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José Antonio Domı́nguez-Navarro

Day-Ahead Optimal Battery Operation in Islanded Hybrid Energy Systems and Its Impact on 
Greenhouse Gas Emissions
Reprinted from: Appl. Sci. 2019, 9, 5221, doi:10.3390/app9235221 . . . . . . . . . . . . . . . . . . . 3

Mark Kipngetich Kiptoo, Oludamilare Bode Adewuyi, Mohamed Elsayed Lotfy, 
Tomonobu Senjyu, Paras Mandal and Mamdouh Abdel-Akher

Multi-Objective Optimal Capacity Planning for 100% Renewable Energy-Based Microgrid 
Incorporating Cost of Demand-Side Flexibility Management
Reprinted from: Appl. Sci. 2019, 9, 3855, doi:10.3390/app9183855 . . . . . . . . . . . . . . . . . . . 33

Eunil Park, Sang Jib Kwon and Angel P. del Pobil

Can Large Educational Institutes Become Free from Grid Systems? Determination of Hybrid
Renewable Energy Systems in Thailand
Reprinted from: Appl. Sci. 2019, 9, 2319, doi:10.3390/app9112319 . . . . . . . . . . . . . . . . . . . 56

Yinke Dou, Guangyu Zuo, Xiaomin Chang and Yan Chen

A Study of a Standalone Renewable Energy System of the Chinese Zhongshan Station
in Antarctica
Reprinted from: Appl. Sci. 2019, 9, 1968, doi:10.3390/app9101968 . . . . . . . . . . . . . . . . . . . 68

Yimy E. Garcı́a Vera, Rodolfo Dufo-López and José L. Bernal-Agustı́n
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1. Introduction

Standalone (off-grid) renewable energy systems supply electricity in places where there is no
access to a standard electrical grid. These systems may include photovoltaic generators, wind turbines,
hydro turbines or any other renewable electrical generator. Usually this kind of system includes
electricity storage (commonly, lead-acid batteries, but also other types of storage can be used, such as
lithium batteries, other battery technologies, supercapacitors and hydrogen). In some cases, a backup
generator (usually powered by fossil fuel, diesel or gasoline) is part of the hybrid system.

Low-power standalone systems are usually called off-grid systems and typically power single
households by diesel generators or by solar photovoltaic (PV) systems (solar home systems) [1].
Systems of higher power are called micro- or mini-grids, which can supply several households or even
a whole village. Mini- or micro-grids, powered by renewable sources, can be classified as smart grids,
allowing information exchange between the consumers and the distributed generation [2].

The modelling of the components, the control of the system and the simulation of the performance
of the whole system are necessary to evaluate the system technically and economically. The optimization
of the sizing and/or the control is also an important task in this kind of systems.

2. Modelling and Controlling Standalone Renewable Energy Systems

Standalone (off-grid) renewable energy systems are used all around the world, and not only in
developing countries, as they are the most competitive way to supply electricity in locations where
the distance to the transmission and distribution electrical grid is relatively high [3], for example in
remote rural communities, farms, telecom stations, etc. Even in some cases, grid-connected systems can
become off-grid systems to avoid dependence on the national grid system [4] (however, disconnecting
from the grid usually implies higher cost of electricity).

When there is a unique source of energy (for example, solar home systems) the design and
optimization of the system is relatively easy. However, the optimal design and operation of the hybrid
off-grid systems is a difficult task, as there are many non-linear variables involved which imply that
advanced optimization techniques must be used in some cases [5], for example heuristic techniques
(genetic algorithms and others). Energy management in mini- and micro-grids with different sources
of generation and energy storage is also non-trivial [2,6]. The optimal management of the planning
is very important when the system includes fossil-fuel generators (diesel, gasoline) and batteries [7],
in order to reduce fuel consumption and enhance battery lifetime.

Usually the main source of energy in the optimal hybrid off-grid system is a photovoltaic
generator [8], and also includes in many cases a diesel or gasoline backup generator and battery storage.
In windy places, the optimal hybrid off-grid system may also include wind turbines [9].

Appl. Sci. 2020, 10, 2068; doi:10.3390/app10062068 www.mdpi.com/journal/applsci1
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Especially in cold places, thermoelectric generators that convert thermal energy (for example,
waste heat from a stove) into electricity (Seebeck effect) can be part of the optimal hybrid system [10].
However, the use of thermoelectric generators in these kind of applications is still residual.

Nowadays, most off-grid systems installed in the world include storage using lead acid batteries.
However, with the recent reduction of the price of lithium batteries, these kind of batteries may be
economically feasible in some cases [8,11].

3. Future Standalone Renewable Energy Systems

Although the Special Issue has been closed, more in-depth research of the modelling and controlling
of off-grid systems is expected. The use of lithium batteries is expected to be normalized in several
years and new battery technologies will emerge. Perhaps thermoelectric generators or other energy
sources can be used in off-grid systems in the future.
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Abstract: This paper proposes a management strategy for the daily operation of an isolated
hybrid energy system (HES) using heuristic techniques. Incorporation of heuristic techniques
to the optimal scheduling in day-head basis allows us to consider the complex characteristics of
a specific battery energy storage system (BESS) and the associated electronic converter efficiency.
The proposed approach can determine the discharging time to perform the load peak-shaving in an
appropriate manner. A recently proposed version of binary particle swarm optimization (BPSO),
which incorporates a time-varying mirrored S-shaped (TVMS) transfer function, is proposed for
day-ahead scheduling determination. Day-ahead operation and greenhouse gas (GHG) emissions are
studied through different operating conditions. The complexity of the optimization problem depends
on the available wind resource and its relationship with load profile. In this regard, TVMS-BPSO
has important capabilities for global exploration and local exploitation, which makes it a powerful
technique able to provide a high-quality solution comparable to that obtained from a genetic algorithm.

Keywords: vanadium redox flow battery; genetic algorithm; binary particle swarm optimization;
time-varying mirrored S-shaped transfer function; greenhouse gas emissions

1. Introduction

Global warming and other environmental problems are driving the adoption of renewable energy
sources at the residential, commercial, and industrial levels. Estimating the impact of climate change
on the ecosystem involves the accurate knowledge of the carbon cycle and its associated uncertainty.
Calculating cumulative emissions in order to prevent an extreme warming level is a key step to guide
the manner in which industrial processes, including power generation, should be carried out. Actions
for reducing global warming are adjusted following the threshold of 1.5 or 2 ◦C as the critical limit
in a time interval between the years 2000 and 2050 or 2100. However, depending on the established
assumptions and scenarios, the risk of experiencing extreme conditions at the middle of the century
could be a realistic prospect [1].

Under these circumstances, many countries have been changing their energy mix from a fossil-fuel
based one to a renewable-based one, incorporating wind and solar photovoltaic energies, as well as
demand response programs [2]. In addition, financial tools such as mutual funds are also implemented
to provide economic support for these technologies [3].

As renewable energies are intrinsically variable, the power system requires a high degree of
flexibility to effectively manage the uncertainty introduced by these sources, and this could be achieved
by implementing demand side management or by installing any type of energy storage system (ESS).

Appl. Sci. 2019, 9, 5221; doi:10.3390/app9235221 www.mdpi.com/journal/applsci3
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Incorporation of ESS can improve the accommodation of renewable generation while reducing
greenhouse gas (GHG) emissions. As an example, incorporation of renewable power combined with
ESS in California could reduce carbon dioxide (CO2) emissions from 90% to 72%, whereas renewable
power curtailment reduces from 33% to 9%. In the case of Texas, CO2 emissions could be reduced from
58% to 54% and renewable power curtailment could be reduced from 3% to 0.3% [4]. Combination
of carbon capture and storage devices with conventional generation units is also an option to reduce
GHG emissions. However, the combination of renewable generation with ESS can be energetically
more effective [5].

Historically, the acquisition costs of a battery energy storage system (BESS) have been considerably
high, limiting their economic performance and consequently their mass adoption. However, when
very low GHG emissions are required, BESS can be a critical device to achieve such an ambitious goal.

In the case of energy provision for an isolated hybrid energy system (HES), incorporation of BESS
becomes profitable due to the fact that the fuel consumption and operating hours of a conventional
generator are considerably reduced. In the case of a grid-connected HES, retailing rates and feed-in
tariffs as well as favorable resources are crucial for their successful adoption [6].

Heuristic techniques are commonly used to carry out the optimal sizing of a specific HES.
Consequently, some of them have been implemented in computational programs such as HOMER
Pro® [7], iHOGA® [8], and Hybrid2® [9], among others. Dispatch strategies implemented in most
of these tools are based on load following and cycle charging concepts. Load following consists of
generating power from conventional units only to satisfy net load (NL), and this approach is frequently
suggested in a HES with high share of renewable power, which is much higher than load demand
over the year. Conversely, a cycle charging strategy forces conventional generator to operate at its
rating power when needed to charge BESS with the remaining energy, so this strategy is frequently
implemented when renewable generation is limited [10]. It is important to mention that these strategies
do not require any forecast of renewable generation or load demand. However, they are very effective
in the management of HES of small scale used on rural electrification projects.

In the case of a HES of larger scale, energy forecasts are frequently employed to optimize the daily
operation. This is a topic that has been widely studied and it is the focus of this work. A complete
literature review is presented in the next section.

1.1. Literature Review

Management of isolated HES considering the influence of renewable resources and their associated
variability has been treated by many authors. In this regard, Li et al. [11] developed a procedure
for sizing and management of wind–BESS units. Historical wind power time series is analyzed to
estimate the low-frequency component, which is the most prominent one. Using the resulting signal,
charging–discharging cycles of BESS are determined considering constant power levels. During the
charging period, the power to be provided by the wind–BESS unit is set to the minimum power
of low-frequency component within that period. Conversely, power generation is scheduled to the
highest power of low-frequency component during discharging periods. In theory, these mechanisms
ensure the existence of sequential charging–discharging intervals. However, power dispatch settings
could be modified to avoid the charging–discharging cycles at partial level. Other issues related to the
wind power forecasting error and BESS lifetime have also been incorporated.

Luo et al. [12] created a model for the operation and sizing of wind–BESS to compensate for
the forecasting error. Forecasting error is modeled by using a beta distribution, considering extreme
conditions related to pessimistic and optimistic perspectives. BESS dynamic behavior, as well as its
lifetime, have been also incorporated.

Mohammadi et al. [13] proposed a day-ahead scheduling model of a microgrid (MG) composed
of electrical as well as hydrogen and thermal energy storage technologies. Problem formulation was
based on a two-stage stochastic programming approach, while its solution was carried out using an
enhanced version of cuckoo optimization algorithm. The high flexibility of the studied configuration
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results is useful to deal with the fact that thermal and electrical energy consumption are typically
not synchronized.

O’Dwyer and Flynn [14] paid special attention to the power system operation on a daily basis,
using hourly and sub-hourly time steps, under high renewable energy integration and ESS. According to
the reported results, the traditional hourly analysis cannot properly estimate the ramping requirements,
the number of starts of conventional generators, as well as the role and potential of ESS on the cycling
reduction. Consequently, the interdependence between renewable power curtailment, CO2 emissions,
and the cycling process of thermal units is not accurately described.

Wen et al. [15] presented an enhanced security-constrained unit commitment (SCUC) model, which
incorporates BESS to mitigate the negative effects of a sudden contingency and consequently to prevent
cascading outages. The methodology was formulated as a two-stage mixed integer programming
problem and solved by means of Benders decomposition. The same author in [16] introduced a model
based on frequency dynamic constrained unit commitment (UC) able to incorporate wind power
uncertainty. Interval optimization approach was combined with mixed integer linear programming
(MILP) to determine the appropriate unit schedule.

Nguyen and Crow [17] presented a scheduling model with probabilistic constraints based on
stochastic dynamic programming (DP). The proposed BESS-model is inspired by the functioning
of conventional fuel-based units. Thus, a detailed cost model was developed considering the
electrochemical process of BESS.

Khorramdel et al. [18] proposed a UC model based on cost-benefit analysis, in which a probabilistic
analysis based on a here-and-now approach was incorporated. Then, particle swarm optimization
(PSO) was implemented in order to minimize total generating costs.

Li et al. [19] developed a framework to quantify the benefits of ESS incorporation to HES.
The methodology is based on stochastic UC solved by means of MILP.

Jiang et al. [20] proposed a management model for a residential HES provided by wind generation,
micro-combined heat and power generation and smart appliances, enrolled in a real-time pricing
(RTP) program. Additionally, optimal behavior of several aggregated HESs is analyzed by means of a
day-ahead stochastic economic dispatch (ED) and UC model based on MILP.

Anand and Ramasubbu [21] presented a scheduling model of a system enrolled in a RTP program
composed of wind and photovoltaic generation, as well as a microturbine and a fuel cell, based on
anti-predatory PSO.

Wu et al. [22] proposed a methodology to solve ED and UC problems using the time-scaling
transformation combined with an auxiliary continuous vector.

Dui et al. [23] proposed a two-stage scheduling methodology for BESS performance evaluation.
In the first step, UC problem including the effects of thermal and wind generators is solved by means
of second-order cone programming. Then, in the second step, the management strategy for BESS is
designed and evaluated using a genetic algorithm (GA).

Psarros et al. [24] investigated the operation of HESs using a MILP. BESS sizing is deeply discussed,
concluding that this element is a key device for the provision of fast energy reserve. The same author
in [25] proposed a model able to consider different time resolutions, based on the combination of model
predictive control and MILP.

Ahmadi et al. [26] presented a model for the solution of SCUC including BESS. Aging cost
related to BESS operation is incorporated to the objective function. Then, MILP is combined with
information-gap decision theory so that the conservatism of the strategy to be implemented can be
adjusted by the system operator.

Saleh [27] created and experimentally tested the performance of an energy management system
(EMS) based on the solution of UC by Lagrangian relaxation. Thus, control values of permanent
magnet generator of the wind turbine and the power-electronic converter are obtained.

Gupta et al. [28] formulated a SCUC model including the effects of BESS in order to compensate
the variability of renewable power sources. The mathematical problem is solved by using Benders
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decomposition, determining the locational marginal price, wind power curtailment, as well as the
line contingency.

Alvarez et al. [29] proposed a general purpose ESS model inspired by the behavior of hydraulic
reservoirs. Using the results obtained from stochastic dual DP, carried out to determine the long-term
energy schedule, the linear model of ESS cost is derived. Finally, stochastic UC, including the
aforementioned ESS model, was formulated.

Chen et al. [30] developed a scheduling model based on multi-agent system for the coordination
of multiple MGs. Such coordination is carried out by means of the alternating direction method of
multipliers, obtaining the optimal energy management of the multiple MGs. Additionally, the negative
effects of uncertainty sources are compensated by using day-in rolling.

Tan et al. [31] proposed a dispatch model able to incorporate different operating perspectives related
to fuel savings, carbon emissions, power generation costs, amount of renewable energy integrated, and
power generation efficiency. Uncertainty of renewable generation and forecasting of carbon-trading
price were included by using Monte Carlo simulations, while the associated optimization model was
solved by implementing the technique for order preference by similarity to ideal solution combined
with Grey relational analysis.

Yiwei et al. [32] presented a scheduling model for a HES based on renewable and thermal
generation, as well as cascade hydropower and pumped ESS. The model focuses on the economy
and security aspects of system operation. The optimization strategy is divided into three main stages.
During the first stage, integer variables are preprocessed using heuristic rules. Then, during the second
stage, ED and UC are solved. Finally, during stage three, power system feasibility was evaluated.

Once the literature review has been exposed, describing the state-of-the-art techniques used for
day-ahead scheduling, the main contribution and novelty of this work are carefully explained in the
next section.

1.2. Main Contributions

As can be observed from the presented literature review, a vast family of methodologies has been
created, some of them based on heuristic techniques such as GA and PSO, another group inspired by
DP, and most of them based on MILP combined with Benders decomposition.

In a general sense, the optimization technique to be selected strongly depends on the characteristics
and assumptions of the ESS model, as well as the context (isolated or grid-connected system) and the
information available.

To take advantage of the vast family of BESS models, a recently developed version of binary PSO
(BPSO), which incorporates a time-varying mirrored S-shaped (TVMS) transfer function, has been
adopted in this paper. Consequently, hourly behavior of charging–discharging efficiency as well as the
influence of charge controller on battery operation can be effectively incorporated. Additionally, the
influence of wind-speed daily profile on battery schedule and GHG emissions is deeply analyzed. The
impact of battery operation on the emissions of total hydrocarbons (THC), carbon monoxide (CO),
oxides of nitrogen (NOX), CO2, and particulate matter (PM) is investigated.

The remainder of the paper is organized as follows. Section 2 describes the mathematical models
of the system configuration under study. Section 3 explains the formulation of the optimization
problem and its solution by TVMS-BPSO. Then, problem formulation is tested in Section 4 through
a sensitivity analysis based on GA. As TVMS-BPSO is a novel version of BPSO, its performance is
compared with GA in Section 5. Finally, conclusions and main findings are discussed in Section 6.

2. Hybrid Energy System Model

The structure of the HES under analysis is shown in Figure 1. On one hand, the diesel generator
represents the controllable power source able to provide energy under any circumstance. Thus, energy
not supplied (ENS) is neglected. Due to the fact that the diesel generator has important operating
costs related to fuel consumption and overhauling, the incorporation of the wind generator combined
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with BESS and power converter allows us to reduce the number of operating hours of the diesel unit,
reducing the operating costs of the whole system.

Figure 1. Hybrid energy system (HES) under study.

Besides the wind generator, BESS, power converter, and diesel generator, the dump load (not
shown in Figure 1) allows us to consume all the energy surplus of the system in order to maintain the
energy balance. This could occur when BESS reaches its maximum capacity and a high magnitude of
wind power is available.

In the next sections, computational models of the wind generator, BESS, and diesel generator will
be carefully described.

2.1. Wind Generator Model

Wind power generation has been modeled using a typical power curve described according to
Equations (1)–(4) [33,34]:
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W

)
− 4So

WSr
W

(So
W + Sr

W
2Sr

W

)3⎤⎥⎥⎥⎥⎥⎦; (2)

Pb
W =

1(
So

W − Sr
W

)2

⎡⎢⎢⎢⎢⎢⎣4
(
So

W + Sr
W

)(So
W + Sr

W
2Sr

W

)3

−
(
3So

W + Sr
W

)⎤⎥⎥⎥⎥⎥⎦; (3)

Pc
W =

1(
So

W − Sr
W

)2

⎡⎢⎢⎢⎢⎢⎣2− 4
(So

W + Sr
W

2Sr
W

)3⎤⎥⎥⎥⎥⎥⎦; (4)

In this way, the relationship between the wind speed (SW(t)) at a determined time step (t) and the
corresponding wind power production (PW(t)) is clearly established.
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2.2. BESS and Power Converter Models

BESS is a crucial device for the appropriate operation of HES because it provides operational
flexibility to the whole system. The technology chosen in this work is the vanadium redox flow
battery (VRFB) due to its easy scalability, which makes it appropriate for large-scale integration.
The mathematical model adopted is shown in Equations (5)–(15), and it has been experimentally tested
and validated in [35–37].

Battery voltage (UB(t)) and efficiency (ηB(t)) are defined according to charging and discharging
processes using Equations (5) and (6), respectively.

UB(t) =

⎧⎪⎪⎨⎪⎪⎩
Uch

B(t); PB(t) > 0

Udis
B(t); PB(t) ≤ 0

∀ t = 1, . . . , T; (5)

ηB(t) =

⎧⎪⎪⎨⎪⎪⎩
ηch

B(t); PB(t) > 0

ηdis
B(t); PB(t) < 0

∀ t = 1, . . . , T . (6)

During charging process, when battery power (PB(t)) is positive, battery voltage (Uch
B(t)) is related

to the state of charge (SOC) (SOCB(t)) according to (7), while charging efficiency for voltage (ηch
V(t)) and

energy (ηch
E(t)) are related to SOC and battery power as shown in (8) and (9), respectively. Then, global

efficiency of charging phenomena (ηch
B(t)) can be estimated using (10).

Uch
B(t) =

(
Ua

chSOCB(t) + Ub
ch

)
PB(t) + Uc

chSOCB(t) + Ud
ch ∀ t = 1, . . . , T; (7)

ηch
V(t) =

Ue
chTE

(
SOCB(t) −U f

ch

)
+ Ug

ch(
Uh

chSOCB(t) + Uj
ch

)
PB(t) + Uk

chSOCB(t) + Ul
ch

∀ t = 1, . . . , T; (8)

ηch
E(t) =

(
Um

chSOCB(t) + Un
ch

)
PB(t) + Up

chSOCB(t) −Uq
ch

PB(t)
∀ t = 1, . . . , T; (9)

ηch
B(t) = η

ch
V(t)η

ch
E(t) ∀ t = 1, . . . , T. (10)

During discharging process (PB(t) < 0), battery voltage (Udis
B(t)) and SOC are related according to

the linear expression shown in (11). Voltage and energy efficiencies (ηdis
V(t) and ηdis

E(t)) depend on battery

power and SOC following (12) and (13), respectively. Thus, discharging efficiency (ηdis
B(t)) is estimated

through the product of these variables (ηdis
V(t) and ηdis

E(t)), as suggested in (14).

Udis
B(t) = Ua

dis

∣∣∣PB(t)

∣∣∣+ Ub
disSOCB(t) + Uc

dis ∀ t = 1, . . . , T; (11)

ηdis
V(t) =

Ud
dis

∣∣∣PB(t)

∣∣∣+ Ue
disSOCB(t) + U f

dis

Ug
disTE

(
SOCB(t) −Uh

dis

)
+ Uj

dis

∀ t = 1, . . . , T; (12)

ηdis
E(t) =

∣∣∣PB(t)

∣∣∣
Uk

dis

∣∣∣PB(t)

∣∣∣+ Ul
disSOCB(t)

(
SOCB(t) − 1

)
+ Um

dis

∀ t = 1, . . . , T; (13)

ηdis
B(t) = η

dis
V(t)η

dis
E(t) ∀ t = 1, . . . , T. (14)

8
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SOC at a determined time interval (t) is defined using (15), which depends on the battery power
and efficiency, calculated by following the equations previously described.

SOCB(t) = SOCB(t−1) +

t∫
t−1

(PB(t)ηB(t)

Emax
B

)
dτ ∀ t = 1, . . . , T. (15)

Additionally, some operational constrains of VRFB have to be fulfilled. This idea is expressed in
(16) for the battery voltage, in (17) for the cell-stack power, and in (18) for SOC:

Umin
B ≤ UB(t) ≤ Umax

B ∀ t = 1, . . . , T; (16)

− Pmax
B ≤ PB(t) ≤ Pmax

B ∀ t = 1, . . . , T; (17)

SOCmin
B ≤ SOCB(t) ≤ SOCmax

B ∀ t = 1, . . . , T. (18)

Regarding the behavior of power converter, it has been represented through its variable efficiency
shown (19), which allows us to estimate the power according to (20).

ηC(t) =
PB(t)

Pa
C

(
Pmax

C

)
+

(
1 + Pb

C

)
PB(t)

∀ t = 1, . . . , T; (19)

PC(t) = ±
∣∣∣PB(t)

∣∣∣− Pa
CPmax

C(
1 + Pb

C

) ∀ t = 1, . . . , T. (20)

Regarding the parameters of the VRFB model previously described in (5–15), specifically the
parameters Ua

ch −Uh
ch, Uj

ch −Un
ch, Up

ch, Uq
ch for charging and Ua

dis −Uh
dis, Uj

dis −Um
dis for discharging; they

can be found in [35–37]. Similarly, the parameters Pa
C and Pb

C related to the power converter efficiency
have been obtained from the experimental data published in [38].

2.3. Diesel Generator Model

The diesel generator is in charge of satisfying the load that cannot be provided by the wind
generator, the battery bank, or both. In addition, this task has to be done considering the technical
constraints of the diesel unit. If only the effect of wind generator needs to be considered, NL is
calculated according to (21):

PN(t) = PL(t) − PW(t) ∀ t = 1, . . . , T; (21)

On the other hand, if the joint effect of the wind generator and BESS needs to be considered, NL
can be defined using (22):

PN(t) = PL(t) − PW(t) + PB(t) ∀ t = 1, . . . , T. (22)

As aforementioned, the diesel generator has to supply NL as defined in (21) or (22), fulfilling the
constraint (23):

Pmin
D ≤ PD(t) ≤ Pmax

D ∀ t = 1, . . . , T. (23)

To determine the power dispatch of the diesel unit, the parameter Pa
D is defined according to (24):

Pa
D = max

(
0, PN(t)

)
∀ t = 1, . . . , T. (24)

9
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Then, depending on the value of Pa
D, diesel generation (PD(t)), power surplus (PEXC(t)), and power

not supplied (PENS(t)) are determined by following (25–27), respectively,

PD(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Pmin

D ; Pa
D > 0, Pa

D ≤ Pmin
D

Pa
D; Pa

D > Pmin
D , Pa

D ≤ Pmax
D

Pmax
D ; Pa

D > Pmax
D

∀ t = 1, . . . , T; (25)

PEXC(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Pmin

D − Pa
D; Pa

D > 0, Pa
D ≤ Pmin

D
0; Pa

D > Pmin
D , Pa

D ≤ Pmax
D

0; Pa
D > Pmax

D

∀ t = 1, . . . , T; (26)

PENS(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0; Pa

D > 0, Pa
D ≤ Pmin

D
0; Pa

D > Pmin
D , Pa

D ≤ Pmax
D

Pa
D − Pmax

D ; Pa
D > Pmax

D

∀ t = 1, . . . , T. (27)

Once the mathematical model of HES has been defined, the optimization technique proposed in
this paper will be clearly explained in the next section.

3. Optimization of Day-Ahead Operation

In this section, the optimization problem and the proposed methodology are carefully described.
Section 3.1 pays special attention to the objective function definition, whereas Section 3.2 explains how
TVMS transfer function is embedded into BPSO for the daily scheduling of BESS.

3.1. Problem Formulation

The focus of this work is on developing a methodology for load peak-shaving to be applied to the
management of autonomous HES. In this regard, EMS monitors the state variables of all the elements
connected to the point of common coupling (Figure 1). Then, using this information and the day-ahead
forecasts of wind power and load demand, determines how power sources should be dispatched
to minimize the operating costs of the system for the corresponding day. Note that the influence of
forecasting error on system operation has not been considered in this work.

In a general sense, BESS operation can be defined by means of three different states: charging,
discharging, and disconnection. These states can be represented by using integers: charging can be
represented as +1, discharging can be represented as −1, whereas 0 represents the battery disconnection.

The goal of the management strategy proposed in this paper consists of finding out the appropriate
pattern (charging, discharging, and disconnection) of usage of BESS during the day in order to reduce
NL-peak. This is carried out by means of a heuristic optimization algorithm in which each individual
or agent is represented as shown in Figure 2. If NL is negative, it means that BESS should be charged
in order to store the energy surplus during periods of high wind speed. On the contrary, when NL is
positive, it is not evident whether BESS should be discharged or disconnected from HES. Thus, a set of
I individuals, who take into account different operational conditions (discharging and disconnection)
during different hours, is considered.

10
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Figure 2. Structure of a single individual.

The structure of a single individual (i = 1, . . . , I) at a determined iteration (k) of the heuristic
optimization algorithm can be described according to (28):

→
g (i,k) =

[
g(i,1,k) . . . g(i,t,k) . . . g(i,T,k)

]
∀ i = 1, . . . , I; (28)

where each element g(i,t,k) is an integer between −1 and +1, depending on the time (t) and NL value
(PN(t)). Similarly, the population or group of agents of the optimization algorithm for iteration k can be
expressed as a matrix according to (29):

G(k) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

→
g (1,k)

...
→
g (i,k)

...
→
g (I,k)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (29)

Considering a determined individual i, the value of its objective function (O(i,k)) during a
determined iteration (k), which has to be minimized, is calculated according to (30):

O(i,k) =
T∑

t=1

PN(t)PC(i,t,k) ∀ i = 1, . . . , I; k = 1, . . . , K; (30)

where the pattern PC(i,t,k) corresponds to that obtained from the application of the model previously
described in Section 2 (Equation (20)), considering the influence of power converter (PC(i,t,k) = PC(t)).
In other words, PC(i,t,k) is calculated according to (20), the indexes i and k have been introduced to
represent the fact that it is calculated for a specific individual (i) during a determined iteration (k).

The magnitude presented in (30) does not have any physical meaning. Indeed, this has been
taken from previous experience of BESS operating in RTP programs [39], where sold and purchased
power all over the day is considered as the optimization variable. Following this analogy, PC(i,t,k) can
be considered as the transaction power of BESS (sold and purchased power), whereas PN(t) could be
considered as linearly related to the fuel-consumption curve of the diesel generator. In other words,
in the analogy with selling and purchasing prices under RTP, the variable PN(t) could be considered as
a linear function of fuel-consumption costs.

The main conclusion of this reasoning is that, the hour at which BESS should be discharged,
in order to maximize profits from energy trading with the RTP scheme, is exactly the same hour at
which BESS should be discharged in order to reduce NL-peak in an autonomous HES.
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3.2. Optimization by TVMS-BPSO

PSO is an optimization algorithm based on the dynamic behavior of a group of agents interacting
with each other. Important variables such as the position (g(i,t,k)) and velocity (v(i,t,k)) of each agent (i)
are considered during the evolution of the algorithm (k). Using constriction factor approach, the agent
velocity can be expressed using (31):

v(i,t,k+1) = χ
[
v(i,t,k) + Ca

PSORa
PSO

(
gPBEST
(t) − g(i,t,k)

)
+ Cb

PSORb
PSO

(
gGBEST
(t) − g(i,t,k)

)]
(31)

where Ca
PSO and Cb

PSO are coefficients selected so that the condition (32) is fulfilled,

∅ = Ca
PSO + Cb

PSO; ∅ > 4. (32)

The coefficient ∅ is then used to calculate the factor χ required in (31),

χ =
2∣∣∣2−∅− √
∅2 − 4∅

∣∣∣ . (33)

Using the coefficient ∅, the convergence of the algorithm can be managed.
TVMS transfer function has been recently proposed by Beheshti [40] to improve the capabilities of

BPSO. TVMS-BPSO uses two sigmoid functions during the conversion of reals to binaries, and these
functions are shown in (34) and (35):

Sa
PSO(i,t,k+1) =

1

1 + eσ(k)(−v(i,t,k+1))
; (34)

Sb
PSO(i,t,k+1) =

1

1 + eσ(k)(v(i,t,k+1))
; (35)

where the coefficient σ(k) varies during the algorithm evolution according to (36):

σ(k) = (σmax − σmin)

(
k
K

)
+ σmin. (36)

Once the variables Sa
PSO(i,t,k+1)

and Sb
PSO(i,t,k+1)

have been calculated, they are evaluated on (37)

and (38) to get the binary variables Ja
PSO(i,t,k+1)

and Jb
PSO(i,t,k+1)

, which are a preliminary result of the
algorithm.

Ja
PSO(i,t,k+1) =

⎧⎪⎪⎨⎪⎪⎩
1; Rc

PSO < Sa
PSO(i,t,k+1)

0; Rc
PSO ≥ Sa

PSO(i,t,k+1)
; (37)

Jb
PSO(i,t,k+1) =

⎧⎪⎪⎨⎪⎪⎩
1; Rd

PSO < Sb
PSO(i,t,k+1)

0; Rd
PSO ≥ Sb

PSO(i,t,k+1)
. (38)

The definitive result from the conversion of reals to binaries is based on the value of the objective
function Oa

(i,k) and Ob
i,k obtained from the evaluation of Ja

PSO(i,t,k+1)
and Jb

PSO(i,t,k+1)
previously estimated.

Then, the positions to be considered during the next iteration (k + 1) are defined by using (39):

g(i,t,k+1) =

⎧⎪⎪⎨⎪⎪⎩
Ja
PSO(i,t,k+1)

; Oa
PSO(i,k+1)

< Ob
PSO(i,k+1)

Jb
PSO(i,t,k+1)

; Oa
PSO(i,k+1)

> Ob
PSO(i,k+1)

. (39)

Once the principles of TVMS-BPSO have been exposed. The problem of day-ahead BESS
scheduling on a daily basis and the TVMS-BPSO performance to solve this problem are analyzed in
Sections 4 and 5, respectively.
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4. Testing the Problem Formulation

To evaluate the mathematical formulation previously presented in Section 3.1, the performance of
HES of Figure 1 is analyzed using a GA and a typical system with a wind generator of 75 kW (Pmax

W =

75 kW), and the load profile of Figure 3 has been used. Cut-in, rated, and cut-out wind speeds equal to
3, 12, and 25 m/s, respectively, have been assumed.

Figure 3. Load profile.

Regarding the fuel-based generator, a diesel unit of 100 kW (Pmax
D = 100 kW) with minimum

operating power of 50% (Pmin
D = 50 kW) has been assumed.

As the effects of wind generation and BESS management on the reduction of fuel consumption
have been deeply studied in the technical literature [41], special attention to the influence of these
devices on GHG emissions has been paid in this work. Thus, the GHG-emission measurements
published in [42] have been adopted.

During the GA implementation, the initial population is randomly initialized, so that an operator
has to be incorporated in order to fix the elements of the matrix G(k) to +1 at those hours at which
NL is negative (Figure 2). Additionally, such operator has to be included after the application of
mutation operator.

Regarding the GA parameters, a population with 75 individuals, 100 generations, a crossover rate
of 90%, and a mutation rate of 5% were considered.

Wind speed profile has been modeled by using the general purposes profile of (40) [7,10], which
depends on the average wind speed (Sa

W), diurnal pattern strength (Sb
W), and the hour of peak wind

speed (Sc
W).

SW(t) = Sa
W

{
1 + Sb

Wcos
[(2π

T

)(
t− Sc

W

)]}
∀ t = 1, . . . , T. (40)

Different values of average wind speed and diurnal pattern strength have been considered.
Specifically, Sb

W = 0, 0.1, 0.2, 0.3, 0.4 and Sc
W = 15 h were evaluated through the analysis of three case

studies. These are typical values for places located in the United States. In this way, different values of
Sb

W allow us to evaluate the wind speed profile with high or low oscillation, and consequently their
impact on the operation of BESS.

A typical VRFB of 5 kW/20 kWh (Pmax
B = 5 kW/ Emax

B = 20 kWh) has been considered. Minimum
and maximum SOC were assumed as 15 and 90% (SOCmin

B = 0.15 and SOCmax
B = 0.9), respectively, and

minimum and maximum voltage were assumed as 42 and 56.5 V (Umin
B = 42 V and Umax

B = 56.5 V),
respectively. The entire bank is composed of 10 of these batteries connected in parallel.

The simulation and optimization analysis were implemented in MATLAB®, using a personal
computer with i7-3630QM CPU at 2.4 GHz, 8 GB of memory and a 64-bit operating system.

The previously mentioned cases are carefully discussed in the next subsections.
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4.1. Case I: Low Wind Speed with Fully Charged Battery

Conditions of low wind speed and fully charged BESS were simulated by considering an average
speed of 4 m/s (Sa

W = 4 m/s) and an initial SOC equal to 85% (SOCB(0) = 0.85).
Figure 4 presents the wind speed (left) and wind power (right) obtained from the evaluation of

(40) for the aforementioned values of Sb
W . Because the average speed is close to the cut-in one, high

wind speed oscillations (Sb
W = 0.4) are directly reflected in the wind power profile.

 
Figure 4. Wind speed and wind power (Case I).

Figure 5 shows the GA-convergence, which takes around 20 iterations to establish a
near-optimal schedule.

Figure 5. Genetic algorithm (GA) evolution (Case I).

Figure 6 presents the day-ahead schedule of BESS for this case. As can be observed, BESS remains
disconnected during the morning, between t = 1 h and t = 10 h in all cases. Then, BESS is discharged
between t = 11 h and t = 15 h for most of the cases, followed by some disconnection periods, so as
to be later discharged during the last hours of the day, between t = 20 h and t = 24 h. These resting
intervals or periods of battery disconnection allow us to improve the management of the stored energy
by moving it towards the NL-peak hours.
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Figure 6. Battery management (Case I).

Figure 7 shows the power (left) and SOC (right) of VRFB, where it is possible to observe how
battery power is gradually reduced in order to fulfill the operating conditions (16) and (17) for battery
voltage and SOC, respectively.

 
Figure 7. Battery power and state of charge (SOC) (Case I).

Figure 8 presents NL considering the entire architecture of Figure 1 (left) and only considering the
wind and diesel generators (right), calculated using (22) and (21), respectively. According to these
results, the proposed peak-shaving strategy is effective at discharging the energy initially stored on
BESS during those hours of high electricity demand.

Figure 8. Net load with and without battery (Case I).

Figure 9 presents THC (left) and CO (right) emissions. By comparing NL considering the effect
of wind and BESS previously shown in Figure 8 (left) with THC emissions shown in Figure 9 (left),
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it is possible to observe how NL has a convex shape, whereas THC emissions have concave behavior,
which clearly suggests that THC emissions could increase as NL is reduced. Regarding the relationship
between NL (Figure 8 left) and CO emissions (Figure 9 right), concave behavior of both surfaces is
clearly observed, which means that CO emissions can be reduced with the corresponding limitation of
the NL to be supplied by diesel generator.

 
Figure 9. THC and CO emissions (Case I).

Figure 10 shows NOx (left) and CO2 (right) emissions, and Figure 11 presents PM emissions. It is
possible to observe how all of them slightly increase at the end of the day, due to the fact that BESS
management strongly focuses on NL-peak mitigation.

 
Figure 10. NOX and CO2 emissions (Case I).

Figure 11. PM emissions (Case I).
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Figure 12 verifies that there is no energy surplus (left) or energy not supplied (right) because
renewable generation is very low and the diesel generator is able to supply all electricity demand.

 
Figure 12. Excess and energy not supplied (ENS) (Case I).

Tables 1–4 summarize the daily results related to GHG emissions and diesel generation.
By comparing the second columns of Tables 1 and 2, it is possible to observe how THC emissions
increase as previously discussed. In the contrary case, a reduction on CO, NOx, CO2, and PM is
clearly observed.

Table 1. Total GHG emissions without battery (Case I).

Sb
W THC (kg) CO (kg) NOX (kg) CO2 (kg) PM (kg)

0 1.37 7.18 31.18 1444.12 0.49
0.1 1.38 7.08 31.13 1442.31 0.48
0.2 1.38 6.94 30.98 1438.01 0.48
0.3 1.39 6.75 30.76 1431.30 0.47
0.4 1.40 6.53 30.47 1422.96 0.46

Table 2. Total GHG emissions with battery (Case I).

Sb
W THC (g) CO (g) NOX (kg) CO2 (kg) PM (g)

0 1.57 3.51 24.70 1261.25 0.32
0.1 1.57 3.50 24.65 1260.11 0.32
0.2 1.58 3.36 24.57 1257.46 0.32
0.3 1.58 3.30 24.36 1251.68 0.31
0.4 1.58 3.22 24.09 1244.37 0.31

Table 3. Reduction of GHG emissions (Case I).

