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Coastal areas are remarkable regions with high spatiotemporal variability. Many domains are
affected by their physical and biological processes, from tourism to biodiversity and productivity.
Coastal ecosystems perform several critical ecosystem services and functions such as water oxygenation
and nutrient provision, seafloor and beach stabilization (as sediment is controlled and trapped within
the rhizomes of the seagrass meadows), carbon burial, and areas for nursery and refuge of several
commercial and endemic species. Knowledge of the spatial distribution of marine habitats is prerequisite
information for the conservation and sustainable use of marine resources. This Special Issue contains
14 papers in several fields of coastal remote sensing and reveals the potential of remote sensing in
integrated coastal management.

Cliff coasts are dynamic environments that can retreat very quickly. However, short-term changes
and factors contributing to cliff coast erosion have not received as much attention as dune coasts.
Terefenko et al. [1] conducted work at three soft-cliff systems in the southern Baltic Sea; these have
been monitored with the use of terrestrial laser scanner technology over a period of almost two years
to generate a time series of 13 topographic surveys. Digital elevation models constructed for those
surveys allowed the extraction of several geomorphological indicators describing coastal dynamics.
Combined with observational and modeled datasets on hydrological and meteorological conditions,
descriptive and statistical analyses were performed to evaluate cliff coast erosion. A new statistical
model of short-term cliff erosion was developed by using a non-parametric Bayesian network approach.
The results revealed the complexity and diversity of the physical processes influencing both beach
and cliff erosion. Wind, waves, sea levels, and precipitation were shown to have different impacts
on each part of the coastal profile. At each level, different indicators were useful for describing the
conditional dependency between storm conditions and erosion. These results are an important step
toward a predictive model of cliff erosion.

Poursanidis et al. [2], for first time, exploit the capabilities of PlanetScope Cubesats for the
calculation of coastal bathymetry. High spatial and temporal resolution satellite remote sensing
estimates are the silver bullet for monitoring of coastal marine areas globally. From 2000, when the
first commercial satellite platforms appeared offering high spatial resolution data, mapping of coastal
habitats and extraction of bathymetric information have been possible at local scales. Since then,
several platforms have offered such data, although not at high temporal resolution, making the
selection of suitable images challenging, especially in areas with high cloud coverage. PlanetScope

Remote Sens. 2020, 12, 974; doi:10.3390/rs12060974 www.mdpi.com/journal/remotesensing1
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CubeSats appear to cover this gap by providing their relevant imagery. The current study is the first
that examines the suitability of them for calculating satellite-derived bathymetry. The availability of
daily data allows the selection of the most qualitatively suitable images within the desired timeframe.
The application of an empirical method of spaceborne bathymetry estimation provides promising
results, with depth errors that fit to the requirements of the International Hydrographic Organization
at the Category Zone of Confidence for the inclusion of these data in navigation maps. While this is
a pilot study in a small area, more studies in areas with diverse water types are required for solid
conclusions on the requirements and limitations of such approaches in coastal bathymetry estimations.

Coastal dunes provide the hinterland with natural protection from marine dynamics.
The specialized plant species that constitute dune vegetation communities are descriptive of the
dune evolution status, which in turn reveals the ongoing coastal dynamics. De Giglio et al. [3] work
towards demonstrating the applicability of a low-cost unmanned aerial system for the classification of
dune vegetation, in order to determine the level of detail achievable for the identification of vegetation
communities and define the best-performing classification method for the dune environment according
to pixel-based and object-based approaches. These goals were pursued by studying the North Adriatic
coastal dunes of Casal Borsetti (Ravenna, Italy). Four classification algorithms were applied to
three-band orthoimages (red, green, and near-infrared). All classification maps were validated through
ground truthing, and comparisons were performed for the three statistical methods, based on the k
coefficient and on correctly or incorrectly classified pixel proportions of two maps. All classifications
recognized the five vegetation classes considered, and high spatial resolution maps were produced
(0.15 m). For both pixel-based and object-based methods, the support vector machine algorithm
demonstrated a better accuracy for class recognition. The comparison revealed that an object approach
is the better technique, although the required level of detail determines the final decision.

Coastal areas harbor the most threatened ecosystems on Earth, and cost-effective ways to monitor
and protect them are urgently needed, but they represent a challenge for habitat mapping and
multitemporal observations. The availability of open access remotely sensed data with increasing
spatial and spectral resolution is promising in this context. Thus, in a sector of the Mediterranean coast
(Lazio region, Italy), Marzialetti et al. [4] tested the strength of a phenology-based vegetation mapping
approach and statistically compared results with previous studies, making use of open source products
across all the processing chain. We identified five accurate land cover classes in three hierarchical
levels, with good values of agreement with previous studies for the first and the second hierarchical
levels. The implemented procedure resulted as being effective for mapping a highly fragmented
coastal dune system. This is encouraging to take advantage of Earth observations through remote
sensing technology in an open source perspective, even at the fine scale of highly fragmented sand
dunes landscapes.

One of the most important linear features on the Earth’s surface is coastline; thus, the detection
and monitoring of dynamic coastlines through time and space is critical for tracking changes in
vulnerable coastal zones and managing increasingly threatened water resources. In their study,
Bishop-Taylor et al. [5] evaluated a method for mapping waterlines at subpixel accuracy from satellite
remote sensing data, combining a synthetic landscape approach with high-resolution WorldView-2
satellite imagery. Their method reproduced, with confidence, both absolute waterline positions and
relative shape at a resolution that exceeds that of whole-pixel thresholding methods in environments
without extreme contrast between water and land. Their subpixel waterline extraction method
is available as an open source tool and has low computational overhead; thus, it is suitable
for continental-scale or full time-depth analyses aimed at accurately mapping and monitoring
dynamic waterlines.

Sha et al. [6] revealed asymmetric oceanic thermal responses corresponding to an island wind
wake and proposed associated mechanisms with ocean heat advection terms. Using multisensor remote
sensing observations including advanced synthetic aperture radar (ASAR), the work investigated the
sub-mesoscale features of the local wind wake. Then, by combining the satellite observations and
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model results, the ocean heat advection terms were reconstructed and compared with the air–sea heat
flux. The results highlighted the contribution of the wind-driven heat advection in the regional ocean
thermal dynamic process.

Unmanned aerial systems (UAS) are used in an increasing number of applications, especially for
data acquisition, to map spatiotemporal changes. Papakonstantinou et al. [7] used UAS true-color
RGB (tc-RGB) and multispectral high-resolution orthomosaics by applying object-based image analysis
(OBIA) to map marine habitats. Furthermore, they examined the usefulness of bathymetry and
the roughness of information derived from the echo sounder as training data to the UAS-OBIA
methodology, applying three different scenarios using k-nearest neighbor (k-NN), fuzzy rules, and
their combination as classifiers. High-resolution classification maps produced from the methodology
followed, providing valuable information regarding the current state of the habitat species and enabling
in-depth analysis of change detections caused by anthropogenic interventions and other factors.

Sea-level rise, storm surges, and many other ocean dynamics affect coast vulnerability and lead to
hazards such as beach erosion, sedimentation, or inundation. By using 40 years of satellite observations
from multisensors, Waqas et al. [8] analyzed spatial and temporal variations of barrier islands (BIs)
along the Indus Delta region of the Pakistan coast. They concluded that approximately 75% of these
BIs are vulnerable to the ocean controlling factors. Therefore, coastal protection and management
along the Indus Delta should be adopted to defend against the erosive action of the ocean.

On the other hand, reclaimed lands or islands may also suffer the problem of ground subsidence
in addition to the erosion by the ocean. Liu et al. [9] showed that the maximum annual subsidence
rate of the new airport constructed on the reclaimed land of the Xiamen City reached −130 mm/year
between 2015 and 2016, based on the interferometry of Sentinel-1 SAR data.

To map fine variations of the coastal zone, Almeida et al. [10] proposed a method of deriving
high-resolution (2.0 m) DEM from the Pleiades satellite data with a pixel size of 0.7 m, which showed a
good agreement with ground truth measurements by GPS.

Besides spaceborne optical and radar sensors, which are widely used for coastal monitoring,
other instruments exhibit their advantages for some applications. Ma et al. [11] proposed a method of
detecting photon signals of Lidar, by which they estimated surface profiles of different surface types in
coastal zones.

Song et al. [12] proposed a semi-global subpixel shoreline localization method based on Landsat 8
Operational Land Imager (OLI) data. Authors selected the port of Caofeidian and the Xiamen coastal
area as the study areas and utilized higher-resolution shoreline extracted from GF-2, which is capable
of acquiring optical images with a spatial resolution better than 1 m. The proposed methodology
utilizes global spectral information and shoreline morphological features coupled with local water
index homogeneity features to determine the artificial shoreline with an RMSE of less than 5 m.

Cao et al. [13] analyzed 40 features extracted via polarimetric decomposition in the full-polarimetric
(FP), simulated compact-polarimetric (CP), and dual-polarimetric (DP) SAR modes for ship detection
using the Euclidean distance and mutual information. Authors found that that the features in CP SAR
were better than those of FP or DP SAR in general. The study also proposed a CP SAR based feature,
named ‘phase factor’. In the framework of the study, the authors concluded the ‘phase factor’ based
detector performed better than other traditional ship detection techniques in low, medium, and high
sea states.

Su et al. [14] proposed sea ice information indexes using medium resolution Sentinel-3 Ocean
and Land Color Instrument (OLCI) images and validated the index performance using Sentinel-2
MultiSpectral Instrument (MSI) images with higher spatial resolution. The study evaluated the
proposed Enhanced Normalized Difference Sea Ice Information Index based on 4 OLCI bands (B12, B16,
B20, and B21). Authors demonstrated that the proposed index effectively detected sea ice information
in the Bohai Sea and suppressed most background information compared to other established methods.

Author Contributions: The guest editors contributed equally to all aspects of this editorial. All guest editors have
read and agreed to the published version of the manuscript.
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Abstract: Cliff coasts are dynamic environments that can retreat very quickly. However, the
short-term changes and factors contributing to cliff coast erosion have not received as much attention
as dune coasts. In this study, three soft-cliff systems in the southern Baltic Sea were monitored with
the use of terrestrial laser scanner technology over a period of almost two years to generate a time
series of thirteen topographic surveys. Digital elevation models constructed for those surveys allowed
the extraction of several geomorphological indicators describing coastal dynamics. Combined with
observational and modeled datasets on hydrological and meteorological conditions, descriptive
and statistical analyses were performed to evaluate cliff coast erosion. A new statistical model of
short-term cliff erosion was developed by using a non-parametric Bayesian network approach. The
results revealed the complexity and diversity of the physical processes influencing both beach and
cliff erosion. Wind, waves, sea levels, and precipitation were shown to have different impacts on each
part of the coastal profile. At each level, different indicators were useful for describing the conditional
dependency between storm conditions and erosion. These results are an important step toward a
predictive model of cliff erosion.

Keywords: cliff coastlines; time-series analysis; terrestrial laser scanner; southern Baltic Sea;
non-parametric Bayesian network

1. Introduction

Coastal areas are highly susceptible to changes in hydrometeorological conditions, as they
constitute the boundary between land and sea. The geomorphological resilience of a particular
segment of coast depends on several variables including storm intensity and topographical properties,
because most changes appear during severe storms or as an effect of a series of subsequent storms [1].

Soft cliff coasts experience storms strongly, and they can retreat relatively fast. However, most
monitoring systems, analyses, and models have been implemented along dune coasts [2–6], largely
because of the technical difficulties in registering the morphological changes on cliff coasts. Despite
such difficulties, mainly connected with accessibility of high cliffs, the factors influencing cliff erosion
have been investigated through quantitative numerical methods. These approaches have varied from
simple correlation matrices [7] to stochastic simulations [8] and from local to continental scales [9].
In recent years, Bayesian networks (BNs) have gained popularity as probabilistic tools for both
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descriptive and predictive applications [10]. However, the available studies using BNs have only
addressed long-term shoreline changes [11–13], of which only Hapke and Plant [11] carried out an
analysis limited strictly to cliff coasts. Furthermore, all applications have been based on discrete
BNs, which generally dominate coastal hazard analyses [14]. Short-term cliff erosion has not been
investigated with BNs in either discrete or continuous mode.

This study aims to propose reproducible solutions for analyzing the relationship between the
erosion rate on coastal cliffs and selected variables. For this purpose, obtaining very precise topographic
data was paramount [15]. The light detection and ranging (LiDAR) surveys enabled gathering datasets
that were used to analyze erosion speed and its relationship to various elements that influence the
geosystem of coastal cliff zones. The geomorphological analysis was based on several commonly
considered indicators: sediment budgets [16], mean sea level contour [5,17], cliff base line [1,18], and
cliff top line [19].

All indicators were monitored on three study sites in the southern Baltic Sea coast for a period of
1.5 years, resulting in a time series of 13 LiDAR datasets. A preliminary descriptive analysis of these
results was presented by Terefenko et al. [1], but this preliminary analysis was based on only one test
site and on the first five topographic surveys. In the present study, the analysis has been extended in
time and space, and an original statistical model of the geomorphological response of a beach and cliff
system has been developed using a non-parametric, continuous Bayesian network. This methodology
will provide a foundation for creating a probabilistic solution in the prediction of unconsolidated
coastal cliffs erosion.

2. Materials and Methods

2.1. Study Sites

The cliff retreat analysis was performed for a non-tidal basin of the Baltic Sea (Figure 1). The
Baltic Sea is dominated by winds from southwest and west directions. The prevailing directions in
particular seasons are as follows: spring—east and northeast; summer—southwest and northwest;
autumn—northwest; winter—north, south, southwest, and northwest. The highest strength of wind
(> 6◦B) reaches from November to March [20].

In recent decades, the highest absolute amplitude of sea level changes in the study area was
recorded during year 1984 (2.79 m), whereas the most extreme storm surge occurred in November
1995 (+1.61 m above mean) [21]. However, extreme value analysis have shown that a 100-year storm
surge in the western part of the Polish coast could reach +1.71 m above mean, and a 500-year event
would exceed 2 m [22].

The study area covered three 500 m long cliff sites that have different geomorphological
configurations. The first two research areas were located in Poland near two popular seaside resorts,
Międzyzdroje (Wolin Island, Biała Góra cliffs) and Wicie, representing similar northwestern coastal
exposures but with different geomorphological contexts. The third area was located in Germany
next to the Bansin resort (Usedom Island, Langer Berg cliffs) and was characterized not only by
different exposure (northeastern), but also by a much wider beach protecting the cliffs. Detailed in situ
investigations were not performed for any of the analyzed cliff test sites.

The cliff formations selected to represent the effects of marine abrasion have long been subjects of
widespread research interest. Moraine hills built of glacial and glaciofluvial deposits, till, and eolian
deposition predominate the relief of these areas in which the landscape varies greatly from beaches
to its characteristic element: high cliffs. This region is among the stormiest in Europe, experiencing
high surges and strong winds [23]. The erosion rate has been frequently debated, as different rates are
measured using a variety of techniques, either directly in the field (both with traditional and modern
measurement techniques) or by analyzing historical maps [24].
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Figure 1. Location map showing the study sites, tide gauges, and grid data points.

The cliff coast of the Usedom Island, with the highest cliff (ca. 58 m) at this section named
Streckelsberg, was subjected to largest coastal erosion in the area, endangering the town of Koserow,
located partially on its stoss side. Generally Usedam Island cliff has been protected since the end of the
19th Century [25] by a cliff rampart, strengthened by a triple wall, groynes, three wave-breakers, and
sand nourishment in modern times. For the study need a shorter, but unprotected by human made
structures, an active cliff section of similar height (ca. 54 m) was chosen. This cliff, named Langer Berg,
retreated ca. 100 m in 300 years [26] and is leaded by a sandy beach up to 30 meters wide.

As storms, wind, precipitation, and the sun contribute to the cliffs’ erosion the Wolin cliffs (ca.
90 m high in heights parts and ca. 57 m high in investigation site), the cliffs retreat approximately
80 cm per year, although the exact erosion rate is a subject that has been discussed for years [1,16,24].
The front of the high cliffs is protected by a series of flat concrete blocks, reaching up on average up
to several meters, mostly covered by mix of sand and gravels beach, dogged deep into the sand and
uncovered occasionally by strong storms [1].

The Wicie study site represents a slightly different geomorphological context. The beach in front
of the cliffs is covered by mix of sand and gravels similarly to Międzyzdroje test site, but its width
varies from less than 1 m to up to 20 m, depending of the analyzed section. The cliff face itself is
much lower in highest sections, reaching only 11 m. The investigated area is protected by a series of
manmade groins. No detailed geomorphological or geological investigations have been performed on
this section of the Polish coast.

2.2. Data

The data used in this study covered a survey timeline from November 2016 to June 2018.
Thirty-nine topographic surveys (thirteen for each study site) were conducted with terrestrial laser
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scanner (TLS) technology. The significant advantage of TLS data collection compared to traditional
techniques or airborne laser scanning is related to time limitations. Coasts are extremely dynamic
environments. To track cliff changes and identify the processes of its modifications, data must be
collected frequently over consistent time intervals [27]. Data collection using classic field methods
is a long and laborious process, which in the case of numerous and extensive research areas may
not provide the required results. The implemented laser-based survey technique allowed for rapid
and accurate collection of large amounts of topographic data. During the last decade, TLS has been
successfully applied to topographic surveys and to the monitoring of coastal processes [28–30]. In this
study, highly accurate measurements of coastal changes were performed with the use of Riegl VZ-400
equipment. Each of the 500 m long test sites were scanned from 10 spots, acquiring 90 to 100 points
per square meter, with an estimated vertical accuracy of more than 5 mm. A list of all surveys and the
resulting analytical periods is included in Supplementary Information 1 (Table S1).

The hydrometeorological data used in this study combined both observational and modeled
datasets (Table 1). Wave parameters from the high-resolution operational WAve Model (WAM) were
validated for the Baltic Sea in the framework of the Hindcast of dynamic processes of the ocean and
coastal areas of Europe (HIPOCAS) project [31]. One minor gap lasting 6–7 h for two WAM points
corresponding to the Bansin and Międzyzdroje cliffs was filled by interpolation. Three larger gaps in
the wave and wind parameters for all locations, lasting a total of 36 days (within December 2016, June
2017, and February 2018), were filled using the fifth major global climate reanalysis dataset produced
by the European Center for Medium-Range Weather Forecasts (ERA5) [32]. As the resolution of the
ERA5 reanalysis model, which represents wave conditions further from the coast, is far coarser than
the WAM data, the ERA5 values were corrected by a constant factor for each location, variable, and
data gap. The constant factor was computed by dividing the average WAM values for the available
days within each month during which a gap occurred by the average ERA5 reanalysis values.

Table 1. Sources of hydromet variables of interest by study area and so eorological data. Locations of
tide gauges and grid data points are shown in Figure 1.

Variable Source Provider Resolution

Wave parameters WAM wave model hindcast
Interdisciplinary Centre for

Mathematical and Computational
Modelling of Warsaw University (ICM)

hourly, 1/12◦

Wave parameters ERA5 wave reanalysis European Center for Medium-Range
Weather Forecasts (ECMWF) hourly, 0.36◦

Sea level Observations at Koserow,
Świnoujście and Darłowo

German Federal Institute of Hydrology
(BfG), Institute of Meteorology and

Water Management (IMGW)
hourly, at tide gauges

Temperature,
precipitation ERA5 atmosphere reanalysis European Center for Medium-Range

Weather Forecasts (ECMWF) hourly, 0.28◦

Information on water levels was derived from tide gauges located at the shortest distance
from each case study site through personal communication with the institutions responsible for
the gauge upkeep. Finally, hourly precipitation and temperature data were collected from the ERA5
reanalysis model.

2.3. Geomorphological Indicators

Depending on the study objectives, five major geomorphological indicators were extracted from
the LiDAR-derived digital elevation models (DEMs), namely shoreline retreat, beach volume balance,
cliff foot retreat, cliff volume balance and cliff top retreat (Figure 2.). Because part of the topographic
measurements were realized directly after storms while the water level was still quite high, some
limitations in the high-resolution dataset availability caused the shoreline retreat indicator to be
extracted as a 1 m contour above mean sea level (MSL) instead of at zero MSL.
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Figure 2. Scheme of measuring procedure of major geomorphological indicators extracted from the
LiDAR-derived digital elevation models.

Extracting the shoreline contour from DEM was rather straightforward; however, acquiring the
cliff base line was more challenging and required some deliberation. Because the purpose of this study
was to create reproducible solutions for analyzing the relationship between the erosion rates on coastal
cliffs, a comparable procedure for extracting cliff base line was needed. While several studies realized
on cliffs analyzed volumetric changes, to our knowledge, all assumed manual delineation of the cliff
baseline, relying mainly on aerial photographs, topographic maps, or in situ surveys [1,18,33,34].
Some attempts of advanced automatic delineation were performed on the cliff bases of generalized
coastal shoreline vectors by approximating the distance between shoreline and the cliff top [19]. In
our study, a simplified methodology was implemented that considered a rapid change in altitude
(higher than 0.5 m for a distance of 1 m). This procedure appeared to be a sufficient solution, because
the delineation of the cliff base line can be a subject of interpretation, even by operators during
field surveys. Moreover, as presented by Palaseanu-Lovejoy et al. [19], the manual digitization of
geomorphological breaklines on DEMs not only has lower precision but also lacks reproducibility.
The assumed simplified procedure was fully reproducible and comparable for all test sites and was a
sufficient indicator that was independent of human skill.

Mapping the cliff top line and its migration over time is one of the most common methodologies for
investigating cliff recession [24]. Traditionally obtained during field surveys or based on hand-digitized
procedures [35], the cliff top line can also be extracted automatically [19]. Due to TLS limitations
mainly related to data shortages on parts of the cliff edge densely overgrown by vegetation, the highest
available point existing on two successive topographic surveys was assumed as the cliff top line for
the analyzed time period.

Finally, to explore how the beach–cliff system changed between each LiDAR survey, line indicator
migration as well as volumetric changes was analyzed. The results were separately determined for
beach and cliff areas between the lines in 50 m wide sections. Similarly, for the needs of Bayesian
network analysis, all line indicators were marked on profiles using the same 50 m spacing as the
volumetric measurements.

9



Remote Sens. 2019, 11, 843

2.4. Bayesian Networks

Bayesian networks, also known as Bayesian belief nets, are graphical, probabilistic models [36]
that have a wide range of applications in the environmental sciences, particularly in coastal zone
problems [10,14]. The main advantage of BNs is the ability to model complex processes and, at least
for models with a small number of nodes, the explicit representation of uncertainty and intuitive
interpretation. BNs can be discrete or continuous, depending on the type of data available. In this
study, a continuous BN was applied as it better suits the data collected (for discussion on pros and
cons of various BN types, we refer to Hanea et al. [37]).

In general, a BN consists of a directed acyclic graph with associated conditional probability
distributions [38,39]. The graph consists of “nodes” and “arcs” in which the nodes represent random
variables connected by arcs, which represent the dependencies between variables. Arcs have a defined
direction: the node on the upper end is known as the “parent” node, and the node on the lower
(receiving) end is the “child” node. Each variable is conditionally independent of all predecessors
given its parents: if one conditionalizes the parent node and there is no arc connecting the child
node with any of the predecessors of the parent node (directly or through another parent node), the
conditional distribution of the child node does not change if the predecessors of the parent node
are conditionalized. The joint probability density f(x_1,x_2, . . . ,x_n) for a given node is therefore
written as

f (x1, x2, . . . , xn) =
n

∏
i=1

f
(

xi

∣∣∣xpa(i)

)
(1)

where pa(i) is the set of parent nodes of X_i. One possibility of BNs is to update the probability
distribution of child nodes given the new evidence at parent nodes. Two elements are needed to
quantify a BN: the marginal distribution for each node and a dependency model for each arc. In this
study, we used non-parametric margins, which were the same as the empirical distribution of data
collected for this study. The dependencies were represented by normal (Gaussian) copulas. Basically, a
copula is a joint distribution on the unit hypercube with uniform (0,1) margins. While there are many
types of copulas (we refer to Joe [39] for detailed descriptions), the assumption of a normal copula is a
limitation of the available computer code [38]—though most dependencies between variables used
here did not indicate tail dependence—a property that can be represented as either normal, Frank,
or Plackett copulas. A goodness-of-fit test for copulas proposed by Genest et al. [40] indicates that
several copula types are, on average, similarly suitable for the analysis (Frank, Plackett, t, Gumbel,
Gaussian), while others much less (Clayton and Joe copulas). A normal copula was parameterized
using Spearman’s rank correlation coefficient; hence, in all cases, the results refer to this measure of
correlation. For the detailed procedure of obtaining conditional probabilities from a non-parametric
continuous BN with a normal copula, we followed the procedure of Hanea et al. [37]. The algorithms
from that study were implemented in the Uninet software used to build our model.

The configuration of nodes and arcs is researcher dependent. Yet a good BN incorporates existing
knowledge of the process in question, in this case the factors influencing the cliff erosion and the
physical processes in action. For this study, a total of 41 variables were tested while preparing the
BN. The full list of variables and their descriptions is available in the SI1 file. Five erosion indicators
(Section 2.3) and two further geomorphological indicators, namely beach width (i.e., between shoreline
and cliff foot) and cliff slope (i.e., above cliff foot), were used as variables. The following rules were
used to design the BN model in this study:

1. Cliff erosion indicators were connected with each other, starting from the shoreline retreat
indicator and moving toward the cliff top.

2. In every case, the cliff erosion indicator was used as the first parent node when other parent
nodes were added.

3. Meteorological, hydrological, and morphological variables were added starting from the shoreline
retreat (Shore) node and moving toward the cliff top.
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4. Each variable was connected only to one node containing a cliff erosion indicator.
5. Meteorological and hydrological variables were not given any parent nodes and were not

connected with each other.
6. The first meteorological or hydrological variable to be connected with a cliff erosion indictor was

the variable with the highest unconditional correlation within the model. The unconditional
correlation matrix is shown in Supplementary Information 2.

7. Further meteorological or hydrological variables were selected based on the conditional
correlation with cliff erosion indicators.

8. Only parent nodes with (conditional) correlations higher than 0.1 were included in the model,
except for the parents of cliff top retreat (Top), where only the correlation with the cliff volume
balance (Cliff) exceeded this threshold.

The meteorological and hydrological factors, such as significant wave height, wave direction,
mean wave period, peak wave period, water level, wind speed, temperature, and precipitation, were
used in several configurations where applicable: mean (total), maximum (minimum) values between
measurement campaigns, mean value during storm surges, and the 95th (5th) percentile during
the period between measurement campaigns. Synthetic indicators of storm conditions were also
investigated, including storm energy [41], accumulated excess energy [42], and wave power [43]. For
the purposes of this study, a storm surge was defined as a water level of at least 0.45 m above mean
sea level (545 cm Normal Null); this value was selected on the basis of (unconditional) correlations
between erosion and hydrological variables. Moreover, if after a storm, the water level fell below this
level for less than 6 h before the next storm, the whole series was considered to be one storm surge.
The value of the upper and lower percentile in some indicators was similarly selected to maximize
(unconditional) correlations across multiple variables.

3. Results

3.1. Hydrological Conditions during the Period of Study

Many storms reached the coast during the measurement period. Using the definition of storm
surge described in Section 2.4 (based on sea levels of at least 0.45 m above mean sea level), a total of 61
storms affected the cliffs in Bansin, compared to 43 in Międzyzdroje and 62 in Wicie. The distribution
of surges was highly uneven, as shown in Figure 3. The most intense period lasted from late November
2016 to mid-January 2017. Around 10 surges were distinguished during that period, with water levels
exceeding 1.4 m above average at all locations on 4–5 January 2017. This water level corresponded to
an event with a return period of 15–20 years [44]. The maximum water level of 1.55 m was observed
at the Koserow tide gauge close to the Bansin cliffs. Conversely, the waves reached their maximum
height throughout late 2016, culminating on 7 December 2016.
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Figure 3. Water levels, significant wave height, and timing of the LiDAR measurement campaigns at
(a) Bansin, (b) Międzyzdroje, and (c) Wicie. Water levels obtained from the tide gauge measurements,
and wave heights obtained from the WAM model.
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Another period of stormy weather lasted from mid-October 2017 to early January 2018, during
which around 20 surges affected the coast. However, neither the water levels nor the wave heights
were as extreme as those during the 2016–2017 storm season. The most intense storm in the 2017–2018
storm season occurred around 29–30 October 2017 during which the water levels slightly exceeded
1 m above mean in all study areas. Considering the stricter definition of storm surge presented by
Wiśniewski and Wolski [44], i.e., the exceedance of water levels of 0.6 m above mean, the first half
of the study period had three times more storms than the long-term average of about four per year,
including a very unusual occurrence of a storm surge in June; the second half of the study period was
close to an average year.

3.2. Descriptive Analysis of Cliff Erosion

During the monitoring period, the sediment budget was definitely negative with a total loss of
49,330 m3. Erosion was most significant on the cliffs (over 58,000 m3), while a positive budget was
observed on the beaches, with a value slightly exceeding 9000 m3. This positive balance shows that
not all of the cliffs’ material was swept into the sea, but some of it remained on the beaches.

Erosion and sedimentation were unevenly distributed in time and space (Figure 4). At the
beginning of the 2016–2017 storm season, erosion was principally visible on the beach (over 80% of
total erosion volume in Bansin and Międzyzdroje). As the successive lowering of beach proceeded,
the proportions changed, and the cliff erosion started to dominate, reaching over 85% of the total
erosion volume. Due to the very narrow beach, the Wicie area suffered cliff-dominated erosion of more
than 90% of the total loss in this coast section. In fact, the sediment budget was obviously negative
both for the beach and cliff during the winter season. The maximum negative volume of eroded
material measured between the third and fourth topographic campaigns was also the highest during
the monitoring period. Erosion volume on the beach varied at different test sites, reaching from 627 to
2191 and 2566 m3 for Międzyzdroje, Bansin, and Wicie beaches, respectively. However, the first group
of severe storms affected the cliff face much stronger than the beach, exceeding the maximum volumes
of 6000, 12,000, and 18,000 m3 for Międzyzdroje, Bansin, and Wicie cliffs, respectively. Notwithstanding
the clear erosion dominance across the whole study area during the 2016–2017 storm season, the retreat
of the cliff top was relatively small compared to changes of the 1 m contour line and the cliff base
line. While the cliff top retreated by a maximum of 11 m in Wicie, the average change on all areas was
less than 1 m, and the median was only 0.03 m. The maximum changes of shoreline and cliff base
lines were similar, reaching around 11 m. However, the average change of shoreline and cliff base
lines of 2.5 and 1.3 m, respectively, as well as medians of 1.7 and 0.15 m, respectively, suggested more
even distribution.

The period between storm seasons contained higher variability in both the time and space
distributions, even though the total volumes were much lower. Furthermore, the compilation of the
next five surveys revealed both accumulation and erosional patterns with a rather modest positive
overall sediment budget (1800 m3). Before the 2017 winter season approached, the dominant processes
were much weaker, but cliff erosion still occurred along with the overall recovery of beach height and
length. The volume values between surveys fluctuated from –2870 to 9280 m3 and –3520 to 3683 m3,
respectively, for beach and cliff. However, the negative values for the beach and the positive for the
cliffs were a consequence of landslide processes that pushed the cliff base line in the seaward direction
rather than significant erosion or deposition episodes.

The second period of stormy weather as well as the following spring season (2017–2018) revealed
strong similarities to the corresponding earlier periods. This observation was supported by a
comparison of data from the last four topographic surveys. Erosion was still principally visible
on the cliffs, though the water levels and wave heights were not as extreme as those during the
2016–2017 storm season. The much weaker waves were not able to clean all the debris, and in some
of the investigated areas, the cliff base line migrated seawards, and the volume values presented an
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inverse pattern to what was observed during the first storm season. The after-storm period was again
characterized by beach recovery processes.

 
Figure 4. Distribution of sediment changes in time (between LiDAR campaigns) and space (different
test sites).

3.3. Statistical Analysis of Cliff Erosion

The statistical analysis was performed using the BN presented in Figure 5. The final model,
constructed following the procedure explained in Section 2.4., included five cliff erosion indicators
explained by two morphological factors, eleven hydrological factors, and two meteorological
factors. The morphological factors were additionally explained by two hydrological factors and
one meteorological factor.

14



Remote Sens. 2019, 11, 843

Figure 5. Proposed Bayesian network for cliff coast erosion. The ordering of parent variables is
clockwise, starting from the leftmost node. The numbers below the histograms indicate the average
and standard deviation, and the numbers on the arcs are Spearman’s (conditional) rank correlations.
See the SI1 file for full explanations of variables. The letter “P” before the name of some variables
indicates that the values are for the preceding period, rather than for the period during which the
erosion occurred.

The shoreline is the most dynamic component of the coastline; therefore, its changes (Shore)
have the highest number of explanatory variables. The highest correlation was observed with the
95th percentile of wind speed (WindSpeed_95), which gave a slightly higher correlation than the
wave height indicators. A likely explanation for this relationship is that wind is more dynamic than
offshore waves containing significant inertia and hence is a better predictor of the small wind-driven
waves that contribute to shoreline retreat. The second factor influencing shoreline retreat was the
width of the beach (Width) before the occurrence of erosion. Wider beaches have more material to be
eroded, resulting in larger shoreline retreat. The beach width was influenced by both the maximum
wave height (P_WaveHeight_Max), which resulted in shorter beaches, and the average temperature
(P_Temp_Avg), which is an indicator of the time of the year, as beaches tend to be shorter during the
autumn and winter storm season than during the warmer spring or summer. Other factors contributing
to shoreline retreat were the 95th percentile of water levels (WaterLevel_95), average wave direction
during storm surges (WaveDirect_Storm), and average wave peak period (WavePeakPer_Avg), all of
which resulted in higher and longer waves attacking the shoreline, resulting in erosion.

Beach volume balance (Beach) was highly correlated (0.72) with shoreline retreat, which incorporated
the influence of several factors. The average water level during storms (WaterLevel_Storm) further
contributed to beach erosion, as higher baseline sea levels allowed waves to reach further onto the beach,
while the 95th percentile of significant wave height (WaveHeight_95) indicated the importance of high
waves in beach erosion.

Cliff foot retreat (Foot) showed a relatively low correlation (0.24) with beach volume balance, as
more complex mechanisms were observed: material from cliff erosion could be deposited on the beach,
which would result in a weak dependency between beach and cliff erosion. However, some of the
waves eroding the beach still cut into the cliff. Specifically, waves that were both particularly high and
long contributed to cliff foot retreat, as revealed by the wave power (WavePower_95) indicator, which
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was proportional to the product of significant wave height and the mean wave period. Additionally,
the cliff was more prone to erosion if more vertical than inclined, as shown by the cliff slope (Slope)
variable. The cliff slope showed the highest correlation with the average mean wave period in the
preceding period (P_WaveMeanPer_Avg), where stormy periods resulted in lower cliff slopes due
to erosion.

The cliff volume balance (Cliff) depended primarily on waves undercutting the cliff, resulting
in the eventual collapse of the cliff. Erosion was further increased by very high waves, as shown
by the accumulated excess energy (Storm_AEE) indicator. The accumulated excess energy indicator
represented the energy of waves above a 2 m threshold (including sea level), which was close to
the average elevation of cliff foots in the study area; hence, this indicator counted only the waves
that actually eroded the cliff. Two other variables correlated with the cliff volume balance were the
maximum mean wave period (WaveMeanPer_Max), which indicated the occurrence of very long
waves, and the maximum water level (WaterLevel_Max), as the high baseline sea level increased the
number of waves that could reach the cliff.

Finally, erosion of the cliff could also result in retreat of the cliff top (Top). This erosion indicator
was the least dynamic and depended mostly on factors already included in previous erosion indicators.
Some correlation existed with the total precipitation recorded during storms (Prec_Storm), as rainfall
could weaken the structure of the cliff, making it more susceptible to collapse. Other factors showed
only a small conditional correlation; the largest was for the maximum wave height (WaveHeight_Max),
which indicated the occurrence of extreme waves having the biggest impact on the cliff.

The model was validated by analyzing the correlation between predicted and observed changes
in the variables of interest (Table 2). This was carried out for different choices of input sample, thus
analyzing how transferable is the model between locations. The small sample size resulted in a
non-negligible variation of results between different model runs; therefore, the results shown are
averages of 100 model runs per each variant of location or sample source. A split-sample validation
(using half of the data as input sample, and the other half to run the model) showed only marginally
lower performance than using the same data for both purposes. Of the three study sites, data from
the Bansin cliff is the most transferable. For individual variables, the highest correlation between
modeled and observed data is for beach volume balance, followed by shoreline retreat and beach
width (correlations of 0.4-0.6). Correlations for cliff foot and volume balance are in the 0.3–0.4 range,
and lower for the cliff top, which was the least dynamic part of the cliff in the timeframe of the study.

Table 2. Validation results for variables of interest by study area and source of sample for the model.
Values indicate Spearman’s rank correlation.

Study Area Source of Data
Variable

Shore Beach Foot Cliff Top Width Slope

All

All 0.50 0.60 0.36 0.31 0.19 0.40 0.24

All (split-sample) 0.48 0.59 0.35 0.30 0.18 0.37 0.24

Bansin 0.50 0.59 0.34 0.30 0.17 0.33 0.23

Międzyzdroje 0.49 0.62 0.34 0.25 0.18 0.36 −0.11

Wicie 0.47 0.59 0.34 0.31 0.17 0.37 0.13

Bansin
All 0.60 0.74 0.32 0.25 0.01 0.26 0.19

Międzyzdroje +
Wicie 0.59 0.71 0.32 0.19 0.01 0.20 0.19

Międzyzdroje
All 0.41 0.29 0.46 0.10 −0.16 0.42 −0.02

Bansin + Wicie 0.41 0.28 0.46 0.07 −0.16 0.40 −0.02

Wicie
All 0.50 0.72 0.22 0.50 0.45 0.15 0.01

Bansin +
Międzyzdroje 0.47 0.70 0.26 0.47 0.31 0.12 0.02
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4. Discussion

The tracking of cliff changes requires very detailed topographic data to be acquired repeatedly
in time, not only for revealing patterns of coastal behavior [18,45] but also for providing better
understanding of the relations between processes and indicators. As the comparison of two datasets
provided only a cumulative result for coastal analysis [15,16], multiple measurements enabled
the analysis of both isolated events and storm series on erosion, as well as the processes for
cliff modifications.

In this study, we demonstrated that changes to coastal cliffs are very complex, and physical
processes that influenced both beach and cliff may be responsible for erosion processes. Our results
confirmed the impact of sea activity as well as enabled evaluation of the effects of unfavorable weather
conditions to coastal cliffs [18,24]. In fact, the cliff coast develops as a result of numerous overlapping
processes. While storm surges undercut and destabilize cliff faces [46], waves are mainly responsible
for temporal shoreline changes with correlation to temperature, which acts as a season indicator.
Consequently, the beach is successively eroded and lowered, resulting in the occurrence of favorable
hydrometeorological conditions for cliff erosion. These conditions are not directly linked to the highest
waves, but to longest waves during maximum water levels. While high-magnitude events advance
cliff face erosion, when these events weaken, part of the transported debris is lost, which starts the
process of beach recovery [47,48]. Finally, the most powerful events were not able to directly influence
the cliff top line. As presented by Kostrzewski et al. [24], changes of the cliff top line are linked with
precipitation factors, especially during storm events.

In this study, as suggested by Andrews et al. [27], numerous topographic “snapshots” realized
more than several times during a year were analyzed with increasingly popular Bayesian networks.
This analysis enabled an understanding of the complex changes of coastal systems from the event
scale to seasonal variations. The BN model presented here is the first BN application for analyzing
short-term cliff erosion and therefore is not comparable with the few existing models due to the
different spatial or temporal scales and model designs. Some similarities could be found; however, as
certain common factors were identified to contribute to erosion, such as the cliff/beach slope, sea level,
and wave height. On the other hand, recurring variables were not included in this study, such as the
tidal range and geology/geomorphology of the coast. Tides have negligible amplitude along the coast
in question. The qualitative properties of the cliffs were not included due to the similarity of the study
sites. Moreover, inclusion of the geomorphology would necessitate the use of a discrete or hybrid BN,
which would require a very different model set up in the context of our relatively small sample size.

In this study, the model was used for data analysis without making predictions. The inclusion
of prediction capability in our model would require validation based on another cliff erosion
dataset. For instance, the annual cliff top erosion since 1985 for multiple sections of the Wolin Island
cliffs [24] could be used for this purpose. However, such an analysis is limited by the availability
of hydrometeorological data. Existing reanalyses (ERA5, ERA-Interim) have much lower resolution
than the WAM model used here; therefore, the wave conditions indicated in those reanalyses differ
substantially from those in WAM: they show much bigger wave heights. Moreover, tests with an
operational BN model have shown that such models are too sensitive, given the amount of data
available. Therefore, more LiDAR scanning campaigns performed would be needed to improve the
performance of the model, especially for the less dynamic upper parts of the cliff. The model than could
be reworked using ERA5 as the input hydrometeorological dataset, which planned to be extended
back to 1950 [32]. Moreover, the assumption of a normal copula for modeling the dependencies
would need to be validated before the model could be used for prediction [49], and the graph would
need to be further investigated to better represent the joint distribution [50]. The SI1 file presents an
example of a modified BN with many additional arcs between the hydrometeorological variables, as
those are the most highly correlated, and such connections are relevant for properly representing the
joint distribution.

17



Remote Sens. 2019, 11, 843

5. Conclusions

1. Our study demonstrates the advantages of using Bayesian network for analysis of surface
morphological changes on cliff coasts even on relatively short analyzed shore segments. Despite
the site-specific geomorphological settings for different test areas, the implementation of the
proposed Bayesian network model enabled the determination of relationships between the
erosion rates and selected factors. The proposed model explained the general behavior of the cliff
coast with respect to different hydrometeorological conditions, indicating variables most relevant
at each segment along the profile. Validation of the model showed good performance along the
beach and cliff foot, but weaker in predicting cliff mass balance or cliff top recession.

2. Our study proves that high temporal resolution in TLS surveys enables the analysis of correlations
between the influence of several factors (wave height, length and period, water level, storm
energy, precipitation, etc.) and the geomorphological response of coast during isolated storm
events, as well as with cumulative effects for season-long analysis. In general, a presentation of
short and mid-term analyses expands possibilities in coastal morphological studies. Although
we have seen a rapid increase of TLS usage in recent years, most of these have focused on a small
quantity of realized surveys or long-term analysis.

3. The automatic extraction of all geomorphological indicators from DEMs enabled reproducible
and comparable cliff recession analysis. However, caution should be taken when interpreting the
beach recovery, because some erosion and deposition processes may be masked by an automatic
delineation of the cliff base line.
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Cham, Switzerland, 2017; pp. 87–106.
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prowadzenia działań asymetrycznych. Zeszyty Naukowe Akad. Marynarki Wojennej 2007, 48, 65–82.
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Abstract: High spatial and temporal resolution satellite remote sensing estimates are the silver
bullet for monitoring of coastal marine areas globally. From 2000, when the first commercial satellite
platforms appeared, offering high spatial resolution data, the mapping of coastal habitats and the
extraction of bathymetric information have been possible at local scales. Since then, several platforms
have offered such data, although not at high temporal resolution, making the selection of suitable
images challenging, especially in areas with high cloud coverage. PlanetScope CubeSats appear to
cover this gap by providing their relevant imagery. The current study is the first that examines the
suitability of them for the calculation of the Satellite-derived Bathymetry. The availability of daily
data allows the selection of the most qualitatively suitable images within the desired timeframe.
The application of an empirical method of spaceborne bathymetry estimation provides promising
results, with depth errors that fit to the requirements of the International Hydrographic Organization
at the Category Zone of Confidence for the inclusion of these data in navigation maps. While this is
a pilot study in a small area, more studies in areas with diverse water types are required for solid
conclusions on the requirements and limitations of such approaches in coastal bathymetry estimations.

Keywords: satellite-derived bathymetry; hydrography; CubeSats; hypertemporal; zones of confidence;
PlanetScope

1. Introduction

Bathymetry is the center of several important biogeophysical processes such as primary production
and the development of marine forests and seagrass meadows—influenced by the exponential decrease
of light with depth. The spatial variation can also define the topographic properties of the studied
seascape, e.g., slope, aspect, rugosity, terrain roughness, and the bathymetric position index [1,2].
The importance of bathymetry as a product and its use in nautical charts [3] under several categories
(Zones of Confidence—ZOC) is high in areas of maritime navigation. Traditionally, bathymetry has
been estimated by the implementation of hydroacoustic tools and methods like the Single-Beam
(SBES) and Multi-Beam Echo Sounders (MBES), Airborne Lidar Bathymetry (ALB), and LIDAR
devices, installed on vessels following specially designed sailing lines with a specific geometry [4].
These methods, and especially the MBES and ALB, can provide highly accurate information in multiple
scales. However, depending on the extent of the project area, they require a large amount of effort
and are costly [5] when compared with newly adopted approaches such as the Satellite-derived
bathymetry (SDB).
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During the last four decades, many SDB-related studies have emphasized the potential utilization
of satellite remote sensing sensors for bathymetric calculations in clear shallow waters in a plethora of
spatiotemporal resolutions: From Lyzenga [6,7] in 1978 and 1981 using the first Earth Observation
satellite, the optical Landsat Multispectral Scanner (spatial resolution of about 79 m and temporal one
of 18 days) to 1983 and the implementation of the first spaceborne synthetic aperture radar satellite,
SEASAT (25-m spatial resolution) [8]; and from an inversion of spaceborne altimetry data from Geosat
and the ERS-1 (12-km spatial resolution) in 1997 [9] to a global 500-m bathymetry map utilizing
Cryosat-2 and Jason-1 data in 2014 [10]. Analytical, semi-analytical and empirical methods have been
developed for the estimation of bathymetry up to 30-m depth (Table 1 at reference [1]). The analytical
and semi-analytical methods are based on the physics of light transmission in water using different
parameters of the atmospheric, water surface, water column, and bottom layers; such parameterization
renders these methods more complicated and of greater computational demand to retrieve bathymetry
data, but also of higher accuracy than the empirical methods [1]. Lyzenga showed that bathymetry can
be estimated over clear shallow water using satellite remote sensing data with a multi-band log linear
algorithm. Since then, this method has been utilized in various approaches or with small modifications
to derive bathymetry using different spaceborne data [11–15]. Depending on the application and
the scale of data needs, high spatial resolution data have become crucial to characterize seascape
morphology at local scales, for use in spatial ecology, maritime spatial planning, and navigation. In the
last ten years, the advents in remote sensing technology have given birth to satellites with image
acquisitions of higher frequency and lower pixel size, e.g., Landsat 8 (30-m and 16 days, Sentinel-2
(10-m and 5 days). The exemplar of the two latter satellite missions—owing to their open, free,
and public data access policy—has allowed new scientific developments and operational applications
in coastal SDB. In parallel, the Digital Globe’s commercial constellation of WorldView and Quickbird
satellites has been also offering sub-meter spatial resolution and revisit times of a single day, yet at
a high and elusive cost for many institutions.

The majority of the available satellite platforms provide remotely sensed data at an either
infrequent temporal resolution or expensive data provision. This gap starts to be filled in 2013 by a
new company bridging the gap between the high spatial and high temporal resolution of satellite
remote sensing data. Planet Labs, Inc. (http://planet.com) has successfully built and launched 281
CubeSats since 2013 at various phases. Now (2019), it has more than 148 satellites in sun-synchronous
orbit which image nearly all off the global land surface and coastal marine surfaces at 3–5-m resolution
daily. As such they provide near real-time imagery to the private industry, academic domain, and
governmental organizations. The satellites are the so-called CubeSats 3U—about the size of a wine
box (10 10 30 cm) carrying a four-band multispectral camera and power/downlinking equipment.
Having small size and being built at lower costs, the CubeSats have the potential to overcome tradeoffς
among high spatial and temporal resolution because of the multi-satellite constellation approach.
This is linked to the mass production of the hardware and low launch costs using various platforms,
driving to affordable solutions for commercial satellite companies as well as non-profit and research
institutes. A drawback related to the image quality is that the multispectral imagery is acquired using
inexpensive sensors at different batch productions with variable radiometric quality, consistency, and
signal-to-noise ratio in comparison to the space agency-funded missions (Landsat and Sentinel series)
and the commercial platforms (e.g., Marxan Technologies and WorldView satellites) [16]. So far, the
CubeSat have limited use in the natural environment mainly due to image quality related to the user
needs and the among satellites cross-sensor calibration approaches. In the seascape community, even
if the constellation has great potential in transforming coastal remote sensing, few studies have come
out so far [17,18].

The objective of the current study is the first utilization of CubeSat imagery to calculate
Satellite-derived Bathymetry for a selected site in Crete, Greece, using a plethora of single images from
the same month. Implementing the selected images, we apply the empirical method by Lyzenga [9],
which requires only in-situ depth soundings. Based on the best fitted training model, we proceed
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by applying low pass filters for the enhancement of radiometric anomalies at neighboring pixels,
and the calculation of bathymetry for the depth zones according to the International Hydrographic
Organization (IHO). The latter approach provides insights into the suitability of the CubeSats for
spaceborne bathymetry and of the results to the requirements of the IHO for the inclusion of such
products in the production line of navigation charts.

2. Materials and Methods

2.1. Study Site and Insitu Data

Obros Gyalos is a small protected cove (Figure 1) located at the prefecture of Chania in the island
of Crete; it lacks a proximity to rivers and anthropogenic activities. The cove has been selected for
the creation of a SCUBA diving park of Crete due to its unique seascape morphology. There was
a detailed bathymetric survey among the activities for its establishment during summer of 2017 [19].
In total, 9954 bathymetric points have been collected; these have been split into two parts for calibration
and validation. Prior to the random spatial split using the “Subset features” tool in ArcGIS 10.5,
which randomly splits the dataset into two parts based on percentages, an aggregation of the in-situ
data has been performed to match the spatial resolution of the satellite data (3-m). Points have been
converted to 3-m pixels using the MEAN function (the mean of the attributes of all the points within
the cell) of the corresponding tool “Point to Raster” in ArcGIS 10.5. After that, the resulting raster
dataset has been converted into points, producing the final dataset of 4756 points, split into 2854 points
for training and 1902 points for validation.

Figure 1. Obros Gyalos study site at Apokoronas area; with red dots the collected in-situ data using
a single beam echosounder.
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2.2. Satellite Remote Sensing Data

Five PlanetScope images at the level 3B were used in the current research (Figure 2, Table 1).
Before the application of the empirical bathymetric models, all the images had been cropped to the
defined study area. Images have been obtained for free under the Planet Education and Research
program [20]. PlanetScope level 3B image is an orthorectified Ortho Scene Product, while the pixel
value is scaled to Top-of-Atmosphere (TOA) radiance (at-sensor); a surface reflectance (SR) product
is also available, reducing the need for atmospherically correcting the orthorectified PlanetScope
images, projected to a Universal Transverse Mercator (UTM) cartographic projection [21]. The use
of five PlanetScope images was necessary as a control for variations in the radiometric quality of
PlanetScope images, and in the atmospheric and water surface conditions (sunglint, wave formation).
While signal-to-noise ratio defines the quality of an image band, the current distribution of the
PlanetScope CubeSats lacks this information in the metadata, thus we are not able to evaluate the
quality of each selected image based on this metric. A multi-image assessment approach limits
the chance factor in the conclusions regarding the performance of PlanetScope images—due to the
radiometric quality and the atmospheric/water surface conditions of a single image. From the satellite
images, the spectral bands blue (455–515 nm), green (500–590 nm), and red (590–670 nm) have been
used for the regressions, while the near-infrared (780–860 nm) has been used for masking the land.

Figure 2. The selected daily images of the PlanetScope. All panels (A–E) share scale and north arrow.
All maps share the same grid as of panel D.
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Table 1. The PlanetScope CubeSat images used in the analysis.

Scene ID Date Time (UTC) Sun Azimuth Sun Elevation

20170706_082033_103e_3B_AnalyticMS_SR 6 July 2017 8:20 106.24 59.69
20170711_082041_1012_3B_AnalyticMS_SR 11 July 2017 8:20 107.14 59.27
20170720_082118_101d_3B_AnalyticMS_SR 20 July 2017 8:21 109.4 58.37
20170725_082251_1011_3B_AnalyticMS_SR 25 July 2017 8:22 111.02 57.78
20170730_082318_102e_3B_AnalyticMS_SR 30 July 2017 8:23 112.69 57.17

2.3. Empirical Satellite-Derived Bathymetry (SDB)

Satellite-derived Bathymetry started during the 1970s with empirical methods that used spectral
bands at the visible wavelength; blue, green, and red have been widely used as the independent
variables in a multiple regression approach, and the in-situ data, the depth soundings with known
depths, as the dependent variables. Lyzenga [9] (hereafter Lyzenga85) was the first that developed
the equation of the estimation of bathymetry through the aforementioned approach assuming that
the relationship between the log-transformed bands and known depth via multiple regression is
linear. The coefficients of the regression are applied to the satellite data for the calculation of the
bathymetry [19]. For the five images, multiple linear regressions, using the package “car” of R [22],
have been performed for the calculation of the coefficients. Based on the lower value of the corrected
Akaike Information Criterion (AICc) [23,24] calculated by using the R package “AICcmodavg” [25],
the selected image has been further analyzed by applying a low pass filter of 3× 3 to reduce the potential
radiometric anomalies between pixels. Two regressions have been applied using the training data;
the first for the depth zone between 0–10 m and the second for the zone between 10–25 m; the respected
coefficients have been applied to the selected image and for each depth zone the metrics “coefficient of
determination (R2)”, “Standard Error (SEz)” and the “Root Mean Square Error (RMSEz)” have been
estimated using the validation points. The comparison of the RMSEz value with the Category Zone of
Confidence (CATZOC) values provides insights into the Zones of Confidence and the reliability of the
bathymetry product for implementation in navigation charts produced by hydrographic offices [15].

3. Results

The availability of the full archive of the PlanetScope imagery allows us the selection of suitable
images within the same month, setting two criteria: The absence of sunglint which poses an extra
processing step and eventually could introduce additional noise to the resulting deglinted images;
this could in turn reduce the suitability of the images due to the already known low signal-to-noise
ratio [18]; and the cloud free scenes avoiding cloud masking. Thus, the only difference between the
selected images is a slightly visible wavy water surface caused by local winds formed during the
morning of the day of acquisition. No sedimentation in the water column was observed, while the
bottom cover is mainly composed by two types, bright sandy bottom, and rocky formations (Figure 3).
Images have been selected with approximately five days interval. By applying the method described in
2.3 using the subset of training in-situ data (n = 2854) and based on the AICc values (Table 2), the image
of 11 July 2017 has been selected for further analysis.

The multiple regression results of the training, based on the coefficient of determination and the
standard error on the RAW (Surface reflectance) and the transformed (3 × 3 median low pass filter)
results are presented in Table 3, while the validation results in Figures 4 and 5, and the produced
bathymetric map after the combination of the two different results from the two predefined bathymetric
zones in Figure 6.
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Table 2. Comparison of AICc values calculated by the multiple linear regressions for the SDB estimation
of the in-situ data (training) and the log-transformed spectral bands (Blue-Green-Red) of the PlanetScope
imagery at full depth range (0–25 m), (Modnames =Model names, AICc = Corrected AIC, Delta_AICc
= delta AIC, AICcWt =weight of AICc, LL = Log-liklehood).

ID Modnames AICc Delta_AICc AICcWt LL R2

1 sdb.glm0706 12497.5 1128.5 8.584 × 10−246 −6243.7 0.84
2 sdb.glm0711 11368.9 0 1 −5679.4 0.89
4 sdb.glm0720 12143.5 774.6 6.203 × 10−169 −6066.7 0.86
5 sdb.glm0725 12989.2 1620.3 0 −6489.6 0.81
6 sdb.glm0730 12583.9 1214.9 1.51 × 10−264 −6286.9 0.84

Table 3. The results from the multiple regressions using the training data on the RGB spectral bands of
the image of 11 July 2017 in the depth zones 0–10 m and 10–25 m.

Regression Statistics RAW (0–10 m) 3 × 3 (0–10 m) RAW (10–24 m) 3 × 3 (10–24 m)

Multiple R 0.93 0.94 0.9 0.92
R Square 0.86 0.88 0.81 0.84
Adjusted R Square 0.86 0.88 0.81 0.84
Standard Error 0.72 0.66 1.63 1.48
Observations 702 702 2152 2152

 

Figure 3. The two seabed cover types in the project area; above: sandy soft bottom, below: carbonated
rocky surfaces partially covered by brown macroalgae.
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Figure 4. The validation plot for the depth zone of 0–10 m of in-situ depth points (x-axis) against
image-derived bathymetries (y-axis) implementing the Lyzenga85 model on the image of 11 July 2017.
3rd order polynomial equation has been applied.

 

Figure 5. The validation plot for the depth zone of 10–25 m of in-situ depth points (x-axis) against
image-derived bathymetries (y-axis) implementing the Lyzenga85 model on the image of 11 July 2017.
3rd order polynomial equation has been applied.
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Figure 6. The Satellite-derived bathymetry estimated by the combination of the two-depth zones on
the image of 11 July 2017.

4. Discussion

4.1. The CubeSats and the Performance of the Models

PlanetScope constellation is a unique Earth Observation fleet with daily revisit and almost
3-m pixel size, providing new insights into the observation and monitoring of nearly any place on
Earth; this allows for new endeavors in mapping, change detection, and monitoring of both land
and coastal zone areas. It is worth mentioning that this constellation has been based on CubeSats;
they have been built using inexpensive electronics meaning that they are not direct inter-comparable
as regards to the radiometric quality, consistency and signal-to-noise ratios of the commercial and
agency-funded satellites [26]. Data from the fleet have been already implemented for tracking
vegetation dynamics, hydrological applications, Digital Elevation Model creation, seabed cover and
coral reef mapping [17,18,27–29]. The results from the recent studies are promising, while global
projects like the Allen Coral Atlas—aiming at mapping the swallow (<15 m) global coral reefs using
solely PlanetScope imagery [30]—show the importance of the availability of high spatial and temporal
resolution satellite data for mapping and monitoring areas where persistent cloud cover is a barrier
either for the open access data from USGS Landsat and Copernicus Sentinel-2 or for the data coming
from the commercial satellite platforms; the latter have higher spatial resolution (<2 m) and better
signal-to-noise ratio, but the data flow is in sparse intervals, making a cloud or almost cloud-free image
a challenge.
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The limitations of the present study are method and technology-wise. First, our implemented
methodology incorporates an in-situ bathymetric dataset of 4726 points to both train and validate the
satellite-derived bathymetry model. This violates Tobler’s first law of geography—geographically
neighboring observations have a tendency to be alike the ones further apart—introducing a statistical
bias in our approach. Nevertheless, spatially independent field-based calibration and testing datasets
are sparse due to reasons of practical nature, i.e., the high acquisition cost of such datasets in situ.
Technology-wise, there are two main limitations that we could generalize for the majority of the
coastal aquatic scientific and operational developments and applications with Planet’s CubeSats:
(a) Radiometric differences between the different PlanetScope CubeSats; (b) low signal-to-noise ratio
for high-accuracy detection and mapping of the coastal benthos. We expect the present and near-future
deployments of new Planet satellite sensors featuring higher radiometric quality to overcome the
aforementioned technological limitations and improve the accuracy and efficiency of similar approaches.
The present study is the first one that tries to understand the performance of PlanetScope CubeSats in
the estimation of bathymetry in a mixed-bottom seascape using available in-situ data—collected for
different purposes; this is carried out by applying empirical-based statistical relationships between the
log-transformed, water-penetrating bands (most frequently at blue and green wavelengths but also
including the red wavelength) and acoustic-derived in-situ depth data.

Having access to the full archive of the imagery, we selected five images over July 2017, to account
for the effect of sea surface conditions that change due to waves and also for the radiometric consistency
of the different flocks, as the CubeSats have been released in varying time frameworks since 2013.
From the application of the Lyzenga85 empirical method in the five images and based on the AICc
values from the training models (Table 2), we selected and further employed the image with the lower
AICc value and the best R2 (Figure 2B). The visual examination of the selected image (Figure 2B) lacks
a wavy surface and visible noise in comparison to the other images that can possibly be caused by high
altitude haze and the older electronics that the first flocks have been made of. The application of a low
pass filter (3 × 3 median) to the surface reflectance imagery improves the results of the training of the
method (Table 3) as it smooths possible pixel anomalies. The bathymetric zonation of the multiple
regressions into two groups (0–10 m and 10–25 m) has been selected to understand the accuracies of
the SDB in relation to the requirements of the IHO in the inclusion of bathymetry data in navigation
maps and the corresponding ZOC that the depth accuracies fall into [3]. By splitting the analysis into
these two zones, coefficients from the multiple regressions are applied into the respective bathymetric
zones, while the final map is the unification of the results from the two zones.

4.2. Are PlanetScope Suitable for Data Inclusion in Navigation Maps?

The results from the application of the calculated coefficients are very promising for the value of
the PlanetScope imagery in estimating bathymetry and its subsequent integration in navigation charts
compliant with the IHO requirements and the fit of them into ZOCs. The results are also comparable
with the Copernicus Sentinel-2 based SDB from the same site, as has been shown by [16] using the
Google Earth Engine platform. For the Zone of 0–10 m (Figure 4), the estimated R2, using a 3rd order
polynomial equation, is 0.88, the SEz is 0.66 m, and the estimated RMSEz is 0.32 m while for the
zone 10 m–25 m R2 is 0.88 with SEz at 1.43, and RMSEz at 1.58 m. According to the IHO, the Zone
of Confidence A1 requires data in the zone 0–10 m with a depth accuracy of ± 0.6 m and a position
accuracy of ±5 m, while the zone A2 a depth accuracy of ±0.6 m and a position accuracy of ±20 m.
For Zone B, it requires for the same depth as in A2, an accuracy of ±1.2 m and a position accuracy
of ±50 m. For the depth zone 10–30 m, the ZOC A1 requires ±0.8 m, the ZOC A2 requires ±1.2 m
and the ZOC B requires ±1.6 m. The results from the current study suggest that the PlanetScope data
can fit into the ZOC A2 and possibly into the ZOC A1. This fit is also supported by the position
accuracy of the satellite images, according to the recent study of [31], which shows that the geolocation
performance of the PlanetScope’s Level 3A product is good and the absolute geolocation performance
is set by a max RMSEx = 5.18 m, RMSEy = 4.21 m and CE(90) = 9.93 m, respectively.
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While the current study includes only one site and is targeted at understanding the behavior of
the different selected PlanetScope CubeSat images from the same site covering one-month period,
more studies are required to robustly conclude for the suitability of the employed Earth Observation
data in the calculation of bathymetry. Studies that will include different satellites of very high-resolution
data and high signal-to-noise ratio with images from the same period (e.g., within the same month)
will allow a full benchmark on the radiometric quality of the PlanetScope data for the calculation
of SDB. Other approaches like the cloud-based one presented in [19] will allow the full scientific
and operational exploitation of the Planet archive for seabed mapping and monitoring without the
laborious analysis per image and the visual inspection of the “best image” for further processing and
analysis; this will be achieved through the utilization of multi-temporal (weekly, monthly, seasonal)
PlanetScope image composites, which will reduce technological and environmental issues, both intra
and inter-sensor, e.g., low signal-to-noise ratio, varying radiometric quality, atmospheric, water surface
and column, and seabed conditions.

There is an increasing need in the charting of shallow coastal waters across the globe at fine
scales that will allow the creation of new navigation maps, but also the update of old productions.
IHO has started to adopt the SDB approach and the IHO S-44 standards are currently under revision.
The revised one will be updated to include the ability to exploit new technologies for the update of
nautical charts when that is possible under the specifications required, as the use of traditional means,
like the hydroacoustics, in shallow uncharted waters is dangerous for the equipment and the per km2

charted area is much more costly in comparison to the SDB approach.

5. Conclusions

The present study is the first one that attempts to examine the performance of the PlanetScope
CubeSats in calculating Satellite-derived Bathymetry and explores whether the results fit into the
requirements of IHO for nautical maps of navigation. The availability of almost daily satellite images
in the archive allows the selection of the most suitable data based on cloud coverage, water surface
conditions, and intense visible sunglint—an asset of the high spatial and temporal satellite constellation.
The results from the applied empirical method with the intermediate preprocessing steps are promising
and show that it has great potential for coastal bathymetry estimation, especially in the shallow waters.
However, given that one site has been tested, more work is needed to understand the nature of
PlanetScope CubeSats in estimating SDB by including several sites distributed in different water bodies
that cover both case I and II waters and systematic collection of in-situ soundings that correspond to
each month. Also, the analysis of monthly and annual image composites, as these are provided by
Planet for commercial use, will support the elimination of issues related to the absence of cloud mask
information, and the low signal-to-noise ratios of the PlanetScope imagery. All in all, given that the
technology of CubeSats is improved (i.e., higher signal-to-noise ratios and more spectral bands in the
visible wavelengths), we expect, in the next decade, a boom of fleets that can be eventually exploited to
carry out scientific and operational mapping and monitoring of the coastal aquatic environment at
a fraction of the cost of “traditional” satellite platforms.
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Abstract: Coastal dunes provide the hinterland with natural protection from marine dynamics. The
specialized plant species that constitute dune vegetation communities are descriptive of the dune
evolution status, which in turn reveals the ongoing coastal dynamics. The aims of this paper were to
demonstrate the applicability of a low-cost unmanned aerial system for the classification of dune
vegetation, in order to determine the level of detail achievable for the identification of vegetation
communities and define the best-performing classification method for the dune environment according
to pixel-based and object-based approaches. These goals were pursued by studying the north-Adriatic
coastal dunes of Casal Borsetti (Ravenna, Italy). Four classification algorithms were applied to
three-band orthoimages (red, green, and near-infrared). All classification maps were validated
through ground truthing, and comparisons were performed for the three statistical methods, based
on the k coefficient and on correctly and incorrectly classified pixel proportions of two maps. All
classifications recognized the five vegetation classes considered, and high spatial resolution maps
were produced (0.15 m). For both pixel-based and object-based methods, the support vector machine
algorithm demonstrated a better accuracy for class recognition. The comparison revealed that an object
approach is the better technique, although the required level of detail determines the final decision.

Keywords: vegetation mapping; dunes; unmanned aerial system; pixel-based classification;
object-based classification

1. Introduction

Sand dunes are key environmental elements of coastal systems. They represent one of the few
natural barriers that can defend the inland territories from extreme high tides, storms, and tsunamis,
by absorbing the wave energy. Moreover, they have a significant role in the coastline dynamics, by
balancing the erosion and/or accretion phenomena [1]. Dunes also constitute unique habitats and
represent corridors that connect the diverse neighboring ecosystems [2]. However, over the last half
century, dune systems have undergone habitat loss, and the coastal dunes of Mediterranean areas are
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among the most vulnerable ecosystems as they are seriously threatened by urbanization and mass
tourism, particularly those of the north Adriatic region [3–6]. In a detailed study by Sytnik et al. [3],
they reported on the large modifications to the coastal ecosystem of the Casal Borsetti dunes (Ravenna,
Italy) study area over the last century. The majority of these modifications have directly affected the
local dune systems, while being aimed at the mitigation of erosion phenomena and development of
beach touristic infrastructures.

