
 Finite Elem
ents and Sym

m
etry   •   Rachid Touzani

Finite Elements 
and Symmetry

Printed Edition of the Special Issue Published in Symmetry

www.mdpi.com/journal/symmetry

Rachid Touzani
Edited by



Finite Elements and Symmetry





Finite Elements and Symmetry

Special Issue Editor

Rachid Touzani

MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade



Special Issue Editor

Rachid Touzani
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Preface to ”Finite Elements and Symmetry”

As a numerical method for the approximation of solutions of partial differential equations,

the finite element method has long since proven its efficiency, flexibility, and practicability. Specific

issues in the numerical solution have been addressed using this method, such as some qualitative

properties of solutions. Among these properties, positivity, regularity, and symmetry are included.

According to the research area covered by the journal Symmetry, this Special Issue gathered some

publications relative to symmetry in finite element analysis of partial differential equations. This topic

is poorly represented in the finite element literature and our objective was to compensate for this lack.

Symmetry appears under various aspects:

• Symmetries in domain geometry where this can be considered to simplify generation and

adaptation of finite element meshes;

• Symmetry in boundary conditions, which can contribute to simplifingy variational

formulations;

• Symmetry in the model definition, such as the use of symmetric tensors in continuum

mechanics, where this property can be sought in numerical simulations; and

• Expected symmetry in solution and symmetry breaking in nonlinear bifurcation problems.

This Special Issue, entitled Finite Elements and Symmetry, aimed to collect various studies

related to this topic to enrich the finite element literature from this aspect.

Rachid Touzani

Special Issue Editor
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Abstract: A set of sufficient conditions for the well posedness and the convergence of the
finite element approximation of three-dimensional time-harmonic electromagnetic boundary value
problems involving non-conducting rotating objects with stationary boundaries or bianisotropic
media is provided for the first time to the best of authors’ knowledge. It is shown that it is not difficult
to check the validity of these conditions and that they hold true for broad classes of practically
important problems which involve rotating or bianisotropic materials. All details of the applications
of the theory are provided for electromagnetic problems involving rotating axisymmetric objects.

Keywords: electromagnetic scattering; time-harmonic electromagnetic fields; moving media; rotating
axisymmetric objects; bianisotropic media; variational formulation; well posedness; finite element
method; convergence of the approximation

1. Introduction

The presence of rotating objects in electromagnetic problems is of interest in several applications,
ranging from the detection of helicopters to the tachometry of celestial bodies [1,2]. Unfortunately, as
an immediate consequence of the presence of materials in motion, all these electromagnetic problems
are difficult to solve. This is a consequence of the fact that all moving media are perceived as
bianisotropic [3,4].

Independently of the motion, bianisotropic media have been considered in several recent
investigations, in particular in the context of metamaterials, with frequencies belonging to the microwave
band or to the photonic one [5–8], for their huge potentialities or for their practical applications.

The complexity of electromagnetic problems involving media in motion or bianisotropic materials
prevents any chance of getting results without the use of numerical simulators. However, in order
to rely on them, it is important to know a priori results of well posedness of the problems of interest
and on their numerical approximability. A few papers addressing these topics have been recently
published [9–12]. However, due to the difficulty of the problems considered, most of them present
results under some restrictive hypotheses. For example, in [9], the results of interest are deduced by
exploiting in a crucial way the presence of losses, while in [10] the authors study cylinders in axial
motions. In [11], a problem of evolution is studied inside a cavity, preventing the exploitation of the
results in many applications and, finally, in [12] the constitutive parameters are smooth so neglecting
the possibility of considering radiation or scattering problems.

In this paper, we try to overcome most of these limitations by extending the theory developed
in [10] to three-dimensional time-harmonic electromagnetic boundary value problems involving lossy
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or lossless materials which can be bianisotropic or in motion. Only on the materials in motion will
we consider some restrictions. In particular, in order to retain the possibility to perform the analysis
of time-harmonic problems, we need that the boundaries of the moving objects are stationary [3].
Thus, we will restrict ourselves to consider the rotation of axisymmetric objects. For the same reason,
the velocity field will be considered independent of time. Moreover, the media in motion have to
be non-conductive, in order to avoid the difficulties related to the convective currents, which could
become surface electric currents [13] and then determine a discontinuity of the tangential part of the
magnetic field.

As for the media involved whose bianisotropy is not due to motion, we do not consider any
restrictive hypothesis. In particular, the formulation we consider allows the solution of radiation [14],
scattering [1,5,15], or guided wave problems [16,17], which are all of interest for applications.

The well posedness and finite element approximability guaranteed by our theory allow us
to obtain reliable solutions from numerical simulations for rotating axisymmetric objects. With this,
we can solve several problems. However, for the sake of conciseness, we selected just two representative
examples. For one of them, we have approximate semi-analytic solutions [1], and the range of validity
of the approximation involved in those solutions can be verified using our approach. Our second
example is representative of the majority of problems involving rotating objects, for which no result
can be found in the open literature. For any problem of this class, the reliable solution obtained under
the conditions required by our theory can serve as a benchmark for other numerical techniques.

The paper is organized as follows. In Section 2, the problems of interest are defined. Section 3
reports the main ideas which can be used to show that the problems of interest are well posed.
The results of convergence of Galerkin and finite element approximations are presented in Section 4.
In Section 5, we briefly present the main features of the finite element simulator exploited to compute
the results presented in Section 7. In these first sections, we heavily exploit the results presented
in [9,10,18]. We have included these sections in our manuscript in order to ease readers’ task
and because the results we present are not trivially deduced from [10,18], since they deal with
two-dimensional problems. The main novelties of the paper are presented in Sections 6 and 7.
In particular, in Section 6, we present some useful suggestions on how our theory can be exploited to
solve problems of practical interest and in Section 7 the practical applications of our theory to rotating
axisymmetric objects are presented. The conclusions are reported in Section 8 and some technical
details are provided in the appendix.

2. Problem Definition

In this section, we define the time-harmonic electromagnetic boundary value problem we will deal
with in the rest of the paper. Most of the considerations of this section are taken from Sections 2 and 3
of [9] and are here reported to ease the reader’s task and to introduce some specific considerations of
interest for problems involving rotating axisymmetric objects.

To avoid restrictions on the applicability of our analysis, the problem will be formulated on a
domain Ω satisfying the following hypotheses (Γ = ∂Ω denotes its boundary):

HD1. Ω ⊂ R3 is open, bounded and connected,
HD2. Γ is Lipschitz continuous and stationary.

Moreover, in order to be able to consider electromagnetic problems of practical interest, different
inhomogeneous materials will be taken into account. This is the reason why we assume:

HD3. Ω can be decomposed into m subdomains (non-empty, open and connected subsets of Ω
having Lipschitz continuous stationary boundaries) denoted Ωi, i ∈ I = {1, . . . , m}, satisfying
Ω = Ω1 ∪ . . . ∪ Ωm (Ω is the closure of Ω) and Ωi ∩ Ωj = ∅ for i �= j.

This hypothesis allows us to consider also the presence of rotating axisymmetric objects.
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The specific target of the paper is to deal with electromagnetic problems involving very general
materials. However, in order to give a sense to a time-harmonic analysis, we have at least to
assume that:

HM1. Any material involved is linear and time-invariant and satisfies the following constitutive
relations: {

D = (1/c0) P E + L B in Ω,
H = M E + c0 Q B in Ω.

(1)

In the above equation, E, B, D, H, and c0 are, respectively, the electric field, the magnetic induction,
the electric displacement, the magnetic field and the velocity of light in vacuum [19]. L, M, P and Q are
four 3-by-3 matrix-valued complex functions defined almost everywhere in Ω. The vector fields E, B,
D and H are complex valued too, as it is usually the case for electromagnetic field problems in which
the real fields depend sinusoidally on time [20] (pp. 13–16). Equation (1) implicitly takes account of
the electric current densities, as usual. Other equivalent forms of the above constitutive equations are
possible [21] (p. 49) [22], and will also be used later on.

Different inhomogeneous bianisotropic materials will be modeled by assuming the
following hypothesis.

HM2. The matrix valued complex functions representing the effective constitutive parameters
satisfy [23] (p. 3), [24] (p. 36):

P|Ωk , Q|Ωk , L|Ωk , M|Ωk ∈ (C0(Ωk))
3×3, ∀k ∈ I

.Such hypothesis is in no way restrictive for all applications of interest since the material properties
are just piecewise but not globally continuous. In particular, as we will verify later on, hypotheses
HM1 and HM2 do not exclude the presence of rotating axisymmetric objects [2] either.

The following additional notations and hypotheses are necessary too. (L2(Ω))3 is the usual
Hilbert space of complex-valued square integrable vector fields on Ω and with scalar product given
by (u, v)0,Ω =

∫
Ω v∗u dV (∗ denotes the conjugate transpose). H(curl, Ω) = {v ∈ (L2(Ω))3 | curl v ∈

(L(Ω))3} [24] (p. 55). The space where we will seek E and H is [24] (p. 82; see also p. 69)

U = HL2,Γ(curl, Ω) = {v ∈ H(curl, Ω) | v × n ∈ L2
t (Γ)}, (2)

where [24] (p. 48)

L2
t (Γ) = {v ∈ (L2(Γ))3 | v · n = 0 almost everywhere on Γ}. (3)

The scalar products in L2
t (Γ) and U are respectively given by (u, v)0,Γ =

∫
Γ v∗u dS and [24]

(p. 84, p. 69)
(u, v)U,Ω = (u, v)0,Ω + (curl u, curl v)0,Ω + (u × n, v × n)0,Γ. (4)

The induced norm is ‖u‖U = (u, u)1/2
U,Ω.

The symbol ω represents the angular frequency, as usual. Moreover, Je and Jm are the electric
and magnetic current densities, respectively, prescribed by the sources, Y is the scalar admittance
involved in impedance boundary condition and fR is the corresponding inhomogeneous term. Finally,
the admittance function Y with domain Γ and range in C is assumed to satisfy

HB1. Y is piecewise continuous and |Y| is bounded.

We are now in a position to state the electromagnetic boundary value problem we will address in
this paper.

3
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Problem 1. Under the hypotheses HD1-HD3, HM1-HM2, HB1, given ω > 0, Je ∈ (L2(Ω))3, Jm ∈
(L2(Ω))3 and fR ∈ L2

t (Γ), find (E, B, H, D) ∈ U × (L2(Ω))3 × U × (L2(Ω))3 satisfying (1) and the
following equations: ⎧⎪⎨

⎪⎩
curl H − jω D = Je in Ω,
curl E + jω B = −Jm in Ω,
H × n − Y

(
n × E × n

)
= fR on Γ.

(5)

As it was pointed out in [9], such a model can be thought of as an approximation of a radiation or
scattering problem, or as a realistic formulation of a cavity problem.

The following variational formulation of Problem 1 was derived in [9]:

Problem 2. Under the hypotheses HD1–HD3, HM1–HM2, HB1, given ω > 0, Je ∈ (L2(Ω))3, Jm ∈
(L2(Ω)3 and fR ∈ L2

t (Γ), find E ∈ U such that

a(E, v) = l(v) ∀v ∈ U, (6)

where

a(u, v) = c0
(
Q curl u, curl v

)
0,Ω − ω2

c0

(
P u, v

)
0,Ω − jω

(
M u, curl v

)
0,Ω

−jω
(

L curl u, v
)

0,Ω + jω
(
Y (n × u × n), n × v × n

)
0,Γ (7)

and
l(v) = −jω

(
Je, v

)
0,Ω − c0

(
Q Jm, curl v

)
0,Ω + jω

(
L Jm, v

)
0,Ω − jω

(
fR, n × v × n

)
0,Γ. (8)

It was shown in [9] that the two formulations are equivalent, in the sense that, from the solution
of Problem 1, one can deduce the solution of Problem 2 and vice versa; moreover, the well posedness
of the former implies the well posedness of the latter and vice versa [9].

3. Well Posedness of the Problem

Following the main ideas presented in Section 4 of [10], in this section, we prove the well posedness
of the three-dimensional problems of interest. The target will be achieved by showing that, under
appropriate additional hypotheses, we can apply the generalized Lax-Milgram lemma [24] (p. 21)
to Problem 2.

The continuity of the sesquilinear and antilinear forms, a and l, are easily deduced
under the hypotheses already introduced (HD1-HD3, HM1-HM2, HB1). Thus, it remains to
introduce the additional hypotheses allowing us to prove that the sesquilinear form a satisfies the
following conditions:

for every v ∈ U, v �= 0, sup
u∈U

|a(u, v)| > 0, (9)

we can find α : inf
u∈U, ‖u‖U=1

sup
v∈U, ‖v‖U≤1

|a(u, v)| ≥ α > 0. (10)

We establish under which hypotheses these conditions hold true in the following subsections.

3.1. Hypotheses to Prove Condition (9)

Condition (9) is easily proved once we know that the solution to Problem 2 is unique, as
shown in [10]. In turn, uniqueness for Problem 2 is achieved by proving uniqueness for the
corresponding homogeneous problem (that is the one with l = 0) [25] (p. 20), [24] (p. 92). Finally,
uniqueness for the corresponding homogeneous problem can be deduced by a standard technique [26]
(pp. 187–203), [10,24,27] (p. 92), in the presence of some losses and by unique continuation results.

4



Symmetry 2020, 12, 218

In the following, we introduce the hypotheses which allow for getting the result of interest in this
subsection. In order to let the reader understand the general picture, we observe that:

• the first group of hypotheses (HM3 and HB2) requires that the media and the boundary do not
provide active power,

• the second group of assumptions (HM4–HM7 and HB3) asks for the presence of some losses in
the media or on the boundary or the invertibility of the constitutive matrix P, ∀x ∈ Ωi, ∀i ∈ I,

• the first two groups of hypotheses are sufficient to prove that the solution of the homogeneous
problem is zero on a subdomain of Ω or that its tangential part on a subset of the boundary is
zero,

• the third group of assumptions (HM8–HM12) guarantee the applicability of a unique continuation
result, allowing us to show that condition (9) holds true.

In order to write our assumptions, we need to introduce some additional notation.
In [9], it was shown that the sesquilinear form a can be recast is the form

a (u, v) =
∫

Ω

{
(v∗, curl v∗) A

(
u

curl u

)}
+ jω

(
Y n × u × n, n × v × n

)
0,Γ, (11)

where

A =

(
−ω2

c0
P −jωL

−jωM c0Q

)
= As − jAss, (12)

being [9] As =
A+A∗

2 and Ass =
A∗−A

2j . For future use, the vector notation introduced in Equation (11)

is generalized as follows for the ordered pair q, r ∈ C3:

p =

(
q

r

)
. (13)

Moreover, by referring to the constitutive relation (1) or the above definition of A, we introduce a
splitting of the subscript i ∈ I of the subdomains Ωi: i ∈ Ia when L = M = 0 ∀x ∈ Ωi (the media are
anisotropic), otherwise i ∈ Ib. Finally, an alternative form of the constitutive relations will be used to
state unique continuation results. Such an alternative form is

{
E = κ D + χ B in Ω,
H = γ D + ν B in Ω,

(14)

where the constitutive matrices κ = c0 P−1, χ = −c0 P−1 L, γ = c0 M P−1 and ν = c0 (Q − M P−1 L)
[22] are all well defined where P−1 is well defined (see hypothesis HM7 below).

The first group of hypotheses is the following:

HM3. p∗Assp ≤ 0, ∀p ∈ C6, ∀x ∈ Ωi, ∀i ∈ I,

HB2. Re(Y) ≥ 0 on Γ.

The assumptions of the second group (HM4–HM7 on the media and HB3 on the boundary) are
all related to the presence of losses (apart from HM7) and read:

HM4. We can find Kdl > 0 and D ⊂ Ωi, i ∈ I, D open, non-empty such that p∗Assp ≤ −Kdl(|q|2 +
|r|2) in D,

HM5. We can find Kel > 0 and D ⊂ Ωi, i ∈ I, D open, non-empty such that p∗Assp ≤ −Kel |q|2 in D,

HM6. We can find Kml > 0 and D ⊂ Ωi, i ∈ Ia, D open, non-empty such that p∗Assp ≤ −Kml|r|2 in D,

5
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HM7. P is invertible, for all x ∈ Ωi, ∀i ∈ I,

HB3. We can find CYm > 0 and a non-empty open part Γl of Γ such that Re(Y) ≥ CYm almost
everywhere on Γl .

Appropriate combinations of these hypotheses are sufficient to prove (see Lemma A1 in the
Appendix A) that any solution of the homogeneous variational problem has a tangential part, which is
trivial on Γl or is trivial in the subdomain D.

Once this result has been obtained, in order to prove that the field is zero everywhere in Ω, one
has to apply unique continuation results [26] (pp. 187–203), [10,24,27] (p. 92). To achieve this target in
the presence of anisotropic and bianisotropic media, we refer to [22], and introduce the following third
set of hypotheses:

HM8. All entries of κ, χ, γ, ν ∈ C∞(Ωi) and are restrictions of analytic functions in Ωi, ∀i ∈ I,

HM9. ∃∃Cκ,d > 0, Cν,d > 0 : |determinant (κ) | ≥ Cκ,d, |determinant (ν) | ≥ Cν,d, ∀x ∈ Ωi, ∀i ∈ I,

HM10. lT
1,3 κ−1 l1,3 �= 0, lT

1,3 ν−1 l1,3 �= 0 ∀l1,3 ∈ R3, l1,3 �= 0, ∀x ∈ Ωi, ∀i ∈ Ia,

HM11. ∃∃Cκ,r > 0, Cν,r > 0 : |lT
1,3,n κ−1 l1,3,n| ≥ Cκ,r, |lT

1,3,n ν−1 l1,3,n| ≥ Cν,r ∀l1,3,n ∈ R3 : ‖l1,3,n‖2 =

1, ∀x ∈ Ωi, ∀i ∈ Ib,

HM12. ∃∃Cκ,s > 0, Cν,s > 0:

( 3

∑
i,j=1

|κij|
)
− min

i=1,2,3
|κii| ≤ Cκ,s ∀x ∈ Ωk, ∀k ∈ Ib, (15)

( 3

∑
i,j=1

|νij|
)
− min

i=1,2,3
|νii| ≤ Cν,s ∀x ∈ Ωk, ∀k ∈ Ib, (16)

and κ, χ, γ and ν satisfy

4
((

∑3
i,j=1 |γij|

)
− mini=1,2,3 |γii|

) ((
∑3

i,j=1 |χij|
)
− mini=1,2,3 |χii|

)
(
− Cκ,s +

√
C2

κ,s + 4 Cκ,d Cκ,r
) (

− Cν,s +
√

C2
ν,s + 4 Cν,d Cν,r

) < 1 (17)

∀x ∈ Ωk, ∀k ∈ Ib.

Remark 1. The constants and the constraints involved in hypotheses HM9, HM11 and HM12 could be defined
in any single subdomain Ωi, i ∈ Ib, in order to deduce less restrictive conditions under which our theory holds
true. This approach was exploited for example in [10]. Here, we use constants and constraints defined globally,
in order to avoid longer and technically more complicated definitions.

In particular, with hypotheses HM7, HM8, HM9 and HM10, by Theorem 6.4 of [22], we can
conclude that any solution of the homogeneous variational problem is analytic in all anisotropic media,
i.e., for all Ωi, i ∈ Ia. Moreover, under hypotheses HM7, HM8, HM9, HM11 and HM12, by Theorem 7.3
of [22], we get the same result for all Ωi, i ∈ Ib.

These preliminary outcomes allow us to state the following uniqueness result, which will be
proved in Appendix A:

Theorem 1. Under the hypotheses HD1–HD3, HM1–HM3, HM7–HM9, HB1–HB2, if HM10 is satisfied by
the anisotropic media and HM11 and HM12 are satisfied by the bianisotropic materials involved, then Problem 2
admits a unique solution provided that at least one of HM4 or HM5 or HM6 or HB3 is satisfied.

6
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Like in [10,28], it is now extremely simple to deduce (in Appendix A, it is possible to find the
proof; ∗ denotes the complex conjugate)

Theorem 2. Under the hypotheses HD1–HD3, HM1–HM3, HM7–HM9, HB1–HB2, if HM10 is satisfied
by the anisotropic media and HM11 and HM12 are satisfied by the bianisotropic materials involved, then the
homogeneous variational problem, find v ∈ U such that (a(u, v))∗ = 0 ∀u ∈ U, admits a unique solution
v = 0 provided that at least one of HM4 or HM5 or HM6 or HB3 is satisfied.

With this result, we can finally show that, under appropriate hypotheses, condition (9) holds true.

Theorem 3. Under the hypotheses HD1–HD3, HM1–HM3, HM7–HM9, HB1–HB2, if HM10 is satisfied by
the anisotropic media and HM11 and HM12 are satisfied by the bianisotropic materials involved, then condition
(9) holds true provided that at least one of HM4 or HM5 or HM6 or HB3 is satisfied.

Proof. Suppose that (9) is not satisfied. Then, we can find v ∈ U, v �= 0 such that supu∈U |a(u, v)| = 0.
However, |a(u, v)| = | (a(u, v))∗ |. Then, for the indicated v �= 0, | (a(u, v))∗ | = 0 ∀u ∈ U. This is at
odds with Theorem 2, since we have assumed the same hypotheses.

3.2. Additional Hypotheses to Prove Condition (10)

Under hypothesis HM2 or HB1, by a direct application of the Cauchy–Schwarz inequality,
we deduce that it is possible to define the following continuity constants:

• ∃CPL > 0: |(P u, v)0,Ω| ≤ CPL‖u‖0,Ω‖v‖0,Ω for all u, v ∈ (L2(Ω))3,
• ∃CL > 0: |(L curl u, v)0,Ω| ≤ CL‖curl u‖0,Ω‖v‖0,Ω for all u ∈ H(curl, Ω) and v ∈ (L2(Ω))3,
• ∃CM > 0: |(M u, curl v)0,Ω| ≤ CM‖u‖0,Ω‖curl v‖0,Ω for all u ∈ (L2(Ω))3 and v ∈ H(curl, Ω),
• ∃CYL > 0: |(Y(n × u × n), n × v × n)0,Γ| ≤ CYL‖n × u × n‖0,Γ‖n × v × n‖0,Γ.

In order to prove condition (10), we introduce the following additional hypotheses, which
guarantee that it is possible to find some coercivity constants:

HM13. We can find CPS > 0 such that |(Pu, u)0,Ω| ≥ CPS‖u‖2
0,Ω for all u ∈ (L2(Ω))3.

HM14. We can find CQS > 0 such that |(Qcurl u, curl u)0,Ω| ≥ CQS‖curl u‖2
0,Ω for all u ∈ H(curl, Ω).

HB3S. We can find CYm > 0 such that Re(Y) ≥ CYm almost everywhere on Γ.

Moreover, we assume:

HM15. CPS, CQS, CL and CM (i.e., all media involved) are such that CQS − CLCM
CPS

> 0.

As is shown in Appendix A, it is now possible to get the following result:

Theorem 4. Under the hypotheses HD1–HD3, HM1–HM3, HM7–HM9, HB1, HB3S, HM13–HM15, if
HM10 is satisfied by the anisotropic media and HM11 and HM12 are satisfied by the bianisotropic materials
involved, then the sesquilinear form a satisfies condition (10).

The following theorem, which is the main result of this section, is now a simple consequence:

Theorem 5. Under the hypotheses HD1–HD3, HM1–HM3, HM7–HM9, HB1, HB3S, HM13–HM15, if
HM10 is satisfied by the anisotropic media and HM11 and HM12 are satisfied by the bianisotropic materials
involved, then Problem 2 is well posed.

Proof. HB3S implies HB2 and HB3. It also implies that the logical or of HM4, HM5, HM6 and HB3,
which is present as a condition in Theorem 3, is true. Thus, the hypotheses reported in the statement of
the theorem guarantee the applicability of Theorems 3 and 4.
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4. Convergence of Galerkin and Finite Element Approximations

Once the result of well posedness of the problems of interest is established, we can proceed as in
Sections 5 and 6 of [10], to deduce the conditions under which the convergence of Galerkin [29] and
finite element [24] approximations can be guaranteed.

Convergence of an approximation [29] (p. 112) refers to the property of sequences of solutions
of the approximate problem and requires that they converge to the unique solution of the problem
of interest.

Any sequence of approximate solutions is built by considering a sequence {Uh} of finite
dimensional subspaces Uh of U. h is a denumerable and bounded set of strictly positive indexes
having zero as the only limit point [29] (p. 112).

For any h ∈ I, a set of approximate sources is considered: Jeh, Jmh ∈ (L2(Ω))3 and fRh ∈ L2
t (Γ).

With these, we define the following approximate antilinear form:

lh(v) = −jω(Jeh, v)0,Ω − c0(Q Jmh, curlv)0,Ω + jω(L Jmh, v)0,Ω − jω(fRh, n × v × n)0,Γ (18)

and the following discrete version of Problem 2.

Problem 3. Under the hypotheses HD1–HD3, HM1–HM2, HB1, given ω > 0, Jeh ∈ (L2(Ω))3, Jmh ∈
(L2(Ω)3 and fRh ∈ L2

t (Γ), find Eh ∈ Uh such that

a(Eh, vh) = lh(vh) ∀vh ∈ Uh. (19)

In order to state the results of interest, it is necessary to introduce the following subspaces of Uh:

U0h = {uh ∈ Uh | curl uh = 0 in Ω and uh × n = 0 on Γ}, (20)

U1h = {uh ∈ Uh | (Puh, vh)0,Ω = 0 ∀vh ∈ U0h}. (21)

On the sequence of approximating space [24,30], we need to consider

HSAS1. limh→0 infuh∈Uh ‖u − uh‖U = 0, ∀u ∈ U,

HSAS2. from any subsequence {uh1}h∈I of elements uh1 ∈ U1h which is bounded in U, one can
extract a subsequence converging strongly in (L2(Ω))3 to an element of U,

HSAS3. limh→0 infu0h∈U0h ‖u0 − u0h‖U = 0.

