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Preface to ”Systemic Risk and Reinsurance”

Since the 2008–2009 financial crisis, it is widely recognized that there exist essential flaws in

the supervisory system and that further regulatory measures must be established in the financial

sector. Many proposals under consideration or already embraced by regulatory authorities focus on

the “systemically important financial institutions” or banks “too big/connected to fail”. However,

insurers and banks played markedly different roles in the financial crisis. Therefore, it is essential

to study the systemic risk for the insurer and the nature of systemic risk from the reinsurance

perspective. It is also important to examine how insurance business models, such as capital insurance,

provide an alternative approach to systemic risk.

This present volume provides some novel approaches to systemic risk. It commences with

three articles on the dynamic of indirect connections between the insurance and banking sector,

and other market indices from a scientific and network perspective. Denkowska and Wanat (2020)

suggest a hybrid approach to the analysis of interlinkage dynamics based on combining the

copula-DCC-GARCH model and minimum spanning trees (MST). Vodenska, Becker, Zhou, Jenett,

Stanley, and Havlin (2016) construct a unique network of market indices and currencies in 56

countries, and study the community formations within the network before and after the crisis period.

Hauton and Heam (2015) particularly address the insurance sector and the banking sector together,

and their unique roles in a financial conglomerate.

Two articles on new capital requirements follow. From a reinsurance perspective, Panttser and

Tian (2013) provide a comprehensive welfare analysis of capital insurance on financial institutions

and insurance companies, which can be viewed as capital too-large-to-fail. On the other hand,

Clemente, Savelli, and Zappa (2015) study the impact of reinsurance strategies on new capital

requirements for premium risk in insurance companies.

Two articles focus on risk measures and optimality afterward. Li and Xu (2013) solve an optimal

portfolio choice problem under a widely used CVaR constraint, and this CVaR regulatory constraint

is implemented by both the banking sector and the insurance sector. Finally, Balbas et al. (2013)

provides a general mathematical method to deal with the coherent risk and deviation measure in one

integrated framework.

Weidong Tian

Special Issue Editor
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Abstract: In the present work, we analyze the dynamics of indirect connections between insurance
companies that result from market price channels. In our analysis, we assume that the stock quotations
of insurance companies reflect market sentiments, which constitute a very important systemic risk
factor. Interlinkages between insurers and their dynamics have a direct impact on systemic risk
contagion in the insurance sector. Herein, we propose a new hybrid approach to the analysis of
interlinkages dynamics based on combining the copula-DCC-GARCH model and minimum spanning
trees (MST). Using the copula-DCC-GARCH model, we determine the tail dependence coefficients.
Then, for each analyzed period we construct MST based on these coefficients. The dynamics are
analyzed by means of the time series of selected topological indicators of the MSTs in the years
2005–2019. The contribution to systemic risk of each institution is determined by analyzing the
deltaCoVaR time series using the copula-DCC-GARCH model. Our empirical results show the
usefulness of the proposed approach to the analysis of systemic risk (SR) in the insurance sector.
The times series obtained from the proposed hybrid approach reflect the phenomena occurring in the
market. We check whether the analyzed MST topological indicators can be considered as systemic
risk predictors.

Keywords: insurance sector; systemic risk; deltaCoVaR; minimum spanning trees—topological
indicators; tail dependence

JEL Classification: G22; C10

1. Introduction

Currently, despite many studies that use different methodological and empirical approaches to
identify and analyze systemic risk (SR) in the insurance sector, there is still no consistent theory to
monitor it effectively. Ideal methods that could be used for this purpose should support or be associated
with the essential elements of macroprudential policy and surveillance (MPS) by providing information
on the build-up of system-wide vulnerabilities in time and cross-section, with an acceptable level of
accuracy for both the forecast of the occurrence of a systemic event and its financial effects. The subject
of this article fits into the current of research focusing on the search for such a method. We focus on
the structure of interlinkages between insurance companies, which plays a key role in the spread of
systemic risk in this sector.

The article is a response to the clue and task left in the work of Alves et al. (2015), which appeared
in the European System Risk Board. This work contains an analysis of the network of 29 largest
European insurance groups and their financial contractors. The authors note that insurance companies
have direct exposures to other insurers, banks, and other financial institutions through debt, equity,
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and other financial instruments. These exposures can cause direct infection and thus spread of systemic
risk (SR). The work cited above focuses on direct connections between EU insurers and banks. At the
same time, the authors emphasize that their research does not include an analysis of linkages between
insurers under reinsurance contracts, indirect connections via market price channels and information
channels, nor an analysis of banks’ exposure to insurers.

In the present article, we focus on the problem of indirect links between insurance companies that
result from market price channels. More specifically, we examine the dynamics of these relationships.
In our analysis, we assume that stock market quotations of insurance companies reflect market
sentiment, which is a very important systemic risk factor. It is well known that risk infection is always
accompanied by a negative market sentiment leading to customer panic in the financial industry.
The results will create a vicious circle of risk and emotion. Thus, market sentiment is commonly used to
forecast changes in the financial market and can be used as a systemic risk barometer (Kou et al. 2019).

Relationships between insurers and their dynamics have a direct impact on the propagation of
systemic risk in the insurance sector. In our work, we propose a new hybrid approach to analyzing the
dynamics of interconnections, based on combining the copula-DCC-GARCH and minimum spanning
trees (MST). Using the copula-DCC-GARCH model, we determine tail dependence coefficients. Then,
based on these coefficients for each analyzed period, we determine the “distance” matrix between
insurance companies using the Mantegna metric (Mantegna and Stanley 1999) and construct minimum
spanning trees. We analyze the dynamics using selected topological indicators for the MST obtained.

The main purpose of the work and contribution to the literature is:

(1) To check whether the time series of topological indicators of the network of connections between
insurance companies obtained using the proposed hybrid approach reflect the situation on the
financial market and whether they can be used as predictors of systemic risk in the insurance sector.

(2) An empirical analysis of 38 European insurance institutions selected from the top 50 insurance
companies in Europe. We indicate which of the largest companies not on the G-SIIs list are of
great importance in the context of SR.

(3) An analysis of the situation in the insurance sector in the context of SR, taking into account the
latest political and economic situation in Europe, distinguishing four market states: The normal
state, the state related to the subprime mortgage crisis, the state related to the immigration crisis
in Europe, and the state related to the crises in France and Italy.

(4) An analysis of the contribution to the SR of the insurance sector.

The rest of the article is organized as follows. Section 2 reviews the subject literature devoted to
systemic risk in the insurance sector. Section 3 presents the methodology and the empirical strategy
used in the paper, Section 4 contains the data and a discussion of the results obtained, while Section 5
presents the conclusions.

2. Systemic Risk in the Insurance Sector

For over a decade, scientists have been trying to effectively define, study, and measure the
phenomenon of systemic risk, which in the era of globalization of economics is one of the most important
concepts in the prediction of economic phenomena. Most scholars base their definition of uncertainty
and risk on Knight (1921, p. 233), Tversky and Kahneman (1992), Camerer and Weber (1992),
and Zweifel and Eisen (2012, p. 1). In the work of Eling and Pankoke (2016) 43 definitions
are given, which indicate a three-stage course of the phenomenon: Causes, events, and effects
for the real economy. One of the latest approaches is the concept of systemic risk proposed by
De Bandt and Hartmann (2000), in which a distinction is made between the risk of shocks based
on their second-round effects (it focuses not on the institutions affected by the shock, but on the
consequences on linked institution). In addition, Harrington (2009) distinguishes between systemic
risk and the risk of typical shocks. According to him, only the risk of an event associated with
“cross-contagious infection” (p. 802) should be considered systemic. Many researchers analyze
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the problem of SR in the context of the failure of a significant part of the financial sector and
reduction of credit availability, e.g., Acharya et al. (2011). Adrian and Brunnermeier (2011) investigate
the negative impact on credit supply; Bach and Nguyen (2012), Rodríguez-Moreno and Peña (2013)
financial system failure; Baur et al. (2003), Chen et al. (2013c), Cummins and Weiss (2011, 2013),
Weiß and Mühlnickel (2014) the negative impact on the real economy; Baluch et al. (2011) the chain
reaction of financial difficulties; Chen et al. (2013b), Huang et al. (2009) many simultaneously defaulted
pledges by large financial institutions; IAIS (2009), Jobst (2014), Radice (2010) the disruption of the
flow of financial services, the negative impact on the real economy, and impairment of all or part
of the financial system; Klein (2011) studies the market in the context of financial system instability,
idiosyncratic events, and infection; Kress (2011) studies infection; Rodríguez-Moreno and Peña (2013)
malfunctioning in the financial system and the negative impact on the real economy. In recent
years, quantitative analysis of systemic risk using the described approaches has been carried out by,
among others, Hautsch et al. (2015), Giglio et al. (2016), Benoit et al. (2017), Jajuga et al. (2017),
Bégin et al. (2017), Jurkowska (2018).

The various concepts of systemic risk analysis presented above have inspired the creation of a
number of different methods for measuring it. In the literature of the subject, several dozen measures
can be indicated, which can be determined using mathematical, statistical, econometric, network
modeling, and predictive analysis tools (in particular, multidimensional statistical analysis, including
methods of learning with and without supervision). A review of systemic risk measures in use can be
found, e.g., in the following articles: Bisias et al. (2012), Giglio et al. (2016), Di Cesare and Picco (2018).

It is worth noting that while there is quite extensive literature on the subject of systemic risk
analysis in the banking sector, the insurance sector has been analyzed to a distinctly smaller extent.
The reason for this was the belief that the group taking over, dispersing, and redistributing the financial
effects of risk does not generate a systemic threat.

However, after the financial crisis in 2007–2009 and the European public debt crisis in 2010–2012,
a significant increase in the interest in systemic risk in the insurance sector can be seen. Before the
crisis, there was a clear belief among researchers that this sector is systemically insignificant. However,
in the literature that emerged as a result of the crisis, although previous conviction was maintained
in many studies, there appeared articles indicating the possibility of the insurance sector creating
systemic risk. Examples include works in which the authors believe that insurance companies have
become an unavoidable source of systemic risk (e.g., Billio et al. 2012; Weiß and Mühlnickel 2014)
and in which they claim insurance companies to be systematically significant, but only due to their
nontraditional (banking) activities (e.g., Baluch et al. 2011; Bednarczyk 2013; Cummins and Weiss 2014;
Czerwińska 2014) and the overall systemic importance of the insurance sector as a whole is still
subdued to the banking sector (e.g., Chen et al. 2013a). In turn, Bierth et al. (2015) after examining a
very large sample of insurers in the long term, believe that the contribution of the insurance sector
to systemic risk is relatively small, however, they claim that it peaked during the financial crisis
in the period from 2007 to 2008. They also indicate that significant factors affecting the insurer’s
exposure to systemic risk are strong linkages between large insurance companies, leverage, losses, and
liquidity (the four L’s: Linkages, leverage, losses, liquidity). On the other hand, there are also studies
(Harrington 2009) and (Bell and Keller 2009) claiming a complete lack of evidence for the systemic
importance of the insurance industry.

After the aforementioned crises, supervisory authorities also began to pay more attention to the
problem of systemic risk in the insurance industry. The Financial Stability Board (FSB), in consultation
with the International Association of Insurance Supervisors (IAIS), identified nine global systemically
important insurers (G-SIIs) based on the assessment methodology developed by IAIS, which includes
the following five elements: Noninsurance activity of the insurer (45%), assessment of the degree of
direct and indirect links of institutions within the financial system (40%), range of global activity (5%),
the size of the insurance institution (5%), and product substitutability (5%).
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Since the publication of this methodology and the G-SII list, questions have been raised about
the appropriateness and effectiveness of the proposed framework by both the insurance sector and
academia. The ongoing discussion in the literature to date tends to show that some indicators in the
IAIS assessment methodology may not be able to explain the insurer’s contribution to systemic risk
(Weiß and Mühlnickel 2014; Bierth et al. 2015). Looking at the solutions adopted from the insurance
industry, one can point to the example of MetLife, which was constantly struggling to remove the label
of a “systemically important institution” and obtained a favorable ruling in the US District Court in
March 2016 (Tracy and Holm 2016). Following the success of MetLife, the AIG SIFI label was withdrawn
by FSOC in September 2017, and Prudential Financial dumped its brand SIFI in October 2018.

To sum up, current literature and real events show that systemic risk in the insurance
sector is still a challenge waiting for precise methodological solutions. After 2014, we observe
an increased involvement of scientists in the qualitative and quantitative analysis of this issue.
Our paper is one of the few quantitative studies on systemic risk in the European and global
insurance sector. Although SR in the financial sector is analyzed by: Bierth et al. (2015),
Mühlnickel and Weiß (2015), Kanno (2016), Giglio et al. (2016), Adrian and Brunnermeier (2016),
Koijen and Yogo (2016), Brownlees and Engle (2017), Kaserer and Klein (2018) and risk infection
is studied by Hautsch et al. (2015), Härdle et al. (2016), Fan et al. (2018), nevertheless, none of these
approaches is a hybrid approach in which the possibility of combining different measures would be
analyzed on such a scale as proposed in our project.

3. Methodology

We carry out the analysis of the dynamics of interconnections between insurance companies using
a new hybrid approach based on the combination of the copula-DCC-GARCH model and minimum
spanning trees (MST). The construction of minimum spanning trees based on the dependencies in the
tails plays a key role in it. To this end, using two-dimensional copula-DCC-GARCH models for each
studied period t, (t = 1, . . . , T) and each pair of log-returns ri,t, rj,t, (i, j = 1, . . . , k, j > i) we estimate the
bivariate joint distributions:

Ft
(
ri,t, rj,t

)
= Cij,t

(
Fi,t
(
rj,t
)
, Fj,t(ri,t)

)
(1)

where Cij,t denotes the copula, while Ft and Fi,t, Fj,t, respectively, are the joint cumulative distribution
function and the cumulative distribution functions (cdf ) of the marginal distributions at time t. In
turn, making use of the copulas Cij,t we estimate the pairwise lower tail dependence of the log-returns
ri,t, rj,t:

λL
t (i, j) = lim

q→0+

Cij,t(q, q)

q
(2)

Then, for each period t, we determine the “distance” matrix between insurance companies using
the metric (Mantegna and Stanley 1999):

dt(i, j) =
√

2
(
1− λL

t (i, j)
)

(3)

and using the Kruskal algorithm (Mantegna and Stanley 1999), we construct minimum spanning trees
MSTt with k vertices and k− 1 edges.

Based on the trees thus obtained MSTt (t = 1 . . .T) we determine the time series of the following
topological network indicators:

• Average path length—APL,
• Maximum degree—Max.Deg,
• The parameters α of the vertex degree distribution required to follow a power law,
• Network diameter—D,
• Rich club effect—RCE,
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• Assortativity,
• Betweenness centrality—BC,
• Vertex strength (centrality),
• Vertex degree,
• Closeness centrality.

It should be mentioned that in the literature the minimum spanning trees that evolve in time
are also monitored by many other topological network indicators such as the Eigenvector centrality
(Tang et al. 2018), MOL (mean occupation layer) (Onnela et al. 2002, 2003), normalized tree length
(Onnela et al. 2003), tree half-life (Onnela et al. 2003); survival ratio of the edges (Onnela et al. 2002;
Sensoy and Tabak 2014); and agglomerative coefficient (Matesanz and Ortega 2015).

In the next stage of research, we determine a time series for the deltaCoVaR measure for each insurer.
It brings along an information about the insurer’s contribution to the systemic risk in the insurance
sector. For this purpose, we also use two-dimensional copula-DCC-GARCH models and the empirical
strategy presented in the articles: Denkowska and Wanat (2019), Wanat and Denkowska (2018, 2019).
We assume that the European insurance sector is represented by the STOXX 600 Europe Insurance
index. We compare the time series of deltaCoVaR measures obtained in this way with the time series
of topological indicators of the MSTt from the point of view of the possibility of using the latter as
systemic risk predictors in the insurance sector.

The tail dependence coefficients (λL
t (i, j)) and the deltaCoVaR measure, which are key to the

empirical strategy presented above, are determined using two-dimensional copula-DCC-GARCH
models. In the two-dimensional case in the DCC-GARCH model, the log-returns vector distribution
rt = (r1,t, r2,t), which is conditional with respect to the set Ωt−1 of information available up to the
moment t − 1 is modeled using the conditional copulas proposed by Patton (2006). It takes the
following form:

r1,t
∣∣∣Ωt−1 ∼ F1,t(·|Ωt−1 ), r2,t

∣∣∣Ωt−1 ∼ F2,t(·|Ωt−1 ) (4)

rt|Ωt−1 ∼ Ft(·|Ωt−1 ) (5)

Ft(rt|Ωt−1) = Ct
(
F1,t(r1,t

∣∣∣Ωt−1), F2,t(r2,t
∣∣∣Ωt−1)

)
, (6)

where Ct denotes the copula, while Ft and Fi,t (i = 1, 2), respectively, the two-dimensional distribution
and the marginal distributions at the moment t. In general, one-dimensional log-returns can be
modeled using different specifications of the average model and different specifications of the variance
model (e.g., sGARCH, fGARCH, eGARCH, gjrGARCH, apARCH, iGARCH, csGARCH). In our study,
the following ARMA process was used for all the series of log-returns:

ri,t = μi,t + yi,t, (i = 1, 2) (7)

μi,t = E(ri,t
∣∣∣Ωt−1), (8)

μi,t = μi,0 +

pi∑
j=1

ϕi jri,t− j +

qi∑
j=1

θi jyi,t− j, (9)

yi,t =
√

hi,tεi,t, (10)

and the standard GARCH (sGARCH) model for the variance:

hi,t = Var(ri,t
∣∣∣Ωt−1), hi,t = ωi +

pi∑
j=1

αi jy2
i,t− j +

qi∑
j=1

βi jhi,t− j (11)

where εi,t =
yi,t√

hi,t
are identically distributed independent random variables (in the empirical analysis

we considered the following distributions: Normal, skew normal, t-Student, skew t-Student, and GED).
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To describe the dependences between the log-returns r1,t and r2,t we used Student t-copulas, whose
parameters were the conditional correlations Rt obtained from the DCC(m, n) model:

Ht = DtRtDt, (12)

Dt = diag
(√

h1,t,
√

h2,t

)
, (13)

Rt = (diag(Qt))
− 1

2 Qt(diag(Qt))
− 1

2 (14)

Qt = (1−
m∑

j=1

cj −
n∑

j=1

dj)Q +
m∑

j=1

cj
(
εt− jε

′
t− j
)
+

n∑
j=1

djQt− j. (15)

In this model, Q is the unconditional covariance matrix of the standardized rests εt, while
cj ( j = 1, . . . , m) and dj ( j = 1, . . . , n) are scalar values, where cj describes the impact on current
correlations of precedent shocks, and dj represents the influence on current correlations of the previous
conditional correlations.

We estimate the parameters of the above copula-DCC-GARCH model using the inference function
for the margins (IFM) method. This method is presented in detail, among others in Joe (1997).
We perform the calculations in the R environment, using the “rmgarch” package.

4. Data and Results of Empirical Analysis

The basis of the study are the stock quotes of 38 European insurance institutions. Most of them
are on the list of the top 50 insurance companies in Europe based on total assets. AXA, a France-based
company, is the largest insurance company in Europe and globally. It is also one of the world’s largest
asset managers with total assets under management of over 1.4 trillion euro. Allianz, headquartered
in Munich, Germany, is the second largest European insurer in terms of assets. We include insurers
analyzed in the work Alves et al. (2015) and nine additional ones1. We estimate the deltaCoVaR measure
assuming that the European insurance sector is represented by the STOXX 600 Europe Insurance index.
We analyze weekly logarithmic returns for the period from 7 January 2005 to 20 December 2019.

In order to estimate λL
t (i, j), we consider various specifications for two-dimensional

copula-DCC-GARCH models. Finally, following the information criteria and model adequacy tests, we
adopt for all the instruments the ARMA (1,1)—sGARCH (1,1) model with the skew Student distribution.
When analyzing the dynamics of the dependences between log-returns, we consider Student copulas
and various DCC model specifications. As before, based on information criteria, we select the Student
copula with conditional correlations obtained from the DCC (1,1) model and a constant shape parameter.
We choose the same specifications for two-dimensional copula-DCC-GARCH models, which we use to
estimate the deltaCoVaR measures.

In what follows, we present the results of the analysis of ten topological indicators of the MSTs,
divided into two groups according to their specificity. One group consists of those that are a measure
of each MST vertex: Node degree, betweenness centrality, vertex strength, and closeness centrality.
The other one is formed by those that are a measure of the properties of the entire MST, such as average
path length, maximum degree, parameters α of the power distribution of vertex degrees, diameter,
rich club effect, and assortativity.

1 These are: Achmea (Eureko Group), Aegon Group/Unirobe Meeùs Group, AGEAS, Allianz, Aviva, AXA, BNP Paribas,
Grupo Catalana Occidente, CNP Assurances, Royal Bank of Scotland Group, Generali, Groupe Crédit Agricole Assurances,
HDI/Talanx, If P&C Insurance, ING Group, KBC, Legal & General Group plc, Mapfre, Munich Re, Old Mutual plc, Prudential,
RSA Insurance Group, SCOR, Lloyds Banking Group, Unipol, UNIQA Insurance Group, Vienna Insurance Group, Zurich
Insurance, Swiss Life, Chubb Ltd, Hannover Re, Storebrand, XL Group, Helvetia Holding, Mediolanum, Sampo Oyj, Societa
Cattolica di Assicurazione, Topdanmark A/S.
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4.1. Degree Distribution

For an undirected network, the degree ki of node i is defined as the total number of links incident
to it, see e.g., Sensoy and Tabak (2014). The degree increases as a node becomes more connected
and more central to the network. The degree distribution P(k) measures the frequency of nodes with
different degrees in the network.

As depicted in Figure 1, the sample degree distribution of the minimum spanning tree is positively
skewed, signaling heterogeneity in the system. Only a small portion of nodes in the network are highly
interconnected (core companies), while the majority of other nodes have a relative low number of
linkages (periphery companies). Such a configuration suggests the presence of several large star-like
structures in the minimum spanning tree. The figure highlights examples of distributions, assigned to
relevant dates, which we associated during the study as outstanding. 7 January 2005 is the period
preceding the subprime crisis, 3 October 2008 is the crisis, 15 January 2010 is the date of the normal
state preceding the crisis of excessive public debt in the euro area, in 3 September 2010 it is a much
slender distribution graph of the vertex distribution that shows the distribution during the crisis.
18 September 2015 marks the beginning of the migrant crisis in Europe. 18 August 2017 is the beginning
of the crisis related to the protests in France and the “Yellow vests’ movement”. Therefore, periods in
which we observe a high maximum value for 1 (see Figure 1) and at the same time low values for the
remaining numbers are periods during which there are many companies with only single connections
and several others having a large number of links, which is a feature favoring SR. The chart reflects the
market situation.

Figure 1. Degree distribution of selected minimum spanning trees. Source: Own study.

4.2. Betweenness Centrality—BC

This indicator is a measure of “being between” defined as the quotient of the number of shortest
paths between vertices that pass through a given vertex and the number of all the shortest paths
between vertices, see e.g., Sensoy and Tabak (2014). It determines the “most important” vertices of a
given graph on a chart based on the shortest paths (e.g., the most influential insurer). For each pair of
vertices in a connected graph, there is at least one path between them, so that either the number of
edges that you have to pass (for unweighted graphs) or the sum of the weights of the vertices that you
go through (for weighted graphs) is minimized. The BC measure of a given vertex is the number of
those shortest paths that pass through it. This measure defines to what extent a given node (vertex)
serves as an intermediary for other network nodes. A node with a higher BC has more control over the
network because more information flows through it. Figure 2 shows the mean BC for the period under
consideration and each of the insurance companies studied.
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Figure 2. Average value of betweenness centrality (BC) in the period under consideration for individual
insurance institutions. Source: Own study.

The analysis shows that the highest BC is held by AXA, Aegon, Allianz, Aviva, Prudential, which
are companies appearing on the Financial Stability Board (FSB) 2016 list of systemically important
insurers (G-SIIs), ING, and Zurich Insurance.

4.3. Vertex Strength (Centrality)

To identify the most central nodes in the system, we calculate the so-called vertex strength, which
represents a weighted measure of centrality: si =

∑
j∈ψ(i)

1
dij

, where ψ(i) is the set of all neighbors of

the node i and dij is the length of the edge between two nodes, see e.g., Lautier and Raynaud (2013).
It indicates how far one node is from all others in the entire network. The obtained average vertex
strength of the selected insurers is presented in Figure 3.

 
Figure 3. Average insurers strength in the period under consideration. Source: Own study.

The higher the vertex strength, the more systemically important a node is. From the diagram
above we can infer that the most important are Aviva, AXA, Allianz, and ING.

4.4. Closeness Centrality

This node proximity measure is a measure calculated as the inverse of the sum of the shortest
path lengths between the given node and all nodes in the network, see e.g., Bavelas (1950);
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Sensoy and Tabak (2014) For MST, it is the inverse of the sum of the lengths of all edges. The more
central the node is, the closer it is to all other nodes, it is thus a measure of the proximity of an insurer
to the rest of the network. The average closeness centrality in the period studied and for each insurer
considered is given in Figure 4.

Figure 4. Average closeness centrality in the period under consideration. Source: Own study.

The diagram analysis shows that the vertices are relatively close together. This may
foster contagion.

The diagram below (Figure 5) is a summary of the four-dimensional analysis of MST indicators.
We present it with the intention to draw the reader’s attention to the fact that there are institutions
whose bars are in each case considered among the highest ones, which proves the importance of their
corresponding vertex in the MST.

Figure 5. Average betweenness centrality, vertex degree, vertex strength, and closeness centrality.
Source: Own study.

4.5. Average Path Lentgth (APL)

This indicator is defined as the average number of steps along the shortest paths for all possible
pairs of network nodes. It measures the effectiveness of information flow or mass transport in a
given network, see e.g., Wang et al. (2014) APL is one of the strongest measures of network topology,
along with its clustering factor and degree distribution. It distinguishes an easy-to-access network
from a more complex and inefficient one. The smaller the average path length, the easier the flow of
information. Of course, we are talking about an average so the network itself can have several very
distant nodes and many adjacent nodes. The times series obtained for the APL is presented in Figure 6.
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Figure 6. Average path length in the period from 7 January 2005 to 20 December 2019. Red lines depict
the 13 periods of the moving average smoothed series. Source: Own study.

Note that during the crisis, the APL indicator decreases in comparison to the normal state, which
means that the average path length between any pair of companies decreases.

4.6. Maximum Degree—Max.Deg

This indicator in graph theory is the maximum degree (i.e., the number of edges coming out of it,
where loops count double) of a vertex of the graph; thus, it is the number of connections of a central
vertex, see e.g., Wang et al. (2014).The times series obtained for the maximum degree is shown in
Figure 7. This indicator in graph theory is the maximal number of connections a vertex of the graph
has. By connections we mean, of course, the number of edges coming out of a vertex, with loops
counting double.

Figure 7. Maximum degree in the period from 7 January 2005 to 20 December 2019. Source: Own study.

Maximum degree grows during periods of crisis, which means that in a group of insurers during
a crisis some insurer has many more connections with others than is usual in the normal state.

4.7. Parameter α of the Vertex Degree Distribution Required to Follow a Power Law

This indicator measures the scale-free behavior of a network, see e.g., Wang et al. (2014).
The network is scale-free if the distribution, P(s), the number of connections between the vertices,
follows a power law, i.e., it has (asymptotically) the form P(s) = C·s−α, α > 0, where α is a parameter
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specific to the given network. The power law followed by the degree distribution gives the network
a kind of fractal self-similarity property, which accounts for the name. A scale-free network is
characterized by a small number of vertices having a large number of connections (such nodes are
called hubs) and many vertices that have only one connection. From the point of view of our analysis,
this type of network can be considered as “favorable” to the propagation of information (in our case: Of
systemic risk), and the companies/hubs that it has are systemically relevant. The time series obtained
for the alpha parameters is shown in Figure 8.

Figure 8. Estimated parameters alpha of power distribution for the minimum spanning trees (MST)
from 7 January 2005 to 20 December 2019. Source: Own study.

MSTs are scale-free, but during crises the alpha value is closer to 2, which means that the structure
of MST is star-shaped with outstanding hubs having a high degree, i.e., multiple edges that connect
the company/hub to several companies with only one edge.

4.8. Diameter of the Network (Diameter)

It is determined by choosing from among all the shortest paths connecting any pair vertices to
the longest one. For MST, this is simply the longest path in the MST. The time series obtained for the
diameter is shown in Figure 9.

Figure 9. Diameter in the period from 7 January 2005 to 20 December 2019. Red lines depict the 13
periods of the moving average smoothed series. Source: Own study.
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The diameter decreases during crises, which means that during these periods the path between
the further apart lying MST vertices is shortened.

4.9. Rich Club Effect–RCE

The idea is that well-connected vertices connect also one with one another, see e.g.,

Colizza et al. (2006) The RCE is defined to be φ(k) =
2E>k

N>k(N>k−1) , where N>k(N>k)−1
2 is the number

of all the possible paths between N>k vertices, E>k is the number of vertices of N>k nodes having
degree >k. The effect of a rich club reduces system stability, which means that if RCE increases, then a
perturbation can be more easily transmitted through the network.

The times series RCE for k = 4 obtained in the study is shown in Figure 10, while its distribution
in the market states determined is presented in later figure. They show the results for the dynamic
MST with φ (4).

Figure 10. Rich club effect (RCE) during the period from 7 January 2005 to 20 December 2019. Red
lines depict the 13 periods of the moving average smoothed series. Source: Own study.

4.10. Assortativity

The concept of assortativity was introduced by Newman (2002) and has been intensively studied
since then. Assortativity is a graphic measure. It shows to what extent nodes in the network associate
to one another by similarity or opposition (positive or negative mating). Basically, the network’s
assortatavity is determined for the degree (number of direct neighbors) of nodes in the network.
Assortativity is expressed as a scalar −1 ≤ ρ ≤ 1. The network is said to be assortative when high-degree
nodes are mostly connected to other high-degree nodes while low-degree nodes are mostly connected
to other low-degree nodes. The network is said to be non-assortatative when high-degree nodes are
connected mostly to low-degree nodes and low-degree nodes are mostly connected to high-degree
nodes. Assortativity provides information on the structure of the network, but also on its dynamic
behavior and robustness.

The assortativity time series is shown in Figure 11.
Assortativity is negative, which means that in each state the tree is rather non-assortatative, i.e.,

the vertices tend to connect rather as negative mating, which also confirms the previously described
property of the network to be scale-free.
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Figure 11. Assortativity during the period from 7 January 2005 to 20 December 2019. Red lines depict
the 13 periods of the moving average smoothed series. Source: Own study.

Based on the time series of MST topological indicators, we determined a time partition into
four periods:

- The period which we call normal state—normal (N).
- A period of two subprime crises and excessive public debt, which began in 2008 and lasted

until around 2013. This period in our time series falls exactly between 8 February 2008 and
1 March 2013—subprime mortgage crisis (SMC).

- The period of crisis associated with the beginning of the migration crisis in Europe, falling on
2015/2016. This period on our time series falls exactly between 7 August 2015 and on 23 September
2016—immigrant (I).

- The period of the beginning of the crisis in the countries of the European Union related to the
crisis in France associated with strikes, and in Italy due to the ever-growing public debt (which is
now seven times higher than the debt in Greece), falling at the turn of 2017 and 2018. In our case
it is exactly the period from 21 April 2017 until 11 May 2018—France and Italy crisis (FIC).

The charts below (Figure 12) present the expected values of the relevant MST topological indicators
in the different market states. The results confirm the above description of indicators during crises
and in a normal state. Putting together the indicators allows us to compare their behavior in four
different states. Clearly, the indicators behave differently during crises. It is clearly apparent from
the Kruskal–Wallis rank sum test results (Table 1) and the post-hoc analysis performed using the
Conover–Inman test (Table 2)2. In the state N, APL and diameter is higher, while maximum degree is
lower than in the crisis states. This means MST is stretching. The insurer with the largest number of
connections has actually fewer connections than during the crises. RCE varies, but the average—marked
with a red dot—is smaller, i.e., the stability of the network is higher. The network assortativity in
each state is at a similar, negative level, i.e., the network does not vary, remaining constantly similar.
Connections are established by negative mating. High degree companies are linked to low degree ones.
Since alpha is close to 2, MSTs are scale-free, but the average alpha increases during the period N.

2 We used nonparametric tests since none of the indicators satisfied the normal distribution requirement.
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Figure 12. Distribution of MST topological indicators in different market states. Source: Own study.

Table 1. Kruskal–Wallis rank sum test results.

Indicator Kruskal–Wallis chi-Squared p-Value

APL 347.78 <2.2 × 10−16

Alpha 9.35 0.02499
Max. Deg 99.63 <2.2 × 10−16

RCE 15.34 0.00155
Diameter 269.03 <2.2 × 10−16

Assort. Deg 25.60 1.155 × 10−5

Source: Own study.

Special attention is drawn to the RCE indicator (Figure 12), whose average value in the state N is
very different from the average in the remaining distinguished states. By analyzing in more detail
(Figure 13), we note that in the states presented RCE is high, which means that the way the vertices are
connected to one another is such that the highest degree vertices are linked together. Potentially, this
creates the possibility of transferring turbulences. In the normal states, the series shows an important
variability and the average RCE is high. In the state N, the mean is lower. RCE takes the value zero
many times. This means that there are no vertices with four or more edges. MST appears in the form
of a stretched chain. It is then more stable than during the SMC, I, or FIC periods.
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Table 2. Post-hoc analysis results (Conover–Inman test).

Compared Market States Difference p-Value Signif2. LCL UCL

APL

N-SMC 307.27 0.0000 *** 281.11 333.43
N-I 247.72 0.0000 *** 202.00 293.45

N-FIC 318.21 0.0000 *** 271.08 365.33
SMC-I −59.55 0.0135 * −106.77 −12.33

SMC-FIC 10.93 0.6587 −37.64 59.51
I-FIC 70.48 0.0244 * 9.11 131.85

Alpha

N-SMC 3.36 0.9135 −57.23 63.94
N-I −112.92 0.0366 * −218.81 −7.03

N-FIC −124.66 0.0252 * −233.79 −15.53
SMC-I −116.28 0.0372 * −225.63 −6.92

SMC-FIC −128.02 0.0257 * −240.51 −15.52
I-FIC −11.74 0.8714 −153.86 130.38

Max.Deg

N-SMC −166.35 0.0000 *** −197.31 −135.38
N-I −108.68 0.0001 *** −162.81 −54.56

N-FIC −77.98 0.0062 ** −133.76 −22.20
SMC-I 57.66 0.0432 * 1.77 113.56

SMC-FIC 88.36 0.0026 ** 30.86 145.86
I-FIC 30.70 0.4070 −41.94 103.34

RCE

N-SMC 27.31 0.1223 −7.34 61.96
N-I 25.66 0.4058 −34.90 86.23

N-FIC −99.12 0.0019 ** −161.54 −36.70
SMC-I −1.64 0.9589 −64.19 60.90

SMC-FIC −126.43 0.0001 *** −190.77 −62.09
I-FIC −124.78 0.0027 ** −206.07 −43.50

Diameter

N-SMC 280.91 0.0000 *** 252.47 309.36
N-I 107.97 0.0000 *** 58.25 157.69

N-FIC 257.93 0.0000 *** 206.69 309.17
SMC-I −172.94 0.0000 *** −224.29 −121.60

SMC-FIC −22.99 0.3932 −75.80 29.83
I-FIC 149.95 0.0000 *** 83.23 216.68

Assort.Deg

N-SMC −46.91 0.0079 ** −81.47 −12.35
N-I −150.22 0.0000 *** −210.63 −89.81

N-FIC −27.48 0.3865 −89.74 34.78
SMC-I −103.31 0.0012 ** −165.70 −40.92

SMC-FIC 19.43 0.5525 −44.75 83.61
I-FIC 122.74 0.0031 ** 41.66 203.82

Source: Own study.

2 We used nonparametric tests since none of the indicators satisfied the normal distribution requirement.
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Figure 13. RCE distribution in determined market states based on the mean and the standard deviation
for k = 4. Source: Own study.

Below (Figure 14) are sample MSTs at selected times: A tree that has a chain-like structure will
slow down risk propagation, and one that has a star-shaped structure will foster it.

On Figures 15–17, we present the results obtained for deltaCoVaR. These are, respectively, the
average deltaCoVaR value in the period studied, the distribution of this average in the different market
states, and the average deltaCoVaR value for each insurer in the period under consideration. They
corroborate the fact that insurance companies contribute to systemic risk. This contribution depends
on the market state.

Figure 14. Cont.
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Figure 14. Sample MSTs in two chosen times. Source: Own study.

Figure 15. Mean deltaCoVaR. Source: Own study.

Figure 16. Mean deltaCoVaR for each insurer. Source: Own study.
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Figure 17. Mean deltaCoVaR distribution in different market states. Source: Own study.

The mean deltaCoVaR chart confirms the fact that insurance companies contribute to systemic
risk. deltaCoVaR decreases in highlighted periods of crises.

On average, each company contributes to systemic risk.
The smallest contribution to SR is observed in the FIC and N periods. The largest contribution is

in the SMC period. The beginning of immigration was also a period in which we notice an increased
contribution to the SR.