Human disturbance has had effects on the structure, composition, and function of plant
communities, which are sensitive indicators of the state of these environments [7,8]. In effect,
coastal sand dunes shift between states of activity and stability across the seasons and years [9,10].
Some dunes remain ‘stable’, perhaps for many decades or centuries, whereas others are ‘dynamic’, and
can maintain an equilibrium between cyclical mobility and stability [11]. Dunes can become active over
their entire surface, in particular in areas of present or past vegetation disturbance [12]. As reported
by Fabbri et al. [13] (and references therein), many factors can affect dune dynamics, including the
sand supply, dune/beach exchanges, beach topography and fetch effects, vegetation species and cover,
climate, marine meteorological conditions, and human impact.

Vegetated dunes are fixed and stable, while bare sand dunes are more prone to sand mobilization
and erosion. Indications of dune mobility are traditionally based on climatic variables, such as rainfall,
temperature, and evapotranspiration, although, except for anthropogenic factors, wind energy is the
only limiting factor for the vegetation cover [14].

Beach–dune systems include the dune, its vegetation cover and coastal geomorphology, and the
local dynamics (e.g., wind regime, beach typology, erosion/accumulation rate), and these continuously
interact with each other. Plant communities in the dune vegetation communities select and promote
their own preferred environmental conditions, which stabilizes the dunes [15]. The vegetation
communities and cover reflect the conservation state of the dunes and its analysis is used to study the
phases of dune evolution and to gather information about entire coastal systems [16–18].

Nowadays, data on dune topography, reflectance, and vegetation cover are usually achieved
through direct field sampling [19,20], photointerpretation of aerial and satellite ortho-imagery [21], light
detection and ranging (LiDAR) point cloud analysis [22,23], terrestrial laser-scanning surveys [24], and
ground differential global positioning system (GPS) measurements [25]. Furthermore, hyperspectral
and multispectral aerial and space-based data have been applied to detect different degrees of activity
and vegetation cover density [16]. The main limitations of these last systems are their high costs
for a high resolution and their insufficient availability during the periods of interest [26]. Moreover,
although these images provide useful information on global and regional scales, some processes need
multi-temporal observations at a local scale [27].

In recent years, sensors installed on unmanned aerial vehicles (UAVs) have offered many technical
and economic advantages for coastal sand dune monitoring [24,28]. To date, most studies have been
aimed at the evaluation of coastal systems, and of dunes in particular, using digital RGB (red, green,
blue) cameras to build accurate digital surface models with a high spatial resolution [29]. Instead, in
the present study, we investigated the use of a UAV equipped with a camera that acquired images at
red, green, and near-infrared wavelengths. Pixel-based and object-based approaches [11] were tested
and compared for the recognition of the vegetation communities that were growing along the coastal
dune system. The advantages and disadvantages of these methods were also investigated. Therefore,
the aims of this study were to (i) verify the applicability of multispectral data collected using a UAV
platform for the identification/discrimination of fragmented and interspersed coastal dune vegetation
communities and (ii) determine the best performing classification method between pixel-based and
object-based approaches for multispectral data in the case of disturbed dune vegetation communities.
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2. Materials and Methods

2.1. Study Area

The investigated dune is located near the small touristic village of Casal Borsetti (Ravenna, Italy;
Figure 1a). In light of the complexity, variability, and vulnerability of the small dune belt considered, a
detailed description of both the regional settings and the study area is required.

The territory surrounding the city of Ravenna has been strongly anthropized and industrialized,
and in the relevant natural areas, intensive agriculture and tourist facilities coexist [30]. Since the
1960s, the establishment of tourist infrastructures directly along the coastline of this area has resulted
in widespread dune damage and destruction. Where the dunes have not been completely flattened
to the ground, they have undergone huge fragmentation [4,31]. The natural coastal system has been
substituted with the new structures that are directly exposed to climate-change effects, such as a rise in
the level of the sea, sea storms, flooding events, and marine erosion [32]. As reported by Sytnik et al. [6],
the sector where the study area lies has shown the highest rates of coastal erosion of the last six decades.

Nowadays, all of the remaining dunes are included within the Po Delta Regional Park, as a
Special Protection Area (Directive 2009/147/EC “Birds”) and a Site of Community Importance (Directive
92/43/EEC “Habitat”). The Regional Park is also included in the UNESCO World Heritage list.

The dune investigated is 350 m long and 60 m wide. The mean dune elevation is 2.5 m above sea
level (a.s.l.), and the maximum elevation is 3.5 m a.s.l. (to the north of the site). It is one of the last
stretches of dunes with psammophytic vegetation, which is very important for the conservation of
coastal biodiversity [33,34].

Figure 1. (a) Study area: Casal Borsetti dune, Ravenna, Italy. (b) Unmanned aerial vehicle flight path.
The red squares correspond to the centers of acquisition (WGS84/ UTM zone 33N) (Image background:
Google Earth).

While limiting themselves to the vegetation, many authors have described the typical zonation for
the north Adriatic coastal dunes based on strips parallel to the coastline [35,36]. In agreement with the
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definitions of Directive 92/43/EEC “Habitat”, and in light of the recent publication of Merloni et al. [37],
from the sea going inland, the zonation consists of annual pioneer species, embryo dunes, white dunes,
Malcolmietalia grassland, grey dunes, shrubby plant communities, and coastal pine woods (Figure 2).

The annual pioneer species described as Salsolo kali–Cakiletum maritimae (EUNIS Code B1.12;
hereafter referred to as CA) grow close to the shoreline (within a few meters), and they aid in the
formation of the dunes where the organic matter brought by the sea accumulates. The main ephemeral
species are Cakile maritima, Salsola tragus, and Chamaesyce peplis [37,38]. Moving inland, the dunes
start to become semi-stable, and the embryo dune vegetation described as Agropyretum (Echinophoro
spinosae–Elymetum farcti; EUNIS Code B1.3; hereafter referred to as AG) includes psammophilous
perennial plants, such as Elytrigia juncea (=Agropyron junceum), Echinophora spinosa, and Calystegia
soldanella, and these capture the sand as it is moved by the winds, providing the vertical growth of
the dune. The white dune community is present in the inner areas where the dunes become more
stable, which is also described as Echinophoro spinosae–Ammophiletum australis (EUNIS Code B1.3;
hereafter referred to as AM). This habitat usually covers 50% to 60% of the total area, and represents a
semi-permanent stage, as the roots of Ammophila arenaria, Echinophora spinosa, and Eryngium maritimum
form dense felts that promote dune consolidation. Behind the white dunes, where salt winds, coastal
erosion, and burial by sand do not affect the vegetation, there are the grey dunes (Tortulo–Scabiosetum;
EUNIS Code B1.4; hereafter referred to as GD), which are colonized by perennial species, such as
Lomelosia argentea, Fumana procumbens, and Teucrium polium, and which have a significant carpet of
mosses and lichens (e.g., Tortula ruraliformis, Cladonia convoluta).

A complication with respect to the theoretical distribution so far described is seen here by
Malcolmietalia grassland (EUNIS Code B1.4; hereafter referred to as MG), which arises where trampling,
salty winds, and disturbance occur. This plant community is mixed with AG, AM, and GD, and it can
cover large surfaces [35]. The main diagnostic species are the annual plants Silene canescens and Vulpia
membranacea, which are typically found alongside allochthonous species, such as Ambrosia coronopifolia.

A rapid change occurs when moving further inland, where shrubby plant communities settle
into depressions where they replace the grey dune vegetation (EUNIS Code B1.63; hereafter referred
to as the J habitat), e.g., Juniperus communis and Phillyrea angustifolia. This narrow belt of shrub is in
continuity with the coastal pine woods (EUNIS Code B1.7; hereafter referred to as the P habitat), where
Pinus pinaster and Pinus pinea are the dominant species.

Along the Casal Borsetti dunes in particular, this vegetation succession is often fragmented,
with each becoming interspersed with the others; this has generated an atypical vegetation mosaic.
Consequently, five vegetation classes were established for the technical classification requirements here,
which represent the most significant evolutionary stages of these dunes. For graphical reasons, the
previously reported EUNIS Codes are henceforth substituted by the following vegetation community
abbreviations: “Bare sand and Cakiletum” (BSCA), “Agropyretum and Ammophyletum” (AGAM), GD,
MG, and “Coastal shrub and arboreal formations” (CSAF) (Figure 2).

The BSCA class represents the merging of bare sand areas and Cakiletum, where Cakiletum species
are always <5% of the entire coverage, even under conditions of naturalness and in the absence of
disturbance. Moreover, Cakiletum habitats are systematically swept during summer beach cleaning
operations, which destroys all of the growing plants.

Agropyretum has a relatively high presence, even if it also partly suffers from cleaning and
trampling activities. Due to these anthropic disturbances, its main species (i.e., Agropyron junceum)
grows into the next formation, the Ammophiletum. These two communities have thus been merged
into the "Perennial herbaceous vegetation of the embryonic and white dunes" class (i.e., AGAM).
Ammophyletum is not abundant, even if Ammophila arenaria grows luxuriantly in small areas. This union
is also justified from an ecological point of view, because these two represent the perennial herbaceous
vegetation that is typical of both embryonal and white dunes distributed along all Mediterranean
littoral areas (Ammophiletalia australis) [33].
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The GD is the third class considered. GD is found as a homogeneous strip that is almost totally
covered in mosses (Tortulo–Scabiosetum).

The MG vegetation species are widespread within different habitats, both for AGAM and GD,
and they tend to cover even large surfaces, because of both natural and anthropogenic disturbance.
Indeed, the MG settlement is mainly linked to the frequent passage of people, which creates erosion of
the perennial vegetation cover.

Finally, the J and P habitats have been merged into the CSAF, which mainly includes Pinus pinaster,
Juniperus communis, Eleagnus sp., Pyracantha coccinea, Tamarix gallica, and Quercus ilex. An example of a
Populus × canadensis tree (located in the northern area of the dunes) is also included in this class. This
tree is considered to be a naturalized neophytic species that mostly grows in sandy soils that are damp
for most of the year, such as riverbeds or around sandy quarries. However, it can sometimes also be
found in ‘back-dune’ environments, although it is not typical of this kind of environment.

Figure 2. Schematic representation of the typical vegetation zonation [34] and the five simplified
vegetation classes adopted in the present study after the in-situ botanical survey. For abbreviations, see
main text.

2.2. Data Acquisition and Analysis

This analysis of the vegetation communities was based on a three-band orthoimage obtained
through a photogrammetric pipeline from a dataset acquired using a UAV. The UAV platform used was
an ESAFLY A2500 hexacopter (SAL Engineering, Modena, Italy). It was equipped with a commercial
multispectral camera (Tetracam ADC Micro) that acquired images in the green, red, and near-infrared
(NIR) bands, centered respectively at 550, 650, and 800 nm. The camera had only one sensor (Aptina
CMOS; 6.55 mm × 4.92 mm; pixel size, 3.12 micron), which was screened with a filter array (Bayer RGB)
in a ‘checkerboard’ pattern [39]. Moreover, the lens on the multispectral camera had an optical low-pass
filter that stopped the blue band, but it did not have a filter to stop NIR. Through the combination of the
filter in the lens with the filter array, each pixel can capture only one band between the green, red, and
NIR bands, relating to its position in the checkerboard. For each pixel, it was possible to reconstruct
the values of the two missing bands by interpolation of the corresponding measured values in the
adjacent pixels [39]. The proprietary software PixelWrench2 (PW2) provided with the multispectral
camera was used to manage this operation.

As the camera was based on the rolling-shutter acquisition system with a total frame creation
time of a few milliseconds, the images were acquired with a drone translation speed of 4 m/s and
with a constant flight altitude of 80 m above ground level, giving a ground sample distance of 0.03 m.
These technical choices avoided blur-motion effects, thus avoiding subsequent problems in the image
processing. Furthermore, the UAV had a stabilization system that consisted of a gimbal stabilized with
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two brushless motors on two axes (i.e., roll, pitch), with mechanical and magnetic cardanic damping
and inertial reference with high speed, which allowed for stable framing [40].

The hexacopter was equipped with a single-frequency global navigation satellite system (GNSS)
receiver with a code solution. It was used for both the control and definition of the programmed
flight path (with longitudinal overlapping and side slap of 80%), and for the coordinate definition of
the multispectral chamber centers of acquisition (Figure 1b). These approximate camera positions
were used as estimated solutions for the reconstruction of the exterior image orientation in the
photogrammetric pipeline, using the approach based on the structure from motion algorithms [41].
Five ground control points (GCPs) were positioned on the ground (i.e., four targets plus the master
station), to optimize and increase the accuracy of the self-calibration process for an estimation of the
camera interior orientation parameters (i.e., focal length, main point, lens distortion parameters), for a
definition of the parameters of the external orientation, and also to obtain more accurate georeferencing.
The five targets were sufficient for the optimization process through the bundle adjustment algorithms.
Indeed, as recently published by Sanz-Ablanedo et al. [42], to reach a maximum level of relative
accuracy, assessed in terms of the root mean squared error/ground sample distance, 2.5 GCPs are
sufficient for every 100 images. In this case, the total number of images used was <100, and of these,
<30 images were aligned longitudinally and consecutively. The target coordinates were measured using
a geodetic dual-frequency GNSS receiver (Topcon GB500) in rapid-static mode. The International GPS
Service for Geodynamics permanent station of Medicina (Bologna, Italy) and the European Reference
for Quality Assured Breast Screening and Diagnostic Services permanent station of Porto Garibaldi
(Ferrara, Italy) were used to define the positions of the GCPs in the WGS84 system. The chosen
projection system is UTM 33N [43].

The data obtained from the survey were raster images (ground sample distance, 0.03 m) which
were composed of a single matrix of digital numbers (DN) and stored in a raw format. These files
were pre-processed in PW2 to reconstruct the information for the three bands, and exported as single
tri-band TIFF (Tagged Image File Format) images. The PW2 was calibrated to account for the actual
exposure conditions using a RAW image of the calibration tag, acquired under the same lighting
conditions as the studied images. This procedure does not convert the sensor output to reflectance [40],
and therefore, the subsequent analysis was based on the DN values. The tri-band TIFF images were
then processed using the photogrammetric pipeline implemented in Agisoft Photoscan Professional
(Agisoft LLC, St. Petersburg, Russia). In the first step, the approximate position and orientation
from the GNSS and inertial measurement unit of the drone were associated with each image. In
this way, a sparse point cloud model of the scene was created. Through this model, the external
orientation parameters of each individual frame were recalculated. A preliminary dense cloud model
was then created. The information relating to photogrammetric GCPs was then entered, with manual
collimation of each GCP identified for each individual image. The dense cloud model was linearly
transformed using seven similarity transformation parameters, which only compensated for linear
model misalignment. The next optimization phase then removed non-linear deformations of the
model and provided accurate geo-referencing based on the known GCP coordinates [24]. Through the
constraints defined by the GCPs by means of the bundle adjustment algorithm, this step allowed a
recalculation of the parameters of external and internal (self-calibration) orientation. The dense cloud
model was then recreated. The optimization was used to ensure correct scaling and geo-location, to
improve the camera interior and exterior parameters, and to correct for any systematic error and/or
block deformation. Successively, a polygon mash was generated based on the previously built dense
point cloud. Finally, the digital surface model and the orthoimage were generated with a resolution
of 0.15 m. The orthoimage produced maintained the three channels (i.e., green, red, NIR) that were
essential for the later vegetation analysis [43].

To perform the classification, the areas of interest of five vegetation classes were defined by both
direct botanical field surveys and photo-interpretation. The areas of interest surveyed in the field were
measured with dual-frequency GNSS instrumentation (Leica GPS1200) using the real-time kinematic
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(RTK) technique. The differential corrections were received through the ItalPoS Network service [44].
The ItalPos network provides a network-based (N)RTK system, and specifically, the real-time service is
based on the master-auxiliary approach, MAX [45]. The adopted cartographic reference system for all
of the data produced is WGS84-UTM33N.

Finally, to collect the ground truth control points for the map classification validation, another
NRTK survey (same equipment and procedure as described above) with botanical support was
conducted in-situ, with the identification of 300 points of defined vegetation classes (Figure 3). The
final accuracy of the NRTK coordinates was 6 cm to 8 cm in planimetry and 8 cm to 10 cm in altimetry.
These values are very acceptable considering that the size of the image cell was 15 cm × 15 cm.

Figure 3. Map of the ground truth points used to classify the validation of results. For abbreviations,
see main text.

2.3. Classification Methods

In this study, both pixel-based and object-based classification methods were applied to define the
dune vegetation communities. The pixel-based classifier considers the information for the spectral
signature of the individual pixels. In contrast, the object-based method classifies objects, i.e., groups
of pixels with relatively homogeneous properties, that are created in a preliminary phase known
as segmentation. These have intrinsic features, like information derived from the direct spectral
observation and geometric properties, and contextual features that describe the relationships between
multiple objects [46]. In both approaches, supervised classification algorithms were used. They
both required previous knowledge of the vegetation in the study area. Beyond the complicated real
field situation, the class selection was also driven by the technical feasibility of discrimination with
automatic methods.

The normalized difference vegetation index was extracted from the multi-band orthoimages
before the classification. The analysis started by applying the most used pixel and object classifiers, as
the maximum-likelihood (ML) and nearest-neighbor (NN) algorithms [47,48], respectively, using the
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same areas of interest. The pixel-based classifications were conducted using the ENVI software, and
the object classifications using the eCognition software.

The ML method assumes that pixels of each class belong to a multivariate normal distribution and
defines the probability density function for each class. Each pixel is assigned to the class that it has the
highest probability of being in [49]. Comparatively, the NN classifier uses spatial features to classify
the object, based on the closest training examples and on the class in which its neighbors have been
classified. The NN classification required a previous segmentation step. This phase was performed
using a multilevel segmentation approach, and in addition to the tri-bands orthoimage, the normalized
difference vegetation index and digital surface models were used as input layers. The multiresolution
segmentation algorithm was used to generate the image objects. Four levels of segmentation were
applied, which defined the color and shape parameters, with the scale parameter increased at each
level (Figure 4). The scale parameter was set to define the level of heterogeneity. Each level was
evaluated by photo-interpretation. The optimized level was generated by combining the object levels.
The optimized level comprised large segments in homogeneous areas and distinctively smaller image
objects that represented small-scale structures and heterogeneous regions [50,51]. The class sample
shapes were imported in the eCognition software to identify the objects that corresponded to the
areas of interest. Therefore, the sample level was created by chess-board segmentation. Finally, the
classification procedure was applied to image objects at the optimized level.

To create a comparable classification with pixel-based products, only the mean green, mean red,
and mean NIR features were used.

Figure 4. The eCognition process tree used for the segmentation and object classification steps.

To improve the comparison quality, the support vector machine (SVM) algorithm was applied
for both pixel-based and object-based classifiers. The SVM method seeks to determine the optimal
separating hyperplane between classes by focusing on the training cases (vector support) that are
placed at the edge of the class descriptors [52]. Training cases other than support vectors are discarded.
In this way, fewer training samples are effectively used. Therefore, a high classification accuracy is
achieved with small training sets [53]. The SVM used for classification has the advantages of solving
sparse sampling and nonlinear and global optimum problems, compared to other classifiers for satellite
imagery classification [54].

The implementation of SVM in the ENVI software based on the pairwise classification strategy is
a multiclass classification method that combines all of the comparisons for each pair of classes [55].
The SVM pixel (SVMPi) classification output represents the decision values of each pixel for each class,
which are used for the probability estimations. Among the available mathematical kernel functions,
the linear function was applied. For the penalty parameter field (Harris Geospatial solution, ENVI
5.2), the value of 100 was used, which represents a parameter that controls the trade-off between
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allowing training errors and forcing rigid margins. Based on the same theoretical approach, using
the eCognition software, the equal function and parameters were applied at the optimized level to
perform the corresponding object classification (SVMObj).

Once the classifications were performed, their accuracies were evaluated. The agreement between
each classification and ground truth was assessed, as represented by 300 control points.

The pixel-by-pixel comparison provided the confusion matrix with dimensions equal to the
number of classes, the overall accuracy, and the Kappa coefficient (K). For the object-based approach,
the classification result was exported in a raster format to carry out the comparison. The K compares
global accuracy with an expected global accuracy, taking into account random chance. K >0.80
represents strong agreement and K <0.40 represents poor agreement [56]. The user accuracy, producer
accuracy, and K-Conditional were also calculated from a single confusion matrix. The first provides
the probability that a random pixel extracted from among those belonging to class i in the reference
belongs to class i in the classification. The producer accuracy, instead, defines whether a randomly
chosen pixel among those belonging to class j in the classification also belongs to class j in the reference
data [57]. As for K, K-Conditional represents the agreement between the reference pixels and those
classified, as calculated for each class.

2.4. Statistical Classification Comparison

To determine the better performing classification method between pixel-based and object-based
classification, three tests were carried out: TEST 1, TEST 2, and TEST 3.

TEST 1 established the significance of the difference in the accuracy between two maps with
independent Kappa coefficients. Once establishing the null hypothesis, that the expected K values of
the two statistics considered for each comparison (1 = first algorithm; 2 = second algorithm) were the
same (i.e., no significant difference), the Student’s t was applied [47,58], as in Equation (1):

z =
K1 −K2√
σ2

1 + σ
2
2

, z ∼ N(0, 1) (1)

where σ2
1 and σ2

2 represent the estimated variances of the derived K coefficients.
To calculate the required variance values associated with the K and K-Conditional coefficients, a

Fortran program was implemented using the σ formula proposed by Rossiter (2004) [59]. Considering
that z follows a normal normalized distribution and the significance level α = 0.10, with a consequently
confidence limit of 1.65, the hypothesis was accepted for the test statistic z of |z| ≤1.65.

TEST 2 evaluated the significance of the difference between two independent proportions [60],
using Equation (2), which takes into account the correction for continuity [58]:
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where x1 and x2 are the numbers of correctly allocated cases in two samples of size n1 and n2,
respectively, and p = (x1 + x2)/(n1 + n2). The statistical significance of the difference between two
classification maps is verified through z, which follows a normal normalized distribution, in the same
way as with the previous comparison of K.

TEST 3 was based on McNemar’s test [60], which is suitable for comparisons of related samples.
Equation (3) takes into account the correction for continuity [61]:

X2
1 =

(∣∣∣ f12 − f21
∣∣∣− 1

)2
f12 + f21

(3)
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This non-parametric test uses a confusion matrix, of 2 × 2 dimensions, in which fij indicates the
frequency of sites lying in confusion element i, j, as reported in the example in Table 1.

Table 1. The matrix elements used in Equation (3) [61].

Classification 2

Correct Not Correct

Classification 1
Correct f11 f12

Not correct f21 f22

The McNemar statistic follows a chi-squared distribution X2
1 with one degree of freedom, and

its square root follows a normal normalized distribution. Therefore, the statistical significance of the
difference between the two classification maps is evaluated as with the previous tests.

The continuity correction that is considered in TEST 2 and TEST 3 is particularly important when
the sample size used is small [62].

In the first step, these tests were applied for the same classification technique at both the global
and single class levels. Then, the tests were applied to compare the statistical significance of the
accuracy between the two algorithms that demonstrated smaller errors in previous comparisons.

3. Results

3.1. Classification Results

Both of the classification algorithms recognized the five vegetation classes considered as irregular
belts almost parallel to the coastline: BSCA, AGAM, MG, GD, and CSAF (see Figure 2).

For the pixel-based classification (Figure 5), the single vegetation strips showed nonhomogeneous
coverage because many of the pixels were assigned to classes that were different from those of the
membership (Figure 5, subplots a and b). The pixel distributions of the MG, GD, AGAM, and CSAF
classes (i.e., all except for the BSCA class) were characterized by a ‘salt and pepper’ effect that makes
the definition of the class contours difficult. This effect is particularly evident in the ML map over
several zones, such as for the northern area, which was strongly affected by both natural and anthropic
effects (Figure 5, subplots a1 and b1). Indeed, while the SVMPi showed greater sandy coverage, in the
ML results, the MG and DG pixels prevailed in these areas. As can be seen from Figure 5, both of these
pixel approaches recognized the shape of the tree (Populus × canadensis) that was included in the CSAF
class (Figure 5, subplots a1 and b1, center left), although its composition was confused for both of these
methods. The Populus × canadensis tree composition was more appropriate and homogeneous in the
SVMPi result compared to the ML map, where several pixels were wrongly tagged as GD. In general,
many pixels that belonged to the CSAF strip were erroneously classified as GD. The details shown in
Figure 5, subplots a2 and b2, indicate other relevant errors, such as: (1) several BCSA pixels along
the footpaths were incorrectly associated with MG or GD cover; (2) some of the AMAG pixels were
erroneously recognized in proximity to the CSAF class, where the morphological and environmental
conditions are not suitable for this vegetal community; and (3) bare sand footpaths were recognized
as covered by GD pixels. In general, the most confused classes were AMAG, MG, and GD, while
the BCSA class was more homogeneous and more correctly discriminated from the rest of the scene.
The aforementioned examples of confusion were more evident for the ML class. The main difference
between these two pixel-base results is the number of pixels classified as MG and GD. The area covered
by the MG class in the SVMPi map was greater than the MG zone of the ML map, with the inverse
situation seen for the GD class (Table 2).
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Figure 5. Pixel-based classification of the Casal Borsetti dune vegetation. (a) Maximum likelihood
classification. (b) Support vector machine pixel classification. (a1,b1) ‘Salt and pepper’ effects and the
Populus × canadensis tree. (a2,b2) Footpath classification.

For the application of the object-classification algorithms, the five vegetation classes were also
identified (Figure 6, subplots a and b). The classes were more uniform than for the pixel-based results
(Figure 5), and the confused zones were distributed along the perimeter of each class.

At the single-element level, the object maps showed less information. The tree located in the
northern area (Populus × canadensis) was partially classified as CSAF, while several objects were
associated with MG or GD (Figure 6, subplots a1 and b1). Moreover, it was only possible to identify
this tree shape in the SVMObj map (Figure 6, subplot b1), because the NN classification (Figure 6,
subplot a1) did not provide clear enough information. In addition, Figure 6, subplots a1 and b1,
shows a greater presence of sand in the northern part of the dune compared to the pixel-based method
(Figure 5, subplots a1 and b1).

Comparing Figure 5, subplots a2 and b2, with the details in Figure 6, subplots a2 and b2,
another difference between the pixel and object methods can be seen for the sand footpaths.
These were well-identified with the pixel-based method, while they were not recognized using
the object-based approach.
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Figure 6. Object-based classification of the Casal Borsetti dune vegetation. (a) Nearest neighbor
classification. (b) Support vector machine object classification. (a1,b1) Populus × canadensis tree
classification. (a2,b2) Missed footpath classification.

Table 2. Vegetation community cover and extension for each classification methodology. For abbreviations,
see main text.

Vegetation
Community

Classification Methodology

ML SVMPi NN SVMObj

Cover
(%)

Extension
(m2)

Cover
(%)

Extension
(m2)

Cover
(%)

Extension
(m2)

Cover
(%)

Extension
(m2)

BSCA 34.4 9763 36.1 10,251 36.6 10,412 36.8 10,469
CSAF 25.9 7349 28.5 8082 26.6 7558 26.8 7617
MG 12.8 3647 16.3 4628 19.1 5433 16.8 4782
GD 19.0 5398 10.8 3082 12.3 3511 14.3 4073

AGAM 7.9 2241 8.3 2359 5.4 1546 5.3 1520

Total 100.0 28,398 100.0 28,402 100.0 28,460 100.0 28,460

All previous considerations were confirmed by the confusion matrices given in Table 3, which
provides a quantitative reading of the classification results. The ML and SVMPi results showed a
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lower global accuracy, with both <80%, while for the object classification, this was >80%. The global
Ks followed the same behavior as the global accuracies. In particular, considering the ML and SVMPi
comparison and the NN and SVMObj comparison separately, the main diagonal values of the pixel
classifications are almost always lower or equal to the corresponded values of the object classifications.
For the ML map, the number of correct pixels is only higher than the NN classification for the GD class.

For the ML and SVMPi maps, the MG was the most confused class, with omission errors of 47.1%
(24 missing pixels, of 51 true total pixels) and 43.1% (22/51 pixels missing), respectively (Tables 3 and 4).
For the ML results, almost 42% of the MG omission error (10/24 pixels missing) is concentrated in the
GD class (Table 3), while for the SVMPi map, the MG true pixels are distributed among the AGAM,
GD, and CSAF covers (Table 3). Instead, the largest number of pixels associated with classes other than
those of the reference is related to the GD class for ML, with a commission error of 46.1% (35 added
pixels, of 76 total classified pixels; Table 4), and the MG class for SVMPi, with a commission error of
39.6% (19/48 pixels classified; Table 4). From Table 4, the producer accuracy was calculated. In the
pixel-based algorithms, the class that was ranked most accurately was BSCA, with associated values of
86.5% for ML and 91.9% for SVMPi.

For the object-based classification results (Tables 3 and 4), the most confused class was GD in
the NN map. For the 19 pixels not assigned (Table 4), 68.4% was classified as MG cover (Table 3), for
the highest commission error (36.1%, i.e., 22/61 pixels classified; Table 4). Instead, for the SVMObj
classification, the MG class showed the highest omission error (27.5%, i.e., 14/51 pixels missing), with
almost 64.3% of these pixels classified as GD. The confusion between these classes was confirmed by
the high commission error for GD (32.2%, i.e., 19/59 pixels classified; Table 4).

However, it should be emphasized that in the SVMObj results, the higher omission errors of the
other classes did not differ much from the error related to MG. The BSCA producer accuracy achieved
with the object-based techniques (93.2%), which was the same for NN and SVMObj, was the highest
obtained among the several classes. However, some pieces of sand footpaths in the object-based
classification maps were included in the GD or MG covers.

Table 3. Confusion matrices for each of the image classification methodologies. For abbreviations, see
main text.

Classification
Methodology

Vegetation
Community

Ground Truth (pixels)
Overall
Accuracy

Kappa

BSCA AGAM GD MG CSAF Total (%)

ML

BSCA 64 7 2 0 0 73

72.7 0.64

AGAM 1 34 1 7 2 45
GD 7 3 41 10 15 76
MG 2 7 5 27 3 44

CSAF 0 1 5 7 49 62

SVMPi

BSCA 68 4 3 1 0 76

76.3 0.70

AGAM 1 40 1 6 2 50
GD 3 1 39 7 10 60
MG 2 6 7 29 4 48

CSAF 0 1 4 8 53 66

NN

BSCA 69 6 3 1 0 79

80.3 0.75

AGAM 1 39 2 3 1 46
GD 3 1 35 6 6 51
MG 1 5 13 39 3 61

CSAF 0 1 1 2 59 63

SVMObj

BSCA 69 7 3 1 0 80

82.0 0.77

AGAM 2 41 3 2 1 49
GD 3 1 40 9 6 59
MG 0 3 7 37 3 50

CSAF 0 0 1 2 59 62

Total 74 52 54 51 69 300
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Table 4. Commission and omission errors for each of the vegetation communities. For abbreviations,
see main text.

Vegetation
Community

Errors (pixels)

ML SVMPi NN SVMObj

Commission Omission Commission Omission Commission Omission Commission Omission

BSCA 9/73 10/74 8/76 6/74 10/79 5/74 11/80 5/74
AGAM 11/45 18/52 10/50 12/52 7/46 13/52 8/49 11/52

GD 35/76 13/54 21/60 15/54 16/51 19/54 19/59 14/54
MG 17/44 24/51 19/48 22/51 22/61 12/51 13/50 14/51

CSAF 13/62 20/69 13/66 16/69 4/63 10/69 3/62 10/69

3.2. Classification Results Comparison

The outcomes of TEST 1 applied to the pixel-based classification reveal that the differences in
accuracy between the two pixel-based maps at both the global and single class level are not significant
(Table 5). In addition, TEST 2 confirms that the ML and SVMPi classifications are statistically similar
(Table 5).

For TEST 3, based on four combinations of correct and incorrect pixel frequencies in both of the
maps considered, the classifications are globally different (z = 2.65 > 1.65). This is particularly due to
the AGAM community, as the only class that does not pass the test. The analysis of the frequencies
used for TEST 3 reveals that the ML method is the least accurate method for the AGAM class. Indeed,
the calculations of TEST 3 show that almost 12% of the 52 ground truth pixels were classified incorrectly
only for ML, while the same pixels were correct for SVMPi; vice versa, there are no pixels that were not
correctly classified only for SVMPi. For the AGAM class, the lower accuracy for ML is also confirmed by
the higher commission and omission errors compared with the corresponding SVMPi errors (Table 4).

As for the pixel-based classification, as for the object-based classification, the outcomes of TEST 1
show that the differences in the accuracy between the two object-based classification maps at both
the global and single class level are not significant (Table 6). The TEST 2 results confirm that the NN
and SVMObj classifications are similar (Table 6). Additionally, for TEST 3, these classifications are not
different, except for the GD cover, at both the global and individual class levels. The frequency analysis
reveals that the NN method is the least accurate method; indeed, almost 8% of the 54 GD ground truth
pixels were incorrectly classified for NN, while the same pixels were correctly classified for SVMObj;
vice versa, there were no pixels incorrectly classified only for SVMObj. For the GD class, the lower
accuracy of NN is also confirmed by the higher omission errors compared with the corresponding
SVMObj errors (Table 4). Indeed, in both object-based maps, the highest number of error classifications
is between the GD and MG classes. However, the MG cover classifications are not statistically different.

From the previous comparisons, it emerges that the most accurate methods are SVMPi and
SVMObj. Therefore, a new statistical comparison of these two methods was performed to define the
most appropriate for this dune vegetation classification. The findings of TEST 1 show that the accuracy
difference between these two maps is not significant at both the global and single class level (Table 7).
The TEST 2 results confirm that the SVMPi and SVMObj classifications are similar (Table 7). Instead,
for the findings of TEST 3, the two classifications are globally different (z = 2.16 > 1.65). At the single
class level, all of the classes pass the test, except for the MG cover, with a z value the same as the
confidence limit (1.65). The analysis of the frequencies reveals that almost 26% of the 51 MG ground
truth pixels were classified incorrectly for SVMPi, while they were correct for SVMObj; vice versa, only
10% were correctly classified for SVMPi and not for SVMObj (Table 7).
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Table 5. Test results for the pixel-based classification, as a comparison of ML and SVMPi. For
abbreviations, see main text.

Vegetation
Community

TEST1 TEST2 TEST3 Confidence

K-ML K-SVMPi z (K) z (Propor.) z (McNemar) Limit (α=0.10)

BSCA 0.82 0.89 −1.07 0.79 1.50

1.65

AGAM 0.59 0.72 −1.32 1.08 2.04
GD 0.68 0.65 0.24 0.22 0.50
MG 0.45 0.49 −0.35 0.20 0.50

CSAF 0.63 0.70 −0.77 0.58 1.22

Global 0.64 0.70 −1.19 1.21 2.65

Table 6. Test results for the object-based classification, as a comparison of NN and SVMObj. For
abbreviations, see main text.

Vegetation
Community

TEST1 TEST2 TEST3 Confidence

K-NN K-SVMObj z (K) z (Propor.) z (McNemar) Limit (α=0.10)

BSCA 0.91 0.91 0.01 −0.33 0.00

1.65

AGAM 0.70 0.75 −0.45 0.23 0.71
GD 0.58 0.68 −0.10 0.84 1.79
MG 0.71 0.68 0.34 0.23 0.50

CSAF 0.82 0.82 −0.01 −0.24 0.71

Global 0.75 0.77 −0.42 0.42 1.11

Table 7. Test results of the comparison of the SVMPi and SVMObj classifications. For abbreviations,
see main text.

Vegetation
Community

TEST1 TEST2 TEST3 Confidence

K-SVMPi K-SVMObj z (K) z (Propor.) z (McNemar) Limit (α=0.10)

BSCA 0.89 0.91 −0.29 0.00 0.00

1.65

AGAM 0.72 0.75 −0.26 0.00 0.00
GD 0.65 0.68 −0.24 1.39 0.00
MG 0.49 0.68 −1.77 0.00 1.65

CSAF 0.70 0.82 −1.43 1.09 1.44

Global 0.70 0.77 −1.45 1.61 2.16

4. Discussion

Before discussing the results, some considerations regarding the particularity of the site and the
instruments involved in the data acquisition need to be addressed. As described above for the study
area description, the selected site is included in the Po Delta Regional Park, and there are restrictions
regarding access, authorized activities, and management of the dunes. Despite this, during the summer,
tourism results in the establishment of a lot of footpaths, which destroys the vegetation communities
and fosters wind erosion of the dunes [3,31,37]. Therefore, the local vegetation communities are often
fragmented and interspersed with each other, which provides an atypical vegetation composition in
the area. Although each plant species provides its own spectral signature based on the growth period,
geographic location, climatic conditions, and level of disturbance [63,64], working at the vegetation
community level reduces the species diversification and provides more solid results [65,66]. In addition
to this, the contemporary ground truth botanical survey allowed a reliable dataset of ‘known’ pixels
to be established to validate the vegetation maps. In particular, the extreme dynamic environment
represented by this dune system, its cycling, exposure to sea storms, erosion, salty winds, and floating
groundwater from one side require an accurate selection of the aerial acquisition period, and from
the other side, the achieved vegetation community distribution can be considered descriptive for a
relatively medium-to-long period of time [17,67].
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For the equipment used, the three standard bands available with the multispectral camera
(i.e., green, red, NIR) are considered necessary and sufficient to recognize the vegetation [68], but not to
discriminate between and examine in-depth the characteristics of the single species [69]. Furthermore,
this camera has the following technical limitations: an overlay of portions of the bandwidth, a large
bandwidth with a low-slope front of the filter, and the inability to discriminate between uninteresting
portions of the bands [40].

For the classification results, all of the four algorithms recognized the five classes of vegetation
considered. Despite this, the maps that were derived from the pixel-based methods showed that class
boundaries are not well defined due to the ‘salt and pepper’ effect that was spread throughout the
extension of the dunes. This effect was especially evident in the ML map, as well as in the portion of
dunes where a combination of the wind and recurring anthropic passage has reduced the vegetation
growth. Indeed, for the ML map, these areas were mostly covered by the MG and DG pixels, while the
SVMPi classification revealed the wider sandy cover, thus better identifying the actual field conditions
(Figure 5, subplots a1, b1). This result is explained by the relationship between the pixel size (15 cm)
and the different plant components acquired [40]. Indeed, a pixel size of 15 cm can include more plant
elements (e.g., leaves, flowers, small branches, shadows), or it can be homogeneously occupied by a
single element. Therefore, its spectral signature might represent a medium signature or might not
include the other components of the same class [11]. Furthermore, considering that the same type of
object can be contained in many classes (e.g., sand, grass), some pixels might be classified differently
compared to the surrounding pixels [70].

The object-based classification was less exposed to these problems compared to the pixel-based
approach. The presence of some pixels with different vegetation covers has no influence on the correct
class assignment [46,54]. As confirmation of this, the more extended BSCA class in the northern section
of the study area is coherent with the actual situation, and reflects the higher anthropic disturbance
due to the sand mobilization in the close-by bathing establishment.

If, on one hand, the object-based classification provides vegetation class uniformity, on the
other hand, it does not allow the identification of some single elements that were identified with
the pixel-based approach. For example, the Populus × canadensis tree shape was well-defined in the
pixel-based approach, while it was not recognizable in the object-based approach. In the same way,
some objects classified as CSAF appeared in their correct location, but the shape reconstruction was
lost. Other missing information with the object-based approach was the identification of the sand
footpaths, which were almost totally incorporated into the surrounding vegetated classes.

The confusion matrix analysis of the four classification methods confirms the greater accuracy of
the object-based approaches (Table 3), due to the clearer class definition obtained. At the opposite end
of the spectrum, the ‘salt and pepper’ effects reduce the accuracy of pixel-based methods [70].

Considering the pixel-based elaboration, the ML method shows a more coarse accuracy compared
to SVMPi, as indirectly confirmed by the global TEST 3 result (Table 5). The AGAM class was differently
recognized among the two pixel-based algorithms, but the most difficult class to identify was MG, due
to its wide and complex presence in the dune vegetation structure. The MG and GD classes were often
confused because of the de-structuring of the GD vegetation that was caused by the anthropogenic
disturbance, which generates short biological growing cycles that are typical of the MG class. This
problem is also seen for the object-based classification, but with an impact of only 14% on the mean
class errors (Table 4). The errors of commissions and omissions with SVMPi were generally lower than
those for ML (Table 4). In particular, a greater producer accuracy of the BCSA class was seen, especially
along the footpaths, which appeared more defined and lengthened.

The differences in the classification between the NN and SVMObj methods are not significant,
except for the GD class. However, the SVM algorithm was more accurate, and it should be the most
reliable method to be applied to dune monitoring, especially in the case of characteristics similar to
those of Casal Borsetti. The same conclusion was reported by Wang et al. [71] in a study where they
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compared pixel-based and object-based approaches in mangrove classification, as well as by Zhai et al.
for a rubber plantation [72].

The choice between the SVM pixel-based and the SVM object-based techniques also depends on
the level of detail required. According to TEST 3 (Table 7), at the global level, the results of these two
techniques were different only because of the classification of the MG cover. However, this class is an
opportunistic vegetation community that grows where disturbance is higher. Indeed, the z obtained
for MG was the same as the threshold imposed for not passing the test (i.e., z = 1.65). Therefore, even if
the SVMObj shows the best accuracy, as reported by Gao et al. [54], considering the accuracies of these
two methods as similar does not induce significant errors, as already demonstrated through TEST 1
and TEST 2 (Table 7).

Based on the results of this study, a UAV equipped with a multispectral camera can be used
for multi-year dune monitoring to provide a multitemporal classification of dune vegetation [73].
Moreover, based on the well-known relationships between dune vegetation communities and coastline
status [74,75], both the equipment and methodology presented in this study can also be applied to
future continuous monitoring of the coastline, in order to gather information on the coastal evolutionary
status [76].

The authors should discuss the results and how they can be interpreted from the perspective of
previous studies and the working hypotheses. The findings and their implications should be discussed
in the broadest context possible. Future research directions may also be highlighted.

5. Conclusions

The aims of this study were to determine the applicability of multispectral data collected by a UAV
platform for the identification/discrimination of fragmented and interspersed coastal dune vegetation
communities, and to compare the pixel-based and object-based approaches to determine the better
performing classification method.

The data acquired by the sensors installed on the UAV and elaborated with the SVM algorithm
allowed the elaboration of reliable dune vegetation community maps with a high spatial resolution
(0.15 m) and a global accuracy >80%. This system is cheaper and faster when compared to the
traditional field surveys that are performed by botanical experts.

From the comparisons of the classification methods here, as NN, ML, SVMPi, and SVMObj, the
SVM was the most accurate algorithm based on the statistical test results. From the numerical point of
view, the SVMObj was the best performing approach. However, it has the disadvantage of including
small elements (<1 m in size), such as single trees or footpaths, in the larger bordering classes, which
impedes their suitable classification. In the case of limited extension, where the presence and variations
of a single element can widely influence the final results, this aspect is a relevant limitation. For
example, for the Casal Borsetti dune area, the protection of the relevant coastal habitat of the dune
vegetation communities needs to be pursued by limiting the continuous human crossing. Therefore,
the footpaths need to be clearly identified using the proposed methodology. Considering that the
differences between SVMPi and SVMObj are not statistically significant, except for the MG class, the
pixel technique is the most suitable for investigations that require greater levels of detail. The MG
and GD classes are the most difficult to discriminate with a camera that only acquires the green, red,
and infrared bands, as is the case for the camera used in this study. The entry onto the market of
multi-spectral cameras with eight mono-band sensors (from visible to infrared) might also facilitate the
more accurate identification of vegetation communities using a UAV.

Although the results obtained cannot be immediately generalized because they refer to a specific
study site (i.e., Casal Borsetti dunes, Ravenna, Italy) that shows strong human disturbance and
fragmented and interspersed dune vegetation communities, both the equipment used here and the
classification approach appear portable, and can thus be applied to other dune sites.

Moreover, in light of the elevated spatial resolution of the vegetation maps produced, the authors
believe that this system, the UAV data acquisition, and the SVM image classification approach, are

49



Remote Sens. 2019, 11, 1416

sufficiently sensitive to allow multitemporal and continuous monitoring of dune evolution in the near
future, in terms of erosion and progradation-dominant phenomena. Ongoing studies are collecting data
for the monitoring of coastal erosive/progradation dynamics through dune vegetation communities.
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Abstract: Coastal areas harbor the most threatened ecosystems on Earth, and cost-effective ways to
monitor and protect them are urgently needed, but they represent a challenge for habitat mapping and
multi-temporal observations. The availability of open access, remotely sensed data with increasing
spatial and spectral resolution is promising in this context. Thus, in a sector of the Mediterranean
coast (Lazio region, Italy), we tested the strength of a phenology-based vegetation mapping approach
and statistically compared results with previous studies, making use of open source products across
all the processing chain. We identified five accurate land cover classes in three hierarchical levels,
with good values of agreement with previous studies for the first and the second hierarchical level.
The implemented procedure resulted as being effective for mapping a highly fragmented coastal
dune system. This is encouraging to take advantage of the earth observation through remote
sensing technology in an open source perspective, even at the fine scale of highly fragmented sand
dunes landscapes.

Keywords: dune vegetation classification; coastal monitoring; multispectral satellite images;
multi-temporal NDVI; pixels based supervised classification; Random Forest; harmonization

1. Introduction

Environmental monitoring is essential to identify and understand the structure, integrity and
conservation status of different habitats forming landscape mosaics [1]. Next to traditional field-based
techniques [2], Remote Sensing (RS) methods are useful tools for ecosystems monitoring, as they are
able to capture a wide range of properties of vegetation in a standard and replicable way [3].

During the last few decades, satellite images have supported vegetation mapping and monitoring of
wide landscapes [4], with a continuous improvement in spatial resolution and use of multi/hyperspectral
sensors consistently boosting the performance of remotely sensed data for mapping highly fragmented
areas [5–7]. In particular, for the interpretation of particularly complex or very fine-grained vegetation
mosaics such as those commonly encountered on sand dunes, high-resolution data are an essential
requirement [8,9]. Indeed, complex landscapes have long represented a challenge for vegetation
mapping and multi-temporal monitoring applications, which still need further development [10,11].
In this context, several space agencies (e.g., ESA, NASA/USGS, CBERS, ISRO) deliver free remotely
sensed products with several resolutions that represent a reliable support for different applications
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of ecosystem monitoring and management. Among these, the free access Sentinel-2 mission of
ESA (European Space Agency), with a 10 m spatial resolution for bands in the spectral range of
the blue (B2-490 nm), green (B3-560 nm), red (B4-665 nm) and infra-red (B8-842 nm) and a revisit
rate of approximately five days, represents an important support for environmental mapping in the
Mediterranean area [12,13]. The relatively recent release of Sentinel-2 mission (Sentinel-2A launched on
23 June 2016 and Sentinel-2B launched on 7 March 2017) still has several potentialities to be explored [14].

In order to achieve their full potential for accurate mapping of complex vegetation mosaics,
RS techniques must be coupled with proper approaches able to capture spatial and temporal vegetation
patterns [1]. For instance, the analysis of vegetation phenological properties, describing recurring
biological events (e.g., seasonality) [15], is very effective for mapping intense seasonal biomass
variations [16] as those characterizing Mediterranean landscapes. Among the remotely sensed data,
vegetation indices, depicting ecosystem spectral properties, are very efficient tools to map vegetation
and its temporal pattern [17,18]. Among these, Normalized Difference Vegetation Index (NDVI) [19,20]
is a good proxy of canopy biomass [21], and its application for environmental monitoring is highly
appreciated [22,23]. Furthermore, the monthly variation of NDVI values across an entire year proved
to be a sound surrogate of ecosystem phenology [18,24,25], which allows for discriminating contiguous
vegetation cover types featuring different seasonality [26–28].

Coastal dune landscapes are complex mosaics that develop in the transition zones between
terrestrial and marine environments, occupying strips parallel to the seashore [29]. Along the sea-inland
gradient, coastal dunes are ruled by a large variety of constraining environmental conditions, such as
soil salinity, substrate instability, wind and marine aerosol [30–32]. By shaping the biomass levels,
this gradient determines the occurrence of a mosaic of highly specialized and diverse plant communities
coexisting in a relatively narrow area which represents a hotspot of exclusive biodiversity [32]. In spite
of their high biodiversity value and complex ecosystem functioning, coastal dunes are among the most
threatened ecosystems worldwide [33,34]. In the Mediterranean areas, the loss and degradation of
coastal dune ecosystems have been particularly severe in the last few decades [34–36], with the main
threats being urban expansion [10,37,38], coastal erosion [39] and invasion by alien species [40–43].
In order to prevent these and other endangered habitats from further degradation, all European
Member States adopted the Council Directive 92/43/EEC (hereafter Habitats Directive, HD). By signing
the HD, the States committed themselves to maintain, restore and monitor habitats and species of
European conservation concern (listed in dedicated annexes) and to report their conservation status
every six years. Each habitat type (mainly identified by plant communities) is characterized by
specific biotic and abiotic factors [44]. In this light, innovative and scientifically sound instruments are
needed for setting conservation priorities and providing management indications for the coastal dune
habitat types [45–48]. Until now, coastal dunes mapping procedures have mostly been based on the
integration of visual interpretation (e.g., photointerpretation of aerial imagery) and floristic data [10,49].
However, the use of these mapping procedures presents some shortcomings in linear and fragmented
ecosystems characterized by low biomass such as coastal dunes. For instance, photo-interpretation
is a time-consuming procedure and its results vary depending on the subjectivity of the interpreter,
his experience and personal knowledge of mapped landscapes [50,51]. Moreover, as small patches
(below the minimum mapping area) are neglected, the photo-interpreted maps can be limited for
characterizing the coastal fine scale mosaics and related landscape processes [52,53].

In consideration of the above, the present work sets out to explore the potential of Sentinel-2
in capturing coastal dune natural vegetation types using a phenology-based mapping approach.
In particular, by a multi-temporal analysis of NDVI images of coastal dunes in central Italy,
we focused on two main questions: (i) does NDVI phenological profiles allow for identifying
and correctly mapping different vegetation types distributed along a coastal zonation? (ii) does the
product of a phenology-based classification agree with existing coastal dunes classification systems
(i.e., photo interpreted land cover maps and 92/43/EEC habitat distribution)?
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2. Materials and Methods

2.1. Study Area

The study was carried out on a representative tract of the Mediterranean coast, placed in the
Tyrrhenian seashore of Central Italy (Lazio Region). The study area includes ca. 250 km of sandy
coast, mainly formed by recent (Holocenic) dunes (Figure 1) [45]. These dunes are relatively simple in
structure, with a single low dune ridge (lower than 10 m height) occupying a narrow strip (usually no
more than 500 m with) along the seashore [32]. In this area, coastal plant communities mostly range
from pioneer vegetation near the shoreline to Mediterranean shrubs on landward fixed dunes [33,45].
Previous studies discriminate eight different habitats occurring along this coastal zonation, of which
two have been listed as priority (Table 1) [38,53]. In the analyzed littoral zone, human activities in the
analyzed littoral zone have intensified in the course of the 20th century [10,54]. Specifically, during the
last 60 years, the Tyrrhenian coast faced consistent processes of fragmentation [55], simplification [45]
and biodiversity loss [56]. Nevertheless, the Tyrrhenian coast still hosts a good number of plant
communities of conservation concern in Europe (92/43/EEC Habitats Directive; EEC, 1992) for which
monitoring and conservation strategies must be improved.

Figure 1. Study area. The coastline of the Lazio Region (Italy). Three zoomed examples at north,
center and south are reported in black. Coordinates system: WGS84 UTM 33N (epsg: 32633).
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Table 1. EC Habitat types (Habitat Directive 92/43/EEC) along with a brief description in terms of
vegetation types [53]. Asterisk (*) indicates habitats with high priority for conservation.

EC Habitat Name Vegetation Types

1210 Annual vegetation of drift line (upper beach). Pioneer annual vegetation characterizing the
strandline zone of the beach.

2110 Embryonic shifting dunes (embryo dune). Pioneer, perennial community of the low
embryo-dunes dominated by Elymus farctus.

2120 Shifting dunes along the shoreline with
Ammophila arenaria (mobile dune).

Seaward and semi-permanent cordons of dune
systems dominated by Ammophila arenaria
subsp. australis.

2210 Crucianellion maritimae fixed beach dunes. Chamaephytic community of the inland side of
fixed dunes dominated by Crucianella maritima.

2230 Malcolmietalia dune grasslands
2250

Annual, species-rich community colonized by
small terophytes in dry, interdunal depressions of
the coast.

2250* Coastal dunes with Juniperus spp.
(juniper scrub)

Shrub formations dominated by juniper on the
fixed dunes.

2260 Cisto- Lavanduletalia
dune sclerophyllous scrubs

Shrub formations dominated by
sclerophyllous species

2270* Wooded dunes with Pinus pinea and/or
Pinus pinaster

Coastal dunes colonized by Mediterranean and
Atlantic termophilous pines.

2.2. Methodology

We performed a phenology-based classification of coastal dune ecosystem following a sequence of
steps (Figure 2): (1) multitemporal dataset collection and image preprocessing, (2) NDVI calculation and
data processing, (3) data classification, (4) accuracy assessment, and (5) comparison of phenology-based
classes vs. previous studies.

 

Figure 2. Workflow synthesizing the full mapping procedure of natural dune vegetation with Sentilnel-2
NDVI (Normalized Difference Vegetation Index) time series and Random Forest classification approach.

2.2.1. Sentinel-2 Imagery and Multitemporal Dataset

Sentinel-2 is a European wide-swath, multi-spectral imaging mission, constituted by a two-satellite
platform: Sentinel-2A and Sentinel-2B [57]. The Multi Spectral Instrument (MSI) on-board Sentinel-2
can provide images with a temporal resolution of five days at the equator, and a 12-bit radiometric
resolution from 492 nm to 1377 nm, which includes the Visible (VIS), Near Infra-Red (NIR), and Short
Wave Infra-Red (SWIR) spectra (13 bands). Sentinel-2 images are freely downloadable from the
Copernicus Open Access Hub [58]. In this study, we used the red band (R, around 665 nm in the
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VIS spectrum) and the NIR band (around 833 nm), at 10 meters of resolution [12]. The study area is
included in two Sentinel-2 dataset tiles (T33TTG, T33TUF).

We extracted monthly NDVI images recorded in the year 2017 for the two Sentinel-2 tiles describing
the analyzed coast and we built a multi-temporal dataset (stack) (Table S1). For the analysis, we selected
only those images with low cloud coverage (< 15%), excluding March, due to the excess in cloud coverage.
The clean stack for the phenology-based classification was composed of 22 images (one per tile and month,
excluding March). Only part of the downloaded data was already corrected from atmospheric noise,
while the other part was rough. We corrected these others using Sen2Cor version 2.5.5 [59,60].

2.2.2. NDVI Calculation and Masking

For the entire stack, we calculated NDVI (Equation (1)) as follows:

NDVI =
NIR−R
NIR + R

. (1)

NDVI ranges from – 1 to 1, with increasing values related with growing photosynthetic biomass [24].
The NDVI stack was masked using a fine scale land cover map (1:5000; SITR—Sistema Informativo
Territoriale Regionale Lazio) in order to exclude from the classification, at least partially, urban areas,
agriculture fields and water bodies.

2.2.3. Data Classification

We classified the resulting NDVI stack by implementing a Random Forest algorithm (RF) with
a hierarchical logic, using ESA’s Sentinel-2 toolbox—ESA Sentinel Application Platform 6.0 (SNAP).
RF is a machine learning classification method that operates by constructing a multitude of decision
trees [61,62]. RF algorithm is widely used for classification because of its speed, stability and ability to
discriminate differences [63–65].

We cyclically performed different RF analyses, defining for each cycle two parameters: the training
set of pixels (Mtry, see the next paragraph) and the number of trees (Ntree, in our case 100 runs per
cycle). In order to maximize the efficacy of RF, in the training set, we used a number of pixels that was
higher than the square root of the total of the pixels [61,62].

In each cycle, the identification of the training set was supported by a Principal Component
Analysis (PCA) of the monthly NDVI values (pixels x monthly NDVI values matrix). We projected
all the pixels in the PCA1 and PCA2 ordination space [66]. As objects that are close in the ordination
space (similar component values) describe similar cover types [67], we therefore selected as the
training set for classification the two furthest away clouds of pixels with maximum variance between
them [68]. For each tree (run), the training set was split through a bootstrapping procedure in two
groups: seed pixels (inbag), to build the classification tree, and validation pixels (out-of-bag), to estimate
the classification performance. Then, all pixels were compared with the inbag set using the Gini
inequality index [69] and assigned to a class based on the Lorenz Curve. The latter ranges from 0
(perfectly equality) to 1 (perfectly inequality) [69]. At the end of each run, RF conferred to each pixel
an ordinal vote (the minimum value of Lorenz Curve). After the entire cycle of 100 runs, each pixel
was definitively assigned to the more frequently attributed class [61]. In each cycle, the performance of
classification was assessed by repeating the classification procedure on the basis of the out-of-bag data
and comparing both classifications [61,70].

In each RF cycle, we classified the stack in two vegetation classes, and we carried on all the cycles
where the out-of-bag error was <50%.

2.2.4. Accuracy Assessment

The accuracy of the phenology classification map was assessed through an error matrix (Table S2)
calculating overall accuracy (Equation S1), producer’s accuracy (Equation S2) and user’s accuracy
(Equation S3) and Kappa statistic (0 ≤ Kappa ≤ 100; Equation S4) [71]. We based this assessment on
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250 random checkpoints visually inspected on Google Earth images [72–74]. The positional errors
of objects in Google Earth images are much lower compared to of the minimum spatial resolution
of Sentinel-2 images [73] and their spatial resolution (~1m) is high enough to allow clear visual
interpretation of the land cover [75]. In our case, the random checkpoints were inspected in Google
Earth images for a 5 m radius buffer area (comparable scale of the 10 m pixel of Sentinel-2 images) to
limit the scale mismatch errors. We built the error matrix, reporting the assigned phenology-based
class in rows, and the Google Earth visual attribution in columns.

2.2.5. Phenology-Based Map vs. Previous Vegetation Studies

The error matrix was further used to compare the phenology-based map with two previous studies
conducted in the same area. The first study reports an actual vegetation map produced at 1:5000 scale by
visual interpretation of aerial orthophotos [76] and the second one refers to the natural dune vegetation
types classified according to the Habitats directive (92/43/EEC; Table 1) and identified by floristic field
data (Figure S1). To compare the phenology-based classes with the photointerpreted map, we used
250 random checkpoints, while the congruence with habitat types was tested using 135 floristic plots
extracted from “RanVegDunes”, a database of randomly distributed floristic surveys [77]. For testing
the congruence of the phenology-based classification with the existing documents, we aggregated and
homogenized the classes of the vegetation map (Table S4) and the habitat types (Table S5) on the basis
of similarities in physiognomies and ecological conditions [78]. Then, we tested the correspondence
among maps and defined their respective levels of agreement through the Kappa statistic (Table S3).

3. Results

3.1. Sentinel-2 NDVI Classification

The phenology-based classification allowed for identifying five vegetation classes organized in
three hierarchical levels, each one characterized by a specific phenological pattern (Figure 3) referable
to different mosaics of plant communities. The first level of classification distinguishes a class of Open
Sand from the Vegetated class, the second level divides the Vegetation class in Herbaceous and Woody
Vegetation, and the third level divides Herbaceous and Woody Vegetation classes into two further classes
(the first in Sparse Herbaceous Vegetation (SHV) and Dense Herbaceous Vegetation and Ruderals (DHVR);
the second in Sparse Woody Vegetation (SWV), and Dense Woody Vegetation (DWV)).

The Open Sand class (Figure 3a) is characterized by very low biomass. Monthly values are close
to 0, except in summer, when NDVI is negative. The Open Sand class is extensively present along the
whole coast as thin stripes even on quite urbanized coastal tracts.

The Sparse Herbaceous Vegetation class is characterized by low monthly NDVI values (Figure 3b1)
that decrease towards 0 in summer. Sparse Herbaceous Vegetation is in contact with Open Sand and
covers a narrow discontinuous strip of land between Open Sand and the inner vegetation classes.
Sparse Herbaceous Vegetation preferentially occurs on well-preserved coastal tracts characterized by
all phenology-based vegetation classes.

The Dense Herbaceous Vegetation and Ruderals class (Figure 3b2) is characterized by NDVI
values slightly over 0.5 from November to April that decrease during summer. Dense Herbaceous
Vegetation and Ruderals include a highly seasonal herbaceous vegetation. This class occurs close to
the seashore in sectors exposed to environmental stress and on inner dune sectors characterized by
high anthropic pressure.

The Sparse Woody class is composed by sparse evergreen vegetation (Figure 3c1) with high
monthly NDVI values (> 0.5) that slightly decrease in summer. This class tends to occur at intermediate
distances from the seashore and in the inner sectors of the dune in contact with densely wooded dunes.

Lastly, the Dense Woody Vegetation class presents high monthly NDVI values (> 0.7; Figure 3c2)
throughout the year. It occurs in the back-dune zones corresponding to dense shrublands and forests.
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Figure 3. Cartesian diagrams (on the left) of NDVI values with average ± standard deviation (y-axis)
for each month of the year except March (x-axis) of the five phenology-based classes identified by
multitemporal classification of Sentinel-2 images, along with mapping examples (on the right) projected
on Google Earth View.
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3.2. Classification Accuracy Assessment

The classification of multi-temporal NDVI data (phenology-based classification) showed a good
level of accuracy when compared with the visual interpretation of Google Earth images. The first level
of classification (two classes: Vegetation and Open Sand) exhibited very high values of overall accuracy
(96%) with both producer’s and user’s accuracy over 88% and Kappa statistic of 86% (Figure 4a).

Similarly, the overall accuracy of the second hierarchical level (Herbaceous and Woody Vegetation)
was high (88%) with a moderate agreement among classes and reference data given by a Kappa statistic
of 79% (Figure 4b).

All land cover classes identified at the third level of detail evidenced values of accuracy with
producer’s accuracy ranging between 69% (Herbaceous Vegetation) and 99% (Woody Vegetation).
Similarly, the user’s accuracy ranged between 86% (Woody Vegetation) and 90% (Open Sand and
Herbaceous Vegetation) (Figure 4c).

The correspondence between the third hierarchical level of classification and the set of Google
images resulted as moderate as underlined by both overall accuracy (79%) and Kappa statistic (71%)
(Figure 4c). The producer’s accuracy was adequate for all classes. In particular, Open Sand and
Dense Woody Vegetation had the highest values of producer’s accuracy (88% and 96%, respectively).
This result defined an elevated precision of the map in these two classes. Moreover, both herbaceous
classes showed moderate agreement (75% Sparse Herbaceous Vegetation, 65% Dense Herbaceous
Vegetation). Finally, Sparse Woody Vegetation class featured the lowest value of producer’s accuracy
detected, even though the value showed moderate agreement (56%). The user’s accuracy showed the
higher values in Open Sand and Dense Herbaceous Vegetation classes (90% and 98%, respectively).
Sparse Herbaceous Vegetation and Sparse Woody Vegetation had the lowest values (respectively 63%
and 64%). Finally, Dense Woody Vegetation presented user’s accuracy (75%).

 
Figure 4. Error matrix, Accuracy (ACC) values, in particular Overall ACC, Producer’s ACC, User’s ACC,
and Kappa statistic of all hierarchical levels of classification–phenology-based classes: Open Sand (OS),
Vegetation (V), Herbaceous Vegetation (HV), Woody Vegetation (WV), Sparse Herbaceous Vegetation
(SHV), Dense Herbaceous Vegetation (DHV-R), Sparse Woody Vegetation (SWV), and Dense Woody
Vegetation (DWV).

62



Remote Sens. 2019, 11, 1506

3.3. Harmonization and Agreement Test with Existing Documents

The NDVI classification showed significant values of agreement with the photointerpreted
map [76], and floristic field data with the habitat types [53] at both the first and the second hierarchical
levels (Figure 5).

The first hierarchical level showed strong agreement values with the photointerpreted classification
map, with 95% of overall accuracy and 83% of Kappa statistic (Table S6), and also the producer’s and
user’s accuracy showed high agreement values (~100%). The agreement of the second classification
level resulted in being quite significant for all of the classes, with high overall accuracy (80%) and
Kappa statistic (66 %) depicting a moderate congruence between them. The user’s accuracy for the
three classes was over 77%. The producer’s accuracy ranges between 58 % and 95% (Table S7).

Finally, at the third level of classification, the agreement test resulted in being moderate, with overall
accuracy and Kappa statistic values being approximately 66% and 55%, respectively. However, values of
user’s accuracy were high only for Open Sand (94%) and Dense Woody Vegetation (85%), while the
other classes showed values under 50%. The producer’s accuracy ranged between 26% and 81%
(Table S8).

Figure 5. Cross sectional diagram indicating a typical coastal dune zonation along with their
corresponding phenology-based classes, habitat types (92/43/EEC; for full habitat names see Table 1)
and vegetation classes mapped in a previous study [76].

On the other hand, the agreement values of NDVI phenology-based classification and habitat
types assigned by floristic data (Habitats directive 92/43/EEC) showed great differences among the
hierarchical levels. At the first two levels, agreement values indicated moderate congruence between
the classification systems. At the first hierarchical level, the overall accuracy was ~79% and the Kappa
statistic denoted moderate agreement value. User’s accuracy was relatively high for both classes,
Open Sand (81%) and Vegetation (78%). Producer’s accuracy ranged between 53% to 93% (Table S9).

The agreement test of the second hierarchical level indicated similar consistency, with overall
accuracy ~71% and moderate value for the Kappa statistic (58%). The user’s accuracy was relatively
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high for Open Sand and Woody Vegetation (81% and 90% respectively), and the Herbaceous Vegetation
manifested moderate values (62%). Similarly, producer’s accuracy ranged between 53% and 84%
(Table S10). Finally, the third level of classification exhibited the lowest agreement values. The overall
accuracy and Kappa statistic were approximately 53% and 43%, respectively. Moreover, user’s accuracy
was relatively high only for Open Sand (81%), and moderate agreement for Dense Herbaceous
Vegetation and Ruderals (61%) and Dense Woody Vegetation (67%), with the other classes featuring
values under 50%. Producer’s accuracy ranged between 11% and 73% (Table S11).

4. Discussion

Our results suggest the analysis of remote sensed data (Sentinel-2 images) by a phenology-based
classification as an effective approach for monitoring natural landscapes. Sentinel-2 images confirmed
their high potential for vegetation mapping [12], while the multitemporal analysis of NDVI provided
complementary and useful information, proving its convenience even in complex vegetation mosaics,
that is to say, beyond their traditional field of application [18,26,28].

The phenology-based classification using a Random Forest algorithm on a Mediterranean
wide coastal area allowed for identifying and mapping five vegetation classes organized in three
hierarchical levels. Such classes, each one characterized by specific phenological and ecological features,
exhibited high levels of accuracy and clearly depicted the coastal ecosystem zonation ranging from Open
Sand, occurring near the seashore line, to Dense Woody Vegetation on the inner dunal sectors [45,79,80].
Sparse Herbaceous Vegetation and Sparse Woody Vegetation occurred discontinuously, while Open
Sand and Dense Herbaceous Vegetation and Ruderals formed a continuous strip close to the seashore
running along all the analyzed coast. Finally, Dense Woody Vegetation formed regular shaped patches,
and, as previously observed [32,38], occurred in the back-dune zone.

The classification of multi temporal NDVI images, which was successfully used for land cover
mapping [26,80], is extended here for vegetation mapping on Mediterranean coasts. The phenological
analysis that allows for depicting vegetation seasonality [26,81,82] enabled to discriminate woody
evergreen from herbaceous annual vegetation [26]. Furthermore, by exploring phenological spatial
variations occurring in correspondence with biomass transitions, it was possible to distinguish between
densely and sparsely vegetation formations and to identify edges [83,84] between vegetation classes
occurring in the analyzed complex mosaic.