Sb
W THC (%) CO (%) NOX (%) CO2 (%) PM (%)

0 −14.43 51.19 20.79 12.66 33.54
0.1 −14.10 50.61 20.79 12.63 32.98
0.2 −13.97 51.54 20.68 12.56 33.37
0.3 −13.48 51.09 20.80 12.55 32.72
0.4 −12.92 50.66 20.95 12.55 32.00
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Table 4. Diesel power generation (Case I).

t/Sb
W

Without BESS With BESS

0 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4

1 66.8 67.3 67.5 67.6 67.6 66.8 67.3 67.5 67.6 67.6
2 60.8 61.3 61.5 61.5 61.5 60.8 61.3 61.5 61.5 61.5
3 57.4 57.9 58.2 58.2 58.2 57.4 57.9 58.2 58.2 58.2
4 55.7 56.2 56.5 56.5 56.5 55.7 56.2 56.5 56.5 56.5
5 56.2 56.6 56.9 56.9 56.9 56.2 56.6 56.9 56.9 56.9
6 57.6 58.0 58.3 58.4 58.4 57.6 58.0 58.3 58.4 58.4
7 63.9 64.2 64.4 64.6 64.6 63.9 64.2 64.4 64.6 64.6
8 71.0 71.2 71.3 71.4 71.5 71.0 71.2 71.3 71.4 71.5
9 80.6 80.6 80.6 80.6 80.6 80.6 80.6 80.6 80.6 80.6
10 89.2 89.0 88.8 88.6 88.3 89.2 89.0 88.8 88.6 88.3
11 95.7 95.3 94.9 94.3 93.7 58.4 58.0 57.6 57.0 56.4

12 96.7 96.2 95.5 94.6 93.6 61.6 61.0 60.3 59.5 58.4

13 97.8 97.1 96.2 95.0 93.6 64.7 64.0 63.0 61.9 60.5

14 99.2 98.4 97.4 96.0 94.4 68.1 67.3 66.2 64.9 63.2

15 96.1 95.3 94.1 92.7 91.0 66.9 66.0 64.9 63.4 61.7

16 91.9 91.1 90.0 88.7 87.0 64.4 63.6 62.6 61.2 87.0
17 89.4 88.7 87.8 86.6 85.2 89.4 88.7 87.8 86.6 85.2
18 89.6 89.1 88.4 87.5 86.5 63.8 63.2 88.4 87.5 86.5
19 89.4 89.0 88.6 88.1 87.4 67.4 67.0 88.6 88.1 60.0
20 89.4 89.2 89.0 88.8 88.5 79.5 79.3 63.2 62.9 62.7

21 98.6 98.6 98.6 98.6 98.6 94.3 94.3 76.6 76.6 76.6

22 98.2 98.4 98.5 98.6 98.7 95.9 96.0 88.6 88.8 88.9

23 88.8 89.1 89.3 89.5 89.5 87.2 87.6 85.0 85.2 85.2

24 77.3 77.7 77.9 78.0 78.0 76.1 76.6 75.6 75.7 75.7

Table 3 shows the change on GHG emissions based on the results reported in Tables 1 and 2.
The increment of THC emissions is between 12.92% and 14.43%, whereas the reduction of CO, NOx,
CO2, and PM are approximately 51.02%, 20.80%, 12.59%, and 32.92%, respectively.

Table 4 shows in bold those hours at which power generation is reduced as a result of BESS
incorporation, especially during the peak-load of the afternoon and night.

4.2. Case II: High Wind Speed with Empty Battery

In this case, conditions of high wind speed with an empty battery are studied. Specifically, an
average wind speed of 14 m/s (Sa

W = 14 m/s) and an initial SOC of 15% (SOCB(0) = 0.15) are considered.
Wind speed and wind power under these conditions are shown in Figure 13, in the left and right sides,
respectively, for Sb

W between 0 and 0.4, as previously specified.

Figure 13. Wind speed and wind power (Case II).

18



Appl. Sci. 2019, 9, 5221

According to the wind power profile (Figure 13 right), rating power is reached in almost all cases,
except when a high wind speed oscillation (Sb

W →0.4) is observed, resulting in a wind power reduction
during the morning.

GA evolution is shown in Figure 14, where it can be observed how fast the algorithm converges
due to the influence of the high wind speed. In other words, in the presence of high wind speed,
the energy surplus forces BESS to be charged, limiting the number of possible operational combinations,
and consequently speeding up the convergence.

Figure 14. GA evolution (Case II).

BESS management is shown in Figure 15, where the battery is charged during the morning in
most situations. However, discharging actions are also advised sometimes in the morning, and this is
observed when wind generation reduces as a consequence of wind speed profile oscillations. Initially,
the battery is empty, so that discharging the battery in this situation does not result in any load
satisfaction, because the battery is not able to provide any power. In other words, battery discharge
when SOCB(t) = SOCmin

B is equivalent to the battery disconnection obtained by setting g(i,t,k) ←0.

Figure 15. Battery management (Case II).

Figure 16 shows the results obtained from the simulation of the management signal previously
shown in Figure 15. Battery power (Figure 16 left) and SOC (Figure 16 right) are presented, and the
battery is charged during the morning and then discharged during the afternoon. The situations of
high wind speed oscillations result in a reduction of energy surplus, and consequently less power is
available to be used in the peak-shaving process during the afternoon.
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Figure 16. Battery power and SOC (Case II).

Figure 17 shows the NL profile depending on if the effects of BESS are considered (left) or not
(right), calculated by using (22) and (21), respectively. By comparing these results, it is possible to
observe how NL-peak is reduced.

Figure 17. Net load with and without battery (Case II).

As NL is so low when BESS is incorporated, energy surplus is produced because the diesel
generator is forced to operate at its minimum capacity in order to satisfy a very low load. This operating
mode produces a fixed amount of GHG emissions. This reasoning can be verified in Figure 18 for THC
(left) and CO (right), in Figure 19 for NOX (left) and CO2 (right), and in Figure 20 for PM.

 
Figure 18. THC and CO emissions (Case II).
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Figure 19. NOX and CO2 emissions (Case II).

Figure 20. PM emissions (Case II).

Figure 21 shows the daily profiles of energy surplus (left) and ENS (right), respectively. As wind
generation is abundant from the high wind speed, energy excess is observed at almost any time.
Conversely, there is no ENS.

 
Figure 21. Excess and ENS (Case II).

Tables 5 and 6 report the cumulative daily values of GHG emissions for different wind speed
profiles. Then, the reduction on the emitted pollutants as a consequence of BESS integration is reported
in Table 7. Because the diesel generator is operating at its minimum allowed power (PD(t) = Pmin

D ), the
reduction of GHG emissions is the same for all the factors considered, up to 12.5%.

To improve understanding of the HES operation, Table 8 presents the output power of the diesel
generator with and without considering the BESS operation. In bold are shown those situations where
the diesel unit is disconnected, all of them during the first peak between t = 12 h and t = 13 h.
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Table 5. Total GHG emissions without battery (Case II).

Sb
W THC (kg) CO (kg) NOX (kg) CO2 (kg) PM (kg)

0 1.17 0.62 8.48 629.60 0.14
0.1 1.17 0.62 8.48 629.60 0.14
0.2 1.17 0.62 8.48 629.60 0.14
0.3 1.53 0.82 11.13 826.35 0.19
0.4 1.68 0.90 12.19 905.05 0.21

Table 6. Total GHG emissions with battery (Case II).

Sb
W THC (kg) CO (kg) NOX (kg) CO2 (kg) PM (kg)

0 1.02 0.55 7.42 550.90 0.13
0.1 1.02 0.55 7.42 550.90 0.13
0.2 1.10 0.59 7.95 590.25 0.14
0.3 1.53 0.82 11.13 826.35 0.19
0.4 1.68 0.90 12.19 905.05 0.21

Table 7. Reduction of GHG emissions (Case II).

Sb
W THC (%) CO (%) NOX (%) CO2 (%) PM (%)

0 12.5 12.5 12.5 12.5 12.5
0.1 12.5 12.5 12.5 12.5 12.5
0.2 6.25 6.25 6.25 6.25 6.25
0.3 0 0 0 0 0
0.4 0 0 0 0 0

Table 8. Diesel power generation (Case II).

t/Sb
W

Without BESS With BESS

0 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4

1 0 0 0 50 50 0 0 0 50 50
2 0 0 0 50 50 0 0 0 50 50
3 0 0 0 50 50 0 0 0 50 50
4 0 0 0 50 50 0 0 0 50 50
5 0 0 0 50 50 0 0 0 50 50
6 0 0 0 0 50 0 0 0 0 50
7 0 0 0 0 50 0 0 0 0 50
8 0 0 0 0 0 0 0 0 0 0
9 50 50 50 50 50 50 50 50 50 50
10 50 50 50 50 50 50 50 50 50 50
11 50 50 50 50 50 50 50 50 50 50
12 50 50 50 50 50 0 0 50 50 50
13 50 50 50 50 50 0 0 0 50 50
14 50 50 50 50 50 50 50 50 50 50
15 50 50 50 50 50 50 50 50 50 50
16 50 50 50 50 50 50 50 50 50 50
17 50 50 50 50 50 50 50 50 50 50
18 50 50 50 50 50 50 50 50 50 50
19 50 50 50 50 50 50 50 50 50 50
20 50 50 50 50 50 50 50 50 50 50
21 50 50 50 50 50 50 50 50 50 50
22 50 50 50 50 50 50 50 50 50 50
23 50 50 50 50 50 50 50 50 50 50
24 50 50 50 50 50 50 50 50 50 50
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4.3. Case III: Very High Wind Speed with Empty Battery

In this case, conditions of extreme wind speed are analyzed by setting the average speed to 24 m/s
(Sa

W = 24 m/s), while the battery remains empty (SOCB(0) = 0.15).
Figure 22 shows the wind speed (left) and wind power (right) for this case. As wind speed

becomes higher than the cut-out speed (25 m/s) for those cases with wind speed oscillation, the wind
turbine is taken out of service in order to preserve it. Thus, NL suddenly increases during the afternoon.

 

Figure 22. Wind speed and wind power (Case III).

GA evolution is shown in Figure 23, where a fast convergence is observed due to the fact that
the battery has to be charged during the first hours of the day, reducing the number of possible
combinations of the optimization problem.

Figure 23. GA evolution (Case III).

Management signal is shown in Figure 24. According to these results, battery should be charged
during the morning. Then, a short resting period is advised so that enough energy is available to be
discharged during the peak-load hours.
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Figure 24. Battery management (Case III).

Charging and discharging cycles are represented by means of the battery power and SOC shown
in Figure 25 at the left and right sides, respectively.

 
Figure 25. Battery power and SOC (Case III).

The reduction of NL as a result of BESS integration can be observed at the left side of Figure 26.
NL without considering the influence of BESS is presented at the right side of Figure 26, where the
increment of load demand during the afternoon can be clearly observed.

Figure 26. Net load with and without battery (Case III).

GHG emissions are fully described in Figures 27–29, where the lack of wind generation during
the afternoon, as a result of the extremely high wind speed, directly influences the behavior of all
emission factors.
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Figure 27. THC and CO emissions (Case III).

Figure 28. NOX and CO2 emissions (Case III).

Figure 29. PM emissions (Case III).

Energy surplus and ENS are reported in the left and right sides of Figure 30, respectively,
where the energy excess is directly related to the operation of the diesel generator during the
afternoon. As expected, there is no ENS because the diesel generator is able to supply any value of
electricity demand.
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Figure 30. Excess and ENS (Case III).

Tables 9–12 summarize the GHG emissions and diesel generation for this case. By comparing
Tables 9 and 10, it is possible to observe that, in some situations, THC emissions can increase when
BESS reduces NL in a considerable manner. Regarding the wind speed oscillation, as Sb

W increases,
wind speed in the hours close to 15 h (Sc

W = 15 h) increases to a value higher than cut-out speed (25
m/s), removing the wind power generation. Thus, BESS supplies a part of the required power, but
essentially most of it is provided by the diesel generator, increasing even more the emissions of CO,
NOx, CO2, and PM to the atmosphere.

Table 9. Total GHG emissions without battery (Case III).

Sb
W THC (kg) CO (kg) NOX (kg) CO2 (kg) PM (kg)

0 1.17 0.62 8.48 629.60 0.14
0.1 0.94 4.59 18.35 899.93 0.32
0.2 0.90 5.28 20.30 953.02 0.35
0.3 0.90 5.28 20.30 953.02 0.35
0.4 0.90 5.28 20.30 953.02 0.35

Table 10. Total GHG emissions with battery (Case III).

Sb
W THC (kg) CO (kg) NOX (kg) CO2 (kg) PM (kg)

0 1.02 0.55 7.42 550.90 0.13
0.1 1.02 2.89 16.05 833.17 0.24
0.2 0.98 3.59 18.01 886.27 0.27
0.3 0.98 3.59 18.01 886.27 0.27
0.4 0.98 3.59 18.01 886.27 0.27

Table 11. Reduction of GHG emissions (Case III).

Sb
W THC (%) CO (%) NOX (%) CO2 (%) PM (%)

0 12.50 12.50 12.50 12.50 12.50
0.1 −9.30 36.98 12.51 7.42 23.93
0.2 −9.73 32.12 11.31 7.00 21.86
0.3 −9.73 32.12 11.31 7.00 21.86
0.4 −9.73 32.12 11.31 7.00 21.86

In Table 12, it can be observed how the diesel generator reduces its power production or is
disconnected. This happens in those hours between t = 12 h and t = 20 h, when BESS has an active role
in mitigating NL.

From the sensitivity analysis of Cases I-III, it is possible to conclude that the objective function
defined in (30) offers reasonable results in terms of BESS management for peak-shaving. The next section
studies the performance of TVMS-BPSO implemented to minimize this already tested objective function.
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Table 12. Diesel power generation (Case III).

t/Sb
W

Without BESS With BESS

0 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4

1 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0
9 50 50 50 50 50 50 50 50 50 50
10 50 50 90 90 90 50 50 90 90 90
11 50 96.4 96.4 96.4 96.4 50 96.4 96.4 96.4 96.4
12 50 97.5 97.5 97.5 97.5 0 70.2 70.2 70.2 70.2

13 50 98.5 98.5 98.5 98.5 0 72.9 72.9 72.9 72.9

14 50 100 100 100 100 50 79.7 79.7 79.7 79.7

15 50 96.9 96.9 96.9 96.9 50 87.9 87.9 87.9 87.9

16 50 92.7 92.7 92.7 92.7 50 88.7 88.7 88.7 88.7

17 50 90.2 90.2 90.2 90.2 50 88 90.2 90.2 90.2
18 50 90.4 90.4 90.4 90.4 50 88.9 88.2 88.2 88.2

19 50 90.2 90.2 90.2 90.2 50 89.1 88.7 88.7 88.7

20 50 50 90.2 90.2 90.2 50 50 89.1 89.1 89.1

21 50 50 50 50 50 50 50 50 50 50
22 50 50 50 50 50 50 50 50 50 50
23 50 50 50 50 50 50 50 50 50 50
24 50 50 50 50 50 50 50 50 50 50

5. Performance of TVMS-BPSO

To evaluate the capabilities of TVMS-BPSO presented in Section 3.2 for day-ahead BESS scheduling,
the conditions of Case I (low wind speed with fully charged battery) previously described in Section 4.1
have been considered. This case has been chosen because the number of optimization variables to be
determined is the highest. Regarding the number of agents and iterations, these have been set equal to
the population size and generations of GA previously implemented in Section 4 (75 agents and 100
iterations), and this guarantees a fair comparison between both methods. Other parameters of BPSO
have been adjusted as follows; Ca

PSO = 2.05, Cb
PSO = 2.05, σmin = 0.1, and σmax = 1.

Figures 31–33 show the comparison between GA and TVMS-BPSO for different wind speed
profiles, whereas Table 13 shows the value of the objective function. As can be observed, TVMS-BPSO
employs global exploration during the first iterations, analyzing solutions with high objective function
value. As the algorithm evolves, exploitation has the relevant role of guiding the algorithm to a high
quality solution, comparable to that obtained from GA implementation, according to Table 13.

Table 13. Comparison of objective function values.

Sb
W GA BPSO Difference (%)

0 −24,680.21 −24,679.41 0.00326
0.1 −24,528.93 −24,520.42 0.03469
0.2 −24,348.18 −24,331.04 0.07039
0.3 −24,134.06 −24,116.79 0.07154
0.4 −23,877.54 −23,877.54 0
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Figure 31. TVMS-BPSO evolution for diurnal pattern strength equal to 0.

 
Figure 32. TVMS-BPSO evolution for diurnal pattern strength equal to 0.1 and 0.2.

Figure 33. X. TVMS-BPSO evolution for diurnal pattern strength equal to 0.3 and 0.4.

6. Conclusions and Remarks

The results obtained from the analysis of the aforementioned cases offer us important lessons
about the mitigation of GHG emissions by integrating a BESS managed from a purely economic
perspective. The proposed approach is based on the solution of an optimization problem in which the
number of possible combinations varies with the available wind speed profile.

As NL becomes negative, the management signal of BESS is directly set to the charging process
(g(i,t,k) = +1). In the contrary case, when NL is positive, the optimization approach has to determine
whether the BESS should be discharged (g(i,t,k) = −1) or disconnected (g(i,t,k) = 0) to reduce the
daily NL-peak.
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Let T be the number of hours during which NL is positive (Case I Section 4.1), the number of
decision variables to be determined is defined as 2T. In Case I, the wind speed profile was so low that
no energy surplus was observed. However, the initial SOC was high, so that the proposed approach
had to determine how to use that stored energy in order to reduce NL-peak. Under these circumstances,
T = 24 and the number of possible combinations is 16,777,216. That is why GA and TVMS-BPSO
require some iterations to get a near-optimal solution (Figures 5 and 31–33). Conversely, as wind speed
increases, as studied in Case II and Case III, energy surplus increases and the number of combinations
is reduced, making the management problem easier to solve. This is why an extremely fast convergence
is observed in Figures 14 and 23, for Case II and Case III, respectively. With respect to TVMS-BPSO
performance, its important capabilities for global exploration and local exploitation offer a high quality
solution similar to that obtained from GA implementation (Table 13).

Regarding GHG emissions, the highest reduction was observed in Case I, in which wind power
generation was very low, but available energy from BESS was optimally allocated. As Table 3, Table 7,
and Table 11 were calculated using the wind–diesel system as reference, Case I presents the highest
percentage of reduction. As long as wind speed increases, the diesel generator must be committed to
its minimum capacity so that GHG emissions cannot be totally eliminated, and this is important for
the optimal sizing of HES. In the presence of an extremely high wind speed, when the wind turbine is
disconnected, the reduction of GHG emissions highly depends on how BESS is managed, which can be
observed in the results of Case III (Table 11), specifically. Another relevant result is that THC emissions
do not always increase with the partial operation of the diesel unit: in Case II, THC emissions were
reduced, perhaps because the diesel generator was disconnected in some operational circumstances.
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Abbreviations

i Index for each individual (i = 1 : . . . , I).
k Index for each iteration (k = 1, . . . , K).
t Index for each time step (t = 1, . . . , T = 24).
SW(t) Wind speed at time t (m/s).

So
W , Sr

W and S f
W

Cut-in, rated, and cut-offwind speed, respectively (m/s).
Sa

W Average wind speed (m/s).
Sb

W Diurnal pattern strength.
Sc

W Hour of peak wind speed (h).
PW(t) Wind power at time t (kW).
Pmax

W Rated wind turbine power (kW).
Pa

W , Pb
W and Pc

W Parameters of wind turbine power curve.
TE Electrolyte temperature (K).
UB(t) Battery voltage at time t (V).
ηB(t) Battery efficiency at time t (V).
SOCB(t) Battery state of charge at time t.
PB(t) Battery power at time t (kW).
PC(t) Converter power at time t (kW).
PC(i,t,k) Converter power of individual i at time t and iteration k (kW).
PL(t) Load demand at time t (kW).
PN(t) Net load at time t (kW).
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PD(t) Diesel power at time t (kW).
Pa

D Parameter of diesel power calculation (kW).
PEXC(t) Power surplus at time t (kW).
PENS(t) Power not supplied at time t (kW).
Umin

B , Umax
B Minimum and maximum battery voltage (V), respectively.

SOCmin
B , SOCmax

B Minimum and maximum state of charge, respectively.
Pmax

B and Pmax
C Maximum battery and converter power (kW), respectively.

Emax
B Maximum battery capacity (kWh).

Pmin
D , Pmax

D Minimum and maximum diesel power (kW).
Uch

B(t) Battery voltage during charge at time t (V).
Ua

ch −Uh
ch,

Uj
ch −Un

ch, Up
ch, Uq

ch

Parameters of battery voltage during charging.

ηch
B(t) Battery efficiency during charge at time t (V).
ηch

V(t) Voltage efficiency during charge at time t.
ηch

E(t) Energy efficiency during charge at time t.
Udis

B(t) Battery voltage during discharge at time t (V).
Ua

dis −Uh
dis,

Uj
dis −Um

dis

Parameters of battery voltage during discharging.

ηdis
B(t) Battery efficiency during discharge at time t (V).
ηdis

V(t) Voltage efficiency during discharge at time t.
ηdis

E(t) Energy efficiency during discharge at time t.
Pa

C, Pb
C Parameters of power converter.

→
g (i,k) Agent or individual i at iteration k.
G(k) Population or swarm at iteration k.
O(i,k) Objective function of individual i at iteration k.
∅,χ, Ca

PSO, Cb
PSO Coefficient of particle swarm optimization.

Ra
PSO −Rd

PSO Random variables.
v(i,t,k) Velocity of agent i at time t and iteration k.
g(i,t,k) Position of agent i at time t and iteration k.
gPBEST
(t) Position of best agent in the group (i = 1, . . . , I) at time t.

gGBEST
(t) Position of best agent until the actual iteration (k) at time t.
σ(k) Time-varying variable for iteration k.
σmin, σmax Minimum and maximum value of σ(k).
Sa

PSO(i,t,k)
, Sb

PSO(i,t,k) Sigmoid function values for agent i at time t for iteration k.
Ja
PSO(i,t,k)

, Jb
PSO(i,t,k) Binary variables for agent i at time t for iteration k.

Oa
(i,k)

, Ob
(i,k) Objective function values for agent i and iteration k.
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Abstract: The need for energy and environmental sustainability has spurred investments in renewable
energy technologies worldwide. However, the flexibility needs of the power system have increased
due to the intermittent nature of the energy sources. This paper investigates the prospects of
interlinking short-term flexibility value into long-term capacity planning towards achieving a
microgrid with a high renewable energy fraction. Demand Response Programs (DRP) based on
critical peak and time-ahead dynamic pricing are compared for effective demand-side flexibility
management. The system components include PV, wind, and energy storages (ESS), and several
optimal component-sizing scenarios are evaluated and compared using two different ESSs without
and with the inclusion of DRP. To achieve this, a multi-objective problem which involves the
simultaneous minimization of the loss of power supply probability (LPSP) index and total life-cycle
costs is solved under each scenario to investigate the most cost-effective microgrid planning approach.
The time-ahead resource forecast for DRP was implemented using the scikit-learn package in Python,
and the optimization problems are solved using the Multi-Objective Particle Swarm Optimization
(MOPSO) algorithm in MATLAB R©. From the results, the inclusion of forecast-based DRP and PHES
resulted in significant investment cost savings due to reduced system component sizing.

Keywords: demand response program (DRP); photovoltaic system (PV); pumped heat energy storage
(PHES); critical peak pricing (CPP) DRP; time-ahead dynamic pricing (TADP) DRP; loss of power
supply probability (LPSP); energy storage system (ESS); Multi-Objective Particle Swarm Optimization
(MOPSO)

1. Introduction

The quest for provision of affordable, clean, and reliable electricity supply is the key aspiration
of many nations globally. These aspirations are portrayed by the commitment of most countries to
the formulation and chartering of strategic policies that are targeted towards attaining 100% green
energy transition in the near future [1]. Many countries have embarked on different sustainable energy
pathways; for example Germany [2] and Sweden [3] aims to attain 100% renewable energy by 2050
while Hawaii in the United States has set 2045 as a target [4]. Several African countries have also taken
significant steps and shown visible commitment towards massive green energy uptakes mainly by
wind and solar energy. Countries such as Kenya [5], Ghana [6], Mauritius [7], Nigeria [8], Egypt, and

Appl. Sci. 2019, 9, 3855; doi:10.3390/app9183855 www.mdpi.com/journal/applsci33



Appl. Sci. 2019, 9, 3855

South Africa [9] are currently making efforts in the integration of renewable energy technologies on
both small and large scale. However, the incorporation of variable renewable energy resources (VREs)
such as wind and solar energy increases the flexibility needs of a power system. Hence, to achieve an
acceptable level of power system operation reliability, dynamic and vibrant control strategies need to
be devised to balance the demand and supply using efficient flexibility mechanism [10]. Flexibility
providers are, usually, adaptable resources needed to address the short-term mismatches between the
instantaneous generated power and the load demand [11].

Most of the classical power system planning strategies comprises of segregated optimization
models for power system design. These models generally comprise of three features which are
component sizing to determine the optimal capacity configuration, unit commitment model to
determine the optimal operation strategy, and electricity market strategies to evaluate optimal
point-to-point energy transactions [12]. However, the segregated approach is not sufficient for
achieving an optimally reliable system design; this is because the operational efficiency of power
system relies highly on the time-based dispatchability and controllability of the system generating
resources. Furthermore, with the increasing penetration of VREs, the controllability and dispatchability
of power system generation sources becomes more complex. Hence, the planning for the transition
towards a high VREs-based energy system requires an integrated system planning that involves the
cost of component sizing and system flexibility [13]. A comprehensive investigation of the economic
viability of different kinds of flexibility providers available for power systems is discussed in [14].
The cost of flexibility is defined as the additional cost required to integrate additional adaptable
resources to address the intermittency of VREs integration. There are many sources of flexibility
provider options; these includes system interconnection, demand-side management, supply-side
management, storage technologies, etc. [15]. From the generation planning perspective, flexibility
is investigated based on the ramping capability of the generators, the minimum possible attainable
generation, increased cycles of shutdowns and startups for hybrid configuration as outlined in [16].

The idea of hybrid-energy system has also shown some significant growing interest as a valuable
and efficient flexibility provider towards 100% VREs generation as shown in much recent research. The
authors in [14] performed and provided a comprehensive framework for techno-economic flexibility
analysis based on MILP optimization model by combining complimentary distribution generation
alternatives such as thermal storage, heat pump, and cogeneration. The importance of the appropriate
selection of complementary generating technologies coupled with energy storage system (ESS), with
an improved optimal operation strategy, as a cost-effective path towards ensuring power system
flexibility is highlighted in [17]. Electricity storage has played a valuable and significant central role in
power system in many aspects [18]. Energy storage has the advantage to time-shift the electrical energy
supply thus it acts as an ideal mechanism for moderating the consequences of fluctuating output of
VREs on the power system. There are many well-known types of ESS in many works of literature
varying in terms of technical and economic specification as summarized in [19]. Many studies have
evaluated and demonstrated the cost–benefits of appropriate selection and application of different ESS
technologies incorporation into the power system planning. The common ESS ranges from pumped
hydro [20], hydrogen storage [21], BESS [22], compressed air energy storage, etc. [23]. The inclusion of
demand-side management into optimal component sizing that involves energy storage (ESS) facilities
is proposed in [24]. The final outcomes show that using the demand-side management (DSM) increases
the system flexibility and offers an economical planning option with reduced ESS capacity requirement.

There are two main categories of end-user electrical demand namely the flexible load demand
(FDRs) and inflexible/static load demand. The flexible load demand (FDR) are assumed to be those
appliances whose time of use can be transferred from one period to another. FDRs include heat
pump, room heater, washing machines, etc. They are also referred to as the shiftable appliances
because their usage can be delayed during the period of peak demand or shortage of electricity supply
and activated later during the period of over-generation. Non-shiftable load demands, on the other
hand, are appliances that are static in terms of the time of use, they have a fixed time of period as to
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when to use, such as illumination loads. DSM has recently received heightened attention in terms of
flexibility provision capability using flexible demand resources (FDRs) to achieve the controllability
of the customer load demand pattern [25]. In general, the FDRs provide allowances and capacity for
time-shifting in terms of their energy requirements. A proper schedule of the FDRs can guarantee
mitigation of the gap that exists between demand and system generation for power systems with very
high renewable energy fraction as addressed in [26]. A demand-side flexibility approach using the
controllability of FDRs has been developed with a detailed implementation framework for commercial
and residential smart building in [27]. Demand response program (DRP) is a subset of DSM designed
to influences the consumer’s behaviors in terms of the time of usage of the FDR through motivations
such as incentive payments and lucrative electricity prices to improve the overall system efficiency [28].
The concepts of DRP have been adequately covered in the literature with much focus on optimizing
the electricity market design. The commonly featured types of DRPs found in the literature includes
and not limited to; real-time pricing, day-ahead pricing, time of use, interrupted curtailable, direct load
control, critical peak pricing, etc. [29]. Successful implementation of DRP should take into account the
current and the forecasted future power system status to fully exploit the market flexibility [30] and
captures the VREs generation uncertainties [31,32].

However, an accurate and reliable VREs output forecasting can serve as a core and vital component
of energy management systems (EMS) implementation [33]. The role of forecasting also has significant
value in the implementation of pricing schemes in the power markets to decrease the rate of market
volatility [34]. Hence, power forecasting plays a pivotal role in flexibility planning for integrating and
addressing the uncertainty of the VREs in hybrid power systems. Accurate power forecasting provides
critical information of the anticipated status (power shortages and surplus) of the power system ahead
of time before the actual occurrence. Hence, a good foresight of the time-ahead generation profile
provides an opportunity to plan for future uncertainties adequately and cost-effectively. The ability of
a system to meet and handle the growing ramping requirements and volatile residual demand is a
significant concern of system operators as the share of wind and solar increases. The economic benefit
of accurate solar forecasting in minimizing the generation cost, as well as managing power curtailment
was investigated and illustrated by Martinez-Anido et al. [32]. A detailed approach has been adopted
for wind power forecast application in [35] and in [36] considering several power market scenarios.

1.1. Research Motivation

Various research has been conducted on optimum component sizing using various optimization
techniques to evaluate a cost-effective hybrid microgrid configuration such as PV/biodiesel/BESS
using simulated annealing [37], Supercapacitors/BESS/WT/Fuel using Non-dominated Sorted Genetic
Algorithm [6], diesel/PV/WT using multi-objective self-adaptive differential evolution algorithm [38],
PV/WT/BESS using cuckoo search algorithm [39], MOPSO [40], GA-PSO and MOPSO [41], and
more. However, it is observed from the research trends in the literature that in order to ascertain the
maximum techno-economic benefits for any microgrid configuration and investment, the flexibility
requirements of the system must be factored into its design, i.e., reliability based on adequate system
flexibility provision must be prioritized alongside the planning and capacity sizing. Hence, in this
study, a multi-objective optimal planning for an isolated microgrid that introduces the cost of flexibility
management using ESS and DRP is investigated. The multi-objective design problem is formulated
and solved using the Multi-Objective Particle Swarm Optimization (MOPSO) algorithm in MATLAB
environment.

1.2. Research Contribution

In view of the above, the main contribution of this work is to introduce a suitable cost-effective
framework for incorporating short-term flexibility management requirements into the long-term
planning of renewable energy-based microgrid. The total cost of investment and flexibility
management, and the supply reliability requirements are investigated and compared under different
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system design scenarios using the multi-objective optimization approach. The effectiveness of
ensembled data-driven renewable energy generation forecasting using the Gradient Boosted regression
trees (GBRT) techniques for DSM/DRP flexibility planning and efficient coordination of FDRs is
analyzed and compared with the critical peak pricing DRP alternative. The economic advantage of
using PHES, compared to BESS, in microgrid applications that requires high renewable energy fraction
has been demonstrated through simulation using the data for a real Kenyan microgrid case study.

The rest of the paper is organized as follows; Section 2 presents the methodology and system
modeling, Section 3 provides an overview of the FDR, and the techniques of each DRP is described.
The optimization problems are formulated in Section 4 while Section 5 provided the details of the
case study and simulation parameters, simulation results are outlined and discussed in Section 6 and
finally, Section 7 provides the conclusion of the work.

2. Methodology and System Modeling

Figure 1 shows the proposed microgrid system infrastructure; which consist of the WT, PV, PHES,
and AC loads connected through an AC bus. The energy management system is also included as the
control center for the microgrid. The mathematical models that describe the behavior of each system
component and the energy management strategies deployed in this study are discussed below.

Figure 1. Proposed system model.

2.1. Wind Turbine

The output power of a wind generator WTP(t) is a function of wind speed and can be calculated
using Equation (1) [42]:

WTp(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

WTrtd
p (t)× u3−u3

in
u3

rtd−u3
ou

uci ≤ u ≤ urtd

WTrtd
p (t) urtd ≤ u ≤ uou

0 u < uin or u > uou

(1)

where uci, urtd, u and uou are the cut-in speed, nominal speed, instantaneous wind speed at hub height
and cut-out wind speed for the wind turbine, respectively. WTrtd

p is the rated power output of the
wind turbine.
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2.2. PV System

The generated output power of the PV system (PVp(t)) is significantly determined by the solar
irradiances incident on the PV surface and temperature. The PV output power as a function of input
variables is given by (2) [43]:

PVp(t) = fpv × G(t)
Gstd

× [1 + θi(tpv(t)− tstd)]× PVrtd
p (2)

where fpv, PVrtd
p , G(t) is the power reduction factor, installed capacity of the PV in kW and the

incident solar irradiance, respectively. θt, Gstd, tstd is the temperature coefficient, solar irradiance, and
temperature under the standard test condition.

2.3. Energy Storage System Model

Whenever the combined output power of WT and PV generation surpasses the capacity of load
demand, the ESS transitions into the charging state. The amount of energy stored at any given time t is
primarily determined by the difference between the sum of the total PV and WT generation, and the
load demand.

2.3.1. Battery Energy Storage System (BESS)

The amount of discharging and charging power drawn or sent to the battery energy storage system,
respectively, is subject to the previous state of charge (SOC) as well as the ESS system constraints.
The SOC at any given t is determined by the following equation.

SOC(t) =
[
(PVp(t) + WTp(t))− LD(t)

βc

]
× βch + SOC(t − 1) (1 − dr) (3)

where SOC(t − 1) and SOC(t) and is the BESS state of charge for the previous and current period in
kWh, respectively. LD(t) is the load demand, βc denotes the power converters efficiency, dr and βch is
the hourly self-discharge rate and BESS charging efficiency respectively. Whenever the total generation
cannot meet the load demand, BESS shifts into the discharging mode. Consequently, the current state
of charge at any given time t is given by:

SOC(t) =
(

LD(t)
βds

− (PVp(t) + WTp(t))
)

/βds + (SOC(t − 1) (1 − dr)) (4)

where βds is the discharging efficiency. The energy storage level (SOC) must be constrained within the
upper SOCmax and the lower SOCmin bounds of the BESS.

SOCmin ≤ SOC(t) ≤ SOCmax (5)

2.3.2. Pumped Heat Energy Storage (PHES)

The PHES stores electricity as sensible heat in two thermal storage system; a hot high pressure and
temperature tank (+500 ◦C, 12 bars pressure) and a cold low pressure and temperature tank (−160 ◦C,
1 Bar). It also consists of a two compressor/expander pair, argon as a working fluid and it uses gravel
as the storage medium. The operation strategy is analogous to pumped hydro storage but rather
than pumping water, heat pumping is used to create temperature difference. Theory of operation and
development is adequately covered in [44–46]. Figure 2. shows the schematic diagram of the PHES.
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Figure 2. Schematic diagram of PHES.

The energy stored in a PHES depends on the temperature differences between the two thermal
storage system. The energy stored ESSphes(t) in the reservoirs per unit volume is the difference
between the internal energies of the storage medium in the hot and cold stores. The internal energies
of the storage medium are the function of the mass (Mr) and specific heat densities of the storage
medium (SHr). The energy stored can be determined by the temperature difference between the hot
and cold store [47] as illustrated below:

ESSphes(t) = Mr × SHr × {(T2(t)− T3(t))− (T1(t)− T4(t))} (6)

The power output and input Pphes(t) of the PHES per unit volume (for charging and discharging
instance) is determined by the mass (Mg) and the specific heat of the argon gas (SHg), and the
temperature difference [48] as follows:

Pphes(t) = Mg × SHg × {(T2(t)− T1(t))− (T3(t)− T4(t))} (7)

where (T1(t), T2(t)) are the top and (T3(t), T4(t)) are the bottom section temperature of the hot tank
and cold tank respectively.

3. Flexible Demand Resources (FDRs) and Demands Response Program (DRPs)

Figure 3 shows the flowchart for the integrated system planning method considered in this work.
The framework combines the optimal ESS scheduling and optimal DRP implementations. The FDRs
play significant roles in the flexibility management of the system whenever they are appropriately
activated to minimize the mismatch between generation and demand. The DSM approach that is
employed in this study for the DRPs is based on the optimal scheduling of appropriate FDRs in the
microgrid as explained below. The net capacity of the shiftable load demand (FDR), throughout the
system scheduling period, is assumed to have a maximum range of up to 10% up (FDRmax) and down
(FDRmin) of the initial total FDR load demand value [49].

FDRmin ≤ FDR(t) ≤ FDRmax (8)
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Figure 3. Flowchart for the proposed integrated system planning framework.

3.1. Price Elasticity of Demand and Load Modeling

A change in price of a service will have an impact on the amount of quantity demanded.
For instance, a change in the price of electricity (∂Epr

std(i)) in the ith period will result in a change
of the load demand (∂LD(j)) in the jth period either by increasing or decreasing the load demand.
Thus, a change in electricity price during the single period ith affects the load demand during all the
periods (T). The price elasticity of demand (PEφ(i,i)) gives a measure of the responsiveness at which
the end-user time-shift their energy consumption patterns with respect to change in electricity as
shown below:

PEφ(i,i) =
Epr(i)
LD(i)

.
∂LD(i)
∂Epr(i)

; ∀i, j ∈ T (9)

The price elasticity of demand entails self and cross-elasticity; the self-elasticity defines the sensitivity
of load demand with respect to price within the same pricing interval (single period elasticity) and
usually has a negative value implying some proportion of the load cannot be transferred from one
period to another. On the other hand, cross-elasticity (PEφ(i,j)) defines the load demand sensitivity
of the (ith) pricing period in response to the electricity price variation in the (jth) pricing period
(multi-period elasticity) and usually has positive value implying some proportion of the load demand
is shiftable to another period. The cross-elasticity of load demand is given by [50];
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PEφ(i,j) =
Epr

std(i)
LD(j)

.
∂LD(j)
∂Epr(i)

; ∀i, j ∈ T (10)

3.2. Critical Peak Pricing (CPP) Demand Response Program

CPP is a time-based DRP that divide electricity usage time into periods and presents the fixed
electricity prices for each period in advance; peak and off-peak periods. It is usually employed to
increase system energy efficiency and alleviate stress on the power system especially when the load
demand is likely to surpass the generation capacity. It commonly enforces a very high electricity
price during system peak load demand periods and for some specific time periods in order to achieve
load reduction during these periods, and retains a flat pricing scheme or a lower electricity price
during off-peak periods [51]. The electricity customer responds by shifting load demand from one
time period to another due to the enforced pricing scheme. The ultimate customer’s demand profile
after implementation of CPP DRP is expressed as [41,52]:

Lcpp
D (i) = LD(i)

{
1 + PEφ(i,i)

[Epr
cpp(i)− Epr

std(i) + pd(i) + ps(i)]

Epr
std(i)

+
T

∑
j=1,j �=i

PEφ(i,j)
[Epr

cpp(j)− Epr
std(j) + pd(j) + ps(j)]

Epr
std(j)

} ; for all i, j ∈ T (11)

where Epr
std(i) is the standard Kenyan electricity price before CPP DRP implementation, Epr

cpp(i), Epr
cpp(j)

is the electricity price for current ith period and the jth period after implementation of CPP DRP, pd(i)
and pd(j) are the incentives and ps(i) and ps(j) are penalties enforced for non-compliance’s of DRP.