To get meaningful approximations, the sequences of discrete sources have to satisfy:

HSDS1. lim h → 0‖Je − Jeh‖0,Ω = 0,

HSDS2. lim h → 0‖Jm − Jmh‖0,Ω = 0,

HSDS3. lim h → 0‖fR − fRh‖0,Γ = 0.

The following is one of the main results of this section:

Theorem 6. Under the hypotheses HD1–HD3, HM1–HM3, HM7–HM9, HB1, HB3S, HM13–HM15,
HSAS1–HSAS3, HSDS1–HSDS3, if HM10 is satisfied by the anisotropic media and HM11 and HM12
are satisfied by the bianisotropic materials involved, then the sequence {Eh} of solutions of Problem 3 strongly
converges to E ∈ U, E being the unique solution of Problem 2.

Proof. The proof is only sketched being analogous to that of Theorem 5.3 of [10]. The first part of the
proof shows that, under the indicated hypotheses, for any sufficiently small h ∈ I, we get a unique
solution Eh of Problem 3.

8
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Thus, since the hypotheses guarantee also the well posedness of Problem 2, we can deal, for
sufficiently small h ∈ I, with E and Eh.

The last part of the proof verifies that the sequence ‖E − Eh‖U strongly converges to zero.

The sequence of finite dimensional subspaces for the Galerkin approximation is typically built
using the finite element method [29]. This involves the use of a sequence of triangulations {Th}, h ∈ I,
of Ω and a specific finite element on each triangulation Th [29].

To avoid some technicalities arising with curved boundaries, we assume that [29] (p. 65)

HD4. Ω is a polyhedron (i.e., Ω =
⋃

T∈Th
T).

Edge elements defined on tetrahedra are very often employed for approximating fields belonging
to H(curl, Ω). For this reason, we assume [29–31]:

HFE1. the family {Th} of triangulations is regular,

HFE2. Th is made up of tetrahedra, ∀h ∈ I,

HFE3. edge elements of a given order defined on tetrahedra are used to build Uh, ∀h ∈ I.

By classical results in finite element theory, we can now conclude that whenever HD1, HD2, HD4,
HFE1–HFE3 are satisfied, the space sequence {Uh} verifies conditions HSAS1, HSAS2 and HSAS3.

Thus, we obtain the second main results of this section:

Theorem 7. Under the hypotheses HD1–HD4, HM1–HM3, HM7–HM9, HB1, HB3S, HM13–HM15,
HSDS1–HSDS3, HFE1–HFE3, if HM10 is satisfied by the anisotropic media and HM11 and HM12 are
satisfied by the bianisotropic materials involved, then Problem 3 is a convergent approximation of Problem 2.

5. Some Information about the Exploited Finite Element Simulator

In this section, we provide some specific considerations related to the implementation of our
finite element code that was used to obtain the numerical solutions to the problems. A first order
edge element based Galerkin approach is adopted [32], and most of the details are analogous to the
two-dimensional implementation found in [18]. For any mesh adopted, we get the finite dimensional
space Uh. In it, we can find the test functions vhi, i ∈ {1, ..., ne}, where ne is the number of edges of
the mesh. Then, denoting the vector of unknowns as [eh] ∈ Cne and using Equations (7), (18) and (19),
we can obtain the following matrix equation:

[Ah][eh] = [lh]. (22)

Here, [Ah] is the complex matrix whose entries are obtained from Equation (7) and are given by:

[Ah]ij = c0
(
Q curl vhj, curl vhi

)
0,Ω − ω2

c0

(
P vhj, vhi

)
0,Ω − jω

(
M vhj, curl vhi

)
0,Ω

−jω
(

L curl vhj, vhi
)

0,Ω + jω
(
Y (n × vhj × n), n × vhi × n

)
0,Γ, i, j = 1, ..., ne. (23)

The entries [lh]i are obtained trivially from (18) by replacing v with vhi. In general, [Ah] is a
non-Hermitian complex matrix and in our approach we made use of iterative methods for the solution
of the algebraic system. In particular, we exploited the biconjugate gradient method with Jacobi
preconditioner [33]. The solution [eh]i obtained in the i-th iteration is accepted only when the Euclidean
norm of error satisfies ||[Ah][eh]i − [lh]|| < δ||[lh]||. Here, δ is a fixed value denoting the acceptable
tolerance, which is set as δ = 10−p, p being an integer (see Section 5 of [18,33]). For the test problems
of Sections 7.3 and 7.4, the value p was set equal to 10 and 5, respectively. The solutions obtained were
checked for convergence by refining the mesh until stable results were achieved.
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6. Some Hints to Apply the Developed Theory

The developed theory required the introduction of 32 hypotheses: four on the domain (HD1–HD4),
four on the boundary conditions (HB1–HB3 and HB3S), 15 on the media involved (and, as it will be
shown in Section 7, on the way, they rotate; HM1–HM15), three on the sequence of approximating
space (HSAS1–HSAS3), three on the sequence of discrete sources (HSDS1–HSDS3) and three on the
finite element discretization (HFE1–HFE3).

The main results of this manuscript, related to the well posedness of the problem of interest
and to the convergence of its finite element approximation, make use, respectively, of 17 and 24 of
these assumptions.

In order to ease the exploitation of the main outcomes, we observe that most of these hypotheses
can be verified immediately for important practical problems. This is true, in particular, for conditions
HD1–HD4, HB1–HB3 and HB3S, HM1–HM8, HSDS1–HSDS3, and HFE1–HFE3. Hypotheses
HSAS1–HSAS3 are not involved in the indicated theorems. As for the other hypotheses to be verified,
in the following, we provide some hints which can be of help to show that assumptions HM9–HM15
holds true.

Let us firstly focus on the additional hypotheses we have introduced to prove condition (10) (that
is, HM13 and HM14). In this section, we extensively use the notation introduced in Equation (12) and
the line following it.

One simpler way to find the constant involved in hypothesis HM13 is provided by the
following Lemma.

Lemma 1. Suppose that Pss is uniformly positive definite in Ωel ⊂ Ω that is ∃C1 > 0 such that
∫

Ωel

u∗Pssu ≥ C1

∫
Ωel

|u|2 = C1||u||20,Ωel
∀u ∈ (L2(Ω))3. (24)

Whenever Ωel = Ω, we can simply define CPS = C1.
Whenever Ωel is not the whole Ω, suppose that, in the complementary region, Ps is uniformly positive or

negative definite, that is, ∃C5 > 0 such that
∣∣∣∣
∫

Ω\Ωel

u∗Psu

∣∣∣∣ ≥ C5||u||20,Ω\Ωel
. (25)

Whenever Ωel = ∅, we simply have CPS = C5 and we can set

CPS = min
i∈I

inf
x∈Ωi

λmin(Ps), (26)

where λmin denotes the minimum of the magnitudes of the eigenvalues of the Hermitian symmetric matrix Ps.
Finally, whenever Ωel is neither the empty set nor the whole domain, under assumptions HM2 and HM3,

condition HM13 is satisfied with CPS given by

CPS =
1√
2

min

(√
(1 − α)C5,

√
C2

1 + (1 − 1
α
)C2

3

)
, (27)

where C3 > 0 is defined by ∣∣∣∣
∫

Ωel

u∗Psu

∣∣∣∣ ≤ C3‖u‖2
0,Ωel

(28)

and α is such that 1 > α >
C2

3
C2

1+C2
3
> 0.

Lemma 1 is proved in the Appendix A by using a technique developed in [34].

10
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In an analogous way, by replacing P with Q in Equations (24), (25) and (28) , we define, respectively,
Ωml and the constants C2 > 0, C4 > 0 and C6 > 0 and deduce that condition HM14 is satisfied if we set

CQS = min
i∈I

inf
x∈Ωi

λmin(Qs), (29)

whenever Ωml = ∅, CQS = C2 whenever Ωml = Ω or

CQS =
1√
2

min

(√
(1 − α)C6,

√
C2

2 + (1 − 1
α
)C2

4

)
, (30)

being α such that 1 > α >
C2

4
C2

2+C2
4
> 0, when Ωml �= Ω and Ωml �= ∅.

The above lemma will be heavily exploited to show the applicability of our theory to many
practical problems of interest. However, it does not imply that it is not possible to find larger values of
CPS. For example, whenever Ps is uniformly definite in Ω that is ∃C7 > 0 such that

∣∣∣∣
∫

Ω
u∗Psu

∣∣∣∣ ≥ C7||u||20,Ω, (31)

we can choose for CPS the largest between C7 and the value obtained by using Lemma 1.
This is of interest in order to reduce the restrictions due to inequality HM15. In order to check

its validity, we also have to evaluate the continuity constants CL > 0 and CM > 0. From their very
definitions, one can estimate these values and set for example

CL = max
i∈Ib

sup
x∈Ωi

√
λmax(L∗L) (32)

and
CM = max

i∈Ib
sup
x∈Ωi

√
λmax(M∗M), (33)

where λmax denotes the maximum of the magnitudes of the eigenvalues of the Hermitian symmetric
matrix to which it applies.

We now look for simple techniques to check the validity of hypotheses HM9–HM12. Our previous
considerations assume that we know the constitutive matrices P, Q, L and M. The next ones, on the
contrary, are based on κ, ν, χ and γ. In order to deduce this form of the constitutive parameters, one
can use the equations reported below Equation (14) under hypothesis HM7.

To check the validity of assumptions HM9–HM12, the constants Cκ,d, Cν,d, Cκ,r, Cν,r, Cκ,s and Cν,s

have to be evaluated (see Remark 1). For Cκ,d, Cν,d, Cκ,s and Cν,s one has simply to apply the definitions,
for example by calculating

Cκ,d = min
i∈I

inf
x∈Ωi

|determinant(κ)|, (34)

Cν,d = min
i∈I

inf
x∈Ωi

|determinant(ν)|, (35)

Cκ,s = max
i∈I

sup
x∈Ωi

(
(

3

∑
i,j=1

|κij|)− mini=1,2,3|κii|
)

, (36)

Cν,s = max
i∈I

sup
x∈Ωi

(
(

3

∑
i,j=1

|νij|)− mini=1,2,3|νii|
)

. (37)

As for Cκ,r and Cν,r the following consideration might be helpful. By definition

Cκ,r = min
i∈I

inf
x∈Ωi

min
l1,3,n∈R3:‖l1,3,n‖2=1

√(
lT
1,3,nκisl1,3,n

)2
+

(
lT
1,3,nκissl1,3,n

)2
, (38)

11
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Cν,r = min
i∈I

inf
x∈Ωi

min
l1,3,n∈R3:‖l1,3,n‖2=1

√(
lT
1,3,nνisl1,3,n

)2
+

(
lT
1,3,nνissl1,3,n

)2
, (39)

where κis and κiss are the symmetric matrices obtained by the usual decomposition of κ−1 and similarly
νis and νiss are those corresponding to ν−1. If both the symmetric matrices involved in the above
expressions are semi-definite, then we can deduce the following lower bounds:

Cκ,r = min
i∈I

inf
x∈Ωi

√
(λmin(κis))

2 + (λmin(κiss))
2, (40)

Cν,r = min
i∈I

inf
x∈Ωi

√
(λmin(νis))

2 + (λmin(νiss))
2. (41)

If we also define

Cχ,s = max
i∈I

sup
x∈Ωi

(
(

3

∑
i,j=1

|χij|)− mini=1,2,3|χii|
)

, (42)

Cγ,s = max
i∈I

sup
x∈Ωi

(
(

3

∑
i,j=1

|γij|)− mini=1,2,3|γii|
)

, (43)

the sufficient condition for the regularity used for proving uniqueness can be expressed as

Ku =
4Cχ,sCγ,s(

−Cκ,s +
√

C2
κ,s + 4Cκ,dCκ,r

) (
−Cν,s +

√
C2

ν,s + 4Cν,dCν,r

) < 1. (44)

7. Implications for Rotating Axisymmetric Objects

In this section, we show the implications of the developed theory for three-dimensional problems
involving rotating axisymmetric objects.

The class of scattering problems of interest involves rotating axisymmetric objects illuminated by
time-harmonic electromagnetic fields. Even though our theory does not limit the number of objects
involved, in this section, we show the results computed in the presence of just one rotating rigid
body (with angular velocity ωs) because, on the one hand, this is enough to get bianisotropic effects
and, on the other hand, notwithstanding the limitation, it is still possible to define problems whose
solutions, to the best of the authors’ knowledge, is not known. In these cases, our solutions may then
be considered as benchmarks.

By the same token, it is not necessary to consider very complicated configurations of materials.
This is the reason why in this subsection we analyze problems involving objects rotating in vacuum.
In our notation, the empty space is characterized by P = c0ε0 I3, Q = 1

c0μ0
I3, L = M = 0, being I3

the identity matrix. In order to avoid problems with convective currents, which can become surface
currents [35], we assume that all rotating media in their rest frames have the electric conductivity
σ = 0 and real-valued ε and μ. However, we need to know the constitutive parameters when the
media are rotating. To get these results, we recall that for media in motion with a generic velocity field
v we have [19] (p. 958)

D +
1
c2

0
v × H = ε (E + v × B) , (45)

B − 1
c2

0
v × E = μ (H − v × D) . (46)

If μ �= 0, from Equation (46), one immediately gets

H =
1
μ

B − 1
μc2

0
(v × E) + (v × D) , (47)
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and, by substituting it in Equation (45), one easily deduces

D − 1
c2

0
(v × D)× v = εE − 1

μc4
0
(v × E)× v +

μrεr − 1
μc2

0
(v × B) . (48)

Cross multiplying (on the left) this equation by v
v2 , being v = |v|, one obtains

(v × D) =
μrεrc2

0 − v2

μc2
0(c

2
0 − v2)

(v × E)− 1
μ

μrεr − 1
c2

0 − v2 (v × B)× v (49)

and, by substituting it in the expression of H, one gets [36]

H =
μrεr − 1

μ(c2
0 − v2)

(v × E) +
1
μ

B − μrεr − 1
μ(c2

0 − v2)
(v × B)× v. (50)

Finally, if one obtains (v × D)× v from Equation (49) and substitutes the result in Equation (48),
the following expression is obtained:

D = εE +
μrεr − 1

μc2
0(c

2
0 − v2)

(v × E)× v +
μrεr − 1

μ(c2
0 − v2)

(v × B) . (51)

The last two equations allow us to find the constitutive parameters of the rotating media as
perceived in the laboratory frame. Without loss of generality, we can assume that z is the axis
of rotation of the rigid body. Then, the velocity field is along the azimuthal direction and has a
magnitude given by the constant angular velocity ωs multiplied by the distance of the considered
point from the z axis. In the chosen Cartesian reference frame, one immediately gets v = ωs(xŷ − yx̂).
Then, for a generic vector A, one deduces v × A = ωsxAzx̂ + ωsyAzŷ − ωs(xAx + yAy)ẑ and (v ×
A)× v = ω2

s (x2 Ax + xyAy)x̂ + ω2
s (xyAx + y2 Ay)ŷ + ω2

s Az(x2 + y2)ẑ. By using these expressions in
Equations (50) and (51), after simple calculations, one finds the following explicit expressions of the
constitutive matrices P, Q, L and M [36]

P = a1 I3 + b1T1, (52)

Q = a2 I3 − b1T1, (53)

L = M =
c0b1

ωs
T2, (54)

where a1 = ε0εrc0, a2 = 1
μ0μrc0

, b1 is the field ω2
s (εrμr−1)

μ0μrc0(c2
0−ω2

s (x2+y2))
,

T1 =

⎡
⎢⎣x2 xy 0

xy y2 0
0 0 x2 + y2

⎤
⎥⎦ , (55)

and

T2 =

⎡
⎢⎣ 0 0 x

0 0 y
−x −y 0

⎤
⎥⎦ . (56)

Now, we may apply the theory developed in the previous sections to check when these problems
are well posed.
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7.1. Checking Condition (9) for Problems Involving Rotating Objects

Rotating objects are of particular interest for scattering problems. For this class of problems, it is
usual to have absorbing boundary conditions, so that HB3S is satisfied in any case.

To verify conditions HM9–HM12, we calculate κ, χ, γ and ν of the scatterer by using the equations
reported below Equation (14). We get:

κ = c0P−1 =
c0

a1 + b1(x2 + y2)
I +

c0

a1 + b1(x2 + y2)

b1

a1
[(x2 + y2)I − T1], (57)

χ = − c0

a1 + b1(x2 + y2)

c0b1

ωs
T2, (58)

γ = −χ, (59)

ν = a1a2κ. (60)

Now, we proceed as indicated in the second part of Section 6 (the one relative to the check of
conditions HM9–HM12). In particular, we start calculating the determinant of κ and ν in the scatterer

determinant(κ) =
c3

0
a1(a1 + b1(x2 + y2))2 , (61)

determinant(ν) =
a3

1a3
2c3

0
a1(a1 + b1(x2 + y2))2 . (62)

Since in vacuum κ = 1
ε0

I and ν = 1
μ0

I, the above determinants reduces respectively to 1
ε3

0

and 1
μ3

0
. In order to simplify the analysis and consider the most interesting cases, we restrict our

analysis to scatterers made up of homogeneous non-magnetic materials (μr = 1) having εr > 1.
Under this condition in the scatterer, we have b1 > 0 and then a1(a1 + b1(x2 + y2))2 > a3

1, so that

determinant(κ) < c3
0

a3
1
= 1

ε3
0ε3

r
< 1

ε3
0

and determinant(ν) < a3
2c3

0 = 1
μ3

0
. Thus, by using Equations (34) and

(35), the constants Cκ,d and Cν,d can be determined by finding the smallest values of the determinants
in the scatterer, which is found when the field b1(x2 + y2) gets its largest value. Since b1(x2 + y2) is an
increasing function of x2 + y2, we finally get

Cκ,d =
c3

0
a1(a1 + b1,maxR2)2 (63)

and

Cν,d =
c3

0a2
1a3

2
(a1 + b1,maxR2)2 , (64)

where R is the largest distance of the boundary of the scatterer from its axis of rotation and b1,max is the
value which the field b1 gets for this value of x2 + y2:

b1,max =
ω2

s (εr − 1)
μ0c0(c2

0 − ω2
s R2)

. (65)

For problems involving objects in motion, it is usual practice to introduce the maximum

normalized velocity β = ωsR
c0

< 1. In terms of β, we get b1,maxR2 = (εr−1)β2

μ0c0(1−β2)
and then

Cκ,d =
(1 − β2)2

ε3
0εr(εr − β2)2

(66)
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and

Cν,d =
ε2

r(1 − β2)2

μ3
0(εr − β2)2

. (67)

If now we look for the constants Cκ,r and Cν,r, we observe that κ−1 = 1
c0

P everywhere while
ν−1 = (a1a2κ)−1 = 1

a1a2c0
P in the scatterer and ν−1 = μ0 I in vacuum. Moreover, P is a real symmetric

positive definite matrix, both inside and outside the scatterer, and we can use Equations (40) and (41)
with κiss = 0 and νiss = 0. Finally, the eigenvalues of P are a1 and a1 + b1(x2 + y2) in the scatterer
and c0ε0 in vacuum. Thus, the minimum of the infimum of the λmin involved in those expressions is
achieved in both cases in vacuum and we get

Cκ,r = ε0, (68)

and
Cν,r = μ0. (69)

Moreover, Cκ,s can be deduced by computing the suprema reported in Equation (36), inside and
outside the scatterer. After some calculation, one can find that inside the scatterer the supremum is
equal to 2

ε0εr
and outside it is 2

ε0
, so that

Cκ,s =
2
ε0

. (70)

In an analogous way, we get

Cν,s =
2

μ0
. (71)

Finally, by using Equations (58) and (59), we get that the suprema reported in Equations (42) and
(43) are equal to zero outside of the scatterer and strictly positive inside it. After a few calculations,
we get such strictly positive quantities

Cγ,s = Cχ,s =
2
√

2c2
0b1,maxR

ωs(a1 + b1,maxR2)
=

2
√

2c2
0(εr − 1)β

εr − β2 . (72)

Now, to satisfy condition (9), we can substitute the previous expressions of Cκ,d, Cν,d, Cκ,r, Cν,r,
Cκ,s, Cν,s, Cγ,s and Cχ,s. We get

1 > Ku =
4Cχ,sCγ,s(

−Cκ,s +
√

C2
κ,s + 4Cκ,dCκ,r

) (
−Cν,s +

√
C2

ν,s + 4Cν,dCν,r

) =

=
32εr(εr − 1)2β2(

− 2εr(εr − β2) + 2
√

ε4
r + εr + β4εr(εr + 1)− 2β2εr(ε2

r + 1)
) · (73)

· 1(
− 2(εr − β2) + 2

√
2ε2

r + β4(ε2
r + 1)− 2β2εr(εr + 1)

) .

In Figure 1, Ku is plotted with respect to β, with εr as a parameter. It shows that the range
[0, βcritical] of β for which the validity of condition (9) is guaranteed becomes larger and larger as εr gets
smaller and smaller, as expected. However, our analysis provides quantitative results on such a range.
As it is easy to check, it is so large that no significant restriction on β emerges for practical applications.
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Figure 1. Plot of Ku versus β for rotating axisymmetric objects. The plots are shown for various values
of εr. Condition (9) is satisfied for Ku < 1.

The plot of βcritical is shown, together with another significant threshold value obtained in the
next subsection, in Figure 2.
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Figure 2. Behaviours of βr1 and βcritical versus εr. βcritical is the upper bound on β required to satisfy
condition (9) while βr1 is that required for condition (10).

7.2. Checking Conditions (10) for Problems Involving Rotating Objects

In this section, we examine the situations in which condition (10) holds true for the class of
problems considered. By definition, inside and outside the scatterer, we get Ps = P, Pss = 0, Qs = Q,
Qss = 0. In order to check the indicated condition, we need to find the constants CPS, CQS, CL and
CM. As for CL and CM, by using Equations (32) and (33), we have to evaluate the suprema involved
just inside the scatterer. Since M = L, we can focus just on one of the two constants. The eigenvalues
of L∗L are found to be 0 and

( c0b1
ωs

)2
(x2 + y2) (with multiplicity 2). As already pointed out, in the
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following, in order to simplify the analysis, we assume that the scatterer medium is characterized by
εr > 1 and μr = 1 in its rest frame. Under this hypothesis, the field b1 is strictly positive and then

CL = CM = b1,max
c0R
ωs

. (74)

We already know that inside the scatterer the eigenvalues of Ps are a1 = ε0εrc0 and a1 + b1(x2 + y2)

while outside it we have Ps = c0ε0 I3. Under the indicated hypotheses for the scatterer medium, since
Ωel = ∅, from Lemma 1 (see Equation (26)), we trivially get that HM13 is satisfied with

CPS = ε0c0. (75)

Similarly, the eigenvalues of Qs inside the scatterer are a2 = 1
c0μ0μr

= 1
c0μ0

and a2 − b1(x2 + y2)

while outside the rotating object we have Qs =
1

c0μ0
I3. Since Ωml = ∅ by Equation (29), we obtain

CQS = a2 − b1,maxR2, (76)

which is positive when β < 1√
εr

. Under this condition, HM14 is satisfied as well.
By using Equations (74)–(76), the crucial inequality which is present in assumption HM15 reads

CQS −
CLCM

CPS
= a2 − b1,maxR2 − b2

1,max
c0R2

ε0ω2
s
> 0. (77)

After the substitution of a2 and b1,max, it can be shown to be equivalent to the following:

1 + β2(εr − 2 + ε2
r) + β4εr > 0. (78)

The left-hand side in inequality (78) is a parabola in terms of β2. We can find two roots β2
r1, β2

r2
given by ⎧⎨

⎩β2
r1 =

ε2
r+2−εr−

√
(ε2

r+2−εr)2−4εr
2εr

=
ε2

r+2−εr−(εr−1)
√

ε2
r+4

2εr

β2
r2 =

ε2
r+2−εr+

√
(ε2

r+2−εr)2−4εr
2εr

=
ε2

r+2−εr+(εr−1)
√

ε2
r+4

2εr

(79)

which are both real numbers. Such numbers are positive because the parabola becomes larger and
larger for β → ∞ and is equal to 1 and has a negative derivative (equal to εr − 2 − ε2

r) when β = 0.
In particular, we have that

β2
r1 <

1
εr

< 1, (80)

since β2
r1 − 1

εr
=

(εr−1)(εr−
√

ε2
r+4)

2εr
< 0 and β2

r2 > 1 because β2
r2 − 1 =

(εr−1)(εr−2+
√

ε2
r+4)

2εr
> 0.

Since a value greater than one is not possible for β, condition HM15 can only be satisfied for β in
the range [0, βr1]. In the same range of β condition, HM14 is a priori satisfied (see Equation (80) and
the comment after Equation (76)) and then (10) does hold true.

The behaviours of βr1 and βcritical versus εr are shown in Figure 2. In order to satisfy conditions (9)
and (10) and then to obtain the well posedness of the problem, β should be smaller than the smallest of
βr1 and βcritical. The two plots in Figure 2 cross at about εr � 38.5 and for smaller (respectively, larger)
values the stronger condition on β is given by condition (9) (respectively, (10)).

7.3. Application to Rotating Sphere

In this subsection, we apply the theory to a specific case: a rotating sphere of radius Rs

is illuminated by a linearly polarized plane wave propagating along the x-axis. A first order
approximation of the solution of this problem is given by the semi-analytic procedure discussed
by De Zutter in [1].

17



Symmetry 2020, 12, 218

Our formulation of the problem requires the definition of a bounded domain Ω, which is taken as
a sphere of radius Rd. The boundary conditions we enforce on Γ have Y equal to the admittance of
vacuum and are inhomogeneous (fR �= 0), to take account of the incident field.

