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After two years of exchange, this specific issue dedicated to the Carnot cycle and thermomechanical
engines has been completed with ten papers including this editorial.

Our thanks are extended to all the authors for the interesting points of view they have proposed:
this issue confirms the strong interactions between fundamentals and applications in thermodynamics.

Regarding the list of published papers annexed at the end of this editorial, it appears that six
papers [1–6] are basically concerned with thermodynamics concepts. The three others [7–9] employ
thermodynamics for specific applications. Only the papers included in the special issue are cited and
analyzed in this editorial.

In “OTEC Maximum Net Power Output Using Carnot Cycle and Application to Simplify Heat
Exchanger Selection”, Fontaine et al. [7] consider the maximum net power for the OTEC system using
the Carnot cycle to simplify heat exchanger selection. The paper “Energy and Exergy Evaluation of
a Two-Stage Axial Vapor Compressor on the LNG Carrier”, by Poljak et al. [8], particularizes energy
and exergy evaluation to a component of a system: a two-stage axial vapor compressor for LNG
application. In “Second Law Analysis for the Experimental Performances of a Cold Heat Exchanger
of a Stirling Refrigeration Machine”, Djetel-Gothe et al. [9] also use second law analysis to quantify
experimental performances of a cold heat exchanger of a Stirling refrigerator system.

The first conclusion is that we must enlarge the subject from engines to reverse cycle machines,
and particularly those dedicated to low temperature applications. This is confirmed by the paper
“Global Efficiency of Heat Engines and Heat Pumps with Non-Linear Boundary Conditions” [3]
which is concerned both with efficiency of heat pumps and heat engines. This paper establishes the
connection between applications and concepts, mainly global efficiency in this case. This concept is
fruitful due to its non-dimensional form. Lundqvist and Öhman [3] use a black box method to compare
thermal efficiencies of different scale and type of engines and heat pumps. The influence of boundary
conditions is exemplified. Using FTT (Finite Time Thermodynamics) and Max power cycle approaches
easily enable a black box modeling with various (linear or not) boundary conditions.

Two papers give respectively a short history regarding efficiency at maximum power and
an analysis of the methodology used in modeling and optimization of Carnot engines [2,6]. It
appears that in any of the cases specific physical dimensions are correlated to the choice of objective
function and constraints. This is why we preconize the acronym FDOT (Finite physical Dimensions
Optimal Thermodynamics) instead of FTT. In “Progress in Carnot and Chambadal Modeling of
Thermomechanical Engines by Considering Entropy Production and Heat Transfer Entropy”, Feidt
and Costea [6] details some progress in Carnot and Chambadal modeling of thermomechanical engines
by considering entropy production as well as heat transfer entropy.

The paper by Gonzalez-Ayala et al. [1] has the same philosophy as the paper by Feidt and
Costea [6] but using finite time heat engine models compared to low dissipation models. The proposed
models take account of heat leak and internal irreversibilities related to time; the maximum power
(MP) regime is covered. Upper and lower bounds of MP efficiency are reported depending on the heat
transfer law.

Entropy 2020, 22, 348; doi:10.3390/e2203034855 www.mdpi.com/journal/entropy1
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The paper by Xue and Guo [4] is more exotic. It re-examines the Clausius statement of the second
law of thermodynamics. This paper introduces an average temperature method.

We hope to have the opportunity to continue to report on the progress of the subject in the near
future, extending the subject to reverse cycle configurations.

Acknowledgments: We express our thanks to the authors of the above contributions, and to the journal Entropy
and MDPI for their support during this work.

Conflicts of Interest: The author declares no conflict of interest.
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Abstract: In this paper, a comparison between two well-known finite time heat engine models is
presented: the Carnot-like heat engine based on specific heat transfer laws between the cyclic system
and the external heat baths and the Low-Dissipation model where irreversibilities are taken into
account by explicit entropy generation laws. We analyze the mathematical relation between the
natural variables of both models and from this the resulting thermodynamic implications. Among
them, particular emphasis has been placed on the physical consistency between the heat leak and
time evolution on the one side, and between parabolic and loop-like behaviors of the parametric
power-efficiency plots. A detailed analysis for different heat transfer laws in the Carnot-like model
in terms of the maximum power efficiencies given by the Low-Dissipation model is also presented.

Keywords: thermodynamics; optimization; entropy analysis

1. Introduction

A cornerstone in thermodynamics is the analysis of the performance of heat devices. Since the
Carnot’s result about the maximum possible efficiency that any heat converter operating between
two heat reservoirs might reach, the work in this field is mainly focused on how to fit real-life devices
as close as possible to the main requirement behind the Carnot efficiency value, i.e., the existence of
infinite-time, quasi-static processes. However, real-life devices work under finite-time and finite-size
constraints, thus giving finite power output. Over the last several decades, one of the most popular
models in the physics literature to analyze finite-time and finite-size heat devices has been the
so-called Carnot-like model. Inspired by the work reported by Curzon–Ahlborn (CA) [1], this model
provides a first valuable approach to the behavior of real heat engines.

In this model, it is assumed an internally reversible Carnot cycle coupled irreversibly with two
external thermal reservoirs (endoreversible hypothesis) through some heat transfer laws and some
phenomenological conductances related with the nature of the heat fluxes and the properties of the
materials and devices involved in the transport phenomena. Without any doubt, the main result
was the so-called CA-efficiency η = 1 −√

τ (where τ = Tc/Th is the ratio of the external cold and
hot heat reservoirs). It accounts for the efficiency at maximum–power (MP) conditions when the
heat transfer laws are considered linear with the temperature difference between the external heat
baths and the internal temperatures of the isothermal processes at which the heat absorption and
rejection occurs. Later extensions of this model included the existence of a heat leak between the
two external baths and the addition of irreversibilities inside of the internal cycle. With only three
main ingredients (heat leak, external coupling, and internal irreversibilities) the Carnot-like model

Entropy 2017, 19, 182; doi:10.3390/e19040182 www.mdpi.com/journal/entropy3
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has been used as a paradigmatic model to confront many research results coming from macroscopic,
mesoscopic and microscopic fields [1–28]. Particularly relevant have been those results concerned
with the optimization not only of the power output but also of different thermodynamic and/or
thermo-economic figures of merit and additionally the analysis on the universality of the efficiency at
MP (or on other figures of merit as ecological type [29–34]).

Complementary to the CA-model, the Low-Dissipation (LD) model, proposed by Esposito et al.
in 2009 [35], consists of a Carnot engine with small deviations from the reversible cycle through
dissipations located at the isothermal branches which occur at finite-time. The nature of the
dissipations (entropy generation) are encompassed in some generic dissipative coefficients, so that
the optimization of power output (or any other figure of merit) is made easily through the contact
times of the engine with the hot and cold reservoirs [36–39]. In this way, depending on the
symmetry of the dissipative coefficients, it is possible to recover several results of the CA-model.
In particular, the CA-efficiency is recovered in the LD-model under the assumption of symmetric
dissipation. Recently, a description of the LD model in terms of characteristic dimensionless variables
was proposed in [40–42]. From this treatment, it is possible to separate efficiency-power behaviors
typical of CA-endoreversible engines as well as irreversible engines according to the imposed time
constraints. If partial contact times are constrained, then one obtains open parabolic (endoreversible)
curves; otherwise, if total time is fixed, one obtains closed loop-like curves.

The objective of this paper is to analyze in which way the Carnot-like heat engines (dependent
on heat transfer laws) and the LD models (dependent on a specific entropy generation law) are
related and how the variables of each one are connected. This allows for an interpretation of the heat
transfer laws, including the heat leak, in terms of the bounds for the efficiency at MP provided by the
LD-model, which, in turn, are dependent on the relative symmetries of the dissipations constants and
the partial contact times.

The article is organized as follows: in Section 2, a correspondence among the variables of the
two models for heat engines (HE) is made. In Section 3, we study the region of physically acceptable
values for the Carnot-like HE variables depending on the heat leak. In Section 4, the study of the
MP regime is made, showing that a variety of results between both descriptions can be recovered
only in a certain range of heat transfer laws; in particular, we analyze the efficiency vs. power curves
behaviors. Finally, some concluding remarks are presented in Section 5.

2. Correspondence between the HE’s Variables of Both Models

A key point to establish the linkage between both models is the entropy production. By equaling
the entropy change stemming from both frameworks it is possible to give the relations among the
variables that describe each model (see Figure 1).

In the LD case (see Figure 1a), the base-line Carnot cycle works between the temperatures Tc

and Th > Tc, the entropy change along the hot (cold) isothermal path is ΔS = −Qh
Th

(ΔS = +Qh
Tc

) and
the times to complete each isotherm processes are th and tc, respectively. The adiabatic processes,
as usual, are considered as instantaneous, though the influence of finite adiabatic times has been
reported in the LD-model in [43]. The deviation from the reversible scenario in the LD approximation
is considered by an additional contribution to the entropy change at the hot and cold reservoirs
given by

ΔS Th = −ΔS +
Σh
th

, (1)

ΔS Tc = ΔS +
Σc

tc
, (2)

4
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where Σh and Σc are the so-called dissipative coefficients. The signs −(+) take into account the
direction of the heat fluxes from (toward) the hot (cold) reservoir in such a way that Qc and Qh are
positive quantities. Then, the total entropy generation is given by

ΔStot =
Σh
th

+
Σc

tc
. (3)

Figure 1. (a) Sketch of a low dissipation heat engine characterized by entropy generation laws ΔS Th

and ΔS Tc ; (b) Sketch of an irreversible Carnot-like heat engine characterized by generic heat transfers
Qh, Qc and QL.

At this point, it is helpful to use the dimensionless variables defined in [40]: α ≡ tc/t,
Σ̃c ≡ Σc/ΣT and t̃ ≡ (t ΔS)/ΣT, where t = th + tc and ΣT ≡ Σh + Σc. In this way, it is possible
to define a characteristic total entropy production per unit time for the LD-model as

˙̃ΔStot ≡ ΔStot

t̃ΔS
=

ΔStot

t
ΣT

ΔS2 =
1
t̃

[
1 − Σ̃c

(1 − α)t̃
+

Σ̃c

αt̃

]
. (4)

In the irreversible Carnot-like HE, the entropy generation of the internal reversible cycle is zero
and the total entropy production is that generated at the external heat reservoirs (see Figure 1b).
By considering the same sign convention as in the LD model Qh = Thw ΔS ≥ 0 and Qc = Tcw ΔS ≥ 0,
where ΔS is the entropy change in the hot isothermal branch of the reversible Carnot cycle, and a heat
leak QL ≥ 0 between the reservoirs Th and Tc, then

ΔSTh = −Qh
Th

− QL

Th
= −ΔS +

(
1 − a−1

h − τ
QL

TcΔS

)
ΔS, (5)

ΔSTc =
Qc

Tc
+

QL

Tc
= ΔS +

(
ac − 1 +

QL

TcΔS

)
ΔS, (6)

where ah = Th/Thw ≥ 1 and ac = Tcw/Tc ≥ 1. By introducing a characteristic heat leak
Q̃L ≡ QL/ (TcΔS) and a comparison with Equations (1) and (2) gives the expressions associated
with the dissipations

Σh
th

=
(

1 − a−1
h − τQ̃L

)
ΔS, (7)

Σc

tc
=

(
ac − 1 + Q̃L

)
ΔS. (8)

5
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By assuming that the ratio tc/(tc + th) is the same in both descriptions, then we introduce
α = 1/(1 + th/tc) into the Carnot-like model, and Σ̃c = Σc/ΣT and t̃ = tΔS/ΣT are

Σ̃−1
c = 1 +

(
1 − α

α

)(
1 − a−1

h − τQ̃L

ac − 1 + Q̃L

)
, (9)

t̃ =
1

α
(

ac − 1 + Q̃L

) [
1 +

(
1−α

α

)(
1−a−1

h −τQ̃L

ac−1+Q̃L

)] , (10)

which are the relations between the characteristic variables of the LD model and the variables of the
Carnot-like HE. This is summarized in the following expression:

Σ̃c

αt̃
= ac − 1 + Q̃L. (11)

3. Physical Space of the HE Variables

We stress that all the above results between variables hold for arbitrary heat transfer laws in
the Carnot-like model. As a consequence, above equations provide the generic linkage between both
descriptions, and, from them, useful thermodynamic information can be extracted.

In Figure 2a, the internal temperatures for the irreversible Carnot-like HE, contained in ah and ac,
are depicted with fixed values τ = 0.2, α = 0.2 and Σ̃c = 0.5. Notice that, in order to obtain thermal
equilibrium between the auxiliary reservoirs and the external baths (i.e., to achieve the reversible
limit), it is necessary that QL = 0. As soon as a heat leak appears, Thw < Th, meanwhile Tcw = Tc is
always a possible configuration. As the heat leak increases in the HE, the internal temperatures get
closer to each other until the limiting situation where Thw = Tcw (see contact edge in Figure 2a).

Figure 2. (a) Thw and Tcw from Equation (9). Note how, as the heat leak increases, the possible
physical combinations of Thw and Tcw become more limited; (b) t̃(Q̃L, ac) according to Equation (10).
The representative values α = 1

5 = τ, Σ̃c = 1
2 have been used, however, the displayed behavior is

similar for any other combination of values.

As a heat leak appears, the reversible limit t̃ → ∞ is no longer achievable. This is better reflected
in Figure 2b, where we plot the total operation time t̃ depending on ac and Q̃L (see Equation (11)).
Only when ac → 1 and Q̃L → 0 can large operation times be allowed. We can see in this figure that the
existence of a heat leak imposes a maximum operational characteristic time to the HE. The total time
is noticeably shorter as the heat leak increases, in agreement with the fact that, for t̃ ≤ 1, the working
regimes are dominated by dissipations. It could be said that the heat leak behaves as a causality effect
in the arrow of time of the heat engine.

6
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Notice that, in Figure 2, there is a region of prohibited combinations of Q̃L and ac. This has to do
with the physical reality of the engine (negative power output and efficiency). In [41], the region of
physical interest in the LD model under maximum power conditions was analyzed. In the Carnot-like
engine, some similar considerations can be addressed as follows: in a valid endoreversible HE,
the internal temperatures may vary in the range ah ∈ (1, τ−1) and ac ∈ (1, τ−1a−1

h ) in order to
have Tc ≤ Tcw ≤ Thw ≤ Th, ac = τ−1a−1

h being the condition for Tcw = Thw implying null work
output and efficiency. From Equation (9), it is possible to obtain two conditions on Q̃L(α, Σ̃c, ac, ah, τ)

(initially assumed to be ≥ 0) according to the values ah = 1 and ah = τ−1. For ah = 1, we obtain that

Q̃L = −
(ac − 1)

(
1−Σ̃c

Σ̃c

)
1−Σ̃c

Σ̃c
+ τ

(
1−α

α

) ≤ 0, (12)

whose only physical solution is Q̃L = 0. Then, as long as there is a heat leak in the device, the internal
hot reservoir cannot reach equilibrium with the external hot reservoir and the reversible configuration
is not achievable. On the other hand (as can be seen in Figure 2a), the largest possible heat leak (i.e.,
the largest dissipation in the system) has as an outcome that Thw → Tcw → Tc, that is, ac → 1 and
ah → τ−1. In that limit, Equations (9) and (11) give

Q̃L,max =
(1 − τ)

(
1−α

α

)
1−Σ̃c

Σ̃c
+ τ

(
1−α

α

) =
Σ̃c

αt̃
, (13)

and, since in this case all the input heat is dissipated to the cold external thermal reservoir, the HE has
a null power output. In Figure 3, we depict the range of possible values that Q̃L can take (from 0 up
to Q̃L,max) in terms of α and t̃. By means of Equation (13), it is established a boundary condition for
physically acceptable values of the irreversible Carnot-like HE in terms of the LD variables, which is

t̃ =
α
(

1 − Σ̃c

)
+ Σ̃cτ (1 − α)

α (1 − α) (1 − τ)
. (14)

Figure 3. Possible values of Q̃L as a function of the control parameters α and t̃. We used the values
Σ̃c = 0.8 and τ = 0.2.

7



Entropy 2017, 19, 182

Up to this point, we have proposed a generic correspondence between the variables of both
schemes: the LD treatment, based on a specific entropy generation law, and the irreversible
Carnot-like engine based on heat transfer laws. In the following, we will further analyze the
connection given by Equation (11) with the focus on different heat transfer laws and the maximum
power efficiencies given by the low-dissipation model.

4. Maximum-Power Regime

As is usual, the power output is given by

P =
η Qh

tc + th
. (15)

In [41], it was shown that, in the MP regime of an LD engine display, an open, parabolic
behavior for the parametric P − η curves when α = αP̃max

is fixed and for Σc ∈ [0, 1]. On the other
hand, by fixing the value of t̃ = t̃P̃max

, one obtains for the behavior of η vs. P loop-like curves
(see Figure 4 in [41]). In the irreversible Carnot-like framework, open η vs. P curves are characteristic
of endoreversible CA-type engines, and, when a heat leak is introduced, one obtains loop-like curves.
The apparent connection between the behavior displayed by fixing t̃ or α in the low dissipation
context with the presence of a heat leak, or the lack of it, is by no means obvious. A simple analysis
of the MP regime in an irreversible Carnot-like engine in terms of the LD variables will shed some
light on this issue and will also provide us a better understanding of how good the correspondence
is between both schemes.

4.1. Low Dissipation Heat Engine

In terms of the characteristic variables, the input and output heat are

˙̃Qh ≡ Q̃h

t̃
=

Qh
TcΔS

ΣT

t ΔS
=

(
1 − 1 − Σ̃c

(1 − α)t̃

)
1
τt̃

, (16)

˙̃Qc ≡ Q̃c

t̃
=

Qc

TcΔS
ΣT

t ΔS
=

(
1 − Σ̃c

α t̃

)
1
t̃

, (17)

giving a power output and efficiency as follows:

P̃ ≡ −W̃
t̃

= − W
TcΔS

ΣT

t ΔS
=

[
1
τ
− 1 − 1

τ

(
1 − Σ̃c

(1 − α)t̃

)
− Σ̃c

αt̃

]
1
t̃

, (18)

η̃ ≡ P̃
˙̃Qh

= − W
Qh

= η =
1 − τ − 1−Σ̃c

(1−α)t̃
− τΣ̃c

αt̃

1 − 1−Σ̃c
(1−α)t̃

. (19)

The optimization of P̃(t̃, α; Σ̃c, τ) is accomplished through the partial contact time α and the total
time t̃, whose values are

αP̃max

(
Σ̃c, τ

)
=

1

1 +
√

1−Σ̃c
τΣ̃c

, (20)

t̃P̃max

(
Σ̃c, τ

)
=

2
1 − τ

(√
τΣ̃c +

√
1 − Σ̃c

)2
, (21)

8
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with an MP efficiency given by

ηP̃max

(
Σ̃c, τ

)
=

(1 − τ)

[
1 +

√
τΣ̃c

1−Σ̃c

]
[

1 +
√

τΣ̃c
1−Σ̃c

]2

+ τ
(

1 − Σ̃c
1−Σ̃c

) . (22)

One of the most relevant features of this model is the capability of obtaining upper and
lower bounds of the MP efficiencies without any information regarding the heat fluxes nature.
These limits are

η−
P̃max

=
ηC
2

≤ ηP̃max
(τ, Σ̃c) ≤ 2 − ηC

ηC
= η+

P̃max
, (23)

corresponding to Σ̃c = 1 and Σ̃c = 0 for the lower and upper bounds, respectively. For the symmetric
dissipation case, Σ̃c = 1/2(= Σ̃h), the well known CA-efficiency η

sym
P̃max

= 1 −√
τ = ηCA is recovered.

4.2. Carnot-Like Model without Heat Leak (Endoreversible Model)

Now, let us consider a family of heat transfer laws depending on the power of the temperature
to model the heat fluxes Qh and Qc (see Figure 1b) as follows:

Qh = Tk
hσh

(
1 − a−k

h

)
th ≥ 0, (24)

Qc = Tk
c σc

(
ak

c − 1
)

tc ≥ 0, (25)

where k 	= 0 is a real number, σh and σc are the conductances in each process and th and tc are the
times at which the isothermal processes are completed. The adiabatic processes are considered as
instantaneous, a common assumption in the two models. According to Equation (15), power output
is a function depending on the variables ac, ah and the ratio of contact times; k, τ and σhc are not
optimization variables for this model. The endoreversible hypothesis ΔSThw = −ΔSTcw gives the
following constriction upon the contact times ratio

tc

th
= σhcacahτ1−k

(
1 − a−k

h
ak

c − 1

)
, (26)

where σhc ≡ σh/σc. Since there is no heat leak, the efficiency of the internal Carnot cycle is the same
as the efficiency of the engine, then acahτ = 1− η, and the dependence of ah is substituted by η. Then,
in terms of α, Equation (26) is

α

1 − α
= σhcτk (1 − η)

⎛⎜⎝1 − ak
cτk

(1−η)k

ak
c − 1

⎞⎟⎠ . (27)

The optimization of power output P (ac, η; σhc, τ, Th, k) in this case is achieved through ac and η.
The maximum power is obtained by solving

(
∂P
∂ac

)
η
= 0 for ac and

(
∂P
∂η

)
ac

= 0 for η. From the first

condition, we obtain P∗, which is

P∗ (η; σhc, τ, Th, k) = σhTk
h

(
η

1 − η

)
(1 − η)k − τk(√

σhc + (1 − η)
k−1

2
)2 . (28)

9
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This function has a unique maximum corresponding to ηPmax , which is the solution to the
following equation

√
σhc (1 − η)

[
τk − (1 − η)k (1 − kη)

]
+ (1 − η)

k+1
2
[
(1 − (1 − k) η) τk − (1 − η)k+1

]
= 0, (29)

and depends on the values σhc, τ and the exponent of the heat transfer law k as showed in [9].
In Figure 4a, ηPmax is depicted for the limiting cases σhc → {0, ∞}. All of the possible values of ηPmax

for different σhcs are located between these two curves. It is well-known that, for the Newtonian heat
transfer law (k = 1), ηPmax = ηCA is independent of the σhc value. As the heat transfer law departs
from the Newtonian case, the upper and lower bounds cover a wider range of efficiencies. Then,
the limits appearing in Equation (23) are fulfilled for a limited region of k values in the Carnot-like
model. From Figure 4a, it is possible to see that the results stemming from an endoreversible engine
are accessible from an LD landmark only in the region k ∈ (−1, 2.5] (for other values of k, there are
efficiencies outside the range given by Equation (23)). By equaling these efficiencies with the LD
one (see Equation (22)) and solving for Σ̃c, we obtain those values that reproduce the endoreversible
efficiencies. This is depicted in Figure 4b. Notice also that not all Σ̃c symmetries are allowed for every
k ∈ (−1, 2.5]. For example, with a heat transfer law with exponent k = −1, all the possible values of
the efficiency can be obtained if the parameter Σ̃c varies from 0 to 1, that is, all symmetries are allowed.
Meanwhile, for k = 1, only the symmetric case Σ̃c = 1/2 is allowed, reproducing the CA efficiency.
For k outside (−1, 2.5], there are efficiencies above and below the limits in Equation (23) with no
Σc values that might reproduce those efficiencies, thus limiting the heat transfer laws physically
consistent with predictions of the LD model.

Figure 4. (a) upper and lower bounds of the MP efficiency in terms of the exponent of the heat transfer
law k of the Carnot-like heat engine; (b) the Σ̃c values that reproduce the upper and lower bounds of
the endoreversible engine.

Inside the region where the LD model is able to reproduce the asymmetric limiting cases
(σhc → {0, ∞}), the correspondence between the two formalisms has not an exact fitting. In order to
show this, we will address the symmetric dissipation case.

As can be seen from Figure 4, in the endoreversible CA-type HE, for every k, there is one σhc
that reproduces the CA efficiency. On the other hand, in the LD model, the symmetric dissipation is
attached to ηCA. If we use the α and t̃ values of MP of the LD model and calculate the values of ac and
ah associated with them (instead of calculating them according to Equations (28) and (29)), we can see

10
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whether they allow us to recover the correct value of σhc that in the endoreversible model gives the
CA efficiency or does not. That is, for Σ̃c = 1/2, Equations (20) and (21) reduce to

α
sym
P̃max

=

√
τ

1 +
√

τ
, (30)

t̃sym
P̃max

=
1 +

√
τ

1 −√
τ

. (31)

From Equation (11), we obtain ac and with the condition η = ηCA, with Tcw/Thw = acahτ =

1 − η =
√

τ we calculate ah, thus

asym
c,P̃max

=
1 +

√
τ

2
√

τ
, (32)

asym
h,P̃max

=
2

1 +
√

τ
. (33)

By using Equation (30), the ratio of contact times results in tc
th

= α
1−α =

√
τ, and, by using the

endoreversible hypothesis (Equation (26)), it is possible to obtain the value of σhc that would produce
the CA efficiency, being

σ
sym
hc,P̃max

=

(
1 +

√
τ
)k

τ
k
2 − 2kτk

2k − (
1 +

√
τ
)k , (34)

which for k = 1 gives σ
sym
hc,P̃max

=
√

τ and for k = −1 gives σ
sym
hc,P̃max

= 1/τ. Nevertheless,
by substituting Equation (34) into Equation (29), the MP efficiency is not exactly the CA one, as can
be seen in Figure 5. Showing that the correspondence between both models is a good approximation
only in the range k ∈ [−1, 1], and is exact only for k = −1 and k = 1.

Another incompatibility of the two approaches comes up in the Newtonian heat exchange
(k = 1): meanwhile, the Carnot-like scheme ηCA is independent of any value of σhc, and, in terms
of the LD model, ηCA is strictly attached to a symmetric dissipation Σ̃c = 1/2(= Σ̃h). Then, the only
law that has an exact correspondence for all values of Σ̃c and σhc is the law k = −1.

Figure 5. Maximum-power efficiency for the symmetric case Σ̃c = 1/2, assuming the LD condition
that tc

th
=

√
τ and using the resulting σhc value that fulfills the endoreversible hypothesis. Notice that

the matching with the CA efficiency is approximate for the interval k ∈ [−1, 1] and is exact for
k = {−1, 1}, as can be seen in the zoom of this region on the right side of the figure.

4.3. Carnot-Like Model with Heat Leak

Now, let us consider a heat leak of the same kind of the heat fluxes Qc and Qh, that is,

QL = Tk
hσL

(
1 − τk

)
(th + tc) ≥ 0, (35)

11
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then, the characteristic heat leak is

Q̃L =
QL

Qc
= ac

Tk
hσL

(
1 − τk

)
(th + tc)

Tk
c σc

(
ak

c − 1
)

tc
=

ac σLc

(
1 − τk

)
α τk

(
ak

c − 1
) . (36)

The power output of the engine is the same than in the endoreversible case; however, a difference
with the previous subsection arises, and now the efficiency is given by the following expression:

η =
Qh + QL − Qc − QL

Qh + QL
= 1 − Qc + QL

Qh + QL
= 1 − 1 + QL

Qc
Qh
Qc

+ QL
Qc

= 1 − 1 + Q̃L

Q̃h + Q̃L
, (37)

where we have used the fact that TcΔS = Qc to introduce the characteristic heats in the last expression.
From Equation (37), it can be derived that, if the heat leak increases, the efficiency diminishes.

In Figure 6, we can observe how the upper and lower bounds of the efficiency appearing in Figure 4
are affected by the introduction of a constant heat leak. Now, by using Equation (37) and the fact
that in the endoreversible case η = 1 − Q̃−1

h , we have plotted the Q̃L values that leads the efficiency
ηCA for k = 1 (of the endoreversible case) down to the value ηC/2 (see point A in Figure 6), which is
Q̃L = 1−√

τ√
τ(1+

√
τ)

; and the value Q̃L = 1−τ
2τ that lead to an efficiency ηC/ (2 − ηC) for k = −1 (of the

endoreversible case) to ηC/2 (see point B in Figure 6).

Figure 6. Influence of the heat leak over the optimized efficiencies appearing in Figure 4. See the text
for explanation.

Notice in Figure 6 that, for Q̃L = 0.1, there is a region around k = 1 where ηCA is outside the
shaded region of maximum power efficiencies. Then, for these values of k and Q̃L, the symmetric
dissipation case, always attached to the ηCA efficiency, is out of reach. Additionally, there is not a
heat transfer law that fulfills both upper and lower bounds for maximum power efficiency given by
the LD model as occurred for k = −1 in the endoreversible case. The additional degree of freedom
caused by the appearance of the heat leak makes more complex the analysis of the validity of the
correspondence between both models, which, in general, should be handled numerically.

5. Conclusions

We analyzed Carnot-like heat engines (dependent on heat transfer laws) and the LD models
(dependent on a specific entropy generation law) and studied how the variables of each one are
connected. We were able to provide an interpretation of the heat transfer laws, including the heat

12
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leak, in terms of the bounds for the efficiency at MP provided by the LD-model, which, in turn,
are dependent on the relative symmetries of the dissipations constants and the partial contact times.

By comparing the entropy production of the low dissipation model and the Carnot-like model,
we proposed a connection between the variables that describe each model. We show that, for an HE,
the region of physical interest is independent from the operation regime, being equivalent to that
for a maximum power LD-HE. That is, η

(
t̃P̃max

, α, Σ̃c, τ
)

≥ 0 defines the acceptable α values, and

η
(

t̃, αP̃max
, Σ̃c, τ

)
≥ 0 those of t̃ (gray shaded areas in Figure 7a,b, respectively). These considerations

on the LD model are recovered from physical considerations on the Carnot-like HE. Thus, the
difference in the performance of the HEs is not due to the physical configurations of the system,
but it comes from the approximations that these models rely on: one over the entropy and the other
over the heat fluxes.

Figure 7. (a) Physically well behaved region of the α–Σ̃c variables. The shaded areas come from the LD
model and the dashed curves come from the Carnot-like model; (b) The same for the t̃–Σ̃c variables.
Notice the agreement in both models. In these plots, we use τ = 0.2.

We show that the heat leak disappears when fixing the partial contact time in the LD
engine, leading to typical endoreversible open parabolic power vs. efficiency curves. However,
the connection between the endoreversible case and the LD model is exact only for heat transfer
laws with exponents k = 1 and k = −1, and a good approximation in the region k ∈ (−1, 1). On the
other hand, the presence of a heat leak fixes the total operation time and the partial contact time is not
constrained, thus, allowing the heat leak to act as an additional degree of freedom (the same efficiency
is achieved with different combinations of partial contact time ratios and heat leaks). The reversible
limit is not accessible in this case, a maximum operation time is established, and when the heat leak
dissipation effects are important, the efficiency may be zero, which is the origin of the loop behavior
of the irreversible P̃ vs. η curves. The connection in the case with heat leak is more complex and its
validity depends on the value of Q̃L.
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Abstract: Finite Time Thermodynamics is generally associated with the Curzon–Ahlborn approach
to the Carnot cycle. Recently, previous publications on the subject were discovered, which prove
that the history of Finite Time Thermodynamics started more than sixty years before even the work
of Chambadal and Novikov (1957). The paper proposes a careful examination of the similarities
and differences between these pioneering works and the consequences they had on the works that
followed. The modelling of the Carnot engine was carried out in three steps, namely (1) modelling
with time durations of the isothermal processes, as done by Curzon and Ahlborn; (2) modelling at a
steady-state operation regime for which the time does not appear explicitly; and (3) modelling of
transient conditions which requires the time to appear explicitly. Whatever the method of modelling
used, the subsequent optimization appears to be related to specific physical dimensions. The main
goal of the methodology is to choose the objective function, which here is the power, and to define the
associated constraints. We propose a specific approach, focusing on the main functions that respond
to engineering requirements. The study of the Carnot engine illustrates the synthesis carried out
and proves that the primary interest for an engineer is mainly connected to what we called Finite
(physical) Dimensions Optimal Thermodynamics, including time in the case of transient modelling.