5. Conclusions

Empirical results show the usefulness of network topology indicators for detecting and analyzing
systemic risk in the insurance sector. In the proposed hybrid model, the analysis of times series, taking
into account also the most recent data from the end of 2019, confirms the phenomena occurring on
the market. The behavior of the time series reflects each atypical economic or political situation that
influenced the insurance market. Periods corresponding to the subprime and excessive public debt
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crises stand out, as well as the periods of the beginning of the European immigration crisis, the UE
crisis generated by the French strikes’ crisis, and the growing sovereign debt crisis in Italy. In the
distinguished states, the structure of MST changes along with the market situation. MSTs—their
topological indicators are a tool that also allows clustering in the insurance sector and helps determine
those companies that are relevant in the entire group. AXA, Allianz, Aegon, Aviva, and non-G-SIIs,
ING, and Zurich Insurance play a significant role. These are institutions through which risk may be
transferred. They stand out when assessing BC, strength, closeness centrality, and degree. In assessing
the indicators for the entire network, we note that in the three periods of crises we have identified,
APL and diameter decrease, maximum degree increases, RCE is high, and the assortment is negative.
All this means that in the SMC, I, FIC states, MST becomes star-like and compact, which is accompanied
by a decrease in system stability, which means that turbulence can be more easily transmitted over the
network. Such a network configuration is less resistant to shocks and more susceptible to contagion
and transferring the effects of collapses on the financial market. All institutions contribute to SR,
and again the largest contribution is due to the previously mentioned companies. When analyzing
deltaCoVaR averages, the crisis period again stands out. In the so-called period N, the contribution to
SR is the smallest.
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Abstract: We analyze the daily returns of stock market indices and currencies of 56 countries over
the period of 2002–2012. We build a network model consisting of two layers, one being the stock
market indices and the other the foreign exchange markets. Synchronous and lagged correlations are
used as measures of connectivity and causality among different parts of the global economic system
for two different time intervals: non-crisis (2002–2006) and crisis (2007–2012) periods. We study
community formations within the network to understand the influences and vulnerabilities of
specific countries or groups of countries. We observe different behavior of the cross correlations and
communities for crisis vs. non-crisis periods. For example, the overall correlation of stock markets
increases during crisis while the overall correlation in the foreign exchange market and the correlation
between stock and foreign exchange markets decrease, which leads to different community structures.
We observe that the euro, while being central during the relatively calm period, loses its dominant
role during crisis. Furthermore we discover that the troubled Eurozone countries, Portugal, Italy,
Greece and Spain, form their own cluster during the crisis period.

Keywords: community structure; complex networks; financial markets

1. Introduction

Financial crisis can cause substantial damages and economic losses not only locally, but also
in other countries through trade relations, currency policies, financial contracts, and cross-country
investments. Some examples of such crises are the 1997 Asian financial crisis, 1998 Russian bond crisis,
2001 dot-com bubble, 2007–2008 global financial crisis, and 2010 EU sovereign debt crisis, all spilling
over to various parts of the world. Similar to the transmission of a disease, small financial shocks
initially affecting only a particular sector of the economy or geographic region can spread to other
economic sectors and other countries with quite healthy economic outlook Lin et al. (1994).

Many research studies have examined the connections among countries by exploring correlations
of various financial time series data Smith (2009); Forbes and Rigobon (2002); Flavin et al. (2002); Solnik
et al. (1996); Ramchand and Susmel (1998); Boyer et al. (2006); Bonanno et al. (2000 2003 2004); Sheedy
(1998); Meese (1990); Longin and Solnik (1995); Arshanapalli and Doukas (1993); Kenett et al. (2010 2011
2012); Onnela et al. (2003); Sandoval and Franca (2012); Sandoval (2014); Curme et al. (2014); Aste et al.
(2010); Tumminello et al. (2007). Moreover, many studies have analyzed relationships between stock
and foreign exchange markets, given the significant increase in global capital flows in the last two
decades Dornbusch and Fischer (1980); Dooley and Isard (1982); Morley (2002); Nieh and Lee (2002);
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Bae et al. (2003); Gagnon and Karolyi (2006); Cappiello and De Santis (2005); Granger et al. (2000); Pan
et al. (2007); Ning (2010); Zhao (2010); Katechos (2011); Lin (2012). Other studies have focused on global
stock market return predictability offering diverse findings across different regions and time periods
Cohen and Frazzini (2008); Cochrane (2008); Fama and French (1988 1989); Welch and Goyal (2008);
Ferson and Harvey (1993); Dahlquist and Hasseltoft (2013); Breen et al. (1989); Harvey (1991); Bekaert
et al. (2009); Rapach et al. (2013).

There have been dramatic advances in the field of complex networks in many research fields. The
world-wide-web, the Internet, highway systems, and electric power grids are all examples of networks
that can be modeled using coupled systems Barabási and Albert (1999); Buldyrev et al. (2010); Mantegna
(1999); Watts and Strogatz (1998); Albert and Barabási (2002); Amaral et al. (2000); Li et al. (2015); Kenett
et al. (2012), where the connectivity between network components is essential. Similarly, the economic
system is composed of many agents, interacting at different levels. The agents in the system could
be individual traders, firms, banks, financial markets, or countries, hence the global financial system
can be well represented by using a complex network model. Recently, researchers have used network
theory to study economic systems as well as systemic risk propagation through the financial network
Billio et al. (2012); Gai et al. (2011); Anand et al. (2012); Haldane and May (2011); Battiston et al. (2012);
Huang et al. (2013); Schweitzer et al. (2009); Glasserman and Young (2015); Acemoglu et al. (2013 2012);
Dehmamy et al. (2014); Ellis et al. (2014). We develop and analyze a two-layer interdependent network,
where each layer represents a different financial market and interactions exist not only within the
same market, but also between the two layers. Because of these interdependences, failure in a certain
network node can trigger global systemic risk and crisis propagation to other nodes in the network. In
this study, we select major global stock market indices and their corresponding currencies as the two
layers in our coupled network model.

Stock markets are a common trade place for company shares thus reflecting companies’
performances and investors’ perceptions of company values. Moreover, stock markets are considered
leading economic indicators and therefore useful as predictors of the economy. The foreign exchange
market is the largest financial market in the world, with market participants actively involved in
currency trading 24 h a day except weekends, with daily turnover of over 5 trillion US dollars,
according to the Bank for International Settlement for International Settlements (2013). These two
financial markets capture important aspects of a country’s economic status, and therefore, we use them
as a centerpiece of our research. We use a complex network approach to model the interaction between
stock and foreign exchange markets to capture the topology as well as the dynamics in this coupled
financial system. We study 56 stock market indices and 45 distinct currencies since 12 of the countries
in our dataset use the euro as their official currency. Our analysis reveals novel insights and interesting
features of the interactions among global stock and currency markets. We divide the entire period of
2002 to 2012 into two time intervals, non-crisis (2002–2006) and crisis (2007–2012) periods. We find that
correlations exhibit different behavior during the crisis period such as higher stock market correlations
and lower foreign exchange correlations when compared to the non-crisis period.

The objective of this article is to study community formations in global financial markets
and to investigate the systemic importance of countries and their influence on other countries or
regions. The rest of the paper is organized as follows: In Section 2, we present our correlation-based
community analysis results for two different sub-periods, non-crisis period (2002–2006) and crisis
period (2007–2012); in Section 3, we offer a discussion of our findings. The data set and the methods
we use are described in Section 4.

2. Results

2.1. Pearson Correlation Analysis

In order to see how the cross-correlation trends change with time, we divide the data into 11 annual
periods. Figure 1a shows a heat map of the yearly stock market correlations. The x-axis represents
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the years, and the y-axis shows the 1540 unique pairwise correlations, excluding the diagonal of
the correlation matrix. We use the color bar to show the magnitude of the correlations, where red
means C = 1 and the two series are perfectly positively correlated, while blue means C = −1 and the
two series are perfectly negatively correlated. Green means C = 0, or the two series are not correlated.

From Figure 1a, we can see that the overall correlation of the global stock markets trends upward
starting in 2006, reaches its peak in 2008, and stays at a high level thereafter. These increasing
correlation trends match the global financial crisis of 2007–2008 and could possibly be regarded as
indicators of increased co-movements heading towards financial crisis.

In Figure 1b, the heat map for foreign exchange markets is plotted. It is generated in the same
way as the heat map for the stock markets; however, the number of entries is lower due to the lower
number (45) of distinct currencies among the 56 countries. Hence, we have 990 distinct correlations for
the currency correlation matrix, excluding the diagonal. Generally, foreign exchange markets shows
stronger correlation compared to stock markets. It seems that the overall foreign exchange correlation
falls during the financial crisis period, contrary to the stock market correlation trend.

(a)

(b)

Figure 1. Heat maps of the annual Pearson correlations for (a) stock markets and (b) foreign exchange
markets logarithmic returns. For the stock markets, we consider all 56 countries; for the foreign
exchange markets, we consider the 45 distinct currencies. The color shows the value of the correlations
for different years, where red indicates strong positive correlation, blue indicates strong negative
correlation, while green means that the correlation is weak.
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2.2. Summary Statistics

To study the statistical characteristics of the correlations, we calculate the first moment (mean)
and the second moment (standard deviation) of any of the correlation distributions for the 11 years
for all three cases, including Pearson correlations for stock market layer, currency layer, as well as
inter-layer correlations.

In Figure 2, we show that the mean value of stock market correlations exhibits a peak during
the crisis period (2007–2012). This finding suggests (similar to Figure 1a) that during crisis, the
overall correlation increases, and the stock markets tend to move together. This could be due to
portfolio re-balancing, reducing equity market exposures and increasing allocations in the bond
market. The re-balancing in global portfolios occurs across different countries and thus produces
declining stock market trends internationally.

(a) (b)

Figure 2. (a) Annual mean correlation and (b) annual standard deviation for stock markets (x), foreign
exchange markets (+), and between stock and foreign exchange markets (o). We observe that the stock
markets are more correlated during the crisis period, whereas the foreign exchange market correlation
are higher in the non-crisis period. The correlation between stock and foreign exchange markets is
lowest during the crisis. The standard deviation for both, stock and foreign exchange markets remains
fairly constant, while we observe an increase in the standard deviation for the interlayer correlations.

The means of the foreign exchange market Pearson correlations are low during the crisis period,
while, in contrast, we observe a peak during the non-crisis period. This finding suggests that, in
general, the correlations among currencies are low during crises and high during non-crisis periods,
contrary to the stock market behavior. For both, however, the standard deviation of the correlations
remains fairly constant, which suggests uniform increase (decrease) of the correlations in the stock
markets (foreign exchange markets) throughout the entire time period.

In order to confirm this qualitative description that the means of the correlation are in fact different
for the years in the calm period and for the years in the crisis period, we perform Student’s t-test.
The null hypothesis is that the annual mean correlations are the same for both periods and that any
differences come from the standard deviation. We apply the two-sample Student’s t-test. It rejects the
null hypothesis that the two means are equal, p-value is 0.0002; thus, the alternative hypothesis that
the means are not equal is accepted.

The mean value of Pearson correlations between stock and foreign exchange markets exhibits
a local minimum during the crisis period, which could be interpreted as positive stock market returns
corresponding to currency appreciations. Overall the interlayer correlation does not change much
throughout the entire period. The increase in standard deviation, however, indicates a larger spread in
correlation values between the two layers during the crisis (Table 1).
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Table 1. Statistics for the pre-crisis and the crisis periods.

Stocks Currency
2002–2006 2007–2012 2002–2006 2007–2012

Mean 0.175 0.315 0.370 0.318
Standard Deviation 0.208 0.249 0.260 0.279
Minimum −0.320 −0.340 −0.155 −0.575
Maximum 0.965 0.966 1.000 1.000

We distinguish between two different markets in our analysis, the network of stock market indices
and the network of foreign exchange markets. Besides their obvious differences, the two markets also
exhibit different correlation distributions, as visual inspection of Figure 1a,b hints. The two-sample
Kolmogorov-Smirnov test (K-S test) allows us to statistically confirms this, with the null hypothesis
being that the two sample data are from the same continuous distribution. The K-S test rejects this
null hypothesis at a significance level α = 0.001. Therefore, we can conclude that the correlation
distributions of stock markets and of foreign exchange markets are different.

2.3. Community Formation and Cluster Analysis

In our analysis we focus on two periods: a period of relative economic calmness (2002–2006) and
a period of economic crisis (2007–2012). Using the correlation information, we depict the network
structure of the stock markets and of the foreign exchange markets for each of these time periods.
Since countries have different peak trading times due to their respective geographical locations and
different time zones, lagged correlations allow us to infer information about regional influences.
We separate the 56 countries and 45 currencies into three groups according to their geographical
location. When we consider synchronous correlations, we use the returns at time t for every country.
In that case, the Asian markets are the first to trade, then the European markets, and finally the
American markets. A shock originating in the US, for example, would then not show its immediate
effect on the other markets because the stock markets in other parts of the world are closed for most
or all of the trading hours of the NYSE. When we consider lagged correlations, we use the returns
at time t for the American countries and at time t + 1 for the other countries of the world. In that
case, it is as if the American markets were first to trade, followed by the Asian and then the European
markets. A shock from the US would then be very visible. For both, the stock and the foreign exchange
markets, we first consider the synchronous correlations and then compare the results to those of the
lagged correlations.

We use Planar Maximally Filtered Graphs (PMFG) Tumminello et al. (2005); Di Matteo et al. (2010)
to study the properties of stock and foreign exchange market correlations. PMFG is useful for filtering
meaningful correlations from the bulk of the 1540 correlation pairs, as it suppresses small correlations
while maintaining the overall network structure. In order to build the graph, we order the correlations
Ci,j from largest to smallest. First, the pair with the largest correlation is connected. In subsequent
steps we connect the countries i, j under the condition that a link between them maintains the planar
structure of the graph; if it does not, the pair is skipped. This procedure results in an adjacency matrix
with unweighted links from which the graph is plotted. We use Wolfram Mathematica to investigate the
communities in the network, which are detected with respect to their modularity.

2.3.1. Stock Markets

Synchronous Correlations

Figure 3a shows the PMFG for the period from 2002 to 2006, where we identify five clusters
which seem to be organized by geographical locations. The cluster on the top left is led by Singapore,
a financial hub, and Saudi Arabia, which connects to many other OPEC countries in the cluster.
The second Asian cluster is centered around Hong Kong and Japan. The third cluster contains smaller
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European countries, organized around the Scandinavian countries. The fourth cluster contains the
major European economies, except for Italy and Germany which are closely connected to the American
countries in the fifth cluster, particularly through ties to the US and Canada. These four countries
exhibit particularly strong connections within and, in case of Germany and Italy, to countries outside
the cluster. The communities change significantly during the crisis period, where Singapore and
Hong Kong lead a large Asian cluster, as illustrated in Figure 3b. The American cluster formed
during the non-crisis period becomes more mixed during the crisis period, as Norway, Iceland and
Russia become part of this cluster. The change in the community comprised of mostly American
countries suggest that Italy and Germany influence the performance of the American markets in the
non-crisis period, while during the crisis period, Norway and Russia seem to increase their influence.
The majority of the European countries, connected through France, form another cluster, strongly
linked to the countries in the American cluster. These observations are in line with the coordinated
responses to the crisis from the US, large European economies, and the ECB; at the same time the
Asian countries do not become more closely connected to them NYT (2008). Most notably, however,
two new clusters appear: one with the troubled Eurozone countries Portugal, Italy, Greece and Spain,
and another consisting of rather less connected countries like Slovakia, Mauritius and Tunisia.
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Figure 3. Planar maximally filtered graph (PMFG) for the stock markets obtained using synchronous
correlations during (a) the economically calm period and (b) crisis period. The countries are denoted
by their three-letter symbols and are color-coded according to their geographical locations: green for
Asia, light blue for Europe and orange for the Americas. During the calm period, we detect five large
clusters which are mostly geographically divided. The clusters significantly change during the crisis
period. Most notably the troubled Eurozone countries, Italy, Spain, Greece and Portugal, form their
own cluster. The Asian countries form one larger cluster centered around Hong Kong and Singapore.
We also observe a smaller cluster containing a diverse group of less connected countries.
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Lagged Correlations

As pointed out before, lagged correlations are an important measure to study the influences of
financial markets. They allow us to consider effects originating in one region and spreading to another.
In the following, we consider the correlation calculated for the returns for the Americas at time t,
and for Asia and Europe at time t + 1. In other words, we focus on how the index movements in the
Americas will affect the index movements in the rest of the world. Please note that this does not change
the correlations within one geographical region, nor will the correlations between Asian and European
countries change. However, due to the PMFG algorithm, larger correlations that appear for countries
in the Americas with countries in the rest of the world can change the structure of the network.

The European clusters remain mostly unchanged in the calm period, except that Germany and
Italy no longer form a community with American countries, when considering lagged correlations
compared to synchronous correlations. Since here we consider the Americas at time t and Europe
and Asia at time t + 1, it seems that the American countries, including the US, do not affect Italy and
Germany significantly. The Netherlands, Italy, France, and the Scandinavian countries still manifest
themselves as the most connected European countries. We do, however, observe large changes in the
American cluster on the very right in Figure 4a; Australia and New Zealand, economically close to
the US, have moved from the Asian community to connect more tightly to the American countries.
Different responses by central banks, leading to higher interest rates particularly in Australia, can
be considered a reason for this DailyFX (2012). They are joined by smaller countries, such as Sri
Lanka and the Philippines, that we have previously identified as countries with weak links to other
Asian countries. The Asian cluster is led by Singapore, Hong Kong and Japan, which display the
most significant correlations to countries outside of their community. The community structure
changes significantly when we consider the years of economic turmoil in Figure 4b. Most obviously,
the number of communities reduces to three because the two European clusters from the non-crisis
period mostly merge. Netherlands, United Kingdom and France are at the center of the European
community in the crisis period. Portugal, Italy, Greece and Spain are found at the periphery of this
cluster. Using synchronous correlations, Germany and Netherlands were tightly connected to the
American cluster during the crisis period, while when considering lagged correlations, they belong to
the large European cluster. We observe that Japan, Australia and New Zealand, among others, form
a community with the American countries during the crisis, which suggests that the major financial
markets in the Pacific follow the trends of the American stock markets. The importance of the US stock
market is emphasized by the largest number of connections in this cluster. Australia is the second most
connected country in this community.
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Figure 4. Planar maximally filtered graph (PMFG) for the stock markets obtained using lagged
correlations during (a) the economically calm period and (b) crisis period. The countries are denoted
by their three-letter symbols and are color-coded according to their geographical locations: green for
Asia, light blue for Europe and orange for the Americas. During the calm period, we observe four large
clusters, while in the crisis period the number of communities changes to three, as the two European
clusters merge.

2.3.2. Foreign Exchange Markets

While we analyze a total of 56 global stock market indices, we only investigate 45 currencies
because 12 countries use the euro.

Synchronous Correlations

Figure 5a shows the dominant role that the euro has played in Europe prior to the crisis.
Together with the Danish krone, pegged to the euro via the European Exchange Rate Mechanism,
the euro is connected with all European currencies, and it exhibits close ties to the Canadian dollar,
the Australian dollar, and the New Zealand dollar. With 19 links each, the node for the euro and the
node for the US dollar show the highest interconnectedness among all currencies in the calm period.
The US dollar is at the center of the cluster comprised of the majority of the American currencies
and the oil-exporting countries. In Figure 5b we observe that the clear structure and hierarchy of the
European community during the calm period falls apart during crisis. In addition, a fourth cluster
appears, comprised of European and South and Central American currencies, like the Brazilian real,
the Mexican peso and the Chilean peso, which were closely connected to the US dollar in the non-crisis
period. As the financial crises unfolded, the Fed and its European counterparts employed “quantitative
easing” as monetary policy, which in turn has been eliciting strong criticism in the BRIC countries,
as QE corresponds to currency devaluation Telegraph (2012). The US dollar maintains its strong ties
with the currencies of oil-exporting countries. Its cluster is joined by the Japanese yen and the Chinese
yuan. China moved to a managed floating regime during the crisis period Reuters (2012), whereas the
Japanese government tried to stimulate its economy with policies similar to QE, known as “Abenomics”
BBC (2011).
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Figure 5. Planar maximally filtered graph (PFMG) for the foreign exchange markets obtained using
synchronous correlations during (a) the economically calm period and (b) crisis period. The currencies
are denoted by their three-letter symbols and color-coded according to their geographical locations:
green for Asia, light blue for Europe, orange for the Americas. During the calm period, we detect three
large clusters. Most distinctive is the European cluster on the right, with the euro and the Danish krone,
which is pegged to the euro, at the center. The Asian countries split in two different clusters, with
major oil-exporting countries being closely associated with the US dollar which is at the center of its
community. The remaining Asian countries form the third cluster. During the crisis, the hierarchy of
the euro cluster collapses. The community around the US dollar still contains the oil-exporting countries.
It is joined by the Chinese yuan and the Japanese yen. The Brazilian real, Mexican peso and Chilean peso,
however, are no longer part of the US dollar-centered community during the crisis period.

Lagged Correlations

In Figure 6a, using lagged correlations during the non-crisis period, we observe that the Euro is
at the center of the cluster of European currencies. The Japanese yen joins this cluster. The US dollar
and the currencies of the Asian (Middle Eastern) oil-exporting countries no longer share close ties.
We notice in Figure 6b, during the crisis period, that there is a mixed cluster comprised of all the
American currencies and a group of Asian currencies, including India, Singapore and Korea, while the
South East Asian currencies form their own community using synchronous correlations, as observed
in Figure 5b. The number of connections of the nodes comparing the two different periods remains
stable; the majority of the currencies do not gain or lose more than two connections. Instead we find
that different connections develop within the clusters. For example, Hong Kong loses the link with
countries like India and Russia during the crisis, but becomes more closely connected to Singapore,
the Philippines and Thailand.
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Figure 6. Planar maximally filtered graph (PMFG) for the foreign exchange markets obtained using
lagged correlations during (a) the economically calm period and (b) crisis period. The currencies are
denoted by their three-letter symbols and color-coded according to their geographical locations: green
for Asia, light blue for Europe, orange for the Americas. For lagged correlations we use time t for
the Americas and time t + 1 for Europe and Asia. During both periods, we detect three large clusters.
In the non-crisis period we observe that the clusters are determined by the geographical currency
location, except for the Japanese yen, New Zealand dollar and Australian dollar. Iceland appears in the
predominantly Asian cluster, while Malaysia, the Philippines and Indonesia are part of the American
community. During the crisis period the interconnectedness between American and South East Asian
currencies increases as they belong to the same community. The purely Asian cluster comprises the
Japanese Yen along with the currencies of the oil-exporting countries. The Russian ruble joins the
European cluster.

Any currency is traded during every hour of the day, therefore any sudden changes should be
reflected in all the currencies on a time scale shorter than one full day. In fact, one would expect
the strong correlations to correspond to shorter time scales. Hence the community structure of the
currencies is depicted by synchronous correlations, while when using lagged correlations, the true
structure of the network disappears.

3. Discussion

In this study, we investigate the daily logarithmic returns in the stock and foreign exchange
markets of 56 countries and 45 currencies. We use network theory and community analysis to
understand the structure of the coupled financial network formed by global stock market indices and
currencies. We define weighted links within a network layer and between the two layers (stock markets
on one hand and currencies on the other) using Pearson correlation. The overall correlations within
stock markets increase during the crisis period, and the overall correlations within foreign exchange
markets, as well as the correlations between stock and foreign exchange markets decrease during
this period. We investigate statistical properties of our results by presenting correlation summary
statistics and performing the K-S test to closely study the characteristics of the correlation distributions.
We apply the PFMG method to discover distinct community formations and categorize the countries
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into clusters. We identify the importance of the countries according to their relative positions in the
communities and the strength of their links with other member of the community as well as the strength
of their external links with countries that do not belong to their cluster. In our analysis, we distinguish
between synchronous and lagged correlations. We divide the countries in three geographical regions,
Asia, Europe and Americas. To study lagged correlations, we consider the returns at time t in the
Americas, and the returns at time t + 1 in Asia and Europe. The comparison of the network and
community structures allows us to infer influences from one region to another, in both, crisis and
non-crisis periods. Using synchronous correlations we identify five clusters in the stock market
during the non-crisis period. These clusters change their structure during the crisis period, where, for
example, four of the five troubled Eurozone countries, Portugal, Italy, Spain and Greece, form their
own community. In the case of lagged correlations, we observe four clusters in the stock market layer
during the non-period period and only three communities during the crisis period. We observe that the
American countries are most closely connected to Asian countries. The introduction of a time lag and
the onset of the crisis cause the European countries to become more tightly connected. Unlike stock
markets, which are bound to different time zones, currencies trade around the clock. Any influences
among currencies are immediately reflected in their returns, hence synchronous correlation define the
true network structure of the foreign exchange markets. We observe that the Euro plays a central role
among the European currencies during the non-crisis period, while it loses its central position during
the crisis-period. The US dollar is closely linked to the currencies of the major oil-exporting countries,
both, during non-crisis and crisis periods.

These findings could have policy implications and could be helpful for central bankers, policy
makers and regulators, offering a tool for identifying tightly related communities of countries by stock
market performance and by currency dynamics. If, for instance, a financial crisis originates in a specific
country, the most vulnerable countries, where the crisis might spread first, are the countries with
stronger links with the originating country, most likely belonging to the same community. If policy
makers have knowledge of these communities, they might be able to focus needed bailout funds or
implement temporary preventative measures in the most vulnerable countries, thus reducing the
impact of inherent global financial crisis to the rest of the world and preventing the propagation of the
crisis before severe damages cripple the entire economic system.

4. Materials and Methods

4.1. Data

We acquired the data from the Boston University Bloomberg terminal provided by Bloomberg
L.P. for academic research. In our analyss, we use a time range of 11 years from January 1, 2002 to
December 31, 2012, with daily frequency. We use the daily closing price. We exclude the weekends,
and for holidays we repeat the closing price of the previous day. We select 56 representative countries,
which include developed as well as emerging countries.

When a country has more than one well-known major stock market index, we use the following
criteria to select the most representative index: first we select the stock market indices that are widely
used in the financial industry, and from that subset, we select the index that includes most of the
companies listed on the respective exchange, covering mostly large capitalization stocks but in some
instances including some mid or small capitalization stocks as well. Using this criteria, we have
selected one single index for each country, such as the S&P 500 for the US, Nikkei 225 for Japan, STI for
Singapore, etc.

For the foreign exchange rates, we use the closing mid price, which is the average of the closing
bid and ask prices. The foreign exchange market convention is for the majority of the currencies to be
expressed in terms of USD, except for the British pound, Australian dollar, New Zealand dollar, and the
euro that are expressed as USD per currency. In our analysis, for consistency, we have converted these
four currencies to be expressed in terms of USD. For any country in the eurozone that has adopted
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the euro at a later date than January 1, 2002, we keep the separate currencies up to the date before the
actual euro adoption, and replace them with euro after the adoption day. This is becuase before the
adoption of the euro, these currencies moved independently from the euro to some extent NBS (2005);
200 (2004). Examples like these include the Maltese lira and Slovak koruna, which were replaced by
the euro on January 1, 2008 and January 1, 2009 respectively.

In order to also include the US dollar as part of our analysis, we have expressed all currencies as
currency over SDR. The SDR is an international reserve asset, created by the International Monetary
Fund (IMF) in 1969 to supplement its member countries’ official reserves. Its value is based on a basket
of four key international currencies, and SDRs can be exchanged for freely usable currencies. Though it
is not a currency, per se the SDR can be used as a currency unit in our study Frankel et al. (1993 1995).
The IMF fixes the value of one SDR in terms of US dollars daily.

4.2. Pearson Correlation Analysis

For all analyzed time-series, we first obtain the logarithmic returns as follows. P(t) is the value
of the time series at time t, where t = 1, 2, . . . , N, and N = 2866 days is the size of the time series.
The logarithmic return of time series i is

Ri(t) = ln
Pi(t + 1)

Pi(t)
(1)

We then normalize Ri(t) to have zero mean and unit standard deviation,

ri(t) =
Ri(t)− Ri

σRi

(2)

where Ri and σRi are the mean value and standard deviation of time series i.
For stock market indices, the dimension of the logarithmic return time series matrices is 56 ×

2865. For foreign exchange markets, it is 45 × 2865 since we group all Eurozone countries together.
We calculate the cross-correlation matrix C, and the value of each cell Ci,j as follows,

Ci,j = 〈rirj〉 (3)

where Ci,j represents the Pearson correlation between logarithmic return time series for a pair of
countries i and j.
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Abstract: Being active in both the insurance sector and the banking sector, financial conglomerates
intrinsically increase the interconnections between the banking sector and the insurance sector. We
address two main concerns about financial conglomerates using a unique database on bilateral
exposures between 21 French financial institutions. First, we investigate to what extent to which the
insurers that are part of financial conglomerates differ from pure insurers. Second, we show that in
the presence of sovereign risk, the components of a financial conglomerate are better off than if they
were distinct entities. Our empirical findings bring a new perspective to the previous results of the
literature based on using different types of data.

Keywords: interconnectedness; financial conglomerate; contagion; systemic risk
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1. Introduction

In the aftermath of the financial crisis, the Financial Stability Board (FSB) pinpointed
interconnectedness as a key indicator of the systemic dimension of financial institutions (see FSB [1]).
Figure 1 illustrates the importance of interconnections between financial institutions. It represents the
aggregate asset allocation of European insurers and banks. The exposures of insurance companies
to the financial sector represent about 25% of their total investments, while the exposures of banks
represent about 15% of their total credit exposures. In addition, exposures to sovereign risk appear
important. Sovereign exposures of banks are as large as their exposures to financial institutions.
Sovereign exposures of insurance account for more than 55% of the total investments. These key facts
explain the concern for the contagion risk between the banking sector and the insurance sector.
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Figure 1. Aggregate breakdown of exposure allocation of the main European insurers and banks. (a)
Investment allocation (in %) for debt and other fixed income securities for the European insurance
sector; (b) evolution for credit exposure by exposure class (2011 = 100) for the European banking sector.

At a global level, the general guidelines proposed by the FSB to identify systemic institutions
have been derived separately for banks (see BCBS [4]) and for insurance companies (see IAIS [5]),
although there exist financial conglomerates.1 In contrast, European regulation takes into account the
existence of financial conglomerates (see OJEU [6]). About 70 European institutions are classified as
conglomerates. On top of complying with the banking and insurance regulations, they must meet
capital adequacy requirements for their whole activities. These capital adequacy requirements do
not address interconnectedness, but rather risk concentration. One natural concern is therefore that
financial conglomerates may be contagion pathways between the banking sector and the insurance
sector. The French financial sector presents an interesting situation, since it includes several major
financial conglomerates.

Our paper is an extended version of the second part of the working paper Hauton and Héam [7].
The first part of the working paper provides a comparison of several methodologies to measure the
interconnectedness between financial institutions on a consolidated basis (such as the identification of
core-periphery structure, for instance). The second part, which we extend here, focuses on financial
conglomerates. The objective of our paper is to address two major questions: To what extent are
insurers part of conglomerates different from pure insurers? To what extent are financial conglomerates
modifying the vulnerability of the financial sector to contagion? Previous literature answers these
questions using either market data or stand-alone accounting data. The originality of our paper is to use
a new type of data: we analyze a database on the bilateral exposures of 21 French financial institutions
encompassing six conglomerates, four pure banks and eleven pure insurers. The exposures of the
banking and insurance components of financial conglomerates, as well as the sovereign exposures
were specifically investigated for this paper.

The paper is organized as follows. Section 2 presents the literature on interconnections to highlight
where our contribution lies. Section 3 presents the database. It heavily relies on Hauton and Héam [7].
Section 4 uses statistical measures of exposure closeness in order to assess to what extent the insurer
parts of conglomerates are different from pure insurers. Section 5 uses contagion models to analyze
the risk of contagion within the financial sector. Section 6 concludes.

1 Note that we adopt the continental European point of view: a conglomerate is a group with banking and insurance activities.
This wording contrasts with an Anglo-Saxon view where “conglomerate” is often synonymous with “universal bank” (a
bank mixing traditional banking activity and investment activity).
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2. Literature Review

Firstly, we present the main theoretical arguments explaining the emergence of financial
conglomerates. These motivations are similar to the explanation of linkages between banks and
insurers. Before addressing in greater detail the specific motivations, the business models of banking
and insurance explain a different general profile of interconnectedness. Maturity transformation leads
banks to borrow partly from other financial institutions and to invest in typically non-financial firms
and households. The insurance companies are expected to be exposed to the financial sector, since
they invest the proceeds of the policyholders’ premium. Their liabilities are mostly composed of
commitments to the policyholders; thus, the exposures of other financial institutions to insurers should
be low. Being a financial conglomerate benefits from revenue enhancement and cost savings through
diversification effects (see Berger and Ofek [8,9]). For instance, a bank can use its knowledge of clients,
as well as its offices to sell insurance products, too. Another motive for interconnections between
banks and insurers may be risk transfers, such as reinsurance or securitization (see Subramanian
and Wang [10]). This motive is less relevant for conglomerates, since risks are transferred to other
subsidiaries, but remain in the same group. General opinion about the interconnection between
financial institutions refers to liquidity management (see Holmstrom and Tirole [11], Rochet [12],
Tirole [13]). Liquidity issues are relevant for short-term relationships, such as interbank overnight
loans. Their relevance for financial conglomerates is much less clear. It is hard to narrow the advantages
of being a conglomerate to a simple advantage in liquidity management. However, this strand of
literature provides results worth being kept in mind when analyzing conglomerates. In particular,
Allen and Gale [14] show that the degree of interconnection has an ambiguous effect on financial
stability. When institutions are exposed to small and diversified shocks, the optimal structure is
a complete network: the interconnections are actually generating an insurance scheme. However,
when institutions are exposed to large shocks, a complete network is the worst situation. In that case,
interconnections are the support of contagion: the shock is propagated to all institutions, leading to a
massive cascade of defaults.

Second, most papers exploiting bilateral exposure data consider only banks. In contrast, our
scope includes also financial conglomerates and insurers. Moreover, most papers analyze one national
banking sector.2 In general, little evidence of solvency contagion is found. When liquidity channels
are considered, contagion risk may become prominent. Liquidity channels consist of fire sales (see
Cifuentes et al. [15] for instance) and liquidity hoarding (see Fourel et al. [16] for instance). These
channels are relevant for banks for which core activity is maturity transformation. For insurance,
liquidity concerns are less important. The unique case of international analysis is Alves et al. [17], where
the interconnections between 53 major European banks are analyzed. Researchers use market data
(stock prices) or accounting data (profits, turnover, etc.) to circumvent the scarcity of bilateral exposure
data. Concerning contagion between insurance and banks, Schmid and Walter [18] investigate the
profitability of U.S. financial firms between 1985 and 2004. One of their most relevant results for
our paper is that commercial banks do not benefit from developing insurance activity. Brewer and
Jackson [19] analyze the impact of three announcements in 1990 on the abnormal returns of U.S.
commercial banks and U.S. life-insurers. Their empirical findings provide mixed results due to an
overlapping of information effects and competitiveness effects. They show that there is less contagion
risk from the insurance sector to the banking sector than from the banking sector to the insurance
sector. Still on the U.S. market, Filson and Olfati [20] analyze abnormal returns following mergers
of U.S. banks between 2001 and 2011. This date range includes the 1999 Gramm-Leach-Bliley Act
authorizing commercial banks to perform also investment banking, securities brokerage and insurance

2 See, among others: Furfine [24] for the USA, Wells [25] for the U.K., Upper and Worms [26] for Germany, Lublóy [27] for
Hungary, van Lelyveld and Liedorp [28] for the Netherlands, Degryse and Nguyen [29] for Belgium, Toivanen [30] for
Finland, Mistrulli [31] for Italy, Gauthier et al. [32] for Canada, Cont et al. [33] for Brazil, Fourel et al. [16] for France, etc.

4141



Risks 2015, 3, 139–163

activities. They show that diversification creates value, contrasting with Schmid and Walter [18].
Analyzing extreme stock return co-movements between major financial firms of the U.S., Germany
and U.K. between 1990 and 2003, Minderhoud [21] shows that correlation during normal periods
is significantly different from correlation during crisis periods. Interpreting extreme co-movements
as contagion phenomena, he concludes that there is contagion risk from the insurance sector to the
banking sector, despite the results of Brewer and Jackson [19]. His results are two-fold: there is no
diversification pattern during crisis time, but a diversification advantage may exist in standard periods.
Stringa and Monks [22] study six events in the U.K. financial market between 2002 and 2003 to assess
the risk of contagion from the insurance sector to the banking sector. They pinpoint the heterogeneity
of banks’ responses to a distress. In particular, financial conglomerates are much more affected than
pure banks. A key paper concerning European financial conglomerates is van Lelyveld and Knot [23].
The authors compare the market performances of major European financial conglomerates with the
market performances of major EU banks and insurances between 1995 and 2005. They investigate if a
conglomerate has a better performance than the sum of its banking part and of its insurance part. They
find that the diversification effect is only a recent phenomenon. Moreover, there is a large heterogeneity
of the diversification discount. The authors interpret their results as the outcome of a combination of
diversification and opacity.

Empirical papers about financial conglomerates or, more generally, about spill over effects between
the banking sector and the insurance sector present contrasting results. The results based on the stock
returns of publicly-traded firms unveil market participants’ assessments of financial conglomerates.
To the best of our knowledge, our paper is the first paper to provide an empirical analysis based on a
specific type of data: bilateral exposure data. Market or accounting data are a collection of individual
data. Although very informative, the links that are put in evidence with such data are statistical links,
such as correlation or Granger causality. In contrast, bilateral exposures are structural financial links.
One aspect of our contribution is therefore to bring a new perspective to the questions previously
analyzed in the literature.

3. Data

The perimeter includes all French banking groups and insurance groups with total assets larger
than €10 bn, as of December 2011. We exclude publicly-oriented firm, such as development banks.
This perimeter accounts for more than 85% of the French financial sector. Consequently, the dataset is
composed of bilateral exposures of the 21 largest French banks and insurance groups: BNP, Crédit
Agricole, Société Générale, BPCE, Crédit Mutuel and La Banque Postale are financial conglomerates;
HSBC, Crédit Logement, CRHand Oseo are banks; AG2R-La Mondiale, Aviva, Axa, Allianz, CNP,
Generali, Groupama, Covea, Maif, Macif and Scor are insurers. This low number of firms is explained
by the high concentration of the French financial sector. For instance, the top five banking groups
account for about 80% of the French banking sector. A secondary explanation is that institutions are
considered on a consolidated basis aggregating potential hundreds of financial subsidiaries. This
restriction comes from the used regulatory reports. In terms of size, conglomerates account for about
half of the sample, while the remaining half is almost equally split between banks and insurers. We do
not identify the financial institutions in the remainder of the paper due to confidentiality restrictions.
Since our database is one snapshot of 2011, the representative character of this specific year is a natural
concern. Since we do not have access to other snapshots of bilateral exposures, we cannot bring
adamant comparisons. However, we situate year 2011 using ancillary data in Appendix A. Except
for conglomerates, institutions are considered on a fully consolidated basis, gathering all classes
and area of activity. For conglomerates, we distinguish a fully consolidated basis, where banking
activity and insurance activity are merged, from a partially consolidated basis, where the banking
component is separated from the insurance component. When conglomerates are considered on a
partially consolidated basis, the sample size is 27. We collect balance sheet data from regulatory reports
when available or from public financial statements otherwise. For banks and banking components of
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conglomerates, the exposures are derived from “large exposures” regulatory reports. These reports
contains the list of all exposures larger than €300 mn or 10% of capital. In that report, an exposure to a
counterpart is a double aggregation: it is the sum over all of the banking subsidiaries of all individual
financial instruments associated with any subsidiaries of this specific counterpart. Each exposure
is then broken down into broad financial instrument classes. We identify in the list of counterparts
the financial institutions of our perimeter. In addition, we also keep major sovereign exposures. The
exposures of insurers are based on security-by-security reports of French insurance entities. We identify
the same counterparts as we do for banks. Since we can only access French insurance subsidiaries, there
is downward bias. The impact of the bias varies across insurers according to their area of activity: the
bias is almost null for domestic-oriented insurers and larger for globally-active insurers. The exposures
are broken down between debt instruments and equity instruments. Debt instruments consist of debt
securities, loans, deposits, etc. Equity instruments gather share securities, equity investments, etc.
Note that the French financial conglomerates are banking dominant. The equity associated with the
banking components represents about 90% of the total equity of the groups. Therefore, we expect the
banking component to be similar to a banking group and are more interested in the behavior of the
insurance component.