3.3. Time-Ahead Dynamic Pricing (TADP) Demand Response Program

The cost of generation and the corresponding cost of electricity are highly affected by the shortages
and surplus of power generated in the power system. Short periods of mismatch in load demand
and generation might necessitate an over-sizing or additional capacity in the ESS that might not be
necessary or efficiently used during normal operating times. A remedy to this challenge is to offer
motivating electricity prices to influence a time shift in FDRs by the end user. A longer pricing horizon
ahead of time can guarantee end-user participation in the DRP. Thus, in TADP DRP, time-ahead
electricity pricing profile formulated as a function of the mismatch in the forecasted demand and
generated power is relayed to the end user an hour (one period) in advance.

3.3.1. Time-Ahead Dynamic Pricing Model

The electricity price for the next hour (Epr
TADP(t + 1)) is determined based on the difference

between forecasted total generation output power from renewable energy sources (PV and WT) and
the load demand L̂D(t + 1) using the following equation:

Epr
TADP(t + 1) = Epr

std(t + 1)

(
1 +

L̂D(t + 1)− (ŴTp(t + 1) + P̂Vp(t + 1))

L̂D(t + 1)

)
(12)

where P̂Vp(t + 1) and ŴTp(t + 1) represent the forecasted generation output power from the PV
and WT, respectively. Epr

std(t + 1) is the initial (standard) Kenyan electricity price initially present for
hour t + 1 before TADP DRP implementation. Epr

TADP(t + 1) is the next hour electricity price after the
implementation of TADP DRP.
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3.3.2. Time-Ahead Dynamic Pricing Demand Response Program Load Modeling

The electricity price determined one hour ahead of time for a specific period is the actual price that
would be adopted for that period. Based on the electricity price relayed in advance, the end-consumers
are either motivated/discouraged to shift their FDRs. The final economic load model after the TADP
DRP is implemented is expressed as:

LTADP
D (i) = LD(i)

{
1 + PEφ(i,i)

[Epr
TADP(i)− Epr

std(i) + pd(i) + ps(i)]

Epr
std(i)

+
T

∑
j=1,j �=i

PEφ(i,j)
[Epr

TADP(j)− Epr
std(j) + pd(i) + ps(j)]

Epr
std(j)

}; for all i, j ∈ T (13)

where Epr
std(i) is the current (ith period) Kenyan electricity price before TADP DRP implementation.

3.3.3. Gradient Boosted Regression Trees (GBRT) Model for Time-Ahead Forecast of Generation

In this work, the forecasting tasks are treated as regression problems and machine learning
regression algorithms on scikit-learn package in Python are adopted to build the models using the
Gradient boosted regression trees (GBRT) algorithm. The GBRT algorithm has a superior advantage of
not requiring complex data pre-processing of dimension transformations or reduction and does
not suffer any loss of input variable interpretation [53]. The significant feature of the accurate
implementation of the GBRT algorithm is the parameter αgbr called the learning rates. The learning
rate is a scaling parameter that determines the individual contribution of each decision tree to the final
ensemble model. The accuracy of the model is continuously improved by fitting the residual decision
iteratively until the desired model is obtained for the best learning rate. Algorithm 1 illustrates the
GBRT pseudo code algorithm.

Algorithm 1: Gradient boosted regression trees (GBRT) pseudo code algorithm.
Start:

1. Precondition: Input the training data set M = (mi, oi);i = 1..n and
a differentiate loss function L f (oi, õ)

2. Initialization: Initialize the model with a constant value:
F0(m) = argmin ∑i=1

N L f (oi, õ)
3. Estimation: for i = 1...k; grow k trees

(i) Calculate the Pseudo residuals;

rik = −
[

∂L f (oi ,õ)
∂F(mi)

]
F(m)=F(mi)

i = 1..n

(ii) Fit a residual value regression decision tree I(m)

and establish the terminal leaves
for J = 1...jK; determine the output of each leaves

that minimizes;
õjk = argmin ∑miεRij

L f (oi, Fk−1(mi) + õ)
4. Update:

Fk(m) = Fk−1(m) + αgbr ∑
jk
j=1 õjk I(mεRjm)

End: For

5. Output Fk(m)

End: Terminate the Algorithm

In order ascertain the accuracy of forecasting algorithms, three performance evaluation metrics
are used: Mean Absolute Error (MAE), Root mean squared error (RMSE) and Coefficient of
Determination (r2).
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4. Optimal Design Problem Formulation

The multi-objective optimal design model is evaluated in terms of economic and reliability criteria
as presented in the objective functions defined below:

4.1. Economic Criteria: Total Life-Cycle Cost (TPC)

The objective function of the economic criterion is formulated as a cost minimization problem
of the net present value of the total life-cycle costs (TPC) of all system components alongside the
implementation of the flexibility requirements under different system scenarios. The decision variable
of the optimization problem is the capacity of the WT (CWT), PV (CPV) and ESS (CESS).

minimize TPC =
Z

∑
z=1

{
CIz +

n=N

∑
n=1

(O&Mz + RPz − RVz)

(1 + r)n

}
× Cz (14)

where z indexes the zth component and Cz is the decision variables that represent the optimum
component capacities of each of the system components (PV, ESS, and WT). The TPC components are
the capital costs (CIz), yearly operation and maintenance costs (O&Mz), replacement costs (RPz) and
the salvage value RVz, N is the project lifetime, n is the time step in the project life, i.e., a year and r is
the discount rate. The system components have a yearly operation and maintenances cost over the
project lifetime.

4.2. Reliability Criteria: Loss of Power Supply Probability (LPSP)

The second objective considers the loss of power supply probability as the system reliability
criteria. LPSP reliability index measures and ascertains the quality and reliability performance of the
power system design under the different scenarios considered in this study. LPSP is defined as the
ratio of the sum of all energy deficits (LPS) to the total power demand. Thus, LPSP can be evaluated
by using the following expression:

LPSP =
∑T

t=1 LPS(t)

∑T
t=1 LD(t)

(15)

where
LPS(t) = LD(t)−

[
WTp(t) + PVp(t) + (SOC(t − 1)− SOCmin)× βc

]
(16)

LPSP value ranges between zero and one; a value of 0 for LPSP implies that the load demand
will always be met or satisfied, and this is the most desired and preferred performance. The following
system DRP constraints are considered during the optimization procedure, alongside the other system
component constraints that are mentioned at each design stage.

PVp(t) + WTp(t) + ESSds
p (t)− ESSch

p (t) = LD(t); without DRP
PVp(t) + WTp(t) + ESSds

p (t)− ESSch
p (t) = LCPP

D (t); with CPP DRP
PVp(t) + WTp(t) + ESSds

p (t)− ESSch
p (t) = LTADP

D (t); with TADP DRP
(17)

4.3. Overview of the Optimization Tool: Multi-Objective Particle Swarm Optimization

PSO is a population-based approach for solving discrete and continuous optimizations problem
that stemmed from and mimic the navigation behavior of swarms of bees, flocks of birds, and schools
of fish. To obtain the optimal value of the objective function at each search, two different solution
points are obtained which are called the local best, Pbesti = (pi1, pi2, ..., pid) and the global best, is
Pbestg = gbest = (pg1, pg2, ..., pgd); and the positions of the particles for the next objective function
evaluation is estimated as given below:
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Vt+1
id = w × vk

id + c1 × rand1 × (Pbestid − Xid)

+ c2 × rand2 × (gbestd − Xid)
(18)

Xk+1
id = Xk

id + Vk+1
id (19)

w = wdamp × itermax − iter
itermax

+ wi (20)

iter is the iteration count, itermax is the total iterations. wi, w f are the minimum and maximum
range of the inertia weight. The multi-objective PSO approach adopted in this work is described [54].
The repository particles guides the search within the efficient, non-inferior and admissible pareto front by
sorting out the non-dominated solutions. The exploratory capacity of the algorithm is strengthened by
a special mutation operator just like in NSGA II algorithm as explained below. If �f (�x) consists of n
objective functions each with m decision variables, then the multi-objective problem can be defined as
finding the vector �x∗ = [x∗1 , x∗2 , ..., x∗m]T which minimizes �f (�x) as shown:

minimize �f (�x) = [ f1(�x), f�2(x), ... fn(�x)] for �x∗ ∈ ε (21)

�g(�x) ≤ 0 (22)
�h(�x) = 0 (23)

�g and�h are sets of inequality and equality constraints, respectively. A point �x∗ ∈ χ is pareto optimal if
for every �x ∈ χ and I = 1, 2, ..., k either:

∀i ∈ I( fi(�x) = fi(�x∗)) (24)

or at least there is one i ∈ I such that
fi(�x) > fi(�x∗)) (25)

5. Research Case Study and Simulation Parameters

The proposed energy system planning and management approach are investigated on an
undeserved Marsabit county isolated microgrid in Kenya, which is currently served by conventional
diesel-based generators. The goal of this work is to investigate the best flexibility management
incorporated hybrid VRE energy supply combination that will completely replace the existing
diesel generators considering the cost and reliability criteria that are described above. The hourly
meteorological data of the locality (2.3369◦ N, 37.9904◦ E) was obtained from online sources [55,56] for
2015 to 2018. The meteorological data set consists of wind speed, wind direction, air pressure, relative
humidity, solar irradiance, and the temperature variables. The economic and technical parameters
were obtained from [57] through desk research and consultation with energy sector employees and
policymakers in the region. Table 1 shows the details of simulation parameters and Table 2 shows the
considered self and cross-price elasticity of demand, which is adopted from [52] modified to fit the
Kenyan case. The price elasticity of demand entails self and cross-elasticity; the self-elasticity defines
the sensitivity of demand with respect to price within the same pricing interval while cross-elasticity
(PEφ(i,j)) define the load demand sensitivity of the (ith) pricing period in response to the electricity
price variation in the (jth) pricing period. The cross-elasticity of demand is given by [50];
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Table 1. Technical, Cost & lifetime parameters of the system components.

System Component and Economic Indicators Specifications

Economics
Discount rate 4%
Inflation rate 3%
Lifetime of the project 20 years

Specification of the PV system
Capital costs 1691.5 US $/kW
O & M costs 26 US $/kW/yr
PV reduction factor 0.85
lifetime 20 years

Specification of the PHES
Round trip efficiency 70%
Power converters (Expander/compressor system) 400 US $/kW
Energy storage unit 15.08 US $/kWh
O&M (Power converters units) 12.76 US $/kW/yr
O&M (Thermal Energy unit) 0.03 US $/kWh/yr
self-discharge rate (hourly) dr 0.04%
Lifetime 20 years

Specification of the WT
Capital cost 2030 US $/kW
O& M 76 US $/kW/yr
lifetime 20 years
Wind speed (Cut-in): 4 m/s
Rated wind speed: 14.5 m/s
Cut-out wind speed: 25 m/s
Wind Shear Coefficient 0.143
Hub height: 50 m

Specification of the BESS
Capital Cost 300 US $/kWh
O & M 10 US $/kWh/yr
Round trip efficiency 85%
lifetime 5 years

Table 2. DRP self and cross-price elasticities of demand [49,50,52].

Off-Peak Period Peak Period

Off-peak period −0.1 0.016
Peak period 0.016 −0.1

The Kenyan tariff structure of 2018 was obtained from [58,59]. The current electricity rate of 15.80
US Cents per kWh for ordinary domestic consumers was considered to be the flat rate Epr

std. For this
work, the CPP DRP pricing scheme was considered to be 20.00 US Cents per kWh for peak period
from 7:00 p.m. to 10:00 p.m. while the rest of the day adopted a flat pricing of 15.80 US Cents per
kWh. TADP DRP implemented a time-ahead hourly variable pricing scheme with a maximum and
minimum electricity price of 20.00 US Cents per kWh and 10.00 US cents per kWh, respectively.

PHES has no geographical limitations [60] and have been found to be a viable ESS technology
option for both large and small-scale energy management applications. Its prospects in terms of
cost-effectiveness and flexibility provision has also been verified in [48], thus, it has been determined to
be one of the most suitable ESS options for application in isolated places such as the Kenyan microgrid
case under study. PHES stores electricity as sensible heat in thermally insulated and closed-looped
thermal storage systems which ensures that the system is isolated; hence, based on the design aspects
outlined in [47], there is a guarantee that the model is feasible for deployment for our case study. The
analysis of a proposed commercial PHES design with a maximum capacity of 16 MWh as detailed
in [45,61] has been adopted as the benchmark for many studies in the literature; thus, the system
technical and economic specifications are used in our work for the Kenyan microgrid under study.
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6. Simulation Results and Discussion

The simulation results are presented for three cases based on optimal capacity planning and
flexible operation feasibility using BESS and PHES, with and without DR. The optimal size of system
components is determined under each case at minimum investment costs and maximum supply
reliability (minimum LPSP) while satisfying the system operational and flexibility requirements.
The results of the considered three case simulation scenarios are outlined and discussed below:

• Case 1: Comparing BESS and PHES without DRP consideration.
• Case 2: Comparing BESS and PHES with CPP DRP consideration.
• Case 3: Comparing BESS and PHES with TADP DRP consideration.

6.1. Case 1: BESS versus PHES without DRP

Figure 4a,b shows the trade-off Pareto front plots for economic and reliability criteria with BESS
and PHES, respectively, under case 1. From Figure 4, as expected, the system reliability condition
improves (LPSP value decreases) as the total cost increases and vice visa. Hence, the cost-benefit
relationship at different LPSP values is analyzed and discussed using the investment cost-savings
approach. Table 3 summarizes the details of the cost-benefit analysis for case 1. The optimal selected
points are derived after multiples execution of the optimization program for LPSP values in the range
of 0% to 15%.
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Figure 4. Pareto front plots for case 1.

Table 3. Techno-economic analysis for case 1.

BESS-Based Microgrid PHES-Based Microgrid

LPSP 0% 5% 10% 15% 0% 5% 10% 15%

PV capacity (kW) 1422 1207 1003 1030 1699 1806 1652 1850
WT capacity (kW 1919 2120 2063 1774 1657 1376 1371 1108
ESS capacity (kWh) 6798 1800 900 411 7800 7546 6967 6925

TPC (US $) 1.38 × 107 1.05 × 107 9.28 × 106 8.06 × 106 9.06 × 106 8.38 × 106 8.03 × 106 7.59 × 106

A comparison of the two systems based on the ESS technology at maximum reliability condition
i.e., LPSP = 0%; it can be seen that the choice of PHES instead of BESS results in a total investment cost
reduction of about 34.28% from US $ 1.38 × 107 to the US $ 9.06 × 106. This a significant cost saving in
the microgrid planning. Hence, PHES has been shown more economical compared to BESS.

6.2. Case 2: BESS versus PHES with CPP DRP

In this case, the benefit of CPP DRP on capacity sizing optimization problem for both BESS and
PHES-based microgrid is investigated, and pareto fronts plotted. Figure 5a,b shows the Pareto front
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plots with CPP DRP considering BESS and PHES, respectively. For both cases, it can be observed from
the pareto plots that an increase in the LPSP value, the TPC decreases, this is due to the fact that the
reliability index (LPSP) and planning cost (TPC) are conflicting objective. Table 4 summarizes the
cost–benefits analysis for case 2 which involves the economic effects of critical peak pricing (CPP) DRP
for the BESS and PHES-based microgrid configuration.
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Figure 5. Pareto front for case 2.

Table 4. Techno-economic analysis for case 2.

BESS-Based Microgrid PHES-Based Microgrid

LPSP 0% 5% 10% 15% 0% 5% 10% 15%

PV capacity (kW) 1110 1027 958 1039 1826 1670 1754 1671
WT capacity (kW) 2165 2184 2054 1808 1561 1498 1230 1195
ESS capacity (kWh) 6436 1170 670 132 7789 7311 6986 6414

TPC (US $) 1.37 × 107 9.91 × 106 9.00 × 106 7.99 × 106 9.02 × 106 8.48 × 106 7.78 × 106 7.49 × 106

For the comparative analysis of the two systems configurations at LPSP = 0% (maximum reliability)
with the consideration CPP DRP; the selection of PHES as an ESS alternative to BESS in optimum
capacity resulted in 34.22% reduction in the total investment costs. This significant cost saving signifies
that PHES-based configuration is more economical and preferred investment option compared to
BESS-based microgrid.

6.3. Case 3: BESS versus PHES with TADP DRP

In this case, the prospects of TADP DRP in optimum component-sizing problem has been
investigated. The renewable energy generation forecasting is a subset feature of the TADP DRP
implementation. Hence, the GBRT prediction results for wind speed, solar irradiance and the
consequent WT and PV powers are validated using error metrics (MAE, RSME and r2) in order
to determine the suitable forecasting condition based on the learning rates αgbr. The total data set
contained 17,520 data points with an hourly resolution; from which 75% of the data are adopted for
training, and 25% are adopted for testing. Table 5 summarizes the forecasting results based on MAE,
RSME and r2 for the GBRT forecasting model under three αgbr values i.e., αgbr = 0.1, 0.3, 0.5. As it can
be noticed, the chosen value of αgbr significantly affects the precision of the GBRT forecasting model.
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Table 5. Forecasting results of GBRT model based on MAE, RSME and r2 considering three αgbr values:
αgbr = { 0.1, 0.3, 0.5 }.

GBRT Algorithm Error Metric αgbr = 0.1 αgbr = 0.3 αgbr = 0.5

Wind speed forecasts
MAE (m/s) 0.22 0.25 0.28
RMES (m/s) 0.27 0.33 0.39

r2 0.96 0.94 0.92

Wind power forecast
MAE kW 35.03 39.52 44.33
RMES kW 47.98 55.69 62.83

r2 0.96 0.94 0.92

Solar irradiance forecast
MAE W/m2 15.36 18.55 20.35
RMES W/m2 29.62 34.87 40.50

r2 0.99 0.98 0.98

Photovoltaic power forecast
MAE kW 17.43 21.05 23.08
RMES kW 33.60 39.55 45.94

r2 0.99 0.98 0.98

The best wind speed and wind power forecast results are realized when the αgbr value chosen
equals 0.1. The least error values indicated by MAE and RMSE of 0.22 (m/s) and 0.27 (m/s) for
wind speed prediction and 35.03 kW and 47.98 kW for wind power forecast respectively confirms the
consequences of the αgbr value chosen. The results accuracy are further validated using the r2 metric;
the highest value of r2 = 0.96 further establishes that the GBRT at αgbr = 0.1 is an appropriate model
for wind speed and wind power forecasting. Figure 6. shows a comparison of the actual wind speed
versus the predicted wind speed with one-hour-ahead rolling forecasting horizon using the GBRT
model when αgbr is set to 0.1 (for the best αgbr value).
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Figure 6. Comparison between the actual versus the predicted wind speed with one-hour-ahead rolling
forecasting horizon using the GBRT model at αgbr = 0.1 (from 1/12/2018 to 5/12/2018).

Also, for solar irradiance and PV power prediction, the best results are obtained when the αgbr
parameter is set to 0.1. The minimum error values indicated by MAE and RMSE of 15.36 (W/m2)
and 29.62 (W/m2) for solar irradiance prediction and 17.43 kW and 33.60 kW for PV power forecast,
respectively, validate the parameter selection. Also, the highest r2 metric of 0.99 shows the goodness
of fit and suitability of the model selection as being appropriate. Figure 7 shows a comparison of the
actual versus the predicted solar irradiances with one-hour-ahead rolling forecasting horizon using
the GRBT model when αgbr is set to 0.1 (for the best αgbr value).
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Figure 7. Comparison of the actual versus the predicted solar irradiances with one-hour-ahead rolling
forecasting horizon using the GRBT forecasting model at αgbr = 0.1 (from 1/12/2018 to 5/12/2018).

Figure 8a,b shows the Pareto front plots with TADP DRP considering BESS and PHES,
respectively; and Table 6 summarizes the cost–benefits analysis for the BESS and PHES-based
microgrid configuration.
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Figure 8. Pareto front plots for case 3.

Table 6. Techno-economic analysis for case 3.

BESS-Based Microgrid PHES-Based Microgrid

LPSP 0% 5% 10% 15% 0% 5% 10% 15%

PV capacity (kW) 1424 1191 1210 1193 1858 1831 1842 1826
WT capacity (kW) 1871 2020 1878 1655 1513 1363 1204 1048
ESS capacity (kWh) 5603 1341 460 181 7494 7326 7121 6397

TPC (US $) 1.28 × 107 9.82 × 106 8.78 × 106 7.83 × 106 8.93 × 106 8.38 × 106 7.89 × 106 7.34 × 106

According to the results of optimal capacity sizing considering TADP DRP at LPSP=0%, it can
be noted that adoption PHES-based configuration will results in about 30.23% investment costs
reduction compared to the BESS-based. Hence, PHES-based microgrid is the most cost-effective
microgrid configuration compared to the BESS-based microgrid design. For all the scenarios (case 1–3)
investigated, it is seen that PHES gives the lowest investment cost on ESS compared to BESS. Thus, for
a cost-effective long-term investment, it can be deduced that the selection of the PHES-based microgrid
has a better economic prospect compared to BESS-based configuration.

6.4. Techno-Economic Comparison for Each ESS Type Based on DRP Options at Maximum System Reliability
(LPSP = 0%)

In this section, different microgrid configurations based on the DRP options are evaluated based
on the net investment cost for different ESS types. The prospect of each configuration in the long-term
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microgrid planning with the possibility of high renewable energy fraction is reflected in the net
investment cost under each system configuration. Figure 9a,b shows the pareto front plots comparison,
without and with DRPs, for BESS and PHES-based microgrid design, respectively.
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Figure 9. (a,b) shows the Pareto front plots comparison for BESS and PHES-based microgrid design
respectively, based on the DRP flexibility options.

Table 7 summarizes the investment cost under each configuration and flexibility options.
The reference cases are the ones without DRP consideration (case 1) and the cost implication of
introducing different types of DRP for each ESS-type microgrid are duly analyzed in terms of
percentage cost reduction.

Table 7. Techno-economic analysis for each ESS type based on the DRP flexibility options.

BESS-Based Microgrid PHES-Based Microgrid

DRP type
Case 1:

without DRP
Case 2:

CPP DRP
Case 3:

TADP DRP
Case 1:

without DRP
Case 2:

CPP DRP
Case 3:

TADP DRP

PV capacity (kW) 1422 1110 1424 1699 1826 1858
WT capacity (kW) 1919 2165 1871 1657 1561 1513
ESS capacity (kWh) 6798 6436 5603 7800 7789 7494
TPC (US $) 1.38 × 107 1.37 × 107 1.28 × 107 9.06 × 106 9.02 × 106 8.93 × 106

% cost saving - 0.53% 7.20% - 0.44% 1.48%

For the BESS-based microgrid, introducing CPP DRP results in a cost saving of 0.53% of the
investment from US $ 1.38 × 107 (without DRP) to 1.37 × 107; this cost saving is as a result of 21.59%
and 5.33% reduction in the PV and BESS component sizes, respectively. This is because CPP DRP
decreased the load demand and consequentially, the BESS dependency during the peak demand
periods. For the PHES-based microgrid, the introduction of CPP DRP results in 0.44% cost reduction
from US $ 9.06 × 106 to US $ 9.02 × 106. The cost-benefit is because of the 5.8% and 0.14% capacity
size reduction of WT and PHES, respectively, and an increase of 7.4% PV capacity. For the two cases,
It should be noted that there is a decrease in the investment costs as the CPP DRP shifts the FDR to
off-peak from the peak period of the system and ensure a more flattened load profile and prevent
sub-optimal capacity sizing.

The potential superiority of TADP DRP over CPP DRP for microgrid design for high renewable
energy penetration can be seen in the cost–benefits illustrated in Table 7. The inclusion of the TADP
DRP in the BESS-based system resulted in 7.2% cost saving in the total planning costs. The planning
cost reduction is due to a decrease of 17.58% and 2.5% for BESS and WT respectively with a slight
increase of 0.11% in PV component size. Similarly, this trend is noted for PHES-based system with
a total cost reduction of 1.48% resulting from 3.98% and 8.69% decrease in PHES and WT capacities,
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respectively. However, this results in an increase PV capacity of about 9.36%. Figure 10 illustrates the
role and impact of DRPs in minimizing the gap between total generated RES power and load demand
profiles. The prospects of TADP DRP over CPP DRP to reduce the mismatch between the load and
the RES generated power profiles has been vividly portrayed by significant optimum component size
reduction and hence the TPC minimization to realize the techno-economic benefit of a microgrid.

Figure 10. Role and impact of DRPs in minimizing the gap between total generated VRES power and
load demand profiles.

Therefore, for the two system and types of DRP investigated, it can be inferred that the application
of TADP DRP is more investment-worthy compared to the CPP DRP. TADP DRP short-term flexibility
option takes into account the varying generation profile of WT and PV from the forecasting results;
thus, the reason for its robustness.

7. Conclusions

This paper investigated the prospects of interlinking the cost of short-term flexibility management
of microgrid with the long-term optimal capacity planning models towards achieving a 100% green
microgrid by using DRP and forecasting. The long-term capacity planning of energy systems involves
the evaluation of the optimal size of each of the system component while the short-term flexibility
options are implemented within the optimal energy management strategies. The DRPs are incorporated
as flexibility options to minimize the gap between demand and supply, thus minimizing the overall
system costs. The forecasting provides an outlook of anticipated generated power proper scheduling for
the effective implementation of one of the DRPs employed in this work. The suggested methodology, in
this work, seeks to provide a sustainable and cost-effective transformative approach towards achieving
a 100% renewable energy generation for Marsabit county microgrid at a reduced cost of investment
by cutting down on excessive sizing of system components. This can serve as a benchmark for other
under-served isolated regions all over the world.

For the interlinked multi-objective optimization procedure, credible scenarios were investigated
considering two ESS technology-based configurations without and with the inclusion of the DRP.
DRPs were applied to provide the required operational flexibility that involves shifting the operation
of the FDRs from one period to another to minimize the gap between the generation and demand
profiles. The two objectives of the techno-economic optimization procedure are the minimization of
loss of load probability (LPSP), which is the system reliability criterion and the minimization of the net
present value of the investment costs, which is the economic criterion. The forecasting for TADP DRP
implementation was performed using the GBRT algorithm on scikit-learn in Python due to its precision
and less computational requirement compared to other algorithms, and the MOPSO was adopted
for the optimization procedure. The LPSP is set as the standard for economic comparison under
each scenario considered in this work. At LPSP = 0%, i.e., maximum system reliability, the potential
benefit of TADP DRP outperformed the CPP DRP as reflected on the investment cost component. Also,
for the ESS-type performance comparison, PHES was shown to be more cost-effective compared to
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BESS due to its low cost per kWh of storage capacity and its resultant economic effect on the whole
system configuration.
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Abbreviations

LCC Life cycle costs.
r discount rate (%).
REA Rural electrification authority.
ABE African business education.
J ICA Japan international cooperation agency.
DSM Demand side management.
DRP Demand response program.
PHES Pumped Heat energy storage.
ESS Energy storage system.
PV Photovoltaic system.
WT Wind turbine.
VRES Variable renewable energy sources.
BESS Battery energy storage system.
dr hourly self-discharge rate of ESS.
CPP Critical Peak Pricing.
TADP Time-ahead dynamic pricing.
FDR Flexible demand resources.
FDRmin Minimum FDR limit.
FDRmax Maximum FDR limit.
LD Load demand (kW).
Lcpp

D CPP load demand (kW).
LTADP

D TADP load demand (kW).
Epr

std Standard electricity price.
ETADP

pr TADP electricity price.
LPSP Loss of power supply probability.
PVp instantaneous power output of Photovoltaic system (kW).
WTp instantaneous power output of Wind turbine (kW).
SOCmin Minimum limit of the SOC.
SOCmax Maximum limit of the SOC.
SOC State of charge of ESS.
N Project lifetime
n year index
T Total number of time periods, i.e., in a year scheduling horizon
t instantaneous time index in the scheduling horizon
PVrtd

p installed rated power of PV (kW).
WTrtd

p installed rated power of WT (kW).
G incident solar irradiance (W/m2).
tpv temperature of PV module.
θt Temperature coefficient of the PV.
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fpv Power reduction factor of PV (%).
Gstd standard test condition incident solar irradiance (1000 W/m2).
Mr mass of PHES storage medium.
SHr specific heat densities of storage medium.
βch charging efficiency of the ESS.
βds discharging efficiency of the ESS.
βc power converters efficiency.
pd incentive payment.
ps penalty payment.
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Abstract: In some countries, renewable energy resources have become one of the mainstreams of
energy savings and sustainable development. Thailand is one of the major countries to use renewable
energy generation facilities in public buildings. In particular, public educational institutes consume
large amounts of electricity from the grid. To reduce the electricity dependency on the national grid
connection and greenhouse gas emissions, this paper introduces potential optimized solutions of
renewable energy generation systems for a public university in Thailand, Chiang Mai University.
Based on the simulation results from HOMER software, the potential configuration organized by
PV panels, batteries and converters is proposed. The suggested configuration achieves 100% of the
renewable fraction with $0.728 of the cost of energy for per electricity. Moreover, the greenhouse gas
emissions are significantly reduced. Both the implications and limitations are presented based on
simulation results.

Keywords: renewable energy; sustainability; greenhouse gas emission; economic feasibility

1. Introduction

Owing to the considerable social and environmental concerns, environment and energy issues are
two of the main motivations of global sustainable development [1]. In particular, certain countries
have struggled to achieve two goals, economic growth and energy savings [2]. Among these
countries, Thailand is one of the major countries attempting to contribute energy savings [3]. In 2013,
approximately 8.58% of the final electricity consumption was produced by total renewable energy
resources (14,107 GWh from 164,322 GWh of the final consumption) [4]. Although this share is not
insignificant compared to other countries, the electricity generated from renewable energy resources,
which are one of the most appropriate to use renewable energy facilities, could be larger than the
current amount of renewable energy facilities [5]. Moreover, the majority of renewable energy facilities
currently used in Thailand are hydro and biomass facilities (Table 1; [5]). Therefore, solar and wind
energy have significant potential.

Moreover, because Thailand which is one of the nations in the United Nations Framework
Convention on Climate Change (UNFCCC), agreed the Paris Agreement which presents the Intended
Nationally Determined Contribution (INDC), the government of Thailand should attempt to reduce the
emission of greenhouse gases (GHG) by utilizing renewable energy resources [6]. Table 2 summarizes
key descriptions which are applied to Thailand.

Appl. Sci. 2019, 9, 2319; doi:10.3390/app9112319 www.mdpi.com/journal/applsci56
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Table 1. Current status of electricity production from renewable energy facilities in Thailand [5].

Sources Amount (GWh) Share

Primary solid biofuels 6141 43.50%
Hydro 5748 40.70%
Solar PV 1080 7.70%
Biogases 539 3.80%
Wind 305 2.20%
Municipal waste 293 2.10%
Geothermal 1 -
Solar thermal <1.0 -
Tide, wave, ocean <1.0 -

Table 2. Key points which are applied to Thailand in the Paris Agreement [6,7].

Item Descriptions

Greenhouse gas emissions 20% reduction of GHG emissions compared to the projected
BAU (business-as-usual) target in 2030

Global average temperature increase Below 2 celcius degrees
National renewable energy targets to
respond the Paris agreement

30% of total energy consumption from renewable energy
resources in 2036

As the initial part of Thailand national government’s contribution, the government has aimed to
apply renewable energy facilities in public buildings for energy savings [8]. Among these buildings,
public education institutes are required to contribute to energy saving through the installation of
renewable and sustainable energy facilities [9].

Currently, Thailand has employed a long-term national energy and electricity planning policy
which is called as the Power Development Plan (PDP) from 2015 to 2036 [10]. The majority of
PDP considers the production and distribution of renewable energy facilities in Thailand. That is,
renewable energy and its facilities are among the top priorities in the successful applications of PDP.
Because dependence on fossil fuels can be environmentally and economically unsustainable with
notable heavy burdens on the national economy, Thailand’s government hopes to fully revise its
national energy systems with renewable energy. Based on the key concept of PDP, the Alternative
Energy Development Plan 2015 was introduced and employed for the reduction of dependence on fossil
fuels and the promotion of using alternative energy facilities from 7279 MW to 19,635 MW-capacity
(2014–2036).

However, only few studies have investigated and explored the potentiality and possibilities of
renewable energy facilities in Southeast Asia. Table 3 summaries the findings of previous studies
which were conducted in Southeast Asia.

Table 3. Examples of the suggested configuration of renewable energy production systems in
Southeast Asia.

Regions Year Configuration Cost and Renewable Fraction

Maldives [11] 2018 PV-diesel generator-battery $0.245 per kWh of COE (cost of energy) and 30% of renewable fraction
Indonesia [12] 2013 PV-wind turbine-battery $0.751 per kWh of COE and 100% of renewable fraction
Myanmar [13] 2018 PV-diesel generator-battery $0.193–$1.830 per kWh of COE
Thailand [14] 2002 PV-diesel generator-battery $0.589 per kWh of COE and 36.9% of renewable fraction
Cambodia [15] 2017 PV-diesel generator-battery $0.377 per kWh of COE and 13.0% of renewable fraction
Malaysia [16] 2017 PV-battery $1.220 per kWh of COE and 100% of renewable fraction

As presented in Table 3 and the findings of previous studies conducted in Southeast Asia, there are
notable economic burdens in successfully diffusing renewable energy production facilities. Thus,
several nations have attempted to preferentially employ the facilities with the considerations of their
public institutions and organizations [17,18].
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Therefore, the current study introduces the optimal configuration of renewable energy generation
systems for Chiang Mai University, which is one of the largest public universities in Thailand.
Using HOMER software (Hybrid Renewable and Distributed Generation System), the possible
components of the configuration are introduced by reducing the environmental pollution and the
dependence on the national grid system. Although there are notable limitations of HOMER software in
exploring the feasibility of renewable resources including the needs of time-series datasets, notable time
consumption, and certain criteria on converge, HOMER software can consider multiple combinations
of different energy-related technologies, provide relatively precise results, and present optimized
configurations of energy production systems [19]. That is, the current study aims to respond to the
following research questions.

• Research question 1 What is the optimal renewable electricity production system for Chiang Mai
University in Thailand?

• Research question 2 How much are the amount of greenhouse gas emissions reduced by as a
result of using the optimal system for the university?

2. Chiang Mai University

2.1. Location and Facilities

Chiang Mai University is one of the largest universities in Thailand [20]. Because the university is
public, “the Energy Conservation Promotion Act of Thailand for government building” should be applied [21].
This means that energy conservation and saving facilities should be constructed for the buildings.
Under the act, the establishment of these facilities is fully supported by the government. In the
university, there are approximately 170 buildings. Although the university is organized in four
separate campuses, the main campus, Suan Sak Campus, has the main electricity demand of the
university. The latitude and longitude of the university are 18.80◦ N and 98.95◦ E, respectively.
This means that the main campus is located approximately 5 km-west from the center of the city.
In 2015, approximately 36,000 students and 2500 staff worked in the university. Figure 1 shows the
location of Chiang Mai University, Thailand [20].

Figure 1. The location of Chiang Mai University (created by the authors).

2.2. Load Information

The current electricity system of Chiang Mai University is operated by the national grid system.
The amount of electricity consumed in 2015 was calculated to be 17,654,195 kWh. Because this amount
is too heavy to simulate, the current study used the 50% scaled electricity load information for the
simulation. Based on the 50% scaled electricity load information, 1385 kW of peak electricity and
19,472 kWh/d of average daily peak electricity were examined. The load factor in 2015 was calculated
to be 0.586 (Figure 2).
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Figure 2. Monthly seasonal electricity load profile of Chiang Mai University (created by the authors).

2.3. Wind Resources

The wind resource datasets of Chiang Mai University were obtained from the Thai Meteorological
Department (2014) [22]. Because the height of wind turbines currently operated in Thailand is 25 m,
the wind speed at 25 m was considered to be intermediate between that at 50 m and at the ground.
Figure 3 shows the monthly average wind speed of the university. The annual average wind speed is
2.507 m/s.

Figure 3. Wind resource information of Chiang Mai University (created by the authors).

2.4. Solar Resources

The datasets provided by the National Aeronautics and Space Administration (NASA) were used
as the information of solar resources in the simulation [23]. Figure 4 presents the annual baseline
datasets of the solar resources. Based on the datasets, 0.554 of the annual solar clearness index and
5.257 kWh/m2/d of the solar average daily radiation are presented. The definition of solar clearness
index is defined as “the ratio of the daily horizontal radiation to the extraterrestrial value” [24].
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Figure 4. Solar resource information of Chiang Mai University (created by the authors).

3. Key Parameters for the Simulation

3.1. Annual Real Interest Rate

To calculate the accurate economic results from the simulation, the annual real interest rate in
Thailand should be input in the HOMER simulations [25]. Based on the official introduction of the
World Bank, an annual real interest rate of 5.38% was used [26].

3.2. Economic Evaluations

Before the considerations of economic evaluations, the current study only considers the
configurations which can achieve 100% of renewable fraction. To evaluate the simulation results,
the optimal configurations were ranked by two economic outputs, the cost of energy (COE) and the
net present cost (NPC). The COE is referred to as “the average consumed cost in producing 1 kWh from the
suggested system” [27]. Moreover, the NPC is “the consumed cost in establishing, operating, maintaining,
and replacing the components of the suggested system in the project lifetime” [28,29]. Based on a previous
simulation background, the project lifetime was assumed to be 25 years. Other specific economic
methods and calculations used in the simulations were employed by the validated examinations
introduced by [30].

3.3. Environmental Parameters

Based on the electricity and energy generation information of the traditional grid system, 632 g of
CO2 (carbon dioxide), 2.74 g of SO2 (sulfur dioxide), and 1.34 g of NO and NO2 (nitrogen oxides) are
reduced when the grid system does not need to generate 1 kWh of electricity.

4. Renewable Electricity Generation Systems

To propose independent renewable electricity generation systems, PV arrays, wind turbines,
batteries, and a converter were employed as the possible components for organizing the systems.
Table 4 lists the cost specifications of the components used in the simulations based on the cost
information of the components in prior studies [27–30]. HOMER was used to present the optimal
configurations of possible renewable electricity generation systems for Chiang Mai University.
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5. Results

Table 5 and Figure 5 list the optimal configuration composed by PV arrays, wind turbines,
a converter, and batteries. Table 6 shows the total and annual costs of the components in the simulation.
The combination of 12,780 kW-capacity of the PV arrays, 17,965 battery units with a 1525 kW-capacity
of the electric converter is suggested to respond to the electricity demand of Chiang Mai University.

Figure 5. The suggested configuration (created by the authors).

Table 5. Optimal configuration for Chiang Mai University (created by the authors).

Components Index Components Index

PV array 12,780 kW Initial capital cost $46,607,984
Wind turbine 0 unit Operating cost $1,734,385 per year
Battery 17,965 units Total net present cost $70,147,848
Converter 1525 kW Cost of energy $0.728 per kWh
Renewable fraction 100%

Table 6. Total and annual costs of the optimal configuration (created by the authors).