Keywords: Carnot engine; modelling with time durations; steady-state modelling; transient
conditions; converter irreversibility; sequential optimization; Finite physical Dimensions
Optimal Thermodynamics

1. Introduction

The development of Finite Time Thermodynamics is generally associated with Curzon and
Ahlborn’s paper [1], and concerns the efficiency of a Carnot engine at Maximum Power output. This is
the core subject of the present paper.

This problem is of fundamental importance because the efficiency of energy use is one of the most
important goals all over the world for the future of our civilization.

Carnot was one of the first to introduce the concept of efficiency related to energy conversion
from thermal energy to mechanical energy. However, this work was in the framework of Equilibrium
Thermodynamics and accordingly, with zero power due to quasi static transformations implying
infinite time duration as well.

Nevertheless, the First Law efficiency corresponds to a well-known upper bound, namely:

ηI = 1 − TCS
THS

(1)

The originality of Curzon and Ahlborn’s paper was that it related efficiency to the maximum
power output

.
W of an endoreversible Carnot engine, as will be detailed and discussed below.
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Using the same hypothesis as Carnot regarding infinite Hot Source at THS, and infinite Cold Sink
at TCS, they obtained what is called the nice radical:

ηI

(
MAX

.
W
)
= 1 −

√
TCS
THS

(2)

However, as we indicated in a publication in the 1980s, the nice radical was present in the
publications of Chambadal [2] and also Novikov [3], but for slightly different models, as will be
specified in the following sections. Years ago, we also discovered that Reitlinger had been involved
with the origins of efficiency at maximum power [4], as stated in a paper published in Liège (Belgium)
in 1929. Moreover, a presentation [5] at a conference held in Bucharest in June 2016 revealed that
in Moutier’s book [6] (p. 62) published in 1872, he introduced a nice radical that was named an
“economical coefficient” (see Figure 1).

Figure 1. Extract from Moutier’s book [6] (p. 62).
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The optimum considered in Moutier’s approach is the maximum of the mechanical work obtained
from the available heat.

In a more recent thesis published in Paris [7], we found that other scientific works from the
past [8,9] discussed the same approach. Serrier’s book [9] (published in 1888) discusses the calculation
of a maximum work per cycle between a maximum temperature, T1, and a minimum one, T3, (author
notation), such that the work W was expressed as:

MAX(W) = C ·
(√

T1 −
√

T3

)2
(3)

with a constant coefficient for the transfer of heat.
The corresponding “economical coefficient” (in fact ηI, first law efficiency) corresponds to the

nice radical. Furthermore, the ratio of this coefficient to the Carnot efficiency (called ηII, second law
efficiency) was given. The author adds here that the maximum work differs if a given available heat
is imposed.

Furthermore, since the 1990s, we have collaborated with S. Petrescu’s team at the University
Politehnica of Bucharest [10] on what is named Finite Speed Thermodynamics.

It is remarkable to see that the problem of conversion (today called valorization) of heat to
mechanical energy had already been effectively developed more than a century and a half ago, with the
main objective being maximum work or power allied with efficiency [11].

More recent achievements include the extension of scientific and technical studies to more
numerous potential applications (namely other engines) but also, from a more fundamental point of
view, the development of new upper bounds in term of efficiency at maximum power.

The present paper proposes to analyze (Section 2) the similarities and differences found in the
models developed during the first century (until Curzon and Ahlborn’s seminal paper). Consequently,
Section 3 will be devoted to steady-state modelling focused on the Carnot engine. This implies
important conclusions for thermo-mechanical engines.

Section 4 is concerned with transient modelling, a new branch of Finite Time Thermodynamics
that depends explicitly on time but in a specific form. This will be highlighted in the section.

In Section 5, results are discussed and summarized showing the evolution of knowledge about
maximum power and efficiency since Carnot’s pioneering work. Some recommendations and remarks
are given regarding links with practical aspects. Finally, the future perspectives of what we have
called Finite Dimension Optimal Thermodynamics (FDOT) are proposed. It could be said that
FDOT corresponds to a unification of various branches of new tendencies in Thermodynamics which
are Finite Time Thermodynamics (FTT), Finite Speed Thermodynamics (FST), and also Finite Size
Thermodynamics. New results regarding efficiency at maximum power are proposed. When consistent,
the optimal physical dimensions allocation is given. It corresponds to Gi optimal distribution, Gi being
the physical dimension concerned.

2. Finite Time Thermodynamics.

2.1. Equilibrium Thermodynamics Limit

The work of Carnot was relative to the mechanical work W, and the corresponding First Law
efficiency ηI defined as the ratio of useful mechanical energy, W, to the heat expense, QH:

ηI =
W
QH

(4)

This definition is general, and could represent any First Law efficiency, whatever the model and
associated hypothesis.

We shall first consider the Equilibrium Thermodynamics limit. It is well known that for the Carnot
cycle representing an engine with perfect thermal contacts at the isothermal source (THS) and sink
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(TCS), the efficiency is given by Equation (1). This expression is valid for a reversible engine considered
as an adiabatic system (without heat loss from the source, the engine and the sink).

Let us suppose that we have heat loss from the hot source through the engine towards the heat
sink, QL. In this case the heat expense becomes QHS:

QHS = QH + QL (5)

If QH remains the same at the entrance of the converter, we have a new expression of the First
Law efficiency given by:

ηIL =
W

QH + QL
(6)

The consequence is that the non-adiabaticity of the engine diminishes efficiency at a constant
work output:

ηIL < ηI (7)

Similarly, let us suppose that the converter is irreversible so that the entropy balance becomes:

QH
THS

+
QC
TCS

+ ΔSi = 0 (8)

where ΔSi is the production of entropy inside the converter during a cycle.
The combination of Equations (8) and (4) with the energy balance allows us to easily find that:

ηI = ηC − TCS ΔSi
QH

(9)

This proves that the Carnot efficiency ηC is the upper limit of the efficiency for the adiabatic and
reversible system (two thermostats and the converter).

2.2. The Curzon–Ahlborn Model [1]

This model also starts from the same point as the one of Equilibrium Thermodynamics. It also
considers the Carnot cycle with four thermodynamic processes, but introduces the finite duration of
these processes, namely for the one relative to heat transfer at the source and the sink that satisfies:

Q =

τ∫
0

.
Q dt =

τ∫
0

K′(TS − T) dt (10)

where
.

Q represents heat transfer rate at time t; K’ represents the heat transfer conductance at time
t; TS, T represents respectively source (sink) temperature ,working fluid temperature; τ represents the cycle
duration.

It should be noted that special attention should be given to Equation (10), since the integrals are
discontinuous due to the fact that the heat transfer at the hot side occurs during the process duration
ΔtH, as well as the heat transfer at the cold side, during ΔtC, and are expressed as:

QH = K′
H(THS − TH) ΔtH > 0 (11)

QC = K′
C(TCS − TC) ΔtC < 0 (12)

TH, TC represents respectively hot side (cold side) working fluid temperature
The mechanical work is expressed through the energy balance as:

W = QH + QC (13)
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The entropy balance gives a relation between variables TH, TC for the endoreversible case

as follows:
QH
TH

+
QC
TC

= 0 (14)

Combining Equation (13) with Equations (14) and (4) results in:

ηI = 1 − TC
TH

(15)

Regarding the optimization of the mechanical work, Curzon and Ahlborn obtained:

MAX W =
K′

H ΔtH · K′
C ΔtC

K′
H ΔtH + K′

C ΔtC

(√
THS −

√
TCS

)2
(16)

and the corresponding First Law efficiency is given by Equation (2).
If the objective function is the First Law efficiency, we thus recover Carnot’s formula.
We would like to add some comments on the present calculation at this point. It is worth noting

that K’
H·ΔtH and K’

C·ΔtC are remarkable quantities, but also that K’
H, K’

C are not directly accessible
for experiments, because they are only relative to the transformation part of a cycle (and the transient
conditions associated). Indeed, the following expressions, introducing the general physical dimensions,
Gi, explain the difference between K’ and K:

K′
H ΔtH = KH · τ = GH (17)

K′
C ΔtC = KC · τ = GC (18)

G’s quantities are a kind of invariant for the problem, while this time KH, KC correspond to the
standard heat transfer conductances, which have been fairly well experimentally correlated in the
literature. Additionally, the cycle period is easy to measure.

To conclude, we can see that Q = G (TS − T) imposes a connection between intensity (TS − T)
and extensity Q through G, by analogy with Onsager’s appraisal.

Before extending Curzon-Ahlborn’s present work, we would like to indicate that they also
optimize the power of the engine in the case where adiabatic process durations are short and
proportional to isothermal ones, and where the K’

H, K’
C are supposedly equal.

Our proposal regards the general physical dimension G, an extensive coefficient. At first, GH,
GC were supposed to be constant, but they must remain finite; namely, through KH, KC with regard
to the system size, and through ΔtH, ΔtC, with regard to times of heat transfer at the hot and cold
side, respectively. This is why we propose the unified denomination Finite physical Dimensions
Thermodynamics (FDT) as being preferable to Finite Time Thermodynamics (FTT), which only accounts
for one aspect (time).

The simplest associated physical dimension constraint is:

GH + GC = GT (19)

with GT as a given parameter, and GH, GC variables to allocate.
Following the same methodology as before, Equation (16) shows that MAX[MAX (W)]

corresponds to the min of
(

1
GH

+ 1
GC

)
with the constraint given by Equation (19). This leads easily to

the optimal allocation of Gi variables such that:

GH = GC =
GT
2

(20)

MAX [MAX (W)] =
GT
4

(√
THS −

√
TCS

)2
(21)
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The important and new conclusions are:

• the obtained equipartition of the Gi values in the endoreversible case; and
• the dependence of the maximum mechanical work on only the temperature of the two thermostats,

and the allocated GT invariant.

These results will be used in the following Section 3.

3. Steady-State Modelling

3.1. Heat Transfer Conductance Model

As mentioned in Section 2.2, the modelling with the Ki ’s and τ is easily accessible for experiments,
and corresponds to mean values observed over a great number of cycles. Thus, the characterization
of the steady-state functioning of an engine is straightforward and mainly nominal in nature and
corresponds to the maximum of power

.
W = W/τ. We may also note the corresponding heat rates

.
QH = KH(THS − TH) at source,

.
QC = KC(TCS − TC) at sink. Consequently, the energy balance is

now relative to heat rate and power; and the entropy balance, to entropy rate. The time does not
appear explicitly.

There are numerous results associated with steady-state operation of the engine. The author has
contributed to these in some papers [12–16].

For endoreversible Carnot steady-state optimization, the same methodology as in Section 2.2 is
used (G will be replaced by K) to obtain:

KH = KC =
KT
2

(22)

which shows the equipartition of the heat transfer conductances in the endoreversible case, and:

MAX
[

MAX
( .

W
)]

=
KT
4

(√
THS −

√
TCS

)2
(23)

All the preceding results are related to the linear form of the heat transfer law (Equation (10)).
Studies in the literature [16] report on other heat transfer laws. The most important are:

- The convective heat transfer law:
.

Q = K (TS − T) n (24)

- The generalized radiative heat transfer law:

.
Q = K (TS

n − Tn) (25)

- The phenomenological heat transfer law:

.
Q = K

(
1
T
− 1

TS

)
(26)

with the last law corresponding to Equation (25) with n = −1.
All these laws are symmetrical at source and sink. Only a few papers consider different laws at

the hot and cold side.
It should be noted that for all these laws, the heat transfer conductance K is not dimensionally

standard, and is instead a generalized form of heat transfer conductance. Generally, the corresponding
experimental correlations are not given in the literature.
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3.2. Refined Heat Exchanger (HEX) Model (Endoreversible Case)

This general model is based on the ε—NTU method (see [16], chapter 2; or chapter 4 of the [16]).
Applied to the Carnot engine (Figure 2), it implies:

.
QH = εH

.
CH(THSi − TH) (27)

.
QC = εC

.
CC(TCSi − TC) (28)

where εH, (εC) is the effectiveness of the Hot, (Cold) HEX; THSi, (TCSi) is the entrance temperature of
the Hot (Cold) external fluid of HEX;

.
Ci =

.
mi · cpi (i = H or C), with

.
mi denoting the mass flow rate at i,

and cpi the specific heat at constant pressure of fluid i.
It is important to note the replacement of the thermostats’ limit with a finite heat source and sink,

represented respectively by
.
CH and

.
CC heat rates (Finite Speed Thermodynamics).

The methodology remains the same, and by sequential optimization, we obtain for the
endoreversible converter case:

MAX1
.

W =
εH

.
CH · εC

.
CC

εH
.
CH + εC

.
CC

(√
THSi −

√
TCSi

)2
(29)

In the case of finite thermal capacity rate of the source and sink, we can see that Gi introduced in
Section 2.1 changes to:

Gi = εi ·
.
Ci (30)

1
2

THSi

THSe
TH

3
TC

4
TCSe

TCSi

S

Figure 2. Carnot engine cycle with finite capacity heat rates at source and sink, represented in
T-S diagram.

The result expressed by Equation (21) could be applied, but we refined it with the constraint
εH + εC = εT ≤ 2, while supposing

.
CH and

.
CC to be given parameters. We get the optimal allocation of

effectiveness as [16] (second sequential optimization relative to effectiveness variables):

ε∗C =

√ .
CH√

.
CH +

√ .
CC

εT , ε∗H =

√ .
CC√

.
CH +

√ .
CC

εT , (31)

23



Entropy 2017, 19, 369

and

MAX2
.

W = εT

.
CH ·

.
CC(√ .

CH +

√ .
CC

)2

(√
THSi −

√
TCSi

)2
(32)

As we can see in Equation (32), a new optimization regarding allocation of the heat capacity rates
.
Ci is possible with a new added finite dimension constraint,

.
CC +

.
CH =

.
CT , and we get:

.
CH =

.
CC =

.
CT
2

(33)

This corresponds to the equipartition of heat capacity rates in the endoreversible case, while the
maximum power output yields:

MAX3
.

W =
εT

.
CT
8

(√
THSi −

√
TCSi

)2
(34)

A remarkable result is also obtained related to the efficiency at maximum power output for the
adiabatic endoreversible system with finite steady-state heat source and sink:

ηI 3 = 1 −
√

TCSi
THSi

(35)

To sum up Section 3, the maximization power for steady-state modelling depends only on the
finite physical dimensions (K, ε,

.
C), and not explicitly on time. This is why we prefer to refer to Finite

physical Dimensions Optimal Thermodynamics (FDOT, and not FTT) which is more correct, and
corresponds to reality.

Due to lack of space, we have not developed a Finite Speed Thermodynamics (FST) approach (see
reference [10]), but it covers similar ground, and corresponds to derivatives with respect to time (as

.
C):

see Section 3.2.
We shall now move on to the explicit influence of time regarding some examples of

transient modelling.

4. Transient Modelling

We shall now focus on a Carnot thermo-mechanical engine receiving heat from a source of finite
thermal capacity C (case corresponding to a finite energy source).

We shall suppose—as in Sections 2.2 and 3—that the system is without heat loss but we leave the
endoreversible configuration of the converter, such that at time t a production of entropy exists which
characterized by the converter entropy production rate

.
Si(t) to be specified.

4.1. Model with Perfect Thermal Contact between Finite Heat Capacity Source and Sink, and
Irreversible Engine

The scheme of the system is illustrated in Figure 3. The finite source is characterized by TC(t)
associated with sensitive heat to be delivered by the capacity C = McP, which is presumed to be
constant. This source delivers heat to a Carnot converter producing instantaneous power

.
W(t), and

emitting heat by direct contact with the environment at T0. This corresponds, in fact, to a transient
version of the Chambadal model [2].
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Figure 3. Scheme of a transient version of Chambadal model.

The perfect thermal contact between a finite heat capacity source and the hot side of the Carnot
engine implies that the hot side temperature of the engine is identical to TC(t). By integration over the
duration from 0 to final time tf, it is easy to obtain the work produced in the presence of irreversibility:

W = Wrev − T0 · ΔSi (36)

with: Wrev = C
(
TC0 − T0

)(
1 − T0

T̃

)
, where C denotes the heat capacity of the source,

T̃ =
TC0−T0

ln
TC0
T0

, entropic mean temperature

TC0 = TC(0) , initial temperature of the source

ΔSi =
∫ t f

0

.
Si(t) dt (37)

ΔSi is the entropy production of the irreversible converter during the transient transformation of
the system. The entropy production is supposedentirely released to the cycled fluid [17].

Equation (37) clearly indicates that irreversibilities are related to time, but we do not know
how, as this depends on the transformation trajectory. However, if tf goes to infinity (quasi-static
transformation), this implies that ΔSi must converge to zero (reversibility limit). Consequently,
the simplest form for ΔSi is:

ΔSi =
Ci
t f

(38)

By combining Equation (36) and (38), it yields:

W = Wrev

(
1 − t f0

t f

)
(39)

with t f0 = T0·Ci
Wrev

.
The reference time t f0 is the minimum physically acceptable limit for the transient process to

deliver work in the presence of irreversibilities (for example due to mechanical friction) [16].

4.2. Optimization of Mean Power over Time

For the transient process, the work appears here as a monotonic increasing function of tf, with the
reversible case as the upper bound.

Regarding
.

W as the mean power delivered, we get:

.
W =

Wrev

t f

(
1 − t f0

t f

)
(40)
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A derivative with respect to tf allows us to easily obtain an optimum duration, t∗f , corresponding

to MAX
.

W in presence of irreversibility, such that:

t∗f = 2 t f0 (41)

MAX
.

W =
Wrev

4 t f0

=
1
4
(Wrev)

2

T0 Ci
(42)

The first conclusion is that the maximum mean power of the studied configuration is a decreasing
function of the characteristic time t f0 , or of the irreversibility parameter Ci; the two approaches are
related (time and entropy).

First Law efficiency corresponds to this maximum power, given by:

ηI

(
MAX

.
W
)

=
1
2

.(1 − T0

T̃
) (43)

This result completes results obtained and reported in the literature [18,19]. It also shows that the

transient conditions are different in terms of efficiency ( 1
2 .(1 − T0

T̃
)) at MAX

.
W than the steady-state

one (35). However, the latter is representative of an endoreversible converter (entropy production only

as a result of heat transfer). If we take converter irreversibility into account, ηI

(
MAX

.
W
)

changes,

too, and is related to the irreversibility model, as shown in the transient modelling in [12]. Progress is
being made regarding this issue. A first step consists of considering Ci as a function of tf, instead of as
a parameter. Thus, Equation (39) becomes:

W = Wrev −
T0 Ci

(
t f

)
t f

(44)

Equation (44) allows us to determine t f0 by solving the equation W = 0. Thus, the MAX
.

W for t∗f
is the solution of the new equation obtained from the derivative:

2 T0 Ci

(
t f

)
t f

−
⎡⎣Wrev + T0

dCi

(
t f

)
dt f

⎤⎦ = 0 (45)

We may note that transient modelling refers explicitly to the time variable through entropy, and
that the basic proposed model does not allow sequential optimization related to some specific G
dimension. This still needs to be refined.

5. Conclusions and Perspectives

The present paper has shown the insufficiencies of Curzon-Ahlborn’s approach, and has proposed
solutions to overcome them by:

1. Taking account of heat loss,
2. Taking account of converter irreversibilities,
3. Introducing new intermediate variables, named general physical dimensions: Gi = K′

i Δti = Ki · τ

in the case of the Curzon-Ahlborn model, and Gi = εi ·
.
Ci in the case of steady-state modelling.

A complete examination of steady-state modelling was proposed in Section 3, and the results
were illustrated in the Carnot engine case. A sequential optimization was performed with (1) a first
optimization relative to Ti; and (2) a second optimization relative to Gi (with equipartition in the
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endoreversible configuration of the converter). Additionally, Gi could be Ki = ki. Ai, allowing area Ai
to be allocated.

A generalization to a model of HEX was achieved by considering the heat exchanger effectiveness
εi and, consequently, the heat source and sink of a finite thermal capacity rate. In this case, for the
endoreversible converter, the efficiency at maximum power output was expressed by Equation (35),
which represents a new upper bound. The irreversible converter case was also studied and found to
confirm the Curzon-Ahlborn limit with Equation (44).

The following optimizations regarding Finite Dimensions (ε i,
.
Ci) involve equipartition of

.
Ci in

the endoreversible case, and provide a new expression of the maximum power, given by Equation (34).
To summarize the results reported, it emerges that Finite Physical Dimensions Thermodynamics (FDT)
allows the optimization of the system sequentially (3 dimensions), and gives new upper bounds not
only for endoreversible cases, but also for cases in which an irreversible converter is considered.

Regarding transient modelling, by considering for the first time a finite heat capacity source
delivering heat to a Carnot engine (a new version of Chambadal [2] modelling) with perfect
thermal contact between capacity and converter, but with internal irreversibility, we obtained the
following results:

• MAX (W) was confirmed, corresponding to reversible operation;
• there is a maximum of the mean power output for a finite time transformation with a characteristic

time t f0 connected to converter irreversibility. The maximum mean power MAX
.

W is a
decreasing function of t f0 , as well as of irreversibility (Ci). This maximum is obtained for t∗f = 2 t f0 ,
and the efficiency that it corresponds to (Equation (43)) is a completely new result (with a value
different from the one related to steady-state modelling (see Figure 4, with the theta ratio of the
minimum temperature over the maximum temperature).

Figure 4. Comparison of efficiency limits at maximum power with the ratio Tmin/TMAX. This result
appears more general than the result given in the literature referring to the linear hypothesis of Onsager.

Progress has been made towards a more complete development of these models and results.
Particular attention has been given to the combination of various objectives. This approach seems very
promising, and gives a new perspective on the subject.
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Abstract: Analysis of global energy efficiency of thermal systems is of practical importance for
a number of reasons. Cycles and processes used in thermal systems exist in very different
configurations, making comparison difficult if specific models are required to analyze specific thermal
systems. Thermal systems with small temperature differences between a hot side and a cold side also
suffer from difficulties due to heat transfer pinch point effects. Such pinch points are consequences
of thermal systems design and must therefore be integrated in the global evaluation. In optimizing
thermal systems, detailed entropy generation analysis is suitable to identify performance losses
caused by cycle components. In plant analysis, a similar logic applies with the difference that the
thermal system is then only a component, often industrially standardized. This article presents how
a thermodynamic “black box” method for defining and comparing thermal efficiency of different
size and types of heat engines can be extended to also compare heat pumps of different apparent
magnitude and type. Impact of a non-linear boundary condition on reversible thermal efficiency is
exemplified and a correlation of average real heat engine efficiencies is discussed in the light of linear
and non-linear boundary conditions.

Keywords: global efficiency; energy efficiency; heat engine; heat pump; utilization; Carnot efficiency;
comparison; thermal system; cycle analysis

1. Introduction

When optimizing a thermal plant, using a heat driven power cycle or a heat pump, practical
experience indicates that one seldom have the luxury of choosing the components in any of the
systems considered. Instead, the plant designer often needs to choose between preexisting, industrially
standardized machines. Such preexisting thermal systems will have characteristics almost according
to the designer’s preferences, but seldom exactly. Each of the potential thermal system will respond
differently to optimizations of the plant. Unless the providers make a complete and unique model
available of each potential thermal system, plant optimization has to rely heavily on assumptions. Since
such unique models have a tendency to become biased, the problem remains regardless. We therefore
propose a different approach to comparing thermal systems on a global level. Global in this approach
means that the power cycle or heat pump is treated as a “black box” with global efficiency defined by
the real boundary conditions dictated by the plant in which the “black box” operates.

A sound comparison of energy efficiency of thermal systems performing almost similar duty
benefits not only from a “black box” approach, but also from a non-dimensional scale and an accurate
definition of the reversible energy efficiency of each system. In this article, “thermal systems” means
heat engines and heat pumps.

Black box approaches can be defined as independent of technology used. The importance of the
black box approach is determined by its purpose. When comparing thermal systems using different
cycles, there is no benefit in separating losses internal to the cycle from losses external to the cycle.

Entropy 2017, 19, 394; doi:10.3390/e19080394 www.mdpi.com/journal/entropy29
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By cycle design typical external losses, such as pinch-effects and impact of limited heat exchanger
inventories, can be mitigated and are therefore linked to internal cycle losses in various ways. If the
purpose instead is to study possible improvement potential of a particular cycle, then conventional
second law analysis is highly effective. In such a case, there is no need for a black box approach.

In most practical cases, heat sources as well as heat sinks are finite. Therefore, exit temperatures
from the thermal system vary depending on its energy efficiency. A small heat engine, relative to the
apparent thermal capacity of source and sink, will operate at a larger temperature difference compared
to a large system. Therefore, a comparison between thermal systems of different magnitude requires
a measure indicating how small or large each system is relative to the boundary conditions of the
heat source and sink. Furthermore, any variation in temperature difference means that an immediate
comparison of energy efficiency becomes ambiguous. Instead comparison of energy efficiencies
should relate to the reversible energy efficiency of each system, implicitly therefore also to the exit
temperatures of the source and sink that would be obtainable using a thermodynamically perfect cycle.

Complexity is added by the fact that many thermal systems operate in environments where
apparent heat capacity of heat source and/or heat sink are functions of temperature. We call them
“complex”, or non-linear. If the apparent heat capacity is constant we call them “linear”. In the latter
case, analytical formulas can be derived by defining reversible exit temperatures of source and sink as
well as reversible energy efficiency. In the complex or non-linear cases, we need a numerical approach.

In the following, we will refer to methods of defining reversible energy efficiency of heat engines
and we will propose the same method for comparison of heat pumps. Obviously, refrigeration systems
can be compared in a similar manner as heat pumps.

Lorenz [1] defined a type of reversible cycles specifying how the temperatures in finite source
and sink changed with transportation of heat through it. With such definition, reversible energy
efficiency can be found analytically if the polytropes of the Lorenz cycle constitute equations suitable
to integration. In many applications, for example, a heat engine using waste heat recovery of a diesel
engine, however the polytropes become difficult to integrate.

Ibrahim & Klein [2] showed a numerical definition of extractable work from a reversible cycle
named the “max power cycle”. They used multiple, small, Carnot cycles in consecutive order relative
to source and sink. In Öhman & Lundqvist [3] the concept of “Integrated Local Carnot Efficiency” ηC,Il
was defined as the reversible thermal efficiency of a max power cycle. Using Figure 1 we can extend
the approach to also comprise heat pumps.

Figure 1. A principal heat engine or, if reversed a heat pump.

Equation (1) shows a definition of energy efficiency, or thermal efficiency, of a reversible
heat engine.
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ηth,s =
.

Ws/
.

QH (1)

Consequently, we may define energy efficiency of a reversible heat pump in Equation (2),
operating at the same temperatures.

COPs = 1/ηth,s (2)

As explained in Öhman & Lundqvist [4] we may use the approximation of Curzon–Ahlborn
efficiency as of Curzon & Ahlborn [5] in Equation (3), to define the temperature that a source and
a sink would equalize to by using a reversible heat engine as in Equation (4), the Curzon–Ahlborn
temperature TCA. Note however that, as explained in Öhman [6], using Curzon–Ahlborn efficiency
limits the use of Equation (4) to applications with a linear source and sink. A generalization to
complex sources and sinks requires the numerical solution of the max power cycle to determine
this temperature.

ηCA = 1 −
√

TL/TH (3)

We wish to stress that the use of Equation (3) does not imply that the method described
is developed according to the tradition of finite-time thermodynamics, FFT, or endo-reversible
thermodynamics. It is only used as a simplification used to derive Equation (4) and only applicable to
linear boundary conditions. Öhman [6] explains that Equation (3) is incorrect, however the error is
small enough to allow its use in Equation (4) for determining Equation (5).

FTT, influenced by Curzon & Ahlborn [5] is a related field of science often focusing on cycle
optimization and heat transfer in finite environments. Dong et al. [7] explain a general method to
obtain optimal operating points for endo-reversible and irreversible heat engines. Ge et al. [8] explain
the advances in finite-time thermodynamics for internal combustion cycle optimization. Feidt [9]
explains the development in some traditions of thermodynamic analysis and that FTT is based on the
idea of reversible cycle operating with irreversible heat exchange. Feidt [10] explains thermodynamic
analysis of reverse cycles, clearly showing that FTT focuses on studying effects on thermal efficiency
caused by explicit losses emanating from technical limitations. The black box approach focuses on
thermal efficiency as a function of the magnitude of a thermal system relative to the source and sink,
without assumptions on specific losses. From that reason, it is natural to use that approach also to study
effects of complex boundary conditions. The method explained in this article is explicitly designed for
simplified communication of the findings to practitioners.

2. Method

Using Equation (1) and the definition of inverse apparent heat capacity in the source as αH =

1/
( .
mH · CpH

)
and in the sink as αL = 1/

( .
mL · CpL

)
, Öhman & Lundqvist [4] derived Equation (4) as

follows. (Note the printing error in the equation in the reference.)

TCA =
TL + TH · αL/αH ·

√
TL/TH

1 + αL/αH · √TL/TH
(4)

As extensively explained in Öhman [6], we can now define a dimensionless scale, named
“utilization” and defined in Equation (5), on which to project the energy efficiency of a heat engine.

ψ =
.

QH/
.

QH(TCA) =
.

QH/
.

QCA (5)

Note that
.

QCA is only determined by the nature of the source and sink, while
.

QH is the actual
rate of heat entering the heat engine.

Now we can construct a diagram by plotting various characteristic data vs. “utilization” in a
dimensionless way, thereby allowing comparison of heat engines of different magnitude relative to the
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finiteness of heat source and sink. This approach is suggested in Öhman [6] for the comparison of the
global energy efficiency of different real heat engines. For the correlation of global energy efficiency of
a real heat engine, it is possible to define a “Fraction of Carnot” (FoC) as of Equation (6). The FoC can
be explained as measured, or simulated, using thermal efficiency divided by the ideally possible at the
given utilization ψ, where 0 ≤ ψ ≤ 1.

FoC(ψ) = ηth/ηC,Il(ψ) =
.

Wreal/
.

Ws(ψ) (6)

Note that, by referring to boundary conditions of the reversible thermal system, FoC is not
equivalent to common definitions of exergy efficiency. Note also that ηC,Il(ψ), determined by the
numerical max power cycle approach, can be easily validated for linear boundary conditions using
equations available in standard literature. Appendix A in Öhman [6] provides explicit expressions for
such validation.

3. Results

3.1. Global Efficiency of Heat Pumps

Thermodynamic entities of a reversible heat pump can be viewed as a symmetric mirror of a heat
engine operating at the same conditions.

Figure 2 shows temperatures of source and sink for two different thermal systems. On the right
side, temperatures of a reversible heat engine are indicated, cooling a hot flow from TH to TH,exit

while heating a cold flow from TL to TL,exit, If
.

QH =
.

QCA exit temperatures coincide. On the left side,
temperatures of a reversible heat pump are indicated, heating a hot flow from TH,exit to TH while
cooling a cold flow from TL,exit to TL. If TH,exit 	= TL,exit a fictitious heat pump equilibrium temperature
can be constructed in the same way as at TCA in Equation (4) for linear boundary conditions and from
the numerical model for complex boundary conditions. We can therefore use Equations (5) and (7) to
determine utilization.