Figure 2. Network of French financial institutions for total exposures on a consolidated basis. The node
color indicates the institution class (red for conglomerates, blue for pure insurers and yellow for pure
banks); the edge width is proportional to exposure. The arrow starts from the owner of the exposure
and ends at the counterpart with a left bent profile. Source: ACPRdata, authors’ computation.

A total of €227 bn is reported. Among the 420 possible bilateral exposures, 261 are non-zero.
The ratio of the two figures is called the density. With a density of 62%, the French financial network
is very dense. For a comparison, the density of the banking network is about 1% in Germany (see
Craig and von Peter [34]), 8% in the Netherlands (see van Lelyveld and Veld [35]), 3% in the U.K.
(see Langfield et al. [36]) and varies between 10% and 20% in Italy (see Fricke and Lux [37]). This
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high density may be explained by the presence of insurers. Figure 2 represents the network of total
exposures where institutions are considered on a full-consolidated basis. Institutions are represented
by nodes. In the center, the six red nodes are the conglomerates. On the left part, the four blue nodes
are the pure banks. On the right part, the eleven yellow nodes are the insurers. The arrows represent
exposures between institutions. Identifying a clear pattern is a challenge. Conglomerates appears to
have the largest exposures and to be connected to banks and insurers. However, we observe many
exposures between insurers. Figure 3 represents the volume of exposure between sub-sectors. About
50% of the €227 bn are exposures between financial conglomerates. About 20% of the exposures are
exposures of pure insurers to conglomerates. The exposures of conglomerates to the banks and to
the insurers account for about 10% each. We consider that the banking component of one financial
conglomerate is the parent company of the insurance component when we analyze the exposures
between components of the same conglomerate. The exposure of the banking component to the
insurance component is consequently composed of equity. Overall, the exposures from one component
to another are approximately balanced. In a majority of cases, the insurance component is slightly more
exposed to the banking component than the banking component to the insurance component. In any
case, the main difference between intra-group exposures is the instrument: the bank component holds
equity issued by the insurance component, whereas the insurance component holds debt instruments
issued by the banking component.

Figure 3. Volume of total exposures allocation between sectors. The node color indicates the institution
class (red for conglomerates, blue for pure insurers and yellow for pure banks); the edge width is
proportional to exposure. The arrow starts from the owner of the exposure and ends at the counterpart
with a left bent profile. Loop arrows represent exposure within the class considered. Source: ACPR
Data, authors’ computation.

This basic analysis of the exposure shows first that the network is very dense. High density is
a double-edged sword. On the one hand, this feature can be seen as a diversification pattern that
points towards resilience. On the other hand, Allen and Gale [14] show that a dense network is
prone to widespread contagion when shocks are extreme. This dichotomy between a positive effect
during normal times and a negative aspect during bad times corresponds to the empirical findings
in Minderhoud [21]. Second, this analysis shows that the financial conglomerates are key players in
terms of the size of institutions and exposures. At first glance, contagion can hardly occur without
involving at least one of them.

4. To What Extent Are Insurers within a Conglomerate Different from Pure Insurers?

In this section, we address the similarity in terms of interconnectedness between the insurer part
of a conglomerate and a stand-alone insurer. To do so, we use a distance metric between each financial
institutions to see if the insurer part of a conglomerate are close to the stand-alone insurer.
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4.1. Methodology

We compare the interconnectedness between financial institutions using two concepts: network
integration and network substitutability (see Hauton and Héam [7]). Two institutions are said to
be close in terms of network integration when they have similar exposures independent of their
counterparts. Two institutions are said to be close in terms of network substitutability when they have
similar exposures to the same counterparts. Network substitutability is more stringent than network
integration: if two institutions are close in terms of network substitutability, they are necessarily close
in terms of network integration. To illustrate the differences between these two concept, we consider a
fictitious example represented by the exposure matrix given in Table 1. An exposure matrix gathers the
exposures between a set of financial institutions, such that coefficient (i, j) represents the exposure of
institution i to institution j. Let us consider institutions A and C. Their common exposures, which are
exposures to institutions B, D, E and F, are reported in Table 2. The exposure series are similar, since
each amount in the exposures of institution A can be mapped to an exposure of institution C: 2.7 with
2.9, 5.0 with 5.1, 2.1 with 2.0 and 3.2 with 3.1. Let us now consider institutions A and B. Their common
exposures, which are exposures to institutions C, D, E and F, are reported in Table 3. The exposures are
very similar, since the amounts are roughly the same and concern the same counterpart. Institution A
and institution B are considered close in terms of substitutability and in terms of integration (Table 3):
they lend similar volumes to the same counterparts. By contrast, institution A and institution C
are close in terms of integration, but distant in terms of substitutability (Table 2): they lend similar
volume,s but not to the same counterparts.

Table 1. Fictitious example for network integration and network substitutability.

A) B) C) D) E) F)

A) 0 2.7 3.0 5.0 2.1 3.2
B) 2.0 0 2.9 4.9 2.2 3.3
C) 1.9 2.9 0 3.1 5.1 2.0
D) 0.5 0.1 0.6 0 2.1 0.7
E) 1.1 1.5 1.3 1.9 0 1.9
F) 2.0 4.1 4.9 3.7 2.1 0

Table 2. Fictitious example: common exposures of institutions A and C.

A) B) C) D) E) F)

A) X 2.7 X 5.0 2.1 3.2
C) X 2.9 X 3.1 5.1 2.0

Table 3. Fictitious example: common exposures of institutions A and B.

A) B) C) D) E) F)

A) X X 3.0 5.0 2.1 3.2
B) X X 2.9 4.9 2.2 3.3

In line with these two concepts, Hauton and Héam [7] propose two metrics to quantify each
dimension. These metrics are derived from a statistical background that goes beyond the scope of
this paper (see Appendix B for more details). Intuitively, the metrics are based on comparing the
size of exposure with or without taking into account the counterparts. The main idea is that we can
build two distance matrices describing the closeness of any pair of institutions with respect to network
integration and network substitutability. An interesting feature is that this process can be carried out
by considering gross exposure (exposures in €), or by scaling exposures by the owner’s size (exposures
in % of owner’s equity), or by scaling exposures by the issuers’ size (exposures in % of issuer’s equity).
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These three processes are not expected to provide the same results, as they are three distinct vantage
points to look at exposures. Examining exposures in € is the basic analysis that provides insights into
the stock of inter-financial assets. One drawback of this vantage point is the risk that we capture size
effects rather than interconnection effects: it is natural that two institutions of similar total asset size
have similar exposures. The second vantage point is adopting a credit risk perspective. Instead of
considering the size of the exposure, we look at how much the exposure represents of the owner’s
equity. A €10 mn loan granted from a small institution will be different from a €10 mn loan granted
by a large institution. From that perspective, if two institutions appear close, they take similar risk in
investing. In that approach, we have controlled for size effects. The third and last vantage point is
adopting a funding risk perspective. Exposure is expressed as the percent of the equity of the issuers.
Following this line, two closed institutions have similar funding strategies. Note that the two first
approaches are examining the asset side, whereas with the last approach, the focus is on the liability
side. Since analyzing manually a distance matrix between 27 institutions is cumbersome, we use cluster
analysis. The objective is to categorize institutions, so that institutions of the same cluster are very alike.
Intuitively, clusters are built step-by-step through aggregating individuals to the closest cluster. The
graphical representation of a cluster analysis is a dendrogram. The y−axis is the threshold distance
between clusters, while individuals are represented on the x−axis. Figure 4 presents a toy example of
clustering analysis results. There are various technical ways to process the aggregation of individuals.
We present the results using the Ward criterion that minimizes the inner variance (see Ward [38]).
We check that our results are robust using the other following aggregating criteria: complete (that
minimizes the furthest distance), group average (that minimizes the unweighted average distance)
and weighted (that minimizes a weighted average distance). See Hartigan [39] for a textbook on
clustering methods.

Figure 4. Cluster analysis example. The left panel represents a population of five individuals (A to E)
with the successive clusters. The right panel represents the corresponding dendrogram.

4.2. Results on Network Integration

Figure 5 presents the dendrograms for network integration when exposures are considered in €
(Figure 5a), normalized by the size of the owner (Figure 5b), and normalized by the size of the issuer
(Figure 5c). Each label on the x-axis represents one institution. Pure banks are labeled from PB1 to
PB4; pure insurers are labeled from PI1 to PI11. The banking component of financial conglomerate i is
labeled BCi, while the insurance component is labeled ICi. We use an arbitrary threshold identifying at
most three clusters to ease the discussion. We distinguish three clusters for gross exposures (Figure 5a).
The first cluster (on the left) is composed of all pure institutions, except for two pure insurers that
form a second cluster (in the middle) and except for one insurance component. The last cluster (on the

4646



Risks 2015, 3, 139–163

right) is composed of all components of the financial conglomerates (except the insurance component,
which is in the first cluster). Therefore, the components of financial conglomerates tend to be exposed
to similar volumes. These volumes are different from the volumes of pure banks and pure insurers.
The volume perspective is informative, but since the size of institutions is not controlled for, we may
only grasp the cluster of institutions with a similar size. Let us look at Figure 5b, where exposures
are scaled by the size of the owner. Two clusters are spotted. The first one (on the left) is composed
of all financial components and one pure insurer. The second cluster gathers all pure institutions
(except one pure insurer). The picture is therefore similar to the analysis in terms of volumes. The
components of financial conglomerates are very alike, independent of their banking or insurance
activities. Finally, we adopt a funding perspective in Figure 5c. Here, almost all banking components
of financial conglomerates are gathered into one cluster (on the right). Insurance components are
mixed with pure banks and several pure insurers (on the left). One last cluster (in the middle) regroups
five pure insurers. In a funding perspective, the components of financial conglomerates have a
clearer stand: insurance components are close to insurers, while banking components form a distinct
homogeneous group.
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Figure 5. Dendrograms for network integration. Legend: PIx indicates the x-th pure insurer; PBy
indicates the y-th pure bank; ICz the insurance component of the z-th financial conglomerate; and BCz
the banking component of the z-th financial conglomerate. Source: ACPR data, authors’ calculation. (a)
Volume (exposures in €); (b) credit risk (exposures in % of owner’s equity); (c) funding risk (exposures
in % of issuer’s equity).
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Figure 6. Dendrograms for network substitutability. Legend: PIx indicates the x-th pure insurer; PBy
indicates the y-th pure bank; ICz the insurance component of the z-th financial conglomerate; and BCz
the banking component of the z-th financial conglomerate. Source: ACPR data, authors’ calculation. (a)
Volume (exposures in €); (b) credit risk (exposures in % of owner’s equity); (c) funding risk (exposures
in % of issuer’s equity).
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4.3. Results on Network Substitutability

Figure 6 presents the dendrograms for network substitutability when exposures are considered
in € (Figure 6a), normalized by the size of the owner (Figure 6b) and normalized by the size of the
issuer (Figure 6c). Compared to network integration, the distance metric encompasses a comparison
of the size of exposures associated with a similarity of counterparts. The substitutability in terms of
volumes is analyzed in Figure 6a. Nine out of twelve components of conglomerates form a cluster (on
the right). The two last clusters mix different institutions (on the left and in the middle). From that
perspective, insurance components of conglomerates tend to lend similar amounts (in €) to the same
counterparties as their banking homologous do. This proximity disappears when examining credit
risk represented in Figure 6b. Except for a few cases, three groups can be identified: a group formed by
a banking component and pure banks, a group of pure insurers and a group of insurance components.
Insurance components are therefore different from their banking homologous in risk taking, but also
different from pure insurers. With respect to funding risk in Figure 6c, the insurer components shape
a cluster (in the middle) that is distinct from the cluster banking components (on the right) and the
cluster of pure institutions (on the left). The reading is similar to the features identified for credit risk.

4.4. Conclusion on Likeliness of Insurers

The comparison of the results on network substitutability and the results on network integration
leads us to draw a few stylized facts. On the asset side, the banking components and insurance
components of financial conglomerates appear to have similar exposures. This proximity may come
from an economy of scale in counterparty risk monitoring. However, their portfolio allocations differ.
Insurance components have a clear profile distinct from their homologous and distinct from pure
insurers. This feature may be explained by a diversification constraint at a group level. On the liability
side, the nature of the activity is a clear discriminant. The insurance components’ funding strategy
is much more like pure insurers’ strategy than that of their banking homologous. This analysis of
financial assets and liabilities suggests that insurers that are part of conglomerates differ specifically
and moderately from pure insurers. They tend to be more exposed than pure insurers. However, their
exposures are diversified from their banking peers. On the liability side, there is a clear insurance
profile where insurance components are very distinct from the banking components of conglomerates.
Their funding strategy is similar to any pure insurers. Let us emphasize that the comparison is
only carried out with respect to interconnectedness and brings no insight in terms of the riskiness of
investments, marketing strategies, etc.

5. To What Extent Are Conglomerates Modifying Contagion Risk?

Since conglomerates are active in the banking sector and the insurance sector, a natural concern is
the risk that they could facilitate the propagation of a crisis from one sector to another. Using market
data, Stringa and Monks [22] or Brewer and Jackson [19] shed light on the perception of this specific
concern by market participants. To bring evidence based on granular bilateral data, we use a network
stress test approach. We consider specific shocks to briefly analyze the risk that the default of one
institution may trigger a default cascade. We also apply common shocks based on sovereign exposures
that affect simultaneously all institutions.

5.1. Methodology

A network stress test exercise is composed of a contagion model and the design of external
shocks. We use the contagion model developed in Gouriéroux et al. [40]. This structural model
extends the model of Eisenberg and Noe [41] by distinguishing a contagion channel based on equity
instruments from a contagion channel based on debt instruments. The motivation to use the model of
Gouriéroux et al. [40] is that alternative models consider only contagion based on debt instruments.
Equity instruments are necessary for our analysis, since equity is a major instrument for the exposures
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between the components of a financial conglomerate. Using a network stress test has the advantage of
comparison, since most academic papers using bilateral exposure data include a network stress test
application. A network stress test is also in line with stress test exercises run by the industry, such
as the 2014 stress test for European banks organized jointly by the European Banking Authority and
the European Central Bank or the 2014 stress test for European insurers organized by the European
Insurance and Occupational Pensions Authority. Moreover, we design simple scenarios that are easy to
explain. The main drawback of stress test comes from the so-called “static balance sheet assumption”.
We apply a shock and look at its propagation through the system without considering any reactions
of financial institutions. It is as if the shock were unexpected and sudden. We acknowledge that
this assumption is a caveat for the result interpretation. However, modeling the reaction of financial
institutions in a network perspective goes far beyond the scope of our paper. Let us present briefly
the model of Gouriéroux et al. [40]. Consider n financial institutions interconnected through equity
instruments and debt instruments. On the liability side, we denote Yi the value of the equity of
institution i and Li the value of the debt of institution i. On the asset side, we denote πi,j the fraction of
equity instruments issued by institution j owned by institution i, γi,j the fraction of debt instruments
issued by institution j owned by institution i and Axi the value of all others assets of institutions i
(loans to households, sovereign exposures, etc). For instance, π1,2 = 0.5 means that Institution 1 owns
50% of the equity of Institution 2. The balance sheet of institution i is represented in Table 4. Denoting
L∗

i the nominal debt of institution i, Merton’s model written for each bank provides the following
2n−equation system:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ Li = min

[
n
∑

j=1

(
πi,jYj

)
+

n
∑

j=1

(
γi,jLj

)
+ Axi

(1)
System (??) defines a liquidation equilibrium. Gouriéroux et al. [40] show that under mild

assumptions, there exists one unique liquidation equilibrium (Y, L) for any choice of Ax and L∗. The
parameters πi,j, γi,j and L∗ are calibrated on the dataset, as well as the pre-shock values of external
assets Ax. Specifying the shock corresponds to computing the liquidation equilibrium with a shocked
value Ax. Let us emphasize that we consider only deterministic shocks: we analyze what happens in a
given situation without quantifying the likelihood of this situation.

Table 4. Balance sheet of institution i in Gouriéroux et al. [40].

Asset Liability

interbank
cross

shareholding
↔
{ πi,1Y1

...
πi,nYn

Li ↔ debt

interbank
lending ↔

{ γi,1L1
...

γi,nLn

Yi ↔ equity

externalasset ↔ Axi

5.2. Stress Test with Individual Shocks

The very first concern about contagion risk and conglomerates is the risk that the default of one
component is propagated to the other component, initiating a cross-sector chain of defaults. In that
perspective, we consider sequentially that the external assets of each component of the six financial
conglomerates are totally wiped out by assuming Axi = 0. For four of the financial conglomerates, the
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default of the banking component implies the default of the insurance component. For the last two
conglomerates, the default of the banking component is not sufficient to put the insurance component
into default. On the contrary, the default of the insurance component never triggers the default of
the banking component. This result is in line with the fact that the banking component is much more
important than the insurance component for the French conglomerates. In light of this stress test
exercise, the contagion risk within a financial conglomerate is therefore clear: the insurance component
is exposed to the banking component, but the reverse is false.

5.3. Stress Test with Common Shocks

Considering individual shocks is informative, but they correspond to very particular situations,
which may not be representative of anticipated shocks. More realistically, we consider that contagion
risk is prominent when there is a common shock that weakens all institutions. The contagion is a
second-round effect that pushes the impact further. We consider shocks composed of the decrease of
50% of the sovereign exposures on major countries, since first, sovereign debt is a massive investment
part of banks and insurers (especially for insurers) and, second, sovereign risk is one current major
concern. We sequentially shock sovereign exposures on Germany, Spain, France, the United Kingdom,
Ireland, Italy, Portugal and the United States of America.3 The figure of 50% corresponds to the 2011
agreement on the Greek sovereign debt (see Erlanger and Castle [42]). Sovereign exposures encompass
all “official” counterparties: state debt, federal debt, municipalities bonds, hospital debt, etc. For
each country, we compare the setup where financial conglomerates are split and the setup where
financial conglomerate are one group. In the first setup, the two components of one conglomerate
are considered as different entities, albeit exposed to one another, whereas in the second setup, they
share the same fates. There is no general argument to tell which situation is the most resilient. We
emphasize that the first set-up is not a perfect counter-factual representation of what may happen if
conglomerates were legally split, since exposures are endogenous. If conglomerate were to be split, the
exposures between the banking component and the insurer component would be somehow reallocated.
This caveat should be kept in mind when interpreting the results. Although not perfect, we believe
this counter-factual representation brings informative insights. Robustness checks are provided in
Appendix C. Results are presented in Table 5. For Germany, Spain, the United Kingdom, Ireland,
Portugal and the United States of America, the losses do not lead any institutions to default, whatever
the setup. Even the U.S. and the U.K., of which sovereign debt may be used as collateral for exchange
with the corresponding financial sectors, do not lead any institution to default. For Italy, one insurance
component is in default (in the split setup), whereas on a fully consolidated setup, no institution is
in default. Therefore, only one insurer benefits from being part of a conglomerate. The recovery rate
on the debt of this insurance component is 98%. There is a clear home bias. For France, the losses
generate the default of all insurances components and one banking component in the split setup. In
the consolidated setup, one financial conglomerate is in default. Consequently, five (out of six) insurers
somehow benefit from being part of a conglomerate. The recovery rate on defaulted institutions is 90%
for insurer components, 97% for banking components and 98% for conglomerates. With respect to
these scenarios, financial conglomerates strengthen the resilience of the French financial sector, since
policyholders, who are debt holders, are less likely to suffer losses.

3 NB: for these counterparts, we get all of the exposures of insurance subsidiaries whether they are French or not, using a
specific regulatory template for a financial conglomerate.
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Table 5. Sovereign exposure stress test results. Equity recovery is the average over the non-defaulted
institutions of the ratio of equity after shock and equity before shock. Debt recovery is the average over
the defaulted institutions of the ratio of debt value after shock and before shock. “.” indicates that the
value cannot be computed.

Country DE ES FR UK FR IE IT PT US

No. of
Defaults

Insurance
Component 0 0 6 0 0 0 1 0 0

Banking
Component 0 0 1 0 0 0 0 0 0

Conglomerate 0 0 1 0 0 0 0 0 0
Equity
Recovery
(%)

Insurance
Component 93 75 . 100 94 93 61 83 99

Banking
Component 91 96 71 99 99 99 86 97 86

Conglomerate92 96 66 99 99 99 87 97 86
Debt
Recovery
(%)

Insurance
Component . . 90 . . . 98 . .

Banking
Component . . 97 . . . . . .

Conglomerate . . 98 . . . . . .

5.4. Conclusion on Contagion Risk

Using a contagion model to assess the impact of several deterministic scenarios, we find that
insurance components are dependent on the banking component within the same group. Second,
we find evidence towards a positive role of financial conglomerates that increases the resilience of
insurers. One interpretation is that the dependence link is negative for an Armageddon scenario
(such as designed for individual shock), but positive for extreme adverse shocks, such a significant
sovereign crisis.

6. Conclusions

Financial conglomerates are not standard financial institutions and have been raising lively
debates. We shed light on some specific aspects of these discussions. First, we compare the insurance
components of financial conglomerates to pure insurers. On the liability side, we find a proximity
between insurance components and pure insurers. On the asset side, insurance components appear
more exposed than pure insurers, but this higher level of exposure seems offset by a diversification
scheme at a group level. Second, we analyze the contagion risk. We show that for French conglomerates,
which are dominated by banking activity, the insurance component is exposed to the banking
component, whereas the banking component does not depend on the insurance component. However,
when considering common shocks that affect both components, conglomerates appear in general
more resilient than separate structures. The downside aspect of the dependence does not appear for
these very adverse shocks. We exploit a unique type of database of bilateral exposures to contrast
previously-established results. Moreover, most previous papers used data prior to the last financial
crisis, whereas we have a snapshot of 2011. We believe it is unproductive to set the points of view
against each other. Minderhoud [21] found that market participants do not value the diversification
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dimension of a financial conglomerate during a crisis. Our application using a stress test approach,
which we believe is closer to fundamental risk, goes in the opposite direction. The explanation may
lie in the argument of van Lelyveld and Knot [23], stating that the diversification bonus of financial
conglomerates comes with an opacity drawback, for market participants. This opacity may appear to
be more important during crisis, when market agents are said to be feverish, leading to the negative
effect shown by market data. However, balance sheet data and stress test scenarios are not influenced
by “animal spirits”. Another partial explanation may be that previous authors analyzed the market
value of equity, while we are more concerned with debt holders (or policyholders in the case of
insurers). In line with this paper, further work to understand how a financial conglomerate allocates
its assets between its banking and insurance components would be interesting. Our contribution is
on the risk analysis of financial conglomerates and other types of concerns, such as competitiveness,
pricing or cross-sale, which would be worth taking into account.
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Appendix A. French Financial Situation in 2011

In this paper, we analyze one snapshot of the French financial sector, as of December 2011. We
present here background figures on the size of interconnections and the size of sovereign exposures in
order to situate the representativeness of our database.

A.1. Financial Exposures

First, Alves et al. [17] developed the empirical analysis of bilateral exposure between 53 large
European banks as of December 2011. About half of the exposures (in €) between these 53 large
European banks have a remaining maturity higher than one year. Second, Figure A1 reports the
volume of credit exposures of the French banking sector between 2008 and 2012. There is a moderate
decreasing trend of the exposures to other banks (“credit institutions” category in green). This trend is
confirmed over 2012 and 2013 (see Section 3.1 in ACPR [43]).
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Figure A1. Credit exposures of the French banking sector (€bn) between 2008 and 2012. Source: Chart
28 in ACP [44].

Third, Figure A2 reports the volume of investment of the 12 major French insurers between 2008
and 2014. The presented breakdown does not match our scope perfectly: the category “deposits” (in
mallow) is part of the exposures to banks, but the category “other debt securities” (in intermediate blue)
encompasses bonds issued by banks, insurers and industrial firms. We complement this aggregate
view by reporting the annual evolution of investment in debt securities issued by banks in Figure A3.
Since most nodes are slightly above the 45◦ line, we see a moderate decreasing trend in the exposures
of insurers to banks.

Figure A2. Credit exposures of the French banking sector (€bn) between 2008 and 2012. Source: Chart
6 in ACPR [45].
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Figure A3. Annual change of investment of the major French insurers through debt securities between
December 2011 and December 2014. Each dot represents one insurer. When dots are colored, a blue dot
indicates a decrease, while a yellow dot indicates an increase. Sources: ACP [46] for (a), ACPR [47]
for (b) and ACPR [45] for (c). (a) Between 2011 and 2012; (b) between 2012 and 2013; (c) between 2013
and 2014.

These three pieces of anecdotal evidence shed light on the total intra-financial assets of French
banks and insurers. The year 2011 does not appear as one exceptional year, but a regular point in
the evolution of the French financial sector characterized by a slightly decreasing trend of the size
of exposures. This information on the volume of exposure is not informative for the allocation of
these exposures, that is the evolution of the network structure. As shown by Cocco et al. [48], there
is a certain level of persistence between the banking relationship on the inter-bank market, even if
loans are typically overnight loans. Considering that the network structure is constant for long-term
exposures seems an acceptable first-order approximation.

A.2. Sovereign Exposures

Figure A4 reports the evolution of exposures of European peripheral countries for major French
banks and insurers, after 2011. For banks, there is a clear decrease of sovereign exposures between
2010 and 2011, followed by a stabilization period (see also Chart 31 in ACPR [43]). For insurers, there
is an off-peak of exposures to Spain and Italy. Exposures to Greece, Ireland and Portugal decrease
and stabilize. Moreover, exposures to sovereign debt are regularly disclosed by financial institutions.
Consequently, the year 2011 is representative of current exposures to peripheral sovereign debt.
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Figure A4. Exposures to European peripheral countries for major French banks and insurers (€bn).
Sources: ACP [44] for (a) and ACPR [45] for (b). (a) Exposures of major French banks to European
peripheral countries; (b) exposures of major French insurers to European peripheral countries.

Appendix B. Distance Metrics

B.1. Network Integration

We call DNI(i0, i1) the distance between institution i0 and institution i1 with respect to network
integration. Denoting E(i, j) the exposure of institution i to institution j, DNI(i0, i1) is defined as:

DNI(i0, i1) = max

[
∑

i �=i0,j �=i1

�E(i0,i)−E(i1,j)>0; ∑
i �=i0,j �=i1

�E(i1,i)−E(i0,j)>0

]
.

Intuitively, DNI(i0, i1) is the number of exposure of one institution (either i0 or i1) that are larger than
the exposures of the other institutions (either i1 or i0). If the two institutions have the same exposures,
then DNI is n(n + 1)/2, where n is the number of institutions. When one institution has all of its
exposures larger than the other one, then DNI is n2. Therefore, DNI varies between n(n + 1)/2 and
n2.

B.2. Network Substitutability

Similarly, we call DNS(i0, i1) the distance between institution i0 and institution i1 with respect to
network substitutability. DNS(i0, i1) is defined as:

DNS(i0, i1) = max

[
∑
k

k(�Z(k)>0; ∑
k

k�Z(k)<0)

]
,

where Zj = E(i0, j)− I(i1, j), ordered according to |Z(1)|≤|Z(2)|≤ ... . Loosely speaking, DNS is the
(weighted) sum of discrepancies of exposures of institutions i0 and i1 to the same counterparties.

B.3. Gross Exposures, Credit Risk Exposures and Funding Risk Exposures

Let us denote M the matrix where M(i, j) is the amount (in €) of institution i on institution j, and
denote Ki the equity of institution i. When we analyze gross exposures, the distance matrices DNI
and DNS are computed with E(i, j) = M(i, j). When we analyze credit risk exposures, the distance
matrices DNI and DNS are computed with E(i, j) = M(i, j)/E(i). When we analyze funding risk
exposures, the distance matrices DNI and DNS are computed with E(i, j) = M(j, i)/E(j).
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Appendix C. Robustness Check on Stress Test Exercise

In the stress test exercise for sovereign risk, we considered a haircutof 50% in line with the
outcome of the Greek sovereign debt crisis. For the robustness check, we run the same exercise varying
the haircut between 10% and 100%. We observe some defaults of conglomerates or some defaults
of their components only in scenarios where France or Italy are shocked. For Germany, Spain, the
United Kingdom, Ireland, Portugal and the United States of America, losses never lead to default.
Table A1 provides the number of defaults for different haircut levels on the Italian sovereign debt. Up
to three insurance components may be in default. However, banking components and conglomerates
are in no cases in default. Table A2 provides the number of defaults for different haircut levels on the
French sovereign debt. The home bias is clearly present. Insurance components are more affected than
banking components. For a shock up to 80%, all conglomerates are more resilient than their split-up
version. For extreme shocks at haircuts of 90% and 100%, we observe two conglomerates in default,
while only one banking component is in default.

Table A1. Number of defaults for a shock on Italian sovereign debt: robustness check. When the Italian
sovereign debt loses 40% of its value, one insurance component is in default, zero banking components
are in default and zero conglomerates are in default.

Haircut Insurance Component Banking Component Conglomerate

10% 0 0 0
20% 0 0 0
30% 0 0 0
40% 1 0 0
50% 1 0 0
60% 1 0 0
70% 1 0 0
80% 1 0 0
90% 3 0 0
100% 3 0 0

Table A2. Number of defaults for a shock on French sovereign debt: robustness check. When the
French sovereign debt loses 40% of its value, four insurance components are in default, one banking
component is in default and one conglomerate is in default.

Haircut Insurance Component Banking Component Conglomerate

10% 1 0 0
20% 2 0 0
30% 3 1 1
40% 4 1 1
50% 6 1 1
60% 6 1 1
70% 6 1 1
80% 6 1 1
90% 6 1 2
100% 6 1 2

Author Contributions: G. Hauton and J.C. Héam designed and realized the data collection ensuring that the
different data bases are merged consistenly. J.C. Héam designed IT tools. G. Hauton and J.C. Héam analyzed the
results. J.C Héam wrote the paper.

Author Contributions: The authors declare no conflict of interest.
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Abstract: New risk-based solvency requirements for insurance companies across European markets
have been introduced by Solvency II and will come in force from 1 January 2016. These requirements,
derived by a Standard Formula or an Internal Model, will be by far more risk-sensitive than the
required solvency margin provided by the current legislation. In this regard, a Partial Internal Model
for Premium Risk is developed here for a multi-line Non-Life insurer. We follow a classical approach
based on a Collective Risk Model properly extended in order to consider not only the volatility of
aggregate claim amounts but also expense volatility. To measure the effect of risk mitigation, suitable
reinsurance strategies are pursued. We analyze how naïve coverage as conventional Quota Share and
Excess of Loss reinsurance may modify the exact moments of the distribution of technical results.
Furthermore, we investigate how alternative choices of commission rates in proportional treaties
may affect the variability of distribution. Numerical results are also figured out in the last part of the
paper with evidence of different effects for small and large companies. The main reasons for these
differences are pointed out.

Keywords: capital requirement for premium risk; collective risk model; reinsurance strategies;
Solvency II

1. Introduction

On 10 October 2014, the European Commission adopted a Delegated Act (see [1]) regarding
implementing rules for Solvency II. This document was published in the Official Journal of European
Union on 17 January 2015, as Commission Delegated Regulation n. 2015/35, after approval of the
European Parliament and Council. The new system will lay down new quantitative requirements and a
proper methodology to evaluate them. These new criteria will come in force from next 1 January 2016.

Usually for a Non-Life insurer, the Underwriting Risk module (and, in particular, Premium and
Reserve sub-module) has the greatest impact on Solvency II Capital Requirement (SCR—Solvency
Capital Requirement). In the valuation of these requirements, the risk mitigation effect of proportional
and non-proportional reinsurance will be recognized. In this framework, the aim of this paper is to
describe the risk profile of a general multi-line insurer in order to show the effect of reinsurance, one of
the most crucial aspects of risk management strategies.

Risks 2015, 3, 164–182 61 www.mdpi.com/journal/risks61
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In order to describe the risk profile of a general multi-line insurer, we start by adopting the
structure of a classical risk theoretical model where, by known relations in actuarial literature1, only
premium risk is dealt with. We extend the relation to consider also the volatility of expenses to evaluate
the impact on both exact moments of technical results and capital requirements.

Furthermore, to analyze the effect on both profit and losses and capital requirement of alternative
reinsurance strategies2, two classical proportional and non-proportional treaties have been introduced
by extending classical relations. We derive moments of combined ratios by considering both the
cases of Quota-Share (QS) and Excess of Loss (XL) treaties (see [2–4]). According to Quota-Share, we
analytically describe how alternative methodologies3 to identify ceding commissions have an effect on
the moments of the probability distribution of combined ratios and on the capital requirements for
Premium Risk.

Indeed, in the management practice, the insurer must usually choose among different efficient
reinsurance strategies, taking into account either profitability sacrifice or capital saving.

A case study based on two different multi-line Non-Life insurers allows the comparison of the
effect of wide strategies on both profitability and allocated capital. Parameters of the model have been
calibrated in order to assure a realistic and consistent comparison between insurers and alternative
reinsurance strategies.

In particular, Section 2 briefly describes the structure of the Standard Formula defined by
Delegated Acts [1] focusing only on a sub-module of Premium and Reserve risk. In Section 3, we
provide the general framework needed to develop the internal model. Section 4 analytically shows the
effect of two alternative reinsurance strategies as Quota-Share and Excess of Loss. Finally, in Section 5,
numerical results are reported by focusing on the capital requirements derived by applying both
the Internal Model and the market-wide approach of the Standard Formula. Main results have been
extended in Section 6 to evaluate the effect of reinsurance. The conclusion follows.

2. A Brief Description of the Delegated Acts (DA) Standard Formula

We give a brief description of the main elements of Standard Formula for Premium and Reserve
Risk defined by Delegated Acts (see [1]). Since Quantitative Impact Studies 3 (QIS3), a unique
sub-module for the joined valuation of risks related both to future claims arising during and after the
period until the one-year time horizon for the solvency assessment (Premium Risk) and the risk related
to a non-sufficient amount of the technical provisions (Reserve Risk) has been introduced. The derived
capital charge must be then aggregated to lapse and cat risk to quantify the capital requirement for
Non-Life Underwriting Risk.

Focusing on Premium and Reserve risk, we have that the capital requirement SCRSF
NL is equal to

the following formula:
SCRSF

NL = 3·σNL·VNL (1)

where VNL is the volume measure net of reinsurance and σNL is the standard deviation for non-life
premium and reserve. σNL can be described as the standard deviation of the ratio between the
aggregate claims amount of premium and reserve risk and the volume measure, and it is then strictly
related to the variability coefficient (CV) of aggregate claim amount.

In particular, Equation (1) assumes to measure the distance between the 99.5% quantile and the
mean of the probability distribution of aggregate claims amount by using a fixed multiplier of the
standard deviation equal to 3. This choice has replaced the ρ(σNL) function used since QIS5 [16],
which was based on the assumption of a LogNormal distribution of total losses. From a practical
point of view, skewness of distribution is not directly taken into account anymore. The drawback is

1 For a frequency-severity approach see, for instance, [5–10].
2 Analysis of effect of reinsurance on risk reserve are also in [11–14].
3 See [15] for a detailed description of several alternatives to evaluate commissions that reinsurer pays to ceding company.
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a potential underestimation of capital requirement for small insurers and an overestimation for big
insurers. We have indeed found that the LogNormal assumption (and then ρ(σNL)) returns a multiplier
equal to 3 only when σNL is roughly 14.47%. For smaller volatilities coefficients (as it usually happens
for big insurers), Equation (1) leads to a capital requirement that is larger than QIS5.

The net volume measure VNL is equal to the sum of all the lines of business (LoBs) of net best
estimate of claims reserve at the valuation date plus net premium volume. This volume is equal to
the maximum between last year and next year earned premiums plus the expected present value of
future premiums after one-year for existing contracts and contracts of the following year. Finally, in
the valuation of VNL, it is allowed to take into account a geographical diversification of business held
in different macro-geographical regions of world, through the Herfindahl Index.

With regard to σNL, the overall volatility is derived by a double steps aggregation process based
on an initial aggregation of standard deviation of premium and reserve risk of single LoB assuming a
linear correlation coefficient equal to 0.5. Then, the standard deviation will be aggregated between
different lines of business by using a given correlation matrix (see Annex IV of Delegated Acts [1] for
details).

In order to quantify the standard deviation of premium or reserve risk of a single LoB, two
different approaches are provided. The first one is based on fixed volatility factors and it is defined as
a “market-wide approach”, while the second one is based on methodologies (see Annex XVII of [1])
that take into account the specific technical data of the company (“undertaking-specific approach”).
Adoption of the latter approach must be approved by the supervising authority. The differences
between market-wide and the undertaking-specific approach may be noticeable in the single-LoB
volatility valuation. The market approach is based on a market-wide estimate of the standard deviation
for premium risk, determined by a specific volatility factor given as input (see Annex II and XIV of [1]).
For instance, similarly to the main non-life LoB analyzed in the next, these factors for Premium risk are
reported in Table 1.

Table 1. Volatility factor, σprem,lob (DA—Premium Risk).

LoBs Accident4 Motor
Damages

Property
Motor

Third-Party
Liab.

General
Third-Party

Liab.

Volatility
Factor 8.5% 8% 8% 10% 14%

Only for Premium Risk, values of σprem,lob can be multiplied by a non-proportional factor NPlob
in order to take into account existing Excess of Loss treaties. This factor is set out at 80% for Property,
Motor Third Party Liabilities (MTPL) and General Third Party Liabilities (GTPL) and at 100% for
other LoBs.

