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Preface to ”Symmetry in Mathematical Analysis and

Application”

‘Mathematics servants of Sciences, Mathematics queens of Sciences.’ This is the rough translation

of a statement in Latin, describing the role of mathematics in the scientific community. At the core

of mathematics, mathematical analysis in the past centuries has provided applications in different

disciplines that are essential for accessing modern knowledge, in both practical and theoretical

aspects. In addition to these applications, mathematics possesses a wonderful beauty: fundamental

formulas present deep links in symmetry which go beyond technical expressions.

This Special Issue of Symmetry consists of six articles devoted to models in medicine, biology,

ecology and other disciplines, all expressed in terms of mathematical analysis, showing the

effectiveness of mathematics in different aspects of modern life. Other contributions in pure

mathematics also give evidence for the role of Symmetry in these theoretical aspects.

In this preface, the six articles in the Special Issue will be addressed, and a detailed presentation

of the different topics will be provided. Here, then, we will give an idea of some of the relevant

achievements in the present volume.

In medicine, biology and ecology, immune system response is studied and related to the risk of

cancer. The increase of the nutrition of the prey and destabilizing the predator–prey dynamics are

both considered.

In symmetry in mathematics, the classical symmetric means are generalized to weighted

Pythagorean means. The eigenvalues of the sequences of matrices are studied, in connection with

stability and convergence problems.

Other relevant contributions concern the efficiency of public transport, with particular reference

to the reduction of congestion, energy consumption and emissions. Blast waves are also considered,

in particular in the relevant case of supersonic speed, as in explosions.

Overall, the volume is an excellent report on the relevance of mathematical analysis in applied

sciences, with an emphasis placed on the deep relations with Symmetry.

Luigi Rodino

Special Issue Editor
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Arnon Ploymukda and Pattrawut Chansangiam *

Department of Mathematics, Faculty of Science, King Mongkut’s Institute of Technology Ladkrabang,
Bangkok 10520, Thailand; arnon.p.math@gmail.com
* Correspondence: pattrawut.ch@kmitl.ac.th; Tel.: +66-935-266600

Received: 14 August 2019; Accepted: 5 October 2019; Published: 9 October 2019

Abstract: In this paper, we establish several integral inequalities of Chebyshev type for bounded
continuous fields of Hermitian operators concerning Tracy-Singh products and weighted Pythagorean
means. The weighted Pythagorean means considered here are parametrization versions of three
symmetric means: the arithmetic mean, the geometric mean, and the harmonic mean. Every continuous
field considered here is parametrized by a locally compact Hausdorff space equipped with a finite
Radon measure. Tracy-Singh product versions of the Chebyshev-Grüss inequality via oscillations are
also obtained. Such integral inequalities reduce to discrete inequalities when the space is a finite space
equipped with the counting measure. Moreover, our results include Chebyshev-type inequalities for
tensor product of operators and Tracy-Singh/Kronecker products of matrices.

Keywords: Chebyshev inequality; Tracy-Singh product; continuous field of operators; Bochner integral;
weighted Pythagorean mean

1. Introduction

One of the fundamental inequalities in mathematics is the Chebyshev inequality, named after
P.L. Chebyshev, which states that

1
n

n

∑
i=1

aibi �
(

1
n

n

∑
i=1

ai

)(
1
n

n

∑
i=1

bi

)
(1)

for all real numbers ai, bi (1 � i � n) such that a1 � . . . � an and b1 � . . . � bn, or a1 � . . . � an and
b1 � . . . � bn. This inequality can be generalized to

n

∑
i=1

wiaibi �
(

n

∑
i=1

wiai

)(
n

∑
i=1

wibi

)
(2)

where wi � 0 for all 1 = 1, . . . , n. A matrix version of (2) involving the Hadamard product was obtained in [1].
A continuous version of the Chebyshev inequality [2] says that if f , g : [a, b] → R are monotone

functions in the same sense and p : [a, b] → [0, ∞) is an integrable function, then

∫ b

a
p(x)dx

∫ b

a
p(x) f (x)g(x)dx �

∫ b

a
p(x) f (x)dx ·

∫ b

a
p(x)g(x)dx. (3)
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If f and g are monotone in the opposite sense, the reverse inequality holds. In [3], Moslehian and
Bakherad extended this inequality to Hilbert space operators related with the Hadamard product by using
the notion of synchronous Hadamard property. They also presented integral Chebyshev inequalities
respecting operator means.

The Grüss inequality, first introduced by G. Grüss in 1935 [4], is a complement of the Chebyshev
inequality. This inequality gives a bound of the difference between the product of the integrals and the
integral of the product for two integrable functions. For each integral function f : [a, b] → R, let us denote

I( f ) =
1

b − a

∫ b

a
f (x)dx.

The Grüss inequality states that if f , g : [a, b] → R are integrable functions and there exist real
constants k, K, l, L such that k � f (x) � K and l � g(x) � L for all x ∈ [a, b], then

|I( f g)− I( f )I(g)| � 1
4
(K − k)(L − l). (4)

This inequality has been studied and generalized by several authors; see [5–7]. In [7], the term
Chebyshev-Grüss inequalities is used mentioning to Grüss inequalities for Chebyshev functions TI which
defined as

TI ( f , g) = I( f · g)− I( f ) · I(g).

A general form of Chebyshev-Grüss inequalities is given by

|TI ( f , g)| � E(I , f , g)

where E is an expression depending on the arithmetic integral mean I and oscillations of f and g.
Chebyshev-Grüss inequalities for some kind of operator via discrete oscillations is presented by Gonska,
Raça and Rusu [7].

On the other hand, the notion of tensor product of operators is a key concept in functional analysis
and its applications particularly in quantum mechanics. The theory of tensor product of operators has been
investigate in the literature; see, e.g., [8,9]. In [10,11], the authors extend the notion of tensor product to
the Tracy-Singh product for operators on a Hilbert space, and supply algebraic/order/analytic properties
of this product.

In this paper, we establish a number of integral inequalities of Chebyshev type for continuous fields
of Hermitian operators relating Tracy-singh products and weighted Pythagorean means. The Pythagorean
means considered here are three classical means -the geometric mean, the arithmetic mean, and the
harmonic mean. The continuous field considered here is parametrized by a locally compact Hausdorff
space Ω endowed with a finite Radon measure. In Section 2, we give basic results on Tracy-Singh
products for Hilbert space operators and Bochner integrability of continuous field of operators on a locally
compact Housdorff space. In Section 3, we provide Chebyshev type inequalities involving Tracy-Singh
products of operators under the assumption of synchronous Tracy-Singh property. In Section 4, we
establish Chebyshev integral inequalities concerning operator means and Tracy-Singh products under
the assumption of synchronous monotone property. Finally, we prove Chebyshev-Grüss inequalities
via oscillations for continuous fields of operators in Section 5. In the case that Ω is a finite space with
the counting measure, such integral inequalities reduce to discrete inequalities. Our results include
Chebyshev-type inequalities concerning tensor product of operators and Tracy-Singh/Kronecker products
of matrices.
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2. Preliminaries

In this paper, we consider complex Hilbert spaces H and K. The symbol B(X) stands to the Banach
space of bounded linear operators on a Hilbert space X. The cone of positive operators on X is denoted
by B(X)+. For Hermitian operators A and B in B(X), the situation A ≥ B means that A − B ∈ B(X)+.
Denote the set of all positive invertible operators on X by B(X)++.

We fix the following orthogonal decompositions:

H =
m⊕

i=1

Hi, K =
n⊕

k=1

Kk

where all Hi and Kj are Hilbert spaces. Such decompositions lead to a unique representation for each
operator A ∈ B(H) and B ∈ B(K) as a block-matrix form:

A =
[
Aij
]m,m

i,j=1 and B = [Bkl ]
n,n
k,l=1

where Aij ∈ B(Hj,Hi) and Bkl ∈ B(Kl ,Kk) for each i, j, k, l.

2.1. Tracy-Singh Product for Operators

Let A ∈ B(H) and B ∈ B(K). Recall that the tensor product of A and B, denoted by A ⊗ B, is a unique
bounded linear operator on the tensor product space H⊗K such that

(A ⊗ B)(x ⊗ y) = Ax ⊗ By, ∀x ∈ H, ∀y ∈ K.

When H = K = C, the tensor product of operators becomes the Kronecker product of matrices.

Definition 1. Let A = [Aij]
m,m
i,j=1 ∈ B(H) and B = [Bkl ]

n,n
k,l=1 ∈ B(K). The Tracy-Singh product of A and B is

defined to be in the form
A � B =

[[
Aij ⊗ Bkl

]
kl

]
ij

, (5)

which is a bounded linear operator from
m⊕

i=1

n⊕
k=1

Hi ⊗Kk into itself.

When m = n = 1, the Tracy-Singh product A � B is the tensor product A ⊗ B. If Hi = Kj = C for all
i, j, the above definition becomes the usual Tracy-Singh product for complex matrices.

Lemma 1 ([10,11]). Let A, B, C, D be compatible operators. Then

1. (αA)� B = A � (αB) = α(A � B) for any α ∈ C.
2. (A + B)� (C + D) = A � C + A � D + B � C + B � D.
3. (A � B)(C � D) = (AC)� (BD).
4. If A and B are Hermitian, then so is A � B.
5. If A and B are positive and invertible, then (A � B)α = Aα � Bα for any α ∈ R.
6. If A � C � 0 and B � D � 0, then A � B � C � D � 0.

2.2. Bochner Integration

Let Ω be a locally compact Hausdorff (LCH) space equipped with a finite Radon measure μ. A family
A = (At)t∈Ω of operators in B(H) is said to be bounded if there is a constant M > 0 for which ‖At‖ � M
for all t ∈ Ω. The family A is said to be a continuous field if parametrization t 	→ At is norm-continuous

3
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on Ω. Every continuous field A = (At)t∈Ω can have the Bochner integral
∫

Ω Atdμ(t) if the norm function
t 	→ ‖At‖ possess the Lebesgue integrability. In this case, the resulting integral is a unique element in
B(H) such that

φ

(∫
Ω

Atdμ(t)

)
=

∫
Ω

φ (At) dμ(t)

for every bounded linear functional φ on B(H).

Lemma 2 (e.g., [12]). Let (X, ‖ · ‖X) be a Banach space and (Γ, υ) a finite measure space. Then a measurable
function f : Γ → X is Bochner integrable if and only if its norm function ‖ f ‖ is Lebesgue integrable.

Lemma 3 (e.g., [12]). Let f : Γ → X be a Bochner integrable function. If ϕ : X → Y is a bounded linear operator,
then the composition ϕ ◦ f is Bochner integrable and∫

Γ
(ϕ ◦ f )dυ = ϕ

∫
Γ

f dυ.

Proposition 1. Let (At)t∈Ω be a bounded continuous field of operators in B(H). Then for any X ∈ B(K),∫
Ω

Atdμ(t)� X =
∫

Ω
(At � X)dμ(t).

Proof. Since the map t 	→ At is continuous and bounded, it is Bochner integrable on Ω. Note that the
map T 	→ T � X is linear and bounded by Lemma 1. Now, Lemma 3 implies that the map t 	→ At � X is
Bochner integrable on Ω and ∫

Ω
Atdμ(t)� X =

∫
Ω
(At � X)dμ(t).

for all X ∈ B(K).

3. Chebyshev Type Inequalities Involving Tracy-Singh Products of Operators

From now on, let Ω be an LCH space equipped with a finite Radon measure μ. Let A = (At)t∈Ω,
B = (Bt)t∈Ω, C = (Ct)t∈Ω and D = (Dt)t∈Ω be continuous fields of Hilbert space operators.

Definition 2. The fields A and B are said to have the synchronous Tracy-Singh property if, for all s, t ∈ Ω,

(At − As)� (Bt − Bs) � 0. (6)

They are said to have the opposite-synchronous Tracy-Singh property if the reverse of (6) holds for all s, t ∈ Ω.

Theorem 1. Let A and B be bounded continuous fields of Hermitian operators in B(H) and B(K), respectively,
and let α : Ω → [0, ∞) be a bounded measurable function.

1. If A and B have the synchronous Tracy-Singh property, then∫
Ω

α(s)dμ(s)
∫

Ω
α(t)(At � Bt)dμ(t) �

∫
Ω

α(t)Atdμ(t)�
∫

Ω
α(s)Bsdμ(s). (7)

2. If A and B have the opposite-synchronous Tracy-Singh property, then the reverse of (7) holds.

4
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Proof. By using Lemma 1, Proposition 1 and Fubini’s Theorem [13], we have∫
Ω

α(s)dμ(s)
∫

Ω
α(t)(At � Bt)dμ(t)−

∫
Ω

α(t)Atdμ(t)�
∫

Ω
α(s)Bsdμ(s)

=
∫∫

Ω2
α(s)α(t)(At � Bt)dμ(t)dμ(s)−

∫∫
Ω2

α(t)α(s)(At � Bs)dμ(t)dμ(s)

=
1
2

∫∫
Ω2

[α(s)α(t)(At � Bt)− α(t)α(s)(At � Bs)] dμ(t)dμ(s)

+
1
2

∫∫
Ω2

[α(t)α(s)(As � Bs)− α(s)α(t)(As � Bt)] dμ(s)dμ(t)

=
1
2

∫∫
Ω2

α(s)α(t) [(At − As)� (Bt − Bs)] dμ(t)dμ(s).

For the case 1, we have ∫∫
Ω2

α(s)α(t) [(At − As)� (Bt − Bs)] dμ(t)dμ(s) � 0 (8)

and thus (7) holds. For another case, we get the reverse of (8) and, thus, the reverse of (7) holds.

Remark 1. In Theorem 1 and other results in this paper, we may assume that Ω is a compact Hausdorff space.
In this case, every continuous field on Ω is automatically bounded.

The next corollary is a discrete version of Theorem 1.

Corollary 1. Let Ai, Bi be Hermitian operators and let ωi be nonnegative numbers for each i = 1, . . . , n. Let
A = (A1, . . . , An) and B = (B1, . . . , Bn).

1. If A and B have the synchronous Tracy-Singh property, then

n

∑
i=1

ωi

n

∑
i=1

ωi(Ai � Bi) �
(

n

∑
i=1

ωi Ai

)
�
(

n

∑
i=1

ωiBi

)
. (9)

2. If A and B have the opposite-synchronous Tracy-Singh property, then the reverse of (9) holds.

Proof. From the previous theorem, set Ω = {1, . . . , n} equipped with the counting measure and α(i) = ωi
for all i = 1, . . . , n.

4. Chebyshev Integral Inequalities Concerning Weighted Pythagorean Means of Operators

Throughout this section, the space Ω is equipped with a total ordering �.

Definition 3. We say that a field A is increasing (decreasing, resp.) whenever s � t implies As � At (As � At, resp.).

Definition 4. Two ordered pairs (X1, X2) and (Y1, Y2) of Hermitian operators are said to have the synchronous
property if either

Xi � Yi for i = 1, 2, or Xi � Yi for i = 1, 2.

The pairs (X1, X2) and (Y1, Y2) are said to have the opposite-synchronous property if either

X1 � Y1 and X2 � Y2, or X1 � Y1 and X2 � Y2.

5
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Definition 5. Let A,B, C,D be continuous fields of Hermitian operators. Two ordered pairs (A,B) and (C,D)

are said to have the synchronous monotone property if (At, Bt) and (Ct, Dt) have the synchronous property for
all t ∈ Ω. They are said to have the opposite-synchronous monotone property if (At, Bt) and (Ct, Dt) have the
opposite-synchronous property for all t ∈ Ω.

Let us recall the notions of weighted classical Pythagorean means for operators. Indeed, they are
generalizations of three famous symmetric operator means as follows. For any w ∈ [0, 1], the w-weighted
arithmetic mean of A, B ∈ B(H) is defined by

A�w B = (1 − w)A + wB.

The w-weighted geometric mean and w-weighted harmonic mean of A, B ∈ B(H)++ are defined
respectively by

A�wB = A
1
2 (A− 1

2 BA− 1
2 )w A

1
2 ,

A !w B =
[
(1 − w)A−1 + wB−1

]−1
.

For any A, B ∈ B(H)+, we define the w-weighted geometric mean and w-weighted harmonic mean
of A and B to be

A�wB = lim
ε→0+

(A + εI)�w(B + εI).

A !w B = lim
ε→0+

(A + εI) !w (B + εI),

respectively. Here, the limits are taken in the strong-operator topology.

Lemma 4 (see e.g., [14]). The weighted geometric means, weighted arithmetic means and weighted harmonic
means for operators are monotone in the sense that if A1 � A2 and B1 � B2, then A1σB1 � A2σB2 where σ is any
of �w, !w, �w.

Lemma 5 ([15]). Let A, B, C, D ∈ B(H)+ and w ∈ [0, 1]. Then

(A � B)�w(C � D) = (A�wC)� (B�wD).

Theorem 2. Let A,B, C,D be bounded continuous fields in B(H)+ and let α : Ω → [0, ∞) be a bounded
measurable function.

1. If A,B, C,D are either all increasing, or all decreasing then∫
Ω

α(s)dμ(s)
∫

Ω
α(t)[(At � Bt)�w(Ct � Dt)]dμ(t)

�
∫

Ω
α(t)(At�wCt)dμ(t)�

∫
Ω

α(s)(Bs�wDs)dμ(s).
(10)

2. The reverse of (10) holds if either

2.1 A, C are increasing and B,D are decreasing, or
2.2 A, C are decreasing and B,D are increasing.

6
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Proof. Let s, t ∈ Ω and assume without loss of generally that s � t. By applying Lemmas 1 and 5,
Proposition 1, and Fubini’s Theorem [13], we have∫

Ω
α(s)dμ(s)

∫
Ω

α(t)[(At � Bt)�w(Ct � Dt)]dμ(t)−
∫

Ω
α(t)(At�wCt)dμ(t)�

∫
Ω

α(s)(Bs�wDs)dμ(s)

=
∫∫

Ω2
α(s)α(t)[(At � Bt)�w(Ct � Dt)]dμ(t)dμ(s)

−
∫∫

Ω2
α(t)α(s)[(At�wCt)� (Bs�wDs)]dμ(t)dμ(s)

=
∫∫

Ω2
α(s)α(t)[(At�wCt)� (Bt�wDt)]dμ(t)dμ(s)

−
∫∫

Ω2
α(t)α(s)[(At�wCt)� (Bs�wDs)]dμ(t)dμ(s)

=
1
2

∫∫
Ω2

α(s)α(t)[(At�wCt)� (Bt�wDt)− (At�wCt)� (Bs�wDs)]dμ(t)dμ(s)

+
1
2

∫∫
Ω2

α(t)α(s)[(As�wCs)� (Bs�wDs)− (As�wCs)� (Bt�wDt)]dμ(s)dμ(t)

=
1
2

∫∫
Ω2

α(s)α(t)[At�wCt − As�wCs]� [Bt�wDt − Bs�wDs]dμ(t)dμ(s).

If A,B, C,D are all increasing, we have by Lemma 4 that At�wCt � As�wCs and Bt�wDt � Bs�wDs.
If A,B, C,D are all decreasing, we have At�wCt � As�wCs and Bt�wDt � Bs�wDs. Both cases lead to the
same conclusion that

(At�wCt − As�wCs)� (Bt�wDt − Bs�wDs) � 0,

and hence (10) holds. The cases 2.1 and 2.2 yield the same conclusion that

(At�wCt − As�wCs)� (Bt�wDt − Bs�wDs) � 0.

and hence the reverse of (10) holds.

Lemma 6. Let A, B, C, D be Hermitian operators in B(H) and w ∈ [0, 1].

1. If (A, B) and (C, D) have the synchronous property, then

(A � B)�w(C � D) � (A�wC)� (B�wD). (11)

2. If (A, B) and (C, D) have the opposite-synchronous property, then the reverse of (11) holds.

Proof. For the synchronous case, we have by using positivity of the Tracy-Singh product (Lemma 1) that
(A − C)� (B − D) � 0. Applying Lemma 1, we obtain

0 � w(1 − w) [(A1 − B1)� (A2 − B2)]

= w(1 − w) [A1 � A2 − A1 � B2 − B1 � A2 + B1 � B2]

= [(1 − w)(A1 � A2) + w(B1 � B2)]− [(1 − w)A1 + wB1]� [(1 − w)A2 + wB2]

= [(A1 � A2)�w (B1 � B2)]− [(A1 �w B1)� (A2 �w B2)].

Thus (A1 �w B1)� (A2 �w B2) � (A1 � A2)�w (B1 � B2).

7
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For the opposite-synchronous case, we have (A1 − B1)� (A2 − B2) � 0 and hence the reverse of
inequality (11) holds.

Theorem 3. Let A,B, C,D be bounded continuous fields of operators in B(H)+, let α : Ω → [0, ∞) be a bounded
measurable function.

1. If (A,B) and (C,D) have the synchronous monotone property and all of A,B, C,D are either increasing or
decreasing, then∫

Ω
α(s)dμ(s)

∫
Ω

α(t)[(At � Bt)�w(Ct � Dt)]dμ(t)

�
∫

Ω
α(t)(At�wCt)dμ(t)�

∫
Ω

α(s)(Bs�wDs)dμ(s).
(12)

2. If (A,B) and (C,D) have the opposite-synchronous monotone property and if either

2.1 A, C are increasing and B,D are decreasing, or
2.2 A, C are decreasing and B,D are increasing,

then the reverse of (12) holds.

Proof. Let s, t ∈ Ω and assume without loss of generally that s � t. First, we consider the case 1. We have
by using Lemmas 1 and 6, proposition 1, and Fubini’s Theorem [13] that∫

Ω
α(s)dμ(s)

∫
Ω

α(t)[(At � Bt)�w(Ct � Dt)]dμ(t)−
∫

Ω
α(t)(At�wCt)dμ(t)�

∫
Ω

α(s)(Bs�wDs)dμ(s)

=
∫∫

Ω2
α(s)α(t)[(At � Bt)�w(Ct � Dt)]dμ(t)dμ(s)

−
∫∫

Ω2
α(t)α(s)[(At�wCt)� (Bs�wDs)]dμ(t)dμ(s)

�
∫∫

Ω2
α(s)α(t)[(At�wCt)� (Bt�wDt)]dμ(t)dμ(s)

−
∫∫

Ω2
α(t)α(s)[(At�wCt)� (Bs�wDs)]dμ(t)dμ(s)

=
∫∫

Ω2
α(s)α(t)[(At�wCt)� (Bt�wDt)− (At�wCt)� (Bs�wDs)]dμ(t)dμ(s)

=
1
2

∫∫
Ω2

α(s)α(t)[(At�wCt)− (As�wCs)]� [(Bt�wDt)− (Bs�wDs)]dμ(t)dμ(s).

Now, by Lemmas 1 and 4, we have

(At�wCt − As�wCs)� (Bt�wDt − Bs�wDs) � 0

and hence (12) holds. The case 2 can be similarly proven.

Lemma 7. Let A, B, C, D be positive operators in B(H) and w ∈ [0, 1].

1. If (A, B) and (C, D) are synchronous, then

(A � B) !w (C � D) � (A !w C)� (B !w D). (13)

2. If (A, B) and (C, D) are opposite-synchronous, then the reverse of (13) holds.

8
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Proof. Assume that (A, B) and (C, D) are synchronous. By continuity, we may assume that A, B, C, D > 0.
We have

(A−1 − C−1)� (B−1 − D−1) � 0. (14)

Using Lemma 1 and (14), we get

0 � w(1 − w)A−1 � B−1 + w(1 − w)C−1 � D−1 − w(1 − w)A−1 � D−1 − w(1 − w)C−1 � B−1

=
[
(1 − w)− (1 − w)2

]
A−1 � B−1 + (w − w2)C−1 � D−1 − w(1 − w)A−1 � D−1

− w(1 − w)C−1 � B−1

=
(

A−1 � B−1
)
�w

(
C−1 � D−1

)
−
(

A−1 �w C−1
)
�
(

B−1 �w D−1
)

.

This implies that (
A−1 � B−1

)
�w

(
C−1 � D−1

)
�

(
A−1 �w C−1

)
�
(

B−1 �w D−1
)

.

Hence,

(A � B) !w (C � D) =
{
(A � B)−1 �w (C � D)−1

}−1

=
{(

A−1 � B−1
)
�w

(
C−1 � D−1

)}−1

�
{(

A−1 �w C−1
)
�
(

B−1 �w D−1
)}−1

=
(

A−1 �w C−1
)−1

�
(

B−1 �w D−1
)−1

= (A !w C)� (B !w D).

For the opposite-synchronous case, we have

(A−1 − C−1)� (B−1 − D−1) � 0

and hence the reverse of (13) holds.

Theorem 4. Let A,B, C,D be bounded continuous fields of operators in B(H)+ and α : Ω → [0, ∞) be a bounded
measurable function.

1. If (A,B) and (C,D) have the opposite-synchronous monotone property and if all of A,B, C,D are either
increasing or decreasing, then∫

Ω
α(s)dμ(s)

∫
Ω

α(t)[(At � Bt) !w (Ct � Dt)]dμ(t)

�
∫

Ω
α(t)(At !w Ct)dμ(t)�

∫
Ω

α(s)(Bs !w Ds)dμ(s).
(15)

2. If (A,B) and (C,D) have synchronous monotone property and if either

2.1 A, C are both increasing, and B,D are both decreasing, or
2.2 A, C are both decreasing and B,D are both increasing,

then the reverse of (15) holds.

9



Symmetry 2019, 11, 1256

Proof. Let s, t ∈ Ω with s � t. If the pairs (A,B) and (C,D) are opposite-synchronous, then we have by
applying Lemmas 1 and 7, Proposition 1, and Fubini’s Theorem [13] that∫

Ω
α(s)dμ(s)

∫
Ω

α(t)[(At � Bt) !w (Ct � Dt)]dμ(t)−
∫

Ω
α(t)(At !w Ct)dμ(t)�

∫
Ω

α(s)(Bs !w Ds)dμ(s)

=
∫∫

Ω2
α(s)α(t)[(At � Bt) !w (Ct � Dt)]dμ(t)dμ(s)

−
∫∫

Ω2
α(t)α(s)[(At !w Ct)� (Bs !w Ds)]dμ(t)dμ(s)

�
∫∫

Ω2
α(s)α(t)[(At !w Ct)� (Bt !w Dt)]dμ(t)dμ(s)

−
∫∫

Ω2
α(t)α(s)[(At !w Ct)� (Bs !w Ds)]dμ(t)dμ(s)

=
1
2

∫∫
Ω2

α(s)α(t)[At !w Ct − As !w Cs]� [Bt !w Dt − Bs !w Ds]dμ(t)dμ(s).

For the case 1, we have, by Lemmas 1 and 4,

(At !w Ct − As !w Cs)� (Bt !w Dt − Bs !w Ds) � 0

and hence (15) holds. Another assertion can be proved in a similar manner to that of the second assertion
in Theorem 3.

5. Chebyshev-Grüss Inequaities via Oscillations

Throughout this section, let Ω be an LCH space equipped with a probability Radon measure μ.
For any continuous field A = (At)t∈Ω in B(H) and B = (Bt)t∈Ω in B(K), we define

A� B = (At � Bt)t∈Ω, I(A) =
∫

Ω
Atdμ(t),

osc(A) = max{‖At − As‖ : (t, s) ∈ supp(μ × μ)}.

Here, we recall that the support of the product measure μ × μ is defined by

supp(μ × μ) = {(t, s) ∈ Ω2 : (μ × μ)(G) > 0 for all open sets G ⊆ Ω2 containing (t, s)}.

We call osc(A) the oscillation of the field A.

Theorem 5. Let A = (At)t∈Ω and B = (Bt)t∈Ω be continuous fields of Hermitian operators in B(H) and B(K),
respectively. Then

I(A� B)− I(A)� I(B) � 1
2

osc(A) · osc(B)(μ × μ)(Ω2\Δ)(IH � IK), (16)

where Δ = {(t, t) : t ∈ Ω}.

10
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Proof. We have by using Lemma 1, Proposition 1 and Fubini’s Theorem [13] that

I(A� B)− I(A)� I(B) =
∫

Ω
dμ(s)

∫
Ω

At � Btdμ(t)−
∫

Ω
Atdμ(t)�

∫
Ω

Bsdμ(s)

=
∫∫

Ω2
At � Btdμ(t)dμ(s)−

∫∫
Ω2

At � Bsdμ(t)dμ(s)

=
1
2

∫∫
Ω2

(At � Bt − At � Bs + As � Bs − As � Bt)dμ(t)dμ(s)

=
1
2

∫∫
Ω2\Δ

(At − As)� (Bt − Bs)dμ(t)dμ(s)

� 1
2

osc(A) · osc(B)(μ × μ)(Ω2\Δ)(IH � IK).

Corollary 2. Let Ai ∈ B(H) and Bi ∈ B(K) be Hermitian operators for all i = 1, . . . , n. Then

n

∑
i=1

(Ai � Bi)−
(

n

∑
i=1

Ai

)
�
(

n

∑
i=1

Bi

)
� n(n − 1)

2
max

1�i,j�n
‖Ai − Aj‖ · max

1�i,j�n
‖Bi − Bj‖(IH � IK).

Proof. Set Ω = {1, . . . , n} equipped with the counting measure. We have

(μ × μ)(Ω2\Δ) =
n(n − 1)

2
, supp(μ × μ) = Ω × Ω

and thus

osc(A1, . . . , An) = max
1�i,j�n

‖Ai − Aj‖, osc(B1, . . . , Bn) = max
1�i,j�n

‖Bi − Bj‖.