-1 0 1

Figure 2. Schematic local temperatures of the hot and the cold streams in a heat pump and a heat
engine vs. transported heat (Utilization). Negative rate of heat means heat pump, positive rate of heat
means heat engine.

.
QCA =

TH − TH,exit

αH
(7)
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We can understand that the temperatures in Figure 2 will be symmetric around
.

QH = 0 by the
analogy of the max power cycle and its use of multiple subsequent very small Carnot Cycles. Carnot
Cycles are reversely applicable to heat engines and heat pumps.

Öhman [6] proposed Equation (8) as the expected correlated global energy efficiency of real low
temperature difference heat engines.

FoC(ψ) = 0.672 · e−0.874·ψ (8)

Equation (8) is based on measured global energy efficiency for heat engines in a very large range
of capacities, temperatures, and technical solutions. Yet, it is remarkably consistent. It allows us very
expediently to predict thermal efficiency as well as output power of an undefined real heat engine
by using Equation (6), only knowing the characteristics of a particular set of sources and sinks if the
utilization is known. The correlation describes an average of historic data and could be seen as normal
to industrial capability as of today.

Evaluating heat pump systems can be made in a similar manner as of the above by defining
Equation (9) as a Fraction of Carnot for real heat pumps.

FoCCOP(ψ) = COPreal/COPs(ψ) = ηC,Il(ψ) · COPreal (9)

A correlation of FoCCOP(ψ) has not yet been attempted, but is intended to be performed once
enough data has been gathered. It is clear however that global energy efficiency of heat pumps
operating in non-identical applications can be systematically compared using the above approach.

3.2. Effects of Complex Boundary Conditions

As explained the simple approximation of Equation (3), and therefore also Equation (4) cannot
be applicable if source flow and/or sink flow are complex/non-linear. Utilization can however still
be defined by using the local temperatures calculated in the max power cycle. Figure 2 will look
significantly different in such a case. Therefore, it is not to be expected that the correlation in Equation
(8) is valid for complex boundary conditions.

In reality, complex boundary conditions are common and do require more detailed studies.
The approach of the max power cycle, Integrated Local Carnot efficiency and Fraction of Carnot are
useful in such studies. The following simplified example can be used to remind us that complex
conditions cannot easily be regarded as approximately linear.

3.3. A Demonstrational Example

A demonstrational example can be constructed by applying a heat pump to heat a flow of air by
cooling another flow of saturated humid air. A technical application could be a blast drying process or
similar and thermally defined as of Table 1.

The specific heat of the cold air is here modeled in two ways; (i) linear, meaning that Cp is constant
and that αcooledair is consequently also constant; (ii) complex, meaning that Cp is constant above 34 ◦C
and a function of temperature as of Equation (10) below 34 ◦C. The reason for the complexity is the
condensation of water as the cold air is further cooled below 34 ◦C. Equation (10) is a polynomial
approximation of dh/dT for condensing humid air per mass unit of dry air calculated in the commercial
software EES (Engineering Equations Solver) with data on air from Lemmon et al. [11] and data on
H2O from Hyland & Wexler [12].

C(T) = 0.0026 · T3 − 0.0934 · T2 + 3.5776 · T + 2.6929 (10)

Using the set of data from Table 1 we can apply the numerical approach of the max power cycle
to obtain the fictitious TCA, output temperature of the cold stream, Utilization, Integrated Local Carnot
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efficiency and COP for a reversible heat pump for the linear cold stream as well as for the complex
cold stream. Net calculated data can be found in Table 2.

Table 1. Input information for a demonstrational example.

Entity Value Unit

Hot air flow 3.33 kg/s
Hot air exit temp 80 (dry) ◦C

Hot air entry temp 60 ◦C
Cp (hot air) 1 kJ/kg·K
αheatedair f low 0.3 K/kW

Cold air flow 1.67 kg/s
Cold air entry temp 34 (saturated) ◦C
Cp (cold air >34 ◦C) 1 kJ/kg·K
C (cold air <34 ◦C) Equation (10) kJ/kg·K
αcooledair Complex C(Tcooledair) Equation (10) K/kW

αcooledair Linear 0.6 K/kW

Table 2. Calculated data for a reversible blast heater.

Entity Value Unit

Hot flow heating 66.7 kW
Reversible COP, complex 8.7 -

Reversible COP, linear 6.5 -
Cold flow exit temp, complex 27 ◦C

Cold flow exit temp, linear 0.3 ◦C
Utilization 0.69 -

By comparing the two alternative cold stream characteristics, it becomes obvious that a non-linear,
or complex cold stream leads to a difference in reversibly obtainable COP by roughly 30% as compared
to assuming a linear cold stream. Figure 3 shows the local temperatures during the two processes.
Note that this difference in COP is at reversible conditions. Any measured COP of a real system should
be compared to the correct COP, taking the complex nature of the heat sink into account.

T

Figure 3. Local temperatures, in ◦C, of the hot and two alternative cold streams during the two
alternative processes as a function of utilization. The calculated processes both start at utilization −0.69
since the heat capacity of the two alternative cold streams are equal when temperature would be above
34 ◦C. Note that negative utilization indicates a heat pump.

The temperature diagrams in Figure 3 clearly shows why Integrated Local Carnot efficiency must
differ between the two processes. Due to the large difference in apparent heat capacity in the cold
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stream when condensation occurs the necessary temperature lift in the heat pump becomes smaller.
This leads to a lower Integrated Local Carnot efficiency and a larger COP for the reversible heat pump.

This example indicates why a correlation similar to Equation (8), but for heat pumps, is not likely
to be valid in applications with complex boundary conditions.

4. Discussion

The explained method uses conventional thermodynamic entities to create a dimensionless
comparative method for black box energy efficiency. It comprises first as well as second law effects.
Other methods can be used but are likely to become more complicated. The numerical approach of the
max power cycle provides the benefit of detailed information about local temperatures in source and
sink and thereby greatly simplifies the understanding of pinch points and similar effects.

The use of detailed exergy destruction analysis is constructive in identifying and evaluating
irreversibility. However, when determining reversible thermal efficiency exergy efficiency becomes
meaningless. The approach of Integrated Local Carnot efficiency is a direct implementation of multiple
Carnot cycles hence it can be directly derived by assuming zero increase of entropy.

With a similar, systematic black box approach, for heat engines and heat pumps, experiences from
one type of thermal system may be useful to understand effects of another.

A particularly interesting question arises when using the concept of utilization for heat engines
and heat pumps in a symmetric manner, such as in Figure 2. A research question arising from
this discussion is if a correlation, similar to Equation (8) could be found for heat pumps or cooling
systems. We suggest researching real heat pump thermal efficiency for further studies using the
method described in this article.

5. Conclusions

We have shown that a black box method for investigating efficiency of low temperature heat
engines explained in Öhman [6] can be extended to apply also to heat pumps.

The dimensionless scale of utilization can be used for systematic comparison of thermal efficiency
of heat engines as well as heat pumps with different magnitudes relative to the source and sink.

The max power cycle approach of Ibrahim & Klein [2] is suitable to determine reversible thermal
efficiency of a thermal system with complex boundary conditions.

There may be significant impact of complex boundary conditions on reversible thermal efficiency
of a thermal system.
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Nomenclature

TH Hot flow: entry temp of heat engine/exit temp of heat pump K
TC Cold flow: entry temp of heat engine/exit temp of heat pump K
TH,exit Hot flow: exit temp of heat engine/entry temp of heat pump K
TL,exit Cold flow: exit temp of heat engine/entry temp of heat pump K
.

W Rate of work W
.

QH Rate of heat transferred out from the hot flow W
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.
QL Rate of heat transferred into the cold flow W
ηth,s Thermal efficiency of a reversible heat engine -
COPS Coefficient Of Performance for a reversible heat pump -
ηCA Curzon–Ahlborn efficiency -
TCA Curzon–Ahlborn temperature K
.

QCA Curzon–Ahlborn rate of heat transferred out from the hot flow W
αH , αL Inverse apparent heat capacity of hot and cold flow K/W
.

mH ,
.

mL Mass flow of hot and cold flow kg/s
CpH , CpL Constant, linear specific heat capacity of hot and cold flow J/kg·K
C(T) Non-constant, complex specific heat capacity J/kg·K
h Specific enthalpy kJ/kg
ψ Utilization -
FoC Fraction of Carnot for a heat engine -
FoCCOP Fraction of Carnot for a heat pump -

.
Wreal Measured, or simulated rate of work of a thermal system
W

.
Ws Reversible rate of work of a thermal system W
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Abstract: In this paper, we first analyze the difference between the second law of thermodynamics
and the laws in other disciplines. There are some phenomena in other disciplines similar to the
Clausius Statement of the second law, but none of them has been accepted as the statement of a certain
law. Clausius’ mechanical theory of heat, published in the nineteenth century, is then introduced and
discussed in detail, from which it is found that Clausius himself regarded “Theorem of the equivalence
of the transformation of heat to work, and the transformation of heat at a higher temperature to a
lower temperature”, rather than “Heat can never pass from a colder to a warmer body without some
other change”, as the statement of the second law of thermodynamics. The latter is only laid down as
the fundamental principle for deriving the theorem of the equivalence of transformations. Finally,
based on the theorem of the equivalence of transformations and the average temperature method, a
general quantitative relation among the heat, the work, and the temperatures is obtained for arbitrary
cycles, which is thus recommended as an alternative mathematic expression of the second law. Hence,
the theorem of the equivalence of transformations is the real Clausius Statement of the second law
of thermodynamics.

Keywords: second law of thermodynamics; Clausius Statement; theorem of the equivalence
of transformations

1. Introduction

As with the first law of thermodynamics, the second law of thermodynamics has been verified by
countless natural facts. The second law has different statements for different physical phenomena.
The classic statements given in most of the literatures mainly include the Clausius Statement and the
Kelvin–Planck Statement [1–5]. The Clausius Statement was expressed as “Heat can never pass from
a colder to a warmer body without some other change, connected therewith, occurring at the same
time”, and the Kelvin–Planck Statement as “It is impossible to construct a device that operates in a
cycle and produces no other effect than the production of work and the transfer of heat from a single
body”. The Clausius Statement is more in accord with experience and thus easier to accept, while the
Kelvin–Planck Statement provides a more effective means for bringing out second law deductions
related to a thermodynamic cycle [3]. Besides, the Carathéodory Statement also occupies an important
position in thermodynamics, which is “In the neighbourhood of any arbitrary state of a thermally
isolated system, there are states which are inaccessible from that state” [6,7]. It is not more widely used
but brings out its essential features in a way that the traditional treatment does not [7]. Since then,
various understandings for the statements of the second law came out continuously [8–11], which help
to clarify the connotation of the second law from different angles. It is important to emphasize that
these statements are logically interlinked, consistent, and equivalent [5,12,13].

However, it is strange that the second law of thermodynamics is quite different from other laws,
like Newton’s law of motion, Ohm’s law of electric conduction, and Fourier’s law of heat conduction,
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etc. There are differences such as; (1) there are many different statements for the same law; (2) it is only
a qualitative description of a physical phenomenon, rather than a quantitative relationship between
different physical quantities; and (3) some phenomena similar to the Clausius Statement exist in other
disciplines. For example, an object can never move from low to high location in a gravity field without
some other change, and electrical charges can never move from low to high potential in an electrostatic
field without some other change. However, none of them has been accepted as the statement of a
certain law. With that in mind, we have reviewed Clausius’ mechanical theory of heat, published in the
nineteenth century [14,15], and indeed found that he himself only called “Heat can never pass from a
colder to a warmer body without some other change, connected therewith, occurring at the same time”
a fundamental principle rather than the statement of the second law of thermodynamics.

2. Misunderstanding of the Clausius Statement

2.1. Carnot’s Theorem

Before discussing the Clausius Statement, Carnot’s work must be first introduced because it is the
cornerstone of the second law of thermodynamics [16–19].

Combined with engineering practice experience, Carnot realized that to keep a steam engine
running, the working fluid does not only have to absorb heat from the boiler, but also has to release
heat to the cooling water in the “condenser” [20]. In other words, when work is generated between two
heat reservoirs, there must be a certain amount of heat flowing from the warmer reservoir to the cooler
reservoir. The idea of circulation first formed in Carnot’s mind [20]. Based on the analogies of “fall of
caloric” and “fall of water”, Carnot further realized that a certain reversible heat engine cycle always
provides the same thermal efficiency for any working fluid. That is to say, the heat transport and the
work production obey a certain relationship independent of the nature of the working fluid [15], which
is exactly Carnot’s theorem.

However, this model does not completely agree with current perceptions [14,15,17,18,21]. Carnot
did not yet know the first law of thermodynamics, which states that, when work is produced, the
same amount of heat has to be consumed in a reversible cycle. As a result, only a part of the heat is
released to the colder body, which is less than the heat from the warmer body. In other words, work
cannot be created out of nothing. At that time, thermal efficiency was very low, so the amount of
heat absorbed was almost the same as the amount of heat released [20]. In addition, at that time, the
backward measurement tools had large measurement errors. Therefore, Carnot could not find the
quantity difference between the two parts of heat.

On the positive side, Carnot wondered how the location of the temperature range affects thermal
efficiency [22]. He discovered that a given fall of caloric (with a given temperature difference) produces
more motive power at inferior than at superior temperatures. In his notation, the thermal efficiency
was given by:

e = F′(t)dt (1)

where F′(t) is a universal function that was called the Carnot function afterwards and t represents the
temperature. Unfortunately, because of the cognitive error about heat at that time, Carnot could not
determine this function, so he did not know the maximum value of thermal efficiency, not even for
an infinitesimal cycle [22]. The Carnot function, however, partly because of its universal character,
provided a strong stimulus for further research on the subject. The problem was left open for Clausius
to solve twenty five years after Carnot [22].

Even so, Carnot’s groundbreaking statement that “The relation between the falling heat and the
produced work is independent of the nature of working fluid” is still correct. This laid a foundation
for the development of the second law of thermodynamics.
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2.2. Clausius Statement

Clausius found early on that Carnot’s work about the second law was incomplete and vague [14,15].
He wanted the law of conversion of heat to work in a thermodynamics cycle.

Considering the natural tendency that heat always passes from a warmer to a colder body for
eliminating the temperature difference, Clausius presented a well-known proposition that “Heat can
never pass from a colder to a warmer body without some other change, connected therewith, occurring
at the same time”. Unfortunately, it met with much opposition [15]. Muller [22] stated that “this
statement, suggestive though it is, has often been criticized as vague”. And Muller believed that
Clausius himself did not also feel entirely satisfied with this proposition for the reason of it lacking an
unequivocal mathematic description [22]. We further find that this proposition had only been laid
down as a fundamental principle by Clausius, according to his original literature, “The Mechanical
Theory of Heat” [14,15]. In spite of this, regrettably, ever since then, this fundamental principle was
usually mistaken for the Clausius Statement of the second law, probably because of its well-understood
empirical property.

After Joule’s heat-work equivalence theorem was found, Clausius corrected Carnot’s theorem
successfully [21]. The relation of the heat and the work is still independent of the nature of the working
fluid in a reversible cycle, but the heat from the hot source is not the same as the heat going into the
cold source, and the difference between them is just the work. In order to get the law of conversion of
heat to work, he further considered a reversible thermodynamic cycle as a combination of two kinds
of transformations, that is, the transformation of heat to work and the transformation of heat at a
higher temperature to a lower temperature [14,15,21]. He thought that “Carnot’s theorem actually
expressed a relation between the two kinds of transformations, which may be regarded as phenomena
of the same nature and are then equivalent” [14]. He called it the theorem of the equivalence of
transformations [14,15].

With that in mind, Clausius quantified the two kinds of transformations by giving them
“Equivalence-Values”. He employed a thermodynamic cycle made up of three isothermal processes
and three adiabatic processes [14,15], as shown in Figure 1. Processes f~a, b~c, and d~e are isothermal
processes with temperatures t, t1, and t2 and heat quantities Q, Q2, and Q2, respectively. The other
processes are adiabatic processes.

 
Figure 1. p-V diagram of a thermodynamic cycle with three heat reservoirs.

Since the heat quantity Q2 in process b~c is equal to the heat quantity Q2 in process d~e, the
combination of the two processes could be equivalent to the transformation of heat from a high
temperature to a lower temperature, and, thus, process f~a is equivalent to the transformation of heat
to work. Clausius considered the transformation of work to heat and, therefore, the transformation
of heat from a higher temperature to a lower temperature, as being positive. For the transformation
of heat to work, the Equivalence-Value must be proportional to the heat quantity, Q, and must also
depend on the temperature, t, which was therefore represented by −Qf (t) [14,15]. In a similar manner,
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the Equivalence-Value for the heat transformed from a higher temperature to a lower temperature
must be proportional to Q2 and must also depend on the two temperatures t1 and t2, which was
expressed by Q2F(t1,t2) [14,15]. The two transformations must be equal in magnitude. For the reversible
thermodynamic cycle, the sum of the two Equivalence-Values must be zero:

−Q f (t) + Q2F(t1, t2) = 0 (2)

It is understood that the two transformations in a reversible cycle cancel each other out. Equation
(2) is the mathematic expression of the theorem of the equivalence of transformations. Clausius had
pointed out that the second law of thermodynamics was called the theorem of the equivalence of
transformations in his mechanical theory of heat. Hence, the real Clausius Statement of the second law
should be the theorem of the equivalence of transformations.

Harvey [23] stated that Clausius’ analysis was brilliant, but the idea of equivalence of
transformations is difficult to grasp and is not even mentioned in most thermodynamics textbooks.
However, the equivalence of transformations is, we think, of momentous significance for the second
law of thermodynamics, as with the equivalence of work and heat for the first law of thermodynamics.
The theorem of the equivalence of transformations is a basic theory of classical thermodynamics and it
is necessary to be fully aware of it. In the next section, we will see that the Clausius Equality/Inequality
and the concept of entropy came from the theorem of the equivalence of transformations [24].

3. Alternative Mathematic Expression of the Second Law

3.1. Clausius Equality/Inequality and Entropy

When t in the cycle in Figure 1 changes to t’ and Q thus changes to Q’, the following relation
appears [14]:

−Q′ f (t′) + Q2F(t1, t2) = 0 (3)

If t’ is greater than t, then let the thermodynamic cycle, including the temperature, t, work in
reverse. The superposition of the two thermodynamic cycles will produce a new Carnot cycle with
temperatures t and t’. Then Equation (2) and Equation (3) lead to:

Q
Q′ =

f (t′)
f (t)

(4)

In this new Carnot cycle, Q’ can be further divided into two parts; Q’-Q and Q. The first part is
regarded as the heat transformed to work and the second part as the heat transformed from a higher
temperature to a lower temperature. The following equation can be obtained as with Equation (3):

− (Q′ −Q) f (t′) + QF(t′, t) = 0 (5)

Based on Equation (4) and Equation (5), the following relation is obtained:

F(t′, t) = f (t) − f (t′) (6)

Thus, the Equivalence-Value of the transformation of heat from a higher temperature to a lower
temperature can be expressed by:

QF(t′, t) = Q f (t) −Q f (t′) (7)

According to Equation (7), the transformation of heat from a higher temperature to a lower
temperature is equivalent to the combination of two opposite transformations between heat and work,
that is, heat is transformed to work at t’, followed by work being transformed to heat at t. Bailyn [21]
thus pointed out that, in this sense, the transformation between heat and work is the fundamental
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transformation. Therefore, for a process with a series of continuous heat reservoirs, the sum N of the
Equivalence-Values of all the transformations will be:

N =

∫
f (t)dQ (8)

For a reversible cycle, it can be proved by the fundamental principle that all the transformations
must cancel each other out (please refer to Clausius’ mechanical theory of heat for details). Thus,
the sum of the Equivalence-Values of all the transformations in a reversible cycle must be zero. The
integrating factor f (t) is just the reciprocal temperature,1/T, that is unique and guaranteed to be a valid
integrating factor by the second law [25]. Now we come to the equality:∮

dQ
T

= 0 (9)

Clausius called Equation (9) the mathematic expression of the second law of thermodynamics [14,15],
which was later named the Clausius Equality.

According to the state axioms, dQ/T must be the differential of a certain state quantity, which is
just entropy, S, that Clausius first discovered, whose differential definition is thus:

dS =
dQ
T

(10)

For an irreversible thermodynamic cycle, the algebraic sum of all transformations can only be
positive [14]. Hence there is an inequality: ∮

dQ
T
< 0 (11)

where the heat released into a heat reservoir from the working fluid is defined as negative. Afterwards,
Equation (11) was called the Clausius Inequality.

The Clausius Equality predicts the entropy flow balance in a reversible cycle, while the Clausius
Inequality shows the non-conservation of entropy flow in an irreversible cycle. The Clausius
Equality/Inequality,

∮
δQ/T ≤ 0, that is the combination of Equations (9) and (11) has been widely

believed to be the mathematic expression of the second law of thermodynamics [21].

3.2. Alternative Mathematic Expression of the Second Law

As Section 2.1 mentions, Carnot did not find the maximum value of the thermal efficiency
because the Carnot function was unknown. Fortunately, Clausius identified the Carnot function and
further obtained the thermal efficiency of a Carnot cycle in terms of the theorem of the equivalence
of transformations.

For an infinitesimal Carnot cycle, as shown in Figure 2, from the theorem of the equivalence of
transformations we can directly derive:

− Q
T
+

Q− δQ
T − dT

= 0 (12)

Thus, the expression of the thermal efficiency of a Carnot cycle is:

e =
δQ
Q

=
1
T

dT =
1
T

dt (13)

Comparing Equation (13) with Equation (1), given by Carnot, the Carnot function can be obtained:

F′(t) = 1
T

(14)
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So the Carnot function is just the reciprocal of the absolute temperature [14,22]. There is no doubt
that Clausius is the first person to determine the Carnot function and the thermal efficiency of a Carnot
cycle [22].

Figure 2. T-S diagram of an infinitesimal Carnot cycle.

For a Carnot cycle with two different heat source temperatures, the thermal efficiency can also
be derived directly based on the theorem of the equivalence of the transformations. The cycle, as
shown in Figure 1, is reconsidered. Because the work quantity, W, is equal to the heat quantity, Q, the
Equivalence-Value of transformation of heat to work can be rewritten as −W/T. The Equivalence-Value
for the heat transformed from the high temperature, T1, to the low temperature, T2, is Q2 (1/T2 − 1/T1).
The sum of Equivalence-Values of all transformations in the cycle is zero:

− W
T

+ Q2(
1

T2
− 1

T1
) = 0 (15)

When T changes to T1, the cycle becomes a Carnot cycle. Thus Equation (15) becomes:

− W
T1

+ Q2(
1

T2
− 1

T1
) = 0 (16)

After rearranging Equation (16), we can obtain the expression of thermal efficiency:

η =
W
Q1

= 1− T2

T1
(17)

which can also be rewritten as a quantity relation between the heat, the work, and the two heat reservoir
temperatures:

W = Q1(1− T2

T1
) (18)

However, for an arbitrary reversible cycle with multiple heat reservoirs, as shown in Figure 3,
Equation (18) is no longer valid [26]. One solution to this problem is to employ “the average temperature
method” to describe the heat absorption and release processes [3,27,28]. The average temperature
method was first proposed by Alefeld [27]. The average temperature, T, called the entropic average,
was defined such that the entropy transfer would be the same if the entire heat transfer occurred at the
average temperature [28]:

T =
Q
ΔS

=
Q∫
1
T dQ

(19)

This formulation retains the simplicity of the constant temperature model but makes it applicable
to varying temperature processes [28]. Regarding entropy as a variable, the average temperature can
be also expressed for a reversible process:

T =
Q
ΔS

=

∫
TdS
ΔS

(20)
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Thus, the heat, Q, can be represented by the area under the curve in the T-S diagram. As shown
in Figure 3, the entropy value of the working fluid is minimum at point 1 and maximum at point 2.
Therefore, process 1-3-2 is the heat absorption process, while process 2-4-1 is the heat release process.
The average temperature of the heat absorption process and the average temperature of the heat release
process are respectively in an arbitrary reversible cycle:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

T1 =
( Q

ΔS

)
1−3−2

=

∫
1−3−2

TdS

ΔS12
= Q1

ΔS12

T2 =
( Q

ΔS

)
2−4−1

=

∫
1−4−2

TdS

ΔS12
= Q2

ΔS12

(21)

where ΔS12 is the total entropy change in the heat absorption process or release process, always defined
as positive, Q1 represents the entire exchanged heat of the heat absorption process, equal to the area
under the curve 1-3-2 to the S-axis, and Q2 represents the entire exchanged heat of the heat release
process, equal to the area under the curve 2-4-1 to the S-axis. Thus, the quantity relation between the
heat and the work for an arbitrary reversible cycle can be represented as:

W = Q1

(
1− Q2

Q1

)
= Q1

(
1− T2ΔS12

T1ΔS12

)
= Q1

(
1− T2

T1

)
(22)

Equation (22), with the same form as Equation (18), is universally available to any reversible cycle.
As Section 3.1 mentioned, for an irreversible cycle, the algebraic sum of all transformations can

only be positive. Therefore, the quantity relation between the heat and the work in an arbitrary
irreversible cycle can be obtained:

W < Q1

(
1− T2

T1

)
(23)

Finally, a general form of the quantity relation between the heat and the work for arbitrary cycles
comes up:

W ≤ Q1

(
1− T2

T1

)
(24)

The mathematic formula of a science law usually expresses the quantitative relation among different
physical quantities such as Ohm’s law and Fourier’s law. Equation (24) gives a universal quantitative
relation between the heat and the work for any kind of cycle that the Clausius Equality/Inequality does
not. Therefore, it could probably be perceived as an alternative mathematic expression of the second
law of thermodynamics.

Figure 3. T-S diagram of an arbitrary reversible cycle.
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4. Conclusions

(1) Clausius had explicitly proclaimed in his mechanical theory of heat, published in the nineteenth
century, that the second law of thermodynamics is “The theorem of the equivalence of transformations”,
rather than “Heat can never pass from a colder to a warmer body without some other change”.
The latter, as the description of a natural phenomenon, was only laid down as a fundamental principle.
Similar natural phenomena also exist in other disciplines, none of which are yet accepted as the
statements of a certain law. Hence, the theorem of the equivalence of transformations is the real
Clausius Statement of the second law of thermodynamics.

(2) Precisely because of the theorem of the equivalence of transformations, the quantitative
relationship between the heat and work in a Carnot cycle, as well as the Clausius Equality/Inequality,
can be derived directly. Finally, the core physical quantity in thermodynamics, entropy, was discovered
and defined.

(3) With the method of average temperature we summarize a general quantitative relation among

the heat, the work, and the temperatures for any kind of cycles, W ≤ Q1

(
1− T2

T1

)
, from the theorem of

the equivalence of transformations. It may be regarded as an alternative mathematic expression of the
second law of thermodynamics.
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Abstract: In this paper, the methodology of the so-called Linear Irreversible Thermodynamics (LIT)
is applied to analyze the properties of an energetic-converting biological process using simple model
for an enzymatic reaction that couples one exothermic and one endothermic reaction in the same
fashion as Diaz-Hernandez et al. (Physica A, 2010, 389, 3476–3483). We extend the former analysis
to consider three different operating regimes; namely, Maximum Power Output (MPO), Maximum
Ecological Function (MEF) and Maximum Efficient Power Function (MEPF), respectively. Based on
the later, it is possible to generalize the obtained results. Additionally, results show analogies in the
optimal performance between the different optimization criteria where all thermodynamic features
are determined by three parameters (the chemical potential gap Δ = μ1−μ4

RT , the degree of coupling q
and the efficiency η). This depends on the election that leads to more or less efficient energy exchange.

Keywords: linear irreversible thermodynamics; maximum power output; maximum ecological
Function; maximum efficient power function; enzymatic reaction model

1. Introduction

A very interesting problem in non-equilibrium thermodynamics and in the theory of
thermodynamics in general, is to determine the efficiency with which energy is exchanged. In fact,
in many biological systems, the transfer of energy is of decisive importance. It is well known that
all intracellular processes can be studied as chemical reactions of some kind, and that many of the
biochemical reactions in living organisms have been seen to be catalyzed by enzymes; there are some
good examples where the energetic properties studied are really relevant [1].

Considering the classical ideas of thermodynamics when one wants to analyze biological systems,
it is typical to take the free energy of the biological system and convert it into work. For instance,
to carry out a transport process or a chemical reaction, it is usual for this type of study to focus on
analyzing the energetic properties of such systems. Note, however, that the subject is hard to study
from the classical perspective of thermodynamics, since the temperature in many biological systems is
homogeneous [2]).

An additional step to analyze the energetic properties of a simple energy converter was given by
Curzon and Ahlborn in 1975 [3], who proposed a model which operates between two heat sources
with high and low temperatures, Th and Tc (Tc < Th), respectively. They found an expression for
the efficiency at maximum power output given by ηCA = 1 −√

Tc/Th , a result that in principle is

Entropy 2019, 21, 1030; doi:10.3390/e21111030 www.mdpi.com/journal/entropy47
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independent of the model parameters and only depends on the temperatures of the heat reservoirs;
analogously this is what happens with the efficiency for a reversible Carnot cycle ηC = 1 − Tc/Th.

Considering the Curzon and Alhbor article, many authors began to introduce different objective
functions, among others, such as the ecological function [4], the omega function [5], the efficient power
function [6], etc. All of them trying to obtain efficiency and power values mainly for real power plants,
but also heat pumps and refrigerators [7,8].

Moreover, it was reported [9–11] that thermal engines show some universality regarding the
behavior of the efficiency when it works at the maximum power regime [11], although the analyzed
models are different in nature and scale [12–14]. Recently, some thermal engines with kinetic [15–17]
and mesoscopic [18] descriptions were published as examples of devices which convert non-thermal
energy (mainly chemical energy) into useful work. The importance of these models is that the energy
production processes seen in the molecular biological level obey similar principles as those observed
in the classical thermal engines [19].

On the other hand, Kedem et al. [20] published in 1965 the first step of a non-equilibrium
theory towards a description of linear converters of energy (which would be called Linear Irreversible
Thermodynamics, LIT). Since then, many authors have agreed in considering this theory as a basis for
the analysis of non-equilibrium systems, (particularly, in biological systems remarkably close to the
equilibrium). One of the relevant questions tackled by Kedem et al. at that time was to answer which
was the maximal efficiency of the oxidative phosphorylation in an isolated mitochondrion. Kandem et
al. obtained some qualitative predictions confirmed by experimental data.

For biological process, for instance, several authors have studied different optimal regimes like
Prigogine [21] with his minimum entropy production theorem. Odun and Pinkerton [22] who analyzed
the maximum power output regime for various biological systems, Stucki [2] who introduced some
optimal criteria to study the optimum oxidative phosphorylation regime, among others [23–28] who
have studied many biological energy conversion processes by means of the LIT where some optimum
performance regimes have been analyzed.

In this context, we have decided to study the thermodynamical properties of an energetic
converting biological process, using for this purpose a simple model for an enzymatic reaction
that couples one exothermic and one endothermic reaction in the same fashion described by
Diaz-Hernandez et al. [15], but now using the Linear Irreversible Thermodynamics (LIT) for three
different operating regimes,;namely, Maximum Power Output (MPO), Maximum Ecological Function
(MEF) and Maximum Efficient Power Function (MEPF), respectively.