It is, however, allowed to use an undertaking specific approach (see Annex XVII of [1]) to also
derive an alternative estimate of NPlob based on the valuation of the reducing effect of XL treaty on
the variability coefficient of the aggregate claim amount. In this case, the final value of NPlob will be a
weighted average of fixed NPlob and the corresponding estimate. The weight of the factor estimated
by data is given by a fixed credibility factor increasing the larger the available time-series. For all LoBs,
the weights are greater than zero if data of at least last five years are available and tend to one. MTPL,
GTPL and Credit and Suretyship should have data over 15 years and other LoBs at least over 10 years.

3. General Framework

We present an Internal Model for Premium Risk for a multi-line Non-Life insurer to take into
account the characteristics of each line of business (LoB) and the diversification effect due to the
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aggregation of them. To introduce the framework, let Ỹt+1 be the random variable (r.v.5) of a one-year
technical result for the period (t, t + 1), evaluated at the end of time t, as the difference between
earned premium of the total portfolio with h = 1, . . . , L LoBs and total amount of claims and expenses
of the year. For the sake of simplicity, we will start by considering a gross of reinsurance technical
result. Generalizations to also include the reinsurance effect are in the next Section6.

By considering the main sources of risks, we may decompose Ỹt+1 as follows:

Ỹt+1 =
L

∑
h=1

(
Bwritt

t+1,h + VP
t,h − ṼP

t+1,h − Ẽt+1,h − X̃paid,CY
t+1,h − ṼS,CY

t+1,h

)
(2)

Earned premiums of a single LoB are here described as the difference between written premium of
the year Bwritt

t+1,h and the one-year change in premium reserve (ṼP
t+1,h −VP

t,h) for unearned premiums and
unexpired risks evaluated under Solvency II criteria. In the same way we take into account the claim
cost of the year, by considering both payments (X̃) for claims and the provisions for outstanding claims
(ṼS

t+1). Regarding premium risk, we consider only payment for losses of claims incurred during the

year t + 1
(

X̃paid,CY
t+1,h

)
and the reserve at the end of year t + 1 for new claims

(
ṼS,CY

t+1,h

)
. Both payments

and reserves for claims incurred in previous years are necessarily covered by initial claims reserve and
their volatility attains to reserve risk. Finally we assume random the expenses Ẽt+1,h too.

Formula (2) may be rewritten as follows:

Ỹt+1 =
L

∑
h=1

(
Pt+1,h + λhPt+1,h + chBt+1,h + VP

t,h − ṼP
t+1,h − Ẽt+1,h − X̃paid,CY

t+1,h − ṼS,CY
t+1,h

)
(3)

In Equation (3), gross premiums of the h-th LoB are represented by risk premiums split into three
components: the expected amount for claims of current year Ph = E

(
X̃paid,CY

h + ṼS,CY
h

)
, the safety

loadings (λh·Ph) and the expense loading equal to the expected amount of expenses, i.e., chBt+1,h =

E
(

Ẽt+1,h

)
.

For sake of simplicity, we can assume that earned premiums and written premiums are equal7

and recalling a classical notation in Risk Theory, we can identify the aggregate claim amount by a
generic random variable X̃ = X̃paid,CY + ṼS,CY independent by paid or reserved claims:

Ỹt+1 =
L

∑
h=1

(
Pt+1,h + λhPt+1,h + chBt+1,h − Ẽt+1,h − X̃t+1,h

)
(4)

where X̃t+1,h describes the aggregate claim amount of next year related to new business.
To evaluate characteristics of Ỹt+1, we can make some assumptions about aggregate claim amounts

and expenses. Following the collective approach (e.g., see [5,8,17]), for each LoB, the aggregate claims
amount is given by a mixed compound process:

X̃t+1,h =
K̃t+1,h

∑
j=1

Z̃j,t+1,h

where the number of claims distribution, K̃t+1,h, follows the Poisson law, with parameter, n, increasing
year by year according to the real growth rate g (i.e., nt+1,h = nt,h(1 + gh)). We are assuming that the

5 From now on, tilde over a letter will indicate a random variable.
6 In the next Section we add a second term that takes into account reinsurance treaties. It considers premium received and

claims paid by the reinsurer and other amounts function of the reinsurance form (as commission for Quota Share treaties).
7 See [18] for an analysis of this relation in order to consider the effect of premium reserve.
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expected number of claims grows along with the number of contracts. Frequency is then constant in
period (t, t + 1). In the present paper, trends as well as long-term cycles are not considered and only
short-term fluctuations that may affect the volatility of the number of claims are taken into account.
For this purpose, a structural variable q̃h will be introduced to represent short-term fluctuations in the
number of claims. Then we have that n turns out to be a stochastic parameter (nt+1,h·q̃h) where q̃h has
its own probability distribution depending on the short-term fluctuations it is going to represent. In
Section 5, we will assume that q̃h is Gamma distributed with mean equal to one. Standard results from
mathematical statistics imply that the mixture Poisson-Gamma leads to a Negative Binomial r.v. for
the number of claims.

The claim size amounts Z̃j,t+1,h are assumed i.i.d. and scaled by the claim inflation rate ih.
In other words, we have that simple moments of order r of severity distribution are equal to
E(Z̃r

t+1,h) = (1 + ih)
r·E
(

Z̃r
t,h

)
. Different distributional assumptions (for details see [19]) may be

considered for claim size but for sake of simplicity and without loss of generalization, only the results
under LogNormal assumption will be reported below.

In order to take into account expense volatility, we will assume that acquisition and management
expenses are described by two random variables with mean and standard deviation equal to(
cA

h Bt+1,h,σA
h Bt+1,h

)
and
(
cM

h Bt+1,h,σM
h Bt+1,h

)
respectively, with cA

h + cM
h = ch. The coefficients cA

h
and cM

h represent the percentages of gross premiums used to cover respectively acquisition and
management expenses. σA

h and σM
h describe the standard deviation of expense ratios considering only

acquisition or management expenses.
To simulate expenses, a LogNormal distribution has been used in the next case study. It will

be assumed that expenses are not correlated to the claim amount. However, the distributional and
dependence assumptions do not have a great impact on the capital charge (except for specific lines as
Credit and Suretyship or Financial Losses for some specialist insurers).

Under these assumptions, main cumulants of X̃t+1,h and Ẽt+1,h may be derived to obtain exact
formulae for cumulants of technical results of a single line of business.

The cumulant generating function (f.g.c.), ΨỸt+1,h
(s), of technical result of the h-th single LoB is:

ΨỸt+1,h
(s) = s·Bt+1,h − ΨẼt+1,h

(s)− ΨX̃t+1,h
(s) =

where MZ̃,t+1,h
(s) is the moment generating function of claim-size.

Then, the mean, variance and skewness of Ỹh,t+1 are:

E
(

Ỹh,t+1

)
= λhPt+1,h

σ2
(

Ỹt+1,h

)
=

((
σA

h

)2
+
(
σM

h

)2
)

B2
t+1,h + nt+1,ha2,Z̃t+1,h

+ n2
t+1,ha2

1,Z̃t+1,h
σ2

q̃h

γ(
∼
Yt+1,h) =

=

μ3(
∼
E

A

t+1,h
)+μ3(

∼
E

M

t+1,h
)+nt+1,ha

3,
∼
z t+1,h

+3n2
t+1,ha

1,
∼
Zt+1,h

a
2,
∼
Zt+1,h

σ2∼
q h
+n3

t+1,ha3

1,
∼
Zt+1,h

μ3(
∼
qh)((

(σA
h )

2
+(σM

h )
2)

B2
t+1,h+nt+1,ha

2,
∼
Zt+1,h

+nt+1,ha2

1,
∼
Zt+1,h

σ2∼
q h

)3/2

where ar,Z̃t+1,h
are non-central moments of Z̃t+1,h of order r and μ3(·) describes the central moment of

order 3.
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Aggregated technical results will depend instead on the dependence assumed between several
lines of business. According to the VaR risk measure (see [20]) at confidence level α = 99.5% as defined
by Solvency II ([1]), the capital requirement (SCR) for Premium could be derived as:

SCRα = −VaR1−α

(
Ỹt+1

)
= VaRα

(
L

∑
h=1

Ẽt+1,h + X̃t+1,h

)
−

L

∑
h=1

Bt+1,h

It is noteworthy that we recognize expected profits/losses in the capital requirement evaluation
by considering safety loadings. From our point of view, safety loading should be regarded, but it is
not clear if it will be allowed in Internal Model by the supervisor, because QIS5 [16] and Delegated
Acts [1] Standard Formula do not mention it in the evaluation (see Section 2). This solution in the
Standard Formula is coming from the QIS5 multiplier of standard deviation found as the distance
between the desired quantile (at 99.5% level) and the expected losses. It is worth pointing out that
this approach would be not conservative if underpricing was in force, and a negative technical result
would be expected implying a consequent higher risk profile.

4. Reinsurance Effect

In order to consider the effect of reinsurance treaties, Formula (4) may be enriched as follows:

Ỹnet
t+1 =

L

∑
h=1

[(
Pt+1,h + λhPt+1,h + chBt+1,h − Ẽt+1,h − X̃t+1,h

)
−
(

BRE
t+1,h − X̃RE

t+1,h − C̃RE
t+1,h

)]
where BRE

t+1,h describes premiums paid to the reinsurer, while X̃RE
t+1,h is the amount of claims paid or

reserved born by the reinsurer. Finally, we consider stochastic ceding commissions C̃RE
t+1,h that the

reinsurer usually pays in proportional treaties to the ceding company for the afforded commercial
expenses.

We will consider in the next Section either the case of fixed commissions equal to a deterministic
percentage of premiums or the case of “sliding scale” commissions. A sliding scale commission is a
percent of premium paid by the reinsurer to the ceding company, which “slides” with the actual loss
experience, usually subjected to minimum and maximum amounts.

We start by considering the effect of two global Quota Share treaties, with either fixed commissions
or sliding commissions.

As is well known, in the case of a Quota Share reinsurance treaty, with an insurer’s retention
quota βh ∈ (0, 1), the aggregate claim amount charged to reinsurer is equal to X̃RE

t+1,h = (1 − βh)X̃t+1,h.
On the other hand, the gross premiums ceded to the reinsurer are:

BRE
t+1,h = (1 − βh)Bt+1,h

In proportional treaties, the reinsurer pays the cedant a commission on the premiums it receives
to compensate for the cost of acquiring the business and maintaining the portfolio. To describe
commissions, we have assumed C̃RE

t+1,h = c̃RE
h BRE

t+1,h. In this regard, we consider two alternative ways.
On one hand we assume a fixed percentage of ceded premiums as commission: CRE

t+1,h = cRE
h BRE

t+1,h
(i.e., c̃RE

h = cRE
h ). On the other hand, we consider a sliding commission that rewards or penalizes the

insurer according to the quality of portfolio protected by the treaty. The system consists of a variable
commission whose value depends by the observed loss ratio (see [15]).

We assume to describe the random commission rate according to the next formula:

c̃RE
h = cRE

h

⎡⎣1 +

⎛⎝1 − L̃Rh,t+1

E
(

L̃Rh,t+1

)
⎞⎠⎤⎦ (5)
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where L̃Rh,t+1 is the loss ratio at time t + 1. Sliding commissions are here assumed not subjected to
minimum and maximum amounts. In Section 6, we will also test numerically the effect of a different
structure where a minimum and maximum commission is provided when observed loss ratio falls out
of a certain range. For each line of business, we can easily derive the characteristics of technical result
net of reinsurance Ỹnet

t+1,h and of aggregate claim amount retained by ceding company.

We report exact cumulants of combined ratio net of reinsurance C̃R
net
t+1,h for both cases of fixed

(C̃R
net,QSF
t+1,h ) and scaling commissions (C̃R

net,QSS
t+1,h ).

First of all, the expected combined ratio net of Quota Share treaty, C̃R
net,QS
t+1,h , for both fixed and

scaling commissions is:

E
(

C̃R
net,QS
t+1,h

)
= E

(
Ẽt+1,h + X̃t+1,h − C̃RE

t+1,h − X̃RE
t+1,h

Bt+1,h − BRE
t+1,h

)
=

1 + ch
1 − λh

+
ch − cRE

h (1 − βh)

βh

Note that the net combined ratio is equal to E
(

C̃R
gross,QS
t+1,h

)
when commission rate cRE

h is equal to
the expenses loading coefficient ch.

Furthermore the standard deviation is:

σ(
∼

CR
net,QS

t+1,h )

=

√
σ2(

∼
Et+1,h)+σ2(

∼
Xt+1,h−

∼
X

RE

t+1,h)+σ2(
∼
C

RE

t+1,h)+2Cov(
∼
Xt+1,h−

∼
X

RE

t+1,h ,−
∼
C

RE

t+1,h)

β2
hB2

t+1,h

=

√
1

β2
h
σ2(

∼
ER

gross

t+1,h) + σ2(
∼

LR
gross

t+1,h) +
σ2(

∼
C

RE

t+1,h)−2βhCov(
∼
Xt+1,h ,

∼
C

RE

t+1,h)

β2
hB2

t+1,h

where, in the case of fixed commissions, we have:

σ
(

C̃R
net,QSF
t+1,h

)
=

√
1
β2

h
σ2
(

ẼR
gross
t+1,h

)
+ σ2
(

L̃R
gross
t+1,h

)
with variability greater than the corresponding value for the gross of reinsurance case because of a
higher volatility of net expense ratio.

For sliding commissions, we have instead:

σ(
∼

CR
net,QS

t+1,h ) =

=

√√√√√ 1
β2

h
σ2(

∼
ER

gross

t+1,h) + σ2(
∼

LR
gross

t+1,h) +

(CRE
h BRE

t+1,hCV(
∼
X

RE

t+1,h))
2

−2βhCov(
∼
Xt+1,h ,− CRE

h BRE
t+1,h

E(
∼
X

RE
t+1,h)

∼
X

RE

t+1,h)

β2
hB2

t+1,h

=

√
1

β2
h
σ2(

∼
ER

gross

t+1,h) + σ2(
∼

LR
gross

t+1,h) +

(
(1−βh)

βh
CRE

h CV(
∼
Xt+1,h)

)2
+ 2

CRE
h BRE

t+1,h

βhE(
∼
Xt+1,h)

σ2(
∼

LR
gross

t+1,h)

where we observe the effects of both variability of commissions and negative dependency between
commissions and aggregate claims amount. We have indeed that the correlation coefficient is equal to:

ρ
(

X̃RE
t+1,h, C̃RE

t+1,h

)
= −

(1−βh)cRE
h BRE

t+1,hσ
2(X̃t+1,h)

E(X̃t+1,h)

σ
(

X̃RE
t+1,h

)
σ
(

C̃RE
t+1,h

) = −1

and also ρ
(

X̃t+1,h, C̃RE
t+1,h

)
= −1, i.e., they are negatively linear dependent, where we remind that βh

denotes the insurer’s retention quota for line h.
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Furthermore, we will consider Excess of Loss treaty, with a retention for claim unit and no limit to
reinsurer exposure. In the case of an Excess of Loss treaty, the stochastic claim amount charged to the
reinsurer for year t is:

∼
X

RE

t+1,h =

∼
Kt+1,h

Σ
j=1

∼
Z

RE

j,t+1,h =

∼
Kt+1,h

Σ
j=1

Max(0,
∼
Z

RE

j,t+1,h − Mt+1,h)

having denoted by Mt+1,h the insurer’s retention limit for year t + 1. The reinsurer risk premium PRE
t+1,h

is given by the well-known relationship:

PRE
t+1,h = E

(∼
X

RE

t+1,h

)
= nt+1,hE

(∼
Z

RE

t+1,h

)
No explicit commission and loss participations are usually provided in the case of the Excess

of Loss coverage, so that we get: BRE
t+1,h = PRE

t+1,h

(
1 + λRE

h

)
and C̃RE

t+1,h = 0, with λRE
h being the safety

loading coefficient applied by reinsurer, usually greater than the safety loading coefficient λh, as
increasing as the insurer’s retention limit is growing up.

In general, the f.g.c. net of XL is equal to:

ΨỸnet
t+1,h

(s) = s·
(

Bt+1,h − BRE
t+1,h

)
− ΨẼt+1,h

(s)− ΨX̃net
t+1,h

(s) =

from which we can derive cumulants of technical result net of XL in a similar way as the Quota Share
case.

5. Numerical Analysis

To show the effect of an Internal Model (IM) based on a Collective Risk Model for Premium
risk, two non-life insurance companies with a different dimension are considered (their figures are
summed up in Table 2). It is assumed that both insurers underwrite business in the same five
lines of business (Accident, Motor Other Damages (MOD), Property, Motor Third-Party Liability
and General Third-Party Liability) with the same mix of portfolio (the proportions used resemble
the real proportions in the Italian insurance market). The comparison of results will allow us to
describe the effect of a different portfolio size on the aggregate claims amount distribution and on the
capital requirements.

Table 2. Gross premium volumes of both insurers (amounts in mln of Euro).

LoBs
OMEGA EPSILON Both Insurers

Bt Bt+1 Bt Bt+1 Bt,h/Σh Bt,h

Accident 100.0 105.0 10.0 10.5 10.0%
MOD 100.0 105.0 10.0 10.5 10.0%

Property 150.0 157.5 15.0 15.8 15.0%
MTPL 550.0 577.5 55.0 57.8 55.0%
GTPL 100.0 105.0 10.0 10.5 10.0%

TOTAL 1000.0 1050.0 100.0 105.0 100.0%

The main parameters of Collective Risk Model are in Table 3. As we can see, both insurers have
the same characteristics apart from the expected number of claims. OMEGA is assumed to be ten times
larger than EPSILON. Safety loading coefficient (λ) and the standard deviation of structure variable
(σq) are obtained mainly by Italian market Loss Ratios and Combined Ratios. About λ, it depends by
the mean of the empirical combined ratios. It shows a negative value for LoBs where the observed
combined ratios are on average greater than one e.g., in GTPL. Furthermore, it is noteworthy to recall
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that the safety loading is here expressed as a percentage of risk premium. Expense parameters (see
cM, cA, σM,σA defined in Section 3) have been calibrated by using the historical pattern of both
management and acquisition expenses in the same period. The small values of σM and σA that will
lead to a low variability of expenses producing a low additional capital requirement for expense risk
could be noticed. The CV of claim size (cz) is fixed, for each LoB, and calibrated on the Italian market
data. Moreover, the expected number of claims (nt) and the expected claim cost (mt) reported in Table 3
for each LoB are referred to the initial year t; they will increase in the examined year t+1 as described in
the previous Section for the dynamic portfolio, according to the annual rate of real growth of portfolio
(g) as well as to the number of claims and the annual claim inflation rate (i) and to claim size, assumed
to be almost 2% and 3% respectively for all LoBs in the simulations.

Table 3. Parameters for premium risk.

InsurersLoBs nt σq g mt cz i λ cM, cA, σM σA

OMEGA

Accid. 16,428 15.2% 1.9% 3200 3 3% 27.7% 4.6% 28.2% 0.3% 0.8%
MOD 25,900 11.1% 1.9% 2500 2 3% 13.9% 4.7% 21.5% 0.4% 1.4%
Prop. 18,849 6.9% 1.9% 6000 8 3% −6.4% 4.7% 24.8% 0.6% 0.6%
MTPL 116,509 8.6% 1.9% 4000 4 3% −4.0% 4.7% 14.0% 0.7% 0.8%
GTPL 8225 12.8% 1.9% 10,000 12 3% −13.1% 4.5% 24.0% 0.8% 1.5%

EPSILON

Accid. 1643 15.2% 1.9% 3200 3 3% 27.7% 4.6% 28.2% 0.3% 0.8%
MOD 2590 11.1% 1.9% 2500 2 3% 13.9% 4.7% 21.5% 0.4% 1.4%
Prop. 1885 6.9% 1.9% 6000 8 3% −6.4% 4.7% 24.8% 0.6% 0.6%
MTPL 11,651 8.6% 1.9% 4000 4 3% −4.0% 4.7% 14.0% 0.7% 0.8%
GTPL 823 12.8% 1.9% 10,000 12 3% −13.1% 4.5% 24.0% 0.8% 1.5%

Characteristics of simulated distribution of losses for Premium risk and for each LoB are reported
in Table 4. One million simulations have been applied in order to assure stable convergence. Premium
risk, CV, and skewness of the Aggregate amount of next-year claims plus expenses (X̃t+1 + Ẽt+1) are
figured out.

The high variability of GTPL because of a large variability coefficient of claim-size is noteworthy.
Furthermore, the effect of non-pooling risk is significant for MOD and Property. As expected, we have
indeed that the bigger insurer shows for several LoB a CV of X̃t+1 slightly greater than the value of
the standard deviation of σq because of the relevant diversification effect. The effect of size is indeed
noticeable for EPSILON company where LoBs with high cZ as Property and GTPL show the greater
increase of variability with respect to OMEGA.

Finally, the aggregate distribution has been derived by assuming a Gaussian Copula function
whose parameters have been calibrated by using the correlation matrix proposed by the standard
Formula in Technical Specifications of QIS5 (see [16]) and Delegated Acts [1]. We limited the analysis
to this simple choice of copula having at its disposal correlation coefficient provided by the Standard
Formula, but the evaluation may be properly extended in order to consider both a more significant
tail dependency between several LoBs and hierarchical structure based on Archimedean Copulas to
aggregate LoBs (see at this regard [21]). Despite the positive correlation provided by Solvency II, we
observe in Table 4 a, diversification effect between LoBs.
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Table 4. CV and skewness of simulated distribution for each LoB (Gross of Reinsurance).

LoBs

OMEGA EPSILON

X̃t+1 Ẽt+1 X̃t+1 + Ẽt+1 X̃t+1 Ẽt+1 X̃t+1 + Ẽt+1

CV Skew. CV Skew. CV Skew. CV Skew. CV Skew. CV Skew.

Accident15.34% 0.30 2.53% 0.08 9.49% 0.30 17.01% 0.37 2.53% 0.08 10.52% 0.37
MOD 11.15% 0.22 5.45% 0.18 8.09% 0.21 11.89% 0.23 5.44% 0.18 8.60% 0.22
Property9.00% 0.95 2.88% 0.15 6.52% 0.92 19.66% 6.56 2.88% 0.15 14.16% 6.52
MTPL 8.68% 0.18 5.40% 0.19 7.18% 0.17 9.39% 0.21 5.39% 0.20 7.76% 0.21
GTPL 18.26% 2.84 5.87% 0.18 13.65% 2.79 42.14% 12.87 5.87% 0.18 31.34% 12.82
Total 5.87% 0.24 2.62% 0.15 4.55% 0.23 7.86% 2.73 2.62% 0.15 6.07% 2.69

Table 5 shows SCR ratio obtained by IM as the capital requirement for Premium risk divided by
initial gross premium volume. According to OMEGA, as expected, the highest ratios are registered
for the line GTPL (65.3%) due mainly to its large variability (CV = 13.7%). Property and MTPL show
high ratios too (respectively 26.7% and 24.8%). The large safety loadings lead to lower ratios for MOD
(11.9%) and Accident (9.1%). Focusing on EPSILON, the effect of pooling risk is clearly noticeable on
Premium risk capital charges.

Table 5. SCR ratio
(

SCR99.5%
Bt

)
(Gross of Reinsurance).

LoBs
OMEGA EPSILON

SCR
Ratio

SCR
Ratio (λ

= 0)

SCR
Ratio

(No Exp.
Risk)

SCR
Ratio
(SF)

SCR
Ratio

SCR
Ratio (λ

= 0)

SCR
Ratio

(No Exp.
Risk)

SCR
Ratio
(SF)

Accident 9.08% 24.4% 8.99% 26.78% 12.19% 27.5% 12.11% 26.78%
MOD 11.93% 21.4% 11.59% 25.20% 13.41% 22.9% 13.07% 25.20%

Property 26.65% 21.6% 26.53% 25.20% 66.58% 61.5% 66.50% 25.20%
MTPL 24.81% 21.3% 24.68% 31.50% 26.81% 23.3% 26.64% 31.50%
GTPL 65.32% 54.0% 65.27% 44.10% 168.82% 157.5% 168.79% 44.10%
Total 19.35% 17.0% 19.25% 22.78% 30.76% 28.2% 30.66% 22.78%

As expected, the effect of expenses is not significant on the capital requirement for Premium risk.
Finally, neglecting safety loading (i.e., assuming λ = 0), SCR is significantly greater for Accident and
MOD (where λ > 0). By contrast, the choice of Standard Formula to not consider safety loading seems
to be less prudential for most important LoBs, but it is influenced by the phase of the underwriting
cycle. The SCR ratio for only Premium Risk, derived by applying the “market-wide approach” of the
Standard Formula (SF) (see Section 2), is also reported in Table 5.

Both insurers have the same ratios for each LoB when SF is applied because of the lack of a size
factor. The total SCR ratio, derived by the SF, is also equal for both insurers having assumed the same
mix of portfolio. It is interesting to compare this ratio to the results obtained by the IM. A consistent
comparison could be developed only by considering the case of λ = 0 because, as previously mentioned,
the Standard Formula neglects safety loading in capital requirement evaluation. We observe a saving
of capital by using the Internal Model for OMEGA, while a significant increase of capital is requested
for the smaller insurer if IM is used.

Main differences are justified by considering that volatility factor used in the Standard Formula
have been calibrated on the European market, while main parameters of the Internal Model have been
derived by considering the risk profile of each specific insurer.

Exploring deeply the differences between IM and SF, some key points could be captured.
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(a) In the Internal Model, we are considering also the volatility of expenses, neglected by the
Standard Formula. Main results confirm that the effect of expenses is not very significant for the
LoB analyzed.

(b) For OMEGA, the standard deviations of (X/B) of Accident (8.1%), MOD (7.2%), MTPL (7.4%)
and Property (6.8%) are lower than volatility factors provided by the Standard Formula (see
Table 1). A greater value is indeed observed for GTPL (15.1% against a volatility factor of 14%).
For EPSILON, the high variability coefficient of severity distribution and a low expected number
of claims lead to very high standard deviation of (X/B) for Property (15%) and GTPL (36%) when
IM is applied.

(c) Because of the skewness of the overall aggregate distribution, for both insurers, the ratio
between 99.5% quantile less the mean and the standard deviation is very far from the
multiplier equal to 3 fixed by the Standard Formula. The implicit multiplier, derived by IM as
VaR0.995(∑L

h=1 X̃t+1,h)−∑L
h=1 Pt+1,h

σ(∑L
h=1 X̃t+1,h)

, is equal to 2.76 for OMEGA and to 3.15 for EPSILON.

6. The Effect of Alternative Reinsurance Strategies

The model has been also applied net of reinsurance in order to compare the effect on capital
requirement of different reinsurance treaties. For each line of business, we assume evaluating the
following reinsurance strategies:

- QSF1: Quota Share treaties with a retention βh equal to 90% for Accident and MOD, 80% for
Property, 95% for MTPL and 85% for GTPL and a fixed commission applied to reinsurer premiums
and equal to the expected expense ratio. In this case we have ch = cRE

h .
- QSF2: Quota Share treaties with the same retentions βh of QSF1 and a fixed commission applied

to reinsurer premiums and equal to 80% of the expected expense ratio. In this case we have
cRE

h = 0.8 ch.
- QSS1: Quota Share treaties with the same retentions βh of QSF1 and a sliding commission applied

to reinsurer premiums. Provisional and expected commission rate is equal to 80% of the expected
expense ratio E

(
cRE

h
)
= 0.8 ch, while the effective percentage varies according to the observed

loss experience as provided by Formula (5).
- QSS2: Quota Share treaties with the same retentions βh of QSF1 and a sliding commission applied

to reinsurer premiums. Provisional and expected commission rate is equal to 80% of the expected
expense ratio E

(
cRE

h
)
= 0.8 ch. The commissions are adjusted also in this case according to the

observed loss ratio. We build up five bins of width 10% and we modify the percentage according
to the ratio between the average value of the classes where the observed loss ratio falls and the
expected loss ratio. According to this classification, we assume a maximum value equal to the
expected loss ratio plus 25% and a minimum value equal to the expected loss ratio less 25%.
The excesses due to loss ratios outside the limits of the scale (above or below) are not taken into
account in the calculation of commission rate. This structure implicitly defines a minimum and a
maximum commission.

- XL: an XL treaty for each LoB with a retention limit equal to Mt+1,h = E
(

Z̃t+1,h

)
+ 15σ

(
Z̃t+1,h

)
.

Safety loading coefficient λRE
h of the reinsurer is equal to the safety loading coefficient of insurer,

proportionally increased to take into account the savings of variability coefficient of the insurer
because of reinsurance.

- XLQS: a QS treaty with retention and sliding commissions equal to QSS2 for Accident, MOD
and Property and a XL treaty with retention limit and safety loadings equal to XL1 for MTPL
and GTPL.
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Figure 1. Distribution of aggregate claim amount of Total Portfolio for OMEGA according to different
reinsurance strategies.

For the sake of simplicity, we report in Figures 1 and 2 only the aggregated distribution of
aggregate claim amount of gross and net of reinsurance respectively in order to catch the effect of
several treaties on the shape of distribution. Quota Share treaty intuitively leads to a variability
coefficient and a skewness similar to the gross reinsurance case. We do not have the same CV because
the different retentions between Lines of business lead to a different mix of portfolio with respect to
reinsurance cases. We have instead a greater effect on CV and skewness when a XL treaty is used.
Finally, the choice of different treaties between long-tail business and other LoBs leads to results similar
to XL because of the high weight of MTPL on the total portfolio.
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Figure 2. Distribution of aggregate claim amount of Total Portfolio for EPSILON according to different
reinsurance strategies.

Table 6. CV and skewness of simulated distribution for each LoB (Gross and Net of Reinsurance).

LoBs

OMEGA

CV
(

X̃t+1

)
γ
(

X̃t+1

)
No

Reins
QS XL XLQS

No
Reins

QS XL XLQS

Accident 15.34% 15.34% 15.29% 15.34% 0.30 0.30 0.30 0.30
MOD 11.15% 11.15% 11.14% 11.15% 0.22 0.22 0.22 0.22

Property 9.00% 9.00% 7.69% 9.00% 0.95 0.95 0.17 0.95
MTPL 8.68% 8.68% 8.65% 8.65% 0.18 0.18 0.18 0.18
GTPL 18.26% 18.26% 14.27% 14.27% 2.84 2.84 0.18 0.18
Total 5.87% 6.00% 5.70% 55.88% 0.24 0.22 0.12 0.15

LoBs

EPSILON

CV
(

X̃t+1

)
γ
(

X̃t+1

)
No

Reins
QS XL XLQS

No
Reins

QS XL XLQS

Accident 17.01% 17.01% 16.54% 17.01% 0.37 0.37 0.32 0.37
MOD 11.89% 11.89% 11.79% 11.89% 0.23 0.23 0.22 0.23

Property 19.66% 19.66% 12.92% 19.66% 6.56 6.56 0.34 6.56
MTPL 9.39% 9.39% 9.09% 9.09% 0.21 0.21 0.17 0.17
GTPL 42.14% 42.14% 23.28% 23.28% 12.87 12.87 0.22 0.22
Total 7.86% 7.75% 6.37% 6.69% 2.73 2.31 0.06 0.12
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Analyzing the effects on aggregate claim amount for each LoB (see Table 6), we observe a similar
behavior of proportional and non-proportional treaties for Accident and MOD while a greater saving
of variability and skewness is provided by XL for LoBs with a greater cZ as MTPL, GTPL and Property.
Because of a higher pooling risk, the relative effect of non-proportional treaties is higher for EPSILON.
We have in this case that aggregated CV moves from 7.9% to 6.3% and aggregated skewness varies
from 2.73 to 0.06 when a XL treaty is applied.

In order to consider the effect of pricing of the treaties, we evaluate the characteristics of Combined
Ratio distribution. As previously described, several QS treaties are considered with the same retention
and different commission rates. We report in Table 7 simulated characteristics of Combined Ratio (CR)
of total portfolio for both insurers. It is noteworthy that the high number of simulations (1 million)
assured a strong convergence of simulated moments to the exact ones. Some negligible differences are
observed for high skewed LoB (as GTPL) of small companies.

Table 7. Characteristics of Combined Ratio distribution for both insurers (Total Portfolio—Gross and
Net Reinsurance).

LoBs Stats
No

Reins

QSF1
cre = c
Fixed

Comm.

QSF2
cre =
0.8c

Fixed
Comm.

QSS1
E(cre) =

0.8c
Sliding
Comm.

QSS2
E(cre) =

0.8c
Classes
(Min,
Max)

XL QSXL

OMEGA

Mean 101.29% 101.24% 101.77% 101.77% 101.77% 101.81% 102.20%
St. Dev. 4.61% 4.73% 4.73% 4.81% 4.80% 4.47% 4.67%
Skew. 0.23 0.21 0.21 0.22 0.20 0.11 0.14

EPSILON

Mean 101.29% 101.24% 101.77% 101.77% 101.77% 102.21% 102.40%
St. Dev. 6.15% 6.09% 6.09% 6.27% 6.20% 5.01% 5.33%
Skew. 2.69 2.27 2.25 2.39 2.15 0.05 0.11

According to gross of reinsurance distribution, we observe an average CR on the portfolio greater
than one because of negative safety loadings in Property, MTPL and GTPL. As already showed for
aggregate claim amount characteristics, a higher variability and skewness for EPSILON is confirmed.

Furthermore, the different results related to simulated distribution of combined ratios net of
reinsurance can be compared. In particular, in the case of XL strategy, the distribution is heavily
affected by reinsurer pricing with a higher combined ratio. On the other hand, this treaty allows the
highest reduction of variability and skewness. With regard to proportional treaties, we observe the
greater CV in the case of sliding commissions (QSS1) because of both the variance of C̃re and the
dependence with the aggregate claim amount. A very slight reduction of variability and skewness
with respect to QSS1 is observed when the QSS2 methodology is considered. In this case, sliding
commissions are based on fixed classes with a minimum and a maximum value where if the observed
loss ratio falls outside the range, these excesses are not considered in the commissions. The effect is
more noticeable for EPSILON because of the higher variability of the company.

Moving to SCR for Premium risk for OMEGA, we observe in Figure 3 how all strategies reduce
the required capital, but they bring it into effect in a rather different way. In the case of the Quota
Share, with fixed commissions equal to expenses loading, we have a reduction of required capital for
each LoB equal to the quota to be reinsured (1 − βh). Other Quota Share treaties are more realistic by
assuming lower commission rates or variable commissions, but the unfavorable pricing and the greater
variability lead to a reduced saving of capital requirement. The XL strategy is clearly depressing the
expected technical results. The assumed XL coverage is indeed more expensive than QS coverage, but
it is more effective on reducing the downside risk. In general, it provides a greater saving of capital
except when compared to the Quota Share QSF1 with fixed commission rate so that cre = c.
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The ratio between total capital requirement for Premium Risk and gross premiums ranges indeed
between 17.55% of QSF1 Treaty to 19.35% of Gross of Reinsurance case. As expected for lines with
high variability and skewness as GTPL, XL is the most efficient treaty, despite the high pricing. For
this LoB, the SCR net XL is indeed 47% of gross premiums against a ratio of 65% evaluated gross
reinsurance, while the reinsurer applies a safety loading coefficient λRE equal to roughly 54% of ceded
risk premiums for GTPL.

Figure 3. SCR ratio for each LoB and Total SCR ratio according to different reinsurance strategies
(OMEGA insurer).

Figure 4. SCR ratio for each LoB and Total SCR ratio according to different reinsurance strategies
(EPSILON insurer).

When the smaller company is considered (Figure 4), we have noticeable differences between
proportional and non-proportional treaties. With respect to a capital ratio gross of reinsurance of
roughly 31%, QS treaties settle around 27%–29%, while XL shows a ratio of 21.5%. In this treaty, despite
the greater safety loading of reinsurer (λRE) for OMEGA, the higher the reduction of pooling risk, the
greater is the saving of capital. We have indeed that in this case, not only GTPL but also Property
shows a significant reduction of capital when XL is applied (78% and 35% of premiums for SCRnet

against 169% and 67% gross of reinsurance).
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Furthermore, we can observe how XL treaties appear very efficient when higher confidence levels
are taken into account. For example, when a confidence level of 99.97% is considered, the gross SCR
ratio is respectively 31% and 79% for OMEGA and EPSILON, while the ratio net of XL is equal to 23%
and 29% a roughly 15% and 64% less for the two companies. It is clear how the different dimensions
lead to different effects when non-proportional treaties are considered.

Finally the IM capital requirements can be compared with those obtained by the Standard Formula
also for net of reinsurance cases (see Figure 5).

Figure 5. SCR ratios for both insurers derived by Internal Model and market-wide Standard Formula.

Both insurers show again the same ratio when SF is considered because of the same mix of portfolio
and the same reinsurance strategies. This result emphasizes another pitfall of the market-wide formula
that provides, through the fixed NPlob factor, the same effect of non-proportional reinsurance despite a
different size of portfolio. This factor, being independent by the characteristics of the XL treaty (as for
example the attachment point of the layer), assumes for some LoBs a greater saving of variability with
respect to the effective reduction obtained by analyzing the distribution of aggregate claim amount.
We have indeed that the ratio between the variability coefficients net and gross of reinsurance for
MTPL is equal to 99.6% for OMEGA and to 96.7% for EPSILON, while SF allows a NPlob equal to 80%
for this LoB. Considering instead the GTPL, we derive IM ratios equal to respectively 78% and 56%
for the insurers because of the high variability of this LoB. This overestimation of the effect of XL,
provided by the Standard Formula for MTPL, shows a poor convenience in the development of the
Internal Model for OMEGA when this treaty is applied. On the other hand, the SF provides a significant
underestimation of capital requirement when the small insurer is considered.

Moving to Quota Share treaties, the effect of different commission rates is not considered by the
Standard Formula that leads to the same capital ratio for all proportional treaties here analyzed.

7. Conclusions

A reliable comparison of different reinsurance covers provided by the real market makes the
insurer able to identify the most appropriate strategic planning. Starting from the Collective Risk
Theory approach, we extend the relations in order to consider proportional or non-proportional
reinsurance strategies. By considering several Quota-Share treaties scenarios, we derive the exact
characteristics of combined ratio distribution by considering the effect of alternative methodology on
providing ceding commissions.

Moreover, the Monte Carlo Simulation technique has allowed for the comparison of the effect
on capital requirements of different strategies. This technique provides a useful insight of the whole
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complex risk process, with special advantages in cases of portfolios with a large skewness of the loss
distribution, whereas the use of approximation formulas are not reliable.