Our results respond to the scope of Sentinel mission [12,57] and give new evidence of its
potential for monitoring and mapping coastal dunes with reduced costs and time efforts. The high
temporal resolution that assures a continuous release of new clean and fine resolution images
(~each 10 days) postulates Sentinel-2 as one of the most effective supports for phenology-based coastal
dunes monitoring [18].

The good agreement between phenology-based classification and the photo-interpreted vegetation
map [76] suggests the adequacy of Sentinel 2 multi-temporal NDVI classification for producing new
vegetation maps of the coastal dune landscapes. Indeed, the phenology based map is quite consistent
with the photo-interpreted vegetation map (scale 1:5000) produced using panchromatic digital aerial
ortho-photographs with about one meter of resolution of the year 2008. Furthermore, the hierarchical
nature of RF classification offers a good basis for comparing the new remotely sensed classification
with existing documents produced with different methodological procedures, data sources and spatial
resolution. Linking the new remotely sensed classes with previous maps and mapping supports
(as aerial photos) is essential for building a long-term ecological series and for monitoring coastal dune
landscapes across time [78,85].

The agreement test of NDVI classes and floristic data referable to EC habitats (92/43/EEC) was
significant at the first and second hierarchical level for all classes. At the third level, only Open Sand,
Dense Herbaceous Vegetation and Ruderals, and Dense Woody Vegetation showed a relative high
congruence with vegetation plots, consequently showing the possibility to discriminate the habitats
included in these classes. The lower agreement of NDVI classification and vegetation plots classified
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in habitat types is probably related with differences in the spatial resolution between the remotely
sensed instrument (10x10 m) and the field floristic plots (2x2 m). Furthermore, the Mediterranean
coastal dunes, naturally conformed by fine scale ecosystem mosaics [33,45], are often disturbed by
fragmentation processes that alter their biodiversity [56]. This probably reduces the possibility of
a match between conventional small floristic plots and the 10 m resolution of Sentinel-2 images.
This scale mismatch is the principal restriction in this study, and the impossibility to discriminate the
single habitat type through this phenology-based approach using 10 m resolution images limits its use
to coarse vegetation classes (general physiognomies) [86,87]. In coastal dunes, both subtle variations
of environmental factors and human pressure promote the formation of fine scale mosaics of habitats,
some of them featuring similar physiognomies but differing in their floristic composition [88–93].

To deal with such shortcomings, the integration of sentinel data with finer resolution data and
tools are advisable. For instance, the use of multispectral satellite images with higher spatial resolution,
or the implementation of other classification methodologies as spectral unmixing algorithms able to
quantify the percentage of different cover classes inside the single pixels [94,95] should improve the
performance of the proposed classification procedure. In any case, the classification performance of
each cycle, elaborated by out-of-bag pixels, estimated the uncertainty of the Random Forest result
giving an idea of the presence of mixed pixels.

Overall, the potential of Sentinel-2 data in a phenology-based mapping was accomplished
with a relative high degree of accuracy assessment and significant congruence with existing previous
classifications. It is very promising in the discrimination of annual, deciduous and evergreen vegetation.
Moreover, the integration of remotely sensed maps with field data could contribute to continuous
update of coastal dune habitats maps, reducing costs and risks of delaying the periodical reporting
requested by the Habitat Directive (92/43/EEC).

5. Conclusions

The performed phenology-based classification emphasizes the potential of Sentinel-2 images for
mapping natural vegetation and extends its field of application to low biomass and highly fragmented
systems as coastal dunes. The combined use of NDVI multi-temporal data, machine learning
(Random Forest) algorithms, and a pixel-oriented approach allowed for adequately describing with
high values of accuracy the complex mosaic of coastal dune vegetation.

The phenology-based classification approach with Sentinel-2 data proposed here is a time saving
and more objective approach, complemented with open source earth observation data and implemented
through free ESA software, effective and inexpensive instruments for coastal monitoring. Furthermore,
the good levels of agreement of phenology-based with previous vegetation maps should allow for
building long-term ecological series necessary for exploring and monitoring coastal ecosystems
dynamics over time.

Nevertheless, there are several possibilities to improve this phenology-based classification and
enhance its potential. For instance, the integration of phenological classification with LiDAR and
other remotely sensed data or the implementation of spectral unmixing algorithms could improve the
agreement with floristic filed data and should represent new research frontiers to explore.

From an applied perspective, the phenology-based vegetation classification provides relevant
knowledge for coastal monitoring and management; therefore, we hope new studies exploring
increasingly larger areas will be analyzed to further test the proposed classification and, at the same
time, to provide homogeneous information for coasts in the Mediterranean.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/11/12/1506/s1,
Table S1: The total Sentinel-2 imagery dataset. It shows for each Sentinel-2 image the month, day, platform
(Sentinel-2A or Sentinel-2B), the hour of acquisition, the cloud percentage, the processing level (top of the
atmosphere—1C or bottom of the atmosphere—2A), and the tiles (T33TTG for Lazio north, T33TUF for Lazio
south). Table S2: Example of error matrix. It is a contingency table (k x k array, where k is the number of classes in
the classification). Equation S1: Overall accuracy, defined as the total of the correctly classified checkpoints on the
total number of the checkpoints where nii indicates the number of checkpoints classified in the same category
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both in the satellite mapped classes and the Google Earth reference data; in other words, the elements of the
major diagonal. Equation S2: Producer’s accuracy: fraction of correctly classified checkpoints in all checkpoints
of the produced classification. Equation S3: User’s accuracy: fraction of correctly classified checkpoints in all
checkpoints of the reference data. Equation S4: Kappa statistic (K̂) computed as follows where n_ij is the number
of observation in row i and column j, n_(i+) and n_(+j) are respectively the total number of observation of rows,
and the second total number of observation of columns. Table S3: Classes of Kappa statistic interpretation.
The Kappa statistic is a measure of the difference between the actual agreement of real objects observable on
Google Maps with resulted classes, and an agreement due to chance (where real objects are compared with
a random classification). Kappa varies between 0 and 100, where values close to 0 represent a poor agreement,
and values close to 100 are indicated as excellent level of agreement. Figure S1: A subset of the photointerpreted
vegetation map produced at 1:5000 scale by visual interpretation of aerial ortophotos, and a subset of the floristic
field data classified according with the Habitats directive (92/43/EEC). Table S4: Nomenclature homogenization
between the produced phenology-based map and the vegetation map. Table S5: Nomenclature homogenization
of the EC habitats (92/43/EEC) types: 1210 (Annual vegetation of drift lines), 2110 (Embryonic shifting dunes),
2120 (Shifting dunes along the shoreline with Ammophila arenaria), 2210 (Crucianellion maritimae fixed beach dunes),
2230 (Malcolmietalia dune grasslands), 2250 (Coastal dunes with Juniperus spp.), 2260 (Cisto-Lavanduletalia
dune sclerophyllous scrubs), 2270 (Wooded dunes with Pinus pinea and/or P. pinaster). Table S6: Results of the
harmonization test (error matrix and Kappa statistic) between phenology-based classes in the first hierarchical
level of classification and the photo–interpreted classification map. Table S7: Results of the harmonization test
(error matrix and Kappa statistic) between phenology-based classes and the photo–interpreted classification
map in the second hierarchical level of classification. Table S8: Results of the harmonization test (error matrix
and Kappa statistic) between phenology-based classes in the third hierarchical level of classification and the
photo–interpreted classification map. Table S9: Results of the harmonization test (error matrix and Kappa statistic)
between phenology-based classes in the first hierarchical level of classification and habitats of conservation
concern (Habitats Directive; 92/43/EEC; Table 1) assigned on 2 m floristic plots collected in the field. Table S10:
Results of the harmonization test (error matrix and Kappa statistic) of between phenology-based classes in the
second hierarchical level of classification and habitats of conservation concern (Habitats Directive; 92/43/EEC;
Table 1) assigned on 2 m floristic plots collected in the field. Table S11: Results of the harmonization test (error
matrix and Kappa statistic) between phenology-based classes in the second hierarchical level of classification and
habitats of conservation concern (Habitats Directive; 92/43/EEC; Table 1) assigned on 2 m floristic plots collected in
the field.
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Abstract: Accurately mapping the boundary between land and water (the ‘waterline’) is critical
for tracking change in vulnerable coastal zones, and managing increasingly threatened water
resources. Previous studies have largely relied on mapping waterlines at the pixel scale, or employed
computationally intensive sub-pixel waterline extraction methods that are impractical to implement
at scale. There is a pressing need for operational methods for extracting information from freely
available medium resolution satellite imagery at spatial scales relevant to coastal and environmental
management. In this study, we present a comprehensive evaluation of a promising method for
mapping waterlines at sub-pixel accuracy from satellite remote sensing data. By combining a
synthetic landscape approach with high resolution WorldView-2 satellite imagery, it was possible to
rapidly assess the performance of the method across multiple coastal environments with contrasting
spectral characteristics (sandy beaches, artificial shorelines, rocky shorelines, wetland vegetation and
tidal mudflats), and under a range of water indices (Normalised Difference Water Index, Modified
Normalised Difference Water Index, and the Automated Water Extraction Index) and thresholding
approaches (optimal, zero and automated Otsu’s method). The sub-pixel extraction method shows a
strong ability to reproduce both absolute waterline positions and relative shape at a resolution that far
exceeds that of traditional whole-pixel methods, particularly in environments without extreme contrast
between the water and land (e.g., accuracies of up to 1.50–3.28 m at 30 m Landsat resolution using
optimal water index thresholds). We discuss key challenges and limitations associated with selecting
appropriate water indices and thresholds for sub-pixel waterline extraction, and suggest future
directions for improving the accuracy and reliability of extracted waterlines. The sub-pixel waterline
extraction method has a low computational overhead and is made available as an open-source tool,
making it suitable for operational continental-scale or full time-depth analyses aimed at accurately
mapping and monitoring dynamic waterlines through time and space.

Keywords: waterline extraction; sub-pixel; surface water mapping; coastal monitoring; data cube;
contour extraction; water extraction; water indices; thresholding; remote sensing

1. Introduction

Accurately mapping the boundary between land and water (the ‘waterline’) is critical for tracking
coastal change and managing water resources in an era characterised by the increasing environmental
impacts of development and anthropogenic climate change. By providing repeated observations of
dynamic coastal zones and inland waters through time, satellite remote sensing provides a powerful
and cost-effective alternative to traditional land-based surveys or waterline extraction methods based on
sporadically acquired aerial data [1]. Historically, the use of satellite data for operational environmental
monitoring has been limited by data access restrictions, inconsistent data structures and formats,
a requirement for time and resource-intensive pre-processing before analysis could be conducted, and
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rapidly increasing data volumes which made desktop-based analyses of large extents or long time-series
impractical [2]. In recent years, the development of high-performance earth observation ‘data cubes’
such as the Open Data Cube [3,4] and Google Earth Engine [5] have revolutionised the analysis of
extremely large and complex remote sensing datasets [2]. By organising freely available medium
resolution satellite imagery such as Landsat or Sentinel-2 into spectrally and geometrically calibrated
stacks of analysis-ready data, these platforms support the development of new automated and cost
effective workflows for consistent, rapid and repeatable operational monitoring of environmental
change across time and space [4]. Data cube approaches leveraging multi-decadal remote sensing time
series have so far been used successfully in a wide range of coastal and inland water applications,
including monitoring 33 years of coastal change across global sandy beach shorelines [6], mapping the
topography and extent through time of threatened intertidal ecosystems [7–10], and tracking changes
in the distributions of inland waterbodies at both continental and global scale [11,12].

Although data cube platforms have driven a paradigm shift in the maximum spatio-temporal
scale of analyses that are possible using remote sensing, the ability to accurately monitor environmental
change at fine spatial scales remains critical for many potential coastal and inland water applications
based on accurately modelling the position of the waterline. These include monitoring coastal
erosion along narrow, steep coastlines [13], modelling dynamic intertidal topography and geomorphic
change [14,15], and assessing small changes in water levels within narrow or steep sided inland rivers
and waterbodies [16,17]. Most remote sensing studies to date have mapped the boundary between
land and water in the landscape using binary classifiers based on either machine learning [11,12,18], or
thresholding either a single satellite band [19–21] or remote sensing water index such as the normalised
difference water index or NDWI [7,22–27]. These methods are inherently limited to the resolution of the
satellite sensor, and are unable to resolve changes in waterline positions occurring at a scale of less than
a whole pixel (e.g., 10 m for Sentinel-2 or 30 m for Landsat; [28]). Although high resolution satellite
data from commercial providers such as Planet Labs and DigitalGlobe are increasingly available for
these applications [29,30], these sources of data are typically prohibitively expensive to implement
across regional to global extents, and lack either the temporal depth or systematic revisit frequency
that are available for medium resolution satellite programs with coarser pixel resolutions (e.g., Landsat
imagery available since 1972, [31]). Accordingly, there is a pressing need for the development of
operational methods for extracting waterline information from freely available medium resolution
satellite imagery at spatial scales relevant to coastal and environmental management.

By collapsing a complex heterogeneous landscape into a binary land-water classification,
whole-pixel approaches to waterline mapping potentially discard valuable information about subtle
differences between the spectral characteristics of neighbouring pixels. This information can be used
to obtain more nuanced insights into the structure and location of dynamic waterlines through time.
Recently, new techniques have been developed to extract the location of the waterline at sub-pixel
resolution from medium resolution satellite data by utilising a pixel’s neighbourhood to optimise the
position of the waterline. Pardo-Pascual [32,33] and Almonacid-Caballer [34] developed a two-step
process where waterlines were first identified at the whole-pixel scale based on infrared Landsat
bands, then adjusted to sub-pixel level by fitting a fifth-degree polynomial function to a 7 x 7 pixel
neighbourhood around each whole-pixel point. The Laplacian of this function was then calculated
to identify the maximum gradient of change. The location of this inflection point between land and
water could vary within the extents of a pixel itself, allowing waterlines to be extracted at a higher
accuracy relative to the underlying 30 m imagery resolution (e.g., 4.69 to 5.47 m root mean square
error or RMSE, [32]). While these techniques clearly demonstrate the potential sub-pixel waterline
mapping accuracy that can be achieved using only medium resolution satellite data, they have thus far
been implemented at relatively small scales (e.g., 800 m to 20 km of coastline, [32–34]) due to their
computational intensity (e.g., processing times of up to 5 seconds per kilometer of coastline, [32]). This
currently presents a challenge for operationally extracting large numbers of waterlines at continental
scale across a full archive of satellite imagery spanning 30+ years.
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Waterline mapping methods based on contour extraction provide a computationally efficient
alternative to more intensive modelling approaches. Foody et al. [35] demonstrated that by fitting
contours to a continuous 2D surface, the waterline could be positioned through the pixel rather than
being constrained to pixel boundaries. This produces visually intuitive smooth waterlines that closely
reproduce the true waterline position and shape without the distracting blocky pixel artefacts that
affect whole-pixel approaches. While early applications of the technique applied waterline extraction
to soft-classified layers where the exact proportion of water and land within each pixel was known
(e.g., [35–38]), recent applications have instead used remote sensing water indices such as NDWI which
can be calculated directly from open source remote sensing imagery [28,38,39]. These approaches have
proven able to extract waterline positions with high levels of accuracy in sandy beach environments
(e.g., up to 5.7 m against a 30 year validation dataset at Narrabeen Beach in eastern Australia, [38]).
However, applying these extraction methods to remote sensing water indices implicitly assumes
that index values respond consistently and linearly to underlying proportions of land and water
within a pixel, an assumption that has been poorly tested to date [40,41]. In addition, previous
studies have almost exclusively assessed the performance of these approaches within sandy beach
environments [28,38,39,42] at the expense of other complex coastal or inland environments (e.g., tidal
flats, wetland vegetation, artificial shorelines or rocky shorelines). A better understanding of how
sub-pixel waterline extraction responds to variation in spectral properties of different environments
and the selection and thresholding of water indices is critical for allowing these techniques to be scaled
up from small scale applications to operational analyses at the regional, continental or global scales.

In this study, we provide a comprehensive evaluation of a contour-based method for extracting
sub-pixel accuracy waterlines that can be rapidly applied to standard water indices with minimal
additional effort, enabling integration with large-scale automated remote sensing workflows (Figure 1).
We use a synthetic landscape approach to test the accuracy and precision of extracted sub-pixel
waterlines across contrasting environments (sandy beaches, artificial shorelines, wetland vegetation,
tidal mudflats and rocky shorelines), and assess how the performance of the method is affected by
water index selection and commonly used thresholding approaches. We test the method using high
resolution Worldview-2 imagery to verify our experimental findings in a complex, real-world coastal
case study, and use our results to make best-practice recommendations for the future application of
sub-pixel approaches for mapping waterlines consistently across time and space.
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Figure 1. Overview of the experimental design followed in this study, including the synthetic landscape
component based on spectra extracted from Landsat-8 (a–b), and the real-world application component
based on high resolution WorldView-2 satellite imagery (c–d). Sub-pixel waterlines for both components
of the study were extracted for multiple environment, water index, threshold and resolution scenarios
(e), and statistically compared against traditional whole-pixel waterlines (f).

2. Materials and Methods

We conducted a synthetic landscape experiment to evaluate how accurately and precisely extracted
waterlines could reproduce true waterline positions under controlled conditions, without the influence
of environmental or sensor-related factors (e.g., tides, sensor noise, white water, cloud cover). We
generate a simplified but environmentally plausible synthetic landscape using a hyperbolic tangent
shape equation [43]. This equation was originally developed to empirically describe the shape of
headland bay beach shorelines, and produces a range of steep to shallow curvatures which are suitable
for evaluating sub-pixel waterline extraction method performance. The equation is defined as:

y = ±a tanh m (bx) (1)

where y = distance across shore in metres; x = distance alongshore in metres; and a (units of length),
b (units of 1/length), and m (dimensionless) are empirically-determined coefficients. We used values
derived by Moreno and Kraus [43] from a study of 46 beaches in Spain and North America to generate
the curve, and converted this function into a two-dimensional 1200 by 600 array where each cell
represented a 1.0 x 1.0 m resolution ‘land’ or ‘water’ pixel.

2.1. Influence of Environment on Waterline Extraction Performance

2.1.1. Sample Spectra and Index Calculation

To assess subpixel waterline extraction performance across a range of common land-water
boundaries, we extracted a set of typical spectra from freely available Landsat 8 OLI imagery
available within the 30 year Digital Earth Australia archive produced by Geoscience Australia [3,4].
This data is available as atmospherically and terrain corrected ‘analysis-ready’ data processed to
surface reflectance, allowing reliable spectra to be extracted with no additional processing or calibration
required [44]. We focused on five commonly studied environments to explore the influence of contrasting
spectral properties on waterline extraction performance: a) sandy beaches [1,6,28,33,34,38,42],
b) artificial shorelines [32,45], c) rocky shorelines [10,29,45], d) wetland vegetation [46–48], and
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e) tidal mudflats [7,10,19,49]. Paired samples of land and neighbouring water spectra were extracted
from cloud free imagery along the Australian coastline by taking the mean value for each satellite
band within each sample region (Figure 2). Imagery acquired at low tide was selected in the case
of the tidal mudflat environment. As it would be impractical to analyse the full range of natural
spectral variability for any of these individual environments, the sample spectra were intended to
serve as a set of spectrally unique examples rather than an exhaustive and representative sample of
natural conditions. For each environment, spectral values were assigned to the ‘land’ and ‘water’
pixels of the synthetic landscape to create a multispectral array with six spectral bands (red, green,
blue, near-infrared, shortwave infrared 1, shortwave infrared 2) broadly shared by frequently used
sources of open-source satellite imagery (e.g., Landsat TM, ETM+, OLI and Sentinel 2 MSI).

Using this array as a high-resolution (i.e., 1.0 m) reference dataset, we then simulated a typical
medium resolution satellite dataset (e.g., Landsat) by spatially aggregating the higher-resolution data
to a spatial resolution of 30 m using an ‘average’ aggregation rule. This reduced resolution 30 m dataset
was then used as the basis for waterline extraction. Initially, we computed a series of common water
extraction indices. The normalised difference water index (NDWI, [50]) is one of the most commonly
used remote sensing water indices, having been applied to facilitate waterline delineation in a wide
range of papers across inland [23,24,26] and coastal environments [7,10,25,51]. This index ranges
from -1.0 (land) to 1.0 (water), and uses the ratio of visible green and near-infrared (NIR) reflectance
to separate water pixels from land based on water’s high reflectance of visible green light and low
reflectance of NIR, and the high reflectance of NIR by dry soil and terrestrial vegetation:

NDWI =
(Green−NIR)
(Green + NIR)

(2)

Recently, a modification of the NDWI which substitutes short-wave infrared (SWIR) in place of
NIR has seen increasing popularity for waterline extraction [22]. This modified normalised difference
water index (MNDWI) has been suggested as a more accurate alternative to NDWI, particularly in
environments affected by white water from surf or high levels of turbidity [1,33]. However, this index
can produce poor results in intertidal environments where wet substrate remaining after high tide is
often mapped as open water [19,20].

MNDWI =
(Green− SWIR 1)
(Green + SWIR 1)

(3)

The automated water extraction index (AWEI) has been proposed to address these limitations of
both NDWI and MNDWI. Unlike NDWI and MNDWI, which are based on the relative ratio of green
and near-infrared or shortwave radiation, AWEI is based on the sum of multiple spectral bands, and
has been shown to produce higher water identification accuracy across a broad range of coastal and
inland water environments by maximising spectral contrast between water and land classes [52]. While
two formulations of the AWEI have been proposed to deal with extreme shadows in mountainous
environments, we focused on the ‘non-shadow’ variant (AWEIns) in this study due to the typically low
relief of the five environments being assessed:

AWEIns = 4× (Green− SWIR 1) − (0.25×NIR + 2.75× SWIR 2). (4)
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Figure 2. Paired samples of land and neighbouring water surface reflectance spectra from five
contrasting environments along the Australian coastline (a–e). Spectra were extracted from cloud-free
Landsat 8 OLI imagery from the Digital Earth Australia archive [3,4].
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2.1.2. Waterline Extraction

We extracted sub-pixel resolution waterlines for each environment and water index using the
marching squares with linear interpolation contour extraction algorithm implemented in the Python
skimage.measure.find_contour function [53,54]. Contour-based methods aim to detect the boundary
between two classes based on a two-dimensional input surface (for example, precisely mapping
the position of a given elevation contour from a digital elevation model). When used to extract
sub-pixel waterlines from a continuous water index surface, we make the assumption that low or
medium resolution pixels along the land-water boundary represent mixed pixels, and that water
index values (e.g., NDWI) for these pixels directly reflects the relative proportion of water and land
within those pixels. It should therefore be possible to compare the relative water index values of two
neighbouring pixels, and use this comparison to more precisely locate the boundary between land and
water than simply drawing a line directly along their pixel boundaries. The marching squares with
linear interpolation algorithm linearly interpolates between the water index values of neighbouring
pixels to map out the precise location of the waterline according to a specified threshold value [53].
For example, where a land pixel has a water index value that is similar to its neighbouring water
pixel (indicating the land pixel may contain a significant proportion of water), this will result in the
output waterline position being shifted in an inland direction. Theoretically, this allows the location of
the derived waterline to be identified at a precision that exceeds the resolution of the input satellite
imagery [53].

As waterlines derived from remote sensing water indices can be highly sensitive to the threshold
value selected to separate land from water, we extracted subpixel waterlines for three unique
thresholds: an ‘optimal’ threshold, a ‘zero’ water index threshold, and an automatically derived
threshold. The ‘optimal’ threshold represented the threshold that most closely replicated the high
resolution reference shoreline, and was identified for each environment and water index scenario by
iterating through a wide range of threshold scenarios (from–1.0 to 1.0 in 0.01 increments for NDWI and
MNDWI, and from –2.0 to 2.0 in 0.01 increments for AWEIns given its larger range of possible values),
and selecting the water index that produced the lowest RMSE compared to the high resolution reference
waterline. This threshold scenario was intended to compare the best-possible waterline extraction
performance in an application where the ideal water index threshold was known. As knowing the
ideal threshold ahead of an analysis is often not possible, the ‘zero’ water index threshold scenario used
a constant zero threshold to extract waterlines, a procedure which is commonly used in operational
waterline extraction applications conducted across large spatial extents [7,10]. Finally, procedures
for automatically deriving threshold values based on the histogram distribution of water index
values have been increasingly used to provide improved waterline extraction performance in complex
heterogeneous environments where a single threshold (i.e., 0) would produce poor results [6,39,42].
We used Otsu thresholding implemented by the Python function skimage.filters.threshold_otsu to
calculate an automatic threshold for each environment and water index [54,55]. This image processing
approach identifies a threshold value that best separates a histogram of water index values into two
distinct classes (e.g., water and land, [55]).

Subpixel shorelines extracted for each environment, water index and threshold scenario were
converted to vector line features to facilitate comparisons against the 1.0 m high-resolution reference
waterline. To provide a comparison dataset against which to compare the accuracy and precision of
sub-pixel resolution waterlines, we additionally extracted matching waterlines for each scenario using
a traditional whole-pixel thresholding approach (henceforth, ‘whole-pixel’ waterlines). This involved
identifying all pixels with a water index equal to or above the given threshold as ‘water’ pixels and all
values less than the threshold as ‘land’ pixels. This thresholded dataset was then polygonised, and a
vector line feature extracted along the boundary of the two classes.
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2.1.3. Statistical Comparison

We evaluated the ability of our two extracted waterlines to reproduce the true waterline position
by computing distances (errors) between the 1.0 m high-resolution reference waterline and each set of
sub-pixel and whole-pixel waterlines. At 1.0 m intervals along the reference waterline, we calculated
Euclidean distance to the nearest point on both the sub-pixel and whole-pixel waterlines using the
distance method from the shapely Python package [56]. Distances were assigned a direction (water- or
land-ward offset from the reference waterline) based on whether the comparison point fell in a ‘land’ or
‘water’ pixel in the synthetic landscape: if the comparison point fell in a ‘land’ pixel, this distance was
assigned a negative value to infer a land-ward offset. These distance errors were calculated for each
environment, water index and threshold scenario, and compared using split violin plots to visualize
error distributions between the sub-pixel and whole-pixel water extraction approaches. We additionally
calculated two summary statistics to evaluate the extracted waterlines: root mean square error (RMSE)
assessed the absolute accuracy of the derived waterlines compared to the reference waterline, while
standard deviation allowed us to compare overall precision, or how closely the extracted waterlines
replicated the overall shape of the reference shoreline even if the lines were consistently offset in a
water or land-ward direction (e.g., a shoreline that closely followed the relative shape of the reference
shoreline would have a low variability in error values).

2.2. Real-World Application Using WorldView-2

Although the synthetic data-based modelling framework above allowed us to rapidly test and
isolate the performance of sub-pixel waterline extraction across a wide range of environmental
and image processing scenarios, the theoretical approach represented a significant simplification of
the complex heterogeneous environments typically found in satellite imagery. To complement the
theoretical analysis, we assessed sub-pixel waterline extraction using high resolution satellite imagery.
We obtained a largely cloud-free 2.0 m resolution WorldView-2 (WV-2) image (acquired 13th November
2010, 00:40 UTC) for a complex coastal region in north-western Queensland that contained extensive
sandy beaches and rocky shoreline environments (Figure 3). This six band multispectral image (red,
green, blue, yellow, near infrared 1, near infrared 2) was processed to surface reflectance using a
bidirectional reflectance distribution function (BRDF) and topographically corrected MODTRAN-based
atmospheric correction as detailed in Li et al. [44]. As WV-2 lacks the shortwave infrared bands
required to compute MNDWI and AWEIns, we focused on NDWI (using the NIR 1 band) as the water
index used to extract waterlines.

To provide a high-resolution reference shoreline, we extracted a vector shoreline at the imagery’s
native 2.0 m resolution based on a consistent zero NDWI threshold. While this consistent threshold did
not account for the different coastal environments present in the image, using a consistent threshold
allowed us to provide a single point-of-truth within the modelling framework that could be compared
consistently against lower resolution shorelines, and eliminated any subjectivity associated with
manually digitising shorelines. This reference waterline was stratified into sandy beaches and rocky
shorelines by visually inspecting the underlying true colour WV-2 imagery, allowing us to compare
results across different coastal environments.

To eliminate the confounding influence of tidal processes and coastal change between image
acquisitions, we simulated lower resolution satellite imagery using spatially degraded versions of the
WV-2 image itself rather than obtain co-incident imagery from other satellite platforms (e.g., Landsat
or Sentinel 2). We progressively spatially degraded the 2.0 m resolution WV-2 image from 4 m to 30
m (in 2 m increments) using the average aggregation rule applied in the theoretical approach. Each
aggregated image was used to compute NDWI, and extract sub-pixel and whole-pixel waterlines for the
optimal, zero and automated Otsu index threshold scenarios above. Otsu thresholding was conducted
separately on the two coastal environments (sandy beaches and rocky shorelines) by first buffering the
reference shoreline by 50 m, and using this polygon as a mask to ensure that water and land classes
were equally represented in the NDWI layer (an assumption of the Otsu process). Waterlines for each

80



Remote Sens. 2019, 11, 2984

scenario were then statistically compared against the reference waterline by computing Euclidean
distance errors at 1 m intervals along the extracted waterlines, and assessing RMSE and standard
deviation error across the range of spatial resolutions for each of the two coastal environments.

Figure 3. The 2 m resolution WorldView-2 image for the Cape Tribulation region in north-western
Queensland used for the real-world application component of this study indicate regions featured in
Figure 8.
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All analyses in this study were conducted on Australia’s National Computing Infrastructure’s
Virtual Desktop infrastructure (8 vCPUs, 32GB RAM). Code was written in the Python 3.6 programming
language based on open-source functions from the OpenDataCube (https://www.opendatacube.org/),
xarray [57], NumPy [58], SciPy [59], scikit-image [54] and pandas [60] libraries. All figures were
generated using xarray, Matplotlib [61] and seaborn [62] data visualization libraries.

To allow the analyses presented here to be applied to future studies, functions for rapidly extracting
waterlines from large multi-dimensional satellite data arrays are provided as an open-source toolset
(Supplementary Materials).

3. Results and Discussion

3.1. Sub-Pixel Waterline Extraction Performance

We evaluated waterline extraction performance based on our synthetic landscape approach by
comparing the distribution of distances in metres from the modelled to the reference shoreline (errors),
using root mean squared error (RMSE) to evaluate whether errors were tightly distributed around 0
(Figure 4). Across 38 of our 45 synthetic landscape scenarios, RMSE for sub-pixel waterline extraction
was lower compared to the whole-pixel approach, a clear result that indicated the method was able to
more accurately represent the reference waterline position. This was particularly true for ‘optimal’
threshold scenarios, where sub-pixel waterlines were between 2.1 to 5.8 times more accurate than
equivalent whole-pixel waterlines across all landscapes and water indexes (Table 1, Figure 4). Sub-pixel
waterline accuracy was the highest using the AWEIns index, where all waterlines extracted from the 30
m resolution data using ‘optimal’ thresholds had an RMSE of 1.50–1.51 m (Table 1, Figure 4). All seven
scenarios where sub-pixel waterlines had higher RMSE than whole-pixel waterlines occurred using
‘zero’ thresholding (see Section 3.3, Effect of Water Index Threshold below).

Calculating RMSE allowed us to compare waterline extraction accuracy in absolute terms.
However, many applications of waterline extraction such as coastal erosion and inland water level
monitoring require an ability to monitor the relative location or shape of the shoreline consistently
across time. To quantify how precisely waterline extraction approaches could reproduce the shape
of the waterline, we calculated the standard deviation of errors between the modelled and reference
waterline, assuming that a low variance in errors indicated that modelled shorelines were always
positioned a consistent distance away from the true shoreline position. In all 45 scenarios, sub-pixel
waterline errors exhibited significantly lower variance compared to whole-pixel waterlines, indicating
a far better reproduction of waterline shape at a scale of less than one pixel (Table 1, Figure 4). Although
this result was most pronounced across ‘optimal’ threshold scenarios where standard deviations were
up to 5.5 times lower than whole-pixel waterlines, lower variances (i.e., 1.9 to 4.6 times lower) were
also found across all ‘zero’ threshold scenarios (Table 1, Figure 4). This was the case even when
sub-pixel waterlines had higher RMSE due to being clearly offset from the reference waterline position.
Importantly, this result suggests that the resulting sub-pixel waterlines are likely to better reflect the
relative waterline shape, even when offset land or sea-ward from the true waterline position due to an
inappropriate choice of water index threshold. This result indicates that even a zero threshold approach
based on a non-optimal water index threshold combined with sub-pixel waterline extraction can be
suitable for applications where the priority is consistently monitoring trends in relative water line
positions through time. As we illustrate in the following sections, selecting the appropriate thresholds
and indexes both spatially and temporally to enable like-for-like comparison is a non-trivial exercise.
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Figure 4. Error distributions compared to the reference waterline for sub-pixel (blue or dark) and
whole-pixel (orange or light) waterline extraction approaches across five sample environments with
contrasting spectral characteristics (y-axis). Errors were assessed for three water indices (vertical
panels) and three thresholding approaches (horizontal panels). Errors distributed around 0 indicate
a good reproduction of the absolute waterline position, while tightly distributed errors represent a
good reproduction of the relative shape of the waterline (even if waterlines were offset by a constant
distance from the reference waterline). Two tidal mudflat scenarios failed to extract waterlines due to
the inability of a 0 MNDWI or AWEIns water index to separate turbid water from wet intertidal mud.
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Table 1. Root mean squared error (RMSE in metre units) and standard deviation (in metre units)
of errors compared to the reference waterline for sub-pixel and whole-pixel waterline extraction
approaches across five sample environments with contrasting spectral characteristics. Waterline
extraction methods were compared using three water indices (normalised difference water index
(NDWI), modified normalised difference water index (MNDWI), and automated water extraction index
‘non-shadow’ variant (AWEIns)) and thresholding strategies (optimal thresholding, zero thresholding
and automated Otsu thresholding). Bold cells in the RMSE and standard deviation columns indicate
the best modelling performance for each scenario (i.e., sub-pixel or whole-pixel waterlines).

RMSE (m) Standard Deviation (m)

Spectra Water Index Threshold Sub-pixel Whole-pixel Sub-pixel Whole-pixel

Sandy beach NDWI Optimal 3.74 8.63 3.73 7.60
Zero 4.17 12.85 3.87 8.35
Otsu 10.07 14.93 4.31 8.39

MDWI Optimal 3.99 8.63 3.97 7.60
Zero 5.53 14.93 4.21 8.39
Otsu 9.40 16.24 4.48 8.80

AWEIns Optimal 1.50 8.63 1.50 7.59
Zero 21.60 16.94 4.37 8.94
Otsu 1.58 8.63 1.49 7.60

Artificial
shoreline NDWI Optimal 3.48 8.63 3.39 7.60

Zero 3.89 12.85 3.61 8.35
Otsu 5.63 14.93 3.77 8.39

MDWI Optimal 3.68 8.63 3.65 7.60
Zero 3.68 9.58 3.65 8.03
Otsu 10.32 14.93 4.28 8.39

AWEIns Optimal 1.51 8.63 1.51 7.59
Zero 20.39 16.24 4.06 8.80
Otsu 1.53 8.70 1.50 8.27

Rocky
shoreline NDWI Optimal 2.73 8.63 2.72 7.60

Zero 5.64 12.85 2.98 8.35
Otsu 7.67 14.93 3.14 8.39

MDWI Optimal 2.93 8.63 2.93 7.60
Zero 6.72 14.43 3.29 8.22
Otsu 7.01 14.93 3.32 8.39

AWEIns Optimal 1.50 8.63 1.51 7.59
Zero 19.79 16.24 3.90 8.80
Otsu 1.57 8.63 1.49 7.60

Wetland
vegetation NDWI Optimal 1.75 8.63 1.74 7.59

Zero 3.06 8.98 1.67 7.70
Otsu 4.04 8.98 1.71 7.70

MDWI Optimal 1.52 8.63 1.52 7.59
Zero 18.45 13.41 4.32 8.42
Otsu 2.08 9.04 1.62 9.04

AWEIns Optimal 1.51 8.63 1.51 7.59
Zero 9.02 10.05 2.04 8.85
Otsu 1.56 8.70 1.49 8.27

Tidal
mudflat NDWI Optimal 1.75 8.63 1.74 7.59

Zero 17.68 13.23 3.76 8.60
Otsu 4.32 9.58 1.73 8.03

MDWI Optimal 1.55 8.63 1.55 7.60
Otsu 2.22 8.98 1.53 7.70

AWEIns Optimal 1.51 8.70 1.51 8.27
Otsu 1.51 8.70 1.51 8.27

3.2. Effect of Spectra and Water Index

While sub-pixel waterlines more accurately and precisely reproduced reference waterline position
and shape across the majority of our scenarios, we observed key differences by environment type which
have important implications for remote sensing-based waterline extraction. ‘Optimal’ threshold results
for our two normalised difference water indices (NDWI and MNDWI) showed a consistent trend of
decreasing RMSE and standard deviation which coincided with a decrease in spectral contrast between
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water and land features (e.g., lower accuracy and precision along high contrast artificial shorelines
and sandy beaches, and better accuracy and precision in low contrast tidal mudflats and wetland
vegetation; Figure 4). For example, sub-pixel RMSE and standard deviation for NDWI waterlines
improved from 3.74 and 3.73 m in sandy beach environments to 1.75 and 1.74 in tidal mudflats (Table 1).
This effect could be qualitatively observed by comparing the shape of the shorelines generated for
sandy beach and tidal mudflat environments (Figure 5). In tidal mudflats environments with low
spectral contrast between wet mud and turbid water, sub-pixel waterlines closely follow the true shape
of the reference shoreline along the entire length of the synthetic coastline. In comparison, sub-pixel
waterlines in sandy beach environments displayed repeated undulating artefacts along the shallower
curved region of the landscape (Figure 5). In these environments, high contrast between bright sand
and dark water reduced the ability of the sub-pixel waterline extraction to resolve fine-scale curves or
subtle undulations in waterline shape.

Although spectral contrast appeared to negatively affect both NDWI and MNDWI, the AWEIns

index did not reveal any relationship with spectral contrast. Accuracy and precision for AWEIns

remained relatively constant across all environments (Table 1, Figure 4), with no obvious step-like
artefacts visible in the resulting waterlines (Figure 5). An explanation for this effect can be found in
the non-linear response of certain water index values to the sub-pixel fractional coverage of water
within each pixel. In environments with bright land features and dark water, a small increase in the
proportion of land within a pixel can produce a large change in remote sensing indices like NDWI
that are based on the ratio of visible and infrared radiation. To visualise this, we can calculate an
NDWI value based on the weighted average spectra for each satellite band as the percentage of land
within the pixel increases from 0 to 100% (Figure 6). In a low contrast environment such as a tidal
flat, NDWI values decrease approximately linearly with increasing land. However, in a high contrast
sandy beach environment, even a small increase in land coverage (e.g., from 0% to 10%) can result in
a rapid decrease in NDWI. When used as the input for sub-pixel waterline extraction, this response
drives the repeated undulating response of the waterline, with the resulting waterline position highly
affected by a small change in the fractional coverage of bright sand. In contrast, the AWEIns index
is based on the sum of six spectral bands and linear coefficients, and responds linearly to increasing
proportion of land or water within a pixel (Figure 6).
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Figure 5. An example of sub-pixel (blue or dark) and whole-pixel (orange or light) waterlines
extracted for three water indices (NDWI, MNDWI and AWEIns; vertical panels) across two contrasting
environments: sandy beaches (left panels) and tidal mudflats (right panels). The reference waterline
is shown by a dotted line. In high spectral contrast sandy beach environments, sub-pixel NDWI and
MNDWI waterlines display repeated undulating artefacts, particularly along the shallower eastern
curve of the synthetic beach landscape (see inset). Sub-pixel waterlines for the AWEIns index and all
water indices within low spectral contrast tidal flat environments more closely followed the reference
shoreline shape with greatly reduced undulating artefacts.

Figure 6. A comparison of the response of the NDWI (left) and AWEIns (right) water indices to the
fractional composition of land within a pixel. Normalised difference indices such as NDWI respond
non-linearly to increasing proportion of land within a pixel, particularly within high spectral contrast
sandy beach environments. In contrast, the AWEIns index responds linearly regardless of spectral
contrast between land and water.
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3.3. Effect of Water Index Threshold

The ‘optimal’ water index threshold scenarios allowed us to assess the theoretical limits of
sub-pixel waterline extraction performance under ideal conditions where the value of the best threshold
value was known. However, threshold selection remains one of the key limitations of satellite-derived
waterline extraction, particularly where reference data is not available to tailor the threshold to
contrasting heterogeneous coastal or inland water environments [1,63]. This is frequently the case
for operation analyses aimed at modelling waterlines across large spatial extents (e.g., at regional,
continental or global scale). To evaluate how sub-pixel waterline extraction performs when the optimal
value of the threshold is not known in advance, we also compared performance using two more realistic
threshold selection strategies. The simplest ‘zero’ threshold scenario applied a consistent threshold
of zero to all environments and metrics, in an approach which has been widely used in waterline
extraction analyses [7,22,64]. Our results indicate a uniform zero threshold was unable to consistently
reproduce the absolute reference waterline position across the five contrasting environments or three
water indices we assessed. In an extreme example, a ‘zero’ threshold for tidal mudflat environments
completely failed to differentiate between land and water for both the MNDWI and AWEIns indices
due to the spectral similarity of wet substrate with turbid water in the short-wave infrared satellite
bands that were utilised by both indices ([19,20], Figure 4). Although poor modelling performance was
observed using the ‘zero’ threshold for both sub- and whole-pixel waterlines, the narrower distribution
of sub-pixel waterline errors meant that this method was more sensitive to poor threshold selection
compared to whole-pixel waterlines whose larger error distribution typically overlapped with the true
location of the waterline (Table 1, Figure 4).

To address the limitations of a consistent zero threshold, we assessed model performance using
water index thresholds optimised using Otsu’s method. Otsu has been proposed as an automated
method for deriving locally-tuned threshold values for operational waterline analyses, however, the
performance of the approach on sub-pixel waterline accuracy has not previously been assessed. Our
results indicate that ‘Otsu’ thresholding significantly improved the consistency of waterlines extracted
using the sub-pixel approach, leading to error distributions which were generally narrower than
corresponding zero threshold distributions, and more comparable across different environment types
(Figure 4). This was particularly the case for wetland vegetation and tidal mudflat environments,
which saw improvements in overall RMSE of up to 16.4 m between ‘zero’ and ‘Otsu’ scenarios (e.g.,
wetland vegetation MNDWI; Table 1, Figure 4). Although Otsu typically did not reproduce the absolute
or relative accuracy of ‘optimal’ thresholds, the improvement in results compared to zero threshold
scenarios results indicates that automated threshold selection can complement sub-pixel waterline
extraction approaches. This is likely to be particularly significant in large-scale analyses covering
diverse environment types, where the influence of inappropriate threshold selection may overwhelm
increases in accuracy gained from implementing sub-pixel waterline extraction methods.

3.4. Real-World Application

By progressively spatially degrading high resolution (2 m) WorldView-2 remote sensing imagery,
it was possible to simulate lower resolution satellite imagery and assess the impact of spatial resolution
on waterline extraction performance in a more complex real-world scenario. At 30 m resolution
(equivalent to Landsat TM, ETM+ and OLI bands), sub-pixel waterlines were 1.9 to 2.3 times more
accurate than whole-pixel waterlines both in absolute terms (e.g., RMSE of 3.28–4.52 m compared
to 7.46–8.73 m for whole-pixel waterlines), and in their ability to reproduce the relative shape of the
reference coastline (e.g., standard deviation of 3.27–4.42 m compared to 7.46–8.70 m; Table 2, Figure 7).
The ability of the sub-pixel approach to accurately reproduce the true waterline even at this relatively
coarse resolution can be qualitatively observed in Figure 8a, where sub-pixel waterlines (blue) closely
follow small undulations in the path of the dashed 2 m high resolution waterline which are considerably
smaller in scale than the pixel resolution captured by the equivalent whole-pixel waterlines.
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Table 2. Root mean squared error (RMSE in metre units) and standard deviation (in metre units) of
sub-pixel and whole-pixel waterline extraction errors compared to the 2 m resolution WorldView-2
reference waterline. Results are shown for optimal NDWI thresholds for two coastal environments
(rocky shorelines and sandy beaches) and four key resolutions (4 m as relevant to Planet Labs 3 m
PlanetScope and 5 m RapidEye imagery, 10 m and 20 m as equivalent to Sentinel 2 MSI, and 30 m as
equivalent to Landsat TM, ETM+, and OLI). Bold cells for the RMSE and standard deviation columns
indicate the best modelling performance for each scenario (i.e., sub-pixel or whole-pixel waterlines).
For ‘zero’ and ‘Otsu’ threshold results, refer to Appendix A.

RMSE (m) Standard Deviation (m)

Environment Spatial Resolution (m) Sub-pixel Whole-pixel Sub-pixel Whole-pixel

Rocky shoreline 4 0.72 1.17 0.72 1.15
Rocky shoreline 10 1.43 2.65 1.43 2.65
Rocky shoreline 20 2.41 5.07 2.41 5.07
Rocky shoreline 30 3.28 7.46 3.27 7.46

Sandy beach 4 0.63 1.19 0.63 1.17
Sandy beach 10 1.47 2.80 1.47 2.79
Sandy beach 20 2.84 5.68 2.84 5.67
Sandy beach 30 4.52 8.73 4.42 8.70

Figure 7. Error distributions compared to the reference waterline for 30 m resolution sub-pixel (blue
or dark) and whole-pixel (orange or light) waterline extraction approaches across sandy beach and
rocky shoreline environments in the Worldview-2 image. Errors were assessed for the NDWI water
index and three thresholding approaches (horizontal panels). Errors distributed around 0 indicate a
good reproduction of the absolute waterline position, while tightly distributed errors represent a good
reproduction of the relative shape of the waterline (even if waterlines were offset by a constant distance
from the reference waterline).

Sub-pixel accuracy increased approximately linearly with increasing resolution, with subpixel
shorelines achieving accuracies of up to 2.41 m at 20 m Sentinel 2 resolution equivalent, and 1.43 m at
10 m Sentinel 2 resolution (Figure 9). Waterlines based on the original 2 m Worldview-2 dataset (8515
by 21352 pixels) were extracted in 3.98 seconds (± 115 ms for ten repetitions) for 143 km of coastline
on Australia’s National Computing Infrastructure’s Virtual Desktop infrastructure (8 vCPUs, 32GB
RAM). Waterline extractions at 30 m Landsat resolution took 1.93 seconds (± 116 ms) at a rate of 0.013
seconds per kilometer of coastline. This is equivalent to 13 minutes to process the entire ~60,000 km
coastline of Australia (the eighth longest coastline in the world), which is considered suitable for
large-scale operational analysis. Our results demonstrate that sub-pixel waterlines can be reliably and
efficiently extracted across complex heterogeneous coastal environments, and achieve accuracies that
consistently exceed the accuracy of traditional waterline extraction approaches regardless of the spatial
scale of analysis.
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Figure 8. An example of 30 m resolution sub-pixel (blue or dark) and whole-pixel (orange or light)
waterlines extracted using ‘optimal’ threshold selection across two contrasting environments: sandy
beaches (left panel) and rocky shorelines (right panel). The reference 2 m resolution WorldView-2
waterline is shown by a black dotted line overlaid over the WorldView-2 image. In high spectral contrast
sandy beach environments (a), sub-pixel waterlines display subtle undulating artefacts, while in lower
contrast rocky shoreline environments (b) sub-pixel waterlines closely follow small undulations in the
reference waterline position which are considerably smaller in scale than the 30 m pixel resolution.

Comparing two unique coastal environments (sandy beaches and rocky shorelines) allowed us
to assess whether we could reproduce the effects of spectral contrast on waterline accuracy that we
observed in the simulated landscape analysis. Although the effect was more subtle than in the simulated
analysis, Figure 9 highlights that RMSE accuracies for the sandy beach waterlines were routinely lower
than rocky shorelines, particularly at coarser resolutions (e.g., 30 m pixels). A qualitative inspection of
the resulting shorelines for these two environments revealed that high contrast white sandy beaches
were associated with similar repeated undulating artefacts (Figure 8a). While previous studies have
shown a relationship between spectral contrast and absolute waterline offsets (e.g., brighter land spectra
leading to a land-ward bias in waterline errors, [32]), our results indicate that caution should be used
when applying waterline extraction approaches to water indices such as NDWI or MNDWI which react
non-linearly to underlying distributions of water and land. This is particularly significant given the
majority of waterline extraction analyses to date have focused on analysing sandy beach environments
which are likely to be most vulnerable to contrast-driven modelling artefacts. While the limited
selection of available WorldView-2 bands prevented us from assessing model performance using an
alternative index such as AWEIns, we recommend that future studies evaluate model performance
using water indices that respond linearly to the fractional coverage of land and water. Alternatively,
sub-pixel waterline extraction could be applied directly to more physically meaningful water index
surfaces, such as per-pixel estimates of fractional water coverage derived from spectral unmixing
analysis [65–67]. This will ensure that sub-pixel resolution waterline positions can be compared reliably
across environments with unique and contrasting spectral characteristics.
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Figure 9. Waterline extraction accuracy (RMSE in metres) of sub-pixel (blue) and whole-pixel (orange)
waterlines compared for sandy beach and rocky shoreline environments. The effect of resolution
on accuracy was assessed by spatially degrading the 2.0 m resolution WV-2 image from 4 m to
30 m resolution using an ‘average’ aggregation rule (i.e., the graph’s x-axis; see insets for a visual
comparison of the aggregated imagery at resolutions corresponding to several common sources of
remote sensing data).

4. Conclusions

In this study, we have evaluated a sub-pixel waterline extraction method that shows a strong
ability to reproduce both absolute waterline positions and relative shape at a resolution that far exceeds
that of traditional whole-pixel thresholding methods, particularly in environments without extreme
contrast between water and land. Given the low computational overhead and open source availability
of the technique, the approach is likely to be suitable for large-scale waterline extraction analyses as an
easy-to-implement substitute for less precise whole-pixel approaches.

Although sub-pixel waterline extraction provides key advantages over whole-pixel approaches, the
extra sensitivity of the method makes it vulnerable to two key challenges facing remote sensing-based
waterline extraction in general: the selection and thresholding of a reliable water index [1]. Our
results indicate that although zero threshold approaches were unable to consistently reproduce
absolute waterline positions, sub-pixel waterlines based on a zero threshold were better able to model
relative waterline shape compared to whole-pixel waterlines. Simple zero threshold approaches to
mapping surface water are therefore likely to be enhanced through integration with sub-pixel waterline
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delineation, particularly when the application requires the consistent monitoring of relative water line
positions through time.

Where absolute accuracy is the priority, our results show that automated index thresholding
approaches (e.g., Otsu) can be combined with sub-pixel methods to extract waterlines that approach
the accuracy of optimal thresholds. However, while automated thresholding methods may work
successfully for small study areas and discrete time-steps, producing seamless and consistent waterline
datasets through time and across complex heterogeneous environments remains a challenge. There
is a critical need for the development of new continuous along-shore methods for determining
thresholds [68,69] and approaches for ensuring the temporal consistency of automated thresholds to
support optimising and operationalising the mapping of dynamic waterlines across space and time.
Finally, our results also highlight the importance of selecting remote sensing indices which respond
linearly to changes in underlying proportions of water and land, and suggest that future work should
focus on integrating the technique with more physically meaningful water indices which directly
quantify the proportion of water within each pixel.

To support future applications of the approach, we have provided the tools used to extract
sub-pixel waterlines as open-source code (Supplementary Materials). These functions can be applied
directly to large multi-dimensional satellite datasets, making them suitable for applying to large scale
remote sensing workflows such as those enabled by Open Data Cube [3,4] or Google Earth Engine [5].
By enabling the automatic extraction of sub-pixel waterlines consistently across space and time, it is
anticipated that these tools may supplement existing open source coastal monitoring software [70]
and assist in scaling up current local-scale waterline analyses to provide insights into drivers of
environmental change operating at regional, continental or global scales. Future work will focus on
applying sub-pixel waterline extraction methods to provide accurate estimates of waterbody area and
volume for inland reservoirs and lakes to monitor the impact of drought and water extraction within
semi-arid inland Australia, and operationalising the approach to monitor fine-scale erosion and coastal
change across complex coastal environments along the entire Australian coastline.

Supplementary Materials: Open-source code for extracting sub-pixel waterlines from multidimensional satellite
data arrays are available online: https://github.com/GeoscienceAustralia/dea-notebooks/tree/subpixel_waterlines.
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Appendix A

Table A1. Root mean squared error (RMSE in metre units) and standard deviation (in metre units) of
sub-pixel and whole-pixel waterline extraction errors compared to the 2 m resolution WorldView-2
reference waterline. Results are shown for two coastal environments (rocky shorelines and sandy
beaches), four key resolutions (4 m as relevant to Planet Labs 3 m PlanetScope and 5 m RapidEye
imagery, 10 m and 20 m as equivalent to Sentinel 2 MSI, and 30 m as equivalent to Landsat TM, ETM+
and OLI), and three thresholding strategies (optimal thresholding, zero thresholding and automated
Otsu thresholding). Bold cells for the RMSE and standard deviation columns indicate the best modelling
performance for each scenario (i.e., sub-pixel or whole-pixel waterlines).

RMSE (m) Standard Deviation (m)

Environment Spatial Resolution (m) Threshold Sub-pixel Whole-pixel Sub-pixel Whole-pixel

Rocky shoreline
4 Optimal 0.72 1.17 0.72 1.15

Zero 0.72 1.19 0.72 1.19
Otsu 2.10 2.50 1.72 2.24

Rocky shoreline
10 Optimal 1.43 2.65 1.43 2.65

Zero 1.43 2.66 1.43 2.65
Otsu 2.44 3.36 1.66 3.01

Rocky shoreline
20 Optimal 2.41 5.07 2.41 5.07

Zero 2.52 5.14 2.35 5.06
Otsu 3.20 5.58 2.49 5.27

Rocky shoreline
30 Optimal 3.28 7.46 3.27 7.46

Zero 4.23 7.68 3.16 7.44
Otsu 3.36 7.54 3.26 7.48

Sandy beach
4 Optimal 0.63 1.19 0.63 1.17

Zero 0.63 1.25 0.63 1.25
Otsu 2.17 1.81 1.80 1.43

Sandy beach
10 Optimal 1.47 2.80 1.47 2.79

Zero 1.56 2.80 1.51 2.79
Otsu 2.38 3.23 1.92 2.82

Sandy beach
20 Optimal 2.84 5.68 2.84 5.67

Zero 3.19 5.69 3.05 5.65
Otsu 2.96 5.96 2.84 5.67

Sandy beach
30 Optimal 4.52 8.73 4.42 8.70

Zero 5.00 8.79 4.89 8.70
Otsu 4.52 9.09 4.42 8.66
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Abstract: The wind wake on the lee side of Hainan Island in the winter covers the southwest entrance
of Beibu Gulf (or Gulf of Tonkin) and is essential to regional ocean dynamics. Using multiple satellite
observations including advanced synthetic aperture radar (ASAR), we revisited the wake process
during the winter of 2011. Asymmetric oceanic thermal responses were found with a warm band
expanding northwestwardly while a cold tongue formed to the southeast. Combining satellite
observations, model simulations, and reanalysis data, heat advection terms (ADV) are reconstructed
and compared to air-sea heat flux terms. The observed thermal evolution process across the wake
footprint is closely related to the balanced spatial variability from the Ekman ADV, the barotropic
geostrophic ADV, and the latent heat flux (LHF), which are all on the order of 10−5 K·m·s−1. Specifically,
the Ekman ADV tends to heat the northwestern side of the wake and cool the southeastern side, while
the geostrophic ADV compensates with the Ekman ADV across the wake footprint. This study reveals
detailed oceanic responses associated with the wind wake and clarifies the contribution of ADV to
the asymmetric spatial thermal variabilities. The identified role of heat advection on a sub-seasonal
timescale may further benefit the understanding of regional oceanic dynamics.

Keywords: Coastal process; wind wake; heat advection; multi-sensor; ASAR; oceanic thermal
response; Hainan Island

1. Introduction

Wind wakes are commonly observed on the lee side of an island with reduced wind speeds due
to frictions of land orography [1]. Concerning the oceanic response, wind wakes are documented to
generate regional thermal variability by different mechanisms depending on detailed hydrological
conditions [2,3], which could be further complicated by circulations and associated eddies [4,5]. The
wind wake of Hainan Island (HIWW) has been observed to the southwest coast of the island with
interactions between the land elevated orography and the Asian monsoon, collocating with a warm sea
surface temperature band [6]. A weak wind wake is also observed to the northwest of the Vietnamese
coast resulting from an orographic blockage from June to October [7], and it is proposed that the
corresponding warm water is generated by thermal processes (e.g., latent heat flux) on the seasonal
time scale, while dominated by wind mixing processes on the diurnal time scale.
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Hainan Island is located in the northwest of the South China Sea (SCS) and is close to the entrance
of the semi-enclosed shallow ocean, the Beibu Gulf (or Gulf of Tonkin). The major circulation of the
SCS is driven by the monsoon wind [8], with a southward coastal current along the western boundary
in the winter and a northward coastal current in the summer [9,10]. Concerning regions around
Hainan Island, many previous studies have focused on the summertime upwelling systems off the east
coast (e.g., [11–13]). For example, the work of Su and Pohlmann [13] revealed that the southwesterly
and southerly winds in the summer are responsible for the formation of the cold water centers off
the eastern Hainan coast, while the combined effects of wind and topography lead to the uneven
distribution of the upwelling centers. For the west coast, tidal currents are considered as an important
factor of local fronts [14,15]. There are also upwellings observed off the west coast during summer
despite the downwelling favorable winds, and these are attributed to the joint effects of tidal mixing
and background stratification [16,17]. Li et al. [14] also found that the interannual variability of the
summer upwellings is related to the combined effects of along-shore wind, tidal mixing, and boundary
currents. Few studies have focused on the southwest coast of Hainan Island during winter, except for
the work of Li et al. [6] who observed the HIWW.

The steady and strong wind conditions in the boreal winter makes HIWW an ideal case for wind
wake studies. An important mechanism forming the warm band in SST is the reduced latent heat
flux associated with the decreased wind speed in the wake region [6]. However, it is not clear yet
how the heat advection term influences the regional thermal evolution process. The competition
between heat advection and the air-sea heat flux in regional heat variabilities has been long discussed
world-wide and may vary depending on the time scale and spatial distributions of interest [18–21].
Meanwhile, the seasonal variation of the seawater temperature is influenced by the air-sea heat
flux [22], and temperature variabilities on time scales from days to weeks over shallow water could
be mainly attributed to heat advection [23]. Hence, the role of heat advection could be essential to
understanding the regional thermal evolution process and should be taken into consideration in a
detailed investigation of regional seawater variabilities.

In this study, with support from multi-sensor satellite observations including Advanced Synthetic
Aperture Radar (ASAR) data and the derived sea surface wind field, sea surface temperature (SST)
and merged wind products from microwave and optical sensors, as well as simultaneous model
simulations, the characteristics of HIWW and associated oceanic responses are investigated in detail.
Our analysis is organized as follows. Firstly, the datasets and the methods adopted are described
in Section 2. Observed wind wake patterns and corresponding sea surface thermal responses are
introduced in Section 3, followed by an analysis of the roles of heat advection and air-sea heat flux
terms. In Sections 4 and 5, the regional thermal evolution mechanism is summarized and discussed.

2. Data and Methods

2.1. Study Area

To study the oceanic spatial variability, a transect is made across the wind wake, starting at
18.8◦N,107.5◦E and ending at 17.0◦N, 109.4◦E in the northwestern-southeastern direction (Figure 1).
There is a total of 568 sampling points with a spacing interval of 500 m along the transect, spanning
over a distance of approximately 283 km.
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Figure 1. The bathymetry of the study area. (a) The bathymetry around Hainan Island, in the northwest
of the South China Sea. The color shading is the water depth. Areas with bathymetry deeper than
200 m are not plotted. The black line is a transect made across the wind wake. (b) The bathymetry
along the transect.

2.2. ASAR Data and Processing

The Envisat/ASAR data (02:47 UTC of December 10th, 2011) in wide swath mode (WSM) was
used to retrieve the sea surface wind field. ASAR WSM data were not highly acquired within our
study area during winter. The presented case is a good enough example to show a clear wind wake
pattern downstream of the island and is thus used for further analysis in this study. The ASAR is
one of 10 instruments onboard the Envisat satellite, operating at C-band in a sun-synchronous orbit
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at an altitude of 800 km. The WSM is one of ASAR’s five imaging modes, and the swath width is
approximately 400 km with the pixel size of 75 m [24].

To retrieve the sea surface wind field from ASAR vertical-vertical (VV) polarization data, the
C-band geophysical model function (GMF) CMOD5.N [25] was applied. As one of geophysical model
functions (GMFs), CMOD5.N depicts the relationship between the normalized radar cross section
(NRCS) and wind vectors at 10 m height above the sea surface and radar incidence angles, which has
been confirmed as a mature method for the retrieval equivalent neutral winds from scatterometer
and synthetic aperture radar (SAR) measurements. The difference between the equivalent neutral
wind and the real wind is found to be within 0.1~0.2 m/s [26]. The wind field can be retrieved at a
resolution of 1 km [27,28], while we use a 5 km grid size [29] so as to keep consistent with model
simulations as introduced in Section 2.3. Thus, U and V components were further interpolated to the
grid size in the retrieval. Sea surface wind directions from the European Centre for Medium-Range
Weather Forecasts (ECMWF) ERA-Interim wind data (0.125◦ by 0.125◦) were used as references. In a
comparison [30] between the ASAR-retrieved wind fields and on-land meteorological stations of
Hainan Island, the standard deviation, mean error, and the correlation coefficient are 2.09 m/s, 0.27 m/s,
and 0.75, respectively.

2.3. Other Satellite Observation and Reanalysis Datasets

SST used in this study comes from daily optimal interpolated maps (OISST) [31] from remote
sensing system (RSS) merging both microwave and infrared data at 9 km resolution, which combines
the cloud-free capacity of microwave data and high resolution of infrared data of coastal oceans based
on the optimal interpolation method. To fully investigate the character of the wind wake, gridded wind
vectors from the cross-calibrated multi-platform (CCMP, v2.0) [32] from RSS are also used as a reference
in the present study, with a 25 km spatial resolution and 6-h temporal resolution. The sea surface
latent heat flux (LHF), sensible heat flux (SHF), longwave thermal radiation, and surface net solar
radiation are used as components of the air-sea heat flux, and are available from ERA5 reanalysis [33]
of Copernicus Climate Change Service (C3S) (2017) on a grid size of 0.25◦ with a temporal resolution
of 6 h. Senafi et al. [34] evaluated the performance of surface heat flux components of ERA5 by
comparing with in-situ measurements and MERRA2/NASA reanalysis at the Arabian Gulf and the
Red Sea, showing a bias of 4.5 W/m2 and 1.59 W/m2 respectively. Wind vectors from ERA5 03:00
UTC of December 10th, 2011 are also examined qualitatively to make sure the wind wake feature
is captured, but no further analysis or calculation is conducted with ERA5 wind fields. To derive
the surface absolute geostrophic velocities, we use the absolute dynamic topography (ADT) (version:
SSALTO/DUACS Delayed-Time Level-4), which is available from the Copernicus Marine Environment
Monitoring Service (CMEMS) containing multi-satellite merged daily maps from 1993 to present on
a 0.25◦ Cartesian grid with tidal and inverse barometer corrections. The time-varying sea level is
generally considered with an error of 2~3 cm [19,35]. Different datasets (Table 1) are harmonized by
interpolation on a uniform grid with a spatial resolution of 0.1◦, a temporal resolution of 1 day, and a
vertical resolution of 1 m (if necessary).

Table 1. Observational and Reanalysis Datasets Summary.

Products Variable Time Resolution

ASAR/Envisat/ESA Normalized radar cross section 2011/12/10
02:47 UTC 150 m

OISST/RSS Sea surface temperature 2011/01/01
–2014/12/31 9km, daily

CCMP/RSS 10 m wind vector 2011/01/01
–2014/12/31 0.25◦, 6-hourly
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Table 1. Cont.

Products Variable Time Resolution

ERA-Interim/ECMWF 10 m wind vector 2011/01/01
–2014/12/31 0.125◦, 3-hourly

ERA5/ECMWF
Latent heat flux, sensible heat flux,
surface thermal radiation, surface

net solar radiation, 10m wind vector

2011/10/01
–2012/01/31 0.25◦, hourly

SSALTO/DUACS Sea
Surface Height Absolute dynamic topography 2011/01/01

–2014/12/31 0.25◦, daily

2.4. WRF Model Simulations

The weather research and forecasting (WRF) model with advanced research WRF (ARW) dynamic
core is used in this study to get a high-resolution wind field [36]. The WRF method has been validated
over the Beibu Gulf [36], showing a standard deviation of 1.41m/s, a mean difference of 0.83m/s, and
correlation coefficients squared of 0.67 by comparing offshore winds from WRF and SSM/I. WRF-ARW
is a numerical weather prediction and atmospheric simulation system with fully compressible and
non-hydrostatic equations, and provides several options to parameterize sub-grid scale physical
processes and assimilate data. We use time-updating sea surface temperature (SST) with 0.5◦ × 0.5◦
from the National Centers for Environmental Prediction/Marine Modeling and Analysis Branch (NCEP
/MMAB) and spectral nudging in order to make sure the lower boundary conditions are updated, and
keep the large-scale circulation patterns of simulations close to the forcing field [37–39]. The spectral
nudging method is applied to temperature, geopotential height, and wind vector over 700 hPa level in
all runs. The double and two-way nested scheme has been adopted in the model.

The model domain is centered at 18.03150◦N and 109.6105◦E, with a fine grid space of 10 km
(dimensions of 135 × 115). The fine domain comprises the whole Hainan Island and Beibu Gulf. The
Mercator projection is chosen due to the low-latitude simulated area. The main parameterization
schemes used are Yonsei University planetary boundary layer (YSU PBL) scheme [40], Kain-Fritsch
Cumulus scheme [41], Lin et al. microphysics scheme [42], the rapid and accurate radiative transfer
model (RRTM) longwave radiation scheme [43], Dudhia shortwave radiation scheme [44] and the Noah
land surface model [45]. These schemes have proven to be appropriate for sea wind simulation [46,47].
Menendez et al. [46] conducted a sensitivity test to demonstrate that the YSU PBL scheme is slightly
more suitable than other PBL schemes in simulations of the sea wind over the Mediterranean Sea. We
chose ERA-Interim reanalysis as the driving field and re-initialized the integral approach to conduct
the dynamical downscaling spanning from January 1, 2011 to December 31, 2014. Then, the 6-hourly
simulation results were interpolated linearly onto the standard grid with the spatial resolution of 0.1◦
and temporal resolution of one day.

Concerning the variation of the wind speed across the wind wake, curves from ASAR, WRF,
CCMP, and ERA5 along the transect (as in Section 2.1) are shown (Figure 2). All datasets could capture
the low-speed feature across the wake consistently, with the minimum wind speed occurs between
150~200 km along the transect. The curve along the transect from ASAR-derived wind shows the finest
features, while the WRF simulation tends to overestimate the wind speed shear, and the CCMP wind
speed shows weakened variation.
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Figure 2. The comparison of sea surface wind speed from different datasets used in this study. The
wind speed comes from ASAR, WRF, ERA-5, and CCMP on December 10th, 2011, respectively. The
WRF and CCMP data are the averaged value between 0:00 UTC and 6:00 UTC. The ERA-5 data is at
03:00 UTC. The ASAR data is at 02:47 UTC.