Example 1. Let Ω = [0, 1], w ∈ Ω and 0 < α � 1. Consider the probability Radon measure μ = αλ + (1 − α)δw,
where λ is Lebesgue measure on Ω and δw is the Dirac measure at w. Set

I(A) :=
∫ 1

0
Atdμ(t) = α

∫ 1

0
Atdλ(t) + (1 − α)Aw.

We have

μ × μ = α2(λ × λ) + α(1 − α) (λ × δw) + (1 − α)α (δw × λ) + (1 − α)2 (δw × δw) .

Then supp(μ × μ) = [0, 1]× [0, 1] and (μ × μ)
(
[0, 1]2\Δ

)
= α(2 − α). For any continuous fields A = (At)t∈Ω

and B = (Bt)t∈Ω of Hermitian operators, the inequality (16) becomes

I(A� B)− I(A)� I(B) � 1
2

α(2 − α) max
0�s,t�1

‖At − As‖ · max
0�t,s�1

‖Bt − Bs‖(IH � IK).

6. Conclusions

We establish several integral inequalities of Chebyshev type for continuous fields of Hermitian
operators which are parametrized by an LCH space equipped with a finite Radon measure. We also obtain
the Chebyshev-Grüss integral inequality via oscillations with respect to a probability Radon measure.
These inequalities involve Tracy-Singh products and weighted versions of famous symmetric means.
For a particular case that the LCH space is a finite space equipped with the counting measure, such integral

11
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inequalities reduce to discrete inequalities. Our results include Chebyshev-type inequalities for tensor
product of operators and Tracy-Singh/Kronecker products of matrices.
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Abstract: Efficiently functioning public transport has a significant positive impact on the entire
transportation system performance through numerous aspects, such as the reduction of congestion,
energy consumption, and emissions. In most cases, the basic elements of public transport are the
bus transport subsystem. Currently, in addition to criteria such as punctuality, the frequency of
departures, and the number of transfers, a travelling comfort level is an important element for
passengers. An overcrowded bus may discourage travelers from choosing this mode of transport and
induce them to use a private car despite the existence of many other facilities offered by a given public
transport system. Therefore, the forecasting of bus passenger demand, as well as bus occupancy at
individual bus stops, is currently an important research direction. The main goal of the article is to
present the conceptual framework for the Advanced Travel Information System with the prediction
module. The proposed approach assumes that the prediction module is based on the use of the Markov
Chain concept. The efficiency and accuracy of the obtained prediction were presented based on a
real-life example, where the measurements of passengers boarding and alighting at bus stops were
made in a selected Cracow bus line. The methodology presented in the paper and the obtained results
can significantly contribute to the development of solutions and systems for a better management
as well as a cost and energy consumption optimisation in the public transport system. Current
and forecasted information related to bus occupancy, when properly used in the travel information
system, may have a positive impact on the development of urban mobility patterns by encouraging
the use of public transport. This article addresses the current and practical research problem using an
adequate theoretical mathematical tool to describe it, reflecting the characteristics and nature of the
phenomenon being studied. To the best of the authors’ knowledge, the article deals for the first time
with the problem of prediction of onboard bus comfort levels based on in-vehicle occupancy.

Keywords: onboard comfort level; Markow chain; bus passenger occupancy prediction

1. Introduction

Efficiently functioning public transport has a significant positive impact on the entire transportation
system performance through numerous aspects, such as the reduction of congestion, energy
consumption, and emissions. In most cases, the fundamental elements of public transport are
the bus transport subsystem. Currently, in addition to criteria such as punctuality, the frequency of
departures, and the number of transfers, the comfort of travelling is an essential element for travelers.
It may be significantly related to the degree of occupancy and capacity of the bus. An overcrowded
bus may discourage travelers from choosing this mode of transport and induce him to use a private
car despite the existence of many other facilities offered by a given public transport system. Therefore,
the forecasting of bus passenger demand and the forecasting of bus occupancy at individual bus stops
is currently an important research direction. The variability and cyclicity in passenger flows make

Symmetry 2019, 11, 755; doi:10.3390/sym11060755 www.mdpi.com/journal/symmetry13
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such forecasts extremely useful. From the perspective of transport system planners, they can be used
for an optimal allocation of resources and bus types in relation to current demand. From the traveler’s
point of view, the use of this type of forecast can help to reduce waiting times at the bus stop as well as
helping him choose the right departure time. The forecasting methods and techniques used in this area
mainly concern long-term prediction. Given the above, the main goal of the article is to present the
framework of the prediction subsystem for the Advanced Travel Information System (ATIS), which
enables one to predict the onboard comfort level related to the actual bus occupation.

The article is organized as follows. The first section is a literature review. It describes the
conceptual framework for the ATIS subsystem with the comfort level prediction module. It also
discusses the potential application of the proposed approach. The main core of the article concerns the
forecasts in the public transportation system; hence, the second part of the literature review deals with
that area. Subsequently, the theoretical background of the Markov chain (MC) for the prediction model
is presented, defining the comfort level states. The characteristics and benefits of applying the MC
for an onboard bus comfort level prediction based on a real-life case study summarise the previous
theoretical discussion.

2. Literature Review

2.1. Predictive Framework for ATIS Subsystem

The principle of information is defined as one of the foundations of the city’s transport policy.
The Advanced Traveler Information System (ATIS) is a way to implement the information principle and
is an integral part of the Intelligent Transport Systems (ITS) [1,2]. ATIS systems can use all transport
data, including the traffic volume, journey times, and restrictions on selected sections, timetables,
vehicles locations in the network, interchanges, traffic events, and weather conditions. The information
can come both from the vehicles and traffic management centres [3,4].

Access to information from ATIS systems can be public or limited. Restrictions may result from
the payment of access to the system or from the fact that the system is dedicated to selected users [5].
Research [6] shows that mobile phone users with Internet access are most likely to use information
from ATIS systems, and the interest of travelers in accessing travel information is directly related to the
usefulness of the presented data by ATIS systems [4].

The considered issue in the paper is one of the crucial problems, mainly when bus congestion
results in the resignation of some passengers from travelling with public transport. Well-prepared
forecasts make it possible to make good use of rolling stock, to plan a journey, and to manage urban
public transport. Figure 1 presents a diagram of the information flow and relevance of a forecasting
module within ATIS. The data based on which the model was created and tested came from buses
operating in Cracow.
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Figure 1. Diagram of the created Advanced Traveler Information System system.

The development of information technology has a significant impact on the functioning of cities and
urban public transport. This has enabled the development in a short time of many mobile applications
aimed at facilitating travel. They relate to trip planning, checking timetables, or information about the
location of the exact vehicle based on the GPS signal. Common access to such extensive information
has led to an increase in passenger requirements.

Moreover, information about the current or predicted passenger demand in public transport
vehicles is becoming critical. The automatic passenger counting systems using buses do not provide
the utilization of data in real time. However, the data will be sufficiently accurate to be used to produce
a forecast. Such predictions will enable the optimization of the allocation of buses to public transport
lines and the creation of applications for passengers (in the framework of ATIS).

The problem connected with bus allocations to public transport lines is important for carriers.
The increasing number of rolling stocks types makes it more challenging to obtain an optimal solution.
A large number of urban bus manufacturers and the choice of the cheapest offers by carriers make it
difficult to maintain a uniform fleet of vehicles. Vehicles of the same dimensions may differ in travel
comfort with the same number of passengers. That is why, in order to achieve a high level of comfort
for passengers with a maximum use of rolling stock, it is necessary to optimise the allocation of buses
to public transport lines. The solutions that emerged within this topic are described in articles, the
most important of which are presented in the table below (Table 1).
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Table 1. Articles on the optimization of the allocation of rolling stock to public transport lines.

Issues Raised in the Papers Articles

Optimal queuing of rolling stock at depots for
line departure

Blasum M. Bussieck M.R., Hochstattler W., Moll C.H.,
Scheel H., Winter T. [7]

Optimising the number of vehicles serving the urban
public transport system

Haase K., Deaulniers G., Denosiers J. [8] Kidwai F.A.,
Marwah B.R., Deb K., Karim M.R. [9]

Optimisation of the allocation of rolling stock to lines -
environmental criteria

Jimenez F., Roman A., (2016), Li J.Q., Head K.L. [10] Li L.,
Lo H.K., Cen X. [11] Beltran B., Carrese S., Cipriani E.,

Petrelli M. [12]

Allocation of rolling stock to lines, as part of public
transport planning, day by day planning Lusby R.M., Larsen J., Bull S. [13]

Characteristics of management systems for the
allocation of rolling stock to lines

Gancarz T. (1998), Papierkowski K. [14] Cejrowski M.,
Krych A., Pawłowski M. [15] Moreira J.M., de Sousa J.F. [16]

Optimisation of the allocation of rolling stock to lines
to minimise fuel consumption Oziomek J., Rogowski A. [17,18]

The optimisation of bus allocations to urban public transport lines is presented in different ways
in scientific publications. First, the allocation of rolling stock to public transport lines is taken as the
queuing of vehicles at depots [7]. However, this solution does not take into account the possibility of a
rolling stock rotation between different depots. When there is more than one depot, it is impossible
to obtain an optimal solution. Other articles define the allocation of rolling stock as scheduling that
reduces costs and the number of vehicles that are needed [8,17,18]. This approach is characterised by the
use of various optimisation methods, both traditional linear programming methods and heuristics [9].
However, it should be noted that the analysed models do not use data on the forecast of demand for
transport services. In [13], the problem of a model that is resistant to fluctuations in parameters was
noted (the issue of planning the allocation of rolling stock for each day). The solutions presented in
the publication are based on the example of railway transport. Another type of criterion which is
becoming more and more important due to the growing social awareness of environmental protection
is the optimization of the allocation of rolling stock as a means of minimising the environmental
impact. This topic is described extensively in [10–12,19]. Finally, there are publications that describe
the existing tools to support decision-making when scheduling the allocation of rolling stock to public
transport lines [10,14,16,20].

2.2. Prediction Methods in Public Transportation

The main problem in public transportation, which researchers are trying to model and predict, is
passenger demand. It has a direct influence on the efficiency of the public transport system, raising
the competitiveness of this mean of transport and, lastly, fulfilling the expectations of passengers and
encouraging them to choose this type of transport.

The problem of bus occupancy level forecasting is quite an important aspect, particularly for
decision-makers. This is why there is an abundance of articles addressing this issue. A plurality of
methods whose aim is to deal with this kind of forecasting shows an interest attached to the seriousness
of this issue. Table 2 shows selected methodologies, types, modes of transport and the studies in which
they were presented.
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Table 2. Passenger demand and flow prediction studies in public transport.

Author(s) Methodology Type Modes

Y. Mo, Y. Su [21] Neural networks Transit passenger Flow Bus

Y. Li [22] Grey Markov Chain model Flow Railway

S. Z. Zhao, T. H. Ni, Y. Wang, X. T.
Gao [23]

Wavelet analysis, Neural
networks Flow Transit system

L. Liu, R. C. Chen [24] Deep learning method Flow Bus rapid transit

Y. Li, X. Wang, S. Sun, X. Ma, G.
Lu [25]

Multiscale radial basis
function networks Flow Subway

J. Zhang, D. Shen, L. Tu, F. Zhang,
C. Xu, Y. Wang, C. Tian, X. Li, B.

Huang, Z. Li [26]

Extended Kalman filter
model Flow Bus transit system

Q. Chen, W. Li, J. Zhao [27] Least Squares Support
Vector Machine Flow Bus

R. Xue, D. J. Sun, S. Chen [28] Time series and interactive
multiple model (IMM) Demand Bus

C. Zhou, P. Dai, R. Li [29]
Time-varying Poisson model,

Weighted time-varying
Poisson model, ARIMA

Demand Bus

Z. Ma, J. Xing, M. Mesbah, L.
Ferreira [30]

Interactive Multiple,
Model-based Pattern Hybrid

(IMMPH)
Demand Bus

T. H. Tsai, C. K. Lee, C. H. Wei [31] Neural network Demand Railway

Z. Wang, C. Yang, C. Zang [32]
Hybrid model (BP neural

network & time series
model)

Flow prediction Bus stop

J. Roos, S. Bonnevay, G. Gavin [33] Dynamic Bayesian network Flow forecasting Metro

Z. Wei, Z. Jinfu [34] Grey-Markov Method Passenger traffic Passenger turnover

Z. S. Xiao, B. H. Mao, T. Zhang [35] Hybrid model—BP neural
network and Markov Chain Daily passenger volume Rail transit station

According to Table 2, it is evident that there were not so many papers that tried to solve the
passenger prediction problem using the Markov Chain method. Most of the presented methods are
used to predict the passenger flow or demand in the short-term. The Markov chain method appears
mostly in a combination of Markov and Grey models to forecast the passenger flow or as a hybrid
model—the Back Propagation neural network and Markov model—to forecast the daily passenger
volume in the rail transit station. This shows the existence of different fields of research on the most
accurate methods for forecasting the passenger demand or flow to improve public transportation
efficiency directly.

There are certain areas in public transportation in which prediction can be beneficial during not
only the organisation process but also the adaptation to real conditions. These may include, besides the
passenger demand or flow prediction, the bus arrival time [36] prediction. From the public transport
organiser’s point of view, the passenger structure prediction in the transportation corridor may also
be useful. For this purpose, D. Wang, X. Sun and Y. Li utilized the Markov process [37]. In order to
meet the expectations of public transport users, an important area of prediction is public transport trip
flows [38].

3. Onboard Bus Comfort Level and Markov Chain Concept

3.1. Bus Comfort Level

Onboard bus comfort is an essential aspect of the satisfaction perceived by bus passengers.
The quality of the bus transit in terms of passenger comfort is usually an extensive set of partial
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influence factors, which are very difficult to quantify. Hence, this is usually the reason why they are not
included in the various indicators for assessing the quality of public transport. Therefore, the group
of indicators describing the comfort of travel include the inconvenience of travel resulting from the
limited availability of seats or even standing in the vehicle. The literature most frequently mentions the
nuisance ratio, and the nuisance ratio or seat occupancy rate, for different reference levels in the form
of standards for the number of seats in a vehicle. The driving discomfort coefficient μ j determines
how many times a journey by public transport in specific conditions is more onerous in comparison
with a journey where the passenger sits and the filling of standing places is small (0.5 passenger/m2).
The driving discomfort μ j is calculated from the following formula (based on [39]):

μ j = 0.8 + 3.6× (q− 0.15)2 (1)

where q is the relative onboard occupation calculated as:

q =
N

CN
(2)

where N is the absolute onboard occupation (number of passengers in the vehicle), and CN is the
nominal capacity of the vehicle (using the area of standing places as 0.15 m2/person).

The onboard comfort level can be defined based on the calculated value of the driving discomfort
μ j, and it could be one of the below possibilities [39]:

1. Comfort level A (corresponding to a factor of discomfort μ j < 0.8)—means that: approximately
10–70% of the vehicle seats are occupied; each passenger has a guaranteed seating position
without being forced to travel in the immediate vicinity of another passenger; passengers travel
without difficulty in carrying luggage, trolleys, bicycles, etc.

2. Comfort level B (corresponding to a factor of discomfort μ j ε [0.8, 1.0) means that: all or almost
all seating positions are occupied (70–100%); possibility to easily carry a baggage, trolleys,
bicycles, etc.

3. Comfort level C (corresponding to a factor of discomfort μ j ε [1.0, 1.4) means that: the small
number of standing places is occupied, but it is possible to have free movement within the vehicle:
easy access to the punch (up to 2 persons/m2).

4. Comfort level D (corresponding to a factor of discomfort μ j ε [1.4, 2.1) indicates that the onboard
occupancy level results in a difficulty of free movement in the vehicle and in access problems to
the punch (up to 4 persons/m2).

5. Comfort level E (corresponding to the discomfort factor μ j ε [2.1, 3.4) indicates an already high
onboard congestion causing very difficult access to the punch (up to 6–7 persons/m2).

6. Comfort level F (corresponding to a factor of discomfort μ j ≥ 3.4 is characterised by: very high
in-vehicle congestion, during which it is not possible to cancel the ticket; the ride involves a large
physical effort, with standing passengers pressing into the seating area; there are large difficulties
in closing the door and incidental damages to the closing device; it is necessary to give way to
passengers getting off their seats (over 7 persons/m2).

3.2. Short-Term In-Vehicle Occupation Predictions Based on Markov Chains Model

The problem of in-vehicle occupancy forecasting in public transport may be closely related to
previously defined comfort levels. The specificity of the inflow of passengers to the given bus line stops
in the following hours is stochastic. Therefore, it seems appropriate to use discrete Markov processes
to determine the expected occupancy level of the vehicle at subsequent departures from a given stop
on the line. Markov’s process is a sequence of random variables, in which the probability of what will
happen depends only on the present state. In the considered issue, only Markov processes defined on
a discrete space of states will be used (Markov chains).
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Let us denote by X = (X0, X1, . . .) a sequence of discrete random variables. The value of the
variable Xt will be called the state of the chain at the moment t. It is assumed that the set of states S is
calculable. The finite set of states can be defined as the state space S as follows:

s ∈ S, S =
{
s1, s2, . . . , sk−1, sk

}
, k < ∞ (3)

The discrete timestamps used in the considered problem can be defined as follows:

tεT, T = {1, 2, . . . , tmax}, tmax ≤ ∞ (4)

Definition 1. A sequence of random variables X is a Markov chain if the Markov condition is fulfilled:

P(Xt = s|X0 = x0, . . .Xt−1 = xt−1) = P(Xt = s|Xt−1 = xt−1) ∧ tεT ∧ x0, x1, . . . xt−1 ∈ S (5)

Thus, for the Markov chain, the distribution of the conditional probability of the position in the time step t
depends only on the conditional probability of the position in the previous step and not on the previous trajectory
points (history).

Definition 2. Let P be a matrix of dimensions (k × k) and elements
{
pij : i, j = 1, . . . k

}
. A sequence of random

variables (X0, X1, . . .) with values from a finite set of states S =
{
s1, s2, . . . , sk−1, Sk

}
is called the Markov

process, with the transition matrix P, if for each t, any i, j ∈ {1, . . . k} and all i0, . . . it−1 ∈ {1, . . . k},

P

(
Xt+1 = sj

∣∣∣X0 = si0 , X1 = si1 , . . . , Xt−1 = sit−1 , Xt = si
)
= P

(
Xt+1 = sj

∣∣∣Xt = si
)
= pij

The elements of the transition matrix pij fulfill the following conditions:

∧ tεT pij = P

(
Xt+1 = sj

∣∣∣Xt = si
)

pij ≥ 0 ∧ i, j ∈ {1, . . . k}
∧
i

∑
j

pi j = 1

Definition 3. The Markov chain is homogenous when for each time stamp it is described by the same transition
matrix P. The transition matrix is fixed and does not depend on time.

In the use of Markov chains, the initial state plays a crucial role. Formally, the initial state is a
random variable X0. Therefore, the Markov chain often starts with a certain probability distribution
across the state space.

Definition 4. The initial distribution is a vector defined as follows:

D(0) =
[
d(0)1 , d(0)2 , . . . , d(0)k

]
= [P(X0 = s1), P(X0 = s2), . . . , P(X0 = sk)]

To determine the distribution of the forecasted state of the modelled object for the n-th time step ahead, the
following equation can be used:

D(t+n) = D(t)·Pn

where n is the parameter defining the forecasting horizon.
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4. Case Study

In order to verify the approach proposed in the article, a simulation experiment was carried out.
The basis of the example was to estimate the forecasted state of the vehicle occupancy for a selected
communication line with a given number of stops. In the example, a real data set from the automatic
counting systems of the vehicle was used. The analysed time horizon covered two weeks for one of
the most crowded bus lines in Cracow. The line under consideration belongs to one of the highest
frequency levels and contain 19 bus stops. On business days, the number of trips on the line under
consideration was tmax = 68, whereas on weekends tmax = 47. In the computational example, the
forecasts of the occupation state S = {1, 2, . . . 6} were determined sequentially for one time step ahead
(each single departure from the bus stop was a correspondingly successive time step). The state s1 = 1
corresponds to the lowest level of vehicle occupancy, while s6 = 6 denotes the highest. For each time
step t, the initial state distribution D(t) has been updated on the basis of the available historical data.
The elements of the transition matrix P were estimated empirically based on the historical data set
individually for each bus stop in order to map its specificity and dynamics. The forecasted state was
assumed to be the one for which the probability of occurrence in the forecasted state distribution D(t+1)

was the highest. Figure 2 shows an exemplary adjustment of state forecasts to the real observed states
of vehicle occupancy for a selected bus stop on a given day.

 

Figure 2. Adjustment of the forecasted vehicle occupancy states to the observed values for a given
bus stop.

The presented sequence of observed vehicle occupancy states and received forecasts concerns
the bus stop located in the second part of the analysed transport line. This is evidenced by the high
variability of the observed states during the working day. The obtained forecast values, despite errors,
try to keep up with the pace of changes in the observed time series.

The distribution of the root means square errors for each bus stop for the considered period is
shown in Figure 3.
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Figure 3. Distribution of root mean square errors for the analysed period.

The distribution of Root Mean Square Error (RMSE) errors received along the time horizon and
bus stop number indicates that the highest values occur at the bus stops in the second part of the line
journey (counting from the first stop). This results in the specificity of the analysed line, which passes
through crucial areas in the city and numerous interchange nodes. This generates a greater randomness
and variability among the incoming passengers, which leads to more significant forecasting errors.
Lower errors characterise periods (t = 6 Saturday, t = 7 Sunday) due to the reduced number of trips.

In order to determine how often the model made an error and how much the predicted occupancy
state of the vehicle differed from the observed state, an error histogram was prepared, as shown
in Figure 4.

Figure 4. Prediction error histogram.

The histogram shows the frequency occurrence of a forecast error equal to e1 = 1, e2 = 2, . . . e5 = 5,
where e1 is the difference by one state, e2 by two states, etc. In the period of time covered by the
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analysis, the most numerous group is the e1 error set, where the obtained forecast differs only by one
state from the observed real value. The second, much less numerous group is e2. The sets of errors e3

and e4 constitute a small percentage of the whole population, while the remaining errors did not occur
at all during the examined time horizon.

The averaged absolute percentage forecast errors for the relevant period and subsequent stops are
presented in Table 3.

Table 3. Mean absolute percentage forecast errors.

MEAN ABSOLUTE PERCENTAGE ERRORS [%]

ANALYZED TIME HORIZON [days]

1 2 3 4 5 6 7 8 9 10 11 12 13

1 0,0 0,0 0,0 1,8 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
2 0,0 0,0 0,0 1,8 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
3 0,0 0,5 0,5 2,3 1,0 0,0 0,0 0,0 0,0 0,5 0,5 0,0 0,0
4 0,5 2,5 0,5 3,3 0,5 1,4 0,0 0,5 1,5 1,5 3,5 0,0 0,0
5 2,0 2,2 1,0 3,8 1,0 4,2 2,1 2,5 2,5 3,0 2,2 0,5 0,7
6 6,5 9,5 3,5 11,3 7,2 9,4 2,1 8,2 10,4 9,5 12,4 5,5 2,4
7 8,5 11,7 4,7 12,3 8,2 5,2 20,8 7,5 10,0 9,5 12,3 7,7 5,2
8 9,2 10,9 5,5 14,0 11,2 5,9 6,3 9,5 16,3 14,5 15,7 8,5 7,3
9 10,2 11,4 7,2 12,2 12,4 9,7 7,6 11,2 19,5 18,2 15,8 10,7 7,3
10 11,7 12,2 8,0 17,3 13,2 20,0 6,3 15,0 23,8 25,2 18,7 9,7 9,7
11 19,0 21,6 12,2 23,7 24,9 23,1 14,2 21,7 24,2 21,7 23,3 12,9 8,0
12 22,5 24,4 20,4 15,6 20,6 18,5 21,0 19,5 24,3 19,0 22,6 20,8 13,9
13 22,8 23,3 25,4 20,6 17,8 13,3 22,4 19,9 23,3 20,9 20,1 20,1 24,5
14 23,0 24,7 36,8 19,5 21,1 17,5 25,5 18,7 21,4 27,2 18,6 18,7 25,8
15 24,5 24,0 32,0 21,0 22,9 17,3 19,4 16,6 21,1 25,1 22,4 20,2 26,3
16 25,8 23,0 27,1 19,3 18,0 19,3 17,8 19,3 22,5 30,1 21,6 18,7 26,9
17 24,4 23,3 26,8 20,1 19,4 17,9 18,1 18,0 22,2 28,9 19,1 19,0 26,9
18 19,4 18,7 24,5 19,7 20,9 15,3 14,4 18,1 17,5 30,5 21,1 20,7 17,8

N
u

m
b

e
r

o
f

b
u

s
st

o
p

19 7,5 10,1 10,2 8,1 8,8 12,7 4,5 6,5 11,7 27,3 10,3 10,4 12,2

5. Discussion

The results of the research presented in this article indicate that the application of Markov chains
to forecast the bus occupancy level in public transport is entirely justified because it represents, to
a reasonable degree, the features of the urban public transport system. Compared to the works
mentioned in the literature review, which mostly refer to the problem of passenger flow forecasting in
the transport network, the authors’ research was strictly focused on forecasting the bus comfort level
related to the vehicle occupancy, which can be directly used by travelers to optimize their trips and
to change their travel patterns to more environmentally friendly ones. The obtained results can be
useful not only for fleet management in the public transport system but also for the development of
passenger information systems and trip planning.

Nevertheless, this approach requires further research based on a larger data set sample from an
automatic counting system over a longer time horizon. It would also be desirable to determine the
influence of other factors on the forecasting effectiveness (season of the year, weather, and specificity
of the analysed communication line). The calculated forecast errors are the most significant for
interchanging stops, due to the high variability of passenger flows in these places. Therefore, it seems
justified to carry out studies with the use of heterogeneous Markov chains, where the transition matrix
would be variable depending on the time, type of bus stop or communication line. Such an analysis
could be very useful for the practical application and further verification of the proposed approach.
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6. Conclusions

The discussed issue in the article concerns the problem of forecasting vehicle occupation in public
transport. The analysed issue is particularly important due to the growing problems of congestion
and the negative impact of road transport in cities. The methodology presented in the paper and
the obtained results can significantly contribute to the development of solutions and systems for a
better management as well as a cost and energy consumption optimisation in the public transport
system. Current and forecasted information related to bus occupancy, when used correctly in the
travel information system, such as ATIS, may have a positive impact on the development of urban
mobility patterns by encouraging the use of public transport. In this way, it is possible to support the
implementation of a sustainable development postulate in the context of transport.

The transportation system, especially public transport, is an artificial, complex, dynamic and
uncertain system. These features influence the internal transport process, which is why proper
management is challenging to implement. Therefore, it seems appropriate to use discrete Markov
processes to determine the expected occupancy level of vehicles at subsequent departures from a given
stop on the line. The presented calculation shows that the thesis is correct and creates an incentive for
more in-depth investigations.
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Autobusy Tech. Eksploat. Syst. Transp. 2016, 4, 14–19.
18. Oziomek, J.; Rogowski, A. Planning the allocation of the buses to the lines in terms of minimizing fuel

consumption based on the example of MPK Ostrowiec Świętokrzyski. TTS Tech. Transp. Szyn. 2015,
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Abstract: This paper links the celebrated Cauchy’s interlacing theorem of eigenvalues for partitioned
updated sequences of Hermitian matrices with stability and convergence problems and results of
related sequences of matrices. The results are also applied to sequences of factorizations of semidefinite
matrices with their complex conjugates ones to obtain sufficiency-type stability results for the factors
in those factorizations. Some extensions are given for parallel characterizations of convergent
sequences of matrices. In both cases, the updated information has a Hermitian structure, in particular,
a symmetric structure occurs if the involved vector and matrices are complex. These results rely on
the relation of stable matrices and convergent matrices (those ones being intuitively stable in a discrete
context). An epidemic model involving a clustering structure is discussed in light of the given results.
Finally, an application is given for a discrete-time aggregation dynamic system where an aggregated
subsystem is incorporated into the whole system at each iteration step. The whole aggregation system
and the sequence of aggregated subsystems are assumed to be controlled via linear-output feedback.
The characterization of the aggregation dynamic system linked to the updating dynamics through
the iteration procedure implies that such a system is, generally, time-varying.

Keywords: Aggregation dynamic system; Discrete system; Epidemic model; Cauchy’s interlacing
theorem; Output-feedback control; Stability; Antistable/Stable matrix

1. Introduction

Stability and convergence properties are very important topics when dealing with both continuous-
and discrete-time controlled dynamic systems. In this context, one of the most important design tools
is the closed-loop stabilization of control systems via the appropriate incorporation of stabilizing
controllers; see, for instance, [1–4] and references therein. In particular, in [1], and in some references
therein, the robust stable adaptive control of tandem of master-slave robotic manipulators using a
multi-estimation scheme is discussed. There are several questions of interest in the analysis, such as
the fact that the dynamics may be time-varying and imperfectly known, and the fact that a parallel
multi-estimation with eventual switching through time is incorporated into the adaptive controller to
improve the transient behavior. The speed estimation and stable control of an induction motor based
on the use of artificial neural networks is analyzed in [2]. Strategies of decentralized control, including
several applications and stabilization tools, are given in [3,4]. In particular, decentralized control is
useful when the various subsystems which are integrated in a whole integrated system are located
in separate areas, or when the amount of information needed presents difficulties with regards to
obtaining completely optimal suitable performance. Thus, the individual controllers associated with
the various subsystems get local information about the corresponding subsystems, and eventually some
extra partial information about the remaining ones to achieve stabilization, provided that the neglected
coupling dynamics are weak enough. Stabilizing decentralized control designs are described in [3]

Symmetry 2019, 11, 712; doi:10.3390/sym11050712 www.mdpi.com/journal/symmetry26



Symmetry 2019, 11, 712

for networked composite systems. Some technical aspects and the results of non-negative matrices
of usefulness to describe the properties and behavior of positive dynamic systems, the robustness of
matrices against numerical parameterization perturbations of their entries, and the properties of linear
dynamic systems are discussed in [5–8].