The parameters considered are εr = 8, μr = 1, Rs = 1 m, Rd = 4 m. The incident plane wave has
a frequency of 50 MHz and an amplitude of the electric field of 1 V/m.

In order to analyze significant test cases for our theory and, at the same time, show its generality,
we consider exceptionally large rotational speeds, without worrying about the mechanical stability
of the rigid body. The rotating speed we consider is ωs = 8.0 10−3c0 rad/s, which corresponds to
a maximum normalized velocity of β = 8.0 10−3. This is within the limits of applicability of our
theory since for εr = 8 we get βr1 = 1.728 × 10−2 and βcritical = 8.124 × 10−3. The above qualitative
considerations, which apply also to the next test case (see Subsection 7.4), justify the simplified
approach we have adopted (see Remark 1).

A comparison of the first order edge element based Galerkin finite element solution against
the De Zutter semi-analytic procedure is carried out when the incident field is polarized along the
z-axis and the spherical domain is discretized rather uniformly with a mesh having 475,797 nodes and
2,496,192 tetrahedra.

All values of the significant quantities defining our model are reported in Table 1. It includes also
the parameters defining the model considered in the next subsection.

Table 1. Values of the parameters defining our models.

Type of Radius Geometrical Incident Scatterers Maxima of the Mesh of
Problem of the Parameters of Plane Wave Constitutive Normalized Tetrahedra

Domain the Scatterers Parameters Velocity

rotating 4 m Rs = 1 m f = 50 MHz, σ = 0, β = 8 10−3 475,797
sphere |E| = 1 V/m, εr = 8, nodes,

propagation axis: x, μr = 1 2,496,192
polarization: linear, z elements

rotating 2 m R = 0.15 m, f = 500 MHz, σ = 0, β = 1.8 10−3 36,993
torus r = 0.15 m |E| = 1 V/m, εr = 20, nodes,

propagation axis: x, μr = 1 2,192,940
polarization: linear, z elements

Figures 3 and 4 show, respectively, the magnitude and phase of the components of the electric
field evaluated along a circle in the xz plane, which is centered at the origin and has a radius of 1.5 m.
The results obtained from the finite element solver are compared with the semi-analytical solution
obtained using the De Zutter procedure [1]. All three components are in very good agreement. Due to
the well posedness and the finite element approximability of the problem, this shows that the De
Zutter first order (in β) approximation provides reliable results even for very large rotational speeds.
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Figure 3. Comparison of the magnitudes of the electric field components along a circle in the xz plane
at 1.5 m from the center of the rotating sphere. The horizontal axis represents the angle measured in
radians from the x-axis.

-3

-2

-1

 0

 1

 2

 3

 4

 5

 6

-3 -2 -1  0  1  2  3

[r
ad

]

angle [rad]

phase(Ex) De Zutter solution
phase(Ex) FEM solution

phase(Ey) De Zutter solution
phase(Ey) FEM solution

phase(Ez) De Zutter solution
phase(Ez) FEM solution

Figure 4. Comparison of the phases of the electric field components along a circle in xz plane at 1.5 m
from the center of the rotating sphere. The horizontal axis represents the angle measured in radians
from the x-axis.

In particular, we can observe that the y-component of the field is purely a result of rotation.
This component amounts to 10 percent of the incident field. These kinds of effects on the fields
can be particularly important for inverse problems to figure out the rotational speeds, for example,
by extending the algorithms discussed in [37,38].

The same sort of agreement between the two solutions is further confirmed by the fields along
similar circles on other planes or along lines parallel to coordinate axes, for different polarizations and
directions of propagation of the illuminating field.

For example, Figures 5 and 6 show the magnitude and phase of the z component of electric field
along the y-axis. Along this line, the motion of the sphere causes a difference in magnitude of up to 20
percent of the incident field.
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Figure 6. Comparison of the phases of the z-component of the electric field along the y-axis for the
rotating sphere.

7.4. Application to Rotating Torus

Thus far, we have considered problems for which a semi-analytic solution is available. In order to
illustrate the full relevance of the new results, we now tackle problems for which no solution can be
found in the open literature, to the best of the authors’ knowledge.

For this, let us consider a homogeneous torus rotating about its axis. The geometry of the problem
is described in Figure 7.
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x axis
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y axis
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Einc

Figure 7. Geometry of the toroidal scatterer. The toroid rotates about the z-axis with angular velocity
ωs. R and r are as shown in the figure and are respectively the “major radius” and the “minor radius”
of the torus.

The value of both radii (R and r) is 0.15 m. The torus is made of a material with εr = 20.
The domain of numerical investigation is a sphere of radius 2 m. We consider a plane wave incident
along the x-axis with the electric field polarized along the z-axis and with magnitude 1 V/m and
frequency f = 500 MHz. For εr = 20, the upper bounds for β allowing the application of our theory
are given by βr1 = 2.618 × 10−3 and βcritical = 1.893 × 10−3. Respecting these limits lets us consider
values of ωs ≤ 4.0 × 10−3c0 rad/s, which corresponds to a maximum β value of 1.8 × 10−3.

The first order edge element based Galerkin finite element solution we show in the following is
obtained with a three-dimensional tetrahedral mesh having 2,192,940 elements and 36,993 nodes.

To gain an understanding of the solution, we may consider the behaviours of the field along
the three coordinate directions for different rotating speed values. Here, we consider ωs in the set
{0, 1.0 × 10−3c0, 2.0 × 10−3c0, 4.0 × 10−3c0}. The electric field components along the x-axis are shown
in Figure 8.

In this case, the largest effect due to motion occurs in the z component of the field, where a
difference as large as twice the incident field can be observed between the cases with ωs = 0 and
ωs = 4.0 × 10−3c0. For the other two speeds considered, the effects are smaller but still discernible.
There are effects also on the components |Ex| and |Ey| along the x-axis, the maximum difference from
the stationary solution being around twice the incident field in the former case and fifty percent of
the incident field in the latter one. The norm of the total field |E| is dominated by the z-component
and hence both of them carry roughly the same information when plotted along the x-axis. Along the
y-axis for ωs = 4.0 × 10−3c0, the differences from the stationary case are as large as twice the incident
field for |Ex|, fifty percent of incident field for |Ey| and three times for |Ez|. This is shown in Figure 9.

In this case, the total field |E| is also largely similar to the z component and the difference from
the stationary solution is about three times the incident field. For the other speeds considered, the
rotational effects on the fields are quite small along this direction. Finally, we do not show the
behaviour of the electric field along the z-axis because, in this case, the effects due to motion for all the
components are quite small (less than 2 percent) for the speeds considered.

Hence, we can conclude that in this case the fields along x- and y -directions carry significant
information about the rotating speed of the toroidal scatterer.

As previously mentioned, the changes in the fields induced by the motion are important because
it may be useful for the reconstruction of the velocity profiles of rotating objects. This could be of
interest, for example, for rotating celestial bodies. Moreover, since our theory guarantees the well
posedness of the problems and the convergence of the numerical solutions, the presented results can
be considered as benchmarks for other approaches or numerical techniques.
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Figure 8. Magnitude of the electric field along the x-axis for different values of ωs for rotating torus.
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Figure 9. Magnitude of the electric field along the y-axis for different values of ωs for rotating torus.

8. Conclusions

In this work, we have presented sufficient conditions for well posedness and finite element
approximability of three-dimensional time-harmonic electromagnetic boundary value problems
involving bianisotropic media. The theory is applied to electromagnetic problems involving rotating
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axisymmetric objects. For some of them, the solutions are not present in the open literature and, hence,
they can be used as benchmarks for other approaches.
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Appendix A

In this Appendix A, we provide Lemma A1 and the proofs of Theorem 1, Theorem 2, Theorem 4,
and Lemma 1.

Lemma A1. Any solution E of Problem 2 with l = 0 satisfies

• n × E = 0 on Γl if HM3, HB2 and HB3 hold true,
• E = 0 in D if HM3, HB2 and HM4 hold true; the same result is achieved under hypotheses HM3, HB2

and HM5 or HM3, HB2, HM6 and HM7.

Proof. Consider E as the solution of Problem 2 with l = 0 and choose v = E in Equation (6). Since
a(E, E) = 0, we get

0 = Im(a(E, E)) = −
∫

Ω
(E∗, curl E∗)Ass

(
E

curl E

)
+ ω

∫
Γ

Re(Y)|n × E × n|2. (A1)

Taking account that ω > 0, if we assume HM3, HB2, and HB3, we easily get:

0 ≥
∫

Γ
Re(Y)|n × E × n|2 ≥

∫
Γl

Re(Y)|n × E × n|2 ≥ CYm

∫
Γl

|n × E × n|2. (A2)

Thus, under the indicated hypotheses, we can conclude that n × E = 0 on Γl .
If HM3, HB2, and HM4 hold true, considering that ω > 0, we get

0 ≥ −
∫

Ω
(E∗, curl E∗)Ass

(
E

curl E

)
≥ Kdl

∫
D
(|E|2 + |curl E|2) ≥ Kdl

∫
D
|E|2 (A3)

and we conclude that E = 0 in D.
The same result easily follows if we assume HM3, HB2 and HM5, since

0 ≥ −
∫

Ω
(E∗, curl E∗)Ass

(
E

curl E

)
≥ Kel

∫
D
|E|2, (A4)

or if HM3, HB2, HM6 and HM7 hold true, since

0 ≥ −
∫

Ω
(E∗, curl E∗)Ass

(
E

curl E

)
≥ Kml

∫
D
|curl E|2 (A5)

and taking account of (5)2 with Jm = 0, (1)2 with M = 0, (5)1 with Je = 0 and (1)1 with L = 0.

Proof of Theorem 1. By Lemma A1, there is either a subdomain D where the electric field E = 0 or a
part of the boundary, Γl , where n × E = 0. We prove that the fields E, B, H and D are identically zero
in Ωi, for all i ∈ I, if one of the following is true:

• Ωi is adjacent to a region Ωk, k ∈ I, where it has already been proved that E = 0,
• ∂Ωi shares a non-empty, open, Lipschitz continuous part with Γl .
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In both cases, we introduce a sufficiently small open ball B ⊂ R3 centered on a point of Ωi ∩ Ωk
or on a point of ∂Ωi ∩ Γl .

In both cases, we have n × E = 0 on B ∩ ∂Ωi. Then, considering the homogeneous version of (5),
by (5)3 we get n × H = 0 on B ∩ ∂Ωi. Then, Equations (5)1 and (5)2 respectively imply that the normal
components n · D = 0 and n · B = 0 on B ∩ ∂Ωi.

Now, we can extend in an analytic way, from Ωi to B \ Ωi, all the components of κ, χ, γ and ν.
This is possible because of HM8. In both cases, we have to consider that E, B, H and D are either trivial
fields in B \ Ωi (in the first of the two cases) or can be trivially extended to B \ Ωi (in the second of the
two cases).

Next, we can show that the fields in B are analytic in Ωi, ∀i ∈ I. As a matter of fact:

• the fields E, B, H, D satisfy (5) in B since (5) holds true in Ωi and in B \ Ωi for any i ∈ I,
• the fields E, B, H, D satisfy (1) in B since (1) holds true in Ωi and in B \ Ωi for any i ∈ I,
• by using the properties of the fields on the boundary deduced above we easily conclude that in

both the cases of interest (E, B, H, D) ∈ H(curl, B)× H(div0, B)× H(curl, B)× H(div0, B), [24]
(p. 107)

• HS1 of [22] is satisfied in any case since the sources are trivial,
• for any Ωi, i ∈ Ia, κ and ν satisfy HM1, HM5 and HM6 of [22] in B since we have verified them

for Ωi (by HM8, HM9 and HM10 above) and all the extended quantities are at least continuous in
Ωi (by HM8),

• for any Ωi, i ∈ Ib, HM1, HM8 and HM9 of [22] are satisfied in B by κ, χ, γ, ν, which are extended
analytically to a sufficiently small ball B, since we have verified them in Ωi for all i ∈ Ib (by HM8,
HM9 and HM11 above) and all the extended quantities are at least continuous in Ωi (by HM8),

• for any Ωi, i ∈ Ib, HM12 implies that (7.11) of [22] is satisfied in B by κ, χ, γ, ν extended as
indicated above since we have verified it in Ωi for all i ∈ Ib and all the extended quantities
involved are at least continuous in Ωi (by HM8).

Thus, by Theorems 6.4 and 7.3 of [22], we can conclude that the electromagnetic fields in B are
analytic. Since they are equal to zero or can be extended to zero fields in B \ Ωi, we get E = 0, B = 0,
H = 0, and D = 0 in B. Once the fields are proved to be equal to zero in B, we easily see that they are
zero in Ωi by the analyticity of the indicated fields in Ωi. This procedure can be successively applied
to all subdomains allowing us to conclude that the homogeneous version of Problem 2 has only trivial
solutions and hence Problem 2 admits a unique solution.

Proof of Theorem 2. The homogeneous variational problem defined in the statement of the theorem
is similar in form to the homogeneous version of the original problem. The only differences are the
reversed roles of u and v and the change in sign of the imaginary part. Hence, the same proof will also
work here. In particular, in the proof of Lemma A1, we can use the fact that (a(E, E))∗ = 0 implies
Im (a(E, E)) = 0, which in turn implies (A1) and hence the conclusions of Lemma A1 hold also for the
homogeneous variational problem defined in the statement of the theorem. The arguments for showing
the unique continuation results are not affected by the sign of imaginary part of the sesquilinear form.
Hence, we can conclude that v = 0 is the only solution.

Proof of Theorem 4. We prove Theorem 4 by contradiction, as we did in [10]. Due to the similarities
with the corresponding proof presented in [10], we report here the main ideas.

As in [10], we get the result by contradiction and, thus, we assume that:

∃{un}, un ∈ U and ‖un‖U = 1 ∀n ∈ N, such that lim
n→∞

sup
‖v‖U≤1

|a(un, v)| = 0. (A6)

For the space U, under hypotheses HD1–HD3, HM1–HM2, and HM13, the following Helmholtz
decomposition holds true [24] (p. 86):

U = U0 ⊕ U1, (A7)
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where
U0 = {u ∈ U | curl u = 0 in Ω and u × n = 0 on Γ} (A8)

and
U1 = {u ∈ U | (Pu, v)0,Ω = 0 ∀v ∈ U0}. (A9)

Thus, for any element of the sequence satisfying (A6), we get

un = un0 + un1, (A10)

with un0 ∈ U0 and un1 ∈ U1.
Under the assumed hypotheses, one easily gets:

‖un0‖0,Ω = ‖un0‖U ≤ CPL
CPS

‖un‖0,Ω ≤ CPL
CPS

‖un‖U , (A11)

‖un1‖U ≤ CPS + CPL
CPS

‖un‖U , (A12)

lim
n→∞

‖n × un × n‖0,Γ = 0. (A13)

Thus, the two sequences, {un0} and {un1}, subsequences of the sequence satisfying (A6), are
bounded in U. Since our hypotheses guarantees that uniqueness also holds, then, on a common
subsequence of indices, both {un0} and {un1} weakly converge to zero in U and, by the compact
embedding of U1 in (L2(Ω))3, which holds true under hypothesis HM13, from {un1}, we can extract
a subsequence which converges strongly in (L2(Ω))3 to û1. Finally, since both weak convergence
in U and strong convergence in (L2(Ω))3 imply weak convergence in (L2(Ω))3 to the same limit,
we immediately deduce û1 = 0.

By setting u = un and v = un0 for any n, we get from the very definition of the sesquilinear
form a:

CPS‖un0‖2
0,Ω ≤ c0

ω2 |a(un, un0)|+
c0CL

ω
‖curl un‖0,Ω‖un0‖0,Ω. (A14)

By the same token, by setting u = un and v = un1 for any n, we deduce

c0CQS‖curl un1‖2
0,Ω ≤

|a(un, un1)|+
ω2CPL

c0
‖un‖0,Ω‖un1‖0,Ω + ωCM‖un0‖0,Ω‖curl un1‖0,Ω + (A15)

+ω(CM + CL)‖un1‖0,Ω‖curl un1‖0,Ω + ωCYL‖n × un1 × n‖2
0,Γ.

Now, taking into account that {un0} and {un1} are bounded in U, ‖un1‖0,Ω → 0 on a subsequence,
‖(n × un1 × n)‖0,Γ → 0, by using inequalities (A14) and (A15), we deduce that we cannot find a
subsequence such that either {un0} or {curl un1} converges to zero in (L2(Ω))3. As a matter of fact, if
one of them did converge to zero in (L2(Ω))3, then both should do and we would obtain that {un}
should converge to zero in U against the hypothesis.

Then, we can find a subsequence giving ‖un1‖0,Ω → 0 and ‖un0‖0,Ω ≥ ε > 0. On this
subsequence, from inequality (A14), we get

‖un0‖0,Ω ≤ c0

ω2CPS
|a(un,

un0

‖un0‖0,Ω
)|+ c0CL

ωCPS
‖curl un1‖0,Ω. (A16)
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By substituting the right-hand side of (A16) for ‖un0‖0,Ω in inequality (A15), we deduce

c0

(
CQS −

CLCM
CPS

)
‖curl un1‖2

0,Ω ≤

CPS + CPL
CPS

∣∣∣∣a(un,
CPS

CPS + CPL
un1

)∣∣∣∣+ ω2CPL
c0

‖un‖0,Ω‖un1‖0,Ω + (A17)

+ω(CM + CL)‖un1‖0,Ω‖curl un1‖0,Ω + ωCYL‖(n × un1 × n)‖2
0,Γ +

+
c0CM
ωCPS

∣∣∣∣a(un,
un0

‖un0‖0,Ω

)∣∣∣∣ ‖curl un1‖0,Ω.

The right-hand side of inequality (A17) converges to zero on the indicated subsequence and, by
hypothesis HM15, we get ‖curl un1‖0,Ω → 0, which is against the starting hypothesis.

Proof of Lemma 1. We have to analyse just the case when Ωel is neither the whole Ω nor the empty set.
For all u ∈ (L2(Ω))3, we have

|(Pu, u)0,Ω|2 =

∣∣∣∣
∫

Ω
u∗Psu − j

∫
Ω

u∗Pssu

∣∣∣∣
2
=

=

(∫
Ω

u∗Psu

)2
+

(∫
Ω

u∗Pssu

)2
= (A18)

=

(∫
Ω\Ωel

u∗Psu −
∫

Ωel

−u∗Psu

)2
+

(∫
Ωel

u∗Pssu +
∫

Ω\Ωel

u∗Pssu

)2
.

Under assumption HM3, by using Lemma B.1 of [9] with K1 = K2 = 0, we get that Pss is positive
semi definite in Ωi, ∀i ∈ I. Moreover, since Ωel is the union of the subdomains Ωi of Ω where Pss is
uniformly positive definite, we get

|(Pu, u)0,Ω|2 ≥
(∫

Ω\Ωel

u∗Psu −
∫

Ωel

−u∗Psu

)2
+ C2

1 ||u||40,Ωel
. (A19)

However, for all a, b ∈ R, for any α > 0, we have

(a − b)2 ≥ (1 − α)a2 + (1 − 1
α
)b2. (A20)

Then, using the above inequality for the first addend of the right-hand side of Equation (A19),
we get

|(Pu, u)0,Ω|2 ≥ (1 − α)

(∫
Ω\Ωel

u∗Psu

)2
+ (1 − 1

α
)

(∫
Ωel

u∗Psu

)2
+ C2

1 ||u||40,Ωel
. (A21)

The validity of assumption HM2 guarantees that inequality (28) holds true. Then, by taking
account that 1 − 1

α < 0 for all α ∈ (0, 1), we get

|(Pu, u)0,Ω| ≥ (1 − α)

(∫
Ω\Ωel

u∗Psu

)2
+ (C2

1 + (1 − 1
α
)C2

3)||u||40,Ωel
. (A22)

By using (25), we then deduce

|(Pu, u)0,Ω|2 ≥ (1 − α)C2
5 ||u||40,Ω\Ωel

+ (C2
1 + (1 − 1

α
)C2

3)||u||40,Ωel
. (A23)
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By defining 1 > α >
C2

3
C2

1+C2
3
> 0, we have that both terms in (A23) are positive. As a matter of fact,

we can think of the right-hand side of (A23) as s2 + t2, s, t ∈ R, and, since s2 + t2 ≥ (s+t)2

2 , we get

|(Pu, u)0,Ω|2 ≥ 1
2

(√
(1 − α)C5||u||20,Ω\Ωel

+

√
C2

1 + (1 − 1
α
)C2

3 ||u||20,Ωel

)2

≥

≥ 1
2

(
min

(√
(1 − α)C5,

√
C2

1 + (1 − 1
α
)C2

3

))2 (
||u||20,Ω\Ωel

+ ||u||20,Ωel

)2
=

=
1
2

min
(
(1 − α)C2

5, C2
1 + (1 − 1

α
)C2

3

)
||u||40,Ω.

(A24)
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Abstract: An edge-based smoothed finite element method (ES-FEM) combined with the mixed
interpolation of tensorial components technique for triangular shell element (MITC3), called ES-MITC3,
for free vibration analysis of functionally graded shells is investigated in this work. In the formulation
of the ES-MITC3, the stiffness matrices are obtained by using the strain-smoothing technique over
the smoothing domains that are formed by two adjacent MITC3 triangular shell elements sharing
an edge. The strain-smoothing technique can improve significantly the accuracy and convergence
of the original MITC3. The material properties of functionally graded shells are assumed to vary
through the thickness direction by a power–rule distribution of volume fractions of the constituents.
The numerical examples demonstrated that the present ES-MITC3method is free of shear locking and
achieves the high accuracy compared to the reference solutions in the literature.

Keywords: FGMshells; edge-based smoothed finite element method (ES-FEM); mixed interpolation
of tensorial components (MITC)

1. Introduction

Functionally graded materials (FGM) are usually made from a mixture of metals and ceramics,
whose material properties vary smoothly and continuously from one surface to the other of the
structure according to volume fraction power–law distribution. It is well known that the ceramics
are capable of resisting high temperature, while the metals provide structural strength and fracture
toughness. They are therefore suitable to apply for aerospace structures, nuclear plants, and other
applications. With the advantageous features of the FGM in many practical applications, the problem
of static and free vibration behaviors of FGM shell structures are attractive to many researchers over the
world. Woo and Meguid [1] used an analytical solution based on the von Karman theory to investigate
nonlinear respond of FGM plates and shallow shells. Matsunaga [2] carried out the power series
expansion of displacement component approach, which relied on higher-order shear deformation
theory (HSDT) to analyze free vibration and buckling of FGM shells. Nguyen et al. [3] proposed an
analytical solution using Reddy’s HSDT to solve nonlinear dynamic and free vibration of piezoelectric
FGM double curved shallow shells subjected to electrical, thermal, mechanical, and damping loads.
Dao et al. [4] presented nonlinear vibration of stiffened functionally graded double curved shells on an
elastic foundation using the first order shear deformation theory (FSDT) and stress function. Due to

Symmetry 2019, 11, 684; doi:10.3390/sym11050684 www.mdpi.com/journal/symmetry29
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the complication of mathematics, it is generally difficult to use analytical methods for all problems.
Thus, numerical methods have been devised to study the behavior of FGM structural components.
Among these numerical approaches, the finite element method has become the most powerful, reliable,
and simply tool to solve FGM shells. Arciniega and Reddy [5] presented a finite element formulation
for nonlinear analysis of FGM shell based on the FSDT, consisting of seven parameters. Pradyumna
and Bandyopadhyay [6] used the shell element, consisting of nine degrees of freedom per node, to
investigate free vibration of FGM shells. Kordkheili and Naghdabadi [7] proposed a finite element
model for geometrically nonlinear thermos-elastic analysis of FGM plates and shells.

In addition, in the recent trend of development of numerical methods, the edge-based smoothed
finite element method (ES-FEM) combined with the mixed interpolation of tensorial components
using triangular element (MITC3), named ES-MITC3, has been proposed to investigate plate and
shell structures. For instance, Chau-Dinh et al. [8] proposed an ES-MITC3 to analyze static and free
vibration of plates. Nguyen et al. [9] developed the ES-MITC3 for static and vibration analysis of
isotropic and functionally graded plates. Pham et al. [10] examined the static and free vibration of
composite shells using ES-MITC3 shell element. Pham et al. [11] used ES-MITC3 shell element to
study geometrically nonlinear analysis of FGM shells based on FSDT. Pham-Tien et al. [12] investigated
the dynamic response of composite shells based on the FSDT and ES-MITC3 element. Hoang-Nam
Nguyen et al. [13] used FSDT to investigate dynamic composite shell with shear connectors. For shell
structures, especially the shell with two curvatures, the employing of quadrilateral elements will
not accurately describe the model due to the distorting during the bending process. In this case,
the using of triangle elements is suitable because they can rotate freely around their three edges.
However, the using of these elements can meet the shear locking phenomenon; thus, we propose the
new method, in which the triangle element is combined with an edge-based smoothed finite element
method (ES-MITC3) to analyze the shell structures. Its accuracy in comparison with other methods is
shown in the numerical exploration.

This paper now further extends the ES-MITC3 method for free vibration analysis of functionally
graded shell structures. The material properties of functionally graded shells are assumed to vary
continuously and smoothly through the thickness based on a simple power–law of the volume fractions
exponents. The formulation is based on the FSDT and flat shell theory due to the simplicity and
computational efficiency. The accuracy and reliability of the present method are verified by comparing
with those of others available numerical results.

