30]. The embedded spatial index structure is incorporated into the database
as part of the database itself, while the plug-in database is usually in the form of middleware, which
performs a similar proxy and forwarding mechanism at the data request and data layers. For example,
the default indexing methods for Oracle spatial and PostGIS are R-tree and B-tree [31,32]; ESRI ArcSDE
is an external spatial database management mechanism, which has no specific spatial data carrier but
is based on the traditional RDBMS system. The extension, such as ArcSDE, can implement spatial
data management and indexing mechanisms based on SqlServer and Oracle. The spatial database
established by ArcSDE is called Geodatabase [33]. The default indexing strategy for geodatabase
is a spatial grid index for the feature class. Secondly, in the aspect of distributed spatial index data
decomposition, Kamel (1993) and other research applied R-tree to the deployment of single-processor
and multi-disk hardware structures and implemented an R-tree-based parallel query mechanism.
Zhang et al. used a multivariate R-tree (Multiplexed-R-tree) structure to optimize R-tree in combination
with proximity index constraints [34]. Experiments show that parallel domain query performance is
better when dealing with spatially balanced data. In order to improve the efficiency of massive spatial
data management and parallelization processing in the distributed parallel computing environment,
Tanin et al. implemented the distributed Quadtree-based spatial query function in the peer–to peer
network environment [35].

The parallel spatial index has gradually formed an essential branch of the spatial index family
with the development of high-performance parallel GIS applications, which can solve the problem
of the simple data decomposition method in this study. The most typical parallel spatial index is the
MC-R-tree (Master-client R-tree) method proposed by Schnitzer [36]. The method is characterized in
that all non-leaf nodes in the spatial index tree are stored in the main cluster. In the node, each subtree
in the index tree is stored in the sub-computing node of the cluster. The disadvantage is that the space
utilization of the conventional R-tree is low, and the number of MBR overlaps higher when the subtree
index are assigned to the child nodes.

3. Methods

This section includes active-slave spatial index decomposition for intersection, multi-strategy
Hilbert ordering decomposition, and the parallel spatial union algorithm.

3.1. Active-Slave Spatial Index Decomposition for Intersection

From the dynamic nature of the overlay analysis, the superimposed layers are divided into the
active layer (overlay layer) and passive layer (base layer). The point of parallel acceleration is the fast
query of the geometric elements in the active layer. The intersection part of the layer and the spatial
index is the key technology to achieve acceleration. According to the characteristics of the parallel
overlay analysis in this paper, the storage of spatial data adopts a completely redundant mechanism,
and each child node maintains a complete set of spatial data tables to be superimposed.

A data decomposition method is proposed for the parallel intersection operation. The process is
to spatially decompose the active layer in advance and send the partition location information to the
corresponding child node according to the FID (The name primarily used in the spatial data layer), the
child node then locally extracts the active layer data in the range, then, the geographic elements in the
passive layer all participate in the establishment of the whole spatial index tree; the elements in the
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active layer query the passive layer index and perform superposition operations on the intersecting
candidate sets. Since the process of spatial query and the intersection operation in the overlay analysis
are mostly the same operation, the data decomposition mode is adapted to be combined with the
parallel intersection operation. In Figure 1, O_obj represents the entity object in the active overlay layer
O_lyr. After the decomposition strategy, it is distributed to each child node, and the base layer B_lyr
is parallelized.

 

Figure 1. Parallel data decomposition using R-tree.

The actual data decomposition is only the division and treatment of the overlay layer O_lyr, and the
base layer is still a query as a whole. This solution enables acceleration in a reasonable computational
complexity in small to medium data scale applications. The data decomposition characteristics of the
above map overlay algorithm shows that if each child node resides in a base layer, the spatial index
of the entire tree has two defects: first, when processing a layer with a large number of geographic
features, each node needs to consume a lot of time and memory resources; second, each query is for
the traversal of the entire tree, and there are a large number of invalid queries in the intersecting query
of a single geometric object.

To improve the efficiency of massive spatial data management and processing in a parallel
environment, an improved master-slave spatial indexing method MC-STR-tree was designed according
to the current research results. The rapid management of data management and geometric intersections
provides conditions.

The basic index structure of the index adopts STR-tree, and the modification of the R-tree
object node is improved, and the conflict of data distribution among the nodes is reduced. It has
good spatial clustering characteristics and extremely low spatial index packet overlap rate, so it has
excellent parallelization characteristics. STR-tree is a highly balanced tree with simple and maximized
space utilization.

The processing steps of the improved master-slave parallel space index MC-STR-tree
decomposition (Figure 2) are as follows:

(1) Data preprocessing

The master node divides the MBR of the spatial data index node into n parts according to specific
rules. The commonly used rules are Hilbert ordering and STR partitioning method, and n is an integer
not larger than the cluster computing node. The master node needs to record the node tag to which
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each subtree is sent and the root node MBR of the subtree. In this paper, the leaf nodes are divided
according to the STR rule, and each computing node corresponds to a stripe in the STR. To control the
number of subtrees less than the number of computable nodes, node Vol is used to set the maximum
number of indices sub-nodes allowed for each computed node in the STR-tree.

(2) Sending of the subtree index

The primary node sends the index entries to the child nodes according to a certain replication
and allocation policy. The data structure uses an in-memory spatial index. Unlike the traditional hard
disk-based spatial index, the in-memory spatial index has the characteristics of dynamic construction
and fast query.

(3) The master node sets up the Master-R-tree

The master node builds a new spatial index into all non-leaf nodes in the original entire R-tree
index tree in computer memory. The index tree records the index item information allocated by each
computing node, and its function is equivalent to an overall index controller. The intersecting query of
the active overlay layer is first filtered by the overall index tree.

(4) Computing node to build a Client-tree

According to the agreed STR-tree node organization rule, the index items sent by the master node
are built into the client terminal tree. The entity object stored in the computer node is associated with
the index item of the subtree, and the entity space data is extracted according to the index item MBR.

The parallel R-tree index decomposition based on the STR rule is analyzed. The essence is to
replace the random partition in the form of elemental fid with the domain decomposition partition
considering the neighboring spatial rule. The master node controls the overall spatial index R-tree of a
large node, where the id information of the spatial data domain decomposition block in the cluster is
recorded. The active layer first performs a query operation with the overall index tree. If one or more
intersecting subdomains are queried, the master node notifies the child nodes having the subdomains
to extract the active layer locally. The element is further intersected with the subtree, and the process
will be analyzed in the parallelization of the intersection.

 

Figure 2. Sort-Tile-Recursive (STR)-tree data decomposition.
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3.2. Multi-Strategy Hilbert Ordering Decomposition

It can be seen from the process of generating Hilbert code values that the determination of the
code value is determined by the center point of the space grid, which is called the order method
of the midpoint strategy. This section studies the difference between the middle strategy and the
median strategy. Hilbert curve sorting is used to optimize the problem so that the sorting method
can better take into account the spatial proximity of map features. The spatial sort is the reversible 1:1
correspondence between spatial feature points and consecutive integers in one-dimensional space as
key values.

The middle strategy is easier to understand. In the process of dividing the spatial hierarchy,
each cell is divided according to a fixed size, that is, at the middle point of the cell. The midpoint
strategy is suitable for point set objects with a more balanced distribution in the low dimension in
practical applications.

Unlike the middle strategy, the median strategy divides the cells in the space according to the
median point in the x or y direction of the point to be sorted (Figure 3). The geometric midpoint is
an effective solution to the positioning of resource rules. In the high dimensional space, the median
point can better represent the centrality of the clustering point. The median strategy is adapted to
high-dimensional point sets or point set objects with uneven distribution.

 

Figure 3. The demonstration of the Hilbert median sort demo.

From the definition of the median and the application context, the characteristics of maintaining
clustering in Hilbert ordering can be better understood. The median is a concept in sequential statistics.
In a set of n elements, the nth order statistic is the i-th small element in the set. For example, in a set of
elements, the minimum is the first order statistic (i = 1), and the maximum is the nth order statistic
(n = 1). An informal definition of a median is the “midpoint element” of the collection it is in. When n
is an odd number, the set has a unique median at i = ((n + 1))/2 out; when n is even, it has two medians,
which appear at i = n/2 and i = n/(2 + 1). If not considering the parity of n, the median always appears
at i = �((n + 1))/2� (upper median) and i = �((n + 1))/2� (lower median). In our study, the Hilbert median
strategy sorting adopts the lower median by default. The CGAL library is used to assist Hilbert in
sorting in the decomposition process of spatial data. Because the spatial data cannot be extracted from
the data source directly according to the Hilbert code value, it must be the main processing data in
parallel computing. After the node establishes the mapping relationship with the spatial database, the
data is decomposed. Figure 4 shows the world map divided by two different Hilbert sorting methods.
Each color denotes the different classes for the result of Hilbert sorting methods.
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Figure 4. Hilbert middle and median sort for world map (4 nodes).

The process based on Hilbert’s sorting decomposition is shown in Figure 5. First, the feature points
are extracted from the feature elements, and then the appropriate Hilbert space sorting strategy is
selected according to the distribution characteristics of the spatial data. After Hilbert sorting, the main
computing nodes follow the order of the one-dimensional Hilbert curve according to the multi-channel
form, and the data-polling type is generated to each sub-node according to the interval division.
Because the storage of vector data in this paper takes the form of a spatial database, what is referred to
here is the location tag of the object in the spatial database table.

 

Figure 5. Spatial data decomposition using Hilbert sort.
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The most crucial purpose of spatial data domain decomposition in parallel GIS computing systems
is that each child node can perform spatial data extraction or query work at the same time, without
pulling information from the global control node; however, the traditional data partitioning method is
based on the static clustering method. Reasonable spatial data partitioning should consider the spatial
location distribution and length uncertainty of geographic data. It can be considered from two aspects
whether the decomposition strategy of Hilbert ordering is the best, including whether each piece of
sub-data can maintain spatial proximity to the maximum extent and whether the storage capacity of
the data blocks in each node is equalized.

3.3. Parallel Spatial Union Algorithm

The parallel spatial union algorithm process is as follows:

(1) Polygon data feature point extraction

The Hilbert curve sorted objects are point objects with integer values, and the ordering of polygons
was converted to the ordering of their representative feature points. The feature points of a polygon
usually have an outer center point of the rectangle or four corner points, a geometric center point, and
a mass center point. Since the calculation of the center point and the center of gravity of the polygon is
time-consuming, it is not conducive to the parallel acceleration of the map overlay analysis. Therefore,
the feature point of the outsourced rectangular is the center point. All the layers S are regarded as a set
of all the layers L, and the feature point extraction is represented as, among them, a feature point set.
The feature point set is constructed by the mapping function map.

(2) Feature point Hilbert space ordering

The function corresponding to the Hilbert curve sort is described as follows. Among them
are integer coordinate values, and d is the Hilbert code value. For floating-point data in practical
applications, it is necessary to scale to the nearest integer value. Constructing a Hilbert curve in a
two-dimensional space maps the interval to a unit square interval, and each cell is recursively divided
into four parts until each cell contains only one feature point. The computational complexity of
constructing the Hilbert sorting curve algorithm is, where n is the number of hierarchical divisions of
the Hilbert space. In the calculation process of Hilbert coded values in this paper, the value of n is not
forced to be constrained so as to ensure that the point object clustering is denser and still maintains a
good mapping unity.

In the parallel overlay analysis, Hilbert curve ordering is performed according to the distribution
characteristics of the feature elements using two strategies: middle strategy and median strategy.

(3) Distribution of nearby polygons

In the parallel overlay analysis system, the Master node is responsible for loading all the map
layers involved in the calculation and establishing the Hilbert sort number for its content. The elements
in each layer are evenly distributed to each node according to the number of compute nodes. The
number of layer elements and number of processors is n. It is necessary to map the code on the
Hilbert curve string to the FID of the map element. The generation of the one–to–one correspondence
depends on the previous Hilbert ordering process in which there are two mapping relationships, and
the two mapping relationships are connected by feature point coordinates. The specific process can be
described by the following formula, which is the Hilbert code value, the FID marked element, and the
data extraction condition as the overlay query.

The implementation process of the Hilbert joint algorithm is as follows:
(i) A data partitioning strategy. The experiment uses three data distribution strategies in the order

of fid, Hilbert_median, and Hilbert_middle. First, the master node determines the number of nodes
participating in the calculation, and then equally distributes the ordered sets separately.
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(ii) Independent calculations, generating intermediate results. Each computing node is responsible
for the joint operation of the local polygons and writes the generated intermediate results to a temporary
table in the MySQL spatial database.

(iii) Results are collected in conjunction. The master node loads the middle layer into the local
memory in the order in which the child nodes complete the task, and then jointly outputs the final
result layer to these layers.

The previous part is shown the operation of a single layer, the data decomposition hierarchy
object is single, and it is easier to divide and conquer. For the overlaying and merging of two or more
layers, it is necessary to consider the spatial data distribution of multiple layer species, such as the case
of the line surface overlaying, to prevent the layer overlaying of the spatial distribution imbalance.

From the perspective of spatial data decomposition parallelism, the parallel stacking of multiple
layers can use two methods.

(i) According to the above design, the Hilbert sorting decomposition parallel method is based
on the spatial ordering of multi-level two-dimensional plan layers through high-dimensional Hilbert
curves. For the processing of two-dimensional plane map data, the specific process can be divided into
two processes of reducing the dimension and raising the dimension, but the two are not contradictory.
Dimensionality reduction is for a polygon layer, extracting a single point from a polygon in the layer,
such as the center point of the outer frame, a corner point, or the Centre’s CentreID point to uniquely
identify the polygon as a mapping to the one-dimensional Hilbert function.

The polygon objects in the two layers were loaded into the same container, and the geometric
objects in the container were manipulated according to the Hilbert parallel sorting algorithm to merge
the individual layers. The advantage of this method is that it is not necessary to consider the combined
correspondence of polygons in the container, and it can be divided according to Hilbert ordering.
Polygons that do not want to intersect in the original single layer may be indirectly connected due to
the addition of new layer features, as shown in Figure 6. Indirect connectivity increases the complexity
of parallel association. If the polygons in the two layers are only a one–to–one relationship, they can
be directly merged in batch form. The polygons may be spread in pieces when considering indirect
connectivity. In this way, the parallel joint process needs to continue the binary tree merging of the
data decomposition results.

Figure 6. Connect relationship between two layers.

(ii) A combination of multi-layer filtering mechanisms using parallel master-slave indexes.
The master node establishes a coarse-grained spatial index for the two layers, which is equivalent

to establishing a distribution for each layer to establish m and n spatial index subtrees. First, test the
intersection of the root nodes of these subtrees and filter the separated subtrees. The information of the
intersecting subtrees is sent to the child nodes for the merge operation of the independent subtrees.
The merge mode can be understood as spatial analysis of different spatial data of different spatial
granularity levels, which can be performed based on spatial data with lower spatial granularity level,
and spatial analysis of different spatial data of the same spatial granularity level must be superimposed
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to generate Spatial data with a lower spatial granularity level, which is then based on spatial data with
a lower spatial granularity level.

According to the implementation principle of the parallel master-slave index union, with data
decomposition based on a spatial index, it is difficult to completely eliminate the redundancy of
index objects, so different nodes will have the same geometric object, and the subtree merge is a
recursive consumption. At the time of operation, the last master still needs to recycle and combine the
intermediate results. The sprawling characteristics of joint operations determine that they cannot be
parallelized in the form of batch processing. The parallel combination of master-slave index tree mode
is difficult to implement in practical applications. The parallel joint research in this paper uses Hilbert
as the experimental subject for the two layers as a whole, and the parallel master-slave index joint will
be further studied in the next step.

In our study, two joint layers are treated as an overall virtual layer and parallelized according to
the strategy of polygon merging in the same layer (Figure 7). The specific process is as follows:

(i) First, create a data structure featureInfo for each feature in each layer. The main member
variables are fid, layer_num, hilbert_code, and mbr_pt. The fid is used to record the cursor of the
feature in the layer. As a query condition for quickly extracting data in the future, layer_num records
which layer is one of the filtering conditions of the data query. The hilbert_code defaults to a null value
when the FeatureInfo is initialized, which is used to record the encoding of the Hilbert space sorting.
Mbr_pt records the center point of the desired MBR as a feature point for Hilbert ordering.

typedef struct
{

long fid, hilber_code;
GTPoint* mbr_pt;

} featureInfo;
(ii) Put the featureInfo in the two layers into the vector array Vector<featureInfo*> and use the

Hilbert spatial sorting function hilbert_sort() to sort and encode the elements in the array.
(iii) According to the number k of available computing nodes, the total n elements are sent to one

node every n/k according to the Hilbert coding order. The polling method only sends the Hilbert space
sorting number interval instead of sending the specific geometry object.

(iv) The child node receives the Hilbert space sorting coding interval, extracts the geometric
objects of the feature from the local database according to fid and layer_num in featureInfo, and starts
to merge the intersecting polygons in the interval.

(v) Continue the merge in the form of a single layer binary tree merge until all intersecting
polygons are merged.

According to this layer, the overall layer is added to perform Hilbert sorting decomposition.
The advantage is that the data is divided into non-redundant polygons of each node. The unique
characteristics of Hilbert coded values can ensure the low coupling of joint calculation between
processes. The binary tree parallel combination can reduce the pressure of the main node recovery.
Therefore, the scheme is feasible, and theoretically, an acceleration effect can be obtained. The following
is an experimental verification of the multi-layer Hilbert joint method using actual data.

The computational complexity of this algorithm is O(N+K), which is derived from the count
of polygons for the overlayed map layers. Given N polygons in each layer, if using the brute-force
overlay test, the complexity of this algorithm should be O(N2). However, we performed an intersecting
filter process that can exclude the unnecessary computing for polygons that do not overlay to each
other in the space. Thus, there would be K polygons in the overlayed layer that participate in overlay
computation. Ultimately, the complexity of this algorithm should be O(N+K).
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Figure 7. Hilbert decomposition for two layers.

4. Experiments

The parallel algorithm for polygons overlay analysis was implemented, and the performance of
the parallel spatial union was verified. Multi-strategy based spatial data decomposition mechanism
was implemented, including parallel spatial data index, the Hilbert space-filling curve sort, and spatial
data decomposition. The programming language was C++. The operating system of each computation
node was 64-bit Ubuntu Linux (16.04), and run on Intel CPU based hardware architecture (Model: Intel
Core i7-3960X, 3.8 GHz, 12 cores).

4.1. The Experiment for Parallel Spatial Union

The experiment used a spatial union in map overlay analysis as an example to conduct
parallelization experiments. The experimental data shows the Chinese 1:4 million land use map. The
data type was multi-polygon, the number of elements was 15,615, and the number of points was 886,547
(Figure 8). The visualization strategy in Figure 8 is FID based strategy. The experimental dataset is a
type of data commonly used in GIS applications, representing the general characteristics of spatial
data decomposition. The spatial distribution of these maps data is irregular and unbalanced, and the
amount of data is large. It is representative of experiments and has guiding significance for practical
applications. Figures 9–11 are the results for the parallel spatial union using fid decomposition, median
decomposition, and middle decomposition. The number of the results for the decomposition method
is 2, 4, 8, and 16, respectively. Different color denotes different class in these maps.

 
Figure 8. The landuse map of China.
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Figure 9. Parallel spatial union using the fid decomposition method.

 
Figure 10. Parallel spatial union using the median decomposition method.
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Figure 11. Parallel spatial union using the middle decomposition method.

Figure 12 shows the resource consumption of a computer when the parallel overlay is used to
implement Hilbert ordering using the MPI method. The system starts a total of 10 computing processes.
It can be seen from the figure that the CPU usage of each process is basically the same in the parallel
computing process, and the memory usage averages about 1.3%.

Figure 12. Computing time for parallel spatial union.

According to the experimental results, the parallel merging strategy is analyzed. From the
comparison of FID partitioning and Hilbert partitioning, the results of FID partitioning are scattered.
The merging results in the same sub-node are not necessarily adjacent. Hilbert divides the merging
result better, for example, if the FID is merged, even if there are only two computing nodes, the
combined result of the first node also includes part of the combined result of the second node. At the
same time, it can be observed that the combined results of FID partitioning are basically horizontal
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strips, and the Hilbert partitioning results are basically blocky. It can also be observed from the merger
of the Taiwan Province that the fid division strategy will be divided into multiple blocks (the whole
map), the islands will be divided into multiple blocks for processing, and the Hilbert spatial sorting
combination will ensure a small area and approximate shape. The circular polygonal area maintains
functional integrity.

The parallel computing time and acceleration ratio effects of the three merge modes are shown
in Figures 13 and 14. The parallel computing time is the sum of the data decomposition time, the
independent calculation time, and the last merge time of the master node. The calculation time has
decreased with the increase of the number of processes; however, the acceleration effect is obvious
when the acceleration effect is less than four processes, which is higher than the linear acceleration ratio,
but the acceleration effect is significantly reduced when there are more than four processes because of
two aspects: one is that if there are multiple processes in one child node, the data is concurrent with
I/O, and the other is that multiple child nodes send writing database requests to the master node. The
number of polygons that the master node needs to merge increases, and the database is locked as the
writing process takes time. When the number of threads is greater than eight, the median strategy
shows a trend of decreasing the acceleration ratio, indicating that the consumption of the collection
and consolidation of the primary node is greater than the acceleration of the parallel computing. The
solution is to increase the number of physical machines and try to keep each child node running a
small number of processes, reduce read-write conflicts, allow as many binary tree merges as possible
between child nodes, and reduce the number of merged polygons at the primary node.

 
Figure 13. Speedup ratio for parallel polygon union.

Figure 14. Speedup ratio for parallel polygon union.
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From the accelerated efficiency analysis of parallelization, the acceleration efficiency is the lowest
according to the strategy of the fid division. The acceleration efficiency change from 1 process to 10
processes is from 1 to 0.234, which is a large change. The reason is that the polygon data is allocated
according to fid. The number of nodes actually intersecting is small, which causes many polygons
to merge again when the master node collects, causing the overload of the master node to affect the
overall acceleration efficiency. The acceleration efficiency of the Hilbert_median partitioning strategy
varies between 2~4 processes and 8~10 processes, and the acceleration efficiency is basically unchanged
in 4~8 processes. The Hilbert_middle strategy divides the efficiency with the number of processes. The
increase has a linear downward trend. From the perspective of the accelerated efficiency degradation
of these parallel joints, although the data decomposition strategy for estimating the spatial proximity
characteristics can achieve a specific acceleration effect, there is still room for further optimization in
the parallelization algorithm of the data in the reduction phase of the data.

4.2. The Experiment for Parallel Hierarchical Spatial Union

In the experimental data, the basic layer is the planning map of a certain urban area, and the
overlayed layer is the post-translation planning diagram (Figure 15). The result of the spatial union
operation is shown in Figure 16.

  

Figure 15. Test data for the Hilbert decomposition of two layers.

 

Figure 16. Two data layers’ union result.
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5. Conclusions and Future Work

In this study, we propose an efficient parallel algorithm for polygons overlay analysis, including
active-slave spatial index decomposition for intersection, multi-strategy Hilbert ordering decomposition,
and a parallel spatial union algorithm. A multi-strategy based spatial data decomposition mechanism
is implemented, including parallel spatial data index, the Hilbert space-filling curve sort, and data
decomposition. The results of the benchmark experiments showed that the parallel algorithm for
polygons overlay analysis achieves high efficiency.

However, there are some limitations to this study. Firstly, in this study, we have not discussed
cloud computing and edge computing for map overlay analysis. The new computing framework can
improve the efficiency of spatial analysis for large-scale geospatial data [37–39]. Secondly, graphics
processing unit (GPU)-based geo-computation is not considered. GPU is a potential factor that could
improve the speedup ratio [40]. In the future, we will improve the study by addressing those limitations.
Firstly, the map overlay algorithm based on cloud computing will be proposed. Secondly, we would
take account of GPU-based parallel algorithms for map overlay in the future.
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Abstract: In recent years, GIS (Geographical Information System) vector maps are widely used in
everyday life, science, and the military. However, the production process of vector maps is expensive,
and a large volume of vector map data is easily stolen and illegally distributed. Therefore, original
providers desire an encryption solution to encrypt GIS vector map data before being stored and
transmitted in order to prevent pirate attacks and to ensure secure transmission. In this paper,
we propose an encryption algorithm for GIS vector map data for preventing illegal copying,
and ensuring secured storage and transmission. Polyline/polygon data of GIS vector maps are
extracted to compute a backbone object. The backbone object is then selectively simplified by the
multi-scale simplification algorithm in order to determine the feature vertices of the backbone object.
The feature vertices of the backbone object are encrypted by the advanced encryption standard
and the secret key. Finally, all vertices of the backbone object are randomized by the random
Gaussian distribution algorithm to obtain the encrypted GIS vector map. Experimental results show
that the entire map is altered completely after the encryption process. The proposed method is
responsive to the various GIS vector map data formats, and also provides better security than previous
methods. The computation time of the proposed method is also significantly shorter than that of
previous methods.

Keywords: GIS vector map data; GIS vector map security; selective encryption; simplification method
and cryptography

1. Introduction

Currently, GIS vector maps are used in applications in many fields, such as science, navigation,
and online or offline digital map services. GIS vector maps are created and developed by the merging
of cartography, statistical analysis, and database technology based on vector models [1]. Due to the
fact that GIS vector maps may have significant value, GIS vector map data may be stolen or easily
purchased and redistributed or resold several times without obtaining any permission from the
original data providers. In addition, some applications of vector maps by the military or some personal
applications of vector maps must be secured from unauthorized users. Consequently, GIS vector map
data protection is necessary to prevent illegal duplication and distribution.

Appl. Sci. 2019, 9, 4889; doi:10.3390/app9224889 www.mdpi.com/journal/applsci
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GIS vector map security includes copyright protection [2–4], access control for users, and vector
map data encryption in order to prevent attacks or illegal distribution during storage and transmission,
and damage in the integration process of geographical information [5–14]. However, access control
on the Web is unable to prevent attacks or illegal duplication and distribution, and watermarking
techniques are only useful in identifying ownership and for copyright protection, while unauthorized
users should not be able to see, attack, or extract GIS vector map content. Therefore, GIS vector map
data encryption is necessary and suitable for protection. Moreover, conversion between data formats is
vulnerable to attack and security techniques based on database management systems are not responsive
to the various data formats of vector maps [10,11]. Thus, the encryption techniques for GIS vector map
should be responsive to the various data formats of GIS vector maps and the security requirements.

In order to meet the issues above, we propose an encryption algorithm for GIS vector map data
in this paper. Our algorithm solves the current issues of GIS vector map security by encrypting the
geometric objects of GIS vector maps. The main intent of the proposed algorithm is to extract geometric
objects (polylines and polygons) from GIS vector maps in order to encrypt them. Geometric objects
are used to compute the backbone object of polyline/polygon. The backbone object is then selectively
simplified by the multi-scale simplification algorithm in order to determine the feature vertices of
the backbone object. The feature vertices of the backbone object is encrypted by the AES (Advanced
Encryption Standard) algorithm and the secret key. Finally, all vertices of the backbone object are
randomized by the random Gaussian distribution in order to generate the encrypted vector map.
To clarify the detailed contents of the proposed algorithm, this paper is organized as follows: In
Section 2, we discuss vector map data security techniques and explain the relationship between vector
map data and the proposed algorithm. In Section 3, we explain the proposed algorithm in detail.
We then perform experiments, discuss the experimental results, and evaluate the performance of the
proposed algorithm in Section 4. The conclusion is provided in Section 5.

2. Related Works

2.1. Vector Map Data Security

The main idea of the watermarking schemes for GIS vector maps is to embed the watermark into
the vector map by modifying the coordinates of vertices of geometric objects in the spatial domain [2,3],
or embedding the watermark into the spectrum coefficients of a sequence of vertices or topologies in
the frequency domain [4]. Thus, vector map watermarking is not suitable for preventing attacks and
illegal copying.

The security techniques for GIS vector map data have been proposed in recent years [5–9].
Authors have mostly explained various methods to define an access control system for spatial data
on the Web, or mentioned the security requirements for geospatial database management systems
and privacy policies. However, access control on the Web and the management of databases do not
prevent attacks, illegal duplication, and distribution. Wu et al. [10] proposed a compound chaos-based
encryption algorithm for vector data by considering the storage characteristics and the parameters of
a chaos-based system; however, this method is not responsive to the various data formats of vector
maps. Li et al. [11] encrypted the spatial index of a set of vector data in an external Oracle database
management system when it is transmitted to the client; however, this algorithm does not ensure
the security of vector maps because the key length is very short. Yasser et al. [12] also described
an encryption algorithm that combined AES and RSA (Rivest–Shamir–Adleman) cryptography with
a simple watermarking technique in order to protect the copyright protection of vector maps in online
and offline services. This method encrypts all parts of a shape-file using an AES block cipher operator
of 256 bits. This approach is typical because it encrypts the data stream of a shape-file using the AES
cipher, and the computation time is very long. Jang et al. [13] proposed a perceptual encryption method
that is combined with the compression process for vector map data. This method only encrypted
the direction and position of data units in the compression process. This method has low security.
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Bang et al. [14] proposed a selective encryption method for vector map data based on a chaotic map in
the frequency of discrete wavelet transform (DWT); however, this method only selects some objects
and encrypts DC (Direct Current) values in the DWT domain by a common secret key. This method is
very simple and weak because it does not encrypt all contents of vector maps and uses a common key.
Moreover, this research did not present performance or security evaluations. In summary, the weakness
of previous methods is solved by the proposed algorithm, which is presented in Section 3.

2.2. Vector Map Data-Based Encryption

GIS vector map data is stored in layers. Each layer contains a number of geometric objects, such as
points, polylines, and polygons, and annotations, such as symbols. This notation is shown in Figure 1a.
Annotation is used to display notes on vector maps, while geometric objects are used to represent
geographical objects on vector maps. Points are used to represent simple objects, such as position,
while polygons and polylines are used to represent complex objects. A polyline is a set of ordered
vertices used to represent objects such as roads, contour lines, rivers, and railways. A polygon is
a set of connected polylines used to represent objects such as buildings, areas, lakes, and boundaries.
Thus, polylines and polygons are considered the important components of a vector map.

         
(a) 

 
(b) 

Figure 1. (a) Vector map data model, and (b) data components of a vector map.

In addition to annotation and geometric objects, vector maps also contain the storage information
as header and text. Because points, polylines, and polygons determine the content of vector maps,
we consider these geometry data, while the annotation, header, and text are considered attribute data.
Figure 1b shows the data components of a GIS vector map. The attribute data of a GIS vector
map does not contain geographical information or determines the shape of the GIS vector map;
thus, it is only required to extract polylines and polygons to perform the random encryption process
for GIS vector maps.
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3. The Proposed Method

3.1. Overview

The proposed algorithm is shown in detail in Figure 2. To begin, each geometric object
(polyline/polygon) is extracted from the GIS vector map to compute a backbone object. The backbone
object is then selectively simplified by the multi-scale simplification algorithm with differential
scale factors in order to obtain new geometric objects. If the backbone object cannot be simplified,
it is then encrypted by a key value and randomized by a set of random Gaussian numbers to generate
an encrypted object. The key value is generated by a hashing function with a user’s key input.
New geometric objects, which are simplified from the backbone object, are then used to compute the
feature vertices of the backbone object. Here, the backbone object can be divided into two parts: feature
vertices and the remaining vertices. The feature vertices of the backbone object will be continuously
encrypted by a key value in order to generate the encrypted feature vertices. Finally, the remaining
vertices and encrypted feature vertices of the backbone object will be randomly encrypted by a set of
random Gaussian numbers in order to obtain the encrypted object. The encrypted GIS vector map is
a set of the encrypted geometric objects.

 
Figure 2. The proposed algorithm.

A GIS vector map contains a number of data layers. Each layer L contains a number of
objects (polyline/polygon) L =

{
Pi
∣∣∣i ∈ [1, |L|]} and each object contains a number of vertices

Pi =
{
vi, j

∣∣∣ j ∈ [1, |Pi|]
}
. We briefly define the main notations as the following: Pi indicates

a polyline/polygon object, and |L| and |Pi| are the cardinalities of a layer L and an object Pi respectively.
Thus, vi, j indicates the jth vertex in the ith object of a layer L and is defined by two coordinates
vi, j =

(
xi, j, yi, j

)
. Next, Bi is the backbone object of Pi and Bs

i is the simplified object of Bi after the
multi-scale simplification process with the differential scales. B′i is the changed backbone object after
the feature vertices encryption process or the backbone object encryption process. Fi represents the
feature vertices of the backbone object Bi, Gni is a set of random Gaussian numbers, K is the secret key,
and Ei is the encrypted object of Pi. Finally, CP(.), GP(.), and RP(.) are the cipher function, the random
Gaussian number function, and the randomization function, respectively.
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3.2. Backbone Object Simplification and Feature Vertices Computation

The backbone object is a set of vertices, in which each vertex is the average point between
two continuous vertices in that object. Thus, the backbone object of Pi is Bi =

{
bi, j

∣∣∣ j ∈ [1, |Bi|]
}

where
|Pi| = |Bi| and the value of bi, j is computed as shown in Equation (1). Figure 3a shows a backbone
object of a polyline object.

bi, j =

⎧⎪⎪⎨⎪⎪⎩ vi, j with j = 1 or j = |Pi|
vi, j+vi, j−1

2 for otherwise
(1)

 

 
(a) 

 

(b) 

Figure 3. (a) Backbone object of a polyline, and (b) feature vertices of a backbone object.
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Our purpose is to simplify the backbone object with the scale factor s in order to compute the
feature vertices of the backbone object. Thus, we must check the condition before simplifying. The
condition of a backbone object Bi can be simplified as:

|Bi| > 1
s

(2)

If the value of |Bi| ≤ 1
s , that backbone object is encrypted by the cipher function CP(.) as shown in

Equation (3).
B′i = CP(K, Bi) =

{
b′i, j

∣∣∣ j ∈ [1, |Bi|] (3)

The backbone object Bi is simplified by the multi-scale simplification algorithm in order to obtain
the simplified backbone object Bs

i as shown in Equation (4):

Bs
i =

{
b

i, j
s

∣∣∣∣∣ j ∈ [1, |Bi| × s] (4)

Fi = B1/2
i ∩ B1/3

i ∩ B1/4
i (5)

Here, we obtain three simplified objects B1/2
i , B1/3

i , B1/4
i with differential scales s = 1/2, s = 1/3, and

s = 1/4 (see Figure 3b). We then calculate the feature vertices Fi, which is a set of the common vertices
of three simplified backbone B1/2

i , B1/3
i and B1/4

i as shown in Equation (5). From Equations (4) and (5),
we can see that Fi will be determined if |Bi| > 4. Figure 3b shows three simplified backbone objects of
a polyline object with differential scales 1/2, 1/3, and 1

4 , and the feature vertices of the backbone object.

3.3. Random Encryption

The secret key K is generated by the SHA-512 hashing algorithm [15] with user’s key input.
We use the secret key K to compute a set of random numbers Gni by the Gaussian distribution [16,17]
as shown in Equation (6):

Gni = GP(K) =
{
gi, j

∣∣∣ j ∈ [1, |Gni|
}

(6)

Therein, |Gni| = |Pi|, gi, j is calculated by the Gaussian function as shown in Equation (7), and x is the
value of K:

gi, j =
i× j
|Pi| ×

1√
2π

e
−x2

2 (7)

As mentioned above, after the feature vertices computation process, we have a set of feature
vertices Fi and the remaining vertices of the backbone object (Bi − Fi). We then encrypt the feature
vertices Fi by the cipher function CP(.) using the secret key K, as shown in Equation (8), in order to
obtain the encrypted feature vertices F′i. The cipher function CP(.) can be the AES cipher function,
the DES cipher function, or others.

F′i = CP(Fi, K) (8)

The encrypted feature vertices F′i and the remaining vertices (Bi − Fi) are used for the random
encryption process in order to obtain the encrypted object Ei. From Section 3.2, the changed backbone
object B′i is computed by Equation (3) when |Bi| ≤ 1

s . Here, B′i includes the encrypted feature vertices
F′i and the remaining vertices (Bi − Fi) as shown in Equation (9).

B′i = (Bi − Fi) ∪ F
′
i (9)

The random encryption process is performed by a randomization process using the random
Gaussian numbers Gni:

Ei = RP
(
B
′
i, Gni

)
=
{
ei, j
∣∣∣ j ∈ [1, |Ei|]

}
(10)
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where |Ei| = |Pi| and ei, j is computed as follows:

ei, j = b′i, j × gi, j = b′i, j × i× j
|Pi| ×

1√
2π

e
−x2

2 ∀ j ∈ [1, |Pi|] (11)

Figure 4 shows the random encryption process for the backbone object Bi when the value of
|Bi| > 1

s (Figure 4a with |Bi| = 17) and when |Bi| ≤ 1
s (Figure 4b with |Bi| = 4). When the value of |Bi| > 4,

the feature vertices of Bi will be encrypted by the cipher function CP(.). Then, the randomization
process is performed as shown in Figure 4a. In case |Bi| = 4, the backbone object will be directly
encrypted by the cipher function CP(.) and then randomized by a set of Gaussian numbers, as shown
in Figure 4b.

 

(a) 

 

(b) 

Figure 4. (a) Backbone object encryption, and (b) feature vertices encryption.
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3.4. Decryption Process

The decryption process is the inverse of the encryption process. Firstly, the key value K us generated
from the user’s key by the SHA-512 hashing algorithm. The key value K is then used to compute a set of
random Gaussian numbers as described by Equations (6) and (7) in Section 3.3. The encrypted objects
are then extracted from the encrypted vector map and vertices are re-randomized by the random
Gaussian numbers before decryption using the key value K. After the vertex re-randomization process,
if the encrypted object cannot be simplified, it is decrypted by the key value K to generate the backbone
object. If the encrypted object can be simplified, it is simplified to compute the encrypted feature
vertices. These encrypted feature vertices are then decrypted by the key value K to generate the
backbone object. From the backbone object, we can calculate the decrypted objects based on Equation
(1). The decrypted GIS vector map is a set of the decrypted objects.

4. Experimental Results and Analysis

We used the GIS vector maps of the country of Scotland [18] with differential scales in visualization
experiments, and evaluation of security and computation time. The detailed information of the GIS
vector maps is shown in Table 1. The data format of the GIS vector map was the shape-file (SHP)
format [19], which is a popular geographical vector data format. The proposed algorithm was applied
to the polylines and polygons of the vector maps. The backbone encryption process and the feature
vertices encryption process were performed by the AES algorithm. We selected the AES algorithm
because its security is higher than others. Compared with conventional approaches, the proposed
algorithm is more original than previous methods because it encrypts objects based on encrypting the
value of feature vertices in polylines/polygons. Consequently, it does not alter or expand the size of the
encrypted file, thus preventing data loss. The GIS vector maps are completely altered after the random
encryption process (see Figures 5–9).

4.1. Visualization Experiments

Experimental results are shown in Figures 5–9, which show the original map and a part of the
original map beside the encrypted map for comparison. Figure 5a shows the original railway map
of Scotland and a part of the original railway map. The content of the railway map is presented by
polylines. After encryption, polylines are altered, broken into segments, and positioned in a disorderly
manner (Figure 5b). In the experiment with the land-use map of Scotland, the content of the map
includes polygons (Figure 6a). After encryption, the shape of all polygons is changed to smaller
polygons on the map, and the shape of the entire map is altered completely (Figure 6b). Experiments
on the waterway map (Figure 7a), the nature map (Figure 8a), and the road map (Figure 9a) of Scotland
also yields similar results. Waterway lines and roads on the maps are broken into shorter polylines
and positioned in a disorderly manner (Figures 7b and 9b), and the shape of the original polygons are
altered and moved to other positions (Figure 8b). Consequently, the content of the GIS vector maps is
altered completely.

Table 1. Experimental results of Scotland maps.

Scotland Maps Size (Kb) # Objects Computation Time (ms) Entropy (dB)

Railway 1951 9724 77 128,817
Land-use 12,452 41,242 263 632,315
Waterway 27,954 53,389 668 838,434

Nature 51,417 99,835 1367 1,657,985
Road 78,136 372,138 1896 6,886,591
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(a) 

 
(b) 

Figure 5. (a) Original railway map, and (b) encrypted railway map.
 

 
(a) 

 
(b) 

Figure 6. (a) Original land-use map, and (b) encrypted land-use map.
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(a) 

 
(b) 

Figure 7. (a) Original waterway map, and (b) encrypted waterway map.
 

 
(a) 

 
(b) 

Figure 8. (a) Original nature map, and (b) encrypted nature map.
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(a) 

 
(b) 

Figure 9. (a) Original road map, and (b) encrypted road map.

4.2. Security Evaluation

In order to evaluate the security of the proposed method, in this section we evaluate the randomness
of the encrypted map. If the randomness of the encrypted map is high, it will also be difficult to attack.
The randomness of the encrypted map is measured by its entropy. Thus, we calculate the entropy of
the encrypted map to evaluate the security of the proposed method. From Section 3, we can see that
the entropy of the encrypted object is dependent on the secret key K and the value of |Pi|. Both K and
|Pi| are discrete random variables. Thus, the entropy HPi of the encrypted object Ei is the sum of the
entropies of the random variables:

HPi = H(K) + H(|Pi|) =|K|. log2 (
1
|K| ) + |Pi|log2(

1
|Pi| ) (12)

Furthermore, the entropy HL of the encrypted map from the original map layer L will be the sum
of the entropies of the encrypted objects:

HL =

|L|∑
i=1

HPi (13)

Clearly, HL is dependent on the values of |L| and K; the key value K is a random variable dependent
on a user’s key input. If the value of K is fixed, HL is only dependent on the value of |L|. As a
result, if |L| is high, the entropy is high. For example, the railway map of Scotland has |L|= 9724 and
HL = 128,817 dB, but the natural map of Scotland has |L| = 99,835 and HL = 1.66 × 106 dB. In the vector
maps of Scotland in Table 1, the entropy of the proposed method ranges from 1.3 × 105 dB to 6.88 × 106

dB with |L| ∈ [9724, 372, 138].
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The method of Yasser [10] only uses the AES-256 cipher operator to encrypt the data stream of
a shape-file. Thus, the entropy of this method is dependent on the length of the secret key and the
length of the data stream. In the work of Bang [12], about 70% of polylines/polygons are selected for
the encryption process. Bang used a common secret key to encrypt all DC values in a vector map
in the DWT domain. The length of the secret key was 512 bits. Thus, the entropy of this method is
dependent on the length of the secret key. We applied the methods of both Yasser and Bang for the GIS
vector maps of Scotland for comparison. The entropy of our method was higher than that of Yasser
(1.2 × 105 vs. 6.6 × 106 dB), while the entropy of Bang’s method was fixed at 4608 dB for every GIS
vector map (Table 2). In conclusion, our method offers more security than previous methods. Figure 10
shows the difference between the entropy of our method and the entropy of the methods of Yasser
and Bang according to the number of objects. The entropy of our method is much higher than that of
Yasser or Bang.

Table 2. The entropy of the proposed method compared with previous methods.

Scotland Maps # Objects
Entropy (dB)

Our Method Yasser’s Method Bang’s Method

Railway 9724 128,817 9216 4608
Land-use 41,242 632,315 55,296 4608
Waterway 53,389 838,434 124,416 4608

Nature 99,835 1,657,985 235,008 4608
Road 372,138 6,886,591 299,520 4608

Figure 10. Entropy according to the number of objects.

4.3. Computation Time

We implemented the proposed method using the C# language in Visual Studio 2013. We then
conducted our experiments on a PC with Intel Core i7 Quad 3.5 GHz, 8 GB of RAM, and Windows
7 64-bit. Section 3 indicates that the computation time of the proposed method is dependent on the
number of objects in the vector maps. With the GIS vector maps of Scotland, the computation time of
our method ranged from 77 ms to 1896 ms, with the size of maps ranging from 1951 Kbs to 78,136 Kbs.
We also implemented the methods of Yasser and Bang using the C# language in Visual Studio 2013,
in a similar environment, to measure and compare the computation time between methods. Yasser
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performed full encryption for GIS vector maps, which means he encrypted notation, header, text,
and all geometric objects. Thus, the computation time of Yasser’s method is dependent on the size
of the GIS vector maps. Compared with Yasser’s method, the computation time of our method was
less (40 ms vs. 2870 ms; Table 3). In the method of Bang, the computation time is dependent on the
computation time of the selection process, the number of selected objects, and the computation time of
the DWT and inverse DWT processes. The computation time of the DWT and inverse DWT processes
is dependent on the number of vertices in each object. If an object has many vertices, the computation
time of the DWT process is long. Conversely, if the number of selected objects is small, the computation
time is short (Table 3). Figure 11 shows the computation times of the proposed method compared to
the methods of Yasser and Bang according to the size of the vector maps. The time of the proposed
method is significantly shorter than that of previous methods.

Table 3. Computation time of the proposed method compared with previous methods.

Scotland Maps Size (Kb)
Computation Time (ms)

Our Method Yasser’s Method Bang’s Method

Railway 1951 77 117 416
Land-use 12,452 263 759 1916
Waterway 27,954 668 1705 5564

Nature 51,417 1367 3136 9036
Road 78,136 1896 4766 23,563

Figure 11. Computation time according to the size of map.

5. Conclusions

In this paper, we proposed a random encryption algorithm based on multi-scale simplification
and the Gaussian distribution for GIS vector maps. Experimental results showed that the proposed
method is very effective with GIS vector maps that contain many geometric objects. The presented
method provides higher security than previous methods. The computation time of the method is
significantly shorter than that of previous methods, and it could be used to replace previous methods
for secured storage and transmission. By encrypting only geometric objects, the proposed method can
be responsive to the various formats of GIS vector maps. In addition, to apply the method presented
in this paper, developers only need to extract geometric objects before performing the encryption
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process. Furthermore, the proposed method can be applied to the security of online and off-line map
services [20,21].
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Abstract: This article presents an evaluation of the QGIS Processing Modeler from the point of
view of effective cognition. The QGIS Processing Modeler uses visual programming language
for workflow design. The functionalities of the visual component and the visual vocabulary (set
of symbols and line connectors) are both important. The form of symbols affects how workflow
diagrams may be understood. The article discusses the results of assessing the Processing Modeler’s
visual vocabulary in QGIS according to the Physics of Notations theory. The article evaluates visual
vocabularies from the older QGIS 2.x and newer 3.x versions. The paper identifies serious design
flaws in the Processing Modeler. Applying the Physics of Notations theory resulted in certain practical
recommendations, such as changing the fill colour of symbols, increasing the size and variety of
inner icons, removing functional icons, and using a straight connector line instead of a curved line.
Another recommendation was to provide a supplemental preview window for the entire model in
order to improve user navigation in huge models. Objective eye-tracking measurements validated
some results of the evaluation using the Physics of Notations. The respondents read workflows to
solve different tasks and their gazes were tracked. Evaluation of the eye-tracking metrics revealed
the respondents’ reading patterns of the diagram. Evaluation using both Physics of Notation theory
and eye-tracking measurements inspired recommendations for improving visual notation. A set of
recommendations for users is also given, which can be applied easily in practice using a contemporary
visual notation.

Keywords: algorithm; cognition; computer languages; eye-tracking measurement; gaze tracking;
human-computer interaction; open source software; symbols; visualisation

1. Introduction

Today, open source GIS software competes with commercial GIS software. The user’s choice not
only depends on the price but also the degree of functionality in parts of the GIS software. Users need to
satisfy their requirements. One of the demands is the automatic processing of spatial data as a sequence
of steps. Visual programming languages (VPLs) are used to design steps of processes in the form of
workflow diagrams. GIS operations are not used in isolation but as a part of a chain of operations to
completely process data. An overview and basic description of several visual programming languages
in GIS are given in this article [1]. ModelBuilder for ArcGIS, Macro Modeler for IDRISI, Model Maker
and Spatial Model Editor for ERDAS IMAGINE and Workflow Designer for AutoCAD Map 3D are
mentioned. All systematic description and evaluation of VPLs in GIS is presented as habilitation [2].
VPLs in GIS are data-centric notations that serve to express a process in detail. Only AutoCAD Map
uses hybrid symbols where one symbol both for operation and input/output data altogether is. Other
VPLs have a unique set of simple symbols for data and unique symbols for operations and control
of flow. GIS workflow does not express a generalised conceptual model of processing, and they are
more detailed.
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Open source software QGIS is competitive with commercial GIS software in designing workflow
diagrams using VPL. The accessibility of a visual programming language increases the usability of
QGIS. The possibility of designing workflows could be a reason for selecting open source QGIS.

The Processing Modeler is a graphical editor in QGIS software. This editor allows workflows to
be designed in graphical form using a visual programming language. Workflow diagrams in QGIS are
termed as a model.

VPLs differ in their visual notation generally, and the symbols in GIS software are various.
The visual notation consists of graphical symbols (visual vocabulary), a set of compositional rules
(visual grammar) and definitions of the meaning of each symbol (visual semantics). The visual notation
is important from the point of user perception and cognition. In his theory, the Physics of Notations, D.
Moody stated that it is necessary to use cognitively effective visual notations [3]. Cognitively effective
means optimised for processing by the human mind.

This article presents an assessment of the visual notation of the QGIS Processing Modeler using
the Physics of Notations theory in combination with eye-tracking measurement. The presented
research started with version QGIS 2 in 2014 and has been continued with version 3 up to now.
The long-term release (LTR) version QGIS 3.4 Madeira and partly version 3.6 Noosa was used for
assessment. Some features of visual notation were empirically tested using the eye-tracking method
on version QGIS 2. Finally, some improvements to visual notations are suggested in this article.

The research question was “What is the level of effective cognition in QGIS Processing Modeler.”
This research aimed to evaluate and improve cognition of visual notation in QGIS. The results bring
new and innovative ideas that improve the usability of and satisfaction with QGIS software.

These tasks fall under investigation in Human-Computer Interaction (HCI) research. Standard
ISO 9241-210:2019 Ergonomics of human-system interaction—Part 210: Human-centred design for
interactive systems [4] provides requirements and recommendations for human-centred design
principles and activities of computer-based interactive systems. In the center of HCI research and
UX research (User Experience), is the understanding and design of interactive digital systems and
their human users [5]. Their common aim is to innovate novel computing user interfaces to satisfy
usefulness, ergonomics, and efficiency of using digital systems [6,7]. The improvement is based on
theories and both on empirical testing in laboratories [8] e.g., the eye-tracking measurement presented
in this article.

2. QGIS Processing Modeler and its Graphical Notation

2.1. History of QGIS Processing Modeler

The Processing Modeler was implemented in version QGIS 2.0 Dufour, released in 2013. The next
development of the Processing Modeler aimed to increase the functionality of the editor. The author of
the graphical editor was Victor Olaya from Spain. In version QGIS 2.6 Brighton, released in 2014, the
Processing Modeler was rewritten and provided extra functionality, such as allowing nested models
with no depth limit [9].

Furthermore, adding Python script to the model was supported in version 2.x. Python script could
be downloaded from an online external collection of scripts created by different users and adopted to a
newly created user model. The software architecture and features of the QGIS processing framework
are described in this article [10].

In 2018, the new series of version QGIS 3.x began with version 3.0 QGIS Girona. The Processing
Modeler underwent extensive changes and included additional and changed input parameters and
algorithms. Specifically, the colours of basic symbols were changed, and the interface and degree of
functionality were redone. For example, zoom in and zoom out functions [11,12]. The two Input and
Algorithm panels can be positioned differently in the interface and now float above the processing
window [11,12]. The storage format of the model was also changed [13]. File extension model 3 was
used instead of extension model.
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2.2. Description of Interface and Graphical Notation

A graphical editor Processing Modeler is embedded in QGIS and runs in a separate window.
The interface is divided into two areas [14]. Two switchable panels are on the left side. The “Inputs”
panel is the source for different types of input data. The “Algorithms” panel is the source of operations
that can be added to the model (workflow diagram). The large window at right is a canvas for designing
the model (Figure 1).

 

Figure 1. The interface of the QGIS Processing Modeler version 3 and an example model in visual
programing language.

Selected inputs and algorithms can be added to the model by dragging and dropping it into
the modeler canvas. Being movable, the position of the symbols is the user’s choice. When input
data is added to the model, the type of data and name of data are set. The input data are considered
input parameters. Inputs are not assigned to particular existing data at the directory or values of
variables. Their names could, therefore, be more descriptive than the data’s real name. This would be an
advantage because the names of parametrical inputs could be more general. It improves comprehension
of the model for other users. The Algorithms panel provides GIS operations (processing algorithms)
from several types of open source software apart from QGIS—these are GDAL, GRASS and SAGA.
Previously, created QGIS models are also displayed. Python scripts and operations from the ORFEO
library were accessible in the older version 2.

Grey connector lines are automatically drawn immediately after adding operations and assigning
the existing inputs to the operation in the model. The lines connect symbols of input data with the
symbol of operations. The output data symbol is also automatically linked to the model after naming
outputs from the operation. The connector lines are then automatically drawn between operation
and output data. The user cannot draw the connector lines manually with a mouse or reconnect the
symbols. The shape of the connector lines is curved and ends with a black point. When the positions
of the symbols change, the shape of lines is automatically redrawn with a different curvature.