This paper focuses on the study of sequences of Hermitian matrices of increasing order which are
built via block partition aggregation at each iteration, in such a way that both the current iteration and
the next one are Hermitian matrices. The basic mathematical tool is the use of the interlacing Cauchy’s
theorem of the matrix eigenvalues of the matrices of the sequence, which orders the sequences of the
eigenvalues as the iteration progresses [8]. Our main objective is to adapt the interlacing theorem in
order to use it to derive stability or convergence conditions of the sequence of matrices, and to use the
results for the stability of a large-scale discrete aggregation-type dynamic system [9–14]. The paper
is organized as follows. Section 2 is devoted to investigating the properties of boundedness and
convergence of the sequences of the determinants and the sequences of eigenvalues as the iteration
progresses by aggregation of the updated information while maintaining a Hermitian structure. In the
particular case when the matrices describing the problem are real, the updated information has a
symmetrical structure. The results are used, in particular, to give stability or anti-stability (in the
sense that all the matrix eigenvalues of the matrices of the iterative sequence are unstable) conditions
to the matrices used in the standard factorization of Hermitian positive definite matrices. Section 3
extends some of the above results to the convergence of sequences of partitioned Hermitian matrices
constructed by aggregation of the updated information. Note that the concept of the convergence
of matrices is a discrete counterpart of the matrix stability property in the continuous-time domain,
since matrices are stability matrices if all their eigenvalues are in the open complex left-half plane.
The basic idea that complex square matrices are convergent if their eigenvalues are within the open
unit circle centered at zero is taken into account. An example is discussed concerning a SIR epidemic
model with contagions between populations of adjacent clusters in Section 4. Section 5 is devoted to
developing an application for the stability of an aggregation discrete-time dynamic controlled system
whose order increases by successive incorporations of new subsystems as the iteration index progresses,
and whose structure keeps a symmetry. Finally, some conclusions are presented at the end the paper.
The relevant mathematical proofs are given in the appendix in order to facilitate a direct reading of the
manuscript. The system is assumed to be parameterized by real parameters and controlled by linear
output-feedback control laws; it is also assumed that the former whole aggregation system and each
new aggregated subsystem at each iteration might eventually be coupled.

Notation and Mathematical Symbols

If M is a square Hermitian matrix, then M � 0 denotes that it is positive definite and M�0 denotes
it is positive semidefinite. Also, M ≺ 0 denotes, that it is negative definite.

Z0+ = {z ∈ Z : z ≥ 0}; Z+ = {z ∈ Z : z > 0},

R0+ = {z ∈ R : z ≥ 0}; R+ = {z ∈ R : z > 0},
C0+ = {z ∈ C : Re z ≥ 0}; C+ = {z ∈ C : Re z > 0},

n = {1, 2, . . . , n}
I is an identity matrix specified by In if it denotes the n-th identity matrix, A � 0 denotes

that the square matrix A is positive definite (positive semidefinite), A ≺ 0 denotes that the square
matrix A is negative definite (respectively, negative semidefinite), A � B, A�B, A ≺ B, A≺B denote,
respectively, that A−B � 0, A−B�0, A−B ≺ 0 and A−B≺ 0, λmin(M) andλmax(M) denote, respectively,
the minimum and maximum eigenvalue of a square real symmetric matrix M, r(M) is the spectral
radius of any square complex matrix M, sp(M) is the set of eigenvalues of the Hermitian matrix M.
If such a set is ordered with respect to the partial order relation “ ≤ ” then the ordered spectrum is
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denoted by sp≤(M). The superscripts * and T stand, respectively, for complex conjugates or transposes
of any vector or matrix, A ⊗ B is the Kronecker product of the matrices A, if A ∈ Cn×m then its
vectorization is a vector vec(A) ∈ Cn×m whose components are all the rows of A written in column in
its order and respecting the order of its respective entries, A† is the Moore-Penrose pseudoinverse of
the matrix A.

2. Technical Results on Partitioned Hermitian Matrices, Cauchy’s Interlacing Theorem
and Stability

The subsequent result relies on the conditions for the non-singularity of a partitioned Hermitian
matrix of order (n + 1) which is built by aggregation from a principal Hemitian sub-matrix of order n.
Mathematical proof is given in Appendix A.

Lemma 1. Consider the partitioned matrix M′ =
[

M m
m∗ d + d̃

]
∈ C(n+1)×(n+1) for any n ∈ Z+, where

M ∈ Cn×n is Hermitian, m ∈ Cn and d, d̃ ∈ R. Then,

(i) M′ is non-singular if and only if det
[

M m
m∗ d̃

]
� −ddet M, equivalently, if and only if det

[
M m
m∗ 0

]
�

−det
[

M 0
m∗ d + d̃

]
.

(ii) Assume that M � 0 and d > 0. Then, M′ � 0 if and only if det
[

M m
m∗ d̃

]
> −det

[
M 0
m∗ d

]
. If M � 0

and d ≥ 0 then M′�0 if det
[

M m
m∗ d̃

]
≥ 0. If M ≺ 0 and d ≤ 0 then M′≺0 if det

[
M m
m∗ d̃

]
≤ 0.

The subsequent result relies on some conditions which guarantee the boundedness of the
determinant and eigenvalues of a recursive sequence of Hermitian matrices which were obtained and
supported by Lemma 1 and Cauchy’s interlacing theorem.

Lemma 2. Consider the recursive sequence of Hermitian matrices
{
M(n)

}∞
n=n0

for a given initial M(n0) ∈
Cn0×n0 for some given arbitrary n0 ∈ Z+ , where M(n) ∈ Cn×n; ∀n(≥ n0) ∈ Z+, defined by M(n+1) =[

M(n) m(n)

m(n)∗ d(n) + d̃(n)

]
; ∀n(≥ n0) ∈ Z+ and assume that there is a real sequence

{
ε(n)

}∞
n=n0

⊂ [0 , 1) such

that 1
k(n)M k(n)

d̃

√
m(n)∗m(n) ≤ ε(n) , equivalently k(n)M ≥ 1

k(n)
d̃
ε(n)

√
m(n)∗m(n); ∀n(≥ n0) ∈ Z+ , where k(n)M =∣∣∣∣λmin

(
M(n)

) ∣∣∣∣ ≤ K(n)
M =

∣∣∣∣λmax
(
M(n)

) ∣∣∣∣; ∣∣∣d(n)∣∣∣ ∈ [k(n)d , K(n)
d

]
;
∣∣∣∣d̃(n)∣∣∣∣ ∈ [k(n)

d̃
, K(n)

d̃

]
; ∀n(≥ n0) ∈ Z+ with

K(n)
d ≥ K(n)

d̃
and k(n)d ≥ k(n)

d̃
; ∀n(≥ n0) ∈ Z+. Then, the following properties hold:

(i) lim sup
n→∞

(∣∣∣detM(n+1)
∣∣∣− ∣∣∣detM(n)

∣∣∣) ≤ 0,
∣∣∣detM(n+1)

∣∣∣ ≤ ∣∣∣detM(n)
∣∣∣ for any given n(≥ n0) ∈ Z+ if d(n),

d̃(n) and m(n) satisfy the constraint K(n)

d̃
≤ 1−K(n)

d
1+(2n+1−1)ε(n)

; ∀n(≥ n0) ∈ Z+ with K(n)
d ≤ 1, which becomes∣∣∣∣d̃(n)∣∣∣∣ ≤ 1−

∣∣∣d(n) ∣∣∣
1+(2n+1−1)ε(n)

; ∀n(≥ n0) ∈ Z+ if
∣∣∣d(n)∣∣∣ = K(n)

d = k(n)d ≤ 1 and
∣∣∣∣d̃(n)∣∣∣∣ = K(n)

d̃
= k(n)

d̃
;

∀n(≥ n0) ∈ Z+.

(ii) Assume that sp≤
(
M(n)

)
=
{
λ
(n)
1 ,λ(n)2 , . . . ,λ(n)n

}
and that K(n)

d̃
≤ 1−K(n)

d
1+(2n+1−1)ε(n)

with K(n)
d ≤ 1,

∀n(≥ n0) ∈ Z+, for some given n(≥ n0) ∈ Z+. Then, the following relations hold:

∣∣∣∣λ(n+1)
n+1

∣∣∣∣ ≤
∣∣∣∣∣∣∣∣
∏n

i=1 λ
(n)
i∏n

i=1 λ
(n+1)
i

∣∣∣∣∣∣∣∣ =
∣∣∣det M(n)

∣∣∣∣∣∣∣∏n
i=1 λ

(n+1)
i

∣∣∣∣ (1)
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If, furthermore, M(n)�0 and M(n+1)�0 for some n(≥ n0) ∈ Z+ then

λ
(n)
n ≤ λ(n+1)

n+1 ≤
∏n

i=1 λ
(n)
i∏n

i=1 λ
(n+1)
i

; 1 ≤
λ
(n+1)
n+1

λ
(n)
n

≤
∏n−1

i=1 λ
(n)
i∏n

i=1 λ
(n+1)
i

;

∏n+1
i=2 λ

(n+1)
i∏n

i=2 λ
(n)
i

≤ λ
(n)
1

λ
(n+1)
1

≤ 1 (2)

(iii) Assume that the constraints of Property (ii) hold with M(n0)�0; ∀n(≥ n0) ∈ Z+ and, furthermore,

lim sup
n→∞

(
d(n) + d̃(n)

)
≤ 1 and m(n) = min

(
o
(
‖M(n)‖

)
, o
(∣∣∣∣d̃(n)∣∣∣∣ )), which is guaranteed if m(n) =

min
(
o
(
K(n)

M

)
, o
(
K(n)

d̃

))
. Then, M(n)�0 and M(n+1)�0; ∀n(≥ n0) ∈ Z+,

{
det M(n)

}∞
n=n0

is

bounded and the sequence
{
sp
(
M(n)

)}∞
n=n0

is bounded, if det M(n0) is finite, and then

lim sup
n→∞

(
det M(n+1) − det M(n)

)
≤ 0.

Remark 1. Concerning Lemma 2 (i), we can focus on the following particular cases of interest A:

(a) m(n) = 0 and
∣∣∣detM(n+1)

∣∣∣ ≤ ∣∣∣detM(n)
∣∣∣ fails for all n(≥ n0) ∈ Z+ and some n0(≥ n0) ∈ Z+.

Then, |detM(n+1)| = |detM(n)||d(n) + d̃(n)| > |detM(n)| so that K(n)
d + K(n)

d̃
≥
∣∣∣∣ d(n) + d̃(n)

∣∣∣∣ > 1

and
1−K(n)

d
1+(2n+1−1)ε(n)

≥ K(n)

d̃
> 1 − K(n)

d so that 1 ≤ 1 +
(
2n+1 − 1

)
ε(n) < 1, a contradiction.

Thus, one has
∣∣∣detM(n+1)

∣∣∣ ≤ ∣∣∣detM(n)
∣∣∣ for any n(≥ n0) ∈ Z+ such that m(n) = 0 and also

lim sup
n→∞

(∣∣∣detM(n+1)
∣∣∣− ∣∣∣detM(n)

∣∣∣) ≤ 0.

(b) d(n) + d̃(n) = 0 and
∣∣∣detM(n+1)

∣∣∣ ≤ ∣∣∣detM(n)
∣∣∣ fails for all n(≥ n0) ∈ Z+ and some n0(≥ n0) ∈ Z+.

Note from the definition of the recursive sequence
{
M(n)

}∞
n=n0

that

detM(n+1) = det
[

M(n) 0
m(n)∗ d(n)

]
+ det

[
M(n) m(n)

m(n)∗ d̃(n)

]

= d(n)detM(n) + det

⎛⎜⎜⎜⎜⎝
[

M(n) 0
0 d̃(n)

] ⎛⎜⎜⎜⎜⎝In+1 +

⎡⎢⎢⎢⎢⎣ M(n)−1
0

0 1/d̃(n)

⎤⎥⎥⎥⎥⎦
[

0 m(n)

m(n)∗ 0

]⎞⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎠

= −d̃(n)detM(n)

⎛⎜⎜⎜⎜⎝1− det

⎛⎜⎜⎜⎜⎝In+1 +

⎡⎢⎢⎢⎢⎣ M(n)−1
0

0 −1/d(n)

⎤⎥⎥⎥⎥⎦
[

0 m(n)

m(n)∗ 0

]⎞⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎠; ∀n(≥ n0) ∈ Z+

(3)

Since 1
k(n)M k(n)

d̃

√
m(n)∗m(n) ≤ ε(n) and

{
ε(n)

}∞
n=n0

→ 0 then

lim sup
n→∞

⎛⎜⎜⎜⎜⎜⎝∣∣∣detM(n+1)/detM(n)
∣∣∣− ∣∣∣∣d̃(n)∣∣∣∣

∣∣∣∣∣∣∣ 1− det

⎛⎜⎜⎜⎜⎝In+1 +

⎡⎢⎢⎢⎢⎣ 0 M(n)−1
m(n)

−
(
1/d(n)

)
m(n)∗ 0

⎤⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎠
∣∣∣∣∣∣∣
⎞⎟⎟⎟⎟⎟⎠

= lim sup
n→∞

∣∣∣detM(n+1)/detM(n)
∣∣∣ = 0

and lim sup
n→∞

(∣∣∣detM(n+1)
∣∣∣− ∣∣∣detM(n)

∣∣∣) ≤ 0 since, otherwise, if lim sup
n→∞

(∣∣∣detM(n+1)
∣∣∣− ∣∣∣detM(n)

∣∣∣) > 0 then

lim sup
n→∞

∣∣∣detM(n+1)/detM(n)
∣∣∣ ∈ (−∞ ,−1)∪ (1,+∞), a contradiction to lim sup

n→∞

∣∣∣detM(n+1)/detM(n)
∣∣∣ =

0. Note that if d̃(n) = 0 then
∣∣∣d(n)∣∣∣ ≤ 1 under the given constraints so that if

{
m(n)

}∞
n=n0

→ 0 ;

(c) ∀n(≥ n0) ∈ Z+ and some n0 ≥ n0 then lim sup
n→∞

(∣∣∣detM(n+1)
∣∣∣− ∣∣∣detM(n)

∣∣∣) ≤ 0.

Now, one gets from Lemma 2 [(ii), (iii)] the subsequent dual result concerning the recursion
obtained from the inverse of M(n). The use of this result will make it possible to give sufficiency-type
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conditions regarding the non-singularity of the recursive calculation for any positive integer n, and also
as n tends to infinity.

Lemma 3. For some given arbitrary n0 ∈ Z+ and all n(≥ n0) ∈ Z+, define:

M
(n)

= M(n)−1
(
In + m(n)

(
d(n) + d̃(n) −m(n)∗M(n)−1

m(n)
)−1

m(n)∗M(n)−1
)

(4)

m(n) = −M(n)−1
m(n)

(
d(n) + d̃(n) −m(n)∗M(n)−1

m(n)
)−1

(5)

d
(n)

+ d̃
(n)

=
(
d(n) + d̃(n) −m(n)∗M(n)−1

m(n)
)−1

(6)

and assume that:

(1) there is a real sequence
{
ε(n)

}∞
n=n0

⊂ [0, 1) such that 1

k
(n)
M (n)k

(n)
d

√
m(n)∗m(n) ≤ ε(n);∀n(≥ n0) ∈ Z+ , where

k
(n)
M =

∣∣∣∣∣λmin

(
M

(n)
) ∣∣∣∣∣ ≤ K

(n)
M =

∣∣∣∣∣λmax

(
M

(n)
) ∣∣∣∣∣; d

(n) ∈
[
k
(n)
d , K

(n)
d

]
;

d̃
(n)
∈
[
k
(n)

d̃
, K

(n)

d̃

]
; ∀n(≥ n0) ∈ Z+,

d̃(n) � m(n)∗M(n)−1
m(n) − d(n)

(2) M
(n0)�0, lim sup

n→∞

(
d
(n)

+ d̃
(n))

≤ 1 andm(n) = min
(
o
(
‖M

(n)‖
)
, o
(̃
d
(n) ))

, which is guaranteed if

m(n) = min
(
o
(
K
(n)
M

)
, o
(
K
(n)

d̃

))
.Then, M

(n)�0 and M
(n+1)�0;∀n(≥ n0) ∈ Z+,

{
det M

(n)
}∞

n=n0

is bounded,

the sequence
{
sp
(
M

(n)
)}∞

n=n0

is bounded, if det M
(n0) is finite, and then lim sup

n→∞

(
det
∣∣∣∣∣M(n+1)

∣∣∣∣∣− det
∣∣∣∣∣M(n)

∣∣∣∣∣) ≤ 0.

One gets by combining Lemma 2 and Lemma 3 the two subsequent direct results:

Lemma 4. Assume that M(n0) � 0 for some given arbitrary n0 ∈ Z+ and assume also that the conditions of
Lemma 2 (iii) and Lemma 3 hold. Then, M(n+1) � 0; ∀n(≥ n0) ∈ Z+.

Lemma 5. Assume that, for some finite n0 ∈ Z+, A(n0) ∈ Cn0×n0 is a stability matrix and construct a sequence{
M(n)

}∞
n=n0

according to the recursive rule:

M(n+1) = A(n+1)∗A(n+1) =

[
M(n) m(n)

m(n)∗ d(n) + d̃(n)

]
=

[
A(n)∗A(n) m(n)

m(n)∗ d(n) + d̃(n)

]
; ∀n ≥ n0

with initial condition M(n0) = A(n0)∗A(n0) � 0. Assume also that
{
M(n)

}∞
n=n0

and the sequence of its inverses
satisfy the constraints of Lemma 2 [(ii),(iii)] and Lemma 3.

Then,
{
A(n)

}∞
n=n0

is a sequence of stability matrices.

The above result can be directly extended for the case when A(n0) ∈ Cn0×n0 is antistable, that is,
when all its eigenvalues have positive real parts and M(n0) � 0. Then, by using similar arguments, as in
the proof of Lemma 5 based on the continuity of the matrix eigenvalues with respect to its entries and
supported by Lemmas 2,3, according to Cauchy’s interlacing theorem, one concludes that

{
A(n)

}∞
n=n0

consists of antistable members.

Lemma 6. Lemma 5 holds “mutatis-mutandis” if A(n0) ∈ Cn0×n0 is antistable.
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3. Some Extended Results Related to Sequences of Convergent Matrices

In order to be able to adapt the above results to discrete dynamic systems, the well-known result
that that the stability domain of a convergent matrix (i.e., a “stable” discrete matrix) is the open unit
circle of the complex plane centered at zero has to be taken into account. Note that, in particular,
A ∈ Cn×n is convergent if sp(A) ⊂ C1 = {z ∈ C : |z| < 1} so that {Am}∞0 → 0 as m→∞ . It turns out that
convergent matrices describe the stability property in the discrete sense. In other words, the solution
of the discrete difference vector equation zm+1 = Azm, where A ∈ Cn×n, converges to 0 ∈ Rn for any
given z0 ∈ Cn if and only if A ∈ Cn×n is convergent. The relevant results of Section 2 can be extended to
this situation as follows, provided that A ∈ Cn×n is also Hermitian. Consider the following cases:

Case a: sp(A) ⊂ C1+ = {z ∈ C : 0 < z < 1} ⊂ C1 so that A(∈ Cn×n) � 0. Then, it is convergent if and
only if (In −A) � 0. The proof is direct since if (In −A) � 0 then x∗Ax < x∗x for any x(� 0) ∈ Cn. Thus,
by taking any λ(� 0) ∈ sp(A) of eigenvector x ∈ Cn, one determines that λ < 1 if λ � 0 and λ = 0
directly fulfills the constraint. This proves the sufficiency part. The “only if part” follows, since if
(In −A) � 0 fails, there is λ(� 0) ∈ sp(A) of eigenvector x ∈ Cn such that x∗Ax ≥ x∗x then λ ≥ 1 and A
is not convergent.
Case b: sp(A) ⊂ C1− = {z ∈ C : −1 < z < 0} ⊂ C1 so that A (∈ Cn×n) ≺ 0. Then, it is convergent
if and only if (In + A) � 0. The proof is direct, since if (In + A) � 0, then x∗Ax > −x∗x for any
x(� 0) ∈ Cn. Thus, by taking any λ(� 0) ∈ sp(A) of eigenvector x ∈ Cn, one determines that 0 > λ > −1.
The remainder of the proof follows Case a closely.
Case c: sp(A) ⊂ C1 so that A2(∈ Cn×n) � 0 so that sp

(
A2
)
⊂ C1+. Then, it is convergent if and only

if
(
In −A2

)
� 0 according to Case a by replacing A→ A2 . Note that Case c is included Case a and

Case b.

Now, for Case a, replace M(n+1), defined in Lemma 2, by In+1 − M(n+1) =⎡⎢⎢⎢⎢⎣ In −M(n) −m(n)

−m(n)∗ 1−
(
d(n) + d̃(n)

) ⎤⎥⎥⎥⎥⎦ and it has to be guaranteed that if M(n) is Hermitian, then
(
In −M(n)

)
is also Hermitan, and

(
In −M(n0)

)
� 0 for some n0 ∈ Z+ then

(
In+1 −M(n+1)

)
� 0; ∀n ≥ n0.

For Case b, replace M(n+1) →
(
In+1 + M(n+1)

)
=

[
In + M(n) m(n)

m(n)∗ 1 + d(n) + d̃(n)

]
and it has to be

guaranteed that if M(n) is Hermitian, then
(
In + M(n)

)
is also Hermitan, and

(
In + M(n0)

)
� 0 for some

n0 ∈ Z+ then
(
In+1 + M(n+1)

)
� 0; ∀n ≥ n0.

For Case c, note that
(
In −M(n)2

)
=
(
In + M(n)

)(
In −M(n)

)
so that

(
In −M(n)2

)
=

[
In + M(n) m(n)

m(n)∗ 1 + d(n) + d̃(n)

] ⎡⎢⎢⎢⎢⎣ In −M(n) −m(n)

−m(n)∗ 1−
(
d(n) + d̃(n)

) ⎤⎥⎥⎥⎥⎦
then, replace

M(n+1) →
(
In+1 −M(n+1)2

)
=

⎡⎢⎢⎢⎢⎢⎣ In −M(n)2 −
((

d(n) + d̃(n)
)
In + M(n)

)
m(n)

−m(n)∗((d(n) + d̃(n)
)
In + M(n)∗) 1−

(
d(n) + d̃(n)

)2 −m(n)∗m(n)

⎤⎥⎥⎥⎥⎥⎦
and it has to be guaranteed that if M(n)2

is Hermitian and
(
In −M(n0)

2
)
� 0 for some n0 ∈ Z+ then(

In+1 −M(n+1)2
)
� 0; ∀n ≥ n0. Since A � 0 is Hermitian, it is of the form A = E∗E for some full rank

n-matrix E. Then, A2 = (E∗E)2 = E∗EE∗E = A∗A. If
A ≺ 0 then (−A) � 0 and (−A)2 = (F∗F)2 = F∗FF∗F = (−A∗)(−A) = A∗A for some full rank

n-matrix F. Then, Cases a and b can be dealt with using Case c by replacing A2 → A∗A .
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By taking advantage from the fact that a complex square matrix A is convergent (i.e., stable in
the discrete sense) if and only if the Hermitian matrix A∗A is convergent, we now build a sequence{

M(n)
}∞
n=0

of Hermitian matrices as follows, in order to discuss the convergence of its members,

provided that M(n0) is convergent for some given n0 ∈ Z0+ or, with no loss in generality, provided that
M(0) is convergent. Then,

M(n+1) =

[
M(n) λ(n)m(n)

λ(n)m(n)∗ δ(n)

]
=

[
M(n) 0

0 δ(n)

]
+

[
0 λ(n)m(n)

λ(n)m(n)∗ 0

]
; ∀n ∈ Z0+ (7)

with
{
λ(n)

}∞
n=0
⊂ [0, 1).Then,

∣∣∣∣∣∣λmax

[
M(n) λ(n+1)m(n)

λ(n)m(n)∗ δ(n)

]∣∣∣∣∣∣ ≤
∣∣∣∣∣∣λmax

[
M(n) 0

0 δ(n)

]∣∣∣∣∣∣+
∣∣∣∣∣∣λmax

[
0 λ(n)m(n)

λ(n)m(n)∗ 0

] ∣∣∣∣∣∣
= max

(∣∣∣∣λmax
(
M(n)

)∣∣∣∣ , ∣∣∣δ(n)∣∣∣)+ λ(n) √m(n)∗m(n)

≤ max
(
1− ε(n) ,

∣∣∣δ(n)∣∣∣)+ λ(n) √m(n)∗m(n) < 1− ε(n); ∀n ∈ Z0+

(8)

which holds if
m(n)∗m(n) <

1
λ(n)2

(
1− ε(n) −max

(
1− ε(n) ,

∣∣∣δ(n)∣∣∣))2; ∀n ∈ Z0+ (9)

or, ‖m(n)‖2 < 1
λ(n)2

(
1− ε(n) −max

(
1− ε(n) ,

∣∣∣δ(n)∣∣∣)); ∀n ∈ Z0+, provided that ε(n+1) < ε(n); ∀n ∈ Z0+,

that is
{
ε(n)

}∞
n=0 ⊂ [0, 1) is strictly decreasing, so

{
ε(n)

}∞
n=0 → 0 , and

∣∣∣δ(n)∣∣∣ < 1− ε(n+1); ∀n ∈ Z0+.

Now, assume that the iterations to build
{

M(n+1)
}∞
n=0

do not add a new row and column to obtain

M(n+1) from M(n) via the contribution of the members of an updating sequence
{
M

(n)
}∞

n=0
; ∀n ∈ Z0+

but a set of the, in general. Then, one may get that:

M(n+1) =

⎡⎢⎢⎢⎢⎢⎣ M(n) λ(n)M
(n)

λ(n)M
(n)∗

Δ(n)

⎤⎥⎥⎥⎥⎥⎦ =
[

M(n) 0
0 Δ(n)

]
+

⎡⎢⎢⎢⎢⎢⎣ 0 λ(n)M
(n)

λ(n)M
(n)∗

0

⎤⎥⎥⎥⎥⎥⎦; ∀n ∈ Z0+ (10)

so that

∣∣∣λmaxM(n+1)
∣∣∣ =

∣∣∣∣∣∣∣λmax

⎡⎢⎢⎢⎢⎢⎣ M(n) λ(n)M
(n)

λ(n)M
(n)∗

Δ(n)

⎤⎥⎥⎥⎥⎥⎦
∣∣∣∣∣∣∣ ≤
∣∣∣∣∣∣λmax

[
M(n) 0

0 Δ(n)

]∣∣∣∣∣∣+
∣∣∣∣∣∣∣λmax

⎡⎢⎢⎢⎢⎢⎣ 0 λ(n)M
(n)

λ(n)M
(n)∗

0

⎤⎥⎥⎥⎥⎥⎦
∣∣∣∣∣∣∣

= max
(∣∣∣∣λmax

(
M(n)

)∣∣∣∣ , ∣∣∣∣λmax
(
Δ(n)

)∣∣∣∣)+ λ(n)λ1/2
max

(
M

(n)∗
M

(n)
)

≤ max
(
1− ε(n) ,

∣∣∣∣λmax
(
Δ(n)

)∣∣∣∣)+ λ(n)λ1/2
max

(
M

(n)∗
M

(n)
)
< 1− ε(n+1);∀n ∈ Z0+

(11)

which holds by complete induction if M(0) is convergent and

‖M(n)‖
2

2 = λmax

(
M

(n)∗
M

(n)
)
< 1
λ(n)2

(
1− ε(n+1) −max

(
1− ε(n) ,

∣∣∣∣λmax
(
Δ(n)

)∣∣∣∣))2;

∀n ∈ Z0+

(12)

or, ‖M(n)‖2 < 1
λ(n)

(
1− ε(n+1) −max

(
1− ε(n) ,

∣∣∣∣λmax
(
Δ(n)

)∣∣∣∣)); ∀n ∈ Z0+, provided that ε(n+1) < ε(n),

that is
{
ε(n)

}∞
n=0 ⊂ [0, 1) is strictly decreasing, so

{
ε(n)

}∞
n=0
→ 0 , and

∣∣∣∣λmax
(
Δ(n)

)∣∣∣∣ < 1− ε(n+1); ∀n ∈ Z0+.

This implies that
{
M(n)

}∞
n=0

is convergent.

In the particular case that for some λ ∈ [0, 1), λ(n) = λn; ∀n ∈ Z0+, such a λ is a forgetting factor
of the iteration.
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We now consider the matrix factorization M(n) = A(n)∗A(n); ∀n ∈ Z0+. By construction, M(n) is
Hemitian (then square), even if A(n) is not square; ∀n ∈ Z0+. In the case when A(n) is not square,
and since its order strictly increases as n increases, it is possible to consider the convergence of the
sequence

{
A(n)

}∞
n=0 (without invoking the values of its eigenvalues) as the following property

{
A(n)

}∞
n=0

is asymptotically convergent if lim
m→∞

{∣∣∣ ‖A(n+ξ)‖ − ‖A(n)‖
∣∣∣m}∞n=0 = 0 for any given ξ ∈ Z+.

{
A(n)

}∞
n=0

is

convergent if lim
m→∞

{
A(n)m}∞

n=0 = 0. The following related results are direct of simple proofs given in
Appendix A:

Lemma 7. If
{
A(n)

}∞
n=0 is convergent then it is asymptotically convergent. The inverse is, in general, not true.