To simply provide an uncertainty bound, wind speeds from ASAR observation, WRF model
simulation, and CCMP merged observation are cross-compared over the study domain with land
area excluded. The ASAR data is at 02:47 UTC. The WRF and CCMP data are the averaged value
between 0:00 UTC and 6:00 UTC on Dec 10th, 2011. ERA5 is not included in the comparison since
ERA-interim is already used in WRF simulation, and ERA5 also assimilates observational datasets.
In the first step, all datasets are interpolated onto the 0.1◦ grid as mentioned in the above section. There
are totally 5485 collocated triplets for ASAR, WRF, and CCMP respectively. We here introduce the
triple collocation analysis, which is a data comparison method using three independent products to
assess the error magnitude of each product separately and has been popular in the wind and soil
moisture products applications [48–51]. Following the calibration model of Stoffelen [48] and the error
assessment formula of Pan et al. [50], the estimated error magnitudes between the products and a
deterministic “truth” value are approximately 2.30 m/s, 1.34 m/s, and 2.14 m/s for ASAR, WRF, and
CCMP, respectively, which is consistent with previous literatures [30,36]. No comparison with in-situ
measurement was performed due to a lack of offshore meteorological buoy data.

2.5. Estimation of Wind-induced Currents

Wind time series used to calculate horizontal heat advection are directly from the WRF
high-resolution simulation. Based on the conventional Ekman theory [52], the depth-averaged
wind current (ue, ve) within the Ekman layer can be approximated as:

→
ue =

1
ρ0 f De

→
τ ×→k (1)

where ρ0 is constant seawater density, f the Coriolis parameter,
→
k the vertical unit vector, De is the

Ekman depth, and
→
τ = (τx, τy) is the wind stress, which can be derived from wind vectors. The

vertical velocities driven by the wind stress curl is given as:
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we =
1
ρ0 f
∇×→τ (2)

However, the conventional Ekman theory is under the assumption of infinite water depth, which
is obviously not the case in coastal oceans. Welander [53] extended the equations to varying water
depths by introducing structure functions, and the depth-integrated flow is expressed as

U = 1
ρ0 f (C1τx −C2τy) +

gh
f (C3

∂η
∂x −C4

∂η
∂y )

V = 1
ρ0 f (C2τx + C1τy) +

gh
f (C4

∂η
∂x + C3

∂η
∂y )

(3)

with structure functions
C1 = 2 sin RsinhR

cos 2R+cosh 2R

C2 = 2 cos R cosh R
cos 2R+cosh 2R − 1

C3 = 1
2R

sin 2R−sinh2R
cos 2R+cosh 2R

C4 = − 1
2R

sin 2R+sinh2R
cos 2R+cosh 2R + 1

(4)

where η is the sea level variation. R = π·h·D−1
e indicates the ratio of water depth h to the Ekman depth.

Currents in Equation (3) consist of contribution from the wind stress, as well as the sea level pressure
gradient adjusted to wind and topography [54]. If we focus on the wind-induced drift components

by eliminating the sea level variation parts and assume that De ≈ 0.4· f−1·
√∣∣∣∣→τ ∣∣∣∣·ρ0−1 [55,56], the

depth-averaged Ekman currents over coastal oceans could then be estimated as

uw = 1
ρ0 f h′ (C1τx −C2τy)

vw = 1
ρ0 f h′ (C2τx + C1τy)

h′ =
{

h De > h
De De ≤ h

(5)

For infinite depth (R→+∞), C1→0 and C2→−1, and Equation (5) will reduce to Equation (1).

2.6. Heat Advection Estimation

Regarding the temperature variability over the continental shelf, a simplified heat budget [57]
over the whole water column is∫ 0

−H

∂T
∂t

dz +
∫ 0

−H

→
u ·∇Tdz =

∫ 0

−H

1
ρ0Cp

∂q
∂z

dz + Rs (6)

where T is the temperature (unit: K),
→
u is the water currents (unit: m/s), H is the water depth (unit: m),

and q is the vertical heat flux (unit: W·m−2). Cp = 3990 J kg−1 K−1 is the seawater heat capacity [55]
and ρ0 is the seawater density. Rs is the residual term representing processes not included, such as
diffusions.

We assume that the temperature is vertically uniform, which may not be true for stratified oceans,
but is useful and valid for the well-mixed coastal water of Hainan Island during the winter [6]. Then,
SST could be used to approximate the vertical temperature, and Equation (6) becomes

H·∂TSST
∂t

≈ −→UH·∇TSST +
Q
ρ0Cp

(7)

where
→
UH is the vertically integrated horizontal transport (unit: m2·s−1) from both the Ekman drift

and barotropic geostrophic currents. Q is the air-sea net heat flux, being the sum of the solar radiation
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QS, the longwave radiation Qb, the SHF and the LHF, which can be obtained from the ERA5 reanalysis.
The term on the left-hand side represents the local temporal variability of SST. The first term on
the right-hand side is the horizontal heat advection (ADV), and the second term corresponds to the
air-sea heat flux (ASF). All three terms in Equation (7) have the unit of K·m·s−1, and thus a meaningful
comparison can be made between the ADV and ASF. Since our intent is to clarify the contribution of the
heat advection, no attempt was made to construct a closed heat budget in this study. A weekly moving
average is applied on the ADV and ASF terms hereafter when plotting to remove high-frequency
variabilities.

3. Wind Wake Characters and Oceanic Responses

3.1. Wind Wake Observed by Spaceborne SAR

A high-resolution ASAR image captured at 02:47 (UTC) on December 10, 2011 and the retrieved
sea surface wind field present the capability of capturing sub-mesoscale features of the wind wake.
Due to the incidence angle, the whole image shows a light-to-dark trend from the lower right corner
to the top left corner. The wind wake is indicated as a darker-than-ambient footprint (Figure 3a) to
the southwest side of the island, extending about 200 km from the island to the coast of Vietnam,
covering most of the southern entrance of Beibu Gulf. The dark area (low NRCS) corresponds to
reduced sea surface wind speeds over the wake footprint, which is about 10 m/s lower than ambient
waters (Figure 3b), with the minimum wind speed very close to the coast. Enhanced positive/negative
wind stress curl is also found close to the footprint boundary in the retrieved wind stress curl map
(Figure 3c), forming sub-mesoscale wind curl stripes extending in the offshore direction.

3.2. Seasonality of the Wake Distribution

The Asian monsoon is known to prevail over the South China Sea. However, a detailed description
of local wind condition is necessary, which closely relates to the spatial and temporal distribution
of HIWW. The seasonal wind rose diagrams (Figure 4) using the daily WRF wind vectors from 2011
to 2014 represent the characters of local wind. There is almost no southeasterly wind in the region.
Northeasterly wind prevails during Autumn and Winter, while southwesterly wind prevails during
Summer. The dominant wind intervals, i.e., taking the largest portion during each season, for the
winter, spring, summer and autumn are 10~12 m/s (22.9%), 4~6 m/s (31.9%), 4~6 m/s (25.5%), and
6~8 m/s (22.1%), respectively.
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Figure 3. Cont.

105



Remote Sens. 2019, 11, 3036

Figure 3. (a) An example of the ASAR WSM image acquired at 02:47 UTC on 10 December 2011
showing a typical wind wake in the lee side of Hainan Island. (b) The retrieved sea surface wind speed
from the ASAR data and (c) the calculated wind stress curl based on the ASAR wind field.

HIWW is expected to show a controlled distribution corresponding to the varying wind, which
can be represented by the occurrence of anomalous wind speeds (Figure 5) 2 m/s lower than the
regional average. The thresholds of other values less than 5 m/s hold consistent distribution patterns.
Three areas with high occurrences of anomalous wind are found in the study area: one locates on
the southwest coast of Hainan Island in winter, corresponding to the known wind wake footprint.
Another one is located on the northwest coast of Hainan, due to the southerly wind in summer. Also,
there is one close to the Vietnam coast at the lower-left corner (17◦N, 107◦E), which is likely due to the
interaction between the southwesterly wind and the Vietnamese orography [7]. No occurrence was
observed to the east of 110.5◦E. In comparison to the northwest Hainan coast, the high occurrence in the
southwest coast covers a larger area and larger magnitude, being consistent with the regional monsoon
character that the northeasterly wind is strongest and steady from October to January (Figure 4).
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Figure 4. Seasonal wind rose diagrams with WRF wind vectors from 2011 to 2014. Results are for
(a) winter, (b) spring, (c) summer, and (d) autumn respectively. The wind direction is defined as the
direction of the wind vector pointing towards and departs from the east (0◦) cyclonically. Land areas
are excluded. Color shading indicates the wind speed, with a speed interval of 2 m/s.

3.3. Spatial Variability of Oceanic Thermal Response

To clarify the oceanic thermal response over the wind wake footprint, both the sea surface wind
speed anomaly and SST are investigated along the transect across the wind wake. The study period
from October 2011 to January 2012 was chosen since this is a period when the regional wind speed is
the strongest in the annual cycle and wind direction is steady towards the southwest as mentioned
in the above section. No steady wind wakes were observed within the transect before October or
from the end of January. On the contrary, a lower-than-ambient wind speed band is clearly shown
between distance 100 km and 200 km, together with the local speed minima identified (Figure 6a,b).
The daily regional means have been removed to show the spatial variability without the influence of
the temporal trend. The temporal-mean wind speed trough is around 5.10 m/s, with a local maximum
value of 9~10 m/s on both ambient sides. To simplify the notation, hereafter we divide the transect
into two parts, namely the northwestern side (NWS) with a transect distance smaller than the wind
speed minima, and the southeastern side (SES) with a transect distance larger than the minima. We
also noticed that the wind wake location oscillates during November and from the middle of January.
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Figure 5. The occurrence of anomalous wind speeds over the study area based on the WRF simulation.
The “anomalous” wind speed here represents those wind speeds that is 2 m/s lower than the daily
mean over the study area. Then the percentage of occurrence is calculated from 2011 to 2014. The land
area is excluded from the calculation. Each contour line indicates a 2% interval from 16% to 40%.

For the SST anomaly (SSTA) along the transect (Figure 6c,d), three features are noted here: firstly,
a warm band is observed through the study period collocating with the wind wake pattern. Secondly,
the SSTA warm band shows an asymmetric feature comparing with the wake footprint. The warm
band covers a larger area than the wind speed band, extending in NWS of the wake. 65% of SST local
maxima (red line in Figure 6c) locate within a shorter along transect distance than that of the wind
speed minima. Specifically, SSTA with an elevated temperature of at least 0.9 ◦C is observed on the
NWS during December and January (black arrow in Figure 6c). Thirdly, areas in SES (along a transect
distance ≥ 200km) keeps reduced temperature steadily during the study period, even forming a cold
tongue (magenta arrow in Figure 6c) to the southeast of the warm band from the middle of December
until the end of January.

One question then arises naturally as what causes the observed asymmetric SSTA spatial variability.
The reduced latent heat flux from the seawater to the atmosphere resulting from the decreased wind
speed has been proposed as the forming mechanism of the warming SSTA band [6]. However, the sea
surface heat flux solely could not explain the observed warming extension beyond the wind wake.
Also, as shown by the retrieved wind stress curl from ASAR data (Figure 3c), a positive wind stress
curl occurs on the NWS, which could bring the cooler bottom water, if any, up to the surface [58].
Obviously, the cooling process by upwelling is conflicting with the observed warming extension. The
most possible mechanism for this is the redistribution of seawater heat induced by the oceanic heat
advection, which is further investigated later on.
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Figure 6. The oceanic variables along the transect. The left panel are the variables (a) wind speed
anomaly and (c) sea surface temperature anomaly varying with time in the winter of 2011. The right
panel are the temporal-mean of variables of the left panel. The width of the gray shading area indicates
two standard deviations. Blackline in (a) and (c) is the trough locations (±0.25 km) of wind speed
anomaly of each day, the redline in (c) is the peak location of the SSTA. The black and magenta arrows
in (c) indicate the NWS warm band extension and the SES cold tongue respectively. A weekly moving
average was applied when plotting.

3.4. The Oceanic Heat Advection

The horizontal heat advection considered here consists of two terms: one is driven by the
wind-induced Ekman drift (Figure 7), and the other is driven by the barotropic geostrophic current
(Figure 8). Along the transect, the temporal averages of both ADV and LHF terms are in the order
of 10−5 K·m·s−1 (Figure 9), but with different spatial variability across the wind wake, while SHF is
one order smaller thus could be eliminated. The spatial difference of LHF along the transect increases
from October to December. Focusing on December, we found that collocating with the trough of the
wind speed (around 150 km along the transect), reduced LHF is found around 150 km, indicating a
reduced heat loss process. Out of the wake footprint, LHF increased in both NWS and SES suggesting
an enhanced cooling influence.
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Figure 7. Estimated monthly horizontal heat advection driven by the wind stress along the transect.
Monthly averaged values are shown for (a) October of 2011, (b) November of 2011, (c) December of
2011, and (d) January of 2012.

Concerning ADV, a much larger temporal variability/uncertainty (yellow error bar in Figure 9) is
observed especially in October and January, though the averaged values are still meaningful in terms
of the temporal-integrated effects. The source of the temporal uncertainty will be analyzed later in
this section. Coherent warming exceeding uncertainty could be found between 50 and 100 km from
November to January, while the advective cooling process occurs around 250 km in November and
December. In December, both ADV and LHF contribute to a higher heat accumulation process around
the wake region than the ambient water (say, the starting and ending point of the transect at 0 km and
283 km) but in an out-of-phase pattern.
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Figure 8. Estimated monthly horizontal heat advection driven by the sea level pressure gradient
along the transect. Monthly averaged values are shown for (a) October of 2011, (b) November of 2011,
(c) December of 2011, and (d) January of 2012.

As mentioned in Section 3.3, a typical warm band extension on NWS (black arrow in Figure 6c) is
observed at around December 10th, and a cold tongue forms on SES from the middle of December
(magenta arrow in Figure 6c), while wind wake location keeps steady and strong during the same time.
Thus, it is necessary to focus on December rather than the whole wake period from October to January
to clarify the detailed day-by-day thermal evolution process (Figure 10). The increased ADV values
(Figure 10b,c) around December 10th transiting northwestward agree well with the observed SSTA
warming extension, and the cold tongue found southeast of the wake in the SST is also consistent with
the decreased ADV values (Figure 10e,f).
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Figure 9. Heat flux terms along the transect averaged over the study period from 2011/10/01 to
2012/01/31. The comparison is made between ADV (black line) and LHF (red line). Uncertainties of two
standard deviations within each month are indicated as the length of error bars. The monthly averaged
values are shown for (a) October of 2011, (b) November of 2011, (c) December of 2011, and (d) January
of 2012.

Moreover, it is of interest to clarify the relative contribution of the two driven mechanisms,
wind-induced Ekman drift and the geostrophic current, to the total heat advection. Still taking the
December of 2011 as an example (Figures 7c and 8c), the wind-driven heat advection tends to warm
the water column from the center of the Beibu Gulf seawater to the NWS of the wake at 106◦E ~ 108◦E,
18◦N ~ 20◦N, while cool the water on the SES of the wake (approximately −4.23 × 10−5 K·m·s−1) at
109◦E, 17.7◦N. We also noticed the cooling of the west coast of Hainan Island and warming of the
continental shelf, which is beyond our interest in this study though. Meanwhile, the geostrophic heat
advection tends to decrease the water temperature in the center of the Beibu Gulf (e.g., −8.25 × 10−5

K·m·s−1 at 107.5◦E, 18.9◦N), and warm both sides of the wake (e.g., 4.53 × 10−5 K·m·s−1 at 107.9◦E,
18◦N, and 9.54 × 10−5 K·m·s−1 at 108.9◦E, 17.7◦N). Along the transect (Figure 11), the Ekman advection
shows a consistent distribution through the whole wake period, cooling the NWS and warming
the SES, which is probably related to the wind speed distribution associated with the wake. The
maximum amplitude occurring in December corresponds to the intensified wind speed during the
winter monsoon. On the other hand, the geostrophic advection is subjected to relatively larger temporal
variability as represented by the standard deviation (yellow error bar in Figure 11), suggesting the
temporal uncertainty observed in the total ADV (Figure 9) mostly comes from the geostrophic advection.
Moreover, the geostrophic advection process tends to compensate the Ekman advection in the center
of the Beibu Gulf and the SES, especially from October to December.
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Figure 10. Heat flux anomaly comparison between the heat advection and the latent heat flux in
December of 2011. The transect is averaged every 50 km from(a) 0~50 km,(b) 50~100 km, (c) 100~150 km,
(d) 150~200 km, (e) 200~250 km, and (f) 250~300 km. Blue bars are the heat advection, and red bars are
the latent heat flux. The black and magenta arrows in (c) indicate the NWS warm band extension and
the SES cold tongue respectively. Uncertainties of two standard deviations are indicated by the length
of error bars.
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Figure 11. Heat advection terms comparison along the transect averaged over the study period from
2011/10/01 to 2012/01/31. The comparison is made between the geostrophic heat advection (black line)
and the wind-driven Ekman heat advection (red line). The monthly averaged values are shown for (a)
October of 2011, (b) November of 2011, (c) December of 2011, and (d) January of 2012.The error bar
along curves represent two times of temporal standard deviation within each month.

4. Discussion

It would be interesting to highlight the role of wind-driven heat advection. The wind advection
tends to deplete the heat on the SES of the wake, and accumulate the heat on the NWS, with the sign
switched within the wake footprint where the wind speed is the lowest. On the SES, the wind-driven
heat advection is the major mechanism of the cooling process, which is enhanced (cooling) by the latent
heat flux and compensated (warming) for by the geostrophic advection. The wind stress performs
as an important factor driving the spatial thermal variability, especially in shaping the asymmetric
warm band corresponding to the wind wake. It should be noted that our estimation in this study
is integrated through the whole water column. If considering the surface layer only, the role of the
Ekman drifting could even be amplified [52,58] while that of the geostrophic currents are reduced.
It is also worth mentioning that the derived wind-driven currents in this study agree well with the
reported winter time coastal circulations [59], confirming the influence of the wind in the regional
circulation, even taking geostrophic currents into consideration.

To correspond to the snapshot of the ASAR image from December 10, 2011, we conduct a case
study of the wind wake from October 2011 to January 2012, when the wind wake location is steady
and the wind speed is strong. The similar analyses could also be applied to other periods such as
the following winters of 2012, 2013, and 2014 (Figure 12). The NWS warm band extensions beyond
the wake could also be observed every winter from 2012 to 2014, and also collocate with similar
distributions of the Ekman advection shown in sections above. The Ekman advection always tends
to deplete the seawater heat on SES while accumulating the heat on NWS. This again confirms the
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essential role of the Ekman heat advection associated with the asymmetric thermal distribution across
the wind wake. The geostrophic advection is also found to compensate for the Ekman advection
during winter seasons somehow but is subjected to large spatial and temporal variability. Moreover,
the distribution and the onset time of the wake exhibit interannual variations, which is probably
modulated by climate oscillations via wind variabilities [60–62]. The work of Li et al. [6] also reveals
that the core temperature of the warm band is significantly related to ENSO events from 1983 to 2011.
The detailed climate-modulation process on different heat budget terms across the wake could be
investigated in a future work.

Figure 12. Multi-year time series along the transect from 2011 to 2014. Four variables are plotted
including (a) wind speed anomaly, (b) SSTA, (c) Ekman advection, and (d) geostrophic advection.

In Section 2.5, our assumption of vertically uniform temperature distribution precludes the heat
advection contribution from the Ekman pumping. While from both the ASAR data and the WRF
simulation, strong wind stress curls are noticed close to the boundary of the wake, corresponding to a
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maximum upwelling at an NWS (downwelling at SES) speed of 2.39 × 10−5 m/s. As previously studied,
the Ekman pumping velocity of the eastern Hainan coast is in the order of 10−4 m/s [13], while the
upwelling velocity on the west coast is approximately 2.1 × 10−5 m/s [16]. Obviously, the magnitude of
the wake-induced upwelling is comparable to the upwelling systems revealed around Hainan Island.
However, the weak background stratification condition could prohibit the wake-induced upwelling to
generate strong surface thermal response [17]. In contrast, the wake-induced upwelling could still
bring nutrients upward, and might enhance the primary production in the upper ocean [58,63,64].
Thus the identification of the suction/pumping process on the sub-mesoscale is meaningful to regional
ecosystem dynamic studies.

A scaling analysis could be further applied considering the warming rate difference ΔTt between
two locations in the transect. Derived from Equation (7), we have ΔTt ∼ ΔADT/H + ΔLHF/H. If we
take the starting point at 0 km along the transect as a reference of ambient water, and assume that areas
with a transect distance of 50 ± 10 km, 150 ± 10 km, and 250 ± 10 km represent the area of extended
warming band out of the wake, the central warming band within the wake, and the cold tongue on
the SES, respectively, then the heat flux difference from values at 0km could be estimated (Table 2)
As analyzed in previous sections, the averaged values could indicate the temporal-integrated effects,
while the uncertainty mostly corresponds to the temporal variations. Quantitatively, we could identify
that the geostrophic ADV (Geo. ADV) dominant the warming of area 50 ± 10 km, and Ekman ADV
dominant the cooling of area 250 ± 10 km. The ADV terms are important in shaping the boundary of
the warm band, though the Ekman ADV and Geo. ADV tend to compensate for each other.

Table 2. Contributions from heat flux/advection terms relative to values at 0 km along the transect.

Along Transect Distance (km) 50 ± 10 150 ± 10 250 ± 10

Heat Flux/Advection Contribution
(10−5 K·m·s−1)

Ekman ADV −1.4 ± 2.2 −3.3 ± 2.3 −2.9 ± 2.3

Geo. ADV 2.7 ± 5.1 3.1 ± 5.9 2.2 ± 7.0

LHF 0.2 ± 0.3 1.4 ± 1.3 0.8 ± 0.8

Net rate 1.5 ± 4.2 1.2 ± 5.4 −0.2 ± 6.4

Our results are not conflicting with the previously proposed mechanism that LHF could trigger
the warm band [6] since we also identified that LHF contributes to the central warming within the
wake footprint. However, only if we introduce the ADV terms could the observed spatial variability
be explained. On the other side, since Δt ∼ ΔT/(ΔADT/H + ΔLHF/H), the net warming rate at
50 ± 10 km (Table 2) corresponds to a time scale of about 30 days to reach a temperature difference of
0.5 K. However, this shorter time scale, rather than the whole study period, indicates there must be
other processes, such as tidal currents [14,15,65] or ocean wave processes [66], damping the spatial
variability supported by the heat advection and the air-sea heat flux processes, which should be the
subject of future works with the support of more in-situ measurements and a high-resolution air-sea
coupling model in this region.

Moreover, documented wind wakes are usually presented through microwave instruments
on much rougher resolutions [3], or indirectly through optical imagery [1,67]. In this study the
high-resolution ASAR data and its derived sea surface wind field show strong observative capacity
on wind wake studies, revealing the sub-mesoscale structures within the wake. Furthermore, the
combined application of observations from multi-sensor satellites, model simulations, and reanalysis
products also support for identifying involved detailed evolution processes and provide complementary
observations for model simulation results. This again validated the strong capacity of satellite remote
sensing in understanding ocean dynamics.

This study sets up a framework via heat advection reconstruction based on multi-source datasets
to clarify the competition process between the air-sea heat flux and the horizontal heat advection
terms, which could be applied to similar phenomena as observed in other areas, e.g., in [4,7,68].

116



Remote Sens. 2019, 11, 3036

The reconstruction then might be confined within the mixed layer in stratified seasons, but could
extend to the whole column given support of vertical shear information. The baseline is that the
reduced wind speed across the wake modifies the SST distribution not only through the air-sea heat
flux (which has been extensively recognized), but also with variations in the horizontal heat advection
on sub-seasonal timescale. Although the detailed role of heat advection, especially the wind-driven
heat advection, may vary depending on local thermal and circulation conditions [19], or even the
interaction with land orography [67], the contribution from heat advection could not be neglected
before careful diagnosis.

5. Conclusions

Most of the previous studies around Hainan Island have focused on the upwelling systems on the
eastern and western coasts during summer, but only a few have investigated the ocean dynamic to the
southwest coast during winter, where HIWW is observed due to the interaction between the winter
monsoon and the island’s orography. In this study, HIWW occurred during the winter of 2011 is taken
as a study case to investigate the characters of the wind wake and associated oceanic thermal responses.
Presented by ASAR NRCS and the retrieved sea surface wind field and wind stress curl, a triangular
wake footprint with sub-mesoscale features is observed to extend around 200 km between Hainan
Island and the Vietnamese coast, covering almost the whole southern entrance of the Beibu Gulf. The
identification of strong Ekman suction/pumping bands on the boundary of the wind wake valids the
strong capability of SAR sensors on sub-mesoscale study of the wind field. Statistics of the anomalous
low wind speed from 2011 to 2014 confirms the monsoon-controlled spatial distribution of the wind
wakes off the southwest coast of Hainan Island. It is necessary to further clarify the associated oceanic
response to the wake during the wintertime so as to better understand the regional oceanic dynamics.

By a comparison between the wind field and temperature, the collocation of the wind wake
footprint and the warm SST band along the transect is noticed. However, the northwest extending
of the warm band and the cold tongue appearing to the southeast side could not be explained by
the reduced LHF in response to the wind wake. The reconstructed heat advection reveals that the
wind-driven horizontal heat advection, the barotropic geostrophic heat advection, and the latent heat
flux are the three major factors contributing to the spatial temperature variability and are on the order
of 10−5 K·m·s−1. The LHF mainly contributes to the central warming across the wind wake footprint.
The wind-driven Ekman advection tends to deplete the seawater heat on SES of the wake and increase
the heat on the NWS. The largest temporal and spatial variabilities are found within the geostrophic
heat advection while compensating for the Ekman advection term somehow. In December 2011, the
combined effects of these three terms generated the warming extension on the NWS and the cold
tongue on the SES, forming an asymmetric thermal distribution across the wind wake. Our analysis
highlights the role of heat advection concerning the thermal evolution process on a sub-seasonal
timescale and clarified the regional asymmetric thermal responses to the wind wake in the winter.
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Abstract: The use of unmanned aerial systems (UAS) over the past years has exploded due to their
agility and ability to image an area with high-end products. UAS are a low-cost method for close
remote sensing, giving scientists high-resolution data with limited deployment time, accessing even
the most inaccessible areas. This study aims to produce marine habitat mapping by comparing
the results produced from true-color RGB (tc-RGB) and multispectral high-resolution orthomosaics
derived from UAS geodata using object-based image analysis (OBIA). The aerial data was acquired
using two different types of sensors—one true-color RGB and one multispectral—both attached to a
UAS, capturing images simultaneously. Additionally, divers’ underwater images and echo sounder
measurements were collected as in situ data. The produced orthomosaics were processed using three
scenarios by applying different classifiers for the marine habitat classification. In the first and second
scenario, the k-nearest neighbor (k-NN) and fuzzy rules were applied as classifiers, respectively.
In the third scenario, fuzzy rules were applied in the echo sounder data to create samples for the
classification process, and then the k-NN algorithm was used as the classifier. The in situ data collected
were used as reference and training data. Additionally, these data were used for the calculation of the
overall accuracy of the OBIA process in all scenarios. The classification results of the three scenarios
were compared. Using tc-RGB instead of multispectral data provides better accuracy in detecting
and classifying marine habitats when applying the k-NN as the classifier. In this case, the overall
accuracy was 79%, and the Kappa index of agreement (KIA) was equal to 0.71, which illustrates
the effectiveness of the proposed approach. The results showed that sub-decimeter resolution UAS
data revealed the sub-bottom complexity to a large extent in relatively shallow areas as they provide
accurate information that permits the habitat mapping in extreme detail. The produced habitat
datasets are ideal as reference data for studying complex coastal environments using satellite imagery.

Keywords: coastal remote sensing; habitat mapping; unmanned aerial vehicle (UAV); unmanned
aircraft system (UAS); drone; object-based image analysis (OBIA); UAS data acquisition

1. Introduction

Coastal zones are among the most populated and most productive areas in the world, offering
a variety of habitats and ecosystem services. The European Commission highlights the importance
of coastal zone management with the application of different policies and related activities, which
were adopted through the joint initiatives of Maritime Spatial Planning and Integrated Coastal
Management [1]. The aim is to promote sustainable growth of maritime and coastal activities and
to use coastal and marine resources sustainably. Several other environmental policies are included
in this initiative, like the Marine Strategy Framework Directive, the Climate Change Adaptation,
and the Common Fisheries Policy [1]. Marine habitats have important ecological and regulatory
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functions and should be monitored in order to detect ecosystem changes [2,3]. Thus, habitat mapping
is a prime necessity for environmental planning and management [4,5]. The continued provision of
updated habitat maps has a decisive contribution to the design and coordination of relevant actions,
the conservation of natural resources, and the monitoring of changes caused by natural disasters or
anthropogenic effects [6]. Habitat maps are in critical demand, raising increasing interest among
scientists monitoring sensitive coastal areas. The significance of coastal habitat mapping lies in the
need to prevent anthropogenic interventions and other factors that affect the coastal environment [7].
Habitat maps are spatial representations of natural discrete seabed areas associated with particular
species, communities, or co-occurrences. These maps can reflect the nature, distribution, and extent of
disparate natural environments and can predict the species distribution [8].

Remote sensing has long-been identified as a technology capable of supporting the development
of coastal zone monitoring and habitat mapping over large areas [1,9]. These processes require
multitemporal data, either from satellites or from unmanned aerial systems (UAS). The availability
of very high-resolution orthomosaics presents increasing interest, as it provides to scientists and
relevant stakeholders detailed information for understanding coastal dynamics and implementing
environmental policies [6,10–13]. However, the use of high-resolution orthomosaics created from UAS
data is expected to improve mapping accuracy. This improvement is due to the high-spatial resolution
of the orthomosaics less than 30 cm.

The increasing demand of detailed maps for monitoring the coastal areas requires automatic
algorithms and techniques. Object-based image analysis (OBIA) is an object-based analysis of remote
sensing imagery that uses automated methods to partition imagery into meaningful image-objects
and generate geographic information in a GIS-ready format, from which new knowledge can be
obtained [6,14,15].

In literature, there are several studies presenting the combination of OBIA with UAS imagery
in habitat mapping. Husson et al. 2016 demonstrated an automated classification of nonsubmerged
aquatic vegetation using OBIA and tested two classification methods (threshold classification and
random forest) using eCognition®to true-color UAS images [2]. Furthermore, the produced automated
classification results were compared to those of the manual mapping. In another study, Husson et al.
2017 combined height data from a digital surface model (DSM) created from overlapping UAS images
with the spectral and textural features from the UAS orthomosaic to test if classification accuracy can
be further improved [3]. They proved that the use of DSM-derived height data increased significantly
the overall accuracy by 4%–21% for growth forms and 3%–30% for the dominant class. They concluded
that height data have a significant potential to efficiently increase the accuracy of the automated
classification of nonsubmerged aquatic vegetation.

Ventura et al. 2016 [16] carried out habitat mapping using a low-cost UAS. They tried to locate
coastal areas suitable for fish nursery in the study area using UAS data and applying three different
classification approaches. UAS data were collected using a video camera, and the acquired video was
converted into a photo sequence, resulting in the orthomosaic of the study area. In this study, three
classifications were performed using three different methods: (i) maximum likelihood in ArcGIS 10.4,
(ii) extraction and classification of homogeneous objects (ECHO) in MultiSpec 3.4, and (iii) OBIA in
eCognition Developer 8.7, with an overall accuracy of 78.8%, 80.9%, and 89.01%, respectively [16]. In
a subsequent study, Ventura et al. 2018 [12] referred to the island of Giglio in Central Italy, where
they carried out habitat mapping in three different coastal environments. Using OBIA and the nearest
neighbor algorithm as classifiers, four different classifications were applied to identify Posidonia
Oceanica meadows, nurseries for juvenile fish, and biogenic reefs with overall accuracies of 85%,
84%, and 80%, respectively. In another study, Makri D. et al. 2018 [17], a multiscale image analysis
methodology was performed at Livadi Beach located on Folegandros Island, Greece. Landsat-8 and
Sentinel-2 imagery were georeferenced, and atmospheric and water columns were corrected and
analyzed using OBIA. As in situ data, high-resolution UAS data were collected. These data were used,
as well in the classification and accuracy assessment. The nearest neighbor algorithm and fuzzy logic
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rules were used as classifiers. In this study, the overall accuracy was calculated to be 53% for Landsat-8
and 66% for Sentinel- 2 imagery. Duffy J. et al. 2018 [18] studied the creation of seagrass maps in Wales
using a light drone for data acquisition. Three different classification methods were examined using
the R 3.3.1 software [19]. The first classification performed unsupervised classification to true-color
RGB (tc-RGB) data implemented in the ‘RStoolbox’ package [20,21]. The second classification was
realized using tc-RGB data in combination with the texture of the image. Finally, the third classification
was based on the object-based image analysis in the Geographic Resources Analysis Support System
(GRASS) 7.0 software [22,23]. The accuracy of the classifications was based on the root mean square
deflection (RMSD), and the results showed that unsupervised classifications had better accuracy in
the seagrass coverage in comparison with the object-based image analysis method. These studies
demonstrate that UAS data can provide critical information regarding the OBIA classification process
and have the potential to increase classification accuracy in habitat mapping.

This study aimed to investigate the use of an automated classification approach by applying
OBIA to high-resolution UAS multispectral and true-color RGB imagery for marine habitat mapping.
Based on orthorectified image mosaics (here called UAS orthomosaics), we perform OBIA to map
marine habitats in areas with varying levels of habitat complexity on the coastal zone. For the first
time, UAS tc-RGB and multispectral orthomosaics were processed following OBIA methodology, and
the classification results were compared by applying different classifiers for marine habitat mapping.
Furthermore, the performance of the same classifier when applied to different orthomosaics (tc-RGB
and multispectral) was examined in terms of accuracy and efficiency in classifications for marine
habitat mapping. The object-based image analysis was performed using as classifiers the k-nearest
neighbor algorithm and fuzzy logic rules. The validity of the produced maps was estimated using
the overall accuracy and the Kappa index coefficient. Furthermore, divers’ photos and roughness
information derived from echo sounders were used as in situ data to assess the final results. Finally, we
compared the results between multispectral and true-color UAS data for the automatic classification
habitat mapping and analyzed them concerning the classification accuracy.

2. Materials and Methods

2.1. Study Area

The area used in this study is located in the coastal zone of Pamfila Beach on Lesvos Island,
Greece (Figure 1). Lesvos is the third-largest Greek island, having 320 km of coastline, located in the
Northeastern Aegean Sea. Pamfila Beach lies in the eastern part of Lesvos Island (39◦ 9′30.17” N, 26◦
31′53.35” E), and the islet called Pamfilo is in front of the beach. Furthermore, an olive press and a
petroleum storage facility are located close to the beach. This combination creates a unique marine
environment; thus, sea meadows mapping is in critical demand for this area. There are four main
marine habitats: hard bottom, sand, seagrass, and mix hard substrate. The hard substrate appears in
the intertidal and the very shallow zone (0 to 1.5 m). The sand class covers mainly the southern part of
the study area, and the mixed hard substrate is mainly located in the center of the study area, at depths
of about 2.5 to 6.5 m. The seagrass class (Posidonia Oceanica) is dominant in the area and is presented at
a depth of about 1.5 to 3.5 m. and 6.5 to 7.9 m.
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Figure 1. Location map of the Pamfila study area depicted with the red rectangle. Location maps of
Greece (top right) and Lesvos Island (bottom right).

2.2. Classification Scheme

Four categories of the European Nature Information System (EUNIS, 2007) habitat classification
list were selected for the classification process: (i) hard substrate, (ii) seagrass, (iii) sand, and (iv) mixed
hard substrate. Due to the high resolution of orthomosaics (2 to 5 cm), we assume that each pixel is
covered 100% by its class; i.e., a pixel is categorized as seagrass when it is covered 100%. The four
classes selected as the predominant classes were previously known from local observations and studies.
The seagrass class (code A5.535)—namely, Posidonia Oceanica beds—is characterized by the presence
of the marine seagrass (phanerogam) Posidonia Oceanica. This habitat is an endemic Mediterranean
species creating natural formations called Posidonia meadows. These meadows are found at depths of
1 to 50 m. The sand class (code A5.235) is encountered in very shallow water where the sea bottom is
characterized by fine sand, usually with homogeneous granulometry and of terrigenous origin. The
class of hard substrate (code A3.23) is characterized by the presence of many photophilic algae covering
hard bottoms in moderately exposed areas. Finally, the mixed hard substrate class is considered as an
assemblage of sand, seagrass, and dead seagrass leaves covering a hard substrate.

The depth in the study area was measured using a single-beam echo sounder and had a variation
of 0 to 8 m. The depth zones accurately defined and proved very useful in the explanation of the results
(Figure 2).

2.3. In Situ Data

In the present study, a combination of photographs taken while snorkeling and measurements
derived from a single-beam echo sounder attached to a small inflatable boat were used as in situ data.

2.3.1. Divers’ Data Acquisition

The study area was initially investigated using an orthomosaic map from a previous demo flight
to create sections and transects that divers would follow to capture underwater images. The selected
transect orientation was designed to target all four selected classes equally. Furthermore, reference
spots were selected using the abovementioned orthomosaic map to help the divers’ orientation during
snorkeling. The divers’ equipment used for taking photos as in situ data was a GoPro 4 camera. The
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divers team followed the predetermined transects in the area and captured with an underwater image
all the preselected spots having one of the four classes selected for classification. The in situ sampling
took place on 06/07/2018, having a shape of a trapezium, and lasted one hour. In total, 125 underwater
images were collected from the divers using a GoPro 4 Hero underwater camera. Each one of the
underwater images was captured in a way to represent one training class. After quality control, 33
images were properly classified. The number of the images used for the classification was reduced
by 92 due to the following reasons: (i) 18 images (14.4%) were not clearly focused on the sea bottom
due to the depth; (ii) 21 images (16,8%) were not geolocated due to the repetitive sea bottom pattern
(for example, sandy sea bottom); (iii) 25 images (20%) were duplicated, as they were captured in the
same position by the divers to assure that the dominant class will be captured; and, finally, (iv) 28
images (23%) were blurry due to the sea state and the water quality. All images were interpreted to
define the classes. Additionally, the position where these images were captured was identified by
photointerpretation from the divers’ team using the tc-RGB orthomosaic.

 
Figure 2. Study area bathymetry and locations where the echo sounder data were collected.

2.3.2. Echo Sounder Data Acquisition

Echo sounder data were collected by SEMANTIC TS personnel using a single-beam sound device
attached to a small inflatable vessel on 06/07/2018. The measurements were based on the reflection
of the acoustic pulse of the echo sounder device. SEMANTIC TS has developed a signal-processing
algorithm based on discriminant analysis to scrutinize the response energy level of the sea bottom
pulses [24]. The derived information includes the depth and the substrate roughness, while the precise
geographical positions of the acquired data are also recorded. Roughness and bathymetry products
of the study area are provided as a raster dataset (Figures 2 and 3). ArcMap 10.3.1 software [25] was
used to process the data, and the canvas was converted into a point vector shapefile. The point vector
shapefile contained a total of 3.364 points with the roughness and bathymetry info.
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Figure 3. Echo sounder roughness data.

2.4. UAS Data Acquisition

The UAS used for data acquisition was a vertical take-off and landing (VTOL) configuration capable
of autonomous flights using preprogrammed flight paths. The configuration was a custom-made
airborne system based on the S900 DJI hexacopter airframe, having a 25-min flight time with an
attached payload of 1.5 Kg. The payload consisted of two sensors: a multispectral and a tc-RGB. The
configuration lies in the Pixhawk autopilot system, which is an open-source UAS [26,27]. For the
positioning of the UAS during the flight, a real-time kinematic (RTK) global positioning system was
connected to the autopilot.

2.4.1. Air-Born Sensors Used

The true-color RGB sensor used in this study was a Sony A5100 24.3-megapixel camera with
interchangeable Sigma ART 19 mm 1:2.8 DN0.2M/0.66Feet lens capable of precise autofocusing in
0.06 sec, capturing high-quality true-color RGB (tc-RGB) images. This sensor was selected because
of the lightweight (0.224 kg), manual parameterization and auto-triggering capabilities, using an
electronic pulse due to its autopilot. The multispectral camera was a Slantrange 3P (S3P) sensor
equipped with an ambient illumination sensor for deriving spectral reflectance-based end-products,
an integrated global positioning system, and an inertial measurement unit system. The S3P has a
quad-core 2.26 GHz processor and an embedded 2GB RAM for onboard preprocessing. The S3P used
is a modified multispectral sensor, having the wavebands adjusted to match the coastal, blue, green,
and near-infrared (NIR) wavebands on the Sentinel-2 mission (Table 1). The scope of the waveband
modification to the S3P imager aimed at simulating Sentinel-2 data in finer geospatial resolution.
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Table 1. Waveband information for the Slantrange 3P imager and Sentinel-2 missions. Coastal (C), blue
(B), green (G), and near-infrared (NIR).

Slantrange 3P Sentinel-2A Sentinel-2B

Centre (nm) Bandwidth (nm) Centre (nm) Bandwidth (nm) Centre (nm) Bandwidth (nm)

C 450 20 442.7 27 442.2 45
B 500 80 492.4 98 492.1 98
G 550 40 559.8 45 559.0 46

NIR 850 100 832.8 145 832.9 133

The open-access Mission Planner v1.25 software was used as a ground station for real-time
monitoring of the UAS telemetry and for programming the survey missions [28].

2.4.2. Flight Parameters

Data acquisition took place on the 8th July 2018 in the Pamfila area. Before the data acquisition,
the UAS toolbox was used to predict the optimal flight time [29]. The toolbox automates a protocol,
which summarizes the parameters that affect the reliability and the quality of the data acquisition
process over the marine environment using UAS. Each preprogrammed acquisition flight had the
following flight parameters: 85% overlap in-track and 80% side-lap. The UAV was flying at a height
of 120 m above sea level (absolute height), having a velocity of 5 m/s. Thus, the tc-RGB sensor was
adjusted for capturing a photograph every 3.28 s in the nadir direction and the multispectral every 1
s. The obtained ground resolution of the tc-RGB images acquired from the UAS was 2.15 cm/pixel,
and for the multispectral imager was 4.84 cm. Ground sampling resolution varied due to the focal
length, pixel pitch, and sensor size of the sensors used. After a quality control inspection, the majority
of the images were selected for further processing. The data acquisition information is depicted in the
following table (Table 2), followed by the final orthomosaics obtained from the UAV (Figure 4).

Table 2. The number of raw images and spatial resolution acquired using a suite of sensors attached to
the unmanned aircraft system (UAS).

Name of Sensor Number of Images Sensor Resolution (Pixel) Flight Height (m) Ground Resolution (cm/Pixel)

SlantRange 3P 568 1216 × 991 120 4.84
Sony A5100 181 6000 × 4000 120 2.15

Prior to the survey missions, georeferenced targets, designed in a black and white pattern, were
used as ground control points (GCP), having dimensions of 40 × 40 cm. In total, 18 targets were placed
on the coastal zone of the study area. The GCP’s coordinates were measured in the Hellenic geodetic
system using a real-time kinematic method yielding a total root mean square error (RMSE) of 0.244 cm.

2.5. Methodological Workflow

An overview of the followed methodological workflow is given below (Figure 5). The methodology
is organized into four steps: (i) data acquisition and creation of tc-RGB and multispectral orthomosaics
using the UAS-SfM (structure-from-motion) framework [10,30], (ii) orthomosaics preprocessing, (iii)
object-based image analysis, and (iv) accuracy assessment. After UAS and in situ data acquisition,
the divers’ photos passed quality control and were interpreted to define the class that is depicted.
Furthermore, in the preprocessing stage, a land mask was applied to both orthomosaics. Then, the OBIA
analysis was performed, starting with the objects’ segmentation and then performing the classification
of benthic substrates of the study area. The classification was implemented following three scenarios.
In the first and second scenarios, the k-nearest neighbor and fuzzy rules were applied as classifiers,
respectively. In the third scenario, both fuzzy rules and k-NN were applied. The in situ data collected
were separated into two nonoverlapping datasets: one for training and one for accuracy assessment.
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Figure 4. True-color RGB orthomosaic (top) and multispectral orthomosaic (bottom).

2.6. Orthomosaic Creation

Structure-from-motion (SfM) photogrammetry applied to images captured from UAS platforms
is increasingly being used for a wide range of applications. SfM is a photogrammetric technique
that creates two and three-dimensional visualizations from two-dimensional image sequences [31,32].
The methodology is one of the most effective methods in the computer vision field, consisting of a
series of algorithms that detect common features in images and convert them into three-dimensional
information. For the realization of this study, the Agisoft Photoscan 1.4.1 [33] was used, since it
automates the SfM process in a user-friendly interface with a concrete workflow [32,34–37].
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Figure 5. Methodological workflow. UAS: unmanned aircraft system. OBIA: object-based
image analysis.

Georeferencing of the tc-RGB orthomosaic was achieved using 18 ground control points (GCPs).
The use of GCPs for the geolocation of the tc-RGB orthomosaic had, as a result, an RMSE of 1.56 (cm).
The achieved accuracy met the requirements of the authors for creating highly detailed maps. The S3P
multispectral orthomosaic was georeferenced using the georeferenced tc-RGB orthomosaic as a base
map [38]. An inter-comparison of the georeferenced orthomosaics was implemented to best match
common characteristic reference points. Final end-products consisted of georeferenced (i) S3P—coastal
(450 nm), blue (500 nm), green (550 nm), and NIR (850 nm) and (ii) Sony A5100 in true-color RGB
orthomosaics. The size in pixels for the produced derivatives created from SfM is presented in the
following table (Table 3).

Table 3. Size in pixels of produced orthomosaics according to the used sensors: true-color RGB (Sony
A5100) and multispectral (Slantrange).

Name of Sensor Orthomosaic Size (Pixels)

SlantRange 3P 12,122 × 4103
Sony A5100 11,446 × 21,001

Orthomosaic Preprocessing

Before the preprocessing step, the divers’ in situ data were interpreted, and the two orthomosaics
were initially checked for their geolocation accuracy. Then, the produced orthomosaics were
land-masked for extracting information based solely on the pixels of the sea. The land mask was
created by editing the coastline as a vector in a shapefile format using ArcMap 10.3.1 software [25].
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2.7. Object-Based Image Analysis (OBIA)

For the OBIA, three necessary steps were required: (i) the segmentation procedure; (ii) the
definition of the classes that will be later classified; and (iii) the delineation of the classifier, i.e., the
classification algorithm defining the class where the segments will be classified.

The first step of the OBIA analysis is to create objects from orthomosaics through the segmentation
procedure. The orthomosaics are segmented by a multiresolution segmentation algorithm in eCognition
software [39] (Figure 6). The initial outcome of the segmentation is meaningful objects defined from
the scale parameters, image layer weights, and composition of the homogeneity criterion [40]. The
thresholds used for these parameters were determined empirically, based on the expertise of the image
interpreter. For the tc-RGB orthomosaic, the parameters of scale, shape, and compactness were set to
100, 0.1, and 0.9, respectively. For the multispectral orthomosaic, the parameters were set: 15 for the
scale, 0.1 for the shape, and 0.9 for the compactness.

 
Figure 6. Results of the segmentation process for scenarios 1 and 2. The segments depicted are the
result of the unification process to form one segment per category: true-color RGB orthomosaic (top)
and multispectral orthomosaic (bottom).
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In the classification step, two algorithms were selected, the k-nearest neighbor (k-NN) and the
fuzzy classification, using eCognition®. The k-nearest neighbor (k-NN) algorithm classifies image
objects into a specific feature range and with given samples pertaining to preselected categories. Once
a representative set of samples is declared, each object is classified on the resemblance of band values
between the training object and the objects to be classified among the k-nearest neighbors. Thus, each
segment in the image is denoted with a value equal to 1 or 0, expressing whether the object belongs to
a class or not. In fuzzy classification, instead of binary decision-making, the probability of whether an
object belongs to a class or not is calculated using membership functions. The limits of each class are
no longer restricted using thresholds, but classification functions are used within the dataset, in which
every single parameter value will have a chance of being assigned to a class [41,42]. Both classifiers
are part of the eCognition®software. The k-NN algorithm was selected as a historical classification
algorithm (fast deployment without the need of many samples), and fuzzy logic was selected to add
specific knowledge into the classification derived from the training areas.

2.8. Classification Scenarios and Accuracy Assesment

The classification step of the present study was performed in sub-decimeter UAS orthomosaics
using three different scenarios for defining the best classifier for marine habitat mapping in complex
coastal areas. In the first and second scenarios, the k-nearest neighbor and fuzzy rules were applied as
classifiers, respectively. The third scenario was realized by applying fuzzy rules in the echo sounder
data for sample creation, and the classification was performed using k-NN.

In the first scenario, in total, 60 segments were selected as training samples (15 samples per class)
based on the divers’ underwater images. Each segment of the orthomosaic was classified into one of
the four predefined classes using the k-NN algorithm as the classifier, and the segments of the same
class were merged into one single object. The resulting classification was used for the creation of the
final habitat map. This procedure was followed in both tc-RGB and multispectral orthomosaics for the
first scenario.

In the second scenario, the same training sample as in the first scenario was used, and the fuzzy
rules were defined and applied. The appropriate fuzzy expression for each class was created after
examining the relationship between the classes for the mean segment value of the three image bands
(tc-RGB). Then, the mean value of the three bands was selected as an input, and the logical rules “AND”
and “OR” were used where necessary. The segments were classified using the fuzzy expressions for all
classes, and the objects in the same class were merged into one single object. Thus, the results were
exported as one polygon vector shapefile. As in the first scenario, the above-presented process was
applied to both the tc-RGB and multispectral orthomosaics.

Finally, for the third scenario, the analysis was designed based on the following objectives: (i)
examination of usefulness of the roughness echo sounder info to the classification procedure and (ii)
comparison of the roughness efficiency against the underwater images photo interpretation for the
creation of training samples. More specifically, a new training dataset was created based on the echo
sounder’s roughness information. In total, 3028 roughness points were derived from the echo sounder
dataset, and fuzzy rules were applied to 90% of the points (2724) for the creation of training samples
for the classification classes. In the produced segmentation results, the k-NN algorithm was applied
as the classifier for the calculation of the final classification for each of the four classes. As the small
research vessel was not able to access for safety reasons to depths less than 1.5 m, we manually added
samples where necessary.

Accuracy assessment calculates the percentage of the produced map that approaches the actual
field reality. In this study, we created a validation dataset that was not overlapped with the calibration
dataset. In total, 120 points were generated using the geolocated underwater images (in situ divers’
data) and an expert’s photointerpretation. Initially, a point vector file was created by locating the 33
underwater images in the tc-RGM orthomosaic. Due to the small number of points produced from in
situ data, the dataset was densified via photointerpretation by an expert using the high-resolution
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tc-RGB orthomosaic. In total, 87 points were added, and, therefore, the final point vector file ended with
120 points (30 per class). In Figure 7, all points are illustrated with colors according to their assigned
taxon. In this figure, divers and photointerpretation points are depicted in round and star shapes,
respectively. The 120 accuracy assessment points were firstly assigned to their relevant segments (i.e.,
forming 120 segments) and the total number of pixels forming the segments was used as the accuracy
assessment dataset for all classifications. Furthermore, in the third scenario, 10% of the roughness
points (304 points) equally distributed to all four classes were used also as accuracy assessment data.
The accuracy matrices created for all scenarios provided information regarding the user and producer
accuracy, overall accuracy, and the Kappa index coefficient (Table 4, Table 5, Table 6, Table 7, Table 8,
and Table 9).

Figure 7. Point vector dataset containing: (i) 33 points (round shape) derived from in situ divers’ photos
and (ii) 87 points created through photointerpretation (star shape). All points are colored according to
their assigned class.

Table 4. Accuracy matrix for the true-color RGB (tc-RGB) orthomosaic, with k-nearest neighbor as the
classifier. KIA: Kappa index of agreement.

Reference Data

Sea Grass
(Pixels)

Mixed Hard
Substrate
(Pixels)

Sand
(Pixels)

Hard Bottom
Substrate
(Pixels)

Sum
(Pixels)

Tr
ai

ni
ng

D
at

a Sea Grass 37,2384 0 0 4053 37,6437
Mixed Hard Substrate 18,174 52,3604 164,822 32,669 739,269

Sand 25,776 85,351 172,498 4167 287,792
Hard Bottom Substrate 6642 52,941 0 433,426 493,009

Sum 422,976 661,896 337,320 474,315

Producers’ accuracy 0.88 0.79 0.51 0.91
Users’ accuracy 0.98 0.70 0.60 0.88

KIA per class 0.85 0.66 0.42 0.88
Total accuracy 0.79

KIA 0.71
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Table 5. Accuracy matrix for the multispectral orthomosaic with k-nearest neighbor as the classifier.

Reference Data

Sea Grass
(Pixels)

Mixed Hard
Substrate
(Pixels)

Sand
(Pixels)

Hard Bottom
Substrate
(Pixels)

Sum
(Pixels)

Tr
ai

ni
ng

D
at

a Seagrass 13,677 9800 0 2333 25,810
Mixed Hard Substrate 0 19,428 0 2038 21,466

Sand 0 0 14,585 1294 15,879
Hard Bottom Substrate 0 3752 1311 22,312 27,375

Sum 13,677 32,980 15,896 27,977

Producers accuracy 1 0.59 0.92 0.8
Users accuracy 0.53 0.91 0.92 0.82
KIA per class 1 0.46 0.9 0.71

Total accuracy 0.77

KIA 0.7

Table 6. Accuracy matrix for the tc-RGB orthomosaic applying the fuzzy rules.

Reference Data

Classes
Sea Grass

(Pixels)

Mixed Hard
Substrate
(Pixels)

Sand
(Pixels)

Hard Bottom
Substrate
(Pixels)

Sum
(Pixels)

Tr
ai

ni
ng

D
at

a Sea Grass 320,025 75,491 21,987 10,838 428,341
Mixed Hard Substrate 1807 404,691 43,224 4062 453,784

Sand 101,144 135,194 272,109 73,351 581,798
Hard Bottom Substrate 0 46,520 0 386,064 432,584

Sum 422,976 661,896 337,320 474,315

Producers accuracy 0.76 0.61 0.81 0.81
Users accuracy 0.75 0.89 0.47 0.89
KIA per class 0.69 0.49 0.72 0.76

Total accuracy 0.73

KIA 0.64

Table 7. Accuracy matrix for the multispectral orthomosaic applying the fuzzy rules.

Reference Data

Classes
Sea Grass

(Pixels)

Mixed Hard
Substrate
(Pixels)

Sand
(Pixels)

Hard Bottom
Substrate
(Pixels)

Sum
(Pixels)

Tr
ai

ni
ng

D
at

a Sea Grass 13,677 5761 3333 0 22,771
Mixed Hard Substrate 0 19,998 0 4371 24,369

Sand 0 2786 12,563 16,633 31,982
Hard Bottom Substrate 0 4435 0 6973 11,408

Sum 13,677 32,980 15,896 27,977

Producers accuracy 1 0.6 0.79 0.25
Users accuracy 0.6 0.82 0.39 0.61
KIA per class 1 0.46 0.68 0.14

Total accuracy 0.59

KIA 0.46
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Table 8. The tc-RGB data classification accuracy matrix for the multispectral orthomosaic.

Reference Data

Classes
Sea Grass

(Pixels)

Mixed Hard
Substrate
(Pixels)

Sand
(Pixels)

Hard Bottom
Substrate
(Pixels)

Sum
(Pixels)

Tr
ai

ni
ng

D
at

a Sea Grass 379,034 84,089 14,876 28,568 506,567
Mixed Hard Substrate 40,103 276,346 108,280 8800 433,529

Sand 3442 259,310 214,157 36,108 513,017
Hard Bottom Substrate 394 42,069 7 400,810 443,280

Unclassified 3 82 0 29 114
Sum 422,976 661,896 337,320 474,315

Producers accuracy 0.9 0.42 0.63 0.85
Users accuracy 0.75 0.64 0.42 0.9
KIA per class 0.86 0.24 0.5 0.8

Total accuracy 0.67

KIA 0.56

Table 9. Echo sounder data classification accuracy matrix for the multispectral orthomosaic.

Reference Data

Classes
Sea Grass

(Pixels)

Mixed Hard
Substrate
(Pixels)

Sand
(Pixels)

Hard Bottom
Substrate
(Pixels)

Sum
(Pixels)

Tr
ai

ni
ng

D
at

a Sea Grass 11,858 7811 4530 1987 26,186
Mixed Hard Substrate 1681 13,615 2156 2936 20,388

Sand 133 7042 4747 6685 18,607
Hard Bottom Substrate 2 4504 4457 16,357 25,320

Unclassified 3 8 6 12 29
Sum 13,677 32,980 15,896 27,977

Producers accuracy 0.87 0.41 0.3 0.58
Users accuracy 0.45 0.67 0.26 0.65
KIA per class 0.81 0.24 0.12 0.42

Total accuracy 0.51

KIA 0.35

3. Results

In this section, the classification results of the three scenarios are presented for both the tc-RGB
and multispectral data. The classification was performed using four habitat classes: (i) hard substrate,
(ii) seagrass, (iii) sand, and (iv) mixed hard substrate.

3.1. Scenario 1: k-Nearest Neighbor as Classifier

In the first scenario, k-nearest neighbor (k-NN) was used as the classifier and, when it was applied
to the tc-RGB orthomosaic, it resulted in the classification map depicted in Figure 8A. According to
the bathymetry, the hard substrate appears in the intertidal and the very shallow zone at depths of
0 to 1.5 m. The sand class covers mainly the southern part of the study area, and the mixed hard
substrate is located mainly in the middle of the study area, at depths of 2.5 to 6.5 m. The seagrass
(Posidonia Oceanica) class is divided into two parts: one on the west side of the beach (right next to the
hard substrate) at a depth of about 1.5 to 3.5 m and one on the eastern part of the beach where the
depths vary approximately 6.5 to 7.9 m. The percentage of the segments that belong to each of the
classes is 28.9%, 11.5%, 34.9%, and 24.8% for hard substrate, sand, mixed hard substrate, and seagrass,
respectively. Additionally, the percent areal coverages in square meters for each class were calculated
for this scenario. The area covered from the tc-RGB is 178,386 square meters, and the sand class is
presented as occupying 16.29% of the total area mapped. The other classes’ percentage areal coverage
are 33.04% for seagrass, 44.50% for mixed hard substrate, and 6.17% for the hard bottom.
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Figure 8. Classified maps for k-nearest neighbor as the classifier for the study area: (A) true-color RGB
orthomosaic map and (B) multispectral orthomosaic map.

The overall accuracy of the classification was 79%, and the Kappa index of agreement (KIA) was
0.71 (Table 4). The sand class presented a lower accuracy compared to the other classes. Several objects
in this class have been incorrectly classified as mixed hard substrate.

The classification results of the multispectral orthomosaic are illustrated in Figure 8B. It can be
noted that the hard substrate appears mainly in the intertidal and the shallow zone at depths of 0 to 3.5
m, having been assigned 31.9% of the total objects. The sand class covers small areas of the western
part of the study area, and the mixed hard substrate is located mainly in the middle of the study area,
at depths of about 2.5 to 9.9 m. The seagrass is scattered almost throughout the study area, covering
a wide depth range of about 0 to 9.9 m. The classified object percentages for the sand, mixed hard
substrate, and seagrass classes are 20.8%, 27.8%, and 19.5%, respectively. In an area of 90,857 square
meters covered by multispectral orthomosaic, the percent areal coverages by class are 3.78%, 51.55%,
36.54%, and 8.13% for sand, sea grass, mixed hard substrate, and hard substrate, respectively.

The achieved overall classification accuracy was 77%, and the KIA coefficient was equal to 0.70
(Table 5). In this case, the mixed hard substrate class presented lower accuracy in comparison with
the rest of the classes, since several objects have been incorrectly classified as seagrass and mixed
hard substrate.

135



Remote Sens. 2020, 12, 554

3.2. Scenario 2: Fuzzy Rules as Classifier

In the second scenario, fuzzy rules were used as the classifier, and the four classes created from
the tc-RGB and multispectral orthomosaics are illustrated in Figure 9A,B, respectively. According to
the classification results for the tc-RGB orthomosaic, the percentage of the assigned objects for the
hard substrate, sand, mixed hard substrate, and seagrass classes are 27.9%, 20%, 29.9%, and 23.1%,
respectively. For this scenario, the percentage areal coverage was calculated to be 23.35% sand, 35.35%
seagrass, 37.27% mixed hard substrate, and 4.02% hard substrate.

Figure 9. Classification maps for the orthomosaic of the study area applying the fuzzy rules: (A) tc-RGB
orthomosaic map and (B) multispectral orthomosaic map.

When fuzzy rules were used as the classifier, the overall accuracy was 73%, and the coefficient
KIA was 0.64 (Table 6). In this scenario, the mixed hard substrate class presented lower accuracy
in comparison with the other three classes, since several objects of this class have been incorrectly
classified as hard substrate, sand, and seagrass.

From the classification results of the multispectral orthomosaic (Figure 9B), the seagrass class
comes into sight, divided into two parts. The first part is on the west side of the beach (right next to
the sand class) at depths of about 1.5 to 3.5 m and the second on the eastern part of the beach. In this
part, the depths vary approximately from 6.5 to 7.9 m. The percentage of each class object is 13.1%,
23.6%, 37.6%, and 25.7% for hard substrate, sand, mixed hard substrate, and seagrass, respectively.
Furthermore, the percentage of areal calculations saw that the sand class covers 4.99%, while the
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seagrass, mixed hard substrate, and hard bottom are covering 40.25%, 51.50%, and 3.27% of the total
classified area, respectively. The overall classification accuracy obtained by the fuzzy rules is 59%,
and the coefficient K is equal to 0.46 (Table 7). In this classification scenario, the hard substrate and
mixed hard substrate classes present lower accuracy, since several objects in these classes have been
incorrectly classified.

3.3. Scenario 3: k-NN and Fuzzy Rules as Classifiers

In the scenario where a combination of the fuzzy rules and k-NN are used as the classifiers, the
four classes created from the classification of the tc-RGB orthomosaic are represented in Figure 10A.
The percentage of the assigned objects for the four classes is 31.6%, 16.9%, 21.6%, and 29.8% for hard
substrate, sand, mixed hard substrate, and seagrass, respectively. The classes created from the tc-RGB
orthomosaic present the following results in percent areal coverage. The class sand has 21.66%. The
overall classification accuracy is 67%, and the KIA coefficient is equal to 0.56 (Table 8). The mixed hard
substrate and sand classes presented lower accuracy compared to the rest of the classes, regarding the
tc-RGB orthomosaic in this scenario. Several objects of the mixed hard substrate and sand classes were
incorrectly classified into other classes.

Figure 10. Classification maps for the orthomosaic of the study area, applying the k-NN and fuzzy
rules: (A) the tc-RGB orthomosaic map and (B) multispectral orthomosaic map.

The multispectral orthomosaic classification results derived from scenario 3 are illustrated in
Figure 10B. For each class, the percentage of the assigned objects was 35.1%, 10.2%, 29.3%, and 25.5% for
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hard substrate, sand, mixed hard substrate, and seagrass, respectively. The areal percentage coverage
calculation results for the multispectral orthomosaic in scenario 3 were 21.72% coverage for sand,
33.62% for seagrass, 42.94% for mixed hard substrate, and, finally, 2.72% for hard substrate. In this
scenario, the overall classification accuracy was relatively low (51%), and the coefficient KIA was
very low (0.35) (Table 9). The hard substrate, mixed hard substrate, and sand classes presented lower
accuracy compared to the seagrass class using the k-NN and fuzzy rules as classifiers. Several objects
in the above-mentioned classes have been incorrectly classified.

The third scenario presents scattered areas of mixed hard substrate, in contrast to scenarios 1
and 2. The main difference is located in the center of the scene where the mixed classes are. On the
contrary, all scenarios depict nicely the seagrass class in both shallow and deep waters. Hard bottom is
well-defined in all scenarios. The multispectral dataset seems not to classify correctly the mix hard
substrate and the sand classes.

Table 10 summarizes the overall accuracy of the three scenarios. In all scenarios, the tc-RGB
orthomosaic responded better than the multispectral orthomosaic. The best performance (79%) was
given in the first scenario for the k-NN classifier applied to the tc-RGB orthomosaic. The use of echo
sounder data as training data did not increase the quality of the final classification maps, as the authors
expected. On the contrary, the accuracy was worse when echo sounder data were used as training
data, compared to those where solely underwater images were applied.

Table 10. Brief table of total accuracies for the tc-RGB and multispectral orthomosaics of the three
scenarios of the study.

Scenario No. Classifier Training Data Orthomosaic Total Accuracy Kappa Index

Scenario 1 k-Nearest Neighbor Underwater images tc-RGB 79% 0.71
Underwater images Multispectral 77% 0.7

Scenario 2 Fuzzy Rules Underwater images tc-RGB 73% 0.64
Underwater images Multispectral 59% 0.46

Scenario 3
k-Nearest Neighbor

& Fuzzy Rules
Echo Sounder

roughness
tc-RGB 67% 0.56

Multispectral 51% 0.35

4. Discussion and Conclusions

In this work, we have shown that the utilization of UAS high in resolution and accuracy aerial
photographs, in conjunction with the OBIA, can create quality habitat mapping. We demonstrated that
habitat mapping information could be automatically extracted from sub-decimeter spatial true-color
RGB images acquired from UAS. High-resolution classification maps produced from UAS orthomosaic
using the OBIA approach enables the identification and measurement of habitat classifications (sand,
hard bottom, seagrass, and mixed hard substrate) in the coastal zone over the total extent of the
mapped area. The detailed geoinformation produced provides scientists with valuable information
regarding the current state of the habitat species, i.e., the environmental state of sensitive coastal areas.
Moreover, the derived data products enable in-depth analysis and, therefore, the identification of
change detections caused by anthropogenic interventions and other factors.

The purpose of this paper was twofold: (a) to compare two types of orthomosaics, the tc-RGB and
the multispectral, captured over a coastal area using OBIA with different classifiers to map the selected
classes and (b) to examine the usefulness of the bathymetry and the roughness information derived
from the echo sounder as training data to the UAS-OBIA methodology for marine habitat mapping.

From the comparison of the classification results, it can be concluded that the tc-RGB orthomosaic
produces more valuable and robust results than the multispectral one. This is caused due to the
multispectral imager specifications. More specifically, the multispectral sensor receives data from four
discrete bands, and a global shutter is used. As a result, the sensor captures photos in a shorter time
compared to the tc-RGB camera. Thus, the exposure time is shorter in the multispectral (SlantRange
modified imager) than in the true-color RGB (Sony A5100) sensor, causing less light energy. In addition,
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during the process of the multispectral orthomosaic creation due to the data quality of the initial images,
the final derivative was not uniform, thus presenting discrete irregularities. These anomalies appeared
due to different illumination conditions and the sun glint; therefore, the multispectral orthomosaic
classification presents lower accuracy values. It is crucial to follow a specific UAS flight protocol before
each data acquisition, as presented by Doukari et al. in [29,43], for eliminating these anomalies. It
should be mentioned that the UAS data acquisition procedure works fine over land, presenting a high
accuracy level. However, it is not performed adequately over moving water bodies, especially when
having a large extent; thus, no land is presented in the data.