Modeler’s visual vocabulary contains three rectangular symbols (Figure 2). The size of the symbols
is the same and cannot be changed. Originally, the violet rectangle represented input data, the blue
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rectangle represented output data and the white rectangle represented the operation. The fill colours
were changed in version 3. The symbol for input data is now yellow, the symbol for output data is
green and the symbol for operations remains white. At first glance, this was perhaps to emphasise
that this is a model from the new Processing Modeler version. The user can subsequently very clearly
distinguish between existing models from older version 2 and the latest version 3. Comparing the
brightness of symbols (compare the greyscale between versions in Figure 3), the input symbol is lighter
in tone and the output symbol is darker than in version 3. The difference in brightness is important for
colour-blind people or people with perception limitations. For these people, only the difference in
brightness is helpful in distinguishing objects. The colour setting of any computer application, design
of web pages respects the colour-blind people to apply different brightness of menus, text boxes and
other graphical objects of interfaces. From that point, the new colours of symbols in version 3 are
better due to different brightness. The difference in brightness maybe not made intentionally by QGIS
designers but it is valuable.

 
(a) (b) 

Figure 2. Graphic symbols (from top, input data, output data and operation); (a) symbols from version
2 at left, (b) symbols from version 3 at right.

 
(a) (b) 

Figure 3. Greyscale symbols (a) symbols from version 2 at left, (b) symbols from version 3 at right.

The rectangular symbols contain some inner icons. The input data symbols are indicated with
a plus sign icon. The output data symbol is indicated by an arrow. Both icons are on the left side.
The operation symbols have different icons according to the source library of operation or type of
operation. For example, the QGIS 2 icon for Zonal Statistics is shown in Figure 2. The input data
symbols and operation symbols have two icons on the right side: across and pencil in version 2.
These icons depict the delete and edit functions. They can be considered operational icons. In version
3, the cross icon remained, and the icon for editing is three dots. The green output symbol was also
assigned these two operational icons. It means that the label of the output data symbol is editable.
The option to assign a default name and path for the output data is provided in the editing dialogue.
When the output symbol is deleted, the output data is automatically assigned as a temporary output in
operation. No symbol in the model indicates a temporary output.

Generally, the use of icons is very helpful. According to Szczepanek, icons can be divided into
three groups of icons in software interfaces [15]. The first group is universal icons, which can be
understood without explanation (e.g., a floppy disk for the save operation). The second group is
domain-specific icons (e.g., for any GIS software), and the third group is application-specific icons (e.g., for
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QGIS software). In the case of the QGIS Processing Modeler, the icons can be sorted as follows: a pencil,
three dots and cross icons are universal icons. The plus icons for data are midway between universal
and domain-specific icons. The plus icon is frequently used in some GIS interfaces and means adding
a layer to the current project. The icons of source libraries (which are in the white operation symbol)
belong to the application-specific group of icons. All icons can be understood very well.

3. Theory and Measurement Methods

3.1. Theory Physics of Notations

Physics of Notations is an objective theory for evaluating visual notation [3,16]. This theory is
widely used in all areas of software engineering, not only GIS software because creating diagrams
is frequently required in information technology (IT). The first work was an assessment of the Esri
ModelBuilder in the area of VPL in GIS applications [17]. The Physics of Notations theory can be used
not only for evaluating existing notation but also improving graphical notation or designing new ones.
It means that the visual notation in QGIS can be assessed and improved if any drawbacks are identified.
Exploring this theory for the new design is very beneficial in design new graphical vocabulary for any
purpose. This paper presents the opportunity to make new suggestions according to the theory for
QGIS Processing Modeler.

The Physics of Notations theory states nine principles that recommend fulfilling cognitively
effective notation. Cognitive effectiveness is defined as the speed, ease and accuracy with which a
representation can be processed by the human mind [18]. The aim is to read the diagram quickly,
without mistakes, and comprehend it accurately.

The nine principles are organised as connected ideas where the first central principle is the
Principle of Semiotic Clarity. The modular structure of Physics of Notations is designed to make it easy
to add or remove principles, emphasising that they are not fixed or immutable but can be modified or
extended by future research [19].

The principles are [3]:

• Principle of Semiotic Clarity

The principle of Semiotic Clarity expresses a one to one correspondence between the syntactic
model and semantic features. According to this principle, symbol redundancy, symbol overload,
symbol deficit or symbol excess is not permissible. The principle reflects the ontological analysis.

• Principle of Perceptual Discriminability

The second principle of Perceptual Discriminability states that different symbols should be clearly
distinguishable from each other by visual variables.

• Principle of Visual Expressiveness

The principle of Visual Expressiveness states that the full range of visual variables and their full
capacity should be used to represent the notational elements. Colour is one of the most effective visual
variables. The human visual system is very sensitive to differences in colour and can quickly and
accurately distinguish them. Differences in colour are found three times faster than shape and are also
easy to remember [20]. The level of expressiveness is measured from level 1 (lowest) to 8 (highest).

• Principle of Graphic Economy

The principle states that the number of symbols in a graphical vocabulary must be manageable
by human working memory. The choice of symbol affects the ease of memorizing and recalling
visual diagrams. The magic number seven express a suitable number of symbols. The range for
an of 7 ± 2 symbols is suitable. More different symbols in basic graphical vocabulary than nine are
demanding for comprehension.
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• Principle of Dual Coding

The principle suggests using the text to support the meanings of symbols and clarity. Two methods
(graphics and text) provide the user with information and improve comprehensibility. The base is on
the duality of mental representation [21].

• Principle of Semantic Transparency

This principle evaluates how symbols associate the real meaning of an element. Here, associations
are sought between the shape or other visual symbol variables and their real properties, and the form
implies content.

• Principle of Complexity Management

This principle recommends producing hierarchical levels of the diagram and dividing it into
separate modules and create hierarchical structures. It is suitable for large models when comprehension
exceeds human working memory capacity. Modularity means scaling information into separate chunks.
Modularisation is the division of large systems into smaller parts or separate subsystems. Practice
shows that one subsystem should be only large enough to fit on one sheet of paper or one screen.
This subsystem is then represented at a higher level by one symbol. Hierarchical structuring allows
systems to be represented at different levels of detail (levelled diagram) with the ability to control
complexity at each level. This promotes understanding of the diagram from the highest level to the
lowest, which improves the overall understanding of the diagram. Both mechanisms can be combined
into the principle of recursive decomposition.

• Principle of Cognitive Interaction

The principle recommends increasing the options for navigating in the model. The reader must
be able to follow the chain of operations easily. The connector lines affect navigation.

• Principle of Cognitive Fit

The principle proposes to realize different sets of graphical vocabularies for the same type of
semantics, where information is represented, for different tasks and different groups of users in different
ways. It recommends the use of multiple visual dialects, each of which is suitable for different types of
tasks and different user spectrums (according to experience).

3.2. Eye-Tracking Measurement and Experiment

The eye-tracking equipment was used to evaluate the comprehensibility and discriminability of
visual symbols in models. This method was assumed as a combination and extension of Physics of
Notations results as an experimental method.

Testing was conducted at an eye-tracking laboratory in the Department of Geoinformatics,
Palacký University in Olomouc (Czech Republic). The eye-tracker SMI RED 250 with software SMI
Experiment Suite 360◦ was used for the experiment. The test was designed using the SMI Experiment
Center program. The results were visualised using SMI BeGaze. An evaluation was also conducted
using software Ogama 4.5 and V-Analytics. For statistical evaluation, the STATISTICA software was
used. The size of the monitor to record eye movements and display models was 1920 × 1080 pixels.
The sampling frequency of the eye-tracker SMI RED was 250 Hz [22].

The complex eye-tracking experiment consisted of 22 workflow diagrams from Processing Modeler
version 2. Several models with different sizes, functions, and arrangements of flow orientation (vertical,
horizontal, and diagonal directions) were tested. The workflow diagrams were displayed individually
on the screen in random order to prevent a learning effect [23]. Shuffling ensured that each respondent
saw the models in a different order.
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The respondents were first-year students at the end of the semester in a master’s programme of
Geoinformatics. They had attended lectures where the design of models in Processing Modeler version
2 was practised. They created various examples of models with different functionalities and sizes.
The group of respondents was assumed to be advanced users. A total of 22 respondents participated
in the eye-tracking testing, aged 22–25.

The term stimulus is applied in the process of eye-tracking testing [24]. The stimuli, in this case,
were the models (workflow diagrams). Each model was associated with a comprehension task to
record the cognitive process. Response time and the correctness of user answers were measured for
each comprehension task as in other research [25–27]. The set of models or maps and comprehension
tasks are often used to evaluate the usability of visualisation methods in cartography and GIS [28,29].

Research in the area of workflow diagrams has also been organised at our eye-tracking laboratory
for other GIS VPLs. The reading patterns are described for models in ArcGIS ModelBuilder [30].
The significant effect of the orientation of connector lines is mentioned. Also, the influence of bends on
connector lines was tested for ModelBuilder [22]. Being able to change colour helps to discriminate
graphical symbols in ModelBuilder. This was also demonstrated using eye-tracking experiments at
our university laboratory [31].

The eye-tracking experiment consisted of two parts for the QGIS Processing Modeler. The first
part only displayed models without any task. This part is called free viewing. The second part
contained 22 models that were introduced with comprehension tasks. The respondents solved the
tasks by clicking on the stimulus at the right location all answer the question. All tested diagrams are
in Appendix A. Clicks were recorded as an answer. All stimuli were interleaved with a fixation cross
in the middle of the screen to provide the same starting point for all respondents. The fixation cross
was displayed for 600 milliseconds before each stimulus.

The research combined two above mentioned methods in evaluation. They were very different.
The first report findings by application theoretical principles. It produced results in a text form with list
of insufficiencies, good features, recommendations and ideas. The second is the experimental method
where the objective measurement was constructed using user testing. Both methods could be assumed
as cross-validation of results, but mainly eye-tracking is an extension of received results. The research
tried to combine both attempt to receive more complexity results such as finding reading patterns. In
the phase of preparing the eye-tracking experiment, we considered how to test the principles of Physics
of Notations. The task was aimed to receive answers that correspond to the principle definitions.
The design of the experiment was done so much coherent to the principles. However, only the set
of principles is possible to test in a limited way. It is impossible to design the eye-tracking as one
task to one principle. There are more influences on the respondent’s perception. Moreover, the last
principles, Complexity Management and Principle of Cognitive Interaction, are hard to test because
of no sufficient solution present in that visual vocabulary. It was also impossible to test case of the
Principle of Cognitive Fit when no visual dialects exist in the Processing Modeler.

Two hypotheses were proposed before eye-tracking testing:

Hypothesis 1 (H1). Insufficiencies in Semiotic Clarity, Perceptual Discriminability, Visual Expressiveness and
Semantic Transparency adversely affect the correctness of user answers.

Hypothesis 2 (H2). Insufficiencies in Semiotic Clarity, Perceptual Discriminability, Visual Expressiveness and
Semantic Transparency adversely affect the effectiveness of comprehension.

To evaluate these two hypotheses, the number of correct answers (for H1), the time required
to answer, and eye-tracking metrics were measured. Eye-tracking metrics such as the length of the
scanpath, number of fixations and average time of fixations were calculated (for H2). All results are
presented in Section 4.
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4. Evaluation of Processing Modeler

4.1. Evaluation of Effective Cognition by Physics of Notations Method

Systematic application of Physics of Notations theory on Processing Modeler follows.

4.1.1. Principle of Semiotic Clarity

When this principle is applied to symbols in the Processing Modeler, it is evident that both input
data and output data symbols are overloaded. In version 2, one symbol represents nine different data
types: vector, raster, string, file, table, table field, number, extent and boolean. The newer version
3 offers 22 different types of input data. The user has to assign the data type immediately when
an input data symbol is assigned to the model. The data type (for example point, line, polygon) is
assigned immediately when a model is designed, despite there being no evidence about data type in
the graphical symbol.

Detected symbol overloads could be solved in the following manner: remove the inner plus
icon at the left in the symbol and replace it with more specific icons that express the type of data.
Suggestions for vector and raster data symbols are given in Figure 4. Both icons are adopted from
the QGIS interface. The lower pair uses the compound icons from version 3, where the symbols for
vector and raster are supplemented by a small plus icon to express input of data. These compound
icons are better than simple icons in version 2. The former and larger plus icon is substituted by a
plus icon that forms a part of the vector or raster icon. New icons could be suggested for file, folder,
string, number, table and field using any universal icon. Data such as extent, CRS, map layer, etc. need
domain-specific icons. The same inner icon sets could be used for the output data symbol where a
compound symbol can contain bigger icon of data type and small output arrow that is original in
output symbol. The suggestions follow Szczpanek icon theory [15]. These suggestions would increase
the number of icons in the graphical vocabulary and solve the overload of the two original symbols for
input/output data.

  
(a) 

 
(b) 

Figure 4. Graphic Examples of data symbols with the addition of inner icons according to data types;
(a) symbols for version 2 at the top, (b) symbols for version 3 at the bottom.

4.1.2. Principle of Perceptual Discriminability

The colour, shape, orientation, brightness and other visual variables are what the user uses for
discrimination of symbols in practice. Systematic couple comparison shows the distance between
every two symbols. The visual distance is measured by several different characteristics (number of
visual variables). Pairwise comparison of the version 3 symbols according to this principle is given
in Table 1. In the Processing Modeler, the symbols differ only in colour and brightness, and the
rectangular shape is the same for all symbols. The visual distance is two in all pairs. The characteristics
are poorer in the symbols of the older version 2. The only differences are in colour, and there the visual
distance is one (the difference in brightness is only between the data symbol and operation symbol).
Perceptual discriminability of the symbol through colour is almost satisfactory by differing in tone.
The Processing Modeler does not have the option for the user to define the colour to express other
meanings of symbols, for example, to distinguish the final data and intermediate data in a large model.
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Table 1. Pairwise comparison of graphical symbols and their visual distances.

Pair Symbol 1 Symbol 2 Visual Distance

Pair 1  2 (colour, brightness)

Pair 2 2 (colour, brightness)

Pair 3   2 (colour, brightness)

Considering this principle of perceptual discriminability, the distinctiveness of the white symbol
from the canvas is poor. The model’s canvas and symbol for operation have the same white colour, from
which a new recommendation emerged: change the fill colour for the operation symbol from white
to orange-brown (Figure 5). The result of the pairwise comparison of all symbols in the vocabulary
remains the same. The discriminability of symbol and canvas is better than with the white symbol.

 
Figure 5. Suggested orange-brown fill for the operation symbol used in the workflow.

4.1.3. Principle of Visual Expressiveness

The recommendation according to this principle is to use maximum visual variables in symbols.
Only colour is used as the fill for graphic elements. Other visual variables such as symbol shape, size,
texture, orientation and position are not used in the Processing Modeler. The shape is the same rectangle
for all symbols. The size of the symbols does not vary and cannot be changed. Brightness is used in
version 3 (Figure 3). The new symbol vocabulary is improved by using a greater variation in brightness
between symbols and maybe various shapes of symbols. The visual variable of position is only applied
when the output data symbol is automatically placed near the right side of the producing operation
(Figure 6). This manner of near-automatic placement of output symbols is the same in version 3
(Figure 13). However, the position of the output data symbol is very often changed by the user, which
then moves the operation symbol. The former position of output data remains without following the
symbol of the sourcing process. The mutual position linking the symbol is not fixed. The positioning
of the output data symbol is only a weak and unstable use of the position variable.
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Figure 6. The default placement of blue output data symbols near the producing white operations in
version 2.

The graphical vocabulary is at a low level 1 in a maximum scale of 8 in terms of the principle of
Visual Expressiveness.

The QGIS Processing Modeler does not offer the loop and condition functions. To implement these
functions in order to control operations, the draft offered in this paper uses the visual variables of shape
and colour (Figure 7). The pink rectangle with oblique sides represents the cycle operation, and the
light yellow rhombus represents the condition. These symbol shapes correspond to the classic shapes
of flowchart symbols. In the vocabulary in version 3, these shapes differ from basic rectangular shapes
in vocabulary and colour. By using these new symbols, the number of variables used increases to two.
The total number of symbols would be five in the vocabulary. These symbols fulfil the principles of
Discriminability and Visual Expressiveness. The principle of Graphic Economy would also be fulfilled
(explanation of the principle of Graphic Economy follows).

Figure 7. Draft for loop and condition symbols.

4.1.4. Principle of Graphic Economy

The number of base graphical elements is three, which meets the requirement for cognitive
management and the requirement for a range of 7 ± 2 symbols. Even with all the previous suggestions
for changes with two symbols for the condition and cycle (under the principle of Visual Expressiveness)
and suggestion for a blue symbol for the sub-models (see below in the Complexity Management
principle), the total number of symbols is six. Altogether, the requirement of that principle is fulfilled.
The vocabulary will be economical.
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4.1.5. Principle of Dual Coding

This principle suggests accompanied descriptive text to the symbols. For models in the Processing
Modeler, the text completes the data symbol with the data name and the operation symbol with the
operation name. The user assigns the data name arbitrarily, which is always an input parameter.
The input data symbol is never bound to specific data stored on the storage medium in the model’s
design mode. The name can be edited as desired. The operation name is added to the symbol
automatically according to the selected operation and can also be changed in version 3 (not possible in
version 2). The option to edit the operation name is a good improvement in functionality and allows
the model to be better understood. Renaming the operation is especially advantageous when the
same operation appears multiple times in one model. Therefore, it is possible to describe or specify
the meaning of the operation. Figure 8 depicts a diagram where v.generalize operations are called
three times, but each time with a different generalisation algorithm. The selected algorithm is added
manually by the user to the operation name. The operation name’s editing option improves the clarity
of the model.

 
Figure 8. Default label of white symbols of operation supplemented by the user with the generalisation
algorithm names: Douglas, Reuman, Boyle.

For long names that do not fit into the rectangle, the name is automatically truncated and
completed with an ellipsis (Figure 9). If a Semantic Transparency modification (see below—deletion of
functional icons) were implemented, it would increase the space for longer operation and input data
names, which would be beneficial.

Figure 9. Automatic truncation of the long operation name ending in an ellipsis.

To follow the principle of Dual Coding, modifying the input data labels is suggested. It would
be helpful if labels concerning the data type improved the data symbols by using capitals. Examples
are given in Figure 10. If this is added automatically when symbols are added, the user only need
arbitrarily select the data name. Additionally, the user’s data name (e.g., input lines) emphasises the
spatial type. Manually describing a data type is possible in the current stage of notation. There is a
space for good use of Dual Coding by users in naming symbols. The Processing Modeler meets the
Dual Coding principle; however, comprehensibility could be improved with the proposed modification
by specifying the data type with captioning.
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Figure 10. Suggestions for improving the labels of input data symbols with labels for a data type
in capitals.

The text is still used in the models to list the operation parameters when the plus symbol is
pressed above the operation (Figure 11). After this, the black dot divides itself into several black dots
according to the number of join connector lines. The operation parameter list does not contain the
values of these parameters and often dumps overlapping lines leading to the rectangle. This is retained
in version 3. It would be useful to add a list of specific parameter values here. The current form of
textual information is not useful to users. It is perhaps only useful in terms of expressing which symbol
assigns concrete parameters to the operation.

 
Figure 11. List of the operation parameters of the ‘Variable distance buffer’ with missing values.

4.1.6. Principle of Semantic Transparency

Symbols could be associated with the real meaning of an element according to this principle.
The shape and colour of the symbols do not carry any association; they are semantically general in the
Processing Modeler. This is the same in other visual programming languages for the GIS application.
In those symbols, the inner icon of the plus sign symbol on the input data symbol is used at the
left. The output data symbol depicts an inward arrow icon. Icons can also carry semantic meaning.
These icons can be considered almost semantically immediate. The plus icon indicates new data for
processing. The arrow icon indicates the processing result in a certain direction. However, the previous
proposal under the principle of Semiotic Clarity is useful and also improves semantic immediacy.
It suggests that each data type has an icon, such as in Figure 4 (the plus icon is replaced or is a part
of the compound symbol in version 3). Here, it is clear that the change resulting from applying the
Semiotic Clarity principle also leads to an improvement in Semantic Transparency.

For operations, icons are mainly used to represent the source library. Rather, these icons are
semantically generic because they do not explain anything about the purpose of the operation. However,
these icons are a good guideline for determining the source library. It should be considered that many
libraries contain operations with the same name (clip, buffer, etc.). In the Processing Modeler, version 3
sometimes uses an icon that represents the type of operation (namely for QGIS operations). Figure 5
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shows the operation Dissolve, which has a specific icon that represents this operation. Another specific
icon for the operation ‘Merge vector layer’ is a model in Figure 13. The size and graphics of the icons
are not suitable for improving the association of operation and their meanings. The icons are small and
use only grey tones. A good example of large colour and detailed icons that describe the purpose of the
operation is demonstrated in the Spatial Model Editor (Figure 12) embedded in the ERDAS IMAGINE
software [32]. The icons take up more space than the lower text in the symbol. The icons are prominent.
The graphical vocabulary of the Spatial Model Editor has a high Semantic Transparency. The graphical
vocabulary of the Spatial Model Editor is inspiring for the redesign of Processing Modeler symbols.
The final recommendation is to reshape the rectangle to square to adopt bigger icons and then put the
text label bellow icon.

 
(a) 

 
(b) 

Figure 12. (a) Samples of operation symbols with inner icons that represent the source or library (top to
bottom): QGIS 2, QGIS 3, QGIS 3—specific icon for operation Random points in extent, existing model
Rivers, GDAL, GRASS, SAGA; (b) symbols of operations in the Spatial Model Editor (bottom line).

The graphical vocabulary of the QGIS Processing Modeler has semantic opacity, except for some
operations, where a greater positive semantic immediacy can be observed (Figure 12—a third symbol
from the top: Random points in extent).

4.1.7. Principle of Complexity Management

This principle recommends producing hierarchical levels of the diagram and dividing it into
separate modules and hierarchy. In textual/visual programming, this is achieved with sub-programs
(sub-routines) or sub-models that can be designed and managed separately. The hierarchical model
contains only two levels, no more.

The Processing Modeler allows existing models to be added to other models in the interface—panel
algorithms (Figure 13). This has the right degree of modularity according to Complexity Management
in both versions 2 and 3. The symbol of the model has a three-gear wheel icon (three connected balls
in version 2) at the left of the symbol. Otherwise, a white rectangle is used. Since it would be good
to differentiate the symbol of the individual operation from the sub-model with an icon, a colour fill
other than white would be appropriate. A suggested depiction—blue fill colour for sub-models—is
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shown in Figure 13. The visual resolution of other symbols is maintained. The number of symbols
increases to seven after a new one is added for the sub-model. The final count of seven symbols fulfils
the principle of Graphic Economy.

 

 
(a) (b) 

Figure 13. (a) Groups of existing models that can be added to other models; (b) suggested blue colour
fill for the sub-model.

4.1.8. Principle of Cognitive Interaction

The principle recommends increasing the options for navigating in the model. The connector lines
affect navigation. In the Processing Modeler, round connector lines join symbols. The lines are rendered
automatically. Symbols very often overlap lines when symbols are manually moved (Figure 6). Lines
also sometimes cross each other, and they are not parallel. The user must manually attempt to find
the best position for symbols in order to prevent overlapping and perplexing criss-crossing of curved
lines. Previous research recommended that the number of edge crossings in drawings should be
minimised [33]. For these reasons, curved connector lines do not appear to be the proper solution.
It is often difficult to trace the connector’s direction. A suggested change is to replace curved lines
with straight lines (Figure 14). Straight lines ensure good continuity for reading. Good continuity
means minimizing the angular deviation from the straight line of two followed edges connecting two
nodes [34]. In this new suggestion for the Processing Modeler, straight lines could be optionally angled
at an oblique or right angle when it is necessary to avoid a symbol. An acute angle is not suitable
because of its smooth line tracking. If curved connectors remain in notation, there is necessary to add
the user control over shaping these connectors to prevent crossing and overlapping.

  
(a) (b) 

Figure 14. Replacing curved connector lines (a) with straight connector lines (b).
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Operation symbols linked with lines and a black dot offset from the edge of the symbol
unnecessarily occupy space in the model’s area. It would be possible to terminate the lines directly on
an edge or at the plus sign of the symbol to save space.

Finally, the ability to display a model’s thumbnail in the separate preview window helps to
navigate the model. The preview window has not yet been implemented. In terms of cognitive
interaction, version 3 was supplemented by a zooming function. The functions zoom in and zoom out
in the model was absent in version 2.

Aligning the symbols makes reading the model quicker and easier. No automatic function for
aligning the model to the grid is implemented. Symbols usually snap to a grid in other graphical
software. No snapping function is given in the Processing Modeler. Post alignment to the vertical
or horizontal line of the model could, therefore, be beneficial for design. All arrangement of symbol
positions depends on user diligence, which is entirely manual work in the Processing Modeler.
Manually aligning is a time-consuming activity.

4.2. Evaluation by Eye-Tracking Measurements

The eye-tracking experiment was designed in a complex way to confirm or reject the hypothesis
H1 and H2. All tested diagrams are in Appendix A. The design of the test contain more tasks to find
maximum information. Some models serve for evaluation repetitively for a different purpose, e.g.,
find symbol, compare orientation, or read the labels. After testing only reliable answers and correct
record by eye-tracker were finally evaluated and presented in the article.

The first evaluation concerned the discriminability of symbols. These tasks required finding input
data and output data symbols in the models. The task was: “Click on the symbol where the input data
are” (task A1, A2, A3 in Appendix A). The number of incorrect answers recorded was zero. The next
task was “Click on the symbol where the output data are” (task A4, A5, A6). The wrong answers were
two times 2 (A4, A5), and 4 for task A6. However, model A6 has a big influence of arrangement to
answer. It means that the input and output symbols were nearly high in Perceptual Discriminability, but
the errors report about space for improvements of symbols such as inner icons that are suggested in
Section 4.1. for increasing transparency and using all visual variables.

Besides the number of correct/wrong answers, the time of the first click was recorded.
The distribution of times had not normal distribution (tested by Shapiro-Wilk test). Non-parametrical
test Kruskal-Wallis tested if the medians of the “first click time” of all tasks (A1–A5) is equal.
Kruskal-Wallis tested whether time samples originate from the same distribution. The result of the
statistical test revealed the there is no significant difference between finding the symbol of input and
output. It means that basic symbols are discriminable and none of them is dominant in perception.

The next task aimed to verify the influence of Dual Coding (but the influence of the discriminability
present). The task was: “Click on the symbol where the ‘Fixed Distance Buffer’ operation is called” (task
A13, A14, A15). Once again, it was necessary to find the white symbol and read the labels in the
symbols. A total of 21 correct answers were recorded (one incorrect). The results for 22 respondents
were calculated as an attention heat map (Figure 15). The heat map expresses the calculation of places
where the peaks of gaze fixations are by all respondents. The figure shows that all white symbols
correctly attracted the gaze of respondents. Respondents searched for white operation symbols and
then read a particular operation label. The highest attentions were recorded at the two places where the
Fixed Distance Buffer operation was (top and bottom). Next, the lower peaks of fixations are at another
white symbol with the different operation. It is evident that white colours of operation attract the gaze.
Both principles of Visual Expressiveness (and also Perceptual Discriminability), by using white colour fill,
and Dual Coding were verified. In fact, this stimulus did not confirm the poor distinguishing of white
symbols from a white canvas. The poorest distinguishing result was expected in the theoretical part of
this article.
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Figure 15. Attention heat map for the task to find the ‘Fixed Distance Buffer’ operation.

The principle of Semantic Transparency was difficult to test. The transparency of the icons was
tested with the task: “Are all operations from the same source library?” The tested model is shown in
Figure 16 (Appendix A16, 17, 18). Three incorrect answers were recorded from 22 respondents.

 
Figure 16. The model with different source libraries of operations in a diagonal arrangement.

Semantic Transparency of data types was only possible to solve in the Processing Modeler with
expressive text. This was verified in a model where the task was: “Does the input data have the same
data type as the output data?” (A10, 11, 12). The data symbols were labelled with the words “table”
and “raster” as a part of the data name in the model. It is “user design help” to the respondents
to distinguish the data type. The number of incorrect answers was three for two models and two
incorrect answers for A11 task. In these models, the response time was longer than the previously
presented models and tasks. The average time of fixation was also longer. It verifies the necessity
of reading labels by users. The solution of semantic transparency by text label consume more time
for comprehension. The longer times confirms the hypothesis H2 about negative influences of
insufficiencies to effective comprehension.

Both of the experiments mentioned above (about source library and the comparison of the data
type of input and output data) verified that Semantic Transparency was low in the Processing Modeler.

The results about the number of correct and incorrect answers in all tasks presented in this section
report that some insufficiencies adversely affect the cognition as it is stated in hypothesis H1.

From eye-tracking testing, we received not only cross-validation of results by Physics of Notations
but other new information. The interesting information was finding the reading patterns and influence
of flow orientation to the respondent reading directions. To find the reading pattern of users, gazes
were aggregated. A comparison of the same diagram from the free viewing section and a section
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with tasks is given in Figure 17. Aggregations in both cases revealed that the orientation of data flow
expressed by connector lines had a significant influence. Reading began in the middle of the stimulus
according to the middle fixation cross in the previous stimulus. Gazes were attracted to the upper left
corner and continued horizontally to the right. People’s habits of reading lines of text were very strong,
especially in free viewing (Figure 17a). The lower part of Figure 17b also depicts strongly followed
lines. Only a small number of gazes skips between two main horizontal workflow lines. Free viewing
was not as systematic as task-oriented gaze aggregations.

 
(a) 

 
(b) 

Figure 17. Aggregate directions of scanpaths of respondents in the model during free-oriented reading
(a) and task-oriented reading (b).

Two models tested the effect of symbol alignment in the model. This finding can be linked to the
principle of Cognitive Interaction. The first model had aligned symbols; the second model had no
aligned symbols. The functionality was the same. The question was the same for both models: “How
many functions are in the model?” (task A8, A9). It was enough to count only the white rectangles in
large models. The number of the expected correct answers was eight. The first aligned model recorded
two incorrect answers and the second recorded seven. The average task time was much shorter in
the first tasks. The non-parametrical Kruskal-Wallis test was used for eye-tracking metrics due to
non-parametrical distribution of measured values. It tested if medians of groups are equal means they
have the same distribution [35]. The significance level for all Kruskal-Wallis tests was set to p-value
0.05. The test was run three times for several fixations, scanpath lengths and number of fixations
per second. The test compared tree measured values for the aligned and non-aligned model (A8
and A9). Kruskal-Wallis test found statistically significant differences for all metrics: the number of
fixations, scanpath lengths, and number of fixations per second. The model where the symbols were
unaligned showed much worse values for all metrics (task A9). Therefore, aligning the symbols in the
model made it easier to read and understand the model. This eye-tracking evaluation supports the
recommendation for the new function of the automatic alignment of symbols in this graphical editor.
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Three groups of models with the same functionality were prepared to test the orientation of flow and
find if any orientation is better for users. The models in each group differed only by orientation. Three
orientations were tested: vertical, horizontal, and diagonal. Comparing the orientation could be also
assumed as a contribution to the principle of Cognitive Interaction. An example diagonal orientation
of flow in a model is shown in Figure 16, horizontal in Figure 17. Variations of these models with
three types of orientations were designed. The triplets are [A10, A11, A12], [A13, A14, A15], [A16,
A17, A18] in Appendix A. To prevent the bias, the same task was in each group. The aim was to find
the best model orientation. The results from a Kruskal-Wallis test were not statistically significant. In
some cases, horizontal orientation had the shortest average time of solution. In some models, diagonal
orientation was better in average times of fixation, and horizontal models had the shortest scanpath
length. The results were completely ambiguous, and the orientation preferences were not the same in
all triplets. There is certainly a great deal of effect depending on the given question and model sizes.
Eye-tracking did not reveal the best orientation of flow.

5. Results

Research into the QGIS Processing Modeler brought useful results and suggestions.
The combination of Physics of Notations theory and eye-tracking measurements determined that
Perceptual Discriminability, Dual Coding and Graphic Economy were nearly good with space of
improvements. The worst situation is in Semantic Transparency. Some of the recommendations can
help improve Semiotic Clarity, Visual Expressiveness and Semantic Transparency.

All recommendations can be divided into two groups. The first group is for developers of the
Processing Modeler and the second for users in practice. Suggestions for the first group for larger sizes
and colours for inner meaning icons increased the Semantic Transparency. This solution also increased
the Semiotic Clarity of symbols. Another suggestion for improvement was adding colour fill to the
operation symbol of sub-models. Straight connector lines are better than curved lines, optionally users
shaped lines are more suitable. New symbols for IF and loop FOR commands were based on new
shapes and different colours. The readability of models improved the automatic alignment function of
the symbols to the grid.

Users can benefit from some recommendations in practice. Correct labelling of symbols and
expressing data types in capitals (VECTOR, RASTER, STRING, NUMBER, etc.) is very useful. Aligning
symbols, preventing overlapping, and crossing of lines improved the effective comprehensibility of a
model. Design and using of sub-model fulfil the Complexity Management principle. There is a space
for user broader use of sub-models. Reading speed increased in one type of orientation (horizontal
or diagonal) without any changes to one of the flow direction. These user recommendations were
presented to students attending lectures at the Geoinformatics department at the Palacký University in
Olomouc every year. The author of the article has had a positive experience in applying the knowledge
acquired by the teacher in research and solving practical problems. This positive teacher experience
is described in an article about the database design for the university’s botanical gardens (BotanGIS
project) [36].

The presented evaluation and list of suggestions could assist by inspiring designers of visual
programming languages in GIS software. Some recommendations could also be useful for the broader
community of users to increase effective cognition of any graphical depiction.

Table 2 reports all findings and recommendation in summarised form, and concrete graphical
improvements are in the figures of the article.
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Table 2. List of principles, level of satisfaction by Physics of Notations, eye-tracking findings, and
recommendations for Processing Modeler v.3.

Principle
Physics of Notations

Evaluation
Eye-Tracking Results Recommendations

Semiotic Clarity Symbols of data are
overloaded.

Some wrong answers
indicate an overload.

• Add various icons in symbols of data types.
• Add all icons for spatial functions.

Perceptual
Discriminability Visual distance is 2. No dominant symbols in

perception.
• Change the colour of the operation to orange.

Visual Expressiveness Level 1, the only colour is
used as visual variables.

Some wrong answers
indicate weak
expressiveness.

• The new pink symbol for loop and light yellow
for the condition symbol. It increases
expressiveness to level 2.

Graphic Economy 3 symbols fulfils the
economy.

Only some wrong
answers.

• With the addition of new symbols, a total number
of 7 fulfil better the economy.

Dual Coding Good possibility to change
the text.

The text helps users find
the proper symbols.

• User renaming to express the data type. User
supplement the operation name with some other
information about parameters.

Semantic Transparency Semantically general Low

• Remove functional icons on the right side.
• Add larger sizes inner domain-specific colour

icons like in the Spatial Model Editor.
• Reshape the rectangle to adopt bigger icons and

put the text label bellow icon.

Complexity
Management

Modularisation to
sub-models is possible.Only
one level in the hierarchy.

Not tested • Change the colour of a sub-model to blue.

Cognitive Interaction
Unmanageable crossing and
overlapping of lines worsen
interaction.

The arranged model has
lower time, scanpath,

• Straight lines or curved user lines
• Add ending arrow to lines.
• Add preview window.
• Add the function of the automatic alignment.

Cognitive Fit Dialects are missing Not tested
• In the area of GIS users, dialects have not to sense

to make them.
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Appendix A

Eye-tracking experiment: List of tasks and models from QGIS Processing Modeler

The appendix presents the list of models and assigned tasks that were used in the eye-tracking
experiment. The order of models was random in testing.

Note 1: All models were also used in the first part of testing – free viewing part

1. Symbols for data and operations (testing of discriminability)

Task A1. Click on the symbol where the input data are.
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Task A2. Click on the symbol where the input data are.

 

Task A3. Click on the symbol where the input data are.

 

Task A4. Click on the symbol of output data.

 

Task A5. Click on the symbol of output data.

 

Task A6. Click on the symbol of output data.
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Task A7. How many functions are in the model? (Correct answer 8)

 

Task A8. How many functions are in the model? (Correct answer 8)

 

Task A9. How many functions are in the model? (Correct answer 8)
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2. Test of dual codding

Task A10. Are the input data the same type as output data?

 

Task A11. Are the input data the same type as output data?

Task A12. Are the input data the same type as output data?
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Task A13. Click on the symbol where the ‘Fixed Distance Buffer’ operation is called.

 

Task A14. Click on the symbol where the ‘Fixed Distance Buffer’ operation is called.

 

Task A15. Click on the symbol where the ‘Fixed Distance Buffer’ operation is called.
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3. Test of inner icons (semantic transparency)

Task A16. Are all operations from the same source library? (Correct answer No)

 

Task A17. Are all operations from the same source library? (Correct answer No)

 

Task A18. Are all operations from the same source library? (Correct answer No)

 



Appl. Sci. 2020, 10, 1446

4. Other tested models and tasks

Task A19. What operation is used? (Correct answer: Clip)

 

Task A20 What operation is used? (Correct answer: Fixed Distance Buffer)

 

Task A21: Click on the symbol of operation.

 

Task A22: Click on the symbol of operation.
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Abstract: Geo-sensor is the term used for the deployment of a wireless sensor network (WSN) in a real
environment, which can be a hideous task due to many influential variables in a given environment.
The spatial context of a sensor in a smart environment can be of huge significance and can also play an
important role in improving the smart services provision. In this work, we propose a DIY geo-sensor
framework and data composition toolbox for the deployment of sensors data in smart IoT environments
along with geographical context. A geo-sensor framework is deployed, which enables the registration
of multiple geo-sensor networks by providing multiple geo-sensor platforms. The framework’s logic
is based on the combination of a geo-sensor service registry, geo-sensor composition toolbox, and
geo-sensor platforms. A geo-sensor platform provides the content to the toolbox, enabling relaxed
real-time geo-sensor data management. Our proposed work is two-fold. Firstly, we propose the
design details for the geo-sensor framework and composition toolbox. The proposed design for
the geo-sensor framework aims to provide a DIY platform for multiple geo-sensor networks and
services deployment, giving access to multiple users resulting in reuse of resources and reduction in
deployment costs by avoiding duplicate deployments. Secondly, we implement the proposed design
based on RESTful web services and SOAP web services. Performance comparison analysis is then
performed among the two web services to find the best suited implementation for given scenarios.
The results of the performance analysis prove that RESTful web services are the better choice for ease
of implementation, access, and light-weightiness.

Keywords: geo-sensor framework; geo-sensor platform (GIS); sensor networks; do-it-yourself (DIY)

1. Introduction

A system designed to integrate and display the spatial data of “things” is called a geographical
information system (GIS) [1]. GIS also enables the user to store, edit, analyze, and share the geographical
data of a given entity. GIS represents data in a useful and meaningful way for users to understand and
utilize, also enabling the users to process large amounts of data. Wireless sensors networks (WSN)
produce large amounts of data, which is processed for different purposes and intelligent decision
making. Integrating the WSN with GIS can make the task of analyzing the data gathered by WSN
more evocative for the users to process and analyze [1].

Geo-sensor is the deployment of a wireless sensor network (WSN) in a real environment, which
can be a hideous task due to many influential variables in a given environment. A wireless sensor
network is a combination of spatially distributed wireless devices that are deployed to monitor physical
or environmental conditions such as temperature, light, sound, and humidity. These wireless devices
have sensors to collect data from the surrounding environment and pass the data onto some main
location. Each wireless device also has a transmitter and a receiver, which are used to communicate
with other wireless devices or gateways within a network. The gateway, also known as middleware,
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transfers the sensed data to the main location, which logs in the data, and the data is then available to
view, process, and analyze via the user interface [2].

Physical sensors from sensor networks are uploaded as virtual sensor objects with sensor profiles
created and stored in the databases. These sensor profiles are then used to extract the sensors’ types,
values, and environmental scenario contexts along with the geographical contexts based on the physical
locations and location based constraints and parameters. The geo-sensing services are then created by
combining the sensors’ contextual information and geographical contextual information; based on
each systems requirements and scenarios. Figure 1 shows the conceptual overview of the geo-sensor
networks’ services formation.

 

Figure 1. Conceptual overview of geo-sensor networks and services.

Geo-sensor applications and services are of huge significance and are applied to multiple scenarios
and environments based on the contextual information. We can conclude from our literature review
study, presented in Section 2, that little effort is made in proposing standard designs for geo-sensor
frameworks for multiple geo-sensor network deployment and service creation; where the user gets
the freedom of uploading their networks based on multiple locations and contextual information and
creating and using the services accordingly.

Such systems where more freedom is given to the users are termed as DIY (do-it-yourself) systems.
Recently, DIY approaches for IoT (Internet of Things) applications have gained much hype. The concept
of IoT can be simply put as connecting “things”, such as objects and entities, to the internet and making
them smart. The concept of DIY was first proposed in 2011 [3], and multiple approaches have been
proposed in recent years for DIY virtual services in IoT networks [3–10]. Specifically in the geo-sensing
category, not much work has been done for DIY implementation except for one recently started project
named as community-centered urban sensing (CCUS) and DIY sensing devices [11], which collects
environmental sensing data, visualizes the data and aims to develop customized digital infrastructure
for empowering communities for better sensing their environments, and voicing their opinions by
taking part in feedback process. The project is still limited in visualization and analysis of sensing data
and in its preliminary stages.
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Hence, a DIY geo-sensor framework for the deployment of geo-sensor networks, where multiple
users could upload their geo-sensor platforms and extend access of use to other users, can pave ways
for unlimited potential in geo-sensor applications and research fields.

In this work, we propose a geo-sensor framework that can be used by multiple clients to deploy
their own geo-sensor networks, bind their sensor objects to desired locations based on DIY, generate
geo-sensor services for the uploaded networks, and manage the services with a geo-sensor composite
toolbox. The availability of such a platform will allow the ease of deployment and management for
the geo-sensor networks and also the reuse of geo-sensor services. The deployed geo-sensor platform
and its services can be reused by authorized users in different scenarios, with the online availability of
the geo-sensor framework. This also reduces the deployment cost in scenarios where such deployed
networks and services can be reused, as an alternative to additional deployments. It will also reduce
the deployment redundancy. The proposed work offers the following novelty points as

• Ease of deployment for geo-sensor networks based on DIY,
• Multi-platform geo-sensing services generation,
• Independent geo-sensor composite toolbox for ease of management,
• Visualization tool for users,
• Removing redundancy.

The multiple spatial context service platforms use the sensor profile information and geographical
context of the service to create geo-sensor services. We present the detailed system design for the
deployment of geo-sensor framework, geo-sensor composition toolbox, and geo-sensor multiple spatial
services platforms for the wireless sensor networks. The proposed system is implemented using
both the RESTful web services and SOAP web services. RESTful web services allocate URI (Uniform
resource identifier) to each resource and use basic CRUD operations over HTTP for making the interface
uniform throughout and are simpler to implement.

The rest of the paper is divided as follows; Section 2 gives an overview of related work. Section 3
presents the system design for a geo-sensor framework and multiple platforms deployment based on
the geo-sensor framework. In Section 4, the implementation of the proposed framework is presented.
In Section 5, we give a performance analysis of a system based on system queries and access times,
and Section 6 concludes the paper.

2. Literature Review

The proposed work falls under the category of contextual sensing. All physical objects (e.g.,
sensors, actuators, things) or human beings have some context attached to them in a given scenario.
The context can be defined as “any information that can be used to characterize the situation of an
entity [12]. The context of an entity can be either external or internal; external contexts are perceived
from the physical environment, such as sensing values from sensors or the location from GPS, whereas
internal contexts are customized individual level contexts within a system [13]. In our proposed work,
we focus on the external context as our scope is limited to geo-sensing services.

One of the subcategories for applications of geo-sensors is the spatiotemporal contexts based
services. The term spatiotemporal means belonging to both space and time; hence, the application
of spatiotemporal is not just limited to the extraction and use of physical locations contexts [14,15].
Many studies have been presented based on the applications of spatiotemporal with other attributes
added to the given physical locations based on the specific time; such as effect of weather conditions
at a given time at a location, such as rainfall on the mobility pattern in a city [16,17], or the effect of
environmental conditions, such as air quality on the traffic flow within a city [18]. The work presented
in [19], discusses and analyzes the contextual sensing based on integrating contextual information with
human and technical geo-sensor information for smart cities. The authors highlight the significance of
contextual information and discuss the challenges regarding spatiotemporal contextual information.
Three groups of sensors are discussed along with the three dimensions of sensing as data generation,
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geographic phenomena, and type of sensing. The authors aim to explore the use of geo-sensing
capabilities and contextual information integration for the future development of smart cities.

The sensors can be of various types, and, hence, their applications vary depending on the type of
sensor and context of the sensor. Common terms used for different sub-types of sensors are mentioned
as environmental sensors, mobile sensors, and pervasive sensors and people as sensors [19]. Multiple
works based on sensing categories and contextual information has been presented. In environmental
sensors, some contextual studies include flood monitoring [20,21], air quality monitoring [22–26], and
weather [27,28]. In mobile sensors, some of the contextual studies presented include wearable ambient
sensors applications [29–34]. In pervasive sensing, some contextual studies include smart-aware
environments/homes, assisted living [35–42], healthcare [43–45]. In people as sensors, some of
the contextual studies include flood monitoring [46,47], sensing platforms for smart cities [48–54],
healthcare [55–59].

Very few studies have presented and proposed the design and implementation of a GIS toolbox.
The work presented in [60] proposes an adaptive GIS toolbox for hydrological modeling. In order
to increase reusability and portability, the modules are programmed in an object-oriented fashion.
The tasks of modeling elements of the hydrological cycle can be done using the toolbox, and it
also supports different temporal and spatial scales. The presentation of the spatial, temporal, and
geographical data is done using GRASS. The work presented in [61] proposes a landscape genetics
GIS toolbox. It maps the genetic landscapes and summarized multiple genetic landscapes. Genetic
diversity can be visualized using these tools. Together, these tools create genetic landscape surfaces
directly from tables containing genetic distance or diversity data and sample location coordinates,
greatly reducing the complexity of building and analyzing these raster surfaces in a Geographic
Information System. The work in [62] presents the principal strategies of object-oriented analysis,
discusses how the combination with fuzzy methods allows implementing expert knowledge, and
describes a representative example for the proposed workflow from remote sensing imagery to GIS.
The strategies are demonstrated using the first object-oriented image analysis software on the market,
e-Cognition, which provides an appropriate link between remote sensing imagery and GIS. The study
in [63], demonstrates that the integration of satellite remote sensing and GIS was an effective approach
for analyzing the direction, rate, and spatial pattern of land-use change. The further integration of
these two technologies with Markov modeling was found to be beneficial in describing and analyzing
land-use change processes. These wireless devices have sensors to collect data from the surrounding
environment and pass the data onto some main location. Each wireless device also has a transmitter
and receiver, which are used to communicate with other wireless devices or gateway within a network.
The gateway, also known as middleware, transfers the sensed data to the main location, which logs in
the data, and the data is then available to view, process, and analyze via a user interface. The work
in [64], reports an investigation into the application of the integration of remote sensing and geographic
information systems (GIS) for detecting urban growth and assessing its impact on surface temperature
in the region. Remote sensing techniques were used to carry out land use/cover change detection by
using multi-temporal Landsat Thematic Mapper data. Urban growth patterns were analyzed by using
a GIS-based modeling approach. The integration of remote sensing and GIS was further applied to
examine the impact of urban growth on surface temperatures.

3. Geo-Sensor Framework

In this section, we present our proposed geo-sensor framework’s design and implementation
modules along with configurations.

Figure 2 shows the conceptual diagram for the geo-sensor framework for the deployment of
multiple platforms. The data collected from the sensor networks is first passed onto the sensor
middleware, where the sensor network’s mapping to a dedicated sensor platform is done. Then, the
data is passed onto the sensor platform via sensor middleware. Each sensor network’s spatial context is
managed at a Geo platform. At the geo-sensor composite toolbox, the assistance for the DIY geo-sensor
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network’s deployment is provided. Geo-sensor framework integrates the services provided by the
geo-sensor composition toolbox and geo-sensor platform to enable the geo-sensor services provision
and the network’s visualization for the client end.

Figure 2. Geo-sensor framework conceptual diagram for multi-platforms.

3.1. Geo-Sensor Framework and Geo-Sensor Platform Generation

In this sub-section, we present the system design for our proposed geo-sensor framework and
multiple geo-sensor platform generation.

In Figure 3, we present the detailed configurations diagram for the proposed geo-sensor framework
module interactions for multiple platform deployment. A geo-sensor framework offers a main service
of geo-sensor content service. The geo-sensor content service has logical implementation for sensors
involved in the network and geographical context of the sensors provided by sensor content service and
geo content service, respectively. The sensor content service offers a sensor information manager and
sensor’s middleware configuration manager. The geo-sensor framework has a virtual sensor platform
at one end, from where the sensor network’s information is passed to the framework. It creates the
sensors networks’ profiles using the geo-sensor composite toolbox, which is later also visualized to the
client end for client-level updates. Each time a service is created at the geo-sensor framework, it has
to be registered at the geo-sensor service registry to maintain each sensor network’s detailed history
log. The geo-sensor framework eventually deploys the multiple geo-sensor platforms for multiple
networks by mapping each of the network’s information to its respected platform using the geo and
sensor content services, geo-sensor composite toolbox, and geo-sensor service registry.
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Figure 3. Proposed geo-sensor framework configuration.

Geo-sensor content service handles the deployment logic for the spatial context of the sensors in
the sensor network. It then maps the spatial contextual information at the geo platform module in and
sensor information at the sensor platform in order to generate an integrated geo-sensor platform for
the given sensor network. The mapped information at the geo-sensor platform is processed at the
geo-sensor composite toolbox for maintaining the spatial context-based sensor profile for the sensor
networks. Once the spatial context-based profiles are completed, the information mapped onto the
geo-sensor platform is ready for the client visualization client services’ provision. The geo-sensor
provider service at the geo-sensor platform handles the GIS service provision deployed at the geo
platform sub-module and sensor service provision deployed at the sensor platform sub-module.
The integrated logic of both the sub-modules enables the geo-sensor profile visualization and service
provision to the client; for the spatial context-based sensor networks’ profile queries (Figure 4).
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Figure 4. Proposed geo-sensor platform configurations.

Figure 5 depicts the flowchart for the generation of the geo-sensor platform. Firstly, the sensor
network addition request is made by the client. Once the sensor addition request is made, the
middleware allocation to the sensors involved in the network is done. The physical sensors ID
mappings are done to the virtually generated IPs. Next, the spatial context profile for each sensor
involved in the network is created. The spatial context-based profiles include the sensor model and
type information as well as the sensor’s geographical information. After creating the profiles, the
content services are registered at the service registry, and, finally, the geo-sensor platform for the added
sensor network is deployed, along with the services provision, at the client view.

Figure 6 shows the sequence diagram for geo-sensor service provision based geo-content service,
sensor content service, geo provision service, and content provision service. The sensor data is passed
onto the content service via sensor middleware. First, the middleware configurations are performed,
and then sensor readings, after a certain interval, are sent to the sensor platform. The client query
regarding sensor network is passed onto the sensor provision service under a geo-sensor platform, and
the client query regarding the spatial context of the sensor is passed onto the geo provision service in
the geo-sensor platform. The edit queries from the client are passed onto the content service, which
interacts with the geo-sensor toolbox and performs the edit operations and sends a response back.

3.2. Geo-Sensor Composite Toolbox

In this sub-section, we present the geo-sensor composite toolbox module of the proposed system.
The geo-sensor composite toolbox has a vital role in the overall system. It provides the

basic functionalities, which enable the client to add a sensor network along with its’ geo-spatial
context and also manages the network remotely. It has three functioning sub-modules as geo-sensor
information manager, middleware information manager, and service information publishing (Figure 7).
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The geo-sensor information manager generates the spatial contextual based sensor profile for the sensor
network and creates the geo-sensor profile handler for the content services access in the geo-sensor
framework. The middleware manager generates the middleware mapping information for each sensor
platform and creates the access handler for the geo-sensor framework. Service information publishing
generates the service scripts for each added sensor network.

A geo-sensor profile is composed of building information, floor information, and room information
with marks on a map image representing the geographical location of the physically installed sensors.
It also contains the physical sensor mappings for the virtual platforms and detailed sensor information.
The geo-sensor profile provides the geo-sensor query functionalities as add geo-sensor network data,
access geo-sensor network data, update geo-sensor network data, or delete geo-sensor network data.

 

Figure 5. Geo-sensor platform’s generation procedure flowchart.
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Figure 6. Geo-Sensor Service Provision Service Sequence Diagram.