The proposed theoretical model is clearly a simplified version of a more complex model that
should be built up, but here suitable analyses about primary insurance aspects have been preferred. In
particular, we have focused on the mitigation effect of reinsurance on underwriting Premium Risk,
neglecting the additional capital requirement needed to cover the default risk of the reinsurer, since
the latter depends clearly on reinsurer reliability as a risk factor and only in terms of volume on the
ceded business.

The comparison with the Standard Formula, defined by Delegated Acts, has allowed us to
emphasize some technical weaknesses of the market-wide approach, such as the lack of size factor, the
use of a default value of the non-proportional factor and the replacement of the LogNormal assumption
with a fixed multiplier.
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Abstract: Value-at-risk (VaR) and conditional value-at-risk (CVaR) are popular risk measures from
academic, industrial and regulatory perspectives. The problem of minimizing CVaR is theoretically
known to be of a Neyman–Pearson type binary solution. We add a constraint on expected return to
investigate the mean-CVaR portfolio selection problem in a dynamic setting: the investor is faced
with a Markowitz type of risk reward problem at the final horizon, where variance as a measure of
risk is replaced by CVaR. Based on the complete market assumption, we give an analytical solution
in general. The novelty of our solution is that it is no longer the Neyman–Pearson type, in which
the final optimal portfolio takes only two values. Instead, in the case in which the portfolio value
is required to be bounded from above, the optimal solution takes three values; while in the case in
which there is no upper bound, the optimal investment portfolio does not exist, though a three-level
portfolio still provides a sub-optimal solution.

Keywords: conditional value-at-risk; mean-CVaR portfolio optimization; risk minimization;
Neyman–Pearson problem; 91G10; 91B30; 90C46; G11; G32; C61

1. Introduction

The portfolio selection problem published by Markowitz [1] in 1952 is formulated as an
optimization problem in a one-period static setting with the objective of maximizing expected return,
subject to the constraint of variance being bounded from above. In 2005, Bielecki et al. [2] published
the solution to this problem in a dynamic complete market setting. In both cases, the measure
of risk of the portfolio is chosen as variance and the risk-reward problem is understood as the
“mean-variance” problem.

Much research has been done in developing risk measures that focus on extreme events in the
tail distribution where the portfolio loss occurs (variance does not differentiate loss or gain), and
quantile-based models have thus far become the most popular choice. Among those, conditional
value-at-risk (CVaR), developed by Rockafellar and Uryasev [3,4], also known as expected shortfall by
Acerbi and Tasche [5], has become a prominent candidate to replace variance in the portfolio selection
problem. On the theoretical side, CVaR is a “coherent risk measure”, a term coined by Artzner et
al. [6,7] in pursuit of an axiomatic approach for defining properties that a ‘good’ risk measure should
possess. On the practical side, the convex representation of CVaR from Rockafellar and Uryasev [3]
opened the door for convex optimization for the mean-CVaR problem and gave it vast advantage in
implementation. In a one-period static setting, Rockafellar and Uryasev [3] demonstrated how linear
programming can be used to solve the mean-CVaR problem, making it a convincing alternative to the
Markowitz [1] mean-variance concept.
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The work of Rockafellar and Uryasev [3] has raised huge interest for extending this approach.
Acerbi and Simonetti [8] and Adam et al. [9] generalized CVaR to a spectral risk measure in a static
setting. A spectral risk measure is also known as weighted value-at-risk (WVaR) by Cherny [10], who,
in turn, studied its optimization problem. Ruszczynski and Shapiro [11] revised CVaR into a multi-step
dynamic risk measure, namely the “conditional risk mapping for CVaR”, and solved the corresponding
mean-CVaR problem using Rockafellar and Uryasev’s [3] technique for each time step. When expected
return is replaced by expected utility, the utility-CVaR portfolio optimization problem is often studied
in a continuous-time dynamic setting; see Gandy [12] and Zheng [13]. More recently, the issue of
robust implementation is dealt with in Quaranta and Zaffaroni [14], Gotoh et al. [15], Huang et al. [16]
and El Karoui et al. [17]. Research on systemic risk that involves CVaR can be found in Acharya et
al. [18], Chen et al. [19] and Adrian and Brunnermeier [20].

To the best of our knowledge, no complete characterization of a solution has been done for the
mean-CVaR problem in a continuous-time dynamic setting. Similar to Bielecki et al. [2], we reduce the
problem to a combination of a static optimization problem and a hedging problem with the complete
market assumption. Our main contribution is that in solving the static optimization problem, we
find a complete characterization, whose nature is different than what is known in the literature. As a
pure CVaR minimization problem without the expected return constraint, Sekine [21], Li and Xu [22]
and Melnikov and Smirnov [23] found the optimal solution to be binary. This is confirmed to be
true for more general law-invariant risk (preference) measure minimization by Schied [24] and He
and Zhou [25]. The key to finding the solution that is binary is the association of the mean-CVaR
problem with the Neyman–Pearson problem. We observe in Section 2.1 that the stochastic part of
CVaR minimization can be transformed into shortfall risk minimization using the representation
(CVaR is the Fenchel–Legendre dual of the expected shortfall) given by Rockafellar and Uryasev [3].
Föllmer and Leukert [26] characterized the solution to the latter problem in a general semimartingale
complete market model to be binary, where they have demonstrated its close relationship to the
Neyman–Pearson problem of hypothesis testing between the risk neutral probability measure, P̃, and
the physical probability measure, P.

Adding the expected return constraint to WVaR minimization (CVaR is a particular case of
WVaR), Cherny [10] found conditions under which the solution to the mean-WVaR problem was still
binary and conditions under which the solution does not exist. In this paper, we discuss all cases
for solving the mean-CVaR problem depending on a combination of two criteria: the level of the
Radon–Nikodým derivative, dP̃

dP , relative to the confidence level of the risk measure; and the level of
the return requirement. More specifically, when the portfolio is uniformly bounded from above and
below, we find the optimal solution to be nonexistent or binary in some cases and, more interestingly,
take three values in the most important case (see Case 4 of Theorem 3.15). When the portfolio is
unbounded from above, in most cases (see Case 2 and 4 in Theorem 3.17), the solution is nonexistent,
while portfolios of three levels still give sub-optimal solutions. Since the new solution we find can
take not only the upper or the lower bound, but also a level in between, it can be viewed in part as a
generalization of the binary solution for the Neyman–Pearson problem with an additional constraint
on expectation.

This paper is organized as follows. Section 2 formulates the dynamic portfolio selection problem
and compares the structure of the binary solution and the three-level solution, with an application of
exact calculation in the Black–Scholes model. Section 3 details the analytic solution in general, where
the proofs are delayed to the Appendix A. Section 4 lists possible future work.

2. The Structure of the Optimal Portfolio

2.1. Main Problem

Let
(
Ω,F , (F )0≤t≤T , P

)
be a filtered probability space that satisfies the usual conditions, where

F0 is trivial and FT = F . The market model consists of d + 1 tradable assets: one riskless asset (money
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market account) and d risky assets (stock). Suppose the risk-free interest rate, r, is a constant and the
stock, St, is a d-dimensional real-valued locally-bounded semimartingale process. Let the number of
shares invested in the risky asset, ξt, be a d-dimensional predictable process, such that the stochastic
integral with respect to St is well-defined. Then, the value of a self-financing portfolio, Xt, evolves
according to the dynamics:

dXt = ξtdSt + r(Xt − ξtSt)dt, X0 = x0

Here, ξtdSt and ξtSt are interpreted as inner products if the risky asset is multidimensional d > 1.
The portfolio selection problem is to find the best strategy, (ξt)0≤t≤T , to minimize the conditional
value-at-risk (CVaR) of the final portfolio value, XT , at confidence level 0 < λ < 1, while requiring the
expected value to remain above a constant z.1 In addition, we require uniform lower bound xd and
upper bound xu on the value of the portfolio over time, such that −∞ < xd < x0 < xu ≤ ∞. Therefore,
our main dynamic problem is:

inf
ξt

CVaRλ(XT) (1)

subjecttoE[XT ] ≥ z, xd ≤ Xt ≤ xu a.s.∀t ∈ [0, T]

Note that the no-bankruptcy condition can be imposed by setting the lower bound to be xd = 0,
and the portfolio value can be unbounded from above by taking the upper bound as xu = ∞. Our
solution will be based on the following complete market assumption.

Assumption 2.1 There is no free lunch with vanishing risk (as defined in Delbaen and Schachermayer [27]),
and the market model is complete with a unique equivalent local martingale measure, P̃, such that the
Radon–Nikodým derivative, dP̃

dP , has a continuous distribution.
Under the above assumption, any F -measurable random variable can be replicated by a dynamic

portfolio. Thus, the dynamic optimization problem Equation (1) can be reduced to: first, find the
optimal solution, X∗∗, to the main static problem:

inf
X∈F

CVaRλ(X) (2)

subjecttoE[X] ≥ z, Ẽ[X] = xr, xd ≤ X ≤ xu a.s.

if it exists, and then, find the dynamic strategy that replicates the F -measurable random variable,
X∗∗. Here, the expectations, E and Ẽ, are taken under the physical probability measure, P, and
the risk neutral probability measure, P̃, respectively. Constant xr = x0erT is assumed to satisfy
−∞ < xd < x0 ≤ xr < xu ≤ ∞, and the additional capital constraint Ẽ[X] = xr is the key to making
sure that the optimal solution can be replicated by a dynamic self-financing strategy with initial capital
x0.

Using the equivalence between the conditional value-at-risk and the Fenchel–Legendre dual of
the expected shortfall derived in Rockafellar and Uryasev [3]:

CVaRλ(X) =
1
λ

inf
x∈R

(
E
[
(x − X)+

]
− λx

)
, ∀λ ∈ (0, 1) (3)

the CVaR optimization problem Equation (2) can be reduced to an expected shortfall optimization
problem, which we name the two-constraint problem:

1 Krokhmal et al. [28] showed conditions under which the problem of maximizing expected return with the CVaR constraint
is equivalent to the problem of minimizing CVaR with the expected return constraint. In this paper, we use the term
mean-CVaR problem for both cases.
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Step 1: minimization of expected shortfall

v(x) = inf
X∈F

E
[
(x − X)+

]
(4)

subjectto E[X] ≥ z, (returnconstraint)

Ẽ[X] = xr, (capitalconstraint)

xd ≤ X ≤ xu a.s.

Step 2: minimization of conditional value-at-risk

inf
X∈F

CVaRλ(X) =
1
λ

inf
x∈R

(v(x)− λx) (5)

To compare our solution to existing ones in the literature, we also name an auxiliary problem,
which simply minimizes the conditional value-at-risk without the return constraint, the one-constraint
problem: Step 1 in Equation (4) is replaced by:

Step 1: minimization of expected shortfall

v(x) = inf
X∈F

E
[
(x − X)+

]
(6)

subjectto Ẽ[X] = xr, (capitalconstraint)

xd ≤ X ≤ xu a.s.

Step 2 in Equation (5) remains the same.

2.2. Main Result

This subsection is devoted to a conceptual comparison between the solutions to the one-constraint
problem and the two-constraint problem. The solution to the expected shortfall minimization problem in
Step 1 of the one-constraint problem is found by Föllmer and Leukert [26] under Assumption 2.1 to be
binary in nature:

X(x) = xdIA + xIAc , forxd < x < xu (7)

where I·(ω) is the indicator function and set A is defined as the collection of states where the
Radon–Nikodým derivative is above a threshold,

{
ω ∈ Ω : dP̃

dP (ω) > a
}

. This particular structure,
in which the optimal solution, X(x), takes only two values, namely, the lower bound, xd, and x, is
intuitively clear once the problems of minimizing expected shortfall and hypothesis testing between
P and P̃ are connected in Föllmer and Leukert [26], the later being well-known to possess a binary
solution by the Neyman–Pearson Lemma. There are various ways to prove the optimality. Other than
the Neyman–Pearson approach, it can be viewed as the solution from a convex duality perspective;
see Theorem 1.19 in Xu [29]. In addition, a simplified version to the proof of Proposition 3.14 gives a
direct method using the Lagrange multiplier for convex optimization.

The solution to Step 2 of one-constraint problem and, thus, to the main problems in Equations
(1) and (2), as a pure risk minimization problem without the return constraint is given in Schied [24],
Sekine [21] and Li and Xu [22]. Since Step 2 only involves minimization over a real-valued number, x,
the binary structure is preserved through this step. Under some technical conditions, the solution to
Step 2 of the one-constraint problem is shown by Li and Xu [22] (Theorem 2.10 and Remark 2.11) to be:

X∗ = xdIA∗ + x∗IA∗c , (two-lineconfiguration) (8)
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CVaRλ(X∗)= −xr +
1
λ
(x∗ − xd)

(
P(A∗)− λP̃(A∗)

)
(9)

where (a∗, x∗) is the solution to the capital constraint (Ẽ[X(x)] = xr) in Step 1 and the first order Euler
condition (v′(x) = 0) in Step 2:

xdP̃(A) + xP̃(Ac) = xr, (capitalconstraint) (10)

P(A) +
P̃(Ac)

a − λ = 0. (firstorderEulercondition) (11)

A static portfolio holding only the riskless asset will yield a constant portfolio value, X ≡ xr, with
CVaR(X) = −xr. The diversification by dynamically managing the exposure to risky assets decreases
the risk of the overall portfolio by an amount shown in Equation (9). One interesting observation
is that the optimal portfolio exists regardless of whether the upper bound on the portfolio is finite
xu < ∞ or not xu = ∞. This conclusion will change drastically as we add the return constraint to the
optimization problem.

The main result of this paper is to show that the optimal solution to the two-constraint problem
and, thus, main problem Equation (1) and Equation (2), does not have a Neyman–Pearson type of
binary solution, which we call two-line configuration in Equation (8); instead, it has a three-line
configuration. Proposition 3.14 and Theorem 3.15 prove that, when the upper bound is finite xu < ∞,
and under some technical conditions, the solution to Step 2 of the two-constraint problem turns out to
be:

X∗∗ = xdIA∗∗ + x∗∗IB∗∗ + xuID∗∗ , (three-lineconfiguration) (12)

CVaRλ(X∗∗
T )=

1
λ
((x∗∗ − xd)P(A∗∗)− λx∗∗) (13)

where (a∗∗, b∗∗, x∗∗) is the solution to the capital constraint and the first order Euler condition, plus
the additional return constraint (E[X(x)] = z):

xdP(A) + xP(B) + xuP(D) = z, (returnconstraint) (14)

xdP̃(A) + xP̃(B) + xuP̃(D) = xr, (capitalconstraint) (15)

P(A) +
P̃(B)−bP(B)

a−b − λ = 0. (firstorderEulercondition) (16)

The sets in Equations (14)–(16) are defined by different levels of the Radon–Nikodým derivative:

A =

{
ω ∈ Ω :

dP̃
dP

(ω) > a

}
, B =

{
ω ∈ Ω : b ≤ dP̃

dP
(ω) ≤ a

}
, D =

{
ω ∈ Ω :

dP̃
dP

(ω) < b

}

When the upper bound is infinite xu = ∞, Theorem 3.17 shows that the solution for the optimal
portfolio is no longer a three-line configuration. It can be pure money market account investment
(one-line), binary (two-line) or very likely nonexistent. In the last case, the infimum of the CVaR can
still be computed, and a sequence of three-line configuration portfolios can be found with their CVaR
converging to the infimum.

2.3. Example: Exact Calculation in the Black–Scholes Model

We show the closed-form calculation of the three-line configuration presented in Equations
(12)–(16), as well as the corresponding optimal dynamic strategy in the benchmark Black–Scholes
Model. Suppose an agent is trading between a money market account with interest rate r and one
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stock2 that follows geometric Brownian motion dSt = μStdt+ σStdWt with instantaneous rate of return
μ, volatility σ and initial stock price S0. The endowment starts at x0, and bankruptcy is prohibited at
any time, xd = 0, before the final horizon, T. The optimal portfolio, X∗, in Equation (8) for the one

constraint problem is a binary option X∗ = x∗IA∗c with expected return z∗ Δ
= E[X∗]. The expected

terminal value, E[XT ], is required to be above a fixed level z to satisfy the return constraint. When z is
low, namely, z ≤ z∗, the return constraint is non-binding, and obviously the two-line configuration, X∗,
is optimal. Let z be the highest expected value achievable by any self-financing portfolio starting with
initial capital x0 (see Definition 3.2 and Lemma 3.3). When the return requirement becomes meaningful,
i.e., z ∈ (z∗, z], the three-line configuration, X∗∗, provided by Equation (12), becomes optimal.

Since the Radon–Nikodým derivative, dP̃
dP , is a scaled power function of the final stock price, which

has a log-normal distribution, the probabilities in Equations (14)–(16) can be computed in closed-form:

P(A) = N
(
− θ

√
T

2 − ln a
θ
√

T

)
, P(D) = 1 − N

(
− θ

√
T

2 − ln b
θ
√

T

)
, P(B) = 1 − P(A)− P(D)

P̃(A) = N
(

θ
√

T
2 − ln a

θ
√

T

)
, P̃(D) = 1 − N

(
θ
√

T
2 − ln b

θ
√

T

)
, P̃(B) = 1 − P̃(A)− P̃(D)

where θ = μ−r
σ and N(·) is the cumulative distribution function of a standard normal random variable.

From these, the solution, (a∗∗, b∗∗, x∗∗), to Equations (15) and (16) can be found numerically and, thus,
the X∗∗ from Equation (12). The formulae3 for the dynamic value of the optimal portfolio, X∗∗

t , the
corresponding dynamic hedging strategy, ξ∗∗t

4, and the associated final minimal risk, CVaRλ(X∗∗
T ),

are:
X∗∗

t = e−r(T−t)[x∗∗N(d+(a∗∗, St, t)) + xdN(d−(a∗∗, St, t))]
+e−r(T−t)[x∗∗N(d−(b∗∗, St, t)) + xuN(d+(b∗∗, St, t))]− er(T−t)x∗∗

ξ∗∗t = x∗∗−xd
σSt

√
2π(T−t)

e−r(T−t)− d2−(a∗∗ ,St ,t)
2 + x∗∗−xu

σSt
√

2π(T−t)
e−r(T−t)− d2

+(b∗∗ ,St ,t)
2

CVaRλ(X∗∗
T ) = 1

λ ((x∗∗ − xd)P(A∗∗)− λx∗∗)

where we define: d−(a, s, t) = 1
θ
√

T−t

[
− ln a + θ

σ

(
μ+r−σ2

2 t − ln s
S0

)
+ θ2

2 (T − t)
]

and d+(a, s, t) =

−d−(a, s, t).
Numerical results comparing the minimal risk for various levels of upper-bound xu and return

constraint z are summarized in Table 1. As expected, the upper bound on the portfolio value, xu,
has no impact on the one-constraint problem, as (x∗, a∗) and CVaRλ(X∗

T) are optimal whenever
xu ≥ x∗. On the contrary, in the two-constraint problem, the stricter the return requirement, z, the
more the three-line configuration, X∗∗, deviates from the two-line configuration, X∗. Stricter return
requirement (higher z) implies higher minimal risk CVaRλ(X∗∗

T ); while a less strict upper bound
(higher xu) decreases minimal risk CVaRλ(X∗∗

T ). Notably, under certain conditions in Theorem 3.17,
for all levels of return z ∈ (z∗, z], when xu → ∞ , CVaRλ(X∗∗

T ) approaches CVaRλ(X∗
T), as the optimal

solution ceases to exist in the limiting case.

2 It is straight-forward to generalize the calculation to the multi-dimensional Black–Scholes Model. Since we provide in this
paper an analytical solution to the static CVaR minimization problem, calculation in other complete market models can be
carried out as long as the dynamic hedge can be expressed in a simple manner.

3 X∗∗
t coincides with the dynamic value of a European option with payoff X∗∗, and ξ∗∗t coincides with its delta-hedge.

4 Note that since the solution, X∗, is binary and the solution, X∗∗, takes three values, they share the practical difficulty as all
digital options do near expiration, namely, the hedge ratio can be very big in magnitude at the boundary near expiration,
which makes it impractical to do the hedging properly. We point out that this property is not shared by the optimal solution
to the mean-variance type of problems.
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Table 1. Black–Scholes example for one-constraint (pure CVaR minimization) and two-constraint
(mean-CVaR optimization) problems with parameters: r = 5%, μ = 0.2, σ = 0.1, S0 = 10, T = 2,
x0 = 10, xd = 0, λ = 5%. Consequently, z∗ = 18.8742 and z = 28.8866.

One-Constraint Problem Two-Constraint Problem

xu 30 50 xu 30 30 50
z 20 25 25

x∗ 19.0670 19.0670 x∗∗ 19.1258 19.5734 19.1434
a∗ 14.5304 14.5304 a∗∗ 14.3765 12.5785 14.1677

b∗∗ 0.0068 0.1326 0.0172
CVaR5%

(
X∗

T
) −15.2118 −15.2118 CVaR5%

(
X∗∗

T
)−15.2067 −14.8405 −15.1483

Figure 1. Efficient frontier for mean-CVaR portfolio selection.

Figure 1 plots the efficient frontier of the above mean-CVaR portfolio selection problem with
fixed upper bound xu = 30. The curve between return level z∗ and z are the mean-CVaR efficient
portfolio from various three-line configurations, while the straight line is the same mean-CVaR efficient
two-line configuration when the return constraint is non-binding. The star positioned at (−xr, xr) =

(−11.0517, 11.0517), where xr = x0erT , corresponds to the portfolio that invests purely in the money
market account. In contrast to its position on the traditional capital market Line (the efficient frontier
for a mean-variance portfolio selection problem), the pure money market account portfolio is no longer
efficient in the mean-CVaR portfolio selection problem.

3. Analytical Solution to the Portfolio Selection Problem

Under Assumption 2.1, the solution to the main mean-CVaR optimization problem Equation (2),
i.e., the two-constraint problem Equations (4) and (5), will be discussed in two separate cases where
the upper bound for the portfolio value is finite or infinite. The main results are stated in Theorem 3.15
and Theorem 3.17, respectively. To create a flow showing clearly how the optimal solutions are related
to the two-line and three-line configurations, all proofs will be delayed to the Appendix A.
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3.1. Case xu < ∞: Finite Upper Bound

We first define the general three-line configuration and its degenerate two-line configurations.
Recall from Section 2.2 the definitions of the sets, A, B, D, are:

A =

{
ω ∈ Ω :

dP̃
dP

(ω) > a

}
, B =

{
ω ∈ Ω : b ≤ dP̃

dP
(ω) ≤ a

}
, D =

{
ω ∈ Ω :

dP̃
dP

(ω) < b

}
(17)

Definition 3.1 Suppose x ∈ [xd, xu].

1. Any three-line configuration has the structure X = xdIA + xIB + xuID.
2. The two-line configuration X = xIB + xuID is associated with the above definition in the case a = ∞,

B =
{

ω ∈ Ω : dP̃
dP (ω) ≥ b

}
and D =

{
ω ∈ Ω : dP̃

dP (ω) < b
}

.

The two-line configuration X = xdIA + xIB s associated with the above definition in the case b = 0,
A =

{
ω ∈ Ω : dP̃

dP (ω) > a
}

, and B =
{

ω ∈ Ω : dP̃
dP (ω) ≤ a

}
.

The two-line configuration X = xdIA + xuID is associated with the above definition in the case a = b,
A =

{
ω ∈ Ω : dP̃

dP (ω) > a
}

, and D =
{

ω ∈ Ω : dP̃
dP (ω) < a

}
.

Moreover:

1. General constraints are the capital constraint and the equality part of the expected return constraint for a
three-line configuration X = xdIA + xIB + xuID:

E[X] = xdP(A) + xP(B) + xuP(D) = z
Ẽ[X] = xdP̃(A) + xP̃(B) + xuP̃(D) = xr

2. Degenerated Constraints 1 are the capital constraint and the equality part of the expected return constraint
for a two-line configuration X = xIB + xuID:

E[X] = xP(B) + xuP(D) = z
Ẽ[X] = xP̃(B) + xuP̃(D) = xr

Degenerated Constraints 2 are the capital constraint and the equality part of the expected return constraint
for a two-line configuration X = xdIA + xIB:

E[X] = xdP(A) + xP(B) = z
Ẽ[X] = xdP̃(A) + xP̃(B) = xr

Degenerated Constraints 3 are the capital constraint and the equality part of the expected return constraint
for a two-line configuration X = xdIA + xuID:

E[X] = xdP(A) + xuP(D) = z
Ẽ[X] = xdP̃(A) + xuP̃(D) = xr

Note that Degenerated Constraints 1 correspond to the general constraints when a = ∞; Degenerated
Constraints 2 correspond to the general constraints when b = 0; and Degenerated Constraints 3 correspond to
the general constraints when a = b.

We use the two-line configuration X = xdIA + xuID, where the value of the random variable, X,
takes either the upper or the lower bound, as well as its capital constraint to define the ‘bar-system’
from which we calculate the highest achievable return.

Definition 3.2 (The bar-system) For fixed −∞ < xd < xr < xu < ∞, let a be a solution to the capital
constraint Ẽ[X] = xdP̃(A) + xuP̃(D) = xr in Degenerated Constraints 3 for the two-line configuration X =
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xdIA + xuID. In the bar-system, A, D and X are associated with the constant, a, in the sense X = xdIA + xuID,

where A =
{

ω ∈ Ω : dP̃
dP (ω) > a

}
and D =

{
ω ∈ Ω : dP̃

dP (ω) < a
}

. Define the expected return of the

bar-system as z = E
[
X
]
= xdP

(
A
)
+ xuP

(
D
)
.

Lemma 3.3 z is the highest expected return that can be obtained by a self-financing portfolio with initial
capital x0, whose value is bounded between xd and xu:

z = max
X∈F

E[X]s.t.Ẽ[X] = xr = x0erT , xd ≤ X ≤ xu a.s.

In the following lemma, we vary the x value in the two-line configurations X = xIB + xuID and
X = xdIA + xIB, while maintaining the capital constraints, respectively. We observe their expected
returns to vary between values xr and z in a monotone and continuous fashion.

Lemma 3.4 For fixed −∞ < xd < xr < xu < ∞.

1. Given any x ∈ [xd, xr], let b be a solution to the capital constraint Ẽ[X] = xP̃(B) + xuP̃(D) = xr in
Degenerated Constraints 1 for the two-line configuration X = xIB + xuID. Define the expected return of
the resulting two-line configuration as z(x) = E[X] = xP(B) + xuP(D).5 Then z(x) is a continuous
function of x and decreases from z to xr as x increases from xd to xr.

2. Given any x ∈ [xr, xu], let a be a solution to the capital constraint Ẽ[X] = xdP̃(A) + xP̃(B) = xr in
Degenerated Constraints 2 for the two-line configuration X = xdIA + xIB. Define the expected return
of the resulting two-line configuration as z(x) = E[X] = xdP(A) + xP(B). Then, z(x) is a continuous
function of x and increases from xr to z as x increases from xr to xu.

From now on, we will concern ourselves with requirements on the expected return in the interval,
z ∈ [xr, z], because, on one side, Lemma 3.3 ensures that there are no feasible solutions to main
problem Equation (2) if we require an expected return higher than z. On the other side, Lemma 3.3,
Lemma 3.4 and Theorem 3.11 lead to the conclusion that a return constraint where z ∈ (−∞, xr) is too
weak to differentiate the two-constraint problem from the one-constraint problem, as their optimal
solutions concur.

Definition 3.5 For fixed −∞ < xd < xr < xu < ∞ and a fixed level z ∈ [xr, z], define xz1 and xz2 to
be the corresponding x value for two-line configurations X = xIB + xuID and X = xdIA + xIB that satisfy
Degenerated Constraints 1 and Degenerated Constraints 2 , respectively.

Definition 3.5 implies when we fix the level of expected return, z, we can find two particular
feasible solutions: X = xz1IB + xuID, satisfying Ẽ[X] = xz1P̃(B) + xuP̃(D) = xr and E[X] = xz1P(B) +
xuP(D) = z; and X = xdIA + xz2IB, satisfying Ẽ[X] = xdP̃(A) + xz2P̃(B) = xr and E[X] = xdP(A) +

xz2P(B) = z. The values, xz1 and xz2, are well defined, because Lemma 3.4 guarantees z(x) to be
an invertible function in both cases. We summarize in the following lemma whether the two-line
configurations satisfying the capital constraints meet or fail the return constraint as x ranges over its
domain, [xd, xu], for the two-line and three-line configurations in Definition 3.1.

Lemma 3.6 For fixed −∞ < xd < xr < xu < ∞ and a fixed level z ∈ [xr, z].

1. If we fix x ∈ [xd, xz1], the two-line configuration X = xIB + xuID, which satisfies the capital constraint
Ẽ[X] = xP̃(B) + xuP̃(D) = xr in Degenerated Constraints 1, satisfies the expected return constraint:
E[X] = xP(B) + xuP(D) ≥ z;

2. If we fix x ∈ (xz1, xr], the two-line configuration X = xIB + xuID, which satisfies the capital constraint
Ẽ[X] = xP̃(B) + xuP̃(D) = xr in Degenerated Constraints 1, fails the expected return constraint:
E[X] = xP(B) + xuP(D) < z;

5 Threshold b and, consequently, sets B and D are all dependent on x through the capital constraint; therefore, z(x) is not a
linear function of x.
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3. If we fix x ∈ [xr, xz2), the two-line configuration X = xdIA + xIB, which satisfies the capital constraint
Ẽ[X] = xdP̃(A) + xP̃(B) = xr in Degenerated Constraints 2, fails the expected return constraint:
E[X] = xP(B) + xuP(D) < z;

4. If we fix x ∈ [xz2, xu], the two-line configuration X = xdIA + xIB, which satisfies the capital constraint
Ẽ[X] = xdP̃(A) + xP̃(B) = xr in Degenerated Constraints 2, satisfies the expected return constraint:
E[X] = xP(B) + xuP(D) ≥ z.

We turn our attention to solving Step 1 of the two-constraint problem (4):
Step 1: minimization of expected shortfall:

v(x) = inf
X∈F

E
[
(x − X)+

]
subjectto E[X] ≥ z, (returnconstraint)

Ẽ[X] = xr, (capitalconstraint)
xd ≤ X ≤ xu a.s.

Notice that a solution is called for any given real number, x, independent of the return level,
z, or capital level xr. From Lemma 3.6 and the fact that the two-line configurations are optimal
solutions to Step 1 of the one-constraint problem (see Theorem 3.11), we can immediately draw the
following conclusion.

Proposition 3.7 For fixed −∞ < xd < xr < xu < ∞ and a fixed level z ∈ [xr, z].

1. If we fix x ∈ [xd, xz1], then there exists a two-line configuration X = xIB + xuID which is the optimal
solution to Step 1 of the two-constraint problem;

2. If we fix x ∈ [xz2, xu], then there exists a two-line configuration X = xdIA + xIB, which is the optimal
solution to Step 1 of the two-constraint problem.

When x ∈ (xz1, xz2), Lemma 3.6 shows that the two-line configurations, which satisfy the capital
constraints (Ẽ[X] = xr) do not generate high enough expected return (E[X] < z) to be feasible anymore.
It turns out that a novel solution of the three-line configuration is the answer: it can be shown to be
both feasible and optimal.

Lemma 3.8 For fixed −∞ < xd < xr < xu < ∞ and a fixed level z ∈ [xr, z]. Given any x ∈ (xz1, xz2),
let the pair of numbers, (a, b) ∈ R2 (b ≤ a), be a solution to the capital constraint Ẽ[X] = xdP̃(A) + xP̃(B) +
xuP̃(D) = xr in the general constraints for the three-line configuration X = xdIA + xIB + xuID. Define the
expected return of the resulting three-line configuration as z(a, b) = E[X] = xdP(A) + xP(B) + xuP(D).
Then, z(a, b) is a continuous function, which decreases from z to a number below z:

1. When a = b = a from Definition 3.2 of a bar-system, the three-line configuration degenerates to X = X
and z(a, a) = E

[
X
]
= z.

2. When b < a and a > a, z(a, b) decreases continuously as b decreases and a increases.
3. In the extreme case when a = ∞, the three-line configuration becomes the two-line configuration X = xIB +

xuID; in the extreme case when b = 0, the three-line configuration becomes the two-line configuration
X = xdIA + xIB. In either case, the expected value is below z by Lemma 3.6.

Proposition 3.9 For fixed −∞ < xd < xr < xu < ∞ and a fixed level z ∈ [xr, z]. If we fix x ∈ (xz1, xz2),
then there exists a three-line configuration X = xdIA + xIB + xuID that satisfies the general constraints, which
is the optimal solution to Step 1 of the two-constraint problem.

Combining Proposition 3.7 and Proposition 3.9, we arrive at the following result on the optimality
of the three-line configuration.

Theorem 3.10 (Solution to Step 1: Minimization of Expected Shortfall)

For fixed −∞ < xd < xr < xu < ∞ and a fixed level z ∈ [xr, z]. X(x) and the corresponding value
function, v(x), described below, are optimal solutions to Step 1: minimization of expected shortfall of the
two-constraint problem:
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• x ∈ (−∞, xd]: X(x) = any random variable with values in [xd, xu] satisfying both the capital constraint
Ẽ[X(x)] = xr and the return constraint E[X(x)] ≥ z. v(x) = 0.

• x ∈ [xd, xz1]: X(x) = any random variable with values in [x, xu] satisfying both the capital constraint
Ẽ[X(x)] = xr and the return constraint E[X(x)] ≥ z. v(x) = 0.

• x ∈ (xz1, xz2): X(x) = xdIAx + xIBx + xuIDx , where Ax, Bx, Dx are determined by ax and bx as in (17)
satisfying the general constraints: Ẽ[X(x)] = xr and E[X(x)] = z. v(x) = (x − xd)P(Ax).

• x ∈ [xz2, xu]: X(x) = xdIAx + xIBx , where Ax, Bx are determined by ax as in Definition 3.1 satisfying
both the capital constraint Ẽ[X(x)] = xr and the return constraint E[X(x)] ≥ z. v(x) = (x − xd)P(Ax).

• x ∈ [xu, ∞): X(x) = xdIA + xuIB = X, where A, B are associated to a as in Definition 3.2
satisfying both the capital constraint Ẽ[X(x)] = xr and the return constraint E[X(x)] = z ≥ z.
v(x) = (x − xd)P

(
A
)
+ (x − xu)P

(
B
)
.

To solve Step 2 of the two-constraint problem Equation (5) and, thus, the main problem Equation
(2), we need to minimize

1
λ

inf
x∈R

(v(x)− λx),

where v(x) has been computed in Theorem 3.10. Depending on the z level in the return constraint
being lenient or strict, the solution is sometimes obtained by the two-line configuration, which is
optimal to the one-constraint problem and other times obtained by a true three-line configuration. To
proceed in this direction, we recall the solution to the one-constraint problem from Li and Xu [22].

Theorem 3.11 (Theorem 2.10 and Remark 2.11 in Li and Xu [22] when xu < ∞)

1. Suppose ess sup dP̃
dP ≤ 1

λ . X = xr is the optimal solution to Step 2: minimization of conditional
value-at-risk of the one-constraint problem, and the associated minimal risk is:

CVaR(X) = −xr

2 Suppose ess sup dP̃
dP > 1

λ .

• If 1
a ≤ λ−P(A)

1−P̃(A)
(see Definition 3.2 for the bar-system), then X = xdIA + xuID is the optimal

solution to Step 2: minimization of conditional value-at-risk of the one-constraint problem, and the
associated minimal risk is:

CVaR
(
X
)
= −xr +

1
λ
(xu − xd)

(
P
(

A
)− λP̃

(
A
))

• Otherwise, let a∗ be the solution to the equation 1
a = λ−P(A)

1−P̃(A)
. Associate sets A∗ ={

ω ∈ Ω : dP̃
dP (ω) > a∗

}
and B∗ =

{
ω ∈ Ω : dP̃

dP (ω) ≤ a∗
}

to level a∗. Define x∗ = xr−xdP̃(A∗)
1−P̃(A∗) ,

so that configuration
X∗ = xdIA∗ + x∗IB∗

satisfies the capital constraint Ẽ[X∗] = xdP̃(A∗) + x∗ P̃(B∗) = xr.6, and the associated
minimal risk is:

CVaR(X∗) = −xr +
1
λ
(x∗ − xd)

(
P(A∗)− λP̃(A∗)

)

6 Equivalently, (a∗, x∗) can be viewed as the solution to the capital constraint and the first order Euler condition in Equation
(10) and (11). Then, X∗ (what we call the ‘star-system’) is the optimal solution to Step 2: minimization of conditional
value-at-risk of the one-constraint problem

8989



Risks 2013, 1, 119–147

Definition 3.12 In part 2 of Theorem 3.11, define z∗ = z in the first case when 1
a ≤ λ−P(A)

1−P̃(A)
; define

z∗ = E[X∗] in the second case when 1
a >

λ−P(A)
1−P̃(A)

.

We see that when z is smaller than z∗, the binary solutions, X∗ and X, provided in Theorem 3.11
are indeed the optimal solutions to Step 2 of the two-constraint problem. However, when z is greater
than z∗, these two-line configurations are no longer feasible in the two-constraint problem. We now
show that the three-line configuration is not only feasible, but also optimal. First, we establish the
convexity of the objective function and its continuity in a Lemma.

Lemma 3.13 v(x) is a convex function for x ∈ R and, thus, continuous.
Proposition 3.14 For fixed −∞ < xd < xr < xu < ∞ and a fixed level z ∈ (z∗, z].
Suppose ess sup dP̃

dP > 1
λ . The solution, (a∗∗, b∗∗, x∗∗) (and, consequently, A∗∗, B∗∗ and D∗∗), to the

equations:
xdP(A) + xP(B) + xuP(D) = z, (returnconstraint)
xdP̃(A) + xP̃(B) + xuP̃(D) = xr, (capitalconstraint)

P(A) +
P̃(B)−bP(B)

a−b − λ = 0, (firstorderEulercondition)

exists. X∗∗ = xdIA∗∗ + x∗∗IB∗∗ + xuID∗∗ (what we call the ‘double-star system’) is the optimal solution to Step
2: minimization of conditional value-at-risk of the two-constraint problem, and the associated minimal risk is:

CVaR(X∗∗) =
1
λ
((x∗∗ − xd)P(A∗∗)− λx∗∗)

Putting together Proposition 3.14 with Theorem 3.11, we arrive at the main theorem of this paper.
Theorem 3.15 (Minimization of conditional value-at-risk when xu < ∞)

For fixed −∞ < xd < xr < xu < ∞.