Three scenarios were examined for the classification of the marine habitats using different
classifiers. The k-nearest neighbor and fuzzy rules were applied in the first and second scenarios,
respectively, and a combination of the fuzzy rules and k-NN algorithm in the third scenario. From
the evaluation of the three scenarios’ classification results, it can be concluded that the use of the
tc-RGB instead of the multispectral data provides better accuracy in detecting and classifying marine
habitats by applying the k-NN as the classifier. The overall accuracy using the K-NN classifier was 79%,
and the Kappa index (KIA) was equal to 0.71. The results illustrate the effectiveness of the proposed
approach when applied to sub-decimeter resolution UAS data for marine habitat mapping in complex
coastal areas.

Furthermore, this study demonstrated that the roughness information derived from the echo
sounder did not increase the final classification accuracy. Although the echo sounder roughness can be
used to discriminate classes and produce maps of the substrates, it cannot be used directly as training
data for classifying UAS aerial data. Based on the echo sounder signal, a proper roughness analysis
should be initially performed to produce habitat maps, which in later stages could be used as training
and validation data for the UAS data.

The results showed that UAS data revealed the sub-bottom complexity to a large extent in
relatively shallow areas, providing accurate information and high spatial resolution, which permits
habitat mapping with extreme detail. The produced habitat vectors are ideal as reference data for
studies with satellite data of lower spatial resolution. Since UAS sub-decimeter spatial resolution
imagery will be increasingly available in the future, it could play an important role in habitat mapping,
as it serves the needs of various studies in the coastal environment. Finally, the combination of OBIA
classification with UAS sub-decimeter orthomosaics implements a very accurate methodology for
ecological applications. This approach is capable of recording the high spatiotemporal variability
needed for habitat mapping, which has turned into a prime necessity for environmental planning
and management.

UAS are increasingly used in habitat mapping [7,12,16–18,44], since they provide high-resolution
data to inaccessible areas at a low cost and with high temporal repeatability [10,45,46]. The use of a
multispectral camera with similar wavelengths to the Sentinel-2 satellite wavelengths was examined
for the first time in the present study. Results indicated that the tc-RGB and multispectral orthomosaic
perform similarly, and there is no significant advantage of the multispectral camera. This can be
explained twofold: (a) due to the fact that the multispectral camera is designed for land measurements
and due to the inherited optical properties that cannot distinguish small radiometric differences in
water, and (b) the multispectral orthomosaic was problematic due to the large differences in actual
multispectral images as a result of large overlaps between them. The multispectral imager over sea
areas should contain small overlaps and should gain data in short shutter speeds, i.e., with larger
acquisition times. Additionally, results show that echo sounder roughness should not be used for
training classification algorithms. The total accuracy of the third scenario in both orthomosaics clearly
indicates the inadequacy of bottom roughness for training datasets.

Moving forward, the authors believe that the rapidly developing field of lightweight drones
and the miniaturization and the rapid advance of true-color RGB, multispectral, and hyperspectral
sensors for close remote sensing will soon allow a more detailed mapping of marine habitats based on
spectral signatures.
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Abstract: Barrier islands (BIs) have been designated as the first line of defense for coastal human
assets against rising sea level. Global mean sea level may rise from 0.21 to 0.83 m by the end of
21st century as predicted by the Intergovernmental Panel on Climate Change (IPCC). Although
the Indus Delta covers an area of 41,440 km2 surrounded by a chain of BIs, this may result in an
encroachment area of 3750 km2 in Indus Delta with each 1 m rise of sea level. This study has used a
long-term (1976 to 2017) satellite data record to study the development, movement and dynamics of
BIs located along the Indus Delta. For this purpose, imagery from Landsat Multispectral Scanner
(MSS), Thematic Mapper (TM), Enhanced Thematic Mapper Plus (ETM+), and Operational Land
Imager (OLI) sensors was used. From all these sensors, the Near Infrared (NIR) band (0.7–0.9 μm)
was used for the delineation and extraction of the boundaries of 18 BIs. It was found that the area and
magnitude of these BIs is so dynamic, and their movement is so great that changes in their positions
and land areas have continuously been changing. Among these BIs, 38% were found to be vulnerable
to oceanic factors, 37% were found to be partially vulnerable, 17% remained partially sustainable,
and only 8% of these BIs sustained against the ocean controlling factors. The dramatic gain and
loss in area of BIs is due to variant sediment budget transportation through number of floods in the
Indus Delta and sea-level rise. Coastal protection and management along the Indus Delta should be
adopted to defend against the erosive action of the ocean.

Keywords: satellite remote sensing; Landsat; coastline; barrier island; morphological change;
coastal ocean

1. Introduction

Global warming, being caused by the increase in temperature and atmospheric CO2, acts as a
catalyst in the melting of glaciers, expansion of ocean water, increase in sea surface temperature, rise
in sea-level, and increase in tropical storms intensity [1–6]. Accelerated sea level rise (SLR) threatens
human settlements, and environmental and economic assets which have been tremendously developed
in the coastal zones over the last five decades. SLR also shows alarming situation to the low lying sandy
beaches and barrier islands (BIs) and intensifies erosion along the coastal areas. It has been predicted
that, globally, up-to one meter rise in sea-level for the next hundred years can severely increase salinity
of estuarine water, disturb coastal sediment budget supply, disrupt marine life, damage sub-surface
and surface fresh water supplies, and damage agricultural and industrial areas [7–9].
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Coastal topography may constantly change with numerous oceanic and physical processes
including tidal flooding, SLR, and tsunami effect. This may cause sinking of low-land areas, and
erosion of sediments which is a great concern for coastal researchers and investigators [10–14]. Further
sediments excavation, river modification and construction along coastal areas also play an important
role in coastal areas including the BIs [15–19].

BIs are generally defined as the long offshore sand deposits which are 3 to 160 km in length and 1
to 3 km in width, and are separated but parallel to the main coastal area by the water inlets, bays and
inland sea [20]. BIs form a first line of defense for the main-land against high-energy tropical cyclones
and rise in sea-level, which would otherwise directly transfer their full energy against the seashore.
Provided coastal sand supplies are plentiful, and the gradient of sea-bed is gentle, the main-land is
usually bordered by a chain of BIs. The water in the estuaries and bays is continuously exchanged
with the water of the open shelf by flow through tidal inlets, water gaps separating BIs from one
another [21]. High wave energy is likely to close the tidal inlets while strong tidal flux keeps them
open [22]. A recent survey reveals that 20,783 km of coastline is occupied by 2149 BIs, worldwide [23].
Therefore, rise in sea-level poses a considerable risk of 10% to the world’s total population (7.6 billion)
living in lowland coastal areas [24]. Furthermore, tropical cyclones hitting BIs and the coastal systems
will cause more devastation to the coastal-urban environment and infrastructure, and also disturb
the geometries of the BIs [25–27]. In order to track the changes in BIs shape, area, and their position,
several methods have been adopted. For example, the topographic surveys, aerial photogrammetry,
and GPS (Global Positioning System) surveys. Recently, the unmanned airial systems (UAS) have
revolutionized the science and have proved their practice in remote sensing for short term change
detection of coastal land masses, which include both autonomous and remotely piloted aircraft [28].
Although these methods have high spatial and temporal resolution for coastal assessment of short-term
changes as well as long-term trends, but they are labor intensive and expensive for non-funded research
projects. Thus, the free availability of the medium spatial resolution satellite data (Landsat and Sentinel)
in the last decade has enabled the use of multi-sensor, multi-spectral, and multi-temporal satellite
imagery of extensive coastal areas to detect and monitor long-term trends of coastal land masses and
coastline changes.

1.1. Background of the Study

Pakistan’s shoreline extends more than 1000 km along the Arabian Sea which is divided into two
coastal areas (i.e., coastal areas of Sindh and Makran). More than 10% of the population of Pakistan
is living in the locality of coastal zone, about 20% of the coastal area of Pakistan is comparatively
developed, and 40% of the country’s industrial areas are located somewhere on or near the shore.
The coast of Karachi city is about 70 km long surrounded by a chain of BIs, oriented NW–SE. Currently,
6.8% of the total population of Pakistan (15 million people) is living in the vicinity of the coastal city
Karachi of the Indus Delta Region (IDR) which makes it the fifth largest coastal city [29] where a
rate of SLR has increased from 1.1 mm/year [30,31] to 1.8 mm/year. IDR is considered as economic
hub for Pakistan because Port Qasim and Karachi Port handle about 90% of all external trades.
The IDR is stretched more than 200 km and always affected by high southwestern summer monsoon
(May–September) winds having average speed of 15 m/s but during the northeastern winter monsoon
winds below with an average speed of 5 m/s [32]. Wave measuring at 20 m water depth offshore of
Karachi city show a mean significant wave height of 1.8 m during SW monsoon with a mean wave
period of 9 s and during the NE monsoon winds, significant wave height is about 1.2 m with a wave
period of 6.5 s [33]. The geomorphological changes have occurred at the center of Karachi coast along
Bundal and Buddo Islands [34]. IDR is experiencing geomorphological changes in all areas along its
major and minor creeks in the form of erosion processes and low deposition rate of sediment budget
from Indus River during post-damming era [35]. IDR has been considered as one of the most dynamic
deltaic systems which consists of 16 major tidal inlets having 17,000 km2 area with an active tidal flat
area of 10,000 km2, significant number of BIs [36] and hosts world’s largest arid mangrove forest [37].
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The IDR is ranked as the fourth highest delta in receiving average high wave energy as compared with
other famous deltas around the world (e.g., Nile, Mississippi Niger, Ganges, and Ebro deltas) [38].
The soil of IDR is less resistant to ocean hydro dynamics so the deltaic shoreline recede at average rate
of 50 m/y along the central delta coast [35]. SLR followed by sea-water intrusion is claiming more land
and changing the geomorphology of the low-lying land masses in the Indus Delta [32,39,40]. A SLR
of about 1 meter is expected to sink or sea-encroach an area of 3750 km2 in the Indus Delta [30]. The
global mean sea-level rose at a mean rate of 1.7 mm/year from 1900 to 2010 and at a rate 3.2 mm/year
between 1993 and 2010 [41]. Moreover, Intergovernmental Panel on Climate Change (IPCC) f claimed
that globally, sea-level will rise from 0.18 m to 0.59 m by the end of 21st century [42] but in the current
scenario it will rise to 0.21 m to 0.8 m [43]. Therefore, if the sea-level rose at considerable rate, these
narrow and low-lying landforms (i.e., BIs) would be extremely vulnerable so, they either migrate
landward; experience erosion or accretion in its land mass in addition to other oceanic factors, but its
overall response is unpredictable.

Several studies have investigated the behavior of BIs under different climatic and geographic
setting, i.e., at global scale, Stutz and Pilkey (2011) [23] have studied the influence of sediments
depositional settings, ocean climatic system and wave-tide regime on open-ocean BIs distribution and
morphology. They revealed that 20,783 km of total worldwide coastal shoreline is occupied by 2149
open-ocean BIs. While at local scales, Madurapperuma et al. (2017) [44] used kite aerial photographs
for mapping shoreline vulnerabilities at the Oluvil Harbor in Ampara, Sri Lanka and found that a
2 m rise in sea level inundated 90% area of the harbor. Kundu et al. (2014) [45] carried out shoreline
mapping of the Sagar Island in West Bengal, India for the period of 1951 to 2011 using geospatial
techniques to estimate morphological change and its future prediction. In a study of nearshore and
foreshore influence on over-wash of a BI proposed by Matias et al. (2014) [46], identified and described
longshore differences in storm impacts along a BI and evaluated the role of sub-aerial and submerged
morphological variations in over-wash events on the western segment of Barreta Island, which is
part of the Ria Formosa BI chain, in southern Portugal. Morton (2008) [47] has investigated that the
Mississippi-Alabama BIs in the north-central Gulf of Mexico are undergoing rapid systematic land
loss and translocation because of disruption of the sand-transport system. Moore et al. (2007) [48]
has carried out sensitivity analyses on the outer banks of North Carolina and recommended that if
sea-level rose by 0.9 m by the end of 21st century, the outer banks may translocate up to 2.5 times more
quickly than at the present rate.

1.2. Purpose of the Study

Land reclamation has been a major anthropogenic factor affecting the Pakistan’s coast and BIs
and there has not been any systematic study for the evaluation. Therefore, this study aims at using
the satellite remote sensing as a mean for (i) assessing the development, movement and change
(morphology) in position of the BI chain along the Indus Delta from 1976 to 2017 and (ii) assessment of
the rate of systematic land-loss due to physical processes.

2. Study Area

IDR is located between the Indian border along ‘Sir Creek’ on the east to the ‘Hub River’ on the
west having length of 320 km and forming IDR (Figure 1). IDR is located at the head of the Arabian
Sea, between Korangi Creek and the Rann of Kutch [30,40]. IDR has 22 tidal creeks which supply the
sediment budgets to the BI chain. Main creeks of IDR include Phitti, Waddi Khuddi, Dabbo, Hajambro,
Wari, Khar, Keti Bunder, Chann, and Khobar connecting Indus River to Indian Ocean [8].

IDR has 2.6% of the world BI with total length of 567 km [23] (Figure 1). Indus Delta is mixed
wave dominated delta [23] where continuous accretion and erosion due to waves and tides up to 3 m in
height modify the BIs. Bundal Island is a triangular shaped island located at the eastern side of Karachi
harbor and at the intersection of the three major creeks, Gizri creek, Korangi creek, and Phitti creek.
Its northern side is wide, and the southern side is narrow. Bundal Island has great social-economic
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importance in the study area because it protects Phitti creek, a navigational channel of Port Bin Qasim,
and the human settlements from the high energy wave.

 
Figure 1. (a) Location of study area (filled red rectangle) and worldwide Barrier Island (BI) chains
(black dots) derived from [23] and (b) barrier islands located within Indus Delta Region (IDR).

3. Methodology

3.1. Satellite Data

This study has used the archived imagery of Landsat-2 (L2) Multispectral Scanner (MSS),
Landsat-5 (L5) Thematic Mapper (TM), Landsat-7 (L7) Enhanced Thematic Mapper Plus (ETM+),
and Landsat-8 (L8) Operational Land Imager (OLI). L2, L5, L7, and L8 satellites were launched during
January 1975, March 1984, April 1999, and February 2013, respectively. L2 and L5 were decommissioned
during July 1983 and January 2013, respectively. The MSS sensor had spatial resolution of 80 m with a
revisit frequency of 18 days and acquired the imagery on the Worldwide Reference System-1 (WRS-1),
while the TM, ETM+ and OLI sensors have spatial and temporal resolutions of 30 m and 16 days,
respectively on Worldwide Reference System-2 (WRS-2). All the images acquired from ETM+ after
31 May 2003 suffer from the Scan Line Corrector (SLC) error which causes 22% loss of the data [49].
Therefore, the SLC error was corrected using the “Fill nodata tool” under the raster tools available in
QGIS 2.8.8 software.

Overall, this study has used 10 Landsat Collection 1 (C1) images from 1976 to 2017 acquired
through L2 MSS, L5 TM, L7 ETM+, and L8 OLI sensors (Table A1). The Level-1 (radiometrically
calibrated and orthorectified) MSS image were obtained from the United States Geological Survey
(USGS) Earth Explorer website (http://earthexplorer.usgs.gov/) while the atmospherically corrected
Level-2 (surface reflectance) images of TM, ETM+, and OLI were obtained from the USGS Earth
Resources Observation and Science (EROS) Center Science Processing Architecture (ESPA) On Demand
Interface (https://espa.cr.usgs.gov/). Images from different months of the years enabled the
investigation of the morphological changes of the BIs over the study area according to the same
oceanic and cloud free condition.
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3.2. Tidal Data

Tide height was used in the satellite image selection process for the identification and extraction
of geometry of the BIs. Ocean tide height along the coast of Sindh, Pakistan is monitored using a
fixed tide gauge located at Port Muhammad Bin Qasim (24.7833◦N, 67.3500◦E) by National Institute
of Oceanography (NIO) Karachi, Pakistan (Figure 1b). The maximum and minimum tide heights
recorded at this station are 3.8 m and little less than 0.1 m between 1976 to 2017.

3.3. Satellite Data Selection Criteria

Due to seasonal variations in the ocean controlling factors (wave, tides, sea level rise, storms and
sediment budget) and suitable atmospheric conditions, selection of satellite images at the same time of
the year is important for studying the morphology of BIs [50]. Therefore, only those Landsat (MSS, TM,
ETM+, and OLI) images were selected which had 0% cloud cover over the study area duly verified
from the metadata file (.MTL) which is provided along each image. The objective for taking only those
scenes with 0% cloud cover is due to the limitation of the optical imagery. This criterion can be relaxed
to 10% to 20% provided the studied area (or the specific barrier island) is not affected. This limitation
can be overcome by using the Synthetic Aperture Radar (SAR) imagery and authors do not exclude
this possibility.

Furthermore, the images from non-flooding months (December to April) were selected because
tropical storms affect the coastal areas of Pakistan during May to June and September to November.
Only those images were selected which had a tide height of <1 m within a time window of ±1 h
before or after the image acquisition time. This image selection criteria (Figure 2) resulted in ten
images including one image from L2 MSS, two images from L5 TM, six images from L7 ETM+, and
one image from L8 OLI sensor from 1976 to 2017. The selected images were obtained as Level-2
surface reflectance products for the Landsat TM, ETM+ and OLI sensors, due to the unavailability of
the surface reflectance product Landsat MSS, surface reflectance was estimated in house using the
6S atmospheric correction method [51] (supplementary materials).

Figure 2. Flowchart of the methodology for the morphological change detection in the IDR barrier islands.
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3.4. Barrier Island Identification and Extraction

A BI can be identified based on its association with different features i.e., a BI always has a
back-barrier lagoon, a tidal inlet, it faces the shore and it is distant from the land [52]. Taking advantage
of the higher reflectivity of land features in the Near Infrared (NIR) wavelength, the NIR band of L2
MSS (0.7–0.8 μm), L5 TM (0.76–0.90 μm), L7 ETM+ (0.77–0.90 μm), and L8 OLI (0.85–0.88 μm) sensors
was used for developing water/land mask through Iso-cluster image classification method [53].

The classified images (water/land mask) were then visually examined with their corresponding
true color images by displaying at a scale of 1:75,000 for visually identifying the boundary of BIs.
Shorelines of the wet marshy sand beaches around the perimeter of BIs are less reliable and vary more
with tide level than sandy shorelines of island [54]. So, only elongated sand deposits which fulfill
the criteria for BI identification [52] were extracted. The boundaries of the classified BIs were then
converted to polygon features by using the raster to vector conversion tool available in QGIS 2.8.8
software. Where necessary, minor edits were made to the boundaries of BIs to extract the more accurate
boundary. Small polygons found near the main perimeter of an island were merged to that specific
island polygon. Furthermore, polygon areas were calculated and added to the polygon attribute tables.
Through this process 18 BIs (Figure 1) were delineated for the whole IDR.

3.5. Pixel by Pixel Frequency of Barrier Island

After finalizing the boundary of each BI from each of the ten selected images (Table A1), raster
overlay operation was applied to determine the pixel by pixel frequency of each existing valid pixel
of island body. For this purpose, polygon feature of each BI, for each year was converted to a binary
raster (with a native grid size of 30 × 30 m) using the vector to raster conversion tool available in
QGIS 2.8.8 software where a filled value of 1 was assigned to each pixel of BI, and 0 for each pixel
representing any feature(s) other than BI.

The boundary of each BI was different in each of the 10 images but for raster overlay operation,
one need to have the same spatial extent for each BI. Therefore, a fixed spatial extent (suitable for
all years for each BI) was created by drawing a rectangular polygon to the maximum extent on the
east, west, north and south directions of that specific BI (Figure 1—red rectangles). At this point when
spatial extent of each BI was same, raster overlay by addition operation was applied, which calculated
the frequency value of 1 to 10 for each pixel of the BI. The pixel which shows frequency value of 10,
indicates that the island body exists at that pixel (location) in each of the ten rasters (images) while
descending number of frequency values (9 to 1) shows that existence of valid island pixels for each
image is decreasing.

4. Results

4.1. Boundary Delineation of Barrier Islands

The variant changes observed in the boundary of BIs during study period indicate that generally,
there is a retreat of the boundary, and shapes of the BIs have evolved (Figure 3). In Figure 3, the color
variations represent the shape of a BI in a specific year. For BIs 1 to 13 the 1976 boundary (filled grey
colored polygons) was used as a reference to gauge the movement of the BIs, while it should be noted
that for BIs 14 to 18 there is no boundary for the year 1976 which was due to the unavailability of
the L2 MSS image satisfying the image selection criteria (Figure 2), hence 1990 boundary (filled grey
colored polygons with red outline) was used as a reference. It is evident that, except BIs 1 to 4, 6, and
13, the shape of the BIs has been evolving significantly which can be due to the climatic and oceanic
factors. It has been observed that some of the BIs are shrinking while others are expanding in both
directions—i.e., oceanside and landside—against the accelerated SLR.

Among all the 18 BIs, BIs 5 and 9 (Figure 3) have lost significant areas and moved towards the
land. BI5 also known as Bundal Island (local name) is the largest island located near the most western
part of the Indus Delta. In personal communication with the NIO officials we came to know that the
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island has faced erosion from tidal currents passing through small prolonged tidal inlets on the eastern
side and due to the passage of the cargo ships from the southern part of the island at the opening of the
Phitti Creek, which produces constant backward and forward ocean currents. The island is abundant
in mangroves on the northern side which helps it to retain its northern side. The boundary of the island
is shrinking slowly from the eastern and southern sides while expanding from the western side as it
is protected from any direct erosive factor (Figure 3). An overall summary of BI wise morphological
changes from 1976 to 2017 has been presented in Table 1.

 

Figure 3. Barrier islands shapes as delineated from 1976 to 2017 from Landsat images.
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4.2. Sustainability of Barrier Islands

The vulnerability or sustainability of BI over the study period against the climatic and oceanic
factors such as storm erosion, reductions in sediment, longshore drift and SLR shows that the BI are
mostly vulnerable to greater extent (Figure 4). The pixel frequency values from 1 to 10 for each BI
revels about the existence of the island body covering 10 years of study period at that pixel which is
important to assess the sustainability of the BI chain of the Indus Delta. Increasing pixel value from 1
to 10 shows more stable part of the island, such that 10 indicates an area present throughout the study
period whereas 1 indicates a part of the island that appears only once in study period (Figure 4).

Figure 4. Frequency pixel count of Barrier Island. The inset views for BI 1&2, BI 3&4, and BI 6 show
the frequency of the data between 0 and 1 × 103.
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4.3. Change in Area of Barrier Islands

The box and whisker plot (Figure 5) show the percent change in area from 1976 to 2017 (for each
BI) on the vertical axis, while the horizontal axis shows the BIs from 1 to 18. The red line shows the
zero line of the data distribution. The value above the zero line shows the gain in area of a specific BI
while the values below show the loss in area. It can be observed that Island 4 sustained, so we can say
that the size of the box varies as there is variant change in area of the BI from 1976 to 2017. The Island
11 (Figure 5) shows the most vigorous change above the median value means the variance in data is
higher in the 50th to 75th percentile of the data.

 
Figure 5. Barrier island percent area change from 1976 to 2017.

4.4. Translocation of Barrier Islands

The coastal erosion over centuries is a result of natural processes and sea level change. The rate of
erosion seems to have increased at some points along the BIs of the Indus Delta. Translocation of BIs
was estimated based on the movement of that specific BI relative to the reference shape. The reference
shape (Figure 6, black colored polygon) for each BI was the shape delineated from the L2 MSS (from
1976) and L5 TM (from 1990) images for BIs 1 to 13 and 14 to 18, respectively. In Figure 6, the shades
of blue and red colors represent less sustainable and highly sustainable pixel of the BIs. Due to the
existence of BIs 1 to 4 on the back side of the Manora Beach, they were not significantly migrated
or translocated (Figure 6). A significant translocation was observed for Bundal Island (BI 5) which
migrated landward approximately 1.5 km (Table 2) from the ocean exposing side of the island between
1976 and 2017 with a rate of 38 m per year due to the action of ocean dynamical factors. BIs 6, 7, 8, 15,
16, and 17 have gained a significant area since 1976 and overall, they have started their development
towards the land. While BIs 5, 9, 11, and 12 were found to be highly vulnerable to the oceanic conditions
and have lost a significant area.
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Figure 6. Pixel by pixel frequency. The black colored polygons show the extent of a barrier island in
1976 (for barrier islands 1 to 14) and 1990 (for barrier islands 14 to 18).
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A BI wise status of its vulnerability or sustainability has been devised based on the frequency of
the pixels—i.e., a BI whose pixel frequency count of 1 is high indicates that specific BI is ‘vulnerable’
(V) to oceanic factors, frequency pixel counts of 2 to 4, 5 to 8, and 9 to 10 indicate that specific BI is
‘partially vulnerable’ (PV), ‘partially sustainable’(PS), ‘and sustainable’ (S) during the study period
respectively (Table 2). The movement either it is landward, oceanward or in both directions, has also
been reported in Table 2 along with the fate of BI whether it is shrinking or expanding. It can be
seen that only islands 1 to 4 have more than 40% of their areas which are sustainable, islands 5 to 14
have areas majority of the areas between partially vulnerable to partially sustainable while islands
15 to 18 have more than 50% of their areas which are vulnerable to oceanic factors. Among the 18
BI of the Indus Delta BI chain, majority (11 out of 18) have been found to be moving towards land,
a smaller amount (6 out of 18) of BIs has been found which exhibited the mixed behavior of movement
(i.e., some parts are moving towards land and some towards ocean) and only 1 out of 18 are found to
be moving towards ocean (Table 2). This is an alarming situation and indicates that the sea-level is
rising and encroaching the land areas of Indus Delta BI chain. Furthermore, a notable remark is that 10
out of 18 BIs have been found which are expanding while 8 out of 18 BIs are shrinking (Table 2).

Table 2. Net translocation, translocation rate, vulnerability/sustainability status, movement and the
fate of barrier islands.

BI# Net Translocation Translocation Rate V PV PS S Movement Fate

(km) (m/year) (%) (%) (%) (%)

1&2 0.06 1.30 22 15 20 43 −
3&4 0.05 1.20 11 17 26 46 ↑ +

5 1.56 38.05 36 39 19 6 ↑ −
6 0.20 4.88 41 39 20 0 ↑ +
7 1.15 28.05 47 38 15 0 ↑ +
8 0.51 12.34 36 52 12 0 ↑ +
9 1.55 37.80 21 35 39 5 ↑ −

10 0.50 12.20 29 42 20 9 ↓ +
11 0.80 19.51 23 59 17 1 −
12 0.50 12.20 22 40 30 8 −
13 0.50 12.20 42 35 19 4 ↑ −
14 0.40 14.81 40 39 21 0 ↑ −
15 0.80 29.63 55 37 8 0 ↑ +
16 1.10 40.73 68 32 0 0 ↑ +
17 0.90 33.33 62 32 6 0 +
18 1.40 51.85 57 35 7 1 +

Notes: (1) Net translocation and translocation rate for barrier island 1 to 13 and barrier islands 14 to 18 are with
reference to the periods 1976 to 2017 and 1990 to 2017, respectively. (2) V, PV, PS, and S represent vulnerable,
partially vulnerability, partially sustainability and sustainable status of barrier islands, respectively and the signs
‘−’, ‘+’, ‘↑’, ‘↓’ and ‘ ’ represent shrinkage, expansion, landward movement, oceanward movement, and movement
in both directions, respectively.

5. Discussion

This study attempts to study the historical variability of the barrier islands (BIs) located along the
Indus Delta Region by employing the Landsat satellite imagery from 1976 to 2017. Overall, 18 BIs were
delineated, and their morphological behavior was studied. The spatial resolution is very important
in detection and monitoring of the trends of costal land masses and coastline changes. Therefore,
taking the advantage of the medium spatial resolution and free availability of the Landsat imagery, this
study has used the Landsat TM, ETM+, and OLI imagery at 30 m spatial resolution (except for MSS
sensor which has a spatial resolution of 60 m). In recent years, image acquisition systems with high
spatial resolution such as spaceborne sensors and unmanned aircraft systems (UAS) or drones have
emerged as an important platform for high spatial resolution data collection [28]. The evaluation of
detection accuracy is always the focus of discussion. Therefore, results of this study have been verified
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by authors themselves during frequent field visits with NIO officials and personal communications
with the residents, where applicable.

It was found that BIs 5 and 9 faced significant erosion and moved towards the land. BI 5 also
known as Bundal Island (local name) is the largest island located near the most western part of
the Indus Delta. This island is of high socio-economic importance for the region as it has human
settlements from past three decades. Significant net loss of 61% in the area of the Bundal Island and
translocation of about 1.56 km of its boundary landward with a rate of 38 m/year shows vulnerability
of the socioeconomic coastal environment associated to the island. Historical morphological changes
show maximum of 36% of the Bundle Island was vulnerable to oceanic controlling factors with only
6% of the island sustained throughout the study period. Tidal currents contributed to the erosive and
accretion action along the Bundal Island. The tidal inlets with narrow opening at the mouth and a
large area from inside the Island let the high tide water enters inside and makes island marshy and
erosive. Among the other BIS, BIs 6, 7, 8, 15, 16, and 17 had gained a significant area since 1976 and
overall, they had started their development towards the land. While BIs 5, 9, 11, and 12 were found to
be highly vulnerable to the oceanic conditions and have lost a significant area.

Results suggested that the BIs 1 to 4, 5 to 14, and 15 to 18, are sustainable, partially sustainable
and vulnerable to the oceanic factors, respectively. Majority of the Indus Delta BIs have been found to
be moving towards land which alerts the local authorities and indicates that the sea-level is rising and
encroaching the land areas of the BIs. Climate change and anthropogenic activities (land reclamation
and modification) can trigger extreme climatic events such as flooding, tropical cyclone and SLR along
the deltaic regions (e.g., Indus Delta Region) leading to an increased vulnerability of coastal landmarks.
Cyclones and storms usually develop in the Arabian sea during pre-monsoon (March–May) and
post-monsoon (October–November) seasons with favorable month as October and pushed by the
prevailing monsoon winds along their direction. Arabian Sea is in northwest of the Indian ocean and
share coast among India, Pakistan, Oman, Iran, Siri-Lanka, Maldives, and Somalia.

6. Conclusions

An archive of Landsat imagery from 1976 to 2017, has been used in this study to explore the
morphological changes in the barrier island of the Indus Delta Region (IDR). Unlike global scale
assessment of the barrier islands, a regional study allows in depth spatial assessment of the island.
In general, it has been found that, accretion is more significant in the most parts of the islands, but
erosion has also remarkably increased in most of the islands. The relative rates of change of islands
morphology and migration are recorded in the IDR barrier islands chain. The natural future trends of
change for the IDR barrier islands will be continued in rapid land mass change, change in perimeter,
and migration as a result of accelerated sea level rise, frequent intense storms, and sand budget supply.
As a result of global warming which causes the sea level rise increases beyond the expected rate
will also likely to increase the land loss of the barrier islands regionally and worldwide. The total
percent area of barrier islands relatively changed from 1976 to 2017 was found −16.73%. Overall, 44.4%
of the total barrier island are shrunk while the rest of them are expanded due to heavy sediments
budget supply. The translocation of the barrier island found about of 66.1% of the total islands moved
landward, 5.6% along seaward and the rest of the islands moved along both sides. A major part of these
barrier islands chain is vulnerable which is about 38.3% and 36.7% is partially vulnerable while 17.4%
is partially sustainable and only 7.6% sustained in the study area against the ocean controlling factors.

Most of the barrier islands along the IDR are still undisturbed by the human intervention.
The existence of the barrier islands at a place is mostly determined by the sand supply and sea
level change. Protection against the sea level rise is an especially important issue which can damage
barrier beaches and coastal system. Coastal protection and coastal management along the IDR should
be adopted to defend against the erosive action of the ocean. In future, increase in land loss can be
mitigated by placing dredged material on the backshore and shore facing side of the island so the
island experiences nourishment and rebuilding.
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Appendix A

Table A1. List of Landsat images used in this study.

Sr. # Satellite Sensor Scene Identifier Path/Row Acquisition Date

1 Landsat-7 ETM+ LE07_L1TP_152043_20170219_20170317_01_T1 152/43 b 19 Feb 2017
2 Landsat-8 OLI LC08_L1TP_152043_20160413_20170326_01_T1 152/43 b 13 Apr 2016
3 Landsat-7 ETM+ LE07_L1TP_152043_20140126_20161119_01_T1 152/43 b 26 Jan 2014
4 Landsat-5 TM LT05_L1TP_152043_20110211_20161010_01_T1 152/43 b 11 Feb 2011
5 Landsat-7 ETM+ LE07_L1TP_152043_20090418_20161222_01_T1 152/43 b 18 Apr 2009
6 Landsat-7 ETM+ LE07_L1TP_152043_20080314_20161230_01_T1 152/43 b 14 Mar 2008
7 Landsat-7 ETM+ LE07_L1TP_152043_20070224_20170104_01_T1 152/43 b 24 Feb 2007
8 Landsat-7 ETM+ LE07_L1TP_152043_20021211_20170127_01_T1 152/43 b 11 Dec 2002
9 Landsat-5 TM LT05_L1TP_152043_19900217_20170131_01_T1 152/43 b 17 Feb 1990
10 Landsat-2 MSS LM02_L1TP_163043_19761214_20180425_01_T2 163/43 a 14 Dec 1976

Note: The superscripts a and b represent the path/row for WRS-1 and WRS-2, respectively.
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Abstract: Artificial lands or islands reclaimed from the sea due to their vast land spaces and air are
suitable for the construction of airports, harbors, and industrial parks, which are convenient for
human and cargo transportation. However, the settlement process of reclamation foundation is a
problem of public concern, including soil consolidation and water recharge. Xiamen New Airport,
one of the largest international airports in China, has been under construction on marine reclamation
land for three years. At present, the airport has reached the second phase of construction, occupying
15.33 km2. The project will last about twenty years. To investigate the temporal and spatial evolution
of ground settlement associated with land reclamation, Sentinel-1 synthetic aperture radar (SAR)
data, including intensity images and phase measurements, were considered. A total of 82 SAR images
acquired by C-band Sentinel-1 satellite covering the time period from August 2015 to October 2018
were collected. First, the spatial evolution process of land reclamation was analyzed by exploring
the time series of SAR image intensity maps. Then, the small baseline subset InSAR (SBAS–InSAR)
technique was used to retrieve ground deformation information over the past three years for the
first time since land reclamation. Results suggest that the reclaimed land experienced remarkable
subsidence, especially after the second phase of land reclamation. Furthermore, 26 ground settlement
areas (i.e., 0.015% of the whole area) associated with land reclamation were uncovered over an area of
more than 1200 km2 of the Xiamen coastal area from January 2017 to October 2018. This study offers
important guidance for the next phase of land reclamation and the future construction of Xiamen
New Airport.

Keywords: ground settlement; marine reclamation land; time series InSAR; Sentinel-1; Xiamen
New Airport

1. Introduction

With the rapid development of modern cities, the efficiency of land-resource utilization has
significantly risen. To alleviate pressure from dense populations, it is an important way to carry
out marine reclamation land projects and expand urban space in coastal cities. Therefore, land
reclamation activities have been performed in many countries around the world, including the USA [1],
Singapore [2], the Netherlands [3], Japan [4], China [5], and other countries [6]. However, because land
reclamation usually involves dumping uncompacted filling materials over unconsolidated marine
sediments [7], the settlement process of reclamation foundation has become a problem of great public
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concern. It can cause severe damage to structures such as harbors, highways, airport runways, and
underground facilities. In addition, it greatly threatens the environment and public safety [8]. Therefore,
it is necessary to characterize and monitor ground settlement associated with land reclamation to
facilitate a better understanding of its temporal and spatial evolution. Accordingly, it can reduce
economic loss and guarantee the safety of facility construction.

Traditionally, ground deformation could be quantitatively monitored by employing in-situ
measurements such as GNSS, leveling, piezometers, and inclinometers. Although these methods
have high accuracy, they still have maintenance problems and high costs due to discrete benchmark
installation and campaign/continuous measurements [9]. More recently, repeat-pass spaceborne
synthetic aperture radar interferometry (InSAR), which has been used in several regions, has proven to
be a powerful geodetic tool for investigating ground settlement associated with land reclamation, with
the advantages of wide spatial coverage, fine spatial resolution, and day-and-night and all-weather
working capabilities. For instance, Jiang and Lin [10] investigated the long-term reclamation settlement
of Hong Kong’s Chek Lap Kok Airport by integrating InSAR and geological data; Yu et al. [11]
applied COSMO–SkyMed and Sentinel-1 satellite images to investigate ground deformation in
ocean-reclaimed areas of Shanghai, China; Liu et al. [12] determined surface deformation associated
with land reclamation in Shenzhen, China from 2004 to 2010, and from 2013 to 2017, by combining the
Envisat, COSMO–SkyMed, and Sentinel-1 datasets; Aslan et al. [13] investigated the spatial extent and
rate of ground deformation related to land reclamation in the megacity of Istanbul, Turkey by using
the ERS-1/2, Envisat, and Sentinel-1 datasets. These studies mainly focus on surface deformation
investigation several years after the completion of land reclamation. Further, it would be great if the
InSAR technique could be used for the real-time monitoring of ground deformation during the land
reclamation process, because such a study could play an important decision-making role in the entire
land reclamation process.

Compared with in situ measurements, the main concern of the InSAR technique lies in measuring
precision. Theoretically, the measurement precision of InSAR largely depends on the coherence of
interferograms, which is affected by many factors, including atmospheric artefacts, and temporal
and spatial decorrelation [9,14]. Thanks to the successful launch of some new SAR satellites, e.g.,
TerraSAR-X, ALOS/PALSAR-2, and Sentinel-1, with the characteristics of short revisit period, short
spatial baseline, and the provision of various wavelengths. For instance, the Sentinel-1 satellite flies
in an orbital tube with a radius of 50 m, thus forming small orbit InSAR baselines in the order of
150 m [15], which significantly improves interferogram coherence and facilitates the improvement of
InSAR measurement accuracy. Furthermore, advanced multitemporal InSAR (MT-InSAR) techniques
could overcome many intrinsic temporal and spatial decorrelations of traditional InSAR techniques [16].
Currently, two main families of MT-InSAR techniques broadly exist, namely, the small baseline subsets
(SBAS) [17–19] and persistent scatterers (PS) [20–22] methods. The former inverts surface deformation
evolution through the singular-value decomposition (SVD) method using coherent interferograms.

Xiamen New Airport, as one of the most important international airports in China, four-fifths of
which occupy an approximate area of 26 km2, will be produced by marine reclamation land. Currently,
the reclamation area has reached 10.58 km2, and the construction of the airport will be finished in the
next twenty years. Surface deformation occurs in land reclamation areas due to the soil consolidation of
the underlying unconsolidated marine sediments [10]. However, there are no bibliographies available
for ground deformation analysis on Xiamen New Airport. To bridge this gap, in this study, the SAR
images of Sentinel-1 satellite were involved, and the time series InSAR method was employed to
explore the spatiotemporal deformation characteristics of Xiamen New Airport after land reclamation.
In addition, potential ground settlement areas associated with land reclamation in the coastal area of
the city of Xiamen were also mapped and analyzed.
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2. Study Area

Xiamen Xiang’an International Airport (Xiamen New Airport hereinafter) is located in the
Xiang’an district, Xiamen, China [23], as shown in Figure 1, which is about 25 km to the west of
the city center of Xiamen, and 15 km to the south of the county of Jinmen, Taiwan, China. The total
planned area of the airport is about 31 km2, as shown in the red line in Figure 2b, including the island
of Xiaodeng, the shoal area between the islands of Dadeng and Xiaodeng, and part of the sea area
around the island of Dadeng, as well as part of dry land in the east of Dadeng. Approximately 84% of
the total airport area, occupying 26 km2, will be created through the land reclamation project, which
will be carried out in three phases: The first phase is mainly blowing and filling dredged mud, an area
of about 3 km2; the second phase is mainly blowing and filling sands to create land, an area of about
7.58 km2; and the third phase is about 15 km2, as shown in Figure 2a. At present, the first and the
second phases of the project have been completed.

Figure 1. Study area location and synthetic aperture radar (SAR) data coverage. The background is
the shaded topography generated from the shuttle radar topography mission digital elevation model
(SRTM DEM), where the coverage of Sentinel-1 SAR data is superimposed by the white rectangle, green
dots indicate the location of the major cities, and the red rectangle indicates the location of the study
area. Inset indicates the study-area location in China.

The function area of the airport mainly includes the flight area, the terminal area, and the
supporting area, and the runway is about 3800 m in length [23]. The engineering geology of Xiamen
New Airport can be divided into five layers from top to bottom, that is, sand-mixed silt (Qm

4 ) with a
thickness of around 7.86 m, silt and silt mixed with sand (Qm

4 ) with a thickness of around 7 m, silty
clay and clay (Qal

3 ) with a thickness of around 2.1 m, silty sand (Qal
3 ) with a thickness of around 4.9 m,

and residual clay (Qel) with a thickness of around 3.1 m. Two Landsat-8 remote sensing images of
the airport were acquired on 26 March 2014 and 13 March 2018, which are shown in Figure 2a,b,
respectively. It can be deduced that the airport did not start to reclaim until March 2014. However, the
second phase of land reclamation was completed after March 2018.
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Figure 2. Landsat-8 remote-sensing images of the study area acquired on (a) 26 March 2014 and (b)
13 March 2018. The blue line represents the dry land area (4.75 km2) of the airport, the yellow line
indicates the first phase (3 km2), the white line indicates the second phase (7.58 km2), and the red line
indicates the third phase (14.06 km2) of marine reclamation land.

3. Data and Methodology

3.1. Datasets

A total of 82 ascending Sentinel-1 images acquired from 11 August 2015 to 24 September 2018
were employed to characterize and monitor the ground settlement of marine reclamation land. During
the entire SAR data monitoring period, the land reclamation project was still underway, which caused
the ground surface to greatly change. Therefore, in order to avoid the effect of SAR image decorrelation
caused by ground surface changes, SAR data were divided into two groups for InSAR processing,
that is, Group I, from November 2015 to December 2016, and Group II, from January 2017 to October
2018. The shuttle radar topography mission (SRTM) digital elevation model (DEM) with a resolution
of 30 m was applied to remove topographic phase contributions. The topographic phase over Xiamen
New Airport was negligible due to small elevation changes and the DEM missing during the land
reclamation period. A multilooking factor of four in range direction was used in data processing, and
the spatial resolution of multilooked SAR images was about 16 m in both range and azimuth directions.
SAR images with this spatial resolution can best detect ground deformation.

GAMMA software was used to process the Sentinel-1 datasets [24]. The thresholds of the temporal
baseline and the perpendicular baseline were set to 60 days and 150 m, respectively. Therefore, a total
of 314 interferograms were generated and, eventually, 208 high-quality interferograms were selected
to further calculate ground-surface deformation. The spatiotemporal baseline distributions of the
high-quality interferograms are shown in Figure 3a,b, representing the interferograms in Group I and
II, respectively.

 
Figure 3. Baseline distribution of high-quality interferometric pairs used in this study. (a) Group I of
SAR images, acquired from November 2015 to December 2016; (b) Group II of SAR images, acquired
from January 2017 to October 2018.
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3.2. Methodology

The temporal and spatial evolution of land changes and reclaimed land deformation of Xiamen
New Airport were jointly investigated with the intensity and phase information of the SAR images.

First, Sentinel-1 images were preprocessed including coregistration, azimuth spectral filtering,
image resampling, and data deramping and reramping [15]. With regard to the imaging mode of
terrain observation by progressive scans (TOPS) for Sentinel-1 images, the Doppler Centroid rapidly
varies along the track [15]. Phase ramps occur in individual bursts if coregistration accuracy is less
than one-thousandth of one pixel, which is equivalent to 2 cm in azimuth [25]. Hence, highly precise
coregistration, especially in the azimuth direction, is needed. Iterative coregistration refinement,
estimated using intensity matching followed by the spectral diversity algorithm [26], was adopted for
burst overlap areas to ensure that all SAR images were accurately coregistered.

As for analysis of the land reclamation process, intensity images were considered, which are
robustly filtered with homogeneous pixels. First, statistically homogeneous pixels (SHPs) were selected
using the fast SHP selection algorithm with the confidence interval for each pixel based on the central
limit theorem [27]. Then, the intensity stacks were filtered by using the updated Lee filter algorithm [28]
to remove speckle noise. It is worth noting that single-look intensity images and interferograms were
used in this processing. As the accurate selection of SHPs is of great significance for the accurate
estimation of intensity, SAR images were divided into four different time periods (i.e., from 11 August
2015 to 30 June 2016, from 24 July 2016 to 20 January 2017, from 1 February 2017 to 19 July 2017, and
from 31 July 2017 to 24 September 2018) in order to avoid the influence of surface changes caused by
land reclamation, and SHPs were estimated separately.

As for ground settlement monitoring, the differential interferograms were generated,
filtered [29,30], and unwrapped [31,32] after the accurate coregistration of the SLC stacks.
Baseline refinement was conducted to remove the residual orbital ramp phase [33]. The artifacts of
atmospheric disturbance were reduced by using a quadratic polynomial model, as follows:

w(x, y) = a0 + a1x + a2y + a3xy + a4x2 + a5y2 (1)

where w(x, y) represents the unwrapped phase for a generic pixel (x, y), ai indicates the unknown
coefficients, and i represents the subscript of the unknown coefficient a, corresponding to 1, 2, 3, 4,
and 5.

As the study area is located in the coast, and the terrain is relatively flat, there is no need to consider
the influence of the stratified atmospheric delay [34]. The average deformation rates and time series of
the ground surface were calculated using Equation (2) [24] and the SBAS algorithm [17], respectively.

Vphase =

N
∑

i=1
Δti ϕi

N
∑

i=1
Δt2

i

(2)

where N is the number of interferograms, ϕi represents the unwrapped phase of each interferogram,
and Δti is the time interval of each interferogram. Finally, the temporal and spatial deformation
characteristics of ground settlement after land reclamation were analyzed in depth based on the
deformation maps.

The ground deformation rate and time series obtained by Equation (2) and the SBAS algorithm
are the sum of the projections of the real three-dimensional (i.e., north–south, east–west, and up–down)
ground deformations in the line-of-sight (LOS) direction. For land subsidence caused by land reclamation,
the vertical displacement dominates ground deformation [16]. Hence, to analyze the airport’s deformation
characteristics, the vertical deformations were mainly considered, and LOS displacement was purely
back-projected into the vertical direction considering the local incidence angle [35].
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4. InSAR Results

The surface deformation rate maps of Xiamen’s coastal areas were retrieved from November
2015 to October 2018, as shown in Figure 4, where Figure 4a shows the one from November 2015 to
December 2016, and Figure 4b from January 2017 to October 2018. Note that the deformation rate was
in the LOS direction, and the positive values (blue color) indicate the motion toward the satellite (uplift),
and the negative values (red color) indicate the motion away from the satellite (settlement). Figure 4
shows that most areas were stable (between −10 and 10 mm/year). However, several small-scale land
deformation areas (<−10 mm/year) were obviously uncovered along the coastal areas of the city of
Xiamen. Quantitatively, 20 land subsidence areas were detected from November 2015 to December
2016, and 26 land subsidence areas were detected from January 2017 to October 2018. The maximum
annual subsidence rate from November 2015 to December 2016, and from January 2017 to October
2018 reached −130 mm/year and −126 mm/year, respectively.

 
Figure 4. Average deformation rate maps calculated with Sentinel-1 datasets over the whole coastal
areas of the city of Xiamen. Black rectangles represent potential deformation areas identified by InSAR,
and Regions A–G in Figure 4b are analyzed in Section 5. (a) The deformation rate map from November
2015 to December 2016; (b) the one from January 2017 to October 2018.

It can also be seen from Figure 4 that moderate (between −30 and −40 mm/year) to strong
(<−40 mm/year) land subsidence areas were mainly concentrated in the central coastal areas, i.e., the
Xiang’an district of Xiamen. There was only one strong land subsidence area observed from November
2015 to December 2016, with the maximum deformation rate of −130 mm/year. However, it increased

166



Remote Sens. 2019, 11, 585

to four regions (as shown in Regions A, C, D, and E in Figure 4b) from January 2017 to October 2018,
which will be discussed in Section 5. In addition, some slight to moderate subsidence areas were also
observed in the eastern (i.e., the eastern part of the Xiang’an district) and western (i.e., Jimei district)
coastal areas of Xiamen, which were continuously deformed from November 2015 to October 2018,
with the deformation rate ranging from −10 to −30 mm/year.

5. Analysis and Discussion

5.1. Spatial Evolution of Land Reclamation at Xiamen New Airport

Time series SAR intensity images of the Sentinel-1 over Xiamen New Airport from August 2015
to October 2016 were obtained, where four main land reclamation stages could be roughly reflected,
as shown in Figure 5a,c,e,g. Four optical remote sensing images with similar acquisition dates are
shown in Figure 5b,d,f,h. It can be seen from Figure 5 that the spatial evolution of land reclamation
was clearly recorded in the SAR intensity maps including the following four stages, which could be
well validated by the optical remote sensing images.

 
Figure 5. Four SAR intensity images and four remote sensing images of Xiamen New Airport. Intensity
images were acquired on (a) 11 August 2015, (c) 24 July 2016, (e) 13 February 2017, and (g) 19 August
2018, respectively; remote sensing images were acquired on (b) 16 June 2015, (d) 24 July 2016, (f) 11
February 2017, and (h) 17 August 2018, respectively. Solid blue line represents the pre-existing land
area of Xiamen New Airport, solid yellow line indicates the area of the first phase of land reclamation,
and solid white line indicates the one in the second phase.
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(1) The first phase of land reclamation, as shown with the yellow lines in Figure 5, was completed
before 16 June 2015 (see Figure 5a,b); (2) except for the southeastern corner of the airport, i.e., the
terminal area, other areas of the second phase of land reclamation were reclaimed before 24 July 2016
(see Figure 5c,d); (3) the second stage of land reclamation was fully completed on 13 February 2017, as
shown with white lines in Figure 5e,f. However, the operation of soil compaction was not carried out,
so water seepage can still be observed in local areas, e.g., in the central and southeastern parts of the
airport (see Figure 5e,f); (4) the whole land reclamation area of the second phase was compacted on
19 August 2018 (see Figure 5g,h).

In addition, it can be seen from Figure 5 that the land reclamation project was conducted in Region
C on 16 June 2015 (see Figure 5a,b) but was subsequently covered by seawater (see Figure 5c,d,e,f),
and land reclamation was restarted on 19 August 2018 (see Figure 5g,h). For Region D, it is evident
that land reclamation began on 24 July 2016 (see Figure 5a–d). By 19 August 2018, except for a small
part of the central section, the land reclamation project in other areas was basically completed (see
Figure 5g,h). However, water seepage could also be observed in the northeastern part of the region
(see Figure 5g,h).

5.2. Spatiotemporal Deformation Patterns of Xiamen New Airport

To reveal the deformation characteristics and patterns of Xiamen New Airport after land
reclamation, the deformation rate from January 2017 to October 2018 was enlarged in Figure 8a.
Two remote sensing images, acquired on 22 January 2017 and 13 March 2018, were segmented into
three sections to aid ground settlement analysis, as shown in Figure 8b,b’,c,c’,d,d’. It can be seen from
Figure 8 that the pre-existing land is quite stable. However, four obvious subsidence areas associated
with land reclamation could be successfully detected, two of which are located in the area of the
first and second phases of the airport’s land reclamation (i.e., Regions A and B), and the other two
are located in the western and southwestern parts of the island of Dadeng (i.e., Regions C and D).
Severe land subsidence occurred at Regions A, C, and D from January 2017 to October 2018, and
the maximum deformation rate reached −126 mm/year in the LOS direction, while moderate land
subsidence was observed in Region B, with a maximum deformation rate of around −48 mm/year.
As mentioned in Section 5.1, the land reclamation date of Region B is much earlier than those of the
other three regions, which indicates that the severe land subsidence occurred over newly reclaimed
areas. An unusual phenomenon was observed in the terminal area (see Figure 5d), which showed to
be quite stable even it was reclaimed at the latest date, which may be correlated with the reclamation
methods and materials in the later stage. A similar phenomenon was observed in Chek Lap Kok
Airport, Hong Kong [10].

Figure 6 shows the six cross-sections of vertical deformation rates in different areas to
quantitatively analyze the correlation between the reclamation phases and ground surface settlement,
where different colors indicate the different times of completed land reclamation. Ground settlement
funnels can be clearly observed in all six profiles. However, the deformation patterns of settlement
funnels in different reclamation areas show inconsistencies, i.e., the magnitudes of deformation vary
in different areas. On the basis of Section 5.1 and Figure 6, it is evident that settlement funnels along
the profiles of AA’ and DD’ experienced the largest deformation (<−130 mm/year; see Figure 6a,d),
where the land reclamation project was completed on 13 February 2017. Deformation rates in the
vertical direction were over −140 mm/year from January 2017 to October 2018. The settlement funnels
along the profiles of CC’, EE’, and FF’ experienced moderately large deformation (between −130 and
−100 mm/year; see Figure 6c,e,f), deformation rates in the vertical direction were −111, −125, and
−124 mm/year, respectively. It can be seen from Figures 5 and 8 that land reclamation of the maximum
deformation area along profile CC’ was completed on 13 February 2017. The settlement funnel along
profile EE’ was reclaimed on 16 June 2015 (see Figure 5b), but it was subsequently covered by seawater
(see Figure 5d,f), and the land reclamation project was conducted again on 17 August 2018 (see
Figure 5h). The settlement funnel along profile FF’ was reclaimed on 24 July 2016, and water seepage
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could still be observed on 17 August 2018. The settlement funnel along the profile BB’ experienced
relatively less deformation (>−100 mm/year) compared to former profiles, where land reclamation
projects were completed on 15 June 2015, with a deformation rate as large as −93 mm/year in the
vertical direction. Therefore, it can be concluded that the magnitude of ground deformation after land
reclamation at Xiamen New Airport is closely correlated to the completion time of land reclamation
projects, i.e., significant deformation occurred in newly reclaimed areas, and the deformation rate
decreased as time went by. Such a deformation pattern is in good agreement with that of other land
reclamation areas, such as Lingang New City in Shanghai, China [7]. In addition, the results reveal
that most areas (e.g., Region A in Figure 8a) of the second phase of land reclamation are in a state of
severe deformation, with the deformation rate in the vertical direction greater than −93 mm/year
from January 2017 to October 2018.

 
Figure 6. Cross-sections of average vertical deformation rates of Xiamen New Airport from January
2017 to October 2018 along six profiles, whose positions are marked in Figure 8. (a) Profile A–A’; (b)
profile B–B’; (c) profile C–C’; (d) profile D–D’; (e) profile E–E’; (f) profile F–F’.
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Figure 7. Time series deformation in the vertical direction of Xiamen New Airport from January 2017
to October 2018 for points P1 to P8. The locations of points P1 to P8 are shown in Figure 8. (a) Point P1;
(b) point P2; (c) point P3; (d) point P4; (e) point P5; (f) point P6; (g) point P7; (h) point P8.
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Figure 8. Ground deformation rate map (a) and three sections of remote sensing images acquired on
22 January 2017 in regions A, B, C, and D in (b), (c), and (d), respectively, and on 13 March 2018 in (b’),
(c’), and (d’), respectively. Solid black lines from AA’ to FF’ denote profile locations, which are further
shown in Figure 6. Points P1 to P8 (marked with black and white dots) are chosen to show the time
series deformation in Figure 7.
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To evaluate temporal deformation evolution after land reclamation at Xiamen New Airport, eight
typical points, P1 to P8, located in different areas, were selected to analyze time series deformation
with respect to the time table of land reclamation. The locations of the selected points are shown in
Figure 8. P1 to P5 are located in Region A during the second land reclamation phase, P6 is in Region B
during the first land reclamation phase, and P7 and P8 are in Regions C and D, as shown in Figure 8.
From Figures 5 and 8, it can be seen that P6 was at the earliest completed reclamation region, and P2,
P3, P7, and P8 were at the latest ones.

Figure 7 shows the time series vertical deformation of eight points from January 2017 to October
2018. It is evident that the eight points experienced nonlinear subsidence with various velocities.
Maximum and minimum cumulative deformations were observed at P2 and P6, with a magnitude of
−323 and −134 mm, respectively. In addition, large cumulative deformations were observed at P1
and P8, exceeding −250 mm in less than two years. The magnitude of the accumulated settlement
also showed strong correlation with the time table of land reclamation. Furthermore, the eight points
had different deformation evolutions. The subsidence trend at P1 slowed down in November 2017
and then turned into a relatively mild subsidence pattern, which suggested that the reclaimed land
entered a long-term slow compression phase [7]. However, subsidence at P4, P7, and P8 still showed a
large subsidence trend, which indicated that the newly reclaimed land had just been completed and
would enter the phase of primary consolidation [10]. Accordingly, it is highly possible that P4, P7,
and P8 could still undergo remarkable subsidence in the near future. Therefore, fieldwork should be
done to further monitor the dense time series ground settlement. The detailed analysis of deformation
evolution after land reclamation at Xiamen New Airport is provided in Section 5.5 based on Terzaghi
theory of soil mechanisms [36].

5.3. Coastal Land Subsidence and Uplift

According to the InSAR measurements in Figure 4, there is remarkable subsidence associated with
land reclamation that could be observed in most coastal areas of Xiamen, especially in Regions E and F.
Detailed deformation rate maps for Regions E and F are shown in Figure 9, where Figure 9c shows
the deformation rate from November 2015 to December 2016, and Figure 9d shows the deformation
rate from January 2017 to October 2018. In addition, two remote sensing images acquired on 22 July
2016 and 13 March 2018, are shown in Figure 9a,b to facilitate deformation analysis. To reveal the
spatial characteristics of land subsidence, three profiles located in different areas were selected to
extract the deformation rates; profile locations are shown in Figure 9b, and deformation rates along the
profiles are shown in Figure 10. Furthermore, the time series deformation for the four points shown
in Figure 9b was obtained to further analyze the temporal evolution of land subsidence, as shown in
Figure 11.

It can be seen from Figure 9a,b that Regions E and F were reclaimed on 22 July 2016 and were
basically completed on 13 March 2018. However, obvious water seepage can still currently be observed
in the reclamation areas, which indicates that the reclamation area is still in an unstable state. We can
see from Figure 9c that the reclaimed areas for Regions E and F, from November 2015 to December 2016,
suffered very large deformation. The deformation rate in the LOS direction reached −130 mm/year.
From Figure 9d, we can see that the spatial deformation characteristics of Regions E and F changed
after 2017. The magnitude of deformation slightly dropped, and results demonstrate that land
subsidence gradually slowed down with the passing of time after land reclamation. However, the area
of deformation greatly increased. The area of deformation between November 2015 and December
2016 was about 1.8 km2, and it increased to 5.1 km2 from January 2017 to October 2018. Obvious
nonuniform land subsidence can be observed in Regions E and F in Figure 10, which is particularly
evident in the location of Profile GG’. Such a nonuniform subsidence pattern could largely be attributed
to the different completion times of land reclamation in different areas. Some obvious land subsidence
funnels were detected at the locations of profiles HH’ and II’, and deformation rates in the vertical
direction reached −105 and −61 mm/year from January 2017 to October 2018, respectively.
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Figure 9. Ground deformation rate maps and remote sensing images of Regions E and F. (a) Remote
sensing image acquired on 22 July 2016; (b) remote sensing image acquired on 13 March 2018; (c)
average ground deformation rate map from November 2015 to December 2016; (d) average ground
deformation rate map from January 2017 to October 2018.

 
Figure 10. Average deformation rates in the vertical direction of Region E and F from January 2017 to
October 2018 along three profiles (positions are indicated as black solid lines in Figure 9b). (a) Profile
G–G’; (b) profile H–H’; (c) profile I–I’.
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Figure 11. Time series deformation in the vertical direction of Regions E and F from January 2017 to
October 2018 for P9–P12, which are indicated as white dots in Figure 9b. (a) Point P9; (b) point P10; (c)
point P11; (d) point P12.

Different temporal evolution characteristics of deformation can be seen from Figure 11. It is
clear that P10 and P12 suffered nonlinear subsidence from January 2017 to October 2018, while P11
had a different temporal deformation pattern. P11 deformation fluctuated before January 2018, then
changed to rapid deformation until October 2018, which indicated that P11 was in the reclamation
stage before January 2018 and began to deform after reclamation was completed in January 2018.
These deformation patterns are in good agreement with the prediction pattern of unsaturated soil
consolidation theory [37].

Besides land subsidence, several areas in Region E experienced remarkable uplift. P9 in Figure 11a
was in the subsidence stage before August 2017, afterward turning to uplift. Such a phenomenon
was also observed in other land reclamation cases [7], which can be explained by the well-known
compression mechanisms of hydraulic fill. Generally, ground deformation associated with land
reclamation is induced by primary consolidation and long-term second compression of alluvial clay
deposits beneath the reclamation [10,16]. For newly reclaimed areas, such as P11, primary consolidation
takes place for some time. Then, it moves on to the second stage, which is a slight rebound after
long-term compression, such as in P9. Finally, land subsidence is in a stable state after long-term
changes, such as in P1 [7]. Therefore, we can infer that the P9 uplift was caused by the rebound of
reclamation fill materials after long-term compression.

5.4. Subsidence Along the Road

In addition to deformation caused by extensive land reclamation, typical deformation caused
by road construction was also observed in the northeastern part of Xiamen, as shown in Region G in
Figure 4b. Figure 12 shows the ground deformation rate of Region G from January 2017 to October
2018, and two remote sensing images acquired on 6 February 2015 and 18 May 2018. It is evident
from Figure 12a that the road in the northern section was constructed before 6 February 2015, while
the remaining sections were basically completed before 18 May 2018 (Figure 12c). It can be seen
from Figure 12b that there was obvious deformation that occurred on the road built in the later stage,
which did suffer slow-rate subsidence, with the deformation rate in the LOS direction of about −20 to
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−40 mm/year from January 2017 to October 2018. No deformation could be observed for the road
built in earlier years, which can be explained because the earlier built road was completely compacted,
whereas the newly built one is still under the compaction process.

 
Figure 12. Ground deformation rate and remote sensing images of Region G. (a) Remote sensing image
acquired on 6 February 2015; (b) average deformation rate map in the LOS direction from January 2017
to October 2018; (c) remote sensing image acquired on 18 May 2018.

The deformation rate along the road indicated by J–J’ (whose position is shown in Figure 12a) was
extracted, and it is shown in Figure 13. It can be seen that obvious nonuniform deformation occurred
along the newly built road. Deformation in the middle part of the road is greater than that at either
end, and several subsidence funnels were observed in the middle section of the road. The maximum
deformation rate in the vertical direction reached −57 mm/year. In order to further investigate the
temporal evolution of deformation after road construction, three typical points for P13 to P15, located
at the two ends and the middle section of the road, were selected to show time series deformation.
The locations of the selected points are shown in Figure 12c, and time series deformation is shown in
Figure 14. We can see from Figure 14 that the road experienced continuous deformation from January
2017 to October 2018. Maximum cumulative subsidence occurred in the middle section of the road,
which reached −125 mm in the vertical direction in less than two years. In addition, it can be found that
there were obvious fluctuations in road deformation during the InSAR monitoring period. There is a
strong possibility that the results of the InSAR measurement were affected by road construction, as can
be seen from the remote sensing images (see Figure 12a,c), since the road was still under construction
during the InSAR monitoring period. To verify our speculation, P16 (see Figure 12c) was selected to
obtain time series deformation far away from the road construction area, as shown in Figure 14d. It is
evident that the time series deformation of P16 did not show obvious fluctuation.
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Figure 13. Average deformation rate in the vertical direction of Region G from January 2017 and
October 2018 along Profile J–J’, whose position are indicated as solid black lines in Figure 12.

 
Figure 14. Time series deformation in the vertical direction of Region G from January 2017 and October
2018 for P13 to P16, which are indicated as white dots in Figure 12c. (a) Point P13; (b) point P14; (c)
point P15; (d) point 16.

5.5. Detailed Analysis of Land Subsidence at Xiamen New Airport

According to previous investigations [7,10,16,36,37], land subsidence associated with land
reclamation is principally induced by three mechanisms: primary consolidation, long-term second
compression of alluvial clay deposits beneath the reclamation, and creep with the reclamation fill.
The magnitude and velocity of land subsidence after land reclamation largely depends on the types and
thickness of the reclaimed materials, the thickness of the underlying alluvial deposits, duration after
completion of the reclamation, and the effect of foundation treatment [10,38]. The largest proportion of
total subsidence is owed to the primary consolidation of the alluvial clays. In the case of airport land
reclamation settlement, it usually amounts to 70% or more [10]. In addition, the subsidence process of
primary consolidation is much faster than that of secondary compression and filling creep. Such a
phenomenon can be explained by the well-known Terzaghi theory of consolidation [36]. A typical
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time-settlement prediction curve for both primary consolidation and second compression of alluvial
clay under the reclamation is shown in Figure 15 [10]. It can be seen that it underwent sharply rapid
deformation (i.e., primary consolidation) after reclamation has just been completed; then, deformation
slowed down and finally gradually ceased (i.e., secondary compression). The actual deformation
pattern observed by InSAR in Xiamen New Airport is similar to such a time-settlement prediction
curve of alluvial clay. Therefore, we can infer that early reclaimed land, like P1 in Figure 7a, completed
the primary consolidation stage, and is currently suffering long-term compression. It can also be
inferred from Figure 7a that P1 was in the primary consolidation stage before 10 March 2018, and it
suffered rapid deformation. Then, it changed to the long-term compression stage after 10 March 2018,
and it is currently almost stable. However, newly reclaimed areas completed after August 2016 (see
Figure 8), like P4, P8, P10, and P11 (see Figures 7 and 11), are currently still in the primary consolidation
stage; accordingly, significant ground deformation will continue for some time.

Figure 15. Typical time-settlement prediction curve of alluvial clay under the reclamation, i.e., Terzaghi
theory of consolidation [10,36].

6. Conclusions

In this study, the time series InSAR technique was employed to characterize and monitor the
ground deformation of Xiamen New Airport after land reclamation. In addition, some land subsidence
areas associated with land reclamation were identified in Xiamen’s coastal area. A total of 82
ascending Sentinel-1 images were used, which were acquired from August 2015 to October 2018.
The pattern and spatiotemporal evolution characteristics of the surface deformation of Xiamen New
Airport after land reclamation were fully revealed, providing important deformation information
on Xiamen New Airport. The results are of great guiding significance for airport land reclamation,
design, and next-stage construction. Furthermore, the airport’s deformation characteristic was also
successfully validated based on the compression mechanism of the hydraulic fill (i.e., Terzaghi theory
of consolidation). The main conclusions that can be drawn are as follows.

A total of 20 land subsidence areas associated with land reclamation were identified in the coastal
area of the city of Xiamen from November 2015 to December 2016, which increased to 26 from January
2017 to October 2018. The significant land subsidence areas are mainly concentrated in the central
coastal area of Xiamen, i.e., Xiang’an district.

The land subsidence of Xiamen New Airport is mainly concentrated in the area of the second
phase of land reclamation. Most reclamation areas underwent a rapid deformation process after
completion; then, deformation gradually slowed down and finally became basically stable. Such a
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deformation characteristic is similar to the typical time-settlement prediction curve of the alluvial clay
under the reclamation, i.e., the Terzaghi theory of consolidation.