 

Figure 7. Geo-sensor composite toolbox configuration.
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Figure 8 shows the sensor database entity relationship diagram. In the sensor database, we
have sensor information, sensor type information, sensing data, sensing list, sensing category, and
middleware information. Sensor_Information table saves sensor information. Sensing_List table saves
the sensor’s sensing type. Sensing_Category table saves detailed information about sensing type.
Type_Information table saves the sensor’s type. Sensing_Data table saves sensing data.

 
Figure 8. Sensor database relationship diagram.

Figure 9 shows the geo database entity relationship diagram. In the geo database, we have
map information, map percent information, map data, building information, building mark, floor
information, floor percent, room information, and room mark. Map_Informaiton table saves total map
information (map size, minimap, minimap size, etc.). Percent_Information table saves the percent
image information for the total map image (10%–100% reduced total map image size information).
Map_Data table saves the total map image data. Building_Information table saves building information.
Building_Mark table saves building area information. Floor_Information table saves floor map (map
size, minimap, minimap size, etc.). Floor_Percent table saves the percent image information for floor
map image (10%–100% reduced floor map image size information). Floor_Data table saves floor map
data. Room_Information table saves room information. Room_Mark table saves room area information.
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Figure 9. Geo database relationship diagram.

4. Implementation

In this section, we implement the proposed architecture for the geo-sensor framework and
multi-platform deployment. The sub-sections below illustrate the implementation environment, APIs
(Application Program Interface) developed for the platforms, system implementation output, and
benchmarking environment.

4.1. Implementation Environment

The implementation environment is shown below in Table 1. We have implemented RESTful
based web-services on the windows net framework and web-based application client.

Table 1. Implementation environment of this system.

Components Version

Operation System Microsoft Windows 10 pro (×64)
Microsoft Visual Studio 2015

Microsoft SQL Server Management Studio 2016
Intel System Studio IoT Edition 2017

Putty.exe 2014
Yocto Linux 2014

Intel Edison with Kit for Arduino 2014

4.2. Implemented System Output

In this sub-section, we present the implementation results of our proposed geo-sensor framework
and platform deployment based on the geo-sensor composite toolbox.

In Figure 10a, the execution screen for the sensor platform’s sub-module is presented, while in
Figure 10b, the execution screen for the geo platform’s sub-module is presented. In Figure 10c, the
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geo-sensor framework’s deployed available geo-sensor platforms’ list is given. Figure 10d shows the
geo-sensor platform screen after the selection of the “computer department platform” in Figure 10c.
The geo-sensor platform screen shown in Figure 10d has a full map view of the Jeju National University
with a selected department highlighted to navigate through its floor for accessing to geo-sensor
provision services.

  

(a) (b) 

  

(c) (d) 

Figure 10. Geo-sensor platform service initiation deployed by the geo-sensor framework: (a) sensor
platform sub-module; (b) geo platform sub-module; (c) geo-sensor platforms view; (d) selected
geo-sensor platform.

Once a geo-sensor platform is selected, as shown in Figure 10c, the client can either view its
geographical based sensor details or head to the composition toolbox. Figure 11 shows the spatial
context-based visualization of installed sensors at the selected geographical location. Once the client
selects onto a specific sensor placed at a specific location onto the map, the client can view detailed
sensor information, such as sensor name, sensor key, sensor location, sensor work state, and the
sensor’s current readings.
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Figure 11. Geo-sensor visualization for Internet of Things (IoT) environments.

Figure 12 shows the geo-sensor composite toolbox execution screen for building information
management (Figure 12a) and floor information management (Figure 12b). The composition toolbox
enables services for making changes, such as the addition of new sensors network, deletion of sensor or
map data, or updating of sensor or map data. Figure 12a shows the building information management
screen where the client can get overall building information, such as building map information or the
building’s floor information. In order to navigate to a particular floor, the client would select the floor
number from the building map, as shown in the highlighted region A in Figure 12a. After selecting the
floor number, the client would navigate to the floor information management, as shown in Figure 12b.
Within floor information management is detailed room-wise floor information along with available
sensors in each room. Upon clicking a room, the client would get the option to bind a sensor onto the
selected location. On clicking the binding sensor option, the client would navigate to the execution
screen shown in Figure 12c. The client can bind a new sensor at the selected spot or delete/update an
existing one.

  
(a) (b) 

Figure 12. Cont.
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c) 

Figure 12. Geo-Sensor composite toolbox execution screen: (a) building information management; (b)
floor information management; (c) sensor binding.

5. Analysis Results

In this section, we present the performance analysis and comparisons for our proposed geo-sensor
framework for IoT environments. In Section 5.1, we present the analysis for the geo-sensor framework
and geo-sensor toolbox performance in terms of response times, upload execution times for virtual
objects (VOs) of the sensor, and geo-sensor services access response time.

We have implemented the proposed system based on both SOAP and RESTful web services,
and in Section 5.2, we present the comparisons among the RESTful and SOAP web-services
based implementations.

5.1. Geo-Sensor Framework Performance

In Figure 13, we evaluate the connection request response time from the geo-sensor framework for
selected geo-sensor service visualization. The service visualization will load the geo-sensor network
with a loading site map along with the sensors list, details, and available controls. In order to test the
geo-sensor service access and visualization response time, multiple access attempts are made to the
service. It takes around 231.74 ms to access the service visualization, which seems to be a reasonable
amount of time for the proposed scenario.
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However, the tested services are for loading the mini-map visualization, sensors involved along
with the details of each sensor, sensor images if available, and sensors’ states. For viewing the total
map, a separate request is made further.

In Figure 14, we compare the execution time results for the total map size loading process in
comparison to the mini-map size loading process.
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Now, we test the response time for multiple services access by multiple users at the same time
to evaluate the system performance under-load scenario. Figure 15 presents the comparison of the
connection request response time made from multiple users to access multiple services at the same
time. The service access and visualization have to be loaded for multiple requests simultaneously in
this scenario. We have evaluated multiple geo-sensor service access with a varying number of requests
and varying number of active services. In the graph below, we can clearly observe that as the load of
access requests and active sessions increases, the delay in responses the system witnesses, and, hence,
the response time also increases. In our performed evaluation scenarios, the maximum execution time
under 51 requests and 10 active users turn out to be around 3880.63 ms, and the average response time
for the system under varying load scenarios turn out to be 1558.16 ms. Hence, the system response
time under the worst load scenarios have delays up to a maximum of around a little less than 4 s,
and on average, with varying load scenarios, remains around 1.5 s. We can safely say that the overall
system performance under varying loads is tolerable, considering system service load requirements.
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5.2. Performance Comparisons for RESTful and SOAP Based Web Services Implementation

In this sub-section, we evaluate the performance of system operations executed based on RESTful
web services in comparison to the execution based on SOAP web services.

In Figure 16, we present the comparison results for geo context-based sensor binding process
between RESTful and SOAP implementations. It shows the time taken in order to bind a sensor object
onto a geographical location in the specific position of the given map. We can observe a clear difference
and decrease in the execution time taken by the RESTful based services as compared to SOAP, which
proves the RESTful based implementation to be better in the given scenario.
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Figure 16. Execution time comparisons for geo-context based sensor binding.

In Figure 17, we present the map navigation query’s response time comparisons based on pixel
movement between the REST and SOAP implementations of the proposed framework. Each time the
client navigates the map view, new blocks of maps are loaded depending on the move. It shows the
comparison of the experiment results for loading the map move data from the geo sub-module and
sensor data onto the moved location from the sensor sub-module. The data from the geo sub-module
and the sensor sub-module are loaded via the geo-sensor platform and deployed by the geo-sensor
framework. Every time, both the protocols, SOAP and REST, are tested with the same interval of
move operation as a move of 100 pixels, 150 pixels, 200 pixels, 250 pixels, 300 pixels, 350 pixels, and
400 pixels. The results in response to each move operation for both the web services implementations
are recorded in terms of the response time by the geo-sensor platform. The results clearly show that
REST based web services outperform the SOAP based web services.
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In this sub-section, we can conclude that REST is better in performance in comparison to SOAP
for our application. The REST web services perform better through caching the information, and REST
also allows the use of JSON, which provides faster data parsing. With JSON, REST offers better service
to the browser uses. Also, our proposed framework is web-based and uses JSON. Table 2 provides a
comparison between REST and SOAP web services.

Table 2. SOAP web services vs. REST web services.

Work SOAP REST

Style Protocol Architectural style
Function Function driven Data driven

Data Format XML Diverse data formats (e.g., JSON, plain text, HTML, XML)
Security WS-Security and SSL SSL and HTTPS

Bandwidth More resources Fewer resources
Data Cache No Yes

6. Discussion and Conclusions

In this work, we first study the geo-sensor networks and geo-sensor services and present a user
flexible DIY geo-sensor framework, which can be used for virtually uploading the geo-sensor networks’
objects and services in the cyber world. The proposed work first focuses on the design of a geo-sensor
framework based on multiple sensor platforms and geo platforms instances for the deployment of
multiple geo-sensor services to the geo-sensor framework. Every time a user wishes to upload a
geo-sensor network to the geo-sensor framework, the user gets dedicated instances of the sensor
platform and geo platform for uploading of the geo-sensor network and geo-sensor services. Once
uploaded, the authorized users can access the available geo-sensor services via the geo-sensor platform.
The proposed framework provides real-time context data management using the geo-sensor composite
toolbox. Using such a setup, it is possible to easily add other systems providing sensor nodes and map
the information to the geo-sensor platform in order to make the geo-sensor networks easily accessible
and manageable.

Many works and projects have been done in geo-sensing, mainly focusing on the goal of collecting
real-time spatial and environmental data. Most of these studies relied on volunteers for the data
collection process [65,66]. The people-centric sensing involved the data collection done by people
carrying mobile sensors to various locations [67]. Many of the proposed approaches were one way
or the other, solely for the benefit of specific entities, companies, or organizations trying to carry out
research of data collection for their specific purposes. Zhang et al. [11] pointed out this fact and started
a DIY project (CUSS) with an aim to involve people in not only the data collection process but also in
the decision-making process based on the collected data. The project CUSS is in its initial stages and
has limitations in its definitions and applications. The users in CUSS are also not provided with the
facilities of creating their own geo-sensor services and managing them via a geo-sensing composite
toolbox, instead, the CUSS is currently more focused on data collection by DIY VOs created by users.
It provides a sensing visualization for a smart city’s overall environmental picture and smart city
decisions. Whereas, we provide a framework that users can use to create their own scenario-based
virtual geo-sensor networks by binding the objects as VOs and service creation. Table 3 shows the
comparisons of our deployed framework and CUSS.
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Table 3. Operations and services provision comparison from user-level.

Work
Bind

Geo-Sensor
VOs

Geo-Sensor
Service

Creation

Geo-Sensor
Service

Management

Geo-Sensor
Service
Sharing

DIY

Proposed
Geo-Sensor
Framework

Yes Yes Yes Yes Yes

CCUS [12] Limited Limited No Limited Yes

Further, in this work, we have implemented the geo-sensor services based on the RESTful protocol
and SOAP protocol and drawn comparisons among both the web services performance in terms of
various operation response times. In Table 4, we present the average performance result comparisons
between the REST web services and SOAP web services, and we also take out the average difference
between the performances of both services in terms of execution time for various geo-sensor operations
evaluated above, such as sensor binding, map navigation, map viewer, and map management. Map
management includes the operations of map loading, building map actions, floor map actions, map
zoom in, and map zoom out. We can clearly observe from the results that the RESTful web services are
better suited and efficient for the deployment of such frameworks with multiple platforms.

Table 4. Average performance results comparisons between REST and SOAP.

Geo-Sensor Operation
Avg. REST Execution

(ms)
Avg. SOAP Execution

(ms)
Avg. Difference (ms)

Sensor Binding 37.71 70.76 33.05
Map Navigation 71.28 158.71 87.42

Map Viewer 98.1 167.72 69.62
Map Management 65.07 115.08 50.01
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Abstract: In this study, geographic information system (GIS)-based methods and applications
utilized for mine development were reviewed. Three types of GIS-based studies, namely studies
on mine planning, operation, and environmental management, were examined to describe the role
of GIS as a decision-making support tool in mine development. This review was conducted by
classifying previous GIS-based studies into several subtopics that pertain to mine development
activities and the range of environments to be managed. Because the use of GIS is appropriate for
spatial data management related to ore deposits and mine environment conditions at various scales,
the applications of GIS-based methods in mine development could be expanded further.

Keywords: Geographic information systems; mine planning; mine development; mine operation;
environmental management; mine reclamation

1. Introduction

With global concerns regarding the exhaustion of high-quality ore deposits near the surface, the
risks related to mine development are increasing in terms of economic, technical, and environmental
considerations [1]. In detail, a drop in both mineral production and profits for mining companies
has resulted in the introduction of large heavy machines and advanced mining technologies to mine
low-quality ore deposits at greater depths. Moreover, as mine-induced disasters and hazards have
become difficult to properly monitor and control, a negative impact on work safety and the surrounding
environment has been evident. Consequently, the necessity for systematic and strategic mine planning,
operation, and environmental management based on optimization techniques or decision-making
systems are emerging to improve mineral productivity, operational efficiency, and stability in the
mine environment.

To accomplish these objectives, geographic information system (GIS)-based methodologies have
been effectively used to design and optimize the mine development process. GIS is a comprehensive
framework that is used to capture, store, query, analyze, and display spatial data in various
applications [2]. In the field of geoscience, various applications have been proposed to manage
and control natural phenomena using GIS, and literature reviews on GIS applications have been
actively conducted [3–8]. However, in the mining sector, although GIS has been widely applied for
mine development, no attention has been paid to evaluating the GIS-based methods and applications
pertaining to mine planning, operation, or environmental management.

Thus, the purpose of this study was to investigate and review the GIS-based methods and
applications proposed for designing and optimizing mine planning, operations, and environmental
management. The scope of this study was confined to relevant published studies in these areas.
Keywords (i.e., GIS, mining, planning or design or operation, or environmental management) were

Appl. Sci. 2020, 10, 2266; doi:10.3390/app10072266 www.mdpi.com/journal/applsci
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input into the Google Scholar website, and 68 articles were identified for the literature review. Finally,
58 articles were selected after consideration of the type of article, similarity with other articles, relevance
to scope, and content details.

This paper is organized into six sections. Section 1 introduces mine activities according to the mine
development phase. Section 2 describes the GIS-based methods and applications for mine planning.
Section 3 presents the literature covering various mine operation systems using GIS. Section 4 reviews
the GIS-based methods for mine environmental management and reclamation planning. Section 5
presents the advantages and disadvantages of using GIS in mining and suggests future directions for
GIS. Finally, the conclusions are presented in Section 6.

2. Mine Development Phase

Generally, the mine development phase consists of mine planning, construction, operation, and
reclamation [9]. In the planning phase, the mineralized target is found through geophysical and
geochemical exploration. In the construction and operation phases, infrastructure is built for mineral
production, and ore materials are extracted using heavy equipment. Finally, in the reclamation phase,
all undesirable materials, such as waste, tailings, and contaminated topsoils, are removed from the
mining area, and the underground area is properly filled with rock materials.

To facilitate investment decisions, feasibility studies are performed by considering the technical,
economic, and environmental aspects of mine development in the planning phase [10]. The scale and
grade of mineral deposits are estimated using the results of computer-aided modeling. The appropriate
mining method is selected, and the open-pit boundary is optimized to quantify the volume and amount
of ore and waste. Additionally, the mine infrastructure is designed, and potential conflicts are identified
to prevent political, legal, and environmental problems. Finally, ore resources and reserves, which
refer to the amount and grade of the minable ore body, can be determined.

When the mine development plan is approved, an open-pit or underground mine is constructed,
and haulage roads, benches, and processing plants are built in the mining area. Various optimization
techniques and decision-making systems are applied to optimize the mineral production and haulage
operations. Furthermore, wireless communication systems can play a major role in tracking personnel
and equipment and in monitoring the working environment from a remote office. Various management
systems related to the underground ventilation network, safety management, and drainage system can
be implemented to prevent disasters caused by noxious gases, dust, fires, or water; they can also alert
workers about the need to escape, if necessary.

The environmental impacts on the mining area should be monitored and controlled in both the
mine operation and reclamation phases [11]. In the mine operation phase, dust, noise, and vibration
mainly occurred as a result of drilling and blasting activities. Moreover, slope failure and erosion
problems are a frequent occurrence in mining sites. After the mining operation, various mining-induced
hazards, including subsidence, water pollution, soil contamination, and deforestation, can occur in
mining areas [12]. Therefore, it is crucial to continuously monitor the movement of drainage flows,
metal leaching, and sediments, and establish a database framework for effective hazard management.
Furthermore, systematic mine rehabilitation planning may prevent and minimize risks to the mining
environment and human health.

3. Mine Planning Using GISs

GIS-based research on mine planning is generally classified into four topics: ore reserve estimation,
open pit optimization, mine infrastructure design, and potential conflict region analysis.

3.1. Ore Reserve Estimation

In the ore reserve estimation phase, GIS-based technologies, such as spatial analysis and targeting,
exposition, 3D data visualization, and processing, can be utilized to identify and assess the location,
size, and geometry of mineral deposits buried underground.
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Sprague et al. [13] introduced a query framework for spatial targeting within a 3D GIS software
environment. They developed query tools that can be used as a GIS-3D plug-in, which included a
proximity query (to a “probe” object), property query (numeric attribute), shell query (containment
within a closed surface), meta-data query, feature query (dome, depression, curvature), trend query (dip
plane, vector), and intersection query (with a “probe” object). The developed plug-in also demonstrated
the usefulness of software extensions to GOCAD©. The 3D GIS capabilities of GOCAD© facilitate
queries and easy attribute representation, and support spatial targeting to meet mining and mineral
exploration needs.

Uygucgil and Konuk [14] integrated geostatistics with GIS capabilities, such as spatial analysis,
exposition, and 3D data visualization and processing. In this study, GIS-based visual and interactive
analyses were used to examine the relationship between the data in the study area and the total data in
the integrated spatial database. A case study was conducted in Turkey to evaluate the accuracy of
kriging, a geostatistical method for estimating the shape, spatial location, and volume of open mines.
The accuracy of each of the three normal co-kriging estimations was assessed to determine which
method was the most accurate. Consequently, the estimate with three variables appears to be more
accurate than that calculated with the two-variable models. These results show that the additional
information obtained from additional auxiliary variables improves the accuracy of the estimates in the
mine data.

Hosseinali and Alesheikh [15] identified and classified weighting methods used in the mine
exploration process. Weighting methods can be classified into two main groups: data-driven
and knowledge-driven methods. In this study, six weighting methods were identified and
scientifically assessed, namely ratio estimation, analytical hierarchy process (AHP), Delphi, weight
of evidence, logistic regression, and artificial neural networks (ANNs). The first three are examples
of knowledge-driven methods, whereas the last three are classified as data-driven methods. The
evaluation of each weighting method on copper deposits in Iran showed that the ANN method is the
most accurate because it can accurately predict all borehole characteristics.

Kim et al. [16] developed a new outlier top-cut method to quantify statistically significant data
and presented the results of an analysis of borehole data from Au deposits. Generally, a geostatistical
interpolation method, such as kriging, is used to estimate the amount of resources. However, if the
data used in such an analysis deviate significantly from the mean value, this data should be excluded
because it can significantly affect the results. In this process, the existing top-cut method can cause
errors by excluding significant data, whereas the new methodology developed in this study can
minimize the loss of data and analyze statistically significant outliers. The Getis–Ord Gi* statistic was
calculated for each Au sample value in a borehole dataset by considering the 3D spatial coordinates of
the borehole data. The Getis–Ord Gi* statistic is calculated by comparing the local sum for a feature
and its neighbors to the total sum as follows:
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The resultant Getis–Ord Gi* statistic is a z-score. For statistically significant positive z-scores, the
larger the z-score, the more intense the clustering of high values (i.e., a hot spot). When the local sum
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is very different from the expected local sum, and that difference is too large to be the result of random
chance, a z-score is statistically significant.

Figure 1 shows a schematic diagram of a 3D hotspot analysis for borehole data. Figure 2 shows
the results of kriging using different top-cut methods for Au deposits. The proposed method can
alleviate the overestimation or underestimation that can occur when applying existing methods.

Figure 1. Schematic diagram of 3D hot-spot analysis for borehole data [16].

Figure 2. Kriging results of Au grade estimation using (a) all data or capped data with a (b) probability
top-cut, (c) 95% percentile top-cut, (d) +2 standard deviation top-cut, and (e) hot-spot top-cut [16].

3.2. Open-Pit Optimization

Baek et al. [17] proposed a method to quantify the uncertainty that exists in the open-pit
optimization results as a result of fluctuations in mineral prices due to changes in the world economy
and mineral reserves. In this study, Monte Carlo simulations were used to generate multiple sets of
mineral prices based on historical mineral price data, and the boundary optimization was repeatedly
performed using this price. The results of the open-pit optimal boundary analysis are examined; 1 is
assigned if a block exists within the optimal boundary, and 0 is assigned otherwise. This binarization is
performed on all results of optimal boundary analysis. By integrating several binarized block models, a
probability model was generated that quantitatively represented the uncertainty derived from changes
in the mineral prices.

Figure 3 shows an example of a probability model formation representing uncertainty. The
results of a case study applying the proposed method to copper-zinc mixed deposits showed that
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significant uncertainty existed in the open-pit optimization results. Figure 4 shows the probability
model representing the uncertainty in the pit optimization results analyzed through the case study.
The method developed in this study was able to quantify the probability that each block representing
deposits is included within the open pit optimal boundary when copper and zinc prices increased or
decreased from the current reference prices (Figure 5) [17].

Figure 3. Example of a probability model formation representing uncertainty: (a) binarized block
model, (b) probability model formation using overlay analysis, and (c) sectional view of the probability
model [17].

Figure 4. Probability model representing uncertainty in pit optimization results. (a) Case 1 considers
the variation in copper prices only. (b) Case 2 considers the variation in zinc prices only [17].
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Figure 5. Blocks representing ore reserves above the optimal pit boundary. (a) Case 1: probability ≥
90%. (b) Case 1: probability ≥ 80%. (c) Case 1: probability ≥ 70% [17].

Sinha et al. [18] used GIS-based technology to develop overburden dumps and backfilled and
mined-out zones as existing hilly topography; they also assessed soil erosion rates to identify dam
locations that require monitoring. Soil erosion rates from the developed mining landscapes were
evaluated using an empirical E30 model. A unique parametric change study was performed by altering
the original normalized difference vegetation index values for estimating the soil erosion rate with
different vegetation densities [18]. The case studies show that erosion rates increase in barren mining
land, while the year-wise plantation decreases. The GIS-based approach presented could help assess
the potential for soil erosion and taking the necessary steps before initiating the operation of the mining.

Grenon and Hadjigeorgiou [19] developed a slope stability analysis tool that can be used to
integrate slope stability analysis into the data management, ore reserve, and pit optimization processes
of an open-pit mine. The module advanced in this study was successfully applied to the analysis of
a surface mine. The case study included both kinematic and limit equilibrium stability analyses for
bench and inter-ramp designs. In addition, this module utilized GIS-provided visualization tools and
designated stability susceptibility zones along the pit. This approach can improve the optimized 3D
pit configuration and contribute to a better understanding of the economic impact of various slope and
pit designs.

Grenon and Laflamme [20] proposed a methodology that can rigorously determine the inter-ramp
and bench-face slope orientations in a digital elevation model (DEM) of an open pit. They conducted a
case study on Portage Pit in Canada and analyzed the GIS slope algorithm commonly used to evaluate
the slope orientations in the DEM. Consequently, planar regression algorithms based on principal
component analysis provided the best results at the inter-ramp and bench-face levels. In addition, the
optimal sampling window was 21 × 21 cells for the inter-ramp and 9 × 9 cells for the bench. Subsequent
slope stability analysis relying on those assessed slope orientations would provide a more realistic
geometry for potential slope instabilities in the design pit [20]. The methodology presented in this
study is flexible and can be adopted according to the block size and pit shape of the mine.

3.3. Mine Infrastructure Design

In the mine infrastructure design phase, the optimal positioning of facilities (e.g., crusher, storage,
waste dump), power lines, and road design features must be carried out. Because GIS includes
functions pertaining to the processing and targeting of spatial data and path analysis, it can be useful
at this stage.

Lechner et al. [21] suggested how to optimally design linear infrastructure, such as roads in
mines, by considering environmental and social factors. First, environmental and social factors were
identified through structured interviews with stakeholders, and the weightings of spatial data inputs
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were calculated using these factors. These spatial layers were then used to construct a cost surface for
the least-cost path analysis (LCPA). In addition, they conducted a case study with the South Konawe
Regency, located in southeastern Sulawesi Province. Figure 6 shows a cost surface map for each
subfactor based on GIS spatial data. Figure 7 shows the results of the least-cost path and corridor
analysis for national and local groups. This figure also shows the differences in the paths identified by
different groups. This study demonstrates the capability of GIS with LCPA and social survey methods
to identify the infrastructure corridors that have the least impact on social and environmental values.
This tool has the potential for use and refinement in more effective multiple-criteria decision-making
by communities and government planning authorities [21].

Figure 6. Example of the cost surface produced through (a) combining all the weighted GIS layers
representing each of the subfactors where spatial data was available for local regions and (b) using
only topography where high-resistance areas have higher slope values [21].

Blachowski [22] assessed the following aspects of the mining and transport of rock minerals
(aggregates) in the context of regional development: the spatial and temporal changes in the distribution
and intensity of mining, availability of economic reserves in active mines, magnitude and distribution
of road transport flows of aggregates, potential of railways as an alternative means of transport,
and valorization of undeveloped aggregate deposits to assess their suitability for future use. In this
investigation, a case study was conducted in Lower Silesia, Poland, and cartographic models were
developed using GIS to facilitate the analysis of the mining and transport of mineral resources. This
model could be used to comprehensively aid with advising on the current state of mineral resources,
mining, and transport in the region and to provide insight into future extraction activities.
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Figure 7. Infrastructure corridors identified with least-cost paths and corridor analysis for national and
local groups (a–d). (a,b) Pathways and corridors identified where the resistance surface is based only
on social values. (c,d) Pathways and corridors identified where the resistance surface is based on a
combination of topography and social values. (e) Pathways and corridors identified only where the
resistance surface is based on topography. Corridor width is based on a cost-weighted distance (CWD)
threshold of 100,000 m [21].

Baek and Choi [23] proposed a new method for designing roads to efficiently carry out truck
haulage operations in open-pit mines that are in the planning or design phase. In this study, terrain
data, including the final designs of the pit and bench, obtained using the LCPA method were processed
to analyze the haul road layout (Figure 8a). The zigzag haul road layout was determined through an
initial analysis simplified by the application of the Douglas–Peucker algorithm (Figure 8b). In addition,
the haul road layout was modified according to the radius of curvature constraints presented in the
existing guides (Figure 8c). The terrain data and haul road layouts of the mines were then entered into
AutoCAD Civil 3D to visualize the haul road of the open-pit mine in three dimensions. These processes
are shown in Figure 9. Figure 10 shows the design result of the haul road of the open-pit mine and the
3D visualization that was obtained by combining the mine terrain model designed with benches and
the result of the 3D haul road layout design. The proposed method can be used in the planning and
design stages as a tool to design the layout of haul roads at civil engineering and construction sites,
that is, where no road exists, as well as at mining sites [23].
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Figure 8. Results of analyzing the 2D haul road. (a) Haul road layout in the pit 1 and pit 2 areas
analyzed using least-cost path analysis (LCPA). (b) Simplification of the haul road layout of pit 1 and
pit 2. (c) Results of modifying the road layout in pit 1 and pit 2 by considering the radius of curvature
(modified from Baek et al. [23]).
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Figure 9. Study process of haul road design for open-pit mines using the proposed method [23].

Figure 10. Result of the haul road design. (a) Open-pit mine with bench and haul road. 3D views:
(b) pit 2 area and (c) pit 1 area [23].

3.4. Potential Conflict Region Analysis

In the potential conflict region analysis phase, GIS geoprocessing and hydrologic modeling can
be utilized.

Jeronimo et al. [24] conducted a case study of the ecological and economic zoning of Cajamarca in
Peru, which is rich in gold, to analyze the land-use planning process in the face of conflicting interests
regarding future land and water use. GIS techniques were used to evaluate the conflicting policies
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on land and water use between a powerful pro-mining association led by the central government
and a conservation coalition (anti-mining) led by the local government. This study suggests how GIS
technology can be used if there is a conflict between stakeholders concerning mine development, such
as in Cajamarca, Peru.

Craynon et al. [25] carried out a GIS-based spatial analysis considering social, environmental, and
economic factors for the sustainable development of mineral and energy resources. In addition, a case
study was conducted to identify potential sustainability conflict zones in mining design. They identified
key parameters for consideration in decision-making through the GIS analysis of on-the-ground issues
related to sustainability. The case study suggests that the use of this approach could have promoted
better communication and planning. The adoption of such a process could assist in the transition to a
new regulatory framework that is based on and promotes sustainable development principles [25].

4. Mine Operation Using GIS

The aspects of mine operation can be classified into ore haulage operation optimization,
wireless communication system design and management, decision support systems, and mine
ventilation/safety/drainage system design and management.

4.1. Ore Haulage Operation Optimization

Several studies have been performed to monitor the ore haulage system of trucks and shovels using
spatial visualization functions and optimize the ore haulage routes of dump trucks using raster-based
and vector-based LCPA.

Gu et al. [26] designed a GIS monitoring dispatch client to monitor the haulage system of trucks
and shovels in an open-pit mine. This system allows users to manage, dispatch, and monitor trucks and
shovels through vehicle location displays based on Global Positioning System (GPS) and General Packet
Radio Service (GPRS) data, playback of historical paths, and inquiries concerning truck locations.

Choi et al. [27] proposed a raster-based GIS model to determine the optimal haulage routes of
dump trucks in large-scale open-pit mines using multi-criteria evaluation and LCPA. In the process of
weighting multiple adverse factor scores, pairwise comparisons were applied to quantitatively analyze
the different resistances of five factors and three constraints, such as truck speed, proximity to water
and ore bodies, existence of curves, visibility, and haul road maintenance. The model was applied to
the Pasir open-pit mine, and the result showed that the optimal haulage routes of dump trucks could
be determined by considering both the haulage distance and multiple criteria.

Choi and Nieto [28] presented a modified raster-based least-cost path algorithm to account for the
effects of terrain relief and curves along a route in the optimal haulage route planning of an open-pit
mine. This study determined the optimal haulage routes between loaders and dumps that ensure
the least travel time or fuel consumption of dump trucks in the working areas without paved roads.
The software, named the Google Earth-based Optimal Haulage Routing System (GEOHARTS), was
developed to provide project settings, information visualization, and route optimization functions.
Figure 11 presents interfaces of the GEOHARTS software for optimal haulage route planning.

Previous studies on the haulage route optimization of dump trucks in open-pit mines mostly used
raster data [29]. However, the raster data can cause several problems, including zigzag-shaped travel
paths due to cell resolution and the neglect of the topological relationship among haulage roads. To
overcome these problems, Park et al. [29] demonstrated that vector-based network analysis is effective
in determining the optimal haulage routes of dump trucks by considering the terrain gradient in
open-pit mines. The Dijkstra algorithm [30] was adopted as a basic concept of network analysis, and
this study presented an overall method for creating vector network data of an open-pit mine using
ArcGIS software. The method consists of four procedures: (a) creating a DEM, (b) digitizing the haulage
road network, (c) calculating the terrain gradient of the haulage roads, and (d) calculating the average
speed and travel time of the dump truck along haulage roads. It was observed that the proposed
method could effectively determine the optimal haulage routes of dump trucks, taking into account
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changes in truck speed, which depend on the slope gradient of the open-pit mine. Park et al. [31]
analyzed the optimal routes of vehicles for auxiliary operations in open-pit mines using a heuristic
algorithm for the traveling salesman problem (TSP) within a GIS environment. To compare the
quantitative difference of travel routes determined by a heuristic TSP algorithm and intuitive judgment,
the visiting points for auxiliary vehicles in the study area were set to 5, 15, and 25. Consequently, this
study demonstrated that travel time could be shortened by 20 min when the auxiliary vehicle traveled
through 25 working points along the haulage route analyzed by the heuristic TSP algorithm.

Figure 11. Visualization of the Google Earth-based Optimal Haulage Routing System (GEOHARTS)
software for optimal haulage planning in an open-pit mine. (a) Optimal haulage routes of empty trucks
that ensure the least travel time. (b) Parameter settings for haulage route analysis [28].

Park et al. [32] measured the carbon dioxide emissions of diesel vehicles operated in an
underground mine using GIS. A GIS database was established for underground haulage road networks;
then, the average travel speed of the diesel vehicles on each road was estimated to calculate the carbon
dioxide emission factor through the field survey. The results revealed that the amount of carbon
dioxide emissions related to truck haulage operations could be calculated by considering the carbon
dioxide emission factor and travel distance of diesel vehicles determined by the GIS-based network
analysis. However, this study did not consider that the carbon dioxide emission factor of each road
could change according to the road gradient, load capacity of vehicles, and emission standards. Oh
et al. [33] followed the new carbon dioxide emission factor suggested by the European Environment
Agency. This study constructed a vector network of underground haulage roads, which includes data
detailing the speed of the diesel vehicle, road gradient, and load capacity.

Baek et al. [34] developed the Bluetooth Beacon-Based Underground Navigation System to display
optimal haulage route and truck location data on mobile devices in real time. A GIS-based network
analysis was adopted for optimal haulage routing. After determining the optimal haulage route, the
route information is updated to the web server. Moreover, GIS-based spatial visualization was used to
display the installation locations of wireless sensors, which identify the dump truck locations.

4.2. Wireless Communication System Design and Management

In open-pit mines and underground mines, wireless communication systems are installed to
collect data pertaining to equipment operation, work safety, and production processes on a web server
in real time. Studies have been conducted to design and manage wireless communication systems
using web-based GIS and spatial analysis.

For example, Li and Zhong [35] proposed a digital mine model, which is composed of a data
warehouse platform and an application/analysis platform based on web-based GIS technology. When
new drill hole data were acquired through the control network system, spatial feature layers could be
created in a shape file format based on the coordinate information, and a new spatial data set could be
converted into a geodatabase file. This model permitted remote users to search, query, visualize, and
analyze mine deposit information without the need for access to the mining site.
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Chai and Li [36] designed a personnel orientation system to monitor the location and status of
a miner’s location in an underground mine. Web-based GIS technology was adopted to store the
attributes and spatial data of individual miners, which are related to the radio frequency identification
system, and show a playback of traces of miners in real time through Ethernet communication. The
suggested system could enhance worker safety management in underground mines.

Moridi et al. [37] modeled an underground mine monitoring and communication system, which
was implemented with a wireless sensor network and a GIS server. ZigBee nodes were installed
underground to sense environmental attributes, such as temperature, humidity, and gas concentrations.
Then, the spatiotemporal data were joined and related to the attribute tables of the ZigBee node
geographical positions in the GIS server. This study also developed a geoprocessing model that
determines the emergency status according to the environmental standard, which is used to control
ventilation fans and send ZigBee emergency messages using the Python programming language
(ArcPy).

Baek and Choi [38] suggested a new GIS-based algorithm to design an initial wireless
communications system in open-pit mines. The geoprocessing analysis was used for multiple candidate
transmitter (wireless access point) selection by considering the probability of further development and
environmental factors in the mine. Subsequently, a communication viewshed analysis based on the
three-dimensional (3D) partial Fresnel zone was applied to quantitatively estimate the possible area
of communication and analyze favorable transmitter combinations. The results revealed that the 3D
Fresnel indices were calculated for 15 candidate transmitter locations, and an initial transmitter layout
was designed by considering two, three, and four favorable transmitter combinations (Figure 12).

Figure 12. Three-dimensional Fresnel index overlay maps for favorable transmitter combination
analysis: (a) combination of transmitters 6 and 15; (b) combination of transmitters 3, 8, and 13; and
(c) combination of transmitters 3, 6, 8, and 13 [38].

4.3. Decision-Support Systems

GIS functions based on a spatial database and 3D visualization can also be used to manage mine
data and make a high-quality mining decision for effective mining operations.

Li et al. [39] designed a Longruan GIS platform to control and monitor mine disasters induced by
high crustal stress, gas thickness, and seepage water pressure in an underground coal mine. Roadway,
3D geological, and working face modeling were performed based on an irregular triangulated network
using a geomechanical parameter database, which was related to hydrogeological, gas distribution,
crustal stress, rock mechanical, and rock classification data. Then, rock stability and dynamic disasters
were evaluated through the computation program of the application to provide support design and
rescue measurements to users.
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Şalap et al. [40] proposed a GIS-based monitoring and management system for underground coal
mining safety. In this system, a database and metadata management system was designed to record
details on mine accidents, as well as the working and operating conditions of underground workers and
equipment. Various functions, including air velocity distribution analysis, thematic representations,
and emergency route analysis, have been provided to users to support decision-making within a
web-based GIS environment.

Gu et al. [41] suggested a dynamic ore-blending management system for effective mine production
monitoring and shovel dispatching. In this system, a spatial database is constructed, which includes
the coordinate data of the holes, boundaries of muck-piles, ore grade of holes, and shovel data, and
the isolines of the ore grade and location of each shovel are displayed on the open-pit mine map.
Through the ore weighting and truck dispatching system based on the GPS and GPRS, dispatchers
could analyze the amount and average grade of ore produced in real time and control ore productivity
by dispatching shovels and trucks according to the daily ore-blending plan.

Banerjee et al. [42] developed an enterprise GIS system, which was implemented with distributed
desktop applications throughout an entire mining company for active mine data analysis and
management. There are three types of use levels in the system: (1) operators can generate and
retrieve georeferenced information, mine and civil maps, and employee and equipment databases; (2)
users can convert the basic maps into digital formats and generate map features and thematic maps;
and (3) company executives can analyze mining activities through map queries and make decisions
concerning mine operation optimization. This study also elaborated on the implementation strategy of
this system at each mine development phase.

Duncan and Rahman [43] presented a 3D mine prototype to establish a 3D spatial database and
a 3D model of subsurface objects, such as mine structures and ore bodies in Ghana. A GIS-based
3D tetrahedron model was introduced to represent the 3D underground mine model. This study
delineated the type of spatial data produced during mine development and operation, and suggested
integrating spatial data with a 3D model for a comprehensive understanding of mine operation.

4.4. Mine Ventilation/Safety/Drainage System Design and Management

GIS can contribute to the design of an underground ventilation network model and management
of drainage systems to promote safety and prevent mine accidents during mine operations. Spatial
database construction and GIS-based spatial analysis have often been applied for this purpose.

Liu and Yang [44] constructed a GIS-based mine ventilation network model for the ventilation route
and quantity planning using network analysis. This study generated all types of ventilation network
components, such as underground tunnels, points of intersection (nodes), and ventilation facilities (air
door, wall, and window), and established a spatial database related to the ventilation network and
excavation. GIS-based network analysis was conducted to analyze the optimal ventilation route and
the best rescue route in fire accidents by assigning resistance values to the specific ventilation network.

Massanés et al. [45] proposed a ventilation management system to analyze and visualize
environmental data obtained from an underground ventilation network within the GIS environment.
The investigation has focused on a Spanish mine, and the ventilation network was constructed using
two perspectives: principal and auxiliary circuits. The network database parameters consisted of
coordinates, date of the measure, air velocity, dry and wet temperature, and noxious gas concentrations
for principal and auxiliary ventilation. The results showed that variations in air velocity and gas
concentration along the principal circuit were obtained using 753 historical data records. Moreover, the
most adverse working faces were analyzed by considering effective temperatures and gas concentrations.
Using the same GIS-based database of the ventilation network, Bascompta et al. [46] estimated the air
recirculation over time and investigated the effect of air recirculation on the underground environmental
conditions in the Spanish mine. It was found that changes in the environmental conditions due to air
recirculation, especially in the CO and NOx values, depend on the ventilation layout.
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Prakash and Vekerdy [47] developed a prototype GIS, called CoalMan, to manage surface and
underground fires in coal mining areas. This system monitors the fire region based on remote sensing
data processing functions, such as pre-processing, enhancement, and classification, provided in the
GIS software package ILWIS. In addition, using spatial analysis, coal fire risk maps were generated by
considering the presence or absence of mining activity, access to air, and propensity of the coal.

Choi et al. [48] examined quantitative visible areas to select optimal viewpoints near an open-pit
mine and analyzed hazardous sections for dump truck drivers with limited sight distance. Viewshed
analysis was adopted to calculate the visibility index for all points in a DEM by considering the
inter-visibility between the viewpoint and target points. The application at Pasir coal mine, Indonesia,
showed that the proposed methodology could be used to select the optimal viewpoints by analyzing
the ratio of the pit to the viewshed area. In addition, the potential truck collision area could be identified
by conducting viewshed analysis through the centerline of a haulage route. This finding could assist in
improving the safety of mining operations by considering visibility effects.

Zhang et al. [49] developed an emergency rescue command information system to design and
simulate an emergency escape plan within the web-GIS environment. The architecture of the system
consisted of (1) emergent incident management, (2) incident display, (3) historical accident management,
and (4) emergency escape simulation to show the shortest escape path for each type of accident in a
coal mine.

Choi and Park [50] suggested a new GIS-based modeling technique to design in-pit stormwater
ponds in large-scale open-pit mines. The analysis model identified hydrological parameters, including
the flow accumulation of rainfall in sinks and catchments, and designed in-pit stormwater ponds with
pumping facilities by considering an optimal pump capacity and pond storage. Finally, a flooding
simulation was performed to determine the feasibility of pond design under concentrated rainfall
conditions. This model could be utilized as a powerful tool for drainage system design.

5. Environmental Management Using GISs

GIS-based research on the environmental management of mines can be classified into three
topics: mine operation environment management, mine-induced hazard management, and mine
rehabilitation design.

5.1. Mine Operation Environment Management

Regarding mine operation environment management, research has been conducted on the
prediction of blasting vibration and dust impact, evaluation of the slope stability in an open-pit mine,
and analysis of the composition of the mine area. The studies discussed here utilized GIS functions,
such as spatial database construction and mapping, geoprocessing, and drainage analysis.

Bui et al. [51] examined the impact of blast-induced ground vibrations on surrounding structures
(e.g., highways, water pipes, railways, and residential areas) from a quarry mine in Vietnam. They
investigated a total of 25 blasting events and recorded 83 observations, which were classified using
the fuzzy C-means clustering (FCM) algorithm. On this basis, quantile regression neural network
(QRNN) models were developed. The combination of FCM and QRNN models created a new hybrid
model with which to predict blast-induced ground vibration. The developed model was found to
have a higher accuracy when compared with other models, such as that from the US Bureau of Mines,
random forest, QRNN (without clustering), and ANN. The proposed model can be used to control the
blast-induced ground vibration and minimize its effects.

Li et al. [52] developed an appraisal environmental system that addresses the main tasks of
environmental impact assessment, such as environmental impact analysis, pollutant impact prediction,
and the assessment of mitigation measures, through the use of scoping exercises (step 1) and technical
assessments (step 2). Scoping assesses the qualitative impact using a knowledge-based system,
while technical assessment evaluates quantitative impacts based on GIS, mathematical modeling,
and evaluation. After constructing the mine model, the user can run a scoping system by importing
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information from both the user and mine model database to qualitatively assess the environmental
impact of the operation. If there is a significant adverse impact at this stage, further quantitative
investigations can be carried out using the technical assessment system. By applying the developed
system, case studies were conducted for surface mining and quarrying projects, and the results are
presented in several GIS images.

Francioni et al. [53] proposed a new approach using simple kinematic analysis techniques
and three-dimensional finite difference method stress models for deterministic stability analysis.
This approach is applied to the study of open-fit quarry slopes based on the integrated use of two
remote sensing techniques, terrestrial laser scanning (TLS) and unmanned aerial vehicle (UAV). These
techniques supplement the data obtained from traditional engineering geology surveys. TLS was
performed using a long-range laser scanner (up to 1 km range) with three different point clouds
to avoid occlusions. Digital terrestrial photogrammetry was performed using a UAV system that
overcomes problems related to elevation, steepness, and complex slope geometry. In addition, a
kinematic analysis was carried out using GIS techniques. The developed approach helps to overcome
the common problems of complex slope geometry encountered in kinematic slope analysis.

Nelson et al. [54] used GIS software and modeling techniques to analyze slope failures in the
Chuquicamata open-pit mine in Chile. They used several steps for the analysis, including initial data
compilation and conversion, data validation, derivative data layer generation, and predictive modeling.
In addition, the risk of slope failure was analyzed by comparing GIS-based predicted slope stability
models with post-modeling slope failures. Consequently, the GIS-based modeling methods were
found to be more effective at analyzing the risk of slope failure in an open-pit mine than conventional
graphic-based drawing programs.

Choi et al. [55] developed and presented a GIS model that combines fuzzy theory and AHP
to evaluate slope instability in open-pit coal mines. Relative collapse risk can be evaluated by
considering seven influence factors simultaneously (i.e., overall slope gradient, slope height, surface
flows, excavation plan, tension crack, fault, waterbody). In addition, the weight of each factor can be
determined using fuzzy membership functions and the AHP. This model could be used in conjunction
with the GIS database to assess the risk of slope collapse for the entire slope instability. The application
of the model to the Pasir open-pit coal mine in Indonesia confirmed that it could be an effective tool for
analyzing the risk of slope failure when establishing a slope management solution.

Choi et al. [56] conducted a study of flood and gully erosion problems at the Pasir open-pit coal
mine in Indonesia. First, GIS was used to obtain quantitative information regarding the hydrological
characteristics of the surface drainage system from a DEM. Based on the analysis results of the drainage
system, raster-based spatial analysis was performed to distinguish the bench slopes with concentrated
surface drainage flows and calculate the ratio of the amount of incoming water to the size of the
temporary storage pond [56]. Finally, the bench slopes that are vulnerable to gully erosion were
identified and an optimal design for pump placement to reduce the risk of flooding during heavy rain
was proposed. Figure 13 shows the rated value map derived from the surface flow accumulation in the
study area.

Yucel et al. [57] researched the detection and visualization of changes in acid mine lakes using
time-series satellite image data from GIS that provided a variety of details on a year-to-year basis
regarding the regional scale of the land and changes in water bodies. The data received from the
remote-sensing satellites were used to verify the developed monitoring system, and various acid mine
areas of 9 km2 were selected for the case study. GIS software was used to analyze satellite images as
a time series and convert the boundaries of the acid mine lakes into a vector data format. Then, the
changes in the area and perimeter of the acid mine lakes were calculated and presented through tables
and graphics. In addition, thematic maps of the changes in the acid mine lakes were created. Case
studies indicated that the number of mine lakes increased, creating environmental risks due to their
increased hydrochemical properties and area.
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Figure 13. Rated value maps. (a) Rating the vulnerability to erosion from the flow accumulation of
surface drainage. (b) Rating the slope gradient to extract steep bench slopes (30◦ C). (c) Locations of
bench slopes vulnerable to gully erosion during rainfall [56].

Werner et al. [58] created detailed maps of representative samples of current larger-scale mines
around the world and determined whether a generalization can be made regarding mine areas based
on factors that influence their extent. In this study, commodities primarily produced by the mines
were selected for comparative analysis and site mapping. At this time, the main focus was on open
pits, infrastructure areas of mining sites, waste rock dumps, water storage ponds, and tailings storage
facilities. Then, additional site characteristics were compiled. Finally, multiple regression analysis
was used to assess the possible relationships between the extent of mining features and potential
explanatory variables. As a result, the analyzed mines showed considerable diversity in their extent
and configurations, and the effects of the distribution of the ores and surrounding topography on the
arrangement of the features around the mines were determined. In addition, the most conservative
regression models accounted for ≈ 40% – 75% of the variability in the extent of the various mining
features, except for water storage ponds. The results of this study could be used to determine the
demand for land in current and future mining developments.

5.2. Mine-Induced Hazard Management

GIS functions, such as watershed analysis, spatial mapping, spatial database, and spatial modeling,
could be used for mine-induced hazard management. In this paper, we present examinations that
have addressed the movement of soil, water inrush, and sediment; mine subsidence; and the storage
and visualization of mine reclamation data.

Moomen and Dewan [59] developed early warning indicators of mining-induced land degradation
to enable coordination between stakeholders in new regions that have undergone exploration and
mining activities. To this end, they developed a model to quantify the relationships between mining
leases and biophysical conditions that enhance land degradation. The Upper West Region of Ghana
was considered as the study area, and the spatial impact relationship between mine development
and land degradation was evaluated by considering vegetation displacement, the land degradation
impact index, and the rainfall erosivity index in satellite images during two time periods. The model
developed in this study can help to find efficient strategies for sustainable mining and the mutual
benefit of rural land resources between policymakers, communities, and interested development
partners. It can also enhance the understanding of companies and governments regarding the links
between mining-induced land degradation and social conflict.
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Duncan et al. [60] assessed the Golden Star Resources Bogoso Prestea Limited concession, where
mining caused land use changes based on GIS-based spatial analysis. Area estimation and analysis of
land use flow methods were performed to analyze a 20-year period (1986–2006), making it possible to
identify how changes in land use in mining and agriculture over those two decades have emerged.
This analysis revealed that land use from mining has stabilized owing to good reclamation practices
and reduced mine development.

Wu et al. [61] proposed a GIS- and ANN-based coupling technique to evaluate the vulnerability
of the water inrush controlled by geomorphology and the regional geologic structure of coal mines. To
this end, a coal mine located in northern China was used to assesses the vulnerability of the water
inrush through GIS, and ANN was utilized to determine the weight coefficient for each factor that
affects the water inrush. The technology developed in this study could more accurately predict karst
water inrushes while solving the following difficulties in assessing the vulnerability of the water inrush:
(1) water inrush is controlled by several factors, (2) inaccurate weight for each factor, (3) lack of an
established mathematical model to explain the process of water inrush, and (4) water inrush closely
related to human activity.

Boggs et al. [62] presented the results of hydrology and landform evolution modeling techniques
integrated with GIS to assess the possible impacts of mining on the Swift Creek catchment in the
Northern Territory of Australia. First, a spatial and attribute database related to the study area
was constructed using GIS, and hydrology and sediment transport parameters were derived from
field data collected within the Swift Creek catchment. The Distributed parameter Field-Williams
(DISTFW) hydrology model was then used to determine long-term hydrology parameters, and the
SIBERIA landform evolution model was employed to derive annual hydrographs. Attempts to link the
hydrology and landform evolution models with GIS showed that the process of parameter derivation
and modeling can be simplified. In addition, linking these models to GIS provides significant benefits,
as GIS can assist in the derivation, storage, manipulation, processing, and visualization of georeferenced
data at the catchment-wide scale.

Miao et al. [63] investigated the feasibility of differential radar interferometry (DInSAR) using
both ERS and Envisat images to monitor mine subsidence in Tang Shan, Hebei Province, China. They
used GIS tools to analyze and validate the DInSAR results. They also discussed the disadvantages
of using interferometric measurements for monitoring mine subsidence. Consequently, the results
from Tang Shan showed that the subsidence was serious in the 1990s, and the resulting displacement
was measured.

Maryati et al. [64] conducted research to design a GIS database template for environmental
management in mining operations in Indonesia. Using ArcCatalog ArcGIS 9.3 software, the GIS
database was designed, followed by steps such as the inventory and evaluation of government
regulations, inventory and evaluation of environmental quality standards, sorting and grouping
parameters, classification of design features and attributes, and creation of a GIS database and dictionary.
The newly designed GIS database template has many benefits for environmental management, including
integration into a single database, prevention of duplicate data, volume data reduction, data uniformity,
ease in finding and tracking data, and integration of spatial and attribute data. Furthermore, the
template can be used as an input for GIS analysis for decision-making and development strategies.

Álvarez et al. [65] offered a different perspective on the rationale for research, preservation, and
development of a mining heritage for educational purposes. To this end, the Lullumres iron mine in
Spain was selected, and documents were analyzed and classified to investigate and reconstruct the 3D
geometric structure of the mine. They also proposed ways to integrate this information into GIS to
improve the management of the mine data. Consequently, the closed mine was found to be a live mine
with factors, traditionally regarded as negative, that need to be included as patrimonial elements with
associated implications.

Radulescu and Radulescu [66] presented the main directions of implementation of GIS technology
in mining through a management information system. They explained the role of GIS in Romania’s
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mining sector and how it is used at each stage of mine development. The research shows that GIS can
have a significant impact on the exploration and development stages of a mine and the mining process.

5.3. Mine Rehabilitation Design

Regarding mine rehabilitation design, studies performed using the GIS main functions of spatial
modeling and analysis and decision support were reviewed.

Gorokhovich et al. [67] presented a methodology for combining spatial data on resources for
coal mine reclamation and used the extrapolation of GIS analysis to prioritize a list of potential mine
reclamation sites within the contiguous United States. They used four major spatial elements, namely
dredged materials, abandoned mines, fly ash sources, and railroad data, such as that from the mine
reclamation project in Bark Camp, Pennsylvania, USA, and also used GIS to prioritize areas where
reclamation projects similar to Bark Camp are feasible. For each 1 km of the United States territory, GIS
analysis identified unique occurrences of all four spatial elements within 20, 40, 60, 80, and 100 km
radii from abandoned mines [67]. Consequently, the number of mines abandoned and their location
in each state in the United States were identified and visualized. The methodology presented in this
study could be helpful for government officials to plan mine reclamation.