Lemma 8. Assume that M(n) = A(n)∗A(n); ∀n ∈ Z0+ is a complex square matrix of any arbitrary order. Then:

(i) If ‖A(n)‖2 < 1; ∀n ∈ Z0+ then
{
A(n)

}∞
n=0

and
{
M(n)

}∞
n=0 are convergent sequences.

(ii) If ‖M(n)‖2 < 1; ∀n ∈ Z0+ then
{
M(n)

}∞
n=0 and

{
A(n)

}∞
n=0 are convergent sequences.

(iii) For any n ∈ Z0+, ‖A(n)‖2 < 1 if and only if ‖M(n)‖2 < 1.
{
A(n)

}∞
n=0 is convergent if and only if{

M(n)
}∞

n=0 is convergent.

4. Example of SIR-Type Epidemic Models of Inter-Community Clusters

The stability of the equilibrium points of the epidemic models is an interesting topic which is of
great relevance to healthcare management. See, for instance, [15–19]. Now, we discuss an epidemic
based-model related to stabilization under the given framework of the Cauchy’s interlacing theorem.

Example 1. Consider the subsequent continuous-time linearized epidemic model with Q community clusters:

.
Si+1 = νi(1− μi)Ii − βi+1Si+1

.
Ii+1 = βi+1Si+1 − νi+1Ii+1 (13)

.
Ri+1 = νi+1μi+1Ii

for i = 0, 1, . . . , Q− 1 with Si(0) = Si0 ≥ 0, Ii(0) = Ii0 ≥ 0, Ri(0) = Ri0 ≥ 0; ∀i ∈ Q are the initial conditions
of the susceptible, infectious and recovered subpopulations, respectively, and I0(0) = 0, ν0 = 1. In this
model, the infectious subpopulation Ii of a community i ∈ Q = {1, 2, . . . , Q} may infect the population of the
neighboring community (i + 1). The parameterization is as follows: β(.) are the disease transmission rates, ν(.)
are the removal rates and μ(.) are the separation constants which bifurcate the disease rate between the local
community and the total community. Note that the assumption μ0 = 1 implies that the first cluster is not
affected by contagions from any other cluster, [15]. A simple analysis of the trajectory solution of the first cluster
shows that

S1(t) = e−β1tS10 → 0 as t→∞
at an exponential rate, irrespective of the initial conditions, and is definitively bounded,

I1(t) = e−ν1tI10 +
∫ t

0 e−ν1(t−τ)S1(τ)dτ= e−ν1t
(
I10 + S10

∫ t
0 e(ν1−β1)τdτ

)
=
(
e−ν1tI10 +

e−β1t−e−ν1t

ν1−β1
S10
)
→ 0 as t→∞

33



Symmetry 2019, 11, 712

if ν1 � β1. If ν1 = β1 then I1(t) = e−ν1t(I10 + S10t)→ 0 as t→∞ . In both cases, the convergence is of
exponential order, irrespective of the initial conditions, and is definitively bounded, and

R1(t) = R10 + ν1μ1
∫ t

0 Ii(τ)dτ= R10 + ν1μ1
∫ t

0

(
e−ν1τI10 +

e−β1τ−e−ν1τ
ν1−β1

S10
)
dτ

= R10 + ν1μ1
∫ t

0

(
e−ν1τI10 +

e−β1τ−e−ν1τ
ν1−β1

S10
)
dτ

= R10 + ν1μ1I10
1−e−ν1t

ν1
+
ν1μ1S10
ν1−β1

(
e−β1t − e−ν1t

)
→ R10 + μ1I10 +

ν1μ1S10
ν1−β1

(
e−β1t − e−ν1t

)
as t→∞

if ν1 � β1 with solution which is definitively bounded, and, if ν1 = β1 then

R1(t) = R10 + ν1μ1
∫ t

0 e−ν1τ(I10 + S10τ)dτ
= R10 + μ1

[(
1− e−ν1t

)
I10 +

(
1
ν1

(
1− e−v1t

)
− te−ν1t

)
S10
]
→ R10 + μ1

[
I10 +

S10
ν1

]
as

t→∞
with a solution which is definitively bounded. As a result, the total subpopulation at the first cluster is
also definitively bounded, and it converges asymptotically to the limit value of the recovered subpopulation.

The solution trajectory is also definitively nonnegative since the matrix of dynamics

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
−β1 0 0
β1 −ν1 0
0 ν1μ1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ is a

Metzler matrix and the initial conditions are non-negative. Interpretation shows that the total equilibrium
subpopulation is that of the disease-free equilibrium which only has a recovered subpopulation. It can be
surprising at a first glance to see that the usual nonlinear term β1S1(t)I1(t) is the susceptible and infectious
subpopulations evolutions of the corresponding SIR Kermack-Mcendrick model counterpart is replaced by a linear
term. However, for stability purposes, there is no substantial distinct qualitative behavior between both models,

since in this case, S1(t) = e−β1
∫ t

0 I1(τ)dτS10 is strictly decreasing for t ≥ 0 and I1(t) = e
∫ t

0 (β1S1(τ)−ν1)dτI10 is also
strictly decreasing for t ≥ 0 provided that S10 <

ν1
β1

. Now describe the whole model (14) of Nclusters in a more

compact way through the individual states xi = (Si , Ii , Ri)
T; i ∈ N and associated matrices of self-dynamics for

each i ∈ N and coupled dynamics with the respective preceding cluster (i− 1) ∈ N:

Ai =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
−βi 0 0
βi −νi 0
0 νiμi 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦, ∀i ∈ N; Ai,i−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 νi−1(1− μi−1) 0
0 0 0
0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦,
∀i(≥ 2) ∈ N; A0,−1 = 0

(14)

so that (13) is equivalently described as

.
xi(t) = Aixi(t) + Ai,i−1xi−1(t), xi(0) = xi0(≥ 0); ∀i ∈ N (15)

with x0(t) ≡ 0 for t ≥ 0, and compactly, as follows:

.
x(t) = Ax(t), x(0) = x0 (16)

34



Symmetry 2019, 11, 712

where x(t) =
(
xT

1 (t) , xT
2 (t) , · · · , xT

N(t)
)T

and

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1 0 0 · · · 0
A21 A2 0 · · · 0

0 ...
...

A32 A30 · · · ...
...

...

...

· · · 0

0 0 · · · · · · 0 AN,N−1 AN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(17)

Thus, system (15), like (16), (17), can be interpreted as an aggregation model given by starting with the
first cluster and successively incorporating the dynamics of the remaining clusters. Now, define the symmetric
matrix M = M(N) = ATA. Then, define:

M(1) = AT
1 A1

M(2) =

[
AT

1 AT
21

0 AT
2

][
A1 0
A21 A2

]
=

[
AT

1 A1 + AT
21A21 AT

21A2

AT
2 A21 AT

2 A2

]

=

[
M(1) AT

21A2

AT
2 A21 AT

2 A2

]
+M̃(2)

M(3) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
AT

1 AT
21 0

0 AT
2 AT

32
0 0 AT

3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1 0 0
A21 A2 0

0 A32 A3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣ M(2) 0

AT
32A3

0 AT
3 A32 AT

3 A3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦+ M̃(3)

M(N) =

⎡⎢⎢⎢⎢⎣ M(N−1) m(N−1)

m(N−1)T
AT

3 A3

⎤⎥⎥⎥⎥⎦+ M̃(N)

(18)

M̃(2) =

[
AT

21A21 0
0 0

]
, M̃(3) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
AT

21A21 0 0
0 AT

32A32 0
0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

M̃(N) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

AT
21A21 0 · · · 0

0 AT
32A32 0 · · · 0

0 · · · . . .

0 · · · · · · AT
N, N−1AN,N−1

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
if N ≥ 2 and M̃(1) = 0. By inspection of (18), one concludes that ‖M̃(n)‖ = 0

(∑n
n=2 sup2‖m(n)‖

)
for

i = 2, 3, . . . , N which concludes that, if
{
An−1,n

}N
n=2
→ 0 as N→∞ in such a way that

{
‖m( j)‖

}N
j=2
→ 0

as N→∞ , for instance, if the convergence is at exponential rate, then lim
N→∞

∑N
n=2 sup2‖m(n)‖ ≤ Km < +∞.

Furthermore, if A1 is a stability matrix of absolute stability abscissa which are sufficiently larger than Km,
then the dynamic system (16),(17) is globally asymptotically stable according to Lemma 5. In particular, note that
if there is any pair of stable complex conjugate eigenvalues s1,2 = μ ± iν (μ < 0 , ν > 0) for the first cluster,
then there is a submatrix of M(1),

Ms(1) = AsT
1 As

1 =

[
μ −ν
ν μ

][
μ ν
−ν μ

]
=

[
μ2 + ν2 0

0 μ2 + ν2

]
=

⎡⎢⎢⎢⎢⎢⎣ λ
(1)
1 0

0 λ
(1)
2

⎤⎥⎥⎥⎥⎥⎦
in the real canonical form. Since μ(1) = μ < 0 then λ(1)2 = λ

(1)
2 = μ2 + ν2 > 0. The maximum and minimum

corresponding eigenvalues of Ms(2) are no less than λ(1)2 and no larger than λ(1)1 , respectively, from Cauchy’s

35



Symmetry 2019, 11, 712

interlacing theorem. Since the eigenvalues are continuous functions of the matrix entries, and since Ms(n) is
positive definite any critical eigenvalue of a member Ms( j) of the sequence,

{
Ms(n)

}∞
n=2

implies a lot of stability of

the corresponding As
j. This is avoided if lim

N→∞
∑N

n=2 sup2‖m(n)‖ ≤ Km < +∞, implying also that
{
m(n)

}N
2
→ 0

as N→∞ , and the sequence of separation constants
{
μn
}N
n=2 → 1 as N→∞ if Km is small enough related to

μ. The physical interpretation relies on the fact that the contagion link from a cluster to the next one is weakened
sufficiently quickly as the cluster index increases, due to the fact of the numbers of the infected subpopulations
are rapidly decreasing as the cluster index increases at a sufficiently large rate.

5. Dynamic Linear Discrete Aggregation Model with Output Delay and Linear Feedback Control

In this section, the convergence results of Section 3 are applied to a dynamic discrete system
which is built by the aggregation of discrete dynamic subsystems subject to linear output feedback
control. Since we are dealing with a physical system, it turns out that the formalism of Section 2 can be
developed by invoking conditions related to real symmetric systems, rather than to complex Hermitian
ones, when necessary. It would suffice to describe the state by expressing the matrix of dynamics in
the real canonical form and to transform the control and output matrices by the appropriate similarity
matrix. The necessary mathematical proof is given in Appendix A.

Consider the aggregation linear discrete dynamic system subject to r point delays under linear
output-feedback:

x0(n+1) = A0(n)x(n) + Â0(n)x̂(n) +
r∑

j=1

B(n)
j y(n− j) + B(n)

0 u(n) (19)

y(n) = C(n)x(n) (20)

u(n) =

rn∑
j=0

K(n)
j y(n− j) =

rn∑
j=0

K(n)
j Cx(n− j) (21)

∀n ∈ Z0+, with initial conditions x0(0) = x0, where {ni}∞i=0 is a sequence of positive integer numbers,
x(n) ∈ R

∑n
i=0 ni is the “a priori” vector state at the n-th iteration, x̂(n) ∈ Rnn is the aggregated “a

priori” new substate at the n-th iteration (that is basically, the new information needed to update the
state vector and its dimension) and x0(n+1) ∈ R

∑n
i=0 ni is the “a priori” whole state at the (n + 1)-th

iteration. Also, x0(n) ∈ R
∑n−1

i=0 ni , u(n) ∈ R
∑n

i=0 mi and y(n) ∈ R
∑n

i=0 pi are, respectively, the “a priori”
input and measurable output vectors at the n-th iteration and r ⊂ Z+ is a sequence of delays
influencing the global dynamics. The sequences of matrices of dynamics

{
A0(n)

}∞
n=0

and
{
Â0(n)

}∞
n=0

,

control
{
B(n)

0

}∞
n=0

, output-state coupling
{
B(n)

j

}∞
n=0

for j ∈ r are of members A0(n) ∈ R(
∑n

i=0 ni)×(∑n
i=0 ni),

Â(n) ∈ R(
∑n

i=0 ni)×nn , and B(n)
0 ∈ R(

∑n
i=0 ni)×(∑n

i=0 mi) and B(n)
j ∈ R(

∑n
i=0 ni)×(∑n− j

i=0 pi) for j ∈ r and the output

matrix C(n) ∈ R(
∑n

i=0 pi)×(∑n
i=0 ni). The sequences of matrices

{
K(n)

j

}∞
n=0

, with K(n)
j ∈ R(

∑n
i=0 mi)×(∑n

i=0 pi)

for j ∈ r∪ {0}, are the output-feedback control gains which generate the control law sequence
{
u(n)

}∞
n=0

.
The dynamics of the new dynamics at the (n + 1)-th iteration aggregated to the former global

aggregation system of state x(n) obtained at the n-th iteration, are assumed to be described by:

x̂(n+1) = Â(n+1)x(n) +
(
D̂(n) + ˜̂D(n)

)
x̂(n) +

r∑
j=1

(
B̂a(n)

j y(n− j) + B̂(n)
j ŷ(n− j)

)
+ B̂(n)

0 û(n) (22)

ŷ(n) = Ĉ(n)x̂(n) (23)

û(n) =
r∑

j=0

(
K̂(n)

j ŷ(n− j) + K̂a(n)
j y(n− j)

)
=

r∑
j=0

(
K̂(n)

j Ĉ(n)x̂(n− j) + K̂a(n)
j C(n)x(n− j)

)
(24)
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∀n ∈ Z0+, where x̂(n+1) ∈ Rnn+1 is the “a posteriori” state of the aggregated subsystem at the
(n + 1)-th iteration whose “a priori” value is x̂(n) ∈ Rnn , ŷ(n) ∈ Rpn , û(n) ∈ Rmn , Â(n+1) ∈ Rnn+1×(∑n

i=0 ni),

B̂(n)
0 ∈ Rnn+1×mn , B̂(n)

j ∈ Rnn+1×pn− j , B̂a(n)
j ∈ Rnn+1×(∑n− j

i=0 pi) for j ∈ r; Ĉ(n− j) ∈ Rpn− j×nn− j , K̂(n)
j ∈ Rmn+1×pn− j ,

K̂a(n)
j ∈ Rmn+1×(∑n− j

i=0 pi) for j ∈ r∪ {0}, and D̂(n) , ˜̂D(n) ∈ Rnn+1×nn and B̂(n)
0 ∈ Rnn+1×mn+1 , B̂(n)

j ∈ Rnn+1×pn− j

for j ∈ r; ∀n ∈ Z0+.
Note that the aggregated subsystem (22)–(24) is coupled to the former global state x(n) describing

the total system’s dynamics prior to the aggregation action. It can be seen that the coupling terms
do not necessary demonstrate infinite memory requirements as n tends to infinity, since the matrices
A(n+1), B̂a(n)

j and K̂a(n)
j can contain nonzero columns associated with the most recent state/output data

related to the previous aggregation system; see, for instance, [12]. Note also that, due to the coupling
between the a priori whole state at the n-th iterations with the a priori new aggregated substate, it can
happen that the a posteriori vector after the new aggregated substate has a higher dimension than its a
priori version. The various dynamics, control and output matrices have the appropriate orders.

After incorporating the control law, we can write this whole system of extended states x(n) =(
x0(n)T

, x̂(n)
T
)T
∈ R

∑n
i=0 ni ; ∀n ∈ Z0+ in a compact way:

x(n+1) =

[
x0(n+1)

x̂(n+1)

]
=

⎡⎢⎢⎢⎢⎢⎢⎣ A0(n) + B(n)
0 K(n)

0 C(n) Â0(n)

Â(n+1) + B̂(n)
0 K̂a(n)

0 C(n) D̂(n) + ˜̂D(n)
+ B̂(n)

0 K̂(n)
0 Ĉ(n)

⎤⎥⎥⎥⎥⎥⎥⎦
[

x(n)

x̂(n)

]

+
∑r

j=1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
(
B(n)

j + B(n)
0 K(n)

j

)
C(n) 0(

B̂a(n)
j + B̂(n)

0 K̂a(n)
j

)
C(n− j)

(
B̂(n)

j + B̂(n)
0 K̂(n)

j

)
Ĉ(n− j)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦x(n− j); ∀n ∈ Z0+

(25)

so that x(n), x0(n+1) ∈ R
∑n

i=0 ni and x̂(n) ∈ Rnn and x̂(n+1) ∈ Rnn+1 imply that x(n+1) ∈ R
∑n+1

i=0 ni , x(n+1) =(
x0(n+1)T

, x̂(n+1)T
)T
∈ R

∑n+1
i=0 ni .

In order to construct a state vector which includes delayed dynamics, we now define the modified

extended state x(n) defined by x(n) =
(
x(n)

T
, x(n−1)T

, . . . , x(n−r)T
)T
∈ R

∑n
j=n−r

∑ j
i=0 ni ; ∀n ∈ Z0+. Thus,

one determines from (25) that:

x(n+1) = A
(n)

x(n); ∀n ∈ Z0+ (26)

where

A
(n)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A0(n) + B0(n)
0 K(n)

0 C(n) Â0(n)

Â(n+1) + B̂(n)
0 K̂a(n)

0 C(n) D(n) + D̃(n) + B̂(n)
0 K̂(n)

0 Ĉ(n)

(
B(n)

1 + B(n)
0 K(n)

1

)
C(n−1) 0(

B̂a(n)
1 + B̂(n)

0 K̂a(n)
1

)
C(n−1)

(
B̂(n)

1 + B̂(n)
0 K̂(n)

1

)
Ĉ(n−1)

· · ·
(
B(n)

r + B(n)
0 K(n)

r

)
C(n−r) 0(

B̂a(n)
r + B̂(n)

0 K̂a(n)
r

)
C(n−r)

(
B̂(n)

r + B̂(n)
0 K̂(n)

r

)
Ĉ(n−r)

I∑n−1
i=0 ni

· · · · · · · · ·
· · · . . . · · · · · ·

I∑n−r
i=0 ni · · · 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(27)

∀n ∈ Z0+, with A
(n) ∈ R

(
∑n+1

j=n−r
∑ j

i=0 ni)×(∑n
j=n−r

∑ j
i=0 ni). Now, consider the symmetric matrices:

M
(n)

= A
(n)T

A
(n)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣ A
(n)T

A
(n)

A
(n)T

B
(n)

B
(n)T

A
(n)

B
(n)T

B
(n)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
M(n) =

⎡⎢⎢⎢⎢⎣ A0(n+1)T
A0(n+1) A0(n+1)T

B0(n+1)

B0(n+1)T
A0(n+1) B0(n+1)T

B0(n+1)

⎤⎥⎥⎥⎥⎦
∈ R

(
∑n+1

i=0 ni+
∑n

j=n−r (
∑ j

i=0 ni+nj))×(∑n+1
i=0 ni+

∑n
j=n−r (

∑ j
i=0 ni+nj)); ∀n ∈ Z0+

(28)
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where the relations between the a priori dynamics of the new iteration after the aggregation of a new
substate to the whole dynamics with the a posteriori dynamics of the former iteration are given by:

A0(n+1) =
[
A(n) 0

(
∑n+1

i=0 ni)×nn+1

]
=

⎡⎢⎢⎢⎢⎢⎢⎣ A0(n) + B(n)
0 K(n)

0 C(n) Â0(n)

Â(n+1) + B̂(n)
0 K̂a(n)

0 C(n) D̂(n) + ˜̂D(n)
+ B̂(n)

0 K̂(n)
0 Ĉ(n)

0
0

⎤⎥⎥⎥⎥⎥⎥⎦ ∈ R(
∑n+1

i=0 ni)× (∑n+1
i=0 ni)

(29)

B0(n+1) = B(n) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
(
B(n)

1 + B(n)
0 K(n)

1

)
C(n−1) 0(

B̂a(n)
1 + B̂(n)

0 K̂a(n)
1

)
C(n−1)

(
B̂(n)

1 + B̂(n)
0 K̂(n)

1

)
Ĉ(n−1)

· · ·
(
B(n)

j + B(n)
0 K(n)

r

)
C(n−r) 0(

B̂a(n)
r + B̂(n)

0 K̂a(n)
r

)
C(n−r)

(
B̂(n)

j + B̂(n)
0 K̂(n)

r

)
Ĉ(n−r)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ R

(
∑n+1

i=0 ni)×(∑n−1
j=n−r (

∑ j
i=0 ni+nj))

(30)

∀n ∈ Z0+. which are built in order to complete a square a priori matrix of dynamics of the (n + 1)- the
aggregated system which was obtained after the aggregation of the (n + 1)-th subsystem.

The stability of the aggregation dynamic system (19) to (24) under discrete delays is now discussed
via the modified extended system (26), subject to (27), which can be obtained via Lemmas 7,8 from the
convergence of the symmetric matrix (28), subject to (29),(30). The following result holds:

Theorem 1. The following properties hold:

(i)
{
M(n)

}∞
n=0 and

{
A
(n)
}
∞
n=0 are convergent, and also asymptotically convergent, if and only if lim

m→∞A
(n)m

=

0; ∀n ∈ Z0+ .

(ii)
{
M(n)

}∞
n=0 and

{
A
(n)
}
∞
n=0 are asymptotically convergent if and only if lim

m→∞

{∣∣∣∣∣ ‖A(n+ξ)‖ − ‖A(n)‖
∣∣∣∣∣m
}∞

n=0

= 0

for any given n ∈ Z0+ ,ξ ∈ Z+.

(iii) If
{
A
(n)
}
∞
n=0 (and then

{
M(n)

}∞
n=0) is convergent, then the state of the modified extended system, (26),

converges asymptotically to zero, i.e. x(n+m) → 0 and also x(n+m) → 0 as m→∞ for any given initial
condition x(0) and any n ∈ Z0+ so that the aggregation system is globally asymptotically stable.

(iv) If
{
A
(n)
}
∞
n=0 (and then

{
M(n)

}∞
n=0) is asymptotically convergent then ‖x(n+m+ξ) − x(n+m)‖ → 0

as m→∞ for any given n ∈ Z0+ , ξ ∈ Z+ and any given initial condition x(0) and also
‖x(n+m+ξ) − x(n+m)‖ → 0 as m→∞ for any given initial condition x(0) and any given n ∈ Z0+ , ξ ∈ Z+

so that the incremental aggregation system is globally asymptotically stable.

(v) Assume that M(0) is convergent and that
∣∣∣∣∣λmax

(
B(n)T

B(n)
)∣∣∣∣∣ < min

(
1− ε(n+1) , ε(n) − ε(n+1)

)
; ∀n ∈ Z0+

for some strictly decreasing real sequence
{
ε(n)

}∞
n=0
⊂ [0, 1). Then, ‖M(n)‖2 < 1; ∀n ∈ Z0+ and

{
M(n)

}∞
n=0

and
{
A(n)

}∞
n=0

are convergent sequences.

It is of interest to now discuss how the stability properties of the aggregation system of Theorem 1
can be guaranteed or addressed by the synthesis of the basic controller (21) on the current aggregated
system, and how its updated rule (24) can be applied to the new aggregated subsystem to generate the
aggregated system for the next iteration step. This discussion invokes conditions to guarantee that the
equation of dimensionally compatible real matrices

BKC = Am −A (31)

is solvable in K for a given quadruple (A, B , C , Am) with A and Am being square, Am being convergent
(basically stable in the discrete context) and defining the closed-loop system dynamics after linear
output-feedback control u = Ky = KCx via the linear stabilizing controller of gain K; A, B and C are the
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open-loop dynamics (i.e., the one being got for K = 0) and B and C are the control and output matrices.
Equation (31) is written in equivalent vector form for the unknown K as follows:(

B⊗CT
)

vec (K) = vec(Am −A) (32)

It turns out that (31) is solvable in K if and only if (32) is solvable in vec (K), that is, if rank
(
B⊗ CT

)
=

rank
[

B⊗ CT , vec(Am −A)
]

according to the Rouché-Froebenius theorem for solvability of linear
systems of algebraic equations. Note that if Am satisfies the constraint Am = EA, for some square matrix
E of the same order as A, then ‖Am‖2 < 1 (so that Am is convergent) if ‖E‖2 < 1/‖A‖2. In particular,
if Am = ρA with ρ ∈ R then Am is convergent if

∣∣∣ρ∣∣∣ < 1/‖A‖2. A preliminary technical result concerning
the solvability if the concerned algebraic system (31), or equivalently (32), is (either indeterminate or
determinate) compatible to be then used follows:

Lemma 9. Assume that A ∈ Rn×n, B ∈ Rm×n and C ∈ Rp×n. Then, the following properties hold:

(i) linear output-feedback controller exists which stabilizes the closed-loop matrix of dynamics Am = EA for
some E with ‖E‖2 < 1/‖A‖2, [5,7], which satisfies the rank constraint:

rank
(
B⊗CT

)
= rank

[
B⊗CT,

(
I ⊗AT

)
vec(E) − vec(A)

]
(33)

If (33) holds, then the set of stabilizing linear-output feedback controllers of gains K which solve (32),
equivalently (31), which is a compatible algebraic linear system, for Am = EA, are given by

vec (K) =
(
B⊗CT

)† [ (
I ⊗AT

)
vec(E) − vec(A)

]
+
[
I −
(
B⊗CT

)†(
B⊗CT

)]
kw (34)

with kw being any arbitrary real vector of the same dimension as vec (K). Assume that
(
B⊗CT

)†
=(

B⊗CT
)−1

(a necessary condition being min(m, p) ≥ n). Then (32) for Am = EA is a compatible
determinate, and the unique solution to (33) is

vec (K) =
(
B⊗CT

)† [ (
I ⊗AT

)
vec(E) − vec(A)

]
(35)

If Am = ρA with
∣∣∣ρ∣∣∣ < 1/‖A‖2 then (33), (34) and (35) become, in particular,

rank
(
B⊗CT

)
= rank

[
B⊗CT, (ρ− 1)vec(A)

]
(36)

vec (K) = (ρ− 1)
(
B⊗CT

)†
vec(A) +

[
I −
(
B⊗CT

)†(
B⊗CT

)]
kw (37)

and
vec (K) =

(
B⊗CT

)† (
B⊗CT

)†
vec(A) (38)

(ii) Assume that Am = EA and

rank
[
B⊗CT,

(
I ⊗AT

)
vec(E) − vec(A)

]
= rank

(
B⊗CT

)
+ 1 (39)

Then, (32), equivalently (31), is an algebraically incompatible system of equations, and

vec (K) =
(
B⊗CT

)†[(
I ⊗AT

)
vec(E) − vec(A)

]
, i.e. (40)
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i.e., Equation (34) for kw = 0, is the best least-squares approximated solution to (32) in the sense that the
corresponding controller gain minimizes the norm error ‖BKC + A−Am‖22. If (39) holds for any Am of
the form Am = EA then there is no solution to (31) in K; only best approximation solutions exist.

Particular cases of interest which are well-known from basic Control Theory (see e.g., [13]) are:

(1) p = n, C ∈ Rn×n is non-singular and (A, B) is stabilizable, i.e., any unstable or critically unstable
mode of the open-loop dynamics can be closed-loop stabilized under linear state feed-back control.
Thus, rank [λIn −A , B] = n; ∀λ ∈ C with |λ| ≥ 1 (discrete form of Popov-Belevitch-Hautus
stabilizability test [6,13,14]). Then (31) becomes BK = (Am −A)C−1, which is solvable in K,
and there is always an output-feedback stabilizing linear controller generating a stabilizing
controller of gain K, generating a control u = Ky = KCx, such that the closed-loop dynamics is
defined by a convergent matrix Am = A + BKC.

(2) In Case 1, C = In. Then, the control law is a linear state-feedback control, and a state-feedback
stabilizing linear controller generating a control u = Kx exists, leading to closed-loop dynamics
defined by the convergent matrix Am = A + BK.

Lemma 9 is useful to guarantee the relevant results of Theorem 1 in terms of the controller gains
choices under certain algebraic solvability conditions. This feature is addressed in the subsequent result:

Theorem 2. Assume that:
(1) rank

(
B(n)

0 ⊗ C(n)T
)

= rank
(
B(n)

0 ⊗ C(n)T
, A(n)

f −A0(n)
)

so that A0(n) + B(n)
0 K(n)

0 C(n) = A(n)
f is

solvable in K(n)
0 for some convergent matrix A(n)

f of appropriate order; ∀n ∈ Z0+,rank
(
B̂(n)

0 ⊗ C(n)T
)
=

rank
(
B̂(n)

0 ⊗ C(n)T
, Âa(n+1)

f − Â(n+1)
)

so that Â(n+1) + B̂(n)
0 K̂(n)

0 C(n) = Âa(n+1)
f is solvable in K̂a(n)

0 for some

matrix Âa(n+1)
f of appropriate order; ∀n ∈ Z0+,rank

(
B̂(n)

0 ⊗ Ĉ(n)T
)
= rank

(
B̂(n)

0 ⊗ Ĉ(n)T
, Â(n+1)

f − D̂(n) − ˜̂D(n)
)

so that Â(n)
f = D̂(n) + ˜̂D(n)

+ B̂(n)
0 K̂(n)

0 Ĉ(n) is solvable in K̂(n)
0 for some matrix Â(n)

f of appropriate order; ∀n ∈ Z0+,
(2) and that subsequent rank conditions hold:

rank
(
B(n)

0 ⊗ C(n−i)T
)
= rank

(
B(n)

0 ⊗ C(n−i)T
, B(n)

i C(n−i)
)

rank
(
B̂(n)

0 ⊗ Ĉ(n−i)T
)
= rank

(
B̂(n)

0 ⊗ Ĉ(n−i)T
, B̂(n)

i Ĉ(n−i)
)

rank
(
B̂(n)

0 ⊗ C(n−i)T
)
= rank

(
B̂(n)

0 ⊗ C(n−i)T
, B̂a(n)

i C(n−i)
)

∀i ∈ r so that the following matrix equations are solvable in the delayed controller gains K(n)
i , K̂(n)

i and K̂a(n)
i :

B(n)
0 K(n)

i C(n−i) = −B(n)
i C(n−i);B̂

(n)

0 K̂(n)
i Ĉ(n−i) = −B̂(n)

i Ĉ(n−i);

B̂
(n)

0 K̂a(n)
i C(n−i) = −B̂(n)

i C(n−i);∀i ∈ r;∀n ∈ Z0+.