2. Theoretical Formulation

2.1. Functionally Grade Material

FGM is formed by a mixture of ceramic and metal, as shown in Figure 1. The material properties
change continuously from a surface to the other surface according to a power–law of volume fraction

P(z) = (Pc − Pm)Vc + Pm (1)

Vc(z) =
(1

2
+

z
h

)n
(2)

where P(z) represents the effective material properties: Young’s modulus E, density ρ and Poisson ratio
v; Pc and Pm denote the properties of the ceramic and metal, respectively; Vc is the volumefractions
of the ceramic; h the thickness of structure; n ≥ 0 the volumefraction exponent; z ∈ [−h/2, h/2] is the
thickness coordinate of the structure. Figure 2 illustrates the variation of the volume fraction of ceramic
and metal through the thickness via the volumefraction exponent n.
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Figure 1. A functionally graded shell.

Figure 2. Variation of the volume fraction versus the non-dimensional thickness.

2.2. The FGM Shell Model

Consider an FGM shell element subjected to both in-plane forces and bending moments as shown
in Figure 3. The middle (neutral) surface of the shell is chosen as the reference plane that occupies
a domain Ω ∈ �3. Let u0, v0, and w0 be the displacements of the middle plane in the x, y, and z
directions; βx, βy, and βz be the rotations of the middle surface of the shell around the y-axis, x-axis,
and z-axis, respectively, as indicated in Figure 3. The unknown vector of an FGM shell including six
independent variables at any point in the problem domain can be written as

u =
[

u0 v0 w0 βx βy βz
]

(3)

The linear strain–displacement relationship can be given as

ε =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
εx

εy

γxy

⎫⎪⎪⎪⎬⎪⎪⎪⎭ = εm + zκ (4)
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εm =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
∂u0
∂x
∂v0
∂y

∂u0
∂y + ∂v0

∂x

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭,κ =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
∂βx
∂x
∂βy
∂y

∂βx
∂y +

∂βy
∂x

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭; (5)

γ =

{
γxz

γyz

}
=

⎧⎪⎪⎨⎪⎪⎩
∂w0
∂x + βx
∂w0
∂y + βy

⎫⎪⎪⎬⎪⎪⎭ (6)

From Hooke’s law, the constitutive relations of FGM shells are expressed as:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

σxx

σyy

τxy

τxz

τyz

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Q11 Q12 0 0 0
Q21 Q22 0 0 0

0 0 Q66 0 0
0 0 0 Q55 0
0 0 0 0 Q44

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

εxx

εyy

γxy

γxz

γyz

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(7)

where

Q11(z) =
E(z)

1− ν(z)2 , Q12(z) = ν(z)Q11(z), Q22(z) = Q11(z), Q44(z) = Q55(z) = Q66(z) =
E(z)

2(1 + ν(z))
(8)

A weak form of the free vibration analysis for FGM shells can be briefly given as:∫
Ω

δεTDεdΩ +

∫
Ω
δγTCγdΩ =

∫
Ω

δuTm
¨
udΩ (9)

where

ε =

[
εm

κ

]
, D =

[
Dm B

B Db

]
(10)

Figure 3. Three-node triangular element.

In which

Dm =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
A11 A12 A16

A12 A22 A26

A16 A26 A66

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦, B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
B11 B12 B16

B12 B22 B26

B16 B26 B66

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦, Db =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
D11 D12 D16

D12 D22 D26

D16 D26 D66

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, C =

[
C55 C45

C45 C44

] (11)
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In Equation (11) Ai j, Bi j, Di j, and Ci j are given by:

(
Ai j, Bi j, Di j

)
=

∫ h/2

−h/2
Qij

(
1, z, z2

)
dz, i, j = 1, 2, 6 (12)

Ci j = k
∫ h/2

−h/2
Qijdz, i, j = 4, 5 (13)

where k = 5/6 is transverse shear correction coefficient and m is the mass matrix containing ρ
calculated as

m =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I0 0 0 I1 0 0
0 I0 0 0 I1 0
0 0 I0 0 0 0
I1 0 0 I2 0 0
0 I1 0 0 I2 0
0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
; (I0, I1, I2) =

∫ h/2

−h/2
ρ(1, z, z2)dz (14)

2.3. Finite Element Formulation for Shell Analysis

Now, we discretize the bounded domain Ω into ne finite three-node triangular elements
with nn nodes such that Ω ≈ ∑ne

e=1 Ωe and Ωi ∩ Ω j = ∅, i � j. The displacement field

ue =
{

ue ve we βe
x βe

y βe
z

}T
of the finite element solution can be expressed as

ue =
nn∑

i=1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ni(x) 0 0 0 0 0
0 Ni(x) 0 0 0 0
0 0 Ni(x) 0 0 0
0 0 0 Ni(x) 0 0
0 0 0 0 Ni(x) 0
0 0 0 0 0 Ni(x)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
de

i =
nn∑

i=1

Nid
e
i (15)

where de
i =

{
ue

0i ve
0i we

0i β
e
xi β

e
yi β

e
zi

}T
is the nodal displacement at the ith node; Ni(x) is shape

function for the ith node.
The approximation of the membrane, the bending and the shear strains of the triangular element

can be written in matrix forms as follows

εe =
[

Be
m1 Be

m2 Be
m3

]
de = Be

mde (16)

κe =
[

Be
b1 Be

b2 Be
b3

]
de = Be

bde (17)

γe =
[

Be
s1 Be

s2 Be
s3

]
de = Be

sd
e (18)

where

Be
mi =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
Ni,x 0 0 0 0 0

0 Ni,y 0 0 0 0
Ni,y Ni,x 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (19)

Be
bi =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 0 0 Ni,x 0 0
0 0 0 0 Ni,y 0
0 0 0 Ni,y Ni,x 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (20)

Be
si =

[
0 0 Ni,x Ni 0 0
0 0 Ni,y 0 Ni 0

]
(21)
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By substituting the discrete displacement field into Equation (9) the discretized equation for free
vibration analysis can be written into matrix form such as

(K−ω2M)d̂ = 0, (22)

where ω is the natural frequency, K and M are the global stiffness and mass matrices, respectively,

K =
∑ne

e=1
TTKeT (23)

with

Ke =

∫
Ωe

(Be)T ˆ
DBedΩe (24)

and

Be =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
Be

m
Be

b
Be

s

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦,
ˆ

D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
Dm B 0
B Db 0
0 0 C

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (25)

M =
∑ne

e=1
TTMeT, (26)

Me =

∫
Ωe

NTmNdΩe (27)

in which T is the transformation matrix between the local coordinate system Oxyz and the global
coordinate system Ôx̂ŷẑ [14].

The problem of zero stiffness that appears with using the drilling degree of freedom βz, which can
cause a singularity in the global stiffness matrix when all the elements meeting at a node are coplanar.
To deal with this issue, a simple modification coefficient is chosen to be 10−3 times the maximum
diagonal value of the element stiffness matrix at the zero drilling degree of freedom to avoid the drill
rotation locking [15].

3. Formulation of ES-MITC3 Finite Element Method for FGM Shells

3.1. Brief on the MITC3 Formulation

In the linear triangular MITC3, the approximated displacement field u is simply interpolated using
the linear basic functions for membrane, deflection, and rotation without adding any new variables.
Herein, the membrane and bending strains of the standard finite elements are unchanged, while the
transverse shearstrains, which are modified by the mixed interpolation of tensorial components [16].

As a result, the transverse shearstrain field [8,10] is being obtained as

γe
MITC3 =

[
Be

s1 Be
s2 Be

s3

]
de = Be

sd
e (28)

where

Be
s1 = J−1

[
0 0 −1 a

3 + d
6

b
3 + c

6 0
0 0 −1 d

3 + a
6

c
3 + b

6 0

]
, (29)

B̂
e
s2 = J−1

[
0 0 1 a

2 − d
6

b
2 − c

6 0
0 0 0 d

6
c
6 0

]
, (30)

B̂
e
s3 = J−1

[
0 0 0 a

6
b
6 0

0 0 1 d
2 − a

6
c
2 − b

6 0

]
(31)

with

J−1 =
1

2Ae

[
c −b
−d a

]
(32)
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in which a = x2 − x1, b = y2 − y1, c = y3 − y1, and d = x3 − x1, as pointed out in Figure 4 and Ae is the
area of the triangular element.

Figure 4. Three-node triangular element and local coordinates.

3.2. The ES-MITC3 Formulation

In the ES-FEM, the strains are smoothed over local smoothing domains Ωk, the computation for
stiffness matrix is no longer based on elements, but on these smoothing domains. These smoothing
domains are formed based on edge of elements such as Ω = ∪nk

k=1Ωk and Ωi ∩Ω j = ∅ for i � j, in
which nk is the total number of edges of all the elements. On a curved geometry of shell models, an
edge-based smoothing domain Ωk associated with the inner edge k is created two sub-domains of two
non-planar adjacent MITC3 triangular elements as shown in Figure 5. These triangular elements are
defined by two local coordinate systems O1x1y1z1 and O2x2y2z2. In order to compute the edge-based
smoothing strain Ωk for two non-planar adjacent elements, the virtual coordinate system Õx̃ỹ̃z is
proposed as shown in Figure 6, whereas the x̃-axis coinciding with the edge k, the z̃-axis with the
average direction between the ẑ1-axis and ẑ2-axis, and the ỹ-axis is given by the cross-product of the
unit vectors in the x̃-axis and z̃-axis.

Figure 5. The smoothing domain; Ωk is formed by triangular elements.
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Hence, a smoothed membrane strain ε̃
k, a smoothed bending strain κ̃

k, a smoothed shearstrain γ̃
k

of the smoothing domain Ωk in the global coordinate system Ôx̂ŷẑ can be derived as

ε̃
k =

∑nnk

j=1
B̃

k
mjd

k
j ; κ̃

k =
∑nnk

j=1
B̃

k
bjd

k
j ; γ̃

k =
∑nnk

j=1
B̃

k
sjd

k
j (33)

where nnk is the number of the neighboring nodes of edge k. dk
j is the nodal degrees of freedom at the

jth node of the smoothing domain Ωk in Ôx̂ŷẑ. B̃
k
mj, B̃

k
bj, and B̃

k
sj are the membrane, the bending and

the MITC3 shear smoothed gradient matrices at the jth node of the smoothing domain Ωk in the global

coordinate system Ôx̂ŷẑ, respectively. The B̃
k
mj, B̃

k
bj and B̃

k
sj can be computed by

B̃
k
mj =

1
Ak

∑nek

i=1

1
3

AiΛk
m1Λi

m2Bi
mjT

i
j (34)

B̃
k
bj =

1
Ak

∑nek

i=1

1
3

AiΛk
b1Λi

b2Bi
b jT

i
j (35)

B̃
k
sj =

1
Ak

∑nek

i=1

1
3

AiΛk
s1Λi

s2Bi
s jT

i
j (36)

in which Λk
m1, Λk

b1, and Λk
s1 are strain transformation matrices between the global coordinate

system Ôx̂ŷẑ and the virtual coordinate system Õx̃ỹ̃z, respectively; Λi
m2, Λi

b2 and Λi
s2 are the strain

transformation matrices between the local coordinate system Oxyz of ith adjacent triangular elements
and the virtual coordinate system Õx̃ỹ̃z, respectively; Ti

j is the transformation matrix between the local
coordinate system Oxyz at the jth node of the ith adjacent triangular element and the global coordinate
system Ôx̂ŷẑ. More detailed information about these strain transformation matrices can be found
in [14]. The area Ak of the smoothing domain Ωk is computed by

Ak =

∫
Ωk

dΩ =
1
3

∑nek

i=1
Ai (37)

where nek is the number of the adjacent triangular elements in the smoothing domain Ωk, and Ai is the
area of the ith triangular element around the edge k.

Figure 6. Global, local, and virtual coordinates.
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As a result, the global stiffness matrix of the FGM shell in Equation (22) is rewritten as

(K̃−ω2M)d̂ = 0, (38)

K̃ =
∑nn

i=1
K̃

k
(39)

where

K̃
k
=

∫
Ωk

(B̃
k
)

T
D̂B̃

k
dΩk (40)

with
B̃

k
=

[
B̃

k
m B̃

k
b B̃

k
s

]T
(41)

4. Numerical Results

In the section, several numerical examples are provided to show the performance of the ES-MITC3
element for free vibration analysis of FGM shell and results obtained are compared to those published [6,
16–19]. For convenience to the numerical comparison, the non-dimensional frequency parameters ω∗
are expressed to the following equation as

ω∗ = ωa2
√
ρmh/D∗m, D∗m = Emh3/12(1− v3

m) (42)

First, let us consider free vibration for analysis of clamped functionally graded cylindrical
shell (Rx = R, Ry = ∞) with radius-to-length R/a = 100, a/h = 10. The functionally graded
shell is made from Silicon nitride (Si3N4) and Stainless steel (SUS304), which material properties
are Ec = 322.2715 GPa, vc = 0.24, ρc = 2370 kg/m3, Em = 207.7877 GPa, vm = 0.31776, and
ρm = 8166 kg/m3. The first four non-dimensional frequency of the present method list in Table 1 are
compared with MITC3 [16], a higher-order theory based on radial basis functions collocation including
transverse normal deformation (HSDT RBFC-1) and discarding transverse normal deformation (HSDT
RBFC-2) by Neves et al. [17], a higher-order theory and finite element formalation (HSDT FEM) by
Pradyumna and Bandyopadhyay [6], a higher-order theory and semi-analytical method relied on
Galerkin (HSDT SAG) by Yang and Shen [18], and Quasi-3D Ritz model (ED555) by Fazzolari and
Carrera [19]. From Table 1 we can see that this proposed method (ES-MITC3) is more accurate than
other methods, such as MITC3, HSDT RBFC-1, HSDT RBFC-2, HSDT FEM and HSDT SAG. The errors
are less than 3% in comparison with the exact solution ED555 [19]. Figure 7 shows non-dimensional
frequency parameter for four first modes of clamped functionally graded cylindrical shell using
various methods.
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Table 1. Non-dimensional frequency parameter for clamped cylindrical functionally graded
materials (FGM) shell with R/a = 100, and relative error between methods (ED555 [19] is fixed).

Error (%) =
100×|Method−ED555[19]|

ED555[19] .

Mode Method
n

0 0.2 2 10 ∞

1

ES-MITC3 75.4587 61.3587 40.9880 35.3951 33.0594
% 0.2776 0.0298 0.3963 0.7275 0.5532

MITC3 [16] 72.7508 59.0689 39.4771 34.0744 31.8220
% 3.3209 3.7031 4.0679 4.4317 4.2754

HSDT FEM [6] 72.9613 60.0269 39.1457 33.3666 32.0274
% 3.0412 2.1413 4.8733 6.4169 3.6576

HSDT RBFC-1 [17] 74.2634 60.0061 40.5259 35.1663 32.6108
% 1.3108 2.1752 1.5193 1.3693 1.9026

HSDT RBFC-2 [17] 74.5821 60.3431 40.8262 35.4229 32.8593
% 0.8873 1.6258 0.7895 0.6496 1.1551

HSDT SAG [18] 74.5180 57.4790 40.7500 35.8520 32.7610
% 0.9725 6.2950 0.9747 0.5539 1.4508

ED555 [19] 75.2498 61.3404 41.1511 35.6545 33.2433

2

ES-MITC3 144.4760 117.6462 78.5402 67.7320 63.3473
% 0.6724 0.6147 0.5174 0.3138 0.4088

MITC3 [16] 140.8063 114.5113 76.4785 65.9309 61.6559
% 1.8847 2.0664 2.1212 2.3537 2.2722

HSDT FEM [6] 138.5552 113.8806 74.2915 63.2869 60.5546
% 3.4533 2.6058 4.9201 6.2695 4.0178

HSDT RBFC-1 [17] 141.6779 114.3788 76.9725 66.6482 61.9329
% 1.2773 2.1797 1.4889 1.2913 1.8331

HSDT RBFC-2 [17] 142.4281 115.2134 77.6639 67.1883 62.4886
% 0.7546 1.4660 0.6041 0.4914 0.9523

HSDT SAG [18] 144.6630 111.7170 78.8170 69.0750 63.3140
% 0.8027 4.4562 0.8717 2.3029 0.3560

ED555 [19] 143.5110 116.9275 78.1359 67.5201 63.0894

3

ES-MITC3 145.1510 118.1985 78.9069 68.0474 63.6440
% 1.0284 0.9602 0.8727 2.2434 0.7658

MITC3 [16] 141.7861 115.3112 77.0122 66.3906 62.0864
% 1.3137 1.5061 1.5494 4.6235 1.7003

HSDT FEM [6] 138.5552 114.0266 74.3868 63.3668 60.6302
% 3.5625 2.6033 4.9056 8.9675 4.0058

HSDT RBFC-1 [17] 141.8485 114.5495 77.0818 66.7332 62.0082
% 1.2702 2.1567 1.4604 4.1314 1.8241

HSDT RBFC-2 [6] 142.6024 115.3665 77.7541 67.2689 62.5668
% 0.7455 1.4588 0.6010 3.3618 0.9397

HSDT SAG [18] 145.7400 112.5310 79.4070 67.5946 63.8060
% 1.4383 3.8808 1.5121 2.8939 1.0223

ED555 [19] 143.6735 117.0744 78.2242 69.6090 63.1603

4

ES-MITC3 204.0647 166.3177 111.0461 95.6539 89.5229
% 1.1780 1.2302 1.3863 1.2447 1.2996

MITC3 [16] 195.3261 158.8135 106.1329 91.3802 85.4901
% 3.1547 3.3373 3.0995 3.2788 3.2637

HSDT FEM [6] 195.5366 160.6235 104.7687 89.1970 85.1788
% 3.0503 2.2357 4.3450 5.5896 3.6160

HSDT RBFC-1 [17] 199.1566 160.7355 107.9484 93.3350 86.8160
% 1.2555 2.1675 1.4419 1.2097 1.7634

HSDT RBFC-2 [17] 200.3158 162.0337 108.9677 94.0923 87.6341
% 0.6808 1.3773 0.5113 0.4081 0.8377

HSDT SAG [18] 206.9920 159.8550 112.4570 98.3860 90.3700
% 2.6294 2.7034 2.6745 4.1365 2.2581

ED555 [19] 201.6888 164.2966 109.5277 94.4779 88.3744
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Figure 7. Non-dimensional frequency parameter for four first modes. (a) Mode 1; (b) mode 2; (c) mode 3;
(d) mode 4.

Next, we investigate the first non-dimensional frequencies ω*. of functionally graded spherical
(Rx = Ry = R) and cylindrical shells (Rx = R, Ry = ∞) with geometric data: radius to edge R/a and
a/h are varied from 5 to 50 and 10, respectively. The functionally graded shells in these studies are made
from aluminum, and alumina whose material properties are Em = 70, GPa, vm = 0.3, ρm = 2707 kg/m3,
Ec = 380 GPa, vc = 0.3, and ρc = 3000 kg/m3. Again, it is seen from Tables 2–5 that the results of the
present approach are very close to an HSDT RBFC-1, HSDT RBFC-2 [17], and ED555 [19]. Figures 8–11
show non-dimensional frequency parameter for the first mode of cylindrical FGM shell and spherical
FGM shell with different n, respectively. The first six mode shapes of simply supported spherical FGM
shell are illustrated in Figure 12.
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Figure 8. Non-dimensional frequency parameter for the first mode of clamped cylindrical FGM shell
with different n. (a) R/a = 5; (b) R/a = 10; (c) R/a = 50.

Table 2. Non-dimensional frequency parameter for clamped cylindrical FGM shell with a/h = 10 and
different R/a ratios.

R
a Method

n

0 0.2 0.5 1 2 10 ∞

5

ES-MITC3 73.4741 67.2928 60.6591 53.9842 48.1650 41.4718 33.4122
HSDT FEM [6] 71.8861 68.1152 63.1896 56.5546 36.2487 33.6611 32.4802

HSDT RBFC-1 [17] 73.1640 66.6620 60.2477 53.5430 47.5205 40.8099 33.0576
HSDT RBFC-2 [17] 73.6436 67.1004 60.6568 53.9340 47.9060 41.0985 33.2743

10

ES-MITC3 72.6253 65.5578 60.0417 53.4874 47.7863 41.1837 33.0311
HSDT FEM [6] 71.0394 67.3320 62.4687 55.8911 35.6633 31.1474 32.0976

HSDT RBFC-1 [17] 72.3304 65.8808 59.5215 52.8800 46.9447 40.4145 32.6810
HSDT RBFC-2 [17] 72.8141 66.3235 59.9353 53.2759 47.3343 40.7046 32.8995

50

ES-MITC3 72.3439 66.3519 59.9114 53.4282 47.7802 41.1529 32.9058
HSDT FEM [6] 70.7660 67.0801 62.2380 55.6799 35.4745 32.9812 31.9741

HSDT RBFC-1 [17] 72.0614 65.6371 59.3022 52.6864 46.7820 40.3028 32.5594
HSDT RBFC-2 [17] 72.5465 66.0814 59.7178 53.0841 47.1726 40.5923 32.7786
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Table 3. Non-dimensional frequency parameter for simply supported cylindrical FGM shell with
a/h = 10 and different R/a ratios.

R
a Method

n

0 0.2 0.5 1 2 10 ∞

5

ES-MITC3 42.9913 39.3028 35.4690 31.7485 28.6106 24.7564 19.5592
HSDT FEM [6] 42.2543 40.1621 37.2870 33.2268 27.4449 19.3892 19.0917

HSDT RBFC-1 [17] 42.6701 38.7168 34.8768 30.9306 27.5362 24.2472 19.2796
HSDT RBFC-2 [17] 42.7172 38.7646 34.9273 30.9865 27.5977 24.2839 19.3008

ED555 [19] 42.7160 39.0642 35.0811 31.0414 27.5634 24.1245 19.3003

10

ES-MITC3 42.5231 38.9004 35.1357 31.4868 28.4168 24.6061 19.3492
HSDT FEM [6] 41.9080 39.8472 36.9995 32.9585 27.1879 19.1562 18.9352

HSDT RBFC-1 [17] 42.3153 38.3840 34.5672 30.6485 27.2979 24.1063 19.1193
HSDT RBFC-2 [17] 42.3684 38.4368 34.6219 30.7077 27.3616 24.1444 19.1433

ED555 [19] 42.3677 38.7377 34.7661 30.7621 27.3258 23.9848 19.1429

50

ES-MITC3 42.3669 38.7889 35.0696 31.4631 28.4233 24.5937 19.2798
HSDT FEM [6] 41.7963 39.7465 36.9088 32.8750 27.0961 19.0809 18.8848

HSDT RBFC-1 [17] 42.2008 38.2842 34.4809 30.5759 27.2423 24.0762 19.0675
HSDT RBFC-2 [17] 42.2560 38.3384 34.5365 30.6355 27.3055 24.1125 19.0924

ED555 [19] 42.2553 38.6391 34.6904 30.6890 27.2682 23.9515 19.0922

Figure 9. Non-dimensional frequency parameter for the first mode of simple supported cylindrical
FGM shell with different n. (a) R/a = 5; (b) R/a = 10; (c) R/a = 50.
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Table 4. Non-dimensional frequency parameter for simply supported spherical FGM shell with
a/h = 10 and different R/a ratios.

R
a Method

n

0 0.2 0.5 1 2 10 ∞

5

ES-MITC3 44.4405 40.6238 36.6449 32.7529 29.4124 25.2893 20.2096
HSDT FEM [6] 44.0073 41.7782 38.7731 34.6004 28.7459 20.4691 19.8838

HSDT RBFC-1 [17] 44.4555 40.3936 36.4453 32.3691 28.7833 25.0772 20.0818
HSDT RBFC-2 [17] 44.4697 40.4211 36.6004 32.4101 28.8329 25.1038 20.0927

ED555 [19] 44.4671 40.7166 36.6297 32.4645 28.7996 24.9403 20.0915

10

ES-MITC3 42.9198 39.2373 35.4098 31.6957 28.5633 24.7153 19.5267
HSDT FEM [6] 42.3579 40.2608 37.3785 33.3080 27.5110 19.4357 19.1385

HSDT RBFC-1 [17] 42.7709 38.8074 34.9574 31.0012 27.5984 24.3034 19.3251
HSDT RBFC-2 [17] 42.8180 38.8551 35.0080 31.0572 27.6602 24.3401 19.3464

ED555 [19] 42.8169 39.1556 35.1622 31.1122 27.6258 24.1803 19.3459

50

ES-MITC3 42.4046 38.8147 35.0835 31.4662 28.4197 24.5977 19.2966
HSDT FEM [6] 41.8145 39.7629 36.9234 32.8881 27.1085 19.0922 18.8930

HSDT RBFC-1 [17] 42.2192 38.2988 34.4922 30.5840 27.2474 24.0791 19.0759
HSDT RBFC-2 [17] 42.2741 38.3528 34.5478 30.6437 27.3109 24.1168 19.1006

ED555 [19] 42.2735 38.6538 34.7018 30.6975 27.2741 23.9567 19.1004

Figure 10. Non-dimensional frequency parameter for the first mode of simply supported spherical
FGM shell with different n. (a) R/a = 5; (b) R/a = 10; (c) R/a = 50.
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Table 5. Non-dimensional frequency parameter for clamped spherical FGM shell with different
R/a ratios.