1. Suppose ess sup dP̃
dP ≤ 1

λ and z = xr. The pure money market account investment X = xr is the
optimal solution to Step 2: minimization of conditional value-at-risk of the two-constraint problem, and
the associated minimal risk is:

CVaR(X) = −xr

2. Suppose ess sup dP̃
dP ≤ 1

λ and z ∈ (xr, z]. The optimal solution to Step 2: minimization of conditional
value-at-risk of the two-constraint problem does not exist, and the minimal risk is:

CVaR(X) = −xr

3. Suppose ess sup dP̃
dP > 1

λ and z ∈ [xr, z∗] (see Definition 3.12 for z∗).

• If 1
a ≤ λ−P(A)

1−P̃(A)
(see Definition 3.2), then the bar-system X = xdIA + xuID is the optimal solution

to Step 2: minimization of conditional value-at-risk of the two-constraint problem, and the associated
minimal risk is:

CVaR
(
X
)
= −xr +

1
λ
(xu − xd)

(
P
(

A
)− λP̃

(
A
))

• Otherwise, the star-system X∗ = xdIA∗ + x∗IB∗ defined in Theorem 3.11 is the optimal solution to
Step 2: minimization of conditional value-at-risk of the two-constraint problem, and the associated
minimal risk is:

CVaR(X∗) = −xr +
1
λ
(x∗ − xd)

(
P(A∗)− λP̃(A∗)

)

9090



Risks 2013, 1, 119–147

(4) Suppose ess sup dP̃
dP > 1

λ and z ∈ (z∗, z]. The double-star-system X∗∗ = xdIA∗∗ + x∗∗IB∗∗ + xuID∗∗

defined in Proposition 3.14 is the optimal solution to Step 2: minimization of conditional value-at-risk of
the two-constraint problem, and the associated minimal risk is:

CVaR(X∗∗) =
1
λ
((x∗∗ − xd)P(A∗∗)− λx∗∗)

We observe that the pure money market account investment is rarely optimal. When the
Radon–Nikodým derivative is bounded above by the reciprocal of the confidence level of the risk
measure (ess sup dP̃

dP ≤ 1
λ ), a condition not satisfied in the Black–Scholes Model, the solution does

not exist unless the return requirement coincides with the risk-free rate. When the Radon–Nikodým
derivative exceeds 1

λ with positive probability and the return constraint is low, z ∈ [xr, z∗], the two-line
configuration, which is optimal to the CVaR minimization problem without the return constraint, is
also the optimal to the mean-CVaR problem. However, in the more interesting case in which the return
constraint is materially high, z ∈ (z∗, z], the optimal three-line-configuration sometimes takes the value
of the upper bound, xu, to raise the expected return at the cost of the minimal risk, which will be at a
higher level. This analysis complies with the numerical example shown in Section 2.3.

3.2. Case xu = ∞: No Upper Bound

We first restate the solution to the one-constraint problem from Li and Xu [22] in the current
context: when xu = ∞, where we interpret A = Ω and z = ∞.

Theorem 3.16 (Theorem 2.10 and Remark 2.11 in Li and Xu [22] when xu = ∞)

1. Suppose ess sup dP̃
dP ≤ 1

λ . The pure money market account investment X = xr is the optimal solution to
Step 2: minimization of conditional value-at-risk of the one-constraint problem, and the associated minimal
risk is:

CVaR(X) = −xr

2. Suppose ess sup dP̃
dP > 1

λ . The star-system X∗ = xdIA∗ + x∗IB∗ defined in Theorem 3.11 is the optimal
solution to Step 2: minimization of conditional value-at-risk of the one-constraint problem, and the
associated minimal risk is:

CVaR(X∗) = −xr +
1
λ
(x∗ − xd)

(
P(A∗)− λP̃(A∗)

)
We observe that although there is no upper bound for the portfolio value, the optimal solution
remains bounded from above, and the minimal CVaR is bounded from below. The problem of
purely minimizing CVaR risk of a self-financing portfolio (bounded below by xd to exclude arbitrage)
from initial capital, x0, is feasible in the sense that the risk will not approach −∞, and the minimal
risk is achieved by an optimal portfolio. When we add substantial return constraint to the CVaR
minimization problem, although the minimal risk can still be calculated in the most important case
(Case 4 in Theorem 3.17), it is truly an infimum and not a minimum, thus it can be approximated
closely by a sub-optimal portfolio, but not achieved by an optimal portfolio.

Theorem 3.17 (Minimization of Conditional Value-At-Risk When xu = ∞)

For fixed −∞ < xd < xr < xu = ∞.

1. Suppose ess sup dP̃
dP ≤ 1

λ and z = xr. The pure money market account investment X = xr is the
optimal solution to Step 2: minimization of conditional value-at-risk of the two-constraint problem, and
the associated minimal risk is:

CVaR(X) = −xr
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2. Suppose ess sup dP̃
dP ≤ 1

λ and z ∈ (xr, ∞). The optimal solution to Step 2: minimization of conditional
value-at-risk of the two-constraint problem does not exist, and the minimal risk is:

CVaR(X) = −xr

3. Suppose ess sup dP̃
dP > 1

λ and z ∈ [xr, z∗]. The star-system X∗ = xdIA∗ + x∗IB∗ defined in Theorem 3.11
is the optimal solution to Step 2: minimization of conditional value-at-risk of the two-constraint problem,
and the associated minimal risk is:

CVaR(X∗) = −xr +
1
λ
(x∗ − xd)

(
P(A∗)− λP̃(A∗)

)
4. Suppose ess sup dP̃

dP > 1
λ and z ∈ (z∗, ∞). The optimal solution to Step 2: minimization of conditional

value-at-risk of the two-constraint problem does not exist, and the minimal risk is:

CVaR(X∗) = −xr +
1
λ
(x∗ − xd)

(
P(A∗)− λP̃(A∗)

)
Remark 3.18 From the proof of the above theorem in the Appendix A, we note that in Case 4, we can

always find a three-line configuration as a sub-optimal solution, i.e., there exists for every ε > 0 a corresponding
portfolio Xε = xdIAε

+ xεIBε + αεIDε , which satisfies the general constraints and produces a CVaR level close
to the lower bound: CVaR(Xε) ≤ CVaR(X∗) + ε.

4. Future Work

The second part of Assumption 2.1, namely the Radon–Nikodým derivative, dP̃
dP , having a

continuous distribution, is imposed for the simplification it brings to the presentation in the main
theorems. Further work can be done when this assumption is weakened. We expect that the main
results should still hold, albeit in a more complicated form.7 It will also be interesting to extend the
closed-form solution for mean-CVaR minimization by replacing CVaR with law-invariant convex
risk measures in general. Another direction will be to employ dynamic risk measures into the
current setting.

Although in this paper we focus on the complete market solution, to solve the problem in an
incomplete market setting, which includes stochastic volatility or jump models, the exact hedging
argument via the martingale representation theorem that translates the dynamic problem Equation
(??) into the static problem Equation (2) has to be replaced by a super-hedging argument via the
optional decomposition developed by Kramkov [30] and Föllmer and Kabanov [31]. The detail is
similar to the process carried out for shortfall risk minimization in Föllmer and Leukert [26], convex
risk minimization in Rudloff [32] and law-invariant risk preference in He and Zhou [25]. The curious
question is: Will the three-line configuration remain optimal?

Acknowledgments: The findings and conclusions expressed are solely those of the author and do not represent
views of the Federal Reserve Bank of New York or the staff of the Federal Reserve System.

Conflicts of Interest: The authors declare no conflict of interest.

7 The outcome in its format resembles techniques employed in Föllmer and Leukert [26] and Li and Xu [22], where the point
masses on the thresholds for the Radon–Nikodým derivative in Equation (17) have to be dealt with carefully.
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Appendix A. Appendix

A.1. Proof of Lemma 3.3

The problem of
z = max

X∈F
E[X]s.t.Ẽ[X] = xr, xd ≤ X ≤ xu a.s.

is equivalent to the expected shortfall problem:

z = − min
X∈F

E
[
(xu − X)+

]
s.t.Ẽ[X] = xr, X ≥ xd a.s.

Therefore, the answer is immediate. �

A.2. Proof of Lemma 3.4

Choose xd ≤ x1 < x2 ≤ xr. Let X1 = x1IB1 + xuID1 , where B1 =
{

ω ∈ Ω : dP̃
dP (ω) ≥ b1

}
and D1 =

{
ω ∈ Ω : dP̃

dP (ω) < b1

}
. Choose b1 such that Ẽ[X1] = xr. This capital constraint means

x1P̃(B1) + xuP̃(D1) = xr. Since P̃(B1) + P̃(D1) = 1, P̃(B1) = xu−xr
xu−x1

and P̃(D1) = xr−x1
xu−x1

. Define

z1 = E[X1]. Similarly, z2, X2, B2, D2, b2 corresponds to x2, where b1 > b2 and P̃(B2) = xu−xr
xu−x2

and

P̃(D2) =
xr−x2
xu−x2

. Note that D2 ⊂ D1, B1 ⊂ B2 and D1�D2 = B2�B1. We have:

z1 − z2 = x1P(B1) + xuP(D1)− x2P(B2)− xuP(D2)

= (xu − x2)P(B2 � B1)− (x2 − x1)P(B1)

= (xu − x2)P
(

b2 < dP̃
dP (ω) < b1

)
− (x2 − x1)P

(
dP̃
dP (ω) ≥ b1

)
= (xu − x2)

∫
{b2<

dP̃
dP (ω)<b1}

dP
dP̃
(ω)dP̃(ω)− (x2 − x1)

∫
{ dP̃

dP (ω)≥b1}
dP
dP̃
(ω)dP̃(ω)

> (xu − x2)
1
b1

P̃(B2 � B1)− (x2 − x1)
1
b1

P̃(B1)

= (xu − x2)
1
b1

(
xu−xr
xu−x2

− xu−xr
xu−x1

)
− (x2 − x1)

1
b1

xu−xr
xu−x1

= 0

For any given ε > 0, choose x2 − x1 ≤ ε; then:

z1 − z2 = (xu − x1)P(B2 � B1)− (x2 − x1)P(B2)

≤ (xu − x1)P(B2 � B1)

≤ (xu − x1)
(

xu−xr
xu−x2

− xu−xr
xu−x1

)
≤ (x2−x1)(xu−xr)

xu−x2
≤ x2 − x1 ≤ ε

Therefore, z decreases continuously as x increases when x ∈ [xd, xr]. When x = xd, z = z from
Definition 3.2. When x = xr, X ≡ xr and z = E[X] = xr. Similarly, we can show that z increases
continuously from xr to z as x increases from xr to xu. �

Lemma 3.6 is a logical consequence of Lemma 3.4 and Definition 3.5; Proposition 3.7 follows from
Lemma 3.6; so their proofs will be skipped.

A.3. Proof of Lemma 3.8

Choose −∞ < b1 < b2 ≤ b = a ≤ a2 < a1 < ∞. Let configuration X1 =

xdIA1 + xIB1 + xuID1 correspond to the pair, (a1, b1), where A1 =
{

ω ∈ Ω : dP̃
dP (ω) > a1

}
, B1 ={

ω ∈ Ω : b1 ≤ dP̃
dP (ω) ≤ a1

}
, D1 =

{
ω ∈ Ω : dP̃

dP (ω) < b1

}
. Similarly, let configuration X2 =

xdIA2 + xIB2 + xuID2 correspond to the pair, (a2, b2). Define z1 = E[X1] and z2 = E[X2]. Since
both X1 and X2 satisfy the capital constraint, we have:

xdP̃(A1) + xP̃(B1) + xuP̃(D1) = xr = xdP̃(A2) + xP̃(B2) + xuP̃(D2)
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This simplifies to the equation:

(x − xd)P̃(A2 � A1) = (xu − x)P̃(D2 � D1) (18)

Then:

z2 − z1 = xdP(A2) + xP(B2) + xuP(D2)− xdP(A1)− xP(B1)− xuP(D1)

= (xu − x)P(D2 � D1)− (x − xd)P(A2 � A1)

= (xu − x)P(D2 � D1)− (xu − x) P̃(D2�D1)

P̃(A2�A1)
P(A2 � A1)

= (xu − x)P̃(D2 � D1)
(

P(D2�D1)

P̃(D2�D1)
− P(A2�A1)

P̃(A2�A1)

)
= (xu − x)P̃(D2 � D1)

⎛⎝∫{b1≤ dP̃
dP (ω)<b2}

dP
dP̃

(ω)dP̃(ω)

P̃(D2�D1)
−
∫
{a2<

dP̃
dP (ω)≤a1}

dP
dP̃

(ω)dP̃(ω)

P̃(A2�A1)

⎞⎠
≥ (xu − x)P̃(D2 � D1)

(
1
b2
− 1

a2

)
> 0

Suppose the pair, (a1, b1), is chosen, so that X1 satisfies the budget constraint Ẽ[X1] = xr. For any
given ε > 0, choose b2 − b1 small enough such that P(D2 � D1) ≤ ε

xu−x . Now choose a2, such that
a2 < a1, and Equation (18) is satisfied. Then, X2 also satisfies the budget constraint Ẽ[X2] = xr, and:

z2 − z1 = (xu − x)P(D2 � D1)− (x − xd)P(A2 � A1) ≤ (xu − x)P(D2 � D1) ≤ ε

We conclude that the expected value of the three-line configuration decreases continuously as b
decreases and a increases. �

In the following, we provide the main proof of the paper: the optimality of the
three-line configuration.

A.4. Proof of Proposition 3.9

Denote ρ = dP̃
dP . According to Lemma 3.8, there exists a three-line configuration X̂ = xdIA + xIB +

xuID that satisfies the general constraints:

E[X] = xdP(A) + xP(B) + xuP(D) = z
Ẽ[X] = xdP̃(A) + xP̃(B) + xuP̃(D) = xr

where:

A = {ω ∈ Ω : ρ(ω) > â}, B =
{

ω ∈ Ω : b̂ ≤ ρ(ω) ≤ â
}

, D =
{

ω ∈ Ω : ρ(ω) < b̂
}

As standard for convex optimization problems, if we can find a pair of Lagrange multipliers, λ ≥ 0
and μ ∈ R, such that X̂ is the solution to the minimization problem:

inf
X∈F , xd≤X≤xu

E
[
(x − X)+ − λX − μρX

]
= E
[(

x − X̂
)+ − λX̂ − μρX̂

]
(19)

then X̂ is the solution to the constrained problem:

inf
X∈F , xd≤X≤xu

E
[
(x − X)+

]
, s.t.E[X] ≥ z, Ẽ[X] = xr

Define

λ =
b̂

â − b̂
, μ = − 1

â − b̂
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Then, Equation (19) becomes:

inf
X∈F , xd≤X≤xu

E

[
(x − X)+ +

ρ − b̂
â − b̂

X

]

Choose any X ∈ F , where xd ≤ X ≤ xu, and denote G = {ω ∈ Ω : X(ω) ≥ x} and L =

{ω ∈ Ω : X(ω) < x}. Note that ρ−b̂
â−b̂

> 1 on set A, 0 ≤ ρ−b̂
â−b̂

≤ 1 on set B and ρ−b̂
â−b̂

< 0 on set D.
Then, the difference:

E
[
(x − X)+ + ρ−b̂

â−b̂
X
]
− E
[(

x − X̂
)+

+ ρ−b̂
â−b̂

X̂
]

= E
[
(x − X)IL +

ρ−b̂
â−b̂

X(IA + IB + ID)
]
− E
[
(x − xd)IA + ρ−b̂

â−b̂
(xdIA + xIB + xuID)

]
= E
[
(x − X)IL +

(
ρ−b̂
â−b̂

(X − xd)− (x − xd)
)
IA + ρ−b̂

â−b̂
(X − x)IB + ρ−b̂

â−b̂
(X − xu)ID

]
≥ E
[
(x − X)IL + (X − x)IA + ρ−b̂

â−b̂
(X − x)IB + ρ−b̂

â−b̂
(X − xu)ID

]
= E
[
(x − X)(IL∩A + IL∩B + IL∩D) + (X − x)(IA∩G + IA∩L) +

ρ−b̂
â−b̂

(X − x)IB + ρ−b̂
â−b̂

(X − xu)ID

]
= E
[
(x − X)(IL∩B + IL∩D) + (X − x)IA∩G + ρ−b̂

â−b̂
(X − x)IB + ρ−b̂

â−b̂
(X − xu)ID

]
= E
[
(x − X)(IL∩B + IL∩D) + (X − x)IA∩G + ρ−b̂

â−b̂
(X − x)(IB∩G + IB∩L) +

ρ−b̂
â−b̂

(X − xu)(ID∩G + ID∩L)
]

= E
[
(x − X)

(
1 − ρ−b̂

â−b̂

)
IB∩L +

(
x − X + ρ−b̂

â−b̂
(X − xu)

)
ID∩L + (X − x)IA∩G

+ ρ−b̂
â−b̂

(X − x)IB∩G + ρ−b̂
â−b̂

(X − xu)ID∩G

]
≥ 0

The last inequality holds because each term inside the expectation is greater than or equal to zero. �
Theorem 3.10 is a direct consequence of Lemma 3.6, Proposition 3.7 and Proposition 3.9.

A.5. Proof of Lemma 3.13

The convexity of v(x) is a simple consequence of its definition (4). Real-valued convex functions
on R are continuous on its interior of the domain, so v(x) is continuous on R. �

A.6. Proof of Proposition 3.14

For z ∈ (z∗, z], Step 2 of the two-constraint problem

1
λ

inf
x∈R

(v(x)− λx)

is the minimum of the following five sub-problems after applying Theorem 3.10:

Case 1
1
λ

inf
(−∞,xd ]

(v(x)− λx) =
1
λ

inf
(−∞,xd ]

(−λx) = −xd

Case 2
1
λ

inf
[xd ,xz1]

(v(x)− λx) =
1
λ

inf
[xd ,xz1]

(−λx) = −xz1 ≤ −xd

Case 3
1
λ

inf
(xz1,xz2)

(v(x)− λx) =
1
λ

inf
(xz1,xz2)

((x − xd)P(Ax)− λx)

Case 4
1
λ

inf
[xz2,xu ]

(v(x)− λx) =
1
λ

inf
[xz2,xu ]

((x − xd)P(Ax)− λx)
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Case 5
1
λ

inf
[xu ,∞)

(v(x)− λx) =
1
λ

inf
[xu ,∞)

(
(x − xd)P

(
A
)
+ (x − xu)P

(
B
)− λx

)
Obviously, Case 2 dominates Case 1 in the sense that its minimum is lower. In Case 3, by the continuity
of v(x), we have:

1
λ

inf
(xz1,xz2)

((x − xd)P(Ax)− λx) ≤ 1
λ
((xz1 − xd)P(Axz1)− λxz1) = −xz1

The last equality comes from the fact P(Axz1) = 0: As in Lemma 3.8, we know that when x = xz1,
the three-line configuration X = xdIA + xIB + xuID degenerates to the two-line configuration X =

xz1IB + xuID, where axz1 = ∞. Therefore, Case 3 dominates Case 2. In Case 5:

1
λ inf
[xu ,∞)

(v(x)− λx) = 1
λ inf
[xu ,∞)

(
(x − xd)P

(
A
)
+ (x − xu)P

(
B
)− λx

)
= 1

λ inf
[xu ,∞)

(
(1 − λ)x − xdP

(
A
)− xuP

(
B
))

= 1
λ

(
(1 − λ)xu − xdP

(
A
)− xuP

(
B
))

= 1
λ

(
(xu − xd)P

(
A
)− λxu

)
≥ 1

λ inf
[xz2,xu ]

((x − xd)P(Ax)− λx)

Therefore, Case 4 dominates Case 5. When x ∈ [xz2, xu] and ess sup dP̃
dP > 1

λ , Theorem 3.10
and Theorem 3.11 imply that the infimum in Case 4 is achieved either by X or X∗. Since we restrict
z ∈ (z∗, z] where z∗ = z by Definition 3.12 in the first case, we need not consider this case in the current
proposition. In the second case, Lemma 3.4 implies that x∗ < xz2 (because z > z∗). By the convexity of
v(x), and then the continuity of v(x):

1
λ inf
[xz2,xu ]

((x − xd)P(Ax)− λx) = 1
λ ((xz2 − xd)P(Axz2)− λxz2)

≥ 1
λ inf
(xz1,xz2)

((x − xd)P(Ax)− λx)

Therefore, Case 3 dominates Case 4. We have shown that Case 3 actually provides the global infimum:

1
λ

inf
x∈R

(v(x)− λx) =
1
λ

inf
(xz1,xz2)

(v(x)− λx)

Now, we focus on x ∈ (xz1, xz2), where X(x) = xdIAx + xIBx + xuIDx satisfies the general constraints:

E[X(x)] = xdP(Ax) + xP(Bx) + xuP(Dx) = z
Ẽ[X(x)] = xdP̃(Ax) + xP̃(Bx) + xuP̃(Dx) = xr

and the definition for sets Ax, Bx and Dx are:

Ax =

{
ω ∈ Ω :

dP̃
dP

(ω) > ax

}
, Bx =

{
ω ∈ Ω : bx ≤ dP̃

dP
(ω) ≤ ax

}
, Dx =

{
ω ∈ Ω :

dP̃
dP

(ω) < bx

}

Note that v(x) = (x − xd)P(Ax) (see Theorem 3.10). Since P(Ax) + P(Bx) + P(Dx) = 1 and P̃(Ax) +

P̃(Bx) + P̃(Dx) = 1, we rewrite the capital and return constraints as:

x − z= (x − xd)P(Ax) + (x − xu)P(Dx)

x − xr= (x − xd)P̃(Ax) + (x − xu)P̃(Dx)
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Differentiating both sides with respect to x, we get:

P(Bx)= (x − xd)
dP(Ax)

dx
+ (x − xu)

dP(Dx)

dx

P̃(Bx)= (x − xd)
dP̃(Ax)

dx
+ (x − xu)

dP̃(Dx)

dx

Since:
dP̃(Ax)

dx
= ax

dP(Ax)

dx
,

dP̃(Dx)

dx
= bx

dP(Dx)

dx
we get:

dP(Ax)

dx
=

P̃(Bx)− bP(Bx)

(x − xd)(a − b)

Therefore:
(v(x)− λx)′ = P(Ax) + (x − xd)

dP(Ax)
dx − λ

= P(Ax) +
P̃(Bx)−bP(Bx)

a−b − λ

When the above derivative is zero, we arrive at the first order Euler condition:

P(Ax) +
P̃(Bx)− bP(Bx)

a − b
− λ = 0

To be precise, the above differentiation should be replaced by left-hand and right-hand derivatives,
as detailed in the Proof for Corollary 2.8 in Li and Xu [22]. However, the first order Euler condition
will turn out to be the same, because we have assumed that the Radon–Nikodým derivative, dP̃

dP , has
continuous distribution.

To finish this proof, we need to show that there exists an x ∈ (xz1, xz2) where the first order
Euler condition is satisfied. From Lemma 3.8, we know that as x ↘ xz1 , ax ↗ ∞ and P(Ax) ↘ 0 .
Therefore:

lim
x↘xz1

(v(x)− λx)′ = −λ < 0

As x ↗ xz2 , bx ↘ 0 and P(Dx) ↘ 0 . Therefore:

lim
x↗xz2

(v(x)− λx)′ = P(Axz2)−
P̃
(

Ac
xz2

)
axz2

− λ

This derivative coincides with the derivative of the value function of the two-line configuration that is
optimal on the interval, x ∈ [xz2, xu], provided in Theorem 3.10 (see Proof for Corollary 2.8 in Li and
Xu [22]). Again, when x ∈ [xz2, xu] and ess sup dP̃

dP > 1
λ , Theorem 3.10 and Theorem 3.11 imply that

the infimum of v(x)− λx is achieved either by X or X∗. Since we restrict z ∈ (z∗, z] where z∗ = z by
Definition 3.12 in the first case, we need not consider this case in the current proposition. In the second
case, Lemma 3.4 implies that x∗ < xz2 (because z > z∗). This, in turn, implies:

P(Axz2)−
P̃
(

Ac
xz2

)
axz2

− λ < 0

We have just shown that there exist some x∗∗ ∈ (xz1, xz2), such that (v(x)− λx)′|x=x∗∗ = 0. By the
convexity of v(x)− λx, this is the point where it obtains the minimum value. Now:

CVaR(X∗∗) = 1
λ (v(x∗∗)− λx∗∗)

= 1
λ ((x∗∗ − xd)P(A∗∗)− λx∗∗)

�
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A.7. Proof of Theorem 3.15

Case 3 and 4 are already proven in Theorem 3.11 and Proposition 3.14. In Case 1, where
ess sup dP̃

dP ≤ 1
λ and z = xr, X = xr is both feasible and optimal by Theorem 3.11. In Case 2, fix

arbitrary ε > 0. We will look for a two-line solution Xε = xεIAε
+ αεIBε with the right parameters,

aε, xε, αε, which satisfies both the capital constraint and return constraint:

E[Xε] = xεP(Aε) + αεP(Bε) = z (20)

Ẽ[Xε] = xε P̃(Aε) + αε P̃(Bε) = xr (21)

where:

Aε =

{
ω ∈ Ω :

dP̃
dP

(ω) > aε

}
, Bε =

{
ω ∈ Ω :

dP̃
dP

(ω) ≤ aε

}
and produces a CVaR level close to the lower bound:

CVaR(Xε) ≤ CVaR(xr) + ε = −xr + ε.

First, we choose xε = xr − ε. To find the remaining two parameters, aε and αε, so that Equations (20)
and (21) are satisfied, we note:

xrP(Aε) + xrP(Bε) = xr

xrP̃(Aε) + xrP̃(Bε) = xr

and conclude that it is equivalent to finding a pair of aε and αε, such that the following two equalities
are satisfied:

−εP(Aε) + (αε − xr)P(Bε)= γ

−εP̃(Aε) + (αε − xr)P̃(Bε)= 0

where we denote γ = z − xr. If we can find a solution, aε, to the equation:

P̃(Bε)

P(Bε)
=

ε

γ + ε
(22)

then:

αε = xr +
P̃(Aε)

P̃(Bε)
ε

and we have the solutions for Equations (20) and (21). It is not difficult to prove that the fraction, P̃(B)
P(B) ,

increases continuously from zero to one as a increases from zero to 1
λ . Therefore, we can find a solution,

aε ∈
(

0, 1
λ

)
, where Equation (22) is satisfied. By definition Equation (3):

CVaRλ(Xε) =
1
λ

inf
x∈R

(
E
[
(x − Xε)

+
]
− λx

)
≤ 1

λ

(
E
[
(xε − Xε)

+
]
− λxε

)
= −xε

The difference:
CVaRλ(Xε)− CVaR(xr) ≤ −xε + xr = ε

Under Assumption 2.1, the solution in Case 2 is almost surely unique; the result is proven. �
Proof of Theorem 3.17. Case 1 and 3 are obviously true in light of Theorem 3.16. The proof for Case

2 is similar to that in the Proof of Theorem 3.15, so we will not repeat it here. Since E[X∗] = z∗ < z in
Case 4, CVaR(X∗) is only a lower bound in this case. We first show that it is the true infimum obtained
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in Case 4. Fix arbitrary ε > 0. We will look for a three-line solution Xε = xdIAε
+ xεIBε + αεIDε with

the right parameters aε, bε, xε, αε, which satisfies the general constraints:

E[Xε] = xdP(Aε) + xεP(Bε) + αεP(Dε) = z (23)

Ẽ[Xε] = xdP̃(Aε) + xε P̃(Bε) + αε P̃(Dε) = xr (24)

where:

Aε =

{
ω ∈ Ω :

dP̃
dP

(ω) > aε

}
, Bε =

{
ω ∈ Ω : bε ≤ dP̃

dP
(ω) ≤ aε

}
, Dε =

{
ω ∈ Ω :

dP̃
dP

(ω) < bε

}

and produces a CVaR level close to the lower bound:

CVaR(Xε) ≤ CVaR(X∗) + ε

First, we choose aε = a∗, Aε = A∗, xε = x∗ − δ, where we define δ = λ
λ−P(A∗) ε. To find the remaining

two parameters, bε and αε, so that Equation (23) and (24) are satisfied, we note:

E[X∗] = xdP(A∗) + x∗P(B∗) = z∗

Ẽ[X∗] = xdP̃(A∗) + x∗ P̃(B∗) = xr

and conclude that it is equivalent to finding a pair of bε and αε, such that the following two equalities
are satisfied:

−δ(P(B∗)− P(Dε)) + (αε − x∗)P(Dε)= γ

−δ
(

P̃(B∗)− P̃(Dε)
)
+ (αε − x∗)P̃(Dε)= 0

where we denote γ = z − z∗. If we can find a solution, bε, to the equation:

P̃(Dε)

P(Dε)
=

P̃(B∗)
γ
δ + P(B∗)

(25)

then:

αε = x∗ +
(

P̃(B∗)
P̃(Dε)

− 1

)
δ

and we have the solutions for Equations (23) and (24). It is not difficult to prove that the fraction,
P̃(D)
P(D)

, increases continuously from zero to P̃(B∗)
P(B∗) as b increases from zero to a∗. Therefore, we can find a

solution, bε ∈ (0, a∗), where Equation (25) is satisfied. By definition Equation (3):

CVaRλ(Xε) = 1
λ inf

x∈R

(
E
[
(x − Xε)

+
]
− λx

)
≤ 1

λ

(
E
[
(xε − Xε)

+
]
− λxε

)
= 1

λ (xε − xd)P(Aε)− xε

The difference:

CVaRλ(Xε)− CVaR(X∗) ≤ 1
λ (xε − xd)P(Aε)− xε − 1

λ (x∗ − xd)P(A∗) + x∗

= 1
λ (x∗ − xd)(P(Aε)− P(A∗)) +

(
1 − P(Aε)

λ

)
(x∗ − xε) = ε

Under Assumption 2.1, the solution in Case 4 is almost surely unique; the result is proven. �
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Abstract: This paper presents a welfare analysis of several capital insurance programs in a rational
expectation equilibrium setting. We first explicitly characterize the equilibrium of each capital
insurance program. Then, we demonstrate that a capital insurance program based on aggregate loss
is better than classical insurance, when big financial institutions have similar expected loss exposures.
By contrast, classical insurance is more desirable when the bank’s individual risk is consistent with
the expected loss in a precise way. Our analysis shows that a capital insurance program is a useful
tool to hedge systemic risk from the regulatory perspective.

Keywords: capital insurance; welfare; equilibrium

1. Introduction

This paper presents a welfare analysis of recently proposed capital insurance programs in a
rational expected equilibrium setting. The idea of capital insurance is motivated by the desire to
resolve “too big to fail” issues. As those “too big to fail” banks or companies that are “financial in
nature” (hereafter, banks)1 expect capital injection from the central bank in times of financial distress,
the banks might act in a risk-taking manner and put the central bank, the regulator and all taxpayers
in a fragile financial position. In a capital insurance program (see [11]), the bank pays some amount as
a premium or reserve to the central bank, which, in turn, would inject funds into the banks during
future financial failures. A capital insurance program is motivated by the desire to protect taxpayers
and the economy as a whole in the presence of a big financial predicament. Our purpose is to study
whether this capital insurance idea works or not from the perspective of its welfare.

Capital insurance is very different from the current capital regulation implemented in BASEL II
and BASEL III. It is also different from the Dodd-Frank Act, which posits several prudential standards
and new stringent capital requirements to banks with systemic risks. According to the capital regulation
requirement, the amount of capital reserve or the economic capital amount depends on the risk of the
loss portfolio and the riskiness of the bank itself. The riskier the bank, the higher the economic capital;
the economic capital is higher for a bank with a weak credit situation than for a strong counterpart,
while assuming the portfolio to be identically the same. Therefore, the economic capital idea depends
on both the individual bank’s riskiness and the individual loss portfolio.

By contrast, capital insurance, in essence, is an insurance contract, and the capital insurance
idea casts all banks together at the market level. On the one side, the central bank is an insurer of

1 Under the standards set forth in section 113 of the Dodd-Frank Act, a bank holding company or “non-bank financial
company” poses a potential systemic risk if “material financial distress at the company, or the nature, scope, size, scale,
concentration, interconnectedness, or mix of the activities of the company, could pose a threat to the financial stability of the
United States.” Therefore, we focus only on these companies with systemic risks (too big to fail).
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the contract and receives an insurance premium with the obligation to inject funds to save the bank
in financial distress. On the other side, the bank is an insured in this contract agreement. As the
central bank represents the taxpayer in this structure, the insurer of the contract is a taxpayer, and the
premium represents a special purpose tax in the sense described by Acharya et al. [1]. In contrast to the
traditional insurance contract, the contract redemption is contingent on the aggregate loss, and the
insured event is contingent on a systematic event in the economy.

The rational expected equilibrium of the capital insurance program is explained as follows. The
central bank issues insurance contracts to the banks, and the banks purchase these contracts, which are
placed on the market. The central bank predicts the correct optimal demand from the banks with a
given premium structure, so the central bank maximizes the welfare with the premium structure as
characterized. Consequently, both the demand (from the banks) and the supply (from the central bank)
are determined uniquely in a rational expectation equilibrium.

In this paper, we assume that the insurance contract payout has been placed as proposed by
the capital insurance program. Therefore, we do not address the optimal capital insurance design
problem. Instead, we consider two capital insurance programs. In the first one, the insurance contract
insures the aggregate loss of all banks. In the second one, each bank buys insurance that depends on the
aggregate loss of all banks, except for the insured bank’s own loss portfolio. For comparison purposes,
we further consider the situation in which each bank purchases insurance that relies on its own loss
portfolio. This is “classical insurance” by the terminology in this paper, and it has the same indemnity
as the traditional coinsurance contract. As the premium structure depends on all the loss portfolios of
the banks, those loss portfolios together affect each bank’s coinsurance demand. Therefore, classical
insurance in our setting is different from the traditional coinsurance contract in equilibrium.

We demonstrate that many factors affect the welfare analysis and the chosen capital insurance
program. First, the proposed two capital insurance programs are distinguished from each other by the
correlation structure. A low correlation environment ensures the low welfare of the contract based on
the aggregate loss, except for the individual bank’s loss. Therefore, the aggregate insurance is better
than the other one. In fact, when each loss portfolio can be observed completely by all banks and the
central bank and the bank does not manipulate the book loss, aggregate insurance ensures a higher
welfare than another one, in general.

Second, both the specific risk and the systematic risk components of the individual loss are
important ingredients for comparing the classical insurance and the aggregate insurance contracts.
These two components play a crucial role in the classical demand analysis of the coinsurance contract
(for the mean-variance insured); see [9]. We demonstrate that the way in which each bank’s specific
risk and systematic risk components behave together in the market has a significant effect on the
comparison analysis. When a higher individual risk corresponds to a higher expected loss per each
volatility unit, we say that the market displays an ordering loss market. Otherwise, the market is a
disordering loss market.2 We show that classical insurance works better in the ordering loss market,
while aggregate insurance is more beneficial to the central bank in the disordering loss market. Hence,
our result is significantly disparate from the optimal sharing rules in a pure exchange market.3 The
optimal insuring rule, in our equilibrium, relies on the aggregate loss portfolio in a more complicated
way. Literally, the way in which the loss portfolios are connected to each other implies a different
welfare outcome of the insurance program.

Third, the way in which the systematic risk is distributed among each bank is also captious
for a comparative welfare analysis of the insurance contracts. If each bank contributes equally or

2 Precisely, when a risk-adjusted covariance of the loss portfolio is co-monotonic to the Sharpe ratio of the loss portfolio, we
say it is an ordering loss market. If both of these sequences are counter-monotonic to each other, we say that the market is a
disordering loss market. See Propositions 4, 6 and 7 below.

3 By [4], the optimal sharing rules must increase with respect to the aggregate endowment. Our setting is different from
Borch’s equilibrium setting in the presence of the central bank.
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very closely to each other in the total systematic risk, we show that aggregate insurance ensures a
higher welfare. Therefore, it is a more desirable insurance program than the classical insurance one.
Wagner [14] shows that diversification might enhance systemic risk, while it reduces each institution’s
individual probability of failure; so, a full diversification is not always beneficial from the systemic
perspective. According to our result, aggregate insurance offers a solution in a full diversification
situation to reduce the systemic risk.

The remainder of the paper is organized as follows. Section 2 introduces the setting and
characterizes the equilibrium. Section 3 presents the comparison of three types of capital insurance
programs by the welfare analysis developed in the equilibrium. Section 4 offers a discussion and
the implications of our theoretical results. Moreover, we explain how to implement the capital
insurance program in practice and how to identify the “too big to fail” banks from the regulatory
perspective. Section 5 briefly describes the conclusions of the analysis conducted. All proofs are stated
in Appendix A, and Appendix B presents the equilibrium in a general situation and identifies these
“too big to fail” banks by using this capital insurance program.

2. The Model

There are N big banks indexed by i = 1, · · · , N in a one-period economic world. Each bank
is endowed with a loss portfolio, X1, · · · , XN , respectively. These loss portfolios are defined on the
same state space Ω, and all banks have the same beliefs on the nature of state. This common belief is
represented by one probability measure, P, on the state space. However, these bank’s loss portfolios
can be significantly different. We assume that each bank is risk-averse, and the preference of risk
is interpreted by a utility function, Ui(·). The bank’s initial wealth is given by Wi

0 for each bank,
i = 1, · · · , N, respectively.

There is a government entity, such as the Financial Stability Oversight Council (FSOC) in the
Dodd-Frank Act or a central bank, which sells the insurance contract to each bank. Each bank is
either voluntarily or enforced to purchase the insurance contract by paying a particular amount as a
premium, and a fund commitment is guaranteed by a central bank in a bad business situation in the
future. The premium amount can be treated as a special tax purpose rate for each bank as suggested
by Acharya et al. [1]. The fund commitment offered by the government entity is the indemnity of the
insurance. Alternatively, these insurance contracts can be issued by a reinsurance company which is
able to diversify the reinsurance risk. For simplicity, we name the insurer as a regulator.

The prototype insurance structure has the indemnity, Ii(X, Xi), which depends on the individual
book loss, Xi, and the aggregate loss, X. The aggregate loss X = ∑N

i=1 Xi. This insurance contract
is called “capital insurance”, as it depends on the aggregate loss being realized in the future. The
capital insurance contract is different from the classical contracts in which Ii(X, Xi) is irrelevant to the
aggregate loss, X, and, instead, depends on the individual loss, Xi. Following the classical insurance
literature ([2,13]), we assume that the insurance premium is determined by (1 + ρ)E[I(X, Xi)], where ρ

is a load factor. For simplicity, we assume that the loss factor is the same across the bank industry, but
it is possible to consider a bank-specific premium structure in the extended analysis. The loss factor is
characterized by the regulator in equilibrium, which will be explained shortly.