The paper is organized as follows: Section 2 introduces a model and the phenomenological
flow equations of a remarkably simple system enzymatic reaction coupled with ATP hydrolysis.
Section 3 presents the analysis of the optimal operation regimes in the context of the Linear Irreversible
Thermodynamics. Finally, Section 4 gives some concluding remarks.

2. The Model

Consider a simple enzymatic reaction coupled with ATP hydrolysis which might be written
as [15]:

E + X + ATP ⇀↽ [EX] + ADP ⇀↽ [EY] + Pi + ADP
⇀↽ E + Y + Pi + ADP (1)

where E represents the enzyme, X is the substrate and Y is the product. Besides [EX] and [EY]
are transient complexes of the enzyme with the substrate and the product respectively, ATP
corresponds with the Adenosine Triphosphate, ADP is the Adenosine Diphosphate and Pi represents
the inorganic phosphate.

Considering the first part of Equation (1), it is possible to obtain the respective reaction velocity,
which, according to the mass action law, is given by:
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d[E]
dt

= −k1[E][X] + k−1[EX] (2)

Now, using Arrhenius law, which establishes that,

k1 = F1e−E1/RT and k−1 = F−1e−E−1/RT (3)

where, F1 and F−1 are the frequency factors, E1 and E−1 are the activation reaction energies usually
expressed in cal

mol and R is the gas constant (expressed in JK−1mol−1). Now, from Figure 1, it is clear
that both activation energies can be expressed as:

C
h

e
m

ic
a

l
P

o
te

n
ti

a
l

Reaction Coordinate
S1 S2 S3 S4

μ4

μ3

μ2

μ1

h1

h2

h3

μ1 − μ2

μ2 − μ3

μ3 − μ4

Figure 1. Chemical potential scheme necessary for the reactions in Equation (1) to proceed forward.

E1 = h1 + μ2 − μ1 and E−1 = h1 (4)

where μi (i = 1, 2, 3, 4) is the corresponding chemical potential to the ith state along with the reaction
sequence, and hi (i = 1, 2, 3) is the minimum energy required for a collision between molecules to
result in a chemical reaction, see Figure 1.

Hence, using Equations (3) and (4) and substituting them into Equation (2), we obtain the net
velocities for the three reactions in (1) as:

wi = ξi(e−hi/RT − e−(hi+μi−μi+1)/RT) (5)

where i = 1, 2, 3 and ξi is defined in terms of the molar concentrations and the frequency factors [29].
Then, after some algebra, the above equation can be written as,

wi = Ai(1 − e−(μi−μi+1)/RT) (6)

where Ai = ξie−hi/RT (with i = 1, 2, 3) and ξi is defined as before.
Therefore, by using Equation (6) we can obtain the respective velocities of each reaction as;

w1 = A1(1 − e−(μ1−μ2)/RT); w2 = A2(1 − e−(μ2−μ3)/RT); w3 = A3(1 − e−(μ3−μ4)/RT) (7)

Now, considering for simplicity that A1 = A3 = A and defining A2 = βA (later we will see that β

is going to be related to the coupling coefficient q ), as Diaz-Hernandez et. al. [15] did in their model
using a different approach, we can re-write Equations (7) as;
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w1 = A(1 − e−(μ1−μ2)/RT)

w2 = A2(1 − e−(μ2−μ3)/RT)

w3 = A(1 − e−(μ3−μ4)/RT)

(8)

Since for reactions near equilibrium, the affinity is small, making a Taylor expansion around zero
is justified. Keeping this in mind, it is possible to transform Equation (8) into;

w1 = A(μ1 − μ2)/RT +O(2)

w2 = A2(μ2 − μ3)/RT +O(2)

w3 = A(μ3 − μ4)/RT +O(2)

(9)

where we just keep the linear terms in the expansion.
From classical non-equilibrium studies, we can, under suitable conditions, define macroscopic

variables locally, as gradients and flux densities. Such variables are called “thermodynamic forces”
which drives flux densities often called “fluxes”. Following the Onsager formalism [30] we can establish
a relation between such forces and fluxes near the steady thermodynamically non-equilibrium regime
naming them phenomenological relations [26], given by

Jδ = ∑
ψ

LδψXψ (10)

where, Lδψ are the phenomenological coefficients usually depending on the intensive variables
which describes the coupling between two irreversible process δ and ψ, and Xψ are the respective
thermodynamic forces. It is worthwhile to mention that in 1931 Onsager [30] demonstrated that for a
system of flows and forces based on an appropriate dissipation function, the matrix of coefficients is
symmetrical so that the phenomenological coefficients have the following symmetry relation Lδψ = Lψδ,
which affords a considerable reduction in the number of coefficients measured.

Then, taking the above into account, it is possible for our system, to establish two thermodynamic
flows J1 and J2 for which, we may write the following phenomenological equations;

J1 = L11X1 + L12X2

J2 = L21X1 + L22X2
(11)

where, we are assuming that L12 = L21.
In the classical equations of chemical kinetics, which are known to describe a chemical process

quite precisely, the reaction rates are proportional to the concentrations. On the other hand,
phenomenological equations require that the reaction velocity are proportional to the thermodynamic
force, which in this case is the Affinity, which is in turn proportional to logarithms of concentration. To
remove this inconsistency, we must consider this phenomenological description in the neighborhood
of equilibrium when the rate of chemical change is sufficiently slow [31].

According to earlier considerations, if we consider that the driving force for the reaction is the
affinity, then close to equilibrium, the chemical flow Jchem should be proportional to the force:

Jchem = Lijαi = Lij(μi − μj) (12)

where Lij are the phenomenological coefficients and αi = μi − μj is the Affinity. Therefore, assuming
that for our chemical reactions the phenomenological relation between fluxes and forces is,

J1 = w1 + w2 + w3 (13)
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where wi (i = 1, 2, 3) are the net velocities defined in Equation (9). Then, from Equation (13) and
substituting Equation (9) in it, we can write;

J1 = A(μ1 − μ2) + A2(μ2 − μ3) + A(μ3 − μ4) (14)

which can be rewritten as:

J1 = A(μ1 − μ4) + (A2 − A)(μ2 − μ3) (15)

It is worthwhile to analyze Equation (15). From the scheme in Figure 1, we observe that it
corresponds to three sequential equations, all three reactions can be lumped into a single global
reaction with free energy change for this reaction as ΔGTOT = A(μ1 − μ4). Of the three reactions
represented in Figure 1, only in the second one, the consumed energy is used for an interesting
purpose; the conversion of the substrate X into the product Y, and the free energy for this reaction is
ΔG2 = A(μ2 − μ3). So one possible physical meaning of J1 is some dissipation-like energy. Then, we
can later propose a linear flux–force relation for the enzymatic reaction model as,

J1 = A(β − 1)(μ2 − μ3) + A(μ1 − μ4)

J2 = A(μ2 − μ3) + A(β − 1)(μ1 − μ4)

(16)

where in the context of linear irreversible thermodynamics we can identify X1 = μ2 − μ3, X2 = μ1 − μ4,
L12 = L21 = A, and L11 = L22 = A(β − 1), where the parameter β was previously introduced in
Equation (7).

We should note that Ai is related to the minimum energy required for a collision between
molecules. Thus, this energy could be different for the different stages in the enzymatic reaction
causing the phenomenological coefficients Lij to be different, then the degree of coupling q is also
different in each stage influencing the thermodynamic properties of the system (for instance, the power
output or the entropy production). Considering the latter, we assume that the simplest case is one in
which the coefficients Ai are proportional to each other.

Following the concepts of classical thermodynamics, the efficiency function can be defined as [24],

η =
output
input

= − J1X1

J2X2
(17)

From Equation (16), it is possible to substitute J1 and J2 into Equation (17), which yields,

η =
−x(q + Zx)

qx + 1/Z
(18)

where,
x = X1

X2
= μ2−μ3

μ1−μ4
is the stoichiometric coefficient,

Z =
√

L11
L22

= 1 is the phenomenological stoichiometry [2] and

q = L12√
L11L22

= 1
β−1 is the degree of coupling.

Substituting these last expressions in Equation (18) we obtain,

η =
−x(1 + (β − 1)x)

x + β − 1
(19)
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If we take the special case of complete coupling, i.e., q = 1 (from Equation (18) we can notice that
for q = 1, β = 2) in Equation (19), it is easy to observe that,

η = −x = −X1

X2
=

μ2 − μ3

μ1 − μ4
(20)

which is highly similar to that obtained by Diaz-Hernandez et. al. [15] for a similar model using
a different approach. Furthermore, Figure 2 shows the efficiency plotted as a function of the
stoichiometric coefficient for various values of q. Note the fast decay of η with the decreasing of q.

Figure 2. Dependence of the efficiency η on the stoichiometric coefficient x for different values of q
from 0.2 up to 1. It is important to remember that the parameter β is related to the degree of coupling
as q = L12√

L11 L22
= 1

β−1 .

3. Optimal Operation Regimes in the Context of the Linear Irreversible Thermodynamics

A very interesting problem in many biological systems is the transfer of energy which is of decisive
importance ([23,24,26–28,32]). Caplan et al. [24] studied linear energy converters working in steady
states, where they introduced definitions of power output and efficiency, besides the known notion of
entropy production rate. Using the definitions of Caplan et al. of power output and efficiency, Stucki [2]
analyzed some optimum regimes different from that of minimum entropy production studied before
by Prigogine [33]. It has been of special interest in many systems (physical, chemical, biological, etc.)
the study of some optimum working regimes for linear energy converters as a manner to understand
the diverse ways in which the energy could be transferred [28]. So, let us analyze some of the most
representative regimes found in the literature for the present system.

3.1. Maximum Power Output

Using the definitions of Caplan et al. [24] for linear energy converters it is possible to obtain the
power output, working in a steady state at constant pressure and temperature, as following;

P = −TJ1X1 (21)

Taking into account Equation (16) it is possible to substitute them into Equation (21), then we get,

P = TL22X2
2q2v(1 − v) (22)

where v is defined as v = (−L11/L12)x, q and x are defined as in Equation (18) and T is the temperature.
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Now, from Equation (19) it is possible to obtain x as a function of η as,

x =
−(1 + η)± R

2(β − 1)
(23)

with R =
√
(1 + η)2 − 4η(β − 1)2. Where, we also have considered that Z = 1, using the definition

given in Equation (18).
If we substitute Equation (23) in Equation (22) we obtain,

P =
Δ2TA

2(β − 1)
[(1 + η)± R][

−(1 + η ± R)
2

+ 1] (24)

where Δ = μ1 − μ4 = X2, and A defined as in Equation (6).

It is important to notice that when we take q = 1 in Equation (24), we obtain:

P = ATΔη[Δ(1 − η)] (25)

which is very similar to the linear approximation of Equation (9) reported by Diaz-Hernandez et al. in
Reference [15].

3.2. Maximum Ecological Function

Now, we are going to analyze a regime named ecological. In the context of the Finite Time
Thermodynamics [4], the ecological function is defined as,

E = P − Tσ (26)

where P is the power output and σ the total entropy production (system plus surroundings) and T the
temperature of the cold reservoir. However, in the context of the linear irreversible thermodynamics
the ecological function takes the form [27]:

E = −TL22X2
2(2x2 + 3xq + 1) (27)

where again q and x are defined as in Equation (18) and T is the temperature.
Now, taking into account Equation (23) and substitute it into Equation (27) we obtain the ecological

function as,

E =
Δ2TA
(1 − β)

{(−η ± R)(
−(1 + η)± R

2
+ 1)

+(1 − β)2 − 1} (28)

with R =
√
(1 + η)2 − 4η(1 − β)2.

It is important to note that when we take q = 1 in Equation (28), we obtain:

E = ATΔ(2η − 1)[Δ(1 − η)] (29)

which is remarkably similar to the linear approximation of Equation (10) reported by Diaz-Hernandez
et al. in Reference [15].

As can be seen in Figure 3, the entropy production is a decreasing monotonous function with
respect to x, for each value of q. Besides, for a fixed x, we observe that when the entropy production
grows q decreases. This could be important because, it seems that could exist a trade-off between the
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coupling coefficient q and the entropy production σ for a fixed value of x, something pointed out by
other authors [15,34].

Figure 3. This Figure shows the entropy production σ versus the stoichiometric coefficient x. We
observe that σ is a decreasing monotonous function with respect to x, for each value of q.

3.3. Maximum Efficient Power Function

In this section, we present the Maximum Efficient Power regime given by Yilmaz et al. [6] which
considers the effects on the design of heat engines, as the multiplication of power by the cycle efficiency,
the criteria was successfully applied to the Carnot, Brayton, and Diesel engines, among other systems.
From the above, the approach called maximum efficient power in the context of thermal engines is
defined as,

Pe = ηP (30)

where P is the power output. Maximization of this function provides a compromise between power
and efficiency, where the designed parameters at maximum efficient power conditions lead to more
efficient engines than those at the maximum power conditions [6].

In the context of the linear irreversible thermodynamics, the power efficient function takes
the form,

Pe =
Δ2TA
(1 − β)

{
[−[(1+η)±R

2 ]2[−(1+η)±R)
2 + 1]2

[−(1+η)±R)
2 + (1 − β)2]

}
(31)

when we take q = 1 in Equation (31), we obtain:

Pe = ATΔη2[Δ(1 − η)] (32)

Equations (31) and (32) have been obtained considering a new performance criterion, called
efficient power, where its maximization leads to a compromise between power and efficiency. In the
context of the Linear Irreversible Thermodynamics, the latter is interesting in the sense that we could
compare not only the power output, but also the efficiency of the cycle.

3.4. Characteristic Functions vs efficiency

One point of interest in Linear Irreversible Thermodynamics is to obtain information about where
the characteristic functions reach their maximum efficiency value; this can be found by means of ∂F(η,q)

∂η

where F(η, q) is any of the three cases considered (i.e., Maximum Power Output (MPO), Maximum
Ecological Function (MEF) and Maximum Efficient Power Function (MEPF)).
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For the Maximum Power Output (MPO) function, the efficiency which maximizes this function is
given by;

ηMPO =
1
2
(

q2

2 − q2 ) (33)

Note some interesting things about Equation (33); first, only when q = 1, ηMPO = 1
2 in the latest

equation. The above is seen clearly in Figure 4 where Power Output (Equation (25)) has been plotted
in terms of η and it is observed that the maximum is reached when η = 1/2. Second, Equation (33)
is the same as the one reported by [27], however, the result was obtained here by using a different
approach. Third, if we perform a series expansion of Equation (32) in terms of q value around 0, we

obtain: ηMPO = q2

2 (
1
2 + q2

4 +O(q4)) this last expression is in some sense equivalent to those founded
for heat engines operating between two reservoirs [9–11,19].

Figure 4. Characteristic Functions (P Maximum Power Output (MPO), Ec Maximum Ecological
Function (MEF) and Pe Maximum Efficient Power Function (MEPF)) as a function of the efficiency η.
When we take q = 1 we can see that Maximum Power Output reaches its maximum at η = 0.5, the
Ecological Function at η = 0.75, and the Maximum Efficient Power Function at η = 0.6666.

Now, if we take the Ecological Function, and again we obtain the point where the efficiency
maximizes the Ecological Function, we have;

ηMEF =
3
4
(

q2

4 − 3q2 ) (34)

As in the MPO case, when q = 1, ηMEF = 3
4 in the latest equation, the above is observed clearly

in Figure 4 where the Ecological Function (Equation (29)) has been plotted in terms of η and the
maximum is reached when η = 3/4 and q = 1, besides Equation (34) is the same as the one reported
by [27] but using a different approach. Moreover, performing an expansion of Equation (33) in terms

of q we obtain; ηMEF = q2

4 (
3
4 + 9q2

16 +O(q4)) and again, this last expansion is similar to those founded
in [9–11,19].

Finally, for the case of the Maximum Efficient Power Function (MPEF) when q = 1, ηMPEF = 2
3 .

The above is shown clearly in Figure 4 where the Maximum Efficient Power Function (Equation (32))
has been plotted in terms of η and the maximum is reached when η = 2/3. For that case, if we take
the Efficient Power function, and we obtain the point where the efficiency maximizes the Maximum
Efficient Power Function as a function of q, we obtain;

ηMPEF = 2 ∗ ( 4
3q2 − 2

3
− 1

12

√
−48 + (8 − 16

q2 )
2) (35)
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3.5. Loop-Shaped Curves

As Stucki pointed out [2] the coupling coefficient q in real biological systems usually is less
than one, this could correspond to some sources of irreversibilities (for example, high thermal
conductivity, among others) being different for each case depending on the system. What differs
from one engine type to another is the magnitude and source of such irreversibility that gives rise
to different power-efficiency curves of this shape [35]. The former has significant differences in the
optimal operating conditions for real devices. Hence, looking for loop-shaped power-efficiency curves
could aid us in studying the behavior mentioned above.

In order to gain information about the power-efficient curves for the case in which the coupling
coefficient q is less than one, we proceed to analyze the loop-shaped curves using the functions of P,
E and PE as a function of η. These are convex functions with respect to x (see Figure 3) when q=1. ,
when q is less than one, we observe that all of them describe a loop-shaped curve with some unusual
characteristics such as the maximum obtained in each case for different values of q. The later shows
how important the parameter q is since it reflects the behavior of the irreversibilities in the system (see
Figure 5–7).

Figure 5. This Figure shows the Power Output P versus the Efficiency η for different values of q. We
can observe how the power output produces loop-shaped curves as it is seen in real thermal engines.

Figure 6. This Figure shows Ecological function P versus the Efficiency η for different values of
q. We can observe how the Ecological function produces loop-shaped curves as it is seen in real
thermal engines.
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Figure 7. This Figure shows the Efficient Power Function Pe versus the Efficiency η for different values
of q. We can observe how the Efficient Power Function produces loop-shaped curves as it is seen in
real thermal engines.

4. Concluding Remarks

Many of the intra-cellular processes are studied based on some kind of a chemical reaction.
In this work, by using a general model for enzymatic reaction that couples an exothermic with an
endothermic reactions (and keeping in mind that most of the biochemical reactions in living organisms
are catalyzed by enzymes), we analyzed the efficiency with which energy is exchanged between these
reactions, but from the point of view of the non- equilibrium thermodynamics. By using the Linear
Irreversible Thermodynamics, it is possible to analyze three different regimes of operation, namely,
Maximum Power Output (MPO), Maximum Ecological Function (MEF) and Maximum Efficient Power
Function (MEPF).

With that in mind, it is possible to obtain similar expressions for the Power Output and the
Ecological Function previously reported by Diaz-Hernandez et al. [15], when the degree of coupling
q is equal to one. It is worth mentioning that the studied model is completely based on well known
biochemical facts, and in this work, in the context of the Linear Irreversible Thermodynamics, it is
possible to generalize the obtained results, where all the thermodynamic features are determined
by the chemical potential gap Δ = μ1−μ4

RT , the efficiency η, and the degree of coupling q. Moreover,
using the same formulation it is possible to add another regime named the Maximum Efficient Power
Function in terms of the aforementioned parameters (Equation (31)).

Based on Figure 2, efficiency is a function of the force ratio x = X1
X2

for various values of
q. Note the very rapid fall in ηmax with the decreasing of q. Again, in the limit q = 1, we
obtained results comparable to those obtained by Diaz-Hernandez et al. This limit has particularly
important thermodynamic implications, since a perfect coupling implies that the flows are not linearly
independent. Considering the above, we obtain the efficiency that maximizes the three characteristic
functions (MPO, MEF, MPEF), when q = 1, we observe that ηMPO = 0.5, ηMEF = 0.75 and ηMPO = 0.66,
as is shown in Figure 3.

However, in more realistic scenarios the coupling coefficient q is less than one, for instance
Stucki [2] reported an experimental qexp = 0.95 for liver mitochondria in male rats. In this case (q < 1),
we have obtained the efficiency that maximizes the three characteristic functions and also the series
expansions in terms of q resembling comparable results yielded by other already cited authors.

Since the three characteristic functions (see Equations (24), (28) and (31)) are determined by three
parameters (Δ, q and η) and a variation of Δ = μ1 − μ4 (this can be achieved assuming a variation
of the substrate and the end-product concentrations), the thermodynamic properties could improve
because these characteristic functions are proportional to Δ. The latest could be the reason why some
biomolecular machines can achieve high speed without sacrificing efficiency [36].
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Now, from Equations (33), (34) and (35), it is clear that the efficiency that maximizes some of the
characteristic functions is related only to q, so at the end, the thermodynamic properties are related to
the degree of coupling providing the basis for comparing different types of coupling in a two-flow
system. In other words, the relevant question in many biological situations could be: what is the
efficiency with which free energy is exchanged between coupled chemical reactions? (question already
made by other authors [26]). Here, the answer is in some sense clear; it depends only on the coupling
coefficient and not on the individual phenomenological coefficients, which can be interpreted within
the framework of non-equilibrium thermodynamics.
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Abstract: Nowadays the importance of thermomechanical engines is recognized worldwide. Since
the industrial revolution, physicists and engineers have sought to maximize the efficiency of these
machines, but also the mechanical energy or the power output of the engine, as we have recently found.
The optimization procedure applied in many works in the literature focuses on considering new
objective functions including economic and environmental criteria (i.e., ECOP ecological coefficient
of performance). The debate here is oriented more towards fundamental aspects. It is known that
the maximum of the power output is not obtained under the same conditions as the maximum of
efficiency. This is shown, among other things, by the so-called nice radical that accounts for efficiency
at maximum power, most often for the endoreversible configuration. We propose here to enrich the
model and the debate by emphasizing the fundamental role of the heat transfer entropy together with
the production of entropy, accounting for the external or internal irreversibilities of the converter.
This original modeling to our knowledge, leads to new and more general results that are reported
here. The main consequences of the approach are emphasized, and new limits of the efficiency at
maximum energy or power output are obtained.

Keywords: Carnot engine; optimization; heat transfer entropy; entropy production; new
efficiency limits

1. Introduction

The origin of the industrial era in the 19th century is strongly connected to thermomechanical
engines whose importance in our society is well-known. Their rapid development and evolution have
contributed to the foundation of thermodynamics as a new branch of science, mainly concerned with
fundamental aspects, as well as numerous applications.

The famous reference case is relative to the Carnot engine [1], but it refers only to an Equilibrium
Thermodynamics modelling of a totally reversible engine. Additionally, the work done by Carnot
generalizes the concept of efficiency according to the First Law of Thermodynamics starting from a
purely mechanical approach [2], and the concept of the Carnot cycle. The interactions between the
working fluid and the surroundings during a cycle consist of a mechanical energy exchange, W, and a
calorific energy exchange, Q, which are of infinite time duration for reversible conditions. This leads to
a quasi-static cycle, whose mean power output of the engine,

.
W, is zero.

Since (approximately) the 80s, a new approach has been developed including the existence
of unavoidable heat transfer irreversibilities (endo-reversible machine [3]), and afterward, internal
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irreversibilities of the converter were also considered, but less frequently. To take account of these
irreversibilities, two main forms are reported in the literature:

• an entropic ratio, I [4];
• a production of entropy, that for a cycle is represented as a parameter, ΔSI [5].

In the more general case, the entropic ratio could be a function that needs to be specified. This will
be considered in this paper.

The main objective encountered in the literature relative to the Non-Equilibrium Thermodynamics
approach remains the power output optimization of the engine and the associated conditions (vector
of state), as well as the efficiency associated with maximum power.

Numerous studies are concerned with the influence of:

• the form of the heat transfer laws at source and sink [6–10];
• the nature of the sources and sinks (thermostats, fluid flows without phase change) [11,12];
• various objective functions [10,13–16];
• consideration of added constraints [17–25];
• thermal losses or adiabaticity [26–28];
• various irreversibilities (mainly global approaches by considering ΔSI or I [4]; or introduced by

mechanisms, namely solid or fluid energy dissipation) [5].

The present paper proposes a new modelling of an irreversible cycle focused on a necessary
condition of the cycle existence, namely the heat transfer entropy. As the most important one for the
cycle is the entering heat transfer entropy associated with the heat input in the converter (engine), it
will be called hereafter, reference entropy, ΔS. According to the modeling assumptions that consider
all cycle processes in the converter as irreversible, the total entropy production over a cycle, ΔSI is
added to this reference heat transfer entropy. The coupling consequence of these two entropies in the
analytical analysis of an irreversible cycle leads to new results that are reported here.

This new modelling is developed for the exo-reversible and endo-irreversible Carnot engine
configuration, as the first possible extension of the primitive Carnot cycle approach.

Then, the remodeled Chambadal [29] engine configuration is described by adding the influence
of the converter internal irreversibility. The optimization approach considers two ways to introduce
the converter internal irreversibility, namely the entropic ratio model and the entropic production
one, each of them being developed for different dependence functions of the system parameters.
The consequences of this addition on the optimized power output are reported, and the limit cases—the
endo-reversible Carnot engine and endo-irreversible model—are shown to be recovered.

A discussion of the overall results and an attempt to generalize the present study provide new
and important upperbounds for the engine performance.

An ongoing next step will be the application of the same methodology to Curzon-Ahlborn [30]
modelling of the Carnot engine by including internal irreversibilities of the converter and considering
the importance of the heat transfer entropy.

2. The Endo-Irreversible Carnot Engine

2.1. Cycle Representation in T-S Diagram

The thermomechanical engine is considered as a system composed of a hot bath (heat source),
converter (engine) and cold bath (heat sink), as shown in Figure 1. The coupling of the three subsystems
is made by the heat transferred from the source to the working fluid in the engine at its hot side, and
the heat rejected by the working fluid to the sink at the cold side, respectively.

In the Carnot engine modeling, the source and sink are two infinite bath (thermostats) at
temperatures THS and TCS respectively. The Carnot engine operates upon an irreversible cycle with

62



Entropy 2019, 21, 1232

perfect thermal contact (no temperature difference) with the two bathes. Thus, one can call it an
exo-reversible and endo-irreversible engine.

Figure 1. Schematic representation of the thermo-mechanical engine.

The irreversible cycle is identified in Figure 2 from state 1 (beginning of the high temperature
isotherm), 2 (exit of the high temperature isotherm and beginning of the adiabatic expansion), 3 (end
of the adiabatic expansion and beginning of the low temperature isotherm), and 4 (exit of the low
temperature isotherm and beginning of the adiabatic compression, up to state 1). The reversible cycle
(marked in red) is also represented in Figure 2 as a starting graphical cycle helping to emphasize the
effect of each internal irreversibility considered in the modeling.

Figure 2. Representation of the Carnot engine cycle with internal irreversibility and the corresponding
reversible one (in red) in T-S diagram.

Both adiabatic and isothermal transformations of the cycle are considered irreversible. Thus,
the irreversibility on the isothermal processes is represented on the horizontal lines 12 and 34 by the
corresponding production of entropy. As the irreversibility on the adiabatic processes in the cycle is
also emphasized by entropy production, the graphical representation is associated to a polytropic
processes represented in the T-S diagram by a corresponding dependence T = f(S). For simplicity, a
linear dependence T = f(S) between states 2 and 3, and 4 and 1, respectively, replaced the real one in
the analytical and graphical analysis of the cycle.

Consequently, the production of entropy on a cycle ΔSI representing the total amount of entropy
produced in the universe per cycle (= engine + environment) is expressed as:

ΔSI = ΔSIH + ΔSIEx + ΔSICo + ΔSIC (1)

with ΔSIH, production of entropy on the hot isotherm;

ΔSIEx, production of entropy during the adiabatic expansion;
ΔSICo, production of entropy during the adiabatic compression; and
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ΔSIC, production of entropy on the cold isotherm, as shown in Figure 2.

Furthermore, for the hot temperature isotherm, the entropy production ΔSIH corresponds to:

ΔSH = ΔS + ΔSIH, (2)

where the reference heat transfer entropy is expressed as:

ΔS =
QH

THS
, (3)

and it equals the entropy change in the hot bath (in module).
Similarly, for the cold temperature isotherm, the entropy production ΔSIC corresponds to:

ΔSC = ΔSS − ΔSIC, (4)

as all production of entropy terms are positive (see Figure 2).
The two entropy productions ΔSIH and ΔSIC correspond to the graphical representation in Figure 3.
One outlines here that the entropy balance over the irreversible cycle is expressed as:

ΔS + ΔSI = ΔSS =
QC

TCS
, (5)

where ΔSS represents the heat transfer entropy corresponding to the heat transferred to the sink.
Note that the commutations between isothermal and adiabatic processes are assumed to be

instantaneous. Moreover, one observes that while the two real isothermal processes are well identified
on the diagram, it is not the same for the irreversible adiabatic processes linking state 2 to 3, and then 4
to 1. All the curves inscribed in the rectangle (2-3’-3-2’-2) satisfying the criterion of increasing entropy
on the adiabatic expansion process are possible.

Plotting a linear transformation in the T-S diagram between state 2 and 3 is not the only physical
acceptable solution, because in the frame of Non-Equilibrium Thermodynamics, one only has access to
points 2 and 3 representing the adiabatic case.

The same discourse can be renewed for the adiabatic compression between 4 and 1. In short, all
the curves inscribed in the rectangle (4-4’-1-1’-4) satisfying the criterion of increasing entropy on the
adiabatic process are possible. The linear transformation in the T-S diagram between state 4 and 1 is
again a possible intermediate solution.

This irreversibility approach is similar to the one of a recent publication [31].
The graphical analysis of the cycle with linearized processes between 23 and 41 illustrated in

Figure 2 shows the area representing the corresponding linearized work per cycle WL as:

WL =
(ΔSH + ΔSC

2

)
(THS − TCS). (6)

This ’geometric’ work (6) is different from the ’thermodynamic’ (or mechanical) work that will be
expressed in Section 2.2 by (10) since (6) depends on the linear assumption regarding the representation
of the irreversible adiabatic processes between 23 and 41 as done in many references [31]. Nevertheless,
it does not reflect the exact physical behavior of the endo-irreversible Carnot heat engine that could
be different to the linear one. Thus, only (10), which is based on energy and entropy balances, will
provide the correct expression of the mechanical work.

2.2. Analytical Model

Considering the adiabaticity (no thermal loss) and exo-reversibility assumptions for the cycle in
this model, the heat transfer at the source and sink are respectively:

QHS = QH > 0 ; QCS = QC < 0. (7)
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The exo-reversibility of the heat transfer relative to the two thermostats imposes:

THS = TH ; TCS = TC. (8)

Thus, the entropy balance on the system can be written as:

QHS

THS
+ ΔSI =

|QCS|
TCS

, (9)

where from the expression of the mechanical work per cycle from the First Law when the entropy
variation corresponding to the heat transfer converted at the source is considered as reference heat
transfer entropy, ΔS, ΔSH = ΔS. becomes:

W = QHS − |QCS| = (THS − TCS)ΔS− TCSΔSI. (10)

The first term of the second equality represents the reversible work, and the second one, the
mechanical dissipation (by fluid and solid friction mainly).