Then, the matrix equations

A0(n) + B(n)
0 K(n)

0 C(n) = A(n)
f , Â(n+1) + B̂(n)

0 K̂a(n)
0 C(n) = Âa(n+1)

f ,

Â(n)
f = D̂(n) + ˜̂D(n)

+ B̂(n)
0 K̂(n)

0 Ĉ(n), B
(n)

0 K(n)
i C(n−i) = −B(n)

i C(n−i);

B̂
(n)

0 K̂(n)
i Ĉ(n−i) = −B̂(n)

i Ĉ(n−i); ∀i ∈ r ; ∀n ∈ Z0+)

(41)
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are solvable in the controller gains K(n)
0 , K(n)

i and K̂(n)
i ; ∀i ∈ r; ∀n ∈ Z0+ leading to the solutions

vec
(
K(n)

0

)
=
(
B(n)

0 ⊗ C(n)T
)†

vec
(
A(n)

f −A0(n)
)
+

⎛⎜⎜⎜⎜⎝I − (B(n)
0 ⊗ C(n)T

)†(
B(n)

0 ⊗ C(n)T
)⎞⎟⎟⎟⎟⎠ vec

(
Kv(n)

0

)
vec
(
K̂a(n)

0

)
=
(
B̂(n)

0 ⊗ C(n)T
)†

vec
(
Âa(n+1)

f − Â(n+1)
)
+

⎛⎜⎜⎜⎜⎝I − (B̂(n)
0 ⊗ C(n)T

)†(
B̂(n)

0 ⊗ C(n)T
)⎞⎟⎟⎟⎟⎠ vec

(
K̂av(n)

0

)
vec
(
K̂(n)

0

)
=
(
B̂(n)

0 ⊗ Ĉ(n)T
)†

vec
(
Â(n+1)

f − D̂(n) − ˜̂D(n)
)
+

⎛⎜⎜⎜⎜⎝I − (B̂(n)
0 ⊗ Ĉ(n)T

)†(
B̂(n)

0 ⊗ Ĉ(n)T
)⎞⎟⎟⎟⎟⎠ vec

(
K̂v(n)

0

)
vec
(
K(n)

i

)
= −

(
B(n)

0 ⊗ C(n−i)T
)†

vec
(
B(n)

i C(n−i)
)
+

⎛⎜⎜⎜⎜⎝I − (B(n)
0 ⊗ C(n−i)T

)†(
B(n)

0 ⊗ C(n−i)T
)⎞⎟⎟⎟⎟⎠ vec

(
Kv(n)

i

)
vec
(
K̂(n)

i

)
= −

(
B̂(n)

0 ⊗ Ĉ(n−i)T
)†

vec
(
B̂(n)

i Ĉ(n−i)
)
+

⎛⎜⎜⎜⎜⎝I − (B̂(n)
0 ⊗ Ĉ(n−i)T

)†(
B̂(n)

0 ⊗ Ĉ(n−i)T
)⎞⎟⎟⎟⎟⎠ vec

(
K̂v(n)

i

)

(42)

vec
(
K̂a(n)

i

)
= −

(
B̂(n)

0 ⊗ C(n−i)T
)†

vec
(
B̂a(n)

i C(n−i)
)
+

⎛⎜⎜⎜⎜⎝I − (B̂(n)
0 ⊗ C(n−i)T

)†(
B̂(n)

0 ⊗ C(n−i)T
)⎞⎟⎟⎟⎟⎠ vec

(
K̂av(n)

i

)

with Kv(n)
0 , Kav(n)

0 , K̂v(n)
0 , Kv(n)

i , K̂v(n)
i and K̂av(n)

i ; ∀i ∈ r; ∀n ∈ Z0+ being arbitrary matrices of appropriate
orders for the corresponding equation (above) in each case whose equivalent vector expressions are denoted
by vec (.).

It should be pointed out that it can be of interest to apply the results on interlacing Cauchy’s
theorem and some of its extensions (see e.g., [20–22]) to the stability of aggregation models based on
dynamic systems formulated via differential, difference or hybrid differential/difference equations.

6. Conclusions

This paper relies on partitioned Hermitian matrices and Cauchy’s interlacing theorem and the
associated stability results. Based on the fact that convergent matrices are a discrete counterpart of
stability matrices, the results presented above are then extended to sequences of convergent matrices.
Then, an example of a SIR-type epidemic model continuous-time consisting of intercommunity clusters
is discussed relative to the previously given stability theoretic results under the proposed framework
based on Cauchy’s interlacing theorem, and which may be of interest for healthcare management.
Later, a dynamic linear discrete aggregation model is discussed, which involves output delay and linear
output feedback, and which can be also be reformulated for linear-state feedback by identifying state
and output, that is, by taking the output matrix equal to the identity, provided that the state is available
for measurement. The studied aggregation model is built through the successive incorporation of
discrete subsystems with particular coupled dynamics. Stabilizing decentralized controllers are
proposed and discussed for this type of aggregation model.
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Appendix A Mathematical Proofs

Proof of Lemma 1. From the given assumptions, M is Hermitian, and note that

detM′ = det
[

M 0
m∗ d

]
+ det

[
M m
m∗ d̃

]
= det

[
M 0
m∗ d̃

]
+ det

[
M m
m∗ d

]
= det

[
M 0
m∗ d + d̃

]
+ det

[
M m
m∗ 0

]
.
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Thus, Properties (i) to (iii) follow directly from the above relations by noting, furthermore,

that det
[

M 0
m∗ c

]
= cdet M. �

Proof of Lemma 2. First, note that

k(n)d − k(n)
d̃
≤ ||d(n)| − |d̃(n)|| ≤ |d(n) + d̃(n)| ≤ K(n)

d + K(n)

d̃
; ∀n(≥ n0) ∈ Z+.

Thus,

detM(n+1) = det
[

M(n) 0
m(n)∗ d(n)

]
+ det

[
M(n) m(n)

m(n)∗ d̃(n)

]

= d(n)detM(n) + det

⎛⎜⎜⎜⎜⎝
[

M(n) 0
0 d̃(n)

] ⎛⎜⎜⎜⎜⎝In+1 +

⎡⎢⎢⎢⎢⎣ M(n)−1
0

0 1/d̃(n)

⎤⎥⎥⎥⎥⎦
[

0 m(n)

m(n)∗ 0

]⎞⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎠

= d(n)detM(n) + d̃(n)detM(n)det

⎛⎜⎜⎜⎜⎝In+1 +

⎡⎢⎢⎢⎢⎣ M(n)−1
0

0 1/d̃(n)

⎤⎥⎥⎥⎥⎦
[

0 m(n)

m(n)∗ 0

]⎞⎟⎟⎟⎟⎠;
∀n(≥ n0) ∈ Z+

(A1)

if
{
M(n)−1

} ∞
n = n0

exists so that detM(n) � 0, that is, if 0 < k(n)M =
∣∣∣∣λmin

(
M(n)

)∣∣∣∣ ≤ K(n)
M =

∣∣∣∣λmax
(
M(n)

)∣∣∣∣ <
+∞; ∀n(≥ n0) ∈ Z+. Thus,

∣∣∣detM(n+1)
∣∣∣ ≤ ∣∣∣d(n)detM(n)

∣∣∣+ ∣∣∣∣d̃(n)detM(n)
∣∣∣∣
∣∣∣∣∣∣∣det

⎛⎜⎜⎜⎜⎝In+1 +

⎡⎢⎢⎢⎢⎣ M(n)−1
0

0 1/d̃(n)

⎤⎥⎥⎥⎥⎦
[

0 m(n)

m(n)∗ 0

]⎞⎟⎟⎟⎟⎠
∣∣∣∣∣∣∣

≤ nK(n)
d K(n)

M + nK(n)

d̃
K(n)

M

⎛⎜⎜⎜⎜⎝1 + 1
k(n)M k(n)

d̃

√
m(n)∗m(n)

⎞⎟⎟⎟⎟⎠
n+1

≤ nK(n)
d K(n)

M + nK(n)

d̃
K(n)

M

(
1 + ε(n)

)n+1≤ nK(n)
d K(n)

M + nK(n)

d̃
K(n)

M

(
1 +

(
2n+1 − 1

)
ε
(n))

;

∀n(≥ n0) ∈ Z+

(A2)

since λmax
(
m(n)∗m(n)

)
= m(n)∗m(n); ∀n(≥ n0) ∈ Z+. Since it is assumed the existence of a real sequence{

ε(n)
}∞
n=n0

⊂ [0 , 1) such that 1
k(n)M k(n)

d̃

√
m(n)∗m(n) ≤ ε(n); ∀n(≥ n0) ∈ Z+ and since

(
1 + ε(n)

)n+1
=
∑n+1

i=0

(
n + 1

i

)
ε(n)

i
= 1 +

∑n+1
i=1

(
n + 1

i

)
ε(n)

i ≤ 1 +
(
2n+1 − 1

)
ε(n);

∀n(≥ n0) ∈ Z+

(A3)

thus, it follows that
∣∣∣detM(n+1)

∣∣∣ ≤ (n + 1)K(n+1)
M ≤ nK(n)

M holds for any given n(≥ n0) ∈ Z+ if

nK(n)
d K(n)

M + nK(n)

d̃
K(n)

M

(
1 +

(
2n+1 − 1

)
ε
(n)
)
≤ nK(n)

M

for any given n(≥ n0) ∈ Z+, that is, if

nK(n)
M

(
K(n)

d − 1
)
+ nK(n)

d̃
K(n)

M

(
1 +

(
2n+1 − 1

)
ε
(n)
)
≤ 0
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for such n ∈ Z+, equivalently, if nK(n)

d̃

(
1 +

(
2n+1 − 1

)
ε
(n)) ≤ n

(
1−K(n)

d

)
, equivalently if K(n)

d ≤ 1,

and furthermore, and accordingly to the restriction on the sequence
{
ε(n)

}∞
n=n0

, if

K(n)

d̃
≤

(
1−K(n)

d

)
1 + (2n+1 − 1)ε(n)

≤

(
1−K(n)

d

)
k(n)M k(n)d

k(n)M k(n)d + (2n+1 − 1)
√
λmax

(
m(n)∗m(n)

) (A4)

for such an n ∈ Z0+. In particular, if
∣∣∣d(n)∣∣∣ = K(n)

d = k(n)d ≤ 1 and
∣∣∣∣d̃(n)∣∣∣∣ = K(n)

d̃
= k(n)

d̃
for some given

n(≥ n0) ∈ Z0+, then (A4) holds if

∣∣∣∣d̃(n)
∣∣∣∣ ≤

(
1−

∣∣∣d(n)∣∣∣)
1 + (2n+1 − 1)ε(n)

≤
(
1−

∣∣∣d(n)∣∣∣)k(n)M

∣∣∣d(n)∣∣∣
k(n)M

∣∣∣d(n)∣∣∣+ (2n+1 − 1)
√
λmax

(
m(n)∗m(n)

) (A5)

and Property (i) has been proved. On the other hand, since Property (ii) assumes that the constraints
of Property (i) hold the constraint (1) is a direct consequence of Property (i). Also, if M(n)�0 and
M(n+1)�0 then the constraints (2) follow directly from (1) and Cauchy’s interlacing theorem of the
eigenvalues which are real non-negative. Property (ii) has been proved. Property (iii) follows since
lim sup

n→∞

(
det
∣∣∣M(n+1)

∣∣∣− det
∣∣∣M(n)

∣∣∣) ≤ 0 directly from (A1) and the given assumptions. �

Proof of Lemma 3. By the inversion of a block partitioned matrix, one gets:

M(n+1)−1
=

[
M(n) m(n)

m(n)∗ d(n) + d̃(n)

]−1

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣ M
(n)

m(n)

m(n)∗ d
(n)

+ d̃
(n)

⎤⎥⎥⎥⎥⎥⎥⎥⎦ (A6)

where

M
(n)

= M(n)−1
(
In + m(n)

(
d(n) + d̃(n) −m(n)∗M(n)−1

m(n)
)−1

m(n)∗M(n)−1
)

(A7)

m(n) = −M(n)−1
m(n)

(
d(n) + d̃(n) −m(n)∗M(n)−1

m(n)
)−1

(A8)

d
(n)

+ d̃
(n)

=
(
d(n) + d̃(n) −m(n)∗M(n)−1

m(n)
)−1

since M(n) is non-singular and d̃(n) � m(n)∗M(n)−1
m(n) − d(n) (i.e.,

(
d(n) + d̃(n) −m(n)∗M(n)−1

m(n)
)

is non-singular). The proof follows directly from Lemma 2 [(ii)-(iii)] by replacing

M(n+1) →M
(n+1)

= M
(n+1)−1

; ∀n(≥ n0) ∈ Z+. �

Proof of Lemma 4. Since M(n0) � 0 then its inverse is also positive definite and then both of them fulfil
the positive semi-definiteness constraint of Lemma 2 [(ii),(iii)] and Lemma 3. The proof follows directly

since sup
n≥n0

max
(∣∣∣detM(n)

∣∣∣ , ∣∣∣∣detM(n)−1
∣∣∣∣) < +∞ and lim sup

n→∞

(
supmax

(∣∣∣detM(n)
∣∣∣ , ∣∣∣∣detM(n)−1

∣∣∣∣)) < +∞ then

M(n) � 0 for n ≥ n0 if M(n0) � 0, lim sup
n→∞

M(n) � 0 and lim inf
n→∞ M(n) � 0. �

Proof of Lemma 5. Note that M(n0) = A(n0)∗A(n0) � 0 since A(n0) is a stability matrix. From Lemma 2
and Lemma 3, the sequence

{
M(n)

}∞
n=n0

consists of positive definite members. Thus, the singular values

of the elements of the sequence
{
A(n)

}∞
n=n0

are positive and bounded. Since A(n0) is stable and since the
eigenvalues of any square matrix are continuous functions of its entries there is no zero eigenvalue
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in any member of the sequence
{
A(n)

}∞
n=n0

. Any member of this sequence has no eigenvalues at the
imaginary complex axis other than zero (i.e., any nonzero critically stable eigenvalues) since then
the corresponding M(n) = A(n)∗A(n) is not positive definite contradicting the given assumption. As a
result, no member of the sequence

{
A(n)

}∞
n=n0

has a critically stable eigenvalue (i.e., located on the
imaginary complex axis) or unstable eigenvalue (i.e., located on the complex open right half plane).

M(n0) � 0 for some given arbitrary n0 ∈ Z+ and assume also that the conditions of Lemma 2 (iii)
and Lemma 3 hold. Then, M(n+1) � 0; ∀n(≥ n0) ∈ Z+. �

Proof of Lemma 7. It is direct since lim
m→∞

{
A(n)m

} ∞
n=0

= 0 implies that lim
m→∞

{∣∣∣‖A(n+ξ)‖ − ‖A(n)‖
∣∣∣m}∞n=0 = 0

for any given ξ ∈ Z+. �

Proof of Lemma 8. If for any given n ∈ Z0+, ‖A(n)‖2 < 1 then lim
m→∞A(n)m = 0 for any n ∈ Z0+,

then lim
m→∞

{
A(n)m

}∞
n=0 = 0, ‖M(n)‖2

2
= ‖A(n)∗A(n)‖2

2
≤ ‖A(n)‖4

2
< 1 and then ‖M(n)‖2 < 1, lim

m→∞M(n)m = 0

and lim
m→∞

{
M(n)m

} ∞
n=0

= 0 for any given n ∈ Z0+. Thus, if
{
A(n)

}∞
n=0

is convergent then
{
M(n)

}∞
n=0

is

convergent, hence Property (i) holds. On the other hand, since M(n) is semidefinite positive Hermitian
by construction; ∀n ∈ Z0+ then the condition ‖M(n)‖2 < 1; ∀n ∈ Z0+ leads to the convergence of{

M(n)
}∞

n=1, and if ‖M(n)‖2 < 1 for some n ∈ Z0+ then

r2
(
M(n)

)
= λmax

(
M(n)∗M(n)

)
= λ2

max

(
A(n)∗A(n)

)
= λ2

max

(
M(n)

)
= ‖M(n)‖ 2

2
< 1

Then, ‖A(n)‖2 = λ 1/2
max

(
A(n)∗A(n)

)
= ‖M(n)‖ 1/2

2
< 1. Thus, if the above holds for any n ∈ Z0+,

one concludes that
{
A(n)

} ∞
n=0

is convergent if
{
M(n)

}∞
n=0 is convergent. Hence, Property (ii) follows.

Property (iii) is a combination of the other two properties since for any n ∈ Z0+, ‖M(n)‖2 < 1, ‖A(n)‖2 < 1
implies that ‖M(n)‖2 < 1 and ‖M(n)‖2 < 1 implies that ‖A(n)‖2 < 1. �

Proof of Theorem 1. Properties (i),(ii) follows from Lemma 7and Lemma 8 by taking into account the
factorization (28). Property (iii) follows from Property (i) and (20) since

‖ x(n+m)‖ ≤
⎛⎜⎜⎜⎜⎜⎝

m−1∏
i=0

‖A(n−i)‖
⎞⎟⎟⎟⎟⎟⎠ ‖ x(n)‖ ≤ max

0≤i≤m−1
‖A(n−i)‖

m
‖ x(n)‖; ∀n ∈ Z0+,∀m ∈ Z+ (A9)

and then x(n+m) → 0 as m→∞ for any n ∈ Z0+. Property (iv) is proved in the same way as
Property (iii) via Property (ii). The proof of Property (v) is made by comparing (28) with (10)–(12) by

replacing λ(n)M
(n) → A(n)T

B(n) and Δ(n) → B(n)T
B(n) . One gets, via complete induction, that if M(0)

is convergent and, furthermore,

λmax

(
B(n)T

A(n)A(n)T
B(n)

)
<
(
1− ε(n+1) −max

(
1− ε(n) ,

∣∣∣∣∣λmax

(
B(n)T

B(n)
)∣∣∣∣∣))2;

∀n ∈ Z0+

(A10)

Then,
{
M(n)

}∞
n=0

is convergent, since M(0) is convergent, provided that ε(n+1) < ε(n), that is{
ε(n)

}∞
n=0
⊂ [0, 1) is strictly decreasing, and

∣∣∣∣∣λmax

(
B(n)T

B(n)
)∣∣∣∣∣ < 1− ε(n+1); ∀n ∈ Z0+ (A11)

The constrains (A10), (A11) are jointly fulfilled if
∣∣∣∣∣λmax

(
B(n)T

B(n)
)∣∣∣∣∣ < min

(
1− ε(n+1) , ε(n) − ε(n+1)

)
;

∀n ∈ Z0+.�
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Proof of Lemma 9. Since Am = EA = IEA then vec (EA) = vec(IEA) =
(
I ⊗AT

)
vec(E), and (32)

becomes for I being the identity matrix of the same order as E and A:(
B⊗CT

)
vec (K) = vec((E− I)A) =

(
I ⊗AT

)
vec(E) − vec(A) (A12)

whose solutions are given by (34) if (33) holds and the whole set of solutions reduces to (35) if the
solution is unique. The corresponding Equations (36)–(38) are got for the particular case when Am = ρA
with

∣∣∣ρ∣∣∣ < 1/‖A‖2. Property (i) has been proved. Property (ii) follows since the least-squares best
approximation to the corresponding incompatible algebraic system (31), or (32), is (40), that is, (34) for
kw = 0, [13,14]. �

Proof of Theorem 2. The solvability of (41) in the form (42) follows from the Rouché-Froebenius rank
conditions from the algebraic compatibility under Assumptions 1,2. By defining

A0(n+1) =
[
A(n) 0

(
∑n+1

i=0 ni)×nn+1

]
; B0(n+1) = B(n)

in order to complete a square “a priori” matrix of dynamics of the (n + 1)-the aggregated system
obtained after the aggregation of the (n + 1)-th subsystem, note that

A0(n+1) =

⎡⎢⎢⎢⎢⎢⎢⎣ A0(n) + B(n)
0 K(n)

0 C(n) Â0(n)

Â(n+1) + B̂(n)
0 K̂a(n)

0 C(n) D̂(n) + ˜̂D(n)
+ B̂(n)

0 K̂(n)
0 Ĉ(n)

0
0

⎤⎥⎥⎥⎥⎥⎥⎦ ∈ R(
∑n+1

i=0 ni)× (∑n+1
i=0 ni) (A13)

B0(n+1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
(
B(n)

1 + B(n)
0 K(n)

1

)
C(n−1) 0(

B̂a(n)
1 + B̂(n)

0 K̂a(n)
1

)
C(n−1)

(
B̂(n)

1 + B̂(n)
0 K̂(n)

1

)
Ĉ(n−1)

· · ·
(
B(n)

j + B(n)
0 K(n)

r

)
C(n−r) 0(

B̂a(n)
r + B̂(n)

0 K̂a(n)
r

)
C(n−r)

(
B̂(n)

j + B̂(n)
0 K̂(n)

r

)
Ĉ(n−r)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ R

(
∑n+1

i=0 ni)×(∑n−1
j=n−r (

∑ j+1
i=0 ni))

(A14)

∀n ∈ Z0+. From (41), with corresponding associated controller explicit solutions (42), one gets that the
(n + 1)-th aggregated delay-free dynamics is described by the matrix:

A0(n+1) =
[
A(n) 0

(
∑n+1

i=0 ni)×nn+1

]
=

⎡⎢⎢⎢⎢⎢⎢⎣ A(n)
f Â0(n)

Âa(n+1)
f Â(n)

f

0
0

⎤⎥⎥⎥⎥⎥⎥⎦ ∈ R(
∑n+1

i=0 ni)× (∑n+1
i=0 ni); ∀n ∈ Z0+ (A15)

Having in mind (27), construct

M(n+1) = A
(n)

A
(n)T

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
A(n)

f Â0(n)

Âa(n+1)
f Â(n)

f

0
0

B
0(n)
1

B
0(n)
2

i
(
B

0(n)
)
I 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
A(n)

f Â0(n)

Âa(n+1)
f Â(n)

f

0
0

B
0(n)
1

B
0(n)
2

i
(
B

0(n)
)
I 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
T

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A(n)
f A(n)T

f + Â0(n)Â0(n)T + B
0(n)
1 B

0(n)T

1 A(n)
f Âa(n+1)T

f + Â0(n)Â(n)T

f + B
0(n)
1 B

0(n)T

2

⎡⎢⎢⎢⎢⎢⎢⎣ A(n)
f Â0(n)

Âa(n+1)
f Â(n)

f

⎤⎥⎥⎥⎥⎥⎥⎦⎡⎢⎢⎢⎢⎢⎢⎣ A(n)
f Â0(n)

Âa(n+1)
f Â(n)

f

⎤⎥⎥⎥⎥⎥⎥⎦
T

i
(
B

0(n)
)
I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A(n)
f A(n)T

f + Â0(n)Â0(n)T + B
0(n)
1 B

0(n)T

1 A(n)
f Âa(n+1)T

f + Â0(n)Â(n)T

f + B
0(n)
1 B

0(n)T

2

⎡⎢⎢⎢⎢⎢⎢⎣ A(n)
f

Âa(n+1)
f

⎤⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣ Â0(n)

Â(n)
f

⎤⎥⎥⎥⎥⎥⎦[
A(n)T

f Âa(n+1)T

f

]
[

Â0(n)T

f Â(n)T

f

] i
(
B

0(n)
)
δ(n)I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+i
(
B

0(n)
) ⎡⎢⎢⎢⎢⎣ 0 0

0
(
1− δ(n)

)
I

⎤⎥⎥⎥⎥⎦
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where

B
0(n)

=

⎡⎢⎢⎢⎢⎢⎣ B
0(n)
1

B
0(n)
2

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
(
B(n)

1 + B(n)
0 K(n)

1

)
C(n−1) 0(

B̂a(n)
1 + B̂(n)

0 K̂a(n)
1

)
C(n−1)

(
B̂(n)

1 + B̂(n)
0 K̂(n)

1

)
Ĉ(n−1)

· · ·
(
B(n)

r + B(n)
0 K(n)

r

)
C(n−r) 0(

B̂a(n)
r + B̂(n)

0 K̂a(n)
r

)
C(n−r)

(
B̂(n)

r + B̂(n)
0 K̂(n)

r

)
Ĉ(n−r)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(A16)

and

(a) i
(
B

0(n)
)

is a binary indicator function defined as i
(
B

0(n)
)
= 1 if

(
B

0(n)
)
� 0 and i

(
B

0(n)
)
= 0 if(

B
0(n)
)
= 0. The reason of the use of this indicator is that, in fact, if the delayed dynamics is

zero then the dimension of the extended state, so that of A
(n)

, decreases since the resulting block
identity matrices are removed,

(b)
{
δ(n)

}∞
n=0
⊂ [ 0 , 1] is a design sequence which satisfies

{
δ(n)

}∞
n=0
→ 0 .

Note that the fact that I = i
(
B

0(n)
)

I = i
(
B

0(n)
)
δ(n)I + i

(
B

0(n)
) (

1− δ(n)
)

I justifies (A16). �
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Abstract: Diet has long been considered a risk factor related to an increased risk of cancer.
This challenges us to understand the relationship between the immune system and diet when
abnormal cells appear in a tissue. In this paper, we propose and analyze a model from the point of
view of a person who follows a healthy diet, i.e., one correlated to the food pyramid, and a person
who follows an unhealthy diet. Normal cells and immune cells are used in the design of the model,
which aims to describe how the immune system functions when abnormal cells appear in a tissue.
The results show that the immune system is able to inhibit and eliminate abnormal cells through the
three following stages: the response stage, the interaction stage, and the recovery stage. Specifically,
the failure of the immune system to accomplish the interaction stage occurs when a person follows an
unhealthy diet. According to the analysis and simulation of our model, we can deduce that dietary
pattern has a significant impact on the functioning of the immune system.

Keywords: dynamic model; immune system response; immune cells; abnormal cells; nonlinear
ordinary differential equations; stability; diet

1. Introduction

Lifestyle has changed significantly in recent decades due to rapid development in every sphere
of life. Consequently, the rate of noncommunicable diseases (NCDs), such as cardiovascular disease,
cancer, chronic respiratory disease, and diabetes, has dramatically increased. In 2016, the World
Health Organization (WHO) reported that 71% of all deaths worldwide occurred as a result of NCDs.
According to the report, the highest mortality figures were those related to cardiovascular disease,
representing 44% of deaths from the four main NCDs. The second most deadly disease was cancer,
accounting for approximately 22% of deaths from the four main NCDs; while chronic respiratory
disease and diabetes reached around 9% and 4%, respectively. In addition, gender variation in NCDs
is another important factor. Research found that adult men are more likely to be affected than adult
women, with 22% of men and 15% of women being affected [1]. According to a recent study, cancer is
more common in certain countries; for example, Australia reported the highest percentage of cancer,
with 4680 people per 100,000 having the disease. New Zealand registered 4381 people per 100,000.
The number of cancer cases has been estimated as 3522 per 100,000 in the USA, compared with
3192 registered cases per 100,000 in the United Kingdom [2]. The tissues and organs of the human body
are formed from 1013 tiny cells. There is a one-to-one correspondence between cells and human body
growth. The more increased the number of cells, the more tissue grows. The cells between conception
and adulthood divide and grow very quickly [3]. Yet, the functions of these cells vary, and as a result
the division and growth of the cells depend on their functions. For example, blood and skin cells divide
continuously, while some cells have particular functions in the body and do not usually multiply.
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Concerning the multiplication of cells, it is possible for them to multiply as many as 60 times before
dying, as a result of the signals that control cellular growth and death [4,5]. On the other hand, they can
become damaged during the process of division, which can lead to self-elimination. This process
is known as apoptosis and it protects the human body from cancer. Conversely, cell division is
sometimes abnormal when there is damage during cell division, with very unique characteristics [3–5].
In such cases, the immune system reacts to protect the human body by preventing these cells from
growing into a tumor [3–5]. Assessing modern lifestyles is the key to understanding the causes
of the increasing rates of cancer. One of the disadvantages of the development of society is that
dietary habits have changed to encompass more fast and processed foods. These types of foods have
a higher calorie count, contain more protein, and have lower amounts of fiber and carbohydrates
than healthy foods, which are rich in natural sources of vitamins and minerals and high in fiber and
carbohydrates [6]. Studies have shown the increase in death rate associated with a diet based on
animal products and a high intake of carbohydrates, and contrarily, how a vegetable-based diet and a
low carbohydrate intake reduces the mortality rate. Furthermore, malnutrition debilitates the immune
system and increases the mortality rate as well as elevating the risk of contracting NDCs [7]. It has
been shown that only 5–10% of cancers occur as a result of internal factors such as inherited mutations,
hormones, and immune conditions, and that 90–95% of cancers are due to lifestyle and environmental
factors [8]. Dietary habits are one of the main factors related to the weakening of the immune system
and the risk of cancer [9–12]. From 1994, mathematical researchers started to formulate tumor–immune
interaction models using the function of Michaelis–Menten [13,14]. In 1995, Mayer and others proposed
a basic mathematical model of the immune response by using two ordinary differential equations to
describe the interaction between the immune system and a pathogen, such as a tumor cell or virus.
Their model succeeded in illustrating that the combination of a few proposed nonlinear interaction
rules between the immune system and pathogens is able to generate a considerable variety of immune
responses, with many of them being observed both experimentally and clinically. Hence, the process
of the interaction of the immune system with pathogens can be described dynamically [15]. In 2003,
Magda Galach used the simplified model of Kuznetsov–Taylor and changed the Michaelis–Menten
function using the Lotka–Volterra form [16]. Many models have used ordinary differential equations,
partial differential equations, and delay differential equations to illustrate the growth of tumors and
their treatments [17–19]. In the last few years, mathematical researchers have dynamically examined
cancer risk factors and yet still have a great deal to uncover. Estrogen has been studied as a breast
cancer risk [20]; furthermore, Green and others studied the relationship between body mass index,
menopausal status, estrogen replacement therapy and the risk of breast cancer [21]. In 2016, Roberto
and others proposed an obesity–cancer model using ordinary differential equations to illustrate the
association between obesity and cancer risk [22]. Additionally, they presented the effects of obesity
on the optimal control program of chemotherapy. This model differs from that of De Pillis and
Radunskaya [23] by adding a dynamic equation related to stored fat [24]. Other studies have presented
models regarding drug therapy which contribute to decision making and early cancer treatment [25].
In 2018, Alharbi and Rambely suggested dynamically that switching back to a healthy lifestyle boosted
the immune system in terms of inhibiting or eliminating a moderately abnormal cell [26]. Hence,
the immune system has the ability to protect the human body from developing cancer.