Given a load factor, ρ, each bank chooses the best available insurance contract to maximize the
expected utility (see [2]):

E

[
Ui(Wi)

]
= E

[
Ui

(
Wi

0 − Xi + Ii(X, Xi)− (1 + ρ)E[Ii(X, Xi)]
)]

(1)

The regulator is risk-neutral and receives the premium for each contract. The welfare of the
regulator is:

Wr = ∑
i
(1 + ρ)E[Ii(X, Xi)]− ∑

i
Ii(X, Xi)− ∑

i
c(Ii(X, Xi)) (2)
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where c(Ii(X, Xi)) represents the cost for the regulator to issue the contract, Ii(X, Xi). The cost can be
fixed, a constant percentage of the indemnity or can depend on a drastic market event. To focus on
the analysis of the insurance program, we assume that the cost structure is a constant for each bank.
The regulator’s objective is to determine the best premium structure given the optimal demand for
each bank (with any, a given load structure, ρ), as well as to maximize the expected welfare. Clearly,
the insurance I∗i (X, Xi) in equilibrium depends on both the demand (from all banks) and the supply
(from the regulator) and relies on the load factor, ρ∗, proposed by the regulator. We do not distinguish
between the welfare and the expected welfare when there is no confusion in the rest of this paper.

In this paper, we focus on the following three capital insurance programs:

• Aggregate Insurance: Ii(X, Xi) = βiX, where βi ≥ 0.
• Classical Insurance: Ii(X, Xi) = βiXi, where βi ≥ 0.
• Aggregate-Cross Insurance: Ii(X, Xi) = βi X̂i, where X̂i = ∑j �=i Xj is the total loss, except for the

insured bank’s loss, and βi ≥ 0.

In each case, bank i chooses the best coinsurance parameter, βi. The optimal β is written as β(ρ)

to highlight its dependence on the load factor. The first insurance contract depends solely on the
aggregate loss, X, so it is called “aggregate insurance”. The coinsurance parameter, βi, represents the
percentage of the aggregate loss that is insured for the bank, i. Clearly, this coinsurance parameter
depends on how much the individual bank’s loss risk contributes to the aggregate loss, as will be
seen later. The second insurance contract is a standard one, initiated by [2], and is termed “classical
insurance”. However, the premium structure in the traditional insurance contract is either given
exogenously or depends on the specific loss portfolio in equilibrium. Therefore, our classical insurance
is different from those traditional insurance contracts in a rational expectation equilibrium. The last
insurance contract is motivated differently. Because of the possibility of the bank’s manipulation of the
loss report on Xi, as discussed in [6] in a similar context, there is a moral hazard issue in case Ii(X, Xi)

is related to Xi. To resolve it, Kashyap et al. [11] introduces the aggregate-cross insurance idea in
which the bank insures the total risks of all banks, except for the bank’s own risk. The aggregate-cross
insurance contract is inspired by the idea outlined in [11].

In what follows, we impose two assumptions to simplify the discussions.
Assumption I: Each bank is a mean-variance agent with the reciprocal of the risk aversion parameter,

γi > 0. We also assume zero (or constant) cost structure for each contract.4

Assumption II: There exists no asymmetric information between each bank and the regulator. The loss
portfolio, Xi, is equivalently identified by the bank and the regulator, and both the bank and the regulator make a
decision based on the same interpretation of the loss portfolio.

We now move to present our equilibrium analysis on each capital insurance program. We also
examine how these loss portfolios affect each insurance contract, as well as the welfare. Moreover, we
examine which insurance contract is desirable from the perspectives of the regulator and the bank.

2.1. Aggregate Insurance

We characterize the equilibrium precisely for the aggregate insurance. We start with the bank i’s
rational decision by assuming that the insurance contract has been placed on the market.

2.1.1. Optimal Load for Bank i

Bank i’s objective is to find suitable coinsurance parameter βi to maximize:

max
βi≥0

E

[
Wi
]
− 1

2γi
Var(Wi) (3)

4 We follow the same mean-variance setting as in [12], in which the aggregate uncertainty insurance is considered, as we
focus on the aggregate or systematic risk.
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where Wi = Wi
0 − Xi + βiX − (1 + ρ)E[βiX] is the terminal wealth for the bank, i. Given the load

factor, ρ, the optimal βi for the bank, i, is5:

βi,a(ρ) =
Cov(Xi, X)− ρE(X)γi

Var(X)
(4)

if Cov(Xi, X) − ρE(X)γi ≥ 0; otherwise, βi,a(ρ) = 0. The symbol, “a”, represents the “aggregate
insurance”. We use βi,a(ρ) to highlight the effect of the load factor, ρ, for the bank, i.

2.1.2. Optimal Load Factor for the Regulator

The regulator predicates the demand from the bank, i, as βi,a(ρ)X correctly for each bank, i =
1, · · · , N. Therefore, by plugging Equation (??) into Equation (??) and assuming that Cov(Xi, X) ≥
ρE(X)γi, the welfare is:

E(Wr) = ρE(X)− ρ2 ∑
i

γiE(X)2

Var(X)
. (5)

By using Formula (??) and its first-order condition, the best load factor is determined by the regulator
as:

ρ∗,a =
1

2 ∑i γi

Var(X)

E(X)
. (6)

Consequently, under this premium structure, we obtain the following characterization of
the equilibrium.

Proposition 1 Assume for each i = 1, · · · , N,

Cov(Xi, X)

Var(X)
≥ 1

2
γi

∑i γi
, (7)

then, the optimal load factor, ρ∗,a, is given by Equation (??); the welfare for the aggregate insurance is:

E(W∗,a) =
1

4 ∑i γi
Var(X) (8)

and the best coinsurance parameter for the bank, i, in this aggregate insurance contract is:

βi,a =
Cov(Xi, X)

Var(X)
− 1

2
γi

∑i γi
. (9)

Proof: Under Condition Equation (??) and the choice of ρ∗,a by Equation (??), we observe that
Cov(Xi, X) ≥ ργiE[X]. Therefore, βi,a(ρ) is given by Equation (??), and the equilibrium welfare
is obtained in Equation (??). Then, the equilibrium follows from the standard first-order condition.
In general, if condition (??) does not hold for each i = 1, · · · , N, it means that βi,a(ρ) is a “corner
solution”, and the equilibrium welfare is changed accordingly. A general solution is presented in
Appendix B. �

There are several remarkable points about aggregate insurance by using Proposition 1. First, the
welfare estimated by the regulator depends on the variability of the aggregate loss, the systematic risk.
The higher the variability, the higher the expected welfare. The smaller the variability, or alternatively,

5 It is easy to see that Var(Wi) = Var(Xi) + β2
i Var(X)− 2βiCov(Xi , X). Then, βi,a(ρ) follows from the first-order condition in

Equation (??).
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the more stable the aggregate loss is, the smaller the welfare. More interestingly, the welfare does
not depend on the expected aggregate loss, E[X]. Therefore, only the aggregative risk variability
contributes to the welfare. Hence, Proposition 1 supports the aggregate insurance idea to reduce the
systemic risk.

Second, the optimal coinsurance parameter, βi,a, for bank i is the difference between the “beta”,
Cov(Xi ,X)

Var(X)
,6 and the individual risk aversion parameter, γi, comparing with the total risk aversion among

the banks, ∑i γi. The higher the beta, the larger βi,a; so the bank, i purchases insurance proportional to
the systematic risk. It is intuitively appealing, because a higher beta implies a larger contribution of
the bank, i, to the systematic risk or the bank, i, has a higher systemic risk. To hedge the systemic risk,
the bank needs to insure a larger amount of the systematic risk. Moreover, the relationship between
the bank i’s risk aversion and the other bank’s risk preferences is also important for the aggregate
insurance. Higher γi

∑i γi
implies less risk aversion of the bank, i, and, thus, a smaller βi.

Third, note that7:
∑
i

βi,a = 1
2 , (10)

the total aggregate insurance indemnity for the regulator, is ∑i Ii(X, Xi) =
1
2 X. This states that exactly

half of the systematic risk is insured in this program. The number 1/2 comes from the mean-variance
setting and does not have any specific meaning. However, a crucial insight at this point is that the
aggregate loss is not fully insured in this equilibrium insurance market, which is similar to the classical
result for the standard coinsurance contract.

2.2. Classical Insurance

For comparative purposes, we next consider the classical insurance, Ii(X, Xi) = βiXi. By the
same idea, we characterize βi,c(ρ), ρ∗ and the welfare sequentially. The equilibrium is summarized
as follows.

2.2.1. Optimal Load for Bank i

βi,c(ρ) = max
{

1 − ρE(Xi)γi
Var(Xi)

, 0
}

(11)

where the symbol, “c”, represents “classical insurance”.

2.2.2. Optimal Load Factor for the Regulator

Given the above optimal load factor, βi,c(ρ), and assuming ρE(Xi)γi
Var(Xi)

≤ 1, i = 1, · · · , N, the welfare
is obtained as follows.

E(Wr) = ρE(X)− ρ2 ∑
i

γiE(Xi)
2

Var(Xi)
(12)

Therefore, the optimal load factor from the regulator’s perspective is:

ρ∗,c =
1
2

E(X)

∑i
γi(E(Xi))

2

Var(Xi)

(13)

We have the following result.

6 It is the beta in the capital asset pricing model when the loss variable is replaced by the return variable.
7 Since X = ∑i Xi , ∑i Cov(Xi , X) = Var(X).

108108



Risks 2013, 1, 57–80

Proposition 2 Assume that for each i = 1, · · · , N:

E(X)

∑i
γi(E(Xi))

2

Var(Xi)

γiE(Xi)

Var(Xi)
≤ 2, (14)

then, the optimal load factor is determined in Equation (??). The welfare of the classical insurance is:

E(W∗,c) =
1
4

E(X)2

∑i
γiE(Xi)

2

Var(Xi)

(15)

and the best coinsurance parameter for the bank, i, in this classical insurance contract is:

βi,c = 1 − 1
2

E(X)

∑i
γi(E(Xi))

2

Var(Xi)

γiE(Xi)

Var(Xi)
(16)

Proof: The same as the proof of Proposition 2. �

According to Proposition 2, the welfare estimated by the regulator in classical insurance depends
on both the expectation and the variance of individual loss, as well as the expectation of the aggregate
loss, whereas the variability of the aggregate loss does not contribute to the estimated welfare directly.
In fact, the correlation structure of the loss portfolios, (X1, · · · , Xn), is not involved in the insurance
contract at all. Therefore, the welfare depends only on the marginal distribution, but not on the joint
distribution of the loss portfolios. Obviously, this should be seen as a limitation of classical insurance
to address systemic risk. We will compare classical insurance with aggregate insurance in detail in the
next section.

It is interesting to look at the optimal coinsurance parameter, βi, for the bank, i, in the classical
insurance contract. While keeping the risks on other banks fixed, the higher Var(Xi), the higher βi.
More insurance is required for a higher individual risk. It is straightforward to verify that for large
values of E[Xi], the optimal coinsurance parameter is increasing with respect to the increase of E[Xi].
As the premium structure depends on all loss portfolios, {X1, · · · , Xn}, the risks of other banks affect
the classical insurance demand in this setting8.

2.3. Aggregate-Cross Insurance

At last, we consider the aggregate-cross insurance Ii(X, Xi) = βi X̂i. By definition, it focuses on
the insurance of all banks, except the insured bank in the market.

2.3.1. Optimal Load for Bank i

It is easy to derive βi,ac(ρ) in this situation as:

βi,ac(ρ) = max
{

Cov(Xi, X̂i)− ρE(X̂i)γi

Var(X̂i)
, 0
}

(17)

where the symbol, “ac”, represents “aggregate-cross insurance”.

8 It is different from a traditional insurance contract on individual loss exposure. The load factor for a traditional insurance
contract is either given exogenously or depends on the specific loss vector in equilibrium. Classical insurance in our setting,
however, is characterized in a rational expectation equilibrium with banks and a regulator
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2.3.2. Optimal Load Factor for the Regulator

By plugging Formula Equation (??) into Formula (??) and assuming that Cov(Xi, X̂i) ≥ ρE(X̂i)γi,
we have:

E(Wr) = ρ ∑
i
E(X̂i)

Cov(Xi, X̂i)− ρE(X̂i)γi

Var(X̂i)
(18)

and:

ρ∗,ac =
1
2

∑i E(X̂i)
Cov(Xi ,X̂i)

Var(X̂i)

∑i
γiE(X̂i)

2

Var(X̂i)

. (19)

Therefore, we obtain the following proposition, the proof of which is similar to Propositions 1
and 2.

Proposition 3 Assume for each i = 1, · · · , N:

∑i E(X̂i)
Cov(Xi ,X̂i)

Var(X̂i)

∑i
γiE(X̂i)

2

Var(X̂i)

E(X̂i)γi ≤ 2Cov(Xi, X̂i). (20)

Then, the welfare of the aggregate-cross insurance is:

E(W∗,ac) =
1
4

(
∑i E(X̂i)

Cov(Xi ,X̂i)

Var(X̂i)

)2

∑i γi
E(X̂i)

2

Var(X̂i)

(21)

and the best coinsurance parameter for the bank, i, in this aggregate-cross insurance contract is:

βi,ac =
Cov(Xi, X̂i)

Var(X̂i)
− 1

2

∑i E(X̂i)
Cov(Xi ,X̂i)

Var(X̂i)

∑i
γiE(X̂i)

2

Var(X̂i)

E(X̂i)γi

Var(X̂i)
. (22)

By Proposition 3, the expected welfare in an aggregate-cross insurance contract depends positively
on the covariance between the individual bank’s loss, Xi, and the aggregate loss, except for the insured
bank’s loss, X̂i, for each bank, i. The intuition is simple: higher correlation coefficient corr(Xi, X̂i)

results in higher expected welfare from the regulator’s perspective.
In contrast to classical insurance, aggregate-cross insurance depends on the correlation structure

of the loss portfolios. We see easily that when Xi and X̂i are uncorrelated for each i, both the estimated
welfare and the optimal coinsurance β for bank i in this aggregate-cross insurance contract are equal to
zero. In particular, when all banks’ loss portfolios are independent, there is no necessity to buy the
aggregate-cross insurance.

The next result illustrates the main insights of these three insurance contracts when the loss risk
factors are uncorrelated. We say one contract is preferred to another one, as long as the former has
higher welfare than the latter.

Proposition 4 Assume that the loss portfolios are uncorrelated, i.e., Cov(Xi, Xj) = 0 ∀i �= j. Then, both the
aggregate insurance and the classical insurance are preferred to the aggregate-cross insurance. Moreover:
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1. If the risk-adjusted variance vector,
(

Var(Xi)
γi

)
, and the Sharpe ratio vector,

(
E[Xi ]√
Var(Xi)

)
, are

co-monotonic9, then the classical insurance is preferred to the aggregate insurance.

2. If the risk-adjusted variance vector,
(

Var(Xi)
γi

)
, and the Sharpe ratio vector,

(
E[Xi ]√
Var(Xi)

)
, are

counter-monotonic, and there exists one “too big to fail” bank in the sense that E[X]2 is close to
∑i E[Xi]

2, then the aggregate insurance is preferred to the classical insurance.

Proof: See Appendix A. �

There are several points in Proposition 4. First of all, the relationship between the risk-adjusted
variance and the Sharpe ratio across the banks plays a crucial role in comparing classical insurance
and aggregate insurance. As each Xi represents the loss portfolio, we assume a positive expected
loss in our analysis. Its variance, Var(Xi), represents the individual risk of the bank, i. Similarly, we
use the terminology “Sharpe ratio” to represent the expected loss per each volatility unit. Both the
risk-adjusted variance, Var(Xi)

γi
, and the Sharpe ratio represent two important factors to characterize the

loss risk for bank i.
Secondly, when these individual banks’ risk-adjusted variance has the same order as the Sharpe

ratio, i.e., a higher risk-adjusted variance is consistent with a higher Sharpe ratio, we say that the
risk-adjusted variance is co-monotonic to the Sharpe ratio. In this case, the bank sector is in an ordering
loss market, because a higher expected loss ensures a higher variance. Proposition 4 states that classical
insurance is a better contract from the regulator’s perspective in the ordering loss market.

Thirdly, in the disordering loss market in which a higher risk-adjusted variance is always linked
to a smaller Sharpe ratio, in the presence of a few banks with very large expected loss, Proposition 4
ensures that aggregate insurance is the more beneficial insurance contract. To explain this, say bank
1 is big enough, such that E[X1] � E[X2], · · · ,E[Xn]10. In this case, bank 1’s expected loss is so big
that the total expected systematic loss, E[X], is close to E[X1]; then, E[X]2 is close enough to ∑E[Xi]

2.
Therefore, the aggregate insurance issued to other banks with small losses together would benefit
the regulator.

We next move to the more interesting situation in which each loss contributes to the systematic
risk, so that these loss portfolios are correlated.

3. Systemic Risk and Comparative Analysis

In this section, we examine closely which insurance contract should be preferred to another
one from the perspective of the regulator, as well as the bank. For this purpose, we assume that the
contribution of each bank to the market risk is given exogenously. It is natural to examine the question
in a one-factor model. A multi-factor model shares the same insights as a one-factor model.

Suppose Xi = αiY + εi, where εi is white noise with zero mean and variance σ2
i . Y represents

a market (or systematic) risk factor, and each εi represents the specific risk of bank i. The aggregate
loss X = ∑i αiY + ∑i εi = αY + ε, where α = ∑n

i=1 αi. Write X̂i = α̂iY + ε̂i, where ε = ∑n
i=1 εi, α̂i =

∑n
j=1,j �=i αj, ε̂i = ∑n

j=1,j �=i εj.
We first consider one special case for which specific risks equal zero. By using Equations (??), (??)

and (??), we have the following result.

9 Given two vectors a = (a1, · · · , an), b = (b1, · · · , bn), a and b are counter-monotonic if (ai − aj)(bi − bj) ≤ 0, ∀i, j, and at
least one inequality is strict; a and b are co-monotonic if (ai − aj)(bi − bj) ≥ 0, ∀i, j, and at least one inequality is strict.

10 We write x � y to denote y/x → 0 .
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Proposition 5 If there is no specific risk in the market, then the welfare is equivalent for all three types of
insurance contracts. Precisely, if each σi = 0, then:

E(W∗,a) = E(W∗,c) = E(W∗,ac) = Var(Y)
4 ∑i γi

α2 > 0 (23)

In general, when the systematic risk factor is highly volatile, that is, Var(Y) is high, then these three contracts
offer the same welfare asymptotically. Precisely, when Var(Y) → ∞ 11:

E(W∗,a) ∼ E(W∗,c) ∼ E(W∗,ac) ∼ Var(Y)
4 ∑i γi

α2. (24)

Proof: See Appendix A. �

Proposition 5 states that if Var(Y) is extremely large relative to a company’s specific risk, then
from the regulator’s perspective, the welfare of all three types of insurance contracts is almost identical
and positively depends on both Var(Y) and the aggregate contribution of all banks to the market
risk, ∑i αi. Alternatively, when the individual risks are immaterial compared to the systematic risk,
these three contracts, in essence, provide the same welfare. Therefore, the capital insurance idea does
not work particularly well under some circumstances with an extremely high systemic risk factor or
extremely small specific risks.

Proposition 6 If the risk-adjusted individual risk vector,
(

Var(Xi)
γi

)
, is co-monotonic to the Sharpe ratio

vector,
(

E[Xi ]√
Var(Xi)

)
, then the classical insurance is preferred to the aggregate insurance in the sense that

E[W∗,a] < E[W∗,c].
If the risk-adjusted individual risk vector,

(
Var(Xi)

γi

)
, is counter-monotonic to the Sharpe ratio vector,(

E[Xi ]√
Var(Xi)

)
, and the expected aggregate loss, E[X], is large enough, then the aggregate insurance is preferred

to the classical insurance in the sense that E[W∗,c] < E[W∗,a].

Proof: See Appendix A. �

Proposition 6 has the same insight as Proposition 4, but Proposition 6 holds in a general correlated
market environment. In the ordering loss market, such that a higher risk-adjusted variance corresponds
to a Sharpe ratio, classical insurance works better. In the disordering loss market, however, the
aggregate insurance contract should be preferred to the classical one when the expected total risk,
E[X], is a big concern. Indeed, both Proposition 4 and Proposition 6 demonstrate in different market
situations that aggregate insurance is a good design when the individual risk and the Sharpe ratio
display a negative relationship for each bank.

To finish this section, we compare aggregate-cross insurance with classical insurance.

Proposition 7 If the expected losses across the banks are fairly close, the risk-adjusted variance is co-monotonic
to the Sharpe ratio, and the risk-adjusted correlated variance, ρ2

i
Var(Xi)

γ , is co-monotonic to the Sharpe ratio of

its dual risk,
E[X̂i]√
Var(X̂i)

, where ρi is the correlation coefficient between Xi and X̂i for each i = 1, · · · , N; then

E[W∗,ac] < E[W∗,c].

11 By two functions, f ∼ g, we mean that limVar(Y)→∞
f
g = 1.

112112



Risks 2013, 1, 57–80

Proof: See Appendix A. �

As shown in Proposition 6, the classical insurance is preferred to the aggregative insurance when
risk-adjusted variance is co-monotonic to the Sharpe ratio. Therefore, Proposition 7 shows us that both
the aggregative-type of insurances (i.e., aggregate and aggregate-cross insurance contracts) are not
supportive under the situations described in Proposition 7.

4. Discussion

Under what circumstance should capital insurance programs be implemented and how? In this
section, we show several important insights based on our theoretical results.

4.1. Disordering Loss Market and Ordering Loss Market

According to Proposition 4 and Proposition 6, based on our welfare analysis, the aggregate
insurance contract should be insured by the regulator in the disordering loss market. When the
individual risk of loss, Var(Xi), is mismatched with the expected loss per unit, the loss in each bank
displays the disordering loss market.

There are two important situations in which the disordering loss market occurs. The first situation
is when the contribution to the aggregate loss of each back is fairly close, and each bank has a fairly
close preference for risk. In other words, when the aggregate loss is almost equally distributed among
the banks, it is a disordering loss market. To see this, we assume γi = γ for all i. Clearly, the
risk-adjusted variance, Var(Xi)

γi
, is counter-monotonic to E[Xi ]√

Var(Xi)
. Therefore, both Proposition 4 and

Proposition 6 ensure that aggregate insurance is better than the classical insurance contract.
We describe the second situation in a one-factor model. We argue that when the individual risk

mainly comes from the specific risk in each bank, this is another example of the disordering loss
market. Write Xi = αiY + εi, i = 1, · · · , N. When a higher individual risk, Var(Xi), corresponds to a
higher Var(εi)

Var(Xi)
, the market can be described as the “disordering loss market”. To demonstrate, we assume,

again, γi = γ for all i. Note that Var(Xi)

E[Xi ]
2 = Var(Y) +

(
σi
αi

)2
, and Var(εi)

Var(Xi)
is increasing with respect to

σi
αi

. Then, under this assumption, Var(Xi)
γi

is co-monotonic to Var(Xi)

E[Xi ]
2 and, thus, counter-monotonic to

E[Xi ]√
Var(Xi)

; this is a disordering loss market. Hence, aggregate insurance is a better insurance program

when specific risk plays a dominate role inside individual risk.
Table 1 demonstrates the first situation as described. There are 10 big banks in the market, and

each bank has the same expected loss as αi = 0.1 for all i = 1, · · · , 10. For simplicity, we assume that
the variance of the systematic risk factor, Y, equals one and each γi = 1. However, the specific risk in
each bank varies from 10% to 40%. Table 1 displays the negative relationship between the risk-adjusted
variance and the Sharpe ratio of the loss portfolios among these 10 banks. Therefore, Table 1 shows one
example of the disordering loss market, and we know that aggregate insurance is a preferred program
by Proposition 6. Moreover, by numerical computations, Cov(Xi ,X)

Var(X)
> 0.06 > 1

2N for each i = 1, · · · , N.
Hence, the equilibrium of the aggregate insurance is given explicitly in Proposition 1.

The second situation is shown in Table 2, in which α
σ is increasing with respect to α. In this

case, these banks have different expected loss, ranging from 0.1E[Y] to 0.55E[Y]. As shown, there is a
negative relationship between the risk-adjusted variance and the Sharpe ratio of the loss portfolios
among these 10 banks; hence, Table 2 shows another example of the disordering loss market. By
numerical computations, Cov(Xi ,X)

Var(X)
> 0.08 > 1

2N for each i = 1, · · · , N. Hence, the equilibrium of the
aggregate insurance is given explicitly in Proposition 1.
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Table 1. Example 1 of a disordering loss market. This table displays a disordering loss market when
each bank has the same expected loss in a one-factor model. Therefore, aggregate insurance is a better
capital insurance program by Proposition 6. It can be checked that the condition in Proposition 1 is
satisfied, so the equilibrium of the aggregate insurance is given in Proposition 1. We assume γi = 1 for
each i = 1, · · · , N. There are N = 10 banks.

Bank α σ
Risk-Adjusted

Variance
Sharpe Ratio

1 0.1 0.40 0.170 0.243
2 0.1 0.35 0.133 0.275
3 0.1 0.30 0.100 0.316
4 0.1 0.26 0.078 0.359
5 0.1 0.23 0.063 0.399
6 0.1 0.20 0.050 0.447
7 0.1 0.18 0.042 0.486
8 0.1 0.15 0.033 0.555
9 0.1 0.12 0.024 0.640
10 0.1 0.10 0.020 0.707

Table 2. Example 2 of a disordering loss market. This table displays a disordering loss market when
the percentage of specific risk in individual risk increases with respect to individual risk. Therefore,
aggregate insurance is a better insurance program than the classical insurance program by Proposition
6. It can be checked that the condition in Proposition 1 is satisfied, so the equilibrium of the aggregate
insurance is given in Proposition 1. We assume γi = 1 for each i = 1, · · · , N. There are N = 10 banks.

Bank α σ
Risk-Adjusted

Variance
Sharpe Ratio

1 0.10 0.200 0.050 0.447
2 0.15 0.315 0.122 0.430
3 0.20 0.440 0.234 0.414
4 0.25 0.575 0.393 0.399
5 0.30 0.720 0.608 0.385
6 0.35 0.875 0.888 0.371
7 0.40 1.040 1.242 0.359
8 0.45 1.215 1.679 0.347
9 0.50 1.400 2.210 0.336
10 0.55 1.595 2.847 0.326

On the other hand, when the individual risk, Var(Xi), is opposite of the percentage of the specific

risk, σ2
i

Var(Xi)
, classical insurance is better. In general, when a higher systemic risk corresponds to

a smaller specific risk, classical insurance is better than aggregate insurance. Table 3 displays an
example of the ordering loss market in which the classical insurance program should be preferred to
aggregate insurance.
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Table 3. An Example of an ordering loss market. This table displays an ordering loss market when
the percentage of specific risk in individual risk decreases with respect to individual risk. Therefore,
classical insurance is a better insurance program than the aggregate insurance program by Proposition
6. We assume γi = 1 for each i = 1, · · · , N. There are N = 10 banks.

Bank α σ
Risk-adjusted

Variance
Sharpe ratio

1 0.10 0.400 0.170 0.243
2 0.15 0.350 0.145 0.394
3 0.20 0.300 0.130 0.555
4 0.25 0.260 0.130 0.693
5 0.30 0.230 0.143 0.794
6 0.35 0.200 0.163 0.868
7 0.40 0.180 0.192 0.912
8 0.45 0.150 0.225 0.949
9 0.50 0.120 0.264 0.972
10 0.55 0.100 0.313 0.984

Through these examples, we have shown that specific risk is critical in comparing those capital
insurance programs. If the specific risks can be ignored, these three insurance contracts offer similar
welfare. Equivalently, when the systematic risk is extremely large, it does not matter which capital
insurance program should be issued, as is demonstrated by Proposition 5.

4.2. Low Correlation Market and High Correlation Market

The correlation structure affects the capital insurance program. On the one hand, we have seen
by Proposition 4 that aggregate-cross insurance is not a good choice in a low-correlated market.
A low correlation parameter comes from large specific risks. In other words, if specific risks are
sufficiently large enough compared with the systemic risk component, aggregate-cross insurance
does not add welfare. On the other hand, when the specific risks are very small, Proposition 5
ensures that aggregate-cross insurance does not add welfare over aggregate insurance either. Low
specific risks correspond to a high (or even perfectly correlated) correlation coefficient among the
loss portfolios. Therefore, aggregate-cross insurance does not work better in either a low or a high
correlation environment under Assumption I and Assumption II.

Actually, in the absence of asymmetric information, we argue that aggregate-cross insurance does
not work better than aggregate insurance in general. To see this, we assume that αi is the same for all i
and σi is the same for all i. Then, each pair of banks has the same correlation coefficient written as τ.
By straightforward calculation, we have:

E(W∗,ac) = τ2
E(W∗,a) = τ2

E(W∗,c). (25)

Therefore, the lower the correlation coefficient τ, the smaller expected welfare of the aggregate-cross
insurance. Overall, E(W∗,ac) < E(W∗,a) = E(W∗,c). When all banks contribute to systematic risk
equally, then specific risks are also similar; the aggregate-cross insurance is not as good as the two
other insurance programs.

4.3. Systemic Risk

There are many different interpretations about systemic risk. Some authors suggest using the
default probability of the whole financial system (see, for instance, [10]). Other authors suggest using
Shapley values to estimate systemic risk (see [3]).12 It is beyond the scope of this paper to develop a

12 See [5,7,8].
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systemic risk theory, as we focus on the effect of capital insurance. Rather, we indicate that aggregate
insurance is a useful tool to deal with systemic risk by using two interpretations of systemic risk.

First, we view systemic risk as the likelihood of aggregate loss meeting a threshold. Precisely,
the higher probability P(X ≥ L), the higher the systemic risk. In aggregate insurance, post-aggregate
insurance becomes (by using Equation (??)):

∑ Xi − ∑ βiX =
1
2

X. (26)

Clearly, the ex post aggregate loss is smaller than the ex ante aggregate loss, X. Therefore, aggregate
insurance, indeed, reduces systemic risk.

Second, we consider the systemic risk for each individual bank in a one-factor model. Before
purchasing aggregate insurance, the systematic risk contribution of the bank, i, is αi. We assume that
γi is the same across the banks. Then, the coinsurance percentage for the bank, i, is:

βi ≥ αiαVar(Y)
α2Var(Y) + σ2 − 1

2N
. (27)

Hence, the contribution to the systematic risk of the bank, i, after purchasing aggregate insurance, is:

αi − βiα ≤ αiσ
2

α2Var(Y) + σ2 +
1
2

α

N
. (28)

When the number of banks, N, is large enough or when the variability of the systemic risk, Var(Y), is
sufficiently large, we see that αi − βiα < αi. Therefore, the systemic risk of each bank, i, is reduced
after purchasing aggregate insurance.

4.4. Identification and Implementation of “Too Big to Fail”

Suppose the disordering loss market occurs; according to our theory, the aggregate insurance
program is a desired regulatory tool to solve the “too big to fail” issue. Nevertheless, there are two
fundamental questions to be solved as follows.

1. How to implement the aggregate insurance program, i.e., how to characterize the equilibrium in
a general situation.

2. How to distinguish the “too big to fail” banks that are forced to purchase aggregate insurance
from the other banks. Alternatively, how to identify those “too big to fail” banks.

We illustrate our solutions to these questions by an example, while a general solution is given in
Appendix B.

To explain the answers to the questions above, we consider 15 banks, and the loss portfolio of each
bank follows a one-factor model. The systematic risk factor is represented by Y withE[Y] = Var(Y) = 1.
Each bank has the same expected loss, 0.05E[Y], but the specific risk varies differently. In fact, σi moves
from 40% to 12%. Proposition 6 implies that aggregate insurance is more desirable than classical
insurance. It is also easy to see that Cov(Xi ,X)

γi
is decreasing from i = 1 to i = 15. However, as shown in

Table 4, condition (??) in Proposition 1 is not always satisfied. To be precise, for the last five banks,
Cov(Xi ,X)

Var(X)
< 1

2N , i = 11, 12, 13, 14, 15.
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Table 4. Example 3 of a disordering loss market. This table displays a disordering loss market when
each bank has the same expected loss in a one-factor model. Therefore, aggregate insurance is a better
program by Proposition 6. However, the condition in Proposition 1 is not satisfied, as shown for
i = 11, 12, · · · , 15. There are N = 15 banks, and each γi = 1.

Bank α σ
Risk-Adjusted

Variance
Sharpe Ratio

Cov(Xi ,X)
Var(X)

1 0.05 0.40 0.1625 0.124 0.1170
2 0.05 0.38 0.1469 0.130 0.1070
3 0.05 0.36 0.1321 0.138 0.0990
4 0.05 0.34 0.1181 0.145 0.0907
5 0.05 0.32 0.1049 0.154 0.0829
6 0.05 0.30 0.0925 0.164 0.0755
7 0.05 0.28 0.0809 0.176 0.0686
8 0.05 0.26 0.0701 0.189 0.0622
9 0.05 0.24 0.0601 0.204 0.0563
10 0.05 0.22 0.0509 0.222 0.0509
11 0.05 0.20 0.0425 0.243 0.0459
12 0.05 0.18 0.0349 0.268 0.0414
13 0.05 0.16 0.0281 0.298 0.0374
14 0.05 0.14 0.0221 0.336 0.0338
15 0.05 0.12 0.0169 0.385 0.0307

Appendix B presents a general solution of the equilibrium without Condition (??). The equilibrium
problem and how to identify the “too big to fail” problem are solved simultaneously. As the
risk-adjusted covariance sequence, Cov(Xi ,X)

γi
, is decreasing for i = 1, · · · , N, we know that the sequence,

∑i
j=1 Cov(Xj ,X)

2 ∑i
j=1 γj

, is decreasing for i = 1, · · · , N, as well. The first step is to find a unique number, n, such

that:
Cov(Xi, X)

∑n
k=1 Cov(Xk, X)

≥ γi
2 ∑n

k=1 γk
, i = 1, · · · , n (29)

and
Cov(Xi, X)

∑n
k=1 Cov(Xk, X)

<
γi

2 ∑n
k=1 γk

, i = n + 1, · · · , N. (30)

In this example, we find out that n = 13 (see Table 5). Therefore, the first 13 banks, but not the first 10
banks, are “too big to fail” banks that should be required to purchase the aggregate insurance. The last
two banks can be ignored in this aggregate insurance program. The second step is to determine the
optimal load factor, ρ∗, in the aggregate insurance program, which is:

ρ∗ = 1
E[X]

∑n
i=1 Cov(Xi, X)

2 ∑n
i=1 γi

= 0.081. (31)

At last, the optimal co-insurance parameters for the first 13 banks are:

βi,a(ρ∗) = Cov(Xi, X)− ρ∗γiE[X]

Var(X)
, i = 1, · · · , 13. (32)

The last two banks do not buy the aggregate insurance as βi,a(ρ∗) = 0, i = 14, 15. The equilibrium and
relevant computation are displayed by Table 5. We observe that the optimal co-insurance parameter
decreases with respect to Cov(Xi ,X)

γi
, a measure of the systemic risk of these “too big to fail”.
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Table 5. Implementation of Example 3. This table displays the equilibrium of Example 3. We note that

when i starts from 14, Cov(Xi ,X)
γi

is strictly greater than ∑i
j=1 Cov(Xj ,X)

2 ∑i
j=1 γj

. Then, the last two banks are not

“too big to fail”. The optimal load factor is ρ∗ = 8.1%.

Bank Cov(Xi ,X)
γi

Cov(Xi ,X)
Var(X)

∑i
j=1 Cov(Xj ,X)

2 ∑i
j=1 γj

βi,a

1 0.1975 0.1170 0.09875 8.10 %
2 0.1819 0.1070 0.09485 7.18 %
3 0.1671 0.0990 0.09108 6.30 %
4 0.1531 0.0907 0.08745 5.47 %
5 0.1399 0.0829 0.08395 4.69 %
6 0.1275 0.0755 0.08058 3.95 %
7 0.1159 0.0686 0.07735 3.27 %
8 0.1051 0.0622 0.07425 2.63 %
9 0.0951 0.0563 0.07128 2.03 %
10 0.0859 0.0509 0.06845 1.49 %
11 0.0775 0.0459 0.06575 0.99 %
12 0.0699 0.0414 0.06318 0.54 %
13 0.0631 0.0374 0.06075 0.14 %
14 0.0571 0.0338 0.05845 0
15 0.0519 0.0307 0.05628 0

5. Conclusion

In this paper, we present a welfare analysis of several capital insurance programs in equilibrium.
We show that aggregate insurance ensures a higher welfare if each big bank has similar systematic
risk. The classical insurance program, however, has a higher welfare when the individual bank’s risk
is positively related to the expected loss per each volatility unit. In general, aggregate-cross insurance
does not add more welfare if there exists no asymmetric information concern. Overall, we demonstrate
that the capital insurance program is a useful regulatory tool to address the “too big to fail” issue.

Acknowledgments: We are grateful to two anonymous referees for comments which greatly improved
the exposition.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix Proofs

The proofs rely on the following simple lemma.

Lemma 1 Given positive numbers bi, ci, κi for each i = 1, · · · , n,

1. If the vector κ = (κi) is co-monotonic to the vector b
c = ( bi

ci
), then:

∑n
i=1 biκi

∑n
i=1 bi

> ∑n
i=1 ciκi

∑n
i=1 ci

.

2. If the vector κ = (κi) is counter-monotonic to the vector b
c = ( bi

ci
), then:

∑n
i=1 biκi

∑n
i=1 bi

< ∑n
i=1 ciκi

∑n
i=1 ci

.

Proof: ∑ biκi ∑ ci − ∑ bi ∑ ciκi = ∑i,j biκicj − ∑i,j bjciκi = ∑i,j (bicj − bjci)κi =

∑i,j,i<j (bicj − bjci)(κi − κj) = ∑i,j,i<j cicj

(
bi
ci
− bj

cj

)
(κi − κj). �
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Given a vector a = (a1, · · · , an), we use VAR(a) = ∑ a2
i − (∑ ai)

2 to represent the variability of
the vector, a. A small VAR(a) means that those components in a are close to each other. Similarly, we
write E[a] = ∑ ai. It is easy to see that VAR(a) = 1

2 ∑ (ai − aj)
2.

Lemma 2 Given two sequences of positive numbers, ai, bi, i = 1, 2, · · · , n,

• If those numbers, a1, · · · , an, are close enough in the sense that VAR(a) ≤ E[a]2VAR(b)/E[b]2, then
∑ a2

i
∑ b2

i
≤ (∑ ai)

2

(∑ bi)
2 .