The expression of W in (10) marks the presence of the internal entropy production over a cycle
ΔSI that is supposed as a parameter. Its relationship with the ratio method is introduced below, by
emphasizing ΔS in (10):

W = ΔS
[
(THS − TCS) − TCS

ΔSI

ΔS

]
. (11)

Thus, the ratio ΔSI/ΔS appears in (11) and it corresponds to the irreversibility degree dI introduced
by Novikov [32]. This parameter is also related to an entropic ratio according to Ibrahim’s approach [4],
which represents the absolute value of the ratio of the entropy change in the cold bath to the entropy
change in the hot bath and is given as:

I =
ΔSS
ΔS

. (12)

One notes that this ratio can be particularized (i.e., IH = ΔSS/ΔSH), since it represents a coefficient
relative to an entropy variation corresponding to the heat exchanges at the hot and cold sides of the
converter. Hence, other assignments could be given (IC, IHS, ICS). For the adiabatic exo-reversible
Carnot engine, this ratio is I = IH = IHS and moreover, it is easy to show that:

I = 1 + dI = 1 +
ΔSI

ΔS
, (13)

and
W = ΔS[(THS − TCS) − TCS(I − 1)] = ΔS[THS − I·TCS], (14)

ηI =
W

QHS
= 1− I

TCS
THS

. (15)

It results that the internal irreversibility diminishes the mechanical work and cycle efficiency.
It remains to analyze how I or ΔSI vary with the cycle quantities. It can be reasonably assumed

that ΔSI and (or) I depend on ΔS and (or) ΔTS = THS – TCS, as the two temperatures are generally
parameters of the problem for the Carnot endo-irreversible engine. Hence, two functions can be
proposed, whose general forms (currently unknown in practice) are written as:

ΔSI = fSI(ΔTS, ΔS) ; I = fI(ΔTS, ΔS). (16)

If there is an optimum of W, it must satisfy the necessary condition imposed by one of the
following equation sets:

∂W
∂ΔTS

= ΔS− TCS
∂ fSI

∂ΔTS
= 0 ;

∂W
∂ΔTS

= ΔS
(
1− ∂ fI
∂ΔTS

)
= 0, (17)
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∂W
∂ΔS

= ΔTS − TCS
∂ fSI

∂ΔS
= 0 ;

∂W
∂ΔS

= ΔTS − TCS
∂ fI
∂ΔS

= 0. (18)

3. The Chambadal Engine

The representation of the Chambadal engine irreversible cycle in Figure 3 shows that in addition
to the internal irreversibility of the cycle that was graphically detailed in Section 2.1, the external
irreversibility corresponding to the heat transfer at temperature difference at the hot side appears.
Since the same components of the internal irreversibility for the endo-irreversible Carnot engine are
considered here as well, the cycle representation was simplified by only preserving its shape, and the
new irreversibility completing the model was emphasized. Hence, in Figure 3 case (a) corresponds to a
heat transfer from a source of constant temperature THS, while case (b) shows a finite heat capacity
source with the inlet temperature THSi. The temperature difference of the source and sink level, ΔTS,
compared to the cycled fluid one, ΔTCF, that remains the same, is also relevant for the heat input in the
two cases.

Note that the external irreversibility at the sink is neglected in this approach by considering the
heat rejection to sink occurring at ambient temperature (TC = TCS = T0).

Figure 3. Representation of the associated cycle to the Chambadal engine in T-S diagram: (a) source of
constant temperature; (b) source of finite heat capacity.

The Chambadal engine model is concerned with steady-state operation of the engine and
consequently, heat rates and power output are used. We propose here to convert this modeling with
reference to a cycle and the related energies-heat and work, thus leading to a different model, the
quasi-Chambadal engine.

It involves a thermostat or source of finite heat capacity rate
.
CH =

.
mHcpH, with an input

temperature THSi.
Hence, when the source is a thermostat of constant temperature, THS, the heat transfer at the hot

end is expressed as:
.

QH = UHAH(THS − TH), (19)

with KH = UH · AH, heat transfer conductance of the source corresponding to the steady state
operation regime.

When the source has a finite heat capacity, it involves a temperature variation of the primary fluid
in the corresponding heat exchanger. As the input temperature of the primary fluid THSi is generally
known, by using the effectiveness ε – number of heat transfer units NTU method [27], one gets:

.
QH = εH

.
CH(THSi − TH). (20)
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Note that the two expressions of
.

QH averaged on a time duration Δt, allow to recover the caloric
energy QH, or the mass specific energy (often used) that results by dividing

.
QH with the mass flow rate

of the cycled fluid. Thus, a general expression of the heat transferred at the source is:

QH = GH(THSi − TH) = TH·ΔS, (21)

where GH generally represents a finite physical dimension of the source (thus also of the system) with
reference to energy here, its unit being J/K.

3.1. Optimization Approach for the Entropic Ratio Model

The previous equation is completed in this approach by the entropy balance expressed over a
cycle as:

IH
QH

TH
=

QC

T0
. (22)

This leads to the expression of the mechanical work output as:

W = GH(THSi − TH)
(
1− IH

T0

TH

)
. (23)

By taking into account that IH is a potential function of TH, the mechanical work maximum value
MaxW search should satisfy the necessary condition:

∂W
∂TH

= 0 = −1 + IH
T0

TH
− (THSi − TH)

IH,H T0 TH − IHT0

TH2 , (24)

where IH,H = ∂IH
∂TH

.
The term rearrangement leads to an equation of second degree or more to be solved:

(THSi − TH)T0 THIH,H = IHT0THSi − TH
2. (25)

Possible cases are:

(i) IH is a constant parameter.

This implies ∂IH/∂TH = IH,H = 0.
Thereby, the optimum temperature at the hot-end, MaxW and the corresponding cycle efficiency

respectively, result as:
TH
∗ =

√
IHT0 THSi (26)

MaxW = GH
(√

THSi −
√

IHT0
)2

, (27)

ηI(MaxW) = 1−
√

IHT0

THSi
(28)

It is obvious that the rise of IH parameter results in an increase of the optimal temperature TH
∗

and has the opposite effect (decrease) on MaxW and the associated cycle efficiency.

(ii) IH is a linear function of ΔTT = TH – T0 (see Figure 3), with values ≥ 1.

One considers the following expression for IH:

IH = CI(TH − T0) + 1, with CI = IH,H (29)

By combining (25) with (29), one gets:

CI (THSi − TH)T0 TH = [CI (TH − T0) + 1]T0THSi − TH
2. (30)
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The above equation leads to the expression of the optimum temperature of the cycled fluid at the
hot side expressed by:

TH
∗ =

√
T0 THSi . (31)

It results that irreversibility does not affect the temperature TH
∗, but it does affect the mechanical

work and the cycle efficiency, whose expressions become:

MaxW = GH(1−CIT0 )
(√

THSi −
√

T0
)2

, (32)

ηI(MaxW) = (1−CIT0 )

⎛⎜⎜⎜⎜⎝1−
√

T0

THSi

⎞⎟⎟⎟⎟⎠. (33)

The comparison of (27) and (32) clearly shows the maximum work decrease in case ii) and by
a completely different expression. The same happens for the efficiency at maximum work, when
comparing (28) and (33).

3.2. Optimization Approach for the Entropic Production Model

The entropy balance takes a similar form to that of Section 2.2, namely:

QH

TH
+ ΔSI =

QC

TC
, (34)

with TC = TCS = T0.
One notes that the production of entropy on the cycle in (34) is not the same with (1) in the

endo-irreversible Carnot engine case, since it also considers the production of entropy corresponding
to the heat transfer at finite temperature difference (see Figure 3).

The mechanical work is expressed as:

W = QH

(
1− TCS

TH

)
− TCSΔSI. (35)

By using (21) in (35), one gets:

W = GH(THSi − TH)
(
1− TCS

TH

)
− TCSΔSI. (36)

The term ΔSI is a potential function of TH (also increasing one). Therefore, the MaxW search
should satisfy the necessary condition:

∂W
∂TH

= 0 = −
(
1− TCS

TH

)
+ (THSi − TH)

TCS

TH2 −
TCSΔSI,H

GH
= 0. (37)

This form is simpler than the previous one, providing an equation of the second degree or more
to solve.

The possible cases are as follows:

(i) ΔSI is a constant parameter.

This implies ∂SI/∂TH = ΔSI,H = 0, which delivers:

TH
∗ =

√
THSi TCS . (38)

The expressions of MaxW and ηI(MaxW) are straightforward:

MaxW = GH
(√

THSi −
√

TCS
)2 − TCSΔSI, (39)
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ηI(MaxW) = 1−
√

TCS
THSi

(
1 +

ΔSI

ΔS

)
. (40)

(ii) A linear dependence of ΔSI on the temperature difference ΔTT = TH – TCS is considered.

We assume that:
ΔSI = 0 if ΔTT = 0;
ΔSI = ΔSIS (new parameter) if ΔTT = ΔTS = THSi – TCS (see Figure 3b),

where from:
ΔSI = ΔSIS

ΔTT

ΔTS
= ΔSIS

TH − TCS
THSi − TCS

= CIS(TH − TCS). (41)

The mechanical work optimization imposes:

∂W
∂TH

= 0 = GH

(
THSi TCS

TH2 − 1
)
− ΔSIS

ΔTS
TCS, (42)

which leads to:

TH
∗ =

√
THSi TCS

1 + TCS
ΔTS

ΔSIS
GH

. (43)

It is well known that internal irreversibility always decreases W. Hence, (41) is valuable by
emphasizing in the denominator two factors that modify the optimal temperature TH*:

• the first, an intensive one: TCS
THSi− TCS

;

• the second, an extensive one: ΔSIS
GH

.

The last factor is not only related to the converter through ΔSIS, but also to the hot source by the
finite physical dimension GH (coupling).

This shows the interest of an entropic description of the system. Thus, the corresponding maximum
power output is given by:

MaxW = GH
(√

THSi −
√

I·T0
)2

, (44)

with
I =

T0

ΔTS
·ΔSIS

GH
. (45)

The associated first law efficiency is:

ηI(MaxW) =

(
1−

√
I·T0
THSi

)2

1−
√

T0
I·THSi

, (46)

3.3. Quasi-Chambadal Model with Added Heat Transfer Entropy Constraint and Production of Entropy

This optimization is based on (21) from which the temperature TH is expressed as:

TH =
GH

GH + ΔS
THS , (47)

with ΔS, reference heat transfer entropy associated to the heat input. This result is an important one,
since it illustrates the coupling between the source (GH) and the converter (ΔS).

The expression of the mechanical work W can be easily derived as a function of the newly chosen
variable ΔS:

W =
[ THSi GH

GH + ΔS
− T0

]
ΔS− T0 ΔSI. (48)
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This optimum with respect to ΔS corresponds to a converter adapted to the hot source. It results
that W becomes maximum when ΔSI is related to ΔS (to be specified) by the following function:

∂W
∂ΔS

= 0 =
( GH

GH + ΔS

)2
THSi − T0 − T0

∂ΔSI

∂ΔS
. (49)

Following different assumptions, one can consider:

(i) the presence of the Novikov’s irreversibility degree [9], that is expressed by:

∂ΔSI

∂ΔS
= dI. (50)

In this case, one gets at the optimum:

ΔS∗ = GH

⎡⎢⎢⎢⎢⎣ √
THSi√

T0 (1 + dI)
− 1

⎤⎥⎥⎥⎥⎦. (51)

It results that the optimum heat transfer entropy ΔS* diminishes with increasing irreversibility dI,
and the same goes for MaxW and the cycle efficiency:

MaxW = GH

(√
THSi −

√
T0 (1 + dI)

)2
, (52)

ηI(MaxW) = 1−
√

T0 (1 + dI)

THSi
, (53)

where dI ≤ (THSi − T0 )/T0 .

(ii) when ΔSI is a constant parameter, one finds similarly:

ΔS∗ = GH

[ √
THSi√
T0

− 1
]
, (54)

and
MaxW = GH

(√
THSi −

√
T0

)2 − T0 ΔSI, (55)

ηI(MaxW) = 1−
√

T0

THSi

(
1 +

√
T0√

THSi −
√

T0

ΔSI

GH

)
. (56)

(iii) ΔSI may also depend of TH in a linear form, as in Section 3.2, case ii), namely:

ΔSI = dIS
TH − T0

THSi − T0
ΔS, (57)

from which one gets:

W = (TH − T0 )ΔS
(
1− T0

dIS
THSi − T0

)
, (58)

where dIS ≤ (THSi − T0 )/T0 is the parameter of entropic proportionality corresponding to the
irreversibility degree of Novikov [24], but relative to the system composed of a source and converter
(the heat transfer from the converter to the sink being neglected in the model).

Knowing the expression of TH as a function of ΔS, one gets:

W =
(
THSi

GH

GH + ΔS
− T0

)
ΔS

(
1− T0

dIS
THSi − T0

)
. (59)
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The optimum of the mechanical work with respect to ΔS is obtained after some calculations as:

MaxW = GH
(√

THSi −
√

T0
)2

(
1− T0

THSi − T0
dIS

)
. (60)

The corresponding first law efficiency is:

ηI(MaxW) =

⎛⎜⎜⎜⎜⎝1−
√

T0

THSi

⎞⎟⎟⎟⎟⎠(1− T0 dIS
THSi − T0

)
, (61)

These two quantities are decreasing with the parameter dIS. Thus, the mechanical work W is

diminished by the term
(
1− T0

dI,S
THSi −T0

)
, as shown in (59). Also, (61) clearly proves that irreversibility

decreases the efficiency corresponding to maximum work.

4. Conclusions

This work presents a short history of the Carnot cycle approaches developed in the frame
of Equilibrium Thermodynamics, of the actual endo-irreversible Carnot engine in Irreversible
Thermodynamics, and for the Chambadal model.

The analytical model developed in the frame of Equilibrium Thermodynamics integrates the
irreversibility in the natural form of an entropy production, or in an entropic ratio form (with various
justified and correlated definitions) and is mainly related to the irreversibility degree introduced by
Novikov [32].

The mechanical work of the irreversible cycle remains linked to the form of the irreversible
isotherms and adiabatics, as has been shown in Section 2.1. The irreversibilities distribution between
isothermal and adiabatic processes leads to framing the actual work between zero and max MaxW,
with the corresponding efficiencies pertaining to the interval between zero and the Carnot efficiency.

For the Chambadal model, the cycle approach or the one in the stationary dynamic regime come
down to the same form, by introducing a characteristic property GH, which is representative of the finite
physical dimensions connected to the reference heat transfer entropy ΔS, characterizing the converter.

It results in the existence of an optimum of the mechanical work either in terms of intensive
variable TH, or in terms of extensive variable ΔS.

The two approaches leading to coherent results, but with different interpretations, provide a new
perspective on the optimization of the Carnot engine, mainly by coupling of the hot source with the
converter (GH and ΔS).

Extensions are in progress, which are based on more complete models, particularly on the
Curzon-Ahlborn one, that considers the non-equilibrium at source and sink. Also, the stochastic
thermodynamics approach [33,34] is intended to be used in future works to evaluate different sources
of irreversibility in the corresponding heat engines exactly, without additional assumptions. It could
offer an alternative to evaluate the analytical results provided by our phenomenological approach.
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Symbols
A heat transfer area, [m2]
cp specific heat at constant pressure, [J/(kg K)]
.
C heat capacity rate, [W/K]
d Novikov’s irreversibility degree, [-]
ECOP ecological coefficient of performance, [-]
G finite physical dimension, [J/K]
K heat transfer conductance, [W/K]
I entropic ratio, [-]
NTU number of heat transfer units, [-]
Q heat, [J]
.

Q heat transfer rate, [W]
S entropy, [J/K]
T temperature, [K]
U overall heat transfer coefficient, [W/(m2 K)]
W mechanical work, [J]
Greek Symbols
ε effectiveness, [-]
η efficiency, [-]
Subscripts
C relative to the cycled fluid at the cold source
Co relative to compression
CS cold source or sink
Ex relative to expansion
H relative to the cycled fluid at the hot source
HS hot source
HSi hot source
I irreversibility of the converter
IS irreversibility of the system (source-converter-sink)
S source or sink, relative to temperature difference of source and sink
T total, relative to extreme temperature difference of the cycled fluid
0 ambient
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Abstract: Ocean thermal energy conversion (OTEC) uses the natural thermal gradient in the sea.
It has been investigated to make it competitive with conventional power plants, as it has huge
potential and can produce energy steadily throughout the year. This has been done mostly by focusing
on improving cycle performances or central elements of OTEC, such as heat exchangers. It is difficult
to choose a suitable heat exchanger for OTEC with the separate evaluations of the heat transfer
coefficient and pressure drop that are usually found in the literature. Accordingly, this paper presents
a method to evaluate heat exchangers for OTEC. On the basis of finite-time thermodynamics, the
maximum net power output for different heat exchangers using both heat transfer performance and
pressure drop was assessed and compared. This method was successfully applied to three heat
exchangers. The most suitable heat exchanger was found to lead to a maximum net power output
158% higher than the output of the least suitable heat exchanger. For a difference of 3.7% in the net
power output, a difference of 22% in the Reynolds numbers was found. Therefore, those numbers
also play a significant role in the choice of heat exchangers as they affect the pumping power required
for seawater flowing. A sensitivity analysis showed that seawater temperature does not affect the
choice of heat exchangers, even though the net power output was found to decrease by up to 10%
with every temperature difference drop of 1 ◦C.

Keywords: ocean thermal energy conversion (OTEC); plate heat exchanger; optimization; maximum
power output; finite-time thermodynamics

1. Introduction

In 2015, the CO2 emission due to energy generation and heat production was up to 13 540 million
tons [1]. Efforts are to be made to lower this figure, especially to meet the Paris Agreement’s goal to limit
global warming to below 2 ◦C [2]. Thus, it is necessary to develop renewable energies, which are not
represented enough in today’s energy mix [3]. A drawback of most implemented renewable energies
is their intermittency, therefore, they cannot be used for baseload energy demand without a storage
system breakthrough. However, to generate electricity, ocean thermal energy conversion (OTEC)
uses the difference between the surface seawater and the deep seawater temperature in tropical areas.
As such areas present very low temperature change throughout the year, a steady power generation
can be achieved. Moreover, OTEC has huge potential, as its resources are estimated at a maximum of
7 TW of net energy production [4]. In addition to power generation, it is possible with such a system
to produce freshwater using the warm seawater. This water can be used to create pure hydrogen to
store or transport the energy generated by the power plant. In addition to tackling climate change and
providing clean energy, OTEC can contribute to reaching five other sustainable development goals
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defined in 2015 by the general assembly of the United Nations [5]. Indeed, OTEC produces deep
seawater as a byproduct, which can be used for aquaculture and desalination. The implementation of
such a power plant could play a major role in the economic growth of cities and countries, especially on
islands. It would also promote industry, innovation, infrastructure, as well as providing employment
for the construction and operation of the plant, auxiliaries, and other industries that make use of
deep seawater.

As it uses the low-temperature gradient in the ocean, which is 20–25 ◦C in suitable locations,
the OTEC system presents a very low maximal theoretical thermal efficiency of 3%–5%. However,
the system is a potential substitute for conventional power plants with higher efficiency, considering
that the resource has virtually no cost. It is necessary to understand the basic theory, known as
finite-time thermodynamics (FTT), which was first applied to OTEC by Wu [6] and extended by
Ikegami and Bejan [7]. They constructed the basic theory for OTEC using FTT; however, the application
in engineering is still limited. It is also necessary to optimize, as much as possible, the net power output
of an OTEC power plant. This can be done in different ways: by optimizing cycles or investigating
more efficient ones, by choosing the most suitable working fluid, or by investigating key elements of
the system.

To harvest ocean thermal energy, it is possible to use a flash chamber to evaporate the warm surface
seawater. The steam is used to operate a turbine and is then condensed by the cold deep seawater.
In doing so, both energy and freshwater are produced. Kim et al. researched such a system, namely,
open-cycle OTEC [8]. They thoroughly investigated the system using three different condensers in
order to adjust the power generation and desalination. They found that there is an optimal fraction of
steam that enters the turbine that maximizes the ratio of the generated power over the cold water flow
rate, therefore optimizing the use of the said steam throughout the plant. Kim et al. also investigated
the possible replacement of the flash evaporation chamber by a vacuum membrane distillation module,
which would require less than 10% of the volume normally occupied by the evaporator and result in a
decrease of the open-cycle OTEC plant size by 30% and the electricity cost by 2.1% [9]. In contrast to the
open cycle, the closed cycle uses a working fluid in a closed-loop, and is the main focus of this study,
as it is more suitable to generate large amount of power. Hereafter, only the closed cycle is discussed.

Regarding cycle investigations, D.H. Johnson calculated the exergy available in a specific amount
of both cold and warm water and used the results to compare the performance of different OTEC
cycles, such as the Beck and Rankine cycles. He used the second law efficiency of the cycles, defined as
the ratio between the cycle power output and the exergy from ocean thermal resources [10]. His study
concluded the triple Rankine cycle as the one which presents the most potential. He also compared
the second law efficiency of a coal-fired Rankine cycle with a single-stage OTEC Rankine cycle and
found that “an OTEC plant uses the exergy of the ocean thermal resource about as efficiently as a
conventional coal-fired plant uses the exergy of coal”. In 1982, Kalina presented a cycle that introduced
the regeneration of the working fluid [11]. This cycle has been widely investigated: Zhang et al. made
a review of this research and realized a comparison with the Rankine cycle [12]. They found that,
in most cases, the Kalina cycle presents better efficiencies than the Rankine cycle, especially in the case
of low-temperature resources. Uehara et al. then proposed a new cycle, as an improvement of the
Kalina cycle, and implemented a second turbine to the cycle [13]. The study showed an increase of ~10%
in the thermal efficiency compared to a Kalina cycle and more than 30% compared to a single-stage
Rankine cycle for specific conditions. Ikegami et al. investigated the reduction of irreversible losses in
the heat exchange process for a double-stage Rankine cycle [14]. This way, they demonstrated that an
OTEC cycle net power output could be increased using this cycle or the Kalina cycle. The current study
initially focused on the Carnot cycle, as it is the basic theoretical cycle for OTEC. After that, a Rankine
cycle was investigated, as it is a more realistic cycle and for comparison purposes. Additionally,
calculations from the Rankine cycle can be used as a base for multistage Rankine cycle calculations in
the future, as they have been found to have great potential.
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For fluid choices, Dijoux et al. built a model of an organic Rankine cycle applied to OTEC
to compare the performances of 26 different working fluids. They managed to select three fluids
that would be suitable for OTEC by considering several parameters, including thermodynamics
performances, even though no fluid could meet all the ideal parameters [15]. One of the selected fluids
was ammonia, which has also been identified as the fluid of choice by Bernardoni et al. [16]. Thus, this
study considered ammonia when working fluid properties were required.

In OTEC, heat exchangers allow heat harvest and are pointed out by many studies as one of the
most important parts of the system to investigate. Sinama et al. performed an OTEC cycle optimization
by minimizing the destroyed exergy [17]. The study presents a sensitivity analysis that shows the role
of heat exchangers in an OTEC cycle as well as the importance of optimizing them or developing more
suitable ones. Sun et al. reached the same results in their optimization design and exergy analysis of
an organic Rankine cycle [18]. Bernardoni et al. realized a techno-economic analysis of a closed OTEC
cycle to assess its levelized cost of energy (LCOE) [16]. This is defined by the sum of the operating
cost of a power plant over its lifetime and its capital cost divided by the net energy production over
its lifetime. Bernardoni et al. identified heat exchangers as one of the most expensive constituents of
an OTEC power plant, making them suitable candidates for further study. Accordingly, this paper
focused on investigating heat exchangers for OTEC.

Many types of heat exchangers exist, and the most investigated one in OTEC is the plate heat
exchanger. Indeed, the compactness of this type of heat exchanger compared to other types allows
reaching the significant heat transfer area required for OTEC purposes with less material. It is necessary
to compare the maximum net power output of a power plant for different heat exchangers to choose
the most suitable one. For this purpose, it is first necessary to evaluate the net power output of an
OTEC system for a given heat exchanger, which depends not only on the heat transfer performance
of the heat exchanger but also its pressure drop. Due to the low thermal efficiency of the OTEC
cycle, the pumping power required to counter the pressure drop that occurs inside the heat exchanger
is of the same order of magnitude as the gross power generated by the harvested heat. Yasunaga
et al. [19] realized an OTEC performance evaluation in terms of FTT based on a Carnot cycle and
identified a theoretical relationship between heat transfer performance, pressure drop, and OTEC
net power output. They also showed that a compromise must be found, as both parameters are not
independent. To evaluate the net power output of an OTEC power plant, it is thus necessary to know
both the heat transfer performance and the pressure drop of the heat exchanger. Although they are
independently evaluated, both these parameters have been widely investigated [20–22]. Uehara and
Ikegami conducted an in-depth optimization of a closed-cycle OTEC system with all its constituents
for different temperatures of the warm seawater [23]. They used the ratio of the heat transfer area over
the cycle net power output as the objective function to minimize the cost of the produced electricity,
which greatly depends on the size of the heat exchangers. In doing so, they could calculate, among
other things, the optimized, required heat transfer area for a specific evaporator and condenser set.
However, studies that have evaluated an OTEC system net power output as a function of both the heat
transfer performance and the pressure drop, to allow a comparison between different heat exchangers,
are scarce. The method used by Uehara et al., although very accurate and quite exhaustive, is not
suitable for heat exchanger comparisons due to its high complexity. It is therefore necessary to develop
a relatively easier method that will allow such a comparison. This was the aim of the present study,
and the main focus was on the trade-off between the pressure drop and the heat transfer performance;
losses occurring on other components should not affect the comparison results.

The goal of this work was to find the most suitable heat exchanger for OTEC, which is useful when
designing a new power plant. A simplified method was developed to evaluate and then maximize the
net power output of an OTEC system for a given heat exchanger. As it is one of the most expensive
components, it is necessary to select the heat exchanger that leads to the highest net power output for a
minimal amount of material [16–18]. This study, therefore, focused on the net power output per unit of
the heat exchanger surface area. Increasing the heat transfer area on plate heat exchangers, the preferred
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type of heat exchanger for OTEC, can be easily achieved by adding more plates. This will not alter the
results as long as the Reynolds numbers inside a plate and the number of passes remains the same.
The results for three different heat exchangers from the literature were compared. First, calculations
were done for the Carnot cycle. Then, Rankine cycle calculations were realized to investigate the
differences between the two cycles. The influence of seawater temperature was investigated through
a sensitivity analysis. Indeed, each OTEC power plant is designed to operate at specific conditions,
and the heat source temperature affects their performance. This method will not be able to predict the
net power output and optimum operating points as accurately as what was achieved by Uehara and
Ikegami [23]; however, its relative ease of use will make it preferable for heat exchanger comparisons.
In addition, it may constitute the basis for less complex methods than the one proposed by Uehara and
Ikegami, but with comparable accuracy. The proposed method presents the following:

• It addresses the lack of evaluation methods to efficiently select a heat exchanger for OTEC purposes
and considers the trade-off between heat transfer performance and pressure drop.

• It is easily applicable for different heat exchangers as long as geometry, heat transfer coefficient
correlation, and pressure drop correlation are provided.

• It is easily applicable to different seawater temperatures.

2. Description and Analysis

The first step before the actual optimization is to define the objective function that will be
maximized. In this study, the comparison of the heat exchangers was based on the net power output of
the power plant per unit of the heat exchanger surface area. The net power output of an OTEC system
depends on the gross power output that can be produced by the harvested heat and the different losses
that occur in the system.

In OTEC, the heat from the sea is harvested using plate heat exchangers. A plate heat exchanger
consists of a stack of plates in which the thermal energy of a relatively hot fluid is transferred to a
colder one, with each fluid flowing on a different side of a plate. Therefore, the harvested heat depends
on the convection heat transfer coefficient of both fluids and the heat transfer conductivity of the plate
through which the heat transfer occurs. In addition, deposit layers of different natures are observed on
the heat exchanger plate as the OTEC plant operates. This is called fouling and is caused by elements;
organic matter; or living organisms present in the seawater. Such layers add thermal resistance to the
plate, and thus decrease the heat transfer performance of the exchanger.

Part of the gross power output generated by the power plant is used for water ducting. In addition,
losses happen in the heat transfer process itself and in the form of pressure drop that will be countered
using pumps, decreasing the net power output of the system. The pressure drop happens in the pipes
in which each fluid circulates and in the heat exchangers.

In this study, an optimization was realized for an OTEC system based on a Carnot and a Rankine
cycles. For both cycles, the following assumptions were considered:

• The heat transfer coefficient of the working fluid is much greater than the seawater one as the
working fluid undergoes a phase change [24].

• The thermal resistance due to fouling can be neglected.
• The pressure drop on the working fluid side can be neglected [16,17,23].
• Changes in the water thermodynamic properties in the heat exchangers due to temperature

variation can be neglected.

Moreover, although it has a non-negligible impact on the net power output of an OTEC power
plant, the pressure drop that occurs in the piping system is not accounted for in the present paper.
Indeed, it mainly depends on the length of the pipes and therefore, it has no impact on the choice of a
heat exchanger.
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2.1. Carnot Cycle: Concept and Equations

In this section, the conceptual OTEC system in Figure 1a is assumed to be working on a Carnot
cycle, which is described in Figure 1b. A working fluid is heated by the warm seawater in a first
heat exchanger in which it evaporates. The resulting vapor is then used to operate a turbine before
being condensed by the deep seawater through a second heat exchanger. Finally, the working fluid is
pumped into the evaporator for another cycle. This is an ideal cycle using isothermal heat exchange
as well as isentropic compression and expansion processes, although they cannot be achieved in a
practical power plant.
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Figure 1. (a) Model of the ocean thermal energy conversion (OTEC) system and (b) temperature–entropy
diagram of a Carnot cycle.

As this study focuses on the cycle performance, the pumping power required for water ducting
is not considered. Thus, the net power output is equal to the difference between the gross power
generated by the heat engine, Wgross, and the required pumping power to counter the seawater pressure
drop in the heat exchanger, WP. The net power output, Wnet, of the Carnot cycle is therefore given by
Equation (1) [7]:

Wnet = Wgross −WP (1)

The power generated by the cycle is given by the balance between the heat added to the system
(Qe) and the heat taken from the system (Qc) Equation (2) [25]:

Wgross = Qe −Qc = Cwsεws
(
Twsi − Tw f e

)
−Ccsεcs

(
Tw f c − Tcsi

)
= (mcpε)ws

(
Twsi − Tw f e

)
−

(
mcpε

)
cs

(
Tw f c − Tcsi

) (2)

where ε is the heat exchanger efficiency, which is equal to the ratio of the actual heat exchange that
occurs in the heat exchanger and the maximum theoretical heat exchange that could occur for an
infinite counterflow heat exchanger without losses. C is the product of the mass flow rate, m, and the
specific heat capacity, cp, of the seawater. Subscript ws stands for warm source and cs stands for cold
source. Twsi, Tcsi, Twfe, and Twfc are the temperature of the warm seawater at the inlet of the evaporator,
the temperature of the cold seawater at the inlet of the condenser, the temperature of the working fluid
in the evaporator, and the temperature of the working fluid in the condenser, respectively.
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In the case of an OTEC power plant, as a phase change occurs in both heat exchangers, the
efficiency, ε, can be written as Equations (3) and (4) [25]:

εws = 1− exp(−NTUws) (3)

εcs = 1− exp(−NTUcs) (4)

where NTU is the number of transfer units and is defined in Equation (5):

NTU =
UA
C

(5)

where U is the overall heat transfer coefficient and A is the heat transfer area of the heat exchanger.
The Lagrange multiplier method is applied, similar to Ibrahim et al., to find the conditions on the

temperatures that maximize the power output of the heat engine, as can be seen from Equations (6) to
(9) [26]. The entropy balance written in Equation (6) is used as the constraint function, as it is equal to
0 when there are no irreversibilities:

Δs =
Cwsεws

(
Twsi − Tw f e

)
Tw f e

−
Ccsεcs

(
Tw f c − Tcsi

)
Tw f c

= 0 (6)

The Lagrange multiplier, Λ, is then introduced and verifies Equation (7):

δWgross

δTw f e
= Λ

δΔs
δTw f e

and
δWgross

δTw f c
= Λ

δΔs
δTw f c

(7)

It leads, using Equations (2), (6), and (7), to the following relationship at the maximum point.