Category Component Capital ($) Replacement ($) O&M ($) Salvage ($) Total ($)

Total cost PV array 23,004,000 8,065,651 4,336,400 −4,654,895 30,751,156
Batteries 22,078,984 18,050,268 2,438,292 −5,460,543 37,106,988
Converter 1,525,000 694,860 206,980 −137,149 2,289,690
System 46,607,984 26,810,779 6,981,672 −10,252,586 70,147,848

Annual cost PV array 1,694,904 594,266 319,500 −342,966 2,265,704
Batteries 1,626,750 1,329,919 179,650 −402,325 2,733,993
Converter 112,360 51,196 15,250 −10,105 168,701
System 3,434,013 1,975,382 514,400 −755,397 5,168,399

The optimal configuration shows $5,168,399 of the annual costs with $0.728 per kWh of the COE
level. The cash flow is introduced in Figure 6. The annual electricity production was estimated to
be 20,768,330 kWh. Figure 7 presents the monthly electricity production. The monthly PV power
production and battery state of charge are presented in Figures 8 and 9, respectively.
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Figure 6. Summary of cash flow in the suggested configuration (created by the authors).

Figure 7. Monthly production of electricity from the suggested configuration (created by the authors).

Figure 8. Monthly PV power production of the suggested configuration (created by the authors).
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Figure 9. Monthly battery state of charge of the suggested configuration (created by the authors).

The key findings from the simulation results in the current study could be introduced as follows.
First, the combination of PV array-batteries-converter was proposed for Chiang Mai University.
Second, the suggested configuration from the simulation shows $70,147,828 of the total NPC level with
$0.728 kWh of the COE level. Third, the optimal configuration meets the 100% renewable fraction,
because the purpose of this study was to present independent renewable electricity generation systems
for Chiang Mai University.

Moreover, there are the notable amounts of the annual reduced environmental pollutants of the
proposed configurations, instead of using the current grid system. 4,487,738 kg of CO2, 19,456 kg of
SO2, and 9515 kg of NO and NO2 cannot be annually emitted by employing the proposed configuration
in this study.

6. Discussion and Conclusions

To respond rapidly to the increased electricity demand in countries with sustainable development,
and to reduce environmental pollution, several countries have set national plans and policies for
renewable energy production facilities [34]. Following this effort, the current study proposes
the potential configuration of renewable energy production facilities for Chiang Mai University
in Thailand to utilize local renewable resources. Two economic evaluations, COE and NPC,
were used to assess the economic feasibility of the configuration. Related to research question 1,
the potentially optimal configuration was organized by 12,780 kW-capacity PV array, 17,965 battery
units, and 1525 kW-capacity electronic converter.

The configuration, which was composed of a PV array, a converter and batteries with a 5.38%
annual real interest rate, achieved a $0.728 per kWh COE with a 100% renewable fraction. The results of
the simulation shows the possibility of an eco-friendly campus in Thailand by presenting the potential
configuration of renewable energy generation systems for Chiang Mai University. Although the
simulation results show heavy initial capital costs, the suggested systems can be practical in allowing
the university to be a long-term eco-friendly campus. In addition, because the simulations did not
consider the national grid system, which is used as the current electricity system of the university,
the suggested systems can achieve greater performance by trading the electricity between the suggested
systems and the grid connection. Moreover, using the suggested system shows the significantly
reduced environmental pollutants. Related to research question 2, the emissions of greenhouse gas
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are notably reduced. Moreover, compared to the current electricity system of Chiang Mai University,
179,510 kg of CO2, 778 kg of SO2, and 381 kg of NO and NO2 can be annually eliminated when the
suggested system is installed and operated. It means that using the suggested system can provide
environmental benefits for the university.

Compared to the findings of several previous studies conducted in Southeast Asia [12,14],
the simulation results of the current study indicated that the suggested configuration can achieve
100% of renewable fraction with $0.728 per kWh of COE. Considering the suggested configuration
of previous studies in Thailand [14], the suggested configuration in the current study excluded the
usage of diesel generators. Considering about $0.858 per kWh of COE is provided by the national grid
system in Thailand [35], the COE level presented by the suggested system, $0.728 per kWh of COE,
is considered as the economical configuration.

This study had several limitations. First, other policies on renewable energy in Thailand were
not considered. For example, the Thailand government started to apply feed-in-tariff policies to
power production facilities [36,37]. Second, economic theories that can be used in the energy industry
were not considered in the simulations. Prior studies found that there are notable economic theories
validated in the renewable energy industry [38]. Third, the economic dynamics of developing countries
were not considered. Several scholars indicated that the economic dynamics of developing countries
can be a main hindrance to diffusing renewable energy facilities [39]. For example, the pay back period
with the internal rate of return of the suggested system can be considered. Third, because the amount
of electricity considered in Chiang Mai University is significantly heavy to simulate (17,654,195 kWh),
the current study employs the 50% scaled electricity load information. Therefore, future studies should
extend the findings of the current study by addressing these limitations.
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Abstract: China has built four stations in Antarctica so far, and Zhongshan Station is the largest
station among them. Continuous power supply for manned stations mainly relies on fuel. With the
gradual increase in energy demand at the station and cost of fuel traffic from China to Zhongshan
station in Antarctica, reducing fuel consumption and increasing green energy utilization are urgent
problems. This research considers a standalone renewable energy system. The polar environments
and renewable energy distribution of area of Zhongshan station are analyzed. The physical model,
operation principle, and mathematical modeling of the proposed power system were designed.
Low-temperature performance and state of charge (SOC) estimation method of the lead–acid battery
were comprehensively tested and evaluated. A temperature control strategy was adopted to prevent
the battery from low-temperature loss of the battery capacity. Energy management strategy of the
power system was proposed by designing maximum power point tracking (MPPT) control strategies
for wind turbine and PV array. The whole power system is broadly composed of a power generator
(wind turbine and PV array), an uploading circuit, a three-phase rectifier bridge, an interleaved Buck
circuit, a DC/DC conversion circuit, a switch circuit, a power supply circuit, an amplifier, a driver
circuit, a voltage and current monitoring, a load, battery units and a control system. A case study in
Antarctica was applied and can examine the technical feasibility of the proposed system. The results
of the case study reveal that the scheme of standalone renewable energy system can satisfy the power
demands of Zhongshan Station in normal operation.

Keywords: renewable energy; low-temperature energy storage; SOC; simulation

1. Introduction

The rapid changes of sea ice condition in Arctic and Antarctica in recent decades have been
considered one of the most impactful phenomena on Earth [1–3]. There are more and more researches
and observations organized by China in Antarctica every year. Up to now, China has four Antarctic
research stations, namely the Great Wall Station (62◦12′59” S, 58◦57′52” W), the Zho2033ngshan Station
(69◦22′24” S, 76◦22′40” E), the Kunlun Station (80◦25′01” S, 77◦06′58” E) and the Taishan Station
(73◦51” S, 76◦58′ E). The Great Wall Station and Zhongshan Station are both perennial research stations,
which have the ability to accommodate dozens of expedition members and researchers to spend
the whole year in Antarctica. Zhongshan Station was established in an area of Larsemann Hills on
East Antarctica on 26 February 1989 as a Chinese observation base of high altitude physics, glaciers,
atmosphere, ocean, biological ecology, geology, geomagnetism etc. Zhongshan Station is also the base
camp for the Chinese National Antarctica Inland Research Base. Zhongshan Station can accommodate
about 25 wintering personnel and 600 summer personnel. The current energy supply of Zhongshan
Station mainly depends on fuel. The ecological environment in Antarctica is very fragile, and the
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fuel produces a lot of harmful gases. Although treated by Zhongshan Station, it cannot achieve zero
pollution. The fossil fuels used by Zhongshan Station were transported by the Chinese observatory ship
Xuelong every year. As the demand of research and observations increases in Antarctica, the amount
of fuel consumption increases accordingly. Therefore, new demands for power supply in Antarctica
for green, sustainable and less costly energy sources such as wind, solar, ocean were created.

When humans do research in Antarctica, the impact of human activities on the natural environment
of the polar region should be minimized as much as possible. Based on the special meteorological
condition of Antarctica, some demands need to be proposed during designing and building the
power system used in Zhongshan Station, East Antarctica. The use of fossil fuels is limited due to
the inevitable pollution. There are abundant resources of wind, solar, and ocean energy in Antarctica,
which can be considered a great advantage in the development of environmentally friendly power
generation. Some works and research have reported on small standalone hybrid wind–solar systems
which are isolated from the grid for observing systems deployed in the field in the Arctic Ocean and
Antarctica [4]. The design of the hybrid wind–solar system was adopted because of the fluctuations of
the solar and wind energy resources in polar regions. Some researches of hybrid wind–solar systems
have reported. A report by Reference [5] indicates that the best fit of the wind turbine and photovoltaic
(PV) array to a given load can be determined by the least square method. Some methods of modeling,
designing and evaluating of hybrid renewable energy systems were also developed [6]. A hybrid
solar–wind–battery system was used in the isolated site of Potou in the northern coast of Senegal to
realize the minimization of the annualized cost and loss of power supply probability [7]. Based on a
methodology of optimal sizing of a hybrid PV/wind system, this hybrid power system was installed
on Corsica and can meet the desired system reliability requirements [8]. In some harsh environments
in Iraq, the design of hybrid systems can be considered renewable resources of power generation and
the simulation results illustrate that it is possible to use the solar and wind energy to generate enough
power for remote areas [9]. Renewable energy such as wind energy and solar energy have been used
in Antarctica. Mawson Station of Australia has built two 300 KW wind turbines to provide continuous
power since 2003. On Ross Island in Antarctica, a wind farm has been used to realize 100% of the
energy supply of Scott Base of New Zealand and part of the power requirements of McMurdo Station
of United States of America. For Princess Elisabeth Station of Belgium, 300 m2 solar panels have been
installed and can generate 49 MWh [10]. Syowa Station of Japan has built 55 KW of solar panels to
produce an annual output of 44,000 KW h for accommodating up to 110 people in the summer and
28 people in the winter [11].

For a hybrid PV/wind system in Polar Regions, an energy storage system (ESS) plays an important
role in storing excess energy and releasing the power as a reliable back-up to the power system for
unpredictability and weather dependence of wind and solar energy. An integrated wind–PV hybrid
system with a battery ESS was proposed and a power management strategy of this system can realize
rapid control of the outputs of wind and PV power for regulating the battery current [12]. In the design
of an isolated renewable hybrid power system, a methodology of battery sizing was used to determine
the sizing curve and the feasible design space [13]. Using solar, wind, fuel cell, and batteries as input
sources may be able to meet the load demand and an energy management strategy is proposed for a
DC microgrid [14,15]. A case study of a stand-alone photovoltaic (PV) system was proposed and the
environmental impact of batteries used in the renewable energy system was evaluated [16]. Due to
the different seasonal changes of power production and demand, the design of renewable energy
system should involve the use of surplus energy [17]. A multi-energy system with seasonal storage
was designed and optimized in terms of total annual costs and carbon dioxide emissions [18].

In this study, a new standalone renewable energy system of the Chinese Zhongshan Station in
Antarctica was designed to realize an environmentally friendly energy supply and to obtain high
power generation efficiency. The physical model and mathematical model of the standalone renewable
energy system were proposed [19]. Lead–acid batteries were selected as an energy storage system for
the standalone hybrid windsolar system and a temperature control strategy was adopted to prevent the
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battery from low-temperature loss of the battery capacity. Energy management strategy of the power
system was also proposed based on results of low-temperature characteristics of battery. The whole
power system is broadly composed of 13 parts: (1) a power generator (wind turbines and PV array),
(2) an uploading circuit, (3) a three-phase rectifier bridge, (4) an interleaved Buck circuit, (5) a DC/DC
conversion circuit, (6) a switch circuit, (7) a power supply circuit, (8) an amplifier, (9) a driver circuit,
(10) a voltage and current monitoring, (11) a load, (12) battery units, (13) a control system. A case study
of the operational results of the standalone renewable energy system was examined to evaluate the
technical feasibility and stability. Analysis of simulation operation results, emission reduction and
costs and benefits of renewable energy applications in Antarctica were completed.

In these contexts, this paper focuses on exploring a standalone renewable energy system for
Zhongshan Station. Section 2 describes the atmospheric conditions of the study area. Section 3 gives
the results of the physical model, operation principle, and mathematical modeling of the power system.
The results of the low-temperature characteristics of batteries are shown in Section 4. The energy
management strategy of hybrid wind–solar system is given in Section 5. Section 6 introduces the
design of the whole power system. The results of a case study of the hybrid wind–solar power system
in Zhongshan Station are presented in Section 7. The conclusions are in final section.

2. Atmospheric Conditions of Zhongshan Station, East Antarctica

The meteorological data of Zhongshan Station were obtained from a manned weather station
in 2015. Table 1 summarizes the various sensors used in the manned weather station. The weather
station consists of a wind speed and wind direction detection sensor (Wind Monitor Model 05103-45,
R.M.Young, Traverse City, MI, USA), a temperature and humidity sensor (HMP155A, Vaisala, Vantaa,
Finland), an atmospheric pressure sensor (PTB110, Vaisala, Vantaa, Finland). The Wind Monitor sensor
has a rugged and corrosion-resistant construction which is suitable for wind measuring applications
in harsh environments. The four blade helicoid propeller of the wind speed sensor produces an AC
sine wave voltage by rotation. The vane angle of the wind direction sensor is sensed by a precision
potentiometer. The Wind Monitor sensor mounts on standard one-inch pipe. The temperature and
humidity sensor has excellent stability and can withstand harsh environments. The temperature and
humidity probe is protected with a sintered Teflon filter and a radiation shield, which can increase its
lifetime by waterproofing, sandproofing and dustproofing. The atmospheric pressure sensor (PTB110)
with the capacitive detection principle is a silicon capacitive absolute pressure sensor, which combines
the outstanding elasticity characteristics and mechanical stability of single-crystal silicon.

Table 1. Sensor information of the manned weather station.

Sensor Name Performance Sensor Model

Wind speed Temperature range: −60–30 ◦C
Accuracy: 0.5 m/s

Wind Monitor Model 05103-45,
R.M.Young, Traverse City, MI, USA

Wind direction Temperature range: −60–30 ◦C
Accuracy: 0.3◦

Wind Monitor Model 05103-45,
R.M.Young, Traverse City, MI, USA

Air temperature Temperature range: −60–10 ◦C
Accuracy: 0.1 ◦C HMP155A, Vaisala, Vantaa, Finland

Air humidity Temperature range: −60–10 ◦C
Accuracy: 2%RH HMP155A, Vaisala, Vantaa, Finland

Atmospheric pressure Temperature range: −60–30 ◦C
Accuracy: 0.6 hPa PTB110, Vaisala, Vantaa, Finland

The data of wind speed, wind direction, air temperature, relative humidity and air pressure
measured by the weather station in Zhongshan Station from 1 December 2014 to 1 November 2015
are shown in Figure 1. The height of the wind speed and direction with respect to the ground is
10 m. During this period the mean wind speed was 9.8 m/s. The maximum and minimum values
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of wind speed were 35.9 m/s and 0 m/s, respectively (Figure 1a). The wind near Zhongshan Station
was dominated by strong easterly winds, but there were westerly winds with lower wind speeds in
February and March (Figure 1b). Surface winds at Zhongshan Station are generally consistent with the
observations before. Air temperature of Zhongshan Station is shown in Figure 1c. The average air
temperature was −11.18 ◦C. The maximum and minimum values of air temperature were 8.30 ◦C and
−39.9 ◦C, respectively. The lowest air temperature occurred on 8 July 2015 and the highest was on
20 December 2014. The results of air temperature distribution are similar to the previous observations.
The average relative humidity was 59.6%. The maximum and minimum values of relative humidity
were 96% and 26%, respectively. The highest relative humidity occurred on 25 October 2015 and
the lowest was on 26 November 2015. As shown in Figure 1d, Zhongshan Station has low relative
humidity and dry air. The average atmospheric pressure was 982.4 hPa. The maximum and minimum
values of atmospheric pressure were 1013.3 hPa and 942.3 hPa, respectively. The lowest atmospheric
pressure occurred on 11 April 2015 and the highest was on 18 July 2015 (Figure 1e). The short-term
variations in wind speed, wind direction, air temperature, relative humidity and atmospheric pressure
were considerable, which can prove the complexity of the weather conditions at Zhongshan Station.

Figure 1. Time series of hourly (a) wind speed, (b) wind direction, (c) air temperature, (d) relative
humidity and (e) air pressure obtained by the manned weather station at Zhongshan Station, Antarctica.

The multi-year average meteorological data are presented in Figure 2. The monthly average wind
speed, radiation, day length, and air temperature in Figure 2 were obtained from the Atmospheric
science data center of NASA. The monthly average wind speed from NASA and observed wind speed
are shown in Figure 2a. The trend of wind speed from NASA is consistent with the observed results.
For the multi-year average wind speed, the maximum and minimum wind speeds were 9.88 m/s in
June and 7.5 m/s in January, respectively. The maximum and minimum monthly-observed wind speeds
were 10.9 m/s in December and 4.8 m/s in February, respectively. The annual average wind speed from
NASA was 9 m/s, which was similar to the annual observed result (9.78 m/s). The monthly average
radiation and day length at Zhongshan Station are shown in Figure 2b. The radiation and day length
decreased from January, and reached the minimum values at the same time (June). Then the radiation
and day length continued to increase until December. The monthly mean radiation in May, June
and July were 0.05 KW h/m2/day, 0.00 KW h/m2/day, 0.01 KW h/m2/day, respectively. Additionally,
the monthly mean day lengths were 4.05 h, 0 h and 1.23 h, respectively. This phenomenon can indicate
that polar night occurs from late May to late July in this region. The monthly mean radiation in January,
November, and December were 6.05 KW h/m2/day, 4.97 KW h/m2/day, 6.69 KW h/m2/day, respectively.
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The monthly mean day lengths in January, November, and December were 24 h, 20.8 h and 24 h,
respectively, which polar day lasts from late November to early February of the following year at
Zhongshan Station. As can be seen from Figure 2c, the monthly average air temperature at Zhongshan
Station exhibited obvious seasonal characteristics. The average yearly air temperature was −19 ◦C. The
maximum and minimum monthly mean air temperature was −7.13 ◦C in January and −27.3 ◦C in July.

Figure 2. The monthly meteorological data of Zhongshan Station. (a) wind speed, (b) solar radiation
and day length, (c) air temperature.

The weather condition of Zhongshan Station can be summarized as strong easterly winds, lower
relative humidity, lower barometric pressure and cold air. The operating temperature range of the
standalone renewable energy system in this study should be −50–30 ◦C based on the analysis of
meteorological data at Zhongshan Station. Other meteorological elements should be taken into account
during the design of the power supply system. Thus, in this study, the characteristics of power system
at low temperatures should be considered and studied for achieve a long-term operation of research
station in Antarctica.

3. System Design

3.1. Physical Model and Operation Principle

Based on the analysis of the atmospheric conditions, we designed the standalone renewable
energy system. As shown in Figure 3, the proposed renewable energy system in this study is equipped
with a power generator, an energy storage system, an end-user and a control station. The power
generator consists of the PV arrays and wind turbines (WT), which can complete the conversion of
wind energy and solar energy to electric energy. The energy storage system includes low-temperature
batteries. The end-user is various loads at Zhongshan Station, which includes instruments for scientific
research, electricity for daily use, heating, etc. The control station includes a control system, which has
functions of controlling the process of charging and discharging of hybrid wind–solar power system.
The rotation of wind turbines can produce AC currents. A three-phase rectifier circuit in the control
system is designed to convert the three-phase alternating currents into stable direct currents. A DC
chopper circuit is also designed to implement the control strategy for the renewable energy system
to complete maximum power output. The control system is used to monitor voltage and current of
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PV and WT, battery voltage and charging current. This proposed system would be a reliable and
sustainable energy supply and guarantee the load demand of Zhongshan Station for 24 h a day.

 
Figure 3. (a) Atmospheric conditions, (b) Schematic of the renewable energy system.

3.2. Mathematical Modeling of the Power System

3.2.1. PV Array

The polycrystalline panels were assembled by Taiyuan University of Technology in this study. The
PV panels can be mainly divided into solar cells made of polymers, silicon materials, and sensitized
nanomaterials [20] and silicon PV are mostly used. Advantages and disadvantages of different silicon
solar cells are shown in Table 2.

Table 2. Advantages and disadvantages of different silicon solar cells.

Material Name Advantages Disadvantages

Monocrystalline silicon High conversion efficiency, mature
technology and small footprint

Expensive and high
requirement for incident angle

of sunlight

Polysilicon

The conversion efficiency is higher than that
of amorphous silicon, the manufacturing
cost is lower than that of monocrystalline

silicon, and the low requirement for
incident angle of sunlight

Conversion efficiency is lower
than monocrystalline silicon,

and the process is complicated

Amorphous silicon
Minimum requirement for incident angle of

sunlight and high acceptance rate of
astigmatism

Low conversion efficiency
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As shown in Table 2, monocrystalline silicon solar cells and polycrystalline silicon solar cells have
higher conversion efficiency and smaller size than amorphous silicon solar cells. The monocrystalline
silicon solar cells and the polycrystalline silicon solar cells have different appearances due to different
manufacturing processes. When assembled into PV panels, the monocrystalline silicon materials
cannot be covered. In terms of efficiency of use, monocrystalline silicon solar cells and polycrystalline
silicon solar cells are not much different, the former being 1%–2% more than the latter. Due to the
different manufacturing processes used, the polycrystalline silicon solar cells are cheaper to produce
than the monocrystalline silicon solar cells. Thus, the polycrystalline silicon solar cells are used in
this study.

All the PV panels were designed to be positioned in a fixed direction, facing north. The key
specifications of the PV panels are presented in Table 3.

Table 3. Key specifications of the photovoltaic (PV) panels.

Characteristics Value Unit

Open circuit voltage (Voc) 42.64 V
Optimum operating voltage (Vmp) 34.96 V

Short circuit current (Isc) 9.48 A
Optimum operating current (Imp) 8.59 A
Maximum power at STC 1 (Pmax) 300 W

Operating temperature −50 to 85 ◦C
Size 1956 × 992 × 50 mm

1 Standard test conditions.

A total of 350 PV panels can be used to form a 120 V, 105 KW PV array. The principle of power
generation of solar cell is that the solar radiation emits photons to the induction plate of the photovoltaic
cell to produce a photoelectric effect, causing internal electrons to move, thereby generating current.
Equivalent circuit of the solar cell is shown in Figure 4.

 

Figure 4. Equivalent circuit of the solar cell.

According to equivalent circuit of the solar cell, relevant calculating equations are as follows:

I = IL − Id − Ish (1)

Ish =
IRsh + V

Rsh
(2)

The characteristics of the internal PN junction of the solar cell can be described as follows:

Id = I0

{
exp

[
q(IRsh + V)

λKT
− 1

]}
(3)

Substituting Equations (2) and (3) into Equation (1) for calculation, relevant calculating equation
is as follows:

I = IL − I0

{
exp

[
q(IRsh + V)

λKT
− 1

]}
− IRsh + V

Rsh
(4)
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where I is the output current (A); IL is the photogenerated current (A); I0 is the diode saturation
current (A); q is the unit charge (1.6022 × 10−19 C); Rsh is the series resistance (Ω); V is the output
voltage (V); λ is the diode ideality factor; K is Boltzmann’s constant (1.3806 × 10−23 J/K); T is the cell
temperature (K).

In this study, we use the following equations to describe the relationship between output of solar
power and radiation intensity [4]:

{
Psolar = Pmax[1− 0.004(T − Tstc)]βi
βi = iβ1β2β3

(5)

where Psolar is the output of solar power (Wh/day); Pmax is the maximum power at standard test
conditions (300 W); T is the ambient temperature (◦C); Tstc is the ambient temperature at standard
test conditions (25 ◦C); βi is the adjustment parameter, which i is the average radiation intensity
(KW h/m2/day), β1 is the soiling losses factor 0.97, β2 is the non-MPPT point coefficient 0.96, β3 is the
anti reverse diode coefficient 0.98.

3.2.2. Wind Turbine

The wind turbine designed and assembled by Taiyuan University of Technology was employed in
this study. The key specifications of the wind turbine are presented in Table 4.

Table 4. Key specifications of the wind turbine.

Characteristics Value Unit

Cut in speed 2.5 m/s
Rated wind speed 10 m/s

Cut off speed 45 m/s
Rated power 10 KW
Peak power 12 KW

Diameter of impeller 7.8 m
Operating temperature −50 to 85 ◦C

Number of blades 3
Generator type Three-phase AC permanent magnet generator
Blade material Reinforced glass steel

Ten wind turbines can be used to form a 100 KW wind farm. Different types of wind turbines
output different power based on their power curve characteristics. Through a comprehensive literature
review, a model used to describe the performance is proposed as follows [19].

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Pwind = P1 + P2 + P3

P1 =
∑

PRt(v/vR)
3(vc ≤ v ≤ vR)

P2 = PR
∑

t(vR ≤ v ≤ vF)

P3 = 0(v < vc and v > vR)

(6)

where Pwind is the output of wind power (Wh/day), which consists of P1, P2 and P3; Vc is the cut-in
wind speed (2.5 m/s); VR is the rated wind speed (10 m/s); VF is the cut-offwind speed (45 m/s); V is
the wind speed; PR is the rated electrical power (10 KW), which is average energy at the wind speed of
10 m/s for one minute; t is the time (hours).

3.3. Zhongshan Station Load Data

The load of Zhongshan Station can be divided into: (1) The first type of load is the internal heating
system. Once the heating system is not working properly, it will affect the normal life of all the staff
of Zhongshan Station and the lives of all personnel will be threatened. Thus, such loads cannot be
cut off. (2) The second type of load is electricity for scientific research equipment. There is a lot of
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scientific research equipment installed in Zhongshan Station to monitor the climate, biochemistry,
crustal changes, and movement of Antarctica in real time and obtain valuable on-site observation
data. A power outage of equipment may lead to the discontinuity of observations and the lack of
integrity of data. Thus, we need to ensure the continuous supply of electricity of scientific research
equipment. (3) The third type of load is electricity for daily use. Such loads include electricity for
lighting, recreational activities, electronics, etc., where necessary, such loads may be considered for
power outages.

4. Analysis of Energy Storage System

At present, most of the wind–solar hybrid power generation systems use secondary batteries that
can be repeatedly charged and discharged as energy storage systems, and the electrical energy can be
converted into chemical energy for storage. When using electrical energy, the stored chemical energy
of batteries can be turned into electrical energy. When we choose a suitable energy storage device, the
capacity of the energy storage device and its charge and discharge performance are mainly considered.
The battery with high conversion efficiency and low loss is suitable for the design of the standalone
renewable energy system. In addition, the maintenance cost and life of the battery should be also
key factors in the design. Commonly used batteries include lead–acid batteries, nickel–hydrogen
batteries, nickel–cadmium batteries, lithium–ion batteries and sodium–sulfur batteries [20]. The key
performance comparisons of each battery are presented in Table 5.

Table 5. Key performance comparisons of each battery.

Classification Electrolyte Principle
Operating

Temperature (◦C)

Lead–acid batteries Dilute sulfuric acid Oxidation-reduction
reaction −50 to 70

Lithium–ion batteries Organic lithium salt
electrolyte Ion migration −50 to 70

Nickel–cadmium
batteries

Potassium hydroxide
aqueous solution

Oxidation-reduction
reaction −20 to 45

Nickel–hydrogen
batteries

Potassium hydroxide
aqueous solution

Oxidation-reduction
reaction −20 to 60

Sodium–sulfur batteries Na-β-Al2O3 Chemical reaction 300 to 350

It can be seen from Table 5 that the operating temperature ranges of lead–acid battery and
lithium–ion battery are more suitable than other batteries for the requirements of this system. Compared
with lead–acid batteries, lithium–ion batteries have certain safety hazards and lithium–ion batteries cost
more than lead–acid batteries. Thus, the lead–acid battery is selected to design energy storage system.

A lead–acid battery consists of an electrolyte, positive and negative electrodes. Pb is used as
the negative active material of lead–acid batteries, PbO2 can be the positive active material, and the
electrolyte is diluted H2SO4. The energy conversion principle of lead-acid batteries can be expressed
by the following chemical reaction equations.

PbO2 + H2SO4 + Pb
Disch arg e→ PbSO4 + 2H2O (7)

PbSO4 + 2H2O
Ch arg e→ PbO2 + H2SO4 + Pb (8)

Equations (7) and (8) can describe the discharge and charging process of the lead–acid battery,
respectively. In the process of discharge, Pb on the negative electrode is oxidized to become PbSO4,
and PbO2 on the positive electrode is reduced to form PbSO4. Diluted H2SO4 in the surrounding area
as an electrolyte participates in chemical reactions, forming PbSO4 while producing H2O.
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In the process of charge, PbSO4 on the negative electrode is reduced to form Pb and PbSO4 on the
positive electrode is oxidized to become PbO2. The concentration of H2SO4 in the surrounding area
gradually recovers. The charging process of the lead–acid battery is not finished until PbSO4 of the
positive and negative electrodes is completely reduced to Pb and PbO2.

In the process of charge and discharge of lead–acid batteries, the terminal voltage can be expressed
as the following equations.

U = E + Δϕ+ + Δϕ− + IR (9)

U = E− Δϕ+ − Δϕ− − IR (10)

Equations (9) and (10) represent the change in terminal voltage during the charging and discharging
processes, respectively. U is the terminal voltage of the lead–acid battery (V); E is the electromotive
force of batteries; Δφ+ is the overpotential of positive electrode (V); Δφ- is the overpotential of negative
electrode (V); I is the charge or discharge current (A); R is the internal resistance of the battery ( ).

The life of the battery directly determines the time when the power supply system runs stably. This
lead–acid batteries used in this power system were developed by Taiyuan University of Technology.
Based on the principles of battery array combination, the battery of 2 V, 3 KAh is extended and the
battery pack of 60 V, 45 KAh is used as the energy storage device of the power system.

4.1. Study on Low-Temperature Characteristics of Battery

The activity of the electrolyte of the lead–acid battery is easily affected by low temperatures,
resulting in a decrease in battery capacity. The power supply system operating in Antarctica requires a
long-term constant temperature treatment of energy storage system. Reasonable storage temperature
needs to be determined, so as to reduce the energy consumption caused by maintaining the constant
temperature as much as possible. Thus, a study on battery characteristics at low temperatures was
designed and implemented.

In order to study the low-temperature characteristics of lead–acid batteries, a battery capacity
calibration experiment was designed. A low-temperature test chamber (MDF-86V340E, Zhongkeduling,
Hefei, Anhui, China) was used to provide stable low-temperature environments from −50 ◦C to 0 ◦C.
The key specifications of the low-temperature test chamber are presented in Table 6.

Table 6. Key specifications of the low-temperature test chamber.

Characteristics Value Unit

Rated power 668 W
Rated voltage 220 V

Temperature range −60 to 86 ◦C
Temperature adjustment accuracy 0.1 ◦C

Effective volume 340 L
Noise level 52 dB

The ideal capacity of the battery to be tested is 2 V, 3 KAh under a normal temperature environment.
The battery was discharged at a constant current of 15 A at different ambient temperatures from
−50 ◦C to 0 ◦C. In addition, the battery capacity at different ambient temperatures can be obtained.
The battery voltages were measured by an oscilloscope (MSO70404C, Tektronix, Beaverton, OR, USA).
The discharge cut-off voltage was set as 1.6 V. The interval for the experimental temperature change
was set to 10 ◦C. We obtained the correlation between battery capacity and voltage at −50 ◦C, −40 ◦C,
−30 ◦C, −20 ◦C, −10 ◦C and 0 ◦C. At each ambient temperature, the battery continued to discharge at a
constant current until the cutoff voltage was reached. During the experiment, the low-temperature test
chamber could maintain the temperature. We took the average values of the voltage to minimize the
statistical error and uncertainty. As the temperature decreased, the battery capacity also decreased. The
standstill battery capacities were 98.42%, 98.11%, 97.62%, 96.77%, 95.83% and 94.12% at 0 ◦C, −10 ◦C,
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−20 ◦C, −30 ◦C, −40 ◦C, −50 ◦C, respectively. The discharge capacity of the battery was weakening
due to low temperatures. Therefore, the storage temperature of the battery needs to be kept above 0 ◦C
to avoid the low-temperature loss of the battery capacity.

4.2. SOC Estimation

Usually, the battery state of charge and the remaining useful life are considered as two important
parameters to quantify and monitor the present battery state. In this study, long-term low temperature
is the main factor affecting the battery capacity and the remaining useful life. References [21,22]
have reported joint/dual extended Kalman filter and unscented Kalman filter with an enhanced
self-correcting model, which can simultaneously estimate the SOC and capacity. The SOC estimation
in this study is realized based on study on low-temperature characteristics of battery. The relationship
between battery voltage and battery capacity at low temperatures is shown in Figure 5.

The mathematical model of the relationship between battery voltage and battery capacity at
different temperatures can be expressed as follows.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U−50 ◦C = 5.5× 10−8 × SOC6
−50 ◦C

− 2.51× 10−5 × SOC5
−50 ◦C

+ 4.72× 10−3 × SOC4
−50 ◦C

− 0.471× SOC3
−50 ◦C

+26.24× SOC2
−50 ◦C

− 711.8× SOC−50 ◦C + 9362.2
U−40 ◦C = 2.9× 10−8 × SOC6

−40 ◦C
− 1.36× 10−5 × SOC5

−40 ◦C
+ 2.58× 10−3 × SOC4

−40 ◦C
− 0.261× SOC3

−40 ◦C

+14.64× SOC2
−40 ◦C

− 434.1× SOC−40 ◦C + 5306.9
U−30 ◦C = 1.3× 10−8 × SOC6

−30 ◦C
− 6.04× 10−6 × SOC5

−30 ◦C
+ 1.15× 10−3 × SOC4

−30 ◦C
− 0.116× SOC3

−30 ◦C

+6.487× SOC2
−30 ◦C

− 192.4× SOC−30 ◦C + 2353.8
U−20 ◦C = 1.5× 10−8 × SOC6

−20 ◦C
− 6.82× 10−6 × SOC5

−20 ◦C
+ 1.31× 10−3 × SOC4

−20 ◦C
− 0.132× SOC3

−20 ◦C

+7.508× SOC2
−20 ◦C

− 244.2× SOC−20 ◦C + 2760.1
U−10 ◦C = 8.0× 10−9 × SOC6

−10 ◦C
− 3.72× 10−6 × SOC5

−10 ◦C
+ 7.13× 10−4 × SOC4

−10 ◦C
− 0.072× SOC3

−10 ◦C

+4.098× SOC2
−10 ◦C

− 122.4× SOC−10 ◦C + 1508.8
U0 ◦C = 4.66× 10−9 × SOC6

0 ◦C
− 2.13× 10−6 × SOC5

0 ◦C
+ 4.01× 10−4 × SOC4

0 ◦C
− 0.0401× SOC3

0 ◦C
+

2.229× SOC2
0 ◦C

− 25.5895× SOC0 ◦C + 797.2

(11)

where U−50◦C, U−40◦C, U−30◦C, U−20◦C, U−10◦C and U0◦C are the battery voltages at −50 ◦C, −40 ◦C,
−30 ◦C, −20 ◦C, −10 ◦C, 0 ◦C, respectively; SOC−50◦C, SOC−40◦C, SOC−30◦C, SOC−20◦C, SOC−10◦C and
SOC0◦C are the values of state of charge at −50 ◦C, −40 ◦C, −30 ◦C, −20 ◦C, −10 ◦C, 0 ◦C, respectively.

We evaluated the relationship between battery voltage and battery capacity from −50 ◦C to 0 ◦C.
However, the values at the non-measured battery voltage and battery capacity could be predicted by
interpolation. Equation (11) can be described as follows.

U(Ti) = a(Ti)SOC6(Ti) + b(Ti)SOC5(Ti) + c(Ti)SOC4(Ti)

+d(Ti)SOC3(Ti) + e(Ti)SOC2(Ti) + f (Ti)SOC(Ti) + g(Ti)
(12)

where U(Ti) is the battery voltages at different temperatures from −50 ◦C to 0 ◦C; SOC(Ti) is the battery
capacity at different temperatures from −50 ◦C to 0 ◦C; a(Ti), b(Ti), c(Ti), d(Ti), e(Ti), f (Ti), and g(Ti) are
the coefficients of the Equation (12), which have dependences of low temperatures.

The coefficients a(Ti), b(Ti), c(Ti), d(Ti), e(Ti), f (Ti) and g(Ti) from −50 ◦C to 0 ◦C are shown in
Figure 6.
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Figure 5. (a–f) show the relationship between battery voltage and battery capacity at −50 ◦C, −40 ◦C,
−30 ◦C, −20 ◦C, −10 ◦C, 0 ◦C, respectively.
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Figure 6. (a–g) show the coefficients a(Ti), b(Ti), c(Ti), d(Ti), e(Ti), f (Ti) and g(Ti) from −50 ◦C to
0 ◦C, respectively.
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As shown in Figure 6, the temperature dependence of the coefficients of a(Ti), b(Ti), c(Ti), d(Ti),
e(Ti), f (Ti) and g(Ti) is generally in the form of a cubic functions. The coefficients a(Ti), b(Ti), c(Ti), d(Ti),
e(Ti), f (Ti) and g(Ti) in Equation (12) at different temperatures could be predicted as follows.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a(Ti) = −9.96× 10−13T3
i − 4.8× 10−11T2

i − 9.28× 10−10Ti + 4.27× 10−9

b(Ti) = 4.52× 10−10T3
i + 2.19× 10−8T2

i + 4.28× 10−7Ti − 1.96× 10−6

c(Ti) = −8.46× 10−8T3
i − 4.11× 10−6T2

i − 8.17× 10−5Ti + 3.69× 10−4

d(Ti) = 8.41× 10−6T3
i + 4.1× 10−4T2

i + 8.25× 10−3Ti − 0.037
e(Ti) = −4.66× 10−4T3

i − 0.023T2
i − 0.4657Ti + 2.066

f (Ti) = 0.0137T3
i + 0.675T2

i + 13.8716Ti − 60.908
g(Ti) = −0.1654T3

i − 8.2046T2
i − 170.3108Ti + 741.803

(13)

4.3. Temperature Control Strategy

Based on the analysis on Sections 4.1 and 4.2, the storage temperature of the battery needs to
be kept above 0 ◦C to prevent the battery from low-temperature loss of the battery capacity. The
heating system in the battery storage compartment ensures that the temperature of the battery can be
constant within the ideal operating temperature range and reduces energy consumption by means of
intermittent starting. The proportion-integral-differential (PID) algorithm was chosen to design the
temperature control strategy.

The chosen heating system is a complex system with larger time lag and inertia. The mathematical
model of the temperature control system in this study is described by a first-order inertia lag link. The
transfer function of the heater can be expressed as follows.

G(s) = ke−τs/(Ts + 1) (14)

where k is static gain; T is time constant; τ is pure lag time.
This study uses an incremental PID control algorithm. A step input signal is applied to the

controlled object to measure the step response of the controlled object, and the approximate transfer
function of the controlled object can be obtained by the flying up curve method. Parameters of the
transfer function can be seen in Table 7.

Table 7. Parameters of the transfer function.