In 1618, Thomas Adams stated that “Prevention is so much better than healing because it saves
the labour of being sick” [27]. In this work, we propose and simulate the immune–healthy diet
model (IHDM) based on the models of references [15,26] using ordinary differential equations to
study the behavior of the immune system when responding to the appearance of abnormal cells
which fail to eliminate themselves. Usually, these types of cells do not need to be treated clinically.
However, the appearance of abnormal cells in the tissue is considered as an emergency situation,
with any progression being able to trigger the formation of tumor cells and the development of cancer.
Therefore, most cancers develop as a consequence of multiple abnormalities, which accumulate over
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many years [5]. For instance, colon cancer has increased more than tenfold between the ages of 30 and
50, and tenfold again between 50 and 70 [28].

We aim to enhance understanding of the symmetry and antisymmetry of the relationship between
diet habits and the function of the immune system, raise awareness of healthy habits and promote
healthy eating habits. In doing so, we hope that the results of this paper contribute to increasing
awareness of cancer risk.

This paper is organized as follows. In Section 2, we present the IHDM and analyze the equilibrium
points of the model and stability cases. In Section 3, we analyze the stability of the equilibrium points
for the immune–unhealthy diet model (IUNHDM). The numerical simulation of the IHDM and
IUNHDM are presented in Section 4. The conclusion is presented in Section 5.

2. The Immune—Healthy Diet Model (IHDM)

The immune system is very complex. One of its main functions is to recognize pathogens and to
protect the body from developing diseases. However, the response of the immune system is affected
by dietary habits, physical activity, stress, and sleep habits. A balanced diet and adequate intake of
vitamins act to boost the immune system [29].

Our model is composed of ordinary differential equations, and it supposes that the individual
follows a healthy diet as per the food pyramid, which is shown in Figure 1. This food pyramid
follows recommendations from a report from the World Cancer Research Fund (WCRF) and the
American Institute for Cancer Research (AICR), which recommends drinking water, eating a diet rich
in wholegrains, vegetables, fruits, and beans, and having a lower intake of red and processed meats,
as well as sugars and sweets [30,31]. The IHDM is formulated into two main populations: normal cells
and immune cells activated as a result of the inability of the abnormal cells to eliminate themselves
automatically. According to a cell’s life cycle, we formulated the first equation to describe the behavior
of normal cells during the process of their dynamic division and growth and to consider that some cells
might divide abnormally. In addition, the natural death of the normal cells where the elimination of
these cells occurs by apoptosis was not considered. The dynamic process of the interaction between the
immune cells with the abnormal cells is presented in the second equation. This considers abnormal cells
in the primary stage, which is where most cancers develop as a consequence of multiple abnormalities
accumulating over many years. At this stage, the immune system eliminates them from growing
before they turn into tumor cells (by attacking and repairing processes).

The IHDM is given as follows:

dN
dt

= rN[1 − βN]− ηNI,

dI
dt

= σ − δI − ρNI
m + N

− μNI, (1)

with initial values N(0) = 1 and I(0) = 1.22, where the dependent variables N and I represent the
population of normal cells and immune cells, respectively. The parameters r, β, η, σ, δ, ρ, m, and μ are
real and positive. The rate of growth of normal cells is represented by the parameter r and the rate of
appearance of abnormal cells during the cell life cycle of the normal cell is given by β. Furthermore,
the fixed source of immune cells is represented by σ and their rate of natural death is represented
by δ. The ability of immune cells to eliminate abnormal cells determined by the Michaelis–Menten
term ρIN

m+N [15]. The coexistence of abnormal cells stimulates the immune system to respond [20].
The rate of this response is represented by ρ and the parameter m represents the threshold rate of
the immune system. The parameters η and μ display the interaction between the abnormal cells and
immune cells. The ability of the immune cells to eliminate abnormal cells or inhibit them is given by
parameter η, whereas the parameter μ illustrates the decreasing number of immune cells as a result
of their interaction with abnormal cells. In the IHDM, the rate of the parameter η > μ represents the
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case where the immune system is strong and succeeding in performing its function and the person is
following a healthy diet [29].

Figure 1. The dietary management food pyramid according to the World Cancer Research Fund
(WCRF) and American Institute for Cancer Research (AICR) where the amounts of food are estimated
based on nutritional and practical considerations.

2.1. Equilibrium Points

In this section, we use nullclines from system (1) to compute the equilibrium points as follows:

1. dN
dt = 0 ⇔

N = 0,

r[1 − βN]− η I = 0.

2. dI
dt = 0 ⇔

σ − δI − ρNI
m + N

− μNI = 0.

We classify the equilibrium points according to their biological terms as the following:

1 Primary response stage: The immune system recognizes the appearance of abnormal cells in the
tissue, immune cells start to grow, and N = 0; this point is given by p1 = (0, σ

δ ).
2 Interaction stage: The immune cells eliminate or inhibit the abnormal cells, this means β → 0 at

the end of the interaction. This point is given by

p2 = (−r(δ+mμ−ρ)+ησ+
√

Δ
2rμ , r

η ),

where Δ = r(δ + mμ − ρ)2 + 4mrμδ(−r + η σ
δ ) > 0.

3 Recovery stage: Immune cells that are involved in the reaction tend to zero and all abnormal cells
are substituted with normal cells. This point is represented by

p3 = (β−1, β(1+mβ)σ
(1+mβ)(βδ+μ)−βρ

), where 0 < β < 0.1.
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2.2. Analysis Stability of Equilibrium Points

According to the concept of the Hartman–Grobman theorem, the hyperbolic equilibrium point
in the neighborhood of a nonlinear dynamical system is topologically equivalent to its linearization.
Therefore, the Jacobian of the nonlinear dynamic of (1) is computed as follows:

J[N, I] =

[
FN [N, I] FI [N, I]
GN [N, I] GI [N, I]

]
, (2)

where F[N, I] = dN
dt and G[N, I] = dI

dt . The stability cases according to the above equilibrium points
are as follows:

1. Stability of primary response stage- p1: Under the hypothesis of the IHDM, the immune system is
able to protect the human body from developing diseases. This means that it responds directly
in cases of emergency such as the appearance of abnormal cells in the tissue. The Jacobian (2) at
equilibrium point p1 is computed as:

J[N, I]p1 =

(
r − η σ

δ −0
mρσ

m2δ
− μ σ

δ −δ

)
. (3)

Proposition 1. Since the immune system is strong, the equilibrium point p1 is a stable node.

Proof. From the Jacobian (3), the eigenvalues are given by

λ1 = −δ < 0,

λ2 = r − η σ
δ = r − η I(0) < 0 ⇔ I(0) > r

η ,

where 0 < δ < 1, then,

δ−1 ≥ 1 ⇒ λ2 < λ1 < 0.

Hence, the equilibrium point p1 is a stable node, see Figure 2.

2. Stability of interaction stage- p2: This stage describes the ability of the immune cells to inhibit
and eliminate the abnormal cells to prevent them from progressing to cancer over many years.
We consider the model as having a significant interaction if abnormal cells are dying or being
inhibited by the immune cells. This means that parameter β → 0 at t → ∞. To examine the

stability of equilibrium point p2 = (−r(δ+mμ−ρ)+ησ
√

Δ
2rμ , r

η ), we compute the Jacobian (2) at this
point as

J[N, I]p2 =

⎛⎝ −β
μ x −η

2rμ x
rμ
η (−1 + 4mμρr2

y2 ) −ησ
r

⎞⎠ , (4)

where

x = −r(δ + mμ − ρ) + ησ +
√

Δ,

y = −rδ + rmμ + rρ + ησ +
√

Δ.

Proposition 2. There is an unstable saddle equilibrium point during the interaction stage.

Proof. From the Jacobian (4), the characterized equation is given by

(
−β

μ
x − λ)(

−ησ

r
− λ)− rμ

η
(−1 +

4mμρr2

y2 )(
η

2rμ
x) = 0 (5)
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(
−β

μ
x − λ)(

−ησ

r
− λ)− (−1 +

4mμρr2

y2 )(
1
2

x) = 0. (6)

We assume that C1 = x
2 (−1 + 4mμρr2

y2 ) > 0. Then, we rewrite (6) as follows:

λ2 + (
βx
μ

+
ησ

r
)λ + (

−ησ

r
)(

βx
μ
)− C1 = 0. (7)

Since, under the hypotheses of the IHDM, β → 0 at t → ∞, Equation (7) is computed as

λ2 +
ησ

r
λ − C1 = 0. (8)

Now, we apply the Routh–Hurwitz theorem for (8), giving∣∣∣∣∣∣∣
λ2 1 −C1

λ1 ησ
r 0

λ0 −C1 0

∣∣∣∣∣∣∣ .

Since the first column has one sign change, the equilibrium point p2 is an unstable saddle.

3. Stability of recovery stage- p3: According to the physiological process, the number of immune
cells which are involved in the interaction starts to reduce automatically after inhibiting and
eliminating the abnormal cells. Furthermore, the normal cells divide and grow, taking the place
of the removed abnormal cells. To examine the stability of this point, we compute the Jacobian at
p3 = (β−1, β(1+mβ)σ

(1+mβ)(βδ+μ)−βρ
) as follows:

J[N, I]p3 =

⎛⎝ −rz+βη(1+mβ)σ
z

−η
β

β(−(1+mβ)2μ+mβ2ρ)σ
z(1+mβ)

− z
β+mβ2

⎞⎠ , (9)

where z = β(δ + mμ − ρ) + mδβ2 + βη(1 + mβ)σ > 0.

Proposition 3. In the recovery stage, the system might to be stable.

Proof. The characterized equation of (9) is given by

(
−rz + βη(1 + mβ)σ

z
− λ)(− z

β + mβ2 − λ)− C2 = 0, (10)

where

C2 = (−η
β )( β(−(1+mβ)2μ+mβ2ρ)σ

z(1+mβ)
) > 0.

To simplify, we let

A = −rz+βη(1+mβ)σ
z − z

β+mβ2 < 0,

and

B = (−rz+βη(1+mβ)σ
z )(− z

β+mβ2 ) > 0.

Then, Equation (10) is rewritten as

λ2 − Aλ + D = 0, (11)

where D = B − C2 > 0. We apply the Routh–Hurwitz theorem for (11) to determine the sign of roots:
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∣∣∣∣∣∣∣
λ2 1 D
λ1 −A 0
λ0 D 0

∣∣∣∣∣∣∣ .

Since A < 0, the sign of elements in first column is positive and the equilibrium point p3 is called
a stable node point for the IHDM.

With reference to propositions (1,2,3), we conclude this section with the following remark:

Remark 1. The IHDM has the following properties:

• The system has three equilibrium points;
• The system has two equilibrium points which are stable nodes, which shows that the immune system plays

a pivotal role in protecting the human body from diseases.
• The system has only one equilibrium point which is an unstable saddle, which shows the interaction between

the immune system and abnormal cells.
• The phase portrait of the IHDM and its solutions around the equilibrium points are shown in

Figures 2 and 3.

Figure 2. The phase portrait of the immune–healthy diet model (IHDM) and its solutions around the
response and interaction equilibrium points.

Figure 3. The phase portrait of the IHDM and its solutions around the recovery equilibrium points.
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3. Immune-Unhealthy Diet Model (IUNHDM)

A Global Nutrition report (2016) stated that every third person in the world is inflicted with
malnutrition [32]. On this basis, a pre-clinical experiment proved that high protein and fructose
diets damage the immune system and cause cancer [33–35]. In this section, we highlight why a
weak immune system fails to protect the human body from developing cancer; we do this using a
similar system to that presented in (1) and under the assumption that the person follows an unhealthy
diet. For instance, the western-style diet which is characterized by a high consumption of proteins
(especially high in processed and red meats), sugar, salt, and fat when compared to a healthy diet
comprising an intake of fruits and vegetables [36–38]. Several studies showed that a high sugar and
protein diet damages the immune system and promotes cancer [33,34,39]. Hence, In the IUNHD,
the effects of an unhealthy diet are presented dynamically according to the rate of two parameters:
μ and η. In this section, we analyze the model considering an example where the immune system is
weak as a result of the person following an unhealthy diet.

3.1. Equilibrium Points:

The model has only two equilibrium points in the feasible region, when it is compared to the
IHDM. These equilibrium points are represented as follows:

1. Primary response stage: In this stage, the immune system recognizes abnormal cells as foreign;
this point is represented by u1 = (0, σ

δ ). This is a similar equilibrium point to that of the IHDM.
2. Coexistence stage: In this stage, the immune cells treat abnormal cells as normal cells; this point is

represented by

u2 = (β−1, β(1+mβ)σ
(1+mβ)(βδ+μ)−βρ

), where 0 < β < 0.1.

Remark 2. Mathematically, both the recovery and the coexistence stages are the same, but their meaning in
terms of physiology is totally different. The stage of recovery follows the interaction stage, which means that
point p3 represents the total of the population after the substitution of abnormal cells with normal cells. However,
the point of u2 in the IUNHDM may mathematically indicate the coexisting population of both normal cells and
abnormal cells, as suggested by [20]; this type of coexistence might trigger cancer [40].

Remark 3. This model does not have an equilibrium point for the interaction stage; this means that one of the
following is true:

• There was a response from the immune system but the immune cells did not become involved in the
interaction because the immune system was weak, or;

• The immune cells became involved in the interaction but failed to inhibit or eliminate the abnormal cells.
Hence, this type of interaction damages the immune cells. In other words, the population of I → zero before
inhibiting or eliminating the abnormal cells.

3.2. Stability of Equilibrium Points

1. Stability of primary response stage: Since this point is identical to the primary response stage for
the IHDM, we use (3) to examine the stability of this stage for the IUNHDM.

Proposition 4. The point which represents the primary response stage is the unstable node for the IUNHDM.

Proof. On the basis of the weakness of the immune system, we can hypothesize that η I<r, where
I = σ

δ . That means that the parameter of η failed to achieve its highest peak rate. Therefore,
the eigenvalues of matrix (3) have a different sign. Accordingly, the equilibrium point u1 is an
unstable node.
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2. Stability of coexistence stage: This stage is considered to be a trigger for cancer because the
immune cells die without inhibiting or eliminating the abnormal cells. This era of rapid
development affecting our lifestyle, especially our dietary habits, is one of the main causes
of abnormal cells progressing early into tumor cells. Since this is mathematically similar to the
recovery point in the IHDM, the stability case is given by the following proposition:

Proposition 5. The point which represents the coexistence stage is stable.

Remark 4. The phase portrait of the IUNHDM and its solutions around the equilibrium points is shown in
Figures 4 and 5.

Figure 4. The phase portrait of the immune-unhealthy diet model (IUNHDM) and its solutions around
the response equilibrium point.

Figure 5. The phase portrait of the IUNHDM and its solutions around the coexistence equilibrium point.

4. Numerical Simulation

Both the IHDM and the IUNHDM were simulated using Mathematica software with the built-in
functionality NDSolve. The proposed system of ordinary differential equations can be solved with any
standard numerical method. For this, we used an explicit Runge–Kutta with a difference order of four
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and a step size of 1/10,000. The reliability and accuracy of the proposed numerical method can be
seen from the residual error which is shown in Figures 6–9.

Figure 6. The residual error at steps for the proposed numerical method for the IHDM.

Figure 7. The residual error at time t for the proposed numerical method for the IHDM.

Figure 8. The residual error at steps for the proposed numerical method for the IUNHDM.

Figure 9. The residual error at time t for the proposed numerical method for the IUNHDM.

The simulation of the IHDM and the IUNHDM indicated that the immune system response
is affected by specific parameters, namely, ρ, m, η, and μ. These parameters are put as m = 0.4787,
ρ = 0.2206, η = 0.8791, and μ = 0.6986 for the IHDM and m = 0.3389, ρ = 0.2710, η = 0.1379,
and μ = 0.8130 for the IUNHMD. In addition, the immune system can respond to an emergency case
if and only if the threshold rate achieves its peak, which is given by 0.478; it is reduced to 0.3389
in the IUNHDM. This reveals a weakness in the immune system. Furthermore, the impact of the
interaction between the immune system and abnormal cells depends on the rate of two parameters:
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η and μ. By comparing both models, we can deduce that the immune system succeeded in performing
its function if and only if

the rate of parameter η > the rate of parameter μ.

The behavior of the cells in the IHDM and the IUNHDM are shown in Figures 10 and 11,
respectively. Furthermore, The numerical simulation revealed that in the IHDM, the immune system
recognized abnormal cells as foreign bodies and started to inhibit or eliminate them within the first
five days. In addition, the immune system put a copy of the abnormal cells in its memory, which helps
it to eliminate them if they appear again or begin to progress. This is clearly seen as the population of
immune cells returns to its initial value after the 10th day of interaction. Furthermore, the horizontal
growth of normal cells indicates that normal cells divide and grow by following the signals of control
cellular growth and death [5]. On the other hand, the response of the immune system and attitude of
their cells were delayed in the IUNHDM. Hence, the immune cells failed to become involved in the
interaction and reduced to zero, while the normal cells had a mutation which forced them to grow
vertically, something which can lead to carcinoma [5,40].

Figure 10. The behavior of the IHDM where r = 0.431201, β = 2.99 × 10−6, σ = 0.7, δ = 0.57,
m = 0.4787, ρ = 0.2206, η = 0.8791, and μ = 0.6986.

Figure 11. The behavior of the IUNHDM where r = 0.431201, β = 2.99 × 10−6, σ = 0.7, δ = 0.57,
m = 0.3389, ρ = 0.2710, η = 0.1379, and μ = 0.8130.

5. Conclusions

Alharbi and Rambely [26] formulated their model to examine the impact a modern lifestyle has
on our health, as well as the impact of switching back from an unhealthy lifestyle to a healthy lifestyle.
In this study, our model aims to understand the natural function of the immune system as regards
protecting the human body from developing cancer where the progress of abnormal cells might trigger
the appearance of tumor cells. Hence, the immune–healthy diet and immune–unhealthy diet models
have been studied dynamically, analytically, and numerically. By comparing the results of the analysis
and simulation of both the IHDM and IUNHDM, we suggested that there are three stages which act to
stop abnormal cells from progressing into tumor cells. In the first stage, the immune system receives
a signal which provokes it to recognize abnormal cells as foreign. Next, immune cells are activated
to attack the abnormal cells. The results of this interaction lead to the inhibition or elimination of the
abnormal cells. Finally, the immune cells typically die after the interaction stage, which indicates that
the body is in the recovery stage. These processes were interrupted in the immune–unhealthy diet
model, in which the interaction between the immune cells and abnormal cells failed to eliminate the
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abnormal cells and also led to a decrease in immune cells. Thereafter, the abnormal cells succeeded
in coexisting with the normal cells; this type of coexistence might trigger cancer [5,20,22,24,26,40].
On the basis of the analysis and simulation of the IHDM and the IUNHDM, we can infer that the
process of elimination or inhibition of abnormal cells by the immune system is affected by two main
parameters, namely, η and μ. When a person follows a healthy diet (correlating with the food pyramid),
his/her immune system will be strong and able to recognize damaged cells, responding by repairing
or eliminating them. By contrast, following an unhealthy diet leads to a weakened immune system,
which harms its function. As a result, abnormal cells will stimulate a response from the immune
system, encouraging it to increase the generation of immune cells. This stimulation increased when
associated with the IUNHDM and decreased when associated with IHDM. In summary, symmetry
and antisymmetry are basic characteristics in the understanding of the relationship between dietary
patterns and the behavioral responses of the immune system when protecting the human body from
developing diseases. The symmetry of the IHDM and IUNHDM can be seen when the immune
system in both models responds to abnormal cells appearing in the tissue, as well as the responses
in the recovery stage. The results also suggested some similarities in terms of the function of the
immune system in both models, possibly affected by diet habits. Although the mathematical model
that is proposed in this work contributes to understanding the general dynamics of pathogens, it is
well-known that mathematical models cannot take all variables into account. For this reason, it is
highly recommended to conduct clinical experiments to consider real cases in order to confirm the
results of our mathematical model and to show more precise results. In the future, we will expand this
work to study the dynamic effect of the growth of abnormal cells and their activity. In addition, we
plan to apply our work to other pathogens.
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Abstract: Blast waves are generated when an area grows abruptly with a supersonic speed, as in
explosions. This problem is quite interesting, as a large amount of energy is released in the process.
In contrast to the situation of imploding shocks in ideal gas, where a vast literature is available
on the effect of magnetic fields, very little is known about blast waves propagating in a magnetic
field. As this problem is highly nonlinear, there are very few techniques that may provide even an
approximate analytical solution. We have considered a problem on planar and radially symmetric
blast waves to find an approximate solution analytically using Sakurai’s technique. A magnetic field
has been taken in the transverse direction. Gas particles are supposed to be propagating orthogonally
to the magnetic field in a non-deal medium. We have further assumed that specific conductance
of the medium is infinite. Using Sakurai’s approach, we have constructed the solution in a power
series of (C/U)2, where C is the velocity of sound in an ideal gas and U is the velocity of shock front.
A comparison of obtained results in the absence of a magnetic field within the published work of
Sakurai has been made to generate the confidence in our results. Our results match well with the
results reported by Sakurai for gas dynamics. The flow variables are computed behind the leading
shock and are shown graphically. It is very interesting that the solution of the problem is obtained in
closed form.

Keywords: blast waves; non-ideal gas; Rankine–Hugoniot conditions; magnetogasdynamics
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1. Introduction

The study of propagation of strong shock waves has always been given undivided attention by
various research groups in the field of science. In particular, it is useful in nuclear science, plasma
physics, geophysics, astrophysics, explosions, etc. Shocks are ubiquitary and quite useful in the
generation of energy. Radially converging shocks are used to create a hot spot at the center in Inertial
Confinement Fusion (ICF). The heat generated in the process is used to activate nuclear fission. After
World War II, it becomes extremely important to understand explosion dynamics. Motivated by this,
Sedov [1] first coined the idea of a similarity solution for the point explosion problem in an ideal
medium. Soon, this solution became famous as the “Sedov Similarity Solution” among researchers
due to its importance in blast wave theory. Taylor [2] found the analytical first approximate solution
for the problem. These results of Sedov and Taylor showed a way to estimate the effects of nuclear
or supernova explosions. Later, Sakurai [3,4] used this first approximate solution to find self-similar
solutions to the problem. Murata [5] and Donato [6] obtained the exact solutions to blast wave
problems in gas dynamics. Murata [5] assumed that change in density ahead of shock front is governed
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by the exponent of distance from the point (or axis) of ignition. The density ahead of the leading shock
was assumed to vary as the power of the radial distance from the center of explosion in his study.
Book [7] used Sedov formulas to find similarity solution of the point explosion problem. Lalicata and
Torrisi [8] used the similarity method for reacting flow. Propagation of shock waves generated by
sudden explosions within the presence of a magnetic field is very important because this phenomenon
is well marked in the disassembled nature of the absorption of energy. Anisimov and Spiner [9] and
Lerche [10] presented the theory of blast waves in magnetogasdynamics. A first comprehensive study
on the effect of magnetic field on the exploding shocks was presented by Lerche [11] in 1979. There is
an abrupt change in the entropy across an exploding shock and it releases a very high energy in the
process. It is well known that after the explosion, the front of the blast wave is circumscribed by the
surfaces of the shocks and propagates with decreasing velocity. Furthermore, a very high energy is
released in the process. It raises the temperature of the surrounding. Therefore, the assumption of
an ideal medium is not valid anymore, and one must consider the effect of non-deal medium on the
blast waves. The gas particles are ionized due to the presence of high temperature at the center. These
ionized gas particles generate the magnetic field. Therefore, the inclusion of a magnetic field on the
study of blast waves is essential for capturing the physics of the process well. It has many applications
in oceanography, astrophysics, aerodynamics, and atmospheric sciences.

Many research groups have worked afterwards on the topic to better understand the dynamics
of shock waves in a magnetic field. Among the recent research on the topic, we wish to mention
the work of Arora et al. [12], Siddiqui et al. [13], Singh et al. [14,15], and Pandey et al. [16]. Menon
and Sharma [17] studied the flattening and steepening of the characteristics wave fronts in an ideal
medium with magnetic field. Arora et al. [18] found a similar solution to the propagation of shocks in
a non-ideal medium. Relaxation effects were also included in the study. Later, Siddiqui et al. [19] used
asymptotic expansion of flow variables to find the solution to nonlinear waves far from the origin.
The relaxation of gas particles has been taken into account in the study. Evolutionary behavior of weak
shocks in real gas is presented by Arora and Siddiqui [20]. Despite there being vast literature available
on imploding shocks in real gas, the behavior of shock front after ignition is still an open problem. In
the present work, we have analyzed the flow variables after a blast in ignition by using the Sakurai
analytical approach. The medium is considered to be real gases. Effects of a magnetic field have also
been taken into account.

This paper is summarized as follows: Section 1 contains a brief introduction to the topic and
historical background of earlier studies. Section 2 presents the fundamental equations governing
the conservation laws. Rankine–Hugoniot (RH) jump conditions are also presented in this section.
In Section 3, we introduce the new independent variables and transform the fundamental equations
in the form of non-dimensional functions using the similarity analysis. In Section 4, power series
solutions in terms of (C/U)2 have been presented for the problem. In Section 5, the first approximation
solutions are obtained which correspond to Taylor’s series solution. In Section 6, a brief conclusion is
given about the whole study of this paper. Based on the study, we have concluded that the density and
magnetic pressure of the particle decreases behind the leading shock. Charged particles are transported
away by the magnetic field, and this gives an increase in the velocity of blast wind.

2. Fundamental Equations

The fundamental equations which govern unsteady planar (m = 0) or cylindrically (m = 1)
symmetric flow in a non-ideal gas in the presence of transverse magnetic field can be expressed
as [12,21]

ρt + ρux + uρx +
mρu

x
= 0, (1)

ut + uux +
1
ρ
(px + hx) = 0, (2)
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pt + upx + a2ρ

(
ux +

mu
x

)
= 0, (3)

ht + uhx + 2h
(

ux +
mu
x

)
= 0. (4)

Here ρ, u, p and h = μH2

2 denote the density, velocity, pressure, and magnetic pressure, respectively.
μ denotes the magnetic permeability and H being used for transverse magnetic field. a2 = γp

ρ(1−bρ)
is

speed of sound in real gases. γ is the ratio the specific heats at constant pressure and volume of the
gas. t and x represents the time and space variables, respectively. m = 0 denotes to planar symmetry
while m = 1 denotes cylindrical symmetry of the flow. It is assumed that electrical resistivity of the
medium is zero and magnetic field is orthogonal to the radial motion of gas particles.

This system of Equations (1)–(4) is supplemented with the equation of state for real gas as follows

p =
ρRT

(1 − bρ)
. (5)

R, T represent the gas constant and temperature, respectively.
The position of leading shock at any time t is given by R̃ = R̃(t). Therefore, the velocity of shock

front is ( dR̃
dt = C). The conditions for flow variables ahead of shock are characterized by

ρ = ρ0(x), u = 0, p = p0, h = h0(x). (6)

RH conditions at the leading shock (x = R̃(t)) are obtained by the conservation of laws that can
be expressed in simplified form as follows [22]

(ρ)x=R =
(γ + 1)
(γ − 1)

ρ0

[
1 − 2α

γ − 1
− 2

γ − 1

(
C
U

)2]
, (7)

(u)x=R =
2

(γ − 1)
S
[

1 − α −
(

V
S

)2]
, (8)

(p)x=R =
2ρ0U2

γ + 1

[
1 − α − γ − 1

2γ

(
C
U

)2]
− 1

2

(
γ + 1
γ − 1

)2

C0ρ0U2
[

1 − 4α

γ − 1
− 4

γ − 1

(
C
U

)2]
, (9)

(h)x=R =
1
2

(
γ + 1
γ − 1

)2

C0ρ0U2
[

1 − 4α

γ − 1
− 4

γ − 1

(
C
U

)2]
, (10)

where C0 = 2h0
ρ0U2 is the shock cowling number, C2 = γp0

ρ0
is the velocity of shock and α = (γ − 1)bρ0.