Fadda et al. [68] presented a plan for the re-utilization of excavation based on the naturalistic
and geographical conditions of the mining areas and their surroundings. As preparatory work, they
characterized the research area with a topographic survey; established a geodetic control network with
a global positioning system to describe the morphological features of the landscape; and performed
three-dimensional analysis and geoprocessing using a commercial geographical system, such as
GIS, and computer-aided design. The graphic data layers were then integrated with geological and
morphological maps. This process helps to create and render virtual 3D environments for current,
past, and future landscape development.

Kim et al. [69] developed ArcMine, a new GIS extension that can support reclamation projects in
abandoned mining areas. ArcMine offers four main functions: the ability to assess the hazards of mine
subsidence, estimate the erosion of mine waste, analyze the flow path of mine water on the surface, and
identify tree species suitable for mine reforestation. They integrated topographical maps, geological
maps, mine drift maps, and borehole data to set up a spatial database and examined the distributed
mine hazards that were likely to damage the surrounding environment. It was demonstrated that the
new GIS extensions developed in this study could provide useful information on mine hazards to
support reclamation planning.

Pavloudakis et al. [70] proposed a spatial decision support system (SDSS) that minimizes problems
such as the lack of data integration and time-consuming analysis caused by conventional methods in
the reclamation plan of the mine. Based on binary integer linear programming models, the SDSS could
solve these problems by integrating GIS with multiple-criteria decision-making methods. The SDSS
also allows users to select appropriate land use in different parts of the post-mining area, taking into
account social, technical, economic, environmental, and safety criteria. The proposed SDSS was used
to carry out a case study regarding the selection of the optimal landscape reclamation strategy for the
Amynteon lignite surface mine in Greece. The system showed that mining companies can efficiently
determine the specific land use (agricultural land, forest, recreational area, and industrial zone) that is
most suitable for each part of the research area.

Menegaki and Kaliampakos [71] proposed a new method for quantitatively evaluating the impacts
on the landscape during mine operation and the improvement achieved after rehabilitation of the mine
site. They named the method Landscape Evaluation Tool for Open Pit Mine Design, which focuses
on measuring two main parameters: the alteration of the topographic relief and the sensitivity of
observation conditions, with both making use of GIS tools. The quantitative values generated for each
of the above parameters were shown to facilitate the discrimination of seemingly similar alternative
designs and rehabilitation schemes. In addition, case studies showed that the partial backfilling of the
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quarry site could effectively reduce its visual impacts, producing low topographic relief alteration and
viewing sensitivity indices.

6. Discussion

6.1. Advantages of Using GIS in Mining

To support mine planning, optimize mine operations, and analyze the environmental impact on
the mining site, GIS can be effectively used for the following reasons.

(1) Effective mine data management in georeferenced, spatial, and attribute data formats: Mine
data mainly include drill holes, ore bodies, mineral deposits, pit boundaries, and underground haulage
roads, which have spatial characteristics. Therefore, these data can be effectively stored, manipulated,
and processed in georeferenced (geographic coordinate-related characteristics), spatial (locational
information), and attribute (spatial properties) data formats in the GIS environment. For this purpose,
various GIS database frameworks have been established for drill hole data [35,41], block models of
mineral deposits [17], underground haulage road networks [29,31–34], underground environmental
attributes using ZigBee nodes [37], and underground ventilation networks [44–46].

(2) Powerful decision-making support for mine managers: GIS can be used to support
decision-making during the various stages of mining development. Examples include ore reserve
detection and estimation using spatial 3D query tools [13], visualization of uncertainty in open-pit
boundaries [17], and land-use selection after mine closure using multi-criteria decision analysis [70].
Furthermore, mining-induced potential conflicts [24,25], disasters [47,53–55], and hazards [59–63] can
be identified in advance using spatial analysis tools. Finally, all of the data and information are shared
with multiple users to discuss optimal decisions through enterprise GIS technology [42].

(3) Flexibility of multi-parameter considerations: GIS offers numerous data integration tools, map
overlapping tools, multi-criteria analysis tools, and mapping algebra functions for multi-parameter
consideration. For example, various spatial analysis models have been developed for optimal truck
haulage route determination by considering truck movement impact factors [27], multiple-transmitter
candidate location selection by considering the possibility of additional mine development and
environmental factors [38], and in-pit stormwater pond design by considering the hydrological
characteristics of surface drainage systems [50].

(4) Fast and objective mine site investigation without on-site access: GIS can reduce the time and
effort required for detailed mine site investigation by using remote-sensing data and various types of
maps (e.g., topographic contour maps, geological maps, hydrological maps, and infrastructure maps).
For mine reclamation planning, these methodologies are applied to determine mine-land reclamation
activities [70], access mine subsidence and waste erosion [69], and evaluate the visibility impact of
mining sites [71]. Consequently, mine investigators do not need to access undeveloped, dangerous,
and hazardous areas for a site investigation.

6.2. Future Direction of GIS in Mining

In recent years, new technologies, such as sensor networks, mobile devices, wireless
communication, and UAVs, have been introduced into mining sites in accordance with the fourth
industrial revolution. In particular, information-communication-technology-based mine safety
management systems have been actively utilized in open-pit and underground mines to track equipment
and worker locations and monitor the mine operation environment. To transmit location data to the
web server, a wireless communication network is installed in the open-pit and underground mines.
Several studies have been conducted to simulate the truck haulage system using data derived from
the mine safety management system. For instance, Baek and Choi [72] presented a knowledge-based
simulation methodology for truck haulage systems in underground mines by considering the truck
travel time, which was extracted from big data of a mine safety management system. Moreover, Baek
and Choi [73] developed a deep neural network (DNN) model, which was trained using a large set of
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truck haulage system operation conditions and truck cycle times to predict the ore production and
crusher utilization of a truck haulage system in an underground mine.

However, the aforementioned studies manually generated input data, which were required for the
truck haulage system simulation and DNN model training of big data from a mine safety management
system without GIS-based spatial and attribute database generation for the system. Therefore, in the
future, current research needs to be expanded as follows: (a) the introduction of a GIS-based spatial
and attribute database for a mine safety management system with consideration of the packet data
frame (e.g., equipment detection time, ID of detected equipment); (b) the development of algorithms to
automatically measure input parameters (e.g., haulage operation time, number of dispatched trucks,
truck travel time) of a truck haulage system simulation and DNN model training from the spatial and
attribute database and generate input data in a matrix format; and (c) the development of database
query functions to extract specific input data according to the haulage operation time, date, and type
of equipment.

7. Conclusions

In this review, numerous published studies on GIS-based methods and applications for planning,
optimizing, and managing mine development processes were presented. A total of 58 recently
published articles were found, and the detailed contents, primarily regarding GIS functions, were
analyzed for this literature review. For systematic reviews, three topics were used for classification,
namely mine planning, mine operation, and environmental management, by taking into account
various mine development phases and a range of environments to be managed. It was observed that
GIS-based methods, including spatial database, spatial analysis, spatial mapping, and visualization,
can be effectively used at all mine development stages at the global, regional, and mine scales. The
conclusions drawn from the detailed review of each topic are as follows.

(1) In the mine planning phase, GIS-based methods were adopted for ore reserve estimation,
open-pit boundary optimization, mine infrastructure design, and potential conflict analysis. There
were three main characteristics of GIS considered for this topic. First, GIS capabilities, such as a spatial
database and the associated analysis, were integrated with geostatistics interpolation functions and
various weighting methods (AHP, Delphi, logistic regression, and ANN) to quantitatively estimate ore
deposits in the feasibility study stage. Second, it was confirmed that 3D spatial query functions would be
effective searching tools for mineral target visualization above a cut-off grade. Finally, spatial analysis,
including LCPA, corridor analysis, and hydrologic modeling, could be widely applied at the regional
scale to design the mine-port haulage route and prevent potential social and environmental conflict.

(2) GIS-based methods can be widely used for mine operation system optimization and
management. Various mine operation systems have been implemented in mining sites for ore
haulage operations, wireless communication, ore management, safety monitoring, underground
ventilation, and drainage systems. There are three steps to designing and managing mine operation
systems using GIS. First, the spatial database and metadata of workers and equipment, haulage roads
and ventilation networks, production rates, and environmental factors are built in the GIS environment.
Then, all mine members are allowed to share mine operation data in real time by uploading and
displaying it on the GIS web server. Finally, mine operation systems can be optimized by determining
the ore haulage route, ventilation direction and quantity, and rescue planning in an emergency through
GIS-based spatial analysis.

(3) Numerous GIS-based applications for mine environmental management were observed in
the mine operation and reclamation phase. The impact of mine-induced disasters and hazards on
mining environments and human health has been predicted and managed using spatial databases,
spatial analysis, and visualization techniques. Remote sensing images were principally used to analyze
the variation in the mine environment (mine subsidence, slope failure, and mine lake) as a time
series. Moreover, various GIS extension systems were developed to support decision-making in mine
reclamation planning and re-utilization designs.
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GIS has powerful capabilities for designing and optimizing mine development stages in terms of
spatial data management, decision-making support, and multi-parameter consideration. Nonetheless,
the practical use of GIS-based methods for mine planning, operation, and environmental management
remains difficult. Consequently, to maximize the practicality and applicability of GIS in the mining site, a
general understanding and training of the GIS platform is required through continuous communication
and feedback between engineers and researchers.
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Abstract: Mine safety is of primary concern in the underground coal mining system. At present,
there is a lack of an efficient platform to manage the numerical simulation procedure and inherent
spatiotemporal data for coal mine disasters. This necessitates the coupling of spatiotemporal model
with geographic information system (GIS) in practical application. Here, a novel spatiotemporal model
tightly coupled with GIS is presented to improve the model-data integration. Such tight coupling is
achieved by developing a lattice Boltzmann method (LBM) based turbulent model with an underlying
shared FluentEntity model within the LongRuanGIS platform. The case study and comparison
with the traditional computational fluid dynamics (CFD) method demonstrated that the platform
is capable and effective in providing functionalities for lattice domain decomposition, simulation,
visualization and analyses, as well as improving the computational efficiency. The proposed approach
and platform, promising for the disaster prevention, offer a template for future GIS-Model integration
and also applicable for other underground coal mine disasters.

Keywords: mine safety; GIS-coupled; spatiotemporal model; LBM; methane gas emission

1. Introduction

Mine safety issue has long been a paramount concern in the underground coal mining business,
since mine accidents can lead to serious injuries for personnel, substantial economic losses, and delayed
production. Numerical modelling offers a useful tool for prediction and control of various disasters in
mine workings. The principles of computational fluid dynamics are widely applied to the underground
coal mine systems and numerous computational fluid dynamics (CFD) methods are utilized to simulate
various ventilation-related safety and health issues [1–4]. It is remarkably noted that the procedure
of CFD simulation interrelated with geometric modeling and numerical calculation, is inherently
geospatial. The spatiotemporally simulated data requires effective management and analysis, which is
essential to reduce the risk associated with mine accidents. However, the current simulations of
coal mine disasters mostly depend on the independent third-party numerical simulation software,
and there is no professional simulation platform developed for specific problems. For instance,
numerical platforms such as Fluent, COSFLOW, FLAC3D, and AutoReaGas are utilized by many
researchers in simulating gas emission in mining face, the hole wall, and other ventilation related
activities [5–8]. There is a lack of an integrative and effective platform to store and manage the massive
amount of spatiotemporal simulated data, as well as the data visualization and analysis, which makes
the whole analysis procedure difficult to direct the on-site production. According to researches
proposed by Goodchild, one of the key challenges in the application of physics based models is
the lack of a platform for efficient prototyping of model simulations, evaluation of a-priori parameters,
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and for simulation, analysis, and visualization [9,10]. Fortunately, geographic information system
(GIS) technology is able to acquire, develop, and interpret the complex spatial datasets used for mining
and the earth sciences. [11], which is suitable to provide an ideal platform to organize the numerical
simulation procedure as well as data management. Therefore, coupling GIS with physics based
numerical models is of paramount significance.

Application of GIS in mining is a relatively new and fast evolving concept [12].
GIS technologies create efficiency and productivity opportunities in all aspects of mineral exploration
and mining, which enables a mine operator to mine intelligently, efficiently, competitively, safely,
and environmentally. In this way, GIS integrates exploration, operation, and environmental issues
with mine management [13]. To date, many GIS-based systems for underground coal mining safety
were developed. For example, a GIS-based monitoring and management system was developed
for underground coal mining safety by Seda Şalap [14], and many researchers have conducted
the modeling and risk assessment of mining-induced hazards based on GIS [15,16]. However, the system
development is mostly based on the open source GIS framework and focused on information
management and monitoring, which are limited to the display and query of the coal mine map [17],
incapable of displaying the models of various disasters from the perspective of underlying physical
mechanism [18,19]. Nowadays, the coupling of numerical modeling with GIS system has already been
investigated in other environmental issues, and how to effectively integrate them is regarded as one of
the most increasingly focused issues. It is noted that a great number of related research were carried
out in the fields of geomechanics, environmental monitoring, and hydrology [20–23]. For instance,
the integration of finite element simulation with GIS was investigated and applied in the tunnel
engineering by Zhenping Liu [24]. Maohui Zhen studied the block gas diffusion process within GIS
based on the open source CFD software OpenFOAM [25]. Junting Ma proposed finite element numerical
simulation of the groundwater in the GIS technical platform [26]. Mar Alcaraz studied the configuration
of geometry and parameterization for groundwater numerical models, and proposed a loosely
coupled GIS and hydrogeological modeling platform [27]. Gopal Bhatt presented an open-source,
platform independent, tightly coupled GIS and distributed hydrologic modeling platform (PIHMgis),
which was aimed to improve the model-data integration [28]. However, the existing coupling modes
mainly depend on the third-party professional software to implement the numerical simulation
procedure, which requires data transformation in different platforms due to the independence of
the traditional CFD methods with respect to the mesh generation and simulation procedure [29].
And this transition needs specific methodologies to adapt the geometries and alphanumerical data from
the conceptual model to the numerical model for obtaining optimal numerical results. To overcome this
gap and to make the integrated system more flexible, a more efficient way to integrate the numerical
CFD model with the GIS is mandatory [30–32]. By comparing the existing CFD methods, it was
demonstrated that the property of the unnecessary explicit mesh generation and the inherent simplicity
of the algorithm make LBM significantly popular in CFD community [33–37], which is expected to be
promising and more efficient to integrate with the GIS platform.

Therefore, this study aims to apply the coupling concept of GIS and numerical simulation in
the underground mining for the first time by proposing an applicable numerical model based on
the non-traditional lattice Boltzmann method (LBM). By considering the spatiotemporal characteristics
of coal mining activities, major accidents, and its interrelated spatiotemporal data analysis, a robust
and tight GIS-coupled spatiotemporal modeling system is a powerful and thorough solution to
simulate the major accidents by providing more intuitive visualization, query, and analysis tools.
Specifically, the system should: (i) perform numerical model, (ii) display the simulated field data with
inherent geospatial data such as coal mine map, seamlessly, (iii) provide data storage, management
and access of the surveillance data based on database management system, which allows the data
verification and validation of the numerical model, (iv) provide managers and miners the access to
large amount of location-based information by spatiotemporal query and analysis to guide the coal
mine operation.
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Longruan GIS (LrGIS) developed by our team, is professionally designed and ideally suited
to assist mining professionals in meeting the complex challenges of running the mine operation.
With tools to compile, process, display, analyze, and archive massive volumes of data, the LrGIS
platform is increasingly applied in the business of mining industry in China, which allows us to develop
the mathematical model and manage volumes of data through its secondary development mode [38].
Thus, this study chooses LrGIS as the supporting GIS software package, and it takes the methane gas
emission as the case study, which is one of the most crucially important mine safety issues. It is worth
noted that the numerical model can be extended and improved to simulate other mining activities,
such as ventilation solution, mine fire, and methane explosion.

We performed the model coupling and numerical simulation from the following ways.
First, the U-type ventilation system-15116 in Sijiazhuang coal mine is specified as the computational
domain, and a novel turbulent LBM based velocity-concentration coupling model is proposed to
investigate the spatiotemporal characteristics of the airflow behavior and the methane gas emission
in a coal mine working face. Second, the numerical model is integrated with LrGIS platform via
FluentEntity model, and the graphical representations of simulated field data as well as various map
layers are demonstrated. From this, the spatial characteristics of methane distribution can be intuitively
visualized, and detailed location-based information for the practical mining production can be provided
by spatiotemporal query and analysis. Third, the numerical simulation results are verified by field
measurements in Sijiazhuang coal mine and compared with traditional CFD methods, demonstrating
the accuracy and reliability of the proposed model. Thus, the developed system can assist decision
makers to simulate, understand, and forecast ventilation-related activities and its dynamic change
inside the laneway, which is expected to be an efficient tool for improving and maintaining the health
standards in the underground coal mining industry.

2. Case Study

A fully mechanized U-type working face (15116 laneway) in Sijiazhuang coal mine was selected
as the physical prototype to implement the GIS-coupled spatiotemporal modeling, which is located in
Shanxi province, China. This mine working face is selected for access to precisely and continuously
recorded mine data. The layout of the working face laneway is shown in Figure 1. It has a working
face zone, wind intake laneway, and wind outtake laneway with the rectangular cross-section of 4.2 m
wide and 4 m high. The working face is 220 m long, while the wind intake and outtake laneways are
all 600 m long.

According to the safety operation regulations in Sijiazhuang coal mine, the airflow quantity
in the 15116 working face laneway is 53.3 m3/s, which is calculated based on the requirement of
the mine gas and carbon dioxide emission quantity, the temperature and the number of maximum
miners in the working face area, and it has been checked by the maximum and minimum wind speed.
The estimated methane emission flow rate is about 0.2 m3/s. During the procedure of coal mining
in the U-type laneway system, the working face is the main source of the methane gas emission.
A large amount of the methane gas generated from the working face disperses with the pressing
air from the wind inflow side, finally, part of it is removed through the wind inflow laneway, while
the rest stays in the laneway space. During the delivering process, movement of methane coupled with
the airflow exhibits a species transportation flow. Here, we have three model assumptions consistent
with the published research [39]: (i) the airflow in the working face zone belongs to the turbulent flow;
(ii) the airflow and methane gas are continuous medium gas; (iii) heat and mass transfer are ignored
during the process of air flow.
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Figure 1. Layout of 15116 workface in Sijiazhuang mine.

3. Model-GIS Coupling Strategy

In this study, the numerical model and LrGIS platform are linked to achieve the model-GIS
integration. Specifically, the proposed numerical model is the velocity-concentration coupled 2D
LBM, which is integrated with LrGIS platform by developing the FluntEntity model, so that both
GIS platform and model functions can access the geospatial simulation results. The GIS platform,
the numerical model, and the integration strategies are described in detail in the following sections.

3.1. LrGIS Platform

LrGIS (Longruan GIS 3.2) is a professional coal mine GIS platform (Beijing LongRuan
Technologies Inc.) with its own intellectual property right, which is widely applied in the business
of mining industry in China and well supported by professional developers. It is well designed for
coal mine system with respect to the geospatial features of coal mine laneway, ventilation network,
and etc., and professionally focuses on large amount of mine spatial data, such as surveying, geology,
hydrology reserves, transportation, ventilation network, mine design schedule. Besides, it fulfills
the integrated management of massive spatial data and information sharing among different platforms,
and provides flexible secondary development mode, such as API, DLL, ActiveX, and application
template [40]. Therefore, LrGIS is suitable to perform GIS-numerical model integration in this study.

Despite all these advantages, these functions rely on inherent and advanced GIS capabilities,
and there is a lack of defined conceptual model associated with spatiotemporal modeling to
simulate various kinds of disasters to satisfy some actual needs, such as the methane gas emission
simulation, the gas explosion prediction in emergency response, ventilation network design based
on the pre-simulation, and mine fire simulation to guide miners to escape from the disaster and etc.
The integration of the spatiotemporal modeling with GIS can provide great support for practical
production needs. These inbuilt GIS functions are insufficient in terms of spatiotemporal modeling,
because the data require specific treatments to be used in spatiotemporal modeling. In this study,
explicit mesh creation is not needed, which is usually troublesome in traditional CFD method
and inconsistencies of input geometries always lead to labor intensive and time-consuming process
for mesh generation [41,42]. The integration mode proposed in this study avoids this problem
and improves the computational efficiency.

3.2. Mathematical Models

The essential regularity of methane dispersion and its coupling with air flow is a key issue for
the methane gas emission problem, and its flowing regulation belongs to viscous Newtonian fluid,
which is governed by the Navier-Stokes (N-S) equations. There are many numerical approaches to
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solve the N-S equations, such as the traditional CFD methods and the LBM. Here the LBM based
numerical method is adopted. In phase space, the Boltzmann equation is discretized in threefold,
including space, time, and velocities. The movement and distributions of the fluid are described
as particle distribution functions residing at the sites of a regular lattice of points, which encompasses
the entire computational field. The particle distribution functions stand for the probability of particle
presence with a specific velocity at each lattice or grid site. The macroscopic variables of the fluid,
such as velocity or density, can be derived from these distribution functions.

The LBM consists of two fundamental steps, namely, the streaming-step and the collision-step.
For every time step, distribution functions are distributed and streamed from each site to
the neighboring sites in the streaming-step, and then the collision-step is conducted with the distribution
functions relaxed towards a local equilibrium on the basis of the new macroscopic variables [32].
Here, the coupling flow of the methane gas and airflow belongs to the species transportation.
The coupling model of the velocity and concentration based on 2D LBM was deduced, and the simulation
procedure for velocity field and concentration field is presented. The Bossinesq approximation method
is utilized to couple these two fields.

3.2.1. Lattice Boltzmann Method for Velocity Field

The LBM is commonly labelled as DdQq, where d stands for the space dimension and q is
the number of microscopic lattice velocity directions. The possible nodes for 2D lattices are D2Q5,
D2Q9. In this study, the D2Q9 model is employed to carry out the airflow velocity field, because it
maintains good isotropy of the lattice. The airflow particles distribution on a lattice is shown in
Figure 2a.

  
(a) Velocity field lattice (D2Q19) (b) Concentration field lattice (D2Q5) 

Figure 2. Schematic views of particles distribution in 2d lattice.

The fictitious fluid particles are subject to the lattice Boltzmann equation

fi(x + ceiΔt, t + Δt) − fi(x, t) = Ωi( f ), i = 0, 1, . . . , 8, (1)

which describes the evolution of distribution function fi on Cartesian grids with a selective velocity
ei, c is the movement velocity, Ωi( f ) denotes the discrete collision operator, and Δt is the time step.
The complex collision operator is approximated by using the standard Bhatnagar-Gross-Krook (BGK)
scheme [43], which states that the distribution functions is close to a local equilibrium distribution
function f eq

i and relaxes toward this equilibrium with a characteristic time τ. The evolution of
the distribution functions using the BGK collision is described by the following equation:

Ωi( f ) = −1
τ
[ fi(x, t) − f eq

i (x, t)] (2)
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where τ is the relaxation factor (viscosity of fluid is related to the relaxation time), f eq
i depends on

the density ρ and velocity u of the gas, and is typically defined as

f eq
i (x, t) = ωiρ(1 +

eiu
c2

s
+

(eiu)
2

2c4
s
− u2

2c2
s
), i = 0, 1, . . . , 8, (3)

whereωi is the model-dependent weight coefficient cs =
√

RT (R is the gas constant) is the lattice sound
speed. For isothermal flows, cs is set to be c/

√
3 with c = Δx/Δt, where Δx is the lattice spacing (c = 1

in this paper). Through the Chapman-Enskog expansion, the macroscopic fluid density ρ, and velocity
u, can be derived as the zeroth and first order moments of fi respectively,

ρ =
b−1∑
i=0

fi, ρu =
b−1∑
i=0

ei fi (4)

The fluid pressure is defined directly as p = c2
sρ, the velocity set and the corresponding weight

coefficients are defined as

ei =

[
0 1 0 −1 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1

]
(5)

ωi =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
4/9, i = 0

1/9, i = 1, 2, 3, 4

1/36, i = 5, 6, 7, 8

(6)

The above model can deduce the Navier-Stokes equation, which describes airflow regularity in
the laneway.

∂ρ

∂t
= −∇ · (ρu) (7)

∂ρ

∂t
+ ∇p + ∇ · (ρu) = ∇[ρv(∇u + (∇u)T)] (8)

3.2.2. Concentration Field through a Coupled Model

A coupled model is used to simulate the methane concentration field, where a D2Q9 lattice
with a BGK collision operator is also used to solve the velocity and density, while the methane gas
concentration is solved on a smaller and separate D2Q5 lattice. The distribution of concentration
particles on a lattice is shown in Figure 2b.

The evolution equation for the methane concentration field is described by the evolution of
distribution function Ci on the Cartesian grids with selective velocity ei,

Ci(x + ceiΔt, t + Δt) −Ci(x, t) = Ψi(C) i = 0, 1, . . . , 4 (9)

where c denotes the velocity, Δt is the time step, and Ψi(C) is the discrete collision operator, which is
given by,

Ψi(C) = − 1
τc
[Ci(x, t) −Ceq

i (x, t)] + Δt
R
4

(10)

τc = 2ΔtD/Δx2 + 0.5 (11)

in which R is the source item, Ceq
i is the equilibrium distribution function of the methane concentration,

and depends on the velocity u, temperature T of the gas, which is typically defined as

Ceq
i (x, t) =

C(x, t)
4

[1 + 2
e ju

c2
s
], i = 0, 1, . . . , 4, (12)
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τc is the relaxation factor, D is the methane gas diffusion coefficient, cs and Δx is the same as mentioned
above, the direction set is defined as

ei =

[
1 0 −1 0
0 1 0 −1

]
(13)

C(x, t) is the methane concentration in lattice x at time t, which is calculated by

C =
4∑

i=1

Ci(x, t) (14)

This model can also deduce the macroscopic equations for gas concentration diffusion.

∂C
∂t

= −∇ · (uC) + D∇2C + R (15)

The Boussinesq approximation method is employed to implement the coupling mode of the airflow
velocity and the methane concentration field; the evolution equation after coupling is

fi(x + ceiΔt, t + Δt) − fi(x, t) = −1
τ
[ fi(x, t) − f eq

i (x, t)] + gi (16)

gi =
ki
2

eigβs(C−C0) (17)

where gi, ki and C0 are the gravitational acceleration, the volume expansion coefficient of concentration
and reference concentration constant respectively.

3.2.3. The Turbulence Model

Airflow behavior in underground coal mine laneway is generally turbulent, hence our flow solver
based on LBM should take the effect of turbulence into account. Therefore, a wide range of scales of
fluid motion existed in the coupling flow of the air and methane concentration is necessary to resolve.
The simulation in all scales in a turbulence flow requires a very fine lattice and long computation time.
Instead, a Smagorinsky sub-lattice model is utilized to simulate the effects of the unresolved sub-lattice
motion on the resolved motion, which is similar to the large eddy simulation (LES) in traditional CFD
methods [44]. As for the LBM evolution equation, the effect of the sub-lattice can be addressed by
local relaxation time [45–47]. Then the modified relaxation time is adopted in the relaxation process,
and every node of lattice would relax at different rates.

3.3. Implementation of the LBM Integrated with LrGIS Platform

Numerical model and GIS integration can be achieved using one of the three potential coupling
strategies outlined in Table 1 [28]. Here, a tight coupling approach is used to integrate LBM in LrGIS
platform, which requires a straightforward connection from the geometric laneway data to LBM based
numerical model. An applicable numerical coupling model was developed, which was specifically
designed to adapt geometric laneway data to be integrated with LrGIS platform. The implementation
procedure focuses on improving the geometry of the input features that configure the model geometry,
the boundary conditions, and other aspects of spatiotemporal modeling, which avoids explicit
mesh generation procedure that is necessary in traditional CFD method. It will help modelers in
the development of future projects.
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Table 1. Characteristics of different strategies for GIS and model integration.

Characteristics
Coupling Type

Loose Tight Embedded

Shared data and method base
√ √

Intra-simulation model modification
√

Intra-simulation query and control
√

Advantages & disadvantages

Different GIS and Modeling
packages have independent

interfaces. Information sharing is
based on exchange of files,
which can be error prone

and inefficient. Different tools
and libraries facilitate

independent development.

The coupled platform merges
different modules in a single

powerful system, which avoids
inconsistency and data loss

originating from redundancy
and heterogeneity of method base.

Data exchange is automatic
between GIS platform and model.

Programming and data management
is significantly complex, and the code
base is not easy to be changed due to
embedded large source code structure.

Steerable simulation according to
the changes of parameters

or processes.

Examples [48] [49] [50]

Figure 3 shows the entire architecture of numerical model integrated with LrGIS platform.
The platform consists of three layers: Data source, GIS kernel, and desktop application. Different kinds of
data source can be quickly stored, retrieved, indexed, and searched by SDE interface layer. GeoLattice can
be constructed on LrGIS platform to prepare for the numerical simulation, like other geometric models
such as GeoPoint, GeoLine. In terms of the data management, LrGIS contains many entity models,
such as GeoEntity, RasterEntity. Similarly, FluentEntity is specifically designed to manage the field data
obtained by fluid simulation. The physical attributes consist of velocity, pressure, temperature, gas
concentration, and display attributes comprise geometrical shape, color rendering, profile. The simulated
result can be visualized on LrGIS GUI and execute the spatial query function. Specifically, two main
parts have been solved: (i) GeoLattice and FluentEntity setup, which constructs the laneway model
and configures the geometry and attributes of each lattice to make them valid for numerical computation;
(ii) Database organization, which controls and traces the output data that are obtained from the numerical
simulation. The data is saved as time series grid table files, which can be called by FluentEntity.

DXF File SHP File Sqlite SQLServer

Desktop Platform Service Platform - Server Java/.Net

FluentEntityGeoEntity RasterEntity EntitySet

Vector file Raster file Time series grid fileDatabase

Ventilation
Simulation

PointLine/Region OperatorPoints/Lines/Regions Operator

Methane
Simulation

GeoObject GeoPoint/Line/Region/Image GeoLattice

Qtree, Rtree, Sort, Matrix…

Attribute Query Spatial Query(polygon/point query… )

Buffer OverlayDEM/TIN/Contour

Projection GeometryDraw ChartDraw RasterDraw MapPainter

 
Figure 3. The entire architecture of numerical model on LrGIS platform.
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The lattice attributes and the corresponding boundary conditions are described in details: different
kinds of lattice nodes on the geometry are associated with different material numbers in their own
coordinates. Figure 4 presents a 2D top view of the laneway, with material number one, two, three,
four and five corresponding to fluid region, inflow, outflow, methane mass flow, and bounce back
boundary, respectively. Then different material numbers are defined with the corresponding dynamic
conditions, which are described, as follows:

(i) fluid region: all species can move in this area, namely, the mesoscopic streaming and collision
step of particles happened;

(ii) inflow: the velocity inflow boundary condition is adopted, which means that the airflow is
through this boundary with specified velocity;

(iii) outflow: the outlet of the laneway is set to be under the constant pressure boundary condition;
(iv) methane mass flow: the methane gas is released evenly from working face area with a total flow

rate of 0.2 m3/s;
(v) bounced back boundary: the no-slip boundary is prescribed at all laneway walls.

 
Figure 4. 2D top view of the laneway with associated material numbers.

The detailed algorithm of LBM based numerical model integrated with LongRuanGIS platform
is implemented as follows (Table 2), where the computational complexity of this numerical model is
the product of lattice amount and number of iterations.
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Table 2. Algorithm steps of the numerical model.

Algorithm. The LBM Based Turbulent Velocity-Concentration Coupling Model Integrated with LrGIS Platform

Step 1: Geometric model construction with specific geospatial coordinates.
Step 2: Lattice attributes configuration for two different lattice (D2Q9 and D2Q5)
Step 3: Main loop starts

Parameters initialization: fi, f eq
i , Ci, Ceq

i , Δx, Δt, maxIter
For (it = 0; it <maxIter; ++it)

If (it = 0)
Set static boundary conditions (fluid region, wall).

Else if (it != 0)
Set dynamic boundary conditions(inflow, outflow and methane emission rate).
Do collision step

f̃i(x, t) = fi(x, t) − 1/τ[ fi(x, t) − f eq
i (x, t)]

Ψ̃i(C) = −1/τc[Ci(x, t) −Ceq
i (x, t)] + Δtω/4

Do streaming step
fi(x + ceiΔt, t + Δt) = f̃i(x, t)
Ci(x + ceiΔt, t + Δt) −Ci(x, t) = Ψ̃i(C)

Do coupling step
fi(x + ceiΔt, t + Δt) − f̃i(x, t) = −1/τ[ f̃i(x, t) − f eq

i (x, t)] + kieigβs(C−C0)/2
Step 4: Save the result data as time series grid files
Step 5: FluentEntity call time series grid files and display field data on LrGIS GUI integrated with various coal mine
map objects

4. Simulation and Integration Results

4.1. Spatiotemporal Characteristics of Airflow and Methane Distribution

The established model was numerically simulated and all terms of the evolution equations,
including streaming step and collision step were solved. The coupling mode is solved using Boussinesq
approximation method. The detailed parameters are presented in Table 3. The simulation required
around 1.6 h on workstations with four core processors and 8 GB RAM.

Table 3. Parameters for LBM simulation.

Parameters Setting

Air density (kg/m3) 1.225
Methane gas density (kg/m3) 0.716

Turbulent viscosity(m2/s) 1.7894 × 10−5

Turbulent kinetic energy 1.3
Convergence criteria 10e−6

Calculation steps 10000
Lattice size (m) 0.1

Time step size (s) 1
Renolds number 500
Initial pressure 1/3

Air velocity of inlet (m/s) 3.17
Methane volume flow at the working face (m3/s) 0.2

The velocity field of airflow is one of the main factors which directly influence the methane
distribution and mitigation. As presented in Figures 5 and 6, the predicted air velocity and methane
concentration profiles were investigated at different time points with a fixed methane emission
rate of 0.2 m3/s. Here, we analysed the overall spatiotemporal characteristics of velocity behaviour
and methane distribution inside the laneway. The pressing air is flowing from the intake side of
the laneway at high velocity, and there exists an obvious jet flow, which goes along the laneway
and flows into the working face. When the airflow arrives at the working face, it is obstructed by
the face and the airflow changes its flow direction and flows along the working face area, as can be
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seen in Figure 5a–c about the airflow distribution at different times. Correspondingly, the methane gas
gushes from the coal seam and disperses into the working face with the impact of airflow after about
5 min. (Figure 6a), when the airflow is distributed fully in the working face area. Then the methane
gas gradually diluted and decreased to a low concentration level with the effect of airflow in the wind
outtake side of the laneway and approximately becomes stable at 10 min. (Figure 6b–d).

Figure 5. Airflow velocity (m/s) profiles at different time points.

Figure 6. Methane concentration (v/v%) profiles at different time points.

4.2. The Spatiotemporal Analysis of Methane Concentration Based on LrGIS

Based on the proposed integration method, the CFD simulation function is developed on
LrGIS platform, which supports the numerical simulation and can display the simulated data on
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the ventilation system map on the basis of coordinate matching, and also facilitate the visualization
of additional relevant data. The effective user access, the location-based information, and means of
viewing and analyzing for the simulated data are also the main focuses. Thus, the numerical model is
integrated with LrGIS platform, of which the query and analysis functions can also be operated based
on the numerical simulation results. Figure 7 shows the map of ventilation system of 5# Sijiazhuang
coal mine, the study area of 15116 working face in this case is located in the bottom right corner on
the map, with the latitude and longitude ranging from 105,800 to 106,020 m and from 67,125 to 67,725 m.
The roam and move functions allow users to observe more detailed features on the coal mine map.

 
Figure 7. Study area of the ventilation system map in 15# Sijiazhuang coal mine.

To demonstrate the applicability of the CFD simulation function in LrGIS platform, the spatiotemporal
analysis for our case study is performed. First, based on the specified numerical parameters, the geometry
is prepared and lattice is generated, which are then used to perform the numerical simulating procedure.
It is noted that the properties of lattices include the lattice ID, material numbers, and the coordinates.
The output data of the simulation is saved as a series of time ordered text files, which contains the X, Y
coordinates, the airflow velocity, and methane concentration of each lattice. The tool of methane emission
analysis in the CFD simulation model allows for us to demonstrate the spatiotemporal distribution
of the airflow behavior and methane concentration. By specifying the time point, the corresponding
spatiotemporal distribution of the methane concentration can be visualized on the ventilation system map,
together with various spatial coal mine layers, including geographical locations of fans, methane sensors
and first aid stations, contour line, measured faultage, river and railway, and also the fictitious graticule,
as presented in Figure 8. These information provide managers and miners the access to the large quantities
of geographic field data, as well as its query and analysis for the location-based information integrated
with simulated data.

Basically, the managers or decision makers can use the program to perform several queries
according to the specifications, such as, (i) basic mine mapping operations integrated with simulated
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field data, (ii) finding operation, and (iii) location-based information operation. For example,
the maximum methane concentration with its coordinates in an area of interest will be demonstrated
immediately by the function of polygonal query, which also shows whether the predicted concentration
exceeds the threshold value, as can be seen in Figure 9.

 
Figure 8. Methane concentration integrated with various spatial coal mine layers.

 
Figure 9. Methane concentration visualization and polygonal query analysis.

Besides, if a specific point is of interest in an actual field, for example, the position is where
miners always work, then the point can be clicked or the coordinate can be input on the interface
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to get the methane concentration curve changed over time, which will be displayed on the interface
and provides intuitive information for the dynamic regularity of methane concentration. The time
series data can also be validated with monitored data based on the database management system.
Here, one of the methane sensors located 10 m away from the working face in the outtake side
of the laneway is selected to perform the data validation with the monitored data, as presented in
Figure 10. The numerical simulation shows that, after the algorithm converges in 10 min, and the airflow
distributes fully and stably within the laneway. The simulated methane concentration maintains
at a stable level and agrees well with the monitored data after 10 min. Thus, some detailed information
can be provided for decision makers, such as how long the methane distribution will be stable
with the effect of the ventilation system, the peak value of methane concentration, and its specific
position, which can guide miners about when to avoid the methane accident if the value is beyond
the maximum allowable value. Besides, the methane distribution can also guide the production
intensity, and reasonable arrangement of underground coal mine equipment.

 
Figure 10. Point query analysis and data validation.

4.3. The Comprehensive Comparison of Traditional CFD Method and LBM

According to the kinetic theory [40], both traditional CFD method and LBM can satisfy the macroscopic
Navier-Stokes equation in their continuous forms. However, Navier-Stokes equations are the target for
LBM while the starting point for the traditional CFD methods, and these two methods also differ, not only
in the spatial discretization forms, but also in the temporal discretization forms. Although a number of
studies have been conducted to comprehensively compare their difference in essence, there is still a lack
of comparison based on the actual simulation example. In this case study, comprehensive comparison
and analysis between the proposed turbulent LBM based velocity-concentration coupling model
and traditional CFD method are conducted from the following three aspects: accuracy, simulation efficiency,
simplicity, and advantages of the integration with LrGIS platform.
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Here, the traditional CFD method was implemented based on Computational Fluid Dynamics
platform (Fluent) by employing the Euler-Lagrange model, all terms of the governing equations
and constitutive relations were solved with the semi-implicit pressure-linked equation (SIMPLE)
algorithm and second-order upwind scheme. The turbulence model and boundary conditions were
solved using finite volume solver. The dynamic boundary parameters are the same with the LBM.
Here, a line at 3 m high in the middle of the outtake side of laneway was chosen to investigate the airflow
velocity and methane concentration at two different time points. As can be seen in Figures 11 and 12,
it shows that both methods agree well with each other in the overall tendency of airflow velocity
and methane concentration.

(a) Airflow velocity at 10 min. (b) Airflow velocity at 15 min. 

Figure 11. Airflow velocity at the selected line.

(a) Methane concentration at 10 min. (b) Methane concentration at 15 min.  

Figure 12. Methane concentration at the selected line.

The traditional CFD simulation requires about 20 min on computers with four core processors
and 8 GB RAM, while the model adopted in this paper uses around 15 min. It is noted that Fluent belongs
to the third-party professional fluid dynamics simulation software, its independent geometric modeling
and numerical simulation process makes it significantly difficult to directly guide the on-site problems,
and the required data have to be preset and saved manually in the early stage of the simulation,
which shows the poor practicability when applied in the on-site guidance. However, in this paper,
the property of the unnecessary explicit mesh generation and the inherent simplicity of the algorithm
make LBM more efficient and easy to integrate with the LrGIS platform. Specifically, the integrated
system essentially implemented four objectives: (i) enabling managers to simulate case study directly on
the GIS system and visualize the simulated results intuitively; (ii) storing the simulated spatiotemporal
field data in the database system, which can be used for post analysis; (iii) demonstrating the simulated
field data with various coal mine map objects, and providing miners the spatiotemporal analyze
and query operation tools to obtain the useful location-based information; (iv) validating the results
based on the coal mine monitoring system of Sijiazhuang coal mine. Therefore, by utilizing the synergies
between GISs and spatiotemporal modeling, the integrated system is effective in providing decision
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supports for safety production, which is expected to improve the health standards in the underground
coal mines.

The comparison case study demonstrates that the model and integration mode carried out in this
study is more efficient in improving the computational efficiency and simplifying the integration mode
of numerical simulation model with the GIS platform. It can also be concluded that the integrated
system is more practical in on-site application compared with numerical simulation software.

5. Conclusions

Due to the lack of an effective platform for the practical application of numerical simulation
methods in the underground coal mine systems, the concept of tight coupling of GIS and spatiotemporal
modeling is introduced in this area for the first time.

Specifically, a turbulent LBM based velocity-concentration coupling model is proposed and tightly
integrated with LrGIS platform by developing the FluentEntity model, which allows mine managers to
simulate ventilation-related case study directly on the LrGIS system, visualize the simulated field data
on the ventilation system map and other coal mine layers intuitively, and operate the spatiotemporal
analyze and query to get location-based information, and therefore to guide the practical operation.
Besides, the simulated result is validated with monitored data of Sijiazhuang underground coal mine,
which shows the accuracy and reliability of the proposed model. In addition, by comparing with
the traditional CFD method, the developed coupling scheme is demonstrated to be more efficient
and easy to be integrated with GIS system.

In conclusion, this study provides a possibility to integrate the numerical simulation model with
the GIS platform effectively, and shows that GIS could not only serve to carry out general constructive
safety, but also generate case scenarios, quantify spatiotemporal processes, and therefore improve
the safety standards for coal mines by GIS-coupled spatiotemporal modeling, analysis, and query tools.
Furthermore, the system is more flexible and potentially applicable to other case study, like ventilation
network solution, including both local network and the whole mine ventilation system.

Author Contributions: During this study, H.L. designed and performed the numerical simulation, and wrote
the paper, S.M. and M.L. contributed materials, S.W. integrated the numerical model with the LrGIS platform.

Funding: This work is financially supported by the National Key Research and Development Program of China:
[Grant Number 2016YFC0803108].

Acknowledgments: The authors would like to thank the anonymous reviewers who contributed to the quality of
this letter by providing helpful suggestions.

Conflicts of Interest: No potential conflict of interest was reported by the authors.

References

1. Nakayama, S.; Kim, Y.K.; Jo, Y.D. Simulation of methane gas distribution by computational fluid dynamics.
In Mining and Science Technology; Xie, H.P., Golosinski, T.S., Eds.; Balkema Publisher: Brookfield, VT, USA,
1999; pp. 259–262.

2. Kurnia, J.C.; Sasmito, A.P.; Wong, W.Y.; Mujumdar, A.S. Prediction and innovative control strategies
for oxygen and hazardous gases from diesel emission in underground mines. Sci. Total Environ. 2014,
481, 317–334. [CrossRef]

3. Kurnia, J.C.; Xu, P.; Sasmito, A.P. A novel concept of enhanced gas recovery strategy from ventilation air
methane in underground coal mines—A computational investigation. J. Nat. Gas Sci. Eng. 2016, 35, 661–672.
[CrossRef]

4. Liu, H.; Wu, X.; Mao, S.; Li, M.; Yue, J. A Time Varying Ventilation and Dust Control Strategy Based on
the Temporospatial Characteristics of Dust Dispersion. Minerals 2017, 7, 59. [CrossRef]

5. Xu, G.; Luxbacher, K.D.; Ragab, S.; Xu, J.; Ding, X. Computational fluid dynamics applied to mining
engineering: A review. Int. J. Min. Reclam. Environ. 2017, 31, 251–275. [CrossRef]

6. Sun, Z.; Mao, S.; Wu, C. Assistant Decision System of Gas Explosion Emergency Rescue Based on Monitoring
Data and CFD. Saf. Coal Mines 2016, 47, 83–86. [CrossRef]



Appl. Sci. 2019, 9, 1931

7. Zhu, C.; Lin, B.; Ye, Q.; Zhai, C. Effect of roadway turnings on gas explosion propagation characteristics in
coal mines. Min. Sci. Technol. 2011, 21, 365–369. [CrossRef]

8. Tian, Z.; Liang, Z.; Niu, Y.; Li, C.; Tu, X.; Fan, D. Simulation of the methane emission in rice fields in China
during the past 40 years by DNDC model and GIS technical. In Proceedings of the 2014 Third International
Conference on Agro-Geoinformatics, Beijing, China, 11–14 August 2014.

9. Goodchild, M.F.; Haining, R.; Wise, S. Integrating GIS and spatial data analysis: Problem and possibilities.
Int. J. Geogr. Inf. Syst. 1992, 6, 407–423. [CrossRef]

10. Duffy, C.; Leonard, L.; Bhatt, G.; Yu, X.; Giles, L. Watershed Reanalysis: Towards a National Strategy for
Model-Data Integration. In Proceedings of the 2011 IEEE Seventh International Conference on e-Science
Workshops (eScienceW 2011), Stockholm, Sweden, 5–8 December 2011; pp. 61–65.

11. Juanle, W.; Kan, W.; Kuan, W. Integrated GIS solution to mining subsidence assistant decision in mining area.
In Proceedings of the IGARSS 2004, 2004 IEEE International Geoscience and Remote Sensing Symposium,
Anchorage, AK, USA, 20–24 September 2004; pp. 2868–2871.

12. Kolli, S.S.; Damodaran, P.S.; Evans, G.W. Geographic Information System Based Decision Support Systems
for Facility Location, Routing and Scheduling. Comput. Ind. Eng. 1993, 25, 369–372. [CrossRef]

13. Banerjee, T.K. A GIS Solution for an Integrated Underground Coal Mine Management: A Conceptual
Platform. J. Manag. Policies Pract. 2014, 2, 129–143.

14. Şalap, S.; Karslıoğlu, M.O.; Demirel, N.; Karslioglu, M.O. Development of a GIS-based monitoring and management
system for underground coal mining safety. Int. J. Coal Geol. 2009, 80, 105–112. [CrossRef]

15. Suh, J.; Kim, S.-M.; Yi, H.; Choi, Y. An Overview of GIS-Based Modeling and Assessment of Mining-Induced
Hazards: Soil, Water, and Forest. Int. J. Environ. Res. Public Health 2017, 14, 1463. [CrossRef]

16. Yenilmez, F.; Kuter, N.; Emil, M.K.; Aksoy, A. Evaluation of pollution levels at an abandoned coal mine site
in Turkey with the aid of GIS. Int. J. Coal Geol. 2011, 86, 12–19. [CrossRef]

17. Ni, X.-M.; Chen, P.; Guo, L. Development of a decision-making system for coalbed methane development
based on GIS. In Proceedings of the 2010 2nd Conference on Environmental Science and Information
Application Technology, ESIAT 2010, Wuhan, China, 17–18 July 2010; pp. 348–351.

18. Yao, Y.; Liu, D.; Tang, D.; Huang, W.; Tang, S. Evaluation of the Coalbed Methane Potential by a GIS-Based
Fuzzy AHP Model. In Proceedings of the 2009 Sixth International Conference on Fuzzy Systems
and Knowledge Discovery, Tianjin, China, 14-16 August 2009; pp. 281–285.

19. Fang, K. GIS network analysis in rescue of coal mine. In Proceedings of the 21st International Society for
Photogrammetry and Remote Sensing (ISPRS) Congress, Beijing, China, 3–11 July 2008.

20. Van Dijk, P.M.; Wang, H.Y.; Van Genderen, J.L. Earth observation knowledge transfer: The example of ITC’s
coal fire project. In Proceedings of the 20th International Society for Photogrammetry and Remote Sensing
(ISPRS) Congress, Istanbul, Turkey, 12–23 July 2004.

21. Kresic, N.; Mikszewski, A. Hydrogeological Conceptual Site Models: Data Analysis and Visualization. 2012.
Available online: https://books.google.com/books?id=6H383WiTiSQC&pgis=1 (accessed on 10 May 2019).

22. Ahm, Z.; Ashraf, A. Integration of Groundwater Flow Modeling and GIS. In Water Resources Management
and Modeling; Nayak, P., Ed.; InTech: Rijeka, Croatia, 2012; pp. 239–262.

23. Li, M.; Liu, H.; Yang, C. A Real-Time GIS Platform for High Sour Gas Leakage Simulation, Evaluation
and Visualization. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, 2, 225–231. [CrossRef]

24. Liu, Z.-P.; Liu, J.; He, Y.-w. Seamless coupling of 3D GIS techniques with FEM and its application to tunneling
engineering. Rock Soil Mech. 2017, 38, 865–874. [CrossRef]

25. Zheng, M.; Jin, M. Modeling and Simulation of Toxic Gas Dispersion in Urban Street Supported by GIS.
Geomat. Inf. Sci. Wuhan Univ. 2013, 38, 935–939.

26. Ma, J.T.; Chen, S.Z.; Zhu, X.T.; He, Z.C. Finite element numerical simulation method of groundwater flow
and its application under 3D GIS. J. Geo-inf. Sci. 2016, 18, 749–757. [CrossRef]

27. Alcaraz, M.; Vázquez-Suñé, E.; Velasco, V.; Criollo, R. A loosely coupled GIS and hydrogeological modeling
framework. Environ. Earth Sci. 2017, 76, 1–13. [CrossRef]

28. Bhatt, G.; Kumar, M.; Duffy, C.J. A tightly coupled GIS and distributed hydrologic modeling framework.
Environ. Model. Softw. 2014, 62, 70–84. [CrossRef]

29. Gebbert, S.; Pebesma, E. A temporal GIS for field based environmental modeling. Environ. Model. Softw.
2014, 53, 1–12. [CrossRef]



Appl. Sci. 2019, 9, 1931

30. Bai, L.; Yan, L.; Ma, Z. Interpolation and Prediction of Spatiotemporal Data Based on XML Integrated with
Grey Dynamic Model. ISPRS Int. J. Geo-Inf. 2017, 6, 113. [CrossRef]

31. Papadimitriou, F. Modelling spatial landscape complexity using the Levenshtein algorithm. Ecol. Informat.
2009, 4, 48–55. [CrossRef]

32. Papadimitriou, F. The Algorithmic Complexity of Landscapes. Landsc. Res. 2012, 37, 591–611. [CrossRef]
33. He, X.; Doolen, G.D.; Clark, T. Comparison of the Lattice Boltzmann Method and the Artificial Compressibility

Method for Navier–Stokes Equations. J. Comput. Phys. 2002, 179, 439–451. [CrossRef]
34. Khan, M.A.I.; Delbosc, N.; Noakes, C.J.; Summers, J. Real-time flow simulation of indoor environments using

lattice Boltzmann method. Build. Simul. 2015, 8, 405–414. [CrossRef]
35. Perumal, D.A.; Dass, A.K. Simulation of incompressible flows in two-sided lid-driven square cavities.

Part I—FDM. CFD Lett. 2010, 2, 13–24.
36. Chen, S.; Doolen, G.D. Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 1998, 30, 282–300.

[CrossRef]
37. Elhadidi, B.; Khalifa, H.E. Comparison of coarse grid lattice Boltzmann and Navier Stokes for real time flow

simulations in rooms. Build. Simul. 2013, 6, 183–194. [CrossRef]
38. Heinzer, T.J.; Williams, M.D.; Dogrul, E.C.; Kadir, T.N.; Brush, C.F.; Chung, F.I. Implementation of

a feature-constraint mesh generation algorithm within a GIS. Comput. Geosci. 2012, 49, 46–52. [CrossRef]
39. Lu, Q. 3D Simulation of Concentrative Emission Gas Spreading in Ventilation Networks Based on LBM.