R/a Method
n

0 0.2 0.5 1 2 10 ∞

5

ES-MITC3 74.3416 68.0034 61.2122 54.3761 48.3922 41.5911 33.7972
HSDT FEM [6] 73.5550 69.6597 64.6114 57.8619 37.3914 34.6658 33.2343

HSDT RBFC-1 [17] 74.8207 68.2142 61.6902 54.8597 48.6656 41.6016 33.8061
HSDT RBFC-2 [17] 75.2810 68.6329 62.0789 55.2302 49.0328 41.8796 34.0141

10

ES-MITC3 72.8831 66.7331 60.1352 53.5040 47.7428 41.1652 33.1447
HSDT FEM [6] 71.4659 67.7257 62.8299 56.2222 35.9568 33.4057 32.2904

HSDT RBFC-1 [17] 72.7536 66.2686 59.8745 53.1956 47.2135 40.5990 32.8722
HSDT RBFC-2 [17] 73.2322 66.7063 60.2831 53.5864 47.5990 40.8883 33.0884

50

ES-MITC3 72.3889 66.3780 59.9190 53.4192 47.7612 41.1495 32.9258
HSDT FEM [6] 70.7832 67.0956 62.2519 55.6923 35.4861 32.9916 31.9819

HSDT RBFC-1 [17] 72.0784 65.6498 59.3112 52.6921 46.7849 40.3049 32.5671
HSDT RBFC-2 [17] 72.5633 66.0938 59.7265 53.0895 47.1574 40.5946 32.7862

Figure 11. Non-dimensional frequency parameter for the first mode of clamped spherical FGM shell
with different n. (a) R/a = 5; (b) R/a = 10; (c) R/a = 50.
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Mode 1 ( ω = ) 

 

Mode 2 ( ω = ) 

 

Mode 3 ( ω = ) Mode 4 ( ω = ) 

 

Mode 5 ( ω = ) Mode 6 ( ω = ) 

Figure 12. First six mode shapes of simply supported spherical FGM shell (R/a = 10, a/h = 10, n = 0.2).

For the fully clamped spherical shell, the second vibration mode shape and the third vibration
mode shape are similar to each other (their natural frequencies are equal), they just have different
views. Adding, the value of non-dimensional frequency of the fifth and the sixth vibration mode shape
are approximatively each other. This thing is consistent with the actual symmetrical shell structures
with the same boundary conditions.
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5. Conclusions

In this paper, the free vibration analysis of functionally graded shells is studied by using the
ES-MITC3. Herein, the stiffness matrices obtained based on the strain-smoothing technique over the
smoothing domains associated with edges of MITC3 shell elements. The present approach uses a
triangular element and hence much easily generated automatically, even for complicated geometries.
The numerical results showed that the ES-MITC3 is a good agreement with the reference solutions,
which are a requirement of high computational costs, such as ED555 [19] and a higher-order theory
based on radial basis functions [17]. The ES-MITC3 presented herein is promising to be a simple and
effective finite element method for analysis of functionally graded shells in practice.

The combination of finite element method (FEM) with an edge-based smoothed finite element
method (ES-FEM) is very suitable for analyzing shell structures, especially for the complicated structures
such as shell with reinforced stiffeners, reinforced nano grapheme, micro shell structures, nano shell
structures, and so on. This combination allows us to calculate exactly plate and shell structures with
thin thicknesses (h = a/108) due to overcoming the shear locking phenomenon.
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Abstract: A three-layer composite shell with shear connectors is made of three shell layers with
one another connected by stubs at the contact surfaces. These layers can have similar or different
geometrical and physical properties with the assumption that they always contact and have relative
movement in the working process. Due to these characteristics, they are used widely in many
engineering applications, such as ship manufacturing and production, aerospace technologies,
transportation, and so on. However, there are not many studies on these types of structures.
This paper is based on the first-order shear deformation Mindlin plate theory and finite element
method (FEM) to establish the oscillator equations of the shell structure under dynamic load.
The authors construct the calculation program in the MATLAB environment and verify the accuracy
of the established program. Based on this approach, we study the effects of some of the geometrical
and physical parameters on the dynamic responses of the shell.

Keywords: three-layer composite shell; Mindlin plate theory; finite element method; force vibration

1. Introduction

Nowadays, along with a strong development of science and technology, there are many new
advanced materials appeared, for instance, composite materials, functionally graded materials (FGM),
piezoelectric materials, and so on. The studying on dynamic responses of these new materials has been
reached great achievements and attracted numerous scientists all over the world. Moreover, the idea
of merging these different materials is considered by engineers to make new structures in order to
have specific purposes. For example, the combining of a concrete structure and a steel structure has
a lighter weight than a normal concrete structure. Hence, these new types of structures are applied
extensively in civil techniques, aerospace, and army vehicles. In this structure, the connecting stub is
attached to contact different layers in order to create the compatibility of the horizontal displacement
among layers, and it plays an important role in working process of the structure.

For multilayered beams, recently, the Newark’s model [1] is considered by many experts such
as He et al. [2], Xu and Wang [3,4]. They took into account the shear strain when calculating by
using Timoshenko beam theory. Nguyen [5] studied the linear dynamic problems. Silva et al. [6],
Schnabl et al. [7] and Nguyen and co-workers [8,9] employed the finite element method (FEM) and
analytical method in order to examine linear static analysis of multilayered beams. Huang [10],

Symmetry 2019, 11, 527; doi:10.3390/sym11040527 www.mdpi.com/journal/symmetry47
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and Shen [11] studied the linear dynamic response, too. For the nonlinear free vibration can be seen
in [12] of Arvin and Bakhtiari-Nejad.

In addition to the Timoshenko beam theory (TBT), the higher-order beam theory (HBT) is also
considered, in which The dynamic problem is carried out by Chakrabarti in [13] with FEM. Chakrabarti
and colleagues [14,15] analyzed a static problem for two-layer composite beams. The higher-order
beam theory (HBT) overcomes a part of the effect due to the shear locking coefficient caused. Otherwise,
Subramanian [16] constructed an element based on a displacement field to study the free vibration of
the multilayered beam. Li et al. [17] conducted a free vibration analysis by employing the hyperbolic
shear deformation theory. Vo and Thai [18] studied static multilayered beams with the improved
higher-order beam theory of Shimpi.

In general, most higher-order beam theories (HBT), including higher-order beam theory of Reddy
tend to neglect the horizontal deformation of multilayered beams. According to the Kant’s opinion,
the horizontal stress of sub-layer is caused by the pressure can reduce the dimension from multilayered
beam model to the plane stress model. To obtain this thing, Kant [19,20] employed both the higher-order
beam theory (HBT) and the horizontal displacement theory by considering approximate displacements
in two ways. Thus, he established the mixed two-layer beam with sub-layers, which abides by the
higher-order beam theory of Kant proposed by the weak form for the buckling analysis.

A three-dimensional fracture plasticity based on finite element model (FEM) are developed by
Yan and coworkers [21] to carry out the ultimate strength respones of SCS sandwich structure under
concentrated loads. The static behaviors of beams with different types of cross-section, such as square,
C-shaped, and bridge-like sections, were investigated in Carrena’s study [22] by assuming that the
displacement field is expanded in terms of generic functions, which is the Unified Formulation by
Carrera (CUF) [23]. Similarly to mentioned methods, Cinefra et al. [24] used MITC9 shell elements to
explore the mechanical behavior of laminated composite plates and shells. Muresan and coworkers [25]
examined the study on the stability of thin walled prismatic bars based on the Generalized Beam Theory
(GBT), which is an efficient approach developed by Schardt [26]. Yu et al. [27] employed the Variational
Asymptotic Beam Section Analysis (VABS) for mechanical behavior of various cross-sections such as
elliptic and triangular sections. In [28], we used first-order shear deformation theory to analysis of
triple-layer composite plates with layers connected by shear connectors subjected to moving load.
Ansari Sadrabadi et al. [29] used analytical methods to investigate a thick-walled cylindrical tube made
of a functionally graded material (FGM) and undergoing thermomechanical loads.

For multilayered plate and shell composite structures, there have been many published papers,
including static problems, dynamic problems, linear, and nonlinear problems, and so on. However,
for the multilayered structure with shear connectors, there are not many papers yet. Based on above
mentioned papers, the authors are about to construct the relations of mechanical behavior and the
oscillator equation of the multilayered shell. We also study several geometrical and physical parameters,
the loading, etc., which effect on the vibration of the shell.

The body of this paper is divided into five main sections. Section 1 is the general introduction.
We present finite formulations of free vibration and forced vibration analysis of three-layer composite
shell with shear connectors in Section 2. The numerical results of vibration and forced vibrations are
discussed in Sections 3 and 4. Section 5 gives some major conclusions.

2. Finite Element Formulations

2.1. Equation of Motion of the Shell Element

Consider a three-layer composite shell with shear connectors as shown in Figure 1.
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(a) 

 
(b) 

Figure 1. The model of three-layer composite shell with shear connectors, (a) shell model with shear
connectors, and (b) finite element model.

The composite shell consists of three layers, including the top layer (t), the bottom layer (b) and
the middle layer (c); these layers are connected with one another by shear connectors, and they can
be made of the same materials or different materials. These three layers can slide relatively with one
another at the contact surfaces, and there is no delamination phenomenon at all. All three layers of
the shell are set in the local coordinates Oxyt, Oxyc, and Oxyb, respectively. The total thickness of the
shell is divided into six small part h1, h2, h3, h4, h5, h6 as shown in Figure 1; ut0, uc0, and ub0 represent
displacements in x direction; vb0 represents the displacement in y direction at the neutral surface of
each layer.

According to Mindlin plate theory, displacements u, v, w at a point (xk, yk, zk) of layer k are
expressed as follows: ⎧⎪⎪⎪⎨⎪⎪⎪⎩

uk = uk0(xk, yk) + zkϕk(xk, yk)

vk = vk0(xk, yk) + zkψk(xk, yk)

wk = w(xk, yk)

(k = t, c, b) (1)

where ϕk and ψk are the transverse normal rotations of the xk and yk directions.
The relative movements among the contact surfaces are defined by the following equations
For the layer t and layer c we have

{
utc = ut(xt, yt, h2) − uc(xc, yc,−h3)

vtc = vt(xt, yt, h2) − vc(xc, yc,−h3)
(2)

And for layer c and layer b we have:

{
ucb = uc(xc, yc, h4) − ub(xb, yb,−h5)

vcb = vc(xc, yc, h4) − vb(xb, yb,−h5)
(3)
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Note that at the contact surfaces, we have:{
zt = h2; zc = −h3

zc = h4; zb = −h5
(4)

with h4 = h3 = hc
2 .

From Equations (1)–(4), we get:

{
utc = ut0 − uc0 + h2ϕt + h3ϕc

vtc = vt0 − vc0 + h2ψt + h3ψc
(5)

{
ucb = uc0 − ub0 + h4ϕc + h5ϕb
vcb = vc0 − vb0 + h4ψc + h5ψb

(6)

The relation between strain and displacement of each layer is expressed as follows
For the layer k, we have:

εkx =
∂uk
∂x =

∂uk0
∂x + w0

Rx
+ zk

∂ϕk
∂x ;

εky =
∂vk
∂y =

∂vk0
∂y + w0

Ry
+ zk

∂ψk
∂y ;

γkxy =
∂vk
∂x +

∂uk
∂y =

∂uk0
∂y +

∂vk0
∂x + 2w0

Rxy
+ zk

(
∂ϕk
∂y +

∂ψk
∂x + 1

2 (
1

Ry
− 1

Rx
)
(
∂vk0
∂x − ∂uk0

∂y

))
;

γkxz =
∂w0
∂x +

∂uk
∂zk

= ∂w0
∂x + ϕk − uk0

Rx
− vk0

Rxy
;

γkyz =
∂w0
∂y +

∂vk
∂zk

= ∂w0
∂y +ψk − uk0

Rxy
− vk0

Ry
;

(7)

We can rewrite in a matrix form as follow

εk =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
εkx
εky
γkxy

⎫⎪⎪⎪⎬⎪⎪⎪⎭ = ε0
k + zkκk; γk =

{
γkyz
γkzx

}
(8)

in which

ε0
k =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ε0

kx
ε0

ky
γ0

kxy

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
∂uk0
∂x + w0

Rx
∂vk0
∂y + w0

Ry(
∂uk0
∂y + ∂vk0

∂x

)
+ 2w0

Rxy

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
;κk =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
κkx
κky
κkxy

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂ϕk
∂x
∂ψk
∂y

∂ϕk
∂y +

∂ψk
∂x + 1

2 (
1

Ry
− 1

Rx
)
(
∂vk0
∂x − ∂uk0

∂y

)
⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

γk =

⎧⎪⎪⎨⎪⎪⎩ γkxz
γkyz

⎫⎪⎪⎬⎪⎪⎭ =

⎧⎪⎪⎨⎪⎪⎩ −
uk0
Rx
− vk0

Rxy
+ ∂w0
∂x + ϕk

− uk0
Rxy
− vk0

Ry
+ ∂w0
∂y +ψk

⎫⎪⎪⎬⎪⎪⎭
(9)

The relation between stress and strain of layer k is expressed as followIs necessary bild?

σk = Dkεk; τk =
5
6

Gkγk (10)

in which Dk, Gk are the bending rigidity and shear rigidity of layer k, respectively, and νk is the Poisson
ratio of layer k.

Dk =
Ek

1− v2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 νk 0
νk 1 0
0 0 (1− νk)/2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦; Gk =
Ek

2(1 + νk)

[
1 0
0 1

]
(11)

In this work, the thickness of the shell is thin or medium (h = a
100 ÷ a

10 , a is short edge), we employ
the 8-node isoparametric element, each node has 13 degrees of freedom, three layers have the same
displacement in the z-direction (Figure 2), the degree of freedom of node i is qi

e and the total degree of
freedom of the shell element qe is defined as follow.
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qi
e =

{
ut0i vt0i ϕti ψti uc0i vc0i ϕci ψci ub0i vb0i ϕbi ψbi w

}T
; i = 1÷ 8. (12)

qe =
{

q1
e q2

e q3
e q4

e q5
e q6

e q7
e q8

e

}T
(13)

uk0 =
8∑

i=1
Ni(ξ, η)uk0i; vk0 =

8∑
i=1

Ni(ξ, η)vk0i

ϕk =
8∑

i=1
Ni(ξ, η)ϕki; ψk =

8∑
i=1

Ni(ξ, η)ψki; w =
8∑

i=1
Ni(ζ, η)wi

(k = t, c, b) (14)

in which Ni (i = 1 ÷ 8) can be defined as in [28].

cx

by

z

cy

ty
tu

tv
w

tϕ

yψ

tx

bx

cu

cv
w

cϕ

cψ

bu

bv

w

bϕ

bψ

Figure 2. Degrees of freedom of the node in the eight-node shell element.

By substituting in the expression for verifying displacement of element we have:⎧⎪⎪⎨⎪⎪⎩ εk =
(
B0

k + zkB1
k

)
qe

γk = Skqe
(k = t, c, b) (15)

in which B0
k ; B1

k ; Sk are defined as follows

B0
k =

[
B0

k1 B0
k2 B0

k3 B0
k4 B0

k5 B0
k6 B0

k7 B0
k8

]
;

B1
k =

[
B1

k1 B1
k2 B1

k3 B1
k4 B1

k5 B1
k6 B1

k7 B1
k8

]
;

Sk =
[

Sk1 Sk2 Sk3 Sk4 Sk5 Sk6 Sk7 Sk8

]
;

(16)

where B0
ki, B1

ki and Ski can be found in Appendix A
The elastic force of connector stub per unit length is defined by the following equations.
For layer t and c we have:

Ftc
e =

{
Feu

Fev

}
ct
= ktc

[
1 0
0 1

]{
utc

vtc

}
= Ktc

e qtc
e (17)

With

qtc
e =

{
utc

vtc

}
=

[
ut0 + h2ϕt − uc0 + h3ϕc

vt0 + h2ψt − vc0 + h3ψc

]
= Ntcqe =

8∑
i=1

(Ntc)iq
i
e (18)
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in which

(Ntc)i =

[
Ni 0 h2Ni 0 −Ni 0 h3Ni 0 0 0 0 0 0
0 Ni 0 h2Ni 0 −Ni 0 h3Ni 0 0 0 0 0

]
(19)

For layer c and b we have

Fcb
e =

{
Feu

Fev

}
cb
= kcb

[
1 0
0 1

]{
ucb
vcb

}
= Kcb

e qcb
e (20)

with

qcb
e =

{
ucb
vcb

}
=

[
uc0 + h4ϕc − ub0 + h5ϕb
vc0 + h4ψc − vb0 + h5ψb

]
= Ncbqe =

8∑
i=1

(Ncb)iq
i
e (21)

in which

(Ncb)i =

[
0 0 0 0 Ni 0 h4Ni 0 −Ni 0 h5Ni 0 0
0 0 0 0 0 Ni 0 h4Ni 0 −Ni 0 h5Ni 0

]
(22)

Here, ktc and kcb are the shear resistance coefficients of the connector stub per unit length.
To obtain the dynamic equation we employ the weak form for each element, we get:

∑
k=t,c,b

∫
Vk

δ
.
q

T
k ρk

.
qkdVk +

∑
k=t,c,b

∫
Vk

δεT
k σkdVk +

5
6

∑
k=t,c,b

∫
Vk

δγT
k τkdVk +

∑
k=tc,cb

∫
Ak

δ
(
qk

e

)T
Fk

edAk

−δqT
e

∫
At

Nwp(t)dAt = 0
(23)

By substituting Equations (1), (15), (17), and (20) into Equation (23), we obtain the dynamic
equation of the shell element as follows:

Me
..
qe + Keqe = Fe(t) (24)

with
Ke(104x104) =

∑
k=c,s,a

∫
Ak

(
B0

k

)T
Dk0B0

kdAk +
∑

k=c,s,a

∫
Ak

(
B0

k

)T
Dk1B1

kdAk+

+
∑

k=t,c,b

∫
Ak

(
B1

k

)T
Dk1B0

kdAk +
∑

k=t,c,b

∫
Ak

(
B1

k

)T
Dk2B1

kdAk +
5
6

∑
k=t,c,b

∫
Ak

ST
k GkSkdAk

+
∫

Atc

NT
tcK

e
tcNtcdAtc +

∫
Acb

NT
cbKe

cbNcbdAcb

(25)

in which

(Dk0; Dk1; Dk2) =

hk/2∫
−hk/2

(
1; zk; z2

k

)
Dk dzk; Hk =

hk/2∫
−hk/2

Gk dzk (k = t, c, b) (26)

Me(104x104) =
∑

k=t,c,b

∫
Ak

hk/2∫
−hk/2

LT
k ρkLkdzkdAk (27)

where Lk can be seen in Appendix B

Fe(t)(104x1) =

∫
At

p(t)NT
wdAt (28)

in which
Nw =

[
Nw1 Nw2 Nw3 Nw4 Nw5 Nw6 Nw7 Nw8

]
(29)

with
Nw j =

[
0 0 0 0 0 0 0 00000 Nj

]
(30)
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In the case of taking into account the structural damping, we have the force vibration equation of
the shell element as follows:

Me
..
qe + Ce

.
qe + Keqe = Fe(t) (31)

in which Ce = αMe + βKe and α, β are Rayleigh drag coefficients defined in [30,31].

2.2. The Differential Equation of Vibration

From the differential equation of vibration of the shell element (Equation (31)), we obtain the
differential equation of forced vibration of three-layer composite shell as follows:

M
..
q + Cq + Kq = F(t) (32)

in which M, C, K, F(t) are the global mass matrix, the global structural damping matrix, the global
stiffness matrix and the global load matrix, respectively. These matrices and vectors are assembled from
the element matrices and vectors, correspondingly. They are linear differential equations, which have
the right-hand side depending on time. In order to solve these equations, we use the Newmark-beta
method [31]. The program is coded in the MATLAB (MathWorks, Natick, MA, USA) environment
with the following algorithm flowchart of Newmark as shown Figure 3.

Δ α δ

=
Δ

= + Δ

+Δ

−
+Δ +Δ=

+Δ +Δ

+Δ +Δ +Δ

 

Figure 3. Algorithm flowchart of Newmark solving the dynamic response problem of the shell.
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For the free vibration analysis, the natural frequencies can be obtained by solving the equation:

M
..
q + Kq = 0 (33)

or in another form: (
K−ω2M

)
q = 0 (34)

where ω is the natural frequency.
Flowchart of Newmark-beta method [31]
Step 1: Determine the first conditions:

q(0) = q0;
.
q(0) =

.
q0 (35)

From the first conditions, we obtain:

..
q0 = M−1

0

(
F0 −K0q0 −C0

.
q0

)
(36)

Step 2: By approximating
..
qt+Δt,

.
qt+Δt by qt+Δt, we have

..
qt+Δt = a0

(
qt+Δt − qt

)
− a2

.
qt − a3

..
qt

.
qt+Δt =

.
qt + a6

..
qt + a7

..
qt+Δt

(37)

where:
a0 =

2
γΔt2 ; a1 =

2α
γΔt

; a2 =
2
γΔt

; a3 =
1
γ
− 1; a4 =

2α
γ
− 1;

a5 =

(
α
γ
− 1

)
Δt; a6 = (1− α)Δt; a7 = αΔt.

(38)

in which α, γ are defined by the assumption that the acceleration varies in each calculating step,
the author selects the linear law for the varying of acceleration:

..
q(τ) =

..
qt +

τ
Δt

( ..
qt+Δt −

..
qt

)
with t ≤ τ ≤ t + Δt then α =

1
2

;γ =
1
3

. (39)

The condition to stabilize the roots:

Δt ≤ 1√
2�max

1√
α− γ or

Δt
Tmin

≤ 1

2π
√

2

1√
α− γ (40)

Step 3: Calculating the stiffness matrix and the nodal force vector:

K∗ = K + a0M + a1C (41)

F∗ = Ft+Δt + M
(
a0qt + a2

.
qt + a3

..
qt

)
+ C

(
a1qt + a4

.
qt + a5

..
qt

)
(42)

Step 4: Determining nodal displacement vector qt+Δt:

K∗t+Δtqt+Δt = F∗t+Δt (43)

⇒ qt+Δt = (K∗t+Δt)
−1

F∗t+Δt (44)

repeating the loop until the time runs out.
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3. Numerical Results of Free Vibration Analysis of Three-Layer Composite Shells with Shear
Connectors

3.1. Accuracy Studies

Consider a double-curved composite shell (00/900/00) with geometrical parameters a = b, radii
Rx = Ry = R, thickness h; physical parameters E1 = 25E2, G23 = 0.2E2, G13 = G12 = 0.5E2, the Poisson’s
ratio ν12 = 0.25, and the specific weight ρ. In this case, the shear coefficient of the stub has a very
large value, and this time the three-layer composite shell becomes a normal composite shell without
any relative movements. We examine the convergence of the algorithm with different meshes and

the comparative results of the first non-dimensional free vibration ω = ω1
a2

h

√
ρ

E2
with Reddy [32] are

shown in Table 1.

Table 1. The first non-dimensional fundamental frequencies with different meshes.

a/h = 100 This Work
Reddy [32]

Meshes 4 × 4 6 × 6 8 × 8 10 × 10 12 × 12

R/a

1 126.430 126.135 126.145 126.145 126.145 125.99
2 68.489 68.095 68.065 68.065 68.065 68.075
3 47.432 47.316 47.369 47.369 47.369 47.265
4 36.989 36.975 37.083 37.083 37.083 36.971
5 31.188 30.908 31.030 31.030 31.030 30.993
10 20.313 20.350 20.332 20.332 20.332 20.347

1030 15.174 5.151 15.1457 15.1457 15.1457 15.183

a/h = 10 This Work
Reddy [32]

Meshes 4 × 4 6 × 6 8 × 8 10 × 10 12 × 12

R/a

1 16.3576 16.3272 16.3226 16.3226 16.3226 16.115
2 12.9939 12.9811 12.978 12.978 12.978 13.382
3 12.1582 12.1500 12.1488 12.1488 12.1488 12.731
4 11.8418 11.8354 11.8343 11.8343 11.8343 12.487
5 11.6905 11.6851 11.6843 11.6843 11.6843 12.372
10 11.4843 11.4799 11.4791 11.4791 11.4791 12.215

1030 11.4141 11.4102 11.4095 11.4095 11.4095 12.165

From Table 1 we can see clearly that, in comparison between this work and the analytical
method [32], we have good agreement, demonstrating that our proposed theory and program are
verified for the free vibration problem and convergence is guaranteed with 8 × 8 meshes.

3.2. Effects of Some Parameters on Free Vibration of the Shell

We now consider a three-layer composite shell with geometrical parameters: length a is constant,
width b, radii Rx = Ry = R, the total thickness h, the thickness of the middle layer hc, the thicknesses of
the other layers ht = hb (h1 = h2 = ht/2, h3 = h4 = hc/2, h5 = h6 = hb/2); physical parameters: the elastic
modulus Ec = 70 GPa, Et = Eb = 200 GPa, the Poisson’s ratio νt = νc = νb = 0.3, the specific weight
ρc = 2300 kg/m3,ρt = ρb = 7800 kg/m3, the shear coefficient of the shear connector ktc = kc = ks, and the
shell structure is fully supported. We conduct an investigation into the first non-dimensional free
vibration of the shell with non-dimensional frequencies as defined by:

ω = ω1
a2

h0

√
ρt

Et
with h0 =

a
50

(45)

3.2.1. Effect of Thickness h

Firstly, to examine the effect of length-to-high ratio a/h, a is fixed, we consider three cases with
a/h = 75, 60, 50, 25, 10 (respectively). In each case, the radius-to-length ratio R/a changes from 1 to 10 as
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we can see in Table 2, b = a, hc/ht = 2, and the shear coefficient of stub ks = 50 MPa. The results are
presented in Table 2.

Table 2. Effect of thickness h on non-dimensional fundamental frequencies.

R/a a/h = 75 a/h = 60 a/h = 50 a/h = 25 a/h = 10

1 48.9232 48.9329 48.9447 49.0591 49.8350
2 25.2821 25.3022 25.3267 25.5643 27.1440
3 16.9857 17.0161 17.0531 17.4099 19.6929
4 12.7982 12.8388 12.8881 13.3594 16.2390
5 10.2817 10.3324 10.3938 10.9744 14.3496
6 8.6065 8.6671 8.7403 9.4243 13.2070
7 7.4135 7.4838 7.5686 8.3498 12.4663
8 6.5225 6.6024 6.6983 7.5705 11.9605
9 5.8331 5.9222 6.0291 6.9856 11.6008
10 5.2847 5.3830 5.5004 6.5351 11.3363

Table 2 demonstrates that when the length-to-high ratio a/h decreases, that means the stiffness
of the structure is enhanced, correspondingly with each case of the radius-to-length ratios R/a,
the non-dimensional fundamental frequency increases.