• If those numbers, b1, · · · , bn, are close enough in the sense that VAR(b) ≤ E[b]2VAR(a)/E[a]2, then
∑ a2

i
∑ b2

i
≥ (∑ ai)

2

(∑ bi)
2 .

Proof: By straightforward calculation, we obtain:

∑ a2
i (∑ bi)

2 − (∑ ai)
2 ∑ b2

i = 1
2

{
∑

i,j,k
(ai − aj)

2b2
k − ∑

i,j,k
a2

i (bj − bk)
2

}
= ∑ b2

i VAR(a)− ∑ a2
i VAR(b).

(A-1)

When the numbers, ai, are close enough, the first term in (A-1) is dominated by the second term. This
is the first case. It is the classical Cauchy-Schwartz inequality when a1 = · · · = an. In the second case,
the second term is close to zero. �

Proof of Proposition 4. Under the uncorrelated assumption, E[W∗,a] = ∑ Var(Xi)
4 ∑ γi

. As E[Xi] ≥ 0 for each

i, we have E[W∗,c] ≥ ∑E[Xi ]
2

4 ∑i γiE[Xi ]
2/Var(Xi)

. For each i �= j, if Var(Xi)
γi

<
Var(Xj)

γj
, then by the co-monotonic

assumption, E[Xi ]√
Var(Xi)

≤ E[Xj]√
Var(Xj)

. So, E[Xi ]
2

Var(Xi)
≤ E[Xj]

2

Var(Xj)
. Therefore:

Var(Xi)

E[Xi ]
2 ≥ Var(Xj)

E[Xj]
2 . (A-2)

This means that vectors
(

Var(Xi)
γi

)
and
(

Var(Xi)

E[Xi ]
2

)
are counter-monotonic. Then, by Lemma 1, we obtain

(using bi = γi, ci = γiE[Xi]
2/Var(Xi) and κi = Var(Xi)/γi):

∑E[Xi]
2

∑i γiE[Xi]
2/Var(Xi)

>
∑ Var(Xi)

∑ γi
. (A-3)

We have proven the first part. As for the second part, assume that the risk-adjusted variance is
counter-monotonic to the Sharpe ratio vector. Then, by the same idea, we have that:

∑E[Xi]
2

∑i γiE[Xi]
2/Var(Xi)

<
∑ Var(Xi)

∑ γi
= E[W∗,a]. (A-4)

Therefore, when E[X]2 is close to ∑E[Xi]
2, we obtain that E[W∗,c] ≤ E[W∗,a]. The proof is complete.

�

Proof of Proposition 5. The welfare of each insurance contract in the one-factor model is
computed as follows.

E(W∗,a) =
1
4

α2Var(Y) + σ2

∑i γi
(A-5)
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E(W∗,c) =
1
4

α2

∑i γi
α2

i
α2

i Var(Y)+σ2
i

(A-6)

and:

E(W∗,ac) =
1
4

(
∑i α̂iE(Y)

αi α̂iVar(Y)
α̂2

i Var(Y)+σ̂2
i

)2

∑i γi
α̂2

i E(Y)2

α̂2
i Var(Y)+σ̂2

i

=
1
4

(
∑i

αi α̂
2
i Var(Y)

α̂2
i Var(Y)+σ̂2

i

)2

∑i γi
α̂2

i
α̂2

i Var(Y)+σ̂2
i

. (A-7)

Clearly, when the total σ2 = 0, the welfare is identical for all three types of contracts. The second part
follows from the same idea. �

Proof of Proposition 6.

First, note that α2 ≥ ∑ α2
i , and the function f (x) ≡ x2Var(Y)+σ2

x2 is decreasing with respect to x.
Then:

α2Var(Y) + σ2

α2 ≤ ∑(α2
i Var(Y) + σ2

i )

∑ α2
i

. (A-8)

To prove E[W∗,a] < E[W∗,c] under the co-monotonic condition, it suffices to show that:

∑(α2
i Var(Y) + σ2

i )

∑ γi
<

∑ α2
i

∑i γi
α2

i
α2

i Var(Y)+σ2
i

. (A-9)

In fact, by using the co-monotonic relationship between the risk-adjusted variance and the Sharpe

ratio, the risk-adjusted variance is counter-monotonic to the vector,
(

Var(Xi)

E[Xi ]
2 E[Y]2

)
. Note that E[Xi] =

αiE[Y] and Var(Xi) = α2
i Var(Y) + σ2

i . Then, the last inequality (??) follows from Lemma 1 for bi =

γi, ci = γi
α2

i
α2

i Var(Y)+σ2
i

, and κi = Var(Xi)/γi.

If the risk-adjusted variance is counter-monotonic to the Sharpe ratio across the banks, then by
the same proof, we obtain:

∑(α2
i Var(Y) + σ2

i )

∑ γi
>

∑ α2
i

∑i γi
α2

i
α2

i Var(Y)+σ2
i

. (A-10)

For a large positive number, x, f ′(x) = − 2σ2

x3 is close to zero; so, the curve y = f (x) is almost flat. Then,

for a large E[X], the numbers, α2Var(Y)+σ2

α2 and ∑(α2
i Var(Y)+σ2

i )

∑ α2
i

, are close enough that:

α2Var(Y)+σ2

α2 ∼ ∑(α2
i Var(Y)+σ2

i )

∑ α2
i

> ∑ γi

∑i γi
α2

i
α2

i Var(Y)+σ2
i

.

Equivalently, E[W∗,a] > E[W∗,c]. �
Proof of Proposition 7. As the risk-adjusted variance is co-monotonic to the Sharpe ratio across

each bank, Lemma 1 yields that:

1
4

∑E[Xi]
2

∑ γiE[Xi]
2/Var(Xi)

>
1
4

∑ Var(Xi)

∑i γi
. (A-11)

By using the Cauchy-Schwartz inequality, Var(Xi)Var(X̂i) ≥ Cov(Xi, X̂i)
2 for each i. We obtain:

1
4

∑E[Xi]
2

∑ γiE[Xi]
2/Var(Xi)

>
1
4

∑ Cov(Xi, X̂i)
2/Var(X̂i)

∑i γi
. (A-12)
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Note that Cov(Xi ,X̂i)
2

Var(X̂i)γi
= ρ2

i
Var(Xi)

γ , where ρi is the correlation coefficient between Xi and X̂i. If the

Sharpe ratio of the “dual” risk
E[X̂i]√
Var(X̂i)

is counter-monotonic to the risk-adjusted correlated variance,

ρ2
i

Var(Xi)
γ , then ρ2

i
Var(Xi)

γ is co-monotonic to Var(X̂i)

E[X̂i]
2 . Again by Lemma 1 (for bi = γi, ci = γi

E[X̂i]
2

Var(X̂i)
and

κi = ρ2
i

Var(Xi)
γ ), we have:

∑ Cov(Xi, X̂i)
2/Var(X̂i)

∑i γi
>

∑E
[
X̂i
]2 Cov(Xi ,X̂i)

2

Var(X̂i)
2

∑ γi
E[X̂i]

2

Var(X̂i)

(A-13)

By combining (A-12) with (A-13) together, we obtain:

∑E[Xi]
2

∑ γi
E[Xi ]

2

Var(Xi)

>
∑E
[
X̂i
]2 Cov(Xi ,X̂i)

2

Var(X̂i)
2

∑ γi
E[X̂i]

2

Var(X̂i)

. (A-14)

Equivalently:

∑E[Xi]
2

∑E
[
X̂i
]2 Cov(Xi ,X̂i)

2

Var(X̂i)
2

>
∑ γi

E[Xi ]
2

Var(Xi)

∑ γi
E[X̂i]

2

Var(X̂i)

. (A-15)

When E[Xi] is distributed equally, or the expected losses are fairly close enough, Lemma 2 ensures
that:

(∑E[Xi])
2(

∑E
[
X̂i
]2 Cov(Xi ,X̂i)

Var(X̂i)

)2 >
∑E[Xi]

2

∑E
[
X̂i
]2 Cov(Xi ,X̂i)

2

Var(X̂i)
2

. (A-16)

Finally, by using (A-15) and (A-16), we obtain:

(∑E[Xi])
2(

∑E
[
X̂i
]2 Cov(Xi ,X̂i)

Var(X̂i)

)2 >
∑ γi

E[Xi ]
2

Var(Xi)

∑ γi
E[X̂i]

2

Var(X̂i)

. (A-17)

By using Proposition 2 and Proposition 3, we obtain that E[W∗,c] > E[W∗,ac]. �

Appendix A General Solution of the Equilibrium of Aggregate Insurance

The regulator’s problem is to solve the optimal load factor, such as:

ρ∗ = argmax{ρ≥0}ρ
N

∑
i=1

max
(

Cov(Xi, X)− ργiE[X]

Var(X)
, 0
)

(B-1)

and the optimal coinsurance percentage for each bank i = 1, · · · , N is:

βi,a(ρ∗) = max
(

Cov(Xi, X)− ρ∗γiE[X]

Var(X)
, 0
)

. (B-2)

For this purpose, we reorder the bank index and still use i = 1, · · · , N, such that:

Cov(X1, X)

γ1
≥ Cov(X2, X)

γ2
≥ · · · ≥ Cov(XN , X)

γN
. (B-3)
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In other words, we examine the risk-adjusted covariance of the loss portfolio with the aggregate loss
for each bank and reorder these banks from the largest risk-adjusted covariance one to the lowest
risk-adjusted covariance one. Intuitively, a large risk-adjusted covariance of the loss portfolio with
the aggregate loss ensures a large systemic risk. Therefore, the regulator pays more attention to these
banks and makes sure those banks purchase the aggregate insurance to resolve the issue of “too big to
fail”. The risk-adjusted covariance Cov(Xi ,X)

γi
and the beta Cov(Xi ,X)

Var(X)
can be viewed as two measures of

the systemic risk.
The next lemma is trivial.

Lemma 3 Given a decreasing sequence, ai
bi

, for i = 1, · · · , N and ai, bi > 0, the sequence, ci
di

, is also decreasing,

where ci = ∑i
j=1 aj, di = ∑i

j=1 bj.

By using Lemma 3 and (B-3), we have:

Cov(X1, X)

2γ1
≥ ∑2

j=1 Cov(Xj, X)

2 ∑2
j=1 γj

≥ · · · ≥ ∑N
j=1 Cov(Xj, X)

2 ∑N
j=1 γj

. (B-4)

By comparing these two decreasing sequences,
{

Cov(Xi ,X)
γi

; i = 1, · · · , N
}

and{
∑i

j=1 Cov(Xj ,X)

2 ∑i
j=1 γj

; i = 1, · · · , N
}

, we can easily find a unique number, n, such that:

Cov(Xi, X)

γi
≥ ∑n

k=1 Cov(Xk, X)

2 ∑n
k=1 γk

, i = 1, · · · , n (B-5)

and:
Cov(Xi, X)

γi
<

∑n
k=1 Cov(Xk, X)

2 ∑n
k=1 γk

, i = n + 1, · · · , N. (B-6)

Equivalently:
Cov(Xi, X)

∑n
k=1 Cov(Xk, X)

≥ γi
2 ∑n

k=1 γk
, i = 1, · · · , n (B-7)

and:
Cov(Xi, X)

∑n
k=1 Cov(Xk, X)

<
γi

2 ∑n
k=1 γk

, i = n + 1, · · · , N. (B-8)

Define:

ρ∗ = 1
E[X]

∑n
i=1 Cov(Xi, X)

2 ∑n
i=1 γi

. (B-9)

It is easy to see that:

βi,a(ρ∗) = Cov(Xi, X)− ρ∗γiE[X]

Var(X)
, i = 1, · · · , n (B-10)

and βi,a(ρ∗) = 0, i = n + 1, · · · , N. Moreover, ρ∗ is the optimal solution of the following problem:

max
ρ

ρ
n
∑

i=1

(
Cov(Xi ,X)−ργiE[X]

Var(X)

)
.

Finally, it is straightforward to check that
{

ρ∗, βi,a(ρ∗), i = 1, · · · , N
}

is the optimal solution in
equilibrium. The bank, i, is considered to be “too big to fail” for i = 1, · · · , n. βi,a(ρ∗) > 0 for these “too
big to fail” banks. The other bank, i, such that i = n + 1, · · · , N, does not buy the aggregate insurance.
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Abstract: This paper proposes risk sharing strategies, which allow insurers to cooperate and diversify
non-systemic risk. We deal with both deviation measures and coherent risk measures and provide
general mathematical methods applying to optimize them all. Numerical examples are given in order
to illustrate how efficiently the non-systemic risk can be diversified and how effective the presented
mathematical tools may be. It is also illustrated how the existence of huge disasters may lead to
wrong solutions of our optimal risk sharing problem, in the sense that the involved risk measure
could ignore the existence of a non-null probability of “global ruin” after the design of the optimal
risk sharing strategy. To overcome this caveat, one can use more conservative risk measures. The
stability in the large of the optimal sharing plan guarantees that “the global ruin caveat” may be also
addressed and solved with the presented methods.

Keywords: optimal reinsurance; general risk measure; risk sharing; systemic risk

1. Introduction

The optimal reinsurance problem is a classic topic in Actuarial Mathematics. A common approach
is to minimize some measure of the first insurer risk after reinsurance. Seminal papers by Borch [1] and
Arrow [2] used the variance as the risk measure and proved that the stop-loss reinsurance minimizes
the retained risk if premiums are calculated with the Expected Value Premium Principle (EVPP). The
subsequent research followed similar ideas and tried to take into account more general risk measures
and premium principles, which may give optimal contracts other than stop-loss. Recently, Gajec
and Zagrodny [3] considered more general symmetric and even asymmetric risk functions, such as
the absolute deviation and the truncated variance of the retained loss, under the standard deviation
premium principle. Kaluszka [4] studied reinsurance contracts with many convex premium principles
(exponential, semi-deviation and semi-variance, Dutch, distortion, etc.). Other well known financial
risk measures, such as the Value at Risk (VaR) or the Conditional Value at Risk (CVaR, also called
AVaR, TVaR, CTE,Expected Shortfall, etc.), are also being considered. For example, Kaluszka [4] uses
the CVaR as a premium principle, and Cai and Tan [5] calculate the optimal retention for a stop-loss
reinsurance by considering the VaR and the CVaR, under the EVPP. Important extensions are also
presented in Cai et al. [6] and Bernard and Tian [7]. Balbás et al. [8] seem to be the first authors proving
that the stop-loss reinsurance is still optimal for the EVPP and the CVaR, though the reinsurance
budget does not have to be always saturated. An interesting summary of all of these findings may be
found in Centeno and Simoes [9], though there are still many open problems, and more recent papers
may be found (Seng et al. [10], Cui et al. [11], Chi and Tanb [12], etc.).

It is not so usual in the literature to include the reinsurer point of view. The main reason is that
the final decision is made by the ceding company. However, the reinsurer must also accept the selected
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strategy. A third approach considers the objectives of both companies and proposes a “reciprocal
reinsurance”. A very recent study may be found in Cai et al. [13], though there are more analyses
involving both optimization methods and the theory of cooperative games.

This paper deals with “reciprocal reinsurance contracts” involving a general number of companies.
In other words, we propose a risk sharing approach in order to diversify the risk as much as possible,
so as to make the “global market risk” (or systemic risk, in this paper) as close as possible to the
total sum of partial risks. Risks are measured in a very general setting, since Coherent Risk Measures
(Artzner et al. [14]), Deviation Measures (Rockafellar et al. [15] and Expectation Bounded Risk Measures
(Rockafellar et al. [15]) may be used.

The paper outline is as follows. Section 2 will be devoted to introducing the main notations and
the framework. In Section 3, we will present an “Optimal Risk Sharing Problem” (ORSP) in such a
way that every insurer attempts to conserve the size of his portfolio (market share) and simultaneously
reduce his risk. As said above, it may be done by means of Game Theory or Vector Optimization, and
we have selected the second approach, due to the mathematical problems that the use of risk measures
may cause. Thus, we propose a two stage ORSP, such that, first of all (stage 1), every insurer computes
his ideal value (minimum risk with a non-lower market share). As usual, in Vector Optimization,
the ideal values compose the Ideal Point (Nakayama et al. [16]), and a vector optimization problem
(second stage) enables the insurers to look for a risk sharing plan respecting the ideal point and every
market share, as well as approaching the systemic risk as much as possible.

The proposed problems are not easy to solve in practice, since it requires the minimization of
general risk functions, which are barely differentiable. Standard mathematical methods do not apply,
and Section 4 is devoted to extending a methodology of Balbás et al. [8,17]. We will see that Linear
Programming linked methods will be sufficient to overcome the mathematical difficulties, despite the
fact that we may deal with both discrete and continuous random variables and the risk measure is
quite general.

Sections 5 and 6 present illustrative numerical examples. We only try to clarify how the developed
mathematical methods allow us to solve, in practice, the proposed optimization problems in a simple
manner. Simultaneously, the examples will illustrate the practical properties of the optimal risk sharing
strategy and a caveat that might arise from time to time. The existence of huge disasters might lead to
wrong solutions of our ORSP, in the sense that the involved risk measure could ignore the existence of
a non-null probability of “global ruin” ( i.e., the ruin of every involved company) after the design of the
optimal risk sharing strategy. To overcome this caveat, one can use more conservative risk measures.
The stability in the large of the optimal sharing plan guarantees that “this global ruin caveat” may be
also addressed with the presented methods.

The last section of the paper summarizes the most important conclusions.

2. Preliminaries and Notations

Consider the probability space, (Ω,F , IP), composed of the set of “states of the world” Ω, the
σ−algebra F and the probability measure, IP. Denote by IE(y) the mathematical expectation of every
IR−valued random variable y, defined on Ω. Let p ∈ (1, ∞) and denote by Lp the Banach space of
random variables, y, on Ω, such that IE

(|y|p) < ∞, endowed with the norm:

‖ y ‖p =
(
IE

(|y|p))1/p

for every y ∈ Lp. According to the Riesz Representation Theorem, Lq is the dual space of Lp, where
q ∈ (1, ∞) is characterized by 1/p + 1/q = 1.

Let [0, T] be a time interval. From an intuitive point of view, one can interpret that y ∈ Lp may
represent claims at T for some arbitrary insurer.

Consider n insurance companies, whose final (within [0, T]) claims will be represented by the
non-negative random variables, y1, y2, ....yn ∈ Lp, respectively. In order to simplify notations, let us
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assume that all of them deal with the Expected Value Premium Principle with the same loading rate, γ.
Thus, the random final (at T) of the wealth of the jth−company will be (1 + γ)IE

(
yj
)− yj, j = 1, 2, ..., n.

In order to simplify the framework, assume that all of the insurers deal with the same risk measure:

ρ : Lp −→ IR

Consider the sub-gradient of ρ:

Δρ = {z ∈ Lq;−IE(yz) ≤ ρ(y), ∀y ∈ Lp} ⊂ Lq. (1)

We will assume that Δρ is convex and σ(Lq, Lp)−compact, and:

ρ(y) = Max
{−IE(yz) : z ∈ Δρ

}
(2)

holds for every y ∈ Lp. Furthermore, we will also assume the existence of Ẽρ ≥ 0, such that the
constant random variable, z = Ẽρ, is in Δρ and:

Δρ ⊂
{

z ∈ Lq; IE(z) = Ẽρ

}
. (3)

Summarizing, we have:

Assumption 1. The set, Δρ, given by (1) is convex and σ(Lq, Lp)−compact, (2) holds for every y ∈ Lp,
z = Ẽρ is in Δρand (3) holds. �

Assumption 1 is not at all restrictive, since it is satisfied by every expectation bounded risk
measure (Rockafellar et al. [15]) with Ẽρ = 1 and by every deviation measure (Rockafellar et al. [15])
with Ẽρ = 0. Examples of expectation bounded risk measures are the Conditional Value at Risk (CVaR)
and the Weighted Conditional Value at Risk (WCVaR), amongst many others. Examples of deviation
measures are, amongst others, the classical p−deviation:

σp(y) =
[
IE
(|IE(y)− y|p)]1/p,

or the upside and downside p−semi-deviation:

σ+
p (y) =

[
IE
(|Max{y − IE(y), 0}|p)]1/p

and:
σ−

p (y) =
[
IE
(|Max{IE(y)− y, 0}|p)]1/p.

If Ẽρ = 1, then it is easy to see that ρ is also coherent in the sense of Artzner et al. [14], if and only if:

Δρ ⊂ Lq
+ = {z ∈ Lq; IP(z ≥ 0) = 1}.

Further details may be also found in Balbás et al. [8,17].
Under the framework above, we can consider the risk of the jth−company, given by:

ρ
(
(1 + γ)IE

(
yj
)− yj

)
(4)

j = 1, 2, ..., n, and the systemic risk, given by:

ρ((1 + γ)IE(y)− y) (5)
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where:

y =
n

∑
j=1

yj ∈ Lp

denotes “global claims”. Since Assumption 1 implies that ρ is sub-additive, we have that:

ρ((1 + γ)IE(y)− y) = ρ

(
(1 + γ)

n
∑

j=1
IE
(
yj
)− n

∑
j=1

yi

)
≤ n

∑
j=1

ρ
(
(1 + γ)IE

(
yj
)− yj

)
.

(6)

3. The Risk Sharing Problem

Expression (6) may suggest that every company can reduce risk and simultaneously improve
expected profits. Actually, companies might attempt to modify their portfolios in such a manner that
(6) almost becomes an equality. This purpose may be addressed with two stages.

In the first stage, every insurer can compute his ideal risk level, i.e., the minimum risk associated
with the expected wealth of his portfolio. The optimization problem for the jth−company becomes:⎧⎪⎨⎪⎩

Minρ
(
(1 + γ)IE

(
xj
)− xj

)
IE
(

xj
) ≥ IE

(
yj
)

0 ≤ xj ≤ y
(7)

xj ∈ Lp being the decision variable.
Fix an ideal point,

I = (I1, I2, ..., In)

i.e., Ij is not higher than the optimal value attained by (7), j = 1, 2, ..., n. In the second stage, all the
companies, such that:

Ij < ρj = ρ
(
(1 + γ)IE

(
yj
)− yj

)
(8)

could collaborate, so as to improve their particular risk. Without loss of generality, we can assume that
(8) holds for j = 1, 2, ..., n, so the insurers could look for a risk sharing plan solving the optimization
problem: ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Min
n
∑

j=1
wjρ
(
(1 + γ)IE

(
xj
)− xj

)
IE
(

xj
) ≥ IE

(
yj
)
, j = 1, 2, ..., n

n
∑

j=1
xj ≤ y

0 ≤ xj, j = 1, 2, ..., n

(9)

x = (x1, x2, ..., xn) ∈ (Lp)n being the decision variable and wj > 0 being a weight associated with the
jth−insurer, j = 1, 2, ..., n. Every company is guaranteeing that his portfolio size (or market share) will
not decrease, and the weights w =

(
wj
)n

j=1 must be chosen in such a manner that:

Ij < ρ
(
(1 + γ)IE

(
xj
)− xj

) ≤ ρj, (10)

j = 1, 2, ..., n must hold. Thus, every company will be approaching its ideal risk level, and the solution:

x∗ = (x∗1 , x∗2 , ..., x∗n) ∈ (Lp)n

of (9) will be a Pareto optimum, in the sense that there is not any (9)−feasible allocation,

x = (x1, x2, ..., xn) ∈ (Lp)n
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,such that:
ρ
(
(1 + γ)IE

(
xj
)− xj

) ≤ ρ
(
(1 + γ)IE

(
x∗j
)
− x∗j
)

,

j = 1, 2, ..., n, with one strict inequality at least (Nakayama et al. [16]).
Notice that the constraints of (9) lead to:

IE
(
xj
)
= IE
(
yj
)

(11)

and:
n

∑
j=1

xj = y (12)

j = 1, 2, ..., n, so, if necessary, we can slightly modify the restrictions of (9).

4. Mathematical Tools

Both optimization problems, (7) and (9), involve the risk function, ρ, which is non-differentiable
in general, and therefore, the standard mathematical methods do not apply any more. In order to
overcome this caveat, several authors have proposed equivalent linear problems that apply for discrete
random variables and particular interesting examples, such as the CVaR or the absolute deviation
(Konno et al. [18], Mansini et al. [19], etc.). Balbás et al. [8] dealt with a particular optimal reinsurance
problem and gave a new linear dual problem characterizing the primal solutions and applied in a
much more general setting, since the probability space, (Ω,F , IP), does not have to be discrete, and the
fulfillment of Assumption 1 is the unique hypothesis about the risk measure, ρ. This section is devoted
to pointing out how the approach of Balbás et al. [8] may be significantly extended, and both (7) and (9)
have a linear dual problem characterizing their solutions. This is important from a computational point
of view, since it will allow us to find, in practice, the optimal allocation, x = (x1, x2, ..., xn) ∈ (Lp)n.

With regard to Problem (7), following Balbás et al. [8], and bearing in mind (2) and (3), there is an
equivalent linear problem with infinitely many constraints, namely:⎧⎪⎪⎪⎨⎪⎪⎪⎩

Minθ

IE
(

xjzj
)− (1 + γ)ẼρIE

(
xj
) ≤ θ, ∀zj ∈ Δρ

IE
(

xj
) ≥ IE

(
yj
)
,

0 ≤ xj ≤ y

(13)

(
θ, xj
) ∈ IR × Lp being the decision variable. Indeed, bearing in mind Expression (2), one can easily

prove the equivalence between (7) and (13) with quite parallel arguments to those in Balbás et al. [8].
Problem (13) shows an advantage with respect to Problem (7), because it is linear, but the drawback
is provoked by the existence of infinitely many constrains (there is one constraint per every element,
zj ∈ Δρ). Nevertheless, the dual problem of (13) overcomes this caveat, since it remains linear and may
be given as follows: ⎧⎪⎨⎪⎩

MaxIE
(
yj
)
λj − IE

(
yνj
)

zj + νj ≥ (1 + γ)Ẽρ + λj
λj ≥ 0, zj ∈ Δρ, νj ∈ Lq, νj ≥ 0

(14)

(
λj, zj, νj

) ∈ IR × Lq × Lq being the decision variable. We can take Ij as the optimal value of the linear
dual problem above, so as to define the ideal point, I.
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With respect to Problem (9), the equivalent linear problem with infinitely many constraints
becomes: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Min
n
∑

j=1
θj

wjIE
(

xjzj
)− wj(1 + γ)ẼρIE

(
xj
)− θj ≤ 0, ∀zj ∈ Δρ, j = 1, 2, ..., n

IE
(

xj
) ≥ IE

(
yj
)
, j = 1, 2, ..., n

n
∑

j=1
xj ≤ y

0 ≤ xj, j = 1, 2, ..., n((
θj
)n

j=1,
(

xj
)n

j=1

)
∈ IRn × (Lp)n being the decision variable, while the linear dual problem is:

⎧⎪⎪⎨⎪⎪⎩
Max

n
∑

j=1
IE
(
yj
)
λj − IE(yν)

−(1 + γ)wjẼρ + wjzj − λj + ν ≥ 0, j = 1, 2, ..., n
λj ∈ IR, λj ≥ 0, ν ∈ Lq, ν ≥ 0, zj ∈ Δρ j = 1, 2, ..., n

(15)

((
λj
)n

j=1,
(
zj
)n

j=1, ν
)
∈ IRn × Lq × Lq

being the decision variable.
We are dealing with infinite-dimensional Banach spaces, so the existence of a duality gap between

(9) and (15) might hold, i.e., both problems might attain different optimal values (Luenberger, [20]).
However, similar methods to those in Balbás et al. [8] enable us to prove the duality gap absence, and

(15) totally characterizes the optimal allocation,
(

x∗j
)n

j=1
, solving (9). Thus, in practice, one can solve

the dual problem, which is linear and, therefore, easy to solve, even if the probability space, (Ω,F , IP),
is complex and (15) is an infinite-dimensional problem (Anderson and Nash, [21]), and then, one can

find the optimal allocation,
(

x∗j
)n

j=1
, by applying the Karush-Kuhn-Tucker conditions below.

Suppose that
(

x∗j
)n

j=1
is (9)-feasible and:

((
λ∗

j

)n

j=1
,
(

z∗j
)n

j=1
, ν∗
)

(16)

is (15)-feasible. Then, they solve (9) and (15), if and only if the following Karush-Kuhn-Tucker-like
conditions: ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

IE
(

x∗j zj

)
≤ IE
(

x∗j z∗j
)

, ∀zj ∈ Δρ, j = 1, 2, ..., n

IE
(

x∗j
(
−(1 + γ)wjẼρ + wjz∗j − λ∗

j + ν∗
))

= 0, j = 1, 2, ..., n

IE
(

x∗j − yj

)
= 0, j = 1, 2, ..., n

n
∑

j=1
x∗j = y

(17)

hold. �
In practice, we can consider that (16) is known, since it may be computed by solving the dual

problem (15). Thus, (17) becomes a linear system of equations, leading to the optimal allocation,(
x∗j
)n

j=1
.

5. Numerical Experiment

Let us deal with a simple numerical example in order to illustrate how the theorem above allows

us to solve Problems (7) and (9) and obtain the optimal allocation,
(

x∗j
)n

j=1
. This numerical experiment
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will be used in Section 6 to point out how the optimal allocation may increase the “probability global
of ruin”.

Consider three companies and a set of states composed of five scenarios, Ω = {ω1, ω2, ω3, ω4, ω5}.
Suppose that the probability of all of them equals 0.2. Matrix:

Cy =

⎛⎜⎝ 2, 4, 6, 8, 10
10, 8, 6, 4, 2
1, 1, 1, 1, 1000

⎞⎟⎠ (18)

gives the random cost for annual claims, the jth−row being associated with the jth−company, j = 1, 2, 3.
Suppose, finally, that γ = 0.05 and that ρ is the CVaR with the confidence level, 60% (so Ẽρ = 1).
Though higher levels of confidence are usually recommended, the selected one, 60%, will enable us to
illustrate many effects we are interested in. Furthermore, the CVaR is consistent with the second order
stochastic dominance (and the standard utility functions) for every level of confidence (Ogryczak and
Ruszczynski, [22]).

It is easy to verify that:⎛⎜⎝ IE(y1) = 6, IE(y2) = 6, IE(y3) = 200.8, IE(y1 + y2 + y3) = 212.8

ρ1 = 2.7, ρ2 = 2.7, ρ3 = 289.66,
ρ(1.05IE(y)− y) = 289.06

ρ1 + ρ2 + ρ3 = 295.06

⎞⎟⎠ (19)

and the systemic risk, ρ(y) = 289.06, is strictly lower than the sum of the partial risks, ρ1 + ρ2 + ρ3 =

295.06. The three companies may attempt to remove the difference (six monetary units) by means of a
risk sharing plan.

Bearing in mind that (Rockafellar et al., [15])

Δρ =
{

z = (z1, ..., z5); 0 ≤ zi ≤ 2.5and5
i=1zi = 5

}
,

Problem (14) becomes: ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

MaxIE
(
yj
)
λ − 0.25

i=1yiνi
−λ + zi + νi ≥ 1.05, i = 1, 2, ..., 5

5
i=1zi = 5

0 ≤ zi ≤ 2.5, i = 1, 2, ..., 5
0 ≤ λ, 0 ≤ νi, i = 1, 2, ..., 5(

λ, (νi)
5
i=1, (zi)

5
i=1

)
∈ IR11 being the decision variable and IE

(
yj
)

equaling six for j = 1, 2 or 200.8 for
j = 3. By solving these simple linear problems, we can obtain the optimal value of (7) for the three
involved insurers, and the ideal point becomes

I = (−0.65,−0.65, 271.66).

As can be seen, the ideal point would significantly improve the risk level of the three companies,
while their expected profit would remain the same. The first and second company could reach a
negative CVaR, and the risk reduction could equal 2.7+0.65

2.7 = 124.07%, whereas this percentage would
become 289.66−271.66

289.66 � 6.21% for the third insurer. In this situation, a risk sharing plan could be
interesting for them all, but recall that the ideal point above is not reachable (actually, the systemic
risk, ρ(1.05IE(y)− y) = 289.06, can never be lower than the sum of partial risks; see (6)). Besides,
a significant fall of the third risk could provoke a positive increment of the rest of the ones, so the
weights,

(
wj
)3

j=1, should be selected, so as to prevent this situation. Suppose that the three companies
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choose
(
wj
)3

j=1 = (10, 10, 1). Then, Problem (9) will lead to a Pareto optimum, and Problem (15) will
become: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Max6(λ1 + λ2) + 200.8λ3 − 0.2
5
∑

i=1
yiνi

−λj + wjzj,i + νi ≥ 1, 05wj,
j = 1, 2, 3
i = 1, ..., 5

5
i=1zj,i = 5, j = 1, 2, 3

λj ≥ 0, 0 ≤ zj,i ≤ 2.5, 0 ≤ νi,
j = 1, 2, 3
i = 1, ..., 5

with ((
λj
)3

j=1,
((

zj,i
)3

j=1

)5

i=1
, (νi)

5
i=1

)
being the decision variable and

(yi)
5
i=1 = (13, 13, 13, 13, 1012).

Solving this problem with standard linear optimization methods and using Conditions (17), we get the
optimal allocation:

Cx =

⎛⎜⎝ 6, 6, 6, 6, 6
6, 6, 6, 6, 6
1, 1, 1, 1, 1000

⎞⎟⎠ (20)

and the summary (19) becomes:⎛⎜⎝ IE(x1) = 6, IE(x2) = 6, IE(x3) = 200.8, IE(x1 + x2 + x3) = 212.8

ρ1 = −0.3, ρ2 = −0.3, ρ3 = 289.66,
ρ(1.05IE(y)− y) = 289.06

ρ1 + ρ2 + ρ3 = 289.06

⎞⎟⎠. (21)

Thus, the equality:
ρ(1.05IE(y)− y) = ρ1 + ρ2 + ρ3 (22)

shows that the three companies can totally diversify the non-systemic risk in this case. Notice that the
ideal risk level is not reached by any company.

6. Systemic Risk Reduction and Global Bankruptcy

Consider the numerical example above, but suppose that the second stage is addressed with the
alternative weights,

(
w̃j
)3

j=1 = (1, 1, 1). Then, it is easy to repeat the process and get the new allocation:

Cx̃ =

⎛⎜⎝ 0, 0, 0, 0, 30
0, 0, 0, 0, 30

13, 13, 13, 13, 952

⎞⎟⎠.

Thus, (19) and (21) become:⎛⎜⎝ IE(x̃1) = 6, IE(x̃2) = 6, IE(x̃3) = 200.8, IE(x̃1 + x̃2 + x̃3) = 212.8

ρ1 = 8.7, ρ2 = 8.7, ρ3 = 271.66,
ρ(1.05IE(y)− y) = 289.06

ρ1 + ρ2 + ρ3 = 289.06

⎞⎟⎠. (23)

Obviously, this new solution would not be accepted by the first and second insurers, since their
particular risk increases from 2.7 to 8.7. As indicated in Section 4, the weights in (9) must be selected in
such a manner that (10) holds. However, we could also provide other numerical examples, such that
(10) would hold, and the caveat below would also apply.
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Indeed, the risk sharing strategy, Cx̃, shows the existence of serious caveats that cannot be ignored
when designing optimal reinsurance problems. Expression (21) implies that Cx̃ also satisfies (22),
and therefore, both Cx and Cx̃ diversify the non-systemic risk. There is only systemic risk after both
reinsurance strategies. However, the major difference is caused by the state of nature, ω5 ∈ Ω. If ω5

comes out, then the three companies will be facing significant capital losses. In other words, if one
compares Strategies Cy and Cx̃, the probability of ruin for the three insurers is clearly higher for Cx̃,
despite the fact that this risk sharing plan eliminates the non-systemic risk, while the initial one, Cy,
does not.

In general, the existence of very negative catastrophes implying high capital losses generates
loss-distributions very asymmetric and with very heavy tails, as well as very closely correlated risks
in the insurance industry. In a risk sharing plan, it is very important to diversify the risk provoked
by very severe disasters, which can only be done by dealing with very conservative risk measures,
related to very risk averse decision makers. Otherwise, more aggressive risk measures will not
detect this contagion effect and might indicate a global diversification of the non-systemic risk and,
simultaneously, lead to risk sharing strategies, making it grow the ruin probability of the whole system.

The analysis of Balbás et al. [17] may be easily adapted to the setting of this paper. The implication
is that, under weak conditions, the optimal risk sharing strategy remains stable as the risk measure
becomes more and more conservative. In fact, there is a limit in the large of this strategy. Thus,
the method proposed in Section 3 must be complemented with a new analysis verifying the ruin
probability of the involved companies. If the result is not adequate, then the optimal strategy must be
reached with a more risk averse risk measure. The stability of the optimal strategy in the large will
guarantee that “the probability of global ruin” may be controlled, even when facing heavy tails and
high correlations. The example in Section 5 shows that the methodology of Section 3 usually leads to
successful solutions (Cx in (20) totally diversifies the non-systemic risk and does not make it grow any
probability of ruin), but strategies, such as Cx̃, should be discarded if they were obtained.

7. Conclusions

The optimal reinsurance problem is a classical topic in Actuarial Mathematics. The usual
viewpoint only considers the ceding company objective, though there are other approaches, taking into
account the reinsurer opinion, too. This paper proposes a “reciprocal reinsurance” involving a general
number of companies. The main purpose is the diversification of the non-systemic risk conserving
every market share.

We have addressed the objective above by means of two stage Vector Optimization Problems. In
the first step, every insurer computes his ideal risk level, and the second step provides an optimal risk
sharing plan that integrates the objectives of all of the involved insurers and respects ideal points and
market shares.

The usual mathematical methods do not apply to solve the proposed optimization problems, due
to the lack of differentiability, so we have provided specific mathematical tools permitting us to give
explicit solutions of the presented problems. These tools apply in a very general framework, since we
can deal with both discrete and continuous probability spaces, and the risk measure assumptions are
quite weak.

Numerical examples have shown how the proposed tools apply in practice, as well as the
properties of the reached optimal risk sharing strategy. Furthermore, the examples have shown
that under some particular conditions, the selected risk sharing plan might provoke the existence of
scenarios that are very negative for all of the involved companies, making it grow the “probability of
global bankruptcy”, with respect to this probability value, before the reinsurance contract. If so, the
risk sharing plan should be modified, and a good way to do that is to choose a more conservative risk
measure. The stability in the large of the optimal sharing plan guarantees that this “global ruin caveat”
may be always solved. �
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