J. Syst. Simul. 2011, 23, 2384–2390. [CrossRef]
40. Li, M.; Zhang, X.-p.; Mao, S.-j. Study on deep mining safety control decision making system. The 6th

International Conference on Mining Science & Technology. Procedia Earth Planet. Sci. 2009, 1, 377–383.
[CrossRef]

41. Lunarzewski, L.; Les, W. Gas emission prediction and recovery in underground coal mines. Int. J. Coal Geol.
1998, 35, 117–145. [CrossRef]

42. Bhatnagar, P.L.; Gross, E.P.; Krook, M. A Model for Collision Processes in Gases. I. Small Amplitude Processes
in Charged and Neutral One-Component Systems. Phys. Rev. 1954, 94, 511–525. [CrossRef]

43. Guo, Z.; Shi, B.; Zheng, C. A coupled lattice BGK model for the Boussinesq equations. Int. J. Numer. Methods Fluids
2002, 39, 325–342. [CrossRef]

44. Smagorinsky, J. General Circulation Experiments with the Primitive Equations. Mon. Weather Rev. 1963,
91, 99–164. [CrossRef]

45. Hou, S.; Sterling, J.; Chen, S.; Doolen, G.D. A Lattice Boltzmann Subgrid Model for High Reynolds Number
Flows. In Pattern Formation and Lattice gas Automata; Lawniczak, A.T., Kapral, R., Eds.; American Mathematical
Society: Providence, RI, USA, 1996; pp. 151–166.

46. Zhang, S.J.; Lin, C.X. Application of Lattice Boltzmann Method in Indoor Airflow Simulation. HVAC&R Res.
2010, 16, 825–841.

47. Brimicombe, A. GIS Environmental Modelling and Engineering; Taylor & Francis: London, UK, 2003; p. 320.
48. Hellweger, F.L.; Maidment, D.R. Definition and Connection of Hydrologic Elements using Geographic Data.

J. Hydrol. Eng. 1999, 4, 10–18. [CrossRef]
49. Olivera, F.; Valenzuela, M.; Srinivasan, R.; Choi, J.; Cho, H.; Koka, S.; Agrawal, A. ArcGIS-SWAT: A geodata

model and GIS interface for SWAT. J. Am. Water Resour. Assoc. 2006, 42, 295–309. [CrossRef]
50. Huang, B.; Jiang, B. AVTOP: A full integration of TOPMODEL into GIS. Environ. Model. Softw. 2002,

17, 261–268. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).



applied  
sciences

Article

Evaluation of Reliable Digital Elevation Model
Resolution for TOPMODEL in Two Mountainous
Watersheds, South Korea

Daeryong Park 1, Huan-Jung Fan 2, Jun-Jie Zhu 3, Sang-Eun Oh 4, Myoung-Jin Um 5 and

Kichul Jung 1,*

1 Department of Civil and Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu,
Seoul 05029, Korea

2 Department of Safety, Health and Environmental Engineering, Hungkuang University,
Taichung 43302, Taiwan

3 Department of Civil, Architectural and Environmental Engineering, Illinois Institute of Technology,
Chicago, IL 60616-3793, USA

4 Department of Biological Environment, Kangwon National University, 192-1 Hyoja-2-dong, Gangwondo,
Chuncheon 200-701, Korea

5 Department of Civil Engineering, Kyonggi University, 154-42 Gwanggyosan-ro, Yeongtong-gu,
Suwon 16227, Korea

* Correspondence: jkichul11@konkuk.ac.kr

Received: 8 June 2019; Accepted: 3 September 2019; Published: 5 September 2019

Abstract: This study analyzed the result of parameter optimization using the digital elevation model
(DEM) resolution in the TOPography-based hydrological MODEL (TOPMODEL). Also, this study
investigated the sensitivity of the TOPMODEL efficiency by applying the varying resolution of
the DEM grid cell size. This work applied TOPMODEL to two mountainous watersheds in South
Korea: the Dongkok watershed in the Wicheon river basin and the Ieemokjung watershed in the
Pyeongchang river basin. The DEM grid cell sizes were 5, 10, 20, 40, 80, 160, and 300 m. The effect
of DEM grid cell size on the runoff was investigated by using the DEM grid cell size resolution to
optimize the parameter sets. As the DEM grid cell size increased, the estimated peak discharge was
found to increase based on different parameter sets. In addition, this study investigated the DEM
grid cell size that was most reliable for use in runoff simulations with various parameter sets in the
experimental watersheds. The results demonstrated that the TOPMODEL efficiencies in both the
Dongkok and Ieemokjung watersheds rarely changed up to a DEM grid-size resolution of about
40 m, but the TOPMODEL efficiencies changed with the coarse resolution as the parameter sets were
changed. This study is important for understanding and quantifying the modeling behaviors of
TOPMODEL under the influence of DEM resolution based on different parameter sets.

Keywords: DEM grid cell size; efficiency; mountainous watersheds; optimized parameter
set; TOPMODEL

1. Introduction

Rainfall–runoff relationships are generally simulated using a simplified conceptual model based
on physical processes. Conventionally, this process involves the use of a lumped model, which
considers the watershed as a homogenous element. The lumped model assumes that the watershed is a
single black box that is highly dependent on the reliability of rainfall and runoff data; it suffers from the
disadvantage that the temporal and spatial transformations of the rainfall to runoff are not explicitly
considered. The development of Geographic Information Systems has facilitated the development of a
dynamic model for analyzing the runoff phenomena and has allowed the development of a distributed
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parameter model that considers the spatial variability of parameters related to the runoff process. It
focuses on the spatial variability of the process and explains the physical relationship between the
topographic and runoffmodel parameters by analyzing the runoff.

To analyze the runoff event pattern using computational watershed models, the input parameters
should be accurately estimated by reflecting the hydrological and hydraulic conditions such as
the topographic characteristics, rainfall, and infiltration. However, accurately simulating the
rainfall–runoff event is difficult because of the nonlinear characteristics of natural phenomena. One of
the distributed parameter models developed to overcome these limitations is the TOPography-based
hydrological MODEL (TOPMODEL), which uses the digital elevation model (DEM) [1]. TOPMODEL is
semidistributed watershed model and has mainly been applied to hydrologic simulations in mountain
basins [2–6]. TOPMODEL has the advantage in that it can easily separate surface runoff from basal
runoff, and a runoff simulation can be performed for a long period. Similarly, the variable infiltration
capacity (VIC) model can simulate rainfall–runoff processes and separates surface runoff and baseflow
using the concept of three layers [7,8]. The VIC model simulates both water- and energy-balance
equations and considers land-cover type as well as the concept of three soil layers. In contrast,
TOPMODEL has a physical basis and focuses on hydrologic processes. Furthermore, the two models
employ different infiltration estimation methods. TOPMODEL applies the Green Amp equation,
whereas the VIC model uses various empirical methods [9].

Beven and Kirby [1] proposed TOPMODEL as a distributed parameter model for a
runoff-contributing area. Beven and Wood [10] analyzed the effects of watershed topography
on a river runoff using TOPMODEL. The influences of the spatial scale of the DEM, and the
topographic characteristics on the hydrological process in TOPMODEL have been studied [11–14].
Saulnier et al. [15,16] analyzed the influence of permeability coefficient based on the DEM resolution.
When the DEM resolution is larger, the permeability coefficient accordingly increases, and the variation
in the coefficient is smaller.

To date, many researchers have pointed out that the topographic index in TOPMODEL is affected
by the DEM resolution [17–19]. They usually demonstrated that high DEM resolutions can yield
accurate topographic index estimates [20–22]. However, the effects of optimized input parameters
based on the resolution of topographic data (e.g., effects of changes in DEM grid cell size), as well
as the concept of reliable DEM grid cell size resolution on experimental watersheds in TOPMODEL
have been rarely studied. In particular, Lin et al. [23] investigated the influence of DEM resolution
in TOPMODEL in the Hanjiang River, China, and reported no evident differences in the uncertainty
intervals corresponding to different DEM resolutions represented in TOPMODEL. However, uncertainty
intervals corresponding to different DEM resolutions depending on changing input parameters in
TOPMODEL have not yet been clarified. The objective of this study is to suggest a reliable DEM
grid-size resolution that exhibits a low sensitivity to change in the input parameters during runoff
simulations in experimental watersheds. To this end, this study attempted (1) to investigate the effects
of DEM grid cell size on the simulated runoffs during the application of different optimized input
parameters, and (2) to investigate the effects of DEM grid cell size on the simulated runoffs when a
constant input parameter set is applied.

2. Geographical Setting and Morphometry of the Study Area

TOPMODEL was applied as a conceptual distributed runoffmodel to generate runoffs in the target
watersheds. TOPMODEL considered the topographic factors estimated by DEM in the watershed. This
study investigated two mountainous watersheds, namely, the Dongkok and Ieemokjung watersheds,
using TOPMODEL, as shown in Figure 1. The Dongkok watershed is located upstream of the Wicheon
river, a tributary of the Nakdong River, and contains one rain- and a number of streamflow-gauge
stations. Similarly, the Ieemokjung watershed is a subcatchment of the Pyeongchang River, a tributary
of the South Han River, and contains one rain- and one streamflow-gauge station. Figure 1 shows the
locations of the rain- and streamflow-gauge stations in the Dongkok and Ieemokjung watersheds.
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Figure 1. Location of the Dongkok (Lat: 36◦07′11” N, Lon: 128◦47′46” E) and Ieemokjung (Lat:
37◦37′17” N, Lon: 128◦28′19” E) watersheds in South Korea.

Table 1 lists the topographical and morphological characteristics of the Dongkok and Ieemokjung
watersheds. The drainage area, river length, and main tributary length in the Ieemokjung watershed
are larger than those in the Dongkok watershed. However, the mean width of the basin and shape factor
in the Dongkok watershed is larger than that in the Ieemokjung watershed. These conditions indicate
that the Dongkok watershed has a more circular shape and a wider channel than the Ieemokjung
watershed. In terms of the river density and basin slope, the Dongkok watershed is slightly larger than
the Ieemokjung watershed.

Table 1. Topographic characteristics of the Dongkok and Ieemokjung watersheds.

Characteristics Dongkok Watershed Ieemokjung Watershed

Drainage area (km2) 33.63 55.76
River length (km) 8.00 16.55

Main tributary length (km) 39.92 53.25
Mean width of basin (km) 4.203 3.370

Shape factor 0.525 0.204
Drainage density (km/km2) 1.188 0.955

Basin slope 0.452 0.344

The applied DEM spatial resolution values were 5, 10, 20, 40, 80, 160, 200, and 300 m, using ArcGIS.
DEM data scales for Dongkok and Ieemokjung watersheds were 1:5000 and 1:25,000, respectively.
The hydrological data were based on rainfall data, and the runoff data were obtained from the
International Hydrological Programme (IHP) report [24]. The present study chose four rainfall–runoff
events in the Dongkok watershed and seven events in the Ieemokjung watershed. The parameters
of the selected rainfall–runoff events are listed in Table 2. Rainfall–runoff events in the 1990s were
adopted because the applied DEM data and verified streamflow data for TOPMODEL for the target
watersheds were created in the late 1990s by the National Geographic Information Institute in Korea
(https://www.ngii.go.kr) [24,25].
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Table 2. Selected rainfall–runoff events in the TOPMODEL application.

Watershed Year
Rainfall–Runoff

Event Time (m.dd.hh)
Durations of

Events (h)
Name of Events

Dongkok

1996
6. 16. 23–6. 17. 22 16 DK960616
8. 26. 22–8. 27. 19 17 DK960826

1997 7. 15. 18–7. 16. 21 17 DK970715

1998 8. 15. 14–8. 17. 10 16 DK980815

Ieemokjung

1991 5. 25. 13–5. 26. 17 26 IM910525

1992 9. 24. 6–9. 24. 24 17 IM920924

1994
6. 29. 23–7. 1. 23 42 IM940629

8. 1. 3–8. 2. 4 19 IM940801

1996
7. 4. 13–7. 5. 5 13 IM960704

8. 25. 13–8. 27. 24 17 IM960825

1999 7. 28. 3–7. 29. 24 42 IM990728

3. Materials and Methods

3.1. TOPMODEL

TOPMODEL simulates the runoffs using the water balance due to precipitation, estimated
infiltration (regarded as a saturation deficit), and the loss by evapotranspiration. Figure 2 shows the
basic concept of the TOPMODEL scheme. P represents the precipitation, ai is the slope area per unit
contour length, qi is the runoff per unit width, Srz is the root-zone deficit, and Suz is the local water
storage in the unsaturated zone. qv is the flux of water that locally enters the water table (per unit
area), and Q represents the drainage of the watershed unit. The formula that serves as the basis of
TOPMODEL is based on the continuity equation and Darcy’s Law. The model equation is developed
through several important assumptions as follows.

 
Figure 2. Basic concept of the TOPMODEL scheme (modified from [5,14,19]).

First, the flow of water in the watershed is assumed to be at a steady state.
Second, the hydraulic gradient of the saturated soil in the watershed can be expressed as tan β,

which represents the surface gradient.
Third, the saturation permeability coefficient (T0, m2/h) exponentially decreases from the soil

surface to the groundwater surface. These assumptions indicated that the most important factor on
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the storage and groundwater of the watershed is the topographic index, also known as topographic
wetness index, i.e., (ln( a

tanβ )) [26–30].
The saturated hydraulic conductivity of soil (Ks, m/h) can be expressed as a negative exponential

function with respect to depth, as follows:

Ks = K0 exp (− f z) (1)

where z (m) is the underground water depth, K0 (m/h) is the coefficient of permeability of the soil at
the ground surface, and f (1/m) is the coefficient ratio of the Ks change depending on underground
water depth z. f was assumed to be constant in the entire watershed.

The hydraulic gradient in the saturated layer can be expressed as a topographic slope in the
watershed, and the behavior of the saturated layer follows Darcy’s Law. Therefore, the flow rate per
unit width qi (m2/h) at point i is expressed as follows:

qi = Ti(zi)tanβi (2)

where tanβi is the slope of the surface at location i, and Ti(zi) is the transmissivity coefficient. Ti(zi) in
Equation (2) can be obtained by integrating Equation (1) as follows:

Ti(zi) =

z(t)∫
zi

Ks(x)dx =
K0

f
[exp (− f zi) − exp (− f z)] =

1
f
[Ks(zi) −Ks(z)] (3)

Generally, when depth z of the groundwater is large, the saturation permeability coefficient Ks(z)
(m/h) is negligible, because it is very small compared with saturation permeability Ks(zi) at depth zi.
Therefore, substituting Equation (3) into Equation (2) yields the following equation:

qi =
K0

f
tanβi exp (− f zi) = T0tanβi exp (− f zi) (4)

where T0 = K0/ f is the coefficient of permeability of the fully saturated soil. K0 and f were assumed
to be constant in the entire watershed.

In addition, the behavior of the flow in the saturation layer can be expressed as a continuous
steady state as follows:

qi = aiR = T0tanβi exp (− f zi) (5)

where R (m/h) is the spatially constant recharge of the groundwater at any given time, and ai (m) is the
area of the slope per unit contour length drained through point i.

Equation (5) can be summarized based on zi, and the average value (z) of the entire watershed can
be obtained as follows:

zi = − 1
f

(
ln

Rai
T0tanβi

)
(6)

where R is spatially constant, and ln( a
T0tanβ ) is the soil topographic index.

Introducing average topographic indexes to Equation (6) yields the following equation:

zi = z− 1
f

[
ln

ai
T0tanβi

− E
(
ln

ai
T0tanβi

)]
(7)

where E( ) denotes the average topographic indexes of the entire watershed [31].
Equation (7) demonstrates that depth zi of the groundwater can be determined by factor f and

topographic index (ln( a
tanβ )).

Thus, given the value of z, Equation (7) can be used to estimate the spatial distribution of the
topographic indexes and to predict the behavior of the surface water and groundwater levels in the
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entire watershed, assuming that the topographic index is spatially constant [11]. The soil topographical
factors and topographic constants represent the behavior of all the flows in the watershed. All points
with the same soil topographic factors and topographic constants exhibit the same flow performance.
Therefore, the soil topographical factors and topographic constants could indicate the hydrological
similarities between the watersheds.

The input data of TOPMODEL were divided into hydrological data, topographic data, and input
parameters. The hydrological data comprised the rainfall, evapotranspiration, and observed flow
data. The topographic data were obtained by extracting the DEM data from a digital map. This study
applied the FORTRAN source code of TOPMODEL [1]. Figure 3 shows the calculation procedure of
TOPMODEL. TOPMODEL calculated the input data, compared the calculated value with the actual
value, and reduced the error generated by parameter optimization.

Figure 3. Flowchart of the TOPMODEL simulation. TOPMODEL: TOPography-based
hydrological MODEL.

3.2. Input Parameters Optimization

TOPMODEL is a model that analyzes the runoff characteristics in a watershed by simulating
the behavior of groundwater in the soil using the soil topographical factors of the watershed. The
topographic parameters are the main parameters that determine the response characteristics in the
subwatershed or slope, including the topographic index factors. TOPMODEL contains five calibration
parameters such as the exponential storage parameter (m), log-transformed soil–water permeability
coefficient (ln(T0)), unsaturated lag time (Td), maximum vegetation storage (SRmax), and vegetation
deficiency (SR0), as listed in Table 3. Each input parameter in TOPMODEL is constant to all DEM
grid cell sizes as one parameter set. In other words, each input parameter is changed as the grid cell
size or applied Rainfall–runoff events are changed, but is not changed by DEM grid cell numbers.
These parameters are characterized as nominal values. The input parameters were estimated using
all possible combinations of calibration ranges in Table 3 to compare the observed flows with the
calculated flows. Calibration ranges of all input parameters were based on Cho [32] and Lee [33]. This
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study optimized the input parameters for all five parameter combinations with different segments
(e.g., 0.001 for m and 0.1 for SRmax, 0.01 for SR0, and 1 for ln(T0) and Td), depending on grid cell size
change and Rainfall–runoff events in Fortran. The objective function of optimization parameters in this
study adopted the Nash–Sutcliffe efficiency (NSE) [34]. This study selected input parameter values
that maximized the NSE estimations between the actual and simulated runoffs using the actual rainfall
and runoff data from the Dongkok and Ieemokjung watersheds.

Table 3. Calibration parameters and ranges used in TOPMODEL in this study [32,33].

Parameters Description Units Calibration Range

m Exponential storage parameter m 0.001–0.1
ln(T0) Soil–water permeability coefficient ln(m2/h) 1–50

Td residence time in unsaturated zone h 1–50
SRmax Maximum vegetation storage m 0.1–1
SR0 Vegetation deficiency m 0.01–1

4. Results

This study investigated the results of the topographic characteristics of the experimental
watersheds, DEM size effects based on fixed parameter sets, and DEM size sensitivity based on
various parameter sets. According to these results, the least sensitive resolution of the DEM grid cell
size for TOPMODEL in the Dongkok and Ieemokjung watersheds was analyzed.

4.1. Frequencies of the Topographic Indexes Based on the DEM Grid Cell Size

Figures 4 and 5 show the frequency and cumulative frequency of the topographical indexes
based on the grid cell size of the Dongkok and Ieemokjung watersheds, respectively. The curves in
Figures 4 and 5 shifted from left to right as the grid cell size increased for both the Dongkok and
Ieemokjung watersheds. These results indicate that the mean of topographic index (ln( a

tanβ )) increases
as DEM cell resolution is coarser. It is because contributing area (a) increases, and the slope of watershed
(tan β) decreases as DEM cell size increases. This analysis is coincided with Figure 6, which shows the
log-transformed contributing area (ln(a)) and the log-transformed inverse slope of watershed (ln( 1

tanβ ))
increase as DEM cell resolution is coarser [13,35].

  
(a) (b) 

Figure 4. Frequency distribution of the topographic indexes (ln( a
tanβ )) based on the DEM grid cell size.

(a) Dongkok watershed. (b) Ieemokjung watershed.
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(a) (b) 

Figure 5. Cumulative frequency of the topographic indexes (ln( a
tanβ )) based on the DEM grid cell size.

(a) Dongkok watershed. (b) Ieemokjung watershed.

Figure 6. Relation of mean topographic indexes (ln( a
tanβ )) to mean ln(a) and mean ln(1/tanβ) values

based on DEM cell size in Dongkok and Ieemokjung watersheds.

Figure 7 shows the variation in the contributing area of the grid cell size in the Dongkok and
Ieemokjung watersheds, which depended on the Rainfall–runoff events. Figure 7a shows that the
contributing area increased with respect to the grid cell size, but the slopes of the curves in the grid
cell size in the Dongkok watershed were different depending on the Rainfall–runoff events. The
slopes (ratio) of the curves in DK960826 and DK980815 were 0.239 and 0.337, respectively, and those in
DK960616 and DK970715 were 0.609 and 0.803, respectively. The variation range in the slopes was
between 0.239 and 0.803. Figure 7b shows the change in the slope of the curves in the grid cell size
from 0.356 to 0.540 in the Rainfall–runoff events in the Ieemokjung watershed. Figure 7 shows that
the contributing area in the Rainfall–runoff events and grid cell size varied. In other words, when the
grid cell size was large, the contributing area increased, but the contributing area varied depending
on the characteristics of the Rainfall–runoff events, even when the grid cell size was constant. The
change of contributing area depending on rainfall events in Figure 6 shows a good agreement that the
contributing area is not stationary but changes over both storm and seasonal timescales, reflecting
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changes in the average watershed water balance, topography, and soil conditions. Particularly, the
contributing area differs from the mean watershed deficit related to the watershed water balance for
the saturated zone [1,36,37]. It implies that rainfall events affect mean watershed deficit, and different
mean watershed deficits influence the contributing area. Also, several studies found that the influence
of DEM resolution was through its effect on the calculation of the contributing area [13,35]. However,
more results and studies need to be provided to clarify the relation among rainfall events, contributing
area, input parameters, and DEM resolution.

(a) (b) 

Figure 7. Change in the ratio of the contributing area based on the DEM grid cell size. (a) Dongkok
watershed. (b) Ieemokjung watershed.

4.2. Resolution Effects of the Grid Cell Size with Fixed Parameter Sets

Figure 8 shows the hydrographs in the Dongkok watershed, which varied depending on the
grid cell size with fixed input parameter sets. Fixed parameter sets were used to investigate the
resolution effects of the grid cell size. This study chose a fixed parameter set that displayed the
best fit in a 5 m grid cell size based on the Rainfall–runoff events in Table 4. Figure 8 shows that
the estimated hydrographs with a smaller grid cell size were closer to the observed hydrograph. In
contrast, when the grid cell size was larger, the simulated hydrograph was larger than the observed
one because the grid cell size and contributing area were larger. The larger contributing area resulted
in more runoffs. In particular, Figure 8b,d show that the peak rainfall matched with the estimated peak
hydrographs under different grid cell sizes, which indicated that the larger the grid cell size, the larger
the contributing area and the more sensitive the runoff to peak rainfall. Figure 9 shows the hydrographs
whose DEM grid size varied with the application of fixed parameter sets in each hydrological event in
the Ieemokjung watershed. Similarly, the input parameter set used the best fitting parameter set for
the 5-m grid size in Table 5. Similar to the Dongkok watershed, the estimated runoffs well matched
with the observed hydrographs because the DEM grid size was smaller in the Ieemokjung watershed.
In Figures 8 and 9, the hydrographs for coarser DEM resolution provided greater surface runoffs.
It is because the depth zi of the groundwater decreases as the topographic index increases, from
Equation (6) [16,35]. Particularly, negative zi means the unsaturated zone in the DEM grid is saturated.
Decreasing depth of the groundwater leads to decreasing infiltration rate and increasing surface runoff
in the constant rainfall condition. In other words, the infiltration rate decreases as a topographic index
increases or the DEM grid cell resolution is coarser [38,39].
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(a) (b) 

  
(c) (d) 

Figure 8. Rainfall–runoff events by applying a constant parameter set depending on different DEM
resolution values in the Dongkok watershed. (a) 16 June 1996. (b) 26 August 1996. (c) 26 July 1997.
(d) 15 August 1998.

Table 4. Applied fixed input parameter sets in the Dongkok watershed.

Hydrologic
Events

Input Parameters

m ln(T0) Td SRmax SR0

DK960616 0.025 5.0 49.0 0.1 0.01
DK960826 0.019 2.0 17.0 0.1 0.01
DK970715 0.016 8.0 15.0 0.1 0.01
DK980815 0.032 1.0 14.0 0.1 0.01

Table 5. Applied fixed input parameter sets in the Ieemokjung watershed.

Hydrologic
Events

Input Parameters

m ln(T0) Td SRmax SR0

IM910525 0.024 3.0 6.0 0.1 0.01
IM920924 0.027 1.0 1.0 0.1 0.01
IM940801 0.028 1.0 14.0 0.1 0.01
IM960704 0.016 3.0 23.0 1.0 0.01
IM960825 0.047 1.0 10.0 1.0 0.01
IM990728 0.016 3.0 40.0 1.0 0.01
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(a) (b) 

 
(c) (d) 

  
(e) (f) 

Figure 9. Rainfall–runoff events by applying a constant parameter set depending on different DEM
resolution values in the Ieemokjung watershed. (a) 25 May 1991. (b) 24 September 1992. (c) 1 August
1994. (d) 4 July 1996. (e) 25 August 1996. (f) 25 July 1999.

4.3. Parameter Optimization for Each DEM Grid Cell Size

This study optimized input parameters of TOPMODEL depending on DEM resolutions and
hydrologic events in the Dongkok and Ieemokjung watersheds in Figures 10 and 11. The input
parameters are optimized based on the changes of DEM grid cell size and rainfall–runoff events. When
the grid cell size changes, the simulated runoff shows a large change with parameter m, a small change
with parameters ln (T0) and Td, and no change with SRmax and SR0. Parameter m is the most sensitive
because it is a parameter in an exponential equation, and the results in Figures 10 and 11 change



Appl. Sci. 2019, 9, 3690

significantly with changes in this parameter. The parameters ln (T0) and Td increase as DEM grid size
is greater. It demonstrates that an ultimate infiltration capacity, the soil–water permeability coefficient
(ln (T0)) in this study, decreases as DEM grid cell resolution is coarser [38,39]. Therefore, it is necessary
to increase the parameter ln (T0) as well as the lag time in the unsaturated zone (Td) to increase the
actual infiltration capacity rate as DEM grid cell resolution decreases.

Figure 10. Optimized parameters depending on DEM resolutions in each hydrologic event, the Dongkok
watershed. (a) exponential storage parameter (m), (b) soil–water permeability coefficient (ln(T0)),
(c) unsaturated lag time (Td), (d) maximum vegetation storage (SRmax), (e) Vegetation deficiency (SR0),
(f) model efficiency.

Figure 11. Optimized parameters depending on DEM resolutions in each hydrologic event, the
Ieemokjung watershed. (a) exponential storage parameter (m), (b) soil–water permeability coefficient
(ln(T0)), (c) unsaturated lag time (Td), (d) maximum vegetation storage (SRmax), (e) Vegetation deficiency
(SR0), (f) model efficiency.
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Figures 12 and 13 show TOPMODEL hydrographs based on the optimization of the input
parameters in the Dongkok and Ieemokjung watersheds depending on the DEM resolution. The NSEs
of the Dongkok watershed shown in Figures 10 and 12a ranged from 0.88 to 0.90, 0.97 to 0.98, 0.94 to
0.96, and 0.77 to 0.80 depending on the events. In particular, in the DK960616 and DK970715 events
in Figure 10, the generated peak flows were very close to observed peak flows depending on the
resolution of the DEM grid cell size. Therefore, the result indicated that the TOPMODEL efficiencies
were slightly different based on the DEM grid cell size resolution; however, the optimized input
parameters were significantly different based on the hydrological events. The NSE of the Ieemokjung
watershed shown in Figures 11 and 12b ranged from 0.89 to 0.94, 0.88 to 0.94, 0.88 to 0.93, and 0.8 to
0.86. In the IM960704 and IM960825 events, the estimated peak flow rates were very close to observed
peak flows depending on the DEM resolution. In addition, similar to the Dongkok watershed, the NSE
efficiencies significantly varied depending on the rainfall–runoff events instead of the DEM resolution.

(a) (b) 

(c) (d) 

Figure 12. Rainfall–runoff events by applying optimized parameters in the Dongkok watershed
depending on each DEM resolution. (a) 16 June 1996. (b) 8 August 1996. (c) 15 July 1997.
(d) 15 August 1998.
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(a) (b) 

 
(c) (d) 

Figure 13. Rainfall–runoff events by applying optimized parameters in the Ieemokjung watershed
depending on each DEM resolution. (a) 24 September 1992. (b) 1 August 1994. (c) 4 July 1996.
(d) 25 August 1996.

5. Discussion

Because the watershed in the distributed watershed models was divided into multiple grid
networks, the topography and Rainfall–runoff characteristics of the watershed varied depending
on the DEM grid cell size. If the resolution of the DEM grid cell size is very high, it can accurately
represent the characteristics of actual Rainfall–runoff events in a watershed. However, the simulation
time for the runoff estimation and topography analysis in the model increase. If the resolution of
the DEM grid cell size is too low, the geographical characteristics of the actual watershed are very
simple, and a risk of computational errors exists [35]. Therefore, the present study proposed optimum
DEM resolution on the basis of the work efficiency and runoff output accuracy in the Dongkok and
Ieemokjung watersheds.

Figure 14 shows the NSE box plots in the Dongkok and Ieemokjung watersheds when the
parameters were optimized in each grid for all Rainfall–runoff events. TOPMODEL hydrographs
obtained using the optimized parameters in each DEM resolution were similar to the observed runoff
data, which indicated that the resolution did not affect the model because the input parameters were
well optimized depending on the DEM resolution.

Figure 15a shows the efficiency under a constant parameter set in the Dongkok watershed when
the resolution was varied. The efficiencies of the 5 and 40 m DEM resolution slightly changed, but the
efficiencies of the 80 m or higher DEM resolution significantly changed with the constant parameter set.
Similarly, Figure 15b shows the efficiency under a constant parameter set in the Ieemokjung watershed
depending on various DEM resolution values. Similar to Figure 15a, the variation in the efficiency was
very small when the DEM resolution values were 5 and 40 m. However, the change in the efficiency
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was very large with the constant parameter set depending on the 80, 160, and 300 m DEM resolution
values. Figure 15 shows that the combination of the input parameters and DEM resolution smaller
than 40 m was not sensitive, which implied that the estimated topographic index, which was the area
of the slope per unit contour length divided by the slope of the surface, was similarly smaller in the
40 m DEM grid cell size. This analysis agreed with that shown in Figures 4 and 5. The frequencies of
the topographic indexes of the 40 m DEM grid cell size shown in Figures 4 and 5 were slightly different
from those of the 5 and 20 m DEM grid cell size. Therefore, the result suggested that at least the
40 m resolution showed reliable results with the variation in the input parameters in the TOPMODEL
application to the Dongkok and Ieemokjung watersheds. The proposed resolutions in this study
were similar to the good-performance resolutions DEM that used 30 m resolution [40], greater than
10 m resolution [35], or smaller than 100 m resolution [37,41]. However, it is necessary to investigate
resolutions that provide similar results as this study to the different characteristics of watersheds or to
other hydrological models.

(a) (b) 

Figure 14. Results obtained using the optimized input parameters depending the DEM resolution for
all Rainfall–runoff events. (a) Dongkok watershed. (b) Ieemokjung watershed.

(a) (b) 

Figure 15. NSE (Nash–Sutcliffe efficiency) changes based on the resolution of the DEM grid cell size
with constant parameter sets. (a) Dongkok watershed. (b) Ieemokjung watershed.

6. Conclusions

This study has applied TOPMODEL to two mountainous watersheds, namely, Dongkok and
Ieemokjung watersheds, which are representative IHP watersheds in South Korea. This study
investigated TOPMODEL runoff optimizations that depend on the resolution of the DEM grid cell
size and analyzed the effects of DEM resolution using fixed input parameter sets. Further, this work
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combined the resolution of the DEM grid cell size and optimized input parameter sets and proposed
the most reliable DEM grid-size resolution for TOPMODEL in the two mountainous watersheds. The
optimized parameter results represent that an exponential storage parameter among calibrating input
parameter is the most sensitive parameter based on TOPMODEL efficiencies.

The estimated hydrographs obtained by TOPMODEL based on well-optimized parameters that
depend on each resolution of the DEM grid cell size were very similar to the observed runoff, regardless
of the DEM resolution (up to 300 m in this study), which demonstrated that DEM resolution does not
affect the runoff estimation when the input parameters are well optimized. In addition, this study
analyzed the DEM resolution effects by applying a fixed parameter set and found that the NSE of the
estimated runoff in TOPMODEL decreased as the DEM resolution increased. The estimated runoff
results depending on the different optimized input parameters in both the Dongkok and Ieemokjung
watersheds were similar to the observed runoff data when the DEM resolution was less than about 40 m.
The results of this study imply that reliable DEM grid size depending on experimental watersheds can
be evaluated in TOPMODEL. However, these results have limitations in that the reliable DEM grid cell
size was evaluated using only one watershed model and two study watersheds. For future studies, it
is necessary to describe more about the relations among contributing area, input parameters, and DEM
resolution with rainfall events, because those relations have not been clarified. Also, it is necessary
to apply different scales of watersheds and watershed models to support the relationship between
reliable DEM resolution and watershed characteristics in this study.
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Featured Application: This paper examines rainstorm-related micro-blogging activities in

response to rainstorms in an urban environment at fine spatial and temporal scales. Results could

be used in supporting disaster assessment and mitigation decision making.

Abstract: Natural disasters cause significant casualties and losses in urban areas every year.
Further, the frequency and intensity of natural disasters have increased significantly over the
past couple of decades in the context of global climate change. Understanding how urban dwellers
learn about and response to a natural hazard is of great significance as more and more people migrate
to cities. Social media has become one of the most essential communication platforms in the virtual
space for users to share their knowledge, information, and opinions about almost everything in the
physical world. Geo-tagged posts published on different social media platforms contain a huge
amount of information that can help us to better understand the dynamics of collective geo-tagged
human activities. In this study, we investigated the spatiotemporal distribution patterns of the
collective geo-tagged human activities in Beijing when it was afflicted by the “6-22” rainstorm.
We used a variety of machine learning and statistical methods to examine the correlations between
rainstorm-related microblogs and the rainstorm characteristics at a fine spatial and a fine temporal
scale across Beijing. We also studied factors that could be used to explain the changes of the
rainstorm-related blogging activities. Our results show that the human response to a disaster is very
consistent, though with certain time lags, in the virtual and physical spaces at both the grid and city
scales. Such a consistency varies significantly across our study area.

Keywords: social media; rainstorm event; spatiotemporal analysis; factor assessing

1. Introduction

Natural disasters such as hurricanes, floods and tornadoes can cause significant life losses,
property damages, and even political instability [1–4]. In the context of global climate change, natural
disasters have become more frequent and pose increasing physical, social, and economic threats to
human society [5,6]. Closely monitoring how a natural disaster disturbs human activities is thus of
great value [7–9], particularly in an urban environment where human-environment relationships are
usually much more complicated.

Different methods and datasets have been used to study urban dwellers’ response to a natural
disaster. A comprehensive evaluation model was built to evaluate the macro-population vulnerability
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in response to an earthquake at city and county levels [10]. Questionnaire data were used to examine
the impacts of bushfires on residents [11]. Qualitative studies have been conducted to examine how
communities are resilient to the impacts of natural disasters using interview data [12].

Natural disasters usually pose significant threats to the dwellers being inflicted. The threats
vary dynamically. Consequently, people’s emotion and public opinions to such threats may also
change rapidly [13]. Such dynamic changes couldn’t be timely captured and examined using the
afore-mentioned conventional methods and data. Unfortunately, the dynamic changes of the human
response to a disaster are extremely important in disaster evaluation and mitigation.

The emerging social media data have shown their usefulness in tracking human behaviors
in response to natural disasters and emergencies. Nowadays, Twitter, Facebook, Flicker and
Weibo have become indispensable platforms for people to share their ideas and disseminate vital
information in time [14–16], in particularly when a natural disaster, public safety event, or disease
infection event occurs [17–21]. Data collected through these platforms have been used in improving
situation awareness [22–24], event detection [25,26], communication analysis [27,28] and even helping
governments guide the public opinions [29,30].

Social media data have also been used to detect and monitor the ongoing development of
disasters such as influenza transmission, floods, typhoons, hurricanes, and terrorist attacks [31–34].
Different social media data have been examined to reveal the different development stages of a
disaster and how human response to the development stages [35–37]. A research framework was
constructed to extract multidimensional (time, space, content, and network) information from social
data [8]. Disaster-related information derived from social media data was also used to examine
the spatiotemporal impacts of a disaster on human activities and assess the actual disaster-induced
damages [38–40]. A variety of machine learning methods have also been used to examine social media
data to evaluate the disaster-induced damages [41,42].

Many studies have shown that public opinions in the virtual space, as reflected by social media
data, is consistent with what happens in the real world at a broad geographical scale. Such consistency
has not been sufficiently examined and clearly illustrated at a finer temporal and spatial scale. There is
also a need to study the factors driving the human response to a disaster, particularly in an urban
environment. In this study, we investigated how dwellers in a mega city react to rainstorms as revealed
by blogging activities on Weibo, one of the most popular social media platforms in China. We then
explored various factors that may contribute to the blogging activities in response to rainstorms.

2. Study Area and Data

2.1. Study Area

This study examined Weibo users’ blogging activities in response to the rainstorms that hit Beijing
from 21 to 24 June 2017, we chose the main urban area of Beijing as the study area as shown in Figure 1
(The water ponding points and major hubs in the main urban area have been marked in the Figure 1).
Beijing is the capital of China. It significant grew over the past decade. The percent of the developed
land in Beijing increases from 7.9% in 2005 to 16.3% in 2015. The total population has increased from
1538 million in 2005 to 2170.5 million in 2015. Beijing is also one of the most economically active cities
in China with a total GDP of $975 billion in 2005 to $3270 billion in 2015.

Dwellers in Beijing use a variety of social media platforms on a daily base. Sina Weibo is one of
the most popular platforms that allow people to stay in touch and share each other information about
any on-going events. As of 2018, Sina Weibo has 462 million active users in China and every day an
average 1.30 million words are posted online through it [42].
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Figure 1. A map showing the boundary of our study area. Location of the study area in Beijing (a) and
overview of the study area (b).

2.2. Data

A total of 3.32 million Weibo blogs geotagged with Beijing were crawled from the Sina Weibo
platform. All posts were published from June to September 2017, a period that Beijing receives most
of the rains all over the year. Every blog comes with the information of its user, publishing location,
publishing time, and texts.

We also collected data of rainfall amount, points of interest (POIs), and water ponding sites.
We used two precipitation data sets in this study. The hourly precipitation data at meteorological
stations were collected from the China Meteorological Data Network (http://data.cma.cn/). The 1-h
cumulative precipitation dataset was generated from the meteorological radar in Daxing, a town
located 13 km south of the city. The radar covers the entire Beijing area and provides precipitation
data with a spatial resolution of 1.051 × 1.051 km (After image processing and registration processing).
In this paper, we unified the study of grid scale to this resolution, and the other data sources used are
also processed to this resolution for further analysis and processing.

The POIs include the locations of businesses, educational institutions, residential areas,
transportation facilities, open spaces, and others. The data set was produced mainly for navigation
by the Beijing NavInfo Co., Ltd, Beijing, 110000. Each POI comes with its coordinates (latitude and
longitude), type, name, address and flag (show its importance level). In this paper, we categorized the
POIs into five classes (Table 1).

Table 1. Summary statistics of the POIs.

POI Class Abbreviations Total Numbers

Common Service and Education Culture CE 1,402,310
Residential R 977,745

Business B 6,695,615
Scenic area and Green Open Space S 264,065

Transportation facilities T 299,360

3. Methods

Figure 2 shows our data processing and analysis processes. We first used ArcGIS 10.5 to aggregate
geotagged Weibo posts to grids with the same resolution (1.051 × 1.051 km) as of the rainfall data.
We used the support vector machine (SVM) model to classify and extract rainstorm-related microblogs.
We then analyzed how city dwellers respond to the rainstorms in terms of the changes of the numbers
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of rainstorm-related microblogs at the grid scale and city scale. Finally, we investigated the factors that
could be used to explain the city dwellers’ response to the rainstorms.

 
Figure 2. A flowchart showing the data processing and analysis processes.

3.1. Extraction of Rainstorm-Related Weibo Posts

In total we crawled 3.32 million Weibo posts that were published from June to September in
2017 and geo-tagged with city Beijing. We then used the keywords such as thunderbolt, storm, water,
and rainfall to filter and found around 8000 posts that are possibly related to the rainstorms.

We then randomly selected 2000 out of the 8000 posts and manually checked each post. The post
was labeled with “true” if it is truly related to a rainstorm otherwise “false” if it is not. The 2000 manually
labeled posts were then evenly divided into two subsets, which were used to train the SVM classifier
and validate the classification results, respectively.

The SVM classifier has been used in previous studies to label the microblogs either as event-related
or event-independent [18,43]. It is a nonlinear classifier that was generated using the radial basis function
(RBF). Essentially, it produces an optimal hyperplane that can best separate the rainstorm-related
posts from those none-related. The hyperplane is defined by two parameters, C and gamma, which
represent the influencing range of a single sample and the influencing degree of the support vector,
respectively. The two parameters were calculated using the GridSearchCV method [44] based on the
training data subset. The validation subset data was then used to evaluate the separation accuracy
using the five-fold cross validation method [45]. In this study, we obtained an F-score of 0.85, which
indicates that the SVM classifier could be used to identify the truly-rainstorm-related Weibo posts.
The final SVM model was then used to examine all unlabeled Weibo posts. In total we found 6072 out
of the 8000 posts were truly rainstorm-related during the period of June to September 2017.

3.2. Weibo Blogging Index

We used two indexes to measure the blogging activities in response to the rainstorms. The first
index, the human’s event response index (HERI), is defined as the ratio between the standardized
number of the rainstorm-related Weibo posts (RRWP) to the standardized total number of the posts
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within a specific cell (In the data standardization process, we normalize the total number of Weibo
posts and RRWP to 0–1 for each grid.).

HERI =
Standardized number of the RRWP

Standardized total number of Weibo Posts
(1)

The HERI could be used to measure human response intensity. A higher HERI value would
indicate city dwellers are more active in blogging the rainstorms. A very similar index was used to
estimate hazard-induced damages and monitor the post-hazard recovery speed [40,46].

The HERI could be significantly affected by the rainfall amount. Thus, we used another index,
the event normalized response relation (ENRR), to evaluate the human response to a rainstorm by
eliminating the bias introduced by the variations in rainfall amount. The ENRR is expressed as the
relationship between the HERI and the rainfall levels per cell. Both the HERI and rainfall amount
values were first broken into three levels (high, medium, and low) using the Jenks Natural Breaks
classification method, which clusters data into different classes by seeking to reduce the variance
within a class and maximize the variance between classes. The different combinations of the three
HERI and rainfall levels would reflect how dwellers response to a rainstorm which brings different
rainfall amount across our study area. Figure 3 shows the nine relationships represented by ENRR.
In the study, we mapped the relationship of ENRR to each grid to reflect the relationship between
HERI and rainfall intensity in different regions.

 
Figure 3. The 9 relationships of ENRR.

3.3. Statistical Analysis

We used a variety of conventional and spatial statistics methods to evaluate the areal difference
of the blogging activities in response to the rainstorms across our study area. The hourly rainfall
and the corresponding hourly RRWP were separately divided into four different groups according
to their quartile levels, from which a confusion matrix was constructed. We then used the weighted
Kappa coefficient to evaluate the consistency of the relationship between different levels of rainfall and
the RRWP.

Quantile regression was used to estimate the conditional quantiles (0.05, 0.25, 0.50, 0.75, 0.9, and 1)
of the number of posts in response to certain rainfall amount by measuring their central tendency
and statistical dispersion. Quantile regression could more accurately describe the variation range of
the dependent variable in response to the dependent variable. We then used the receiver operating
characteristic (ROC) curves [47,48] to obtain the range within which the water ponding sites and major
transportation hubs affect the blogging activities in response to the rainstorm. An optimal threshold
is obtained by weighting both the sensitivity and the specificity equally, as measured by the closest
distance between the points along the ROC curves and the top-left point, i.e., the perfect classification
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where the sensitivity and specificity both equal to 1. In addition, we also performed hotspot analysis
based on the HERI and the ENRR.

In this paper, we examined the blogging activities in response to the rainstorms at both city
and grid levels, respectively. The city extent is defined by the administrative boundary of Beijing.
Within the city, the rainfall and Weibo posts were aggregated to individual grids of 1.051 km × 1.051 km.
There are 2776 grids within our study area, covering a total area of 2749.23 km2.

4. Analysis and Results

Five heavy rainstorms hit Beijing on 22 June, 6 July, 20 July, 2 August, and 22 August (Figure 4).
The 22 June rainstorm brought historical record precipitation, flooded the city, and caused significant
economic losses. When the city was afflicted by the 22 June rainstorm, Weibo users posted over
1000 blogs, the maximum blog number among all rainstorm events that hit Beijing in summer 2017.
In this study, we mainly focus on the blogging activities in response to the 22 June rainstorm.

Figure 4. The time series RRWP and rainfall in Beijing from June to September 2017.

4.1. The “622” Rainstorm

At 16:00 on 21 June 2017, the Beijing Meteorological Bureau issued the first yellow lightning storm
warning of a high altitude and low vortex, which later evolved into the 22 June rainstorm. The rainstorm
first brought rain to the western part of Beijing from noon on 21 June and then across the whole Beijing
city (Figure 5a). The storm lasted for 66 h and finally ended at 06:00 on 24 June. Heavy rains and floods
were reported in Fangshan, Shunyi, Yanqing and Changping Districts. The storm flooded 131.5 hectares
of agricultural land, affected 8594 people, and caused about $3.22 million direct economic losses.

Both conventional and online medias covered this rainstorm extensively and generated a large
number of news reports and Weibo posts. In total, we crawled 230,125 geotagged Weibo posts during
the time period (20–27 June 2017) (Figure 5b) and 2362 out of them are RRWP (Figure 5c).
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Figure 5. Spatial distribution of the rainfall amount (a), the number of Weibo posts (b), and the number
of RRWP (c).

4.2. Blogging Activities at City Level

Figure 6 shows the time series hourly rainfall and the hourly number of RRWP from 20 to 28 June.
No RRWP was found on the social media platform before the rainstorm hit the city. Rainstorm-related
blogging activities were first detected when the first rainstorm warning was issued at 4:20 p.m. on
21 June. The blogging activities significantly intensified, particularly when the rainstorm is most
intensive during the time period from 19:00 on 21 June to 04:00 on 24 June. During this time period,
the city rainfall amount accounts for 90.5% of the total rainfall brought to Beijing by the “6.22” rainstorm.
About 91.6% of the RRWP was posted during this time period.

Figure 6 also shows that variations in the rainfall amount are generally consistent with the blogging
activities though there seems to be a 1-h time lag. The blogging activities are most intense in about
10 min before the release of the rainstorm warning. A high rainfall amount is not always accompanied
by strong blogging activities, particularly when raining occurs from the late night to the early morning
and the rainstorm hits suburbs with a small population flow.

Figure 6. Time series of hourly accumulated rainfall and Weibo posts.
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The confusion matrix (Figure 7) between the different levels of rainfall amount and the RRWP
shows that higher rainfall levels are always associated with more RRWP. We found 38 h with higher
rainfall amount and more RRWP. Lower rainfall levels are associated with fewer RRWP. A statistically
significant weighted Kappa coefficient of 0.63 indicates that the levels of blogging activities are
consistent with the rainfall levels across the city.

Figure 7. Consistency between rainfall and RRWP levels.

Figure 8 shows the correlation coefficients between the number of RRWP and rainfall amount
with a time lag up to 6 h. With increased time lags, the coefficients drop though the correlations are
statistically significant at a confidence level of 0.01. The highest coefficient 0.653 was found when the
time lag is 1 h, suggesting that more RRWP were posted one hour after the rainstorm. In other words,
heavy rainfall usually triggers intensified blogging activities one hour later. It seems that, after 1 h
of the rainstorm, the city starts to be afflicted by issues such as waterlogging and traffic congestion.
Such issues tend to intensify rainstorm-related blogging activities.

Figure 8. Correlation coefficients between the rainfall amount and the number of RRWP with different
time lags.
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Quantile regression analysis between the rainfall amount and the number of RRWP (Figure 9)
shows a steeper slope for the higher percentile data. In other words, increased rainfall shows a more
significant impact on the number of RRWP when the rainfall is heavier. By contrast, when the rainfall
is less than 30th percentile (the average rainfall of the grid in the study area is 8.6), an increase in
the rainfall amount shows little impacts on the change of the RRWP. Once the rainfall exceeds the
30th percentile, the RRWP starts to increase. As the rainfall percentile increases, the regression slope
becomes steeper. In other words, once the rainfall is over the 30th percentile, it tends to trigger Weibo
users to post much more RRWP.

Figure 9. Quantile regression estimates of the relationship between the RRWP and the rainfall amount
at the city scale.

4.3. Human Response at Grid Scale

In order to explore the differences in human response intensity of different time periods at grid
scale, we first divided the whole day into four time periods (08–10, 11–16, 17–20, 21–07), and then map
the RRWPs in different time periods by the 4 time periods’ dot maps. Figure 10 shows the results.
We can find that in the study area, the morning rush hours (08–10) and the evening rush hours (17–20)
have the strongest human response intensity. During these two periods, important transportation hubs
(Commercial business center, large jobs-housing area) and water ponding point areas have become
regions with a high response in the main urban area of Beijing. In addition, there was a phenomenon in
which dense points are distributed around the subway and along important roads. The occurrence of
rainstorm event has caused great obstacles to traffic operation and delayed human’s travel. The points
in the second period (11–16) are mainly distributed near the traffic station and the more severely
affected areas. The points in the last period are sparsely distributed in the study area. We also found the
density distribution of four periods’ points in major traffic stations such as airports, railway stations,
and bus stations were relatively uniform, while large jobs-housing areas are densely distributed at
points of the morning rush hours and the evening rush hours.

Figure 11 shows the correlation between the rainfall amount and the number of RRWP at the grid
scale. The correlation coefficients vary between −0.14 and 0.86 with an average of 0.22. The negative or
no correlation relationship is mainly found in suburbs, such as the Changping, Huairou and Miyun
Districts. By contrast, higher correlation coefficients are mainly found in populated areas within the city,
including populated residential communities, important transportation hubs, and areas significantly
impacted by the rainstorms as shown in news reports.
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Figure 10. Dot maps of in different time periods based on grid cells.

 
Figure 11. Correlation coefficients at grid level across our study area.

Figure 12a shows the HERI across our study area. Only the 2203 grids with at least 10 daily Weibo
posts are selected to calculate the HERI. At the grid scale, HERI values range between 0 and 9.83 with
an average value of 1.23.

The regions with a higher HERI value are mainly found in three places in our study area. The first
are the areas with more rainstorm-induced damages, including serious house collapse, road blockage
and mudslides. These areas are mainly found in the suburbs such as the Fangshan and Mentougou
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Districts. The densely populated regions, including Zhongguancun and the CBD, the Tongzhou
residential area, an Internet technology parks also have a higher HERI value. Regions with important
transportation hubs also have a higher HERI value. The transportation hubs include subway stations,
train stations, and airports.

Figure 12b shows the HERI hotspot analysis results. Hotspots are mainly located in densely
populated areas, important residential and workplaces, such as the Tongzhou residential area, CBD
districts, and IT parks. It is worth noting that a large number of hotspots are found in the urban core
areas. By contrast, the cold spots are mainly found in the remote suburbs of our study area. Such areas
have a low population thus limited human activities.

The proportions of POIs within each hotspot identified are shown in Figure 12c. The HERI
hotspots in the Beijing Capital Airport, Yizhuang, and Changping-Shahe Districts have the highest
percent of transportation POIs. The texts of the RRWP within these hotspots show that the rainstorms
may significantly delay the commute in these regions thus stimulate users to publish more RRWP to
complain the traffic. The hotspots in the Tongzhou residential area and the Mentougou District show a
higher proportion of residential POIs. Hotspots in Zhongguancun, Chaoyang CBD and IT Park have a
highly mixture of multiple types of residential, business, and education POIs. There is no significant
difference in the proportions of the POIs in other hotspots.

Figure 12. Spatial distribution of the HERI values (a); HERI hotspot analysis results (b); Percentage of
POI types in each HERI hotspot area (c).

Figure 13a shows the binary relationship between the different levels of HERI and rainfall amounts.
We classify the HERI and rainfall amount into three groups (high, medium, and low) using the Jenks
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natural breaks, respectively. In total, there would be nine combinations between the different levels
of HERI and rainfall amounts. The HH combination (high HERI and more rainfall) is located in
suburbs, such as Fangshan District and Xi’erqi, which were hit by heavy rains and afflicted with serious
rainstorm-induced damages and losses. The combination (HL) with a higher HERI and less rainfall
is mainly found in densely populated areas, including the urban core area, Tongzhou District, CBD
and the Beijing Capital Airport. The texts of the RRWP show that people in these areas complain that
the rainstorms caused significant traffic jams and ruined their daily routine. Passengers trapped in
the Beijing Capital Airport also published more RRWP due to the significant flight delays. The LH
combination (low HERI and high rainfall amount) is mainly in the sparsely populated regions, where
few RRWP were posted due to the fewer number of the Weibo users.