3.2.2. Effect of the hc/ht Ratio (ht = hb)

Next, in order to study the effect of the hc/ht ratio, we consider five cases with hc/ht, respectively
given values from 2, 4, 8, 20, 30, b = a (a is fixed), the total thickness h = a/50, and the shear coefficient
of the stub ks = 50 MPa. The numerical results are shown in Table 3.

Table 3. Effect of hc/ht ratio on non-dimensional fundamental frequencies.

R/a hc/ht = 2 hc/ht = 4 hc/ht = 8 hc/ht = 20 hc/ht = 30

1 48.9447 49.6002 50.3956 51.3623 51.6856
2 25.3267 25.7143 26.2246 26.8744 27.0959
3 17.0531 17.3679 17.8202 18.4208 18.6285
4 12.8881 13.1816 13.6348 14.2529 14.4682
5 10.3938 10.6864 11.1625 11.8208 12.0502
6 8.7403 9.0417 9.5499 10.2558 10.5011
7 7.5686 7.8839 8.4277 9.1822 9.4432
8 6.6983 7.0301 7.6105 8.4117 8.6871
9 2.6219 6.3787 6.9948 7.8393 8.1278
10 2.5746 5.8683 6.5186 7.4026 7.7027

Table 3 gives us a discussion that when increasing hc/ht ratio, and for h is constant, that means the
thickness of the middle layer increases, correspondingly each case of R/a ratios, the non-dimensional
fundamental frequency increases. This shows that when the thickness of the shell is constant, hc/ht

increases, thus, the non-dimensional fundamental frequency increases.

3.2.3. Effect of the Length-to-Width Ratio a/b

In this small section, we continually evaluate the effect of the length-to-width ratio a/b (a is fixed),
and we meditate three cases by letting a/b = 0.5, 0.75, 1, 1.75, and 2, respectively. The total thickness of
the shell h = a/50, hc/ht = 2, the radius-to-length R/a also varies from 1 to 10, as we can see in Table 4,
and the shear coefficient of stub ks = 50 MPa. The numerical results are tabulated in Table 4.

In Table 4 we can see obviously that, with each value of radius-to-length R/a, if the length-to-width
a/b increases, the non-dimensional fundamental frequency also increases, correspondingly. This
interesting point demonstrates that the stiffness of the structure is enhanced.
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Table 4. Effect of length-to-width ratio a/b on non-dimensional fundamental frequencies.

R/a a/b = 0.5 a/b = 0.75 a/b = 1 a/b = 1.5 a/b = 2

1 47.6987 48.3535 48.9447 49.8156 50.4172
2 25.1170 25.2201 25.3267 25.5626 25.9090
3 16.9310 16.9833 17.0531 17.2818 17.7252
4 12.7690 12.8155 12.8881 13.1627 13.7259
5 10.2602 10.3104 10.3938 10.7236 11.4034
6 8.5872 8.6438 8.7403 9.1263 9.9146
7 7.3943 7.4584 7.5686 8.0095 8.8965
8 6.5025 6.5743 6.6983 7.1919 8.1678
9 5.8117 5.8914 6.0291 6.5726 7.6279
10 5.2618 5.3494 5.5004 6.0909 7.2169

3.2.4. Effect of the Shear Coefficient of Stub ks

Finally, in this section, to examine how the shear coefficient of the stub affects the non-dimensional
fundamental frequencies of this structure, we consider three cases of shear coefficient as in Table 5,
and a = b, h = a/50, hc/ht = 2, Ec = 70 GPa is fixed. The numerical results are shown in this table.

Table 5. Effect of shear coefficient of the stub ks on non-dimensional fundamental frequencies.

R/a ks
Ec
=1.45×10−5 ks

Ec
=1.45×10−2 ks

Ec
=1.45×100 ks

Ec
=1.45×102 ks

Ec
=1.45×105

1 48.9437 48.9457 49.0792 49.3528 49.3628
2 25.3247 25.3288 25.6047 26.1739 26.1918
3 17.0500 17.0562 17.4689 18.3090 18.3350
4 12.8840 12.8922 13.4361 14.5187 14.5518
5 10.3887 10.3989 11.0674 12.3634 12.4024
6 8.7342 8.7463 9.5324 11.0130 11.0568
7 7.5615 7.5756 8.4716 10.1104 10.1582
8 6.6904 6.7062 7.7046 9.4781 9.5291
9 6.0202 6.0379 7.1307 9.0186 9.0722
10 5.4907 5.5100 6.6899 8.6749 8.7306

In Table 5 we can see clearly that, with one value of radius-to-length R/a, when the shear coefficient
of stub increases, the non-dimensional fundamental frequency of the structure get larger. This explains
that the increasing of the shear coefficient removes the slip among layers, leading to an increase of the
total stiffness of the shell structure.

4. Numerical Results of Forced Vibration Analysis of Three-Layer Composite Shells with Shear
Connectors

4.1. Accuracy Studies

Considerign that a fully-clamped square plate with parameters can be found in [33], a = b = 1m,
h/a = 10. Material properties are the elastic modulus E = 30 GPa, the Poisson’s ratio ν = 0.3,
ρ = 2800 kg/m3. The structure is subjected to distribution sudden load p0 = 104 Pa. The non-dimensional
displacement is calculated by the formula w∗ = 100Eh3

12p0a4(1−ν2)
w0. By taking the shear coefficient and radii

of the shell as very large, the comparative deflection of the centroid point of the plate between our
work and [33] is shown in Figure 4, where the integral time is 5 ms, and the acting time of load is 2 ms.

We can see from Figure 4 that the deflection of the centroid point of the plate is compared to [33]
is similar both shape and value. This proves that our program is verified.
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Figure 4. The deflection of the centroid point of the plate overtime.

4.2. Effect of Some Parameters on the Forced Vibration of the Shell

Now, to study effects of some parameters on forced vibration of shell, we consider a three-layer
composite shell with geometrical parameters: length a =1 m, width b, thickness h, radii of the shell
Rx = Ry = R, the thickness of middle layer hc, the thickness of other layers ht = hb. Material properties
are the elastic modulus Ec = 8 GPa, Et = Eb = 12 GPa, the Poisson’s ratio νt = νc = νb = 0.2, the specific
weight ρc = 700 kg/m3, ρt = ρb = 2300 kg/m3, and the shear coefficient of stub ktc = kcb = ks. The shell is
fully clamped with the uniform load p(t) varying overtime acting perpendicularly on the shell surface.

p(t) = ΔPΦ.F(t); F(t) =
{

1− t
τhd

(0 ≤ t ≤ τhd)

0 otherwise
with

{
ΔPΦ = 0.20679.106 N/m2

τhd = 0.028 s
(46)

The non-dimensional deflection and velocity of the centroid point over time are given as follows:

w∗ = 100h0
3Et

ΔPΦa4 w
(

a
2 , b

2

)
; v∗ = Th0

3Et
ΔPΦa4 v

(
a
2 , b

2

)
u∗c =

10h0
3Ec

Mga2(1−ν2
c )

uc
(

a
2 , b

2 ,− hc
2

)
; v∗c =

10h0
3Ec

Mga2(1−ν2
c )

vc
(

a
2 , b

2 ,− hc
2

)
with h0 = a

50 ; T = 0.15(s)
(47)

where w
(

a
2 , b

2

)
and v

(
a
2 , b

2

)
are the deflection and velocity of the centroid point of the shell.

4.2.1. Effect of the Length-to-High Ratio a/h

In this first small section, we study the effect of the length-to-high ratio a/h. We consider a shell
with geometrical parameters a = b (a is fixed), hc/ht = 2, R/a = 6, and a/h gets value 75, 60, 50, 40 and 25,
respectively, the shear coefficient of stub ks = 50 MPa. The non-dimensional deflection and velocity of
the centroid point of the shell are presented in Figure 5 and the maximum value is shown in Table 6.

From Figure 4 and Table 6 we can see that when reducing the value of a/h ratio, this means the
thickness of the shell gets thicker, the non-dimensional deflection and velocity of the centroid point
overtime decrease. This is a good agreement, the reason is when the thickness of the shell increases,
the stiffness of the shell obviously becomes higher.
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(a) (b) 

Figure 5. Effect of length-to-high ratio a/h on the non-dimensional deflection and velocity of the centroid
point. (a) Nondimensional deflection w* versus time; and (b) nondimensional velocity v* versus time.

Table 6. Effect of length-to-high ratio a/h the non-dimensional deflection and velocity of the centroid point.

Maximum Values a/h = 75 a/h = 60 a/h = 50 a/h = 40 a/h = 25

w∗max 5.1866 4.5001 3.9020 3.1534 1.7250
v∗max 2.2997 1.7296 1.3653 1.1890 0.7686

4.2.2. Effect of the hc/ht Ratio (ht = hb)

Next, to investigate the effect of hc/ht ratio, we dissect the shell with geometrical parameters a = b
(a is fixed); h = a/50, the value of hc/ht ratio is given as 2, 6, 8, 10, 20, and 30, R/a = 6, and the shear
coefficient of stub ks = 50 (MPa). The non-dimensional deflection and velocity of the centroid point of
the shell are shown in Figure 6, the maximum value is listed in Table 7.

We can see in Figure 6 and Table 7 that when the hc/ht ratio increases (h is constant), the thickness
of the middle layer increases in comparison to the other layers, and the non-dimensional deflection and
velocity of the centroid point overtime decreases quickly in a range from 2–20. In a range from 20–30
the non-dimensional deflection and velocity of the centroid point overtime are almost not changed.
The reason is explained that when the value of the hc/ht ratio increases, the structure can reduce the
ability to oscillate, and the middle layer becomes “softer”, so that it imbues the vibration better than a
homogeneous shell with same geometrical and physical parameters. For this particular problem, we
should select the value of hc/ht ratio in a range from 20–30.

Table 7. Effect of hc/ht ratio on the non-dimensional deflection and velocity of the centroid point.

Maximum Values hc/ht = 2 hc/ht = 6 hc/ht = 8 hc/ht = 10 hc/ht = 20 hc/ht = 30

w∗max 2.4284 2.3267 2.2499 2.1578 2.0313 1.9787
u∗max

c × 10−5 1.1921 1.8455 1.9861 1.990 2.1182 2.1605
v∗max

c × 10−6 5.1472 4.8345 5.0843 5.4432 6.9771 8.6697
v∗max 1.1221 1.4232 1.4658 1.4525 1.4479 1.4879
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(a) (b) 

(c) (d) 

Figure 6. Effect of hc/ht ratio on the non-dimensional deflection and velocity of the centroid
point. (a) Nondimensional velocity w* versus time; (b) Nondimensional velocity v* versus time;
(c) Nondimensional deflection u∗c versus time; (d) Nondimensional deflection v∗c versus time.

4.2.3. Effect of the Length-to-Width Ratio a/b

We examine the effect of length-to-width ratio a/b on the non-dimensional deflection and velocity
of the centroid point of the shell with a is fixed, a/b gets from 0.5, 1, 1.5, 2. The geometrical parameters
are h = a/50, hc/ht = 2, R/a = 6, and the shear coefficient of stub ks = 50 MPa. The numerical results
of non-dimensional deflection and velocity of the centroid point of the shell are shown in Figure 7,
and the maximum value is listed in the following Table 8.

Table 8. Effect of the length-to-width ratio a/b on the non-dimensional deflection and velocity of the
centroid point.

Maximum Values a/b = 0.5 a/b = 0.75 a/b = 1 a/b = 1.5 a/b = 2

w∗max 3.1051 3.5580 3.9020 3.6051 3.0260
v∗max 1.0248 1.2536 1.3653 1.3871 1.1701

Now we can see in Figure 7 and Table 8, when increasing the a/b ratio, the non-dimensional
deflection and velocity of the centroid point overtime decrease. This demonstrates that the stiffness of
the shell gets larger, especially when the a/b ratio equals 2. This can be understood obviously that as the
shape of structure gets smaller, with the same boundary condition and other parameters, the structure
will become stronger.
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(a) (b) 

Figure 7. Effect of length-to-width ratio a/b on the non-dimensional deflection and velocity of the
centroid point. (a) Nondimensional deflection w* versus time; and (b) nondimensional velocity v*
versus time.

4.2.4. Effect of the Shear Coefficient of the Stub

Finally, we conduct a study on the effect of the shear coefficient of the stub on the non-dimensional
deflection and velocity of the centroid point of the shell. We consider four cases with ks = 103, 105, 1010,
1012, and 1015 Pa. Geometrical parameters are a = b; h = a/50, hc/ht = 2, R/a = 6. The numerical results
of non-dimensional deflection and velocity of the centroid point of the shell are plotted in Figure 8,
the maximum value is shown in Table 9.

(a) (b) 

Figure 8. Effect of shear coefficient of stub on the non-dimensional deflection and velocity of the
centroid point. (a) Nondimensional deflection w* versus time; and (b) nondimensional velocity v*
versus time.

Table 9. Effect of shear coefficient of stub on the non-dimensional deflection and velocity of the
centroid point.

Maximum Values ks=103Pa ks=105Pa ks=1010Pa ks=1012Pa ks=1015Pa

w∗max 3.9352 3.9352 3.0341 2.9070 2.9059
v∗max 1.3658 1.3658 1.4354 1.3657 1.3662
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In this last case, we can see in Figure 8 and Table 9 that when the shear coefficient of the stub
increases, the non-dimensional deflection and velocity of the centroid point of the shell is reduced. It is
easily understood that the enhancing of the stiffness of the stud makes the total structure get stronger,
meaning the stiffness of the shell is increased, correspondingly.

4.2.5. Influence of the Mass Density of the Core Layer

Let us consider a four-edge simply supported (SSSS) shell (b = a) with hc = h/2, ht = hb = h/4.
The shear modulus of the shear connector is ks = 50 MPa. The mass densities of the three layers are
ρt = ρb = 2300 kg/m3 and ρc = 700, 1000, 1500, 2000, 2300 kg/m3. Nondimensional deflection and
velocity of the shell center point are shown in Figure 9, maximum deflections and velocities of the shell
center point are illustrated in Table 10. The mass ratio of the shell corresponding to the different values
of ρc compared to case ρt = ρc = ρb = 2300 kg/m3 is shown in Table 11.

(a) (b) 

Figure 9. Dynamic deflections of center point of the plate versus time for different ρc. (a) Nondimensional
deflection w* versus time, and (b) nondimensional velocity v* versus time.

Table 10. Maximum deflections, velocities and stress of the shell center point versus time for different ρc.

Maximum Values
ρc= 700
(kg/m3)

ρc= 1000
(kg/m3)

ρc= 1500
(kg/m3)

ρc= 2000
(kg/m3)

ρc= 2300
(kg/m3)

w∗max 3.9020 3.8837 3.8403 3.8318 3.7942
v∗max 1.3653 1.2962 1.1985 1.1339 1.0871

Table 11. The mass ratio of the shell corresponding to the different values of ρc.

Mass Density of the Core Layer
ρc= 700
(kg/m3)

ρc= 1000
(kg/m3)

ρc= 1500
(kg/m3)

ρc= 2000
(kg/m3)

ρc= 2300
(kg/m3)

The mass ratio
(100 ρc+ρt

2ρt
%) 65.21 71.73 82.60 93.44 100

Reduced mass (%) 34.79 28.27 17.40 6.56 0

Comment: From the Figure 9 and Tables 10 and 11, we obtain that when the mass density of
the core-layer is increased from 700 to 2300 kg, deflection and velocity of the shell center point are
almost not changed. Therefore, in order to reduce the mass of the shell, we can use the triple-layer shell
with shear connectors, which the core layer has a smaller mass density than other layers. Specifically,
corresponding to a difference of mass density of the core layer ρc = 700, 1000, 1500, 2000 kg/m3,
the mass of the shell decreases by 34.79, 28.27, 17.40, and 6.56%.
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4.2.6. Influence of Modulus of Elasticity

Let us consider a fully simply-supported (SSSS) shell (b = a) with hc = h/2, ht = hb = h/4. The shear
modulus of the shear connector is ks = 50 MPa. The modulus of elasticity of the three layers are Et = Eb
= 12 GPa and Ec = 8, 9, 10, 12 GPa. Nondimensional deflection and velocity of the shell center point are
shown in Figure 10, and the maximum deflections and velocities of the shell center point are illustrated
in Table 12.

(a) (b) 

Figure 10. Dynamic deflections of center point of the shell over time with different Ec. (a): Nondimensional
deflection w* versus time, and (b) nondimensional velocity v* versus time.

Table 12. Maximum deflection and velocity of the shell center point over time for different Ec.

Maximum Values Ec = 8 GPa Ec = 9 GPa Ec = 10 GPa Ec = 12 GPa Ec = 12 GPa

w∗max 3.9020 3.7494 3.5895 3.4252 3.3031
v∗max 1.3653 1.3375 1.2998 1.2841 1.2792

Comment: From the Figure 10 and Table 12, we can find that when modulus of elasticity of the
core-layer is increased in a range from 8 to 12 GPa, deflection and velocity of the shell center point are
slightly decreased.

5. Conclusions

The finite element method (FEM) is the numerical method for solving problems of engineering
and mathematical physics, including the calculation of shell structures. Establishing the balance
equation describing the vibration of shell structure is quite simple and it is very convenient for
coding on a personal computer (PC). The proposed program is able to analyze the static bending,
dynamic response, nonlinear problems, etc., with complicated structures, which are not easy to solve
by analytical methods.

Based on the finite element method, we established the equilibrium equation of a triple-layer
composite shell with shear connectors subjected to dynamic loads. In this paper, employing of the
eight-node isometric element is suitable. To exactly describe the strain field, the displacements of the
three-layer shell with shear connectors, and the 13-degrees of freedom element is used, in which the
three layers have the same a degree of freedom in the z-direction, and the other 12 degrees of freedom
are described as the linear displacement and rotation angle of each layer. Hence, the displacement
field and the strain field of each layer can be investigated deeply. We have created the program
in the MATLAB environment to investigate effects of various geometrical parameters on free and
forced vibrations of shells. To sum up, some main interesting points of this paper are listed in the
following statements.

63



Symmetry 2019, 11, 527

In general, the geometrical parameters effect strongly on free and forced vibrations of the shell;
when the shape of the shell is small, the structure gets stiffer.

Based on the numerical results, we realized that for this type of structure, the shear coefficient
of the stub plays a very important role. Especially, when the stiffness of the shear coefficient is large
enough, this structure seems to be a sandwich shell.

From the above computed results, we suggest that in order to reduce the vibration of such a
structure, we should use the middle layer, having the elastic modulus less than other layers, and the
thickness of the middle layer 20–30 times larger than the other ones.

We suggest that, in order to reduce the volume of the shell structure subjected to the blast load,
we should consider the triple-layer shell with the core layer having a smaller density than the two
layers others. Another interesting thing is that the core layer has less stiffener than the other two layers
for the displacement response, the velocity is almost unchanged, so we can be flexible in making shells
with available materials and different stiffeners.

Based on the achieved numerical results, this paper also leads to further works; for instance,
the analysis of FGM structures with shear connectors, buckling problems, the composite plate with
shear connectors subjected to both temperature and mechanical loads, and so on.
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Appendix A

B0
ti =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 0 0 00000 ∂Ni

∂x 0 0 0 Ni
Rx

0 0 0 00000 0 ∂Ni
∂y 0 0 Ni

Ry

0 0 0 00000 ∂Ni
∂y

∂Ni
∂x 0 0 2Ni

Rxy

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

B1
ti =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 0 ∂Ni
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∂y C0

∂Ni
∂x

∂Ni
∂y

∂Ni
∂x 0 0 0 0 00000

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 0 0 0 0 0 ∂Ni

∂x 0 00000
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∂y 00000

0 0 0 0 −C0
∂Ni
∂y C0

∂Ni
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∂Ni
∂y

∂Ni
∂x 00000

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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B1
bi =
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Appendix B

Lt =
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Abstract: Large-time coarsening and the associated scaling and statistically self-similar properties
are used to construct infinite tilings. This is realized using a Cahn–Hilliard equation and special
boundaries on each tile. Within a compromise between computational effort and the goal to reduce
recurrences, an infinite tiling has been created and software which zooms in and out evolve forward
and backward in time as well as traverse the infinite tiling horizontally and vertically. We also analyze
the scaling behavior and the statistically self-similar properties and describe the numerical approach,
which is based on finite elements and an energy-stable time discretization.

Keywords: symmetric boundary condition; pattern formation; computational design;
finite-element method

1. Introduction

At first-order phase transitions, coexisting macroscopic domains of different phases emerge from
small fluctuations of a homogeneous phase. Late stages of this process are often dominated by the
motion of the interfaces separating the domains. Considering this large-time coarsening behavior,
i.e., the growth of a characteristic length scale l(t) as t → ∞ determines important characteristics of
the dynamics and led to the identification of several universality classes of domain growth. We are
here concerned with conserved order parameters, for which the expected behavior is l(t) ∼ t1/3,
which results from the scale invariance of the Mullins–Sekerka system x → λx, t → λ3t. Rigorous
results exist for an upper bound for l(t), stating that microstructures cannot coarsen faster than the
similarity rate [1]. As there are non-generic configurations, e.g., stripe domains with zero curvature
which are stable, lower bounds cannot be expected within a deterministic framework. Besides this
scaling law, solutions with random initial data are also believed to be statistically self-similar in this
large-time regime. Numerical studies based on a Cahn–Hilliard equation and related coarse-grained
theories indicate that the approach of the large-time regime with the statistically self-similar structures
might be very slow [2]. To explore these regimes numerically thus requires large length and time
scales, which limits the accessible sample size. We are here interested in these statistically self-similar
structures, which have been used for various art and design projects, e.g., [3]. Here, we would like
to explore very large, in principle infinite, samples. To tackle such a system we consider, instead of
one huge simulation, many moderately sized domains with different initial data, and require the
boundaries to match. If appropriately done, this will allow construction of large (infinite) tilings
which are statistically self-similar. With a random arrangement of finitely many computed structures,
the impression of an infinite tiling with no recurrence could be achieved. For this impression,
the boundary conditions at the computational domains are crucial. They are described in detail
in Section 4 together with the finite-element approach to solve the Cahn–Hilliard equation. In Section 2
we show various results, among other things a computer program which allows navigation through
space and time of an infinitely extended structure. We further discuss improvements and outline
possible applications. In Section 3, we discuss scaling and self-similar properties.

Symmetry 2019, 11, 444; doi:10.3390/sym11040444 www.mdpi.com/journal/symmetry67
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2. Results

As the underlying model for phase transitions with a conserved order parameter we consider
a Cahn–Hilliard equation

∂tφ = γΔμ, μ = −ε2Δφ + B′(φ); (1)

see Section 4 for details. First, we consider coarsening in a rectangular cuboid using standard boundary
conditions n · ∇φ = n · ∇μ = 0 on ∂Ω. Figure 1 shows snapshots of the results within the large-time
regime, visualized in various ways. The interface area is minimized, and the structure thus coarsens in
time. To analyze this in a statistical manner requires either a larger domain or more samples. Our idea
is to combine both by using samples which are distinct from each other but fit together to form a large
and extendable structure. The boundary conditions in the current setting enforce the level lines of the
interface to be perpendicular to ∂Ω. They in addition do not fit to each other and thus do not allow
combination of different samples. To overcome these limitations, we consider a smaller domain, again
a rectangular cuboid and the boundary conditions introduced in Section 4 which specify the values of
φ and the normal flux ∇φ · n such that opposite sides match. The first approach only has two distinct
boundaries, N = 2. Figure 2 shows four samples, all obtained with different initial conditions and
considered at the same time instance. The structures fit together and any translation in x- or y-direction
by the width of the domain will also fit. The individual figures are provided in SI as Figures S1–S4;
print them and try it out. The figures are part of an art project, M = 100 individual samples have been
computed and printed on Alu-Dibond in size 20 cm × 20 cm, creating a 200 cm × 200 cm figure which
can be displayed in 100! ≈ 9.332622 · 10157 variations.

Figure 1. Typical structure within the large-time regime, visualized as φ = 1 in Ω, φ = 0.5 at z = 0.01,
0.13, 0.25, 0.37, 0.49 and φ = 0.5 at z = 0.01, 0.13, 0.25, 0.37, 0.49 projected to z = 0, from left to right.
The boundary conditions are n · ∇φ = n · ∇μ = 0 on ∂Ω. The corresponding videos of the coarsening
process are provided in SI as Videos S5–S7.

Figure 2. Four samples with identical boundaries but distinct inner structure. The samples are
translational invariant in x- and y-direction.
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Even if the inner structure is unique for each tile, the boundaries in x- and y-direction are the
same and recurrences are visible. To improve on this issue, we consider a second approach, which is
less flexible in terms of arrangement of samples but minimizes possible recurrences. As a compromise
of computational cost and visual impression we consider tilings with N = 10 different boundary
conditions. This improves the impression of a tiling with no recurrence since systematic recurrence in
a row, a column, or diagonally can be avoided by careful assembly of the tiles. Repetitions do not only
appear less frequently but also in a pattern that is much less obvious. To see this recurrence without
knowing the construction process and explicitly searching for them is almost impossible. We consider
two different internal realizations each, leading to M = 10. Within the proposed pattern determined
by the boundary conditions the inner realization are randomly chosen to construct an infinite tiling,
where recurrences are almost invisible.