The initial density ρ0 is assumed to follow the power law given as

ρ0 = ρcx−δ, (11)

where x is the perpendicular distance of the point on leading shock from the point of explosion. ρc is
the constant density and δ is an exponent. Using the conservation of total energy, we get

E =
∫ R̃

0

[
1
2

u2 +
(1 − bρ)

(γ − 1)

(
p
ρ
− p0

ρ0

)
+

(
h
ρ
− h0

ρ0

)]
ρxmdx, m = 0, 1, (12)

where E denotes the surface energy carried by blast waves per unit of area. We obtain the following
relation by the Lagrangian equation of continuity:

∫ R̃

0

ρ

ρ0
xmdx =

R̃m+1

m + 1
. (13)
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We use the value of
∫ R̃

0
ρ
ρ0

xmdx from Equation (13) in Equation (12) to get the following expression

E =
∫ R̃

0

[
1
2

ρu2 +
(1 − bρ)

(γ − 1)
p + h

]
xmdx −

{
(1 − bρ)p0

γ − 1
+ h0

}
R̃m+1

m + 1
. (14)

3. Similarity Transformation of Fundamental Equations

As the process is self-similar, x = R(t) and U = dR̃
dt . It gives us the characteristic scale. We,

therefore, introduce the following new independent non-dimensional variables in place of x and S :

x/R̃ = r, (C/U)2 = s. (15)

x/R̃ = r is known as similarity variable. Non-dimensional quantities u/U, p/p0, ρ/ρ0 and
h/(p0(U/C)2) are assumed to be equal to F, G, Π, and H, respectively which are consistent with
Equations (1)–(4). We, therefore, can take the similarity transformations as:

u = UF(r, s), (16)

p = p0(U/C)2G(r, s), (17)

ρ = ρ0Π(r, s), (18)

h = p0(U/C)2H(r, s) = p0H(r, s)/s. (19)

Using the system of Equations (16)–(19), we obtain

∂

∂x
=

1
R̃

∂

∂r
, (20)

D
Dt

=
U
R̃

[
(F − r)

∂

∂r
+ λs

∂

∂s

]
, (21)

where λ = λ(s) = R̃(ds/dR̃)/s. Substituting (16)–(19) into the fundamental Equations (1)–(4),
we obtain

(F − r)Πr + λs Πs + Π
(

Fr +
mF
r

)
= 0, (22)

Π
(
− λ

2
F + (F − r)Fr + λs Fs

)
+

1
γ
(Gr + Hr) = 0, (23)

− λG + (F − r)Gr + λs Gs +
γG

(1 − b̄Π)

(
Fr +

mF
r

)
= 0, (24)

− λH + (F − r)Hr + λs Hs + 2H
(

Fr +
mF
r

)
= 0, (25)

where b̄ = bρ0. Using Equation (14), we obtain

s
(

R̃0

R̃

)m+1

=
∫ 1

0

(
1
2

γΠF2 +
(1 − b̄Π)G
(γ − 1)

+ H
)

rmdr − (1 − b̄Π)s
(γ − 1)(m + 1)

− γC0

2(m + 1)
, (26)

where

R̃0 =

(
E
p0

)1/(m+1)

. (27)
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Using (16)–(19), RH conditions become

Π(1, s) =
(γ + 1)
(γ − 1)

[
1 − 2α

γ − 1
− 2

γ − 1
s
]

, (28)

F(1, s) =
2

γ + 1
(1 − α − s), (29)

G(1, s) =
2γ

γ + 1

[
1 − α − (γ − 1)s

2γ

]
− 1

2

(
γ + 1
γ − 1

)2

C0γ

[
1 − 4α

γ − 1
− 4s

γ − 1

]
, (30)

H(1, s) =
γ

2
C0

(
γ + 1
γ − 1

)2[
1 − 4α

γ − 1
− 4s

γ − 1

]
. (31)

Now differentiating Equation (26) regarding s, we obtain the expression for λ as

λ =
J(m + 1)− (1−b̄Π)s

γ−1 − γC0
2

J − s dJ
ds − γC0

2(m+1)

. (32)

Here

J =
∫ 1

0

(
1
2

γΠF2 +
(1 − b̄Π)G
(γ − 1)

+ H
)

rmdr. (33)

The self-similar process of the explosion has clearly explained the power rule particularly
in Equation (27).

4. Construction of Solutions in Power Series of s

As we are seeking solution for strong shocks, the velocity of leading shock front S is very large than
the velocity of sound waves V in ideal gas. The quantity s = (V/S)2 is very small for strong shocks.
We, therefore, expand the non-dimensional quantities F, G, Π and H in power series s = (V/S)2

as follows
F = F(0) + sF(1) + s2F(2) + s3F(3) + ...,

G = G(0) + sG(1) + s2G(2) + s3G(3) + ...,

Π = Π(0) + sΠ(1) + s2Π(2) + s3Π(3) + ...,

H = H(0) + sH(1) + s2H(2) + s3H(3) + ....

(34)

Here F(i), G(i), Π(i) and H(i) (i = 0, 1, 2, ...) are either constants or functions of r. We use the
power series expansions from Equation (34) in Equation (33) to obtain the value of J as

J = J0(1 + σ1 s + σ2 s2 + ...), (35)

where

J0 =
∫ 1

0

[
γ

2
Π(0)(F(0))2 +

(1 − bΠ(0))

γ − 1
G(0) + H(0)

]
rmdr,

σ1 J0 =
∫ 1

0

[
γ

2
Π(1)(F(0))2 + γΠ(0)F(0)F(1) +

1
γ − 1

(G(1) − bΠ(0)G(1) − bΠ(1)G(0)) + H(1)
]

rmdr,

σ2 J0 =
∫ 1

0

[
γ

2
Π(2)(F(0))2 + γΠ(0)F(0)F(2) +

γ

2
Π(0)(F(1))2 + 2Π(1)F(1)F(0) + H(2)

]
rmdr (36)

+
∫ 1

0

1
γ − 1

[G(2) − bΠ(2)G(0) − bΠ(1)G(1) − bΠ(0)G(2)]rmdr,

...

66



Symmetry 2019, 11, 458

Using (35) in (26), we obtain

s
(

R̃0

R̃

)m+1

= J0

[(
1 − γC0

2(m + 1)J0

)
+

(
σ1 − 1

(m + 1)(γ − 1)J0

)
s + σ2s2 + ...

]
. (37)

In view of (15), Equation (37) becomes(
V
S

)2( R̃0

R̃

)m+1

= J0

[(
1− γC0

2(m + 1)J0

)
+

(
σ1 − 1

(m + 1)(γ − 1)J0

)(
V
S

)2

+ σ2

(
V
S

)4

+ ...
]

. (38)

This equation provides a relation between shock velocity and its position at time t. We expand λ

by using Equations (32) and (35) as follows:

λ = (m + 1)[1 + σ
′
1s + 2σ

′
2s2 + ...], (39)

where

σ
′
1 =

σ1 − 1
(m+1)(γ−1)J0

1 − γC0
2(m+1)(γ−1)J0

,

σ
′
2 =

σ2

1 − γC0
2(m+1)J0

,

σ
′
3 =

σ3

1 − γC0
2(m+1)J0

.

For simplification, let us consider λ1 = σ
′
1, λ2 = 2σ

′
2, λ3 = 3σ

′
3,..., then the Equation (39) becomes

λ = (m + 1)[1 + λ1s + λ2s2 + ...]. (40)

We use the relations from Equations (34) and (40) in Equations (22)–(25). Comparing the likewise
powers of s on both sides of an equation, we get relations in terms of Ordinary Differential Equations
(ODEs). Comparing the terms free from s, we get

(F(0) − r)Π(0)
r + Π(0)

(
F(0)

r +
mF(0)

r

)
= 0, (41)

(F(0) − r)Π(0)F(0)
r +

1
γ
(G(0)

x + H(0)
x ) =

(m + 1)F(0)Π(0)

2
, (42)

− (m + 1)G(0) + (F(0) − r)G(0)
r +

γG(0)

(1 − bΠ(0))

(
F(0)

r +
mF(0)

r

)
= 0, (43)

− (m + 1)H(0) + (F(0) − r)H(0)
r + 2H(0)

(
F(0)

r +
mF(0)

r

)
= 0. (44)
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Equating the power s, we get

(F(0) − r)Π(1)
r + F(1)Π(0)

r + (m + 1)Π(1) + Π(0)
(

F(1)
r +

mF(1)

r

)
+ Π(1)

(
F(0)

r +
mF(0)

r

)
= 0, (45)

− Π(0)

2
(m + 1)[F(1) + λ1F(0)]− (m + 1)Π(1)F(0)

2
+ Π(0)[(F(0) − r)F(1)

r + F(1)F(0)
r ]

+ Π(1)(F(0) − r)F(0)
r + (m + 1)Π(0)F(1) +

1
γ
[G(1)

r + H(1)
r ] = 0, (46)

− λG(1) + F(1)G(0)
r + λ1(G

(0)
r + G(1)) + F(0)G(1)

r + [1 + bΠ(1)G(0)

+ {bΠ(0) + (bΠ(0))2 + ...}G(1)][F(0) +
mF(0)

r
] = 0, (47)

− (m + 1)λ1H(0) + (F(0) − r)H(1)
r + F(1)H(0)

r + 2H(0)
(

F(1)
r +

mF(1)

r

)
+ 2H(1)

(
F(0)

r +
mF(0)

r

)
= 0, (48)

From Equations (28)–(31) and (34), we have

F(0)(1) =
2

γ + 1
(1 − α), G(0)(1) =

2γ

γ + 1
(1 − α)−

(
γ + 1
γ − 1

)2
γC0

2

(
1 − 4α

γ − 1

)
,

Π(0)(1) =
γ + 1
γ − 1

(
1 − 2α

γ − 1

)
, H(0)(1) =

(
γ + 1
γ − 1

)2
γC0

2

(
1 − 4α

γ − 1

)
.

(49)

F(1)(1) = − 2
γ + 1

, G(1)(1) = −γ − 1
γ + 1

+ 2γC0
(γ + 1)2

(γ − 1)3 ,

Π(1)(1) = −2(γ + 1)
(γ − 1)

, H(1)(1) = −2γC0
(γ + 1)2

(γ − 1)3 .
(50)

To get the first approximate solution, we determine F(0), G(0), Π(0) and H(0) from the system of
nonlinear ODEs (41)–(44) with the boundary conditions given in Equation (49). Finally, these values
are used in Equation (36)1 to get approximate solution as follows

u = SF(0)(r), p = p0(S/V)2G(0)(r),

ρ = ρ0Π(0)(r), h = p0(S/V)2H(0)(r).
(51)

To get the second approximation, we need to determine the values of F(1), G(1), Π(1) and H(1)

in Equation (45). F(0), G(0), Π(0) and H(0) are used from the first approximation. F(1), G(1), Π(1) and
H(1) contain λ1. We use these values in terms of λ1 in Equation (36)2 to finally obtain the value of λ1.
The obtained value of λ1 is used to get the second approximate solution. The other steps involve the
repetition of the above process to get higher order approximate solutions of the problem.

5. The First Approximation

The Equations (41)–(44) can be written in the following forms:

Π(0)
r

Π(0)
=

(
F(0)

r +
mF(0)

r

)
/(r − F(0)), (52)
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(F(0) − r)Π(0)F(0)
r +

1
γ
(G(0)

r + H(0)
r ) =

(m + 1)F(0)Π(0)

2
, (53)

G(0)
r

G(0)
=

[
− (m + 1) +

γ

(1 − b̄Π(0))

(
F(0)

r +
mF(0)

r

)]
/(r − F(0)), (54)

H(0)
r

H(0)
=

(
2F(0)

r +
2mF(0)

r
− m − 1

)
/(r − F(0)). (55)

We substitute the values G(0)
r and H(0)

r from Equations (54) and (55) in Equation (53) to get F(0)
r in

the following form

F(0)
r =

[
m+1

γ − mF(0)

(1−b̄Π(0))r
+

(
m+1

γ − 2mF(0)

γr

)
H(0)

G(0) +
(m+1)F(0)Π(0)(r−F(0))

2G(0)

]
[

2H(0)

γG(0) +
1

(1−b̄Π(0))
− Π(0)(r−F(0))

G(0)

] . (56)

Taylor [23] performed similarity transformation and presented the approximate solution for
intense explosion. This approximation has been used by Sakurai [3] to produce analytical solution
in gas dynamics. We, therefore, has assumed the first approximation F(0) as given in the work of
Taylor [23]

F(0)(r) =
r
γ
+ Arn. (57)

We get the value of A in the following form using Equations (49) and (57),

A =
γ(1 − 2α)− 1

γ(γ + 1)
. (58)

We use Equations (56)–(58) to get n. After determining the values of A and n, we integrate
Equations (52)–(55) with boundary conditions (49) to obtain

Π(0)(r) =
γ + 1
γ − 1

(
1 − 2α

γ − 1

)[
γ

γ + 1 − rn−1

]( (n+m)(γ(1−2α)−1)
(n−1)(γ−1) + m+1

(n−1)(γ−1)

)
r(

m+1
γ−1 ), (59)

G(0)(r) =
{

2γ
γ+1 (1 − α)−

(
γ+1
γ−1

)2
γC0

2

(
1 − 4α

γ−1

)}[
γ

γ+1−rn−1

](B)

r

(γ+1)(m+1)b̄(1− 2α
γ−1 )

(γ−1)2 [1−b̄ γ+1
γ−1 (1− 2α

γ−1 )] , (60)

where

B =
γ(m + n)(γ(1 − 2α)− 1) + γ(m + 1)b̄(γ + 1)(1 − 2α

γ−1 )

(n − 1)(γ − 1){1 − b̄( γ+1
γ−1 )(1 − 2α

γ−1 )}
.

and

H(0)(r) =
γC0

2

(
γ + 1
γ − 1

)2(
1 − 4α

γ − 1

)[
γ

γ + 1 − rn−1

]( 2(m+n)(γ(1−2α)−1)+(1+m)(2−γ)
(n−1)(γ−1)

)
r
(m+1)(2−γ)

(γ−1) . (61)

Dimensionless quantities F(0), Π(0) and G(0) are computed in Tables 1 and 2 for (m = 0, 1) in ideal
gas (without magnetic field i.e., C0 = 0). A comparison of the obtained results is presented with the
published work of Sakurai [4] in gas dynamics. Schematic of dimensionless flow variables are depicted
in Figures 1–4.
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Table 1. F(0), Π(0) and G(0) for m = 0, γ = 1.4 and C0 = 0.

x α F(0) Sakurai [3] Π(0) Sakurai [3] G(0) Sakurai [3] F(0) Π(0) G(0)

0.0 0.8333 6.000 1.167 0.8333 6.000 1.167
1.0 0.015 - - - 0.8208 5.550 1.167

0.025 - - - 0.8125 5.250 1.167

0.0 0.7170 3.096 0.815 0.7251 3.096 0.815
0.9 0.015 - - - 0.7199 2.899 0.835

0.025 0.7159 2.767 0.848

0.0 0.6151 1.785 0.647 0.6259 1.785 0.647
0.8 0.015 - - - 0.6251 1.660 0.664

0.025 - - - 0.6240 1.577 0.677

0.0 0.5239 1.080 0.556 0.5341 1.080 0.556
0.7 0.015 - - - 0.5356 0.990 0.567

0.025 - - - 0.5362 0.931 0.575

0.0 0.4405 0.658 0.504 0.4484 0.658 0.504
0.6 0.015 - - - 0.4507 0.593 0.508

0.025 - - - 0.4521 0.551 0.515

0.0 0.3624 0.389 0.473 0.3676 0.389 0.473
0.5 0.015 - - - 0.3698 0.345 0.471

0.025 - - - 0.3712 0.317 0.471

0.0 0.2877 0.214 0.456 0.2877 0.214 0.456
0.4 0.015 - - - 0.2921 0.187 0.450

0.025 - - - 0.2933 0.170 0.446

0.0 0.2148 0.102 0.447 0.2160 0.102 0.447
0.3 0.015 - - - 0.2169 0.088 0.437

0.025 - - - 0.2177 0.079 0.431

0.0 0.1430 0.037 0.443 0.1432 0.037 0.443
0.2 0.015 - - - 0.1436 0.0316 0.432

0.025 - - - 0.1439 0.0282 0.423

0.0 0.0714 0.006 0.442 0.0714 0.006 0.442
0.1 0.015 - - - 0.0715 0.005 0.429

0.025 - - - 0.0716 0.005 0.419

0.0 0.0000 0.000 0.442 0.0000 0.000 0.442
0.0 0.015 - - - 0.0000 0.000 0.429

0.025 - - - 0.0000 0.000 0.419
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Figure 1. Schematic of non-dimensional velocity (a) F(0), (b) pressure G(0), (c) density Π(0) and
(d) magnetic pressure H(0) for γ = 1.4, C0 = 0, m = 0 and α = 0.0, 0.015, 0.025, 0.05.
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Table 2. F(0), Π(0) and G(0) for m = 1, γ = 1.4 and C0 = 0.

x α F(0) Sakurai [3] Π(0) Sakurai [3] G(0) Sakurai [3] F(0) Π(0) G(0)

0.0 0.8333 6.000 1.167 0.8333 6.000 1.167
1.0 0.015 - - - 0.8208 5.550 1.167

0.025 - - - 0.8125 5.250 1.167

0.0 0.7008 1.898 0.685 0.7072 1.898 0.684
0.9 0.015 - - - 0.7196 1.767 0.767

0.025 0.7314 1.678 0.874

0.0 0.5973 0.783 0.531 0.6038 0.783 0.531
0.8 0.015 - - - 0.6246 0.713 0.577

0.025 - - - 0.6503 0.668 0.667

0.0 0.5104 0.347 0.468 0.5141 0.346 0.468
0.7 0.015 - - - 0.5351 0.309 0.474

0.025 - - - 0.5691 0.284 0.517

0.0 0.4322 0.153 0.441 0.4346 0.150 0.441
0.6 0.015 - - - 0.4503 0.131 0.414

0.025 - - - 0.4880 0.119 0.406

0.0 0.3582 0.058 0.429 0.3592 0.0582 0.429
0.5 0.015 - - - 0.3695 0.050 0.378

0.025 - - - 0.4077 0.045 0.323

0.0 0.2859 0.019 0.425 0.2863 0.019 0.425
0.4 0.015 - - - 0.2919 0.016 0.357

0.025 - - - 0.3255 0.014 0.260

0.0 0.2140 0.005 0.424 0.2144 0.004 0.424
0.3 0.015 - - - 0.2168 0.004 0.346

0.025 - - - 0.2443 0.003 0.211

0.0 0.1429 0.001 0.424 0.1429 0.001 0.423
0.2 0.015 - - - 0.1437 0.001 0.340

0.025 - - - 0.1630 0.000 0.173

0.0 0.0714 0.000 0.424 0.0714 0.000 0.423
0.1 0.015 - - - 0.0715 0.000 0.338

0.025 - - - 0.0815 0.000 0.143

0.0 0.0000 0.000 0.424 0.0000 0.000 0.423
0.0 0.015 - - - 0.0000 0.000 0.338

0.025 - - - 0.0000 0.000 0.118
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Figure 2. Schematic of non-dimensional (a) velocity F(0), (b) pressure G(0), (c) density Π(0) and
(d) magnetic pressure H(0) for γ = 1.4, α = 0, m = 0 and C0 = 0.00, 0.02, 0.04.
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Figure 3. Schematic of non-dimensional (a) velocity F(0), (b) pressure G(0), (c) density Π(0) and
(d) magnetic pressure H(0) for γ = 1.4, C0 = 0, m = 1 and α = 0.0, 0.015, 0.025, 0.05.
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Figure 4. Schematic of non-dimensional (a) velocity F(0), (b) pressure G(0), (c) density Π(0) and
(d) magnetic pressure H(0) for γ = 1.4, α = 0, m = 1 and C0 = 0.00, 0.02, 0.04.
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6. Conclusions

In the present work, we have successfully used the Sakurai [4] approach to find the first-order
approximate analytical solution of the planar and cylindrical symmetric flow under the presence
of transverse magnetic field in a non-ideal medium. However, Sakurai [4] has obtained a solution
in gas dynamics by using this method; there is no study afterwards that provides approximate
analytical solution of the problem with magnetic field in non-ideal medium. We have tried to fill
the gap by providing approximate analytical solutions of the problem with magnetic and non-ideal
effects. These findings are quite useful for the groups working in the field of Magneto Hydrodynamics
(MHD) or Computational Fluid Dynamics (CFD). To generate confidence in our results, we have
recovered all results of Sakurai’s [4] published work as a particular case of our problem (i.e., C0 = 0) in
Tables 1 and 2. The effects of non-ideal medium and transverse magnetic field on flow variables are
depicted in Figures 1–4.

Figure 1 consists of the profiles of velocity, density, pressure, and magnetic pressure for planar
shocks (m = 0 ) with γ = 1.4, C0 = 0, and α = 0.00, 0.015, 0.025, 0.050. It is clearly seen from Figure 1
that the dimensionless profiles of flow variables decrease as value of parameter α increases except the
pressure which increases with the small increase in the parameter α. This is expected physically as gas
particles will collide more frequently with the increase of non-idealness α which results in the rise in
pressure with the increment of α. In Figure 2, we observe that the pressure and density decrease as
we increase the value of C0, while the magnetic pressure increases for planar motion (m = 0) after
a certain point. It is again an expected result as the charged particles will be transported away very
quickly with the increase of C0. It results in dropping in pressure after the blast. At the point of
explosion, the process is not fully self-similar and therefore the initial dynamics is a bit off. It agrees
with blast wave theory. It is well known that the phenomena are not self-similar at very near the center
or axis of explosion. However, point explosions can be self-similar at considerable distance from the
source (see Sakurai [3,4]). Figures 3 and 4 display the profiles of the flow variables for cylindrically
symmetric flow (m = 1). From Figures 3a and 4a, we observed that as we increase the value of α

and C0, velocity increases. Figure 3b shows that as the value of parameter α increases, pressure also
increases after a certain point. This describes the physics of the post-shock process very well as increase
in α makes the collision of the gas particles more frequent. Figure 4b shows that an increment in the
value of C0 causes a decrease in pressure for the cylindrically symmetric flow. It is attributed to the fact
that the ionized gas molecules are carried away by a strong magnetic field. It is one of the reasons that
the instabilities at the shock front can be suppressed under the presence of a magnetic field. Figure 4c
shows that the density of the medium decreases as C0 increases. Figure 4d shows that as the value of
C0 increases, magnetic pressure also increases.
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Abstract: The paradox of the enrichment phenomenon, considered one of the main counterintuitive
observations in ecology, likely destabilizes predator–prey dynamics by increasing the nutrition of the
prey. We use two systems to study the occurrence of the paradox of enrichment: The prey–predator
system and the one prey, two predators system, with Holling type I and type II functional and
numerical responses. We introduce a new approach that involves the connection between the
occurrence of the enrichment paradox and persistence and extinction dynamics. We apply two main
analytical techniques to study the persistence and extinction dynamics of two and three trophics,
respectively. The linearity and nonlinearity of functional and numerical responses plays important
roles in the occurrence of the paradox of enrichment. We derive the persistence and extinction
conditions through the carrying capacity parameter, and perform some numerical simulations to
demonstrate the effects of the paradox of enrichment when increasing carrying capacity.

Keywords: paradox of enrichment; prey–predator system; persistence of predators; extinction
of predators

1. Introduction

Prey–predator interactions are important in applied mathematics and mathematical biology,
receiving considerable attention from many researchers [1–8]. The Lotka-Volterra model
is considered the basis for formulating prey–predator interaction models; it was proposed
independently by Lotka and Volterra, so it is known as the Lotka-Volterra model. In the literature,
predation and competition relationships are two main relationship types used for modeling any
prey–predator system [9,10]. Mathematically, prey–predator interactions are described by nonlinear
differential equations.

Counterintuitive observations have generally attracted more attention than observations that
confirm intuition. These observations are called paradoxes that unexpectedly challenge normal
intuition [11]. One of these observations, the paradox of enrichment, states that increasing the carrying
capacity of prey in a stable prey–predator system leads to the destabilization of the system, which can
be mathematically represented by limit cycles. Destabilization might lead to extinction, which is
interpreted when the limit cycle is sufficiently large for one of the species or all species, so that the limit
cycle is approximately close to zero. This phenomenon was discovered by Rosenzweig in 1971 [12].

Several experimental studies rejected the hypothesis that the enrichment phenomenon would
destabilize community dynamics [13–16]. The studies that rejected enrichment paradox phenomenon
explained that the paradox was actually caused by a difference between the mathematical construction
and real prey–predator interactions. However, recent experimental studies showed the occurrence
of the paradox of enrichment. Fussmann et al. [17] showed that enrichment led to the predator’s
extinction in their experiment on rotifer algae. Cottingham et al. [18] showed that in some lakes,
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anthropogenic eutrophication of ecosystems destabilized lakes. The process of lake eutrophication
has been suggested to be an example of the paradox of enrichment [11]. Recently, Meyer et al. [19]
predicted the occurrence of the paradox of enrichment for communities with multiple aboveground
and belowground trophic levels and suggested that extinction and destabilization are more likely in
fertilized agroecosystems than in natural communities.

One of the most important dynamics in prey–predator systems is stability, which is the first
property usually studied in these systems. Some models show that the predator equilibrium density
increases when the carrying capacity raises, but the prey equilibrium density would not increase as
shown in the Rosenzweig–MacArthur model [20]. Notably, increasing the carrying capacity affects
the prey and predator equilibrium densities. Losing stability transitions the dynamic behavior to
cycle dynamics, which are relevant to persistence and extinction dynamics. The persistence and
extinction of prey-predator systems have been studied by many researchers [21–41] due to their
importance. Some methodologies have been used to find the conditions of persistence and extinction
in two and three dimensions (trophics). Hutson and Vickers [23] determined the main criteria of
a two prey, one predator model that depends on the Lyapunov function or average Lyapunov function.
Freedman and Waltman [24] introduced a definition of persistence and determined the general criteria
for three interacting populations. Freedman [21], in his book, summarized Kolmogorov conditions of
prey–predator systems, which have been applied to derive the persistence and extinction conditions of
two dimensions (trophics).

Persistence is defined analytically as follows: For a population x(t), i f x(0) > 0 and
lim
t→∞

infx(t) > 0, x(t) persists: geometrically, defined each trajectory of differential equations is defined

as eventually bounding away from the coordinate planes [24]. Extinction is defined analytically as
follows: if x(0) > 0 and lim

t→∞
infx(t) = 0, then x(t) becomes extinct: geometrically, the trajectory of

differential equations is defined as touching the coordinate planes.
Dubey and Upadhyay [30] studied persistence and extinction according to the Hutson and Vickers

method. They explained that the conditions of persistence and extinction depend on the equilibrium
levels of prey and predators and food conversion coefficients, capturing the rates and comparing them
with the mortality rates of predators. Gakkhar et al. [31] studied persistence and extinction in their
proposed model based on the Freedman and Waltman method. They proved that persistence is not
possible for two predators competing for one prey species when any one of the boundary prey–predator
planes has a stable equilibrium point. They presented numerical simulations of persistence in the case
of periodic solution. They concluded that the principle of competitive exclusion holds in this case.
Alebraheem and Abu Hassan [38–41] studied different scenarios of persistence and extinction in their
modified model. However, the carrying capacity of the systems was widely excluded to study the
dynamic behavior.

In this paper, we introduce a new approach that involves a mathematical connection between
the occurrence of the enrichment paradox and the persistence and extinction dynamics. The question
that we aimed to answer here is if enrichment of prey affects the persistence and extinction of
predators. Therefore, we derived the persistence and extinction conditions and completed numerical
simulations based on the carrying capacity that affects the occurrence of the paradox of enrichment.
To study this idea, we used the same systems that were used by Alebraheem and Abu Hassan [38–42],
but considered the carrying capacity. Two systems were examined: a prey–predator model that
represents two dimensions (trophics), and a one prey, two predators system that describes three
dimensions (trophics). Kolmogorov analysis and Freedman and Waltman methods were used to study
the persistence and extinction dynamics.

The remainder of this paper is structured as follows. In Section 2, we introduce the mathematical
systems of prey–predator used to study the relationship between the paradox of enrichment and
the dynamics of persistence and extinction. In Section 3, we study the occurrence of the paradox of
enrichment phenomenon. In Section 4, we study a theoretical approach to persistence and extinction.
In Section 5, we present some numerical simulations. In Section 6, we draw our conclusions.
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2. Mathematical Systems

In this paper, we introduce non-dimensional systems of two and three trophics. Holling type I and
II functional and numerical responses are used to describe the predation of predators on prey and the
effect of prey consumption on predators. Holling type I represents a linear function, whereas Holling
type II represents a nonlinear function. The model can be formulated as:

The system of two trophics is as follows:

dx
dt

= x
(

1 − x
k

)
− f (x)y, (1)

dy
dt

= −uy + R1y
(

1 − y
ky

)
,

with initial conditions
x(0) = x0, (0) = y0.

The system of three trophics is as follows:

dx
dt

= x
(

1 − x
k

)
− f (x)y − g(x)z = xJ(x, y, z),

dy
dt

= −uy + R1y
(

1 − y
ky

)
− c1yz = yL1(x, y, z), (2)

dz
dt

= −wz + R2z
(

1 − z
kz

)
− c2yz = zL2(x, y, z),

with initial conditions
x(0) = x0, (0) = y0, z(0) = z0.