Figure 13b shows the POI types in the different combinations of the HERI and rainfall amount
levels. The areas with a higher HERI value tend to have more transportation POIs, no matter what the
rainfall amount is. By contrast, places with fewer RRWP and higher rainfall levels are less populous
and with more green space.

 

Figure 13. The ENRR values across our study area (a) and the proportions of different types of POIs
within the areas with different ENRR values (b).
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4.4. Factors Influencing HERI

For all grids across our study area, the AUC values on the ROC curves are 0.767 and 0.733 for the
water ponding sites and the major transportation hubs, respectively (Figure 14). The most appropriate
OIDF values for the afore-mentioned two factors are 3400 m and 3200 m respectively. The bilateral
Welch t test results show that the HERI value of the areas within the OIDF distance of a water ponding
site and a major transportation hub were both significantly higher than those beyond and the difference
is statistically significant at the 0.01 significance level.

Table 2 shows the number and density of water ponding sites and major transportation hubs by
each level combination of rainfall amount and RRWP. The level combinations with intense blogging
activities are all associated with high density of water ponding sites and major transportation hubs,
no matter what the rainfall amount is. By contrast, the level combinations with inactive blogging
activities are associated with a low density of water ponding sites and major transportation hubs.

Table 2. The statistics of water ponding sites and transportation hubs by different ENRR categories.

ENRR Area(km2)
Water Ponding Points Major Transportation Hubs

Number Density Number Density

LRLP 915 35 3.8 25 2.7
ML 702 29 4.1 14 2.0
HL 202 4 2.0 10 5.0
LM 228 27 11.8 17 7.5
MM 182 15 8.2 16 8.8
HM 19.4 3 15.5 1 5.2
LH 82.5 6 7.3 9 10.9
MH 79 11 13.9 6 7.6
HH 22.8 3 13.2 2 8.8

Figure 14. The ROC curves of the influencing factors.

5. Conclusions

In this study, we inferred the human activities from the rainstorm-related Weibo posts and
examined how different levels of human activities are associated with different rainfall amount levels at
both city and grid scales. The consistency between the rainfall amount and the human activities could
be explained by the distribution of the water ponding sites and major transportation hubs. The regions
with high density of water ponding sites and major transportation hubs tend to show intense human
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response to rainstorms in terms of the number of rainstorm-related Weibo posts. At different time
periods, the intensity of human responses to rainstorm events in areas of different attributes and
functions were also very different. The human response has been significantly enhanced during the
early and late peak hours and is concentrated in important transportation hubs and water ponding
sites. The occurrence of a rainstorm event has a huge impact on human travel. Analysis of the
rainstorm-related posts suggests that there is no significant difference between the impacting ranging
(~3.3 km) of a water ponding site and a major transportation hub.

We found that on the large scale, although the ground disaster space has a high consistency with
the social media space, the intensity of responses at different stages, different spatial areas, and during
different time periods of the disaster on social media platform were different. When looking at spatial
differences on a grid scale for urban disaster events, the impacts of different types of region vary greatly
due to the complexity of human–land relationships. During a rainstorm, the existence of special areas
such as urban water ponding points, traffic stations, main jobs and housing areas, important line sites,
and some disaster sites have led to frequent occurrence of secondary disasters and become major
concentrated areas where humans respond strongly. These results show that there are time and space
differences in the human response at the urban scale and grid scale under urban rainstorm events.
Our research on the spatial consistency is similar to the previous research conclusions [36,39,49], but a
further exploration of fine spatiotemporal process and supplementation of the factors affecting the
differences in human responses give us a new understanding of the human–land relationship under
the event conditions at a fine scale.

Of course, this study has some defects that can be ameliorated by additional research to
improve upon our framework and further research goals. This study only examined the number
of rainstorm-related Weibo posts without considering other information available in the original
Weibo posts, such as the emotions, themes, and characteristics of the social media information.
Other multi-source spatial data such as the nighttime lights, ambient population data, and road traffic
congestion data, if successfully integrated, could provide a more comprehensive study on the human
response to a natural disaster. The integration of multi-source spatial data and more comprehensive
data mining methods would also significantly reduce the uncertainty of the associations between
human activities in both the physical and virtual spaces.
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Abstract: Landslides are one of the most devastating and recurring natural disasters and have affected
several mountainous regions across the globe. The Indian Himalayan region is no exception to
landslide incidences affecting key economic sectors such as transportation and agriculture and often
leading to loss of lives. As reflected in the global landslide dataset, most of the landslides in this
region are rainfall triggered. The region is prone to 15% of the global rainfall-induced landslides,
and thereby a review of the studies in the region is inevitable. The high exposure to landslide risk
has made the Indian Himalayas receive growing attention by the landslides community. A review
of landslides studies conducted in this region is therefore important to provide a general picture of
the state-of-the-art, a reference point for researchers and practitioners working in this region for the
first time, and a summary of the improvements most urgently needed to better address landslide
hazard research and management. This article focuses on various studies ranging from forecasting
and monitoring to hazard and susceptibility analysis. The various factors used to analyze landslide
are also studied for various landslide zones in the region. The analysis reveals that there are several
avenues where significant research work is needed such as the inclusion of climate change factors or
the acquisition of basic data of highest quality to be used as input data for computational models.
In addition, the review reveals that, despite the entire region being highly landslide prone, most
of the studies have focused on few regions and large areas have been neglected. The aim of the
review is to provide a reference for stakeholders and researchers who are currently or looking to work
in the Indian Himalayas, to highlight the shortcomings and the points of strength of the research
being conducted, and to provide a contribution in addressing the future developments most urgently
needed to obtain a consistent advance in landslide risk reduction of the area.

Keywords: Indian Himalayas; landslides; GIS; remote sensing

1. Introduction

Landslides are the most frequent naturally occurring hazards that affect people and their livelihood
worldwide. The frequency of occurrence in the Himalayan context is very large when compared with
global events [1]. This review paper is an attempt to understand the research being undertaken to

Appl. Sci. 2020, 10, 2466; doi:10.3390/app10072466 www.mdpi.com/journal/applsci



Appl. Sci. 2020, 10, 2466

understand, assess, and mitigate landslide scenarios in the Indian Himalayan region. The need for
such a review was raised from the compilation of the global landslide disaster database by Froude
and Petley, [1]. In their database, a total of 5318 non-seismic landslides occurred from 2004 to 2017,
of which 3285 landslides were triggered by rainfall. In the context of the Indian Himalayas, during
the same period, 580 landslides occurred with 477 triggered by rainfall, thereby contributing 14.52%
of the global landslides. These number could be even higher; for instance, based on NASA GLC
data, the number of landslides in the Indian Himalaya during 2007–2015 is 691 with 6306 casualties
(https://data.nasa.gov/Earth-Science/Global-Landslide-Catalog/h9d8-neg4).

This region covers more than 12% of India’s landmass and is very prone to landslides due to
the fragile lithology, the complex geological setting, the high energy of the relief with steep slopes,
and the high topographic roughness. Moreover, most of the area is seismically active and subject to
extreme precipitations, and the situation has been further worsened with the increase in anthropogenic
activities and the advent of climate change. Since it is a well-established fact that most of the landslides
in this area have been primarily triggered by rainfall [2–4], the focus of the present review is only on
the studies considering rainfall triggered landslides. Moreover, one of the main practical purposes of
this review is to serve as a starting point for future projects which consider implementing territorial
landslide early warning systems, and rainfall triggering landslides are the only ones that at present can
be forecasted with a certain confidence. Studies on earthquake-induced landslides, snow avalanches,
and Glacier Lake Outburst Flood (GLOF) were not considered in this review. This work also covers
the various methodologies being adopted for landslide monitoring and analysis, as well as reports on
various mitigation measures being undertaken along with the role of Geographic Information Systems
(GIS), remote sensing, and the recent use of computational techniques.

2. Materials and Methods

2.1. Study Region

The Indian Himalayan region is one of the most diverse and heterogeneous area in terms of
geology, lithology, rainfall distribution, land use/land cover, soil properties, and road and stream
networks, which makes it highly prone to landslides. The region covers 16.2% (~500,000 km2) of India’s
landmass as well as 10 of its states (Ministry of Environment, Forest and Climate Change, Government
of India). The region extends 26◦20′–35◦40′ N and 74◦50′–95◦40′ E and covers the states Jammu
and Kashmir, Himachal Pradesh, Uttarakhand, Sikkim, Arunachal Pradesh, Meghalaya, Nagaland,
Manipur, and Mizoram, as well as the hill stations of Assam and West Bengal.

The region has been divided both horizontally and vertically into four and three divisions,
respectively. In horizontal context, it has been categorized as Jammu and Kashmir Himalaya, Himachal
Himalaya, Uttarakhand Himalaya, and Eastern Himalaya (Figure 1). Uttarakhand Himalaya is
further divided into the Garhwal and Kumaon Himalayas. In terms of vertical divisions, it has
been divided into Great Himalaya, Middle Himalaya, and Lesser Himalaya or Shivalik Ranges [5].
Geologically, the Himalayas are broadly divided into four areas across its length: (i) Foothill or
Outer Himalaya; (ii) Lesser Himalaya; (iii) Higher Himalaya; and (iv) Tethyan or Trans-Himalaya [6].
The major rivers that originate from the great Himalayan Mountain Ranges are the Indus, Ganges,
and their various tributaries. The region exposes diverse geology with different rock types representing
the complete spectrum ranging in age from Archaean metamorphites/granitoids to the youngest
Quaternary alluvium.
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(a) 
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Figure 1. (a) Southeast Asia highlighting India; (b) geographical boundaries of India highlighting
the Indian Himalayan region; and (c) location of rainfall-induced landslides in the Indian Himalayan
region [1] (DEM Source: SRTM, resolution 30 m).

The region is tectonically and physiographically divided into three broad domains: the Peninsular
India, the Extra-Peninsular India, and the Indo-Gangetic Plain [7]. The Indo-Gangetic plain is
sandwiched between the shield area of the Peninsular India and the highly deformed suites of the
Himalaya of Extra-Peninsular India, comprising essentially the younger meta-sediments. The tectonic
trough (foreland basin) sandwiched between peninsular shield in the south and Himalayan Mountains
in the north formed due to upliftment of the latter has been filled up by sediments derived from both
sides, especially from the Himalayas. Structurally, the Himalayan Mountain chain occurring all along
northern part of India can be divided into four contrasting longitudinal litho-cum-morphotectonic
belts from south to north: (i) foothill belt; (ii) Main Himalayan belt; (iii) Indus-Shyok belt; and (iv)
Karakoram belt.

The foothill Himalaya is a 10–50 km wide Miocene to Lower Pleistocene Molasse sequence
represented by Siwalik, Murree, and Subathu Group of rocks. The belt is a domain of active tectonics,
having participated in the terminal phase of the Himalayan Orogeny. This is followed to the north
by the Lesser and Higher Himalayas, represented by geological sequences of Proterozoic age with
a Phanerozoic cover of varying thicknesses in different parts. The foothill Himalaya is overlain by
alluvium and separated from the Lesser Himalaya by the north-dipping fault commonly known as the
Main Boundary Fault (MBF) or the Main Boundary Thrust (MBT) in Garhwal, Kumaon, Darjeeling,
and Arunachal Pradesh Himalaya. The Main Frontal Thrust (MFT) limits the margins of the Siwalik
Zone against the Ganga Plains [8].

The Lesser Himalaya is 60–80 km wide and is a discontinuous belt stretching between the MBT in the
south and the Main Central Thrust (MCT) in the north [9]. It consists of autochthonous Late Proterozoic
sediments, thrust over by three vast nappes that are built up successively of Palaeozoic sediments,
Precambrian epimetamorphics, and mesograde metasediments [10]. The epi-metamorphic and
meso-metamorphic nappes throughout their extent are characterized by Early Proterozoic (= 1900 Ma)
and Early Palaeozoic granitic bodies of large dimension. The MCT separates the Lesser Himalaya from
the Higher Himalaya to its north. The Higher Himalaya marks the region of the highest peaks of the
Himalaya (Nunkun, Leopargial, Kedarnath, Badrinath, Nanda Devi, Api, Dhaulagiri, Mt. Everest, and
Kanchanjunga), made up of 10–15 km thick Precambrian crystallines exhumed up and intruded by
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granites, some of which are Tertiary in age. The Indus Shyok belt/the Tethys Himalaya extend to the
south of the Trans-Himalayan Karakoram belt and comprise ophiolite melange (Indus ophiolite and
associated formation) and plutonic rocks (Ladakh Granitoid Complex) of the Indus Shyok belt [11].
These predominantly fossiliferous sediments range in age from Late Proterozoic to Eocene. Sporadic
occurrences of chromite have been reported from the ultrabasic rocks associated with Dras volcanics
from Ophiolite-Melange zone. Karakoram belt, the northernmost zone, comprises Palaeozoic and
Mesozoic sedimentary sequence in a metamorphic basement of an unknown age. This Trans-Himalayan
belt lies to the north of the Indus suture Zonein Ladakh region and extends eastward into Tibet. No
important mineral occurrence is known from this belt. Figure 2 represents the geological map of the
Indian Himalayan region.

(a) (b) 

Figure 2. Geology of: (a) South Asia highlighting the Indian Himalayan region; and (b) the study
region (Source: USGS World Geologic Map).

2.2. Data Collection

The review was undertaken by carrying out a bibliographic search on “Web of Science” Database
(1990–October 2019) for a combination of keywords: “Landslide*”, “Himalaya*”, and “India”.
For the current analysis, only peer-reviewed journal articles written in English were considered,
as peer-reviewed journals are considered as having the best quality articles and because the English
language ensures that these contributions could be fully understandable for the whole international
scientific community. The filtering of the articles was carried out by the number of citations (a) articles
published before 2008 with 10 or more citations; (b) articles from 2008 to 2010 with 5 or more citations;
and (c) all articles thereafter independent of the number of citations received (following the approach
adopted from Reichenbach et al. [12]. After performing a screening of the relevant studies, the number
of selected articles was narrowed down to 226 (Figure 3).
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Figure 3. Analysis of the literature database during 1990–October 2019 from Web of Science. The left
ordinate axis represents the number of articles per year and the right ordinate axis depicts the cumulative
number of articles during the entire analysis period.

The articles were published across 75 different journals, with nearly 60% of the works published
in 11 journals (Figure 4). The articles were initially majorly published in Engineering Geology and
Geomorphology. The focus has shifted towards other journals such as Natural Hazards, Landslides,
and Geomatics, Natural Hazards and Risk. Generally, after a major landslide event, the preliminary
report is published in Current Science. However, extensive analysis of landslide study misses in such
journals and is mostly focused on post-landslide studies.

Figure 4. Distribution of the number of articles across the top 11 journals (out of 75). Horizontal bars
depict the number of articles and its thickness denotes the average number of citations per article.
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3. Results

The analysis reveals that the landslide studies in the region are quite biased towards Uttarakhand
region, while there are few to no studies in the northeast Indian region (Figure 5).

Figure 5. Distribution of landslide studies across the states in Indian Himalayan region.

This bias can be attributed to the high population density in the western sector of the Indian
Himalaya, leading to a larger number of casualties and a generally higher level of landslide risk.
Pham et al. [13] calculated the number of casualties due to landslide incidences during 2007–2015,
which came out to be 5228, a staggering 82.9% of all disaster casualties in the region. To understand
the type of studies being conducted, we divided them into seven broad categories: description of main
events; identification; forecasting; monitoring and investigation; river damming; extreme events and
climate change; and susceptibility mapping.

3.1. Main Landslide Events

The Himalayan region has been affected by several landslides, and a few of the most researched
and damaging landslides are mentioned here. Most studies have been carried out in the Uttarakhand
region. Some major landslide events in the Uttarakhand region occurred in the Okhimath area in
Mandakini Valley, which was significantly damaged by the August 1998 landslide event, triggered by
heavy rainfall. In total, 466 landslides were triggered, leading to 103 deaths and damaging 47 villages.
Thereafter, cloudburst on July 2001 in a part of Mandakini valley led to more than 200 landslides
causing 27 fatalities and affecting almost 4000 people [14]. The region also suffered from a heavy
rainfall of more than 200 mm during 13–14 September 2012, which led to the death of 51 people and
caused 473 landslides [15]. June 2013 witnessed another heavy rainfall of 350 mm within a period of
five days in the Chamoli and Rudraprayag districts of Uttarakhand [16]. Other major landslides in the
Uttarakhand region were the 2009 landslide in Pittorgarh region with a loss of 43 people.

Another major landslide affected region is Himachal Pradesh, of which the area of Katropi has
often been studied [17,18]. The area has a history of recurring landslides since 1977 and recently it
suffered from major landside in August 2017 claiming 46 lives [17]. The Pawari landslide zone has also
been an active landslide zone located in the southeastern part of the state, which expanded 7% during
2005–2014 [19]. The Luggarbhati landslide in 1995 and Dharla landslide event in 2007 claimed 65 and
62 lives, respectively. The Jammu and Kashmir region has suffered from major cloudbursts such as the
Leh Nalla cloudburst (2005, 2006), Leh cloudburst (2010), and Baggar cloudburst (2011) [20].
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In the northeast part of the region, most reported landslides have been in the Darjeeling area of
West Bengal and Sikkim. The Darjeeling region has a history of several landslides with the first major
recorded occurrence in 1899, which led to the death of 72 people. Thereafter, landslides happened
in 1950 (127 people died) and 1968 (667 people died) [21]. The region has also suffered significant
landslides in the late 20th and 21st century (1991, 1993, 2004, 2005, 2006, 2009, and 2015) [22]. Similarly,
the Sikkim region faced numerous landslides such as the Lanta Khola landslide [23], south Sikkim
area [24]. The prominent unstable sections in the northeast region of the Indian Himalaya are National
Highway (NH)-40 [25] and NH-44 [26] in Meghalaya. In Mizoram, NH-44A has suffered several
landslides, in 2011, 2013 and 2017 [27].

3.2. Landslide Identification

The identification, visualization and standardized classification is an important step for pre-
and post-hazard landslide analysis, which could assist in assessing rescue and relief operations [28].
Historically, landslide damage assessment was carried out using field visits and categorizing it according
to the block diagrams depicted in [29]. However, understanding landslide scenario using such simplistic
illustrations fails to consider the surrounding morphometry and its contextual relationship. With the
advancement of remote sensing technologies and availability of high spatial and temporal resolution
data, researchers have attempted to map landslides using image classification techniques. In the case
of Indian Himalaya, the identification of landslides after an event has been mostly carried out by
scientists at National Remote Sensing Centre (NRSC). Vinod Kumar et al. [30] studied Varunawat
Parbhat landslide in Uttarakhand following the September 2003 landslide event using post-landslide
Stereoscopic Earth Observation data on a 1:10,000 scale. The availability of high-quality images
enables researchers to identify the loss of vegetation and exposure of fresh rock and soil after the
landslide event [31]. The methodologies to assess landslide damages using pre- and post-landslide
event images can be categorized as pixel based (PB) (medium resolution images) and object based
(OB) (high-resolution images). Pixel based method involves the use of pre- and post-event images,
and landslides are identified using spectral information. The identification of the landslides is mainly
based on change detection and image fusion techniques. However, the use of pixel-based identification
approach has some limitations. Firstly, the availability of images (pre- and post-event) may not be
available from the same sensor, including variation in the atmospheric conditions and bandwidth
of spectral values. Secondly, the representations of landslides are based on pixel values. On the
other hand, object-based approaches use spectral, shape, spatial, and contextual properties and the
identification is carried out using an object rather than a pixel, which makes more sense for natural
events such as landslides as the damages are of irregular size and shape. It has the potential to add
morphometric information derived from Digital Elevation Model (DEM).

The work conducted in the Indian Himalayan region has been primarily conducted using an
object-based image classification technique. The use of OB image classification is dependent on the
data type and methodology being used. The methodology involves detection, segmentation, and
classification of images. The detection procedure can further be categorized into: (i) direct object
change detection; and (ii) classified object change detection. The first detection technique involves the
comparison of two images for changes in geometrical and spectral information acquired at different
times. Such approach is usually used when comparison is made between images acquired from same
satellite sensors and generation of full change matrix is not an absolute requirement. In the latter
approach, first segmentation and classification are performed independently using time series images,
and then the change matrix is derived using classified images. The second approach is mostly used in
land use/land cover change analysis as well as when time series data are acquired by different satellite
sensors [32]. The studies conducted in the region have mainly used the first approach as a single
feature, i.e., the landslide is analyzed and the changes are estimated from images acquired from the
same sensor.



Appl. Sci. 2020, 10, 2466

The capability of detection using object-based analysis depends on the segmentation technique
being used, which has the ability to excerpt objects that accurately describe the relevant properties [32].
The most popular segmentation technique for classification of images is the multi-resolution
segmentation (MRS). This segmentation approach is a bottom-up region-merging technique, wherein
small objects are merged into bigger ones in subsequent steps, and involves three parameters: scale,
shape, and compactness. The scale parameter handles the size of the image object size, whereas
the shape parameter determines the degree to which shape influences segmentation vs. spectral
homogeneity. The compactness defines the weight of the compactness criteria. The higher the value is,
more compact the objects will be [33]. Several methods exist to select an optimal scale parameter,
of which plateau objective function [31,32] and optimal scale parameter selector [34] have mostly
been used. However, obtaining a desired scale for all the landslide types in an area is difficult, thus
over-segmentation is preferred to under-segmentation [35].

The use of the OB technique has been used for landslide detection immediately after a landslide
event, as well as for creating a landslide inventory database from historical images. Martha et al. [35]
prepared landslide inventory data for the 1998 Uttarakhand landslides in Okhimath region, Uttarakhand
and compared with the field data acquired after the landslide event. The study identified 73 landslides
using Resourcesat-1 LISS-IV multispectral data (5.8 m) and a 10-m Cartosat-1 derived DEM. This
semi-automatic approach resulted in achieving an accuracy of 76% for recognition and 69% for
classification in terms of number of landslides. Thereafter, Martha et al. [31] used historical panchromatic
image dataset (1998–2006) for the same region to prepare a landslide inventory database. The images
were acquired from Cartosat-1 (2.5 m) and IRS-1D (5.8 m) and depicted the use of texture in cases
of missing spectral information. Martha et al. [36] analyzed various time series images (1997–2009)
for Okhimath region, Uttarakhand using Cartosat-1 (2.5 m), Resourcesat-1 (5.8 m), and IRS-1D
panchromatic (5.8 m) data. For the entire period, the accuracy of landslide detection varied from 60%
to 89%, whereas it varied from 71% to 97% in terms of landslide extent.

The identification and classification of landslides is available for two severe landslide events
occurring in Uttarakhand in September 2012 [15] and June 2013 [16,32]. Martha and Vinod Kumar [15]
used very-high resolution (VHR) satellite data (Resourcesat-2 (5.8 m), Cartosat-2 (1 m), Kompsat-2
(1 m), GeoEye-1 (0.5 m), and Cartosat-1 DEM (10 m)) covering the September 12 Uttarakhand landslide
event and identified 473 landslides. Martha et al. [16] compared pre-disaster images (Resourcecat-2
and GeoEye-1) with post-disaster images (Resourcesat-2 and Cartosat-2a (1 m)) after the June 2013
Uttarakhand event. The study identified 6031 landslides and classified those as new (57.74%), old
(18.92%), and reactivated (23.34%). Martha et al. [32] identified new landslides by comparing the pre-
and post-landslide Resourcesat-2 images with a detection accuracy of 81%. Mohan Vamsee et al. [34]
improved the scale component of MRS technique and developed the optimal scale parameter selector
(OSPS) tool, which was applied to Uttarakhand region using Resourcesat-2 images.

However, the accuracy of the above-mentioned techniques largely depends on the resolution of
the satellite images that are costly to be acquired. Therefore, free and high-resolution Google Earth
(GE) images have also been used for landslide mapping [19,37]. The ability of such images to provide
a 3D view and its free availability can serve researchers to exploit imagery for landslide detection and
mapping [38]. Kumar et al. [37] utilized GE images for landslide dimension mapping along Satluj
Valley in Northwest Himalaya. Further, Kumar et al. [19] conducted a study on a relatively smaller
area (Pawari landslide) in the same region and analyzed the changes using GE images of 2005, 2012,
and 2014.

As landslide mapping is the first key step towards conducting any landslide study or to set up
recovery attempts after a landslide event, focus should be on the use of high temporal resolution dataset.
The focus has primarily been on the use of semi-automatic identification approach and gradually
improving the algorithms used to detect and classify landslides [16,28]. The classification and
segmentation techniques need to be improved using computational techniques such as Machine
Learning (ML) and Artificial Neural Networks (ANN) [39]. In addition, the studies have largely been
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concentrated in a single area and need to be applied to other Himalayan regions to understand their
applicability and reliability.

3.3. Landslide Forecasting

Landslide forecasting is a key element for disaster risk reduction and is also the most challenging.
Most of the landslides in the Indian Himalayan region are shallow in nature, of which rainfall is
the primary triggering factor [3,4]. The analysis of precipitation for landslide occurrence can be
performed by estimating minimum rainfall conditions, sub surface monitoring, or slope stability
analysis. The minimum rainfall conditions, also known as thresholds, can be classified as empirical
and physical approaches [40–42]. Physical models assess the relationship between rainfall conditions
and hydrological conditions of the soil, which affects slope stability. The model analyzes the spatial
variation of several factors such as geotechnical parameters, soil depth, volumetric water content,
geology, and topography to determine the pore water pressure change and estimate the factor-of-safety.
Such models need a large dataset of many parameters in spatial and temporal context, which is
usually not available for the Indian Himalaya. Empirical methods analyze the rainfall conditions
using statistical methods to determine threshold levels of precipitation. Such models are simpler
to apply because they require only the spatial and temporal dataset of precipitation and landslide
events [43,44]. The threshold values can be greatly affected by the data quantity and quality, the rain
gauge density, and the methodology used. The thresholds are usually determined by drawing (usually
with statistical techniques) a lower line to the precipitation conditions corresponding to landslide
events in log-log, semi-log, or Cartesian coordinate system [3,41]. Segoni et al. [43] reviewed the type
of thresholds, data collected, and other important information for thresholds determined in the global
context for 2008–2017.

The studies on rainfall thresholds for the Indian Himalayan region have been very limited.
The use of empirical approach has been explored for different Himalayan regions. Sengupta et al. [45]
proposed the use of EMAP for Sikkim Himalayas, which is the ratio of cumulative event rainfall (E)
to mean annual rainfall (MAP) (EMAP = E⁄MAP), instead of rainfall event-duration (ED) or rainfall
intensity-duration (ID) thresholds. Kanungo and Sharma [3] determined ID thresholds for Garhwal
Himalayas using best fit of the lower boundary of ID plane. Dikshit and Satyam [4] developed the ID
thresholds for Kalimpong region using frequentist statistical approach. The use of probabilistic [22,46]
and semi-automated algorithmic approach [47] has only been attempted for Kalimpong region.
Harilal et al. [48] developed both regional (Sikkim) and local (Gangtok, Sikkim) ID thresholds using
statistical approach. The main concerns with these studies are the coarse spatial distribution of rain
gauges, all studies being performed using a single rain gauge, and the availability of only daily
rainfall data. In this regard, Gariano et al. [49] highlighted that a coarse temporal resolution dataset of
precipitation could lead to an underestimation of rainfall thresholds, which culminates in a higher
number of false alarms when using thresholds for operational early warning system. In addition, the
thresholds determined are rainfall intensity-duration thresholds, which should be avoided, while the
determination of event rainfall-duration (ED) thresholds should be encouraged. Mathew et al. [50]
established ID thresholds along the Rishikesh–Mana pilgrimage route for Garhwal Himalaya using
Tropical Rainfall Measuring Mission (TRMM)-based Multi-satellite Precipitation Analysis (TMPA) data.
Despite using different methods to determine various aspects of rainfall characteristics, all studies
were unified in the effect of antecedent rainfall in the region. Mathew et al. [50] also suggested that
antecedent rainfall ranging from 15 to 30 days plays an influential role for destabilizing slopes in the
Himalayan region, which leads the subsequent rainfall of short duration (24–72 h) to trigger landslides.
The studies on rainfall thresholds in the Indian Himalayan region have been very minimal and more
work should be conducted on the calculation and analysis of regional and local thresholds. Kumar et
al. [51] highlighted that the mean rainfall threshold intensity of NW Himalayas (excluding Sikkim
Himalayas) is roughly 290 mm/day. At present, defining rainfall thresholds at regional scale or at a
state administrative level would be highly desirable but is hard to accomplish. The variation in the
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thresholds determined also ascertains that local thresholds would perform be better than regional
thresholds in setting up an operational landslide early warning system. This could be due to the
heterogeneous rainfall pattern at local scales in various Himalayan pockets. Table 1 lists the various
thresholds generated for different regions of the study area. Figure 6 illustrates the thresholds in
ID plane.

Table 1. Threshold equations generated for various Himalayan regions using several methods (I is
Rainfall Intensity (mm/h), while D is Duration (h)).

Threshold Equation Region Methodologies

I = 1.82 D−0.23 Chamoli, Uttarakhand Empirical thresholds
I = 58.7 D−1.12 NH 58, Uttarakhand Empirical thresholds
I = 3.52 D− 0.41 Kalimpong, West Bengal Empirical thresholds

E = (4.2± 1.3) D(0.56±0.05) Kalimpong, West Bengal Semi-automated algorithm approach
I = 100 D−0.92 Gangtok, Sikkim Empirical thresholds

I = 43.26 D−0.78 Sikkim Empirical thresholds
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Figure 6. Comparison of various ID thresholds developed for various Himalayan regions with global
thresholds defined by Caine [52].

3.4. Landslide Monitoring and Investigation

Landslide monitoring is a very significant aspect of landslide assessment, especially in the Indian
Himalayan region where the slopes are generally creepy in nature, which could immediately fail
during an abrupt rainfall event or seismic occurrence. Landslide monitoring is generally categorized
into three types [53]:
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1. Observing the changes of topography and cracks on the surface during the site investigation.
This is a traditional monitoring technique used by geologists at regular time periods. The major
limitation of using such a technique is that it does not provide the variations for a short time interval
and it is difficult to accurately determine the time and location of future landslide incidences.

2. Remote sensing techniques such as satellite imagery analysis, GPS synthetic aperture radar (SAR)
interferometry, and light detection and ranging (LiDAR). These methods can be helpful as they
can measure slope displacement over a large area independent of the weather conditions.

3. In situ ground-based observation of slope movement using various instruments (extensometers,
inclinometers, and tiltmeters) and installing rain gauges to accumulate local rainfall data. For
example, Dikshit et al. [54] used tilt sensors for Darjeeling Himalayas, while Falae et al. [55] used
Electrical resistivity tomography (ERT) for Garhwal Himalayas.

Of the various monitoring techniques, the use of remote sensing (RS) data along with traditional
monitoring instruments would prove to be very helpful especially in understanding long-term
deformation and the advancement in RS technology would gradually overcome the use of traditional
equipment. In the case of Indian Himalaya, monitoring studies include remote sensing techniques
and ground based observation. Yhokha et al. [56] used the Persistent Scatterer Interferometry (PSI)
technique using ENVISAT satellite for Lesser Himalaya, Nainital. PSI is based on InSAR technique,
which utilizes several SAR images and has proved to be successful in identifying the creeping zones
in Nainital. Martha et al. [57] monitored the landslide dammed lake in Zanskar Himalayas for five
months (January–May 2015) using multi-temporal high-resolution satellite images after the landslide
event (December 2014) and depicted the variation in the dimension of the impounded lake during the
monitoring period. Dikshit et al. [54] and Dikshit and Satyam, [22] used tilt sensors at shallow depths
to analyze the variation in tilting angle of the instrument, which is related to the lateral displacement
of the slope. The study also validated the empirical models thereby encouraging similar studies to be
conducted in other Northeast Himalayan regions, which could help in setting up a preliminary early
warning system.

The investigation of unstable slopes in the Indian Himalaya has been conducted using Ground
Penetrating Radar (GPR) or 2D Electrical Resistivity Tomography (ERT). Mondal et al. [58] conducted
ERT investigation for Naitwar Bazar landslide in Uttarakhand for six sites, which was active after the
2004 event. Kannaujiya et al. [59] compared slide dimensions observed from satellite (IRS LISS-IV)
with geophysical investigation and determined the depth and slip surface geometry using 2D ERT
and GPR) for Kaliganga river valley in Uttarakhand. Falae et al. [55] used ERT to understand the
subsurface movement to determine the probable failure plane of the Pakhi landslide, Uttarakhand.
Sharma et al. [60] conducted a geophysical study at Lanta Khola Landslide, Sikkim using very
low-frequency (VLF) electromagnetic survey to understand the subsurface structure. The results reveal
the presence of a water-saturated zone at the subsurface level of the slide.

The literature review reveals that only a handful of studies have been carried out for landslide
monitoring and investigation; considering the increased quantity of the available remote sensing
data sources, the focus needs to shift towards the use of high spatial and temporal resolution data,
which would lead to near real-time monitoring results. The framework using sub surface investigation
is ideal at a local scale and would fulfill the demands of a community but would be difficult to
manage in long term due to the high installation and operational costs. However, in sections where
the landslide problem is immense, which is slide specific, such as Paglajhora landslide (Darjeeling),
Singtam landslide (Sikkim), or Kotropi landslide (Himachal Pradesh), monitoring using instruments
would still be required as the region is highly vulnerable and satellite images at currently available
resolution may not be able to accurately identify failure planar sections.

3.5. Lake Damming Landslides

Landslide lakes or dams are temporary lakes in the river valleys formed after a landslide blocks
the river course. Landslide dammed lakes and their outburst floods (LLOFs) are common in the Indian
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Himalaya. The breaching of such temporary lakes with a huge amount of accumulated water and
sediments can create devastating floods in the downstream areas [61]. In the Himalayas, landslide
dams commonly form in high mountains because of different mass movement types such as rock and
debris avalanches, rock and soil slides, mud–debris–earth flows. The oldest recorded landslide lake
was the Gohna Tal, which was formed in September 1893 as a result of heavy precipitation blocking the
Birahi Ganga River situated in the Kumaon Himalaya. Gradually, the lake expanded to an approximate
4000 m length, 340 m width, and 300 m depth. On 26 August 1894, the dam collapsed, and a devastating
flood hit downstream of Birahi Ganga [62].

The techniques used for assessment of damming processes are either based on geomorphic
characteristics, hydraulic properties, and velocity measurement of dam material. The assessments
of the damming process are dependent on the analysis of three significant factors: (a) pre-dam
formation mechanism; (b) dimensional characteristics of the dam; and (c) stability analysis of dam [63].
The pre-dam formation mechanism largely depends on the slope stability analysis and landslide
triggering factors, whereas dimensional characteristics are dependent on geometry of the area and
landslide volume. In terms of slope stability, the techniques can be categorized as discontinuum
modeling and continuum modeling [63]. Discontinuum modeling is majorly used for rock slope
stability analysis, whereas continuum modeling is used for debris flows as well as rock slopes dependent
on the material and geometry of the slope [19,64].

Most of the studies have focused on geomorphic analysis [15,16,57,63] using different satellite
images to understand the spatiotemporal landslide changes. Gupta and Sah [65] catalogued the LLOFs
developed in the Trans-Himalayan region between 2000 and 2005 and studied its impact on the stability
in the region. Martha et al. [57] conducted an extensive investigation of Phutkal River landslide
dammed lake for landslide occurrence on 31 December 2014 using multi-temporal Cartosat-2 images of
1 m spatial resolution and calculated slide volume using pre- and post-event datasets. Kumar et al. [63]
used GE images of 1.5 m resolution and estimated landslide volume along with slope stability analysis
for Urni landslide in Himachal Pradesh.

3.6. Extreme Events and Climate Change

The effect of global warming and the corresponding changes to climate and geohazards is expected
to affect landslide events [66]. However, forecasting and understanding the impact of climate change
on landslide activity still poses a challenge. Gariano and Guzzetti [66] in their review article on climate
change studies related to landslides emphasized the need for more studies as large parts of the world
suffer from a few to no studies. Although it is predicted that the Indian Himalaya region will be
affected by climate change at the time of compiling this article, we could not find any article in which
the effect of climate change has been considered in the Indian Himalaya for any type of rainfall-induced
landslide study. However, some works exist that describe some of the most recent extreme rainfall
events: Jammu and Kashmir Himalaya for the 2014 rainfall event [51], Uttarakhand Himalaya for the
2009 event [67], and Leh region for the 2010 event [68]. One of the main reasons for the lack of inclusion
of climatic variation in landslide studies for the Indian Himalayan region is the unavailability of data
both in spatial and temporal context, which has been highlighted by several researchers. Kumar et
al. [51] estimated that the pattern of rainfall intensity along the Himalayas varies from west to east,
thereby precipitation patterns being affected by western disturbances and summer monsoon. Such lack
of studies in a region such as the Himalayas, which is prone to severe landslides and other geohazards,
is a matter of concern. Hereon, studies should include climate aspects using remote sensing products,
which could reconstruct events and provide a better understanding of climate impact.

3.7. Landslide Susceptibility

Landslide hazard is defined as the probability of landslide occurrence of a specific type (“when”
or “how frequent”) and magnitude (“how large”) [12]. The spatial probability of landslide hazard is
assessed by carrying out landslide susceptibility mapping or popularly known as landslide hazard
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zonation mapping. Landslide susceptibility assessment determines potential of landslide event
considering several predisposing factors and investigating their spatial distribution [12]. The spatial
occurrence of landslides is controlled by several and sometimes inter-playing factors such as geological
setting, rainfall, morphology, soil, and vegetation conditions, thus landslide susceptibility assessment
is not a straightforward task, and many methodologies have been developed to assist the susceptibility
analysis. The classification techniques used for landslide susceptibility models has also changed
over time. We categorized them into four groups: Qualitative, Semi-quantitative, Quantitative,
and Deterministic (Figure 7). In this section, we explore the models, the parameters used, and the
trend in susceptibility analysis.
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Figure 7. Types of modeling techniques used in landslide susceptibility studies.

Initially, studies were mostly based on qualitative methods wherein values are ascertained
for landslide conditioning factors based on the knowledge about the study area and are quite
subjective [69,70]. Semi-quantitative methods are logical tools and emphasize the significant factors
by assigning weights or values. These include techniques such as Analytic Hierarchy Process (AHP),
danger pixel approach, and a weighted linear combination [71].

The deterministic analysis involves an analysis of physical and mechanical soil properties and
determines the susceptibility in the form of a factor of safety (FS) [72]. FS is the ratio between factors
affecting landslide to factors preventing landslide incidences. This involves the utilization of several
factors such as infiltration, soil cohesion, groundwater table, pore water pressure, geotechnical soil
parameters, etc. Several deterministic models are available to determine slope stability such as
SHALSTAB (Shallow Landsliding Stability model), SINMAP (Stability Index Mapping), SHETRAN,
TRIGRS (Transient Rainfall Infiltration and Grid-based Regional Slope Stability) model, etc. In the
case of the Indian Himalayas, Sarkar et al. [72] used SHALSTAB model to determine the critical
steady-state rainfall for slope stability in Darjeeling Himalayas. A landslide inventory map was
developed using various satellite images (Resourcesat -1, Cartosat -1, and Google Earth) and field
surveys, soil parameters (depth, saturated soil density, engineering properties, and soil transmissivity),
and slope parameters (angle, contour length, and upslope contributing area). Mathew et al. [73]
determined FS for terrain stability for Garigaon watershed area of Uttarakhand by coupling an infinite
slope stability model with a steady-state hydrological model (LIDA) using the spatial analysis in GIS
environment. The landslide locations were mapped using LISS IV and Cartosat-1 PAN data and the
input parameters used were soil texture, index properties, porosity, LULC, and terrain properties. The
results indicate an increase in the unstable areas of more than 45% for rainfall intensity variation from
50 to 100 mm/day.
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Quantitative models depend on the landslide density under each influencing factor and can be
further classified as a bivariate and multivariate [74]. Both bivariate and multivariate statistical models
compute weights; however, multivariate techniques depend on the collective effect of parameters [75,76].
Bivariate statistical methods include weights of evidence, frequency ratio, information value, and the
combination of frequency ratio and fuzzy methods [77–79]. The most popular multivariate model used
is logistic regression [80]. The analysis shows that most studies have used quantitative techniques,
of which logistic regression has been most used [81–83]. Thereafter, frequency ratio and information
value were used 16% and 9% of the studies, respectively [74,84–88]. In terms of semi-quantitative
models, AHP has been the most used method (Figure 8).

Figure 8. Model types and the techniques used in hazard and susceptibility studies.

After understanding the various models being used to determine susceptibility, the analysis
of the parameters being used was investigated. The use of parameters for susceptibility analysis
would affect the results; however, they usually depend on the local factors along with data availability.
In addition, the factors depend on the type of movement, scale of study and the methodology used [89].
Based on the analysis of the articles, the factors influencing landslide susceptibility can be divided into
four groups: (i) geological (lithology, geological structures); (ii) geomorphological (drainage, relative
relief, slope, and slope aspect); (iii) environmental (land cover); and (iv) anthropogenic (roads). In the
81 studies, 36 factors were used, where some factors such as “gradient” and “slope” were clubbed
together, and a word map of the factors is illustrated in Figure 9. The most used factors were slope
angle (93.8%), land use/land cover (LULC) (92.5%), aspect (80.2%), and lithology (62.9%). Apart from
these factors, another set of parameters, namely drainage density, curvature, topographic wetness
index (TWI), stream power index (SPI), relative relief, lineament distance, and lineament density, was
also utilized. Seismic factors, fault buffer, and road buffer have been less frequently used. The trend
over the years in the number of factors to be used has increased with an average of six factors being
used until 2010 and an average of eight factors thereafter. This trend can be ascertained to the increase
in the availability of data and remote sensing products.
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Figure 9. Tree map of the factors used for determining landslide hazard and susceptibility.

In terms of the spatial resolution of the dataset used to determine susceptibility, the most commonly
used Digital Elevation Model (DEM) is the one released by USGS, with a spatial resolution of 30 m
(46%). Only 28% of the studies used a spatial resolution higher than 10 m, which was obtained from
Cartosat-1 images, whereas 26% of studies used the dataset with a spatial resolution of 12.5 m from
ALOS-PALSAR DEM. The scale of geological maps has generally been 1:250,000 (62%) while the
remaining 38% studies were conducted using 1:50,000 scale. Anbalgan [69] formulated the guidelines
for landslide hazard assessment based on Landslide Hazard Evaluation factor (LHEF) using factors
such as structure, relative relief, lithology, slope morphometry, land use, and groundwater conditions.
The LHEF rating system was based on determining the factors and assigning values based on the
understanding/knowledge about the study region. The national standard body of the country, Bureau
of Indian Standards (BIS), prepared its guidelines (BIS, 1998) based on Anbalgan’s study using the same
factors excluding groundwater conditions [90]. BIS recommends an indirect method for medium-scale
(1:25,000–1:50,000) landslide susceptibility mapping. Such technique is a generalized method that could
be applied over large regions regardless of the relationship between causative factors and landslide
types, often leading to moderate to poor predictions [91].

Following this, the nodal agency, Geological Survey of India (GSI), developed its own guidelines
(GSI, 2005) considering 10 factors, which is a modified version of BIS (1998). Singh et al. [90] compared
the zonation maps prepared using BIS and GSI guidelines for Arunachal Pradesh and found that
GSI guidelines were better than BIS guidelines. Das et al. [92] studied homogenous susceptible units
(HSU)-based landslide hazard utilizing spatiotemporal data and landslide size, which could better
represent homogeneous susceptible regions. The study was conducted using high-resolution data for
Northern Uttarakhand region. Martha et al. [36] applied the weight of evidence model to determine the
susceptibility using a semi-automatic derived landslide inventories. Sarkar et al. [93] was the first to
introduce landslide intensity as a parameter for hazard determination, which was applied for Garhwal
Himalayas. The intensity was determined by analyzing the volume and velocity, which depends on
the landslide area, debris thickness and the types of failures.

However, lately, the rise has been in the use of computational techniques such as Machine
Learning (ML), Support Vector machine (SVM), and Artificial Neural Network (ANN), which have
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proved to outperform traditional approaches [13,94–96]. However, the studies have largely focused
on landsides in Uttarakhand Himalayas. Ramakrishnan et al. [97] used backpropagation neural
network and showed prediction capability of 80%. Pham et al. [98] used various ML ensemble models
using Multilayer Perceptron (MLP) Neural Networks and six different ensemble techniques, thereby
depicting better capability using ensemble framework. Pham et al. [99] analyzed susceptibility for an
area of 323 km2 in Uttarakhand using various ML models (SMO-SVM, VFI, and LR), FT, MLP-neural
networks, and NB. In the first case, SMO-SVM performed best, whereas, in the latter case, MLP neural
networks and FT models provided similar accuracy compared to NB. Pham et al. [13] used four hybrid
machine learning models for Uttarakhand Himalayas. Pham et al. [13,95,100] extensively analyzed the
Pittorgarh region (242 km2) in Uttarakhand using various hybrid ML models (Table 2).

Table 2. Various computational models used for landslide susceptibility in Uttarakhand Himalayas.

Models
No of

landslides
No of Factors

Test Site Area/Pixel
Size

AUC/Accuracy Articles

ANN 154 7 600 km2/5 m × 5 m 0.84 Chauhan et al. [101]

Back propagation neural
network 63 6 ~116 km2/30 m × 30 m 0.8 Ramakrishna et al. [97]

SVM, Proximal SVM,
L2-SVM-Modified Finite

Newton
2009 pixels 8 1625 km2/30 m × 30 m 0.807 Kumar et al. [102]

Multilayer Perceptron
(MLP) Neural Networks 930 15 1325.47 km2/20 m × 20 m 0.886 Pham et al. [94]

sequential minimal
optimization (SMO)
SVM, vote feature

interval (VFI), Logistic
Regression (LR)

430 11 323.82 km2/20 m × 20 m 0.891 Pham et al. [98]

Functional Trees (FT),
Multilayer Perceptron

(MLP) Neural Networks,
Naïve Bayes (NB)

430 11 0.32 km2/20 m × 20 m 0.850 Pham et al. [99]

Rotation Forest based
Radial Basis Function

(RFRBF) neural network
930 15 0.13 km2/20 m × 20 m 0.891 Pham et al. [103]

Aggregating
One-Dependence
Estimators, SVM,

ANN-RBF, LR, NB

1295 16 561 km2/30 m × 30 m 0.968 Pham et al. [104]

Ensemble decision tree 103 10 242 km2/20 m × 20 m 0.883 Pham et al. [13]

Rotation Forest
Ensemble Model 103 10 242 km2/30 m × 30 m 0.741 Pham et al. [95]

Hybrid Reduced Error
Pruning Trees 103 10 242 km2/30 m × 30 m 0.989 Pham et al. [100]

Hybrid model of Multi
Boost ensemble and

SVM
391 16 270 km2/10 m × 10 m 0.972 Pham et al. [105]

Neuro-fuzzy inference
system 391 16 270 km2/30 m × 30 m 0.95 Jaafari et al. [106]

Fuzzy Expert System,
Extreme Learning

Machine
49 8 43 km2/15 m × 15 m 0.844 Peethambaran et al. [96]

Kanungo et al. [107] compared susceptibility map for Darjeeling Himalayas using traditional,
ANN, fuzzy, and combined neural fuzzy weighing schemes and found the combined neural fuzzy
model to provide more accurate results. Following this, two different models (combined neural
certainty and fuzzy) were compared with the neural fuzzy model for the same region and the latter
was found to be better [108]. Chawla et al. [109] used Genetic Programming (GP) and Particle Swarm
Optimization (PSO) SVM model for the Darjeeling Himalayan region and found GP method to
perform better. Meena et al. [110] conducted susceptibility analysis using a hybrid spatial multicriteria
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evaluation model for Kullu, Himachal Pradesh and found it to produce better results when compared
to FR and AHP.

4. Discussion

The results of the review provide researchers a comprehensive insight to understand the studies
being conducted in various avenues of the Indian Himalaya, thus providing a general picture of the
state-of-the-art in this region and a reference point for those (researchers and practitioners) starting to
work in this area for the first time. Moreover, the analysis of the results can be useful in identifying
some existing research problem and the most important research questions to be addressed in the
near future.

The first gap to be urgently filled is the lack of studies in regions such as the Northeast and Jammu
and Kashmir Himalayas. Since research programs have focused mainly on Uttarakhand region, which
is understandable given the high population density and risk exposure, more efforts need to be made
to analyze other regions as well and to help policy makers in formulating a general guideline towards
mitigation. Another issue is the urgent need for high quality data, as many of the reviewed studies
suffer from the coarse dataset being employed. As an instance, rainfall thresholds have been conducted
using a very sparse rain gauge network that measures rainfall only at daily time steps; and most of
the susceptibility studies make use of a very coarse geological map at the 1:250,000 scale. It is well
established that the poor quality of input data has a negative impact on the quality of the results of any
scientific model; therefore, priority should be given to the acquisition of high-resolution basic data for
further research.

In the Indian Himalaya, many studies have been conducted that explore different disciplines of
landslide research in various regions, and a precise framework is not evident. One of the next steps
of research in the region could be the combination of existing studies in a more comprehensive and
coherent framework aimed at assessing and reducing landslide risk. For instance, susceptibility maps
could be used to define the most hazardous areas, rainfall thresholds to provide temporal forecasts
especially for rapid movements, regional scale remote sensing systems to get a general overview of
slow-moving landslides, and ground based monitoring systems could be employed for management
of the hot-spots at highest risk level. Similar programs should also consider landslide hazard evolution
as influenced by climate change and human modifications to the territorial setting.

Another significant gap highlighted by the review is that, even though landslides are a well-known
source of risk in the area, a quantitative risk assessment has never been carried out, thus all past and
present risk reduction strategies are implemented without a comprehensive framework that could
optimize the efforts made. At present, landslide hazard studies are also quite limited: examples
exist that encompass temporal probability of occurrence (by means of rainfall thresholds) or spatial
probability of occurrence (by landslide susceptibility maps). A spatiotemporal hazard assessment
would be desirable and, to obtain it the future, two options could be explored: the application of
distributed physically-based models (which, in turn, require the acquisition of many input parameters
with high spatial density—see, e.g., Tofani et al. [111]) or the adoption of simpler approaches based on
the dynamic combination of rainfall thresholds and susceptibility maps [112].

Several techniques have been used to understand various aspects; however, the use of
computational techniques has been limited to susceptibility and hazard analysis. It is encouraging to
see the use of advanced machine learning techniques (ANN, SVM, and Random Forest) for landslide
mitigation. However, the use of deep learning and artificial intelligence, which shows great promise
in geohazards and climatic studies, is yet to be performed for the Indian Himalayan region. The use
of advanced computational techniques (deep learning) especially for landslide identification is one
aspect which researchers should look to exploit.



Appl. Sci. 2020, 10, 2466

5. Conclusions

This review paper is an attempt to understand the studies being conducted in the Indian Himalayan
region, which contributes almost 15% of the global rainfall-induced landslides. The article focuses
only on landslide activity which was triggered due to rainfall as it reflects a significant portion to
landslides in the Indian Himalaya and it is the only typology that can be managed by early warnings
and forecasting models. The review reveals that there are several avenues where significant progress is
required, especially in the aspect of climate change, use of high spatial and temporal resolution data,
and new methodologies such as physical methods and computational approaches. The study highlights
key topics in which the research has focused: susceptibility mapping, identification, and slope stability
analysis. The conclusions from each sub-section are as follows:

1. Landslide assessment (including identification, threshold estimation, and monitoring of
landslides). For landslide identification and mapping, focus needs to shift in three key directions:

a. Use of automated approaches involving the use of computational techniques.
b. Use of higher temporal resolution datasets and assessment of their reliability.
c. Application of the current techniques towards other significant landslide prone Himalayan

regions. In terms of rainfall threshold studies, the number of articles were less than 10 with
most of the work focused on the use of statistical models to define a single threshold, and
majorly the Eastern Himalayas have been covered. The thresholds developed show large
differences when calculated for regional and local scale, therefore it is suggested to develop
thresholds at local scale to improve the understanding of the region and help in setting
up an operational landslide early warning system. In general, the thresholds are very low
if compared with other literature thresholds, thus confirming the basic assumption that
the India Himalaya is very susceptible to landsliding. Additional research needs to be
conducted on the use of physical models, including campaigns aimed at gathering input
data for more complex models; moreover, efforts need to be made on the combination of
empirical and physical models for a better understanding of landslide initiation.

2. Landslide monitoring has been performed using both ground instrumentation and satellite data,
however a general multi-scale approach that extensively covers the whole region is missing.

3. The focus needs to shift on include climatic factors for landslide assessment as climate change is
unequivocal. The use of climate models needs to be conducted with caution, especially when
downscale projections are considered. As the climatic conditions are quite varied from west to
east, focus should also be on the use of appropriate down-scaling models.