A software is developed to visualize the infinite structure. We consider visualizations with five
projected level lines of the interface. The software allows zooming in and out, evolve forward and
backward in time as well as traverse the infinite tiling horizontally and vertically. Figure 3 shows
some screenshots, starting from an early time instant and a low zoom factor (a), going to a late-time
instant of this setting (b), zooming into the structure (c), evolving along a trajectory in space and time,
which keeps the interface area constant (d), and going back to the initial state (a). Videos of the journey
through space and time are provided in SI as Videos S8 and S9.

Figure 3. Screenshots of the visualization software, here in addition color-coded according to the
individual tiles used. The dark magenta lines indicate the user-interaction. Moving the mouse
horizontally evolves time, moving it vertically zooms in and out.

As the proposed approach is in principle not restricted to rectangular cuboidal domains
various possibilities for applications can be imagined. Besides wallpaper design, they range
from fashion design with individualized clothes to camouflage patterns of automotive prototypes.
Here, we highlight a more entertaining application, a Rubik’s cube which always fits, but has
24 different fields; see Figure 4.
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Figure 4. A Rubik’s cube which always fits even if all tiles are different. A video is provided in SI
as Video S10.

3. Discussion

We now explore the scaling properties and the statistically self-similar behavior of the constructed
infinite tiling. The theoretically scaling behavior l(t) ∼ t1/3 of a characteristic length scale is tested
by computing the interface area of each tile over time. The interface is thereby represented as the
level-surface φ = 0. In addition, we also compute the length of the interface of the level line at z = 0.25,
which is used for visualization. Figure 5 shows the results over time, which are averaged over all
individual realizations of tiles.

Figure 5. Development of the interface area of the 3D-structure and the interface-length of a slice
through the center of the domain over time, averaged for all tiles.

The results lead to a scaling exponent which is below the upper bound of 1/3. The slope is not
constant, but on average equal for the two measures and approximately 0.26. There are different
reasons for this lower value, either the structure has not reached the late-time behavior for which
the theoretical scaling behavior is expected, or the considered domain with the zero-flux boundary
conditions on top and bottom favor parallel structures and thus prevent coarsening. The limitation
of our approach, to combine several tiles and to compute them separately, should also be mentioned.
This approach only allows the consideration of coarsening up to a length scale of the size of a tile.
For larger times, the approach is no longer valid. However, even if the theoretical scaling law could
not be shown computationally, statistical self-similarity still might be possible. Statistical self-similarity
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can already be expected from a randomly chosen sample. We consider the middle slice at an early
time instant, its coarsening and subsequent zooming-out in Figure 6. Instead of the interface line the
two phases are rendered in black and white. When the coarse structure is zoomed out to a degree
where the interface-length matches that of the earlier timestep, both structures are visually similar (see
Figure 6a,c). To quantify this, we compute for each row and column of pixels the distance between
two interfaces. This is done for all samples and plotted for different times in Figure 7.

Figure 6. Middle slice of the domain in an early time instance (a), a later point in time (b) and the later
time-point zoomed out until the interface-length equals that of the early one (c). In the last image the
unzoomed region is framed to indicate the level of zoom applied.

Figure 7. Left: density-histograms of the distances between interfaces for three selected timesteps
(all tiles combined). Right: a square subregion of timestep 130 is considered which, after zooming to
the size of a full tile, has the same interface area as timestep 1900. The histograms match almost exactly,
which computationally indicates the statistically self-similar structure.

Even if the theoretically predicted scaling law l(t) ∼ t1/3 could not be computationally shown,
the large-scale simulations, which run for each tile on a high-performance computer, reproduce the
predicted statistical self-similarity. The huge structure, which results as an arrangement of individual
tiles, would not have been possible to simulate on the available hardware. The approach fulfills
two goals, it provides enough statistics to analyze scaling and statistical self-similarity and it allows
the generation of aesthetically appealing tilings with almost invisible recurrences, which can be
infinitely extended.

4. Materials and Methods

The Cahn–Hilliard equation [4] is a fourth order partial differential equation resulting as a H−1

gradient flow of a Ginzburg-Landau energy

E [φ] =
∫

Ω
γ

(
ε2

2
|∇φ|2 + B(φ)

)
dΩ, (2)

where Ω is a bounded domain, ε a positive parameter determining the width of the diffuse interface,
γ the surface energy, here considered as a positive constant, and B(φ) = 1

4 (1 − φ2)2 a double well
potential. The resulting equation reads

∂tφ = γΔμ, μ = −ε2Δφ + B′(φ) (3)
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and converges for ε → 0 to the Mullins–Sekerka problem [5]; see Ref. [6].
Various numerical approaches have been proposed to solve the equation efficiently. We consider

a convexity splitting approach, e.g., [7–11]. The idea is to split the double well potential
B(φ) = Bc(φ)− Be(φ), such that both parts are convex and to consider the time discretization as

dτφn+1 = γΔμn+1, μn+1 = −ε2Δφn+1 + B′
c(φ

n+1)− B′
e(φ

n), (4)

with discrete time derivative dτφn+1 = (φn+1 − φn)/τn. The resulting scheme is unconditionally
energy stable, unconditionally solvable and converges optimally in the energy norm [9]. To solve the
above systems, we consider a linearization of B′

c(φ
n+1) ≈ B′

c(φ
n) + B′′

c (φ
n)(φn+1 − φn). We further

consider adaptive mesh refinement according to criteria related to the position of the diffuse interface,
here ∇φ, to ensure a resolution of approximately five grid points across the interface and a coarser
mesh elsewhere; see Figure 8.

Figure 8. Typical structure, highlighting one of the two phases and the adaptively refined mesh along
the diffuse interface.

The resulting linear system is solved in parallel using a block-preconditioner, see [12,13], and the
iterative solver FGMRES. All problems are implemented in the adaptive finite-element toolbox
AMDiS [14,15]. The considered parameters are ε = 0.01 and γ = 1.0 and as computational domain
rectangular cuboid Ω = (0, L)x(0, L)x(0, l) with l = 0.2 and L = 2.0 for the larger and L = 1.0 for the
smaller domain and boundaries Γtop, Γbottom, Γ0 and Γ1 =

⋃4
i=1 Γ1,i, see Figure 9. The number of grid

points on the larger domain reduces from approx. 2.95 million at the beginning to approx. 1.95 million
at the final configuration.

Figure 9. Geometric setting and boundaries.

As initial condition we consider white noise around the mean value φ = 0. At Γtop and Γbottom we
specify zero-flux boundary conditions for φ and μ. We first consider the larger domain with zero-flux
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boundary conditions for φ and μ also on Γ0. In this setting the finite-element formulation in each time
step reads: Find φn+1, μn+1 ∈ Vh such that ∀η, ξ ∈ Vh∫

Ω
dτφn+1η dx + γ

∫
Ω
∇μn+1 · ∇η dx = 0 (5)∫

Ω
μn+1ξ dx − ε2

∫
Ω
∇φn+1 · ∇ξ dx −

∫
Ω

B′
c(φ

n+1)ξ dx = −
∫

Ω
B′

e(φ
n)ξ dx, (6)

with Vh = {v ∈ C0(Ω)|v|T ∈ P1(T)∀T ∈ T } the space of piecewise linear Lagrange elements and
triangulation T . In each time step we extract φn+1

1 = φn+1 and n · ∇φn+1
1 = n · ∇φn+1 along the

inner boundary Γ1. These data are going to be used in the subsequent computations in the smaller
domain as boundary conditions on Γ1. The finite-element formulation now reads in each time step:
Find φn+1 ∈ Vh,Γ1,φ1

and μn+1 ∈ Vh such that ∀η ∈ Vh,Γ1,0 and ∀ξ ∈ Vh

∫
Ω

dτφn+1η dx + γ
∫

Ω
∇μn+1 · ∇η dx = 0 (7)∫

Ω
μn+1ξ dx − ε2

∫
Ω
∇φn+1 · ∇ξ dx −

∫
Ω

B′
c(φ

n+1)ξ dx = −
∫

Ω
B′

e(φ
n)ξ dx − ε2

∫
Γ1

n · ∇φ1ξds, (8)

with Vh,Γ1,α = {v ∈ C0(Ω)|v|T ∈ P1(T)∀T ∈ T , v = α on Γ1}.
For different initial data this leads to different solutions with common boundary conditions.

However, to construct tilings, they also must match, which is not yet guaranteed. To fulfill this
requirement, we proceed in two different ways. The first approach considers only one computation on
the larger domain and uses the extracted values and fluxes φn+1

1 and n ·∇φn+1
1 at Γ1 only from two sides

Γ1,1 and Γ1,2 (N = 2) and specifies them also on the opposite sides for the computations on the smaller
domain. For M different initial conditions this generates M individual samples which match with
each other at the boundaries if translated by the domain size in x- or y-direction. This leads to a very
flexible arrangement of the samples but has the drawback of frequent recurrence at the boundaries.

The second approach also begins with a computation on the larger domain with boundary Γ0 but
subsequent computations are performed on intermediate domains that extend to the bounds of Γ0 in
directions where a fresh structure is desired at the boundary and are restricted to the bounds of the
smaller domain Γ1 in directions where the structure is to be continued from an already existing neighbor
tile by using its stored values and fluxes φ1 and n · ∇φ1 at Γ1. This requires small modifications of the
finite-element formulation in Equations (7) and (8) using only parts of Γ1 instead of the whole inner
boundary. When enough samples are computed to define all N boundary sides the remaining samples
are computed on Γ1 with all sides fixed by boundary conditions from earlier computations.

The most simple setup meeting our design-goal of non-obvious recurrence of boundaries requires
five different tiles A0, B0, C0, D0 and E0 which can be assembled into a row that matches the same row
displaced by a few tiles above and below. Then, five rows of five tiles each form a square which can be
continued in all directions indefinitely (see Figure 10c). This setup allows for ten unique boundary
sides s1 through s10 (see Figure 11). Inside our 5 × 5 square of tiles recurrences do not occur in a row,
a column, or diagonally, which would not be possible with a smaller number of unique tiles. With only
two or three different tiles, repetitions would have to occur at least diagonally (see Figure 10a) and
with four different tiles it is only possible to build a unique 4 × 2 rectangle without diagonal repetitions
(see Figure 10b).

On the macroscopic scale our pattern still has obvious repetitions since we need to continue
the same square of 5 × 5 tiles in all directions to form the infinite tiling. To remedy this problem,
we generate variants of our five initial tiles A1, B1, C1, D1 and E1 which exactly copy the boundaries of
their respective prototype with index zero but differ on the inside. Now, in our infinite tiling each tile
of a specific prototype is replaced randomly with either the original 0-variant or the new 1-variant of
that type. With only two variants per type we already allow for more than 33 million (225) distinct
squares of 5 × 5 tiles. For our interactive visualization software, we settled with these M = 10 tiles
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due to memory-constraints. However, for printed realizations such as wallpapers, further variants
could be computed, making it even harder to spot recurrences.

The initial five tiles must be computed consecutively since their boundaries depend on each other.
Starting with A0 we have no constraints yet and thus the simulation yields four fresh boundary sides.
The simulation domain Γ0 exceeds the region of interest Γ1 in all four connecting directions because
we need to avoid the level lines always being perpendicular to the boundary of Γ1 (Figure 11a).

Figure 10. (a) Layout of 3 × 3 tiles: diagonal recurrence cannot be avoided. (b) Layout of 4 × 4 tiles:
the bottom two rows are duplicates of the top two; all other arrangements would yield diagonal
recurrence. (c) Layout of 5 × 5 tiles: recurrences in non-obvious pattern.

Figure 11. Initial five tiles and their connecting boundary sides. a) Tile A0 is simulated on Γ0; b,d) Btmp

and Ctmp are intermediate steps in preparation of B0 and C0, respectively; c,e,f,g) tiles B0 through E0

are simulated on domains that extend Γ1 towards Γ0 only in directions where fresh boundary data is
required, the other boundaries are fixed.

As a next step we simulate a temporary tile Btmp to prepare the run for B0. Obviously, tile B0

has to match A0’s right-hand side boundary (s2 in Figure 11b) at its own left-hand side. However,
this is not the only constraint. Our 5 × 5 layout requires that B0 meets A0 also in its top-right corner
(see Figure 10c). Thus, in our temporary step besides fixing the left boundary we also fix the top
boundary with a mirrored version sm

3 of the data from A0’s bottom side. The mirroring is required
because the top-right corner of B0 must conform to the bottom-left corner of A0. The simulation
domain for Btmp exceeds the region of interest only in two directions: bottom and left, where we obtain
data for two fresh boundary sides (Figure 11b). Now we are ready to compute our second tile B0. We
fix the right, bottom and left boundaries with data from our previous two simulations and this time
leave the top-side unconstrained to obtain a fresh boundary that is only fixed at the two corners where
it will match tile A0 (Figure 11c).

For tile C0 we require another preliminary run Ctmp to fix the bottom-left corner where it meets
A0. We use the mirrored top-side sm

1 of A0 at Ctmp’s bottom to account for that and fix the left and
top sides where C0 shares sides with B0 and A0. Only at the left-hand side we obtain a fresh set of
boundary-data (Figure 11d). For C0 we release the bottom-constraint of Ctmp and obtain another fresh
boundary (Figure 11e). The last tile with a fresh boundary is D0. All sides, except the right-hand side
one, are already constrained by previous computations (Figure 11f). For E0 all four sides are fully
predetermined (Figure 11g). We need to simulate it only for its interior.

All variant-tiles A1 through E1 (and further ones if desired) can now be computed in parallel
since their boundaries are already known. They are all restricted to Γ1 and do not require extraction of
boundary-values and -fluxes, hence are computationally less expensive than the initial runs.
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Supplementary Materials: The following are available online at http://www.mdpi.com/2073-8994/11/4/444/s1,
Figure S1: tile1, Figure S2: tile2, Figure S3: tile3, Figure S4: tile4, Video S5: Coarsening of 3D structure, visualized
by showing φ = 1 in Ω, Video S6: Coarsening of 3D structure, visualized by showing φ = 0.5 at z = 0.01, 0.13,
0.25, 0.37, 0.49, Video S7: Coarsening of 3D structure, visualized by showing φ = 0.5 at z = 0.01, 0.13, 0.25, 0.37,
0.49 projected to z = 0, Video S8: Journey through space and time in the visualization software in black and white,
Video S9: Journey through space and time in the visualization software with colored tiles, Video S10: Rubik’s cube.
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Abstract: In the paper, a new numerical approach for the rotation form of the Oseen system in a
polygon Ω with an internal corner ω greater than 180◦ on its boundary is presented. The results
of computational simulations have shown that the convergence rate of the approximate solution
(velocity field) by weighted FEM to the exact solution does not depend on the value of the internal
corner ω and equals O(h) in the norm of a space W1

2,ν(Ω).
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1. Introduction

Many mathematical models of natural processes are described by the boundary value problems
for systems of partial differential equations with a singularity. The singularity of the solution to such
systems in the two-dimensional closed domain Ω may be due to the degeneration of initial data, to the
presence of reentrant corners on a boundary, or to internal features of the solution. The boundary
value problem has a strong singularity if its solution does not belong to the Sobolev space W1

2 (Ω).
In short, the Dirichlet integral from the solution diverges. In the case when the solution belongs to
the space W1

2 (Ω), but it does not belong to the W2
2 (Ω), a boundary value problem is called weakly

singular. The generalized solution of a boundary value problem in the two-dimension domain with
a boundary containing an initial angle ω belongs to the space W1+α−ε

2 (Ω), where 0.25 ≤ α < 1 for
π < ω ≤ 2π and ε is an arbitrary positive real number. Therefore, the approximate solution produced
by the classical finite difference or finite element methods converges to an exact one no faster than at
the O(hα) rate [1].

For the boundary value problem with singularity, there are various numerical approaches founded
on the separation of singular and regular components of the generalized solution, on mesh refinement
toward singularity points, and on the multiplicative identification of singularities. These methods
slow down the convergence rate of the approximate solution to an exact one or to the significant
complication of the finite element scheme, which in total influences the computational process speed
and accuracy of the result.

In reference [2], we suggested to define the solution of the boundary value problem with weak
or strong singularity as an Rν-generalized one in the weighted Sobolev space or set. Relying on this
approach, numerical methods were created with a convergence rate independent of the value (size) of a
singularity. In the papers [3–5] for the boundary value problems with a strong singularity, the weighted
finite element method (FEM) and the weighted edge-based FEM were built. The approximate solution
converges to an exact one with the second and first order rates (under the mesh step h) in the norms of
the weighted Lebesgue and Sobolev spaces, respectively. In references [6,7], a weighted FEM for the

Symmetry 2019, 11, 54; doi:10.3390/sym11010054 www.mdpi.com/journal/symmetry76
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Lame system in a domain with the reentrant corner on the boundary was built. The rate of convergence
is equal to O(h) and independent of the size of a reentrant corner.

We study the incompressible Navier–Stokes equations in the two-dimensional polygonal domain
Ω with one internal corner greater than 180◦ on its boundary. The nonlinearity in this system can be
written in several equivalent forms. For one case, if we regard these equations in the velocity field and
kinematic pressure variables, then this leads to the convection form of nonlinear terms. For another
case, if we consider these equations in the velocity field and total pressure variables, then it gives
nonlinear terms in the rotation form. In order to meet the non-stationary incompressible system,
we must be able to find the solution of a steady linearized one. The stationary Navier–Stokes system
we can linearize in different manners. We use a scheme that is based on Picard’s iterative procedure
(see [8] and the references therein). Starting with an arbitrary vector as a velocity field, which satisfies
the law of conservation of mass, Picard’s iterative procedure forms the sequence of solutions of the
corresponding linear Oseen system. We note that linearizations of convection and rotation forms of
nonlinear terms tend to the systems of linear algebraic equations with various features. In the paper,
we study the Oseen system in the rotation form. The fact is that the rotation form allows us (using a
skew-symmetric of the resulting matrix) to construct a Schur complement preconditioner, which is
acceptable to all parameters of the Oseen problem and becomes more effective for large Reynolds
numbers (see [9] and the references therein). For the convection form of the Oseen problem, this is
not so.

As usual, to solve a fluid problem, the explorer has freedom and can construct a method in
different manners by selecting various discretization algorithms for the system of linear algebraic
equations. There are many opportunities to solve the considered system. The researcher can select
various finite difference, finite volume, or finite element methods. However, the chosen method is
effective if it gives the best result in terms of the convergence rate under certain restrictions on the
input data and geometric singularities of the domain Ω.

In the paper, we consider a special case, where Ω is a polygon with one internal corner greater
than 180◦ on its boundary. The flow of the viscous fluid in a δ-neighborhood of a reentrant angle
was studied in [10]. It is not a secret that the velocity field and pressure, as a weak solution of a
problem for the domain with corner singularity, do not belong to Sobolev spaces W2

2(Ω) and W1
2 (Ω),

respectively [11]. Therefore, the rate of convergence of the approximate solution to an exact one is equal
to O(hα), α < 1, in the norm of standard and weighted Sobolev spaces (see [12] and the references
therein) for different classical finite difference and finite element methods. Earlier, for the Stokes
problem, we defined the Rν-generalized solution; in [13], we formulated and proved the weighted
LBBinequality (inf-sup condition [14]); and in [15], we showed the advantage of our method over
classical approaches.

The aim of the paper is to present a new numerical approach for the rotation form of the Oseen
problem using (see [16]) a mass conservation space pair; to show that the rate of convergence of the
approximate solution to an exact one (the velocity field) is equal to O(h) for all considered sizes of the
internal corner greater than 180◦ on the boundary in the norm of the space W1

2,ν(Ωk); so that this rate
is much better than if using the classical finite difference or finite element methods.

The article consists of six sections. Section 2 is devoted to the definition of the Rν-generalized
solution for the rotation form of the Oseen system in a domain Ω with one internal corner greater
than 180◦ on its boundary. In Section 3, we construct the presented FEM. The iterative algorithm for
the resulting system of linear algebraic equations is built in Section 4. In Section 5, we discuss the
numerical results of computational experiments. Necessary conclusions are made in Section 6.

2. Rν-Generalized Solution of the Oseen Problem

Let x = (x1, x2) be an element of the Euclidean space R2, where ‖x‖ =
(

x2
1 + x2

2
)1/2 and dx =

dx1 dx2 are the norm and measure of x, respectively. Denote by Ω a bounded domain in R2. Let Γ and
Ω̄ be the boundary and closure of Ω, respectively, where Ω̄ = Ω ∪ Γ.

77



Symmetry 2019, 11, 54

At first, we write incompressible Navier–Stokes equations in such a form: find a velocity field
u(x, t) = (u1(x, t), u2(x, t)) and a kinematic pressure p(x, t) from:

∂u

∂t
− ν̄�u + (u · ∇)u +∇p = f and div u = 0 in Ω × (0, T], (1)

with given force field f = ( f1, f2) and viscosity ν̄ = 1
Re > 0. Let �, div , and ∇ be the Laplace,

divergence, and gradient operators in R2, respectively. The equations in (1) are the convection form of
Navier–Stokes equations.

We supplement the system (1) with a boundary and initial conditions:

u = g on Γ × (0, T], u(x, 0) = u0(x) in Ω, (2)

where g = (g1, g2) is given vector function on Γ and u0(x) = (u0
1(x), u0

2(x)) — in Ω.
We introduce the following notation:

v · u =
2

∑
i=1

ui vi, curl u = −∂u1

∂x2
+

∂u2

∂x1
, a × u =

(
−au2

au1

)
.

We have a formal equality:

∇(u · v) + ( curl u)× v + ( curl v)× u = (u · ∇)v + (v · ∇)u. (3)

If u = v in (3), then we have a relation:

( curl v)× v +
1
2
∇v2 = (v · ∇)v. (4)

Let P = p +
1
2

u2, using (4), for vector function u; we get the rotation form of the Navier–Stokes
system for an incompressible flow:

∂u

∂t
− ν̄�u + ( curl u)× u +∇P = f and div u = 0 in Ω × (0, T]. (5)

We supplement the system (5) with the boundary and initial conditions (2). Using implicit time
integration of (5) compared to explicit methods reduces accuracy, stability, and flexibility in selecting
the step size for a time variable.

In our research, on each time level, we solve the following system of equations:

−ν̄�u + curl u × u + α u +∇P = f and div u = 0 in Ω, (6)

u = g on Γ, (7)

and parameter α is a known positive constant.
The system (6) and (7) is nonlinear due to the fact that there is a rotation term curl u × u in the

first Equation (6). This term and the system as a whole we linearized by Picard’s iterative procedure
(see [8] and the references therein).

At each iteration, we need to solve the following problem:

−ν̄�u + w × u + α u +∇P = f, and div u = 0 in Ω, (8)

u = g on Γ, (9)
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which is called the Oseen system in a rotation form, where w = curl U and U is some approximation
to u.

The linearization of convection and rotation forms of nonlinear terms tends to the systems of
linear algebraic equations with various features. In the paper, we study the Oseen system in the
rotation form. The fact is that the rotation form allows us (using a skew-symmetric of the resulting
matrix) to construct the Schur complement preconditioner, which is acceptable to all parameters of the
Oseen problem and becomes more effective when ν̄ → 0 (see [9] and the references therein). For the
convection form of the Oseen problem, this is not so.

We note that for the linearized system (8) and (9), the laws of the conservation of momentum and
mass remain valid.

In the paper, we consider a special case, where Ω is a bounded non-convex polygonal domain
with one internal corner greater than 180◦ on Γ. Let its vertex be located at the origin. We define
an Rν-generalized solution of the Oseen problem (8) and (9) with a corner singularity and construct
the weighted FEM. We demonstrate the advantage of the proposed approach over the classical finite
element methods for all sizes of the reentrant corner.

Let Ω
′
δ = {x ∈ Ω̄ : ‖x‖ ≤ δ, δ ∈ (0, 1)} be a part of a δ-neighborhood, with a vertex located at the

origin, which is in Ω̄. Denote by ρ(x) a weight function: ρ(x) =

{
‖x‖, x ∈ Ω

′
δ,

δ , x ∈ Ω̄ \ Ω
′
δ.

Let Dmv(x) = ∂|m| v(x)
∂x

m1
1 ∂xm2

2
be the mth order generalized derivatives of a function v(x) in Ω,

where |m| = m1 + m2, mi, nonnegative integers. For the function v(x), we define the following
inequalities:

∫
Ω\Ω′

δ

ρ2αv2dx ≥ C1 > 0, (10)

|Dmv(x)| ≤ C2

( δ

ρ(x)

)α+m
for x ∈ Ω

′
δ and m = 0, 1, (11)

where α > 0 and constant C2 > 0 do not depend on m and α.
Denote by L2,α(Ω) a space of functions v(x), such that:

‖v‖L2,α(Ω) =
(∫

Ω

ρ2α v2dx
)1/2

< ∞.

If w = (w1, w2) is a vector function, then we define the weighted vector function space L2,α(Ω)

with a norm ‖w‖L2,α(Ω) =
(
‖w1‖2

L2,α(Ω) + ‖w2‖2
L2,α(Ω)

)1/2
.

Further, denote by L2,α(Ω, δ), α > 0, a set of elements v(x) from the L2,α(Ω) space for which
Inequalities (10) and (11) (the case m = 0) are valid with a bounded L2,α(Ω) norm. Let L0

2,α(Ω, δ) be a
subset of functions v(x), such that L0

2,α(Ω, δ) = {v ∈ L2,α(Ω, δ) :
∫
Ω

ρα vdx = 0}. If w = (w1, w2) is a

vector function, then we define a set L2,α(Ω, δ) = {w : wi ∈ L2,α(Ω, δ)} with a bounded L2,α(Ω) norm.
Let W1

2,α(Ω) be a weighted space of functions v(x), such that:

‖v‖W1
2,α(Ω) =

(
∑

|m|≤1
‖ρα |Dmv|‖2

L2(Ω)

)1/2
< ∞.