Tw f c

Tw f e
=

√
Tcsi
Twsi

(8)

From here, it is possible to express the maximum power output of the heat engine, as in [7,19,26]:

Wgross =

(√
Twsi −

√
Tcsi

)2

1
Cwsεws

+ 1
Ccsεcs

(9)

In the case of OTEC, as heat exchangers are the most expensive components [16], the goal of
optimization is to maximize the net power output per unit of heat exchanger surface area. Therefore,
the objective function is defined as the net power output of the heat engine, assuming it operates at the
optimized temperature ratio shown in Equation (8) [7], divided by the total surface area of both the
evaporator and condenser. In addition, heat exchangers, for which the calculation is made, do not have
the same surface area. Thus, given that the surface area can be changed by the addition or subtraction
of plates, the net power output per unit of surface area, wnet, allows a more efficient comparison. It is
expressed in Equation (10), which is deduced from Equations (1) and (9):

wnet =
1

(Asws + Ascs)

⎛⎜⎜⎜⎜⎜⎜⎜⎝
(√

Twsi −
√

Tcsi
)2

1
Cws(1−e−NTUWS)

+ 1
Ccs(1−e−NTUWS)

−WPws −WPcs

⎞⎟⎟⎟⎟⎟⎟⎟⎠ (10)

where As is the heat exchanger surface area calculated as As = LWi(number o f plates− 2), with L and
Wi representing the length and width of the plate, respectively. As differs from A as it does not take
into account any plate surface patterns, such as herringbone. WP is defined as in [7]:
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WP =
2 f LRe3μ3

wS

D4ρ2
w

(11)

where D is the equivalent diameter of the heat exchanger, L is the length of a plate and the Reynolds
number, Re, is defined as:

Re =
ρwvD
μw

(12)

with ρw the seawater density, v the seawater mean velocity, and μw the seawater dynamic viscosity.
f is the friction factor and is defined as:

f =
τ
ρwv2

2

(13)

where τ is the wall shear stress of the heat exchanger. However, in this study, an experimental
correlation of the friction factor is used. It is assumed that the friction factor can be written as:

f = βReξ (14)

where β and ξ are two constants that depend on the heat exchanger properties.
UA, from Equation (5), is defined as follows:

1
UA

=
1
αwA

+
t
λpA

+
1
αw f A

+
R f

A
(15)

where αw is the seawater convective heat transfer coefficient, αwf is the working fluid heat transfer
coefficient, t is the plate thickness, Rf is the resistance due to fouling, and λp is the thermal conductivity
of the plate.

As specified at the beginning of Section 2, fouling is neglected and αwf is assumed to be much
greater than αw. Therefore:

1
αwA

+
t
λpA

+
1
αw f A

+
R f

A
≈ 1
αwA

+
t
λpA

=
1
αwA

+ B (16)

where B is a constant and αw is calculated from the Nusselt number (Nu), defined as follows, with λw

being the water thermal conductivity and D the equivalent diameter:

Nu =
αwD
λw

. (17)

Furthermore, the following assumption is taken:

Nu = dReγPrn, (18)

with d, γ, and n being constant coefficients for the Nusselt correlation. The Prandtl number, Pr, is
defined as:

Pr =
μwcp

λw
, (19)

leading to:

UA =
ANuλw

D + BANuλw
=

AdReγPrnλw

D + BAdReγPrnλw
(20)

In addition, using Prandtl and Reynolds numbers definitions from Equations (12) and (19), C can
be written as:

C = mCp = ρvSCp =
RePrλwS

D
(21)
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Therefore,

NTU =
UA
C

=
D

RePrλwS
AdReγPrnλw

D + BAdReγPrnλw
=

dReγ−1Prn−1AD
(D + BdReγPrnλwA)S

(22)

Then, replacing NTU and C in Equation (10) by their respective expressions described in
Equations (22) and (21), the following equation of the net power output per unit of heat exchanger
surface area, wnet, is deduced:

wnet =
1

Asws+Ascs

(
√

Tws−√TCS)
2

1(
RePrλS

D

(
1−exp

(
− dReγ−1Prn−1AD
(D+BdReγPrnλA)S

)))
WS

+ 1(
RePrλS

D

(
1−exp

(
− dReγ−1Prn−1AD
(D+BdReγPrnλA)S

)))
CS

− 1
Asws+Ascs

((
2 f LRe3μ3S

D4ρ2

)
WS
−

(
2 f LRe3μ3S

D4ρ2

)
CS

) (23)

It has been possible here to express the net power output of the heat engine as a function of the
properties of the seawater side only, which will facilitate the calculations.

As the Carnot cycle is ideal, it does not reflect the actual net power output of an OTEC system. It is
possible to introduce a FTT irreversibility factor, as done by Ibrahim et al. [26]; however, this coefficient
regroups different sources of internal irreversibilities, which makes it difficult to assess, and is therefore
not usable for practical applications like the OTEC power plant. A better way is to proceed with a
cycle that can be used for OTEC, such as the Rankine cycle. A comparison must be carried out to see if
the use of a different cycle will have an impact on the choice of a heat exchanger.

2.2. Rankine Cycle: Concept and Equations

For the Rankine cycle, described in Figure 2a,b, the net power output can be given by Equation (24).
It was assumed that the working fluid at the outlet of the heat exchangers was in a saturated state.
This cycle differs from the Carnot cycle, as it can be used practically in power plants. In this case, heat
exchange is not isothermal, and a change in entropy occurs in both compression and expansion processes.

 
(a) (b) 

s 

T 

Figure 2. (a) Description of the Rankine cycle and (b) temperature–entropy diagram of a Carnot cycle.

As for the Carnot cycle, the objective function is the net power output of the heat engine divided
by the total heat exchanger surface area:

wnet =
1

Asws + Ascs

⎛⎜⎜⎜⎜⎝mw f (h2 − h3 − h1 + h4) −
⎛⎜⎜⎜⎜⎝2βRe3+ξLμ3S

D4ρ2

⎞⎟⎟⎟⎟⎠
ws
−

⎛⎜⎜⎜⎜⎝2βRe3+ξLμ3S
D4ρ2

⎞⎟⎟⎟⎟⎠
cs

⎞⎟⎟⎟⎟⎠ (24)
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where mwf is the mass flow rate of the working fluid. h1, h2, h3, and h4 are the enthalpy values of the
corresponding points in Figure 2 and with:

h3 = h2(1− ηT) + ηTh′3 and h1 = h4
(
1− ηp

)
+ ηph′1 (25)

h’1 and h’3 are the enthalpy values of the corresponding points in the case of an isentropic process,
and ηT and ηp are the turbine and pump efficiencies, respectively. For the calculations, the turbine
efficiency is equal to 0.85 and the pump efficiency is equal to 0.8.

Enthalpy values can be calculated from temperatures T2 and T4 at Points 2 and 4 using the
software REFPROP [27]. T2 and T4 can be evaluated from Equation (26):

T2 =
Twsi − TwsoeNTUws

εws
and T4 =

Tcsi − TcsoeNTUcs

εcs
(26)

h2 and h4 are calculated using the respective temperature and because the fluid is at a saturated state.
It is possible to calculate h3 using T’3 = T4, s2 = s’3, and Equation (26). For Point 1, s4 = s’1 and
P2 = P’1; P is the pressure of the fluid and s is its specific entropy. NTU is calculated as detailed for the
Carnot cycle in Equations (15)–(22). Details for the calculations to obtain Equation (26) are given in
Appendix A.

3. Optimization Process

The optimization was realized for different plate heat exchangers tested by Kushibe et al. [28].
The specifications are given in Table 1; they are all versatile plates. Plate heat exchanger (PHE) 1 is
meant for high pressure and high temperature and is used as an evaporator in power generation
systems using hot springs as a heat source, PHE 2 is a typical herringbone plate heat exchanger, and
PHE 3 was specially invented by Prof. Uehara as both an evaporator and a condenser [28].

Table 1. Heat exchanger specifications. PHE: Plate heat exchanger.

Heat Exchanger PHE 1 PHE 2 PHE 3

Length L (mm) 960 718 1765
Width Wi (mm) 576 325 605

Thickness t (mm) 0.7 0.5 0.6
Space between plates δ (mm) 4.00 3.95 2.68
Equivalent diameter D (mm) 8.00 7.90 5.36

Material SUS316 Titanium Titanium
Thermal conductivity λp (W/(m·K)) 16.3 21 21

Pattern Herringbone (72◦) Herringbone (30◦) Fluting and drainage
Number of plates 120 20 52

Total heat transfer area A (m2) 100.3 3.96 40.6
Total cross surface area S (m2) 0.140 0.012 0.041

The optimization was run using the “minimize” function written by Rody Oldenhuis based on
the derivative-free method (Nelder–Mead simplex algorithm) fminsearch function of Matlab R2017a
(MathWorks, Natick, MA, USA) [29]. It searches for a local minimum of a given objective function
with several variables. It allows applying boundaries on the variables as well as linear and nonlinear
equality and inequality constraints that the objective function needs to satisfy. In the present work,
boundaries were specified for all the variables and calculations were performed several times from
different starting points generated randomly within the boundaries so that a global minimum could be
found. As the goal was to maximize wnet, the objective function used with “minimize” was −wnet.
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Calculations were done using the friction factor and Nusselt numbers correlations of the
corresponding heat exchanger, as defined in Equations (14) and (18). Table 2 gives the different
coefficients for the correlations, which were approximated from linear interpolation from the data of
the study realized by Kushibe et al. [28].

Table 2. Coefficients for the Nusselt numbers and friction factor correlations.

Heat Exchanger d γ n β ξ

PHE 1 0.111 0.8 1/3 1.4863 −0.0540
PHE 2 0.058 0.8 1/3 6.5059 −0.3292
PHE 3 0.051 0.8 1/3 0.7371 −0.1274

For both cycles, the water properties are taken at pressures of 130 kPa and 170 kPa for warm
and cold seawater sources, respectively, for the corresponding temperatures and were obtained using
REFPROP [27]. Warm and cold water source temperatures are first set at 30 ◦C and 5◦, respectively.
Then, a sensitivity analysis is performed for both cycles with a temperature difference between
23 ◦C and 20 ◦C. These temperature differences are obtained by decreasing the warm and cold water
source alternatively.

3.1. Carnot Cycle

In the case of the Carnot cycle, the objective function from Equation (23) presents only two
variables: the two Reynolds numbers. They were limited to a corresponding water mean velocity
between 0.2 m/s and 1.8 m/s, which is the speed range reachable in plate heat exchangers. No constraints
were applied to the Carnot cycle.

3.2. Rankine Cycle

In the case of the Rankine cycle, the objective function is given in Equation (24). As for the Carnot
cycle, both Reynolds numbers are variables of the objective function. In addition, the mass flow rate of
the working fluid, here ammonia is also one of the variables. Finally, water temperatures at the outlet of
the heat exchangers are needed to calculate the enthalpies required for the objective function as shown
in Equations (24)–(26). These temperatures were therefore also set as variables during the optimization
process. This led to a total of five variables: Rews, Recs, Twso, Tcso, and mwf. As for the Carnot cycle,
boundaries were used on the Reynolds number to restrain the water mean velocity between the 0.2 to
1.8 m/s range. Temperatures were taken to be between Tcsi and Twsi. mwf was restrained to be between
0.001 kg/s and a value that is equal to a water mean velocity of 1.8 m/s, as water mass flow rate is
higher than ammonia mass flow rate in OTEC system.

As the optimization is based on enthalpies values, the following constraints were added to ensure
that the heat balance (27) and energy conservation (28,29) are respected.

Cws(Twsi − Twso) −Ccs(Tcso − Tcsi) = m f (h2 − h3 − h1 + h4) (27)

Cws(Twsi − Twso) = m f (h2 − h1) (28)

Ccs(Tcso − Tcsi) = m f (h3 − h4) (29)

4. Optimization Results

4.1. Carnot Cycle Results

Figure 3 shows wnet as a function of the Reynolds number for PHE 1, PHE 2, and PHE 3. Table 3
shows the heat transfer coefficient and pressure drop of the three heat exchangers.
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Figure 3. (a) Maximum net power output of an OTEC power plant using Plate heat exchanger (PHE) 1
as both evaporator and condenser as a function of Reynolds, (b) maximum net power output of an
OTEC power plant using PHE 2 as both evaporator and condenser as a function of Reynolds, and (c)
maximum net power output of an OTEC power plant using PHE 3 as both evaporator and condenser
as a function of Reynolds.

Table 3. Heat transfer coefficient and friction factor of the seawater inside the heat exchangers.

Heat Exchanger αws (W/m2·K) αcs (W/m2·K) fws (−) fcs (−)

PHE 1 20 569 14 450 0.913 0.945
PHE 2 13 259 9 334 0.307 0.379
PHE 3 11 191 7 843 0.242 0.263

The actual power output of an OTEC power plant using the specified heat exchanger should be
less than these results as calculations are based on a Carnot cycle, and if the pressure drop is considered,
the required power for water ducting is not. However, the optimum Reynolds numbers Rews,opt and
Recs,opt found in these results show that, for a non-negligible range of Reynolds numbers, the net power
output can be null or negative (dark blue areas on Figure 3). The flow rate should then be controlled
rigorously to adjust the Reynolds numbers in the heat exchangers.

This work allows the performances of heat exchangers to be compared in terms of the OTEC
system’s maximum net power output per unit of heat exchanger surface area, wnet,max. These results
show the importance of correctly selecting a heat exchanger, as wnet,max is highly dependent on which
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one is used. Indeed, a huge difference was noticed between the results using PHE 3 and the results
using the other two at their optimal operating point. PHE 1 led to a wnet,max that was 158% higher
than the one of PHE 3. As for PHE 2, the wnet,max was 149% higher than the one achieved with PHE 3.
This difference can be explained by the low heat transfer coefficient of PHE 3.

PHE 2 led to a wnet,max that was only 3.7% lower than PHE 1, even though its heat transfer
coefficient was 35% lower than the one of PHE 1. This can be explained by a friction factor that was
6 to 66% lower in the case of PHE 2. In addition, PHE 2 was found to be less sensitive to a change in the
Reynolds numbers. PHE 1, however, presented optimum Reynolds numbers that were 22% lower than
those of PHE 2. From these observations, one can easily conceive a heat exchanger that would lead to a
higher wnet,max than PHE 1 and also present lower heat transfer coefficient if the pressure drop was
low enough. This would be possible because a low pressure drop allows the use of higher Reynolds
numbers to compensate for a low heat transfer coefficient. Such a heat exchanger, because of its low
pressure drop, would be less affected by a change in the operating Reynolds numbers. A high pressure
drop heat exchanger, however, would require relatively lower optimum Reynolds numbers, which
implies a lower pumping power for water ducting and/or lower diameter pipes.

The same calculations were carried out for different hot and cold seawater temperatures to figure
out how they would affect the net power output for each heat exchanger. The results are given in
Figure 4.

 
(a) (b) 

 
(c) 

Figure 4. (a) Maximum net power output per square meter as a function of the temperature difference
between warm and cold water, (b) Reynolds number of the warm water inside the evaporator as a
function of the temperature difference between warm and cold water, and (c) Reynolds number of
the cold water inside the condenser as a function of the temperature difference between warm and
cold water.
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wnet,max will change significantly with a change in the seawater temperature. Indeed a 20% drop
in wnet,max was observed for the three heat exchangers when a 2 ◦C change in the seawater source
occurred. Yeh et al. found a decrease of 35% for the same temperature drop in the cold seawater, but
warm seawater was fixed at 25 ◦C, instead of 30 ◦C in the present study [30]. Sinama et al. found a
40% decrease when the warm seawater temperature dropped from 28 ◦C to 25 ◦C against 32% in this
study for the same seawater temperature values [17]. Additionally, for the same temperature change,
Uehara and Ikegami showed a decrease of 44% in the net power output of the OTEC power plant [23].
In their paper, VanZwieten et al. showed a decrease of 20% and 16% when the temperature changed
from 20.12 ◦C to 21.72 ◦C and from 20.12 ◦C to 21.37 ◦C, respectively, against a 17% drop in this study
when a 1.5 ◦C change occurred [31]. For a change of 5 ◦C in the seawater source temperature, the
calculated drop in wnet,max was 45%. The difference in the decrease of the net power output with other
studies can be explained by the fact that the authors considered water ducting as well as the working
fluid circulation pump [17,23,30,31]. Therefore, when the temperature difference decreases, the gross
power output greatly decreases, whereas losses due to pumping and pressure drop hardly change.
The impact seems to be the same if the change consists of a decrease in the warm seawater source
temperature or an increase of the cold seawater source temperature.

Although the Reynolds numbers for PHE 1 were still 20% to 22% lower than those of PHE 2, the
optimal operating point also varied with the temperature change; the bigger the water temperature
difference is, the more an increase of the flow rate will result in an increase of the heat exchange.
However, a seawater temperature change only has a limited impact on the friction factor.

Furthermore, as the maximal power output decreases with the temperature change, the range of
operating points resulting in a positive net power output decreases as well.

Finally, if a change of the seawater temperature does not affect which heat exchanger leads to
the highest wnet,max, the change in the operating points and the increase of the negative power output
operating conditions make the flow rate monitoring even more important if the system is to be installed
where the water condition changes throughout the year. In addition, for an installation where the
seawater temperature does not vary, calculations need to be adjusted to the actual condition to find the
optimal operating point.

4.2. Rankine Cycle Results

The results for PHE 1, PHE 2, and PHE 3, studied by Kushibe et al. [28], gave wnet,max values that
were, as expected, lower than those using the Carnot cycle, as shown in Table 4.

Table 4. Comparison between the Carnot and Rankine cycles.

PHE 1 PHE 2 PHE 3

Carnot Rankine Carnot Rankine Carnot Rankine

wnet (W/m2) 613 471 590 451 237 178
Rews 8361 7876 10,690 10,121 6255 5753

Vws (m/s) 0.837 0.788 1.08 1.03 0.934 0.859
Recs 4383 4381 5618 5762 3274 3277

Vcs (m/s) 0.832 0.831 1.08 1.11 0.927 0.928

Moreover, the results showed a difference between the optimal operating point for the same heat
exchanger, especially for the Reynolds number of warm seawater. This suggests that calculations
should be done for the actual cycle used in each plant to find the optimized operating point.

For this cycle as well, the calculations were realized for different temperatures, and the results are
given in Figure 5.

87



Entropy 2019, 21, 1143

 
(a) (b) 

(c) 

Figure 5. (a) Maximum net power output per square meter as a function of the temperature difference
between warm and cold water, (b) Reynolds number of the warm water inside the evaporator as a
function of the temperature difference between warm and cold water, and (c) Reynolds number of
the cold water inside the condenser as a function of the temperature difference between warm and
cold water.

These results presented a wnet,max ranging from 90 W/m2 to 471 W/m2 for PHE 3 at the lowest
temperature difference and PHE 1 at the highest temperature difference, respectively. As a comparison,
the study performed by Uehara et al. presented a net power output of 153.9 W/m2 at a temperature
difference, ΔT, of 20 ◦C and a net power output of 236 W/m2 at a ΔT of 23 ◦C [23]. For the same ΔT,
the performances of the two heat exchangers they considered were between those of PHE 3 and
PHE 2, giving a wnet,max of 90 W/m2 and 240 W/m2, respectively, at a ΔT of 20 ◦C, and 143 W/m2 and
360 W/m2, respectively, at a ΔT of 23 ◦C. These values are rather low but are still in the range of what
was found in the current study. Moreover, it should be noted that, in their paper, they considered the
pumping power required for water ducting, working fluid pumps, and the heat transfer coefficient of
the working fluid, which explains the lower power output.

Bernardoni et al. showed a net power output of 167 W/m2 and a gross power output of 278 W/m2

for a ΔT of 24 ◦C in their optimization using plate heat exchangers [16]. This was lower than the
293 W/m2 found with PHE 2 at a ΔT of 21.5 ◦C. In their work, the authors considered water ducting,
ammonia pumping, and the ammonia heat transfer coefficient, although only the latter contributed to
decreasing the gross power output.
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Both these studies are more accurate than the presented one; their goal was to precisely assess the
net power output of the system, which was either to calculate a reliable LCOE in the case of Bernardoni
et al. or for a very specific OTEC power plant design in the case of Uehara et al. The current study,
however, focused on comparing the performances of heat exchangers in terms of the OTEC system
performance, and such accurate assessments are less relevant in this case. In comparison, in the other
two studies, there is still plenty of room for increasing the OTEC system performance regarding the
choice or optimization of the heat exchanger. Regardless, the trend obtained by Uehara and Ikegami is
very consistent with what was found in this work, as can be seen in Figure 5a.

As for the Carnot cycle, the results for the Rankine cycle indicate that a temperature change will
have a significant impact on the maximum net power output of the OTEC power plant. A 20% decrease
in wnet,max occurred with a decrease of two degrees in the temperature difference, and a 47%–50%
decrease was observed with a decrease of five degrees in the temperature difference, depending on the
heat exchanger. These changes were the same as those observed with the Carnot cycle. For this cycle
too, a change in the water temperature will not affect which heat exchanger is the most suitable even if
the gap between each heat exchanger performance can vary along with the temperature difference.
Moreover, although it is not as clear as for the Carnot cycle calculation, the Reynolds numbers of
the optimized operating points tend to increase with the temperature difference. This confirms that
calculations are needed for each application and its specific operating condition to find the optimal
operating point. It also confirms that the flow rate should be monitored and adapted in case a change
of temperature occurs. The difference between the Reynolds numbers for PHE 1 and PHE 2 remains
close to the results for the Carnot cycle, with values 21% to 35% lower for PHE 1.

Although the maximum net power output and operating points vary from the Carnot cycle to
another, the preferable heat exchanger remains the same. Indeed, the ratio of wnet,max achieved using
a Rankine cycle over the one achieved using the Carnot cycle was found to be fairly constant, with
figures ranging between 0.73 and 0.78 for all heat exchangers and for all the computed ΔT. It is therefore
possible, for the selection of the heat exchangers, to base the calculation on the Carnot cycle only.

In the case of an OTEC power plant, pressure drop plays a major role in the choice of a heat
exchanger. Indeed, a study that only considers heat transfer performance might reach a different
conclusion regarding which heat exchanger is the most suitable one. In such a study, the net power
output would be found to increase with the Reynolds number without any limitation. Therefore,
the optimum Reynolds numbers would be the maximum ones reachable for the corresponding heat
exchanger and would not vary with a change in water temperature as they do with the presented
results in Figures 4 and 5. The limitation induced by the pressure drop that occurs within the heat
exchangers can easily be seen in the Carnot cycle results: without pressure drop consideration, the net
power output cannot be negative nor decrease as the Reynolds number increases. However, Figure 3
presents parabolic graphs that include areas of negative net power output.

5. Conclusions

This work aimed to compare the performance of heat exchangers according to the OTEC system’s
maximum net power output. For both the Carnot and Rankine cycles, an objective function of the net
power output per unit of heat exchanger surface area was defined. The objective functions took into
account the pressure drop that occurred in the heat exchangers. These functions were maximized using
the derivative-free method implemented in Matlab. The calculations were realized for three different
heat exchangers at four temperature differences; each value of temperature difference included two
points and considered an increase of the deep seawater temperature or a decrease of the warm seawater
temperature. The evaluation method that was developed differs from others due to its relative ease of
use. The following conclusions were made.
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• For the sole purpose of a heat exchanger comparison, calculations based on the Carnot cycle
for any source temperature were sufficient, as the cycle and temperature difference do not have
an impact on the choice of the heat exchanger even though they do change the power output
and optimized operating conditions. The Rankine cycle calculations presented a maximum net
power output 23–27% lower than for the Carnot cycle that dropped ~10% each time a temperature
difference decrease of 1 ◦C was observed. The evolution of the power output as a function of the
temperature difference was found to follow the same trends as found in other studies.

• The maximum net power output was found to highly depend on the chosen heat exchangers.
For the highest temperature difference, the most suitable heat exchangers among the three
considered led to a maximum power output 158% and 165% higher than the worst heat exchanger
for the Carnot and Rankine cycles, respectively.

• Due to the trade-off that exists between the heat transfer coefficient and the pressure drop, the heat
exchanger presenting the highest heat transfer coefficient is not necessarily the one that will lead
to the highest maximum net power output. In this study, for the Carnot cycle, PHE 2 competed
with PHE 1 as it led to a maximum net power output that was only 3.7% lower than the one of
PHE 1, even though its heat transfer coefficient was 35% lower.

• Heat exchangers with a high pressure drop and those with a low pressure drop have been found
to have their own advantages and drawbacks. High pressure drop heat exchangers require lower
Reynolds numbers, and therefore a smaller pumping power and/or a smaller pipe diameter
are needed. Low pressure drop heat exchangers are less sensitive to a change in the Reynolds
numbers, which can be useful in case a change in the operating conditions is needed. This is even
more important as the results showed that negative net power output can be reached for low
enough Reynolds numbers.

If the most suitable heat exchanger was found, assessments of the maximum power output and
the optimum operating point are not accurate enough to be used for OTEC design. Working fluid heat
transfer coefficient as well as fouling thermal resistance were neglected; however, as they can have a
significant impact on the OTEC performance, they should be further studied in the future. In addition,
the comparison can only be done with existing heat exchangers, as specific correlations for the heat
transfer coefficient and the pressure drop are needed; thus, it is difficult to know in advance what the
effect of a specific design will be. The next step is to improve the accuracy of this method by including
the heat transfer coefficient of the working fluid, the pumping power for water ducting, and more
specific cycles.
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Nomenclature

Nomenclature

A [m2] Heat transfer surface area
As [m2] Heat exchanger surface area

B [K/W] plate thickness
λplateA

Cp [J/(kg·K)] Specific heat
C [W/K]

.
mCp heat capacity

D [m] Equivalent diameter
f [-] Friction factor
h [J/kg] Specific enthalpy
L [m] Length of the plate
m [kg/s] Mass flow rate
Nu [-] Nusselt number
P [kPa] Pressure
Pr [-] Prandtl number
Q [W] Heat transfer rate
Re [-] Reynolds number
Rf [m2·K/W] Resistance due to fouling
S [m2] Total cross-sectional surface area
s [J/(kg·K)] Specific entropy
T [K] Temperature
U [W/(m2·K)] Overall heat transfer coefficient
v [m/s] Mean velocity
Wi [m] Width of the plate
W [W] Power output

w [W/m2]
Power output per unit of surface
area

x [-] Vapor quality
α [W/(m2·K)] Heat transfer coefficient
ΔT [K] Temperature difference
λ [W/(m·K)] Thermal conductivity
Λ [-] Lagrange multiplier
μ [Pa·s] Dynamic viscosity
ρ [kg/m3] Density
τ [Pa] heat exchanger wall shear stress

Subscripts

cs Cold source
csi Cold source inlet
cso Cold source outlet
gross Gross
in Inlet
max Maximum
net Net
opt Optimum
out Outlet
p Plate
w Water
ws Warm source
wsi Warm source inlet
wso Warm source outlet
wf Working fluid
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Appendix A

This appendix shows details on how the following equation can be derived,

T2 =
Twsi − TwsoeNTUws

εws
and T4 =

Tcsi − TcsoeNTUcs

εcs
(A1)

where T2 and T4 are the temperatures on the corresponding points in Figure 2.
The heat exchanged in the condenser, Qcs, is equal to:

Qcs = mcpcs (Tcso − Tcsi) (A2)

Using the logarithmic mean temperature difference method, the same heat can be expressed as the following:

Qcs = UAΔTLMTD (A3)

where:

ΔTLMTD =
(T3 − Tcso − (Tcsi − T4)

ln
(

T3−Tcso
T4−Tcsi

) (A4)

Given that T3 = T4, assuming the fluid is at a saturated state at the inlet and outlet of the condenser,
Equation (A3) becomes:

Qcs = UA
Tcsi − Tcso

ln
(

T4−Tcso
T4−Tcsi

) (A5)

From Equations (A2) and (A5), the equation is:

UA
Tcsi − Tcso

ln
(

T4−Tcso
T4−Tcsi

) = −mcpcs(Tcsi − Tcso) (A6)

and therefore:

exp
(

UA
mcpcs

)
=

T4 − Tcso

T4 − Tcsi
(A7)

NTUcs and εcs are defined by [25]:

NTUcs =
UA

mCpcs
and εcs = 1− e−NTUcs (A8)

T4 can be deduced from Equation (A7) as:

T4 =
Tcsi − TcsoeNTUcs

εcs
(A9)

For the evaporator, the assumption is that T1 = T2 is made, and then the calculations are the same.
Equation (A10) is used:

Qws = UA
(Twsi − T2 − (Twso − T1)

ln
(

Twsi−T2
Twso−T1

) = UA
(Twsi − Twso)

ln
(

Twsi−T2
Twso−T2

) = mcpws(Twsi − Twso) (A10)

NTUws and εws are defined the same way:

NTUws =
UA

mCpws
and εws = 1− e−NTUws (A11)

Thus, T2 can be expressed as:

T2 =
Twsi − TwsoeNTUws

εws
(A12)
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Igor Poljak 1,*, Josip Orović 1, Vedran Mrzljak 2 and Dean Bernečić 3
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Abstract: Data from a two-stage axial vapor cryogenic compressor on the dual-fuel diesel–electric
(DFDE) liquefied natural gas (LNG) carrier were measured and analyzed to investigate compressor
energy and exergy efficiency in real exploitation conditions. The running parameters of the two-stage
compressor were collected while changing the main propeller shafts rpm. As the compressor supply
of vaporized gas to the main engines increases, so does the load and rpm in propulsion electric
motors, and vice versa. The results show that when the main engine load varied from 46 to 56 rpm
at main propulsion shafts increased mass flow rate of vaporized LNG at a two-stage compressor
has an influence on compressor performance. Compressor average energy efficiency is around 50%,
while the exergy efficiency of the compressor is significantly lower in all measured ranges and on
average is around 34%. The change in the ambient temperature from 0 to 50 ◦C also influences the
compressor’s exergy efficiency. Higher exergy efficiency is achieved at lower ambient temperatures.
As temperature increases, overall compressor exergy efficiency decreases by about 7% on average over
the whole analyzed range. The proposed new concept of energy-saving and increasing the compressor
efficiency based on pre-cooling of the compressor second stage is also analyzed. The temperature at
the second stage was varied in the range from 0 to −50 ◦C, which results in power savings up to 26
kW for optimal running regimes.

Keywords: two-stage LNG compressor; energy losses; exergy destruction; energy efficiency;
exergy efficiency

1. Introduction

The harmful pollutant emissions significantly increase over the last years in industry, marine and
other energy sectors [1]. Such an increase has many negative impacts on human health as well as on
the marine environment [2].

In the last years, liquefied natural gas (LNG) is recognized by many scientists and experts as a
good alternative to conventional fuels due to many reasons. On one side, from the pollution point
of view, the combustion of LNG removes sulfur oxides (SOX) and particulate matter (PM) emissions
almost completely, while at the same time carbon dioxide (CO2) and nitrogen oxides (NOX) can be
significantly reduced [3,4]. On the other side, due to its low temperature (around −162 ◦C), LNG can be
used as a heat sink in many power plants or industry processes [5–7] or its cold energy can be utilized
in other applications [8]. Therefore, the usage of LNG can be beneficial in several different ways.