4. The studies on landslide susceptibility was found to have a regional bias and more research needs
to be conducted in the Jammu and Kashmir Himalayas and the northeastern belt. Emphasis has
primarily been on specific states and regions such as Uttarakhand, Darjeeling, and some areas
of Himachal Pradesh. In modeling aspects, the use of computational approaches needs to be
emphasized as it has proved to be better than traditional methods. The analysis should start
focusing on the use of hybrid models and big data analytics for regional to site specific analysis,
thereby understanding the heterogeneity and uncertainty of the region.

5. There is a serious lack of ground-based rainfall data in large parts of the Himalayan region which
has been highlighted by several works. A solution to this flaw is to start using remote sensing
data (e.g., satellite radar rainfall estimates) to compare and find the best dataset to be used for
individual sections in the Himalayan region.
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Abstract: The main purpose of this paper is to use ensembles techniques of functional tree-based
bagging, rotation forest, and dagging (functional trees (FT), bagging-functional trees (BFT), rotation
forest-functional trees (RFFT), dagging-functional trees (DFT)) for landslide susceptibility modeling
in Zichang County, China. Firstly, 263 landslides were identified, and the landslide inventory map
was established, and the landslide locations were randomly divided into 70% (training data) and 30%
(validation data). Then, 14 landslide conditioning factors were selected. Furthermore, the correlation
analysis between conditioning factors and landslides was applied using the certainty factor
method. Hereafter, four models were applied for landslide susceptibility modeling and zoning.
Finally, the receiver operating characteristic (ROC) curve and statistical parameters were used to
evaluate and compare the overall performance of the four models. The results showed that the area
under the curve (AUC) for the four models was larger than 0.74. Among them, the BFT model is
better than the other three models. In addition, this study also illustrated that the integrated model is
not necessarily more effective than a single model. The ensemble data mining technology used in this
study can be used as an effective tool for future land planning and monitoring.

Keywords: landslide susceptibility mapping; ensemble techniques; functional trees; bagging;
rotation forest; dagging

1. Introduction

A landslide is a complex natural phenomenon [1]. It is influenced by many geological
environmental factors, such as topography, landform, geology, land use, and vegetation [2]. A landslide
is one of the most familiar and disastrous geological hazards with great destructiveness, which always
poses a serious threat to human life, property, and living environment, and restricts human progress and
development, especially when geological environments are increasingly affected by human engineering
activities [3]. Therefore, landslide prediction is of great significance for landslide prevention and
control [4,5]. One of the greatest tasks of landslide disaster and risk mitigation is to prepare landslide
susceptibility maps [6].

With the development and progress of the geographic information system (GIS), its application
in spatial analysis of landslides is becoming more and more popular. With proper use of GIS,
most of the landslide susceptibility mapping methods can realize the automation of evaluation
and standardization of data management technology, and enable us to build more efficient and
accurate maps [7,8]. This is because these technologies can obtain, query, store, analyze, manipulate,
and display a set of spatial and non-spatial data about landslide conditioning factors [8–10]. Landslide
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susceptibility zoning mapping technology includes a variety of statistical techniques and statistical
methods, including Dempster–Shafer [11–13], entropy [14–16], logistic regression [17–19], certainty
factors [20–22], statistical index [23,24], analytic hierarchy process [25–27], frequency ratio [20,28],
weight of evidence [29–32], index of entropy [20,33], multivariate adaptive regression spline [34–36],
and evidential belief function [37–39].

Landslide susceptibility mapping is a typical complex nonlinear problem in a large area of a
landslide research area [5]. Thus, the results obtained by statistical techniques and statistical methods
may not be able to achieve satisfactory accuracy [5,40]. Later, many researchers proposed a large number
of machine learning techniques for evaluating the susceptibility of landslides, which usually have
high prediction accuracy and better performance in data-driven models, such as naive Bayes [41–43],
random forests [2,44–46], artificial neural networks [47–50], kernel logistic regression [51,52], support
vector machine [53,54], and decision trees [55,56]. However, the performance of machine learning
methods is generally influenced by the quality and quantity of training data, and the dependence
on modeling parameters is very high [5,57]. So far, it is not clear which method is most suitable for
landslide susceptibility mapping [5].

In recent years, hybrid technology is considered to be more effective than single technology [58].
In order to explore more reasonable and perfect research results, a variety of integrated algorithms
have been developed for landslide susceptibility modeling [6], such as adaptive neuro-fuzzy inference
system [59,60], artificial neural networks-Bayes analysis [61], and Evidential Belief Function-fuzzy
logic [62]. The important capability of the integrated model is that the method is more accurate in
identification and greatly improves the prediction ability compared with the single machine learning
model [6].

The purpose of this study is to propose and validate the ability and effect of ensemble techniques
in landslide susceptibility modeling, and functional trees are selected as the base classifier to ensemble
with bagging, rotation forest, and dagging models in Zichang County (China). Receiver operating
characteristics (ROCs) and statistical parameters were used to evaluate and compare the overall
performance of the four models.

2. Study Area and Data Used

2.1. The Study Area

Zichang County is located in the north of Yan’an City, Shaanxi Province, China, between longitudes
109◦11′58” E and 110◦01′22” E and between latitudes 36◦59′30” N and 37◦30′00” N, with a total area
of 2405 km2 (Figure 1). Zichang County is a typical hilly and gully region of the Loess Plateau.
The terrain is tilted from northwest to southeast, with an elevation of 933 to 1574 m. Zichang County
prevails a warm temperate semi-arid continental monsoon climate, with low temperature and large
temperature difference. The annual average temperature within the territory is 9.1 ◦C, the annual
average precipitation is 514.7 mm. The rivers in the territory belong to the Yellow River system, which
is divided into three tributaries: Qingjian River, Wuding River, and Yanhe River.

2.2. Data Preparation

The quality of landslide inventory is very significant for landslide susceptibility modeling, and
an accurate landslide inventory map is the foundation of landslide susceptibility modeling [63,64].
In this study, three techniques were used to improve the reliability and accuracy of the landslide
inventory map: historical report, aerial photo interpretation, and field survey using Global Navigation
Satellite Systems (GNSS). According to the landslide inventory map in this area, 263 landslides were
identified, and 184 landslide locations (70%) were randomly sampled as the training data and the other
79 landslide locations (30%) were used to validate models.
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Figure 1. Study area.
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After compiling the landslide inventory, it is necessary to choose the landslide conditioning factors
to create the landslide susceptibility map [65]. The selection principle is to consider the mechanism and
geo-environmental characteristics of landslide occurrence in the study area. Generally, the landslide
conditioning factors used to evaluate landslide susceptibility include three categories: topographic
factors, geological factors, and environmental factors. In this paper, 14 landslide conditioning factors
were selected and transformed into the same resolution (30 × 30 m), including elevation, slope, aspect,
plan curvature, profile curvature, sediment transport index (STI), stream power index (SPI), topographic
wetness index (TWI), the normalized difference vegetation index (NDVI), land use, lithology, soil,
distance to roads, and distance to rivers (Table 1, Figure 2).

Table 1. Source and scale of conditioning factors.

Factors Data Source Format Resolution/Scale

Elevation, slope, aspect, plan curvature,
profile curvature, sediment transport index
(STI), steam power index (SPI), topographic

wetness index (TWI), distance to roads,
distance to rivers

ASTER GDEM Raster, 30 m

Normalized difference vegetation index (NDVI) Landsat 8 operational land imager Raster, 30 m
Lithology Geological maps Polygon, 1:200,000
Land use Land use/land cover maps Polygon, 1:100,000

Soil Soil type maps Polygon, 1:1,000,000

Figure 2. Cont.
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Figure 2. Thematic maps: (a) elevation, (b) slope, (c) aspect, (d) plan curvature, (e) profile curvature,
(f) STI, (g) SPI, (h) TWI, (i) NDVI, (j) land use, (k) lithology, (l) soil, (m) distance to roads, (n) distance
to rivers.

3. Modeling Approach

The chapter included the illumination of five models, namely certainty factors, functional trees,
bagging, rotation forest and dagging. The certainty factors model was used to express the correlation
between landslide and conditioning factors, the functional trees model was used as a base classifier,
the bagging, rotation forest, and dagging were used as ensemble algorithms.

3.1. Certainty Factors

The certainty factor (CF) belongs to a probability function, which was first proposed in 1990 [66]
and modified subsequently [67]. The certainty factor can be expressed as [68]:
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CF =

⎧⎪⎪⎨⎪⎪⎩ PPa−PPs
PPa(1−PPs) i f PPa ≥ PPs

PPa−PPs
PPs(1−PPa) i f PPa < PPs

(1)

where, PPa is the conditional probability of landslide in class a in study area A, PPs is the prior
probability of the total number of landslides in study area A.

The range of CF is −1 to 1, the positive value indicates that the degree of certainty of landslide
occurrence increases, while the negative value indicates that the degree of certainty of landslide
occurrence decreases [69–71].

3.2. Functional Trees

Functional trees (FT) are a combination of a discriminant function and multivariable decision tree
through constructive induction [72]. Functional trees use logistic regression functions to calculate the
splitting of internal nodes (called oblique splitting) and estimation of leaves [73–75]. FT learns the
classification tree based on the attributes of leaf nodes, decision nodes or nodes and leaves [38,76].
The decision nodes are built while the trees are growing, while the functional leaves construct when
the trees are pruning [76]. Functional trees have the following three usage types: (1) the full functional
tree using a regression model for internal nodes and leaves; (2) function tree internal-only uses the
regression model for internal nodes; (3) functional tree leaves only use the regression model for
leaves [75,76].

In the leaf logic regression function, the logic enhancement (iteration are weighted) of the
least-squares function is determined for each output consisting of two classes [77]. Among them,
training datasets of D and n samples (Ai, Bi) with Ai ∈ Rn, Bi ∈ {1, 0} [76]. Ai is the input vector
containing all landslide condition factors [75,76]; whereas P(A) is the probability prediction value of
landslide occurrence; Bi is the coefficient of the i component of the input vector Ai. The posterior
probability P(A) of the left ventricle is calculated as follows [78]:

fBi(A) =
14∑

i=1

BiAi + B0 (2)

P(A) =
e2 fBi (A)

1 + e2 fBi (A)
(3)

3.3. Bagging

Bagging is based on the concepts of bootstrapping and aggregating, which is used to obtain a more
robust and accurate landslide model. Bagging is one of the most popular integration algorithms [79].
The process of a bagging algorithm includes:

Firstly, the bootstrap samples S(xi, yi) are randomly resampled from a training set (xi, yi), forming
a set of training subsets, where, xi ∈ R, yi ∈ (landslide, non-landslide) [80]. Then, several models based
on a classifier are constructed according to each subset, Ci(x) is a classifier constructed from each
guiding sample. All models based on classifier (Li) are aggregated to generate the final model (L′),
where, L1, L2, . . . , Ln generates a combined classifier (L′). L′ predicts the class label of a given instance
x by calculating the votes using the following equation [81]:

L′(x) = arg max
y∈Y

t∑
i=1

L(Ci(x) = y) (4)

3.4. Rotation Forest

Rotation forest (RF) is a popular aggregation technique proposed by Rodriguez et al. [82]. RF is
an effective technique for improving weak classifiers [83]. It uses principal component analysis (PCA),
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a multivariate technique used for analyzing large multivariate datasets, to reduce its dimensions [84].
In this method, features are extracted from the learning (training) dataset and a base classifier is used
to generate learning sub training dataset [82].

For the use of RF: randomly divide the training dataset into D subsets, where D is the parameter
of the algorithm, and construct the rotated sparse matrix by performing feature extraction for each
subset. The classifier is based on the feature of a repeated matrix projection, and the result is obtained
by combining the output of multiple classifiers [84]. RF can be used with any basic classifier, and the
feature extraction of each classifier retains all the features that promote variability [84].

In the RF algorithm, x = (x1, x2, · · · , xn) is the training sample set, and Y is the corresponding
class label, that is used to consider landslides and non-landslides; D1, D2, · · · , DL are the classifier in
the set frame; and P is the set of landslide condition factors. The coefficients of the rotation matrix Ri

a

are obtained by transformation and base classifier. Obtain Ri
a by rearranging Ri matrix [84]:

Ri =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
bi,1

(1), · · · , bi,1
(M1) 0 · · · 0

0 bi,2
(1), · · · , bi,2

(M2) · · · 0
...

...
. . .

...
0 0 · · · bi,K

(1), · · · , bi,K
(MK)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (5)

For each sub training dataset extracted by the rotation matrix Ri
a, average grouping method is

adopted to obtain the coefficients of each class in a given test sample [85]:

μ j
(x) =

1
L

L∑
i=1

dij(xRi
a), j = 1, . . . , c. (6)

where μ j
(x) is the maximum confidence specified on the class, classifier probability allocation Di,

and the dij regression dij(xRi
a) [85].

3.5. Dagging

Dagging is a well-known resampling integration technique originally proposed by Ting and
Witten to generate many disjoint hierarchical folds from a dataset, and each data partition can be sent
separately to the basic classifier [86]. The final forecast is based on a majority vote [86]. The main
principle is to use a majority vote to combine multiple classifiers to improve the prediction accuracy of
the basic classifier [86].

For a given training dataset, which has n samples, the dagging algorithm constructs M datasets (M is
a free parameter) from the original training dataset [87]. Each dataset contains n samples [87], and no
two datasets have the same sample. A basic classifier is trained for each dataset to build a classification
model [87]. Therefore, the M dataset can be summarized into M classification models [86,87].

4. Results

This section consists of the detailed description of the results of the present study, which includes
the following four sections: (1) the correlation between landslide and conditioning factors, and then
the CF values are used as input to weight the classes of conditioning factors; (2) selection of landslide
conditioning factors that are positive to the modeling process; (3) application of four hybrid models
and generate landslide susceptibility maps; and (4) validation and comparison of models using ROC
and Chi-squared methods.

4.1. Correlation Analysis of Landslide and Conditioning Factors Using the CF Method

The landslide density at each class was calculated by combining each thematic map and landslide
inventory map. Meanwhile, this paper summarizes the spatial relationship between the landslides and
conditioning factors using the CF method (Table 2). According to the calculation results in Table 2,
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the highest CF value (0.661) is found in the elevation category of 1500–1574 m, which indicates that the
probability of landslide is the highest. Among the six classes classified by the slope, 40◦–50◦ (0.324)
is the highest CF value of the six categories. As far as aspect is concerned, the CF values of slopes
facing south (0.309) and southwest (0.242) are the largest. Among the five classes classified by plan
curvature, the classes of (−9.24)–(−1.79) have the lowest CF value (−0.495), and the classes of 1.44–7.56
have the highest CF value (0.244). Among the five classes classified by profile curvature, the classes of
(−1.65)–(−0.46) have the lowest CF value (−0.346), and the classes of 0.58–1.97 have the highest CF
value (0.277). For STI, the frequency of landslide occurrence is the most relevant in 20–30 categories,
with the largest CF value (0.220). In TWI, the CF value is the largest in the classes of 2–3 (0.164) and the
smallest in the classes of >5 (−1). For NDVI, the lowest CF value (−0.326) was found in the classes of
0.01–0.04, and the highest CF value was found in the categories of 0.07–0.09 (0.223). In terms of land
use, landslides mostly occur in residential areas (0.465). Among the five types of lithology, the groups
2 and 4 were relatively more sensitive to landslide occurrence, with CF values of 0.430 and 0.465,
respectively. For soil, the majority of landslides occurred in red clay soils with a CF value of 0.712.
It can be seen from a distance to roads that the closer the distance is, the more sensitive the landslide.
CF value is the largest in the categories of 0–100 m (0.452). For distance to rivers, CF value is the largest
in the categories of 0–200 m (0.585).

Table 2. Relationship between landslides and conditioning factors using the certainty factor (CF) method.

Conditioning Factors Classes Percentage of Landslide Percentage of Domain CF

Elevation (m)

933–1000 2.17 1.14 0.476
1000–1100 22.28 13.38 0.400
1100–1200 33.15 28.22 0.149
1200–1300 29.35 31.06 −0.055
1300–1400 9.24 20.45 −0.548
1400–1500 3.26 5.57 −0.415
1500–1574 0.54 0.18 0.661

Slope (◦)

<10 0.00 10.44 −1.000
10–20 30.43 26.09 0.143
20–30 36.96 35.14 0.049
30–40 26.09 23.90 0.084
40–50 6.52 4.41 0.324
>50 0.00 0.02 −1.000

Aspect (◦)

F (−1) 0.00 0.05 −1.000
N (0–22.5; 337.5–360) 7.61 9.25 −0.177

NE (22.5–67.5) 6.52 13.16 −0.504
E (67.5–112.5) 17.39 16.34 0.060

SE (112.5–157.5) 13.59 11.26 0.171
S (157.5–202.5) 14.67 10.14 0.309

SW (202.5–247.5) 16.85 12.77 0.242
W (247.5–292.5) 17.93 15.44 0.139

NW (292.5–337.5) 5.43 11.59 −0.531

Plan curvature (100/m)

(−9.24)–(−1.79) 2.72 5.38 −0.495
(−1.79)–(−0.54) 15.76 17.98 −0.124

(−0.54)–0.38 45.11 42.08 0.067
0.38–1.44 25.54 26.34 −0.030
1.44–7.56 10.87 8.22 0.244

Profile curvature
(100/m)

(−7.29)–(−1.65) 7.07 8.08 −0.126
(−1.65)–(−0.46) 15.76 24.10 −0.346

(−0.46)–0.58 41.85 39.33 0.060
0.58–1.97 29.35 21.23 0.277
1.97–9.45 5.98 7.26 −0.177

STI

0–10 44.02 48.27 −0.088
10–20 33.70 30.96 0.081
20–30 15.22 11.21 0.263
30–40 3.26 4.22 −0.227
>40 3.80 5.34 −0.287
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Table 2. Cont.

Conditioning Factors Classes Percentage of Landslide Percentage of Domain CF

SPI

0–10 20.11 32.46 −0.381
10–20 25.00 19.69 0.212
20–30 17.39 13.57 0.220
30–40 10.33 8.20 0.206
>40 27.17 26.08 0.040

TWI

1.11–2 55.43 56.33 −0.016
2–3 39.67 33.16 0.164
3–4 3.80 7.36 −0.483
4–5 1.09 2.83 −0.617
>5 0.00 0.31 −1.000

NDVI

(−0.15)–0.01 14.13 13.96 0.012
0.01–0.04 11.41 16.94 −0.326
0.04–0.07 16.85 22.45 −0.250
0.07–0.09 35.33 27.44 0.223
0.09–0.31 22.28 19.20 0.138

Land use

Farmland 25.54 36.96 −0.309
Forestland 20.11 18.93 0.059
Grassland 53.80 43.70 0.188

Water bodies 0.00 0.10 −1.000
Residential areas 0.54 0.29 0.465

Others 0.00 0.02 −1.000

Lithology

1 60.33 75.17 −0.197
2 21.74 12.38 0.430
3 0.54 0.94 −0.421
4 12.50 6.69 0.465
5 4.89 4.82 0.015

Soil

Cultivated loessial soils 76.63 85.66 −0.105
Alluvial soils 15.22 11.83 0.223
Red clay soils 8.15 2.35 0.712

Water 0.00 0.15 −1.000

Distance to roads (m)

0–100 27.72 15.20 0.452
100–200 17.39 11.42 0.344
200–300 11.96 11.35 0.050
300–400 6.52 8.93 −0.270
>400 36.41 53.10 −0.314

Distance to rivers (m)

0–200 69.02 28.64 0.585
200–400 14.67 25.39 −0.422
400–600 9.24 22.38 −0.587
600–800 3.26 15.61 −0.791
>800 3.80 7.98 −0.523

4.2. Selection of Landslide Conditioning Factors

In order to ensure the accuracy of landslide prediction results, it is necessary to remove unimportant
or unrelated factors [88,89]. In this study, the Pearson correlation method [90,91] with 10-fold
cross-validation was used as an effective feature selection method for evaluating the predictive ability
of conditioning factors. The distance to rivers, slope, and lithology has the highest predictive abilities
(Table 3). Since a no conditioning factor has a null predictive value, all are included in this analysis.

4.3. Application of Landslide Susceptibility Models

In this study, the training data and CF values were used to construct four models, namely the
functional trees (FT) model, bagging-functional trees (BFT) model, rotation forest-functional trees
(RFFT) model, and dagging-functional trees (DFT) model, respectively. To get the best performance of
the model, the iteration times of the FT model and the minimum number of instances considering the
separation of nodes from the training dataset are optimized to 15 and 36, respectively. When building the
BFT, RFFT, and DFT models, the two parameters mentioned above were fixed firstly. After completing
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the above work, the optimized models were applied to the whole research area to create landslide
susceptibility maps. The calculated landslide sensitivity index (LSI) values can be interpreted as the
probability in the range of 0 and 1, and all LSI values can be converted to ArcGIS to generate the final
landslide susceptibility map.

Table 3. Correlation attribute of landslide conditioning factors.

Factors Average Merit Standard Deviation

Distance to rivers 0.382 ±0.015
Slope 0.224 ±0.008

Lithology 0.180 ±0.012
Elevation 0.185 ±0.018

Distance to roads 0.172 ±0.015
TWI 0.171 ±0.014
SPI 0.152 ±0.015

Aspect 0.147 ±0.011
Soil 0.141 ±0.013

Profile curvature 0.136 ±0.020
NDVI 0.105 ±0.024

Landuse 0.097 ±0.013
Plan curvature 0.038 ±0.011

STI 0.041 ±0.015

Four landslide susceptibility maps generated by FT, BFT, RFFT, and DFT models are shown
in Figure 3a–d respectively. The landslide susceptibility maps were reclassified into five classes,
namely very low, low, moderate, high, and very high using the natural break method [92].
The comparison of area sizes for each category of the four models is shown in Figure 4. For the FT
model, the largest area is the very low class (27.92%), followed by high class (23.47%), very high class
(20.21%), low class (17.55%), and the smallest area is the moderate class (10.86%). For the BFT model,
the percentages of very low, low, moderate, high, and very high classes are 24.02%, 22.87%, 19.88%,
18.10%, and 15.12%, respectively. The results of landslide susceptibility zoning using the RFFT model
show that these percentages are 37.62% (very low), 21.41% (low), 7.79% (moderate), 12.25% (high),
and 20.93% (very high), respectively. For the DFT model, the percentages of very low, low, moderate,
high, and very high classes are 19.70%, 30.59%, 23.72%, 16.50%, and 9.49%, respectively.

4.4. Model Performances and Comparisons

In this study, the landslide susceptibility models were evaluated by using the areas under the
ROC curves (AUC), standard error, 95% confidence interval, and significance level p-value. The ROC
curve can be used as a useful tool to indicate the quality of deterministic and probabilistic prediction
system [93–95]. The sensitivity (true positive rate) is shown as y-axis and 1-specificity (false positive
rate) as x-axis [94,96]. The AUC values are in the range of 0.5 to 1 [97], and the excellent attributes of
the model increase with the AUC values [98].

Using the training dataset, the performance of the landslide susceptibility models was evaluated
(Table 4). The BFT model has the highest AUC value (0.947), the lowest standard error (0.011), and the
narrowest 95% confidence interval (0.925–0.969). It is followed by the RFFT model, the FT model,
and the DFT model. For the validation data, the calculation results are shown in Table 5. The BFT
model has the highest AUC value (0.804), the lowest standard error (0.035), and the narrowest 95%
confidence interval (0.736–0.871). It comes before the DFT model, the FT model, and the RFFT model.
These results show that all performance in the validation dataset is slightly worse than those of the
training data. These results show that the BFT model is the best model among the four models, and the
ensemble model is not necessarily superior to the single model.
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Figure 3. Landslide susceptibility maps: (a) functional trees (FT) model; (b) bagging-functional trees
(BFT) model; (c) rotation forest-functional trees (RFFT) model; (d) dagging-functional trees (DFT) model.

Figure 4. Percentages of landslide susceptibility classes.
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Table 4. Parameters of receiver operating characteristic (ROC) curves with the training dataset.

Test Variables FT Model BFT Model RFFT Model DFT Model

ROC Curve Area 0.836 0.947 0.839 0.797
Standard Error 0.021 0.011 0.020 0.023

95% Confidence Interval 0.795–0.878 0.925–0.969 0.798–0.879 0.752–0.842
p-Value <0.0001 <0.0001 <0.0001 <0.0001

Table 5. Parameters of ROC curves with the validation dataset.

Test Variables FT Model BFT Model RFFT Model DFT Model

ROC Curve Area 0.745 0.804 0.740 0.748
Standard Error 0.039 0.035 0.0394 0.039

95% Confidence Interval 0.668–0.822 0.736–0.871 0.663–0.817 0.672–0.824
p-Value <0.0001 <0.0001 <0.0001 <0.0001

A Chi-squared test was used to analyze the significance of the four models (Table 6). It can be seen
that only the comparison of FT and RFFT exhibits lower Chi-squared value (0.044) and higher p-value
(0.834), which indicate no significant difference between the two models. The other five groups all
present larger Chi-squared values and lower p-values. The significant differences between the models
indicate that the differences between the models are good, which is more conducive to the modeling
work and enables this study to obtain the susceptibility results smoothly.

Table 6. Pairwise comparison of four models.

Pair FT vs. BFT FT vs. RFFT FT vs. DFT BFT vs. RFFT BFT vs. DFT RFFT vs. DFT

Chi-squared 40.376 0.044 8.205 44.928 63.681 14.454
p-Value <0.0001 0.834 0.004 <0.0001 <0.0001 0.000

Significance Yes No Yes Yes Yes Yes

5. Discussions

In this current study, the correlation analysis between conditioning factors and landslides was
carried out by the CF method. The probability of landslide occurrence is in inverse correlation with
elevation. This may be related to local rainfall and loess and may be related to human engineering
activities. With the increase of slope angle, the degree of certainty of landslide occurrence decreases.
This may be due to the larger slope angle, the less loose material or more weatherproof material. At the
same time, it can be observed that most landslides occur on slopes facing south and southwest with
the highest probability. This is mainly because more rain and sunshine are available to the south and
landslides are prone to occur. The curvature of plan and profile shows anomalous results. The curvature
of the plan (near zero) and convex plan (positive value) are highly sensitive. This anomaly may
be related to the overweight effect [28,99,100]. In terms of land use, the probability of landslides
in residential areas is the largest, which can explain the impact of human engineering activities on
landslides. For the lithology, the second group (Tertiary (T): mudstone, conglomerate) and the fourth
group (Triassic (T): mudstone, sandstone, songlomerate) are more sensitive to landslide occurrence.
There is groundwater flow in the relatively fractured saturated sandstone and fractured conglomerates,
resulting in additional load on the mudstone, resulting in landslides [28,101]. The linear characteristics
of the road and river buffers are inversely correlated with landslide susceptibility in the distance. Such an
important result has been repeated in many kinds of literature [6,102–104]. However, the remaining
five variables make little contributions to the occurrence of landslides.

According to ROC curve analysis (Figures 5 and 6) and statistical index analysis (Tables 4 and 5),
it can be concluded that the four machine learning methods selected in the training and testing data
assemble a very small p-value and significant high performance in the 95% confidence interval. The BFT
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model has the highest AUC value (0.947), the lowest standard deviation (0.011), 95% confidence interval
(0.925–0.969), and p-value (<0.0001). However, the DFT model has the worst results in this study
area. The DFT model has the lowest AUC value (0.797), the highest standard deviation (0.023),
95% confidence interval (0.752–0.842), and p-value (<0.0001). There is no doubt that most ensemble
models are superior to single models. However, there is still a phenomenon that the performance
of hybrid machine learning methods is not always better than a single model. In order to find more
optimal solutions, much more different set models should be applied to the research field.

Figure 5. ROC curves of the models using the training dataset. AUC: area under the curve.

Figure 6. ROC curves of the models using the validation dataset.
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According to the paired comparison of the performance of the models (Table 6), the Chi-squared
test shows that the Chi-squared values are relatively large. Among them, the Chi-squared value of the
FT and RFFT models is smaller, the p-value is larger, and the difference between these two models
is not significant. The good results obtained from the other three groups can serve as a powerful
basis for modeling in this study. At the same time, the BFT model is compared with the other three
models in pairs, and the difference is significant. According to the evaluation results of various
evaluation criteria, the performance of the BFT model is better than that of the RFFT model, FT model,
and DFT model. As a final recommendation, the obtained results can be useful for policy planning and
decision-making in areas prone to landslides. The proposed BFT model, based on performance and
prediction accuracy, is suggested in the study area and other regions over the world where they have
similar geo-environmental conditions with a logical caution.

6. Conclusions

This study applied functional tree-based ensemble techniques (FT model, BFT model, RFFT
model, DFT model) for landslide susceptibility spatial modeling in Zichang County, China.
Fourteen conditioning factors and the occurrence of landslides were used to analyze the correlation.
Meanwhile, the ROC curve and statistical parameters were used to evaluate and compare the accuracy
of the model results. The results showed that the prediction rate of the BFT model is the highest.
Therefore, the BFT model is the best optimization ensemble model in this study, and it can be used as
an advantageous and promising method for landslide susceptibility modeling. Finally, the landslide
susceptibility map generated by this study can be used as an effective tool for future land planning
and monitoring by government officials or research experts and scholars.
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Abstract: The multi-functionality of land as the basis of land use and utilization is under increasing
investigation. This study assesses the spatiotemporal dynamic multi-functionality of land use and
analyzes the obstacle indicators in Xiangxi using two methods, i.e., the analytic hierarchy process
(AHP) and the hierarchical weighting method (HWM). First, we found that the total function level
of land use in Xiangxi was constantly optimized. Spatial heterogeneity was clearer. Land use had
a trend toward diversification, with a focus on production or living function. The coordination of
multifunctional land use has undergone certain changes. It was more apparent in the south than in
central and northern regions. Second, we discovered that production function of land use in Xiangxi
grew slowly and spatial differentiation was enhanced. The living function fluctuated with the trend
of spatial equilibrium. Changes in ecological function and any spatial differentiation were not clear.
Third, land use can be divided into living-ecological, production-living, and production obstacle
types. Lastly, we state that, to narrow the gap between urban-rural areas and reduce the non-point
pollution from agriculture in living-ecological barrier areas, we need to develop production and social
public utilities in production-living barrier areas, and develop production and eliminate poverty in
production barrier areas.

Keywords: land use; multi-functionality; production-living-ecology function; spatiotemporal
dynamics; obstacle factors; Xiangxi

1. Introduction

Land is a complex system including topography, soil, hydrology, biology, climate, and other
elements [1]. In addition to providing food, fresh water, and other material resources for humans,
it is also essential for habitation, transport, leisure, and other activities [2]. Land use reflects the type
and intensity of human activities, which directly affects the biodiversity of ecosystems [3], water
security [4], and human health [5]. The changes of land use are dominated by human activities [6],
which, in turn, affects people’s livelihood and sustainable development of the economy. Several models
have been used to assess land use change [7,8], but most of them have only focused on the economic or
ecological functions of land [9]. Land resources are multifunctional, which is not only an important
factor of the ecological environment, but also the main resources of human production and life. Land
multi-function evaluation is a very effective method that takes economic, social, and ecological factors
into consideration [10]. The concept of multi-functionality in land use originated from agriculture
and refers to the ability of land to provide diversified products to meet various needs. This concept
has gradually expanded into the non-agricultural sectors. In 2004, the SENSOR project, under the
sixth framework of the European Union, considered that the function of land use refers to the various
uses of land for the provision of multiple products and services [11], to meet the needs of humans for
economic, environmental, cultural, and social services. The multi-functionality of land as the basis
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for land use and allocation is an important factor affecting regional land decision-making and spatial
planning, and is related to the sustainable development of society and economy.

Research concerning the versatility of land use have become increasingly abundant. These
studies have mainly focused on the types of land function, the multiple functions of agriculture, and
the evolution of land function. Land multi-function includes regulation function, habitat function,
production function, information function, and so on [12]. Scholars have generally discussed the
relationship between agricultural versatility, agricultural policy [13], and sustainable development,
believing that the main functions for agricultural land were food production and environmental
sustainability [14], which had a positive impact on the life of the higher social capital class [15].
An index system for quantifying the versatility of agricultural land was constructed [16,17]. Based
on results of this evaluation, the land functions were divided into different areas [18], and the zoning
optimization strategy was proposed. Scholars have analyzed the rubber agroforestry system in
Sumatra and China [19], concluding that the factors restricting multifunctional change are complex
and diverse. A survey in Australia has found that ranches have changed from a single production
function to a variety of functions [20], such as protecting biological communities and developing
tourism. The study has discovered that family farms in Missouri provide different leisure services
and play a diversified role in land use [21]. Since the 21st century, the land use of parks in Poland
has undergone significant changes [22]. The reasons for the changes of forest landscape functions
in Southwest Parks of Poland include population change, intensive agriculture, urbanization, and
land-use policy change [23]. Evidence from Denmark shows that recreational hunting contributes to
multi-functional maintenance and change of land use [24].

It can be seen from the above that scholars have carried out extensive studies concerning the
types of functions, the current multi-functional use of agricultural land, and have made beneficial
attempts to understand the spatio-temporal evolution of multi-functional land use. However, research
concerning multi-functional dynamic changes to land use focus mainly on macro (national) and middle
(provincial) scales, with insufficient research carried out on a micro (county) scale, and there are few
discussions regarding the ethnic regions at the county-scale. Most research studies are taken from
the perspective of the dimensions of time or space. Therefore, research using a combination of space
and time with regard to land use is required. In addition, land use change has also brought a series of
adverse effects [25,26], which restricts the sound development of the land systems. For measuring the
function of land, it is also necessary to clarify factors that create obstacles for the versatile use of land,
but few studies have conducted such analyses. Xiangxi is typically representative of less developed
areas in China, and it is also a minority-concentrated area. Based on the land-use history of this area,
we arrive at three questions.

(1). What changes have taken place with the land-use function of this region?
(2). What are the main factors restricting the land function there?
(3). What measures should be taken to mitigate the adverse effects?

To answer these questions, bases on the logic of “analysis of functions-diagnosis of barrier
factors-policy recommendations,” this study is conducted from the following aspects. First, we classified
the land function types and constructed an evaluation index system. Second, we evaluated the temporal
and spatial dynamics of land multifunction in the last five years. Third, we explored the obstacles in
depth. Lastly, through comparative analyses between Xiangxi and other regions, we put forward the
corresponding policy recommendations.

The aims of this study are: (1) to realize efficient positioning, quantitative expression [27],
(2) identify obstacles to constrain land use efficiency in multifunctional land use, and (3) provide policy
suggestions for the rational land use in minority areas.
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2. Data and Methods

2.1. Research Area

Xiangxi (full name: Xiangxi tujia and miao Autonomous Prefecture) is located in the northwest
part of the Hunan province (Figure 1). It is bordering the Hubei, Guizhou, and Chongqing provinces.
It is the bridge connecting the central and western regions, and the link of communication between
the Han and minority nationalities. Geographically, Xiangxi lies between 109◦10′~110◦22.5′ E and
27◦44.5′~29◦38′ N. The total area of the region is approximately 1.547 million hm2, accounting for
7.3% of the Hunan province. It has seven counties and one city under its jurisdiction (Fenghuang
county, Luxi county, Huayuan county, Guzhang county, Baojing county, Yongshun county, Longshan
county, and Jishou city—a county-level city). Xiangxi is a typical winding territory of Wuling mountain,
with high altitude terrain in the northwest, and low terrain in the southeast. Ethnic minorities live
in compact communities in Xiangxi. In 2017, 80.73% of the total population of Xiangxi belonged to
ethnic minorities, mainly Tujia and Miao.Xiangxi, with a relatively backward economy, which is one of
the 14 areas included in the national pilot project for poverty alleviation and is currently in a critical
period of new rural construction and modern industrial development. From 2013 to 2017, the economic
and social development in Xiangxi increased rapidly, with an average annual GDP growth rate of
7.82%, a per capita GDP growth rate of about 7.26%, and an increase in the urbanization rate from
38.8% to 44.97%. The regional ecological environment is superior, with 70.24% forest coverage in 2017.
The land use in Xiangxi is dominated by agriculture, with the area of land used for agriculture reaching
1.4118 million hm2 (accounting for 91.26%), and an area of 0.0555 million hm2 has been used for
construction (accounting for 3.59%). Driven by economic interests, the land use structure has changed
significantly, and the area of land used for construction has increased dramatically. For example,
the total urban land in 2016 was 961.34 hm2, which represented an annual increase of 15.8%. Therefore,
the efficient use of land in Xiangxi currently faces two major problems. First, the agricultural land area
is large but the production efficiency is low. Second, urban construction is limiting the space available
for production and ecology, and the contrast between land supply and land demand is increasingly
prominent. Therefore, it is necessary to improve the function of production in land use in Xiangxi, and
to raise people’s awareness that changes in the structure of land use lead to changes in land function.

2.2. Data Sources

The data used in this study concerning the current situation of land use comes from the file issued by
the Xiangxi state bureau of land and resources “Suggestions for general land use planning (2006–2020).”
The DEM digital elevation data comes from the geographical spatial data cloud (http://www.gscloud.cn/),
and all other data (population, land area, land for traffic area, the output value of farming and animal
husbandry, etc.) comes directly or indirectly from the Xiangxi statistical Yearbook (2013–2017) and the
Hunan statistical Yearbook (2014–2018) (Xiangxi statistical Yearbook is based on the data of that year,
and Hunan statistical Yearbook is based on the data of the previous year).
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Figure 1. Map of the study area.

2.3. Research Methods

2.3.1. Classifying the Multifunctional Types of Land Use

The land system is composed of economic, social, and ecological subsystems [28], and the land is
rendered whole with comprehensive functions via the organic coupling of each subsystem [29]. This
study is based on the economic, social, and environmental dimensions of sustainable development,
combined with the idea of a national “production-living-ecology (PLE),” based on the optimization
of land use, by subdividing the total functions (TF) for which land is used as PLE sub-functions
(Table 1): production functions (referred to as PF), living functions (LF), and ecological functions (EF).
Production functions are based on the key needs for human survival. Land provides agricultural
products to guarantee the capacity of non-agricultural economic output and transportation. These
functions are, therefore, measured as the three aspects of agricultural production, economic growth,
and transportation security [30]. Living functions are the ability of the land to meet the needs for
human development [31,32], which are mainly reflected by four aspects: employment support, social
security, cultural leisure, and the residential home. Ecological functions are related to the high-quality
production and living needs of human beings. This function is evaluated from the three dimensions of
maintaining ecological balance, providing resources, and keeping the environment clean. This study,
therefore, divides the function types of land use into three levels from top to bottom: total function,
sub-function, and single function. The number of functions at each level is 1, 3, and 10, respectively.
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Table 1. Data sources.

Data Types Data Names Units Sources

General Situation of
Xiangxi

Agricultural land area, construction land
area hm2 Land Bureau of Xiangxi

DEM elevation data m http://www.gscloud.cn

Population composition, GDP,
Urbanization rate, Forest Coverage Rate % Statistical Yearbook of

Xiangxi

The 23 evaluation
indexes of land use
function

X1, X2 yuan/person

Statistical Yearbook of
Xiangxi or Hunan

X3, X6, X7, X10, X11, X13, X18, X19,X20, X21 %

X5, X12, X15 m2/person

X4 104 yuan/km2

X8, X14 yuan

X9 person

X16 t/person

X17 km2/104 yuan

X22, X23 t/hm2

Note: The meaning of X1–X23 is detailed in Table 2.

2.3.2. The Establishment of the Evaluation Index System

The selection of indicators for evaluating multifunctional land use follows the basic principles.
(1) Indicators should take the regional development situation into account. For example, the output
from agriculture and animal husbandry in Xiangxi accounts for more than 95% (the data of 2017) of the
regional output of agriculture, forestry, animal husbandry, and fisheries. The two indexes of per capita
agricultural output value and per capita animal husbandry output value were, therefore, selected,
according to the needs of regional production and development. (2) Indicators should be chosen that
can be quantified and easily obtained. Most indicators selected come either directly or indirectly from
the public websites of government departments, which can be directly accessed. (3) The indicators were
independent and complementary (Sun et al., 2017). For example, the employment security function for
rural and urban land was, respectively, represented by the number of rural employees and the average
annual wage of urban employees. (4) Using direct effective indicators. Specific indexes were selected
that could minimize the total quantity of indexes, which directly reflects the functional level of land.
From the above principles, a total of 23 typical sensitive indicators representing land use function in
Xiangxi were selected (Table 2).

2.3.3. Determination of the Index Weight

The analytic hierarchy process (AHP) was used to calculate the weight of each factor. Through
modeling and quantitative analysis, the AHP simplifies complex problems and is widely used in the
field of land evaluation.

The software of Yaahp (full name is yet another AHP) was invented by Zhang Jianhua. It can
be download from this website: http://www.yaahp.cn. It is simple and efficient, and widely used to
determine weights [33,34].

First, Yaahp v.10.3 software is used to build a four-level hierarchical structure model, which is a
function-subfunction-single function-index layer.

Second, the evaluation factors are scored. The judgment matrix Amk was constructed. Experts
were invited to evaluate the relative importance of two factors (m, k) at the same level. The evaluation
results were divided into five levels: absolutely important, very important, relatively important,
slightly important, and equally important. They were assigned 1, 3, 5, 7, and 9 points, respectively.
If the evaluation results landed in the middle, the median value was taken.
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The third step involved consistent checking and weight calculation. To test the rationality of the
pairwise judgment matrix, consistency testing is required. If the test value is ≤0.1, it shows that the
matrix evaluation is reasonable. However, the results have to be revised. Running software found that
the evaluation results passed the consistency test.

Lastly, the weight of all factors was calculated (details in Table 2).

2.3.4. Measuring the Versatility of Land Use

The first step was to standardize the data. According to the land use function evaluation index
system, a sample matrix X of m evaluation indexes in n areas from 2013 to 2017 was constructed, where
X = (Xij)n×m, i = 1,2, . . . N, j = 1, 2,...M. In order to make an evaluation of the quantitative comparison of
different attributes and dimension indexes, the optimal value of each index (the maximum value of the
positive index and the minimum value of the negative index) during the study period was selected as
the reference value Xo in order to conduct a dimensionless quantization of X. The calculation formula
used was as follows.

Yij =

{
Xij/Xoj the positive index
Xoj/Xij the negative index

(1)

where Yij was the standardized value of the j evaluation index in area i, Xij was the original value of
the j valuation index in area i, and X0j was the optimal value of the j evaluation index. Evaluation
samples Y were obtained after standard treatment, Y = (Yij)n×m, Y ∈(0 1].

The second step was to calculate a value for the land use function. Value (F) represents the value
for the level of land use with regard to functions. The larger F is, the better the level of land use is, and
vice versa. According to the standardized values of the evaluation samples and the weight of factors at
all levels, the land single functional value (F1), sub-functional value (F2), and total functional value
(F3) were calculated. The formula for calculating the functional values is shown below.

F1 =
∑

WjYij F2 =
∑

WiF1 F3 =
∑

WnF2 (2)

where Wj was the weight of evaluation index, Wi was the weight of a single function (F2), and Wn was
the weight of a sub-function (F3).

The third step was to calculate the degree of dynamic change in land use and the degree of
functional advantage of the land. The degree of dynamic change in land function (d) refers to the
degree of change in land function levels within a certain period. The overall degree of dynamic change
in land function was, therefore, calculated for the study period of five years. The calculation used was
as follows.

d =
Ft+4 − Ft

Ft
× 100% (3)

where t represents the year, Ft represents the land function value of the year t, d < 0 indicates that the
land function remains unchanged, d > indicates that the land function is enhanced, and d < 0 indicates
that the land function is degraded.

The dynamic dominance of land function reflected the differences in land use, calculated with:

s =
|d|max∑|d| (4)

where |d|max was the maximum absolute value of the degree of dynamic change in land function,
and Σ|d|was the sum of the absolute value of the dynamic changes of land function. The larger S is,
the more diverse the land function change is, which means that the land use tends to be simplified.
Smaller values for S point to diversification.
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The fourth step was to measure the multifunctional coordination degree of land use. The difference
in the standard deviation of the functional value of land use (σ) reflects the coordination of the functional
level of the land. The calculation formula was as follows.

σ =

√∑
(F− F)

2

N
(5)

where F was the average value for land function and N was the function number. The value of σ is
inversely related to the coordination degree of land function. The higher the value is, the lower the
coordination degree of land function is, and vice versa.

2.3.5. Diagnosing the Obstacles to Land Use Function

The degree of land dysfunction is represented by the degree of the total function that has been
hindered. The higher the degree of land dysfunction, the stronger its influence. The calculation
formulas for the obstacle degree (Qi) of a single function and the obstacle degree (Ki) of a sub-function
are shown below.

Qi =

(
1−Yij

)
Wj∑(

1−Yij
)
Wj
× 100% (6)

Ki =
∑

Qi (7)

where (1 − Yij) represents the gap between the i index of land use function and the goal of function,
which is the difference between the index standard value (Yij) and the optimal standard value (1).

At last, we placed the calculation results into the attributes of each research units, and created the
column chart using the spatial analysis function of software ArcMap v.10.2 (ArcMap is one of the three
user desktop components of ArcGIS, and it was developed by the Environmental System Research
Institute in 1978. Its official website is http://argmaps.com). The length of the column represented the
size of each data, and labeled the values to visualize the results of the research.

3. Results

3.1. The Spatio-Temporal Dynamic Evaluation of the Total Function of Land Use

We got the map of total function of land use change in Xiangxi over the past five years (Figure 2),
to analyze the trends in spatio-temporal dynamic evolution.

(1) The total function level of land use was constantly optimized and regional differences were
found to be greater. During the study period, the value of land function level in Xiangxi showed an
upward trend (Figure 2a). The highest increase occurred in Jishou (24.05%), and the lowest (8.90%)
increase occurred in Longshan, with the other areas falling in between (10%–20%). In 2013, Xiangxi
Autonomous Prefecture committee put forward the developmental policy of “5-4-2” (i.e., the “five
constructions,” industry, infrastructure, new towns, ecological construction for civilization, “four
Xiangxi”—green, civilized, an open and harmonious Xiangxi, “two take the lead,” take the lead in
development, take the lead out of poverty). Under the lead of an open strategy for Hunan province
and land use activities in the area remained stable and improved. With these changes in the total
function of land use, the differences in the land function level in Xiangxi were increasingly clear, and
the standard deviation in the value for total land function between the counties increased from 0.0344
to 0.0515. On the whole, the land use function level in Xiangxi presented a spatial pattern of high levels
in the north and south (Jishou, Luxi, Fenghuang, and Huayuan in the south, Longshan, and Yongshun
in the north), and low levels in the middle (Guzhang and Baojing).

(2) The functions for which land was used tended toward diversification, focusing on those
associated with production or living. During the study period, the function value for the change of
land use in each region was characterized by rapid growth of the lower (production and living) and
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slow change of the higher (ecological) functions, which reflects the trend in land use diversification.
Production and living functions (Figure 2b,c) underwent the largest changes in value, with the highest
degree of dynamic changes in production functions observed in Jishou (37.48%) and the fastest change in
living functions in Guzhang (39.57%). Ecological functions changed slowly or even declined (dynamic
change degree-3.09%~12.08%). Over the five years studied, the dominance of land production or living
functions in eight areas was 40% to 65%. The west of the region (except Huayuan) was dominated by
diversified land use that focused on production functions, which was strongest in Longshan (64.46%).
The east and west of Huayuan were marked by diversified land use dominated by living functions,
and the dynamic dominance of living function was found to be the highest in Guzhang (55.90%).
This indicates that the current notion of land use in Xiangxi is in the promotion of economic growth
and the development of social undertakings to improve the livelihood of its residents.

 
(a) (b) (c) (d) 

Figure 2. Changes of land use total function from 2013 to 2017 in Xiangxi. (a) The value of the function.
(b) The dynamic degree. (c) The dynamic dominance. (d) The standard deviation.

(3) The coordination of multi-functional land use was found to be changing slowly, with high
coordination in the south and low in the central and northern regions. The standard deviation of land
function in Jishou, Huayuan, Fenghuang, Baojing, and Yongshun underwent increasing fluctuations,
which indicates a volatile decrease in functional coordination (Figure 2d). The standard deviation of
land function in Luxi, Guzhang, and Longshan decreased, which reflects that the degree of functional
coordination increased. However, the standard deviation for the land function in each area did not
change significantly during the study period (variable rate −5.89% to 5.51%), which reflects the slow
changes in the coordination of regional land use. The southern regions (Jishou, Huayuan, Fenghuang,
and Yongshun) demonstrated a high degree of land use coordination, with the highest coordination
seen in Jishou (the standard deviation was as low as 0.0036 in 2014), and the central (Baojing and
Guzhang) and northern regions (Yongshun and Longshan) had a low degree of land use coordination,
of which Yongshun was the lowest (with a standard deviation as high as 0.1567 in 2017). This was
mainly because of the strengthening of the approach to development within Jishou (the core of Xiangxi)
and the policy guidance and technical support of the local government, which promotes coordinated
development in economy, society, and environment. However, the northern areas are far away from
Jishou, and the effect of such policy changes reaching this area is limited. In addition, the industrial
structure is unbalanced, with traditional industries, agriculture, and animal husbandry accounting for
a large proportion. However, the degree of coordination in land resource utilization is low.
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3.2. The Spatio-Temporal Dynamic Analysis of the Sub-Function of Land Use

The sub-function of the spatial and temporal evolution of land use during the study period was
analyzed from three aspects: the value of functions, the dynamic degree of the functions, and the
dynamic dominance of functions, using the data processed from the evaluation samples (Figure 3).

(a) 

(b) 

(c) 

Figure 3. Changes in land use sub-function from 2013 to 2017 in Xiangxi. (a) Production functions.
(b) Living functions. (c) Ecological functions.
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3.2.1. The Production Function

Production grew slowly, with unbalanced development over the whole region. The production
functions of the region were generally not high and all increased slowly, with a faster growth rate in the
south and the middle than in the north (Figure 3a). Jishou demonstrates the best production function
and the fastest development, because it is the political, economic, and cultural center in that region,
with relatively superior production conditions and rapid development in transportation and economy.
The production function values of Baojing, Guzhang, Yongshun, Longshan, Huayuan, and Fenghuang
were always at a low level and have changed slowly, which is due to the fact that these areas have
been dominated by traditional agriculture and animal husbandry production, which is a decline in
transportation and slow economic growth. The function of security from transportation was clearly
differentiated over the region, but the spatial differentiation of agricultural and animal husbandry
production and economic growth was not so clear. In 2012, the Aizhai bridge was opened to traffic
and the Chongqing-Hunan highway was completed, which strengthened the economic connection
and material exchange between Jishou, Chongqing, and Changsha. This promoted development in
the flow of people and cargo, which rendered Jishou the regional transportation hub. Luxi is the
only area through which this route passes, and the proportion of freight volume moving through
the state has increased significantly (from 18.02% to 35.98% within five years). Therefore, Jishou and
Luxi have both undergone a relatively rapid increase in traffic function. The expressways connecting
other areas in the prefecture were developed later, such as that of LongYong and YongJi, which were
completed in 2016 and 2017, respectively, and this has limited the external exchanges between these
regions to a certain extent. Within the 5 years studied, the per capita agricultural output value and per
capita output value from animal husbandry both increased. The agricultural and animal husbandry
production of Guzhang underwent the largest increase rate (28.79%). The economic density of all areas
increased, and the proportion of the secondary and tertiary industries has also risen in most counties
(Huayuan and Luxi declined slightly). However, the overall economic growth of such industries within
Xiangxi was slow during the study period. Jishou has always had a high proportion of secondary
and tertiary industries (with 10.58% higher than the average level of the whole state in 2017), and
the economic density has been growing rapidly (with a dynamic degree of 43.13%), so the dynamic
degree of economic growth was the highest (24.54%).The production function of the whole prefecture
focuses on agriculture and animal husbandry. Except for Jishou and Luxi with clear benefits from the
development of transportation, the production functions of agriculture, and animal husbandry have
developed rapidly in other areas.

3.2.2. The Living Function

The living function fluctuated and tended toward a balance. The values for the living function
of the land in the eight areas of Xiangxi have fluctuated, but have increased overall (Figure 3b).
The living function of Yongshun has always been at the forefront (reaching the highest value of 0.7563
in 2017). Longshan and Jishou also have certain advantages in this area. The value for the living
function in Guzhang was always low, but growth has been significant and the gap with other regions
has narrowed. The level of employment support, cultural leisure, and residential homes have all
improved to a certain degree. However, the urban-rural income balance index and the incidence of
poverty in all areas of Xiangxi (except Jishou) have also increased to some extent. The wealth gap
between urban and rural areas has widened, and the social security function has deteriorated. With the
intensification of the urbanization process, the imbalance between urban and rural development has
become increasingly prominent, and the incidence of rural poverty has increased. In recent years, local
governments have encouraged the development of commercial housing, along with the renovation of
dilapidated houses in rural areas and shanty towns in urban areas. The living conditions and living
environment of residents have constantly improved. During the study period, the growth rate per
capita in the area of Xiangxi was 13.77% to 112.61%, with the highest in Guzhang. With increasing
communication with the outside world, job opportunities provided by tea production and tourism
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in Xiangxi have increased, and the land employment guarantee function is, therefore, constantly
optimized. The growth rate in the southern and central regions was faster than that of the north, which
can be associated with the development of the regional production function. The improvement to
production and the optimization of the industrial structure have enhanced the ability for increased
employment opportunities. The functional level of cultural and leisure in regions other than Longshan
and Fenghuang has been improved to a certain extent. The per capita green park space in Guzhang
has increased 2.23 times, which is a key factor in the rapid growth of the cultural and leisure functions.
The center of the living function was mainly residential homes (Longshan, Yongshun, Huayuan,
Guzhang, and Luxi), which was followed by the cultural and leisure functions (Jishou, Baojing), and
the employment support function (Fenghuang).