The different parameters in systems (1) and (2) are explained as follows. The intrinsic growth rate
of prey is 1. In the case of Holling type I, f (x) = αx and g(x) = βx are the functional responses to
predators y and z, respectively, whereas in the case of Holling type II, f (x) = αx

1+h1αx and g(x) = βx
1+h2βz

are the functional responses to predators y and z, respectively. For type I, the numerical responses
are R1 = e1αx and R2 = e2βx of the predators y and z, respectively. For Holling type II, R1 = e1αx

1+h1αx

and R2 = e2βx
1+h2βz . The parameters α and β measure the efficiency of the search and the capture of

predators y and z, respectively. In the absence of prey x, the constants u and w are the death rates of
predators y and z, respectively. h1 and h2 represent the handling and digestion rates of the predators,
respectively, and e1 and e2 symbolize the efficiency of converting consumed prey into predator births.
The carrying capacities ky = a1x and kz = a2x are proportional to the available amount of prey. In this
paper, we assume a1 = a2 = 1 to simplify the mathematical analysis. c1 and c2 measure the interspecific
competition between the predators. All the parameters and initial conditions of systems (1) and (2) are
assumed to be positive values.

3. Occurrence of the Paradox of Enrichment

According to Jensen and Ginzburg [11], the paradox of enrichment is accepted intuition and must
be considered a theory in ecology. In this section, we study the occurrence of the paradox of enrichment
on systems (1) and (2) with Holling types I and II. To study this phenomenon, we discuss the stability of
the coexistence equilibrium points E = (x, y) and E = (x, y, z) in two and three trophics, respectively.

3.1. Occurrence of the Paradox of Enrichment with Holling Type I

To check this phenomenon with Holling type I, we found the coexistence equilibrium points of
systems (1) and (2) and present some theorems that prove the occurrence of the paradox of enrichment
in systems (1) and (2) with Holling type I.
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The coexistence equilibrium point of system (1) with Holling type I is Ê = (x̂, ŷ) =
(

k(u+e)
e+keα , keα−u

eα+eα2k

)
.

It exists (positive equilibrium point) under the following condition:

keα > u (3)

E = (x, y, z) represents the coexistence of the equilibrium point of system (2) with Holling type I,
which is obtained through the positive solution of the following algebraic system:

1 − x
k
− αy − βz = 0

− u + e1αx − e1αy − c1z = 0 (4)

− w + e2βx − e2βz − c2y = 0

Theorem 1. The coexistence equilibrium point Ê = (x̂, ŷ) =
(

k(u+e)
e+keα , keα−u

eα+eα2k

)
of system (1) is globally

asymptotically stable within the positive quadrant of the x − y plane.

Proof. Let G(x, y) = 1
xy . G is a Dulac function. It is continuously differentiable in the positive quadrant

of the x − y plane A = {{(x, y)|x > 0, y > 0} Hsu [43].

N1(x, y) = x
(

1 − x
k

)
− αxy,

N2(x, y) = −uy + e1αxy − e1αy2.

�.

Thus, Δ(GN1, GN2) =
∂(GN1)

∂x + ∂(GN2)
∂y = −1

yk − e1α
x .

It is observed that Δ(GN1, GN2) is not identically zero and does not change sign in the positive
quadrant of the x − y plane. Per the Bendixson–Dulac criterion, there is no periodic solution inside the
positive quadrant of the x − y plane. E2 is globally asymptotically stable inside the positive quadrant
of the x − y plane.

Theorem 2. The coexistence equilibrium point E = (x, y, z) of system (2) is globally asymptotically stable.

Proof. The global stability of positive equilibrium point E is proved by using Lyapunov function.

V = B1(x − x − ln (
x
x
)) + B2(y − y − ln (

y
y
)) + B3(z − z − ln (

z
z
)). (5)

�.

Differentiating V with respect to time along the solutions of the system (5)

dV
dt

= B1(x − x)
[(

1 − x
k
− αy − βz

)
−
(

1 − x
k
− αy − βz

)]
+ B2(y − y)[(−u + e1αx − e1αy − c1z)

−(−u + e1αx − e1αy − c1z)]+B3(z − z)[(−w + e2βx − e2βz − c2y)− (−w + e2βx − e2βz − c2y)].
(6)

dV
dt

= B1(x − x)
[−(x –x)

k
− α(y − y)− β(z − z)

]
+ B2(y − y)[e1α(x − x)− e1α(y − y)− c1(z − z)]

+B3(z − z)[e2β(x − x)− e2β(z − z)− c2(y − y)].
(7)
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dV
dt

= B1

[
−(x − x)2

k
− α(x − x)(y − y)− β(x − x)(z − z)

]
+ B2

[
e1α(y − y)(x − x)− e1α(y − y)2

−c1(y − y)(z − z)

]
+B3

[
e2β(z − z)(x − x)− e2β(z − z)2 − c2(z − z)(y − y)

]
.

(8)

By selecting B1 = 1, B2 = 1
e1

, and B3 = 1
e2

, so

dV
dt

= −1
k
(x − x)2 − α(y − y)2 − c1(y − y)(z − z)− β(z − z)2 − c2(z − z)(y − y) (9)

We conclude that dV
dt is a negative definite without any conditions (i.e., no constraints

on parameters).
In this section, the main result shows that the dynamic behaviors of systems (1) and (2) are

always stable and there is no bifurcation under any conditions through Theorems 1 and 2. Therefore,
the paradox of enrichment in systems (1) and (2) with Holling type I does not occur.

The system is stable, or population oscillations with small amplitude are likely to occur if the
defense of prey is effective when compared with the predator’s attacking [6].

3.2. Occurrence of the Paradox of Enrichment with Holling Type II

We found the coexistence equilibrium points of systems (1) and (2) and present some theorems
that prove the occurrence of the paradox of enrichment in these systems with Holling type II.

The coexistence equilibrium point É = (x́, ý) is obtained for system (1) with Holling type II
through the positive root of the quadratic equation

x́2 +

(
1
h1

− u
e1

− 1
k
+

1
h1α

)
x́ −

(
1

h1α
+

u
e1h1α

)
= 0 (10)

and

ý =
1
α

(
1 − x́

k

)
(1 + h1αx́) (11)

The coexistence equilibrium point
=
E =

(
=
x,

=
y,

=
z
)

of system (2) with Holling type II is obtained
through the positive solution of the following algebraic system:

1 − x
k
− αy

1 + h1αx
− βz

1 + h2βx
= 0

− u +
e1αx

1 + h1αx
− e1α

1 + h1αx
y − c1z = 0 (12)

− w +
e2βx

1 + h2βx
− e2β

1 + h2βx
z − c2y = 0

To check this phenomenon with Holling type II, we present the following theorems:

Theorem 3. The coexistence equilibrium point É = (x́, ý) is asymptotically stable under the
following condition:

k <
x́

h1α2 ý
(1+h1αx́)2 − e1αý

1+h1αx́

(13)

Proof. The variational matrix of coexistence point É is as follows:

V́ =

⎛⎝ x́(− 1
k +

h1α2 ý
(1+h1αx́)2 ) −x́( α

1+h1αx́ )

ý( e1α+h1e1α2 ý
(1+h1αx́)2 ) −ý( e1α

1+h1αx́ )

⎞⎠

79



Symmetry 2018, 10, 532

�.

Through the variational matrix, the equilibrium point É is locally asymptotically stable, provided
the following condition holds:

k <
x́

h1α2 ý
(1+h1αx́)2 − e1αý

1+h1αx́

Corollary 1. If condition (13) is not satisfied, then the coexistence equilibrium point É = (x́, ý) is unstable.

Through Corollary 1, there is a destabilization of the coexistence equilibrium point É according
to the carrying capacity parameter, so the paradox of enrichment in system (1) with Holling type II
would occur. Therefore, the paradox of enrichment occurs in system (1) with Holling type II through
some numerical simulations.

Theorem 4. The coexistence equilibrium point
=
E =

(
=
x,

=
y,

=
z
)

of system (2) is obtained through the positive
solution of system (12). It is locally asymptotically stable proven that conditions (15), (16), and (17) hold.

The variational matrix of
=
E is as follows:

=
v =

⎡⎢⎢⎢⎢⎢⎣
=
x(− 1

k +
h1α2=y

(1+h1α
=
x)

2 +
h2β2=z

(1+h2β
=
x)

2 ) −=
x( α

1+h1α
=
x
) −=

x( β

1+h2β
=
x
)

=
y( e1α+h1e1α2=y

(1+h1α
=
x)

2 ) −=
y( e1α

1+h1α
=
x
) −c1

=
y

=
z( e2β+e2h2β2=z

(1+h2β
=
x)

2 ) −c2
=
z −=

z( e2β

1+h2β
=
x
)

⎤⎥⎥⎥⎥⎥⎦

=
V =

⎡⎢⎣ h11 h12 h13

h21 h22 h23

h31 h32 h33

⎤⎥⎦
where

h11 =
=
x(−1

k
+

h1α2=y

(1 + h1α
=
x)

2 +
h2β2=z

(1 + h2β
=
x)

2 ), h12 = −=
x(

α

1 + h1α
=
x
), h13 = −=

x(
β

1 + h2β
=
x
)

h21 =
=
y(

e1α + h1e1α2=y

(1 + h1α
=
x)

2 ), h22 = −=
y(

e1α

1 + h1α
=
x
), h23 = −c1

=
y

h31 =
=
z(

e2β + e2h2β2=z

(1 + h2β
=
x)

2 ), h32 = −c2
=
z , h33 = −=

z(
e2β

1 + h2β
=
x
),

The characteristic equation of the variational matrix
=
V is as follows:

λ3 + H1λ2 + H2λ + H3 = 0 (14)

H1 = −(h11 + h22 + h33)

H2 = ( h11h22 + h23h32 + h11h33 + h22h33 − h12h21 − h13h31)

H3 = (h13h31h22 + h12h21h33 + h11h23h32 − h11h22h33 − h13h21h32 − h11h22h33)
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According to Routh–Hurwitz criterion,
=
E =

(
=
x,

=
y,

=
z
)

is locally asymptotically stable if it holds
the following conditions:

H1 > 0 (15)

H3 > 0 (16)

H1H2 > H3 (17)

Theorem 5. If one of the conditions (15)–(17) is not satisfied, then the coexistence equilibrium point
=
E =

(
=
x,

=
y,

=
z
)

is unstable.

Proof. Through the variational matrix of coexistence point
=
E =

(
=
x,

=
y,

=
z
)

, the stability is satisfied
according to the Routh–Hurwitz criterion if all the conditions (15), (16), and (17) must be satisfied.
However, it is observed from the first condition that

H1 > 0 where H1 = −(h11 + h22 + h33)

�.

It is observed that H1 < 0 when

h1α2=y(
1 + h1α

=
x
)2 +

h2β2=z(
1 + h2β

=
x
)2 >

=
x
k
+

e1α
=
y

1 + h1α
=
x
+

e2β
=
z

1 + h2β
=
x

(18)

Thus, the Routh–Hurwitz criterion is not satisfied, so the equilibrium point
=
E is unstable.

In this section, we concluded that the linearity and nonlinearity of functional and numerical
responses plays important roles in the occurrence of the enrichment paradox. Some studies have
shown that functional and numerical responses led to qualitative differences in dynamic behaviors of
prey–predator systems [44–47].

Many biological factors control the shape of the functional and numerical responses as foraging
theory and densities of prey, as shown in Nowak et al. [7]. Consequently, the shape of the functional
and numerical responses affect the dynamic behaviors of prey–predator systems to be steady state,
limit cycles, or complex dynamical behaviours.

4. Theoretical Approach to Persistence and Extinction

We studied persistence and extinction using different analytical techniques on systems (1) and (2).
We introduce the conditions of persistence and extinction depending on the carrying capacity parameter.
Therefore, we have four cases as follows:

In two dimensions, we use the Kolmogorov analysis to find the conditions of persistence
and extinction.

For Holling type I, the persistence condition is as follows:

0 <
u
eα

< k (19)

However, if condition (19) is not satisfied to become as follows:

u
eα

≥ k (20)

Then, the predator tends to be extinct.

81



Symmetry 2018, 10, 532

For Holling type II, the persistence condition is as follows:

0 <
u

eα − uhα
< k (21)

However, if
u

eα − uhα
≥ k (22)

Then, the predator tends to be extinct.
In three dimensions, some theorems must be proven for finding the persistence and extinction

conditions of system (2) with Holling type I and those of system (2) with Holling type II in the case of
nonperiodic solutions. However, the persistence conditions of the case of periodic solutions cannot be
derived theoretically according to Freedman and Waltman [24], so we used the numerical simulations
to show the probability of persistence and extinction cases.

Theorem 6. The equilibrium point Ê = (x̂, ŷ, 0) = ( k(u+e1)
e1+ke1α , ke1α−u

e1α+e1α2k , 0) is unstable in the z-direction
(i.e., orthogonal to the x − y plane), if the following condition is satisfied:

w + c2ŷ < e2βx̂ (23)

Proof. The variational matrix of equilibrium point Ê = (x̂, ŷ, 0) is computed as follows:

V̂ =

⎛⎜⎝ − x̂
k −αx̂ −βx̂

e1αŷ −e1αŷ −c1ŷ
0 0 −w + e2βx̂ − c2ŷ

⎞⎟⎠
�.

From V̂ and by using the Routh–Hurwitz criterion, equilibrium point Ê is locally asymptotically
stable, provided the following conditions hold:

w + c2ŷ > e2βx̂ (22)

The equilibrium point Ê is stable in the x − y plane if condition (24) is satisfied, so Ê is unstable in
the z-direction (i.e., orthogonal to the x − y plane) if condition (24) is not satisfied, which produces
condition (23).

Theorem 7. The equilibrium point Ẽ = (x̃, 0, z̃) =
(

k(w+e2)
e2+ke2β , 0, ke2β−w

e2β+e2β2k

)
is unstable in the y-direction

(i.e., orthogonal to the x − z plane), if the following condition is satisfied:

u + c1z̃ < e1αx̃ (23)

Proof. Following the same process, we prove this theorem along with Theorem 6, so the variational
matrix of equilibrium point Ẽ is as follows:

.
V =

⎛⎜⎝ − x̃
k −αx̃ −βx̃

0 −u + e1αx̃ − c1z̃ 0
e2βz̃ −c2z̃ −e2βz̃

⎞⎟⎠
�.
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From Ṽ and using the Routh–Hurwitz criterion, equilibrium point Ẽ is locally asymptotically
stable, provided the following condition holds:

u + c1z̃ > e1αx̃ (26)

The equilibrium point Ẽ is stable in the x − z plane if condition (26) is satisfied, so
.
E is unstable in

the y-direction (i.e., orthogonal to the x − z plane) if condition (26) is not satisfied, which produces
condition (25).

Theorem 8. System (2) with Holling type I is persistent if the following conditions hold:

k ≥ ue2β − c1w
e1αβw − ue2β2 + e1e2αβ − c1e2β

(27)

k ≥ we1α − c2u
e2αβu − we1β2 + e1e2αβ − c2e1α

(28)

Proof. As functions J, Fi; i = 1, 2 of system (2) are continuous in the positive volume R3
+ =

{(x, y, z) : x ≥ 0, y ≥ 0, z ≥ 0}, the system is bounded with positive initial conditions because the
prey is bounded, where k > 0 and the growth of predators depends on the prey. The conditions
L1(x̃, 0, z̃) > 0 and L2(x̂, ŷ, 0) > 0 are exactly needed to make the equilibrium points unstable in the
orthogonal of the other coordinate planes (Theorems 6 and 7). System (2) has a nonperiodic solution
only (i.e., no limit cycles) through Theorem 2. �

To complete the proof, the following hypotheses are satisfied with Freedman’s and
Waltman’s theorem.

Hypothesis 1 (H1). ∂J
∂y = −α < 0; ∂J

∂z = −β < 0, ∂L1
∂x = e1α > 0; ∂L2

∂x = e2β > 0,
L1(0, y, z) = −u − e1αy − c1z < 0; L2(0, y, z) = −w − e2βz − c2y < 0,
∂L1
∂y = −e1α ≤ 0; ∂L1

∂z = −c1 ≤ 0; ∂L2
∂y = −c2 ≤ 0; ∂L2

∂z = −e2β ≤ 0

Hypothesis 2 (H2). If the predator is absent, then the prey species x growths to carrying capacity,
i.e., J(0, 0, 0) = 1 > 0, ∂J

∂x (x, y, z) = −1
k ≤ 0, ∃ k > 0 � J(k, 0, 0) = 0, � J(k, 0, 0) = 0.

Hypothesis 3 (H3). There are no equilibrium points on the y or z coordinate axes and no equilibrium point in
the y–z plane.

Hypothesis 4 (H4). The predator y and the predator z can survive on the prey, there exist points É = (x́, ý, 0)

and
︷︸︸︷
E = (

︷︸︸︷
x , 0,

︷︸︸︷
z ), such that J(x́, ý, 0) = L1(x́, ý, 0) = 0 and J(

︷︸︸︷
x , 0,

︷︸︸︷
z ) = L2(

..
x, 0,

..
z) = 0, x́, ý,

︷︸︸︷
x ,

︷︸︸︷
z

> 0 and x́ < k,
︷︸︸︷
x < k.

Corollary 2. The first predator y is extinct of system (2) with Holling type I if the following condition is satisfied:

k <
ue2β − c1w

e1αβw − ue2β2 + e1e2αβ − c1e2β
(29)

Corollary 3. The second predator z is extinct of system (2) with Holling type I if the following condition
is satisfied:

k <
we1α − c2u

e2αβu − we1β2 + e1e2αβ − c2e1α
(30)
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As such, we used the same technique to find the persistence and extinction of system (2) with
Holling type II.

The equilibrium point É = (x́, ý, 0) of system (2) with Holling type II is obtained through the
positive root of the following quadratic equation:

x́2 +

(
1
h1

− u
e1

− 1
k
+

1
h1α

)
x́ −

(
1

h1α
+

u
e1h1α

)
= 0 (31)

and

ý =
1
α

(
1 − x́

k

)
(1 + h1αx́) (32)

Theorem 9. The equilibrium point É = (x́, ý, 0) is unstable in the z-direction (i.e., orthogonal to the x − y
plane) if the following condition is satisfied:

w + c2ý <
e2βx́

1 + h2βx́
(33)

Proof. The variational matrix of equilibrium point É = (x́, ý, 0) is computed as follows:

V́ =

⎛⎜⎜⎜⎝
x́(− 1

k +
h1α2 ý

(1+h1αx́)2 ) − x́α
1+h1αx́ − x́β

1+h2βx́
e1αý

(1+h1αx́)2 − e1αý
1+h1αx́ −c1ý

0 0 −w + e2βx́
1+h2βx́ − c2ý

⎞⎟⎟⎟⎠
�.

From V́ and using the Routh–Hurwitz criterion, equilibrium point É is locally asymptotically
stable, provided the following conditions hold:

w + c2ý >
e2βx́

1 + h2βx́
(34)

The equilibrium point É is stable in the x − y plane if condition (34) is satisfied, so É is unstable in
the z-direction (i.e., orthogonal to the x − y plane) if condition (34) is not satisfied, which produces
condition (33).

The equilibrium point
︷︸︸︷
E = (

︷︸︸︷
x , 0,

︷︸︸︷
z ) of system (2) with Holling type II is obtained through the

positive root of the quadratic equation as follows:

︷︸︸︷
x

2
+

(
1
h2

− w
e2

− 1
k
+

1
h2β

) ︷︸︸︷
x −

(
1

h2β
+

w
e2h2β

)
= 0 (35)

and
︷︸︸︷
z =

1
β

(
1 −

︷︸︸︷
x
k

)(
1 + h2β

︷︸︸︷
x
)

(36)

Theorem 10. The equilibrium point
︷︸︸︷
E = (

︷︸︸︷
x , 0,

︷︸︸︷
z ) is unstable in the y-direction (i.e., orthogonal to the x − z

plane) if the following condition is satisfied:

u + c1
︷︸︸︷
z <

e1α
︷︸︸︷
x

1 + h1α
︷︸︸︷
x

(37)
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Proof. Following the same process, we proved this theorem with Theorem 9, so the variational matrix

of equilibrium point
︷︸︸︷
E is as follows:

..
V =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

︷︸︸︷
x (− 1

k +
h2β2

︷︸︸︷
z(

1+h2β
︷︸︸︷
x
)2 ) −

︷︸︸︷
x α

1+h1α
︷︸︸︷
x

−
︷︸︸︷
x β

1+h2β
︷︸︸︷
x

0 −u + e1α
︷︸︸︷
x

1+h1α
︷︸︸︷
x

− c1
︷︸︸︷
z 0

e2β
︷︸︸︷
z(

1+h2β
︷︸︸︷
x
)2 −c2

︷︸︸︷
z − e2β

︷︸︸︷
z

1+h1α
︷︸︸︷
x

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
�.

From
..
V and using the Routh-Hurwitz criterion, equilibrium point

..
E is locally asymptotically

stable, provided the following condition holds:

u + c1
︷︸︸︷
z >

e1α
︷︸︸︷
x

1 + h1α
︷︸︸︷
x

(38)

The equilibrium point
︷︸︸︷
E is stable in the x − z plane if condition (38) is satisfied, so

..
E is unstable

in the y-direction (i.e., orthogonal to the x − z plane) if condition (38) is not satisfied, which produces
condition (37).

We introduce the persistence conditions of system (2) with Holling type II in the nonperiodic
dynamic system through the following theorem:

Theorem 11. System (2) with Holling type II is persistent if the following conditions hold:

− u +
e1α

..
x

1 + h1α
..
x
− c1

︷︸︸︷
z ≥ 0 (39)

− w +
e2βx́

1 + h2βx́
− c2ý ≥ 0 (40)

Proof. As functions J, Fi; i = 1, 2 of system (2) are continuous in the positive volume R3
+ =

{(x, y, z) : x ≥ 0, y ≥ 0, z ≥ 0}, the system is bounded with positive initial conditions because the
prey is bounded, where k > 0 and the growth of predators depends on the prey. The conditions
L1

(︷︸︸︷
x , 0,

︷︸︸︷
z
)

> 0 and L2(x̂, ŷ, 0) > 0 are exactly needed to make the equilibrium points become
unstable in the orthogonal of the other coordinate planes (Theorems 9 and 10). System (2) has
a nonperiodic solution (i.e., no limit cycles) through Theorem 4. �

To complete the proof, the following hypotheses are satisfied with Freedman’s and
Waltman’s theorem.

We use y1 ≡ y and y2 ≡ z to simplify the notations.

Hypothesis 5 (H5). ∂J
∂yi

< 0, ∂Li
∂x > 0, Li(0, y, z) < 0, ∂Li

∂yj
≤ 0 i, j = 1, 2.

Hypothesis 6 (H6). in the absence of a predator, the prey species x growths to carrying capacity, i.e., J(0, 0, 0) =
1 > 0, ∂J

∂x (x, y, z) = − 1
k ≤ 0, ∃ k > 0 � J(k, 0, 0) = 0, � J(k, 0, 0) = 0.

Hypothesis 7 (H7). There are no equilibrium points on the y or z coordinate axes and no equilibrium point in
the y–z plane.
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Hypothesis 8 (H8). The predator y and the predator z can survive on the prey, there exist points É = (x́, ý, 0)

and
︷︸︸︷
E = (

︷︸︸︷
x , 0,

︷︸︸︷
z ), such that J(x́, ý, 0) = L1(x́, ý, 0) = 0 and J(

︷︸︸︷
x , 0,

︷︸︸︷
z ) = L2(

..
x, 0,

..
z) = 0, x́, ý,

︷︸︸︷
x ,

︷︸︸︷
z

> 0 and x́ < k,
︷︸︸︷
x < k.

Corollary 4. The first predator y is extinct of system (2) with Holling type II if the following condition
is satisfied:

− u +
e1α

︷︸︸︷
x

1 + h1α
︷︸︸︷
x

− c1
︷︸︸︷
z < 0 (41)

Corollary 5. The second predator z is extinct of system (2) with Holling type II if the following condition
is satisfied:

− w +
e2βx́

1 + h2βx́
− c2ý < 0 (42)

However, the persistence and extinction conditions of system (2) with Holling type II are not
written in terms of the carrying capacity parameter (k), because writing the persistence conditions
in this term is difficult where x́ and

..
x are obtained through the positive solutions of quadratic

Equations (31)–(36), which involve the carrying capacity parameter (k).
In this section, we obtained the persistence and extinction conditions of systems (1) and (2) based

on carrying capacity. In two dimensions, we applied Kolmogorov analysis to find persistence and
extinction conditions (19)–(22) of system (1) and (2) with Holling type I and II, respectively. In three
dimensions, we applied the Freedman and Waltman method [24] to obtain persistence and extinction
conditions (27)–(30) of system (2) with Holling type I, and persistence and extinction conditions
(39)–(42) of system (2) with Holling type II in the case of nonperiodic solutions.

Some experimental studies found that the carrying capacity has an important influence on
persistence and extinction in experimental populations, as shown by Griffen and Drake [8].

5. Numerical Simulation

In this section, we present some numerical simulations to show the occurrence of the paradox
of enrichment of systems (1) and (2) with Holling type II when increasing the carrying capacity
of prey. We use time series and phase space graphs to present the dynamic behavior, and present
bifurcation diagrams to explain a map of the dynamic behaviors of systems (1) and (2). The values of
the parameters for both systems (1) and (2) were selected to satisfy Theorems 3 and 4, in which the
dynamic behavior is stable, but different values of carrying capacity are used.

The values of system (1) are as follows:

α = 16.0, e1 = 0.7, h1 = 0.5, u = 0.65, x(0) = 0.5, y(0) = 0.2 (43)

The values of system (2) are as follows:

α = 10.0, β = 7.0, e1 = 1.00, e2 = 0.4, h1 = 1.5, h2 = 1.7, c1 = 0.03, c2 = 0.02,

u = 0.05, w = 0.1, x(0) = 0.5, y(0) = 0.2, z(0) = 0.2
(44)

When taking the value of k = 1 of system (1), the dynamic behavior in the first case is stable,
as shown in Figure 1. However, when increasing the carrying capacity to k = 4 in the second case,
the dynamic behavior oscillates for a period of time and then ends, finally stabilizing, as shown
in Figure 2. In the third case, when k = 7, the dynamic behavior oscillates to become a limit cycle,
as shown in Figure 3. Consequently, the probability of extinction in the third case would be higher
than in the first and second cases. Figure 4 shows the changes of the dynamic behavior of system (1)
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with Holling type II, from stable to periodic cases. The points in Figure 4 appear because oscillation
exists in the dynamic behavior.

 

Figure 1. Dynamic behavior of system (1) when k = 1: (a) time series of two trophics x and y; (b) phase
space of two trophics.

 

 

Figure 2. Dynamic behavior of system (1) when k = 4: (a) time series of two trophics x and y; (b) phase
space of two trophics.

 

 

Figure 3. Dynamic behavior of system (1) when k = 7: (a) time series of two trophics x and y; (b) phase
space of two trophics.
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Figure 4. Bifurcation diagram for system (1) with Holling type II, using carrying capacity (k) as the
bifurcation parameter.

Following the same process, we used different values of k from system (2). As shown in Figure 5,
the dynamic behavior is stable when k =1 in the first case. However, when the carrying capacity is
increased to k = 2 in the second case, the dynamic behavior oscillates for a period of time and then
ends, finally stabilizing, as shown in Figure 6. Whereas in the third case, when k = 3, the dynamic
behavior oscillates to create a limit cycle, as shown in Figure 7. Therefore, the probability of extinction
in the third case would be greater than in the first and second cases. Figure 8 shows the changes in the
dynamic behavior of system (2) with Holling type II, from stable to periodic, quasi-periodic, or chaos
cases. The points in Figure 8 appear because oscillation occurs in the dynamic behavior. The numerical
simulations show the occurrence of the paradox of enrichment in systems (1) and (2) with Holling
type II.

 

 

Figure 5. Dynamic behavior of system (2) when k = 1: (a) time series of three trophics x, y and z;
(b) phase space of three trophics.
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Figure 6. Dynamic behavior of system (2) when k = 2: (a) time series of three trophics x, y and z;
(b) phase space of three trophics.

 

 

Figure 7. Dynamic behavior of system (2) when k = 3: (a) time series of three trophics x, y and z;
(b) phase space of three trophics.

Figure 8. Bifurcation diagram for system (2) with Holling type II, using carrying capacity (k) as the
bifurcation parameter.
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6. Conclusions

We studied the occurrence of the paradox of enrichment in prey–predator models with Holling
types I and II functional and numerical responses. We proved through Theorems 1 and 2 that the
paradox of enrichment does not occur with Holling type I in two or three dimensions. However,
the paradox of enrichment occurs with Holling type II in two and three dimensions, respectively,
as shown through Corollary 1, Theorem 5, and the numerical simulations. The numerical simulations
explain the occurrence of the paradox of enrichment in systems (1) and (2) with Holling type II when
the carrying capacity of prey increases and a map of changes of the dynamic behaviors is given for
stable to periodic, quasi-periodic, or chaos cases. We conclude that the linearity and nonlinearity of
functional and numerical responses plays important roles in the occurrence of the enrichment paradox.
We introduce a new approach connecting the enrichment paradox phenomenon and persistence and
extinction dynamics by deriving the persistence and extinction conditions based on the carrying
capacity parameter (k). We used different analytical techniques to derive the persistence and extinction
conditions. We introduce several theorems and corollaries to present our results. We introduce some
biological explanations to support our results.
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