In the marine sector, most LNG carriers use boil-off gas (BOG) from the cargo tanks for its
propulsion [9]. The domination of steam propulsion systems, which are traditionally applied on the
LNG carriers [10,11] is nowadays highly influenced by dual-fuel diesel engines (DFDE) [12,13] and its
possible upgrades [14]. Such dual-fuel diesel engines require a compressor unit which delivers LNG
vapors from the cargo tanks to the engine.
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It is very rare to find in the literature efficiency evaluation of this kind of compressor. The most
scientific literature which deals with simulation and modeling of LNG systems is taking LNG (or other
gas or vapor) compressor efficiency on presumptions according to the manufacturer specifications.
A literature overview of several compressors is presented in Table 1, however, the type of each
compressor is not known.

Table 1. Overview of compressor mass flow rate, working medium and assumed efficiencies.

Pressure Medium Mass Flow Rate Simulation
Type of

Compressor
Efficiency Source

[MPa] - [kg/s] - -
ηI or ηII

[%]
-

<1 LNG 1.39 HYSIS Unknown 85−96 [15]
2.4 Nitrogen 1.7 Aspen Unknown 81.98 [16]

0.55–2.5 Propane and LNG 0.9–3.44 [mol/s] Analysis Unknown 66−79 [17]
0.2076 Dry air 0.3134 EES Unknown 62.7 [18]
1.305 Methane/Ethylene/Propane 3.95

HYSIS Unknown
75 [19]

1.373 Ethane/Propane/Isobutene 2.52 85

In some researches which deals with the LNG vapor compression, the authors clearly notify the
type of compressor. As for an example, Reddy et al. [20] investigate reciprocating compressors from
the LNG terminals and concluded that such compressors are notable energy consumers, which require
proper optimization techniques, while Park et al. [21] analyzed dual-opposed linear compressor used
in LNG (re)liquefaction process and its optimal compressor operating regimes.

In other researches, the authors investigate entire processes with LNG vapors, therefore, exact
compressor types are not mentioned. As for an example, overall compression power reduction and
exergy loss analysis for a cascade LNG process presented Nawaz et al. [22] where the authors found
possibilities for minimization of the entire process exergy losses. Investigation of the LNG fuel gas
supply system, where the compressors are used for various purposes, presented Park et al. [23]. Also
in this research, the authors made several variations of the entire LNG fuel gas supply system, but the
BOG compressor (or more of them) type is not presented.

The investigated DFDE LNG carrier has an electricity generating set which consists of four
identical engine units. Each unit is designed to develop a total power of 7800 kW. Engines may
consume diesel oil, heavy fuel oil, and LNG. LNG consuming requires pilot diesel oil burning to
initiate the combustion process in LNG operation mode [24,25]. Gasified LNG is taken from the
cargo tanks to the inlet of the two-stage compressor unit and delivered to the engines for completion
and continuation of the combustion process [25,26]. As mentioned before, the burning of natural
gas in the engines is a useful concept for reducing NOX emissions according to Marpol Annex VI
Tier 1 to Tier 3 requirements [27,28] but also it is accommodating request of maintaining cargo tank
pressure in the required range, which is up to 25 kPa [29], although independent tanks class B may
withstand pressures as high as 70 kPa [30]. As exploitation characteristics of this type of compressor,
especially during on-board performance are rarely investigated, this paper will cover energy and
exergy analysis of two-stage LNG compressor in real working conditions to better understand the
power losses. Measurements were taken from the minimum flow request of the compressor, which is
set from the manufacturer specifications. The engine load was gradually increased until the point of
normal continuous rating at main propulsion shafts, which equals 56 rpm at each propulsion shaft.

2. Description and Characteristics of the Analyzed Two-Stage Compressor

Two-stage axial LNG compressor on LNG carrier is taking evaporated vapor from the cargo
tanks, which varies in temperature at compressor inlet from about −130 to −60 ◦C. LNG vapor is
pressurized inside the two stages to 650 kPa and delivered to the engines at a set pressure of 580 kPa [31].
Compressor capacity is controlled by variable diffuser vanes, which are adjusted according to header
set pressure [31]. The temperature at the inlet of the compressor is desirable to be below −110 ◦C
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to avoid the operation of the compressor in the surge area. As previously mentioned, the suction
temperature in the tank varies due to the delivery of compressor, weather conditions and pressure
inside the tank. To achieve the target temperature of minimum −110 ◦C at the compressor inlet,
the cargo spray pump injects a certain amount of liquid LNG into the suction vapor header line and
in such way inlet temperature at the compressor’s first stage is maintained inside a required range.
The maximum electromotor rating at full speed is 610 kW and at half speed is 85 kW. These two ratings
determine rotation speed which may be selected as 3550 or 1775 rpm at the electromotor side. The lower
selected motor power is used only for the gradual cooling of the compressor in the recirculation loop
until the targeted temperature at compressor inlet, which is below −100 ◦C, is reached. Once the
targeted temperature is achieved compressor has permission to start at a higher speed. Half speed
is not in use in normal navigation mode, due to the low delivery pressure of the compressor to the
engines and this option is useless for this type of engine. However, half a rotation speed option may
be used for burning excess boil-off gas from cargo tanks in the gas combustion unit. The compressor
is driven by an electromotor which is coupled to spur reduction gear. Particulars of the two-stage
compressor are given in Table 2 [32].

Table 2. Two stage compressor main design particulars.

Two Stage Compressor Main Characteristics Operation Parameter

Capacity at full speed 3200 m3/h
Capacity at half speed 520 m3/h
Suction pressure 104 kPa
Suction temperature −120 ◦C
Discharge pressure at full speed 700 kPa
Discharge pressure at half speed 160 kPa
Shaft rpm at full speed 29,775 rpm
Shaft rpm at half speed 14,888 rpm
Electric motor power 610 kW

The schematic outline of the two-stage compressor is given in Figure 1, where p1, t1 is LNG vapor
pressure and temperature at compressor inlet to the first stage. Delivery pressure and temperature
from the compressor first stage and the inlet to the compressor second stage are p2 and t2, respectively.
Outlet pressure and temperature from the second stage are p3 and t3, respectively. The mass flow rate
(ṁ) is the same through all operation measurement range.

Figure 1. Two-stage compressor outline with given flows.
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The energy efficiency data for given conditions, provided by the manufacturer are presented in
Table 3.

Table 3. Two-stage compressor design operating parameters [33].

Parameter
Unit

1 2 3 4

Gas CH4 90CH4/10N2 BOG Half speed

Inlet pressure [kPa] 104 104 104 104
Outlet pressure [kPa] 700 700 700 700

Inlet temperature [◦C] −120 −120 −120 −120
Outlet temperature [◦C] 41.5 55.4 42.7 −75.9
Energy efficiency [%] 55 52.1 55.2 39
Coupling power [kW] 485 514 488 68

3. Measuring Equipment and Measuring Results

Sea trial tests were carried out at different main propulsion shaft rotation speed. The test
commenced at the lowest load of the two-stage compressor, where the compressor is delivering all
gas to the generator engines, which is at about 46 rpm at the main propulsion shafts. Measuring
results (Tables 4 and 5) were obtained with ship’s standard measuring equipment [34–36] for various
readings which include pressure, temperature and mass flow rate of LNG vapor at compressor first
stage inlet, first stage outlet and second stage outlet. Before commencing the sea trial test, it was
required to run diesel generators on the low sulfur diesel oil which is not the preferred option for the
charterer due to fuel cost. Once when cooling down temperature is achieved, two-stage compressor
received permission to start at higher motor speed. Change over process from diesel oil combustion to
gas combustion was carried out according to the producer pre-set sequence. Fuel oil consumption
measuring results were carried out during the parallel operation of three and four generators online.

Table 4. Two-stage compressor measured pressure and temperatures with main propulsion shafts
speed variations.

Port Side
Shaft

Output

Starboard
Side Shaft

Output

First Stage
Inlet

Pressure

First
Stage Inlet
Temperature

First Stage
Outlet

Pressure

First Stage
Outlet

Temperature

Second Stage
Outlet

Pressure

Second
Stage Outlet
Temperature

[rpm] [rpm] [kPa] [◦C] [kPa] [◦C] [kPa] [◦C]

46.05 46.58 112.5 −109.2 355 −13 684.7 75.2
47.16 47.18 112.2 −113.9 357.8 −15 695.5 75.8
48.17 48.2 111.8 −115.9 340 −16.8 665.9 74.5
49.56 49 111.5 −114.3 341.4 −16.2 674.9 74
50.88 49.81 109.9 −113.8 341.3 −16.6 656.5 73.3
51.21 50.82 109.7 −110.8 345 −15.7 688.1 72.3
52.83 51.64 109.9 −119 347.8 −20.6 682.6 69.6
53.61 52.21 109.1 −116.5 335.7 −20.1 661.2 68.7
54.54 53.42 108.3 −114 336.6 −19.6 671.6 67.6
55.63 54.76 108 −114 335 −20.1 675 66.8
55.37 56.33 106.8 −109.6 321.5 −18.2 658.7 67

98



Entropy 2020, 22, 115

Table 5. Two-stage compressor measured mass flow rate, voltage, amperage and power factor with
main propulsion shafts speed variations.

Port Side Shaft
Output

Starboard Side
Shaft Output

Mass Flow
Rate

Voltage Amperage
Measured

Power Factor

[rpm] [rpm] [kg/h] [V] [A] [ϕ]

46.05 46.58 2320 6764 40.4 0.85
47.16 47.18 2535 6763 41.7 0.85
48.17 48.2 2650 6759 41.3 0.85
49.56 49 2741 6756 41.9 0.85
50.88 49.81 3150 6764 45.4 0.85
51.21 50.82 3291 6763 46 0.85
52.83 51.64 3382 6759 45.2 0.85
53.61 52.21 3509 6758 47.4 0.85
54.54 53.42 3672 6752 49.9 0.85
55.63 54.76 3792 6755 50.3 0.85
55.37 56.33 3926 6752 51.3 0.85

Equipment for electrical readings of voltage, ampere, and power factor is described in [37], and
an overview of propulsion shaft revolutions measurements can be found in the literature [38,39].
Measured results are given in Table 5. The power factor of the compressor electromotor varied only for
negligible values throughout all measured range at the high voltage control and measuring breaker.
Voltage is not changeable in the power control process and is coming from the common ship’s power
network, which is 6600 V for this type of vessel. Power network is supplied from four diesel generator
units which have the same power output of 7800 kW. For the maneuvering purposes, it is required
to have two units to run in parallel, although the power consumption may withstand one unit until
dead slow ahead and dead slow astern operation is required. This option is preferred due to safety
reasons. Although set voltage should be 6600 V it may be seen from Table 5 that shipyard increased set
point for about 2% during the sea trials. The high outlet pressure from the second stage compressor
outlet is required due to pressure drops in the gas line to the engines in order to satisfy the engine
gas pressure request of 580 kPa. Increasing power at the compressor’s electromotor is achieved by
increasing amperage with variable frequency drive [40–42]. Measured results with compressor load
variations are given in Table 5.

Loaded LNG content (molar ratio) is [43]: CH4 (0.9494), C2H6 (0.0475), C3H8 (0.0017), i-C4H10

(0.0001), n-C4H10 (0.0001), N2 (0.0012).

4. Thermodynamic Efficiency Analysis

Two-stage compressor is evaluated for energy efficiency according to recommendations in the
following literature [44–48]. Energy efficiency formulation with referring to Figure 1 is given below.

The mass flow rate balance for a general steady-flow system is given as:∑
IN

.
m =

∑
OUT

.
m (1)

Energy rate balance for a general steady-flow system is:

.
QIN + PIN +

∑
IN

.
m·

(
h +

ṽ2

2
+ g·z

)
=

.
QOUT + POUT +

∑
OUT

.
m·

(
h +

ṽ2

2
+ g·z

)
(2)
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In the steady flow processes, the total mass and energy content remains constant in the control
volume, thus the total energy rate change of the system is zero:

.
EIN −

.
EOUT =

d
.
E

dt
= 0, (3)

and then
.
EIN =

.
EOUT. (4)

Energy efficiency is a ratio of useful and used energy streams in the process:

ηI =

.
EOUT

.
EIN

= 1−
.
El
.
EIN

. (5)

The irreversible adiabatic process is calculated as per equations from (6) to (8) in order to match
with the producer’s results given in Table 3. A compression process with ideal or adiabatic compression
and the actual (polytropic) process being an irreversible adiabatic process is shown in the h–s diagram
in Figure 2.

Figure 2. The h–s diagram of the compression process in the two-stage compressor.

Energy efficiency of the compressor first stage is:

ηI1 =
P1adiabatic
P1actual

=

.
m·(h2a − h1)

.
m·(h2 − h1)

=
(h2a − h1)

(h2 − h1)
. (6)

Energy efficiency of the compressor second stage is:

ηI2 =
P2adiabatic
P2actual

=

.
m·(h3a − h2)

.
m·(h3 − h2)

=
(h3a − h2)

(h3 − h2)
. (7)

Overall two-stage compressor energy efficiency (according to Figure 2) is:

ηI =
Padiabatic
Pactual

=

.
m·(h2a − h1) +

.
m·(h3a − h2)

.
m·(h3 − h1)

=
(h2a − h1) + (h3a − h2)

(h3 − h1)
. (8)

Actual measured temperatures, pressures, and mass flow rate are used for calculating the actual
(polytropic) power for running the compressor’s first stage only:

P1actual =
.

m·(h2 − h1), (9)
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and for running the compressor’s second stage only:

P2actual =
.

m·(h3 − h2). (10)

Mass flow rate at the compressor first stage is:

.
m =

P1actual

(h2 − h1)
. (11)

Mass flow rate at the compressor second stage is:

.
m =

P2actual

(h3 − h2)
. (12)

Equalling Equations (11) and (12) gives:

P2actual = P1actual· (h3 − h2)

(h2 − h1)
. (13)

The actual power required for running the whole compressor is:

Pactual = P1actual + P2actual = P1actual + P1actual· (h3−h2)
(h2−h1)

= P1actual·
[
(h3−h2)
(h2−h1)

+ 1
]
= P1actual· (h3−h1)

(h2−h1)
. (14)

For the energy losses, exergy efficiency and exergy destruction calculation the idea is to present
all power losses from the electrical power input, which is required to run the compressor electromotor
until it’s output. For such analysis, it was required to split the measured electrical power at the
common electromotor inlet to the first and second stages of the compressor. The splitting of the power
done through the proportion of power at the actual compression irreversible process. Formula for
calculation of electric motor power from measured results is drawn from literature [49,50]:

PEM =
√

3·I·U· cosϕ. (15)

Total electric power for the running of the first and the second compressor stage, which includes
all irreversibility’s inside the process such are: electrical losses of the electric motor, mechanical losses
inside the power transmission reduction gears, power losses in the shaft seals, etc. equals to:

PEM = P1EM + P2EM. (16)

Electrical energy distributed to power each compressor stage (first and second) is divided in the
same proportions as actual (polytropic) power. Consumed electrical energy for the running of the
compressor first stage is then:

P1EM = PEM· (h2 − h1)

(h3 − h1)
. (17)

Consumed electrical energy for the running of the compressor second stage is:

P2EM = PEM − P1EM. (18)

Energy rate balance of the compressor first stage is:

.
m·h1 + P1EM =

.
m·h2 +

.
El1. (19)

Energy rate losses of the compressor first stage are:

.
El1 =

.
m·(h1 − h2) + P1EM. (20)
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Energy rate balance of the compressor second stage is:

.
m·h2 + P2EM =

.
m·h3 +

.
El2. (21)

Energy rate losses of the compressor second stage are:

.
El2 =

.
m·(h2 − h3) + P2EM. (22)

Energy rate balance of the two-stage compressor is:

.
m·h1 + P1EM +

.
m·h2 + P2EM =

.
m·h2 +

.
m·h3 +

.
El. (23)

Overall energy rate losses of the two-stage compressor are:

.
El =

.
m·(h1 − h3) + PEM. (24)

Exergy evaluation of two-stage compressor is performed according to the literature [51–59]: exergy
rate balance for steady flow systems is:∑

IN

( .
m·ex

)
+

∑(
1− T0

T

)
· .
Q =

∑
OUT

( .
m·ex

)
+ P + T0·ΔS, (25)

where specific exergy is given by:
ex = h− h0 − T0·(s− s0). (26)

Exergy rate balance of the compressor first stage is:

.
m·ex1 + P1EM =

.
m·ex2 +

.
Exd1. (27)

Exergy destruction rate of the compressor first stage is:

.
Exd1 =

.
m·(ex1 − ex2) + P1EM. (28)

Exergy efficiency of the compressor first stage is:

ηII1 = 1−
.
Exd1
.
ExIN

=

.
ExOUT

.
ExIN

= 1−
.

m·ex1 − .
m·ex2 + P1EM
P1EM

=

.
m·ex2 − .

m·ex1

P1EM
. (29)

Exergy rate balance of the compressor second stage is:

.
m·ex2 + P2EM =

.
m·ex3 +

.
Exd2. (30)

Exergy destruction rate of the compressor second stage is:

.
Exd2 =

.
m·(ex2 − ex3) + P2EM. (31)

Exergy efficiency of the compressor second stage is:

ηII2 = 1−
.
Exd2
.
ExIN

=

.
ExOUT

.
ExIN

= 1−
.

m·ex2 − .
m·ex3 + P2EM

P2EM
=

.
m·ex3 − .

m·ex2

P2EM
. (32)

Exergy rate balance of two-stage compressor is:

.
m·ex1 + P1EM +

.
m·ex2 + P2EM =

.
m·ex2 +

.
m·ex3 +

.
Exd. (33)
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Exergy destruction rate of the two-stage compressor is:

.
Exd =

.
m·(ex1 − ex3) + PEM. (34)

Exergy efficiency of the two-stage compressor is:

ηII = 1−
.
Exd
.
ExIN

=

.
ExOUT

.
ExIN

= 1−
.

m·ex1 − .
m·ex3 + PEM

PEM
=

.
m·ex3 − .

m·ex1

PEM
. (35)

The assumed atmospheric condition for exergy calculation is 25 ◦C and 0.1 MPa according to the
literature overview [60,61].

5. Energy and Exergy Analysis Results and Discussion

Calculated electromotor power distribution between two compressors are presented in Table 6.
As previously mentioned, the LNG carrier has two propulsion shafts and for convenience only average
measured rpm of both shafts will be given through the discussion. As can be seen from Table 6,
the two-stage compressor is well balanced and load shearing between the two stages is within 0.5%.
The first stage is slightly more loaded compared to the second stage. The increase of compressor
electromotor power with load variation is about 107 kW. That is a relatively small amount, compared
to total power required for a two-stage compressor, which is required for running the unit at the lowest
delivery zones.

Table 6. Two-stage compressor measured electromotor power and calculated load shearing ratio
between two compressors.

Main Engines
Shaft Output

First Stage
Calculated

Power

Second Stage
Calculated

Power

Measured
Electromotor

Power

First Stage
Load Share

Second Stage
Load Share

[rpm] [kW] [kW] [kW] [%] [%]

46.32 201.99 200.33 402.31 50.21 49.79
47.17 208.27 206.93 415.20 50.16 49.84
48.19 206.12 204.85 410.97 50.15 49.85
49.28 209.17 207.59 416.76 50.19 49.81
50.35 226.18 225.92 425.10 50.03 49.97
51.02 229.24 228.77 458.01 50.05 49.95
52.24 226.76 223.02 449.78 50.42 49.58
52.91 237.06 234.54 471.60 50.27 49.73
53.98 248.94 247.10 496.04 50.19 49.81
55.20 250.92 249.32 500.23 50.16 49.84
55.85 254.98 254.97 509.95 50.00 50.00

Two-stage compressor energy loss is shown in Figure 3. As the rotation speed of the main
propulsion shaft increases, more gas has to be delivered to the generator engines. A higher load at
generators is proportional to the withdrawal of more vapor from the cargo tanks. The side effect is that
cargo tank pressure is reduced and colder cargo vapor is flowing to the compressor inlet. That process
continues and the temperature is going down at rotation speed of main propulsion shafts from 46.3
to 52.2 rpm. Increased mass flow rate and decreased temperature at compressor inlet reduce energy
losses and a peak of energy loss reduction is at 52.2 rpm of main propulsion shafts. After 52.2 rpm at
main propulsion shafts temperature at compressor’s first stage outlet stabilizes and losses become
steady at about 50 kW at each compressor stage, Figure 3. Total energy loss of compressor is higher in
the lower running zones and varies from 80 to 150 kW for both compressor stages. Energy losses of the
first and the second compressor stages are practically the same through all measured range what is
shown in Figure 3.
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Figure 3. Two-stage compressor energy loss with main propulsion shafts speed variation.

The energy efficiency of the compressor is shown in Figure 4. The compressor energy efficiency
of the first stage is higher compared to the second stage and is in the average range of about 52%.
The energy efficiency of the second stage average range is up to 48%. As compressor increases delivery,
energy efficiencies of both stages converge and are for both stages above 50%. This effect is connected
to reduced offset from optimal intermediate pressure at the outlet of the first compressor stage [57].
The optimal intermediate pressure is calculated as [57]:

p2 =
√

p1·p3, (36)

where:

p1—is pressure at the compressor inlet to the first stage [kPa],
p2—is pressure at the compressor outlet from the first stage [kPa],
p3—is pressure at the compressor outlet from the second stage [kPa].

The offset is:
Δp = p2 − √p1·p3. (37)

As the two-stage compressor mass flow rate becomes higher offset decreases what acts beneficially
to the two-stage compressor energy efficiency.

The exergy destruction of the two-stage compressor is higher comparing to energy losses where
peak destruction is raised to about 320 kW. It may be seen in Figure 5 that the first stage compressor
destructs more exergy compared to the second compressor stage in all measured ranges, which was
not clearly visible in energy analysis. As the exergy destruction of the first stage compressor is higher
compared to the second stage compressor, the efficiency of the first stage compressor will be lower.
Destructed exergy of the first stage compressor is from 150 kW at a rotation speed of main propulsion
shaft 46.3 rpm and is gradually increased to about 170 kW at 55.9 rpm, whereas destructed exergy of
the second stage compressor is almost equally distributed around 140 kW, as shown in Figure 5.
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Figure 4. Two-stage compressor energy efficiency with main propulsion shafts speed variation.

 
Figure 5. Two-stage compressor exergy destruction with main propulsion shafts speed variation.

The outcome of exergy destruction analysis is the higher exergy efficiency of the second stage
compressor comparing to the first stage compressor in all measured range. The first stage compressor
exergy efficiency varies with the compressor load from about 24 to 34% at the measured range. The best
running conditions are achieved at a rotation speed of 51 and 55.9 rpm at the main shafts. The second
stage of the compressor has a higher exergy efficiency, which varies from about 32 to 45%, but contrary
to the first stage of the compressor best results are distributed at a rotation speed of 51 rpm onwards at
the main propulsion shafts. By increasing the delivery of the compressor, exergy efficiency increases,
however at the same time efficiency offset between two compressors stages becomes higher as well.
Optimal intermediate pressure does not have the same effect on exergy efficiency as on energy efficiency.
In fact, it is the opposite. As previously explained, also shown in Figure 6, a discrepancy in the exergy
efficiency of the first and second stages is about 5% at the beginning, and at the end of the measured
range, the discrepancy increases to about 10%. It means that decreasing the optimal intermediate
pressure offset exergy efficiency of both compressor stages has better results, but discrepancy in
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efficiency increases as well. Exergy efficiency is increased smoothly in entire ranges for the second
stage of the compressor. Regarding the first stage of the compressor, exergy efficiency is increasing in
the whole measured range, but it is not evenly distributed as it is distributed in the second stage.

Figure 6. Two-stage compressor exergy efficiency with main propulsion shafts speed variation.

The overall efficiency of the two-stage compressor is given in Figure 7. The energy efficiency of
the two-stage compressor in the observed range, in the beginning, is 50.7%. As the rotation speed of the
main propulsion shaft increases, energy efficiency is dropping to about 47.3% at 48.2 rpm. The average
measured energy efficiency in the whole range is 49.9% and the best energy efficiency is 53.7% at the
last measured propulsion shaft rotation speed. Measured results are, on average, about 5% lower
compared to the maker’s efficiency. Although calculated efficiency is lower compared to the producer
results it has to be noticed that the compressor was running on the lower delivery pressure and higher
inlet temperature at the first compressor stage what is affecting compressor efficiency. It could be
concluded that calculated efficiency will be even closer to the producer results as running parameters
converge to the parameters given by the producer. On the other side, exergy efficiency is lower, about
29% in the beginning and with the increased compressor load overall exergy efficiency increases to
about 39%. The average exergy efficiency of the two-stage compressor is 33.9%. As exergy efficiency is
taking entropy generation into account it is clearly seen that two-stage cryogenic compressor is not as
efficient as it appears through the energy efficiency analysis.

The exergy efficiency of the LNG compressor is influenced by the variation of atmospheric
temperature. The change of exergy efficiency in dependence on the outside temperature range from 0
to 50 ◦C is analyzed. The mentioned temperature range is chosen because these two temperatures are
extreme temperatures that the vessel will operate most of the time. The referent temperature for the
exergy calculation is 25 ◦C and 0.1 MPa. Figure 8 shows the first stage compressor’s exergy efficiency
changes with temperature variation. As can be seen in Figure 8, higher exergy efficiency is achieved at
lower reference temperatures. As temperature increases, exergy efficiency decreases by about 7.7% on
average over the whole measured range. The lowest sensitivity to the reference temperature change is
in the lower running main propulsion shaft rotation speed where efficiency decreases around 1.18% for
every 10 ◦C from 0 to 50 ◦C. The highest temperature sensitivity is at 52.83 rpm at the main propulsion
shaft rotation speed where it is changing at the rate of 1.81%.
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Figure 7. Two-stage compressor energy and exergy efficiency with main propulsion shafts
speed variation.

 
Figure 8. First stage compressor exergy efficiency with surrounding temperature change.

The second compressor stage is less influenced by the surrounding temperature variation compared
to the first compressor stage. Exergy changes about 6.1% on average over the measured range (Figure 9).
The temperature sensitivity distribution is similar to the first compressor stage and is the lowest in the
lower running main propulsion shaft rotation speed where exergy efficiency decreases around 1.01%
for every 10 ◦C from 0–50 ◦C. The highest temperature sensitivity is at 52.83 rpm of main propulsion
shaft rotation speed where it is changing at the rate of 1.39%.

Overall compressor exergy efficiency changes are 6.9% on average for the whole measured range
with surrounding temperature variations from 0 to 50 ◦C (Figure 10). The temperature sensitivity
distribution is proportional to the compressor first and second stage exergy efficiency change. According
to overall results, it is preferable for a compressor to operate at the lowest atmospheric temperatures
in order to have better exergy efficiency. However, LNG carriers are sailing all over the world in
different climates and ship’s crew and/or compressor operators cannot influence at atmospheric
conditions in order to increase the exergy efficiency but this analysis can help in better understanding
of compressor processes.
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Figure 9. Compressor’s second stage exergy efficiency with surrounding temperature change.

Figure 10. Two-stage compressor exergy efficiency with surrounding temperature change.

6. Variation and Optimization of Temperature at the Compressor’s Second Stage Inlet

In this part, the variation and optimization of temperature at the compressor’s second stage are
presented. The proposed new concept of pre-cooling the vapor before the compressor second stage
could enable energy saving and increase compressor efficiency.

Part of LNG may be taken from the cargo tank with the purpose to cool pressurized LNG before
the compressor’s second stage. Such a scenario will not require forcing vaporizer in the system.
When the ship is sailing on the calm sea and boil-off gas is not sufficient in the cargo vapor header
part of this vaporized liquid after-cooler will evaporate and maintain sufficient pressure in the cargo
tanks. The purpose of forcing vaporizer is to vaporize part of the liquid from the cargo tanks and to
maintain compressor suction pressure in the allowed ranges and to avoid reducing cargo tank pressure
excessively. If cooler is installed between two stages of compressor this could partially replace the
forcing vaporizer. Cooling between two stages may be achieved either with additional cooler or with
direct injection of part of the liquid inside the outlet of the first stage compressor by the spray pump.

Actual (polytropic) power saving depends on the compressor’s second stage inlet temperature is
given in Figure 11. The temperature range from 0 to −50 ◦C is chosen. The energy efficiency of the
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two-stage compressor had been taken from the previous calculation for the various purposes and is
set as the fixed value. The cumulative calculated power needed for increasing pressure to measured
set pressure of 650 kPa at different loads is compared to actual measured power by changing inlet
temperatures of the second stage. Running off the main propulsion shaft from 46.5 to 56.3 rpm is
giving a cumulative power saving of two-stage compressor from 7 to 25.8 kW in the temperature range
from –30 to −50 ◦C at compressor inlet to the second stage. For the pre-cooling in the range from –20
to −30 ◦C at compressor inlet to the second stage cumulative power savings are in the range from
0.3 to 10 kW but from 51.64 to 54.76 rpm at −20 ◦C at compressor inlet to the second stage there is
no cumulative power savings. Temperatures above −20 ◦C at compressor inlet to the second stage
give negative results and the compressor is consuming more power in such a working regime in all
running zones.

Figure 11. Two-stage compressor cumulative power optimum saving with second stage inlet
temperature variation.

7. Conclusions

In this paper, the energy and exergy evaluation of the two-stage axial vapor compressor is
presented. Data from cryogenic compressors on the dual-fuel diesel–electric LNG carrier were
measured and analyzed to investigate compressor energy and exergy efficiency in real exploitation
conditions. Operating parameters of this type of compressor, especially during on-board performance
are rarely investigated, so the presented analysis enables insight into better understanding the
compressor processes in different operating regimes. The results show how main engine load variation
has an influence on compressor performance which is not found in the producers’ manuals or
scientific literature.

Energy efficiency of compressor first and second stages has the highest value at the lowest main
engine rotation speed and at the highest delivery ranges. The presented results show that the overall
average calculated energy efficiency of the two-stage compressor is 49.9% and the best energy efficiency
is about 54% at the last measured propulsion shaft rotation speed. At the average rotation speed
of the main propulsion shaft of 48.2 rpm, energy efficiency decreases to the lowest value of about
47%. Calculated efficiency is lower compared to the producer results but it has to be noticed that
the compressor was running on the lower delivery pressure and higher inlet temperature at the first
compressor stage what is affecting compressor efficiency. Producers usually present only the best
results and at full compressor capacity but in this paper, the whole range of compressor regime was
analyzed. Although the compressor first and second stages are well balanced, the first stage will
achieve higher efficiency if the pressure rise offset is lower.

Compressor exergy efficiency is lower, about 29% in the beginning and with the increasing
compressor load overall exergy efficiency increases to about 39%. The average exergy efficiency of
the two-stage compressor is 33.9%. However, compressor manufacturers never evaluate the exergy
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efficiency of the compressor as its efficiency is lower compared to energy efficiency. According to
exergy analysis, the two-stage compressor is not very efficient equipment and there is still room for
design improvements.