If w = (w1, w2) is a vector function, then we denote by W1
2,α(Ω) the weighted vector function

space with a norm ‖w‖W1
2,α(Ω) =

(
‖w1‖2

W1
2,α(Ω)

+ ‖w2‖2
W1

2,α(Ω)

)1/2
.
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Let W1
2,α(Ω, δ), α > 0, be a set of functions v(x) from the space W1

2,α(Ω), that meet the conditions

(10) and (11) with a bounded W1
2,α(Ω) norm. We denote by

o
W1

2,α (Ω, δ)(
o

W1
2,α (Ω, δ) ⊂ W1

2,α(Ω, δ))

a closure, with respect to the W1
2,α(Ω) norm, of the set of infinitely-differentiable functions with

compact support in Ω that meet the inequalities (10) and (11). Then, we denote by W1/2
2,α (Γ, δ) the

set of functions θ(x) on Γ : θ(x) ∈ W1/2
2,α (Γ, δ), if there exists a function Θ(x) from the set W1

2,α(Ω, δ),
such that Θ(x)|Γ = θ(x) and ‖θ‖W1/2

2,α (Γ,δ) = inf
Θ|Γ=θ

‖Θ‖W1
2,α(Ω,δ).

If w = (w1, w2) is a vector function, then we define a set W1
2,α(Ω, δ) = {w : wi ∈ W1

2,α(Ω, δ)}

with a norm of space W1
2,α(Ω). Similarly, we define the set

o
W1

2,α (Ω, δ) of vector functions in Ω and
W1/2

2,α (Γ, δ), on Γ.
Let known functions w, f = ( f1, f2) and g = (g1, g2) in (8) and (9) meet the following conditions:

w ∈ L2,γ(Ω, δ), f ∈ L2,γ(Ω, δ), g ∈ W1/2
2,γ (Γ, δ), γ ≥ 0. (12)

Bilinear and linear forms are as follows:

a(uν, v) =
∫
Ω

[
ν̄∇uν · ∇(ρ2νv) + ρ2ν(w × uν) · v + αρ2νuν · v

]
dx,

b(v, Pν) = −
∫
Ω

Pν div (ρ2νv)dx, c(uν, q) = −
∫
Ω

ρ2ν q div uν dx, l(v) =
∫
Ω

ρ2ν f · vdx.

Definition 1. The pair (uν(x), Pν(x)) ∈ W1
2,ν(Ω, δ)× L0

2,ν(Ω, δ) is called the Rν-generalized solution for an

Oseen system in the rotation form (8) and (9) such that for all pairs (v(x), q(x)) ∈
o

W1
2,ν (Ω, δ)× L0

2,ν(Ω, δ),
the equalities:

a(uν, v) + b(v, Pν) = l(v),

c(uν, q) = 0

hold, where functions w, f and g satisfy the conditions (12) and ν ≥ γ.

Note that the bilinear and linear forms in the definition of an Rν-generalized solution include
a weight function ρ(x). The introduction of the weight function into integral identities suppresses
the influence of the singularity in the solution and ensures that uν and Pν belong to the weighted sets
W2

2,ν(Ω, δ) and W1
2,ν(Ω, δ), respectively. This property of the Rν-generalized solution allows one to

construct a finite element scheme with a O(h) rate. This rate is significantly higher than in the classical
finite element method for the Oseen problem in a polygonal domain with the internal corner greater
than 180◦ on the boundary.

3. The Weighted Finite Element Scheme

Now, we construct a finite element scheme for an Oseen problem in the rotation form (8) and (9)
based on the definition of an Rν-generalized solution.

We would like to use the finite element space pair, which satisfies the law of mass conservation
not in the weak (like the well-known Taylor–Hood (TH) element pair [14]), but in the strong sense.
The fact is that the implementation of the mass conservation law in a weak sense combines pressure
and velocity field errors and does not eliminate possible instabilities [17]. In the paper, we apply
the Scott–Vogelius (SV) element pair [16] that will help us to obtain strong mass conservation of the
approximate solution.
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First, we divide Ω into a finite quantity of triangles Li, which we call macro-elements. The set
of elements Li represents a quasi-uniform (see [1]) triangulation Th of Ω. Then, we divide each
macro-element Li ∈ Th into three triangles Kij using the barycenter of Li. Thus, we construct a
triangulation Υh, which is based on a barycenter refinement of a triangulation Th. Denote by Ωh the
set of resulting triangles (which are called finite elements) with sides of order h, i.e., Ωh =

⋃
Kij

∈Υh

Kij =

⋃
Li∈Th

( 3⋃
j=1

Kij

)
=

⋃
Li∈Th

Li.

Let Am and Bl be vertices and midpoints of the finite element sides Kij ∈ Υh, respectively. Then,
for the components of a velocity field and pressure, we define sets of nodes G and H, respectively,
such that G = GΩ

⋃
GΓ = {Am ∪ Bl}, where GΩ is a totality of Υh nodes in Ω, GΓ, on Γ, and H = {Ck},

where Ck coincide with a node Am on the appropriate element Kij ∈ Υh (see Figure 1).
Now, we define spaces of the SV element pair. The space Xh, for the components of the velocity

field, coincides with the corresponding space of degree two of the THelement pair, i.e., Xh = {wh ∈
C(Ω) : wh|Kij

∈ P2(Kij), ∀Kij ∈ Υh} and for a velocity field Xh = Xh × Xh. The space Yh, for the

pressure, differs from the corresponding space degree one of the TH element pair by the fact that it is
discontinuous in Ω, i.e., Yh = {yh ∈ L2(Ω) : yh|Kij

∈ P1(Kij), ∀Kij ∈ Υh,
∫
Ω

yhdx = 0}.

Figure 1. The macro-element Li: squares and dots are the velocity and pressure nodes on Kij ,
j = 1, 2, 3, respectively.

The SV element pair has an important property, namely div Xh ⊂ Yh. This means that there exists
a function yh ∈ Yh equal to div wh such that: from the condition for performing mass conservation
in a weak sense, i.e.,

∫
Ω

div whψhdx = 0 ∀ψh ∈ Yh, we get a pointwise mass conservation, i.e.,

‖ div wh‖L2(Ω) = 0. Moreover, in [18], it was established that spaces of the SV element pair before us
satisfy the Ladyzhenskaya–Babus̆ka–Brezzi condition. Note, that approximations obtained using the
TH element, pair unlike the SV element pair, in general, do not achieve pointwise mass conservation.

Then, we define the weighted basis functions and describe a special finite element method for
the Oseen system in the rotation form (8) and (9). For components of the velocity field, for each node
Mk ∈ GΩ, we will match a function:

Φk(x) = ρν�(x) · ϕk(x), k = 0, 1, . . . ,

where ϕk(x) ∈ Xh, ϕk(Mj) =

{
1, k = j,

0, k �= j,
k, j = 0, 1, . . . ; ν� is a parameter.

We define a set Vh, for components of the velocity field, such that for any velocity field vh =

(vh
1, vh

2), vh
i ∈ Vh, we have:

vh
1(x) = ∑

k
d2k Φk(x), vh

2(x) = ∑
k

d2k+1 Φk(x), (13)

where dl = ρ−ν�(M[l/2]) d̃l .
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Let Vh
0 be a subset in Vh such that Vh

0 = {wh ∈ Vh : wh(Mk)|Mk∈GΓ = 0}. Moreover, we define
velocity field sets Vh = Vh × Vh and Vh

0 = Vh
0 × Vh

0 .
For the pressure, for each node Nl ∈ H, we will match a function:

Θm(x) = ρμ�
(x) · θm(x), m = 0, 1, . . . ,

where θm(x) ∈ Yh, θm(Nj) =

{
1, m = j,

0, m �= j,
m, j = 0, 1, . . . ; μ� is a parameter.

Then, we define a set Qh, for the pressure, such that for any qh ∈ Qh, we have:

qh(x) = ∑
m

em Θm(x), (14)

where em = ρ−μ�
(Nm) ẽm.

Remark 1. The coefficients dj and ei in (13) and (14) are defined as a solution of a system (17) (see below).

Remark 2. The following embedding of sets is valid:

Vh ⊂ W1
2,ν(Ωh, δ), Vh

0 ⊂
o

W1
2,ν (Ωh, δ), Qh ⊂ L0

2,ν(Ωh, δ).

Definition 2. The pair (uh
ν(x), Ph

ν (x)) ∈ Vh × Qh is called an approximate Rν-generalized solution for an
Oseen system in the rotation form (8) and (9) obtained by the weighted FEM if the equalities:

a(uh
ν, vh) + b(vh, Ph

ν ) = l(vh), (15)

c(uh
ν, qh) = 0 (16)

hold for any pair (vh(x), qh(x)) ∈ Vh
0 × Qh, where uh

ν = (uh
ν,1, uh

ν,2) and ω ∈ L2,γ(Ω, δ), f ∈ L2,γ(Ω, δ), g ∈
W1/2

2,γ (Γ, δ), ν ≥ γ.

Thus, we construct a weighted FEM to find an Rν-generalized solution for the rotation form of
the Oseen problem (8) and (9).

Then, using (15) and (16), we get a system of linear algebraic equations:

Ad + Be = ω, CTd = z, (17)

where d = (d0, d2, d4, . . . , d1, d3, d5, . . .)T , e = (e0, e1, e2, . . .)T , ω = Fh, z = 0.

4. Iterative Algorithm

Now, we present an iterative procedure for solving the system of equations (17). Note that the
system (17), which needs to be solved, has a large dimension, and moreover, its matrix is sparse.
Finding the solution of the system by the direct method is not possible, so that we will construct a
convergent iterative process of the following type [19]:

(1) Let (d0, e0) be an initial guess for the system (17). We iterate (n = 0, 1, 2, . . .) until the stopping
condition is fulfilled;

(2) Compute dn+1 = dn + Â−1(ω − Adn − Ben);
(3) Find en+1 = en + Ŝ−1(CTdn+1 − z);

where Â is a preconditioning matrix to A and Ŝ is a preconditioning matrix to S = CTA−1B, which is
called the Schur complement matrix. Next, we describe the process of constructing preconditioning
matrices Â and Ŝ.
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At first, we build a preconditioner Â applying an incomplete LU factorization, where L and
U are low unitriangular and upper triangular matrices respectively. At each iteration in Item 2,
we employ the GMRES(l) method (see [20]) as the solution of a problem Av = s with the left
preconditioner Â. The method is designed so that it approximates the solution in an lth order
Krylov subspace. In our research, the dimension of a Krylov subspace is equal to 10; so that if
r0 = Â−1(s − Av), then the Arnoldi procedure will build an orthonormal basis of the subspace:
Span{r0, (Â−1A)1r0, . . . , (Â−1A)9r0}.

Secondly, we build an intermediate matrix S̃ to Ŝ. The matrix S̃ represents a mass matrix M
ν,μ� ,ν
P

of a special view, such that on all elements K ∈ Υh :

(M
ν,μ� ,ν
P )ij =

1
ν

∫
K

ρ2(ν+μ�) θj(x) θi(x)dx, θj(x), θi(x) ∈ Yh, j, i = 0, 1, . . . .

After that, we determine a matrix S̄, which is equal to a diagonal matrix M̄
ν,μ� ,ν
P with elements(

M̄
ν,μ� ,ν
P

)
ii = ∑

k

(
M

ν,μ� ,ν
P

)
ik. In other words,

(
S̄
)

ii = ∑
k

(
S̃
)

ik. It is known (see [9] and the references

therein) that such diagonal lumping S̄ is a good preconditioner to the initial matrix S̃.
Therefore, in order to determine the vector Ψ� := Ŝ−1χ, at each iteration of Item 3, we must find

a solution to the following internal procedure: (1) φ0 = 0; (2) φm = φm−1 + S̄−1(χ − S̃φm−1) (m =

1, . . . , M); (3) Ψ� = φM.
We apply the GMRES(5) method, where Span{r̄, (S̄−1S̃)1 r̄, . . . , (S̄−1S̃)4 r̄}, and

r̄ = S̄−1(χ − S̃φm−1).

5. Numerical Experiments

Now, we present numerical results for the Oseen system in the rotation form (8) and (9) and show
the advantage of the proposed method.

Let Ωk = (−l; l)× (−l; l) \ Ḡk be a polygon with one internal corner greater than 180◦ on Γk

whose vertex is at the origin. We will consider the following sizes of the reentrant corner: ωk =
2k+1

2k π,
k = 1, 2, 3. The triangulation Υh (see Section 3) of each Ω̄k, k = 1, 2, 3 and l = 1 we present in Figure 2.

Figure 2. The triangulation Υh of a domain Ω̄k.

In a test problem, we consider the solution of the problem (8), (9), which has a singularity in a
neighborhood of a point located at the origin. Let α = ν̄ = 1, w = b · curl u, b = 0.95, and for each
corner ωk in polar coordinates (r, ϕ), we have an auxiliary function:

Ψk(ϕ) =
sin((1 + λk)ϕ)cos(λkωk)

1 + λk
− sin((1 − λk)ϕ)cos(λkωk)

1 − λk
+ cos((1 − λk)ϕ)− cos((1 + λk)ϕ).

Then, the exact solution u = (u1, u2) and P of the problem (8) and (9) for each corner ωk, k = 1, 2, 3,
in polar coordinates has the following form:
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u1(r, ϕ) = rλk · ((λk + 1) sin ϕ · Ψk(ϕ) + cos ϕ · Ψ′
k(ϕ)),

u2(r, ϕ) = rλk · (sin ϕ · Ψ′
k(ϕ)− (λk + 1) cos ϕ · Ψk(ϕ)),

P(r, ϕ) = rλk−1 · (λk + 1)2 Ψ′
k(ϕ) + Ψ′′′

k (ϕ)

λk − 1
,

where λk = min{λ : sin(λ ωk) + λ sin ωk = 0 and λ > 0}.
Thus, for the corner ω1 = 3π

2 , we have λ1 ≈ 0.544483, for ω2 = 5π
4 , λ2 ≈ 0.673583, and for

ω3 = 9π
8 , λ3 ≈ 0.800766. The proposed solution is analytical in Ω̄k \ (0, 0), but unfortunately, P �∈

W1
2 (Ωk), u �∈ W2

2(Ωk).
In numerical experiments, we use meshes with a various step size h and number N, where N · h

equals two. The approximate generalized solution (velocity field) by classical FEM converges to the
exact one in the W1

2(Ωk) norm with a rate depending on the size of reentrant corner ω, the so-called
pollution effect (see [12] and the references therein): for a corner ω1 = 3π

2 , we have the rate of
convergence, which is equal to O(h0.55), for a corner ω2 = 5π

4 , O(h0.67), and for a corner ω3 = 9π
8 ,

O(h0.8) (see Table 1); whereas, the approximate Rν-generalized solution by the presented weighted
FEM converges to the exact one in the W1

2,ν(Ωk) norm with a rate that is independent of the value of
the internal angle ω and has the first order by h (see Table 2), where we derive computationally the
optimal parameters δ, ν� = ν�opt and ν . Both errors for the Rν-generalized and generalized solutions
visually are represented in Figure 3 for different values of a number N.

Table 1. The generalized solution error (uh − u) in the norm of a space W1
2(Ωk).

ωk, N = 74 148 296

3π
2

2.886 ×10−1 1.980 ×10−1 1.358 ×10−1

5π
4

1.622 ×10−1 1.017 ×10−1 6.377 ×10−2

9π
8

6.747 ×10−2 3.870 ×10−2 2.220 ×10−2

Table 2. The Rν-generalized solution error (uh
ν − uν) in the norm of a space W1

2,ν(Ωk), where ν� =

μ� = λk − 1 and ν� = μ� = ν�opt.

ν� = μ� = λk − 1 ν� = μ� = ν�
opt

ωk ν δ, N = 74 148 296 74 148 296

3π
2

1.6 0.01375 2.261 ×10−4 1.126 ×10−4 5.504 ×10−5 1.614 ×10−5 8.026 ×10−5 3.991 ×10−5

0.01625 3.181 ×10−4 1.582 ×10−4 7.895 ×10−5 2.290 ×10−4 1.138 ×10−4 5.648 ×10−5

1.9 0.01375 6.236 ×10−5 3.101 ×10−5 1.543 ×10−5 4.469 ×10−5 2.235 ×10−5 1.109 ×10−5

0.01625 9.311 ×10−5 4.601 ×10−5 2.288 ×10−5 6.789 ×10−5 3.381 ×10−5 1.675 ×10−5

5π
4

1.6 0.01375 1.181 ×10−4 5.849 ×10−5 2.925 ×10−5 9.247 ×10−5 4.603 ×10−5 2.276 ×10−5

0.01625 1.720 ×10−4 8.568 ×10−5 4.275 ×10−5 1.322 ×10−4 6.567 ×10−5 3.260 ×10−5

1.9 0.01375 3.320 ×10−5 1.651 ×10−5 8.234 ×10−6 2.605 ×10−5 1.293 ×10−5 6.437 ×10−6

0.01625 5.115 ×10−5 2.547 ×10−5 1.262 ×10−5 3.835 ×10−5 1.905 ×10−5 9.513 ×10−6

9π
8

1.6 0.01375 6.020 ×10−5 2.993 ×10−5 1.495 ×10−5 4.493 ×10−5 2.233 ×10−5 1.104 ×10−5

0.01625 7.947 ×10−5 3.946 ×10−5 1.959 ×10−5 6.124 ×10−5 3.036 ×10−5 1.497 ×10−5

1.9 0.01375 1.684 ×10−5 8.366 ×10−6 4.170 ×10−6 1.239 ×10−5 6.158 ×10−6 3.068 ×10−6

0.01625 2.364 ×10−5 1.174 ×10−5 5.800 ×10−6 1.756 ×10−5 8.708 ×10−6 4.324 ×10−6

Let δ′ji = |uj(Mi) − uh
j (Mi)| and δji = |uj(Mi) − uh

ν,j(Mi)|, j = 1, 2, Mi ∈ GΩ be errors for the
generalized and Rν-generalized solutions, respectively. Then, we show the percentage of nodes, where
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δ′1i and δ1i are less than a given value �̄l . The quantity of points Mi ∈ GΩ, where δ′1j < �̄l (for the
classical FEM), is significantly less in relation to the quantity of points Mi ∈ GΩ, where δ1j < �̄l (for
the proposed weighted FEM) for all sizes of the reentrant corner ω (see Table 3). Moreover, in numerical
experiments, the number of nodes Mi, where δ′2i < �̄l and δ2i < �̄l are approximately equal to the
number of nodes Mi, where δ′1i < �̄l and δ1i < �̄l , l = 1, 2, respectively.

Table 3. The percentage of points Mi ∈ GΩ, where the values δ1i and δ′1i are less than �̄l , l = 1, 2.

Rν-Generalized Solution, ν = 1.9,
Generalized Solution

δ = 0.01375, ν� = μ� = ν�
opt

ωk �̄l , N = 74 148 296 74 148 296

3π
2

10−5 19.1% 36.7% 65.7% 13.2% 14.8% 22.1%

5 × 10−6 16.4% 29.3% 51.4% 6.2% 9.1% 15.6%

5π
4

10−5 33.9% 51.0% 76.2% 21.4% 32.4% 44.2%

5 × 10−6 24.1% 42.4% 64.7% 11.4% 17.5% 27.4%

9π
8

10−5 60.3% 91.5% 98.1% 44.7% 68.3% 86.4%

5 × 10−6 39.7% 62.7% 80.5% 24.8% 32.7% 44.3%

Then, we present the distribution of errors δji and δ′ji in the points Mk for components uh
ν,j and uh

j
for all sizes ωl , l = 1, 2, 3, j = 1, 2 , and h, such that N = 148 and N = 296. The weighted finite element
method allows us to perform computations with high accuracy both inside of the domain and near the
point of singularity. Moreover, the error of the proposed FEM is localized near the point of singularity
and does not extend into the interior of the domain, in contrast to the error of the classical FEM for all
values of the internal corner ω (see Figures 4–15).

In Figures 16–18, we show the dependence of error in the W1
2,ν(Ωk) norm on the parameter

ν� (μ� = ν�), where each minimum is compatible with the best value ν�opt. Any value from the
interval (λk − 1, 0) can be taken as an exponent ν� for the presented FEM in the domain Ωk with a
reentrant corner ωk. Moreover, if the exponent μ� does not coincide with ν�, then we get substantially
worse results. This research was supported in through computational research provided by the Shared
Facility Center “Data Center of FEB RAS”.

4e-1

2e-1

1e-1

5e-2

2.5e-2

74 148 296

1.6e-4

8e-5

4e-5

2e-5

1e-5

74 148 296

ω1 = 3π/2
ω2 = 5π/4
ω3 = 9π/8

Figure 3. The errors of (left) a classical FEM in the W1
2 norm and (right) a weighted FEM in the

W1
2,ν norm, where ν = 1.6, δ = 0.01375 : ω1 = 3π

2 , ν� = νopt = −0.35; ω2 = 5π
4 , ν� = νopt = −0.25;

ω3 = 9π
8 , ν� = νopt = −0.125, for different values of a number N.
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Figure 4. The errors δ′1i of the approximate generalized solution (uh
1) : ω1 = 3π

2 , (left) N = 148,
(right) N = 296.

Figure 5. The errors δ1i of the approximate Rν-generalized solution (uh
ν,1) : ω1 = 3π

2 , ν = 1.6,
δ = 0.01375, ν� = μ� = −0.35, (left) N = 148, (right) N = 296.

Figure 6. The distribution of the errors δ′2i of the approximate generalized solution (uh
2) : ω1 = 3π

2 ,
(left) N = 148, (right) N = 296.
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Figure 7. The errors δ2i of the approximate Rν-generalized solution (uh
ν,2) : ω1 = 3π

2 , ν = 1.6,
δ = 0.01375, ν� = μ� = −0.35, (left) N = 148, (right) N = 296.

Figure 8. The errors δ′1i of the approximate generalized solution (uh
1) : ω2 = 5π

4 , (left) N = 148,
(right) N = 296.

Figure 9. The errors δ1i of the approximate Rν-generalized solution (uh
ν,1) : ω2 = 5π

4 , ν = 1.6,
δ = 0.01375, ν� = μ� = −0.25, (left) N = 148, (right) N = 296.
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Figure 10. The errors δ′2i of the approximate generalized solution (uh
2) : ω2 = 5π

4 , (left) N = 148,
(right) N = 296.

Figure 11. The errors δ2i of the approximate Rν-generalized solution (uh
ν,2) : ω2 = 5π

4 , ν = 1.6,
δ = 0.01375, ν� = μ� = −0.25, (left) N = 148, (right) N = 296.

Figure 12. The errors δ′1i of the approximate generalized solution (uh
1) : ω3 = 9π

8 , (left) N = 148,
(right) N = 296.
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Figure 13. The errors δ1i of the approximate Rν-generalized solution (uh
ν,1) : ω3 = 9π

8 , ν = 1.6,
δ = 0.01375, ν� = μ� = −0.125, (left) N = 148, (right) N = 296.

Figure 14. The errors δ′2i of the approximate generalized solution (uh
2) : ω3 = 9π

8 , (left) N = 148,
(right) N = 296.

Figure 15. The errors δ2i of the approximate Rν-generalized solution (uh
ν,2) : ω3 = 9π

8 , ν = 1.6,
δ = 0.01375, ν� = μ� = −0.125, (left) N = 148, (right) N = 296.
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ν = 1.9, δ = 0.01375, N = 296

ν = 1.9, δ = 0.01375, N = 148

Figure 16. The dependence of error (uh
ν − u) in the W1

2,ν(Ω1) norm on the degree ν�, ω1 = 3π
2 .

4e-05

8e-05

-0.325 -0.3 -0.275 -0.25 -0.225 -0.2 -0.175 -0.15

ν = 1.9, δ = 0.01625, N = 296

ν = 1.9, δ = 0.01625, N = 148

ν = 1.9, δ = 0.01375, N = 296

ν = 1.9, δ = 0.01375, N = 148

Figure 17. The dependence of error (uh
ν − u) in the W1

2,ν(Ω2) norm on the degree ν�, ω2 = 5π
4 .

2e-05

4e-05

-0.2 -0.175 -0.15 -0.125 -0.1 -0.075 -0.05 -0.025

ν = 1.9, δ = 0.01625, N = 296

ν = 1.9, δ = 0.01625, N = 148

ν = 1.9, δ = 0.01375, N = 296

ν = 1.9, δ = 0.01375, N = 148

Figure 18. The dependence of error (uh
ν − u) in the W1

2,ν(Ω3) norm on the degree ν�, ω3 = 9π
8 .

6. Conclusions

The main results of the numerical experiments for the Oseen problem (8) and (9) lead to the
following conclusions:
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• The approximate generalized solution (velocity field) by classical FEM converges to the exact
one in the W1

2(Ωk) norm with a rate O(hλ), λ < 1, where the exponent λ depends on the size of
reentrant corner ω, the so-called pollution effect (see [12] and the references therein), while the
approximate Rν-generalized solution by the presented weighted FEM converges to the exact one
in the W1

2,ν norm with a rate that is independent of the value of the internal angle ω and has the
first order by h for various values of ν, δ (see Tables 1 and 2 and Figure 3).

• Thanks to Theorem 3.1 in [13], there exists a limitation on the radius δ∗ of the neighborhood of a
reentrant corner ω and ρ(x) exponent ν∗ in Definition 1, that for all δ < δ∗ and ν > ν∗, a weighted
inf-sup condition holds. After a series of computational experiments, we conclude that ν∗ ∼ 1
and δ∗ ∼ h.

• The proposed approach allows us to compute the approximate solution by the weighted FEM
with a given accuracy 10−3, for example in a case when the internal corner ω is equal to 3π

2 ,
about 106-times faster than using classical FEM. Note that in implementing the weighted FEM,
one can spend about 106-times less computing resources and energy consumption.

• The weighted finite element method enables us to perform computations with high accuracy,
both inside of the domain and near the point of singularity.
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