Parameter Value

k 0.8
T 48.75
τ 11.2

The flowchart of the temperature control strategy is given in Figure 7.
After the PID was initialized, the target temperature for battery storage Ta was set first and then

the real-time temperature of battery storage Tr was obtained. Generally, Ta is set to be higher than 0 ◦C.
If Ta < Tr, the battery storage temperature could be considered suitable. If Ta > Tr, the heating system
will be started and the difference between the target temperature for battery storage Ta and the real-time
temperature of battery storage Tr will calculated, which is marked as e. If e < 3, the incremental PID
control algorithm will be used to heat the battery storage room. If e > 3, the full power heating will
be activated to quickly reach the target temperature for battery storage. After heating, the difference
between Ta and Tr will be evaluated again. If Ta ≤ Tr, the heating system will end the heating of the
battery storage compartment.
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Figure 7. The flowchart of the temperature control strategy.

5. Energy Management Strategy

5.1. MPPT Control Strategy for Wind Turbine

Perturbation and observation method with variable step is used to achieve maximum power
output of the wind turbine by adjusting the duty ratio. The method needs to estimate the position of
the current maximum power point by real-time monitoring of the power difference between the two
times, thereby determining the size of the duty cycle. If the difference is positive, the duty cycle will be
decreased. Otherwise, the duty cycle will be increased. If it is zero, it indicates that the maximum
power point has been reached. Since the wind speed in nature is randomly fluctuating, it may cause the
power supply system to oscillate. Two step sizes are proposed in this study. The threshold of the power
difference is set. If the difference is within the threshold, a small step will be used. If the difference is
outside the threshold, a large step will be used to gradually approach the maximum power point.

The mechanical energy produced by the wind turbine in this study can be expressed as follows.

PWT =
1
2

Cp(λ, β)Sσv3 (15)

where PWT is the output of wind turbine (W); Cp(λ, β) is wind energy utilization factor; λ is tip speed
ratio; β is pitch angle of blade; S is sweep area (m2); σ is air density (Kg/m3); v is wind speed (m/s).

The sweep area of wind turbine can be described as follows.

PWT =
1
2

Cp(λ, β)Sσv3 (16)

where R is the impeller radius (m).
The wind energy utilization factor can be described as follows.

Cp(λ, β) = 0.5176(116λc − 0.4β− 5)e−
21
λc + 0.0068λ (17)
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λ and λc in Equation (16) can be described as follows.

⎧⎪⎪⎨⎪⎪⎩
λ = ωR

v = 2πnR
60v

λc =
1

λ+0.08β − 0.035
β3+1

(18)

where ω is wind turbine angular velocity (rad/s); n is rotational speed of wind turbine (r/min).
In the study of the MPPT strategy of the wind turbine, β (pitch angle of blade), v (wind speed)

and ω (wind turbine angular velocity) are set as input to the wind turbine power generation model.
Air density is selected as 0.927 Kg/m3. β is 0 in this study. For wind speed v, we built a natural wind
speed model. The wind speed model is considered as a combination of basic wind speed Vb, gradual
wind speed Vr, and gust wind speed Vg. The basic wind speed Vb is the average wind speed (7 m/s).
The gradual wind speed Vr characterizes the slow change of the wind speed and can be expressed
by follows.

Vr = Vr(max)
tr1 − t

tr1 − tr2
(19)

where Vr(max) is maximum value of gradual wind speed (10 m/s); tr1 is start time of gradual wind
(4 s); tr2 is end time of gradual wind (11 s); t is time of gradual wind.

The gust wind speed Vg can characterize the degree of abrupt change in wind speed and can be
expressed by follows.

Vg = Vg(max)/2×
[
1− cos 2π

( t− tg1

Tg

)]
(20)

where Vg(max) is maximum value of gust wind speed (6 m/s); tr1 is start time of gust wind (3 s); Tg is
period of gust wind (6 s); t is time of gust wind.

The model of natural wind speed can be described as follows.

v = Vb + Vr + Vg (21)

We introduced the natural wind model into the wind power model, and the simulation results
obtained by MATLAB Simulink of the wind speed, wind turbine output power and rotational speed of
wind turbine are shown in Figure 8.

Figure 8. The simulation results of (a) the wind speed, (b) wind turbine output power and (c) rotational
speed of wind turbine.

As can be seen in Figure 8a, at the beginning, the wind speed was low (about 2–5 m/s), thus the
output power of the wind turbine was also low (Figure 8b). From 4 s to 6 s, the wind speed increased
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rapidly from the beginning of 2 m/s to 17 m/s, and the corresponding wind turbine output power was
gradually increased, which the maximum power can reach 13 kW. After the 8 s, the wind speed began
to slowly decrease and the output power decreased slowly. We also simulated the effects of abrupt
wind speeds on wind turbine output power at 6 m/s, 8 m/s and 10 m/s (Figure 9). Under the influence
of abrupt wind, the response time of wind turbine speed and power is less than 0.14 s.

Figure 9. The simulation results of (a) the wind speed, (b) wind turbine output power and (c) rotational
speed of wind turbine at abrupt wind speeds.

5.2. MPPT Control Strategy for PV Array

Perturbation and observation method with adaptive variable step is adopted, which achieves
self-selection of the step size by adding an adaptive algorithm when setting the step size. This method
not only improves the steady state performance of the power system, but also improves the dynamic
performance. The step size calculation can be described as follows.

S(k + 1) = N
P(k) − P(k− 1)

S(k)
(22)

where S(k) is step size (0 < S(k) < 1); N is the constant determined by the sensitivity of the adaptive
variable step size adjustment; P(k) is power.

The flowchart of the perturbation and observation method with adaptive variable step is given in
Figure 10.

The perturbation and observation method with adaptive variable step obtained I(k − 1), I(k),
U(k − 1) and U(k) to calculate P (k − 1) and P(k). We got the value of difference of power dP (Figure 10).
The threshold of the power difference (ep) was set. The direction of perturbation can be determined
by calculating dP-ep. Then the step size S(k + 1) can be adjusted by Equation (21). Until dP = 0,
the maximum power point can be considered to be reached.
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Figure 10. The flowchart of the perturbation and observation method with adaptive variable step.

5.3. Power Supply Strategy

The prerequisite for stable operation of the wind–solar hybrid power system is to maintain the
energy balance between power generation and power consumption. If the power converted by wind
and solar is less than the actual load, the battery plays the role to supply power to the load. On the
contrary, if the power converted by wind and solar is greater than the actual load, the battery stores
excess electrical energy. The flowchart of the power supply strategy is given in Figure 11.

After the energy assessment, three energy supply methods were selected: (1) Wind energy
available; (2) Wind and solar energy available; (3) Solar energy available. After the SOC estimation
was completed, whether the output power of the generator (wind turbine and PV array) can meet the
load was calculated and evaluated. In all three energy supply methods, when the energy output is
greater than the load, the output power of the generator can supply the load. If SOC < 90%, the output
power of the generator should charge the battery. Otherwise, the battery does not need to be charged.
When the energy output is less than the load, as long as SOC is greater than 10%, the battery and the
power generator can directly provide the power of the load. If SOC < 10%, the power supply of a part
of the load should be cut off to ensure the power generator and the battery providing power to the
remaining load.
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Figure 11. The flowchart of the power supply strategy.

6. Circuit Design

The block diagram of the standalone renewable energy system is illustrated in Figure 12. As can be
easily seen, the whole system is broadly composed of a power generator (wind turbines and PV array),
an uploading circuit, a three-phase rectifier bridge, an interleaved Buck circuit, a DC/DC conversion
circuit, a switch circuit, a power supply circuit, an amplifier, a driver circuit, a voltage and current
monitoring, a load, battery units, and a control system. The electric energy generated by the wind
turbine converts into direct current through the three-phase rectifier bridge, and concentrates with the
electric energy generated by the photovoltaic power generator. Then the electric energy generated by
the wind energy and the solar energy are converted into stable direct currents to loads and the battery
units by the interleaved Buck circuit. The wind turbine side is designed with an unloading circuit
to prevent excessive output power from damaging the equipment under high wind conditions. The
bus voltage is 24 V and the battery voltage is 12 V, thus, a DC/DC conversion circuit is designed. The
model’s parameters of circuits were chosen by empirical and commercial general specifications, which
is a common method in circuit design.
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Figure 12. Block diagram of the standalone renewable energy system by hybrid solar–wind system.

6.1. Control System

In this study, the core of control system is selected as MSP4305438A (Texas Instruments, Dallas,
TX, USA). The microcontroller is a reduced instruction set computer (RISC) with a 16-bit mixed-signal
processor, which has a high processing power, a fast computing speed and an efficient development
environment. The microcontroller can operate stably in a low-temperature environment (−50 ◦C) and
was used multiple times in monitoring in Antarctica and the Arctic Ocean [4]. The control system
has 11 sets of I/O ports, which can monitor the voltage and current of wind turbine, PV array and
batteries in real time, and realizes the control strategy of the power system. Terminal names and
general descriptions of the electrical interface of the control system are shown in Table 8.

Table 8. Terminal names and general descriptions of the electrical interface of the control system.

Terminal Name Description Direction

P6.7 Voltage monitoring Input
P7.5 Current monitoring Input
P6.0 Battery condition monitoring Input
P6.1 Wind turbine unloading Output

P1.1, P1.2, P4.5, P4.6 PWM control Output
P4.0, P4.1, P4.2, P4.3 PWM drive Output

6.2. DC/DC Conversion Circuit and Power Supply Circuit

The DC/DC conversion circuit and power supply circuit are shown in Figure 13. In this study,
the DC/DC conversion circuit can provide better stability to the proposed power system over wide
ranges of input and output voltages, and enable more stable and accurate current limiting operation.
A thermal shutdown in this circuit is implemented to prevent damages owing to excessive heat.
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Figure 13. The DC/DC conversion circuit and power supply circuit.

The output voltage of DC/DC conversion circuit can be set by external resistors and the resistors
are calculated as follows.

R2 = Vre f /70μA (23)

R3 = R2
(
12/Vre f − 1

)
(24)

where R2 and R3 are external resistors; Vref is the reference voltage set inside the circuit (1.238 V). The
resistances of R2 and R3 are 18 KΩ and 156 KΩ, respectively. Other relevant parameters of the DC/DC
conversion circuit can be seen in Table 9.

Table 9. Relevant parameters of the DC/DC conversion circuit.

Parameter Value Unit

C1 1 μF
C2 1 μF
C3 3.3 nF
C4 0.1 μF
C5 10 μF
R1 13 KΩ
R2 18 KΩ
R3 156 KΩ
L1 3.3 μH

The power supply circuit includes a primary voltage-regulator and a secondary voltage-regulator.
Primary voltage-regulator is designed by LT1129 (Analog Devices Inc., Norwood, MA, USA), which
can generate 3.3 V at supply of 12 V for MCU, some sensors and some detection circuits in this power
system. LM78M05 (Texas Instruments, Dallas, TX, USA) is selected as the core of the secondary
voltage-regulator, which can generate 5 V at supply of 12 V to fulfill the requirements of the amplifier.
Relevant parameters of the power supply circuit can be seen in Table 10.
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Table 10. Relevant parameters of the power supply circuit.

Parameter Value Unit

C6 100 μF
C7 0.1 μF
C8 0.1 μF
C9 100 μF
C10 0.1 μF
C11 0.1 μF
C12 0.47 μF

6.3. Charging Circuit

The solar/wind charging circuit is shown in Figure 14. The three-phase input of wind turbine
converts AC to DC through a three-phase rectifier bridge, and mixes with the input of the PV array.
In this circuit, freewheeling diodes are replaced to reduce rectification losses and the current sharing
effect is significantly enhanced. The electric energy generated by wind and solar is very unstable. The
electric energy is converted into a stable and usable DC through the interleaved Buck circuit. The
choice of MOS tube considers the following elements: (1) Withstand voltage greater than or equal to 3
times DC bus voltage; (2) The current value is less than 1/4 of the rated current; (3) Low on resistance.

 
Figure 14. The solar/wind charging circuit.

As shown in Figure 14, MOSFET RU190N08 (Ruichips Semiconductor, Shenzhen, Guangdong,
China) is selected as the power device of the interleaved Buck circuit, which has a withstand voltage of
80 V and a withstand current of 190 A. Relevant parameters of the power supply circuit can be seen in
Table 11.

The inductance of interleaved Buck circuit can be obtained as follows.

LBuck = V0(1−D)/(rIL fs) (25)

where LBuck is the inductance of interleaved Buck circuit; V0 is DC bus voltage (24 V); D is the minimum
duty cycle of the PWM control method (0.57); r is inductor current ripple peak-to-peak factor (0.4); IL
is inductor rated current (40 A); fs is switching frequency of PWM control signal (20 KHz). Thus the
inductance of interleaved Buck circuit LBuck is 32 μH.
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Table 11. Relevant parameters of the solar/wind charging circuit.

Parameter Value Unit

C13 470 μF
C14 330 μF
C15 100 pF
C16 100 pF
C17 0.1 μF
C18 0.1 μF
C19 0.1 μF
R4 30 KΩ
R5 15 KΩ
R6 15 KΩ
R7 30 KΩ
R8 30 KΩ
L2 100 mH
L3 100 mH

7. A case Study in Antarctica

7.1. Existing Power Supply System in Zhongshan Station

At present, there are three sets of diesel generator in Zhongshan Station. In the process of power
generation, the on-duty personnel should be arranged to record and maintain the relevant parameters
of the generators. Based on the data provided by the Chinese National Antarctica Research Expeditions,
we aggregated the data of the existing diesel power supply system at Zhongshan Station in Antarctica in
2013, 2014 and 2015. The average monthly power supply and monthly fuel consumption of Zhongshan
Station are obtained. The actual monthly load power and fuel consumption are shown in Figure 15.

Figure 15. Actual monthly load power, air temperature and fuel consumption in Zhongshan Station.

As can be seen from Figure 15, the annual power consumption of Zhongshan Station is closely
related to climatic conditions. The trend of monthly load power has a good correlation with the monthly
average air temperature. The peak annual power consumption of Zhongshan Station is concentrated
in May, June, July and August. At this time, it is the winter and polar night in Antarctica, which the air
temperature in these months is the lowest in one year. However, scientists would continue to conduct
scientific investigations near Zhongshan Station. At the same time, the outside temperature is low and
the demand of indoor heating is increasing. Therefore, the power consumption of Zhongshan Station
will also increase. As shown in Figure 2b, the annual radiation intensity and day lengths are the lowest
in this period. The power supply of Zhongshan Station mainly depended on the wind turbine and the
battery. Zhongshan Station has a total load of 100 KW. The monthly average power consumption is
72,516 KW h, the monthly average fuel consumption is above 20 t. Polar day occurs from December
to January in Zhongshan Station, and it can make full use of solar power to generate electricity. The
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power consumption of the load in February, March, April, September, October, and November basically
maintain the average power consumption of Zhongshan Station, which both wind and solar energy
resources can generate electricity, and batteries have electricity reserves.

7.2. Analysis of Simulation Operation Results

The power generation of the standalone renewable energy system in Zhongshan Station from
2014 to 2015 is presented in Figure 16.

Figure 16. The power generation of the standalone renewable energy system in Zhongshan Station
from 2014 to 2015.

The results of Zhongshan Station load were previous monitoring data. The power generated by
wind energy and solar energy was calculated by mathematical models of the standalone renewable
energy system. If the power generated by the standalone renewable energy system cannot meet
the requirement of load, the battery will act as an energy storage system to supply the load of the
Zhongshan Station to maintain the normal operation. Accordingly, battery capacity can be also derived
from the simulation. The observed wind speed data were selected to complete simulation calculation.
The values of radiation intensity from NASA were used to calculate power generation by PV array.
As can be seen in Figure 16, the monthly average load of Zhongshan Station remained basically
stable within one year. The annual load of Zhongshan Station was 870,196 KW h. The minimum and
maximum values of the load were 56,175 KW h in November and 87,743 KW h in July, respectively. The
average value of the load of Zhongshan Station was 72,516 KW h. Wind power production dominated
the power supply of the standalone renewable energy system and generated 747,858.4 KW h in a
year, which was 86% of the load. The monthly average maximum and minimum values of wind
power were 74,400 KW h in March, May, July, August, October and 8455.4 KW h in January. In March,
April, October and November, only the energy generated by wind can meet the load of Zhongshan
Station. The solar power was shown strong seasonal fluctuations owing to the polar night (June and
July) in Antarctica. The annual solar power of Zhongshan Station was 97,361 KW h. The monthly
average solar power of polar day in January and December were larger, which were 19,659.9 KW h and
21,779.7 KW h, respectively. The minimum value of monthly average solar power in a year appeared
in June (0 KW h) and July (34 KW h). In January, February, May, June and July, wind and solar energy
were less than the load required for the month, thus, the energy storage system also provided power to
the load.

Especially in August, the sum of the power of wind, solar, and battery (75,712.83 KW h) was
less than the load (82,938 KW h), and fuel was used to complete the power supply (7225.17 KW h) to
the load.
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7.3. Analysis of Emission Reduction

Analysis of cost and benefits may be susceptible to external factors, such as changing fuel purchase
prices, the cost fluctuation of transporting fuel and etc. In Antarctica, the analysis of cost and benefits
may encounter various complicated situations. The risk of oil spill in transport, atmospheric emissions,
or hidden cost of maintenance requirements can rarely achieve comprehensive monetization. However,
direct cost savings are in reduced use of fossil fuels. Based on the result of a one-year simulation
operation of the standalone renewable energy system in Zhongshan Station, it is found that fuel was
used to complete the power supply to the load only in August. The monthly fuel consumption of
Zhongshan Station is shown in Table 12.

Table 12. Monthly fuel consumption of Zhongshan Station.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Fuel consumption (t) 18.7 18.4 19.31 19.81 21.7 21.5 22.5 21.83 20.46 20.12 17.9 19.1

The existing power supply system of the Antarctic Zhongshan Station has a fuel consumption
of 241.33 t per year. The results of simulation operation of the standalone renewable energy system
indicate that fuel consumption can be reduced to 2.08 t. The standalone renewable energy system has
provided an average annual fuel saving of around 98.8%. Refer to the operation results of Australia’s
Mawson Station, which is similar in size to Zhongshan Station, Mawson Station used about 0.7 million
liters of diesel fuel annually to provide power and heating. Through the introduction of renewable
energy supply, the annual fuel saving of Mawson Station was around 32%, equivalent to a saving
of 2918 t of carbon dioxide during the first six years of operation [10]. The estimated annual carbon
dioxide emissions of existing power supply system of the Antarctic Zhongshan Station were 616.4 t and
Zhongshan Station’s estimated annual carbon dioxide emissions were 5.3 t in the year of simulation,
which can reduced carbon emissions by 611.1 t in one year and 3666.6 t of carbon dioxide during the
first six years of operation.

The use of the standalone renewable energy system will improve the health of the local environment
and reduce the cost of environmental governance.

7.4. Costs and Benefits of Renewable Energy Applications in Antarctica

Mawson Station has built a wind farm which costs about 8.9 million Australian dollars. The cost
of a wind turbine was 0.74 million Australian dollars. Undiscounted simple payback period of the
wind farm in Antarctica is estimated to be from 5 to 12 years. For South Pole Station, the project of
installing nine 100 KW wind turbines was estimated to cost approximately 4.3 million US dollars.
In McMurdo Station, a 1 MW wind turbine has cost 2–3 million US dollars. Net savings of this project
remain 1–4 million US dollars over a 20-year life span. Similarly, SANAE IV Station of South Africa has
installed a 100 KW turbine with a simple undiscounted payback period of about 10 years. The simple
undiscounted payback period of PV system is shorter than wind turbine. For example, a solar thermal
system at SANAE IV Station has a payback period of 6 years by saving 10,000 L fuel annually. In the
preliminary research stage of the standalone renewable energy system in Zhongshan Station, it is hard
to accurately estimate cost savings after the introduction of renewable energy. However, based on
the cost savings estimate of other stations, the use of the standalone renewable energy system was
estimated to save approximately 1.43 million US dollars in one year.

8. Conclusions

In this study, the standalone renewable energy system used in Zhongshan Station was proposed
to achieve long-term stable operation. The meteorological data of Zhongshan Station obtained from a
manned weather station in 2015 was comprehensively analyzed. Based on the atmospheric conditions
and load data of Zhongshan Station, the physical model, operation principle and mathematical modeling
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of the proposed power system were designed in this study. The low-temperature performance and
characteristics of energy storage system were tested and evaluated. The characteristics of battery
and SOC estimation method were also present. To prevent the battery from low-temperature loss of
the battery capacity, a temperature control strategy was adopted to keep the storage temperature of
the battery above 0 ◦C. Energy management strategy of the power system was proposed, including
a MPPT control strategy for wind turbine and PV array and a power supply strategy. The whole
power system is broadly composed of a power generator (wind turbines and PV array), an uploading
circuit, a three-phase rectifier bridge, an interleaved Buck circuit, a DC/DC conversion circuit, a switch
circuit, a power supply circuit, an amplifier, a driver circuit, a voltage and current monitoring, a load,
battery units and a control system. The simulation calculation of power generation of the standalone
renewable energy system was presented in this study. Zhongshan Station’s estimated annual carbon
dioxide emissions were 5.3 t in the year of simulation, which can reduce carbon emissions by 611.1 t in
one year and 3666.6 t of carbon dioxide during the first six years of operation. Based on the cost savings
estimation of other stations, the use of the standalone renewable energy system was estimated to save
approximately 1.43 million US dollars in one year. The results of simulation calculation reveal that the
proposed power system can satisfy the power demands of Zhongshan Station in normal operation.

In this study, the proposed power system does not realize completely environmentally friendly
operation during its lifecycle because of use of lead–acid batteries and a small amount of fuel. In future
work, a more environmentally friendly energy storage system needs to be designed and adopted, such
as pumped energy storage, flywheel energy storage, etc. More renewable energy harvesting systems
can be used to collect wave energy, temperature and salinity difference energy in Polar Regions. The
power generator and the energy storage system need slightly adjusted to achieve 100% environmentally
friendly power generation. More works on using advanced sizing methods will be realized to choose
power of the photovoltaic array, wind turbine and battery capacity more reasonable.
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Abstract: Renewable energy sources have emerged as an alternative to meet the growing demand
for energy, mitigate climate change, and contribute to sustainable development. The integration of
these systems is carried out in a distributed manner via microgrid systems; this provides a set of
technological solutions that allows information exchange between the consumers and the distributed
generation centers, which implies that they need to be managed optimally. Energy management in
microgrids is defined as an information and control system that provides the necessary functionality,
which ensures that both the generation and distribution systems supply energy at minimal operational
costs. This paper presents a literature review of energy management in microgrid systems using
renewable energies, along with a comparative analysis of the different optimization objectives,
constraints, solution approaches, and simulation tools applied to both the interconnected and isolated
microgrids. To manage the intermittent nature of renewable energy, energy storage technology
is considered to be an attractive option due to increased technological maturity, energy density,
and capability of providing grid services such as frequency response. Finally, future directions on
predictive modeling mainly for energy storage systems are also proposed.

Keywords: microgrids; energy management; renewable energy; optimization; photovoltaic;
energy storage

1. Introduction

The exponential demand for energy has led to the depletion of fossil fuels such as petroleum, oil,
and carbon. This, in turn, increases the greenhouse effect gases. Energy systems have incorporated
small-scale and large-scale renewable sources such as solar, wind, biomass, and tidal energy to mitigate
the aforementioned problems on a global scale [1]. Global energy demand will grow by more than
a quarter to 2040, when renewable sources are expected to represent 40 percent of the global energy mix.
The reliability of the renewable sources is a major challenge due mainly to mismatch between energy
demand and supply [2]. Renewable energy resources, distributed generation (DG), energy storage
systems, and microgrids (MG) are the common concepts discussed in several papers [3]. The increase
in the demand for energy and the rethinking of power systems has led to energy being generated
near the places of consumption. This energy is derived from renewable sources, which are becoming
increasingly competitive due to a drop in prices, especially in the case of photovoltaic solar and wind
energies [4].

Due to strong dependency on climatic and meteorological conditions, in many cases the optimal
system is a hybrid renewable energy system (considering one or more renewable sources) with battery
storage systems (and in some cases including diesel generator) [5]. The hybrid energy systems are
typically used for electricity supply for several applications such as houses or farms in rural areas
without grid extension, telecommunication antennas, and equipment, and many other stand-alone
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systems [6,7]. In many cases these hybrid systems imply the highest reliability and lowest costs
compared to systems with only one energy source [8,9].

A microgrid consists of a set of loads, energy storage equipment, and small-scale generation
systems [10]. It can be defined in a broader sense as a medium or low distribution grid, which has
distributed generation including renewable and conventional sources (hybrid systems) with storage
units that supply electrical energy to the end users. The reliability of the microgrid is improved by
the storage and it is used to complement the intermittency of the PV and wind output power [11–13].
These microgrids have communication systems that are necessary for real time management [14].
Microgrids can also operate either in isolation or when connected to a grid [15]. Based on the type of
source they manage, microgrids can be classified as direct current line (DC), alternating current line
(AC), or hybrid (shown in Figure 1).

Figure 1. A hybrid isolated microgrid scheme.

In a microgrid, it is essential to maintain the power supply-demand balance for stability because
the generation of the intermittent distributed sources such as photovoltaic and wind turbines is difficult
to predict and their generation may fluctuate significantly depending on the availability of the primary
sources (solar irradiation and wind). The supply-demand balancing problem becomes even more
important when the microgrid is operating in stand-alone mode where only limited supply is available
to balance the demand [16]. Energy management optimization in microgrids is usually considered as
an offline optimization problem [17].

Microgrids supported with renewable energies can be classified as smartgrids, which provide
a set of technological solutions to allow information exchange between the consumers and the
distributed generation. An energy management system (EMS) is defined as an information system,
which provides the necessary functionality when supported on a platform to ensure that generation,
transmission, and distribution supply energy at minimal cost [18]. Energy management in the
microgrids involves a control software that permits the optimal operation of the system [19]. This is
achieved by considering the minimal required cost and two microgrid operation modes (isolated
and interconnected). The variability of resources such as solar irradiation and wind speed must be
accounted for when considering microgrids with renewable energy sources [20].

A review on the studies related to the energy management of microgrids can be found in [21].
A few authors have solved the problem of energy management using different techniques to achieve
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an optimal microgrid operation. However, these techniques must incorporate better solution strategies
due to the integration of distributed generation, storage elements, and electric vehicles.

Other recent papers [22] have reviewed various integration methods for renewable energy
systems based on storage and demand response. This covers two main areas, namely (1) the optimal
usage of storage, and (2) improvement of user participation via demand response mechanisms
and other collaborative methods. The authors in [23] reviewed energy management strategies for
hybrid renewable energies. The above review covered different configurations of stand-alone and
grid-connected hybrid systems. Other review papers [24] have shown the control objectives of the
microgrid supervisory controllers (MGSC) and energy management systems (EMS) for microgrids.
Table 1 shows the contributions of the review papers related to the energy management of microgrids.
Unlike the cited papers, this paper focuses on the incorporation of better strategies for the control
of energy (both heat and electrical) flow between the hybrid system sources and load. Furthermore
methods of energy management in stand-alone hybrid microgrid considering the battery degradation
are also discussed.

Table 1. Microgrids energy management review papers.

Reference Contributions

[21]
Authors presented a comparative analysis on decision making strategies for
microgrid energy management systems. These methods are selected based on their
suitability, practicability, and tractability, for optimal operation of microgrids.

[22]
Energy management integration methods, demand response, and storage systems are
reviewed. Authors used more accurate models for storage including key factors such
as the derating factors due temperature charge/discharge rate and ageing.

[23] Authors presented a review on strategies and approaches used to implement energy
management in stand-alone and grid-connected hybrid renewable energy systems.

[24]
Authors showed an extensive review on energy management methodologies applied
in microgrids. EMS for real-time power regulation and short-/long-term energy
management are reviewed.

[25]
Authors showed previous solutions approaches, optimization techniques, and tools
used to solve energy management problem in microgrids. It includes heuristic,
agent-based, MPC, evolutionary algorithms, and other methods.

[26] Authors showed an overview of the latest research developments using optimization
algorithms in microgrid planning and planning methodologies.

[27] Authors presented an overview of current hybrid microgrids and optimization
methods and applications.

[28] Authors showed in detail the optimization of distributed energy microgrids in both
the grid-connected and stand-alone mode.

2. Microgrid Optimization Techniques

Energy management of a microgrid involves a comprehensive automated system that is primarily
aimed at achieving optimal resource scheduling [25–27]. It is based on advanced information technology
and can optimize the management of distributed energy sources and energy storage system [28].
The microgrid optimization problem typically involves the following objectives:

Maximize the output power of the generators at a particular time;
Minimize the operating costs of the microgrid;
Maximize the lifetime of energy storage systems;
Minimize the environmental costs.

Some of the classic optimization methods include mixed integer linear and non-linear
programming. The objective function and constraints used in linear programming are linear functions
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with real-valued and whole-valued decision variables. Dynamic programming methods are used to
solve more complex problems that can be discretized and sequenced. The problem is typically broken
down into sub-problems that are optimally solved. Then, these solutions are superimposed to develop
an optimal solution for the original problem.

Metaheuristics is another important alternative in microgrid optimization. Heuristic techniques are
combined to approximate the best solution using genetic algorithms, biological evolution, and statistical
mechanisms for achieving optimal operation and control of microgrid energy.

Predictive control techniques are used in applications where predicting the generation and loading
is necessary to guarantee effective management of stored energy. This typically combines stochastic
programming and control. The most remarkable among these techniques are the ones to predict the
deterioration of elements of the grid, mainly storage systems.

Optimization methods based on a multi-agent used on microgrids allow a decentralized
management of the microgrid and consist of sections having autonomous behavior to execute the tasks
with defined objectives. These agents, which include loads, distributed generators and storage systems,
communicate with each other to achieve a minimal cost.

Stochastic methods and robust programming are used to solve the optimization functions
when the parameters have random variables, particularly in artificial neural networks, fuzzy logic,
and game theory.

A few more methods can be derived from a combination of the aforementioned techniques such
as stochastic and heuristic methods and enumeration algorithms.

3. Microgrid Energy Management with Renewable Energy Generation

A microgrid is composed of different distributed generation resources that are connected to the
utility grid via a common point. Figure 2 shows a microgrid energy management mode along with
several features that are modules of human machine interfaces (HMI), control and data acquisition,
load forecast, optimization, etc. [29].

Figure 2. Microgrid energy management [29].

Many researchers have addressed energy management by implementing different approaches.
However, all approaches have focused on determining the most optimal and efficient microgrid
operation. The following sub-sections discuss and classify these strategies and solutions.

3.1. Energy Management Based on Linear and Non-Linear Programming Methods

Ahmad et al. [30] presented a technical and economic method to optimize a MG based on
mixed integer linear programming (MILP). This paper presents the advantages of programming the
generation of distributed sources, managing the intermittency and volatility of this type of generation,
and reducing load peaks. The cost function is solved via linear programming based on a general
algebraic modeling system (GAMS). Simulations to optimize MG size are performed via software
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called HOMER. Taha and Yasser [31] presented a robust algorithm based on a predictive control model
for an isolated MG. The model incorporates multi-objective optimization with MILP, which minimizes
the cost, energy consumption, and gas emission due to diesel generation in the MG.

Sukumar et al. [32] proposed a mixed method for MG energy management. This was achieved
by combining the utility grid and fuel cell power. The problem is solved using linear optimization
methods, and the on/off states of the utility grid are solved via MILP. A particle swarm optimization
(PSO) method was used to obtain an optimal energy storage system size.

Tim et al. [33] proposed a system for energy management in an interconnected MG that adopted
a centralized approach based on the concept of flexibility for the final users. An optimal economic
dispatch was obtained using quadratic programming. This grid was integrated with a photovoltaic
system and the constraints must satisfy the demand. The algorithm was tested on an IEEE 33 node
modified grid.

Delgado and Domínguez-Navarro [34] presented an algorithm based on linear programming for
MG energy management that allowed the optimal operation of either generators or controllable and
non-controllable loads. The optimization problem involves the optimal dispatch of generators (diesel)
while meeting the operational and economic constraints imposed by the purchase and sale of energy
corresponding to each component (generators, storage systems, and loads).

Helal et al. [35] analyzed an energy management system for a hybrid AC/DC MG in an isolated
community that employs a photovoltaic system for desalination. The proposed optimization algorithm
was based on the mixed integer non-linear programming, wherein the objective function minimizes
the daily operating costs.

Umeozor and Trifkovic [36] researched the energy management of a MG based on MILP via the
parametrization of the uncertainty of solar and wind energy generation in the MG. The optimization
is achieved at two levels. First, the parametrization scheme is selected; second, the operational
decisions are made the problem considers the variation in market prices and the disposition of the
storage systems.

Xing et al. [37] presented an energy management system based on multiple time-scales.
The optimization problem considers two aspects: A diary static programming and dynamic
compensation in real time. This is solved via a mixed-integer quadratic programming method
using optimal load flows, and the load state of the batteries are predicted using wind and solar
radiation data.

Correa et al. [38] proposed an energy management system based on a virtual power plant
(VPP). The studied MG has solar panels and storage systems and works in an interconnected manner.
These elements are programmed/modeled using linear programming methods to minimize the
operating costs. Renewable energies are incorporated into an energetic model, similar to the Colombian
one, and are mainly based on hydric resources.

Cardoso et al. [39] analyzed a new model to observe the battery degradation of a MG. The problem
is solved using stochastic mixed-integer linear programming, taking several factors such as loads
and different sources of energy generation, costs, constraints, grid topology, and local fees for energy
into consideration.

Behzadi and Niasati [40] analyzed a hybrid system that consists of a photovoltaic (PV) system,
battery, and fuel cells. Performance analysis was conducted using the TRNSYS software, and the
sizing was determined either using the genetic algorithm in the HOGA software (now called iHOGA),
manual calculations, or the HOMER software. Three energy management strategies were tested for
energy dispatch in this hybrid system. The excess energy was checked in each system and a decision
was taken to either produce hydrogen or charge the battery or both.

3.2. Energy Management Based on Metaheuristic Methods

Dufo-López et al. [41] proposed a control strategy for the optimal energy management of a hybrid
system based on genetic algorithms. The system is composed of renewable sources (PV, wind,
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and hydro), an AC generator, electrolyzer, and fuel cells. Energy management is optimized to minimize
the operating costs, which enables the use of the excess energy generated by the renewable sources to
charge the batteries or produce hydrogen in the electrolyzer. The load that cannot be supplied by the
renewable sources can be obtained by either discharging the battery or using fuel cells.

Das et al. [42] studied the effect of adding internal combustion engines and gas turbines to
a stand-alone hybrid MG with photovoltaic modules. A multi-objective genetic algorithm was used to
optimize this system based on the energy costs and overall efficiency. Two strategies, both electric and
thermal, were used to track the load. All the analyzed systems satisfied the electrical demand when
combined with both heating and cooling.

Luna et al. [43] presented an energy management system that operates in real time. Three cases
were studied considering the perfect, imperfect, and exact predictions. The employed optimization
model was tested in both a connected and an isolated MG, with large imbalances between the generation
and load.

An economic dispatch and battery degradation model has been proposed in [44], wherein genetic
algorithms were used for energy supply options via a diesel generator. The results showed that
an increase in the battery lifespan decreases the operational costs of a MG. This method was validated
in a hybrid MG composed of a diesel generator and photovoltaic system.

Chaouachi et al. [45] proposed a multi-objective, intelligent energy management system for a MG
that minimizes the operational costs and environmental impact. An artificial neural network has been
developed to predict the photovoltaic and wind power generation 24 and 1 h in advance, respectively,
along with the load demand. The multi-objective intelligent energy management system is composed
of multi-objective linear programming. The battery scheduling is obtained using a fuzzy logic-based
expert system.

Li et al. [46] presented a study on MG optimization based on the particle swarm algorithm that
can operate a connected or isolated MG. The proposed approach considers the fluctuations in the
renewable sources and load demands in the MG, with appropriate advance (24 h) forecasts available to
overcome these fluctuations.

Nivedha et al. [47] analyzed a MG containing/supporting wind power generation, fuel cells,
a diesel generator, and an electrolyzer. A fuel cell is used when the energy demand is not covered by
the wind turbine, to ensure energy balance when operating diesel generators to reduce the operational
costs. The fuel cell operates to meet the high load demand, resulting in economic MG operation with
a ~70% cost saving using the particle swarm optimization algorithm.

Abedini et al. [48] presented an energy management system for a photovoltaic/wind/diesel
stand-alone hybrid MG, which is optimized using a particle swarm algorithm with Gaussian mutation.
This study minimizes both the capital and fuel costs of the system.

Nikmehr et al. [49] studied an optimal generation algorithm applied to a MG based on optimization
via the imperial competitive algorithm. This algorithm solves the load uncertainty and distributed
generators, along with the economic dispatch of the generating units. This algorithm is comparable to
methods such as the Monte Carlo method, and has been tested in interconnected MGs.

Marzband et al. [50] presented an energy management system for an isolated MG using the
artificial bee colony algorithm (ABC). A stochastic approach is required to analyze the economic
dispatch of the generating units inside a MG, given the intermittent nature of solar energy resources
and wind generation. The results showed a 30% decrease in costs. The non-dispatchable generation
and load uncertainty are managed using neural networks and Markov chains.

Kuitaba et al. [51] presented a new method to optimize an interconnected MG, which combines
an expert system based on fuzzy logic and a metaheuristic algorithm known as Grey Wolf optimization.
This method involves minimizing both the costs of the generating units and the emission levels of the
fossil fuel sources. This method lowers MG costs by considering the optimal capacity of the batteries
and reducing the consumption of fossil fuels.
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Papari et al. [52] analyzed energy management in a MG connected to a direct current utility grid.
The optimization is implemented using the crow search algorithm (CSA), which is a metaheuristic
optimization method that imitates the behavior of a crow to store and hide food.

Wasilewski [53] presented a metaheuristic optimization method to optimize a MG. The methods
include the evolutionary and particle swarm algorithms. These methods account for the fact that
the deterministic conditions assumed in the problem impose an important limit on the employed
methodology. However, it also recognizes the uncertainty of using renewable energies.

Ogunjuyigbe et al. [54] presented a technique based on a genetic algorithm for the optimal location
of both renewable generation and batteries in a stand-alone MG. The proposed multi-objectives are to
reduce operational and life cycle costs, and dump energy. The optimization allows variations in the
radiation and wind sources, and extracts data from a load profile to optimize the MG.

Kumar and Saravanan [55] proposed an algorithm based on the demand prediction over 24 h
in a MG using the artificial fish swarm optimization method. Thus, the demand can be planned in
advance, considering both renewable and non-renewable generation. The algorithm is used to program
the sources, load, and storage elements. They system includes a wind turbine, two photovoltaic
generators, a fuel cell, a micro-turbine, and a diesel generator.

A particle swarm algorithm has been proposed in a recent paper by Hossain et al. [56] for energy
management in a grid-connected MG. A model for charging and discharging a battery has been
formulated. The proposed cost function reduces costs by 12% over a total time horizon/period of 96 h,
with time intervals of one hour. These results can be adjusted in real time.

Azaza and Wallin [57] studied energy management in a MG with a hybrid system consisting of
wind turbines, photovoltaic panels, diesel generator, and battery storage. A multi-objective particle
swarm optimization is used, which evaluates the probability of losing energy supply over a time
horizon/period of 6 months each during summer and winter.

Motevasel and Seifi [58] presented an expert system for energy management (EEMS) in a MG that
contains wind turbines and photovoltaic generation. Neural networks are used to predict wind turbine
generation. The bacterial foraging algorithm is used for the optimization, while the optimization
of the multi-objective problem is obtained by the EEMS module by applying an improved bacterial
foraging-based fuzzy satisfactory algorithm.