3.2.3. The Ecological Function

The ecological function has changed slowly, and regional differences in this functional level have
narrowed. The level of ecological function has slightly decreased in Guzhang, whereas it has increased
in all other areas, albeit not significantly (Figure 3c). The value for the ecological function in land use
over all eight areas of Xiangxi was always high, and was closely related to the significant supply of
resources (due to the sparse population) and ecological maintenance (from high green coverage and
forest coverage). The ecological advantage of land use in Yongshun was relatively clear because the
three associated functions of resource supply, ecological maintenance, and environmental purity in
Yongshun were all excellent. (In 2017, the three functions of Yongshun in all areas were respectively
ranked 2, 2, and 1). Fenghuang was found to require improvement, since the level for ecological
function in the area during 2015 and 2016 was the lowest. The standard deviation of the ecological
function for each area decreased as a whole from 0.054 (2013) to 0.048 (2017), which reflects that the
regional ecological function tended to be balanced. The three functions of ecological function (resource
supply, ecological maintenance, and environmental purification) were clearly differentiated during the
study period. With the promotion of ecological environmental construction by a local government, the
rate of increase in green coverage and forest in all regions has been greatly improved, which means
that the growth of ecological maintenance function is the clearest. The growth rate was 13.38% to
68.63% (except for Guzhang). In some counties (Fenghuang, Luxi, Yongshun), the resource supply
capacity decreased, which reflects the lack of regional reserve resources and restricts the consequences
of regional development. With the increased input of agricultural chemicals and the high intensity
use of chemical fertilizers (taking Huayuan as an example, the index increased by 170.83% in the
study period), the ecological purification capacity decreased, which posed a significant threat to the
ecological environment of the regional land resources. In addition to the high dynamic dominance of
resource supply in Guzhang, the ecological function of land use in the other seven areas focused on
ecological maintenance.

3.3. The Analysis of Obstacle Factors

According to Equations (5) and (6), the degree of obstacles affecting both single functions and
sub-functions was calculated, and the obstacle factors for the sub-functions and the total function were,
respectively, obtained (Table 3). The obstacle factors of a sub-function were obtained in the following
way: the obstacle degree of 10 single functions was ranked from high to low, with 1–3 as obstacle
factors, 4–7 as intermediate factors, and the rest as dominant factors. The obstacle factors for total
function were obtained according to the average value of the three sub-functions (production, living,
and ecological functions). Those higher than the average value were counted as obstacle factors.



Appl. Sci. 2019, 9, 3649

Table 3. The main obstacles of land use function in Xiangxi.

Year Jishou Luxi Fenghuang Huayuan Baojing Guzhang Yongshun Longshan

The obstacles
of total
function

2013 LF PF, LF PF PF PF PF, LF PF PF

2014 PF PF, LF PF PF PF PF, LF PF PF

2015 LF, EF PF, LF PF PF, LF PF PF, LF PF PF, LF

2016 LF, EF PF PF PF PF PF PF PF

2017 LF, EF PF PF PF PF PF PF PF

The obstacles
of sub-function

2013 PF1, LF1,
EF3

PF1, PF2,
PF3

PF1, PF2,
PF3

PF1, PF2,
PF3

PF2, PF3,
EF1

PF2, PF3,
LF1

PF2, PF3,
LF3

PF2, PF3,
EF2

2014 PF1, PF2,
EF3

PF1, PF2,
PF3

PF1, PF2,
PF3

PF1, PF2,
PF3

PF2, PF3,
LF3

PF2, PF3,
LF3

PF2, PF3,
LF3

PF2, PF3,
LF3

2015 PF1, LF3,
EF3

PF2, PF3,
LF3

PF2, PF3,
EF3

PF1, PF2,
PF3

PF2, PF3,
LF3

PF2, PF3,
LF3

PF2, PF3,
LF3

PF2, PF3,
LF3

2016 PF1, LF2,
EF3

PF2, PF3,
LF1

PF2, PF3,
EF3

PF2, PF3,
EF1

PF2, PF3,
EF3

PF2, PF3,
LF1

PF2, PF3,
LF3

PF2, PF3,
LF3

2017 PF1, LF2,
EF3

PF2, PF3,
LF1

PF2, PF3,
EF3

PF1, PF2,
PF3

PF2, PF3,
LF3

PF2, PF3,
EF2

PF2, PF3,
LF2

PF2, PF3,
EF3

Note: PF is production function, LF is living function, and EF is ecological function. PF1 is the function for
agriculture and animal husbandry production, PF2 is the function for economic growth, and PF3 is the function for
transportation security. LF1 serves as employment support function, LF2 as the social security function, LF3 as
cultural and leisure function, LF4 as the residential home function, EF1 as the resource supply function, EF2 as the
ecological maintenance function, and EF3 as the environmental purification function.

According to the frequency of total dysfunction factors in the past five years, this study divided
the land use function of the eight areas of Xiangxi into three types: living-ecological obstacle,
production-living obstacle, and production obstacle.

3.3.1. The Living-Ecological Type of Obstacle

Jishou is representative of the living-ecological obstacle type. Except for 2014, the degree
of obstacles against production in Jishou was slightly higher than average (35%). In other years,
the obstacle degree of production and living dysfunction (or one of the two) was notably higher, with
significant room for improvement. From the perspective of this sub-function, Jishou suffers from a
high degree of obstacles to the agricultural and animal husbandry production function (PF1), social
security function (LF2), and environmental purification function (EF3). Statistics show that, in the
recent five years, the per capita agricultural output value and per capita animal husbandry output
value in Jishou were both in the middle and lower reaches. In 2013, the two indicators were respectively
2334.70 yuan/person and 609.58 yuan/person, which are both lower than the average value of the
whole state. The urban-rural income balance index in Jishou was low, in the range of 31.29% to 34.86%,
which was lower than the statewide rankings. Meanwhile, within five years, the amount of chemical
fertilizers and pesticides applied per unit of cultivated land in Jishou was two to four times higher
than that of other areas, which results in greater pressure on the ecological environment of the land,
and the capacity for environmental purity was, therefore, weak.

3.3.2. The Production-Living Type of Obstacle

Luxi and Guzhang were both undergoing obstacles to production and living. The main
factors restricting the land versatility of the two areas were the economic growth function (PF2),
the transportation security function (PF3), the employment support function (LF1), and the cultural
leisure function (LF3). According to statistical data, in 2017, the economic density of Luxi and Guzhang
accounted for 25.60% and 13.86% of Jishou, respectively, and the low output value per unit of land was
one of the main factors restricting land use in the two areas. In 2017, passenger transport turnover
in Luxi and Guzhang accounted for 7.58% and 4.98% of the total, respectively, and the backward
transportation facilities also limited the development of the region. The average salary of workers
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in both areas was not high (all were less than 88% of Jishou in 2017), which was less attractive for
the labor force. In addition, farmers have to leave the area to work and do business frequently, and
there are few rural employees (Guzhang retains less than one-third of the rural workers of Yongshun
in 2017). The per capita green park space and the proportion of residents’ cultural, educational, and
entertainment expenditure in the two areas are less than the average level of the whole state, and there
remains a significant room for improvement in land use for the cultural and leisure function (LF3).

3.3.3. The Production Type of Obstacle

The geographical location of Xiangxi is in a remote region that restricts the efficient development
and utilization of the land. Fenghuang, Huaguan, Baojing, Yongshun, and Longshan all suffer from
production obstacles. The agriculture and animal husbandry production function (PF1), economic
growth function (PF2), transportation support function (PF3), and environmental purification function
(EF3) are all hindered by significant obstacles. The agricultural and animal husbandry production
of Baojing, Yongshun, and Longshan have certain advantages, especially the agricultural output per
capita and animal husbandry output per capita of Longshan and Yongshun in the last five years
ranking in the top 3. However, the development of regional agricultural production is extensive, and
is dominated by traditional agriculture and animal husbandry. The the level of productivity is low.
The Wuling mountain area is high terrain, covering a large area with few people. It is limited by the
influence of the surrounding economic influence, which limits the development of the economy and
transport in the five areas. For example, in 2017, the sum of economic density of the five areas was
1.26 times that of Jishou. The sum of road area per capita was 1.04 times that of Jishou, and the sum
of freight turnover was only 0.31 times that of Jishou. Although the land use intensity of Xiangxi is
low, the ecological function has certain advantages. However, in the last five years, the large input of
agricultural chemicals in these five areas (in 2017, the average amount of fertilizer applied in the five
areas increased by 1.52 times that of 2013) led to an enhancement of human disturbances to the land
and an increase in the environmental purification dysfunction degree of the land.

As a whole, the obstacle factors for land use in Xiangxi are part of the dynamic change in spatial
and temporal dimensions. Although there are spatial and temporal differences in the types and
degrees of obstacle factors, the main type of obstacles against efficient land use in Xiangxi are due to
production, agriculture and animal husbandry (PF1), economic growth (PF2), transportation (PF3), and
environmental purity (EF3), which are still the main factors restricting the overall land use function
in Xiangxi.

4. Discussion

This study analyzed the multi-functional spatial and temporal evolution in the pattern of land
use in eight areas of Xiangxi during the period of 2013 to 2017. This is based on an evaluation index
system using production, living, and ecology as the main obstacle factors, which is divided into three
obstacle types. To restrain the obstacles and promote sustainable land use in Xiangxi, it is necessary to
learn from the experiences of other regions.

4.1. Comparison in Land Use Management

An assessment of 150 agricultural grasslands in Germany found that land intensive use increased
feed production, but also led to loss of biodiversity and changes of land functions [35]. To improve the
social and environmental functions of land as well as measurements of land management, irrigation
and fertilization must be improved. Soil erosion, soil pollution, and soil degradation were serious
problems in the corn belt of the United States, and agricultural production was seriously threatened.
To coordinate the contradiction between grain production and environmental protection, and to achieve
multi-functional agriculture, it was necessary to integrate market, technology, and policy measures [36].
From 1990 to 2010, the total land function of Guangzhou increased [37], but agricultural production
and resource supply capacity became the main factors restricting its development. Consequently,
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protecting farmland and improving resource utilization efficiency were the main measures to restrain
functional impairment.

From the above cases, we can see that multi-functional land use is an inevitable trend. It is
beneficial for the long-term use of land resources to formulate differentiated measures according to
regional situations.

4.2. Policy Suggestions for the Land Use in Xiangxi

Based on the principle of a specific policy enforced in a certain city, we proposed the
following suggestions.

(1) Jishou, which is a city with obstacles to both living and ecology, aims to narrow the urban-rural
gap and reduce agricultural non-point source pollution. We will coordinate the construction of an
urban and rural land use policy system, and establish a mobile market for urban and rural land
elements. We will increase investment and policy for the support of infrastructure in rural areas, where
the level of education, medical care, and social security will be enhanced. This will ensure that urban
and rural residents both enjoy equal opportunities from development and receive equal protection for
their rights. We will strictly protect basic farmland, delimit areas where basic farmland is concentrated,
and transform medium-and low-yielding farmland. We will expand the planting of flue-cured tobacco,
Chinese herbal medicines, fruits, and other cash crops, develop green and organic agriculture, and
reduce pollution from non-point agricultural sources.

(2) To overcome the production-living barriers of Luxi and Guzhang, we should promote the
development of production and public utilities. We will improve the distribution of residential
areas and guide rural settlements to gather in towns and cities. We will make reasonable plans for
the construction of transportation, ensure development of important transport routes such as the
Zhang-Ji-Huai corridor, and promote the all-around development of highways, railways, and air
transportation, etc. Natural resources and national cultural endowments will be instrumental in
developing regional tourism. Featured agricultural products (bacon, alpine vegetables, etc.) will be
intensively produced, to extend the industrial chain and expand related industries, so as to promote
economic growth and improve the income level of employees. We will improve the land supply system,
the planning and decision-making system, and optimize the structure of construction land. Land for
cultural and recreational facilities in cities and towns shall be guaranteed. The renovation of old cities
will be strengthened to create a beautiful urban environment. We will attract social funds, to increase
the input for the livelihood of residents, and improve the functions of the central urban areas.

(3) The top priority for other counties with production barriers is given toward developing
production and to quickly eliminating poverty. The mode of production in which smallholders operate
should be changed by promoting the consolidation of farmland to achieve scale operation. We will
develop modern urban agriculture and tourism agriculture, perfecting the agricultural industry system
to improve the diversification of agricultural functions. The measures concerning transportation and
economic development have been mentioned in the production-living obstacle countermeasures, and
will not be repeated.

4.3. Limitation and Future Research

The research of land functions in Xiangxi is of great importance for optimizing land-use patterns,
adjusting land use structure, and promoting coordinated development of regional economy and
ecology. However, due to the difficulty of obtaining data, we did not select a countryside or a town as
the case for analysis. No information of a specific case was obtained. Simultaneously, the research
period is relatively short: only five years. Thus, there was a lack of a long-term historical evolution
process analysis. Therefore, research of typical cases and long-term scales should be further studied.

5. Conclusions

The main conclusions are as shown below.
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(1). With the continuous optimization of the overall functional level of land use in Xiangxi, the spatial
heterogeneity was increasingly clear. The coordination of land use has changed to a certain extent,
and the overall situation was better in the south than in the middle or the north.

(2). The production function of land use in Xiangxi was observed to be slowly increasing with more
rapid growth in the southern and central regions than in the northern regions. The spatial
differentiation between these areas was clear.

(3). Obstacles against efficient land use in Xiangxi can be divided into three types: the living-ecological
obstacle (Jishou), the production-living obstacle (Luxi, Guzhang), and the production obstacle
(Fenghuang, Huayuan, Baojing, Yongshun, and Longshan).

(4). To promote the multi-functional use of land, we should formulate differentiated policies for
different regions. In the future, we can choose a smaller area or a longer time scale for
further research.
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Abstract: The transport system is a critical component of the urban environment in terms of its
connectivity, aggregation, and dynamic functions. The transport system can be considered a complex
system due to the massive traffic flows generated by the spatial interactions between land uses.
Benefiting from the recent development of location-aware sensing technologies, large volumes of
traffic flow data (e.g., taxi trajectory data) have been increasingly collected in spatial databases,
which provides new opportunities to interpret transport systems in cities. This paper aims to analyze
network traffic flow from the perspective of the properties of spatial connectivity, spatial aggregation,
and spatial dynamics. To this end, we propose a three level framework to mine intra-city vehicle
trajectory data. More specifically, the first step was to construct the network traffic flow, with nodes
and edges representing the partitioned regions and associated traffic flows, respectively. We then
detected community structures of network traffic flow based on their structural and traffic volume
properties. Finally, we analyzed the variations of those communities across time for the dynamic
transport system. Through experiments in Beijing city, we found that the method is effective in
interpreting the mechanisms of urban space, and can provide references for administrative divisions.

Keywords: traffic flows; taxi trajectory; float cars; spatial community; transport system

1. Introduction

Transport systems are of great importance to urban environments for their connectivity,
aggregation, and dynamic functions. Land uses are connected by the transport network to improve the
accessibility of human activities. Considering the spatial heterogeneity of traffic flows, multiple land
uses are also attracted by each other, showing an agglomeration (or aggregation) pattern in the space.
In addition, such characteristics of a transport system depend largely on the temporal dimension.
Therefore, mining the connectivity, aggregation, and dynamic patterns of transport flows can be helpful
for revealing traffic structures and the associated mechanisms of socioeconomic phenomena, e.g.,
logistics, neighborhood, living habitats, and urban function zones [1–3].

In reality, the regionalization of urban areas is often non-adjacent. For example, working areas
and residential areas belong to the same group in terms of their functions, while in the physical space,
they are often distant from each other. Therefore, only using geometric indicators such as geographic
distance to measure the connectivity of land uses of interest is limited, and the potential solution could
come from the function space of transport. Instead of the static condition of geometric space, a transport
system implies the real interactions between land uses across space and time. For example, in the
morning, the interaction between residential areas and working areas is much intense, while at lunch
time, the interaction between working areas and catering service areas is more intense. In addition,
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the interactions of land uses in terms of traffic flows can reveal the traffic conditions on different routes
in the urban space. It is believed that different routes serve different roles in the daily transportation.
For example, the routes connecting residential areas and working areas are likely to be chosen by
commuters in the morning. Besides the main roads, some minor roads, for example detours, could also
be favored by residents. However, how to extract the functional associations between land uses remains
a challenging task.

Considering the importance of transport systems, many studies have been done to discover
the hidden regularities in urban transportation. However, due to limited data sources, it is rather
difficult to identify the changes of traffic flows across space and time [1,4]. In addition, China’s
transport infrastructures are developing very fast, and the associated transport systems are becoming
more complex and dynamic. It is necessary to study the transport system in a more effective and
timely way. Benefiting from the recent development of location-aware sensing technologies, there is
an unprecedented opportunity for us to obtain big traffic data with agent trajectory information [5,6].
For example, nowadays, most of vehicles are equipped with a global positioning system (GPS),
which records the locations and other semantic properties (e.g., speed and direction) of agents.
Analyzing these data within the context of a transport system could provide a detailed view of the
traffic flow, and then reveal typical spatial interaction patterns in the urban space, e.g., popular routes
for driving, associations among land uses, and the spatial structures of urban space.

For example, Ahas et al. [7] used mobile phone positioning data to explore the movement patterns
of suburban commuters in Tallinn, Estonia. They found that there is a remarkable temporal rhythm
to respondents’ locations. Based on mobile phone data, Sevtsuk et al. [8] also discovered that there
is significant temporal regularity in human mobility. Other data sources can be also used to analyze
traffic flows, e.g., location data of buses [9], smart card transaction data of subways [10], and taxi
trajectory data [11,12].

Compared to other modes of transport, the taxi trajectory has no limitations of a fixed line,
and thus is more flexibly able to reflect real traffic flows in an urban environment. There are also
many relevant studies analyzing taxi trajectory data under different application contexts. For example,
Zheng et al. [13] analyzed taxi trajectory data to construct interaction relationships between local
regions, and then applied the result to assist in city planning. Guo et al. [14] and Yuan et al. [15]
tried to extract the operation status of a traffic system from taxi trajectory data. To identify the city
structure, Zhou et al. [16] proposed a field-based data clustering analysis method to detect the changing
patterns of constant hotspot areas and inconstant hotspot areas. Since the pick-up and drop-off points
of taxi trajectories often imply facilities of interest, Yue et al. [17] used taxi trajectory data to discover
the attractive areas that people often visit, e.g., hot shopping and leisure land uses or living and
working areas. Recently, Liu et al. [18] proposed an approach to identify traffic congestion regions
and their spatiotemporal distributions from taxi trajectory data. Liu et al. [19] viewed the trips of
taxis as a displacement in the random walk model, and found that the distribution of directions of
taxi trajectories in Shanghai shows a characteristic northeast east–southwest west dominant direction.
In addition, they implemented the Monte Carlo simulation and found that geographical heterogeneity
leads to a faster observed decay of trips, and the distance decay effect makes the spatial distribution
of trips more concentrated in the urban area. Liu et al. [20] proposed the use of spatially embedded
networks and network analysis techniques to model intra-city spatial interactions. Zhou et al. [21]
allocated Origin/Destination points to land use parcels for describing regional activities, and then
combined a series of relevant indicators to explore the land use patterns of Wuhan city. Pan et al. [22]
analyzed the characteristics of the pick-up/drop-off points extracted from taxi GPS trajectories, and,
based on these features of pick-up/drop-off points, extracted the regular patterns that correspond to the
land-use classes within different regions in Hangzhou city. In addition to these aspects, taxi trajectory
data can be also used for human mobility pattern mining [5,23,24] and environmental pollution
analysis [25,26].
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Most previous studies have focused on the connectivity and aggregation of land uses, and few
studies have been conducted to comprehensively understand the spatio-temporal community structures
of a transport system. With continuous transportation development, there is an increasingly urgent
demand for analysis of the spatial structures of transport flows and their variations across time.
In general, a traffic flow can be considered a link that connects two land uses, and thus, with multiple
flows of this type, a transport system can be modeled as a weighted graph. In this regard, we can
introduce community detection and graph matching methods to explore the complex organization of
land uses in a transport flow system [27,28].

In this study, we propose a three-levels framework to mine intra-city vehicle trajectory data
and detect the spatio-temporal relationships between land uses in the traffic flow system. Therefore,
the main contributions of this study are the following:

• Modeling the connectivity structure of traffic flows. We first constructed a spatially embedded
network to model the connectivity of land uses, in which the node represents the partitioned
region, the edge represents the linkage between adjacent nodes, and the weight of the edge
depends on the volume of traffic flows between the corresponding nodes.

• Extracting the aggregation patterns of land uses (i.e., nodes). Based on the network traffic flow,
we then employed a community detection technique (i.e., K-Medoids clustering) to classify all the
nodes. Instead of the simple geographic distance, our community detection method takes into
account the real traffic volume and graph structure properties. In this way, the land uses that have
a strong relationship could be aggregated in the same group.

• Analyzing the dynamic patterns of transportation communities. Since the transport system is
a highly dynamic system, we propose a graph matching method to detect the change of network
traffic flows across time. In this way, we can not only identify the structure of traffic flows across
space, but also its variation across time.

The rest of this paper is organized as follows. Section 2 introduces the related definitions, and how
to construct the network traffic flows and to generate the communities. To explore the variation of
communities across time, this section then introduces an indicator to measure the similarity of two
communities. Section 3 describes our extensive experiments based on the taxi trajectory data in Beijing,
showing the potential of the proposed approach for transport system analysis and urban applications.
Finally, Section 4 concludes the paper.

2. Community Detection across Space and Its Variation across Time

Our method improves the traditional K-Medoids method based on traffic flow volume and
network structure properties. Firstly, we partition the study region into equally sized square cells,
and then model each cell as a node and the connectivity between each pair of cells as a link. Based on the
network traffic flow, we propose that the similarity of nodes can be calculated based on the attraction
degree and structure similarity. In this way, community clustering can be implemented. Finally, we use
the graph matching technique to calculate the similarity between the community structures within
different time periods. Therefore, our method can be considered a spatio-temporal analysis tool.

2.1. Network Construction and Its Variation with Different Cell Sizes

2.1.1. Network Construction

Due to signal loss or degradation, taxi trajectories are usually recorded with spatial uncertainty.
Even if a set of trajectory flows comes from (or drives to) the same regions, the recorded trajectory points
are unlikely to share the same coordinates. Therefore, in order to extract the collective regularities from
these massive trajectory points, our method proposes that the study region be partitioned into equally
sized square cells, each of which represents a place in the urban space. In this way, each trajectory point
could be assigned to its nearest cell, and a traffic flow consisting of multiple trajectory points could
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be represented as a set of partitioned cells. More specifically, by specifying the cell size k, the whole
region would be transformed into a grid of size k × k. There are also other ways to partition the region,
e.g., traffic analysis zones (TAZs). However, TAZs are constrained to a fixed scale, and our method
can be used for multi-scale spatial analysis with different cell sizes (please see Section 3). In general,
for fine scale applications, a small cell can be used, while for coarse scale applications, a large cell
would be used. With the tessellation of space, we can then define the nodes and edges of network
traffic flow as follows.

Definition 1. (Node): Assuming the range of Euclidean coordinates of a cell C is {[xmin, xmax], [ymin, ymax]},
this cell can be modeled as a node only when there is at least one trajectory point (with coordinate (x, y)) falling
into the cell. Specifically, this constraint can be formalized as follows.

xmin < x ≤ xmax

ymin < y ≤ ymax
(1)

Definition 2. (Edge): Assuming there are n trajectory flows between nodes C1 and C2, the connectivity between
C1 and C2 can be modeled as an edge with weight n. As presented in Figure 1, the weighted edge is used here to
represent the flow transitions between cells (i.e., sub-regions).

 

(a) (b) 

Figure 1. Example of the traffic flow and network: (a) taxi trajectory data, (b) flow network with edge
weight equal to corresponding probabilities of movement between sub-regions.

The movement of vehicles implies the complex interaction between land uses, and connects
distant regions into an integrated system. Since the basic characteristic of this system is connectivity,
we propose the construction of a spatially embedded network consisting of nodes (Definition 1) and
edges (Definition 2) to represent traffic flow. Based on such a network, we can then employ graph
analysis techniques (see Sections 2.2 and 2.3) to discover the hidden regularities in a transport system.

2.1.2. Variation of Network with Different Cell Sizes

Dividing the whole study area with different cell sizes would make the distribution patterns of
trajectory points different, and would also lead to different results in the detection of communities.
Figure 2 shows the effect of different cell sizes on the construction of network flows. Although Figure 2a,c
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have the same trajectory flow, they are divided by different cell sizes. As a result, the constructed
networks have different granularities (Figure 2b,c). Therefore, with different cell sizes, we can observe
the variation of the network from different scales of space.

 

(a) (b) 

 

(c) (d) 

Figure 2. Variation of network with different cell sizes. (a,c) represent the variation of tessellation using
different cell sizes, and (b,d) are the corresponding networks.

2.2. Community Detection across Space

2.2.1. Similarity of Nodes

Besides the connectivity property, a transport system has a spatial heterogeneity in urban space.
In other words, some land uses are more attractive to each other in terms of transportation, and in
the function space they form aggregation patterns, i.e., community. Such community could imply
a popular route at a specific time, or an agglomeration of living areas and work areas. Generally,
the more intense the traffic flow interaction between land uses is, the higher probability that the land
uses have to be grouped together. Since the transport system is modeled as a spatially embedded
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network, we can then use the community detection method to extract the clustering patterns of land
uses. It should be noted that, compared to the classic graph measures, the concept of community in
our context has its own characteristics. Specifically, community detection in a network traffic flow
should not only take into account the graph structure factor, but should also consider the traffic flow
volumes among different regions. Therefore, we propose that the measures of attraction degree and
structure similarity be integrated to group the nodes of network traffic flow.

Before defining the attraction degree, we first introduce the related concept, as follows.

Definition 3. (Attraction factor): In a network traffic flow, the traffic volume characteristics between a pair
of directly connected nodes reveal their closeness relationship, and we term this connection the attracting
factor. For the directly connected nodes N1 and N2, their degrees dN1 and dN2 are defined as the number of
their connected edges, respectively. Assuming the edge between N1 and N2 is E(N1,N2) with associated weight
W(N1,N2), the attracting factor f(N1,N2) between N1 and N2 is calculated as follows:

f(N1,N2) = ln (1 +
dN1∑dN1

j=1 W1 j

∗W(N1,N2)) (2)

In Figure 3, there are six nodes, including N1, N2, N3, N4, N5 and N6, with their associated edges.

In this community, dN1 = 3, W(N1,N5) = 1,
∑dN1

j=1 W1 j = 3 + 2 + 1 = 6, f(N1,N5) = ln
(
1 + 3

6 ∗ 1
)
= 0.4055,

dN5 = 3, W(N5,N1) = 1,
∑dN5

j=1 W1 j = 3 + 1 + 1 = 5, f(N5,N1) = ln
(
1 + 3

5 ∗ 1
)
= 0.4700.

 
Figure 3. A sample of a community.

Definition 4. (Attraction degree): Assuming nodes N1 and N2 are directly connected, their attracting degree
can be measured as following.

Attr(N1,N2) =
f(N1,N2) + f(N2,N1)

2
(3)

In Figure 3, the attraction degree between N1 and N5 is Attr(N1,N5) =
f(N1,N5)

+ f(N5,N1)
2 =

0.4055+0.4700
2 = 0.43775.
Definitions 3 and 4 model the force of attraction between any two directly connected nodes

(i.e., cells). However, in reality, a node is attracted not only by its directly connected nodes, but also
by its indirectly connected nodes. Therefore, we propose the extension of Definition 4 to take into
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account the attraction degrees from both the directly connected nodes and the indirectly connected
nodes. Assuming nodes Ni and Nj are indirectly connected by the path PT (Ni, Ni+1, Ni+2, . . . , Nj),
their attractive degree can be calculated as the product of the attractive degrees of all the pairs of
directly connected nodes in PT, i.e., f(Nk,Nk+1)

(i ≤ k < j). The detail is as follows:

Attr(Ni,Nj)
=

k= j−1∏
k=i

f(Nk,Nk+1)
(4)

It should be noted that there might be multiple paths between nodes Ni and Nj, and thus there
could be more than one attraction degree value for our analysis. In this regard, we choose the
largest-weight path between Ni and Nj to calculate the attraction degree. In general, the nodes directly
or indirectly connected by a larger-weight path have a stronger mutual relationship. Compared to the
indirectly connected nodes, the directly connected nodes have a higher probability to be attracted by
each other.

In Figure 3, there are three paths from N1 to N6, including path 1 (PT1: N1→N2→N6), path 2 (PT2:
N1→N5→N6), and path 3 (PT3: N1→N2→N5→N6). The weight of PT1 is WPT1 = 2 + 1 = 3, the weight
of PT2 is WPT2 = 1 + 3 = 4, and the weight of PT3 is WPT3 = 2 + 1 + 3 = 6. The largest-weight path,
between N1 and N6, is PT3. Thus, according to Equation (2) and Equation (3), Attr(N1,N2) = 0.8047,
Attr(N2,N5) = 0.5148, Attr(N5,N6) = 0.9730, and thus Attr(N1,N6) = 0.8047 × 0.5148 × 0.9730 = 0.4031
(Equation (4)).

Besides the strength of connectivity between nodes, the local structure of a graph is also critical to
cluster nodes. More specifically, for any pair of nodes connected by a path, the greater proportion their
path weight has in the total weight of their neighbors, the more similar the two nodes are. In a local
structure, the nodes with a relatively stronger linkage tend to be grouped together. As a comparison,
two nodes with a large connection could also be separated into different groups if one of them were to
have another, stronger linkage to other nodes. To this end, we introduce structure similarity into our
method, as follows.

Our structure similarity indicator is inspired by the Jaccard similarity coefficient, which has been
widely applied to describe the relevance among objects. Assuming X and Y are two sets, the Jaccard
similarity coefficient is defined as follows:

sim(X,Y) =
|X∩ Y|
|X∪ Y| (5)

In addition, in graph theory, it is believed that the critical structural factors of a graph are the links
that have relatively larger weight [29]. In this regard, we define structure similarity based on local
edges and associated weights, as presented in Definition 5.

Definition 5. (Structure similarity): For two directly connected nodes N1 and N2, their structure similarity is
as follows:

sim(N1,N2) =
W(N1,N2)∑dN1

c=1 W(N1,N1c) +
∑dN2

c=1 W(N2,N2c) −W(N1,N2)

(6)

where W(N1,N1c) is the weight of the edge connecting node N1 and its neighbor N1c, and W(N2,N2c) is the weight
of the edge connecting node N2 and its neighbor N2c. Equation (6) can be only used to measure the structure
similarity of directly connected nodes, and in order to analyze the relationships between indirectly connected
nodes, we extend Equation (6), as follows:

sim(Ni,Nj)
=

k= j−1∏
k=i

sim(Nk,Nk+1)
(7)
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where Nk and Nk+1 are two directly connected nodes on the path connecting Ni and Nj.

In addition, we choose the largest-weight path between Ni and Nj to calculate the structure
similarity. Generally, the directly connected nodes have a larger structure similarity than the indirectly
connected nodes do.

In Figure 3,
∑dN1

j=1 W1 j = 6,
∑dN5

j=1 W5 j = 5, W(N1,N5) = 1, sim(N1,N5) = 1
6+5−1 = 0.1.

The largest-weight path between N1 and N6 is N1→N2→N5→N6, and, thus, sim(N1,N2) = 0.2,
sim(N2,N5) = 0.1111, sim(N5,N6) = 0.2727. Therefore, according to Equation (7), sim(N1,N6) = 0.2 ∗
0.1111 ∗ 0.2727 = 0.0061.

Finally, since both the attraction degree (Equation (4)) and the structure similarity (Equation (7))
have been normalized, we can integrate them into a single measure, as follows:

f sim(Ni,Nj)
= sim(Ni,Nj)

+ Attr(Ni,Nj)
(8)

2.2.2. Algorithm

Based on the integrated similarity measure, we then calculated the final distance for each pair of
directly or indirectly connected nodes (i.e., cells) in the network traffic flow.

f dis(Ni,Nj)
=

1
f sim(Ni,Nj)

(9)

In the process of detecting community, the dissimilarity index for each pair of nodes is adopted,
with which one can measure the extent of proximity between the nodes of a network and signify to
what extent two nodes would ‘like’ to be in the same community [30]. This proximity reflects the
connectivity property of nodes in a diffusion process. The final minimization problem under this
distance can also be solved by a k-means algorithm [31].

For our community detection algorithm, we adopted the K-Medoids algorithm, which belongs to
the family of k-means clustering. More specifically, we first calculate the distances between all the pairs
of nodes, and then select k nodes (i.e., initial k medoids) which have the largest distance to each other.
Secondly, we assign each node (except the nodes that have already been labeled) to its nearest cluster
according to the distances measured on the network traffic flow. This process is iteratively conducted
until the medoids do not change or the number of iterations is equal to the threshold. In addition,
in the end of each iteration, the node that has the minimum sum of distances within the cluster is
selected as the medoid. Our community detection algorithm is as follows (Algorithm 1):
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Algorithm 1. Community Clustering

Input: A spatially embedded network consisting of nodes and edges with weight, the number of communities
k, the maximum number of iterations MaxI.
Output: A set of communities: C= {C1, C2, . . . , Ck}
1. Initialization:
f dis(Ni,Nj) = 0, iteration=0, ClusterCentriod [] C=null;
2. Node distance calculating: //calculate the distance between each pair of nodes.

for each pair of nodes Ni and Nj (i � j)
f sim(Ni,Nj) = sim(Ni,Nj) + Attr(Ni,Nj);

f dis(Ni ,Nj) =
1

f sim(Ni ,Nj)
;

end for

for each pair of nodes Ni and Nj (i = j)
f dis(Ni ,Nj) = 1;

end for

3. Community detection based on the K-Medoids framework:
Select k nodes that have the largest distance to each other as initial k medoids, i.e., {C1, C2, . . . , Ck};
Assign each node to the closest medoid;
While (the medoids do not change or iteration ≤MaxI)

for each node Ni
Assign Ni to the closest medoid Cm with min { f dis(Ni,Cm)};

end for

for each cluster Cj (j≤k)
Update the medoid of each community by detecting the node that has the minimum sum of distances
within the cluster;

end for

iteration++;

end while

Return the structure consisting of k communities: C= {C1, C2, . . . , Ck}.

2.3. Variation of Community across Time

Besides the spatial heterogeneity, a transport system also has the dynamic property, and, in order
to analyze such variation of a transport system across time, we propose a graph structure matching
measurement (GSMM) between two network traffic flows sharing the node set. Specifically, as presented
in previous sections, a network traffic flow in a specific time slice can be divided into several communities.
In other words, the variation of a transport system across time can be represented as the change of the
corresponding community structures. Hence, the GSMM measures the degree of matching between
two community structures, i.e., two node sets.

Definition 6. (Similarity of two node sets): Let S1 and S2 be two node sets, the similarity between S1 and S2 is
defined as follows:

Ssim(S1,S2) =
2|S1 ∩ S2|
|S1|+|S2| (10)

where |S| is the number of the nodes of set S and |S1 ∩ S2| is the number of the nodes that S1 and S2 share.
For example, if S1 = S2, Ssim(S1,S2)= 1; if S1 ∩ S2= Φ, Ssim(S1,S2)= 0.

Equation (10) only measures the similarity between two node sets (i.e., two communities),
each of which plays a different role in the corresponding graph structure. Specifically, for a graph,
some communities are more important than others, and, in order to measure the global similarity
between two graphs (i.e., two sets of communities), we propose calculation of the sum of the weighted
similarity between two sets of communities. In this process, we define the weight of a community as its
contribution rate in the corresponding graph. In general, the more nodes the community has, the larger
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contribution rate it has for the whole system. Assuming the graph C consists of the communities {C1,
C2, . . . , Ck} and S1, S2, . . . , Sk are the node sets of C1, C2, . . . , Ck, respectively, the contribution rate of
Ci (i = 1, 2, . . . , k) is defined as follows:

comRCi =
Si
S

(11)

Based on the contribution rate of community, we then calculate the weighted similarity between
two network traffic flows as follows.

Definition 7. (Similarity of spatially embedded networks): Let Cp and Cq be two spatially embedded networks
with k-size community structures {Cp

1, Cp
2, . . . , Cp

k} and {Cq
1, Cq

2, . . . , Cq
k}, respectively. comRp

1, comRp
2, . . . ,

comRp
k are the contribution rates of the communities Cp

1, Cp
2, . . . , Cp

k, respectively, and comRq
1, comRq

2, . . . ,
comRq

k are the contribution rates of the communities Cq
1, Cq

2, . . . , Cq
k, respectively. Sp

1, Sp
2, . . . , Sp

k are the node
sets of the communities Cp

1, Cp
2, . . . , Cp

k, respectively, and Sq
1, Sq

2, . . . , Sq
k are the node sets of the communities Cq

1,
Cq

2, . . . , Cq
k, respectively. Then, the similarity between the two graphs Cp and Cq is defined as:

FsimC = max
i1,i2...ik

2 ∗ PsimC(i1,i2...ik)∑k
j=1

(
comRp

j + comRq
j

) (12)

where PsimC(i1,i2,...,ik) is calculated as follows:

PsimC(i1,i2...ik) =
1
2 ∗

(
comRp

1 + comRq
i1

)
∗ Ssim(Sp

1,Sq
i1)
+ 1

2 ∗
(
comRp

2 + comRq
i2

)
∗ Ssim(Sp

2,Sq
i2)

+ . . .+ 1
2 ∗

(
comRp

k + comRq
ik

)
∗ Ssim(Sp

k ,Sq
ik)

(13)

where (i1, i2 . . . ik) is a full permutation of the set I = {1, 2 . . . k}.

The community structure is a partition of all the land uses (i.e., nodes) of the network traffic flow
for a specific time slice. Hence, the variation of networks across time can be analyzed by measuring
the similarity between the corresponding community structures. The better the matching between two
community structures, the more similar the corresponding traffic conditions in different time slices.

3. Data Sets and Settings

We conducted a series of experiments to explore the transport system of Beijing city using taxi
trajectory points. As the capital of China, Beijing is the national political, economic, and administrative
center. By the end of 2016, the number of taxis in Beijing had reached 71,600, with a permanent
population of 21.729 million. More than 55% of residents take taxis every week [32]. In this paper,
we chose the central zone of the city (i.e., the range of latitude 39◦ 49′ 41”–39◦ 59′ 17” N and longitude
116◦ 15′ 47”–116◦ 29′ 09” E) as the study region (Figure 4). The research area is within the third ring
area of Beijing. The total number of valid records was more than 20,000,000, which covers a time
period of 24 h (from 0 a.m. to 12 p.m.) (Figure 4). Because of signal loss or degradation, geospatial
locations of trajectory may have been recorded with spatial and temporal uncertainties. Considering
these factors, our data were preprocessed by the provider to indicate whether the record was valid or
invalid with respect to the GPS signal. In our research, only the valid records were used. Nevertheless,
there were some small deviations in position information relative to the actual position. In this respect,
we adopted the technique of region tessellation, which is used to model collective behaviors between
regions. The internal variation of the region is not considered. Hence, it can handle small deviations of
location information and can be used to reveal the collective travel patterns between regions. In order
to have a macroscopic understanding of people′s travel patterns, we extracted the taxi pick-up and
drop-off points (Figure 5). It can be observed that the hotspots of pick-up and drop-off points are
distributed within the second ring roads of Beijing.
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Figure 4. Study area: the core area of Beijing.

 

(a) Passengers pick-up location 

 

(b) Passengers drop-off location 

Figure 5. Passengers pick-up/drop-off points.

4. Experiment and Result

4.1. Result and Analysis

We first partitioned the study area into a set of cells with size 1 km × 1 km. This scale was
determined on the basis of relevant studies suggesting that the cell size is fine enough to depict urban
structure [33]. We then used these cells to construct spatially embedded networks to analyze the



Appl. Sci. 2019, 9, 2054

interactions between land uses (i.e., sub-regions). Moreover, we obtained the results in different time
periods to discover the dynamic patterns of the transport system.

In the spatially embedded network, the nodes represent the regions of the city and the edges
represent the traffic linkage between different regions. Furthermore, the intensity of the connections
between different regions varies with time. In order to clearly reveal the travel patterns, we constructed
networks for typical time periods (Figure 6), i.e., morning rush hour, noon rush hour, evening rush
hour, and midnight.

 

(a) (b) 

 

(c) (d) 

Figure 6. Spatially embedded networks for traffic flows in different time periods with cell size
k = 1000 m: (a) morning rush hour; (b) noon rush hour; (c) evening rush hour; (d) midnight.

During different time periods of the day, the traffic flows showed different spatial connectivity
patterns to meet the varying travel demands of people. In the morning rush hour, the interactions
between residential areas, working areas, and schools were more intense than those between the other
areas. Later, entering the period of the noon rush hour, the traffic flow volume and the associated
connectivity patterns became more significant in the central areas and main roads of the city. Most of
the central areas belong to the working zone and commercial zone, and thus the strong connectivity
indicates the frequent interactions between working and lunch activities. In addition, although the
volume of traffic flows in the evening rush hour was less than that in morning rush hour, their network
structures were similar. In Beijing, in order to avoid traffic congestions, many people choose to get
off work and go home or go to recreational areas after 19:00. This may be a reason that the traffic
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volume in evening rush hour was less than that in morning rush hour. Additionally, the routes that
people choose to go to work and get offwork are similar, and thus the networks in the morning rush
hour and evening rush hour had a similar structure. Furthermore, the networks at midnight had
a multi-center structure, which depended on the hubs of recreational areas and commercial areas.
In general, except the morning rush hour, the other time periods depended more on the eastern areas
than the western areas.

Among these hours, the noon rush hour had the largest volume of traffic flows. From the morning
rush hour to the noon rush hour, the volume of trajectory flow increased substantially and some new
links emerged in local regions. This implies that the interactions between land uses in the noon rush
hour are more intense than in the morning rush hour. From the noon rush hour to the evening rush
hour, the interactions decreased not only through the main roads but also across the western areas.
The obvious feature of interactions at midnight is that there were significant connections to or from
recreational land (i.e., the eastern area).

Besides the connectivity property, the spatially embedded network can also imply the aggregation
patterns of land uses in the functional space. The land uses that have a strong connectivity relationship
in the network traffic flow tend to be grouped together (Figure 7), and, in this way, we can explore the
city structure and transport system using the resulting clustering patterns of land uses.

 

(a) (b) 

 

(c) (d) 

Figure 7. Communities in different time periods with cell size k = 1000 m: (a) morning rush hour;
(b) noon rush hour; (c) evening rush hour; (d) midnight.
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As presented in Figure 7, we classified the land uses into eight communities and there were
some cells with no nodes. This is because there were no trajectory flows traversing across these cells.
In addition, the land uses in the same community do not have to be contiguous in space. The reason is
that our study aimed to cluster land uses from the perspective of their transport function, and the final
similarity of the nodes was decided by both their attractive degree and structure similarity, which were
calculated based on the spatially embedded network. Some neighboring land uses could have a low
similarity due to their weak connectivity in the spatially embedded network, and some distant land
uses could be grouped together if they are connected by a route with large traffic flows.

More specifically, as presented in Figure 7a, the study region in the morning rush hour was
partitioned into five main communities, in each of which the land uses had a strong transport
connection. Such relations also imply the actual aggregation of human activities and urban functions,
e.g., the business district in the eastern part, the residential area in the southern part, and the universities
in the northern area. In addition, there were four main communities in the noon rush hour. The most
significant feature in this time period was that many communities were non-contiguous, or spanned
multiple regions. For example, the community labeled by blue dots spanned the northern area (i.e.,
universities and high-technology regions) and the southern area (i.e., business districts and railway
stations). In this time period, the traffic connection between distant land uses became stronger and
cross-regional human activities were more frequent. In the period of the evening rush hour, the city
was partitioned into two main communities which correspond to interactions among the residential
areas, business districts, and universities. The small part (pink dots) corresponded to the connection
between residential areas and train station areas. At midnight, there were four main communities,
in which the large volume of traffic flows was directed for entertainment (e.g., bar). For example,
the central Hohai entertainment area (green dots) attracted most of the neighboring land uses.

We then used the GSMM method to quantify the similarity between community structures in
different time periods. In such a way, we were able to find out the degree to which the transport
system changed across time. As presented in Figure 8, the GSMM measure values were calculated
at the macro level rather than the micro level. First, it can be observed that community structures
in successive time periods usually had a high similarity. For example, the community similarities
in the successive time slices of [4:00–8:00], [11:00–14:00], and [15:00–18:00] were higher than those
in non-successive time slices. Secondly, most of the community structures in the rush hours (e.g.,
the similarity between [7:00–8:00] and [8:00–9:00]) had a high similarity. Hence, the distributions of
traffic flows are so regular in these periods that urban planners could estimate the associated travel
behavior patterns. Note that the community structures between [12:00–14:00] and [4:00–7:00] were
similar at the macro scale. Considering the routines and habits of residents, there are relatively few
traffic flows in these periods and the arterial roads provide the main functions of transportation in
the city. The travel origins and destinations are concentrated in a few business districts and railway
stations. Hence, the traffic conditions in these time periods showed a similar characteristic. In addition,
it can be observed that the community structure in [21:00–22:00] was very different from most of
the structures in the other time periods. The reason may be that there are many different activities
happening (e.g., working and entertainment) in [21:00–22:00], and thus the connectivity between local
regions is much more complex than those in other time periods. Furthermore, the community structure
in the evening rush hour of [18:00–19:00] was also very different from most of the other structures.
This could be because in this time period the travel activities become increasingly active, and most of
the residents in Beijing choose to travel along different routes. The land uses were also aggregated into
different communities in this period compared to those in the successive time periods.
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Figure 8. Similarity of the community structures in different time periods with 1000 m cell size.

4.2. Variation in Different Spatial Scales

Our proposed method is adaptive to applications with different spatial scales. Hence, the next
experiment refined the tessellation of space using a 500 m grid and analyzed the associated spatial
community patterns across space and time.

As the size of cells becomes smaller, there are more cells with no nodes, which correspond to
the buildings (e.g., Imperial Palace) or lakes (e.g., Beihai Park) (Figure 9). We can easily observe the
distributions of these land uses from the spatially embedded networks. In addition, compared to
networks with 1000 m cell size, networks with 500 m cell size can present more detailed structures
of street network infrastructure and associated traffic flows in the city. With the refined tessellation,
we could observe more detailed interactions from the results. In the morning rush hour, strong
connectivity existed mainly among the regions of residential areas, business districts, and high-tech
areas. Entering the noon rush hour, the ring-like structure of the transport system became most
significant. In addition, in the periods of the evening rush hour and midnight, the traffic flows were
concentrated in the eastern and northern parts, which are the business cores of the city. Therefore,
the transport system of Beijing depends largely on the loop lines, with a significant temporal pattern.

 

(a) (b) 

Figure 9. Cont.
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(c) (d) 

Figure 9. Spatially embedded networks for traffic flows in different time periods with cell size k = 500 m:
(a) morning rush hour; (b) noon rush hour; (c) evening rush hour; (d) midnight.

In order to compare the results under the two scales, we also classified the land uses into
eight communities. As presented in Figure 10a, the study region was partitioned into three main
communities in the morning rush hour. The eastern region was divided into two parts, and the
community represented by green dots implies the aggregation of residential area (i.e., western part)
and commercial business districts (i.e., eastern part). Another part in the eastern region was merged
with the northern region, and the resulting community implies the aggregation of residential areas,
universities, and high-technology regions. Later, entering the noon rush hour and the evening rush
hour, the study region was partitioned into three communities and four communities, respectively.
In addition, the aggregation of regions in both of the two time periods seems to be more significant
than those in the corresponding time periods with cell size 1000 m. At midnight, the study area was
partitioned into three communities. Compared to the result with cell size 1000 m, the interaction
between land uses was weakened at midnight with cell size 500 m, and the region was divided into two
main parts: one part was merged into the community of the business district (green dots), and the other
one was merged into the community of business district and residential areas (blue dots). In general,
the communities with cell size 500 m can reveal more detailed information of aggregation of land uses.

 

(a) (b) 

Figure 10. Cont.
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(c) (d) 

Figure 10. Communities in different time periods with cell size k = 500 m: (a) morning rush hour;
(b) noon rush hour; (c) evening rush hour; (d) midnight.

Using the GSMM method, we also calculated the similarity matrix, as presented in Figure 11.
It can be observed that in the rush hours, the measured values with 500 m cell size were similar to
those with 1000 m cell size. In addition, during the non-rush hours, the measured values with 500 m
cell size were higher than the corresponding values with 1000 m cell size. The reason could be that,
with the refining of space tessellation, more cells had traffic flows and the number of the matching
cells across time increased. Specifically, the small size grid can capture the local interactions between
regions, which were more regular in the non-rush hours than in the rush hours (see Figure 9).

Figure 11. Similarity of the community structures in different time periods with 500 m cell size.

4.3. Algorithm Efficiency with Different Cell Sizes

The results above show the effect of different cell sizes on community detection. In order to further
explore the algorithm efficiency with different cell sizes, we implemented the method with cell sizes of
500 m, 600 m, 700 m, 800 m, 900 m, and 1000 m.
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With the increase of cell size, the total running time decreased (Figure 12a), and when the cell
size changed from 500 m to 700 m, the algorithm efficiency increased sharply. When the cell size
changed from 700 m to 1000 m, the running time remained stable. The reason could be that the number
of nodes decreased with the increase of cell size, and thus the algorithm cost less time during the
clustering of nodes. Furthermore, when the cell size was larger than 700 m, the number of iterations in
k-means algorithm did not change much, and thus the running time of the algorithm remained stable.
In addition, as presented in Figure 12b, the running time of the algorithm changed across the time
periods. In general, the running time of the algorithm in the rush hours (e.g., 7:00–9:00, 11:00–13:00,
18:00–20:00, 22:00–23:00) was larger than those in the other hours. The reason could be that the flow
structures are more complex in rush hours.

 

(a) 

 

(b) 

Figure 12. The algorithm efficiency with different cell sizes: (a) the total running time of the algorithm
with different cell sizes, and (b) the running time of the algorithm in different time periods.



Appl. Sci. 2019, 9, 2054

5. Conclusion and Future Directions

Based on the collective intra-city trips extracted from the emerging taxi GPS trajectory data,
this paper explored network traffic flows towards a deep understanding of city structure. We introduced
network science techniques (e.g., community detection) to reveal the regular patterns of traffic flows
across space and time. More specifically, aiming at the connectivity, aggregation, and dynamic
properties of transport system, we proposed a three level framework to explore the complex traffic
network. It firstly partitions the study region and constructs a spatially embedded network for
representing the connectivity relationships between local regions. In order to extract the aggregation
patterns of land uses, the method then uses the community detection techniques based on the
volume of traffic flows and structural properties of the network. Furthermore, our method employs
a graph structure matching measure to uncover the regularities of the transport system across time.
The proposed method is also adaptive to multi-scale applications in space and time.

Through the case study, we found that the interactions of land uses show different characteristics
in different time periods, and the aggregation patterns of functional areas is dynamic across the time.
This result is highly associated with the travel behaviors of residents in the city, and thus can be used
further in social science research. In addition, the result can provide references for the dispatching
of the traffic system. For example, we can plan for the prevention of traffic jams in regions which
have intense interactions of traffic flows. Moreover, it can be used to assist urban structure analysis.
As presented in our case study, Beijing has a polycentric form with significant loop structure.

In this paper, we took the taxi trajectory data into consideration because taxi accounts for a large
proportion of public transport in Beijing city. Taxi drivers are very familiar with the city of concern,
and thus there are increasingly more studies focusing on the use of taxi trajectory data for urban
analysis [3,12,33]. In addition, since the taxi is a common mode of transport, our method could be
adaptable to other cities. We would like to regard this research as a beginning of detecting spatial
interaction communities based on vehicle datasets. With the rapid development of big data, more traffic
data (e.g., bus trajectories, passenger car data, and biking trajectories) can be introduced into our
framework for exploring city structures comprehensively. Further study can also use more methods
(e.g., complex system) to understand the mechanisms of the traffic flow space. It would be interesting to
analyze the associations between the physical space and virtual space of a city using social media data.
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