Early reclaimed areas are currently in the stage of long-term compression, and deformation is
currently small. However, newly reclaimed areas are still in the primary consolidation stage, where
rapid deformation is currently underway. In addition, ground surface uplift caused by the rebound of
reclamation fill materials after long-term compression was observed in some areas.
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Abstract: High spatial resolution coastal Digital Elevation Models (DEMs) are crucial to assess
coastal vulnerability and hazards such as beach erosion, sedimentation, or inundation due to storm
surges and sea level rise. This paper explores the possibility to use high spatial-resolution Pleiades
(pixel size = 0.7 m) stereoscopic satellite imagery to retrieve a DEM on sandy coastline. A 40-km
coastal stretch in the Southwest of France was selected as a pilot-site to compare topographic
measurements obtained from Pleiades satellite imagery, Real Time Kinematic GPS (RTK-GPS) and
airborne Light Detection and Ranging System (LiDAR). The derived 2-m Pleiades DEM shows an
overall good agreement with concurrent methods (RTK-GPS and LiDAR; correlation coefficient of 0.9),
with a vertical Root Mean Squared Error (RMS error) that ranges from 0.35 to 0.48 m, after absolute
coregistration to the LiDAR dataset. The largest errors (RMS error > 0.5 m) occurred in the steep dune
faces, particularly at shadowed areas. This work shows that DEMs derived from sub-meter satellite
imagery capture local morphological features (e.g., berm or dune shape) on a sandy beach, over a
large spatial domain.

Keywords: Pleiades; photogrammetry; LiDAR; RTK-GPS; beach topography

1. Introduction

Accurate topographic data are frequently needed for the assessment of rapid morphological
changes and for the implementation of models that can predict coastal evolution. High spatial
resolution coastal Digital Elevation Models (DEMs—defined here as the representation of the terrain
surface elevations at regularly spaced intervals) are used to support vulnerability and risk assessment
of a range of coastal hazards, such as beach erosion and sedimentation, storm surges, inundation, and
sea level rise [1]. For such studies, the availability of a topographic dataset is fundamental, in particular
for coastal systems characterized by a complex, rapidly evolving morphology.

Among topographic survey methods of suitable quality, those based on Global Navigation Satellite
Systems (GPS), such as Real Time Kinematic GPS (RTK-GPS), have been used extensively to map and
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monitor coastal morphology [2]. Beach topographic surveys using RTK-GPS method can be performed
either by walking and carrying a GPS receiver, or driving a mobile unit (e.g., quad bike). In both cases,
the vertical precision is approximately 0.05 to 0.1 m, depending on the terrain relief [2]. This method
typically requires an intense human effort, which normally is optimized by reducing the number of
measurements to a limited number of cross-shore sections of the beach. Nevertheless, this limited
spatial coverage results in an incomplete representation of topographic spatial patterns and evolving
features, especially in the case of complex topographies such as steep and unconsolidated slopes.
In such cases, interpolation methods are typically required, introducing additional uncertainty into the
DEM [3].

Remote sensing techniques, such as airborne LiDAR (Light Detection and Ranging) and
Unmanned Aerial Vehicle (UAV), emerge in this context as a solution to overcome the limited spatial
coverage of the RTK-GPS method [4–9]. The use of airborne LiDAR to measure geomorphological
changes in coastal areas is relatively new. This instrumentation acquires millions of x, y, z points
per hour, with a horizontal spacing of typically 1 to 3 m. This high spatial resolution, together with
the capacity to survey over large areas (from 101 to 105 m), allows overcoming traditional survey
limitations found with RTK-GPS [2]. The vertical accuracy of LiDAR ranges from 0.05 m to 0.15 m [5],
which is in the same order as RTK-GPS and appropriate for studying beach morphology. Nonetheless,
LiDAR-based DEMs are costly [5,6], which limits the frequent (e.g., monthly or-post-storm) acquisition
of large-scale topographic data adequate for the evaluation of coastal changes.

Airborne optical remote sensing and 3D-mapping have been serving the needs of regional-scale
low-altitude imaging and geospatial information [10]. The enhanced usability of recent UAV equipment
with onboard accurate positioning, such as off-the-shelf drones, has resulted in a large change in their
practical application. The RTK-GPS positioning of the camera, combined with the large number of
overlapping images, makes any additional ground surveys trivial. Moreover, the high degree of
automation of UAVs and the absolute vertical precision, of approximately 0.2 m, achieved by the
DEMs suggests possible uses in the fields of natural hazards, disaster response, and high-resolution
terrain analysis [6]. Despite these advantages, a few disadvantages still remain such as the cost of
the photogrammetric software and computer power that can be relatively high [7], the difficulty in
removing dense vegetation to obtain bare earth elevation estimates [11], the need for electric batteries
for longer flight duration, or the usage limitations related to weather conditions [12].

Sub-meter satellite imagery can potentially provide an alternative to these field-based techniques
in order to collect high spatial resolution topographic data over large areas. The first civil satellite
constellation that acquired stereoscopic imagery and applied DEM reconstruction over large areas
was the French SPOT mission (Satellite Pour l’Observation de la Terre) in 1986 [12]. Since then,
several very high spatial resolution satellites with stereo capabilities were launched in response to an
increased demand [13]. Among them, the Pleiades constellation (built by the French Space Agency
(CNES), commercialized by AIRBUS Defence & Space), consists of two high spatial resolution optical
spacecrafts: Pleiades –1A and –1B. Both satellites fly over the same near-polar sun-synchronous orbits
at an altitude of 694 km with a 180◦ phase and descending node. The optical sensors of these satellites
have the capability to obtain images with sub-meter image resolution (0.7 m pixel size, resampled
to 0.5 m) over a maximum area of 350 km × 20 km (swath width of 20 km at nadir). An important
aspect of Pleiades is the capacity to revisit any location in the world within 1 day, which is of great
interest to monitor rapidly changing processes (e.g., coastal erosion due to storm events). Recent
studies based on Pleiades-1A stereo-imagery include snow height mapping in mountainous areas [14],
large landmass deformations due to earthquakes [15], surface reconstruction after landslides [16], and
glacier topography [17,18].

The aim of the present work is to explore the use of Pleiades satellite stereo-imagery to develop a
high resolution DEM of a 40-km-long sandy coastal section. The satellite-derived DEM is compared
to RTK-GPS cross-shore profiles and an airborne LiDAR-derived DEM. The differences between the
concurrent methods are quantified and the precision and accuracy of Pleiades-DEM analysed.
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2. Study Site and Data Acquisition

A 40-km stretch of sandy coast in the South West of France was selected as the study site for
the present work (Figure 1). This section of the Aquitanian coast presents a relatively low shoreface
bordered by aeolian dunes with an average crest elevation of about 15 m [19–21]. The sediment consists
of fine to medium quartz, with mean grain sizes ranging from 200 to 400 μm [21]. This section of the
coast is characterized by a macro-tidal regime, with an average tidal range of 3.2 m that can reach 5 m
during spring tides [22]. The coast is exposed to high energy North Atlantic swells travelling mainly
from the W–NW sector [23].

Figure 1. Satellite image of the West of France (source: Google Earth Pro 2018) showing the location
where Pleiades stereo-pair was obtained (orange rectangle located in the Southwest of France) on the
14th of November 2017 (A). Zoom in of the Pleiades mosaic showing the area where the airborne-LiDAR
topographic survey was performed (polygon with dashed green outline) and the region where RTK-GPS
topographic measurements were undertaken (B). Panel (C) shows the RTK-GPS survey lines (red) and
photograph of the surveyor with the GPS rover unit.

The Pleiades-HR 1A (hereinafter referred to as PL1A) stereo-pair was acquired on 14 November 2017
over a predefined area (orange box in Figure 1). The optical stereo-pair was obtained between 11:15 a.m.
and 11:16 a.m. with a 40-s time-lag. The satellite orbits at 694 km altitude (base to height ratio of 0.36)
and follows a descending orbit trajectory (North-South) in WGS84 decimal coordinates. A topographic
DEM and ortho-image, covering the entire area of interest, was subsequently produced using NASA’s
AMES Stereo Pipeline [24].

In-situ RTK-GPS beach topographic measurements were used as ground-truth for inter-comparison
with the Pleiades and LiDAR DEMs. The RTK-GPS survey was performed in the central section of
the area of interest (coastal region of Capbreton) between the 7th and 9th of November 2017 (Figure 1).
The average tidal range during the beach surveys was 3.4 m with a moderate wave climate (wave
height under 3 m). Beach profiles were surveyed in continuous mode (waypoint every 1 second using a
position dilution of precision—PDOD—mask of 3) from the waterline to the back of the frontal dune
ridge along discrete cross-shore profiles spaced by approximately 250 m (Figure 1). Note that due to
radio transmission shadowing (resulting in no real time correction) or ground obstacles (e.g., fences,
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walls, etc.), the survey coverage presents some spatial irregularities (Figure 1). In addition to the RTK-GPS
dataset, a high resolution airborne-LiDAR topographic survey and orthophoto map (aerial imagery was
orthorectified with the LiDAR observations) of the entire SW coast of France (performed by the Institut
National de L’Information Geographic et Forestiere—IGN; in cooperation with the Bureau de Recherches
Géologiques et Minières—BRGM) were acquired in October 2017.

3. Methods

3.1. Pleiades Stereo-imagery Acquisition and DEM Generation

In the present experiment, stereo images were acquired when the angles between the line-of-sight
of the satellite camera and the horizontal plane of the ground were 72◦ and 76◦, for the first and second
images respectively. The ground projection of the Pleiades position during the stereo-pair collection
was 218 and 174 km from the coast respectively. Pleiades was overlooking the coastal area of interest
from the sea side. This satellite setup indicates that both images were collected close to nadir angle
(90◦ from the ground), with an azimuth of 19◦ for the first and −8◦ for the second image, resulting in
an azimuth angle difference of 27◦ between the two images.

The Pleiades panchromatic band of the stereo pair was processed using the Ames Stereo Pipeline,
ASP [24] to generate a DEM and ortho-images at 2 and 0.5 m resolution, respectively. The ASP uses the
rational polynomial coefficient (RPC) camera model format for the DEM generation. The RPC model is
provided in the imagery metadata (by AIRBUS) and gives a relationship between the image coordinates
and the ground coordinates. No ground control points were initially used in the DEM generation. The
planimetric coordinates were referenced to the WGS84 UTM 30N coordinate system and the heights
were computed above the WGS84 ellipsoid. The Pleiades DEM and ortho-images were a posteriori
coregistered by applying a first order polynomial transformation defined by 37 concomitant points
manually identified in the Pleiades-ortho and DEM and in the IGN/BRGM orthophoto map (used as
the reference). This process was performed with QGIS software and Georeferencer GDAL plugin, with
an average planimetric error of 0.5 m. To convert Pleiades altimetric data from WGS1984 to the French
NGF-IGN vertical datum, the Pleiades elevations were corrected from the average difference with the
LiDAR elevations (Pleiades elevations 12.2 m higher) determined at the same point locations and then
used for the planimetric correction.

3.2. RTK-DGPS Topographic Survey

The planimetric coordinates of the RTK-DGPS topographic survey were referenced to the World
Geodetic System (WGS84) while the vertical datum was referenced to NGF-IGN 1969 datum. A GPS
base station was installed in a local geodesic point (located near Capbreton - Figure 1) and provided,
in real time, the corrections to the mobile GPS unit via radio-transmission. After the survey, the
planimetric coordinates were converted to the same coordinate system as the Pleiades products
(WGS 84 UTM 30N), and spikes in the data (erroneous measurements) were eliminated. The processed
topographic measurements were subsequently divided into individual profiles and interpolated in the
cross-shore direction with 2 m spacing (to match the resolution of the Pleiades DEM). Comparisons
between RTK-GPS ground-truth and remotely sensed Pleiades and LiDAR DEMs were performed by
extracting values from the DEMs at each profile location (using all RTK-GPS point measurements).
This task was performed using QGIS software (Lyon version) and the function “sample raster maps at
point location” from GRASS-GIS toolbox. The data comparisons included the calculation of statistical
parameters such as the correlation coefficient (CC), root mean squared (RMS) error, and bias (BIAS)
using all RTK-GPS topographic observations.

3.3. Airborne LiDAR 3D Topographic Survey

As part of a regional coastal monitoring program, the Aquitaine coastal zone is surveyed every
year with airborne LiDAR by the IGN in cooperation with the BRGM. In the present work, the LiDAR
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topographic survey of the Aquitaine coast performed between 4 and 7 of October 2017 was used for
comparison with the RTK-GPS and Pleiades observations. Note that the LiDAR survey was executed
approximately a month before the field campaign and Pleiades acquisition. The airborne-LiDAR
survey was performed with the Leica ALS70-HP LiDAR, mounted on an aircraft, and acquiring
topographic information with a density of 8 points per square meter. The planimetric coordinates
of the LiDAR point-cloud were referenced to the Lambert 93 coordinate system, with a precision of
30 cm, and terrain topography referenced to the NGF-IGN 1969 datum, with an accuracy of 15 cm
(information provided by the LiDAR survey metadata). Simultaneously with the LiDAR acquisition,
high resolution (10 cm) aerial orthophotography was obtained with an 8-head IGN V2 (focal length of
135 mm) camera. The position and orientation of the images were obtained from the GPS and inertial
sensors embedded in the aircraft. Two products were obtained from this flight: a DEM of the study
area, with a spatial resolution of 1 m, and an orthophoto map with 10 cm resolution. For comparison
with the other datasets, the coordinate systems of these LiDAR products were converted to WGS 84
UTM 30N.

4. Results

4.1. Comparison between RTK-GPS, Pleiades and LiDAR Topography

Figure 2 shows the vertical difference between the three concurrent survey methods over
4138 points (i.e., the number of data points measured during the RTK-GPS survey). The differences
between remote sensing methods (Pleiades and LiDAR) and RTK-GPS are normally distributed,
with mean differences (BIAS) of 0.01 m and 0.03 m, and RMS errors of 0.35 m and 0.37 m for
Pleiades and LiDAR respectively (both Pleiades and LiDAR elevations are slightly higher than
the RTK measurements). The observed slight mean difference between the RTK-GPS and remote
sensing methods are within the accuracy of the RTK-GPS, thus indicating that the different methods
have similar accuracy. It is important to note that even though the LiDAR data have a larger RMS
error than the Pleiades one, the error distribution is narrower and skewed for negative values. The
1:1 scatter-comparison of the surveys shown in Figure 2 indicates that the remotely-sensed beach
topography is highly correlated with the RTK-GPS observations (slope = 1.01 and CC = 0.99 for both
Pleiades and LiDAR). It is also observed that the correlation with Pleiades values does not vary with
elevation (extending from the back of the dune to the top of the swash zone) while for LiDAR some
scattering is observed in the lower part of the beach (beach face).

A close inspection of the datasets indicates the scatter (observed in the beach face) between
RTK-GPS and LiDAR topography was due to morphological changes (berm erosion—Figure 3) over
the beach profile that occurred between the two surveys. During this period of the year (winter season),
this coastal area is under energetic waves and significant morphological changes (> 1 m) in the beach
and dune face are likely to occur [23]. Considering that the RTK-GPS survey and Pleiades image
acquisition were days apart, small morphological changes likely occurred in the beach face, resulting
in minor differences between the two datasets (Figure 3).
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Figure 2. Pleiades (PL1A) and LiDAR survey accuracy assessed by comparison to concurrent on-ground
RTK-GPS survey; histogram of the differences between elevations measured by RTK-GPS and remote
sensing methods; (A); scatter plot of RTK-GPS elevations vs remotely sensed elevations (B).

Figure 3. Three beach profiles showing the comparison between RTK-GPS, Pleiades (PL1A) and LiDAR,
showing the berm erosion that occurred between the LiDAR survey and RTK-GPS and Pleiades.

4.2. 3D Beach Topography Comparisons

Figure 4 shows the two DEMs produced using Pleiades stereo imagery and LiDAR data, together
with the difference between the two DEMs (Pleiades DEM minus LiDAR DEM). The northern part of
the study area (North of Capbreton—Figure 4) presents higher dune fields than the South, and Pleiades
DEM was able to capture this spatial variability with the same quality as the LiDAR. The difference
between the two DEMs shows that over the full domain, 70% of the difference lies within ± 0.5 m.
Areas with positive elevation difference (i.e., Pleiades higher than LiDAR) are located between the
frontal dune face and swash zone, while a negative difference was found more often at the back of
the dune. A preliminary inspection of the alongshore error distribution allowed identifying larger
differences at the dune face region between Capbreton and Labenne (Figure 4) in comparison to the
rest of the domain. Within the section with these particular large differences, it was possible to identify
the presence of shadows (for each transect, the length of the shadow was manually digitized from the
orthophotomap) in the dune face that coincided with the areas where the largest errors were observed
(Figure 5).

Specific ground characteristics, such as the slope and aspect [25,26], can have an indirect impact on
the remotely-sensed DEM quality in regions with high relief, such as dunes. The presence of shadows
in the dune face is determined by the steepness (slope) and orientation (aspect) of the topography in
relation to the Sun light (for a given Sun altitude and azimuth). Optical remote sensing images from
shadowed areas have low reflectance and texture, which alters the calculation of the disparity (which
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is later converted into elevation) of corresponding points in the stereo-pair and leads to less accurate
elevations [27,28].

In order to investigate the effect of the alongshore variability in the dune slope (front and back
faces) and of the shadowed areas on the Pleiades DEM error, 266 cross-shore transects spaced 150 m
apart were created. For each transect, the RMS error of the elevation difference (between Pleiades
and LiDAR DEMs) over the dune face and back of the dune was computed. Figure 6 shows the RMS
error variation along the 40 km of measured coastline together with the variations in the dune slope
and shadow length in the dune face. The RMS error shows significant variations between transects,
with values of similar magnitude on the dune face and back of the dune. The exception, as noted in
Figure 4, is the coastal stretch between Capbreton and Labenne where a peak of RMS error (>0.5 m) is
identified on the dune face. The alongshore location of this peak coincides with a relatively steep dune
face region (large slope values) and the largest shadow regions (Figure 6). Steep dune face slopes were
also present in the North section of the study area; however, the errors in this region were within the
average, suggesting that the dune slope by itself cannot explain the largest errors observed. Shadowing
at the dune face is more likely to represent a decisive quality factor of the produced DEM, considering
the strong correlation between the RMS error and shadowing (CC = 0.77).

Figure 4. Results of the comparisons between the Pleiades (PL1A) and LiDAR DEMs. The lower panel
presents three subsections of the study area showing the DEM produced with Pleiades (A), LiDAR (B)
and the difference between the two (C). Note that the maps of the DEMs were rotated 110º in order to
present them horizontally.
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Figure 5. Example of the errors observed on the dune face, over the Pleiades orthophotomap; the presence
of shadows on the dune face (right image) coincides with the area where the largest differences (>0.5 m
in red, left image) were observed (left image).

Figure 6. Results of the RMS error, slope and shadow calculations for the 266 cross-shore transects.
The second panel (from the top) presents the RMS error of the difference between Pleiades (PL1A) and
LiDAR topographic elevations, computed for the dune face and back of the dune; the bottom panel
shows the dune face and back of the dune slope (bottom panel) and the shadow size (length of the
shadow over each transect).

Figure 7 show the statistical evaluation of the comparison between the Pleiades and LiDAR
elevations extracted over the 266 cross-shore transects (Figure 6). Data from the beach face, containing
natural morphological changes (not related to the method), were removed from this statistical
comparison. The error distribution indicates that differences between the LiDAR and Pleiades DEMs
over the full domain are normally distributed with a mean difference of –0.015 m and RMS error of
0.48 m (LiDAR DEM is slightly higher). The 1:1 comparison (Figure 7) shows that Pleiades and LiDAR
beach topographies are highly correlated (slope = 1.01 and CC = 0.99).
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Figure 7. Pleiades (PL1A) topographic measurements accuracy assessed by comparison with LiDAR
topographic measurements over points collected along 266 transects.

5. Discussion

The Use of Pleiades to Survey and Monitor Coastal Areas

The comparisons presented in Sections 4.1 and 4.2 indicate that Pleiades DEM reaches a vertical
accuracy (BIAS) and precision (RMS error) similar to state-of-the-art survey methodologies used in
coastal areas such as the RTK-GPS and LiDAR. Although in this study a comparison between Pleiades
and UAVs stereo-topographic DEM was not presented, there are a few differences between these two
methods that are important to take into consideration when deciding which of the methods to use. Both
methods obtain the DEM based on photogrammetric techniques that estimate a 3D point-cloud of the
ground surface using a large number of matching object and textural features automatically detected
in the overlapping images. The low altitude and capacity to obtain images from many different view
angles allows UAVs to obtain detailed 3D reconstruction of the ground surface with centimetric spatial
resolution [7,29]. These characteristics represent an important advantage of the UAV technique when
surveying highly complex coastal features (e.g., irregular rocky coastlines; [30]) or avoid the influence
of sunlight exposure in the target features, such as the presence of shadows.

As it was observed in the present work, the presence of shadows can affect the quality of the
DEM from stereo-satellite imagery (Figures 5 and 6). A similar problem was identified by [13] when
validating the Pleiades tri-stereo digital surface model on an urban area. The fact that Pleiades, stereo
and tri-stereo, only obtains images along a fixed trajectory, this limits the view angles of the ground
surface (one backward looking, one forward looking, plus a third near-nadir image, in the tri-stereo
configuration), making difficult an appropriate DEM estimation from features affected by shadows.

Despite this limitation, the present results show that Pleiades stereo imagery has the capability to
capture local beach features such as berms or dunes crests and troughs over large domains, highlighting
its incomparable advantage to any other existing methodology. These unique skills allow the Pleiades
constellation to potentially overcome traditional survey challenges in coastal areas, such as the
acquisition stereo-imagery measurements in large coastal segments within a short period of time
(i.e., minutes). For traditional survey methods, this would mean a gigantic logistical challenge and
expensive exercise. Furthermore, Pleiades’ capacity to acquire imagery anywhere on the globe within
1 day is ideal for rapid response assessment of changes in the coastal zone (e.g., to assess morphological
changes after storms).

A potential drawback of the Pleiades constellation is the on-demand availability, which is different
from other observation missions like Landsat (NASA) or Sentinel (ESA) that acquire optical imagery
on a regular basis without any previous request. In addition to this, another potential limitation of our
processing flow is the dependence of ground control points to correct the vertical offset of the DEM
and geometric inaccuracies of the raw data. This aspect limits the use of Pleiades DEM for applications
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where the absolute error in relation to a specific datum is required. Nevertheless, for cases where the
offset to the local vertical datum is secondary, the inter-comparison between consecutive Pleiades
DEMs is likely to result in errors within the precision of the method.

6. Conclusions

The beach topography of a 40-km-long sandy coastal stretch, located in the southwest of France,
was surveyed by satellite Pleiades stereo-imagery. The computed DEM was compared with those
obtained from traditional survey methodologies (RTK-GPS and LiDAR). Present findings indicate that
Pleiades stereo-imagery allows the acquisition of high resolution DEM with a RMS error that ranges
from 0.35 to 0.48 m. The largest errors were observed at the dune face, in regions with large shadow
patches. Near-perfect agreement between Pleiades and concurrent methods (all computed CC were
above 0.9) provides strong indications that this method can be used as a surveying tool to monitor
detailed coastal morphological changes over large spatial domains.
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Abstract: Airborne or space-borne photon-counting lidar can provide successive photon clouds
of the Earth’s surface. The distribution and density of signal photons are very different because
different land cover types have different surface profiles and reflectance, especially in coastal areas
where the land cover types are various and complex. A new adaptive signal photon detection
method is proposed to extract the signal photons for different land cover types from the raw
photons captured by the MABEL (Multiple Altimeter Beam Experimental Lidar) photon-counting
lidar in coastal areas. First, the surface types with 30 m resolution are obtained via matching the
geographic coordinates of the MABEL trajectory with the NLCD (National Land Cover Database)
datasets. Second, in each along-track segment with a specific land cover type, an improved DBSCAN
(Density-Based Spatial Clustering of Applications with Noise) algorithm with adaptive thresholds
and a JONSWAP (Joint North Sea Wave Project) wave algorithm is proposed and integrated to detect
signal photons on different surface types. The result in Pamlico Sound indicates that this new method
can effectively detect signal photons and successfully eliminate noise photons below the water level,
whereas the MABEL result failed to extract the signal photons in vegetation segments and failed
to discard the after-pulsing noise photons. In the Atlantic Ocean and Pamlico Sound, the errors of
the RMS (Root Mean Square) wave height between our result and in-situ result are −0.06 m and
0.00 m, respectively. However, between the MABEL and in-situ result, the errors are −0.44 m and
−0.37 m, respectively. The mean vegetation height between the East Lake and Pamlico Sound was
also calculated as 15.17 m using the detecting signal photons from our method, which agrees well
with the results (15.56 m) from the GFCH (Global Forest Canopy Height) dataset. Overall, for different
land cover types in coastal areas, our study indicates that the proposed method can significantly
improve the performance of the signal photon detection for photon-counting lidar data, and the
detected signal photons can further obtain the water levels and vegetation heights. The proposed
approach can also be extended for ICESat-2 (Ice, Cloud, and land Elevation Satellite-2) datasets in
the future.

Keywords: Photon-counting lidar; MABEL; land cover; remote sensing; signal photons
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1. Introduction

Equipped with more sensitive sensors (Gm-APDs (Geiger mode avalanche photodiodes) or PMTs
(photomultipliers)), photon-counting lidar can respond to the presence of return photons rather than
capturing the return waveforms of traditional lidar [1,2]. Benefitting from photon-counting sensors,
the lasers of photon-counting lidar achieve lower energy (several tens of μJ), higher repetition rate
(several KHz) and lower divergence (a few tens of μrad) compared to traditional lidar (several tens
of mJ, a few tens of Hz, and a few mrad). After the ICESat (ice, cloud, and land elevation satellite)
traditional laser altimeter, the ICESat-2 photon-counting lidar will measure the ice sheet elevation,
sea ice freeboard, vegetation canopy, and ocean surface, and provide successive photon clouds of the
Earth’s surface with smaller laser footprints and higher spatial density (an along-track footprint interval
of 0.7 m) [3,4]. Prior to the launch, an airborne photon-counting lidar, i.e., MABEL (Multiple Altimeter
Beam Experimental Lidar), was used as a high-altitude prototype for the ICESat-2 lidar [5].

Due to the lower transmitted laser energy, the mean signal photons per shot varies from 0.1
to 10 photons [4,6]. The return-signal photon clouds of the surface are very noisy and suffer from
background noise, backscatter noise, detector dark noise, and after-pulsing noise photons [7]. In the
daytime, the solar background noise rate is approximately several MHz, which makes the number of
background noise photons exceed the number of signal photons within the range gate. Compared to
background noise, the detector dark noise rate is only several KHz and can be neglected [8].
The backscatter effect arising from clouds and aerosols and the after-pulsing detector effect introduce
noise photons into the signal photons above and below the ground surface, respectively [9]. To use
photon clouds for monitoring environmental changes, weak laser signal photons should be precisely
extracted from the noisy raw datasets of photon-counting lidar.

Many methods have been proposed to successfully process the laser point clouds captured
by full waveform lidars [10,11], especially for Mallet’s achievements on waveform processing for
different targets [12,13]. However, most methods cannot be used to effectively detect the signal
photons from the much noisy raw photons captured by photon-counting lidars because the raw
photons from a photon-counting lidar correspond to the energy at only a single photon level
(approximately 1000 repeated measurements are needed to construct an accumulated waveform),
whereas the points from a full waveform lidar correspond to the energy at thousands of photons level
(these photons can directly construct a return waveform). Apart from the ice sheet surface (because ice
sheet surface is very smooth and flat and can be assumed as identical in an area of hundred-meter size),
1000 repeated measurements will correspond to different Earth’s surfaces (a high-altitude aircraft
will pass tens of meters and a low earth orbit satellite will pass a few hundred meters during the
time duration of 1000 repeated measurements). In addition, a photon-counting lidar suffers from the
dead-time effect and after-pulsing effect, which significantly influence the distribution of captured
photon clouds. The dead-time effect is that after a response to a received photon, a photon-counting
detector needs a time duration to recover. In the recovering time duration (i.e., the dead-time),
the photon-counting detector will not respond to any received photons. The after-pulsing effect is that
if a photon-counting detector is triggered by incidence photons, the photon-counting detector may be
self-triggered after its response to these incidence photons (normally tens of ns later). If the incidence
energy is larger (with more incidence photons), the photon-counting detector will be more likely to be
self-triggered [7].

Many signal detecting methods for photon-counting lidar data have been developed. First, general
signal photon detection methods were proposed and used for simulated datasets or the raw datasets
captured by photon-counting lidar in labs, e.g., the correlation range receiver (CRR) method [14]
and adaptive ellipsoid searching (AES) method [15]. For the MABEL raw datasets, a surface-finding
algorithm was proposed to detect surface profiles from the raw data captured in regions of sea ice
and ice sheets [16–18]. For datasets of ice sheet surfaces, an adaptive window size with a recursive
nearest-neighbor analysis was proposed for discarding noise photons [19]. For datasets in urban and
forested regions, an adaptive ellipsoid searching filter [20], an adaptive density-based model [21],
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the contour active models [22], the spatial statistical and discrete mathematical concepts [8], and a noise
removal algorithm based on localized statistical analysis [23] were derived to detect the surface profiles.
For the datasets of ocean surfaces, a surface detection method was proposed based on the wave
spectrum and nonlinear least-squares fitting [9].

In coastal areas, the raw photon clouds are more sophisticated because a variety of Earth’s
surface types (e.g., open sea, shoals, wetlands, banks, sandy beaches, and docks) correspond to
different surface profiles and reflectance. There is not a specific method to detect the various types
of surface profiles. Kwok proposed a method to identify and detect sea ice and open water in
the Arctic [24]. However, this surface finding method cannot effectively detect the surface profiles
of wetlands. To detect the surface profiles of different types from the MABEL raw datasets in coastal
areas, a new method is derived in this study. First, the surface types of the MABEL trajectory with a
resolution of 30 m are obtained via matching the geographic coordinates of the MABEL trajectory with
the geographic coordinates in NLCD (National Land Cover Database). Second, an improved DBSCAN
(Density-Based Spatial Clustering of Applications with Noise) algorithm with adaptive thresholds
and a JONSWAP (Joint North Sea Wave Project) spectrum algorithm are integrated to detect surface
profiles of different types. The Pamlico Sound (in North Carolina, USA), where the MABEL lidar flew
over the open sea, sound water, wetlands, shoals, banks, sandy beaches, and docks, is selected as the
study area and surface profiles of different types are extracted via this new method.

2. Study Area and Datasets

2.1. Study Area and the In-Situ Data

Pamlico Sound in North Carolina is the largest lagoon along the East Coast of the United States
(with a length of 130 km and width of 24 to 48 km), and it is the second largest estuary in the
United States (with over 7500 km2 of open water) (from https://en.wikipedia.org/wiki/Pamlico_
Sound). In the east, the Outer Banks separate the Pamlico Sound from the Atlantic Ocean. In the
west, the area is covered by various vegetations (e.g., shrub/scrub, cultivated crops, woody wetlands,
and herbaceous wetlands). Many sandy barrier islands are inside the Pamlico Sound. According to the
NLCD 2011 products, there are seven types of land cover near the Pamlico Sound (i.e., open water,
mixture of constructed materials and vegetation, barren land, shrub/scrub, cultivated crops, woody
wetlands, and herbaceous wetlands). Figure 1 shows the map of the Pamlico Sound and its location in
the USA.

In this area, the in-situ data of two nearby stations provided by NOAA (National Oceanic and
Atmospheric Administration) are used to evaluate the calculated results (i.e., the water level and RMS
(Root Mean Square) wave height). The Oregon Inlet Marina Station (ID: 8652587) is inside the sound,
and Duck Station (ID: 8651370) is on a platform above the Atlantic Ocean. These stations provide
historical datasets including mean sea level and wind speed every six minutes, and the data can be
downloaded from the website (https://www.co-ops.nos.noaa.gov). The water level heights of these
stations are on the benchmark of NAVD88 (North American Vertical Datum of 1988) [25].
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Figure 1. Pamlico Sound and its location in the USA. The MABEL trajectory (red lines) was from the
ocean (east) to the land (west). The Oregon Inlet Marina Station is inside the sound, and Duck Station
is on a platform above the Atlantic Ocean (yellow filled circles).

2.2. National Land Cover Database (NLCD)

The NLCD, supported by the MultiResolution Land Characteristics (MRLC) Consortium (http:
//www.mrlc.gov), is a widely used national scale land cover product [26]. The NLCD has 16 types of
land cover and related information for 2001, 2006 and 2011. In the NLCD 2011 product, every type of
land cover has a 30-m spatial resolution (i.e., the pixel size of Landsat imagery). The NLCD project was
conducted to monitor the land cover and its change over time for various applications in ecology, climate
change, land management and environmental planning. Landsat 5 Thematic Mapper (TM) imagery was
used to generate the NLCD 2011 products. All Landsat images were acquired from the United States
Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center Landsat archive with
radiometrical and geometrical calibration. All the production is geo-registered to the Albers Equal Area
projection grid and resampled to a 30-m spatial resolution. The single-date overall accuracy of the NLCD
2011 products is 88% at level I and 82% at level II [27].

2.3. MABEL Datasets

The MABEL photon-counting lidar that was flown aboard the ER-2 and Proteus aircraft at
an altitude of 20 km captured signal and noise photons (i.e., the raw datasets) and recorded the
corresponding time tags [17]. The MABEL lidar has a transmitting laser pulse of 0.65 ns (1 sigma),
a laser divergence of 0.1 mrad (the laser footprint is 2 m in diameter at 20 km altitude), a mean received
energy of several 10−19 J (~1 photons @ 532 nm and 1064 nm), and a laser pulse repetition rate of
5~25 kHz. In the study area, the MABEL was at a laser repetition rate of 5 kHz and at an aircraft
ground speed of approximately 215 m/s corresponding to an interval of 4 cm between contiguous
laser pulses along the track. Up to 16 channels for the 532 nm green laser and eight channels for the
1064 nm near-infrared laser with different viewing angles are available for the MABEL, and each
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channel can independently and separately capture data photons [2]. For all available channels, every
MABEL dataset records the raw data photons for a 1-min duration of the along-track flight.

The MABEL datasets used in this study were captured on 21/09/2012 near the Pamlico Sound
(North Carolina, USA) and can be downloaded from the NASA ICESat-2 website (https://icesat.gsfc.
nasa.gov/icesat2/data/mabel/data/browse/index.html). The weather was very clear at that time.
The MABEL trajectory was from the ocean (east) to the land (west) in the study area as illustrated
in Figure 1 (using red lines). In the MABEL Level 2A dataset, each photon represents the WGS84
coordinate frame and has a unique geographic coordinate of latitude, longitude and elevation. After the
ranging corrections and systematic bias calibration, the MABEL signal photons are estimated to have a
vertical accuracy from 13 to 24 cm (1-sigma) [28].

2.4. Global Forest Canopy Height Data

The Global Forest Canopy Height (GFCH) datasets are used for the comparison of the vegetation
height calculated from the detecting signal photons. The GFCH dataset provides global vegetation
canopy heights with a 1 km spatial resolution based on a fusion of the ICESat Geoscience Laser
Altimeter System (GLAS) data over 20 May 2005 to 23 June 2005 and ancillary geospatial data
(e.g., the annual mean precipitation, precipitation seasonality, annual mean temperature, temperature
seasonality, elevation, tree cover and protection status) [29]. The GFCH data is available on the Google
Earth Engine platform and the GFCH data within our study area can be downloaded from this platform
(https://earthengine.google.com/).

3. Method

Our proposed method includes three parts for detecting signal photons from the raw data of
photon-counting lidar. First, the surface types of the MABEL trajectory with a resolution of 30 m are
obtained via matching its geographic coordinates with those in the NLCD datasets (the details are in
Section 3.1). Second, for all segments, the raw data are filtered to discard the noise photons via different
methods according to their corresponding land cover types. For the ‘vegetation’ and ‘mixture’ types,
an improved DBSCAN surface-finding algorithm is proposed and used with different neighborhood
radii, and the neighborhood radius and other parameters in this new DBSCAN algorithm are adaptively
adjusted according to the spatial statistical characteristics of the inputting photon clouds (the details are
described in Section 3.2). For the ‘open water’ type, a JONSWAP spectrum surface-finding algorithm
is used (the details are described in Section 3.3). Finally, after the regular process, an extra noise
filtering process is undertaken to discard the remaining after-pulsing noise photons to obtain the
final signal photons (the details are in Section 3.4). The flow chart of the total process is illustrated in
Figure 2. With the NLCD land cover datasets and MABEL raw data, all the steps in this method are
automatically processed based on the ArcGIS (to obtain the surface types in Section 3.1) and MATLAB
(to detect the signal photons under different surface types in Sections 3.2–3.4) software environment.

The verification of used methodology is conducted by three steps. First, a comparison of detecting
signal photons between our method and the NASA surface finding method is conducted. Referring to
various corresponding land covers from the images, the raw data photons, the result photons
from the NASA surface finding method, and the result photons from our method are illustrated,
and the performance of different methods can be clearly distinguished in this visual comparison.
Second, the in-situ data from two nearby NOAA stations are used to evaluate the performance
of different methods. The surface parameters are separately calculated using the detecting result
photons of our method and the NASA surface finding method and compared with the in-situ surface
parameters by comparing the errors between the calculated surface parameters from different methods
and the in-situ surface parameters. Third, the average vegetation height in the study area is calculated
using the detected signal photons from our method and from the NASA surface finding method.
The GFCH dataset that provides forest canopy heights at a global scale is used to evaluate the
calculated vegetation height.
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Figure 2. Flow chart of the method for detecting signal photons.

3.1. Matching Land Cover Types for MABEL Raw Data

Detailed information on latitude, longitude, elevation, and the time tags of raw data photons
can be obtained from the MABEL datasets. All photons are transformed from three-dimensional
coordinates (i.e., the geographic coordinates including the latitude, longitude, and elevation based
on the WGS84 coordinate frame) to two-dimensional coordinates (i.e., the along-track coordinates
including the along-track distance and elevation). The along-track distance starts from the beginning
of the MABEL trajectory (in the farthest east of the trajectory and where the distance is zero). It is more
convenient to discard the noise photons in a two-dimensional coordinate frame. Each raw photon has
a unique index and after the noise filtering process, the remaining signal photons can be represented
in three-dimensional geographic coordinates again.

The trajectory of the MABEL datasets is generated by extracting the latitude and longitude
coordinates every 5 m along-track. For each trajectory location, the latitude and longitude coordinates
are used to match corresponding land cover information from the NLCD 2011 products via the Function
“Extract Values to Points” in ArcGIS. Owing to the similar physical properties, we merge some similar
land cover types. The ‘shrub/scrub’, ‘cultivated crops’, ‘woody wetlands’, and ‘herbaceous wetlands’
types are combined and named as ‘vegetation’ because all these types belong to vegetation land cover
and have very rough profiles. The ‘barren land’ type is merged into ‘mixture of constructed materials
and vegetation’ and named ‘mixture’ because both types have relatively flat surfaces and higher
reflectance, and the laser photon density of these land cover types is higher compared to vegetation
types. The land cover types (‘vegetation’, ‘mixture’, and ‘open water’) are assigned to the MABEL
trajectory every 5 m along-track. The MABEL raw photons can be divided into many along-track
segments with specific land cover types. In each along-track segment, the raw photons correspond to
an identical land cover type. We merge segments whose along-track distance is less than 50 m into its
front segment.

3.2. Improved DBSCAN Surface-Finding Algorithm for Land and Vegetation

To extract the signal photons from the raw data corresponding to land types, an improved
DBSCAN method is proposed. The DBSCAN algorithm was originally proposed to detect clusters in
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large noisy spatial databases [30] and was then modified to extract signal photons from the raw data
of photon-counting lidar [21]. For every point in a cluster, if the point density in its neighborhood
(within a specific radius) exceeds a specific threshold, this point will be classified as a “signal point”
based on the criteria of the DBSCAN algorithm. The neighborhood is defined as the Euclidean
distance for given points a and b, i.e., dist(a, b). In the DBSCAN algorithm, the clustering parameters
R (i.e., the neighborhood radius of a point, defined by dist(a, b) ≤ R) and MinPts (i.e., the minimum
number of points within the neighborhood radius) are essential [30]. The surface profiles of vegetation
are much more fluctuant than artificial structures. The laser can penetrate the vegetation canopy into
the undergrowth vegetation and ground, whereas the laser normally cannot penetrate the surface of
artificial structures. Therefore, the signal photon density reflected by vegetation is less than by artificial
structures. The neighborhood radius for the ‘vegetation’ type is set to R = 3 m and the neighborhood
radius for the ‘mixture’ type is set to R = 2 m. Next, an adaptive algorithm is proposed to determine
the MinPts. By inputting the raw data points in the current along-track segment with the ‘vegetation’
or ‘mixture’ type and its corresponding neighborhood radius R, the MinPts can be automatically
calculated using the following steps.

(A) The raw data photons along the vertical direction are divided into M segments (M is equal
to 50 in this paper) for each MABEL dataset. For each vertical segment, the elevation length h
can be expressed as h = Rg/M, where Rg is the range gate (approximately 1500 m for the MABEL).
Then, the histogram of photon numbers for each vertical segment can be obtained. If the number of
total raw photons in a dataset is Nt, the average photon number in all vertical segments is Nt/M.

(B) According to the histogram, we calculate the number of segments M2 in which the photon
number is smaller than the average photon number Nt/M and calculate the total photon number N2 in
these M2 segments. In these M2 vertical segments, most photons are noise photons. Similarly, one can
calculate the number of segments M1 (M1 = M − M2) in which the photon number is larger than the
average number Nt/M and calculate the total photon number N1 (N1 = Nt − N2) in these M1 segments.
Both signal and noise photons are included in these M1 vertical segments.

(C) The total along-track distance l in each dataset can be calculated, and the elevation length in
each vertical segment is h = Rg/M. For the M2 segments (corresponding to noise photons), the photon
density ρ2 (count/m2) per unit along-track distance and unit elevation length can be expressed
as ρ2 = N2/(h·l·M2). Similarly, for the M1 segments (corresponding to signal and noise photons),
the photon density ρ2 is expressed as ρ1 = N1/(h·l·M1).

(D) The area S can be calculated as S = π·R2 for a given circular zone. Next, for the M2 segments,
the expected photon number of noise SN2 within this circular area can be expressed as in Equation (1).

SN2 = ρ2·S =
πR2N2

hlM2
(1)

Similarly, the expected photon number of signal and noise SN1 can be expressed as in Equation (2).
Then, the expected number of signals can be approximately estimated using SN1 − SN2.

SN1 = ρ1·S =
πR2N1

hlM1
(2)

(E) Given the expected number of noise and signal photons within a neighborhood area,
the threshold of photon numbers (the minimum number of points) can be expressed as [14]

MinPts =
2SN1 − SN2 + ln(M2)

ln

(
2SN1/SN2

) (3)

The MinPts can be calculated via the procedure (A) to (E) and the MinPts can be adaptively
adjusted by the input raw data. Then, by inputting the neighborhood radius R and the threshold of
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the minimum number of points in its neighborhood MinPts into the DBSCAN calculator, the signal
photons are detected from the raw data photons [30].

3.3. JONSWAP Spectrum Surface-Finding Algorithm for Water Areas

In a previous study, we proposed a method to extract the ocean surface based on the JONSWAP
wave spectrum and LM (Levenberg-Marquardt) nonlinear least-squares fitting [7]. This method first
constructs an initial sea surface profile according to the wind speed above the sea surface. The wind
speed in this area can be estimated from the wind speed data of the MABEL datasets. In each MABEL
dataset, the meteorology data provide the wind speed with spatial resolution of approximately 15 m
in the east and north at different altitudes. For each MABEL dataset, we can obtain an approximate
wind speed by calculating the RSS (Root Sum Square) of the eastward and northward wind. This wind
speed is sufficient to be an initial value and the actual surface profile of waters can be automatically
adjusted via the LM fitting in the following procedures.

In the JONSWAP spectrum surface-finding algorithm, it is similar to the surface-finding algorithm
for land and vegetation, a preliminary data processing procedure is needed to eliminate the gross error
that may interfere with the fitting process. The raw data photons are uniformly divided into many
segments in the vertical direction, and the photons with a lower point density will be directly discarded.
Then, all the remaining photons are used to fit the water surface profile several times. In each
fitting process, the 2-sigma criteria are used to discard photons corresponding to larger fitting error.
Finally, the remaining data photons are divided into along-track segments with a specified distance
(e.g., with an along-track distance of 500 m) and are separately filtered by the LM fitting and 2-sigma
discarding. Undergoing these steps, the remaining photons are considered the laser signal photons
from water surfaces.

3.4. Discarding the After-Pulsing Noise Photons

Due to the after-pulsing effect of photon-counting detectors, some noise photons will emerge
after the laser pulse signal photons. The time tags of after-pulsing noise photons are normally
a few tens of nanoseconds (corresponding to approximately 1.5 meters distance) later than the
time tags of laser signal photons, and the number of after-pulsing noise photons are approximately
one-tenth of the laser signal photons [31]. If the after-pulsing noise photons cannot be discarded,
a ranging bias will be introduced (the range between the lidar and target will be overestimated,
and the surface elevation of the target will be underestimated). For oceans and other water areas,
the JONSWAP spectrum surface-finding algorithm has been proven to be able to eliminate the
after-pulsing noise photons [7]. In a coastal area, the elevation of the ground surface is normally
higher than the current water level. Therefore, for areas corresponding to the ‘vegetation’ and
‘mixture’ types, the after-pulsing noise photons are discarded as follows. First, for each segment
of the ‘vegetation’ and ‘mixture’ types, the nearest water area is searched, and its local water level and
RMS wave height are calculated by averaging the elevations of signal photons and calculating their
standard deviations. Second a threshold is equal to the local water level subtracting the tripled RMS
wave height (i.e., 3-sigma criteria). We discard the photon in the ‘vegetation’ and ‘mixture’ segments,
if the elevation of the photon is lower than the threshold.

4. Results

Figure 3 illustrates the MABEL trajectory on Google Maps (using a red line), the captured photons
by the MABEL lidar, and the photon results. The top figure in Figure 3 (Figure 3A) shows that on
21/09/2012 from 21:37 to 21:41 GMT (Greenwich Mean Time), when the MABEL lidar flew over
Pamlico Sound, it flew over the open water of the Atlantic Ocean, across the Outer Banks of Pamlico
Sound (entered into Pamlico Sound), across many small shoals and islands inside Pamlico Sound, over
the open water of Pamlico Sound, entered into the land mainly covered by vegetation (flew over a
very small, slim lake in the middle of this route), flew over the open water of East Lake, and finally
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entered the land covered by vegetation. The trajectory was from the east to the west with a path length
of 60 km. The middle figure in Figure 3 (Figure 3B) illustrates the along-track raw photons captured by
the MABEL lidar and the result of signal photons via the official surface-finding method. The bottom
figure (Figure 3C) illustrates the along-track raw photons and the photons resulting from our method.
In both Figure 3B,C, the boundaries between different land cover types of the along-track trajectory
are illustrated using dashed vertical lines. These boundaries are obtained by matching the geographic
coordinates of the MABEL trajectory with the land cover types in the NLCD 2011 products, and these
boundaries are in accordance with the land cover image in Figure 3A, which proves that the NLCD
2011 products can provide the land cover types to help detect signal photons from the noisy raw data
of a photon-counting lidar.

The raw photons were captured by channel no. 44 at 1064 nm, a near-infrared wavelength.
Channel no. 44 has the best quality because it corresponds to a nearly nadir incidence with a better
signal-noise ratio. Additionally, the wavelength of 1064 nm is located in the atmospheric window with
lower energy loss during the transmission in the atmosphere and has much lower penetration into
the water volume compared to the wavelength of 532 nm. The MABEL raw data illustrated using
green filled circles are very noisy because they contain both the reflected laser photons (i.e., signal
photons) and the noise photons caused by the background, backscatter, and detector noise (including
the dark noise and after-pulsing effect). The signal photons of the MABEL result illustrated in Figure 3B
(by blue circles) are processed by the official surface-finding algorithm and read from the MABEL
dataset ‘ph_class’, which provides the flags for all photons that are classified as “noise”, “buffer”,
“low”, “medium”, and “high”. The MABEL results discard most of the noise photons; however, some
noise photons remain (some noise photons construct a sublayer surface below the actual surfaces of
the water and ground) and some signal photons are discarded, especially for the type of vegetation.

In Figure 3B, the MABEL result failed to detect all the vegetation signal photons because they have
a lower point density. The after-pulsing noise photons (in the blue box of the left bottom in Figure 3C)
were incorrectly detected because they have higher point density than the vegetation signal photons.
The after-pulsing noise photons construct a sublayer surface below the actual water surface and
introduce a minus elevation bias to the MSL (mean sea level) or ground surface. In Figure 3C,
vegetation signal photons are extracted well and the after-pulsing noise photons below the actual
water and ground surfaces are successfully discarded. The signal photons of our result look much
better than those of the MABEL result.
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Figure 3. MABEL trajectory on Google Maps (A), the captured photons by the MABEL lidar (B), and the
results of detected signal photons (C). The top figure shows the trajectory on 21/09/2012 when the
MABEL lidar flew over Pamlico Sound (in North Carolina, USA). The MABEL raw data illustrated using
green filled circles are very noisy because they contain both reflected laser photons (i.e., signal photons)
and noise photons caused by the background, backscatter, and detector noise. The signal photons of the
MABEL result are illustrated by blue circles in the middle figure (B), and the signal photons of our result
are illustrated by red circles in the bottom figure (C). In the middle and bottom figures, the abscissa
represents the along-track distance and the vertical coordinate represents elevation. All photons
are transformed from three-dimensional coordinates (i.e., geographic coordinates including latitude,
longitude, and elevation) to two-dimensional coordinates (i.e., along-track coordinates including
distance and elevation). The elevation is based on the WGS84 ellipsoidal height. The along-track
distance starts from the beginning of the MABEL trajectory (in the farthest east and where the
distance is zero). It should be noted that to show the signal photons more clearly, only photons
within the elevation range of −50 to 10 m are illustrated (the range gate of the MABEL lidar is
approximately 1500 m). In both the middle and bottom figures, the boundaries of different land cover
types of the along-track trajectory are illustrated using dashed vertical lines.

Figure 4 shows the enlarged details of the along-track distance segment from 4 to 10 km in
Figure 3. This segment contains multiple land cover types (i.e., ocean, banks, sand, rocks, vegetation,
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artificial construction, water, and shoals). As mentioned above, all types are considered ‘mixture’
except for the ocean and water surfaces. The boundaries of different land cover types are much denser
in this segment, and the NLCD datasets provide acceptable land cover types. The signal photon of the
MABEL and our result both successfully extract the surface profile. Some noise photons remain below
the water surface in the MABEL result, whereas our result eliminates these after-pulsing noise photons.
In the blue box of the top (Figure 4A), middle (Figure 4B), and bottom figures (Figure 4C), a tower was
captured by the MABEL lidar. Our result extracts the signal photons reflected by this tower. With our
results, the height of this tower can be measured as approximately 6 m above the ground surface.

Figure 5 shows the enlarged details of the along-track distance segment from 44 to 52 km in
Figure 3. This segment only contains water surface and vegetation. The boundaries between different
land cover types of the NLCD datasets precisely divided this along-track segment into open water
and vegetation. The signal photon of the MABEL fails to detect the vegetation photons and fails
to discard the noise photons below the water surface, whereas our result successfully detects the
vegetation photons and eliminated the noise photons below the water surface. From our results,
we can estimate the vegetation height from the signal photons. The average height is approximately
5 m near the water boundary, and the maximum vegetation height is approximately 20 m. In Figure 5C,
the after-pulsing noise photons are located in the blue box at the bottom. The elevation of after-pulsing
noise photons is approximately 1.5 meters below the water and ground surface.

From the overall result figure (Figure 3), most of the land cover types of the along-track signal
photons are precisely classified as ‘Vegetation’, ‘Open water’, and ‘Mixture’ in the exception of some
very short along-track segments. The surface types are not correctly detected in these very short
along-track segments because the segments whose along-track distance is less than 50 m are merged
into its front segment. In both the improved DBSCAN algorithm and the JONSWAP algorithm,
the raw data with at least 50 m along-track distance is essential to automatically calculate the key
parameters (i.e., the minimum number of points within the neighborhood radius (MinPts)) in the
DBSCAN algorithm or fit the parameters of the water surface profile (i.e., the amplitudes, angular
frequencies, and phases) in the JONSWAP algorithm.

In the enlarged detailed Figure 4, the surface types are classified as ‘Open water’ and ‘Mixture’.
In the enlarged detailed Figure 5, the surface types are classified as ‘Open water’ and ‘Vegetation’.
Therefore, the proposed method is useful and successful to detect the main surface types in coastal area.
Near the land/sea boundary, the tide has a significant effect and can change the surface types from
land to sea when the tide is rising and vice versa. Inside the sound, the tide effect is much weaker.
The spatial resolution of the surface types from the NLCD products is 30 m, and the spatial accuracy of
the surface types is estimated better than 2 pixels (60 m in length) in the exception of the boundary
between the land and sea surface.

In Figure 5, for the sea surface, the after-pulsing photons is very obvious and form a sub-layer
below the sea surface because a 1064 nm laser nearly cannot penetrate the water volume and the
sea surface is relatively flat (compared with the vegetation surface). However, the laser pulse can
penetrate the vegetation canopy, so the after-pulsing photons are mixed with the reflected photons by
the lower-layer vegetation as well as the ground, which makes the after-pulsing photons not obvious
or seems weaker than the sea surface.

203



Remote Sens. 2019, 11, 471

Figure 4. The enlarged details of the along-track distance segment from 4 to 10 km in Figure 3. The top
figure (A) illustrates the corresponding high-resolution aerial image from Google Earth. The middle
figure (B) illustrates the MABEL result of extracted signal photons, and the bottom figure (C) shows
our result. In the blue box of the top (A), middle (B), and bottom figures (C), a tower was captured by
the MABEL lidar.
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Figure 5. The enlarged details of the along-track distance segment from 44 to 52 km in Figure 2. The top
figure illustrates (A) the corresponding high-resolution aerial image from Google Earth. The middle
figure (B) illustrates the MABEL result of extracted signal photons, and the bottom figure (C) shows
our result.

5. Discussions

In the coastal areas, the proposed method performed better in extracting the signal photons than
the MABEL result. With the detected signal photons, water levels can be estimated by averaging their
elevations within water segments. Three segments in the total trajectory corresponded to the water
surface, i.e., Segment 1 from 0 to 4.3 km on the ocean surface (in the Atlantic Ocean), Segment 2 from
9.9 to 22.1 km on the water surface (in Pamlico Sound), and Segment 3 from 45.3 to 50.6 km on the
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water surface (in East Lake). Water levels are −43.62 m (Segment 1 in the Atlantic Ocean), −43.31 m
(Segment 2 in Pamlico Sound), and −43.14 m (Segment 2 in East Lake). The water level shows a
descending trend from the inner lake and sound to the ocean, in accordance with the water level trend
in the study area at that time. The result is because, as shown in Figure 1, the three water regions
are linked and according to the water level data of the in-situ stations, the tide was falling when the
MABEL lidar flew over this area on 21/09/2012 from 21:37 to 21:41 GMT.

However, if we use the MABEL result to calculate the water level, the water levels will be −43.75 m
(in the Atlantic Ocean), −43.46 m (in Pamlico Sound), and −43.37 m (in East lake). The after-pulsing
noise photons introduce minus biases to the water level from 13 cm to 23 cm in three segments.
At 21:36 GMT, the mean sea levels of Duck Station (corresponding to Segment 1 in the Atlantic Ocean)
and the Oregon Inlet Marina Station (corresponding to Segment 2 in Pamlico Sound) were −0.25 m
and 0.07 m, respectively. It should be noted that the water levels calculated by the signal photons were
on the benchmark of WGS84 ellipsoidal height, whereas the water levels of the in-situ stations were on
the benchmark of NAVD88 geoid height. Therefore, we can only make a comparison of the elevation
difference between the water levels of the Pamlico Sound and the Atlantic Ocean. The in-situ elevation
difference was 0.32 m (the Pamlico Sound had a higher water level than the Atlantic Ocean), and the
elevation difference calculated by our result was 0.31 m, whereas the elevation difference calculated
by the MABEL result was 0.29 m. Table 1 lists a detailed comparison between the in-situ water level
and the water levels calculated by our result and MABEL result photons. The error of water level
difference of the Atlantic Ocean and Pamlico Sound between our result and the in-situ result is 0.01 m,
whereas the water level error between the MABEL result and in-situ data is 0.03 m.

Table 1. Water level comparison between the in-situ data and the calculated result from signal photons.

At 21:36 GMT, 21/09/2012 Atlantic Ocean Pamlico Sound East Lake

Difference
between
Pamlico

Sound and
Atlantic Ocean

Error Between
the Calculated

Water Level
Difference and

in-situ
Difference

in-situ water level on
NAVD88 geoid height (m) −0.25 (from Duck Station) 0.07 (from Oregon Inlet

Marina Station) None 0.32 –

Water level calculated by
our result on WGS84
ellipsoidal height (m)

−43.62 −43.31 −43.14 0.31 0.01

Water level calculated by
MABEL result on WGS84

ellipsoidal height (m)
−43.75 −43.46 −43.37 0.29 0.03

In addition, the RMS wave heights of three segments can be calculated using the signal photons
within the water segments and they are 0.32 m (Segment 1 in the Atlantic Ocean), 0.20 m (Segment 2 in
Pamlico Sound), and 0.20 m (Segment 3 in East lake). The RMS wave height in the ocean (0.32 m) is
larger than the inner water (0.20 m). At 21:36 GMT, the wind at Duck Station was 3.90 m/s at a height
of 28.1 feet (approximately 8.58 m) above sea surface, and the wind at Oregon Inlet Marina Station was
3.30 m/s at a height of 21.8 feet (approximately 6.66 m) above the sea surface. According to Businger’s
theory [32], these winds can be transferred to 12.5 m above the sea surface as Equation (4).

U12.5 = Uz
ln(12.5/z0)

ln(z/z0)
(4)

U12.5 is the wind speed at 12.5 m above the sea surface, Uz is the wind speed at the height of
z, and z0 is 0.0023 m when the wind speed is less than 7 m/s. At the height of 12.5 m, the winds at
Duck Station (corresponding to Segment 1 in the Atlantic Ocean) and the Oregon Inlet Marina Station
(corresponding to Segment 2 in Pamlico Sound) were 3.56 m/s and 4.08 m/s, respectively. The RMS
wave height is related to the wind speed above the sea surface and can be expressed as [33]

RMSwh = 0.016U2
12.5 (5)
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If we substitute the wind speeds of Pamlico Sound and the Atlantic Ocean at the height of 12.5 m
into Equation (5), the RMS wave heights were 0.26 m and 0.20 m, respectively, in accordance with
those calculated by our result photons (0.32 m and 0.20 m, respectively). However, the RMS wave
heights calculated by the MABEL result are much larger (0.70 m and 0.57 m in Pamlico Sound and
Atlantic Ocean) and completely different from the result calculated by the in-situ winds. Table 2 lists a
detailed comparison between the RMS wave heights calculated by the in-situ winds, our result photons,
and MABEL result photons. In the Atlantic Ocean and Pamlico Sound, the errors of RMS wave heights
between our result and the in-situ result are −0.06 m, and 0.00 m, respectively. However, between the
MABEL and in-situ results the errors are −0.44 m, and −0.37 m, respectively. With the RMS wave
heights, we can further calculate the significant wave height (SWH) as SWH = 4 × RMS wave height.

Table 2. RMS wave height comparison between the in-situ data and the calculated result from
signal photons.

At 21:36 GMT,
21/09/2012

Atlantic Ocean

Error Between the
Calculated and in-situ

Result in
Atlantic Ocean

Pamlico
Sound

Error Between the
Calculated and in-situ

Result in
Pamlico Sound

East Lake

RMS wave height
calculated by the in-situ

winds (m)

0.26 (from
Duck Station) –

0.20 (from
Oregon Inlet

Marina Station)
– None

RMS wave height
calculated by our result

photons (m)
0.32 −0.06 0.20 0.00 0.20

RMS wave height
calculated by MABEL

result photons (m)
0.70 −0.44 0.57 −0.37 0.77

Moreover, the average vegetation height is calculated using the detected signal photons from
our method. The signal photons on the vegetation canopy and the ground are extracted, respectively.
The maximum elevation in every 50 m along-track is searched as the canopy elevation in current
along-track segment, and the minimum elevation in every 50 m along-track is searched as the
ground elevation. The average values of all canopy elevations and all ground elevations are
separately calculated. The average canopy height is finally obtained via subtracting the average canopy
elevation by the average ground elevation. The GFCH dataset (that is derived from GLAS ICESat data
and provides forest canopy heights at a global scale) is used for comparison. The profile of vegetation
height is extracted from the raster format GFCH data using the ArcGIS. The mean vegetation height
between the East Lake and Pamlico Sound (from 23 km to 45 km within the along-track distance of
Figure 3) is also calculated as 15.17 m using the detecting signal photons from our method, which agrees
well with the results (15.56 m) from the GFCH dataset. The average vegetation height derived from
our results are in accordance with the average vegetation height from the GFCH dataset, whereas the
signal photons from MABEL standard result (using the NASA surface finding method) failed to detect
the vegetation canopy and cannot obtain the average vegetation height.

With a 30 m spatial resolution, the NLCD datasets provide acceptable land cover types to divide
the MABEL along-track raw data into segments with different land cover types. The gross land
cover types are verified in this paper, and it is very helpful to detect the signal photons because their
clusters are very different for different land cover types due to different surface profiles and reflectance.
The MABEL lidar was used as a high-altitude prototype for the ICESat-2 lidar and had similar
data photons. Apart from the national scale NLCD datasets, other large-scale land cover products
(e.g., GlobeLand30 [34], NLUD-C [35] can also be used to provide the land cover information for the
ICESat-2 datasets in the future. With a given land cover type, the signal photons can be effectively
detected from the raw data in different areas via this new proposed method. Then, the parameters
of different land cover types can be calculated, e.g., the water level, the wave height, the vegetation
height, and the tower height.
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6. Conclusions

A novel method is proposed to detect the surface profiles of different land cover types from the
MABEL raw datasets in coastal areas. First, the surface types of the MABEL trajectory with resolution
of 30 m are obtained via matching the geographic coordinates of the MABEL trajectory with the NLCD
datasets. The MABEL raw photons can be divided into many along-track segments with specific
land cover types. For each along-track segment, the raw photons correspond to an identical land
cover type. Second, an improved DBSCAN algorithm with adaptive thresholds is proposed to detect
the signal photons from the raw data for the segments of ‘vegetation’ and ‘mixture’ types with different
neighborhood radii, whereas an improved JONSWAP wave algorithm is integrated to detect the
surface profile of water.

In Pamlico Sound, the result indicates that this new method can effectively detect the signal
photons in vegetation, open water, and mixture segments and successfully eliminate the noise photons
below the water surface; however, the MABEL result failed to extract the signal photons in vegetation
segments and failed to discard the after-pulsing noise photons. With the detected signal photons,
the water level, wave height, vegetation height, and tower height are estimated. The water level and
RMS wave height calculated by our result achieved a better accordance with the in-situ data. The error
of water level difference of the Atlantic Ocean and Pamlico Sound between our result and the in-situ
result is 0.01 m, whereas the water level error between the MABEL result and in-situ data is 0.03 m.
In the Atlantic Ocean and Pamlico Sound, the errors of RMS wave heights between our result and the
in-situ result are −0.06 m, and 0.00 m, respectively. However, the errors of RMS wave heights between
the MABEL result and in-situ result is −0.44 m, and −0.37 m, respectively. The mean vegetation height
between the East Lake and Pamlico Sound was also calculated as 15.17 m using the detecting signal
photons from our method, which agrees well with the results (15.56 m) from the GFCH dataset.

In coastal areas, the land cover types are various and complex; therefore, the distribution and
density of signal photons are very different due to differences in surface profiles and reflectance. In this
paper, it has been proven that our new proposed method and the NLCD datasets have the potential to
provide land cover information for the improvement of the signal photon detection from the MABEL
datasets, which is also useful for the ICESat-2 datasets in the future. Even though the land cover types
are various and complex in coastal areas, the signal photons can be effectively detected from the raw
data via this new proposed method and the detected signal photons can further to obtain the water
levels and vegetation heights.
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Abstract: Shoreline mapping using satellite remote sensing images has the advantages of large-scale
surveys and high efficiency. However, low spatial resolution, various geometric morphologies and
complex offshore environments prevent accurate positioning of the shoreline. This article proposes a
semi-global subpixel shoreline localization method that considers utilizing morphological control
points to divide the initial artificial shoreline into segments of relatively simple morphology and
analyzing the local intensity homogeneity to calculate the intensity integral error. Combined with
the segmentation-merge-fitting method, the algorithm determines the subpixel location accurately.
In experiments, we select five artificial shorelines with various geometric morphologies from Landsat
8 Operational Land Imager (OLI) data. The five subpixel artificial shoreline RMSE results lie in
the range of 3.02 m to 4.77 m, with line matching results varying from 2.51 m to 3.72 m. Thus,
it can be concluded that the proposed subpixel localization algorithm is effective and applicable to
artificial shoreline in various geometric morphologies and is robust to complex offshore environments,
to some extent.

Keywords: shoreline mapping; semi-global subpixel localization; intensity integral error

1. Introduction

The coastline, the boundary of land and sea, is one of the 27 most important land surface features,
and is vulnerable to natural processes such as coastal erosion/accretion, sea level changes and human
activities [1]. Coastline mapping is, therefore, becoming a fundamental work for coastal erosion
monitoring, coastal resource management, coastal environmental protection and coastal sustainable
development [2–6]. In reality, the shoreline accurate position is difficult to be localized, as the position
changes continually through time, because of cross-shore and alongshore sediment movement in the
littoral zone and especially because of the dynamic nature of water levels at the coastal boundary
(e.g., waves, tides, groundwater, storm surges, setups, runups, etc.) [7].

With the advantages of cost-effectiveness and large spatial and temporal scales, satellite remote
sensing data have been used widely for coastline mapping [1,7–9]. When shoreline changes are
sufficiently large (several tens of meters), satellite remote sensing can enable semi-automated
comparison of large-scale areas by providing a common protocol for all sites [10], thus making
comparisons consistent [11]. However, most observed shoreline changes are presently much smaller [12],
so that the coarse spatial resolution of pixels prevent the accurate determination of shoreline positions
when monitoring shoreline changes [13]. In this case, shoreline change observations can only be
obtained by means of repeated in situ surveys, analysis of aerial or satellite high-resolution photographs
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at several time intervals, or a combination of both approaches [11,14]. However, the expensive price and
shortage of historical data cannot meet large-scale shoreline supervision demands and the requirements
of shoreline change analysis. Thus, it is important to conduct research on how to accurately determine
the shoreline’s position from long-term sequences of medium spatial resolution satellite images.

In recent years, many articles have appeared on how to use super resolution mapping (SRM)
or subpixel edge localization (SEL) algorithms to extract the shoreline accurately. In these articles,
positioning accuracy is quantitatively evaluated by four indicators: mean absolute error (MAE),
standard deviation (SD), root mean squared error (RMSE), and line matching (LM) [15].