Rouholamini and Mohammadian [59] proposed optimal energy management for a grid-connected
hybrid generation system, including PV generator, wind turbine, fuel cell, and electrolyzer. This system
trades power with the local grid using real time electricity pricing over a 24-h time horizon/period based
on the simulation results. The interior search algorithm was used to optimize the energy management
in the above case.

3.3. Energy Management Based on Dynamic Programming Techniques

Shuai et al. [60] proposed an energy management system for a MG based on dynamic programming
and mixed-integer non-linear programming optimization. The MG is interconnected to the grid and
decisions are made using the Bellman equation. Historical data are used off-line, while considering the
power flow and battery storage as constraints. Using the algorithm in multiple MGs simultaneously is
a feasible possibility.

Almada et al. [61] proposed a centralized system for energy management of a MG either in the
stand-alone or interconnected modes. In the stand-alone mode, the fuel cell only works if the battery is
less than 80%. In the interconnected mode, a 60% threshold is required to ensure reliable behavior.

Wu et al. [62] proposed an algorithm based on dynamic programming for the management and
control of stand-alone MGs. The deep learning algorithm works in real time, which permits intra-day
scheduling to obtain a control strategy for MG optimization, while sending information from local
controllers within the framework of centralized management.

Zhuo [63] proposed an energy management system using dynamic programming to manage a MG
with renewable generation sources and batteries. The objective was to maximize the benefits from the

101



Appl. Sci. 2019, 9, 3854

sale of renewable energy and minimize the cost required to satisfy the energy demand. The author
used a non-regulated energy market where electricity prices fluctuate and the battery control actions
are determined by dynamic programming.

Choudar et al. [64] presented an energy management model based on the battery state of charge
and ultra-capacitors. The hierarchic structure of optimal MG management has four states or operating
modes: Normal operating mode, photovoltaic limitation mode, recovering, and stand-alone modes.

Marabet et al. [65] proposed an energy management system for a laboratory scaled hybrid MG
with wind, photovoltaic, and battery energy. The control and data acquisition system are operated in
real time. The energy management system is based on a set of rules, and optimizes the MG performance
by controlling and supervising the power generation, load, and storage elements.

Luu et al. [66] presented a dynamic programming method and methodology based on the
rules applied to a stand-alone MG containing diesel and photovoltaic generators, and a battery.
The constraints are governed by the power balance between generation and consumption, along with
the capacity of each distributed generator. Dynamic programming is used to minimize the operational
and emission costs. The constraints are the power balance between offer and demand, along with the
operating capacity of each distributed generator.

3.4. Energy Management Based on Multi-Agent Systems

Boudoudouh and Maâroufi [67] proposed an energy management system in a MG with renewable
energy sources. Simulations were run using the Matlab-Simulink and java platform for agent developers
(JADE) software. The reliability of this model was validated by fulfilling requirements such as autonomy
and adaptability in the MG management system with load variation.

Raju et al. [68] studied energy management in a grid outage divided into two MGs, which contains
two photovoltaic and wind generators each and a local load. A multi-agent management system based
on the differential evolution algorithm in JADE was used to minimize the generation costs from the
intermittent nature of the solar resource and randomness of load. This system also addressed the price
variation in the grid, and the critical loads were considered while selecting the best solution.

Bogaraj and Kanakaraj [69] presented an energy management proposal based on intelligent
multi-agents for a stand-alone MG, which maintains the energetic balance between the loads, distributed
generators, and batteries. The agents consist of photovoltaic systems, wind turbines, fuel cells,
and battery banks. Loads are divided in three groups based on their priority. The auto-regressive
moving average models (ARMA) were used to predict the generation. Cases covering high and low
irradiation, and low wind were analyzed. The system used a dynamic compensator to balance the
reactive power.

Anvari-Moghaddam et al. [70] presented an energy management system for a microgrid that
includes houses and buildings. The optimization process for the energy management system involves
the coordination of management in distributed generation (DG) and response to the demand. The main
objectives of the cost function are to minimize the operating costs and meet the thermic and electrical
needs of the clients. The communication platform used by the agents is based on the hypertext (HTPP)
communication protocol.

In the study investigated in [71], Nunna and Doolla used an energy management system based
on multi-agents, which considers different types of load patterns and the energy available from
the distributed energetic resources. They proposed a novel mechanism that encouraged clients
to participate. This proposal was validated in interconnected grids using the JADE programming
language. The management system reduces the consumption peaks and offers the clients an attraction
benefit–cost ratio.

Dou and Liu [72] presented a decentralized multi-objective hierarchical system based on the
agents in an interconnected smart MG, minimizing the operating and emission costs and line losses.

The authors in [73] researched decentralized energy management based on the multi-agents
contained in a MG, using cognitive maps with fuzzy logic. The intelligent agents refer to the distributed
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generators, batteries, electrolyzer, and fuel cells. Centralized and decentralized approaches were
compared and it showed that the decentralized approach offers the advantage of partial operation
under certain circumstances such as during a system malfunction or failure.

Mao et al. [74] presented a hybrid energy management system for a MG based on multi-agents,
which incorporates both the centralized and decentralized approaches and optimizes the economic
operation of the MG. A novel simulation platform for energy management systems was designed
based on the client-server framework and implemented in the C++ environment.

Netto et al. [75] developed a real time framework for energy management in a smart MG in the
islanded mode using a multi-agent system. The RSCAD software was used to simulate the MG using
the TCP/IP protocol for the purposes of testing and real time operation.

3.5. Energy Management in Microgrids Based on Stochastic Methods and Robust Programming

Che Hu et al. [76] showed an energy management model for a MG wherein the uncertainty in the
supply and energy demand are taken into account. Uncertainty in wind and photovoltaic generation,
and demanded energy is considered. The stochastic programming of two states was formulated using
the GAMS and was tested on a real grid at the Nuclear Energy Research Centre in Taiwan. The battery
capacity was optimized in the first stage, while an optimal operation strategy for the MG was evaluated
in the second stage.

The author in [77] presented an optimization system for a hybrid MG using a multi-objective
stochastic technique. The objective function presented in this study minimizes the system losses and
reduces the operating cost of the renewable resources, which were used at different points of the MG.
The problem was formulated using the weighting sum for the total operating cost and losses of the
feeding systems. The proposed scheme was solved using mixed integer linear programming and
tested on the IEEE 37 node distribution system.

Lu et al. [78] proposed a dynamic pricing mechanism that achieves an optimal operating
performance. This mechanism was applied to a grid composed of multiple MGs, to evaluate the
uncertainty of renewable energy integration on a large scale. An optimization scheme was developed
at two levels: The pricing mechanism guaranteed the market operator’s energy operation in the upper
level, while in the lower level the MG transactions were developed.

Xiang et al. [79] proposed an optimization model for an interconnected MG based on a model
using the Taguchi orthogonal matrices. The uncertainty in the renewable energy and load demand
were determined by an interval based on error prediction.

Hu et al. [80] introduced an optimization method for an interconnected grid that is divided
in two stages. A conventional generator is used in the first stage, while the second stage ensures
an economical dispatch of the conventional and distributed generation using hourly marketing.
This combination permits management of the uncertainty in renewable generation using the Lyapunov
optimization method.

Shen et al. [81] presented a stochastic energy management model for an interconnected MG.
The uncertainty level is managed using Latin hypercube sampling based on the Monte Carlo method,
which generates various scenarios for the distributed resources, load, and electricity price. A sensitivity
analysis is performed to determine the standard deviation of the expected price and level of reliability.

Rezai and Kalantar [82] proposed a stochastic energy management system for a stand-alone MG
based on the minimization of frequency deviations. Operating costs of the MG include conventional
and distributed generation, and reserves and incentives for generation using renewable sources.
The outputs of the conventional generators were also analyzed for various contingencies to demonstrate
the robustness of the proposed approach.

Su et al. [83] studied a model for the efficient programming of an interconnected MG,
which minimizes the operating costs of the conventional generators, battery degradation,
and commercial costs corresponding to the energy from the utility grid. This model follows two stages.
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The first stage involves optimization of the MG, while the second stage involves analysis of the power
output to calculate the MG energy losses in real time.

Farzin et al. [84] proposed an energy management system for an isolated MG. The islanding event
was treated as a normal probability distribution of the failures in the utility grid. The objective was to
minimize the MG operating costs. This included costs associated with the microturbine operation,
wind turbines, batteries, and load disconnection.

Liu et al. [85] proposed an energy management system for an interconnected MG considering
renewable energies and load uncertainties. The energy management is divided in two sub-problems:
The first involves scheduling within the defined energy boundaries for system protection, while the
second evaluates the real time energy capacity deviation limit for frequency regulation. The presented
approach was found to be more cost effective.

Kuztnesova et al. [86] proposed a decentralized energy management system for an interconnected
MG using agent-based modeling and robust optimization. The MG performance was evaluated in
terms of the cost from the power imbalances associated with the uncertainty of renewable generation
and load power demand.

Zachar and Daoutidis [87] proposed a hierarchic control mechanism to regulate and supervise the
loads and dispatchable energy inside a MG. Stochastic optimization was used on a low scale to avoid
errors in the forecast of renewable energies. Deterministic optimization was realized on a fast scale to
update the optimal dispatch conditions.

Battistelli et al. [88] proposed an energy management system for a remote hybrid AC/DC MG,
which ensures economical dispatch in spite of the uncertainties associated with the use renewable
energy sources. A load control is determined (thermic and electric vehicles) based on the demand,
while taking the limits of the generators, controllable loads, and charge and discharge of batteries
into consideration.

Lujano et al. [89] developed an optimal load management method for hybrid systems composed
by the wind tubine, battery bank, and diesel generator. The autoregressive moving average (ARMA)
was used to predict the wind speed.

The results showed that the load management strategy improved wind power usage by shifting the
controllable loads to the wind power peaks, thus increasing the charge in the battery bank. This research
contributed strategies for the energy management of hybrid MGs.

3.6. Energy Management Using Predictive Control Methods

Zhai et al. [90] proposed a predictive robust control that can be applied to a stand-alone MG.
The management model employed mixed integer programming. The MG is composed of wind and PV
generators, batteries, and loads.

Zhang et al. [91] presented a model predictive control (MPC) method to manage a MG that
integrates both distributed and renewable generation. The model’s objective is to reduce the costs and
constraints in both generation and energy demand.

Minchala Ávila et al. [92] proposed a methodology based on predictive control for energy
management in a stand-alone MG. The controller operates the battery energy in a centralized manner
and performs a load elimination strategy to ensure balance in the MG power output.

Ju et al. [93] investigated an energy management system for a hybrid MG taking the degradation
costs of the energy storage systems into consideration. The proposal consists of a two-layer predictive
control for the hybrid MGs, which use batteries and supercapacitors as storage systems. An important
contribution of this work is that the degradation costs of the supercapacitors and batteries were
modeled, which allows more accurate assessment of the MG operating costs.

Valencia et al. [94] proposed an energy management model for a MG that uses predictive control,
which involves the prediction of the intervals using fuzzy logic. This allows the representation of the
non-linearity and dynamic behavior of the renewable sources.
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Genesan et al. [95] presented an energy management system for a MG based on a control algorithm
to integrate and manage various types of generation such as the PV, distributed generation, energy
storage systems, and UPS from the supply grid and different loads. The transition problem between
the storage systems and PV generation is solved via control and communication, which functions on
a TCP/IP protocol.

García Torres and Bordons [96] introduced optimal programming in a hybrid MG, based on
a predictive control model that is solved using mixed integer quadratic programming. They integrated
the operating costs and MG optimization, which includes the degradation costs of all the components
of the hybrid system, mainly the hydrogen-based storage systems.

Solanki et al. [97] presented a mathematical model of the smart loads and energy management of
a stand-alone MG. Loads are modeled using neural networks. Energy management is realized with
the predictive control method, which performs an optimal power dispatch taking the elements and
controllable loads into consideration.

Oh et al. [98] proposed a multi-step predictive control model for a MG over a time horizon/period
of 180 min in 15 min steps. This includes conventional and renewable energy generators, energy
storage elements, and both critical and non-critical loads. The cost function was formulated considering
the costs associated with fuel consumption, renewable energy reduction, battery state of charge,
and amount of load shedding.

A proposal has been presented by Prodan et al. [99] for the energy management of a MG based on
a fault-tolerant predictive control design. One of their many contributions includes the extension of
the useful battery life by decreasing the charge and discharge cycles.

Wu et al. [100] presented an optimal solution for the operation of a hybrid system using solar
energy and battery storage. The battery plays a significant role in the storage of grid power during
off-peak periods and supply of power to the customers during peak demand. Thus, scheduling the
hybrid system leads to the minimal power consumption from the grid and reduces a customer’s
monthly cost.

Thirugnanam et al. [11] proposed a battery strategy management. The main objective tries to
reduce the fuel consumption in DG, reduce fluctuating PV power, and control the battery charge
and/or discharge rate to improve the battery life cycle. The battery charge/discharge rate control model
considers the battery SOC limits, wherein the batteries are not charged or discharged beyond the
specified limits.

Dufo-López et al. [101] presented a technique to optimize the daily operation of a diesel-wind-PV
hybrid, using MPC with forecast data of the irradiation, wind speed, temperature, and daily load.
The main contribution of this work is daily optimization that accounts for the degradation of the
lead-acid battery by corrosion and capacity losses, using the advanced model presented by Schiffer et
al. [102]. This parameter is important when considering the operating costs of the MG, as the useful
life and replacement of the batteries can be estimated more accurately. The optimization is executed
using genetic algorithms.

3.7. Energy Management Based on Artificial Intelligence Techniques

Elseid et al. [103] defined the role of energy management in a MG as a system that autonomously
performs the hourly optimal dispatch of the micro and utility grids (when interconnected) to meet the
energy demand. In the above study, the authors used a CPLEX algorithm developed by IBM.

Mondal et al. [104] proposed an energy management model for a smart MG based on game theory,
using a distributed energy management model. In this scheme, the MG selects a strategy to maximize
its benefits with respect to the cost and adequate use of energy.

Prathyush and Jasmín [105] proposed an energy management system for a MG using a fuzzy
logic controller that employs 25 rules. The main objective is to decrease the grid power deviation,
while preserving the battery state of charge.

105



Appl. Sci. 2019, 9, 3854

Leonori et al. [106] proposed an adaptive neural fuzzy inference system using an echo state
network as a predictor. The objective was to maximize the income generated from energy exchange
with the grid. The results showed that the energy management performance improved by 30% over
a 10 h prediction horizon/period.

De Santis et al. [107] introduced an energy management system for an interconnected MG
using fuzzy logic based on the Mamdani algorithm. The main objective is to take decisions on the
management tasks of the energy flow in the MG model, which is composed of renewable energy
sources and energy storage elements. The optimization was realized in a scheme that combines fuzzy
logic and generic algorithms.

Venayagamoorthy et al. [108] proposed an energy management model for a MG connected to
the main power grid. The MG maximizes the use of renewable energies and minimizes carbon
emissions, which makes it self-sustainable. The management system is modeled using evolutionary
adaptive dynamic programming and learning concepts using two neural networks. One of the
neural networks is used for the management strategy, while the other used to check for an optimal
performance. The performance index is evaluated in terms of the battery life, use of renewable energy,
and minimization of the controllable load.

Ma et al. [109] proposed an algorithm using game theory based on the leaders and followers for
energy management. This approach aims at maximizing the benefits available to active consumers of
the MG, while keeping the Stackelberg balance to ensure an optimal distribution of benefits.

Jia et al. [110] formulated an adaptive intelligence technique for the energy management of
an interconnected MG, which uses energy storage elements. The objective is to minimize any load
fluctuations due to uncertainties in the renewable energy generation. The load profile is managed by
storage elements and ultra-capacitors.

Arcos-Avilés et al. [111] presented an energy management algorithm based on low-complexity
fuzzy logic control for a residential grid-connected MG, which includes renewable distributed
generation and batteries.

Aldaouab et al. [112] proposed an optimization method using genetic algorithms for residential
and commercial MGs. The MG uses PV-solar energy, microturbines, a diesel generator, and an energy
storage system.

Liu et al. [113] proposed a Stackelberg game approach for energy management in a MG.
A management system model that takes the fee for the PV energy into account was introduced,
which includes the profits from the MG operator and a utility model for the PV consumers.

Nnamdi and Xiaohua [114] proposed program consisting on an incentive-based demand response
for the operations of the grid connected MG. The game theory based demand response program
(GTDR) was used to investigate the grid connected operational mode of a MG. The results showed that
lower costs could be achieved in the MG when the DG benefit of the grid operator is maximized at the
expense of minimizing the fuel/transaction costs.

3.8. Energy Management Based on Other Miscellaneous Techniques

Astaneh et al. [115] proposed an optimization scheme to find the most economic configuration for
a stand-alone MG, which has a storage system with lithium batteries, and considered different control
strategies for energy management. The lifetime of lithium batteries is estimated using an advanced
model based on electrochemistry to evaluate the battery longevity and its lifetime.

Neves et al. [116] presented a comparative study on the different objectives of the optimization
techniques for the management of stand-alone MGs. This approach is primarily based on linear
programming and genetic algorithms. The results showed that the optimization of the controllable
loads could result in an operating cost reduction and inclusion of renewable energies.

Wei et al. [117] proposed an iterative and adaptive algorithm based on dynamic programming
to enable optimal energy management and control a residential MG. The charge/discharge level of
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the battery is treated as a discreet problem in hourly steps. The decisions on the energy supply for
a residential load with respect to the energy fee are made in real time.

Yan et al. [118] studied the design and optimization of a MG using a combination of techniques
such as mixed integer programming for the optimization of energy management, and the probabilistic
Markov model to represent the uncertainty of PV generation. The design included a linear model to
evaluate the MG lifetime.

Akter et al. [119] proposed a hierarchic energy management model for an interconnected residential
MG serving prosumers, which includes a local control mechanism that shares information with a central
controller for energy management.

In the research presented in [120], an energy management system was designed for a hybrid
system combining wind, PV, and diesel generation. The system operates both on- and off-grid. Thus,
there exists a control mechanism within the inverter for transfers between the micro and utility grids.

Lai et al. [121] proposed a techno-economic analysis of an off-grid photovoltaic with
graphite/LiCoO2 storage used to supply an anaerobic digestion biogas power plant (AD). The main
contribution is the economical study of the hybrid system including the battery degradation costs.
An optimal operating regime is developed for the hybrid system, followed by a study on the levelized
cost of electricity (LCOE).

Figure 3 presents a summary of the energy management methodologies used for the MGs based
on the above-reviewed literature. Different researches have proposed several methodologies related to
energy management in MGs. Many methods are based on classical approaches such as mixed integer
linear and nonlinear programming. Linear programming can be considered a good approach depending
on objective and constraints, while artificial intelligence methods are focused to approach situations
where other methods lead to unsatisfactory results, including renewable generation forecasting and
optimal operation of energy storage considering battery aging, among others.

Figure 3. Energy management methodologies in microgrids (MGs) [25].
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3.9. Optimization Techniques

Different optimization techniques are generally applied to maximize the power output of each
particular source, minimize electricity costs, or maximize storage systems. Figure 4 presents the
most commonly employed optimization techniques and algorithms presented in the literature review.
Main advantages and disadvantages are briefly presented in Table 2.

Various techniques have been used by different researches. Energy management and the
optimization of control in a MG can have one or more objective functions. These functions can vary
depending on the optimization problem presented. This can result in a mono-objective or multi-objective
problem, which can include the minimization of costs (operation and maintenance cost, fuel cost,
and degradation cost of storage elements such as batteries or capacitors), minimization of the emissions
and minimization of the unmet load. Table 3 shows a comparison between the different optimization and
management methods used in the MGs. Different researchers have proposed metaheuristic techniques
to solve the problem of optimization due to multi-constraints, multi-dimensional, and highly nonlinear
combinatorial problems. Other authors presented stochastic dynamic programming methods for
optimizing the energy management problem with multidimensional objectives. Game theory has been
proposed for some researchers to solve problems with conflicting objective functions.

Figure 4. Optimization techniques in microgrid energy management.
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Table 2. Comparative analysis of optimization mathematical models.

Optimization
Mathematical Model

Advantages Disadvantages

MILP

Linear programming (LP) is a fast way to solve the
problems and the linear constraints result in

a convex feasible region, being guaranteed in many
cases to obtain the global optimum solution.

Reliability and economic stochastical
analysis. Limited capabilities for

applications with not differentiable
and/or continuous objective functions.

MINLP

It uses simple operations to solve complex
problems. It can obtain more than one optimal
solution to choose from, which is an advantage

over the MILP formulation.

High number of iterations (high
computational effort).

Dynamic programming
(DP)

It can split the problem into subproblems,
optimizing each subproblem and therefore solving

sequential problems.

Complex implementation due to high
number of recursive functions.

Genetic algorithms (GA)

Population-based evolutionary algorithms that
include operations such as crossover, mutation, and

selection to find the optimal solution. Adequate
convergence speed. Widely used in many fields.

Crossover and mutation parameters,
and population and stopping criterial

parameters must be set.

Particle swarm
optimization (PSO)

Good performance in scattering and optimization
problems. High computational complexities.

Artificial bee colony Robust population-based algorithm simple to
implementate. Adequate convergence speed. Complex formulation.

Artificial Fish Swarm Few parameters, fast convergence, high accuracy,
and flexibility.

Same advantages of GA but without
its disadvantages (crossover and

mutation).

Bacterial foraging
algorithm

Size and non-linearity of the problem does not
affect much. Converge to the optimal solution

where analytical methods do not converge.
Large and complex search space.
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3.10. Microgrid Operating Modes

A considerable number of papers have been published on interconnected microgrids,
while discussing various modes of microgrid operation. On the other hand, the stand-alone mode is
considered by many authors as an alternative supply measure mainly in the rural areas or regions with
no conventional grids [122]. Thus, both the on- and off-grid operating modes are a feasible alternative.
Table 4 summarizes the above considerations.

Table 4. Microgrid operating modes.

Reference Microgrid Mode Operation

[11,20,30,32,33,36–39,45,49,51–53,55,56,58,59,63,67–71,
74,77–81,83,85–87,91,93,94,96,99,100,103–114,117,118] Grid-Connected

[9,31,34,40,42,44,47,48,50,54,57,60,62,65,66,72,73,75,76,
82,84,88–90,92,97,98,101,102,115,116,119,121] Off-Grid

[8,15,19,35,43,46,61,64,95,120,122] Grid-Connected/Off-Grid

3.11. Modelling and Simulation Tools

Table 5 presents a summary of the most popular simulation tools, wherein tools such as
Matlab/Simulink (MathWorks, Natick, MA, USA) and MATPOWER have particular importance.
Matlab is a numerical computing environment of 4th generation programming language, it can
interface with other languages such as C, C++, C#, Java, Fortran, and Python. MATPOWER is an
open-source tool that is used to simulate optimal power flows, which uses Monte Carlo to evaluate the
performance of MG. Alternately, other tools such as GAMS, which is an optimization language for
linear, nonlinear, and mixed programming, have been used by many authors to solve the uncertainty
problem in energy management and for optimal dimensioning of the microgrid. Other tools such as
CPLEX have been employed, which is an optimizer based on the C language and is compatible with
other languages like C++, Java, and Python.

Table 5. Simulation software and tools used in the management of microgrids.

References Tools Characteristics

[61] PSCAD/EMTDC Simulation software power systems, power electronics, HVDC,
FACTS, and control system.

[11,32,33,35,38,62,64,65,
67,70,77,93,97,104,109,

110,121]

MATLAB/Simulink
MATPOWER

Matrix based programming language used by engineers in
power systems, power electronics, telecommunications, and
control, among others. Compatible with other programming

languages (C++, Java, and fortran).

[30,76] GAMS (GAMS Development Corp.,
Fairfax, VA, USA)

High level language for mathematical optimization of mixed
integer linear and nonlinear.

[74] C++ Application development environment of C++ for Windows.

[40]

TRNSYS (Thermal Energy System
Specialists, LLC, Madison, WI, USA)

HOMER
HOGA

Simulation software to model hybrid systems of energy
generation.

Hybrid Optimization by Genetic Algorithms.

[75]

RSCAD (RTDS Technologies Inc.,
Winnipeg, MA, Canada)

JADE (Jade, Christchurch, New
Zealand)

Real time simulator for power systems.

[67,68,71,72] JADE Java environment platform for multi-agents.

[30,118,122] HOMER Simulation software to model hybrid systems of energy
generation.

[36,83,103] CPLEX (IBM, Armonk, NY, USA) Optimization software compatible with C, C++, Java,
and Python languages.
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The simulation and modeling of microgrids has been analyzed with programs such as Simulink
and PSCAD/EMTDC (Manitoba Hydro International Ltd., Winnipeg, Manitoba, Canada). Both tools
are used for power control and energy management in microgrids.

Software such as HOMER (Pro Version, HOMER Energy LLC, Boulder, CO, USA), HOGA (or
its updated version iHOGA) (Pro+ Version, University of Zaragoza, Zaragoza, Spain), or HYBRID2
(University of Massachusets, NREL/NWTC, Golden, CO, USA) also deserve a mention, which can be
used to optimize the operation and energy management of hybrid systems with renewable energies.

4. Conclusions and Future Research

The literature review highlighted two approaches for microgrid energy management:
The centralized and decentralized approaches. The first incorporates optimization using the available
information in the absence of a coordination strategy between the actors in a microgrid. A computer
centre transmits the optimal settings to each participant. The second approach implements optimization
using partial information and a strategy for coordinating the microgrid participants; each participant
evaluates its own optimal settings. Centralized management is mostly implemented in metaheuristic
methods, and decentralized management is frequently implemented in methods based on multi-agents.
Many publications have proposed centralized management for microgrids. However, the incursion of
distributed energy resources (DER) may cause this type of management to face issues when implemented
in a centralized information system because there might be a demand for high computational cost due
to the large quantity of data. Distributed energy management may be an alternative solution to this
problem. It solves the problem of data processing and reduces processing needs by using distributed
controllers that manage the data in real time and require communication equipment that might result
in additional costs (for e.g., Bluetooth, Wi-Fi, wireless networks, and IoT).

An energy management model for a microgrid includes data acquisition systems,
supervised control, human machine interface (HMI), and the monitoring and data analysis of
meteorological variables.

The literature review mainly presented management methods based on foresight and short-term
management. The choice of centralized or decentralized management ensures that the microgrid
designer and operator realize a cost–benefit balance. This enables one to determine the management
model that is most convenient for the microgrid. Though decentralized management offers more
flexibility, an integral analysis is necessary to ensure reliable and safe system operation.

The energy management problem or optimization control in a microgrid becomes a mono-objective
management/optimization model when a single cost function is presented. This function typically
corresponds to the operating cost of the microgrids. The problem becomes a multi-objective
management/optimization model when it simultaneously presents a solution to the technical, economic,
and environmental problems. Based on the literature, different authors have addressed the problem
and provided solutions using methods such as the classic ones with linear and nonlinear programming,
heuristic methods, predictive control, dynamic programming, agent-based methods, and artificial
intelligence. These methods are chosen based on their practicality, reliability, and resource availability
in the microgrid environment.

With regard to storage systems in microgrids, lithium batteries can be an important alternative to
lead-acid batteries in the future. The advantages of Li-ion batteries compared to lead-acid batteries are
a long cycle life, fast charging, high energy density, and low maintenance. Currently, lead acid batteries
are economically better than Li-ion batteries when used in microgrids, but a decrease in the acquisition
cost of lithium batteries is expected in the coming years that will cause them to be competitive with
those of lead-acid. Thus, further research on the optimal energy management of energy systems and
the management of lithium batteries is required while considering more accurate degradation models
to accurately predict the battery lifetime in real operating conditions.
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Abbreviations

MG Microgrid
AC Alternating current line
ARMA Auto-regressive moving average models
CSA Crow search algorithm
DC Direct current line
DG Distributed generation
DER Distributed energy resources
EEMS Expert system for energy management
EMS Energy management system
GAMS General algebraic modeling system
HMI Human machine interfaces
HOGA Hybrid optimization by genetic algorithms
HOMER Hybrid optimization model for multiple energy resources
iHOGA Improved Hybrid optimization by genetic algorithms
JADE Java platform for agent developers
MGSC Microgrid supervisory controllers
MILP Mixed integer linear programming
MO Multi-objective
MPC Model predictive control
PSO Particle swarm optimization
PV Photovoltaic
VPP Virtual power plant
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Abstract: This paper describes the design and implementation of a heliostat orientation control
system based on a low-cost microcontroller. The proposed system uses a fuzzy logic controller
(FLC) with the Center of Sums defuzzification method embedded on a dsPIC33EP256MU806 Digital
Signal Processor (DSP), in order to modify the orientation of a heliostat by controlling the angular
position of two DC motors connected to the axes of the heliostat. The FLC is compared to a traditional
Proportional-Integral-Derivative (PID) controller to evaluate the performance of the system. Both the
FLC and PID controller were designed for the position control of the heliostat DC motors at no load,
and then they were implemented in the orientation control of the heliostat using the same controller
parameters. The experimental results show that the FLC has a better performance and flexibility than
a traditional PID controller in the orientation control of a heliostat.

Keywords: heliostat; sun tracking; solar energy; embedded system; fuzzy logic control; center of
sums defuzzification method

1. Introduction

The output power produced by a solar plant is proportional to the amount of solar energy absorbed
by the system. Therefore, a sun tracking system (STS) with a high degree of accuracy is necessary to
avoid losses in the output power of solar plants. STSs are usually classified into two categories [1]:
passive sun tracking systems, which use the expansion of a gas caused by the solar radiation to move
the mechanical structure of the tracker, and active sun tracking systems, which use motors, gears and
electric controllers to drive concentration and absorption devices in a solar plant. There are two types
of active sun tracking systems based on their controlling methods [2]: sensor driver systems (SDSs)
and microprocessor driver systems (MDSs). SDSs use photosensors in order to detect a change in
light sources and convert it into an electrical signal, which is used to obtain the position of the sun.
However, there are tracking errors when the sensors cannot produce an electrical signal due to low
solar radiation levels produced by the presence of passing clouds or contamination in the air. MDSs use
microprocessors and computer systems to execute mathematical equations based on solar position
algorithms and the current date and time to determine the exact position of the sun. MDSs are cheaper
than SDSs; however, there is no feedback to verify the position of the sun, and tracking errors may
appear due to the precision of the solar position algorithm. Several algorithms with different levels
of complexity and accuracy can be found in the literature [3], where the use of a more precise solar
position algorithm increases both the accuracy and the computational effort of the system.

Central tower power plants use two-axis sun reflectors called heliostats, which reflect the solar
irradiance into a collector tower. Every heliostat has a local control which drives two motors connected
to reduction gears, where the trend is to give greater autonomy to the central control by increasing
the intelligence of the local control of each heliostat. Additionally, in solar plants, there are changing
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dynamics due to non-linearities and uncertainties that traditional PID controllers cannot handle. This is
because a PID controller may produce high oscillations when it is tightly tuned, and the dynamics of
the process varies due to changes in the operating conditions. Hence, the use of more efficient control
strategies results in better responses [1]. An FLC is a good alternative to traditional PID controllers,
because it can deal with non-linear systems and can be designed by using the knowledge of a human
operator without knowing the mathematical model of the system. Although the FLC does not have a
better response in time domain than a PID controller, this later one cannot be applied to systems which
have a quick change of parameters because it would require to adjust the value of its control gains [4].

FLCs [5–10] and hybrid PID-FLCs [4,11–16] have been applied to control the position of DC
motors, showing a good output response and better performance against traditional PID controllers.
Furthermore, FLCs have been implemented to control two-axis sun trackers for photovoltaic systems.
Yousef [17] was the first to develop a PC-based FLC algorithm to control a two-axis photo-voltaic (PV)
solar panel. Afterwards, the FLC has been implemented in different platforms and devices such as
microcontrollers [18–20], DSPs [21], personal computers (PCs) [22–25] and field-programmable gate
arrays (FPGAs) [26].

Finally, the FLC has also been applied in orientation control of heliostats. Ardehali and Emam [27]
performed a comparison between a classical PI and PID controller, a PI-FLC and a PID-FLC for the
orientation control of a laboratory-scale heliostat with two mirrors of 0.9 m× 0.7 m, two 15 W DC motors,
and a data acquisition system with 20 ms sampling time. The FLC uses three membership functions
in order to adjust the PID controller gains. The results showed that PI-FLC presented reductions in
the overshoot and better performance than the other controllers. Zeghoudi and Chermitti [28] and
Zeghoudi et al. [29] used the Matlab environment in order to simulate the orientation of a heliostat by
using an FLC with two different rule bases, comparing the output response with a PI, a PID, a PI-FLC
and a neural controller. The results showed a better output response for the FLC compared with the
other controllers. Additionally, the FLC with fewer rules showed a better output response to step
changes than the FLC with the bigger rule base. Bedaouche et al. [30] simulated the position control of
two DC motors in order to modify the orientation of a heliostat by using a PID controller self-adjusted
by an FLC. The FLC adjusts each PID controller gain by using an individual rule base of forty-nine
rules and the error and change of error values. The results showed a faster output response and a
smaller overshoot than a classic PID controller. Jirasuwankul and Manop [31] applied an FLC to
control the orientation of a lab-scale heliostat with two stepper motors by using a micro-step driver.
The position of the heliostat is obtained by using image processing of the reflected solar radiation on
the target. The results showed a good performance of the FLC; however, there are tracking errors when
the system cannot process the image due to passing clouds.

Nevertheless, the works cited above have only been presented in simulations and small-scale
models. Considering the aforementioned, the objective of this paper is to describe the design and
implementation of a two-axis STS for the orientation control of a real-scale azimuth-elevation heliostat
by using an FLC implemented on a low-cost microcontroller-based embedded system. The comparison
between the FLC and a PID controller has also been done.

2. Heliostat Orientation Control

The orientation control system is presented in Figure 1. The control system modifies the angular
position of two DC motors connected to the axes of the heliostat through two worm drive mechanisms
to guide the heliostat to the desired position. A microcontroller unit (MCU) calculates the position of
the sun and the desired angles of the heliostat in order to reflect the solar radiation on a specific target
by using the geographic position of the heliostat and the current time and date values. Afterwards,
a position control algorithm calculates the error between the desired and current angular position of
the heliostat axes by using two rotary encoders in order to obtain a control signal which orients the
heliostat by using two motor drivers that allow the bidirectional control of the DC motors.
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Figure 1. Orientation control diagram.

2.1. DC Motor Mathematical Model

A DC motor can be described by using the equivalent model shown in Figure 2. The reduced
transfer function of the armature-controlled DC motor is given by (1) [32].

G(s) =
Θ(s)
Va(s)

=
km

s[Ra(Js + b) + kbkm]
(1)

where km represents the motor torque constant and kb represents the back electromotive-force constant.

 

Figure 2. Equivalent model of a permanent magnet brushed DC motor.

The mathematical model of the DC motor can be estimated by using the step signal response
method with the motor speed response under a fixed voltage. The transfer function of the position and
speed model can be described by (2) and (3).

Θ(s)
Va(s)

=

km
JRa

s
(
s + bRa+kbkm

JRa

) =
Ck

s
(
s + Cp

) (2)

Ω(s)
Va(s)

=
Ck

s + Cp
=

Ck
Cp

1
Cp

s + 1
=

K
τs + 1

(3)

where Ck and Cp are fixed parameters, τ represents the time constant, and K represents the steady-state
gain of the system.

The steady-state gain is the ratio of the output and the input in steady-state [33] and is given
by (4).

K =
ωs

ustep
=

Ck
Cp

(4)
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where ωs represents the steady speed of the DC motor and ustep represents the step input signal.
Finally, the transfer function of the DC motor is given by (5).

G(s) =
Θ(s)
Va(s)

=

ωs
ustep

s
(
s + 1

τ

) (5)

2.2. Control Algorithms

2.2.1. PID Controller

The PID controller is the most commonly used in industrial applications due to its simple
structure. However, its linear nature makes it not very suitable for non-linear systems. It is a control
technique which reduces the error (e(t)) of a system using three control gains (Proportional, Integral
and Derivative) in a mathematical operation to produce a control output (u(t)). The equation for the
PID controller in the time domain is described by (6) [32].

u(t) = Kpe(t) + Ki

∫
e(t)dt + Kd

de(t)
dt

(6)

When the controller is digital, it can be approximated with a backward difference and a sum for
the derivative and integral terms [4], respectively. The digital PID controller is given by (7).

u(n) = Kpe(n) + Ki

n∑
j=1

e( j)Ts + Kd
e(n) − e(n− 1)

Ts
(7)

where n and Ts represent the number of the sample and the sample time of the digital system.

2.2.2. Fuzzy Logic Controller

An FLC uses the experience of an expert instead of the mathematical model of the system to
control a plant, and it can deal with complex non-linear systems with unknown mathematical models.
The controller produces a control signal using four blocks [34]: fuzzification, inference engine, rule
base and defuzzification, as shown in Figure 3.

Figure 3. Components of the FLC.

The FLC is graphically shown in Figure 4. The fuzzification module converts the input values into
fuzzy sets using the singleton fuzzification, which evaluates the membership value of the input value.
The inference mechanism determines the values of the output fuzzy sets by using an “if–then” rule
base, which describes the relationship between the input and output variables based on their linguistic
terms. In Mamdani fuzzy systems, the rule base determines the output fuzzy set value taking the
minimum value of the combination of two or more input fuzzy set values as a consequence of one rule
in the rule base. Finally, the defuzzification module gets a scalar value by combining the scaled output
fuzzy sets values.
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Figure 4. Fuzzy logic controller algorithm.

The reduction of the number of fuzzy rules as long as they express a similar relationship decreases
the computational effort and memory requirements used in the implementation of the controller [35].
Therefore, it is necessary to eliminate the less critical rules in order to obtain faster controller actions [36].

The defuzzification module is another component that can be modified in order to obtain a fast
response of the controller. There are many defuzzification methods proposed in the literature [34].
The center of gravity method (CoG), also called the center of area method (CoA), is the most widely
used of all the defuzzification methods. Nonetheless, this method has a very high computational effort.
The CoG method calculates the area under the combined output fuzzy sets by sampling them between
the minimum and maximum values of the output fuzzy sets, as shown in Figure 5a. The drawback of
the CoG is that it requires more samples to obtain a more accurate output value. The output value of
the CoG defuzzification method is given by (8).

u =

n∑
i=1
μ(xi)xi

n∑
i=1

xi

(8)

where xi represents a value between the minimum and maximum values of the scaled output fuzzy
sets, and n represents the number of the samples.
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Figure 5. Center of Gravity (a) and Center of Sums (b) defuzzification methods.

Another defuzzification method is the center of sums method (CoS), which is a fast method
because of its computational simplicity [37]. This method calculates the average between the centroid
and the area of each scaled output fuzzy set. The drawback of the CoS is that the intersecting areas
are added twice, as shown in Figure 5b. The output value of the CoS defuzzification method is given
by (9).

u =

n∑
i=1
μ(xi)Ai

n∑
i=1

Ai

(9)

where xi and Ai represent the centroid and the scaled area of the output fuzzy set i, and n represents
the number of the output fuzzy sets.