Examination of the exergy efficiency in dependence on surrounding temperature shows that
the two-stage compressor is more effective at lower temperatures. In that respect, the two-stage
compressor is behaving similarly to the steam turbines [61,62]. The compressor first stage is more
sensitive to temperature changes as it works with higher temperature differences than the second stage.
Overall compressor exergy efficiency changes are 6.9% on average for the whole measured range with
surrounding temperature variations from 0 to 50 ◦C. Temperature sensitivity analysis shows that the
lowest compressor first stage exergy efficiency decrease is around 1.18% with every 10 ◦C from 0 to 50
◦C at the lowest measured main propulsion shaft average rotation speed. The highest temperature
sensitivity is at 52.83 rpm at the main propulsion shaft rotation speed where it is changing at the rate
of 1.81%. The lowest second compressor stage exergy efficiency change is at lowest measured main
propulsion average speed around 1.01% with every 10 ◦C from 0 to 50 ◦C and the highest temperature
sensitivity is at 52.83 rpm of main propulsion shaft rotation speed where it is changing at the rate of
1.39%.

The proposed new concept of inter-cooling of the LNG after the first stage of the compressor
could increase the efficiency of the compressor and reduce consumed power at electromotor. In the
lower running zone of the main propulsion, shafts total consumed power at electromotor will be 7.85%
less than real operational power. In the upper running zone of the main propeller shafts, this saving
decreases by about 1% and is 6.84%.

The results of this analysis could be useful for a broad audience and for ship owners, compressor
operators, and producers.
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Nomenclature

Latin Symbols

Ėl energy rate loss, kW
ex specific exergy, kJ/kg
Ėxd exergy destruction rate, kW
g gravitational acceleration, m/s2

h specific enthalpy, kJ/kg
I amperage, A
ṁ mass flow rate, kg/h
P power, kW
.

Q heat flow rate, kW
.
S entropy rate, kW/K
T temperature, K
U voltage, V
ṽ speed, m/s
z height, m

110



Entropy 2020, 22, 115

Greek symbols

ηI energy efficiency, %
ηII exergy efficiency, %
ϕ power factor
Abbreviations

BOG boil off gas
DFDE dual fuel diesel electric
EM electromotor
LNG liquefied natural gas
rpm revolutions per minute
Subscript

a adiabatic
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Abstract: The second law of thermodynamics is applied to evaluate the influence of entropy generation
on the performances of a cold heat exchanger of an experimental Stirling refrigeration machine by
means of three factors: the entropy generation rate NS, the irreversibility distribution ratio φ and the
Bejan number Be|NS based on a dimensionless entropy ratio that we introduced. These factors are
investigated as functions of characteristic dimensions of the heat exchanger (hydraulic diameter and
length), coolant mass flow and cold gas temperature. We have demonstrated the role of these factors
on the thermal and fluid friction irreversibilities. The conclusions are derived from the behavior
of the entropy generation factors concerning the heat transfer and fluid friction characteristics of a
double-pipe type heat exchanger crossed by a coolant liquid (55/45 by mass ethylene glycol/water
mixture) in the temperature range 240 K < TC < 300 K. The mathematical model of entropy generation
includes experimental measurements of pressures, temperatures and coolant mass flow, and the
characteristic dimensions of the heat exchanger. A large characteristic length and small hydraulic
diameter generate large entropy production, especially at a low mean temperature, because the high
value of the coolant liquid viscosity increases the fluid frictions. The model and experiments showed
the dominance of heat transfer over viscous friction in the cold heat exchanger and Be|NS → 1 and
φ→ 0 for mass flow rates ṁ→ 0.1 kg.s−1.

Keywords: Stirling cycle; refrigerator; heat exchanger; second law; entropy production

1. Introduction

Refrigeration plays a major role in many different sectors, ranging from food, air conditioning,
healthcare, industry and, especially energy. Nowadays, the number of refrigeration air-conditioning
and heat pump systems in operation worldwide is roughly 5 billion, if we consider 2.6 billion
air-conditioning stationary and mobile units and 2 billion domestic refrigerators and freezers [1].
The global electricity demand for refrigeration, including air conditioning, could more than double
by 2050 [2]. The Kyoto Protocol was adopted in 1997 and entered into force on 16 February 2005.
It aimed to prevent global warming due to the use of HCFC/CFC refrigerants and the objective is
to stabilise greenhouse gas concentrations at a level that would prevent dangerous anthropogenic
(human-induced) interference with the climate system. It can be seen that developing a cooling system
without using HCFC/CFC working fluid is unavoidable in the future. Stirling coolers are used as
commercial cryocoolers in the cryogenic field, military applications, liquid air production plants,
cooling electronics, carbon capture and domestic applications [3–6].

Thus, in order to decrease electricity consumption and to prevent global warning, it is necessary
to optimize these cooling machines and systems, particularly the heat exchangers. These are systems
to transfer heat between two or more fluids at different temperatures and pressures, separated by a
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heat-transfer surface. The optimal conversion of heat energy involves a heat exchanger in order to
minimize the energy consumption and costs regarding several criteria, such as materials, geometries,
flow rates, flow arrangements, operating temperatures and pressures, and transient or steady-state
operation [7–10]. In the field of refrigeration, the objective is to extract heat from different products in
gas, liquid or solid state with minimum energy cost and maximum efficiency.

This paper deals with the optimization of a heat exchanger (the freezer) of a refrigerating machine,
used in a Stirling machine working at low and moderate temperatures (between −100 and 0 ◦C).
This machine is a member of the cryocooler’s technology family (Figure 1). Generally, the closed cycle
of the Stirling machine concerns engines, coolers and heat pumps [11,12]. The thermodynamic cycle is
the same in each case except that the process direction is reversed. In its theoretical refrigerating cycle
(Figures 2–4), the working fluid is compressed at the highest constant temperature TH (1–2) and QH is
the corresponding heat rejected to the environment through the cooler exchanger.

The fluid is cooled at constant volume (2–3) by the heat QR rejected from the gas to the regenerator.
Then, the expansion work (3–4) takes place at the lowest constant temperature TC and the external
heat QC is extracted from the surroundings and supplied to the gas through the freezer exchanger.
Finally, the fluid is heated from the temperature TC to TH by the corresponding heat QR stored in
the regenerator during the process at constant volume (4–1). Both isochoric processes take place
in a porous heat exchanger called the regenerator [4,5], whose efficiency is a key point of Stirling
machine performances.

In refrigeration operation, heat is then rejected to the hot sink during the compression (1–2) and
provided to the cold source in the compression stage (3–4). In a Stirling machine, these exchangers
play a crucial role in the optimization of the performances. The objective of this paper is to optimize
the performance of these exchangers by means of the second law of analysis and to study the behavior
of the entropy generation. This approach focuses on the cold source exchanger (the freezer) at constant
temperature TC (Figure 5), considering that the same approach could concern the exchanger of the hot
sink at temperature TH.

Figure 1. Classification of cryocoolers [12].
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Figure 2. Schematic diagram of an ideal Stirling refrigerator.

 
(a) (b) 

Figure 3. Ideal Stirling refrigeration cycle. (a) Pressure-Volume diagram; (b) Temperature-Entropy
diagram.

Figure 4. Stirling refrigerator for an alpha architecture.

Entropy generation analysis is considered as a measure of sustainability because a process with
a lower entropy generation rate is more sustainable and able to realize energy conversion more
efficiently. Nowadays, new indicators based on an engineering approach of irreversibility are used to
evaluate both the technological level and the environmental impact of the production process and the
socio-economic conditions [13–15]. Heat and mass transfer processes and thermal systems like heat
exchangers have been studied and optimized in order to minimize the irreversibilities using the second
law of thermodynamics in fundamental works published since the 1980s [16–19]. The second law of
thermodynamics method is applied to general convective heat transfer flows in ducts and it defines
the entropy rate contributed by heat transfer irreversibilities and fluid flow frictions. Convective heat
transfer through ducts is analyzed with constant heat flux or constant temperature [20–24].
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(a) (b) 

Figure 5. Stirling refrigerating machine [25]. (a) Profile of the mechanical configuration; (b) The cold
heat exchanger is thermally insulated (white material on the photo).

The main objective of this work is to determine the optimum duct or heat exchanger geometry which
minimize losses for a range of Reynold numbers, hydraulic diameters, and fins geometry (thickness,
spacing). We describe the experimental setup based on a Beta Stirling refrigerator, specifically focusing
on the cold heat exchanger. Then, we will focus our study on the second law analysis of the experimental
performances of the cold heat exchanger. The model and optimization present complementary criteria
and alternative ratios, like the dimensionless entropy ratio, irreversibility distribution ratio and Bejan
number, that we used in this study to determine the performances of a cold heat exchanger of a
Stirling refrigerator.

2. Experimental Setup

The Stirling refrigerator in the Beta configuration (Figure 5) is a single-cylinder machine. It consists
of two pistons, a working piston and a displacer piston, a compression volume, an expansion volume,
a volume occupied by a regenerator, and two heat exchangers. The working piston is used to compress
and expand the fluid. The displacer piston function is to displace the gas between the hot and cold
parts of the machine. The function of the regenerator is to store the heat of the fluid during one of the
isochoric transformations of the cycle and to restore it in the other one. The heat exchanger of the hot
part of the machine is water-cooled. The lower part of the machine, called the bounce space, contains
the connecting rods and the crankshaft.

The main design parameters of the machine are: mean pressure between 15 and 20 bar, Nitrogen
as working gas, stainless steel for the cold head and aluminum for the radiator at the hot sink (Table 1).
The experimental cooling capacity is 550 W at 273 K and 280 W at 230 K.
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Table 1. Mechanical characteristics of the Stirling refrigerator.

Characteristics Values

Cooling capacity at 230 K/273 K 280 W/550 W
Cold end temperature 190 K < TC < 273 K
Hot sink temperature TH = 300 K

Working gas Nitrogen
Mean Pressure 15 bar < P < 18 bar

Stirling refrigerator overall dimensions
Width × Height × Depth 19 × 46 × 18 cm

Power piston diameter D = 60 mm
Power piston stroke C = 40 mm

Compression swept volume Vswc = 120 cm3

Regenerator Stainless steel wire mesh
Rotational speed 35 rad.s−1 <ω < 80 rad.s−1

3. Mathematical Model

In a heat exchanger, real processes present irreversibilities caused by losses due to fluid friction,
heat exchange across a finite temperature difference and heat exchange with the environment [26].
Second law analysis is a method developed to design systems on minimum entropy production caused
by these losses [16,27,28]. The second law equation describes the irreversibility of the process, in
terms of entropy generation rate Ṡgen within the heat exchanger between inlet and outlet ducts of a
system boundary.

Ṡgen =
∂S
∂t
− Q̇

T
−

∑
in

ṁins +
∑
out

ṁouts ≥ 0 (1)

For steady operation (∂S/∂t = 0), consider an arbitrary flow passage of length dx with a finite
temperature difference ΔT = (Tw − T) between the wall temperature Tw and the bulk temperature T of
the fluid, the rate of entropy generation per unit length is

Ṡ′gen =
Q̇′ΔT

T2(1 + τ)
+

ṁ
ρT

(
−dP

dx

)
(2)

where τ = ΔT/T a dimensionless temperature difference, Q̇′ the wall heat transfer per unit length, ṁ the
mass flow rate and (−dP/dx) the longitudinal pressure gradient.

The quantity Q̇′ΔT
T2(1+τ) corresponds to the entropy generation rate accounting for the heat transfer

irreversibility (Ṡ′gen,ΔT) and the term ṁ
ρT

(
− dP

dx

)
corresponds to the entropy generation rate for the fluid

friction irreversibility (Ṡ′gen,ΔP). Based on these quantities, Bejan defined the irreversibility distribution
ratio φ by [29]:

φ =
Ṡ′gen,ΔP

Ṡ′gen,ΔT

=

ṁ
ρT

(
− dP

dx

)
Q̇′ΔT

T2(1+τ)

(3)

The entropy generation irreversibility can be described by the Bejan number Be as the ratio
between the heat transfer irreversibility and the total irreversibility due to heat transfer and fluid
flow [30,31]:

Be =
Ṡ′gen,ΔT

Ṡ′gen,ΔT + Ṡ′gen,ΔP

=
1

1 + φ
(4)

The heat transfer dominates when Be→ 1 (or φ→ 0) and the fluid friction dominates when Be
→ 0 (or φ→∞). The ideal equilibrium between these two irreversibilities is reached for Be = 1/2 or
(φ = 1).
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Assuming the refrigerating fluid to be incompressible, Equation (2) can be written as:

Ṡ′gen = ṁcp
dT
dx

ΔT
T2(1 + τ)
}

Ṡ′gen,ΔT

+
ṁ
ρT

(
−dP

dx

)
}

Ṡ′gen,ΔP

(5)

Equation (6) represents the entropy generation per unit length due to heat transfer across finite
temperature difference and to fluid friction, respectively. If we consider that the dimensionless
temperature difference τ = ΔT/T� 1, the following equation is obtained:

Ṡ′gen= ṁcp
dT
dx

ΔT
T2 +

ṁ
ρT

(
−dP

dx

)
(6)

Derived from Figure 5, the Figure 6 presents the control volume of the Stirling cold heat exchanger
for energy and entropy analysis.

Figure 6. Control volume of the cold heat exchanger.

The cold heat exchanger is a double-pipe type heat exchanger made up of two concentric circular
tubes (Label 1 in Figure 6). The incompressible coolant liquid flows continuously, with a mass flow
ṁ, through the annular passage under the temperature (Ti − To) and pressure (Pi − Po) gradients,
respectively. The other fluid is the working gas (Nitrogen) of the Stirling refrigerator and it flows
alternatively (corresponding to the rotational frequency of the machine) at constant temperature TC
in the inner tube corresponding to the cylinder of the machine (Labels 8 and 10). The heat flux Q̇ is
extracted from the surface and maintained at the constant temperature TC along the heat exchanger
surface. This temperature is measured in the expansion volume of the refrigerator and depends on
different parameters like thermal load, pressure of the gas, rotational speed [12,32]. The heat exchanger
is considered as a duct at constant temperature TC with a hydraulic diameter Dh and a total length L
corresponding to mean distance between the inlet and the outlet of the heat exchanger.

Equation (7) is integrated along the length, and the expression of the entropy generation Ṡgen

becomes [21,22,33]:

Ṡgen = ṁcp(To − Ti)
(Tc − To)

TiTo
+

32ṁ3 f

ρ2π2D5
h

L
TC

(7)

where −dP/dx= 2 fρu2
m/Dh and um = 4ṁ/

(
ρπD2

h

)
.

The hydraulic diameter approach is a simple dimensional parameter method to calculate the
heat transfer and the pressure drop in the heat exchanger. The hydraulic diameter Dh of the cold heat
exchanger is defined [34].

Dh = 4
(minimum flow area

frontal area

)( total volume
total surface area

)
(8)
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The rate of entropy generation is represented as the dimensionless form NS [29]:

NS =
Ṡgen

ṁcp
(9)

where
(
ṁcp

)
is the heat capacity rate within the heat exchanger. In this work, the heat capacity rate is

the product of the mass flow and specific heat capacity rate of the incompressible fluid.
The fluid flow is considered to be fully developed inside the exchanger. The friction factor f is

given for a well-known correlation [35–37]. The complex flow field generated by the internal geometry
of the heat exchanger influences the pressure gradient required to drive the flow. The friction factor f
is defined

f = aReb (10)

with the Reynolds number Re =ρumDh/μ. The two constants a and b depend on the fluid properties,
the flow regime and the geometry constraints of the heat exchanger. These two coefficients were
identified from data reduction experimental results [38] and pressure drop data were correlated to
±10% for Re < 2000 (laminar flow condition).

f =34.9 Re−0.775 (11)

The average of the inlet and outlet bulk temperatures is used to calculate the physical parameters
(density, viscosity and specific heat capacity) of the coolant liquid (55/45 by mass ethylene glycol/water
mixture) in the temperature range 240 K < T < 300 K (Table 2 and Figure 7). Ethylene glycol lowers the
specific heat capacity of water mixtures relative to pure water.

  
(a) (b) 

Figure 7. Physical properties of the coolant liquid (55/45 by mass ethylene glycol/water mixture) in
the temperature range 240 K < T < 300 K [39] (a) Density ρ (kg.m−3) and dynamic viscosity μ (mPa.s);
(b) Specific heat capacity cp (J.kg−1.K−1).

Considering Equation (10), we get:

NS = (T0 − Ti)
(TC − T0)

TiT0
}

NS,ΔT

+
32ṁ2 f

cpρ2π2D5
h

L
TC

}
NS,ΔP

(12)

The first term corresponds to dimensionless rate of entropy production due to the thermal
irreversibilities (NS,ΔT), and the second one, (NS,ΔP), to the pressure irreversibilities.
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From Equation (13), we introduce a Bejan number Be|NS based on a dimensionless entropy ratio:

Be|NS =
NS,ΔT

NS,ΔT + NS,ΔP
=

(T0 − Ti)
(TC−T0)

TiT0

(T0 − Ti)
(TC−T0)

TiT0
+

32ṁ2 f
cpρ2π2D5

h

L
TC

(13)

Table 2. Physical properties of of the coolant liquid (55/45 by mass ethylene glycol/water mixture) in
the temperature range 240 K < T < 300 K [39].

Temperature
Thermal

Conductivity
Density

Specific Heat
Capacity

Dynamic
Viscosity

Prandtl
Number

T (◦C) T (K) λ (W.m−1.K−1) ρ (kg.m−3) cp (J.kg−1.K−1) μ (mPa.s) Pr

−30 243.15 0.3300 1057.40 3220.2 500 4879.1
−25 248.15 0.3360 1057.40 3242.5 250 2412.6
−20 253.15 0.3377 1056.80 3264.8 130 1256.8
−15 258.15 0.3406 1056.00 3287.1 95 916.8
−10 263.15 0.3406 1055.00 3309.4 70 680.1
−5 268.15 0.3406 1053.00 3331.7 55 538.0
0 273.15 0.3440 1050.90 3354.0 40 390.0
5 278.15 0.3480 1048.25 3376.3 30 291.1

10 283.15 0.3507 1045.60 3398.6 20 193.8
15 288.15 0.3536 1042.65 3420.9
20 293.15 1039.70 3443.2
30 303.15 1033.80 3487.8

4. Results and Discussion

Both fluid friction and heat transfer contribute to the rate of entropy generation represented
by Equations (4), (5), (10) and (13). Entropy generation is investigated with the effects of different
parameters concerning the cold heat exchanger (Length L, hydraulic diameter Dh, mass flow ṁ,
temperature TC of the gas inside the cold volume of the Stirling refrigerator). Before examining
the dependence of these parameters on entropy generation, it is necessary to discuss the following
observations and assumptions. Measurements are performed in the cold heat exchanger (the freezer)
of the Stirling refrigerator and concern the temperatures and pressures of the working gas inside the
expansion volume corresponding to the internal cold heat exchanger, mass flow and pressures of the
coolant liquid (mix water/ethylene–glycol) and rotational speed of the refrigerator (Figure 6).

In this section, we used constant values of inlet and outlet temperatures fixed at Ti = 300 K and
To = 260 K, respectively. The temperature To corresponds to a constraint we need for an industrial
process not described in this article. The hydraulic diameter of the cold heat exchanger is Dh = 0.015 m
and its characteristic length is L = 0.10 m. For the coolant liquid, the variation of viscosity with
temperature is responsible for most of the property effects. The coolant fluid flow ṁ vary in the range
(0.003–0.010 kg.s−1). In our study, we performed experiments with two mass flows rates of coolant
liquid ṁ = 0.003 kg.s−1 and ṁ = 0.004 kg.s−1, respectively. At low temperatures, the viscosity increases
significantly and between 243 K and 263 K the dynamic viscosity increases in a ratio of around 7
(Table 2) and has the direct effect of increasing the fluid frictions. We used the film temperature based
on the wall and mean bulk temperatures of the liquid flow rate to calculate its properties. We performed
the measurements when the machine was operating in steady state at a fixed rotational speed ωwith
35 rad.s−1 < ω < 80 rad.s−1 and for a given working gas temperature TC with 190 K < TC < 273 K.
At each extremity of the exchanger (inlet and outlet on Figure 6), we collected the characteristic data of
the coolant fluid: the refrigerant mass flow rate ṁ, the inlet and outlet pressures Pi and Po and their
corresponding temperatures Ti and To, respectively. Then, we introduced the experimental data in
the thermodynamic model concerning the temperatures, the pressures, the mass flows, the hydraulic
diameter, and the mean length L of the cold heat exchanger. We finally used the model to extrapolate the
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performances of the refrigerator in terms of irreversibility distribution ratio φ (Equation (3)), entropy
generation rate NS (Equations (10) and (13)) and Bejan numbers Be|NS (Equations (5) and (14)).

4.1. Effect of Characteristic Dimensions (Length L and Hydraulic Diameter Dh)

Figures 8–10 present the entropy generation parameters (NS, Be|NS and ϕ) as functions of length
(L) and hydraulic diameter (Dh) for fixed values of cold gas temperature (TC). The entropy generation
number (NS) increases with the length L of the heat exchanger because of the increase in the fluid
friction and pressure drop. For a given length, NS (Figure 8) increases when the temperature TC

decreases because the heat transfer and the entropy production increase. For each mass flow rate ṁ of
the cooling liquid, we measured the temperature TC of the cold gas inside the expansion space of the
refrigerator. For ṁ = 0.003 kg.s−1, this temperature is TCexp = 242 K and it corresponds to the entropy
generation number NS ≈ 0.010, while the theoretical model provides a higher value NS ≈ 0.011 (+10%)
and a lower temperature TC = 240 K. When the flow rate increases (ṁ = 0.004 kg.s−1), the pressure
drop also logically increases, causing the decrease in NS.

The irreversibility distribution ratio ϕ increases with the length L of the heat exchanger (Figure 9).
At given length L, the smallest values of ϕ correspond to the case for which the heat transfer dominates.
We observe at L = 0.10 m (Figure 9), an increase in ϕ as the mass flow rate ṁ increases because the
fluid frictions dominate, as was observed in the literature [3,22,40].

Figure 8. Variations of entropy generation rate NS as function of cold heat exchange L for different
temperatures TC. Experimental results for Dh = 0.015 m, L= 0.010 m,= 0.003 kg.s−1 and ṁ = 0.004 kg.s−1.

 

Figure 9. Variation of the irreversibility distribution ratio ϕ as function of cold heat exchange L for
different temperatures TC. Experimental results for Dh = 0.015 m, L = 0.10 m, ṁ = 0.003 kg.s−1 and
ṁ = 0.004 kg.s−1.

Figure 10 plots the evolution of Be|NS as a function of cold heat exchange length L at different
temperatures TC. The limit Be|NS → 1 when the heat transfer dominates. At given mass flow rate ṁ, for
small values of hydraulic diameter (Dh < 5 mm), the effect of fluid friction is more effective and Be|NS

varies with great sensitivity to temperature TC. For higher values of hydraulic diameter, Dh > 5 mm,
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the heat transfer dominates fluid frictions regardless of the temperature TC of the cold volume and,
consequently, φ→ 0 (Figure 11). The effects of the variation in the mass flows ṁ = 0.003 kg.s−1 and
ṁ = 0.004 kg.s−1 are of the same amplitude in our experiments and show the dominance of the heat
transfer on the fluid frictions ( Be|NS → 1 and φ→ 0).

Figure 10. Variations of Bejan number Be|NS as function of hydraulic diameter Dh for different
temperatures TC. Experimental results for Dh = 0.015 m, L = 0.1 m, ṁ = 0.003 kg.s−1 and
ṁ = 0.004 kg.s−1.

Figure 11. Variation of the irreversibility distribution ratio ϕ as function of hydraulic diameter Dh for
different temperatures TC. Experimental results for Dh = 0.015 m, L = 0.1 m, ṁ = 0.003 kg.s−1 and
ṁ = 0.004 kg.s−1.

The heat transfer impacts the entropy generation rate NS, which logically decreases with the
temperature TC, and the hydraulic diameter Dh, corresponding to the dominance of the heat transfer
irresversibilities over fluid losses (Figure 12). That is what we observed with the two experimental
temperatures TCexp = 242 K and TCexp = 248 K corresponding to the two mass flow rates ṁ = 0.003 kg.s−1

and ṁ = 0.004 kg.s−1.
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Figure 12. Variations of entropy generation rate NS as function of hydraulic diameter Dh for different
temperatures TC. Experimental results for Dh = 0.015 m, L= 0.1 m, ṁ= 0.003 kg.s−1 and ṁ = 0.004 kg.s−1.

The objective is to reduce the degree of irreversibility of the refrigerator and to obtain small values
of NS [16,22,33,41]. This objective depends on the parameters temperature of the cold volume and
hydraulic diameter. We observe that the properties of the refrigerant play an important role. When the
temperature of the fluid is too low, the viscosity of the fluid and the pressure drops increase and
NS increases as well, which reduces the performance of the refrigerator. For large values of Dh, the
entropy generated by the fluid losses is no longer affected by the flow friction losses. Ns tends towards
a constant (in our case, this phenomenon is quite obvious for the temperatures 240 K < Tc < 250 K)
and the irreversibility distribution ratio ϕ tends to zero (Figure 11). The entropy generation rate NS
depends mainly on the part of the entropy due to heat transfers and then decreases as a function of
temperature TC and hydraulic diameter Dh across a trade-off between fluid flow irreversibilities and
heat transfer.

4.2. Effect of Coolant Mass Flow ṁ

As shown in Equations (4), (8) and (13), it appears that the greater the mass flow ṁ, the higher the
fluid frictions and pressure drop. As a result, at a fixed mass flow, both entropy generation rate NS
and irreversibility distribution ratio φ increase with the heat transfer (Figure 13). Effectively, at low
temperatures (TC = 240 K), the heat transfer from the coolant at mean bulk temperature Tmb = (Ti + To)/2
to the gas is higher than at high temperatures (TC = 260 K) and Ns presents highest variations. This
observed for the two experimental temperatures TCexp = 242 K and TCexp = 248 K corresponding to the
mass flow rates ṁ = 0.003 kg.s−1 and ṁ = 0.004 kg.s−1, respectively. Consequently, at a low temperature
(TC = 240 K) and small cooling flow rate, the irreversibility distribution φ and Bejan number Be|Ns
confirm that heat transfer dominates fluid frictions (Figures 14 and 15). These phenomena are verified
for both refrigerant flow rates ṁ = 0.003 kg.s−1 and ṁ = 0.004 kg.s−1.

At given temperatures Tc with 240 K < TC < 255 K, and for low mass flow rates, ṁ < 0.10, the
trend in the evolution of the Bejan number Be|Ns shows the dominance of heat transfer over viscous
friction and Be|Ns → 1. Experimental tests with ṁ = 0.003 kg.s−1 and ṁ = 0.004 kg.s−1 are thus found
in this working area of the refrigerating machine.

125



Entropy 2020, 22, 215

Figure 13. Variations in entropy generation rate NS as function of mass flow ṁ for different temperatures
TC Experimental results for Dh = 0.015 m, L = 0.1 m, ṁ = 0.003 kg.s−1 and ṁ = 0.004 kg.s−1.

 
Figure 14. Variation in the irreversibility distribution ratio ϕ as function of mass flow ṁ for different
temperatures TC. Experimental results for Dh = 0.015 m, L= 0.1 m, ṁ= 0.003 kg.s−1 and ṁ = 0.004 kg.s−1.

Figure 15. Variation in Bejan number Be|Ns as function of mass flow ṁ for different temperatures TC.
Experimental results for Dh = 0.015 m, L = 0.1 m, ṁ = 0.003 kg.s−1 and ṁ = 0.004 kg.s−1.

4.3. Effect of Cold Gas Temperature TC

The temperature TC of the cold gas inside the expansion volume is measured when the Stirling
refrigerator runs at a steady rotational speed ω. For given inlet and outlet temperatures, Ti = 300 K
and To = 260 K respectively, the heat transfer exchanged with the collant at mean bulk temperature
decreases with the coolant temperature (Figure 16). This figure shows that, at the given cold gas
temperature Tc, the entropy generation rate NS increases with the length L of the heat exchanger due
to an increased pressure drop caused by viscous friction along the heat exchanger confirming the
dominance of pressure drop [29,42]. As the amplitudes of gas temperature increase, both heat transfer
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exchanged with the coolant fluid at mean bulk temperature and irreversibility distribution ratio ϕ
increase (Figure 17). At low temperatures (e.g., 240 K), the viscosity and the Prandlt number of the
liquid increase sharply, with a factor around 7 between 243 K and 263 K, and the friction losses become
high even at low flow rates. For the limit temperature Tc → 260 K, at fixed mass flow ṁ, the heat
transfer would require an infinite quantity or a perfect heat exchanger efficiency and that is why the
irreversibility distribution ratio ϕ rises sharply as the temperature approaches the limit Tc→ 260 K
and would tend to infinity for Tc = 260 K.

 
Figure 16. Variations in entropy generation rate NS as function of temperature TC for different lengths
L. Experimental results for Dh = 0.015 m, L = 0.1 m, ṁ = 0.003 kg.s−1 and ṁ = 0.004 kg.s−1.

Figure 17. Variation in the irreversibility distribution ratio ϕ as function of temperature Tc for different
mass flow ṁ. Experimental results for Dh = 0.015 m, L = 0.1 m, ṁ = 0.003 kg.s−1 and ṁ = 0.004 kg.s−1.

5. Conclusions

We have developed an analysis of the entropy generation rate inside a cold heat exchanger of a
Stirling refrigerator by examining the behavior of three criteria: the adimensionless entropy ratio NS,
the irreversibility distribution ratio ϕ and the Bejan number Be|Ns based on the adimensionless entropy
ratio NS,ΔT and NS,ΔP corresponding to the heat transfer and fluid friction irreversibilities, respectively.

The cold heat exchanger is a double-pipe type heat exchanger made up of two concentric circular
tubes. The incompressible coolant liquid flows continuously, with a mass flow rate, through the
annular passage, under the temperature and pressure gradients, respectively. The other fluid is the
working gas (Nitrogen) of the Stirling refrigerator and it flows alternatively (corresponding to the
rotational frequency of the machine) at constant temperature TC in the inner tube corresponding to the
cylinder of the machine.

The cold heat exchanger transfers heat from a gas to a coolant liquid in the temperature range
(240–300 K) and the efficiency of this operation is a result of the competition between heat transfer and
fluid flow irreversibilities. We have carried out experiments with two mass flow rates ṁ = 0.003 kg.s−1
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and ṁ = 0.004 kg.s−1 and showed the dominance of heat transfer over viscous friction in the cold heat
exchanger, which presents a hydraulic diameter Dh = 0.015 m and a length L = 0.10 m.

The aim of the analysis was to understand the impact of hydraulic diameter Dh, length L, coolant
mass flow ṁ and cold gas temperature TC on these three criteria. It could be shown that, to ensure
a minimal entropy production ratio NS, it is necessary to minimize the fluid friction irreversibilities
(NS,ΔP). Experimental results have shown the trade-off between fluid flow irreversibilities and heat
transfer. We showed that large characteristic length and small hydraulic diameter generate large
entropy production especially at low mean temperatures because of the high value of the coolant liquid
(mix water/ethylene–glycol) viscosity increasing the fluid friction.

Our analysis needs to be further improved on these different points:

- Develop a second law analysis based on a heat exchanger submitted to periodic flows;
- Investigate other cold exchanger geometries with a larger hydraulic diameter and length and

different mass flow rates;
- Perform exergetic and thermoeconomic analysis in order to define new indicators.
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