SRM has been applied to low- or medium-resolution satellite remote sensing images to overcome
the limitation of the image spatial resolution of the original image. Li et al. [16] proposed that SRM
can be categorized into two groups. The first group [17–20] is directly applied to satellite images
instead of the intermediate spectral unmixing result, whereas the second group [21–29] is expected
to improve the result’s accuracy when highly-accurate fraction images are available from a spectral
unmixing model [30]. According to shoreline SRM, Foody et al. [31] presented a soft fuzzy classification
utilizing a geostatistical approach to obtain accurate waterline locations. Muslim et al. [32] proposed a
localized soft classification approach to predict the shoreline location by a two-point histogram and
pixel-swapping algorithms. Muslim et al. [33] proposed a contouring and geostatistical method to
geographically position the coastline within image pixels. Zhang et al. [34] integrated a geostatistical
approach and the high-resolution spatial structure prior model to undertake super-resolution mapping,
which can properly illustrate the spatial distribution of the coastline at a fine scale. Comparisons [35]
have been made using three soft classification methods and three subpixel mapping methods for
coastal area classification.

SEL algorithms are often designed as follows: first, the initial position is obtained by edge
detection; second, a local edge model is adopted to refine the initial edge position to the subpixel
level. Subpixel detection techniques can be grouped into three categories [36]: moment-based;
least-squares-error-based; and interpolation-based. Concerned with subpixel shoreline localization,
Pardo-Pascual et al. [37] extracted subpixel shorelines utilizing local spatial structures from Landsat
TM and ETM+, where the RMSE obtained ranged from 4.69 to 5.47 m. Almonacid-Caballer et al. [38]
determined the annual mean shoreline subpixel position from Landsat images, and the extracted
shorelines were biased from the seaward direction by approximately 4–5 m. Qingxiang Liu [39]
presented a subpixel vector-based shoreline method to monitor shoreline changes at Narrabeen–Collaroy
Beach, Australia, over 29 years. The experimental results show that after the correction of tidal effects,
the RMSEs of annual mean shorelines are within 5.7 m. Pardo-Pascual et al. [40] evaluated the accuracy
of shoreline positions obtained from the infrared (IR) bands of Landsat 7, Landsat 8, and Sentinel-2
imagery on natural beaches, where the mean error reached 3.06 m (± 5.79 m) from Landsat 8 and
Sentinel-2 images.

In fact, there are different types and various geometric morphologies of shorelines in complex
offshore environments. From the point of view of different shoreline types, there are artificial shorelines
and natural shorelines. A shoreline may also be considered over a slightly longer timescale, such as
a tidal cycle, where the horizontal/vertical position of the shoreline could vary anywhere between
centimeters and tens of meters (or more), depending on the beach slope, tidal range, and prevailing
wave/weather conditions [7]. It is, therefore, more difficult and challenging to evaluate the shoreline
location accurately, especially natural shorelines.

From a geometric morphology point of view, shorelines include simple straight, quasi-straight,
and high curvature shorelines, or combinations of these. It is difficult for traditional subpixel
shoreline algorithms to determine various geometric morphological shoreline subpixel positions. Most
algorithms mentioned above obtain the most accurate shoreline position for simple straight shorelines,
but fail for high curvature shorelines in which the positional error increases [37].

Owing to the complex offshore environment, which includes suspended sediment, foam, different
land-cover types etc., there are many mixed pixels and noise along the shoreline. Thus, it is difficult
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to find pure pixels along the natural or artificial shoreline for spectral unmixing, and the pure pixels
obtained by global spectral analysis may not represent shoreline local spectra finely. Meanwhile, these
conditions may also lead to difficulties in modeling the local edge for SEL algorithms.

Compared with a natural shoreline, an artificial shoreline is stable and its position is not affected
by tidal effects or other factors, thus the reference shoreline can be extracted from high-resolution
satellite images from different imaging times. Thus, artificial shorelines have the advantage of being
more easily validated than natural shorelines. In this study, we focus on how to determine the artificial
shoreline position accurately. In addition, we propose a method called the semi-global shoreline
subpixel localization (SGSSL) algorithm. The main thoughts underlying SGSSL are simplifying the
shoreline subpixel localization problem to a segmented shoreline subpixel fitting problem, expressing
a shoreline segment geometric morphology perfectly, and minimizing the intensity integral error in
local windows. To express various geometric morphological shorelines, we utilize multi-scale corner
points to divide the initial shoreline into relatively simpler shoreline segments. To prevent offshore
environment interference on subpixel localization, we analyze the water index intensity homogeneity
for designing local windows. In designed local windows, intensity integral errors are minimized to
obtain the subpixel shoreline positions. The entire method is dependent not only on shoreline geometric
morphology and global spectral features but also local window intensity analysis and segmented
shoreline geometric morphology. Thus, the proposed method is named semi-global subpixel shoreline
localization (SGSSL).

2. Study Areas & Datasets

2.1. Study Areas

With urbanized development, there are increasingly more artificial shorelines located along
Chinese coastal areas. Caofeidian Port and the Xiamen coastal area were selected as the study areas.
As shown in Figure 1a, the Caofeidian Port located at 118.5◦E, 39◦N, is adjacent to China’s Beijing
Tianjin Hebei urban agglomeration and is one of China’s important ore transportation ports. As shown
in Figure 1b, the Xiamen coastal area, located between 118◦E–118.5◦E and 24.35◦N–24.6◦N, is next to
the Taiwan Strait, and Xiamen is an important port for international economic and cultural exchange.
Five artificial shorelines of various geometric morphologies as experimental areas were chosen to
evaluate SGSSL, and their key characteristic parameters are listed in Table 1. The Gaofen-2 (GF-2)
satellite data is selected as our reference data. GF-2 is the first civil optical remote sensing satellite
independently developed by China with a spatial resolution better than 1 meter [41].

Our experiments verify the proposed algorithm from the following aspects. First, the subpixel
shoreline localization results are superimposed on the original data to evaluate the visual effect of
the proposed algorithm. Subsequently, compared with reference shoreline from GF-2, the four error
indicators of the subpixel shoreline are calculated to verify the correctness and adaptability of the
algorithm to different geometric morphology shorelines. Finally, the differences between the subpixel
shoreline length and the reference shoreline length are calculated, which could illustrate ability of the
proposed method to preserve details.
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Figure 1. Five experimental areas.
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Table 1. Key characteristics of the five experimental areas.

Experimental
Areas 1/2

Experimental
Area 3

Experimental
Areas 4/5

Location Caofeidian Port Caofeidian Port Xiamen coastal
area

Shoreline type artificial artificial artificial

Geometric morphology simple straight
combination of

quasi-straight and
curved shape

high
curvature/combination

of quasi-straight
and curved shape

Experimental
image

Data
Landsat-8 OLI

images
(Path 122, Row 033)

Landsat-8 OLI
images

(Path 122, Row 033)

Landsat-8 OLI
images

(Path 119, Row 043)

Date 04/25/2015 04/25/2015 10/13/2015

Resolution 15 m fusion image 15 m fusion image 15 m fusion image

Reference image

Data GF-2 image GF-2 image GF-2 image

Date 05/31/2015 05/31/2015 02/06/2015

Resolution 1 m fusion image 1 m fusion image 1 m fusion image

2.2. Data Pre-Processing

First, using the rational polynomial coefficient (RPC) of the GF-2 image, ortho-rectification of the
GF-2 multi-spectral (MS) data and panchromatic (PAN) data were performed separately.

Then, the Gram Schmidt [42] pan sharpening algorithm was used to fuse the MS data with the
PAN data; then, the spatial resolution of the Landsat 8 OLI fusion images was 15 m and that of the
GF-2 fusion images was 1 m.

The registration parameters were estimated by correspondence feature points that were selected
manually and by the polynomial model. The maximum registration error between the two fusion
images (15 m/pixel fused Landsat8 OLI image, 1 m/pixel fused GF-2 image) is less than 3 m. The
registration error will bring uncertainty to the accuracy assessment and is discussed in Section 5.1.

3. Materials and Methods

According to the main thoughts underlying SGSSL, the overall process is shown in Figure 2.
First, global spectral and geometric morphology analysis are conducted: the initial shoreline is
extracted using the Otsu [43] automatic threshold method from water index images; and geometric
morphology control points, abbreviated as morphology control points (MCPs), are extracted using
the multi-scale Harris algorithm [44]. The primary MCPs are utilized to divide the initial shoreline.
Then, semi-global analysis is performed by the segmentation-merge-fitting (SMF) method. In the SMF
process, the segmented shoreline subpixel location is determined by minimizing the intensity integral
error, finally obtaining a continuous subpixel shoreline vector.

In Section 3.1, an ideal image is taken as an example to illustrate the basic principle of SGSSL.
In Section 3.2, the challenges faced when the basic principle is applied to real satellite images are
explained. In Section 3.3, the method of conducting the global analysis for SGSSL is introduced,
including obtaining the initial shoreline position and extracting the MCPs. In Section 3.4, the process of
performing a semi-global shoreline analysis for SGSSL is proposed, including designing local windows
and details of the SMF processes.

215



Remote Sens. 2019, 11, 1779

Figure 2. Overall flow chart.

3.1. Basic Principles of Subpixel Shoreline Localization

The entire shoreline can be regarded as consisting of many shoreline segments. The proposed
subpixel shoreline localization algorithm is based on the following two assumptions:

Assumption 1: Any shoreline segment can be approximated by the polynomial function y = f (x).
Assumption 2: The shoreline segment divides the image into two homogeneous regions with

intensities A and B (A < B).
The ideal binary image is built in the image coordinate system O-xy, as shown in Figure 3, in which

there is one shoreline segment.

iA
S

Figure 3. Ideal binary image. A shoreline segment separates the image into two homogeneous regions
with intensities A and B. The ith shoreline point locates in the yellow box, and m1, m2 are the pixels’
number above or under the shoreline segment in the local window; SAi

∗ and SBi
∗ are areas covered by

A or B in the local window.

A local window (the purple box in Figure 3) centered on the ith shoreline pixel (xi,yi) is set, so the
sum of intensity in the ith window is:

SUMi =

yi+m1∑
j=yi−m2

Gxi, j (i=1,2,...n), (1)
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where (xi,yi) is the current shoreline point’s pixel coordinate, G the pixel’s intensity, n the number
of pixels in the shoreline segment, and m1, m2 are the pixels’ number above or under the shoreline
csegment in the local window, respectively. According to Assumption 2, the integral of the intensity in
the ith window is:

SUMi
∗ = A× SAi

∗ + B× SBi
∗
(i=1,2,...n), (2)

where SAi
∗ and SBi

∗ are areas covered by A or B in the local window, respectively:

SAi
∗ + SBi

∗= m1 + m2 + 1. (3)

According to Assumption 1, as the cubic function can express more geometric details and has
superior morphological adaptability, the shoreline segment’s polynomial function is:

f (x) = a + bx + cx2 + dx3. (4)

So, the area under the shoreline segment in the ith local window (SAi
∗) can be calculated as:

SAi
∗ =

∫ xi+1/2
xi−1/2

(
a + bx + cx2 + dx3 + 0.5 + m2 − yi

)
dx

= 0.5 + m2 − yi + a + xib +
(
xi

2 + 1
12

)
c +

(
xi

3 + 1
4 xi
)
d (i=1,2,...n)

, (5)

With the above derivations, the intensity integral of the ith local window’s (SUMi
*) can be

described as:

SUMi
∗ = A× SAi

∗ + B× SBi
∗

= (1/2 + m2 − yi)A + (1/2 + m1 + yi)B + (A− B)a + (A− B)xib
+(A− B)

(
xi

2 + 1/12
)
c + (A− B)

(
xi

3 + xi/4
)
d

, (6)

In ideal conditions,
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

SUMi = SUMi
∗

yi+m1∑
j=yi−m2

Gxi, j = (1/2 + m2 − yi)A + (1/2 + m1 + yi)B + (A− B)a + (A− B)xib + (A− B)
(
xi

2 + 1/12
)
c + (A− B)

(
xi

3 + xi/4
)
d , (7)

A similar idea has been researched by Trujillo-Pino et al. [36] for medical and indoor images,
in which a subpixel edge location algorithm based on the partial area effect (PAE) was proposed.
However, in that work, the algorithm neither considered the various geometric morphologies of the
real shoreline/contour nor proved its application to actual satellite remote sensing images.

To solve Equation (7), the equation can be represented simply as:

piβ = qi (i = 1, 2, . . . n) (8)

where:
pi = (A− B)[ 1 xi xi

2 + 1/12 xi
3 + xi/4 ]

β =
[

a b c d
]T

Ri = (1/2+m2 − yi)A + (1/2+m1 + yi)B
qi = SUMi −Ri.
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The following non-homogeneous equation can be obtained:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p11 p12 p13 p14

p21 p22 p23 p24
...

...
...

...
pn1 pn2 pn3 pn4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
β =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q1

q2
...

qn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(i=1,2,...n)

β =
(
PTP

)−1
PTQ

(9)

The intensity integral error in the ith local window (ei) is defined as:

ei =
∣∣∣SUMi − SUM∗i

∣∣∣ = ∣∣∣qi − piβ
∣∣∣
(i=1,2,...n) (10)

By the least squares methodology, the cubic polynomial coefficients vector β = (a,b,c,d)T can
be solved with intensity integral error minimization, and then the shoreline subpixel localization
is determined.

3.2. Challenges for Subpixel Shoreline Localization in Remote Sensing Images

In Section 3.1, the derivation was based on the ideal image in Figure 3. When dealing with
real shorelines, as Figure 4a shows, the initial shoreline (colored in purple) with various geometric
morphologies does not satisfy Assumption 1. Therefore, the initial shoreline should be divided into
segments of relatively simple morphologies, which can be approximated by the cubic polynomial
function. For a shoreline to be divided appropriately, the multi-scale Harris corner algorithm [44]
should be utilized to extract the MCPs.

 
(a) (b) 

Figure 4. Actual remote sensing image. (a) Various shoreline morphology analysis; (b) homogeneous
conditions in the water index image.

When processing actual satellite images, the water index result is affected by sensor imaging
noise and the interaction between adjacent classes. Meanwhile, heterogeneous pixels exist in the local
window with intensity changes (Figure 4b, green box). Then, Assumption 2 is not satisfied, which
leads to the intensity integral error expressed in Equation (10) not equaling zero.

It is therefore necessary to design the local window to guarantee the intensity integral error
approaches zero to ensure the performance of SGSSL correctly.
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3.3. Shoreline Global Analysis

3.3.1. Determination of Initial Shoreline Position

To make full use of satellite image global information, we will conduct a shoreline global analysis,
which includes a spectral feature analysis and geometric morphology analysis to determine the initial
shoreline position at the pixel level and extract appropriate MCPs.

3.3.2. Determination Initial Shoreline Position

Before extracting MCPs, we should determine the initial pixel level shoreline from the original
fused satellite images. This procedure includes the following steps. First, the water index image is
calculated. The modified normalized difference water index (MNDWI) [45] is preferred, and the reason
why MNDWI is preferred is discussed in Section 5.1. Subsequently, the Otsu method [43] is applied to
the water index image, in which an optimal threshold T* is selected automatically by maximizing the
inter-class discrepancy. Third, using the optimal threshold value T*, the water index image is divided
into a binary image, which includes non-water and water classes. A series of points representing the
pixel level shoreline is obtained.

3.3.3. MCP Extraction

To satisfy Assumption 1, the initial pixel level shoreline with various geometric morphologies
should be divided into segments with relatively simple morphology by MCPs. As multi-scale Harris
detection [44] is sensitive to corners, MCPs are extracted by multi-scale Harris detection [44] from a
binarized water index image:

M = μ(x, σI, σD) = σ
2
Dg(σI) ⊗

[
L2

x(x, σD) LxLy(x, σD)

LxLy(x, σD) L2
y(x, σD)

]
, (11)

where σI is the integral scale, g(σI) the Gaussian convolution kernel with integral scale σI, and La the
derivative computed in the a direction. The multi-scale Harris cornerness measure combines the trace
and the determinant of the scale-adapted second moment matrix:

cornerness = det(μ(X, σI, σD)) − αtrace2(μ(X, σI, σD)) (12)

where α is an empirical coefficient, α ∈ (0.04, 0.06). It should be noted that decreasing the value of α
will increase the cornerness. Since our aim is to extract MCPs from the water/non-water binary image,
the value of α can be set to 0.06 (the maximum empirical value). The local maximum of cornerness at
each scale determines the scales’ corner positions.

Second, each corner is verified depending on whether the Laplacian of Guassian (LOG) attains
the maximum at the scale, and the LoG values are calculated by:∣∣∣LoG (X, σn)

∣∣∣ = σ2
n

∣∣∣Lxx(X, σn) + Lyy(X, σn)
∣∣∣ , (13)

Comparing the LoG values with the adjacent two scale space images at the same position, if:

F(x, σn) > F(x, σl), l ∈ {n− 1, n + 1}, (14)

these corners would be reserved as multi-scale Harris corners.
Considering shoreline geometric morphological changes can be classified as dramatic variations

and minor variations, the MCPs should include primary MCPs and supplementary MCPs. As the
primary MCPs locate the positions at which the shoreline’s morphology changes drastically, theoretically,
the multi-scale Harris corner points can be directly viewed as primary MCPs. However, during the
process of building multi-scale image pyramids, images would be blurred and image structure details
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could be missed. Therefore, the initial scale’s corner subset is also preserved from multi-scale Harris
detection [44] as supplementary MCPs. The partial area effect (PAE) subpixel algorithm [36] should be
conducted for MCP positions to obtain their accurate subpixel position. These two types of MCPs and
subpixel positions will be used in the SMF process.

3.4. Shoreline Semi-Global Analysis

To utilize the semi-global information of a shoreline segment correctly, we conduct shoreline
semi-global analysis, which includes a designed local window and the SMF method to determine the
local homogeneous intensity and obtain proper shoreline segments for subpixel localization.

3.4.1. Designing Local Window

In this subsection, we introduce how to design the local window [36] and estimate homogeneous
intensities A and B [36] to ensure that the intensity integral error ei in Equation (10) is close to zero,
so as to satisfy Assumption 2.

First, the maximum gradient direction of each shoreline point is calculated, and for every shoreline
point, Sobel edge detection is utilized to calculate the gradient (Gx, Gy). Then, the larger gradient is
preserved as the points’ maximum gradient direction.

It should be noted that the shoreline segment consists of numerous points. Therefore, if shoreline
points of a certain maximum gradient direction (Gx or Gy) have a larger proportion in the segment,
then that direction will be used as the main direction for the segment.

If the main direction for the segment is Gy, the (m1+m2+1) ×1 local window is designed, and the
cubic polynomial function of a segment is:

y = a + bx + cx2 + dx3. (15)

If the main direction for the segment is Gx, the 1×(m1+m2+1) window is designed and the cubic
polynomial function of segment is:

x = a + by + cy2 + dy3. (16)

Second, since the homogeneous pixels’ intensities are stable, they have a minimum gradient in the
local window’s direction. The algorithm adjusts m1, m2 to find the minimum gradient pixels (pixels in
the blue box in Figure 4b). Once we find the minimum gradient pixels, their water index intensities are
used to estimate the intensity A, B and their coordinates are used to set the window size [36].

In the ith window, the intensities Ai and Bi are the farthest pixels from the shoreline. To ensure
the correlation between pixels in the local window, we limit m1 ≤ 4, m2 ≤ 4.

Ai = Gi, j−m2 , Bi = Gi, j+m1 , (17)

Since there is a correlation between the intensities of adjacent points in the shoreline segment,
to ensure that the homogeneity of A or B further prevents isolated noises, according to the adjacent
shoreline points’ relative positions, we determine slope k of this shoreline point and calculate the more
homogeneous intensity estimation values Ai

* and Bi
*:⎧⎪⎪⎨⎪⎪⎩or

Ai
∗ = Ai+Ai+1

2 , Bi
∗ = Bi+Bi−1

2 , i f k ≥ 0
Ai
∗ = Ai+Ai−1

2 , Bi
∗ = Bi+Bi+1

2 , i f k < 0
, (18)

where k =
yi+1−yi
xi+1−xi

, (xi,yi) and (xi+1,yi+1) are the adjacent shoreline points’ coordinates.
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3.4.2. Segmentation-Merge-Fitting Method

The MCPs determined in Section 3.3.2 include the primary MCPs and the supplementary
MCPs, which have been derived from multi-scale Harris corners to represent the major and minor
shoreline geometric morphologies. However, utilizing them all without any selection it will lead to
over-segmented shorelines and a high computational burden for the subpixel localization algorithm.
The segmentation-merge-fitting (SMF) method is proposed to obtain appropriate shoreline segments
adaptively, according to the residuals of the least-squares process and the main directions of the
adjacent shoreline segments. In the SMF, the least-squares fitting process and the subpixel positions of
the MCPs are added as constraints (Equation (19)) to connect adjacent shoreline segments and obtain
the continuous subpixel shoreline.

{
ymcpi − f (xmcpi) = 0,
ymcpj − f (xmcpj) = 0,

(19)

The detailed steps are shown in Figure 5.

 
Figure 5. Flow chart of SMF method.

The detailed explanation for all of the above steps follows:
0. Preparatory work: Build the shoreline morphological control point set (SMCPS) and add all

primary MCPs to the SMCPS; set the threshold t of the least squares residual to 0.08.
1. Segmentation: Utilize the SMCPS to divide shoreline to obtain shoreline segments and calculate

the main direction of each shoreline segment.
2. Merge: Judge whether the main direction of the current shoreline segment is the same as the

main direction of the adjacent segment:
If TRUE, merge these two adjacent segments and go to the Step 3 ‘Delete Point’; else, go to Step 4.
3. Delete point: Remove the current morphological control point connecting the two adjacent

segments from the SMCPS.
4. Fitting: Polynomial coefficients are calculated by the constrained least squares methodology,

and the least squares residuals are computed for each point. If there are four shoreline points adjacent
to the shoreline MCP, the residuals of which are larger than the threshold t, this shoreline MCP should
be removed from the least square constraints. Then, the current shoreline segment must be recalculated.
Else, go to Step 5.

5. Judge the ‘re-segmentation’ condition: If, in a shoreline segment, shoreline points with
least-squares residuals larger than the threshold t continuously appear and these points’ number is
larger than 4, the shoreline segment must be re-segmented. Go to Step 6; else go to Step 7.

6. Add Point:
1� If the segment is a merged shoreline in Step 2, the MCPs removed in Step 2 should be restored

in the SMCPS.
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2� If the segment is not a merged shoreline in Step 2, the supplementary MCPs located in the
segment are added into the SMCPS.

3� If there are no supplementary MCPs in the segment, the point with the largest least squares
residual should be selected and added into the SMCPS.

Update the SMCPS, and go to Step 1.
7. Traversing: If all shoreline segments have been traversed, keep the subpixel results and go to

Step 8; else, select the next shoreline segment and go to Step 2.
8. End: If the SMCPS is constant during this traversal, end the loop and go to Step 9; else, go to

the Step 2 and re-traverse.
9. Output: The subpixel shoreline results are output.

3.5. Verification Method

The reference shorelines are extracted manually from GF-2 fusion images, which satisfy the
standards of the “Technical Regulations for Satellite Remote Sensing Survey on Island & Coastal
Zones” [14]. Using the SGSSL algorithm, a subpixel shoreline can be obtained. The reference shoreline
and the shoreline determined by SGSSL can be compared.

We choose four error indicators to assess the SGSSL performance: the MAE, RMSE, SD and LM.
The MAE (Equation (20)) is obtained by averaging all distance errors, because all the errors are obtained
by calculating the absolute value of the distance from the SGSSL shoreline to the GF-2 reference
shoreline. The MAE and RMSE describe the SGSSL result bias towards the reference shoreline. The SD
indicates the variability around the MAE (Equation (21)):

MAE =

∑N
i =1|di|

N
(20)

SD =

√√√
1
N

N∑
i=1

(di −MAE)2 (21)

RMSE =

√∑N
i=1 d2

i
N

(22)

where |di| is the distance from the subpixel shoreline point to the reference shoreline.
As Figure 6 shows, for the calculation of the LM [15], SΔ is the sum of the area enclosed by

the SGSSL shoreline and the reference shoreline, and Lreal is the length of the reference shoreline.
In Figure 6, the black dotted line represents the reference shoreline and the solid line represents the
shoreline determined by SGSSL.

LM =
SΔ

Lreal
(23)

where SΔ = S1 + S2 + S3 + S4.
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Figure 6. Line matching schematic [15].

4. Results

Here, we evaluate the results of the proposed SGSSL in terms of visual comparison, quantitative
assessment, and shoreline detail preservation ability.

4.1. Visual Comparison

There are various geometric morphological shorelines in the selected coastal experimental areas.
In the first two experimental areas (Figure 7a,e), the initial shoreline colored in purple has been
extracted by Otsu [43] in Figure 7b,f. Owing to the fact that shoreline morphology is simple, MCPs
labeled by yellow crosses can divide the initial shoreline into relatively simpler segments (Figure 7b,f).
The proposed SGSSL algorithm determines the subpixel shoreline, which is represented by the red line
in Figure 7c,g and which coincides with the real shoreline well. Although in the local zoomed image
(Figure 7d,h) the initial pixel level shoreline points in yellow are located slightly landward, the final
subpixel shoreline results (red line) still locate accurately.

In the latter three experimental areas (Figure 7i,m,q), the shoreline morphology is relatively
complex, and the initial shoreline in purple has also been extracted by Otsu [43] in Figure 7 j,n,r. With
the SMF method, we keep the selected MCPs labeled with yellow crosses (Figure 7j,n,r) and using
them, the shoreline can be divided into relatively simpler segments to be perfectly expressed by red
line in Figure 7k,o,s. Although in the local zoomed image (Figure 7l,p,t) the initial pixel level shoreline
points in yellow are located slightly landward, the final subpixel shoreline results also coincide with
the actual position well.

(a) 
 

(b) (c) (d) 

Figure 7. Cont.
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(e) 
 

(f) (g) (h) 

(i) 
 

(j) (k) (l) 

(m) 
 

(n) (o) (p) 

(q) 
 

(r)  (s)  (t) 

Figure 7. Visual comparison in experimental areas 1–5. Original images (R, band5; G, band4;B, band3)
appear in the first column [(a,e,i,m,q)]; final shoreline morphological control point set (SMCPS) and
segmented shorelines are in the second column [(b,f,j,n,r)]; semi-global subpixel shoreline localization
(SGSSL) results in the third column [(c,g,k,o,s)]; and magnified images of the third column in the fourth
column [(d,h,l,p,t)].

4.2. Quantitative Assessments

Table 2 summarizes the quantitative assessment results. In all experimental areas, the MAE at
the subpixel level lies in the range of 2.48–3.34 m with an average of 3.03 m; the RMSE varies from
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3.02–4.77 m with an average of 3.80 m; while the LM lies in the range of 2.51–3.72 m, with an average
of 3.03 m. All quantitative assessments prove that the proposed SGSSL is reliable.

Table 2. The quantitative assessments in experimental areas.

Experimental Area MAE (m) SD (m) RMSE (m) LM (m)

1 2.94 1.93 3.51 2.87
2 3.34 2.16 3.97 3.30
3 3.67 3.06 4.77 3.72
4 2.72 2.61 3.77 2.77
5 2.48 1.72 3.02 2.51

It should be noted that these assessment results may be affected by registration errors. How the
registration errors influence the quantitative assessments is discussed in Section 5.1.

4.3. Shoreline Detail Preservation Ability

Some shoreline details observed in the high-resolution images would be blurred or missed in
low-resolution images. Hence, it is necessary to verify the detail preservation ability of SGSSL for
shoreline details by comparing the lengths between subpixel results and high-resolution images.

In Table 3, the length difference ratios between subpixel results and reference shorelines are
calculated, and the maximum value is less than 2.5%, which indicates that the proposed SGSSL can
effectively preserve shoreline details.

Table 3. Subpixel shoreline length and reference shoreline length.

Experimental Area 1 2 3 4 5

Subpixel Shoreline Length (m) 3206.22 3000.19 2739.38 6324.41 3572.84
Reference Shoreline Length (m) 3205.25 2994.95 2675.57 6236.77 3571.32

Length Difference Ratio 0.03% 0.17% 2.33% 1.39% 0.04%

5. Discussion

5.1. Registration Error Influence on Quantitative Assessment

There are unavoidable registration errors when the accuracy assessment is conducted between the
reference shorelines and SGSSL results. The registration errors will bring uncertainty to the quantitative
assessment of SGSSL.

For objective analysis, three typical shoreline geometric morphologies are chosen for the registration
error effect analysis.

First, the upper part of experimental area 1 is chosen. Because the upper part of experimental
area 1 is a nearly vertical shoreline, the displacement of the horizontal direction will bring an apparent
influence to the final MAE. Using 1 m as the displacement interval (0.067 pixels for Landsat8 OLI data)
and with the maximum displacement limited to 5 m, the registration error influence in the horizontal
direction across the range of [–5 m, +5 m] can be calculated and observed in Figure 8a,b.

Second, the middle part of experimental area 5 is chosen. Because the middle part of experimental
area 5 is a nearly horizontal shoreline, displacement in the vertical direction will bring an apparent
effect on the final MAE. Using 1 m as the displacement interval (0.067 pixels for Landsat8 OLI data) and
with the maximum displacement limited to 5 m, the registration error effect at the vertical direction in
the range of [–5 m, +5 m] can be calculated and observed in Figure 8c,d.
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(a) (b) 

  

 
(c) (d) 

Figure 8. Mean absolute error (MAE) with registration errors compensated illustration (a) vertical
shoreline, (b) registration error compensated results for the vertical shoreline, (c) horizontal shoreline
and (d) registration error compensated results for the horizontal shoreline.

As Figure 8a,b show, displacements in the right direction will compensate for the registration
error influence on the MAE. The MAE without registration error compensation is 5.73 m, which is
2.59 m larger than the entire experimental area 1 MAE result. With registration error compensation in
the right direction, the MAE decreases. At a displacement of 3 m in the right direction, the MAE is
2.73 m; at the same direction of displacement of 4 m, the MAE reaches its most accurate value, 1.75 m.
After that, MAE results cannot be compensated.

As Figure 8c,d show, for the middle part of experimental area 5, displacement will also have an
effect on the final MAE. The MAE is 1.69 m without any registration error compensation, which is
smaller by 0.59 m than the entire MAE of experimental area 5. With displacements in the up or down
directions, the worse MAE will be obtained. Additionally, at a displacement of 3 m in the up direction,
the MAE is 3.39 m; at the displacement 3 m in the down direction, the MAE is 2.9 m.

Third, experimental area 4 is chosen. Because the artificial shoreline in experimental area 4 is
almost circular, the registration error will not influence the SGSSL result in certain directions. So the
reference shoreline is displaced in four different directions, namely up, down, left and right, with 1 m
of the displacement interval (0.067 pixels for Landsat8 OLI data), and the maximum displacement is
limited to 5 m. In Figure 9, the MAE results of SGSSL with different displacements are shown.

From Figure 9, it can be observed that the MAE becomes more accurate in the 270◦ direction,
namely in the down direction. The MAE first becomes most accurate at 2.60 m, which is the minimum
MAE. The MAE then increases to 2.63 m in the 270◦ direction with a displacement of 2 m, and increases
to 2.77 m in the same direction with a displacement of 3 m. For other directions, the MAE results are
not better. The worst subpixel accuracy appears in the direction of 90◦, the up direction, and the worst
MAE is 3.74 m.

226



Remote Sens. 2019, 11, 1779

(a)                                  (b) 

Figure 9. MAE with registration errors compensated illustration (a) 3D surface results (b) 2D
computation results.

From the above analysis, it can be concluded that the registration error brings uncertainty to
the SGSSL quantitative assessment results. With the same registration method, different geometric
morphological shorelines are influenced by registration errors to different extents. The lowest accuracy
of the MAE appears at the vertical shoreline, and the MAE reaches at 5.73 m, which is still better than
0.5 pixels (15 m of the fused Landsat8 OLI image). Hence, the registration error with a maximum value
of less than 3 m is acceptable for SGSSL.

5.2. Water Index

To select the water index with optimal positioning accuracy, the positioning errors of the SGSSL
algorithm under three different water indices—the normalized difference water index (NDWI) [46],
MNDWI, and automated water extraction index (AWEI) [47]—are calculated and compared.

As Figure 10 shows, the accuracies of shoreline positioning under three different water indices
have all reached the subpixel level, indicating that the proposed algorithm is applicable to all water
indices. It is obvious that the MNDWI is best in the selected experimental areas. One of the reasons
is that the short-wave infrared 1 (SWIR1,1566.50 – 1651.22 nm) band is used in the calculation of the
MNDWI, and the most accurate and robust sub-pixel shoreline positioning results are often obtained
using the SWIR1 band [40]. Therefore, this paper prefers to use the MNDWI to enhance the differences
between land and water, but, considering complicated offshore environments and data sources, in other
coastal areas utilizing other water indices is acceptable.

Figure 10. MAE of three water indices in different experimental areas.

227



Remote Sens. 2019, 11, 1779

5.3. Intensity Integral Error Analysis

Owing to sensor imaging noise and the interaction between adjacent classes, the intensity integral
error in the ith local window is probably not equal to zero.

As Figure 11 shows, the initial shoreline pixel coordinate is (xi,yi), and the red line is the real
shoreline that crosses the pixel (xi,yi). The subpixel level coordinates of the point in the real shoreline
are (x0,y0), (x0∈[xi−1/2, xi+1/2], y0∈[yi−1/2, yi+1/2]). Once the local window size is determined by
finding the minimum gradient pixels along the window direction, the window sizes m1, m2 and the
homogeneous intensity Ai, Bi are all obtained. At shoreline point (x0,y0), the intensity profile is drawn
along the window direction, presuming the direction lies in the y axes in Figure 11.

If the shoreline segment can be expressed by a cubic polynomial. S1,S2,S3 are areas enclosed by
the intensity profile and the y axis (window direction),

S1(x0) = Ai × ( f (x0) − (yi − 0.5−m2))

S3(x0) + S4(x0) = Bi × ((yi + 0.5 + m1) − f (x0))
, (24)

 
Figure 11. Intensity profile in the local window.

Therefore, the sum of the ith local window intensity is:

SUMi =

yi+m1∑
j=yi−m2

Gxi, j =

∫ xi+1/2

xi−1/2
(S1(x0) + S2(x0) + S3(x0))dx0, (25)

where, in the local window, G is the pixel intensity. The approximation of the sum of the ith local
window intensity is:

SUMi
∗ = Ai × SAi

∗ + Bi × SBi
∗

= Ai ×
∫ xi+1/2

xi−1/2 ( f (x0) − (yi − 0.5−m2))dx0

+Bi ×
∫ xi+1/2

xi−1/2 ((yi + 0.5 + m1) − f (x0))dx0

=
∫ xi+1/2

xi−1/2 (S1(x0) + S3(x0) + S4(x0))dx0

, (26)

Thus, in the local window the intensity integral error ei can be described as:

ei = |SUMi − SUMi
∗| =

∣∣∣∣∣∣
∫ xi+1/2

xi−1/2
(S2(x0) − S4(x0))dx0

∣∣∣∣∣∣ (27)

where the intensity integral error ei is related to three factors: the window size (m1+m2+1),
the homogeneous intensity difference (B-A), and the intensity slope at the shoreline point (x0,y0).
Regarding the three factors, the intensity slope is determined by image information. The other two
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factors are determined by appropriate homogeneous intensity estimation A, B and the window’s size
(m1+m2+1), which can ensure that the ei approaches zero.

Furthermore, to verify the correctness of the local window design method and to verify whether
or not the intensity integral error ei approaches zero, the relative error δ is calculated within the local
window in Landsat OLI8 MNDWI images.

δ =
SUMi

∗ − SUMi
SUMi

. (28)

The shorelines extracted manually from GF-2 images are viewed as the reference shorelines.
In Equation (28), SUMi

* is the integral of intensity in the ith window and calculated according to
Equation (6). The reference shoreline coordinates are used to calculate S*

Ai and S*
Bi. SUMi is the sum

of intensity in the ith window and calculated according to Equation (3).
As Figure 12a shows, 6743 local windows covering different offshore environments over different

periods of time in the study areas were sampled. The relative error distribution is shown in Figure 12b,
the mean of δ is 0.0174 and the variance is 0.0278. The probability of δ less than 5% is 87.57%, and that
of δ being less than 10% is 99.85%. Thus, it can be concluded that in most local windows, the relative
error δ can be seen as a small number, whose absolute value approaches zero.

 

(a) 

 

(b) 

Figure 12. Local window samples and their relative error distribution. (a) Samples of local windows in
the experimental areas; (b) distribution of relative error.
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5.4. Segmentation-Merge-Fitting Process

As mentioned in Section 3.4.2, the initial shoreline may not be perfectly expressed by the cubic
polynomial function. In Figure 13a, it can be observed that the initial shoreline could be divided into
relatively simpler segments by primary MCPs (colored blue). As shown in Figure 13b,c (a magnified
version of Figure 13b), after using primary MCPs and constrained least squares solving, one shoreline
segment containing many shoreline points of larger fitting residuals still exists (marked by the yellow
box in Figure 13b), which must be segmented further. In Figure 13d, all supplementary MCPs in green
would be used to re-segment this problematic segment. Then, as the Figure 13e shows, some segments
would be merged. Finally, appropriate shoreline segments that perfectly agree with polynomial
functions are obtained using the SMF method, and are named seg1–seg3 in Figure 13f, the final SMCPS
selected from MCPs are labeled by yellow crosses. As shown in Figure 13g,h (a magnified version of
Figure 13g), the final subpixel positioning results coincide well with the real shoreline position.

 

  
(a) (b) (c) 

   
(d) (e) (f) 

  

 

(g) (h)  

Figure 13. SMF process. (a) Initial shoreline and primary MCPs; (b) one problematic shoreline segment
in yellow box; (c) the magnified version of green box in (b); (d) supplementary MCPs in the problematic
shoreline segment; (e) the merged MCPs in the problematic shoreline segment; (f) the final shoreline
morphological control point set; (g) the fitted subpixel shoreline segments; (h) the magnified version of
green box in (g).

Table 4 lists the subpixel assessment indicators (MAE and SD) of shoreline segments marked by
yellow boxes in Figure 13 during the SMF process. For the initial longer shoreline segment divided by
primary MCP, the MAE and SD of subpixel localization results are 10.53 m and 12.11 m, respectively,
which indicate that the initial subpixel localization result is problematic. With the SMF process, the final
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selected MCPs distribute appropriately along the shoreline and three correct segments are preserved.
In addition, the subpixel localization MAE results lie in the range of 2.12 m to 3.22 m and the SD results
from 1.84 m to 2.20 m.

Table 4. Quantitative assessments of subpixel shoreline segments.

Error Indicator
Primary

Shoreline

Final Shoreline Segments Result

Total Seg 1 Seg 2 Seg 3

MAE (m) 10.53 2.58 3.22 2.12 2.66
SD (m) 12.11 1.84 2.20 1.26 1.97

5.5. Robustness to Complex Offshore Environment and Salt-And-Pepper Noises

In Figure 14, due to the complex offshore environment, for example, the existence of suspended
sediment (Figure 14a), the local window is difficult to obtain, which will directly affect the subpixel
localization accuracy.

 
      (a) (b) 

Figure 14. Semi-global subpixel results in complex offshore environment. (a) three categories of
suspended sediments in the original image (R, band5; G, band4; B, band3); (b) three categories of
suspended sediments in the MNDWI image.

In Figure 14a,b, suspended sediment situations can be grouped into three different categories
depending on the concentration extent and accumulated area.

When the suspended sediment concentration is low (the regions in the blue boxes in Figure 14),
the influence will be suppressed or even eliminated in MNDWI images, regardless of the size of the
accumulated area.

When the suspended sediment concentration is high and the accumulated area is small with a
width less than four pixels, this region (green boxes in Figure 14) will be regarded as the intensity
variation region in the local window. In this situation, with the local window design method,
the minimum gradient pixels would be found in water, whose intensity is homogeneous.

When the suspended sediment concentration is high and the accumulated area is large (in yellow
boxes in Figure 14), with the local window design method, the homogeneous pixels will be selected
directly in the suspended sediment region.

In conclusion, regarding the above three forms of suspended sediments, the homogeneous
intensity estimations are dealt with effectively and will not reduce the subpixel localization accuracy.

Table 5 summarizes the MAE results of the selected local suspended sediment region, which lie
in the range of 0.96–3.55 m, proving that our proposed SGSSL is robust to suspended sediments to
some degree.
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Table 5. MAE of local regions in suspended sediment environments.

low Concentration
High Concentration

Large Area Small Area

MAE (m) 0.96 2.28 3.55

Furthermore, we evaluate the proposed SGSSL performance under the influence of salt-and-pepper
noises. In Figure 15, the yellow points are determined by the PAE subpixel algorithm proposed by
Trujillo-Pino [36], and the red lines are determined from SGSSL, where the white and black points are
salt-and-pepper noise. With increasing noise percentage, the PAE subpixel results become increasingly
problematic. However, the results determined by SGSSL are always accurate and are not affected by
increasing salt-and-pepper noise.

   

(a) (b) (c) 

   

(d) (e) (f) 

Figure 15. PAE and SGSSL results in salt-and-pepper noises. Percentage of area occupied by various
levels of noise: (a) 0%; (b) 1%; (c) 2%; (d) 3%; (e) 4%; and (f) 5%.

As shown in Figure 16, the positioning accuracy results of the two methods under different
percentages of salt-and-pepper noise are quantitatively evaluated. With increasing noise percentage,
it is obvious that the SGSSL algorithm exhibits better accuracy, proving that the proposed SGSSL is
robust to salt-and-pepper noise to some extent.

 
(a) (b) 

Figure 16. Positioning errors comparison of PAE and SGSSL in different noise percentages. (a) MAE
difference between PAE and SGSSL in different noise percentages; (b) Max positioning errors comparison
between PAE and SGSSL in different noise percentage.
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6. Conclusions

With the merits of efficient, large-scale investigational capability, satellite remote sensing shoreline
mapping plays an important role in the monitoring of coastal resource management. However, low
spatial resolution, various shoreline geometric morphologies, and complex offshore environments
prevent the accurate positioning of shorelines. In this study, therefore, we proposed a semi-global
subpixel shoreline localization (SGSSL) algorithm for accurately determining artificial shorelines.

The proposed method utilizes not only global spectral information and shoreline morphological
features, but also local water index homogeneity features and simplifies the entire shoreline subpixel
positioning problem with a segmented shoreline fitting solution. The method considers the following
factors: (1) MCPs are utilized to divide the initial shoreline into segments of relatively simple geometric
morphology; (2) minimum gradient pixels are found to design a local window; (3) the intensity integral
error is minimized in every local window within a segment to initially determine the subpixel location;
and (4) the SMF process is presented to obtain the shoreline segments that can be perfectly expressed
by a cubic polynomial function and to determine the final subpixel results.

In experiments, five artificial shorelines of various geometric morphologies from Landsat 8
OLI images were selected. The accuracy of the proposed method was evaluated using four error
indicators: the MAE, SD, RMSE, and LM. The subpixel RMSE results are all less than 5 m, ranging
from 3.02–4.77 m; and the LM results are all less than 4 m, ranging from 2.51–3.72 m, proving that
subpixel shoreline accuracy obtained by the proposed method is stable over different experimental
areas with various morphologies.

It can be concluded that the proposed algorithm is applicable to the various geometric morphologies
of artificial shorelines and is robust to complex offshore environments and salt-and-pepper noise,
to some extent.

Limitations of the proposed algorithm include the fact that its performance heavily depends
on MCP distribution. Although the SMF process helps in obtaining optimum segments, in some
experimental images a lack of MCPs will lead to irreparable subpixel accuracy loss. Another issue
worth mentioning is that the proposed algorithm relies on the initial pixel level shoreline, which is the
local window determination basis. More adaptation thresholding methodology should be applied to
guarantee the initial pixel level shoreline’s correct position. Finally, the proposed SGSSL has only been
verified on a selected artificial shoreline, other types of shoreline, for example, sandy shorelines and
mangrove shorelines, have not been evaluated.

In future research, the performance of the method should be improved by a more flexible MCP
extraction algorithm and a more reliable initial shoreline determination method. In terms of application
prospects, the method will be combined with multi-source satellite images or ground truth data in the
continuous monitoring of shoreline dynamics, coastal terrain mapping and other related research topics.
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Abstract: Polarimetric synthetic aperture radar (SAR) is currently drawing more attention due to its
advantage in Earth observations, especially in ship detection. In order to establish a reliable feature
selection method for marine vessel monitoring purposes, forty features are extracted via polarimetric
decomposition in the full-polarimetric (FP), compact-polarimetric (CP), and dual-polarimetric (DP)
modes. These features were comprehensively quantified and evaluated using the Euclidean distance
and mutual information, and the result indicated that the features in CP SAR are better than those
of FP or DP SAR in general. The CP SAR features are thus further studied, and a new feature,
named phase factor, in CP SAR mode is presented that can distinguish ships and the sea surface
by the constant 0 without complex calculation. Furthermore, the phase factor is independent of
the sea surface roughness, and hence it performs stably for ship detection even in high sea states.
Experiments demonstrated that the ship detection performance of the phase factor detector is better
than that of roundness, delta, HESA and CFAR detectors in low, medium and high sea states.

Keywords: polarimetric SAR; polarimetric decomposition; ship detection; Euclidean distance; mutual
information; new feature

1. Introduction

Ship detection is of great significance in maritime traffic, immigration control, and fishing activity
monitoring. Synthetic aperture radar (SAR) can work day and night with high resolution, even under
cloudy conditions, and has been widely used in ship detection.

Constant false alarm rate (CFAR) detection is a classic method and has been used extensively and
effectively in SAR images for ship target detection. The key to the CFAR method is the selection of
a threshold, and the threshold depends on the probability density function (PDF) of the sea clutter
(the backscatter of the sea surface). Many different probability density models have been proposed
to simulate the sea clutter distribution, including the Log-normal, Weibull, Rayleigh, G0, K, gamma,
generalized Gamma, and generalized Gaussian Rayleigh distributions. Ni and Anfinsen [1] discussed
the advantages and disadvantages of using a statistical model to describe the sea clutter in the CFAR
algorithm. Although CFAR detection has a better performance in a uniform background region, the
results will be greatly affected in multitarget and clutter-edge environments. Ai et al. [2] presented a
new algorithm that utilizes the strong gray intensity correlation in the ship target and the 2-D joint
Log-normal distribution in the clutter. Experiments demonstrated that the detection performance is
much better. Qin et al. [3] proposed a novel CFAR detection algorithm for high-resolution SAR images
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using the generalized Gamma distribution (GΓD), and the performance of the proposed algorithm is
better than the Weibull distribution. However, with the higher resolution of the SAR image, the sea
clutter becomes complex in the time and spatial domains, and then the existing models are not suitable,
resulting in the severe degradation of the CFAR detection performance and many false alarms [4].
Additionally, the parameter estimation is complex, and the threshold cannot be acquired easily [5].

To overcome the drawbacks of the CFAR method, ship detection methods based on new features
have been studied by researchers, and many results has been achieved [6–8]. For example, based on
Cloude decomposition, Wang et al. [9] used the local uniformity of the third eigenvalue of a polarization
coherence matrix (T) to detect ships. Sugimoto et al. [10] combined Yamaguchi decomposition theory
and the CFAR method to detect ships by analyzing the differences between the scattering mechanisms
of the sea surface and ships. Shirvany et al. [11] indicated the effectiveness of the degree of polarization
(DoP) in ship detection. Then, this work was further studied by Touzi et al. [12], who defined an
extension of the DoP to enhance significant ship-sea contrasts. In contrast to using a single feature,
Yin et al. [13] investigated the capability of m-α and m-χ decompositions in coastal ship detection.
Then, three features extracted from compact-polarimetric (CP) SAR were proven to have a good
performance in ship detection in [14]. Furthermore, Paes et al. [15] provided a more detailed analysis of
the detection capability and sensitivity of δ together with m, μc,|μxy|, and the entropy Hω. Gui et al. [16]
extracted a new feature from the proposed power-entropy decomposition, called the high-entropy
scattering amplitude (HESA), to detect ships, and experiments verified that HESA achieves good
detection performance.

The polarization features used in ship detection are extracted from different SAR polarimetric
modes. With the development of radar systems, SAR data acquisition modes have been extended from
single-polarimetric, dual-polarimetric (DP) and full-polarimetric (FP) SAR to CP SAR [16]. FP SAR
can provide more target scattering information than single-polarimetric and DP SAR [17]. Compared
with FP SAR, CP SAR is a new type of sensor with a wider swath of coverage and smaller energy
budget [18]. According to the polarization state, three CP SAR modes exist, including π/4, dual circular
polarization, and circular transmission and linear reception (CTLR) polarization [19–21]. The CTLR
mode is simpler, more stable and less sensitive to noise than the other two modes. Furthermore, the
CTLR mode achieves a better performance in self-calibration and engineering [22]. At present, RISA-1
in India, ALOS-2 in Japan, and even the future Canadian RADARSAT Constellation Mission (RCM) all
support CP SAR. It can be predicted that there will be more polarization features for ship detection in
the future.

Although much research has been done, there are still some drawbacks. (1) At present, there
are dozens of polarization features, but most of the studies are based on just one or several features.
The problem is how to choose suitable features from these features for marine vessel monitoring
purposes. (2) Considering the difficulty of ship detection under complex sea states, how to develop
new features to improve the ship detection rate, especially for the detection of weak and small ship
targets in a high sea state, is another problem.

In this paper, we perform a comprehensive quantification and evaluation of the polarization
features extracted from FP, CP and DP modes in C-band SAR data. Our motivation is to establish a
reliable feature selection method for marine vessel monitoring purposes. CP SAR features [23] are
further studied owing to their advantages for ship detection. In order to develop new CP SAR features
that are simple and suitable for complex sea states, we analyzed the scattering difference between the
ships and the sea surface by introducing the sea surface roughness. On the basis, a new feature is
proposed that is stable and simple for ship detection, especially in a high sea state. Finally, experiments
are carried out to verify the better ship detection performance based on the new feature compared
with the roundness, delta, HESA and CFAR methods in low, medium and high sea states. The main
parts are shown in Figure 1.

Section 2 introduces DP, FP and CP SAR data and polarization features. In Section 3, the feature
selection method is analyzed by the Euclidean distance and mutual information. Three features are
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analyzed with the introduced sea surface roughness, and a feature is presented for ship detection in
Section 4. In Section 5, the performances of different detectors are compared. Finally, conclusions are
drawn in Section 6.

Figure 1. The main parts of this paper.

2. Data and Polarization Features

2.1. Data

In this paper, five RADARSAT-2 images are used, and information on the five images is shown in
Table 1.

Table 1. Information of the five SAR images.

Scene ID Imaging Time Polarization Mode Incident Angle Resolution

01 16 December, 2008 HH/HV/VH/VV 28◦ 8/m
02 22 January, 2014 HH/HV/VH/VV 44◦ 8/m
03 25 September, 2014 HH/HV/VH/VV 40◦ 8/m
04 29 March, 2015 HH/HV/VH/VV 27◦ 8/m
05 21 November, 2015 HH/HV/VH/VV 20◦ 8/m

Figure 2a–e show the five RADARSAT-2 images with longitude and latitude information after
geometric correction, among which, R =HH, G =HV and B = VH. The locations are the sea areas of the
West Lamma Channel in Hong Kong, the Yangtze Estuary, the Yellow River Estuary, Lianyungang and
Singapore, respectively. In these images, the bright dots with strong scattering echoes are ship targets,
while the dark areas are the sea surface. The scattering echo intensity of the ship target is significantly
greater than that of the sea surface. On the whole, many ships can be observed in Figure 2 except
Figure 2d. In Figure 2a, the ships are located in the West Lamma Channel. In Figure 2c,e, the ships are
mainly located near the port and shore, while in Figure 2b, there is no land area, the ships are mainly
concentrated in the middle of the image, and some of the ships have strong crosswise side lobes.

The sea surface wind speeds are calculated by CMOD5 [24], which is a C-band geophysical model
function for the inversion of the sea surface wind speed [25]. Combined with the Beaufort wind
scale [26], the sea state in scene 04 reaches level 6, which belongs to the high sea state, and scene 03
belongs to the medium sea state; scenes 01–02 and 05 belong to the low sea state. The average wind
speeds of the five images are listed in Table 2.
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(a) (b) 

 
(c) (d) 

  
(e) 

Figure 2. The RGB images of Scenes 01–05 after geometric correction. R = HH, G = HV, B = VH.
(a) Scene 01: areas of the West Lamma Channel in Hong Kong; (b) scene 02: areas of the Yangtze
Estuary; (c) scene 03: areas of the Yellow River Estuary; (d) scene 04: areas of Lianyungang; (e) scene
05: areas of Singapore.
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Table 2. The average wind speed of five SAR images.

Scene ID 01 02 03 04 05

Average wind speed (m/s) 3.8 2.6 9.1 10.9 4.7
Sea state 3 2 5 6 3

The ships in these five images are all matched by the Automatic Identification System (AIS) [27,28].
The AIS was developed primarily as a tool for maritime safety. The AIS equipment aboard vessels
continuously and autonomously transmits information about the vessel including its identity, position,
course and speed. Figure 3 is part of scene 02, and it shows the matching result, in which the SAR
image contains 33 ships.

 
Figure 3. Matching results of a SAR image and the AIS.

2.2. Extraction of Features from FP, CP and DP Data

2.2.1. Features from FP Data

First, we extracted several features by polarimetric decomposition, and the features are shown in
Table 3. The first column of Table 3 shows the features extracted from the FP data (f 1–f 16). The methods
used in this paper are described below.

In FP mode, assuming that SHV = SVH, each pixel of an image can be represented by a linear
scattering vector as follows:

kL = [SHH
√

2SHV SVV ]
T

(1)

where SHH, SHV, and SVV are elements of the scattering matrix. The Pauli scattering vector enhances
the scattering mechanism and is given by:

kP =
1√
2
[SHH + SVV SHH − SVV 2SHV ]

T (2)

Features f 1–f 5 are defined as the amplitudes of the five polarization components introduced in
Equations (1) and (2).

Features f 6 and f 7 are the polarimetric coherences of (HH, HV) and (HH, VV), respectively, and f 8
and f 9 are the phase differences of (HH, HV) and (HH, VV), respectively. The polarimetric coherence γ

and phase difference Δφ between HH and HV are described by

γHH/HV =

∣∣∣∣〈SHHS∗HV

〉∣∣∣∣√〈
|SHH |2

〉〈
|SHV |2

〉 (3)
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ΔφHH/HV = arg(
〈
SHHS∗HV

〉
) (4)

where 〈〉 indicates averaging in an 11 × 11 window. Features f 10, f 11, and f 12 are the entropy, alpha,
and anisotropy, respectively. These features are derived from eigenvalues analysis of the averaged
coherency matrix T [29,30], 〈T〉 =

〈
kPk∗TP

〉
.

Table 3. Polarization features extracted under FP, CP and DP SAR modes.

FP SAR CP SAR DP SAR

Amplitudes:
f 1: |HH|
f 2: |HV|
f 3: |VV|

f 4: |HH-VV|
f 5: |HH+VV|

c1: |RH|
c2: |RV|

d1: |HH|
d2: |HV|

Polarimetric coherences:
f 6: HH/HV
f 7: HH/VV

c3: RH/RV d3: HH/HV

Polarimetric phase differences:
f 8: HH/HV
f 9: HH/VV c4: RH/RV d4: HH/HV

Eigenvalue parameters:
f 10: Entropy
f 11: Alpha

f 12: Anisotropy

c5: Entropy
c6: Alpha

d5: Entropy
d6: Alpha

Freeman decomposition:
f13: Surface
f 14: Double
f 15: Volume

Yamaguchi decomposition:
f 16: Surface
f 17: Double
f 18: Volume

f 19: Helix

Cloude decomposition:
c7: Surface
c8: Double

c9: Random
Raney decomposition:

c10: DoP
c11: Roundness

c12: Delta
c13: Surface
c14: Double

c15: Random

Features f 13–f 19 are components from a model-based decomposition. Among which, f 13–f 15 are
amplitudes of surface scattering, double scattering and random scattering from Freeman decomposition,
respectively [31]. Similarly, f 16–f 19 are amplitudes of surface scattering, double bounce, volume
scattering, and helix scattering from Yamaguchi decomposition, respectively [32]. Based on the
corresponding scattering mechanisms, the surface scattering, double scattering and random scattering
from the Freeman decomposition are

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
PS = fS(1 +

∣∣∣β∣∣∣2)
PD = fD(1 + |α|2)
PV = fV

(5)

where PS + PD + PV = |SHH |2 + 2|SHV |2 + |SVV |2 and α, β depend on the sign of Re(
〈
SHHS∗VV

〉
).

If Re(
〈
SHHS∗VV

〉
) ≥ 0, surface scattering is dominant (α = −1); otherwise, double scattering is dominant

(β = 1).
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On the basis of three-component decomposition, Yamaguchi presented four-component
decomposition [33]. In this decomposition method,

〈
SHHS∗HV

〉
� 0 and

〈
SVHS∗VV

〉
� 0 are introduced to

show that the symmetry hypothesis is not true. The features f16, f 17, f 18, and f 19 are defined as follows

PS = fS(1 +
∣∣∣β∣∣∣2), PD = fD(1 + |α|2)

PC = fC, PV = fV
(6)

where PS + PD + PC + PV = |SHH |2 + 2|SHV |2 + |SVV |2 is the total scattering power.

2.2.2. Features from CP and DP Data

In this paper, to compare the performance among different polarization modes, the CP and DP data
are simulated from the FP SAR data. We applied right-hand circular polarization (i.e., CTLR) [34,35]
because circular transmission enables a better reconstruction of pseudo-FP information [36]. The CP
data constructed from the FP data are shown as follows:[

SRH SRV
]T

=
[

SHH − iSHV SVH − iSVV
]T

(7)

where SRH and SRV represent the scattering coefficients.
The second column of Table 3 (c1–c9) shows the features from the CP data. c1 and c2 are the

amplitudes of SRH and SRV. c3 and c4 are the polarimetric coherence and phase difference between
SRH and SRV, which we calculated using the same formulas as (3) and (4). Features c5 and c6 are the
entropy and the alpha angle, respectively, extracted from the reconstructed coherency matrix proposed
by Nord [36]. The formulas are ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

HCTLR = − 2∑
i=1

pilog2pi

α =
2∑

i=1
piαi

(8)

respectively, where pi = λi/
∑2

i=1 λi, αi is an eigenvector corresponding to λi, and i = 1,2 . . . . c7–c9 are
the components of a Cloude decomposition [37]. The formulas are

PS =
1
2

g0m(1 + cos 2αs) (9)

Pd =
1
2

g0m(1− cos 2αs) (10)

Pv = g0(1−m) (11)

respectively, where αs = 1/2 tan−1(
√

g2
1 + g2

2/(−g3)). c10–c15 are components from Raney’s
decomposition using the Stokes parameters of the scattering matrix [34,38]. The formulas are

m =
(g2

1 + g2
2 + g2

3)
1/2

g0
0 < m < 1 tan δ= − g3

g2
sin 2χ = − g3

mg0
(12)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
Pd
Pv

Ps

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
m−δ

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
(mg0

1−sin δ
2 )

1/2

(g0(1−m))1/2

(mg0
1+sin δ

2 )
1/2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (13)

The third column of Table 3 shows the features from the DP data, the first four of which are
extracted from FP features: d1 = f 1, d2 = f 2, d3 = f 6, and d4 = f 8. d5 and d6 are the pseudo entropy and
the alpha angle, respectively, and are calculated from the eigenvalue analysis of a 2 × 2 covariance
matrix [39,40].
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2.3. Sample Selection

To assess the performance of features for ship detection, we select samples with ships only, samples
with sea only and samples with both ships and sea. The numbers of regions of interest in the samples
are 75, 75 and 50, respectively.

3. Comprehensive Quantification and Evaluation of Features for Ship Detection

First, we introduce the Euclidean distance to quantitatively evaluate the capacity of features for
detecting ships. Then, we identify good features for ship detection by measuring the redundancy via the
mutual information. The results can provide a reference for feature selection in practical applications.

3.1. Evaluation of Different Features by Euclidean Distance

Based on the features’ scattering differences, the Euclidean distance between ships and the
surrounding sea area is used to evaluate the performance of 40 features extracted from FP, CP and DP
decomposition. The distance is defined as in [41]:

D =
|MSHIP −MSEA|√
σ2

SHIP + σ2
SEA

(14)

where MSHIP and MSEA correspond to the statistical average of the samples of ships and the sea
surface, respectively, and σ2

SHIP and σ2
SEA denote the variance in ships and sea surface, respectively.

This equation implies that the larger the distance is, the better the performance of the features in
distinguishing ships from the surrounding sea.

The five RADARSAT-2 images in Table 1 are used to calculate the Euclidean distance. For each
image, we use 30 regions of interest: 15 ship samples and 15 surrounding sea samples. The final
Euclidean distance is the average of the 15 calculated values.

Figure 4 shows the distances between ships and the sea area for f 1–f 19, c1–c15, and d1–d6.
In general, the trend in the distance between different features is consistent in the five images.
The distances between features in CP mode are generally larger than those in FP and DP mode; the
next largest distances between features are in FP mode, and the distances between features in DP
mode are the smallest, especially in scenes 02 and 05. Therefore, the features from CP mode are more
suitable for ship detection than those from FP and DP mode. Moreover, with larger distances, f 9, f 11,
c4, c6, c11 and c12 have good ship detection performance. In each scene, the values of these six features
are several to more than ten times the values of the other polarization features, especially in scene 05.
Then, f 7, c5, c15 and d5 are smaller than f 9, f 11, c4, c6, c11 and c12 but larger than the other features.
Note that the distances of c4, c6, c11 and c12 are larger than 10 in scene 05, which indicates the best ship
detection performance among these features out of scenes 01–05.

 
Figure 4. Euclidean distance between ships and the sea area in five images.

244



Remote Sens. 2019, 11, 2160

3.2. Mutual Information Analysis

Based on the selected features in Section 3.1, the information from the features (f 7, f 9,
f 11, c4, c5, c6, c11, c12, c15 and d5) should be quantified for better accuracy and efficiency in
ship detection. The relevance between ships and features, and the redundancy among different
features, should be further evaluated. Mutual information is a correlation measure based on the
information-theoretical concept of entropy and has become an important measure in the analysis of
informational content [42–44].

Given two random variables X and Y, the mutual information is defined as

I(X
∣∣∣Y) = H(X) −H(X

∣∣∣Y) (15)

where H(X) denotes the entropy of X and H(X|Y) denotes the conditional entropy of X given Y.
The formulas of H(X) and H(X|Y) are

H(X) = −
∑

i

P(xi) log2(P(xi)) (16)

H(X|Y ) = −
∑

j

P(yj)
∑

i

P(xi
∣∣∣yj ) log2(P(xi

∣∣∣yj )) (17)

where P(xi) are the prior probabilities for all values of X and P(xi|yj) are the posterior probabilities of X
given the values of Y.

The intuitive concept behind this definition of I describes the fraction of information that is shared
mutually by both X and Y, called “information overlap.” Moreover, the mutual information I(X|Y) is
symmetric in X and Y, which means that I(X|Y) = I(Y|X) in a strictly mathematical sense. We normalize
I(X|Y) by dividing it by H(X) + H(Y) to achieve increased comparability. The formula is as follows:

SU(X, Y) =
I(X|Y )

H(X) + H(Y)
(18)

Twenty regions of interest are selected to calculate the normalized mutual information. The final
mutual information value is the average of the calculated values. Table 4 shows the normalized mutual
information of the ships and features. In this case, X is a ship and Y is a feature, and a high mutual
information I implies a strong predictive value of feature Y for identifying ship X. The values of f 11, c4,
c6, c11 and c12 are greater than 0.6, which indicates a high relevance between the ship and the feature,
and this is consistent with the conclusion mentioned in section A. The performance of the features
selected above is thus further confirmed.

Table 4. Normalized mutual information of ship and feature.

Feature f7 f9 f11 c4 c5 c6 c11 c12 c15 d5

I(x|y) 0.383 0.522 0.603 0.610 0.519 0.625 0.658 0.631 0.315 0.359

Figure 5 shows the normalized mutual information of features. Figure 5a,b are symmetric
about the main diagonal, which confirms the symmetry of the mutual information mentioned above.
Furthermore, the normalized mutual information between a feature and itself is 1, while the values
among different features are less than 1. In general, the trends in the normalized mutual information
values in (a) and (b) are consistent with low information redundancy. The features in CP and FP mode
have a higher relevance than the features in DP mode, which may be due to the loss of polarization
information in DP mode. In detail, the feature pairs with relatively high information overlap are
(f 11, c6), (f 9, c4) and (c5, c6). Among these, f 11 and c6 represent the alphas extracted from the H/alpha
decompositions; f 9 and c4 represent the polarimetric coherence extracted from HH/VV and RH/RV,
respectively; and c5 and c6 represent the entropy and alpha extracted from the H/alpha decomposition,

245



Remote Sens. 2019, 11, 2160

respectively. This result indicates that features from the same polarimetric decomposition have higher
redundancy. For the feature pairs, (f 7, c5), (f 7, c6), (f 9, c12), (c4, c12) and (c6, c11) have a lower
redundancy than (f 11, c6), (f 9, c4) and (c5, c6). There is little information overlap between both c15
and d5 and the other features. Hence, combined with the Euclidean distance and normalized mutual
information, c4, c6, c11 and c12 are selected for further study.

  
(a) (b) 

Figure 5. Normalized mutual information among different features, and samples are from scene 01 (a)
and scene 03 (b).

4. A New Feature: Phase Factor

Section 3 concludes that the features in CP mode are more suitable than the DP and FP modes for
ship target detection. Therefore, in this section, the features in CP mode are further studied. To analyze
the theoretical ship detection performance of features, the relationship between the coherency matrix
and the Stokes vector is established. Then, the X-Bragg scattering model is introduced to describe the
Stokes vector. Finally, a new feature, which has a good ship detection performance, is proposed.

In CTLR mode, the radar antenna transmits a circular signal and simultaneously receives
two orthogonal linear polarization signals. Consider a radar that transmits a right circular signal.
The scattering vector [37,45] is

→
k l = [ERH ERV ]

T =
1√
2
(SHH − jSHV,− jSVV + SHV)

T (19)

The coherency matrix T is defined by Huynen parameters [46]:

T =
→
k p
→
k

H

p =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
T11 T12 T13

T21 T22 T23

T31 T32 T33

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

2A0 C− jD H + jG
C + jD B0 + B E + jF
H − jG E− jF B0 − B

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (20)

where
→
k p = 1/

√
2[SHH + SVV SHH − SVV 2SHV ]

T, and A0, B, B0, C, D, E, F, G, and H are the Huynen
parameters. Note that A0, B0, and F are rotation invariants.

Matrix T can be expressed by SHH, SHV, and SVV, but it is extremely complicated [32]. In this case,
a new idea is proposed by using the elements of the scattering vector:

{
ERH+jERV = SHH + SVV

ERH−jERV = SHH − SVV − 2 jSHV
(21)
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Then, a new matrix Y is given by

Y =

[
ERH+jERV

ERH−jERV

][
(ERH+jERV)

H (ERH−jERV)
H
]

=

[
SHH + SVV

SHH − SVV − 2 jSHV

][
(SHH + SVV)

H (SHH − SVV − 2 jSHV)
H
]

=

[
(SHH + SVV)(SHH + SVV)

∗ (SHH + SVV)((SHH − SVV)
∗ + 2jS∗HV)

(SHH − SVV − 2 jSHV)(SHH + SVV)
∗ (SHH − SVV − 2 jSHV)((SHH − SVV)

∗ + 2jS∗HV)

] (22)

Combined with matrix T and the Huynen parameters, matrix Y can be obtained:

Y =

[
T11 T12 + jT13

T∗12 − jT∗13 T22 + T33 − 2Im(T23)

]
=

[
2A0 (C−G) + j(H −D)

(C−G) − j(H −D) 2(B0 − F)

]
(23)

In [46], the Stokes vector of the scattered wave in CTLR mode is written as

g =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
g0

g1

g2

g3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A0 + B0 − F
C−G
H −D

−A0 + B0 − F

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (24)

Therefore, Y can be derived from Equations (23) and (24):

Y =

[
T11 T12+jT13

T∗12 − jT∗13 T22 + T33 − 2Im(T23)

]
=

[
g0 − g3 g1 + jg2

g1 − jg2 g0 + g3

]
(25)

As a result, the Stokes vector is described by the coherency matrix:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

g0 = T11+T22+T33
2 − Im(T23)

g1 = Re(T12) − Im(T13)

g2 = Im(T12) + Re(T13)

g3 = −T11+T22+T33
2 − Im(T23)

(26)

Based on the theory mentioned above, the coherency matrix T is used to represent the Stokes
vector through the constructed matrix Y. For a better description of the features, the X-Bragg scattering
model is introduced below.