2.3. Sun Position and Heliostat Angles

Due to the fact that the relative position of the sun in the sky changes throughout the day, it is
necessary to use a solar tracker in order to know the location of the sun at any time. The position of the
sun with respect to the observer can be described by a reference system of horizontal coordinates using

two angles: the azimuth angle and the elevation angle [1]. The angles of the solar vector
→
S are denoted

by As and Es, respectively, as shown in Figure 6a. The azimuth angle is measured in relation to the
South (0◦), and it is negative to the East (−90◦) and positive to the West (90◦). The elevation angle of
the sun ranges from the horizon (0◦) to the zenith (90◦).

 

Figure 6. Solar vector (a) and vectors and angles of the heliostat (b).

For the heliostat to reflect the solar irradiance towards the central receiver, the heliostat surface

normal vector
→
N must be the bisector of the angle formed by the fixed vector pointing to the receiver

from the reflective surface of the heliostat
→
T and the solar vector [1] (Figure 6b). The azimuth and

elevation angles of the solar vector are given by the Grena [38] algorithm, which has a maximum error
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of 0.0027◦. The solar position algorithm takes the geographical coordinates of the heliostat and the
current date and time of the day as input data. The algorithm also uses the monthly average local
values of temperature and atmospheric pressure to calculate the atmospheric refraction correction of
the elevation angle of the sun. The azimuth and elevation angles of the target vector are obtained by
using spherical coordinates. The normal vector is obtained by the addition of the unit vectors of the
solar and target vectors.

→
N =

(
Ŝx + T̂x Ŝy + T̂y Ŝz + T̂z

)
(10)

where Ŝ and T̂ are given by (11) and (12).

Ŝ =
(

sin(As)cos(Es), cos(As)cos(Es), sin(Es)
)

(11)

T̂ =
(

sin(At)cos(Et), cos(At)cos(Et), sin(Et)
)

(12)

Finally, the azimuth and the elevation angles of the normal vector are given by (13) and (14).

Ah = tan−1

⎛⎜⎜⎜⎜⎜⎜⎜⎝
→
Ny
→
Nx

⎞⎟⎟⎟⎟⎟⎟⎟⎠ (13)

Eh = tan−1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
→
Nz√

→
N

2

x +
→
N

2

y

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(14)

2.4. Embedded System

The block diagram of the embedded system is shown in Figure 7. The heliostat orientation control
is implemented in a dsPIC33EP256MU806 MCU running with a clock frequency of 48 MHz. The current
date and time values are given by a real-time clock (RTC) model DS1307 with I2C (Inter-Integrated
Circuit) serial interface protocol. Two H-Bridge motor drivers built with four bipolar junction transistors
(tip135 and tip136) are connected to the embedded system in order to change the direction of rotation
of the DC motors by using an external power supply and two control signals from the MCU for each
DC motor, whereas the feedback signal of the controller is given by two single-turn absolute rotary
encoders model CAS60RS12A10SGG with synchronous serial interface (SSI) protocol and 12 bits of
resolution (4096 pulses per revolution). Both rotary encoders are connected to the axes of the heliostat
in order to obtain the real position of the heliostat. The system also contains an alphanumeric LCD
Display to visualize the initial controller parameters, an analog thumb joystick for the manual heliostat
control, a UART block to send data to a computer to perform graphical analysis, and a programming
port ICSP (In-Circuit Serial Programming).

The algorithm of the embedded system was designed and developed by using CCS C Compiler
software and is shown in Figure 8. All fixed values are read from a database at the start of the
program. These values include the geographical position of the heliostat, distance to the target, local
weather record, configuration data of the microcontroller peripherals, and parameters and grogram
functions of the control algorithms. Afterwards, the program runs an infinite loop and waits for a
start command to move the heliostat to the desired position. The program uses four 16-bit timers
to generate software interrupts at fixed intervals of time in order to operate different components of
the system. Timer1 generates a 200 kHz frequency square signal in order to communicate the MCU
with the rotary encoders through the SSI protocol, timer2 establishes the period of the PWM signal
which controls the speed and position of the DC motors by using the motor drivers, timer3 performs a
software interrupt every 10 ms for the sampling time of the control algorithms, and timer4 performs a
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software interrupt every second in order to send the data to the UART block and read the time and
date values from the RTC.

 
Figure 7. Block diagram of the embedded system.

 
Figure 8. Embedded system algorithm.

Once the start command is received, the program reads the date and time values from the RTC
to compute the position of the sun by using the solar position algorithm. Afterwards, the program
calculates the desired position of the heliostat to determine the reference values of the control algorithm.
Finally, the program calculates the value of the error between the reference values and the position of
the heliostat axes which is given by the rotary encoders and determines the control signal of each DC
motor by using a program function that takes the error value and returns the values of the voltage that
must be supplied to each DC motor. The voltage values are converted into duty cycle values of the
PWM signals, which are supplied to the motor drivers in order to move the heliostat to the desired
position by adjusting the angular position of each DC motor.

The position of the sun is calculated every second when the value of the RTU changes. However,
the reference values of the control algorithm can be set in a fixed period without producing a significant
error in the incidence of solar irradiance in the target. Therefore, the desired position of the heliostat is
calculated every minute.
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The control algorithms are shown in Figures 9–11, for the PID controller and FLC with the CoG
and Cos defuzzification methods, respectively.

Figure 9. PID controller algorithm.

Figure 10. Fuzzy logic controller algorithm with the center of gravity defuzzification method.

Figure 11. Fuzzy logic controller algorithm with the center of sums defuzzification method.

The PID controller uses the error value to obtain the control signal by using the control gains
loaded from the database and Equation (7). A saturation block is used on the integral term to limit its
value and obtain a faster response at changes in the error value.

The FLC algorithm obtains the value of the change of error by using the error value and a backward
difference, in order to evaluate the input fuzzy sets. Afterwards, the rule base determines the output
fuzzy set that corresponds to the values of the error and changes of error and combines it according
to the defuzzification method in order to obtain the control signal. The CoG defuzzification method
executes a loop for the number of samples that evaluates the output fuzzy sets. In each iteration of the
loop, all the rules are evaluated by using another loop for the number of rules in order to obtain the
maximum value of the evaluated output fuzzy sets in the sample value, as shown in Figure 5a. Finally,
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all resulting values are added to obtain the output value by using Equation (8). The CoS defuzzification
method only executes one loop, calculating the output value by using values of the scaled area and the
centroid of each output fuzzy set, as indicated in Equation (9). The values of the centroid of the output
fuzzy sets are calculated once at the beginning of the program and do not change.

The values of the error and integral term are saved in order to calculate the terms used in the
next sample of the control algorithms. There is also a saturation block to limit the output signal of the
control algorithms at the rated voltage value of the DC motors.

2.4.1. Controller Parameters

The algorithms of the FLC and PID controller were designed for the position control of the DC
motors at no load. Both controllers were tuned to accomplish with the design parameters of 10 ms
sampling time and 100 ms of rising time without overshoot for the smallest change in the reference
signal in order to reduce the energy consumed by the DC motors when the heliostat is moving [27].

Figure 12 shows the block diagram of the FLC. It is a two-input and one-output controller, three
fuzzy sets in each input and output signal, a rule base with nine “if–then” rules, a Mamdani inference
engine and the CoS defuzzification method. Additionally, there are two processing blocks due to the
difference between the fuzzy sets values and the values of the input and output signals. The processing
values are given by (15)–(17).

e∗ = e
π

(15)

de∗ = deTs

π
(16)

u∗ = uVmax (17)

where e∗, de∗ and u∗ represent the processing values of the input and output signals, and Vmax represents
the maximum voltage signal of the DC motors.

 

Figure 12. Block diagram of the fuzzy logic controller.

The values of the fuzzy sets and the rule base of the FLC are shown in Figure 13 and Table 1,
where the negative, middle, and positive values are denoted by the linguistic variables N, Z and P,
respectively. The number and values of the fuzzy sets were selected in order to the control signal
of the FLC can modify the position of the DC motor due to the smallest change of the error with a
low computational effort. The symmetric shape of the fuzzy sets allows the controller to modify the
direction of rotation of the DC motors with the same amplitude of the control signal, which corresponds
to the values of the error and change of error.
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Figure 13. Fuzzy sets of the fuzzy logic controller.

Table 1. Rule base of the fuzzy logic controller.

de
e N Z P

N N N Z
Z N Z P
P Z P P

The resulted control surface of the FLC is presented in Figure 14, showing the relationship between
the inputs and the output as a consequence of the values of the fuzzy sets, the if–then rule base, and the
CoS defuzzification method. The output value of the defuzzification varies from −1 to 1; therefore,
using Equation (17), the DC motor supply voltage ranges from −Vmax to Vmax.

Figure 14. FLC control surface.

For the PID controller, the transfer function of the DC motor is estimated by using the step signal
response method in order to obtain the control gains of the PID controller to comply with the design
parameters. The angular velocity can be approximated by using a discrete derivative term, as shown
in Equation (7). The angular velocity is given by (18).

ω(n) =
θ(n) − θ(n− 1)

Ts
(18)

The step response of the DC motor and the transfer function parameters are shown in Figure 15,
where ω = 0.5369 rad

s = 5.126 rpm is approximately the rated speed reported in the DC motor
datasheet, as shown in Table 3.
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ω

 

Figure 15. Step response of the DC motor.

The obtained mathematical model of the DC motor at no load is described by (19).

GM(s) =
ΘM(s)
VaM(s)

=
0.31275

s2 + 13.68925s
(19)

Finally, the control gains of the PID controller were obtained by using the Matlab Sisotool Toolbox.
A rising time of 0.075 s and an overshoot of less than 5% were chosen as conditions of the output
signal of the PID controller in order to accomplish with the design requirements and produce a smooth
control signal to reduce the energy consumption for the DC motors. The control gains of the PID
controller are shown in Table 2.

Table 2. Control gains of the PID controller for the DC motor at no load.

Kp Ki Kd

2250.0 0.025 110.0

The transfer functions of the DC motors connected to the heliostat axes were also obtained with
the same method. The mathematical models of the azimuth and elevation axes are described by (20)
and (21), respectively.

GA(s) =
ΘA(s)
VaA(s)

=
0.01316

s2 + 4.03225s
(20)

GE(s) =
ΘE(s)
VaE(s)

=
0.02417

s2 + 7.40740s
(21)

2.4.2. Setpoint Values

Because of the position of the sun in the sky changes by 1 degree every 4 min, it is not necessary
to modify the orientation of the heliostat every second of the day. Therefore, the values of the reference
angles are discretized every minute, as shown in Figure 16 for the parameters of Table 4.

To reduce the error due to the resolution of the rotary encoders, the discrete reference value is
converted from radians to encoder steps and is rounded to the closest integer value to obtain a final
reference value that corresponds to a value in the encoder steps. Therefore, when the heliostat angles
reach the desired position, the error signal will be zero. The values of the error between the final and
desired reference of the heliostat axes are shown in Figure 17.
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Figure 16. Setpoint values of the orientation control for the azimuth axis (a), the elevation axis (b) and
both axes (c).

 

Figure 17. Final reference error values of the orientation control for the azimuth axis (a), the elevation
axis (b) and both axes (c).

3. Results and Discussion

The orientation control system was implemented in the heliostat shown in Figure 18, whereas the
printed circuit board (PCB) of the embedded system and the motor driver are shown in Figure 19. It is
an azimuth–elevation mechanism heliostat, with a worm drive mechanism driven by a DC gear motor
model ZYT6590-01 at each axis. The heliostat has a gap which allows directing the facets to the ground.
The parameters of the heliostat and the DC motors are presented in Table 3.

 

Figure 18. Heliostat.
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(a) (b) 

Figure 19. Printed circuit board of the embedded system (a) and the motor driver (b).

Table 3. Parameters of the heliostat and DC motors.

Parameter Value Unit

Total height 5.24 m
Pedestal height 2.85 m

Elevation axis length 4.43 m
Gap between support frames 0.70 m

Number of facets 16 -
Mirror face size 1.2 × 1.2 m

Heliostat mirror area 23 m2

DC Motors Rated Voltage 24 V
DC Motors Rated Current ≤5 A
DC Motors Rated Torque 100 N·m

DC Motors No Load Speed 5 rpm
DC Motors Gear Ratio 710.5 -

As mentioned already, the control algorithms were designed for the position control of a DC
motor at no load. Afterwards, the control algorithms were implemented in the orientation control of
the heliostat using the same controller parameters of the position control of the DC motor at no load.

Figure 20 shows the comparison of the consumption time of the PID controller (Figure 20a) and
the FLC using the CoS (Figure 20b) and the CoG (Figure 20c) defuzzification methods, where the
period of the signals represents the sampling time of the control algorithms. The results show that the
FLC with the CoG defuzzification method does not accomplish with the design parameters because of
its computational complexity.

The output response of the control algorithms for the position control of a DC motor at no load is
shown in Figure 21 for the minimum change in the reference value of 0.087 degrees (1.533 mrad) and a
reference value of 180 degrees (π rad). Both control algorithms accomplish with the design parameters
for the position control of the DC motor at no load. However, Figure 21d shows that the FLC control
signal decreases when the position of the DC motor is reaching the reference value.
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(a) (b) 

 
(c) 

Figure 20. Consumption time of the PID controller (a), and the fuzzy logic controller with the CoS (b)
and the CoG (c) defuzzification methods.

 

Figure 21. Output response (a) and control signal (c) of the DC motor at no load at a minimum reference
value. Output response (b) and control signal (d) of the DC motor at no load at a reference value of
180 degrees (π rad).

Finally, Figures 22 and 23 show the output response of the control algorithms for the orientation
control for the DC motors at no load and the axes of the heliostat, respectively. The desired angles of
the heliostat were calculated using the parameters of Table 4, whereas the error values are shown in
Table 5.
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Figure 22. Output response of the orientation control of the DC motors at no load for the azimuth axis
(a) and the elevation axis (b).

 

Figure 23. Output response of the orientation control for the azimuth axis (a) and the elevation axis (b)
of the heliostat. Desired reference error values of the orientation control of the heliostat for the fuzzy
logic controller (c) and the PID controller (d). Final reference error values of the orientation control of
the heliostat for the fuzzy logic controller (e) and the PID controller (f).
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Table 4. Parameters of the orientation control test.

Parameter Value

Date Friday, 13 September 2019
Time 13:00:00–14:00:00

Latitude 20.590636◦ N
Longitude 100.413226◦ W

Monthly Mean Atmospheric Pressure 819.795 mbar
Monthly Mean Temperature 20.3 ◦C

Maximum Wind Speed 8 m/s (28.8 km/h)
Target Height 30.0 m

Heliostat Height 2.85 m
East-West distance to the target 15 m East

North-South distance to the target 35 m North

Table 5. Reference error values of the orientation control.

Parameter Final Ref MSE Desired Ref MSE

DC Motor at no load

PID Azimuth 0.0◦ 0.068610◦
PID Elevation 0.0◦ 0.026349◦
FLC Azimuth 0.0◦ 0.068610◦
FLC Elevation 0.0◦ 0.026349◦

Heliostat

PID Azimuth 0.153941◦ 0.168669◦
PID Elevation 0.051032◦ 0.048347◦
FLC Azimuth 0.131647◦ 0.146435◦
FLC Elevation 0.039328◦ 0.047251◦

The experimental results show a similar Mean Squared Error (MSE) for the orientation control of
the DC motors at no load and a similar output response between the orientation control of the heliostat
and the final reference value for the FLC (Figure 23a) and the PID controller (Figure 23b), despite the
load of the wind over the mechanical structure and the backlash in the axis mechanisms. However, for
the orientation control of the heliostat, the FLC shows less dispersed error values (Figure 23c) and
smaller final reference error values (Figure 23e) than the PID controller (Figure 23d,f).

4. Conclusions

The orientation control of a heliostat using an FLC was implemented on an embedded system
based on a low-cost microcontroller. Also, the comparison against a traditional PID controller was
performed. The advantage of the FLC is the fact that it is not necessary to know the mathematical
model of the system, because it only uses the experience of an operator, which is easy to incorporate
into the controller.

The results show that both controllers exhibit a similar output response for the position control of
a DC motor. However, the FLC has a better performance than the PID controller for the orientation
control of the heliostat by using the same control parameters for the position control of the DC motor
at no load. The FLC has higher flexibility since it is robust in front of changes in the dynamics of the
process, whereas for a better output response of the PID controller, the control gains must be tuned
for the mathematical models of the heliostat axes. The results also exhibit a smaller MSE of the FLC
compared to the PID controller for the orientation control of the heliostat by using only a nine-rule rule
base and a fuzzy set of three membership functions in each input and output signal in order to reduce
the computational effort of the controller. Additionally, the center of the sums defuzzification method
complies with the design parameter of 10 ms sample time, showing a faster response than the center of
the gravity defuzzification method.

In a central tower power plant that uses traditional PID controllers for the orientation control
of the heliostats, the control gains of the controller of all the heliostats must be adjusted in order to
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avoid oscillations due to wrong controller parameters tuning. Therefore, the proposed control system
can be applied in order to control an entire heliostat field by using the same controller parameters
for all the heliostat. The system can also be adjusted to control other sun tracking systems, such as a
photovoltaic, solar dish, or parabolic trough systems, which only need the solar tracker system.
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Abbreviations

CoG Center of Gravity
CoS Center of Sums
DSP Digital Signal Processor
FLC Fuzzy Logic Controller
FPGA Field-Programmable Gate Array
LCD Liquid Crystal Display
MCU Microcontroller Unit
MDS Microprocessor Driver System
MSE Mean Squared Error
PC Personal Computer
PCB Printed Circuit Board
PID Proportional–Integral–Derivative
PV Photo-Voltaic
PWM Pulse Width Modulation
RTC Real-Time Clock
SDS Sensor Driver System
STS Sun Tracking System
UART Universal Asynchronous Receiver-Transmitter
θ Angular position of the DC motor
ω Angular velocity of the DC motor
τ Time constant of the system
K Steady-state gain of the system
e Controller error signal
de Controller change of error signal
u Controller output signal
Ts Controller sampling time
Vmax Controller maximum output voltage
→
S Solar vector
→
T Target vector
→
N Normal vector of the heliostat

Ŝ Solar unit vector
T̂ Target unit vector
As Solar vector azimuth angle
Es Solar vector elevation angle
At Target vector azimuth angle
Et Target vector elevation angle
Ah Heliostat azimuth angle
Eh Heliostat elevation angle
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Abstract: This paper presents an adaptive pitch-angle control approach for a permanent
magnet-synchronous generator-based wind turbine (PMSG-WT) connecting with a power grid
to limit extracted power above the rated wind speed. In the proposed control approach,
a designed perturbation observer is employed for estimating and compensating unknown parameter
uncertainties, system nonlinearities, and unknown disturbances. The proposed control approach
does not require full state measurements or the accurate system model. Simulation tests verify the
effectiveness of the proposed control approach. The simulation results demonstrate that compared
with the feedback linearizing controller, conventional vector controller with proportional-integral (PI)
loops, and PI controller with gain scheduling, the proposed control approach can always maintain
the extracted wind power around rated power, and has higher performance and robustness against
disturbance and parameter uncertainties.

Keywords: pitch control; permanent magnet-synchronous generator (PMSG); limit extracted power;
nonlinear adaptive control (NAC); perturbation observer

1. Introduction

Wind power generation systems (WPGSs) have become competitive and attractive as exhaustless
and clean power sources [1–6]. According to the objectives of variable speed variable-pitch wind
turbines (WT), three main operating regions can be observed [7], as illustrated in Figure 1. In Region 1,
wind speed is lower than cut-in wind speed (Vci), and the WT does not operate; in Region 2, wind
speed is between cut-in wind speed (Vcut−in) and rated wind speed (Vrated), and the maximum wind
power is required to be extracted by rotor speed control; in Region 3, wind speed is between rated
wind speed (Vrated) and cut-out wind speed (Vcut−out), and its main control objective is maintaining
extracted wind power around rated power via blade pitch control and electromagnetic torque control.

Figure 1. Main operating regions of the wind turbine.
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To keep the wind turbine (WT) within its design limits in Region 3, blade pitch and electromagnetic
torque control is primarily applied in limiting the extracted wind power [8]. As the electromagnetic
torque has much faster response than the mechanical torque, the decoupled control between the WT
and generator can be applied [9]. When wind speed is above rated wind speed, for the WT, the control
of the mechanical rotation speed is applied to achieve the required pitch angle. The extracted wind
power will vary only in proportion to mechanical rotation speed when the mechanical torque keeps at
its rated value. Therefore, extracted wind power regulation is entirely dependent upon mechanical
rotation speed regulation. A good tracking of a power reference can be achieved while keeping the
rotor speed close to its nominal value. The variable of rotor speed reaches large values that can
damage the wind turbine behavior performance in rotor speed regulation by pitch controller [10,11].
For the generator, the electromagnetic torque is required to be maintained at its rated value. When
the electromagnetic torque or q-axis stator current and mechanical rotation speed are well regulated,
the rated mechanical torque can be achieved. Numerous studies have used the linear techniques and
designed controllers based on an approximated linear model for pitch-angle control, such as the linear
quadratic Gaussian [12], conventional vector control with proportional-integral (PI) loops [13,14] and
PI controller with gain scheduling (GSPI) [10,15]. As the WT contains aerodynamic nonlinearities, the
linear controllers designed based on a specific operation point cannot obtain satisfactory performance
under time-varying wind speed.

To enhance the performance of the conventional VC and LQG, a nonlinear controller is necessary
to be designed for the WT pitch control. One effective solution is employing the feedback linearizing
control (FLC) approach. The FLC has been widely and successfully applied in solving many practical
nonlinear problems [8,16–18]. Compared to the controllers using linear technique and approximated
linear model, a better dynamic performance of nonlinear systems can be achieved under the FLC [19].
The FLC provides fully decoupled control of the original nonlinear system and optimal performance
for time-varying operation points. In reference work literature [8], an FLC with an Extended Kalman
Filter has been successfully applied in the WT control. In the FLC design, full state information
is required to be known. Although the FLC provides better performance than the linear quadratic
regulator at low wind speeds, no enhanced performance is achieved at high wind speed, because
of model uncertainties. The accurate system model is required to be known in the FLC design [20].
To make up these drawbacks of the FLC, robust control [21–23], fuzzy logic control [10,24,25], sliding
mode control [26,27], and neural network control [28], have been proposed. Recently, control methods
based on observers have been successfully used to reinforce the robustness of disturbances and model
uncertainties in power system [29], permanent magnet-synchronous motor [30,31], photovoltaics
inverters [32] and WT [33].

In this paper, a nonlinear adaptive controller (NAC) based on observers is investigated for
permanent magnet-synchronous generator-based WT (PMSG-WT) to limit the extracted wind power
and provide high performance in Region 3. In the designed NAC, it contains one rotor speed controller
and two stator current controllers. One third-order states and perturbation observer (SPO), and two
second-order perturbation observers (POs) are employed for the estimations of perturbation terms,
including parameter uncertainties, coupling nonlinear dynamics, and disturbances of the PMSG-WT.
The estimated perturbations are used for compensating the real perturbation and obtaining adaptive
linearizing control of the PMSG-WT. The comparisons of simulation studies among the proposed NAC,
FLC, VC and GSPI under three different scenarios, e.g., ramp wind speed, random wind speed and
field flux variation, are carried out to verify the effectiveness of the proposed NAC.

The remaining parts of this paper is organized as follows. The model of the PMSG-WT is presented
in Section 2. Section 3 presents the design of the NAC. In Section 4, simulation studies are carried out
for verifying the effectiveness of the proposed NAC in comparing with the FLC, VC and GSPI. Finally,
conclusions of this work are presented in Section 5.
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2. Model and Problem Formulation

2.1. PMSG-WT Configuration

In Figure 2, a gearless WPGS equipped with a PMSG is connected to the power grid through
full-rate back-to-back voltage source converters. Wind power extracted by the WT is transmitted to
the direct-driven PMSG. Then, the mechanical power is converted to electrical power by the PMSG.
Then, the electrical power is supplied to the power grid via a machine-side converter (MSC) and a
grid-side inverter (GSC). The main objective of the MSC is to extract power from wind by controlling
the mechanical rotation speed and electromagnetic torque or q-axis stator current, and produce the
required stator voltage, whereas the GSC has to enable decoupled control the active and reactive
power required by grid codes. The operation control of these two converters can be decoupled by a
DC voltage link [16].

Figure 2. Configuration of a PMSG-WT.

2.2. Aerodynamic Model

The wind power extracted by a WT is represented as [34,35]

Pw =
1
2

ρπR2V3Cp(β, λ) (1)

λ =
Rωm

V
(2)

where β is the pitch angle, ρ is the air density, V is the wind speed, R is the radius of WT, Cp is the
power coefficient, λ is the tip speed ratio, and ωm is the mechanical rotation speed. The Cp can be
defined as a function of β and λ

Cp = 0.22(
116
λi

− 0.4β − 5)e

−12.5
λi (3)

1
λi

=
1

λ + 0.08β
− 0.035

β3 + 1
(4)

A hydraulic/mechanical actuator can vary the blade pitch. The following first order linear model
represents a simplified model of the dynamics:

β̇ = − β

τβ
+

βr

τβ
(5)

where βr is required pitch angle, and τβ is the actuator time constant.
The state-space model of the PMSG-WT is given as [35]:
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ẋ = f (x) + g1(x)u1 + g2(x)u2 + g3(x)u3 (6)

where

f (x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− β

τβ

− Rs

Lmd
imd +

ωeLmq

Lmd
imq

− Rs

Lmq
imq − 1

Lmq
ωe(Lmdimd + Ke)

1
Jtot

(Te − Tm − Tf − Bωm)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

g1(x) = [− β

τβ
0 0 0]T,

g2(x) = [0
1

Lmd
0 0]T,

g3(x) = [0 0
1

Lmq
0]T,

x = [β imd imq ωm]T,
u = [u1, u2, u3]

T = [βr, Vmd, Vmq]T ,
y = [y1, y2, y3]

T = [h1(x), h2(x), h3(x)]T = [ωm, imd, imq]T

where x ∈ R4 , u ∈ R3 and y ∈ R3 are state vector, input vector and output vector, respectively; f (x),
g(x) and h(x) are smooth vector fields. Vmd and Vmq are the d, q axis stator voltages, imd and imq are
the d, q axis stator currents, Lmd and Lmq are d, q axis stator inductances, Rs is the stator resistance,
p is the number of pole pairs, Ke is the field flux given by the magnet, Jtot is the total inertia of the
drive train, B is the friction coefficient of the PMSG, ωe(= pωm) is the electrical generator rotation
speed, and Tm, Tf and Te are the WT mechanical torque, static friction torque and electromagnetic
torque, respectively.

The electromagnetic torque is expressed as:

Te = p[(Lmd − Lmq)imdimq + imqKe] (7)

2.3. Pitch Control

To maintain the extracted wind power at rated power in Region 3, it requires that the
corresponding pitch angle should be achieved, which in turn requires both the mechanical rotation
speed ωm and the mechanical torque Tm should be kept at their rated values, respectively. The rated
mechanical torque Tmr is achieved when the electromagnetic torque Te can track its rated value Ter

and the ωm is kept at it rated value. According to Equation (7), the electromagnetic torque Te can be
maintained at Ter if the q-axis stator current imq can track its rated value imqr and imd is kept at 0.

The brief overall control approach is shown in Figure 3. The control approach consists three
controllers: two stator current controllers and a rotation speed controller.
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Figure 3. Brief overall control structure of the PMSG-WT.

3. Perturbation Observer-Based Nonlinear Adaptive Controller Design

In this section, the design of NAC for the PMSG-WT based on the feedback linearization will be
presented. The NAC based on perturbation estimation proposed in [29] will be used. First, a nonlinear
system is transformed as interacted subsystems through input/output linearization. Secondly, in each
subsystem, uncertainties, nonlinearities and interaction among subsystems are contained in a defined
perturbation term. The perturbation term is estimated via a designed observer. The estimated
perturbation is used for compensating the real perturbation and obtaining adaptive linearizing control
of the original nonlinear system.

3.1. NAC Design of WT

3.1.1. Input/Output Linearization

Input/output linearization of WT speed dynamics in system Equation (6) can be represented as

y(2)1 =
1

Jtot
(Ṫm − Ṫe) (8)

As the electromagnetic torque has much faster response than the mechanical torque, from the
perspective of control of WT, Ṫe 	 0. Equation (8) can be expressed as

y(2)1 =
1

Jtot
Ṫm

= F1(x) + B1(x)u1

(9)

where

F1(x) = A[− Cp

ωm
− RV

F2 E]
dωm

dt

− AEβ

τβ
[−0.088e−12.5τ − 0.08V2

F
+

0.105β2

(1 + β3)2 ]
dβ

dt

(10)

B1(x) =
AEβ

τβ
[−0.088e−12.5τ − 0.08V2

F
+

0.105β2

(1 + β3)2 ] (11)

where

A =
ρπR2V3

2ωm
E = (39.27 − 319τ + 1.1β)e−12.5τ

F = ωmR + 0.08βV

τ =
1

λ + 0.08β
− 0.035

β3 + 1

(12)
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Please note that
dV
dt

is not included in the FLC design, which cannot be directly measured.

As det[B1(x)] =
AEβ

τβ
[−0.088e−12.5τ − 0.08V2

F
+

0.105β2

(1 + β3)2 ] �= 0 when V �= 0 and β �= 0, i.e.,

B1(x) is nonsingular for all nominal operation points. Therefore, the FLC is expressed as

u1 = B1(x)−1(−F1(x) + v1) (13)

And the nonlinear system is linearized as

y(2)1 = v1 (14)

v1 = ÿ1r + k11 ė1 + k12e1 (15)

where v1 is input of linear systems, k11 and k12 are gains of linear controller, y1r is the output reference,
and e1 = y1r − y1 as tracking error. The error dynamic is

ë1 + k11 ė1 + k12e1 = 0 (16)

3.1.2. Definition of Perturbation and State

For this subsystem, a perturbation term including all subsystem uncertainties, nonlinearities and
interactions among subsystems is defined.

Define perturbation term Ψ1(x) as:

S1 :

⎧⎪⎨
⎪⎩

Ψ1(x) = F1(x) + (B1(x)− B1(0))u1

B1(0) =
AEβ

τβ
[−0.088e−12.5τ − 0.08V2

F
+

0.105β2

(1 + β3)2 ]
(17)

where B1(0) is nominal value of B1(x).
Defining the state vectors as z11 = y1, z12 = y(1)1 , z13 = Ψ1, and control variable as u1 = βr.

The dynamic equation of the subsystem S1 becomes as

S1 :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

z11 = y1

ż11 = z12

ż12 = Ψ1(x) + B1(0)u1

ż13 = Ψ̇1(x)

(18)

For subsystem S1, several types of perturbation observers, e.g., linear Luenberger observer,
sliding mode observer and high-gain observer, have been proposed [19,29,36]. High-gain observers
proposed in [29] are used to estimate states and perturbations in this paper.
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3.1.3. Design of States and Perturbation Observer

When the system output y1 is available, a third-order SPO is employed for estimations of states
and perturbation of the subsystem, which is designed as

S1 :

⎧⎪⎨
⎪⎩

˙̂z11 = ẑ12 + l11(z11 − ẑ11)
˙̂z12 = ẑ13 + l12(z11 − ẑ11) + B1(0)u1
˙̂z13 = l13(z11 − ẑ11),

(19)

where ẑ11, ẑ12 and ẑ13 are the estimations of z11, z12 and z13, respectively, and l11, l12 and l13 are gains
of the observers, which are designed as

lij =
αij

ε
j
i

(20)

where i = 1, 2, 3; j = 1, · · · , ri + 1, εi is a scalar chosen to be within (0,1) for representing times of the
time-dynamics between the real system and the observer, and parameters αij are chosen so that the
roots of

sri+1 + αi1sri + · · ·+ αiri s + αi(ri+1) = 0 (21)

are in the open left-half complex plane.

3.1.4. Design of Nonlinear Adaptive Controller

The estimated perturbation is used for compensating the real perturbation, and control laws of
subsystem S1 can be obtained as follows:

u1 = B1(0)−1(−ẑ13 + v1) (22)

where v1 is defined as

v1 = z̈11r + k12(z11r − ẑ11) + k11(ż11r − ẑ12) (23)

3.2. NAC Design of PMSG

3.2.1. Input/Output Linearization

Input/output linearization of Equation (6) is represented as

[
y(1)2

y(1)3

]
=

[
F2(x)
F3(x)

]
+ B2(x)

[
u2

u3

]
(24)

where

F2(x) =
1

Lmd
(−imdRs + ωeLmqimq) (25)

F3(x) = − Rs

Lmq
imq − 1

Lmq
ωe(Lmdimd + Ke) (26)

(27)

B2(x) =

[
B2(x)
B3(x)

]
=

[
1

Lmd
0

0 1
Lmq

]
(28)

As det[B2(x)] = 1
LmdLmq

�= 0, i.e., B(x) is nonsingular for all nominal operation points. Therefore,
the FLC controller is represented as
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(
u2

u3

)
= B2(x)−1

(
−F2(x) + v2

−F3(x) + v3

)
(29)

B2(x)−1 =

[
Lmd 0

0 Lmq

]
(30)

And the nonlinear system is linearized as

[
y(1)2

y(1)3

]
=

[
v2

v3

]
(31)

where

v2 = ẏ2r + k21e2 (32)

v3 = ẏ3r + k31e3 (33)

where v2 and v3 are inputs of linear systems, k21 and k31 are gains of linear controller, y2r and y3r the
output references. Define e2 = y2r − y2 and e3 = y3r − y3 as tracking errors, the error dynamics are

ė2 + k21e2 = 0 (34)

ė3 + k31e3 = 0 (35)

3.2.2. Definition of Perturbation and State

Define perturbation terms Ψ2,3(x) as:

S2 :

⎧⎪⎪⎨
⎪⎪⎩

Ψ2(x) = F2(x) + (B2(x)− B2(0))

[
u2

u3

]

B2(0) =
[

1
Lmd0

0
] ,

S3 :

⎧⎪⎪⎨
⎪⎪⎩

Ψ3(x) = F3(x) + (B3(x)− B3(0))

[
u2

u3

]

B3(0) =
[

0 1
Lmq0

]
(36)

where Lmd0 and Lmq0, B2(0) and B3(0) are nominal values of Lmd, Lmq, B2(x) and B3(x), respectively.
Defining the state vectors as z21 = y2, z22 = Ψ2 and z31 = y3, z32 = Ψ3, and control variables as

u2 = Vmd and u3 = Vmq. The dynamic equations of the two subsystems S2 and S3 become as

S2 :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

z21 = y2

ż21 = Ψ2(x) + B2(0)

[
u2

u3

]

ż22 = Ψ̇2(x)

,

S3 :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

z31 = y3

ż31 = Ψ3(x) + B3(0)

[
u2

u3

]

ż32 = Ψ̇3(x)

,

(37)
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3.2.3. Design of Perturbation Observer

When the system outputs y2,3 are available, two second-order POs are designed for the estimations
of states and perturbation for the subsystems

S2 :

{
˙̂z21 = ẑ21 + l21(z21 − ẑ21) + B2(0)u2
˙̂z22 = l22(z21 − ẑ21),

(38)

S3 :

{
˙̂z31 = ẑ31 + l31(z31 − ẑ31) + B3(0)u3
˙̂z32 = l32(z31 − ẑ31),

(39)

where ẑ21, ẑ22, ẑ31, and ẑ32 are the estimations of z21, z22, z31 and z32, respectively, and l21, l22, l31 and
l32 are gains of the observers. They are designed similarly to Equation (20).

Remark 1. It should be mentioned that during the design procedure, εi used in POs Equations (38) and (39)
are required to be some relatively small positive constants only, and the performance of POs is not very sensitive
to the observer gains, which are determined based on the upper bound of the derivative of perturbation.

3.2.4. Design of Nonlinear Adaptive Controller

The estimated perturbations are used for compensating the real perturbation, and control laws of
subsystems S2 and S3 can be obtained as follows:[

u2

u3

]
= B2(0)−1

[[
−ẑ22

−ẑ32

]
+

[
v2

v3

]]
(40)

where v2,3 is defined as {
v2 = k21(z21r − ẑ21) + ż21r

v3 = k31(z31r − ẑ31) + ż31r
(41)

The final control law represented by currents and inductances, are expressed as follows:{
u2 = Lmd0[k21(imdr − imd) + i̇mdr − Ψ̂2]

u3 = Lmq0[k31(imqr − imq) + i̇mqr − Ψ̂3]
(42)

Please note that only the nominal values of Lmd0, Lmq0, and measurements of imd and imq are
required in the NAC design.

To clearly illustrate its principle, Figure 4 shows the block diagram of the NAC.
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Figure 4. Block diagram of nonlinear adaptive controller.

The following assumptions are made in [19,21,36–39].

Assumption 1. Input gain B(x) and its derivative are bounded by 0 < M1 ≤ B(x) ≤ M2 , |Ḃ(x)| ≤ M3,
where Mi, i = 1, 2, 3 are finite constants [for convenience we assume that B(x) > 0]. B(0) is chosen to satisfy:
|B(x)/B(0)− 1| ≤ θ < 1, where θ is a positive constant. The control u is assumed to be bounded but big
enough for the purpose of perturbation cancellation.

Assumption 2. The perturbation Ψi(x, t) and its derivative Ψ̇i(x, t) are locally Lipschitz in their arguments
and bounded over the domain of interest.

3.2.5. Stability Analysis of Closed-Loop System

This subsection analyzes the stability of the closed-loop system equipped with the NAC designed
in the previous section.

At first, both the estimation error system and the tracking error system are obtained. On one hand,
by defining estimation errors ε21 = z21 − ẑ21, ε22 = z22 − ẑ22, ε31 = z31 − ẑ31, ε32 = z32 − ẑ32,
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subtracting Equation (38) from Equation (37) and subtracting Equation (39) from Equation (37),
the following estimation error system yields:

ε̇i = Aiεi + ηi (43)

where

εi =

⎡
⎢⎢⎢⎣

ε21

ε22

ε31

ε32

⎤
⎥⎥⎥⎦ , ηi =

⎡
⎢⎢⎢⎣

0
Ψ̇2

0
Ψ̇3

⎤
⎥⎥⎥⎦ ,

Ai =

⎡
⎢⎢⎢⎣

−l21 1 0 0
−l22 0 0 0

0 0 −l31 1
0 0 −l32 0

⎤
⎥⎥⎥⎦ (44)

On the other hand, define the tracking errors as e21 = y2r − z21 and e31 = y3r − z31. It follows
from Equations (24), (26), (36), (40) and (41) that

[
ė21

ė31

]
= −

[
k21(e21 + ε21) + ε22

k31(e31 + ε31) + ε32

]
(45)

Thus, the tracking error system can be summarized as

ėi = Miei + ϑi (46)

where

ei =

[
e21

e22

]
, ϑi =

[
−ξ1

−ξ2

]
,

Mi =

[
−k21 0

0 −k31

]
(47)

with ξ1 = ε22 + k21ε21 and ξ2 = ε32 + k31ε31 being the lumped estimation error.
The stability analysis of the closed-loop control system is transformed into globally uniformly

ultimately bounded summarized.

Theorem 1. Consider the PMSM system Equation (24) equipped the proposed NAC Equation (42) with two
POs Equations (38) and (39). If the real perturbation Ψi(x, t) defined in Equation (36) satisfies

‖Ψi(x, t)‖ ≤ γ1 (48)

then both the estimation error system Equation (43) and the tracking error system Equation (46) are, i.e.,

‖εi(t)‖ ≤ 2γ1‖P1‖, ‖ei(t)‖ ≤ 4γ1‖Ki‖‖P1‖‖P2‖, ∀t ≥ T (49)

where Pi, i = 1, 2 are respectively the feasible solutions of Riccati equations AT
i P1 + P1 Ai = −I and MT

i P2 +

P2Mi = −I; and ‖Ki‖ is a constant related to k11, k21 and k22.

Proof. For the estimation error system Equation (43), consider the following Lyapunov function:

Vi1(εi) = εT
i P1εi (50)
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The high gains of POs Equations (38) and (39) are determined by requiring Equation (21) holds,
which means Ai is Hurwitz. One can find a feasible positive definite solution, P1, of Riccati equation
AT

i P1 + P1 Ai = −I. Calculating the derivative of Vi1(εi) along the solution of system Equation (43)
and using Equation (48) to yield

V̇i1(εi) = εT
i (AT

i P1 + P1 Ai)εi + ηT
i P1εi + εT

i P1ηi
≤ −‖εi‖2 + 2‖εi‖ · ‖ηi‖ · ‖P1‖
≤ −‖εi‖(‖εi‖ − 2γ1‖P1‖)

(51)

Then V̇i1(εi) ≤ 0 when ‖εi‖ ≥ 2γ1‖P1‖. Thus, there exists T1 > 0, which can lead to

‖εi(t)‖ ≤ γ2 = 2γ1‖P1‖, ∀t ≥ T1 (52)

For tracking error system Equation (46), one can find that ‖ϑi‖ ≤ ‖Ki‖γ2 with ‖Ki‖ based
on ‖εi(t)‖ ≤ γ2. Consider the Lyapunov function Vi2(ei) = eT

i P2ei. Similarly, one can prove that
there exists an instant, T1, the following holds

‖ei(t)‖ ≤ 2‖Ki‖γ2‖P2‖ ≤ 4γ1‖Ki‖‖P1‖‖P2‖, ∀t ≥ T̄1 (53)

Using Equations (52) and (53) and setting T = max{T1, T̄1} lead to Equation (49).
Moreover, if Ψi(x, t) and Ψ̇i(x, t) are locally Lipschitz in their arguments, it will guarantee the

exponential convergence of the observation error [19] and closed-loop tracking error into

lim
t→∞

εi(t) = 0 and lim
t→∞

ei(t) = 0 (54)

After the states id and iq and their derivatives are stable that controlled by NAC. The parameter
variation is considered in the error system in Equations (43) and (46), and the error system is proved
as converged to zero in Equation (54). This guarantees that the estimated perturbations track the
extended states defined in Equation (36), which includes the uncertainties affected by the parameter
variations and disturbances, and compensates for the control input in Equation (40). Then the linearized
subsystems in Equation (37) are independent of the parameters and disturbances.

Remark 2. The perturbation and its derivative are assumed to locally bounded as described in Assumption 2.
The existence of these bounds can be shown in the following analysis. The perturbation and its derivative can be
represented as

Ψ2 = F2(x) + B2(x)−B2(0)
B2(x) [k21(z21r − z21) + z22 − ẑ22]

= F2(x) + B2(x)−B2(0)
B2(x) (k21e21 + ε22)

Ψ̇2 = Ḟ2(x) + B2(x)−B2(0)
B2(0)

(−Ψ̇2 + k21ė21 − ε̇22)

= Ḟ2(x) + B2(x)−B2(0)
B2(0)

(k21ė21 + l22ε21)

Ψ3 = F3(x) + B3(x)−B3(0)
B3(x) [k31(z31r − z31) + z32 − ẑ32]

= F3(x) + B3(x)−B3(0)
B3(x) (k31e31 + ε32)

Ψ̇3 = Ḟ3(x) + B3(x)−B3(0)
B3(0)

(−Ψ̇3 + k31ė31 − ε̇32)

= Ḟ3(x) + B3(x)−B3(0)
B3(0)

(k31ė31 + l32ε31)
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Considering Assumption 1, we have

| Ψ2 | ≤ 1
1 − θ2

| F2(x) | + θ2

1 + θ2
(‖ k21 ‖‖ e21 ‖ + | ε22 |)

| Ψ̇2 | ≤ | Ḟ2(x) | + | B2(x) || u2 | +θ2(‖ k21 ‖‖ ė21 ‖ +l22 | ε21 |)
| Ψ3 | ≤ 1

1 − θ3
| F3(x) | + θ3

1 + θ3
(‖ k31 ‖‖ e31 ‖ + | ε32 |)

| Ψ̇3 | ≤ | Ḟ3(x) | + | B3(x) || u3 | +θ3(‖ k31 ‖‖ ė31 ‖ +l32 | ε31 |)

From the above equations, with consideration of the perturbation assumed as a smooth function of time,
it can be concluded that the bound of perturbation and its derivative exist.

As a result, with both the Assumptions 1 and 2, the effectiveness of such perturbation observer-based
control can be guaranteed.

4. Simulation Results

To verify the effectiveness of the proposed NAC, simulations studies (Matlab/Simulink) have
been carried out by comparing with the VC, GSPI and FLC. In this paper, a 2 MW PMSG-WT given
in [35] is investigated. The parameters of the PMSG-WT system are listed in Table 1. In this paper,
the mechanical rotation speed reference is ωmr = 2.2489 rad/s. The reference of d-axis stator current
is imdr = 0 A. The rated electromagnetic torque reference is Ter = 889326.7 Nm. According to
Equation (7), the q-axis stator current reference is imqr = 593.3789 A.

Table 1. Parameters of PMSG-WT for simulation studies.

Parameters Values Units

Air density ρ 1.205 kg/m3

Rated wind speed Vr 12 m/s
Blade radius R 39 m
Actuator time constant τβ 1 s
pitch angle rate βrate ±10 degree/s
Rated output power Pr 2 MW
Stator resistance Rs 50 μΩ
d-axis inductance Ld 5.5 mH
q-axis inductance Lq 3.75 mH
Number of pole pairs p 11
Field flux Ke 136.25 V · s/rad
Total inertia Jtot 10,000 kg · m2

Parameters of NACs for subsystems S1, S2, and S3 are designed based on pole-placement and
listed in Table 2. Please note that the controller parameters of the FLC are the same as that of the NAC
for all three subsystems, and the FLC requires exact system parameters and full state measurements
except dV

dt .

Table 2. Parameters of Pitch control approach for simulation studies.

Parameters of the NAC Equation (42)

Gains of observer Equation (19) α11 = 50, α12 = 1.875 × 103, α13 = 1.5625 × 104, ε1 = 0.02
Gains of observer Equation (38) α21 = 4 × 102, α22 = 4 × 104, ε2 = 0.01
Gains of observer Equation (39) α31 = 4 × 102, α32 = 4 × 104, ε3 = 0.01
Gains of linear controller Equation (41) k11 = 40, k12 = 4 × 102, k21 = 1.6 × 102, k31 = 1.6 × 102
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4.1. Ramp Wind

Figures 5 and 6 show the responses of the PMSG-WT to ramp wind. Wind speed is shown in
Figure 5a. As shown in Figure 5b,c, the proposed NAC provides the smallest tracking error of the
mechanical rotation speed ωm, compared with the VC, GSPI and FLC. The VC has the biggest tracking
error and requires the longest recovery time. It can be explained that the VC is adjusted for a specific
operation point of the system and cannot ensure provision of a satisfactory dynamic performance
for time-varying operation points. Although the FLC can provide a high tracking performance,
the tracking error of ωm still exists. It is because that the FLC requires full state measurements, but the
dV
dt in Equation (9) is unknown in the FLC design. The GSPI also achieves better performance than

the VC. This is because the GSPI can schedule PI gains frequently under time-varying wind speeds.
However, it increases the burden of the controller.
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Figure 5. Responses of the PMSG-WT to ramp wind speed. (a) Wind speed V. (b) Mechanical rotation
speed ωm. (c) Relative error of ωm. (d) Required pitch angle. (e) Power coefficient Cp. (f) Mechanical
power Pw. (g) Active generating power Pm. (h) Reactive generating power Qm.

To keep the extracted wind power at the rated power, the required pitch angle βr should change
with the varying wind speed, as shown in Figure 5d. In Figure 5e,f, to maintain the extracted
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wind power around its rated value, the power coefficient Cp increases when wind speed decreases.
The extracted wind power can be maintained around its rated value under the NAC even when wind
speed varies, which the VC, GSPI and FLC cannot provide. The active generating power Pm and
reactive generating power Qm of the PMSG-WT are shown in Figure 5g,h, respectively.
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Figure 6. Estimations of states and perturbations. (a) Estimation of mechanical rotation speed ωm.
(b) Estimation of perturbation term Ψ1. (c) Estimation of imd. (d) Estimation of perturbation term Ψ2.
(e) Estimation of imq. (f) Estimation of perturbation term Ψ3.

In the previous section, it mentions that the proposed NAC can estimate the defined perturbation
terms Equations (17) and (36) via the designed observers Equations (19), (38) and (39) to compensate
the real perturbation. It can be seen from Figure 6 that both the states and perturbations can be well
estimated by the designed SPO.

4.2. Random Wind

Figures 7 and 8 show the responses of the PMSG-WT to random wind. Figure 7a shows
time-varying wind speed. It can be seen from Figure 7b,c that the VC, GSPI and FLC cannot provide
high tracking performance of the mechanical rotation speed ωm under time-varying wind speed.
However, the GSPI achieve better tracking performance than the FLC under random wind speeds. The
NAC always keeps mechanical rotation speed ωm around its rated value. To limit the extracted wind
power, the power coefficient Cp varies with time-varying wind speed, shown in Figure 7d. During
the whole operating period, the NAC can always keep consistent responses of Pm and Qm shown in
Figure 7e,f. The performances of the VC, GSPI and FLC are all affected by the time-varying wind
speed. Figure 8 shows the designed observers can provide satisfactory estimations for the states
and perturbations.
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Figure 7. Responses of the PMSG-WT to random wind speed. (a) Wind speed V. (b) Mechanical
rotation speed ωm. (c) Relative error of ωm. (d) Power coefficient Cp. (e) Active generating power Pm.
(f) Reactive generating power Qm.
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Figure 8. Estimations of states and perturbations. (a) Estimation of mechanical rotation speed ωm.
(b) Estimation of perturbation term Ψ1. (c) Estimation of imd. (d) Estimation of perturbation term Ψ2.
(e) Estimation of imq. (f) Estimation of perturbation term Ψ3.

4.3. Robustness Against Parameter Uncertainty

For a practical PMSG-WT system, the operating temperature, manufacturing tolerance and
magnetic saturation effect may result in the variation of system parameter values. The control
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performance of the VC, FLC and proposed NAC is tested under field flux variation. Please note
that the wind speed is kept at 18 m/s. The variation of field flux Ke is shown in Figure 9a.

In Figure 9b, the proposed NAC can provide better tracking performance of the mechanical
rotation speed ωm, compared with the VC and FLC. The maximum relative error ( ωm−ωmr

ωmr
× 100%)

reaches approximately 5% and 1% under the FLC and VC, respectively. The control performance of the
VC and FLC are both affected by field flux variation. In Figure 9c,d, the responses of the required pitch
angle βr and power coefficient Cp are shown. The active generating power Pm and reactive generating
power Qm of the PMSG-WT are shown in Figure 9e,f, respectively. The active generation power Pm

cannot be kept at its rated value under these three controllers, especially under the FLC. The reactive
generating power Qm is almost unaffected under the NAC.
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Figure 9. Response to field flux Ke variation under constant wind speed. (a) Variation of field flux Ke.
(b) Relative error of mechanical rotation speed ωm. (c) Required pitch angle. (d) Power coefficient Cp.
(e) Active generating power Pm. (f) Reactive generating power Qm.

In addition, Table 3 shows the control performance of these three controllers via integral of
absolute error (IAE) in different simulation scenarios. Here, IAEx =

∫ T
0 |x − x∗|. The reference value

of the variable x is x∗. The simulation time T is set as 20 s. It can be seen from Table 3 that in first
and second simulation scenarios, the IAEid and IAEiq are both almost around 0 A.s under these three
controllers. Compared with the VC and FLC, the IAEωm is smaller under the proposed NAC. In the
field flux variation simulation scenario, the NAC can provide much smaller IAEiq and IAEωm than
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those achieved by the VC and FLC. Compare with the VC, the FLC is more significantly affected by
field flux variation.

The proposed NAC can always provide a satisfactory performance. This is because the proposed
NAC can estimate all uncertainties without knowing detailed system model. Therefore, it has
better robustness than the FLC, which requires accurate system parameters. Meanwhile, the control
performance of the VC is affected under parameter variations [29].

Table 3. IAE indices of different controllers in different scenarios.

Simulation Scenarios Variables
Controllers

VC FLC NAC

Ramp wind speed
IAEωm (rad) 0.817 0.1555 1.397 × 10−5

IAEid
(A · s) 9.603 × 10−15 1.025 × 10−13 3.076 × 10−5

IAEiq (A · s) 8.634 × 10−13 6.972 × 10−12 2.752 × 10−3

Random wind speed
IAEωm (rad) 1.369 1.273 1.514 × 10−3

IAEid
(A · s) 9.98 × 10−15 1.075 × 10−13 6.75 × 10−3

IAEiq (A · s) 9.598 × 10−13 7.154 × 10−12 0.6171

Field flux variation
IAEωm (rad) 0.0695 0.207 2.995 × 10−6

IAEid
(A · s) 9.526 × 10−15 1.24 × 10−13 1.852 × 10−5

IAEiq (A · s) 67.78 1957 0.04528

5. Conclusions

This paper has developed a nonlinear adaptive pitch controller for the PMSG-WT to limit the
extracted power from time-varying wind in Region 3. In the proposed NAC, all time-varying and
unknown dynamics of the PMSG-WT, e.g., nonlinearities, parameter uncertainties and disturbances,
are included by defined perturbation terms, which are estimated by designed POs and SPO.
The estimated perturbations are used to compensate the real perturbations for fully linearizing the
PMSG-WT system. The proposed NAC has overcome the drawbacks of the FLC relying on the full
system states and detailed nonlinear system model, the shortcoming of the VC designed based on
a specific operating point, and the disadvantages of the GSPI scheduling PI gains frequently under
time-varying wind speeds. Simulation studies are carried out for the comparison of the control
performance achieved by the VC, FLC, GSPI and NAC under different scenarios. Compared with the
FLC, GSPI and VC, the proposed NAC provides the best performance under different scenarios and
achieves highest robustness against field flux variation. Wind speed sensorless control approach will
be focused on in further work. The effective wind speed cannot be directly measured by anemometers,
but it can be estimated through employing the WT itself as a wind speed measurement device [8].
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Abstract: This paper aims to introduce a novel maximum power point tracking (MPPT) strategy called
transfer reinforcement learning (TRL), associated with space decomposition for Photovoltaic (PV)
systems under partial shading conditions (PSC). The space decomposition is used for constructing
a hierarchical searching space of the control variable, thus the ability of the global search of TRL
can be effectively increased. In order to satisfy a real-time MPPT with an ultra-short control cycle,
the knowledge transfer is introduced to dramatically accelerate the searching speed of TRL through
transferring the optimal knowledge matrices of the previous optimization tasks to a new optimization
task. Four case studies are conducted to investigate the advantages of TRL compared with those of
traditional incremental conductance (INC) and five other conventional meta-heuristic algorithms.
The case studies include a start-up test, step change in solar irradiation with constant temperature,
stepwise change in both temperature and solar irradiation, and a daily site profile of temperature and
solar irradiation in Hong Kong.

Keywords: photovoltaic systems; MPPT; partial shading condition; transfer reinforcement learning;
space decomposition

1. Introduction

In the past decade, a continuous decline in the overall price of photovoltaic (PV) modules can be
witnessed around the world, thanks to the advancement of new materials and manufacturing, as well
as the ever-growing attention to greenhouse gas emissions [1,2]. As a consequence, solar energy has
rapidly become a promising renewable power source in the global energy market. Technologically,
PV systems own the elegant merits of easy installation, high safety, solar resources abundance, nearly
free maintenance, and environmental friendliness [3–5]. Thus far, large-scale PV systems are widely
installed, due to their short-term and long-term economic prospects [6,7].

In practice, the stochastic variation in actual environmental conditions, e.g., variation of solar
radiation and fluctuation in temperature, usually leads to the power–voltage (P–V) curve to exhibit
a highly nonlinear and time-varying feature. Hence, how to accurately determine the output
characteristics of PV cells, as well as the maximum possible output of PV systems under various
weather conditions, becomes a very challenging issue. This task is often referred to as maximum
power point tracking (MPPT) [8]. For the sake of achieving MPPT, a power converter (DC–DC
converter and/or inverter) is often used to connect with PV systems. Currently, conventional MPPT
techniques have received further development so that, in the recent PV systems, the output power can
be dynamically adjusted under different environmental conditions, e.g., hill climbing [9], perturb and
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observe (P&O) [10], and incremental conductance (INC) [11]. All of these schemes adopt a common
assumption that the PV cells share the same module as well as the modules share the same array,
and are exposed to the same temperature and solar irradiation, upon which only one maximum
power point (MPP) exists. Although they own a simple structure and can efficiently seek the MPP
under uniform solar irradiation conditions, a consistent oscillation around MPP is inevitable, which
causes a long-lasting loss of solar energy. Besides, offline MPPT approaches such as fractional short
circuit current (FSCC) [12] and fractional open circuit voltage (FOCV) [13] have been adopted for PV
systems, which possess the prominent superiorities of relatively lower complexity and inexpensive
implementation. Nevertheless, a common deficiency of these methods is due to the fact that they will
not be applicable when solar irradiation is rapidly changing.

Furthermore, when the distribution of solar irradiation among PV modules is unequal, an uneven
solar irradiation scenario may emerge, namely partial shading conditions (PSC). For example, the
shadows caused by surroundings such as buildings, trees, clouds, birds, dirt, etc. Every single PV
module may receive different levels of solar radiation [14]. Under this circumstance and the presence
of the bypass diodes, the output P–V curve is usually nonlinear, that is, it will contain multiple local
maximum power points (LMPPs) and a single global MPP (GMPP). Generally speaking, at LMPP, the
PV system usually reaches a low-quality optimum point, while the aforementioned methods can be
easily trapped, thus, they are inadequate to fully exploit the solar energy under PSC. To handle this
intractable hindrance, a great number of approaches have been introduced. For example, reference [15]
developed a fuzzy logic controller (FLC) where the approximate optimal design for membership
functions and control regulations were found to be the same by GA. In addition, for the sake of
achieving the rapid tracking of GMPP under PSC, a new method called the improved particle swarm
optimization algorithm (PSO), based on strategy with variable sampling time, was proposed [16].
In literature [17], in order to accomplish MPPT under different environmental conditions and PSC,
an artificial bee colony (ABC) algorithm was proposed, which only requires few parameters and its
convergence has no relation to the initial conditions. In [18], the bio-inspired Cuckoo search algorithm
(CSA) was adopted to effectively tackle PSC by the use of Levy flight with fast convergence. Moreover,
a social behaviour motivated algorithm named teaching–learning-based optimization (TLBO) was
adopted to achieve the accurate tracking of GMPP under PSC, the advantages of this algorithm
are simple structure and fast convergence [19]. Furthermore, the generalized pattern search (GPS)
optimization algorithm [20] was devised to resolve PSC, which has superior performance, such as
high convergence speed, excellent dynamic, and steady state efficiencies, as well as simple operation.
In reference [21], an ant colony optimization (ACO) combined with a novel strategy of pheromone
updating was developed for MPPT, which can effectively improve the speed of tracking, accuracy,
stability, and robustness under various weather conditions and different partial shading patterns.
However, all of these meta-heuristic algorithms have two main deficiencies as they are independently
utilized for MPPT under various scenarios, as follows:

• High convergence randomness: Unlike the deterministic optimization algorithms, since the
meta-heuristic algorithms adopt random searching mechanisms, the final optimal solutions may
be different in different runs, which will cause the output power to fluctuate greatly and is
undesirable to the operation of PV systems;

• Difficult to balance the optimum quality and computation time: To obtain a high-quality optimum,
the meta-heuristic algorithms usually need to establish a larger size of initial population and
carry out many iterations, which results in huge computational burden and long computing time.
However, considering that the MPPT’s control cycle is extremely short, it is inevitable to lessen
the size of population and the iteration numbers, which will lead to a significant reduction in the
quality of optimization.

Rapid development of artificial intelligence in recent years, especially Google DeepMind’s
AlphaGo [22], which has easily defeated two world champions in two world-renowned Go matches
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in 2016 and 2017, respectively, has boosted a tide of artificial intelligence. In fact, the model-free
reinforcement learning (RL) is one of the core algorithms of AlphaGo, which can rapidly construct an
optimal action policy at each state, according to its current knowledge or experience [23]. Motivated from
this outstanding characteristic, a new transfer reinforcement learning (TRL) with space decomposition
for MPPT of PV systems under PSC is proposed in this paper. In comparison with the aforementioned
meta-heuristic algorithms, TRL has the following two advantages:

• Capability of knowledge transfer: Through a positive knowledge transfer from past optimization
tasks, the optimal knowledge matrices of the new optimization task can be approximated by TRL,
hence this method can efficiently harvest an optimum of high quality;

• Capability of online learning: TRL can continuously learn new knowledge from interactions with
the environment based on RL, which can rapidly adapt to MPPT under different solar irradiation,
temperatures, and PSC.

2. Modelling of PV Systems under PSC

2.1. PV Cell Model

A PV cell model is usually combined in both series and parallel for the purpose of providing an
output which is desired [24]. The current–voltage relationship can be given by [25,26]

Ipv = NpIg −NpIs

(
exp

[
q

AKTc

(
Vpv

Ns
+

RsIpv

Np

)]
− 1

)
(1)

where the meaning of each symbol is given in nomenclature. Here, Iph denotes the generated
photocurrent that is mainly influenced by solar irradiation, which can be derived as

Iph = (Isc + ki(Tc − Tref))
s

1000
(2)

In addition, the saturation current Is of PV cells varies with the change of temperature on the basis
of the below relationship:
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Equations (1) to (3) denote that the current produced by the PV array is simultaneously dependent
on the temperature and solar irradiation.

2.2. PSC Effect

In general, the PV system needs to ensure a certain output voltage; however, a single PV cell can
only output extremely low voltage (almost 0.6 V). Hence, PV cells are always connected with each
other in a string to improve the output voltage. At the same time, when the array is shaded for some
reason, the output voltage of the PV cells in the shaded part will be lower than that of the unshaded PV
cells, due to the decline of received solar irradiation. Consequently, the shaded PV cells will consume a
part of the generated power. This phenomenon causes large loss of output power in the PV string. In
addition, it also leads to hot spots in the location of the shaded PV cells, which will greatly decrease
the service life of PV cells [27].

To solve this issue, the shaded PV cells are usually bypassed by bypass diodes. Figure 1a
demonstrates the operation in a PV array with parallel strings. Although adding bypass diodes can
effectively solve the issues mentioned above in shaded PV cells, they also result in a new problem,
e.g., they will distort the original P–V characteristic curves of PV cells and form a two-peak curve. In
particular, such a situation turns thornier when a few PV strings are connected in parallel for the sake
of obtaining a larger output current. Generally, when the number of shaded PV cells on each string
changes, each string will generate various PV curves. Because of the parallel connection, those PV
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curves with multiple peaks are usually combined to produce a multi-peak curve illustrated in Figure 1b
Hence, in order to determine the maximum solar energy from the PV array, the PV systems ought to
operate at the GMPP all the time. Only in this way, the large amount of energy will not be lost at LMPP.

(a) (b) 

Figure 1. Partial shading conditions (PSC) effect. (a) Power–voltage (P–V) curve under uniform solar
irradiation and temperature and (b) P–V curve under PSC.

3. Transfer Reinforcement Learning with Space Decomposition

The proposed TRL mainly contains two operators, i.e., the RL via uninterrupted interplay with
the environment and the knowledge transfer between the previous and new tasks, as clearly illustrated
in Figure 2.

Figure 2. Principle of transfer reinforcement learning (TRL) with space decomposition.
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3.1. Space Decomposition Based Reinforcement Learning

RL is a commonly used machine learning technique, which can acquire new knowledge in a
dynamic environment via interaction. Here, the famous RL called Q-learning is adopted to learn the
MPPT knowledge. However, if a system needs a high control accuracy, the searching space of the
continuous control variable should be divided into a large number of selected actions (e.g., 106 actions
for a continuous control variable between 0 to 1). As a result, the conventional Q-learning [28] easily
encounters the curse of dimension and a low-efficiency learning rate for selecting an optimal action of
a continuous control variable [29].

To handle this problem, the space decomposition is introduced to decompose the large original
searching space into multi-layered smaller searching subspaces. As illustrated in Figure 3, the
optimization space of the ith controllable variable xi can be decomposed into J smaller searching
subspaces in each layer. If the jth action ai

1j is selected in the first layer’s searching space, then the
agent will seek a more accurate searching space in the corresponding second layer’s searching space.
Therefore, the optimization accuracy of the control variable xi can be calculated as

OAi =
xub

i − xlb
i

c·J (4)

where c represents the number of decomposition layers; and xi
lb and xi

ub are the lower and upper
bounds of the ith controllable variable, respectively.

Figure 3. Knowledge transfer of TRL between two adjacent tasks for maximum power point tracking
(MPPT) with PSC.

Based on Equation (4), if the number of actions in each layer is set to be 10 (i.e., J = 10), then the
same accuracy (10−6) can be achieved for a continuous control variable between 0 to 1 when c = 6.
This means that the number of selected actions can be significantly reduced from 106 to 10. Therefore,
the learning rate and control accuracy of Q-learning can be considerably improved, based on the
space decomposition.

After selecting all the actions in all the layers, the solution of the controllable variable can be
identified as

xi = xc,lb
i + acj

i ·
(
xc,ub

i − xc,lb
i

)
/J (5)
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i =
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J , otherwise
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i −xl−1,lb
i

)
J , otherwise

(7)
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where xl,lb
i and xl,ub

i are the lower and upper bounds of the lth layer’s searching space, respectively;
while ai

lj is the jth action in the lth layer’s searching space.

3.2. Knowledge Update

According to the learning mechanism of Q-learning, the knowledge matrix can be updated based
on the executed state–action pair with the feedback reward. By combining the space decomposition,
the knowledge matrix of each searching space layer can be updated as [28]:
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i,k, al
i,k

)
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sl
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−Ql
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sl
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(8)

where Ql
i represents the knowledge matrix of the lth layer’ searching space for the ith controllable

variable;
(
sl

i,k, al
i,k

)
is the state–action pair executed at the kth iteration, with k = 1,2, . . . , kmax; kmax

represents the maximum iteration number; α is the knowledge learning factor, with α∈ (0, 1); γ denotes
the discount factor, with γ ∈ (0, 1); Ri

l is the reward function; and Ai
l means the action space of the lth

layer’s searching space, respectively.
It can be seen from Equation (8) that at each iteration, only one element of each knowledge matrix

can be updated since the conventional Q-learning employs a single RL agent for exploration and
exploitation in a dynamic environment. Consequently, it will lead to a slow learning rate; thus a
high-quality optimal solution cannot be rapidly obtained for a real-time control of PV systems. Hence,
a cooperative swarm is employed to further accelerate the learning rate, as it can simultaneously
update multiple elements of each knowledge matrix with multiple state-action pairs. Similar to (8),
each knowledge matrix of TRL can be updated by [30]

Ql
i,k

(
sl,m

i,k , al,m
i,k

)
= Ql

i,k

(
sl,m

i,k , al,m
i,k

)

+ α

⎡⎢⎢⎢⎢⎢⎣Rl,m
i,k

(
sl,m

i,k , sl,m
i,k+1, al,m

i,k

)
+ γmax

a∈Al
i

Ql
i,k

(
sl,m

i,k+1, a
)

−Ql
i,k

(
sl,m

i,k , al,m
i,k

)]
, m = 1, 2, . . . , M.

(9)

where M represents the population size of the cooperative swarm.

3.3. Exploration and Exploitation

In general, a wide exploration will enhance the possibility of searching a global optimum, but
will also consume additional computation time. In contrast, a deep exploitation will enhance the
convergence speed, but will easily result in a local optimum in low quality. In order to keep exploitation
and exploration in balance, the ε-Greedy rule [31] is adopted to select actions on the basis of the current
knowledge matrices, which yields

al,m
i,k+1 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
argmax

al
i∈Al

i

Ql
i,k

(
sl,m

i,k+1, al
i

)
, if q0 < ε

arand, otherwise
(10)

where q0 is a uniform random number between 0 and 1; ε is the rate of exploitation, i.e., the possibility
of selecting the greedy action; and arand represents a stochastic action in the action space, i.e., the global
search for avoiding a low-quality local optimum, respectively.
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3.4. Knowledge Transfer

Through exploiting the optimal knowledge matrices of the previous tasks, the knowledge
transfer [32] can approximate the optimal knowledge matrices of a new task, and this is how
knowledge transfer works. In this study, the most similar previous task will be chosen for knowledge
transfer, based on its similarity with the new task, which can be expressed as

Qn0
i = r·Qs∗

i + (1− r)·Qinitial
i (11)

where Qi
n0 is the approximated optimal knowledge matrices of the ith controllable variable of the new

task; Qi
s* denotes the optimal knowledge matrices of the ith controllable variable of the most similar

previous task; Qi
initial represents the initial knowledge matrices of the new task without knowledge

transfer; and r represents the comparability between the most similar previous task and the updated
task, with 0 ≤ r ≤ 1, respectively.

4. TRL Design of PV Systems for MPPT

4.1. Control Variable and Action Space

For the purpose of obtaining the GMPP of a PV system, the output voltage Vpv is chosen as the
control variable, in which the entire searching space is decomposed into four layers. In each layer, the
searching space is uniformly discretized into ten actions within the corresponding range from lower
bounds to upper bounds.

4.2. Reward Function

For a given output voltage Vpv, the PV system can generate the corresponding power under the
current solar irradiation, temperature, and PSC. In TRL, the higher the quality of the solution is, the
larger reward the individual will receive. Based on this rule, the reward function can be designed
as [30]:

Rl,m
i,k

(
sl,m

i,k , sl,m
i,k+1, al,m

i,k

)
=

⎧⎪⎪⎨⎪⎪⎩
max

m=1,2,...,M
f
(
Vm

pv

)
, if

(
sl,m

i,k , al,m
i,k

)
∈ SAbest

k

0, otherwise
(12)

where Vm
pv is the obtained solution by the mth individual and SAbest

k denotes the explored state–action
pairs set of the best individual with the maximum power output at the kth iteration.

4.3. Knowledge Transfer

It is clear that the aforementioned three conditions, e.g., solar irradiation, temperature, and PSC,
can be considered as the main similarities between various optimization tasks. On the other hand, the
similarity between two adjacent optimization tasks is usually very high, since these weather conditions
cannot vary dramatically in a very short time. Hence, the optimal knowledge matrices of the adjacent
past task is chosen for knowledge transfer to the new task (See Figure 3), while the similarity described
in (11) can be designed as

r = 1−
∣∣∣Tn

c − Tp
c

∣∣∣
Tref

−
Ns·Np∏
w=1

∣∣∣Sn
w − Sp

w

∣∣∣
Sref

(13)

where Tn
c and Tp

c are the temperatures of the new task and the past task, respectively;

4.4. Overall Execution Procedure

For the PV system, the overall flow diagram of TRL to achieve MPPT under PSC is illustrated
in Figure 4. Firstly, the original searching space of output voltage is decomposed into a four-layered
smaller searching subspace within its corresponding lower bounds and upper bounds. Then, the
knowledge transfer between the new task and the past task is implemented according to their similarity
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of weather conditions. Furthermore, TRL can update the knowledge matrices via multiple explorations
and exploitations in the scheduled iterations. At last, for the PV system, the optimal solution (optimal
output voltage) can be obtained to achieve MPPT under PSC.

Start

Initialize the algorithm parameters

Input the current irradiance, temperature, and PSC

Calculate the similarity between the 
new task and the last task by (13)

Approximate the optimal knowledge 
matrices of the new task by (11)

k = 0

Implement the exploration and exploitation by (5) (7), (10)

Acquire the power output of the PV 
system for each solution (output voltage) 

Calculate the feedback reward for each individual by (12)

Update the knowledge matrices by (9)

Decompose the searching space 
of the controllable variable

k  kmax? k = k+1No

Yes

Output the optimal solution of the new task

Store the optimal knowledge matrices

End

Space 
decomposition

Knowledge 
transfer

Reinforcement 
learning

Figure 4. Overall flow diagram of TRL for MPPT. PSC: Partial Shading Conditions.

5. Case Studies

To further analyze the MPPT practicability of TRL under PSC, it was compared with that of
INC [11], GA [15], PSO [16], ABC [17], CSA [18], and TLBO [19], respectively. Four case studies are
carried out in this section. Here, each meta-heuristic algorithm shares the same optimization cycle,
which is chosen as 0.01 s. Meanwhile, the TRL parameters are given in Table 1.

Table 1. The parameters of TRL. TRL: Transfer Reinforcement Learning.

Parameter Range Value

J J > 1 10
c c > 1 4
α 0 < α < 1 0.01
γ 0 < γ < 1 0.0001
ε 0 < ε < 1 0.9

kmax kmax > 1 5
M M > 1 5
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For MPPT under PSC, a buck–boost converter is employed, due to its advantages described in
reference [33]. Table 2 demonstrates the parameters of the PV system. In addition, the rated values of
environment temperature and solar irradiation are set as 25 ◦C and 1000 W/m2, respectively.

Table 2. The photovoltaic (PV) system parameters.

Typical peak power 51.716 W Nominal operation cell
temperature (Tref)

25 ◦C

Voltage at peak power 18.47 V Factor of PV technology (A) 1.5
Current at peak power 2.8 A Switching frequency (f ) 100 kHz

Short-circuit current (Isc) 1.5 A Inductor (L) 500 mH
Open-circuit voltage (Voc) 23.36 V Resistive load (R) 200 Ω

Temperature coefficient of Isc (k1) 3 mA/◦C Capacitor (C1, C2) 1 μF

5.1. Start-Up Test

The first step to simulate the PSC is to set the solar irradiation of three PV strings to be 200 W/m2,
300 W/m2, and 1000 W/m2, respectively. The online optimization responses of various methods for
MPPT are illustrated in Figure 5. It is clear that INC can easily reach the point of steady convergence
in far less time than the other methods. However, it has a vital drawback in that it cannot make an
effective distinction between GMPP and LMPP, which means it might often be trapped at a low-quality
local optimum as it is readily stagnated at an MPP. Generally speaking, due to their significant ability
of global searching, other meta-heuristic algorithms can usually find a better quality optimum with
larger power and energy. Among them, TRL owns the highest convergence stability as it can avoid a
blind/random search by the use of knowledge transfer.

  
(a) (b) 

Figure 5. PV system responses of seven methods obtained on the start-up test. (a) Voltage; (b) Power.

5.2. Step Change in Solar Irradiation with Constant Temperature

As shown in Figure 6, the core process is to impose a set of solar irradiation steps on the PV array,
where the step change is applied every second. The temperature is maintained to be constant at 25 ◦C
during the whole test. The online optimization outcomes of various approaches for MPPT with step
change solar irradiations are illustrated in Figure 7. It can be found that the obtained results are similar
to those of the start-up test. The output power and voltage derived by those meta-heuristic algorithms,
except TRL, are relatively prone to volatility if the solar irradiation is not always steady and varies at a
dramatic pace. This also verifies that the knowledge transfer can effectively guarantee the convergence
stability of TRL, i.e., the control strategies of adjacent optimization tasks only have a slight difference
under the same weather conditions.
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PV Cell #1 PV Cell #2 PV Cell #3

Figure 6. Step change of solar irradiation with PSC. PSC: Partial Shading Conditions.

  
(a) (b) 

Figure 7. PV system responses of seven methods obtained on the step change in solar irradiation with
constant temperature. (a) Voltage; (b) Power.

5.3. Gradual Change in Both Solar Irradiation and Temperature

Figures 8 and 9 show the procured results of seven algorithms for MPPT when solar irradiation
and temperature both change gradually. A conclusion can be drawn that, except for TRL, the other
meta-heuristic algorithms are still prone to generating the larger power fluctuations, even when the
solar irradiation and temperature change slowly. Due to the beneficial guidance by knowledge transfer,
TRL can significantly alleviate the power fluctuations without a blind/random search.

This also reveals that, for real-time MPPT, TRL is capable of speedily seeking an optimum of high
quality through the space decomposition on the basis of RL and beneficial knowledge transfer.
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(a) 

 
(b) 

PV Cell #1 PV Cell #2 PV Cell #3

°

Figure 8. Gradual change in both solar irradiation and temperature. (a) Irradiation and (b) temperature.

(a) 

Figure 9. Cont.
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(b) 

Figure 9. PV system responses of seven methods obtained on the gradual change in both solar
irradiation and temperature. (a) Voltage; (b) Power.

5.4. Daily Field Profile of Solar Irradiation and Temperature in Hong Kong

For the purpose of testing the specific practicability of TRL in practical application, the temperature
and solar irradiation measured in Hong Kong was used to simulate the PV system for MPPT (See
Figures 10 and 11). The metrical data are mainly selected from four representative days of four
different seasons in 2016, in which the interval of data is set to 10 min. Note that the randomness
and intermittence of solar energy and renewable energy system (RES) [34–37] is a very common issue
usually resulting from uncertain atmospheric conditions.

 

(a) 

Spring
Summer
Autumn
Winter

 

(b) 

°

Spring Summer Autumn Winter

Figure 10. Daily profile of solar irradiation and temperature in Hong Kong. (a) Irradiation;
(b) Temperature.
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Figure 11. The detailed geographical position of the measuring device for solar irradiation
and temperature.

Figures 12 and 13 demonstrate the output power of seven algorithms for MPPT in different
seasons. It can be well illustrated that, compared with INC, in the PV system, all the meta-heuristic
algorithms can obtain more output power, where the output energy of TRL reaches 115.52% of that of
INC in the spring. That aside, one can derive that although the performances of all meta-heuristic
algorithms are comparatively small during the whole simulation period, TRL can still outperform
other algorithms, which means that it can always give out the most power in any season.

 

(a) (b) 

(c) (d) 

Figure 12. PV system responses obtained on a typical day in Hong Kong. (a) Spring; (b) summer; (c)
autumn; (d) winter.
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Figure 13. Statistical results of output energy of the PV system obtained by seven algorithms in
different seasons.

6. Conclusions

A novel method called TRL using space decomposition has been proposed in this paper, which is
designed for PV systems to obtain the maximum attainable solar energy under PSC, whose contributions
can be summarized as follows:

(1) Through space decomposition, TRL can efficiently learn the knowledge for MPPT with PSC in
real time; thus a high-quality optimum can be obtained to ensure that the PV system produces
more energy under various environmental conditions;

(2) The knowledge transfer can effectively avoid a blind/random search and provide a beneficial
guidance to TRL, which results in a fast convergence and a high convergence stability. Therefore,
not only can the output power be maximized for the PV system under various scenarios, but the
power fluctuation can also be significantly reduced as the weather condition varies;

(3) Compared with the conventional INC and other typical meta-heuristic algorithms, the TRL-based
MPPT algorithm can produce the largest amount of output energy in the presence of PSC and
other time-varying atmospheric conditions, which can bring about considerable economic benefit
for operation in the long term.
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