The X-Bragg scattering model was first introduced by Hajnsek to solve the case of nonzero
cross-polarized backscattering and depolarization [23]. By assuming a roughness disturbance-induced
random surface slope β, X-Bragg scattering is modeled as a reflection depolarizer by rotating the
Bragg coherency matrix about an angle β and performing configurational averaging over a given
distribution P(β):

[T] =
∫ 2π

0
[T(β)]P(β)dβ (27)

assuming that P(β) is a uniform distribution of approximately zero with width β1 (β1 < π/2). The width
β1 describes the roughness component of the sea surface. The coherency matrix for the rough surface
becomes Equation (28) with sin c(x) = sin(x)/x.

TX-Bragg =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
T11 T12 T13

T21 T22 T23

T31 T32 T33

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

C1 C2 sin c(2β1) 0
C2 sin c(2β1) C3(1 + sin c(4β1)) 0

0 0 C3(1− sin c(4β1))

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (28)
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where ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
C1 = |RS + RP|2 = |SHH + SVV |2/2

C2 = (RS + RP)(R∗S −R∗P) = (SHH + SVV)(SHH − SVV)
∗/2

C3 = 1
2 |RS −RP|2 = |SHH − SVV |2/4

Substituting Equation (28) into Equation (26), the Stokes vector in CP SAR can be described by an
X-Bragg scattering matrix

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

g0 = T11+T22+T33
2 − Im(T23) =

C1+2C3
2

g1 = Re(T12) − Im(T13) = Re(C2 sin c(2β1))

g2 = Im(T12) + Re(T13) = Im(C2 sin c(2β1))

g3 = −T11+T22+T33
2 − Im(T23) =

−C1+2C3
2

(29)

Note that g0 and g3 are rotation invariants because they are independent of β1, while g1 and g2

are related to the rotation angle β1. Hence, the features described by g0 and g3 are stable for separating
ships from sea, even in a high sea state.

For a better explanation of the features with strong ship detection abilities, the roundness (c11),
delta (c12) and the HESA [16] are listed as examples. Combined with the model derived from
Equation (29), the polarization features are derived by the X-Bragg scattering matrix, which shows the
scattering difference between ships and the sea surface. On this basis, a new feature, the phase factor,
is presented.

4.1. Roundness

The formula of roundness is

sin 2χ = − g3√
g2

1 + g2
2 + g2

3

(30)

According to Equations (29) and (30), roundness is given by

sin 2χ =
C1 − 2C3√

4(C2 sin c(2β1))
2 + (−C1 + 2C3)

2
(31)

In Equation (31), the sign of the roundness is consistent with that of sin 2χ. On the right side of
Equation (31), the denominator is positive, so the sign of the roundness depends on the sign of the
numerator. The numerator of Equation (31) can be derived as

C1 − 2C3 = 2Re(SHHS∗VV)) (32)

As shown in Equation (32), the value of C1–2C3 is depends on Re(SHHS∗VV). When single scattering
is dominant, the sign of Re(SHHS∗VV) is positive, and when even scattering is dominant, the sign of
Re(SHHS∗VV) is negative [47]. In fact, the sea surface is mainly characterized by single scattering, while
ships are mainly characterized by even scattering. Consequently, the value of the sea surface should be
positive, and the value of a ship should be negative. The areas shown in Figure 6a–c represent the red
box insets shown in Figure 2a,b,e. The images are derived from RADARSAT-2 scenes 01, 02 and 05
respectively, which were each acquired at low sea state. The ships and the sea surface can be separated
by a constant 0 in the feature roundness. Note that there exists a “ship” in the lower left corner of (a)
without AIS information, so it is uncertain whether it is a ship or not.
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(a) (b) (c) 

Figure 6. Three examples of the values of ships and the sea surface in the roundness. (a) Area in the
red box from scene 01. (b) Area in the red box from scene 02. (c) Area in the red box from scene 05.

Combined with Equations (29) and (31), the roundness is related to angle β1, which means that a
higher sea state can lead to a decline of the roundness detector’s performance. What’s worse, small
ships even cannot be distinguished from the sea clutter.

4.2. Delta

The formula for delta is
δ = tan−1(

g3

g2
) (33)

Then, delta is obtained by substituting Equation (29) into Equation (33):

δ = − 1
sin c(2β1)

Re(SHHS∗VV)

Im(SHHS∗VV)
(34)

In Equation (34), for single scattering, the sign of delta is negative; for even scattering, the sign of
delta is positive [47]. Due to the scattering differences, ships in the SAR image are mainly characterized
by even scattering, while the sea is mainly characterized by single scattering. Therefore, the sign
of delta for ships should be positive, and the sign of delta for the sea surface should be negative.
The areas shown in Figure 7a–c represent the red box insets shown in Figure 2a,b,e. The images are
derived from RADARSAT-2 scenes 01, 02 and 05 respectively, which were each acquired at low sea
state. The constant 0 can be used to distinguish ships from the sea surface in the feature delta.

(a) (b) (c) 

Figure 7. Three examples of the values of ships and the sea surface in the delta. (a) Area in the red box
from scene 01. (b) Area in the red box from scene 02. (c) Area in the red box from scene 05.

Note that the value of delta is related to angle β1 in Equation (34), and the surface roughness
increases with the increasing sea state. Therefore, the value of delta is unstably influenced by β1,
making it difficult to use in distinguishing ships and the sea surface in a high sea state.

4.3. HESA

The formula of the HESA is
HESA =

√
g0Hω (35)
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where

Hω = −
2∑

i=1

pi log2 pi, p1,2 =
g0 ±

√
g2

1 + g2
2 + g2

3

2g0

The areas shown in Figure 8a–c represent the red box insets shown in Figure 2a,b,e. The images
are derived from RADARSAT-2 scenes 01, 02 and 05 respectively, which were each acquired at low sea
state. In Equation (35), the value of the HESA is positive, as shown in Figure 8, and the outlines of ships
are clear. However, the HESA is related not only to the dielectric constant and the incidence angle but
also to the rotation angle β1. β1 represents the sea surface roughness, and the HESA may cause a severe
decline when the sea state is high. The constant 1 can be selected to separate ships from the sea surface.

   
(a) (b) (c) 

Figure 8. Three examples of the values of ships and the sea surface in the HESA. (a) Area in the red box
from scene 01. (b) Area in the red box from scene 02. (c) Area in the red box from scene 05.

4.4. Phase Factor

Based on the analysis of the above features, a new feature ς, called the phase factor, is presented
in this paper. The formula of the phase factor is

ς = tan−1(
g0

g3
) (36)

Combined with Equation (29), the phase factor can be derived by

ς = tan−1(
g0

g3
) = tan−1(

T11 + T22 + T33 − 2Im(T23)

−T11 + T22 + T33 − 2Im(T23)
) = tan−1(

C1 + 2C3

−C1 + 2C3
) (37)

Equivalently,

tan ς = C1+2C3
−C1+2C3

=
|RS−RP |2+|RS+RP |2
|RS−RP |2−|RS+RP |2

= |SHH−SVV |2+|SHH+SVV |2
|SHH−SVV |2−|SHH+SVV |2 = |SHH−SVV |2+|SHH+SVV |2

−4Re(SHHS∗VV)

(38)

In Equation (38), the sign of the phase factor depends on the sign of −Re(SHHS∗VV). For single
scattering, the value of Re(SHHS∗VV) is positive, so the value of the phase factor is negative; for even
scattering, the value of the phase factor is positive [47]. Considering that ships are mainly characterized
by even scattering, while sea surfaces are mainly characterized by single scattering, the sign of ships
is positive, and the sign of the sea surface is negative. In other words, the phase factor is able to
distinguish single scattering and even scattering to determine the dominant scattering mechanism.
When the phase factor is positive, the even scattering is stronger than the surface scattering; when
the phase factor is negative, the surface scattering is stronger than the even scattering. The areas
shown in Figure 9a–c represent the red box insets shown in Figure 2a,b,e. The images are derived from
RADARSAT-2 scenes 01, 02 and 05 respectively, which were each acquired at low sea state. In Figure 9,
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the sign of ships is positive, while the sign of the sea surface is negative, which means that the constant
0 can be used to distinguish ships and sea surface.

   
(a) (b) (c) 

Figure 9. Three examples of the values of ships and the sea surface in the phase factor. (a) Area in the
red box from scene 01. (b) Area in the red box from scene 02. (c) Area in the red box from scene 05.

Furthermore, Equation (38) shows that the value of the phase factor is related only to the dielectric
constant and incident angle and is independent of the random surface slope β1. This finding indicates
that the phase factor is rotation invariant and stable to different sea states (especially the high sea state),
which is of great benefit to ship detection. Therefore, the phase factor theoretically achieves a better
detection performance than the other abovementioned polarization features.

5. Detection Results and Discussion

In this section, experiments were performed using CTLR mode emulated from C-band
RADARSAT-2 FP SAR data to validate the superiority of the phase factor in ship detection. The phase
factor is compared with the roundness, delta, HESA and CFAR detectors, respectively.

5.1. Comparisons Between Phase Factor and Roundness, Delta, HESA Detectors

In this section, comparisons are made among roundness, delta, HESA and phase factor detectors
by analyzing the scattering difference between ships and the sea surface.

Two experiments comparing five detectors in ship detection are performed, as shown in Figure 10
(#1) and Figure 11 (#2). Figure 10 shows the detection results in a medium sea state. The roundness,
delta, the HESA and the phase factor perform better than the amplitude in detection tasks because
the detected ships in (b)–(f) all have clear outlines, and the ship pixels were very bright with respect
to the surrounding sea clutter. The results indicate that the four features from CP decomposition
can effectively distinguish ships from sea clutter. In (a), (d), (f) and (i), only one ship is detected
by the amplitude and HESA, while three ships are detected by the other three features. For the
roundness, delta and phase factor, the signs of the ship and sea clutter data are opposites, which
facilitate distinguishing ships from the sea clutter by means of a constant 0. For the HESA, the signs of
ships and sea clutter data are all positive, so it is hard to select a proper value to separate ships from
sea surface. Note that the spans of the roundness, delta and the phase factor are dozens of times larger
than that of the HESA.

For the sake of fairness, P = |MSHIP −MSEA|/max f is used to evaluate the ship detection
performance, where MSHIP and MSEA correspond to the statistical average of the samples of ships and
sea surface, respectively, and f represents features. Note that P ranges from 0 to 2, which can describe
the scattering difference and can distinguish ships from the surrounding sea surface. This finding
indicates that the higher the value P, the better the detection performance is. The results are listed in
Table 5. Multiples represent the performance ratio of the roundness, delta, HESA or phase factor to
the amplitude.

The performances of five detectors are listed in descending order: phase factor, roundness, delta,
HESA, and amplitude of RV polarization. Note that the performances of the phase factor, roundness,
delta, and the HESA are 65, 54, 41 and 9 times the amplitude of RV polarization, respectively. Thus,
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according to the value and the scattering difference between the ships and the sea surface, the phase
factor can detect ships better than the other four detectors. In another respect, the phase factor is
irrelevant to the sea surface roughness, and thus it is sufficiently stable with an increasing sea state,
as shown in (e) and (j). In contrast, the roundness, delta and HESA are related to the sea surface
roughness. The sea surface is very rough in a high sea state, and sea spikes can cause false alarms and
an increased difficulty in the detection.

  
(a) (b) (c) 

  
(d) (e) (f) 

 
(g) (h) (i) 

 
(j) 

Figure 10. Comparison of the five detectors in a medium sea state. (a) Amplitude of RV polarization.
(b) Roundness. (c) Delta. (d) HESA. (e) Phase factor. (f) 3-D display of amplitude. (g) 3-D display of
roundness. (h) 3-D display of delta. (i) 3-D display of HESA. (j) 3-D display of phase factor.

Figure 11 is another comparison of the detectors in a high sea state (#2). Combined with the AIS,
the image contains four small ships. All the ships can be detected with the five detectors. Influenced
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by strong winds, many false alarms appear in (b)–(d) and (g)–(i), resulting in the severe performance
degradation of the roundness and HESA detectors.

Table 5. Performances comparison of the five detectors.

Feature Experiment no. Amplitude Roundness Delta HESA Phase Factor

P
#1 0.02 1.07 0.82 0.18 1.29
#2 0.05 1.37 1.19 0.32 1.83

Multiples #1 1 54 41 9 65
#2 1 27 24 7 37

  
(a) (b) (c) 

 
(d) (e) (f) 

  
(g) (h) (i) 

 
(j) 

Figure 11. Comparison of the five detectors in a high sea state. (a) Amplitude of RV polarization;
(b) Roundness; (c) Delta; (d) HESA; (e) Phase factor; (f) 3-D display of the amplitude; (g) 3-D display of
roundness; (h) 3-D display of delta; (i) 3-D display of HESA; (j) 3-D display of phase factor.

The performances of the five detectors are shown in Table 5, which are consistent with results from
#1. The performances of the phase factor, roundness, delta, and HESA are 37, 27, 24 and 7 times that of
the amplitude of the RV polarization, respectively. According to the performance ratio, although the
detectors in a high sea state are smaller than those in a medium state, the phase factor is always the
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best among the five detectors. The results demonstrate that the phase factor is an effective detector
with strong robustness, especially in a high sea state, which is useful in practical applications.

5.2. Comparisons Between Phase Factor and CFAR Detectors

Comparisons between phase factor and CFAR detectors were made to verify the superiority of
the phase factor detector for ship detection in low, medium and high sea states. The CFAR detector is
based on the Weibull, Log-normal, G0, K and generalized Gamma distribution (GГD) of the sea clutter,
and the method of log-cumulants (MoLC) based on the Mellin transform is used for the parameter
estimation of the sea clutter model.

Considering the false alarm rate and detection rate, the FOM is used for the detection performance
analysis [48]

FOM =
Ntt

N f a + Ngt
(39)

where Ntt and Nfa are the numbers of detected ships and false alarms, respectively. Ngt is the number
of ships that matched with AIS. It is indicated from (39) that the larger the FOM, the better the
detection performance.

The amplitude of RV (Radar transmit in right circular and receive in vertical) polarization emulated
from the five RADARSAT-2 FP SAR images shown in Figure 2 is used for ship detection. 19 regions of
interest, including 97, 40 and 28 ships in low, medium and high sea states, respectively, are extracted,
and each area is 400*400 pixels. The false alarm rate is set to 0.001, which is the best after multiple
tests for CFAR ship detection. The phase factor detector uses a constant 0 to distinguish ships and the
surrounding sea surface. In low, medium and high sea states, Table 6 shows the detection results by
the CFAR and phase factor detectors.

Table 6. Detection performance comparison of CFAR and phase factor detectors.

Model Sea State False Alarms Correct Detections FOM

Weibull-CFAR
Low 22 89 0.75

medium 4 40 0.9
high 16 28 0.64

Log-normal-CFAR
Low 1 83 0.85

medium 1 36 0.88
high 0 16 0.57

G0-CFAR
Low 0 58 0.59

medium 2 32 0.76
high 0 12 0.43

K-CFAR
Low 74 94 0.55

medium 14 40 0.74
high 40 28 0.41

GFD-CFAR
Low 6 74 0.72

medium 1 36 0.88
high 8 28 0.78

Phase factor
Low 5 96 0.94

medium 0 40 1
high 0 24 0.86

In low sea state, the FOMs of these detectors in descending order are phase factor,
Log-normal-CFAR, Weibull-CFAR, GГD-CFAR, G0-CFAR and K-CFAR; in medium sea state, they
are phase factor, Weibull-CFAR, Log-normal-CFAR, GГD-CFAR, G0-CFAR and K-CFAR; in high sea
state, they are phase factor, GГD-CFAR, Weibull-CFAR, Log-normal-CFAR, G0-CFAR and K-CFAR.
The results indicate that the phase factor detector has the best performance in low (FOM: 0.94),
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medium (FOM: 1) and high sea states (FOM: 0.86) for ship detection, followed by Weibull-CFAR,
Log-normal-CFAR and GГD-CFAR, while G0-CFAR and K-CFAR are the worst, which is caused by
high false alarms, low correct detection rates, or both. In contrast with the CFAR detector, the phase
factor can discriminate ships and the sea easily by a constant 0 without complex calculation or false
alarm rate setting. Moreover, the phase factor is independent of the sea surface roughness, and hence
it can perform well in different sea states, even in high sea state.

Figures 12–14 show three examples of detection results in low, medium and high sea
states respectively. In Figures 12–14, (b)–(g) are the ship detection results of the Weibull-CFAR,
Log-normal-CFAR, G0-CFAR, K-CFAR, GГD-CFAR and phase factor detectors. The red boxes and
red circles represent ships matched with AIS and false alarms respectively, and the red stars represent
ships undetected. In Figure 12 (low sea state), the Weibull-CFAR, K-CFAR and phase factor detectors
are the best without false alarms or missing ships, while a ship is missing in Log-normal-CFAR and
GГD-CFAR detection, what’s worse, two ships are missing in G0-CFAR detection.

In Figure 13 (medium sea state), the Log-normal-CFAR, GГD-CFAR and phase factor detectors
perform better than the other detectors. Two and three false alarms exist in Weibull-CFAR and K-CFAR
respectively, and a ship in G0-CFAR is failed to be detected.

In Figure 14 (high sea state), only the phase factor detector detects two ships without any false
alarm. Weibull-CFAR, GГD-CFAR, Log-normal-CFAR and G0-CFAR missing one or two ships, and
K-CFAR detected all ships but with too many false alarms. The results indicate that the CFAR method
is not stable in different conditions, easily causing false alarms and missing detection. In general,
the phase factor performs better than the other detectors even in high sea state, while the detection
performance of the Weibull-CFAR, Log-normal-CFAR, G0-CFAR, K-CFAR and GГD-CFAR decrease
with the increasing sea state. The results are in accordance with the theory presented in Section 4.4.

 
(a) (b) (c) (d) 

  

 

(e) (f) (g)  

Figure 12. Detection performance comparison of CFAR and phase factor detectors in a low sea state.
(a) Amplitude of RV polarization; (b) Weibull-CFAR; (c) Log-normal-CFAR; (d) G0-CFAR; (e) K-CFAR;
(f) GГD-CFAR; (g) phase factor detector.
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(a) (b) (c) (d) 

 

(e) (f) (g)  

Figure 13. Detection performance comparison of CFAR and phase factor detectors in a medium sea
state. (a) Amplitude of RV polarization; (b) Weibull-CFAR; (c) Log-normal-CFAR; (d) G0-CFAR; (e)
K-CFAR; (f) GГD-CFAR; (g) phase factor detector.

    
(a) (b) (c) (d) 

   

 

(e) (f) (g)  

Figure 14. Detection performance comparison of CFAR and phase factor detectors in a high sea state.
(a) Amplitude of RV polarization; (b) Weibull-CFAR; (c) Log-normal-CFAR; (d) G0-CFAR; (e) K-CFAR;
(f) GГD-CFAR; (g) phase factor detector.

6. Conclusions

In this paper, in order to establish a reliable feature selection method for marine vessel monitoring
purposes, CP and DP SAR data were simulated by five FP RADARSAT-2 images, and forty features
were extracted from the FP, CP and DP decomposition. We comprehensively quantified and evaluated
these features for ship detection by using the Euclidean distance. The result indicated that features f 7,
f 9, f 11, c4, c5, c6, c11, c12, c15 and d5 perform better than the other features. For features selected by
the Euclidean distance, the relevance between ships and features, along with the redundancy among
different features, are further analyzed. The ship detection performance of f 7, f 9, f 11, c4, c5, c6, c11,
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c12, c15 and d5 from the mutual information are consistent with those from the Euclidean distance.
Furthermore, the mutual information among the features f 7, f 9, f 11, c4, c5, c6, c11, c12, c15 and d5 are
low. In conclusion, f 11, c4, c6, c11 and c12 are used for ship detection, which indicates that the features’
performance in CP SAR mode is better than that in DP and FP SAR mode.

The features in CP SAR mode are further studied to present a new feature that is simple and
suitable for use in complex sea states for ship detection. After a series of derivations and analyses by
introducing the sea surface roughness, a new feature, named the phase factor, is proposed that can
discriminate the ships and sea surface by a constant 0 and is simpler than the CFAR method without
the need for false alarm setting and complex threshold calculations by using a segmentation algorithm.
What’s more, it is independent of the sea surface roughness and can achieve good performance even in
a high sea state.

Experiments demonstrate that the phase factor is stable and better than the roundness, delta,
HESA and CFAR detectors in low, medium and high sea states. The performances of the phase factor,
roundness, delta, and the HESA are 65, 54, 41 and 9 times that of the amplitude of RV polarization,
respectively. In comparison with CFAR method, the phase factor detector is best in low (FOM: 0.94),
medium (FOM: 1) and high sea states (FOM: 0.86) for ship detection, followed by Weibull-CFAR,
Log-normal-CFAR and GГD-CFAR, while G0-CFAR and K-CFAR are the worst, which is caused by
high false alarms, low correct detection rates, or both. Therefore, the phase factor can be used in
complex sea states for ship detection, especially for the detection of weak and small ship targets in a
high sea state.
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Abstract: Sea ice distribution is an important indicator of ice conditions and regional climate change
in the Bohai Sea (China). In this study, we monitored the spatiotemporal distribution of the Bohai
Sea ice in the winter of 2017–2018 by developing sea ice information indexes using 300 m resolution
Sentinel-3 Ocean and Land Color Instrument (OLCI) images. We assessed and validated the index
performance using Sentinel-2 MultiSpectral Instrument (MSI) images with higher spatial resolution.
The results indicate that the proposed Normalized Difference Sea Ice Information Index (NDSIIIOLCI),
which is based on OLCI Bands 20 and 21, can be used to rapidly and effectively detect sea ice but is
somewhat affected by the turbidity of the seawater in the southern Bohai Sea. The novel Enhanced
Normalized Difference Sea Ice Information Index (ENDSIIIOLCI), which builds on NDSIIIOLCI by
also considering OLCI Bands 12 and 16, can monitor sea ice more accurately and effectively than
NDSIIIOLCI and suffers less from interference from turbidity. The spatiotemporal evolution of the
Bohai Sea ice in the winter of 2017–2018 was successfully monitored by ENDSIIIOLCI. The results
show that this sea ice information index based on OLCI data can effectively extract sea ice extent for
sediment-laden water and is well suited for monitoring the evolution of Bohai Sea ice in winter.

Keywords: Bohai sea ice; sea ice extent; OLCI imagery; sea ice information index

1. Introduction

The Bohai Sea is a semi-enclosed sea in China and is the southernmost area of the frozen sea
in the Northern Hemisphere. Seasonal sea ice occurs there every winter from December to March
and severely influences maritime activities and the marine economy of the surrounding areas when
accumulated sea ice blockades ports and obstructs sea routes. In a particularly cold winter, sea ice can
destroy marine facilities, coastal ports, and mariculture and lead to substantial property damage [1–4].
Therefore, monitoring the distribution and spatiotemporal pattern of sea ice is crucial for disaster
prevention and maritime management [5]. The distribution of the sea ice is also a key climatic indicator
as it can reflect regional climate change and is essential for studying long-term climatic changes in
response to recent global warming.

Large-scale monitoring and evaluation of sea ice in high-latitude frozen zones have been carried
out by means of remote-sensing technology, including microwave and optical remote sensing. Passive
microwave and synthetic aperture radar (SAR) imagery are the main data sources for ice detection as
they have all-day and almost all-weather imaging capability [6–8]. The operational sea ice concentration
products, such as OSI-450, SICCI-25km, and so forth, were provided by passive microwave data,
and can help us better understand the evolution of the Earth’s ice cover [9]. Ice extent is most
commonly estimated on the basis of the sea ice concentration retrieved from passive microwave
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data. For example, the contour corresponding to an ice concentration of 15% is commonly used to
define the ice extent [10]. However, owing to the coarse spatial resolution of ice concentration data
derived from passive microwave imagery (5–25 km), the sea ice concentration is underestimated
when the floe size is small or ice cover is sparse. Near coastlines, passive microwave datasets with
a large footprint are subject to land contamination, resulting in a mixed land–sea signal being received.
This land contamination can cause the extent of sea ice to be overestimated [11]. High-spatial-resolution
space-borne SAR datasets such as Radarsat-2 and Sentinel-1A/B can be used to monitor sea ice more
subtly. The sea ice concentration can be estimated from single-band SAR data either directly or via
a classification scheme [7,12,13]. Space-borne SAR can provide all-weather observations with a much
higher spatial resolution (5–100 m) than the passive microwave, but it is challenging to obtain because
of the high cost and the long revisit period for most of them.

Optical remote-sensing data have also been widely used to estimate the extent and concentration
of sea ice. Although the use of optical remote sensors is constrained by the weather conditions,
they have the merits of finer spatial resolution, low cost, and a short revisit period (one day
or less). Thus, optical remote sensors such as the Advanced Very High-Resolution Radiometer
(AVHRR) [14], Moderate Resolution Imaging Spectroradiometer (MODIS) [15–18], Geostationary
Ocean Color Imager (GOCI) [19–21], and FengYun-3 Medium Resolution Spectral Imager (MERSI) [22]
have been effectively employed to extract sea ice distribution information via a variety of methods.
For example, rapid and effective sea ice extraction has been achieved with a ratio-threshold segmentation
method based on the red and infrared bands of MODIS images [2,23]. Sea ice detectability in
coastal regions has been improved using texture features derived from MODIS images to accurately
detect sea ice in sediment-laden water [24]. The identification of sea ice and the accuracy of image
interpretation have also been improved by processing, respectively, optical and microwave images
by hue–intensity–saturation (HIS) adjustment and wavelet transformation and further fusing these
through principal component analysis (PCA) [5]. Different classifiers such as a decision tree and
a support vector machine have been used to directly distinguish sea ice on the basis of multispectral
remote-sensing imagery [25,26], in some cases combining multiple features like image texture and
surface temperature to improve the accuracy of sea ice extent estimation [27,28].

Data are now available from a new-generation sensor called the Ocean and Land Color Instrument
(OLCI), which is carried on the Sentinel-3 satellite. This sensor has relatively high spectral resolution
and spatiotemporal resolution in the visible and near-infrared spectra and thus is well suited to the
requirements of large-scale coastal environmental monitoring. OLCI data have already been used to
monitor and evaluate water quality [29–31] but have as yet rarely been used to study sea ice. In this
study, sea ice information indexes based on OLCI multispectral imagery are developed to detect the
extent of sea ice and then employed to monitor the spatial and temporal variation of sea ice in the
Bohai Sea in the winter of 2017–2018.

2. Study Area and Data

The Bohai Sea (37◦07′–41◦0′N, 117◦35′–121◦10′E), located on the northeast of China, borders three
land areas and one sea (Figure 1). It covers a total area of 73,686 km2 and has an average depth of
18 m. It comprises three bays: the Liaodong Bay in the north, the Bohai Bay in the west, and the
Laizhou Bay in the south. Over 40 tributaries flow into the sea, the largest four of which are the Yellow
River, Haihe River, Luanhe River, and Liaohe River, which carry large quantities of freshwater and
sediment into the sea from the land. The salinity of the seawater is only about 30 PSU, making it the
least saline of China’s coastal waters. Seasonal sea ice usually first occurs at the coast in late December
then accumulates along the shoreline and gradually expands into the central basin. Ice coverage finally
comes to an end in March of the next year. The thickness of the ice can reach up to 40 cm in extremely
cold winters [23], and it usually reaches its maximum extent at the midpoint of the sea ice evolutionary
process in late January to early February.
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Figure 1. The study area of the Bohai Sea, including the Liaodong Bay, Bohai Bay, and Laizhou Bay.

The new-generation optical sensor OLCI is the successor of ENVISAT’s MERIS, having higher
spectral resolution and more spectral channels. The OLCI dataset is composed of 21 distinctive
spectral bands spanning the spectral range 400–1020 nm across the visible and near-infrared spectra.
These multispectral data are very well suited to studying coastal sea ice. An overview of the
OLCI bands is given in Table 1. Full-resolution (300 m) OLCI images (OLCI level 1b) acquired
from the European Space Agency (ESA) data hub (https://scihub.copernicus.eu/) are employed for
Bohai Sea ice detection in this study. Image preprocessing, including subsetting, reprojecting,
and radiance-to-reflectance transformation, is conducted using the SNAP 6.0 toolbox (Sentinel
Application Platform, http://step.esa.int/main/toolboxes/snap/), which was designed for processing
and analyzing Sentinel satellite products.

Table 1. OLCI band characteristics.

Band Number
Central Wavelength

(nm)
Full Width at Half Maximum

(nm)
Signal-to-Noise Ratio

Band 1 400 15 2188
Band 2 412.5 10 2061
Band 3 442.5 10 1811
Band 4 490 10 1541
Band 5 510 10 1488
Band 6 560 10 1280
Band 7 620 10 997
Band 8 665 10 883
Band 9 673.75 7.5 707
Band 10 681.25 7.5 745
Band 11 708.75 10 785
Band 12 753.75 7.5 605
Band 13 761.25 2.5 232
Band 14 764.375 3.75 305
Band 15 767.5 2.5 330
Band 16 778.75 15 812
Band 17 865 20 666
Band 18 885 10 395
Band 19 900 10 308
Band 20 940 20 203
Band 21 1020 40 152
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The Sentinel-2 MultiSpectral Instrument (MSI) provides multispectral, high-resolution imagery
in 13 spectral bands: four bands at 10 m, six bands at 20 m, and three bands at 60 m spatial
resolution. The instrument’s imaging bands cover visible, near-infrared (NIR), and short-wave infrared
(SWIR) spectra. In this study, six MSI images (MSI level 1C) acquired by Sentinel-2B over the Bohai
Sea on February 1, 2018, were obtained from the ESA data hub (https://scihub.copernicus.eu/) and
were processed as comparison and validation data. These images were first preprocessed by the
atmospheric correction software [32] (Sen2Cor-02.05.05-win64, http://step.esa.int/main/third-party-
plugins-2/sen2cor/sen2cor_v2-5-5/) and were resampled at 60 m resolution to obtain L2A products
with all bands of imagery. In addition, MSI data were employed to derive the Normalized Difference
Snow Index (NDSI), which was useful for sea ice detection [26,33], as a comparison.

3. Methods

3.1. Normalized Difference Sea Ice Information Index

A total of 10,570 pixels were manually selected as samples and classified as sea ice, seawater,
turbid seawater, land, snow and cloud by visual interpretation. The samples were distributed across
four different OLCI images in the Bohai Sea on 24 January, 28 January, 1 February, and 12 February,
2018. Descriptive statistics were computed for these samples for characteristic bands to obtain the
mean and standard deviation of the top of the atmosphere (TOA) reflectance values.

The TOA reflectance of sea ice in Band 20 (930–950 nm) is higher than that in Band 21 (1000–1040 nm)
in OLCI imagery; the opposite is true for all other objects, such as land and cloud cover (Figure 2a).
Significant differences such as this in the spectral characteristics of land cover types are the basis for
remote-sensing detection, and this particular characteristic is utilized to detect sea ice using the band
ratio strategy. The Normalized Difference Sea Ice Information Index (NDSIIIOLCI) is the normalization
of this band ratio so that its value ranges between −1 and 1. The NDSIIIOLCI feature was extracted
using the following equation:

NDSIIIOLCI = (B20 − B21)/(B20 + B21), (1)

where B20 and B21 are the TOA reflectances of Band 20 and Band 21 in OLCI images, respectively.

Figure 2. TOA reflectance values in OLCI all bands (a) and NDSIIIOLCI values (b) for sea ice, seawater,
turbid seawater, land, snow, and cloud cover in the Bohai Sea. The whiskers in (a) depict the standard
deviations of the TOA reflectance samples. The whiskers in (b) indicate the maximum and minimum
ratio values of the sample. The box is determined by the 25th and 75th percentiles of the ratio values of
the sample. The median value is marked as the line within the box.
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The box plot in Figure 2b indicates that sea ice information is emphasized in the NDSIIIOLCI
feature, and other cover types present in the OLCI images are de-emphasized. Sea ice has the most
significant feature with the highest index value among all types of coverage. This enhancement of
sea ice information and suppression of other surfaces can effectively reduce the interferences in sea
ice information extraction in the Bohai Sea. Particularly, the values for sea ice are positive because its
numerator is greater than zero, and the values of other cover types are negative (Figure 2b). This figure
also indicates that over 75% percent of the ratio value of sea ice was greater than 0. Therefore, sea ice,
which has the brightest pixels, can be directly segmented out from an NDSIIIOLCI feature image with
a single threshold value of 0. According to the distribution of the box plot, turbid seawater is most
likely to interfere with sea ice detection, as it might not be easy to separate from sea ice in NDSIIIOLCI.

3.2. Enhanced Normalized Difference Sea Ice Information Index

The complex water environment of the Bohai Sea makes it challenging to extract sea ice precisely
using traditional remote-sensing technology. The main reason for the incomplete separation of seawater
and sea ice in remote-sensing images is spectral confusion between sea ice and the suspended sediment
in turbid seawater [24,27,28]. To distinguish them better, we have developed the Enhanced Normalized
Difference Sea Ice Information Index (ENDSIIIOLCI) by adding consideration of Band 12 (750–757.5 nm)
and Band 16 (771.25–786.25 nm) to the NDSIIIOLCI.

The TOA reflectance characteristics of sea ice and turbid seawater in Bands 12, 16, 20, and 21 in
OLCI imagery are shown in Figure 3. It shows subtle differences in TOA reflectance between Band 12
and Band 16 and between Band 20 and Band 21 for turbid seawater but a more visible reduction in
TOA reflectance between these bands for sea ice. These spectral characteristics indicate that sea ice and
turbid seawater can be separated using a spectral feature that combines these band ratios. Therefore,
the discriminant for identifying sea ice in turbid seawater is expressed as follows:

{
B12− B16 > 0
B20− B21 > 0

(2)

Linear summation was utilized to combine these two discriminants. The discrimination condition is
expressed as follows:

B12 − B16 + B20 − B21 > 0 (3)

The difference between sea ice and turbid seawater is further emphasized by summing the terms in the
discrimination condition (3) to construct the Enhanced Normalized Difference Sea Ice Information
Index (ENDSIIIOLCI) as follows:

ENDSIIIOLCI =
B12− B16 + B20− B21
B12 + B16 + B20 + B21

(4)

where B12, B16, B20, and B21 correspond to the TOA reflectance values of Bands 12, 16, 20, and 21 in
OLCI images, respectively.

ENDSIIIOLCI, which considers Band 12 and Band 16, is a further extension of NDSIIIOLCI. Sea ice
can be distinguished from turbid seawater in ENDSIIIOLCI by combining the two-criterion equations
(2). After normalization, the index performed stably in sea ice detection from OLCI images.

3.3. Determinaton of Threshold Values

To obtain optimal threshold values for sea ice separation, the segmentation thresholds were
identified through sampling of index values for NDSIIIOLCI and ENDSIIIOLCI during the three main
stages of the Bohai Sea ice: the freezing stage (early January), the stable stage (late January to early
February), and the melting stage (late February to early March) in the winter of 2017–2018 (Figure 4).
While the background coverage types, such as land, snow, and cloud, were significantly suppressed in
our index and can be easily distinguished from sea ice, this was not the case for seawater, particularly
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turbid seawater. To address this, a total of 389 points were manually selected from nine images that
included the freezing stage (1, 5 and 20 January 2018), the stable stage (28 and 31 January and 4
February 2018) and the melting stage (16 and 20 February and 21 March 2018), and classified as either
sea ice or seawater by visual interpretation. Thresholds were determined from the sampling histogram
using the Jenks natural break method [34], which maximizes interclass variance while minimizing
intraclass variance by iteratively comparing clusters of data.

Figure 3. Sample TOA reflectance values for sea ice and turbid seawater in OLCI Bands 12, 16, 20,
and 21 in the Bohai Sea.

 
Figure 4. The histogram distributions of sampling points for the three sea ice development stages
(freezing, stable and melting stages) with NDSIIIOLCI (a–c) and ENDSIIIOLCI (d–f). The TNDSIII and
TENDSIII threshold values (dashed vertical lines) were determined for sea ice separation by the Jenks
natural break method.
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Figure 4 shows the threshold values, TNDSIII for NDSIIIOLCI and TENDSIII for ENDSIIIOLCI, obtained
from the sampling dataset for sea ice extraction. According to the sampling, the threshold values of
NDSIIIOLCI and ENDSIIIOLCI are not fixed and vary somewhat depending on the samples and ice stages.
The thresholds obtained using the Jenks method performed fine in the freezing stage (Figure 4a,d),
where 97% and 98% of sea ice values were above TNDSIII and TENDSIII respectively, and also acceptably
performs in the stable stage (Figure 4b,e) and the melting stage (Figure 4c,f). Exceedance was still 94%
and 98% of sea ice in the stable stage, and 89% and 97% of sea ice in the melting stage for the TNDSIII

and TENDSIII thresholds, respectively. The sea ice can be extracted more completely using TENDSIII

instead of TNDSIII.
The TNDSIII and TENDSIII were determined using the samples from the winter of 2017–2018.

They were suitable for the ice detection during the 2017–2018 winter, but they may vary year by
year depending on the ice conditions, such as ice developing stages, ice thickness and snow-covered
situations. It is better to reset the threshold values when applying the indexes for sea ice detection in
other years because the ice conditions vary with the years. The threshold values varied a little for sea
ice detection in different ice stages in the 2017–2018 winter, however, the relatively stable values can
provide a valuable reference for the threshold determinations of the ice extraction in other years.

3.4. Normalized Difference Snow Index

In polar and high-latitude regions, snow detection is intimately linked to sea ice detection, as the
sea ice cover is mostly covered by snow. The Normalized Difference Snow Index (NDSI) has been used
by many studies to detect the presence of sea ice in open water (Equation (5)) [35].

NDSI = (Green − SWIR)/(Green + SWIR) (5)

The NDSI takes advantage of the contrasting spectral behaviors of snow and sea ice cover in the
visible and short-wave infrared parts of the spectrum. Snow and sea ice will have a high NDSI value
because they exhibit a large contrast in reflectance between the shot-wave infrared band (SWIR Band
11: 1.613 μm) and the visible band (Green Band 3: 0.56 μm). However, the OLCI instrument lacks the
short-wave infrared bands required to derive NDSI. In this study, we used the MSI images (resampled
from 60 to 300 m spatial resolution) to extract the NDSI feature, and we compared this with our efforts
to detect sea ice in the Bohai Sea.

3.5. Support Vector Machine Classifier

The support vector machine (SVM) is a machine learning method based on statistical learning
theory. Supervised classification using the SVM method has been widely used in image analysis to
identify the class affiliated with each pixel. The basic idea of SVM classification is to use the kernel
function to map linearly indivisible points in a low-dimensional space into linearly separable points
in a high-dimensional space [36–38]. The goal of SVM classification is to find the optimal separating
hyperplane that maximizes the margins between different classes. The output of SVM classification is
a decision value of each pixel for each class, and it can extract good classification results from complex
and noisy data.

We chose a radial basis function (RBF) to build the SVM classifier because it performs well in most
cases [39]. The parameter of the Gamma (G) and penalty (C) in the kernel function were quantitatively
analyzed and set to the following empirically optimized values: G = 1/feature number and C = 100 [27].

4. Results

4.1. Sea Ice Detection and Validation

Finally, the feature images based on NDSIIIOLCI and ENDSIIIOLCI were obtained from OLCI
data, which significantly enhanced the sea ice information. We also added a feature image which
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considered the normalized ratio of Bands 12 and 16 as an important transition factor from NDSIIIOLCI
to ENDSIIIOLCI. Samples from the feature images were classified into the types of land cover as sea
ice, seawater, turbid seawater, land, snow, and cloud through visual interpretation of OLCI true-color
composite imagery. In Figure 5, sea ice is the brightest feature among the different types of land
covers, suggesting its extent can be easily extracted from the feature images via threshold segmentation.
The feature distribution histogram, which is a statistical representation of pixel values in feature images,
was also considered for determining an appropriate threshold. In principle, sea ice information (shown
in red) has the highest value of the two feature types in both normalized ratio histograms.

An additional feature of the normalized band ratio of B12 and B16 was given in response to the
important role that Bands 12 and 16 play in the reduction of interference of sea ice detection in turbid
seawater areas. Sea ice with bright pixels can be visually distinguished from turbid seawater with its
darker pixels in the southern Bohai Sea (Figure 5c). The statistical histograms (Figure 5f) of sea ice
(shown in red) and turbid seawater (shown in green) which were sampled from (B12−B16)/(B12+B16)
feature image distribute separately with a boundary. This significant difference between sea ice and
turbid seawater in the feature can enable us to separate them easily, but this feature could not be used
to distinguish sea ice from seawater when they have approximated brightness in the feature image.

Land and cloud cover, which will be masked with great care when using other approaches,
were not major sources of contamination error for sea ice identification using these OLCI imagery-based
sea ice information indexes. The spectral characteristics of land and cloud enable them to be clearly
identified from optical remote-sensing datasets containing rich spectral information. In the sea ice
information indexes, their signals were attenuated by considering the normalized ratio of characteristic
bands and were centered around −0.2 (land) and −0.3 (cloud) in NDSIIIOLCI and −0.125 (land and
cloud) in ENDSIIIOLCI (Figure 5b,d). The obvious visible separation between the normalized ratios
of these two types of cover and that of sea ice meets the condition of sea ice extraction using optical
images without masking by land or cloud.

Another cover type that will impact the accuracy of sea ice mapping with optical images is snow,
which has high reflectance at visible and near-infrared wavelengths. Snow-covered ice will be confused
with snow-covered land when using optical data to detect sea ice. Little snow-covered ice occurs
in the Bohai Sea region in winter [40]. Furthermore, the region covered by snow on land has a low
normalized ratio in the sea ice information index, generally well below the value for sea ice.

The most difficult step in sea ice extraction is to divide sea ice cover from turbid seawater. The high
concentration of suspended sediment in turbid seawater leads to spectral confusion and affects sea
ice identification. In the feature histogram of NDSIIIOLCI in Figure 5e, the normalized ratio of Band
20 to Band 21 for the area covered by sea ice is greater than 0, and those for seawater, land, snow,
and cloud are less than TNDSIII which is 0.001 in the stable stage. It is noteworthy that the normalized
ratio for some turbid seawater areas is also greater than TNDSIII, giving NDSIIIOLCI insufficient ability
to distinguish sea ice from turbid seawater with a high sediment concentration. Seawater and turbid
seawater may be extracted with sea ice in NDSIIIOLCI when a lower threshold value is used for
segmentation. The misclassification caused by spectral confusion did not appear with ENDSIIIOLCI,
which also considers OLCI Bands 12 and 16. The normalized ratio for the area covered by sea ice is
greater than TENDSIII which is 0.024 in the stable stage, and that of other land cover types is less than
this value, including seawater and turbid seawater. Sea ice information can therefore be extracted
accurately from sediment-laden water using threshold segmentation in ENDSIIIOLCI feature images.
On the basis of these results, regions with sea ice were extracted in this study by threshold segmentation
of NDSIIIOLCI and ENDSIIIOLCI feature images using certain thresholds.
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Figure 5. An example of true-color (a), NDSIIIOLCI (b), (b12−b16)/(b12+b16) (c), and ENDSIIIOLCI (d)
feature extraction from OLCI imagery on 24 January 2018. A statistical histogram of the main types of
surface cover (sea ice, seawater, turbid seawater, land, snow, and cloud) in each image is displayed
alongside the corresponding image (e–g).
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After sea ice extent extraction from OLCI imagery on the basis of threshold segmentation which
was established using the Jenks natural break method from different stages of sea ice, the extraction
results were compared with NDSI and SVM methods and validated using a simultaneously acquired
high-resolution Sentinel-2 MSI image with a spatial resolution of 60 m after preprocessing (Figure 6).

Figure 6. An image of sea ice extraction result for the entire Bohai Sea (top) on 1 February 2018 using
threshold segmentation from ENDSIIIOLCI. Three true-color images in the first column (a,f,k) are the
enlarged MSI validation images indicated by boxes I, II, and III in the top image, respectively. The next
four columns present the results of sea ice extent extraction using NDSIIIOLCI (b,g,l), ENDSIIIOLCI

(c,h,m), NDSI (d,i,n), and SVM (e,j,o).

Figure 6 shows a comparison among the different methods of sea ice extraction from satellite
imagery in the Bohai Sea on February 1, 2018. Three representative scenes, including high concentration
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of ice (Figure 6a), low concentration of ice (Figure 6f), and sea ice in turbid water (Figure 6k), were selected
from the MSI images for detection validation. The MSI image was also employed in sea ice detection
via NDSI using threshold segmentation, so as to compensate for the deficiency in NDSI extraction
from OLCI images (Figure 6d,i,n). Sea ice extent was also extracted from OLCI images using the SVM
classification method as a comparison (Figure 6e,j,o).

Generally, the spectral-characteristic-based sea ice detection method was well capable of identifying
the Bohai Sea ice in OLCI images and enabled the details of its extent, such as the ice edges and ice
lanes, to be rapidly and precisely determined. The largest critical sea ice hazard, in Liaodong Bay
(Figure 6a), was extracted from OLCI images using NDSIIIOLCI (Figure 6b), ENDSIIIOLCI (Figure 6c),
NDSI (Figure 6d), and SVM (Figure 6e), and the first three distribution maps give similar depictions of
the sea ice, but omission of sea ice detection occurred when performing the SVM classifier. The three
indexes had consistently good performance in critical regions with thick, extensive sea ice cover in the
northern Bohai Sea. A comparison of the results shows that the sea ice area extracted by the NDSIIIOLCI
(Figure 6l) and NDSI (Figure 6n) are larger than that extracted by the ENDSIIIOLCI (Figure 6l) and
SVM (Figure 6o). This is mainly attributed to the complex seawater environment and different sea
ice features near the Yellow River estuary in Laizhou Bay (Figure 6k) where the concentration of
suspended sediment reaches 100 mg l−1 in winter. The NDSIIIOLCI and NDSI are likely to overestimate
the extent of sea ice in coastal waters where the sediment concentration is high. However, the results
of the ENDSIIIOLCI and SVM are not affected by turbid seawater contamination, and comparison with
the reference images indicate that they can accurately depict the outer edge of sea ice in areas of turbid
sea. In addition, omitted extraction in the extent of sea ice was observed in both indexes at the western
coast of the Bohai Sea where the floe size is small or the ice cover is sparse (Figure 6f). Validation
against the MSI image indicates that only thicker sea ice with higher brightness in the remote-sensing
image was well identified using these approaches. Thus, thin ice was not effectually detected when
extracting the Bohai Sea ice from OLCI imagery using the multispectral-bands ratio indexes employed
in this study.

Comparison of the results confirms that land and cloud do not contribute to the sea ice signal.
Threshold segmentation based on sea ice information indexes is efficiently capable of extracting sea ice
extent without masking by land and cloud. Additionally, snow-covered land cannot influence the sea
ice detection using our indexes, even though the snow was perceived to exist in the shore side region
beside sea-ice-covered areas.

The validation results clearly show that the different methods achieved different sea ice detection
accuracies. The accuracy of our ENDSIIIOLCI was high, with an overall accuracy of 94.83% and a Kappa
coefficient of 76.54%, close to the accuracy of SVM, and higher than NDSIIIOLCI or NDSI (Table 2).
The results indicate that the main source of error was the mislabeling of turbid seawater as sea ice.
Given the spectral confusion between sea ice and turbid seawater, the error was relatively significant in
double-bands ratio methods, such as NDSI and NDSIIIOLCI. The SVM method reached high detection
accuracy through image classification, but it needs sample training in the complex classifier, which is
relatively time-consuming and inefficient. However, the ENDSIIIOLCI has the advantage of rapid and
effective detection of sea ice while outperforming the other methods. These results suggest that our
ENDSIIIOLCI method is well suited for sea ice monitoring in the Bohai Sea, even with its complex
seawater environment during winter.

The sea ice extraction results via ENDSIIIOLCI were also validated using another two simultaneous
MSI images on different dates (29 January 2018 (Figure 7a) at ice stable stage and 16 February 2018
(Figure 7c) at ice melting stage) which are available. The sea ice extraction results from ENDSIIIOLCI
(Figure 7) show that the method can effectively extract sea ice extent at different ice stages. A few areas
with high reflectance in the image were not extracted as sea ice, which may be caused by the snow
cover. The snow cover area was small and had little effect on the sea ice extraction.
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Table 2. Contingency table for accuracy validation of sea ice detection based on different methods on 1
February 2018.

Ground Truth

Sea Ice Other Total Commission Error

ENDSIIIOLCI Map

Sea Ice 89 11 100 11.00%
Other 35 754 789 4.44%
Total 124 765 889

Omission Error 28.23% 1.44% Overall Accuracy

Kappa 76.54% 94.83%

ENDSIIIOLCI Map

Sea Ice 94 35 129 27.13%
Other 30 730 760 3.95%
Total 124 765 889

Omission Error 24.19% 4.58% Overall Accuracy

Kappa 70.05% 92.69%

NDSI Map

Sea Ice 107 77 184 41.85%
Other 18 798 816 2.21%
Total 125 875 1000

Omission Error 14.40% 8.80% Overall Accuracy

Kappa 63.88% 90.50%

SVM Map

Sea Ice 97 19 116 16.38%
Other 28 762 790 3.54%
Total 125 781 906

Omission Error 22.40% 2.43% Overall Accuracy

Kappa 77.51% 94.81%

 

Figure 7. Sea ice extraction results based on ENDSIIIOLCI from OLCI images with 300 m spatial
resolution on 29 January 2018 (b) and February 16, 2018 (d). Two true-color images in the first column
(a,c) are the MSI validation images with 60 m spatial resolution. The blue box in (b) represents the
boundary of the validation image (a).
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4.2. Spatiotemporal Evolution of the Bohai Sea Ice in the 2017–2018 Winter

Sea ice coverage significantly expanded in the Bohai Sea from December 2017 to January 2018.
The ENDSIIIOLCI, which efficiently reduces the interference of turbid seawater in the southern Bohai
Sea, was further applied to monitoring the variability in sea ice extent with 300 m spatial resolution in
the Bohai Sea during the winter of 2017–2018. Owing to the limits of cloud coverage and the revisit
cycle of the satellite, only 18 images were acquired by the Sentinel-3 OLCI instrument in the Bohai Sea
region from 1 January 2018 to 8 March 2018. All of the images were utilized for sea ice extent extraction
and determination of spatiotemporal change in sea ice coverage during the 2017–2018 winter season.
Several clear-sky scenes were acquired by Sentinel-3 OLCI prior to January 1, 2018, in December
2017. At that time, only sporadic sea ice coverage could be identified near the coastal region in the
Liaodong Bay (results not shown). In early January 2018, most of the sea ice was confined to the
northern part of the Liaodong Bay region. The average sea ice coverage from January 1 to January 20
(Figure 8a–e) was less than 1,400 km2; because of cloud contamination over the sea ice area, there was
some underestimation of the extent of sea ice on January 13 and 20.

A significant increase in sea ice coverage occurred in the Bohai Sea in mid-January 2018 (Figure 9),
with a particularly pronounced expansion occurring between 20 January 2018 (Figure 8e) and 24
January 2018 (Figure 8f). In those four days, the sea ice expanded to cover a large offshore area in
Liaodong Bay, as well as some areas in Bohai Bay and Laizhou Bay. On 24 January 2018, the total sea
ice coverage was 10,827 km2 (Figure 8f). By 28 January 2018, it had further expanded to both northern
and western Liaodong Bay, causing the total sea ice coverage in the Bohai Sea to jump to its peak value
for the entire winter season, 13,060 km2 (Figure 8g). The sea ice began its first retreat in late January
and early February. The sea ice coverages on January 29, January 31, and February 1 were 7,457 km2

(Figure 8h), 6,489 km2 (Figure 8i), and 5,963 km2 (Figure 8j), respectively.
The sea ice showed a notable resurgence in early February (Figure 9). Three days after the first

retreat, on February 4, 2018, the sea ice had again covered half of Liaodong Bay and had reached
a coverage of 10,497 km2 (Figure 8k). On 5 February 2018, the ice coverage was insistent, at 9,935 km2

(Figure 8l). After 12 February 2018, when the total coverage was 12,954 km2 (Figure 8m), into late
February, the sea ice coverage rapidly reduced and became more fragmented. The sea ice melted from
the south to the north, the opposite direction to its growth, with a gradual downward trend in the
ice coverage from 16 February 2018 to 8 March 2018, during which period successive images showed
coverages of 6,337, 4,820, 1,932, 3,063, and 1,470 km2 (Figure 8n–r, respectively). The remaining sea ice
was mainly concentrated in the north of Liaodong Bay and had drifted to and accumulated in the east
of Liaodong Bay under the action of external forces such as wind and waves. The sea ice had finally
completely melted away in mid-March.
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Figure 8. Spatiotemporal evolution of the extent of Bohai Sea ice during the winter of 2017–2018 from
OLCI images using the ENDSIIIOLCI method (a–r). Red areas depict sea ice coverage.
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Figure 9. The evolution of the Bohai Sea ice area extracted from OLCI images during the winter
of 2017–2018.

5. Conclusions

Two sea ice information indexes have been developed to quickly and accurately extract the extent
of sea ice from OLCI remote-sensing data. Comparison of the extraction results with higher-resolution
Sentinel-2 MSI imagery verifies that these indexes enable sea ice mapping with OLCI data in the Bohai
Sea. The Normalized Difference Sea Ice Information Index (NDSIIIOLCI), which is the normalized ratio
of Band 20 to Band 21 in OLCI TOA reflectance images, and the Enhanced Normalized Difference Sea
Ice Information Index (ENDSIIIOLCI), which is a modification of NDSIIIOLCI in which Bands 12 and 16
are also incorporated, can effectively detect sea ice information in the Bohai Sea and suppress most
background information, such as coverage by land, cloud, and snow. Comparison between the results
from our indexes, famous NDSI, and SVM methods indicates that sediment-laden water can interfere
with sea ice extraction with the NDSIIIOLCI and NDSI but that the ENDSIIIOLCI and SVM suffer from
less such interference. However, these four methods have poorer performance in detecting thin sea ice
in the western Bohai Sea than they do in detecting thick sea ice. The accuracy evaluation suggests
that our ENDSIIIOLCI index can rapidly and accurately detect and map the sea ice extent in the Bohai
Sea during winter. The results also show our approach can extract most of the sea ice (including nilas
ice, gray ice, and gray-white ice) in OLCI images, but the new ice which is small and thin is hard to
interpret and detect from the medium-resolution OLCI images due to the limitation of the spatial
resolution. Moreover, it would be better to reset the threshold values when employing our indexes to
detect sea ice extent in other years because the ice conditions vary with the years.

The spatiotemporal evolution of the Bohai Sea ice in the winter of 2017–2018 was monitored by
applying the ENDSIIIOLCI to OLCI images. Two major increases were detected in the sea ice extent
in mid-January and early February. The largest extent of the sea ice was 13,060 km2 on January 28.
After reaching its peak in late January 2018, sea ice coverage remained high until early February,
and the sea ice then gradually melted from south to north in mid-February. The whole period when
there was ice coverage lasted for about four months, within which there was a significant expansion
in mid-January and a final fading away in early March. Overall, our proposed method provides
a convenient and effective technique for sea ice detection and evolution study in the Bohai Sea,
which can help monitor the recent impacts of global warming.

Author Contributions: H.S. and B.J. conceived and designed the experiments; B.J. performed the experiments;
H.S. and B.J. analyzed the results; H.S. and B.J. wrote the paper; H.S. and Y.W. revised the paper.

275



Remote Sens. 2019, 11, 2436

Funding: This research was funded by National Natural Science Foundation of China (41971384, 41601444,
41630963), Natural Science Foundation of Fujian Province, China (2017J01657), Outstanding Young Scientists
Program in Universities of Fujian Province (KJ2017-17), and Central Guide Local Science and Technology
Development Projects (2017L3012).

Acknowledgments: We thank the European Space Agency (ESA) data hub for the Sentinel-3 OLCI data and
Sentinel-2 MSI imagery (https://scihub.copernicus.eu/), which are freely accessible to the public.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Ning, L.; Xie, F.; Gu, W.; Xu, Y.; Huang, S.; Yuan, S.; Cui, W.; Levy, J. Using remote sensing to estimate sea ice
thickness in the Bohai Sea, China based on ice type. Int. J. Remote Sens. 2009, 30, 4539–4552. [CrossRef]

2. Su, H.; Wang, Y.; Yang, J. Monitoring the Spatiotemporal Evolution of Sea Ice in the Bohai Sea in the 2009–2010
Winter Combining MODIS and Meteorological Data. Estuaries Coasts 2012, 35, 281–291. [CrossRef]

3. Shi, W.; Wang, M. Sea ice properties in the Bohai Sea measured by MODIS-Aqua: 1. Satellite algorithm
development. J. Mar. Syst. 2012, 95, 32–40. [CrossRef]

4. Ouyang, L.; Hui, F.; Zhu, L.; Cheng, X.; Cheng, B.; Shokr, M.; Zhao, J.; Ding, M.; Zeng, T. The spatiotemporal
patterns of sea ice in the Bohai Sea during the winter seasons of 2000–2016. Int. J. Digit. Earth 2017, 1–17.
[CrossRef]

5. Liu, M.; Dai, Y.; Zhang, J.; Zhang, X.; Meng, J.; Xie, Q. PCA-based sea-ice image fusion of optical data by HIS
transform and SAR data by wavelet transform. Acta Oceanol. Sin. 2015, 34, 59–67. [CrossRef]

6. Teleti, P.R.; Luis, A.J. Sea ice observations in polar regions: Evolution of technologies in remote sensing. Int.
J. Geosci. 2013, 4, 1031–1050. [CrossRef]

7. Karvonen, J. Baltic sea ice concentration estimation based on C-band dual-polarized SAR data. IEEE Trans.
Geosci. Remote Sens. 2014, 52, 5558–5566. [CrossRef]

8. Ivanova, N.; Pedersen, L.; Tonboe, R.; Kern, S.; Heygster, G.; Lavergne, T.; Sørensen, A.; Saldo, R.; Dybkjær, G.;
Brucker, L. Inter-comparison and evaluation of sea ice algorithms: Towards further identification of challenges
and optimal approach using passive microwave observations. Cryosphere 2015, 9, 1797–1817. [CrossRef]

9. Lavergne, T.; Macdonald Sørensen, A.; Kern, S.; Tonboe, R.; Notz, D.; Aaboe, S.; Bell, L.; Dybkjær, G.;
Eastwood, S.; Gabarro, C.; et al. Version 2 of the EUMETSAT OSI SAF and ESA CCI sea-ice concentration
climate data records. Cryosphere 2019, 13, 49–78. [CrossRef]

10. Meier, W.N.; Fetterer, F.; Stewart, J.S.; Helfrich, S. How do sea-ice concentrations from operational data
compare with passive microwave estimates? Implications for improved model evaluations and forecasting.
Ann. Glaciol. 2015, 56, 332–340. [CrossRef]

11. Agnew, T.; Howell, S. The use of operational ice charts for evaluating passive microwave ice concentration
data. Atmosphere-Ocean 2003, 41, 317–331. [CrossRef]

12. Berg, A.; Eriksson, L.E.B. SAR algorithm for sea ice concentration—Evaluation for the Baltic Sea. IEEE Geosci.
Remote Sens. Lett. 2012, 9, 938–942. [CrossRef]

13. Deng, H.; Clausi, D.A. Unsupervised segmentation of synthetic aperture radar sea ice imagery using a novel
Markov random field model. IEEE Trans. Geosci. Remote Sens. 2005, 43, 528–538. [CrossRef]

14. Huck, P.; Light, B.; Eicken, H.; Haller, M. Mapping sediment-laden sea ice in the Arctic using AVHRR
remote-sensing data: Atmospheric correction and determination of reflectances as a function of ice type and
sediment load. Remote Sens. Environ. 2007, 107, 484–495. [CrossRef]

15. Shi, W.; Wang, M. Sea ice properties in the Bohai Sea measured by MODIS-Aqua: 2. Study of sea ice seasonal
and interannual variability. J. Mar. Syst. 2012, 95, 41–49. [CrossRef]

16. Yuan, S.; Liu, C.; Liu, X. Practical Model of Sea Ice Thickness of Bohai Sea Based on MODIS Data. Chin. Geogr.
Sci. 2018, 28, 863–872. [CrossRef]

17. Drüe, C.; Heinemann, G. High-resolution maps of the sea-ice concentration from MODIS satellite data.
Geophys. Res. Lett. 2004, 31. [CrossRef]

18. Zhang, D.; Ke, C.; Sun, B.; Lei, R.; Tang, X. Extraction of sea ice concentration based on spectral unmixing
method. J. Appl. Remote Sens. 2011, 5, 053552. [CrossRef]

19. Liu, W.; Sheng, H.; Zhang, X. Sea ice thickness estimation in the Bohai Sea using geostationary ocean color
imager data. Acta Oceanol. Sin. 2016, 35, 105–112. [CrossRef]

276



Remote Sens. 2019, 11, 2436

20. Lang, W.; Wu, Q.; Zhang, X.; Meng, J.; Wang, N.; Cao, Y. Sea ice drift tracking in the Bohai Sea using
geostationary ocean color imagery. J. Appl. Remote Sens. 2014, 8, 083650. [CrossRef]

21. Yan, Y.; Huang, K.; Shao, D.; Xu, Y.; Gu, W. Monitoring the Characteristics of the Bohai Sea Ice Using
High-Resolution Geostationary Ocean Color Imager (GOCI) Data. Sustainability 2019, 11, 777. [CrossRef]

22. Wang, X.; Wu, Z.; Wang, C.; Li, X.; Li, X.; Qiu, Y. Reducing the impact of thin clouds on Arctic Ocean sea ice
concentration from FengYun-3 MERSI data single cavity. IEEE Access 2017, 5, 16341–16348. [CrossRef]

23. Su, H.; Wang, Y. Using MODIS data to estimate sea ice thickness in the Bohai Sea (China) in the 2009–2010
winter. J. Geophys. Res. Oceans 2012, 117. [CrossRef]

24. Su, H.; Wang, Y.; Xiao, J.; Li, L. Improving MODIS sea ice detectability using gray level co-occurrence matrix
texture analysis method: A case study in the Bohai Sea. ISPRS J. Photogramm. Remote Sens. 2013, 85, 13–20.
[CrossRef]

25. Han, Y.; Li, J.; Zhang, Y.; Hong, Z.; Wang, J. Sea ice detection based on an improved similarity measurement
method using hyperspectral data. Sensors 2017, 17, 1124. [CrossRef]

26. Gignac, C.; Bernier, M.; Chokmani, K.; Poulin, J. IceMap250—Automatic 250 m sea ice extent mapping using
MODIS data. Remote Sens. 2017, 9, 70. [CrossRef]

27. Su, H.; Wang, Y.; Xiao, J.; Yan, X. Classification of MODIS images combining surface temperature and texture
features using the Support Vector Machine method for estimation of the extent of sea ice in the frozen Bohai
Bay, China. Int. J. Remote Sens. 2015, 36, 2734–2750. [CrossRef]

28. Zhang, N.; Wu, Y.; Zhang, Q. Detection of sea ice in sediment laden water using MODIS in the Bohai Sea:
A CART decision tree method. Int. J. Remote Sens. 2015, 36, 1661–1674. [CrossRef]

29. Toming, K.; Kutser, T.; Uiboupin, R.; Arikas, A.; Vahter, K.; Paavel, B. Mapping water quality parameters with
sentinel-3 ocean and land colour instrument imagery in the Baltic Sea. Remote Sens. 2017, 9, 1070. [CrossRef]

30. Bi, S.; Li, Y.; Wang, Q.; Lyu, H.; Liu, G.; Zheng, Z.; Du, C.; Mu, M.; Xu, J.; Lei, S.; et al. Inland Water
Atmospheric Correction Based on Turbidity Classification Using OLCI and SLSTR Synergistic Observations.
Remote Sens. 2018, 10, 1002. [CrossRef]

31. Lin, J.; Lyu, H.; Miao, S.; Pan, Y.; Wu, Z.; Li, Y.; Wang, Q. A two-step approach to mapping particulate organic
carbon (POC) in inland water using OLCI images. Ecol. Indic. 2018, 90, 502–512. [CrossRef]

32. Vuolo, F.; Zóltak, M.; Pipitone, C.; Zappa, L.; Wenng, H.; Immitzer, M.; Weiss, M.; Baret, F.; Atzberger, C.
Data service platform for Sentinel-2 surface reflectance and value-added products: System use and examples.
Remote Sens. 2016, 8, 938. [CrossRef]

33. Riggs, G.A.; Hall, D.K.; Ackerman, S.A. Sea ice extent and classification mapping with the moderate resolution
imaging spectroradiometer airborne simulator. Remote Sens. Environ. 1999, 68, 152–163. [CrossRef]

34. Jenks, G.F. The data model concept in statistical mapping. Int. Yearb. Cartogr. 1967, 7, 186–190.
35. Dozier, J. Spectral signature of alpine snow cover from the landsat thematic mapper. Remote Sens. Environ.

1989, 28, 9–22. [CrossRef]
36. Burges, C.J.C. A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Discov. 1998,

2, 121–167. [CrossRef]
37. Vapnik, V.N. An overview of statistical learning theory. IEEE Trans. Neural Netw. 1999, 10, 988–999. [CrossRef]
38. Weston, J.; Watkins, C. Support vector machines for multi-class pattern recognition. In Proceedings of the

7th European Symposium on Artificial Neural Networks (ESANN-99), Bruges, Belgium, 21–24 April 1999;
Volume 99, pp. 219–224.

39. Zhang, H.; Zhang, Y.; Lin, H. Compare different levels of fusion between optical and SAR data for impervious
surfaces estimation. In Proceedings of the 2nd International Workshop on Earth Observation and Remote
Sensing Applications, EORSA 2012, Shanghai, China, 8–11 June 2012; pp. 26–30. [CrossRef]

40. Yuan, S.; Gu, W.; Liu, C.; Xie, F. Towards a semi-empirical model of the sea ice thickness based on hyperspectral
remote sensing in the Bohai Sea. Acta Oceanol. Sin. 2017, 36, 80–89. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

277





MDPI
St. Alban-Anlage 66

4052 Basel
Switzerland

Tel. +41 61 683 77 34
Fax +41 61 302 89 18

www.mdpi.com

Remote Sensing Editorial Office
E-mail: remotesensing@mdpi.com

www.mdpi.com/journal/remotesensing





MDPI  
St. Alban-Anlage 66 
4052 Basel 
Switzerland

Tel: +41 61 683 77 34 
Fax: +41 61 302 89 18

www.mdpi.com ISBN 978-3-03928-659-1 


	Blank Page



