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In recent decades, the field of computational fluid dynamics has made significant advances in
enabling advanced computing architectures to understand many phenomena in biological, geophysical,
and engineering fluid flows. Almost all research areas in fluids use numerical methods at various
complexities: from molecular to continuum descriptions; from laminar to turbulent regimes; from
low-speed to hypersonic, from stencil-based computations to meshless approaches; from local basis
functions to global expansions, as well as from 1st-order approximation to high order and spectral
accuracy. Many successful efforts have been put forth in dynamic adaptation strategies, e.g., adaptive
mesh refinement and multiresolution representation approaches. Furthermore, with recent advances in
artificial intelligence and heterogeneous computing, broader fluids community has gained momentum
to revisit and investigate such practices. This Special Issue, containing a collection of 13 papers, brings
together researchers to address recent numerical advances in fluid mechanics.

Murea [1] presented an efficient semi-implicit monolithic method to simulate fluid-structure
interaction problems within the Arbitrary Lagrangian Eulerian framework. The paper by Mohebbi et
al. [2] exploits an accurate implementation of Kutta conditions for the airfoils with both finite angle
and cusp trailing edges. Iqbal et al. [3] focused on the non-linear Schrödinger equation, and proposed
a numerical method utilizing cubic B-spline Galerkin method. The paper by Karakouzian et al. [4] is
devoted to the numerical modeling of hydraulic fracturing process in pressure tunnels. The authors
performed a systematic finite element analysis to gauge guidelines for reducing the possibility of
hydraulic fracturing in hydroelectric power plants. Cremades Rey et al. [5] concentrated their attention
to the uncertainty quantification of Reynolds-averaged Navier-Stokes models using the open source
package OpenFOAM. In their manuscript, Patel and Mathew [6] introduced a concept of adaptive
explicit filtering for implicit large eddy simulations. The core idea is to utilize a second order accurate
explicit filter in the presence of a discontinuity, and then gradually increase the order of explicit filter at
the grid locations away from this discontinuity. The paper by Butcher and Spencer [7] takes up the
concept of proper orthogonal decomposition (POD) for the identification of coherent structures. A new
metric has been introduced for the selection of POD modes in reconstructing coherent or incoherent
features. Idrissi et al. [8] dealt with an atmospheric dispersion study in highly realistic urban areas
considering high level of details. They utilized large eddy simulations to explore the behaviour of the
released pollutants in various topological settings. The article by Guilizzoni et al. [9] investigates the
impact of multiple synchronized drops into a deep pool. In their paper, Bourantas et al. [10] put forth a
strong form meshless point collocation method for solving the unsteady incompressible Navier-Stokes
equations. Fakhari [11] considered to develop a wall model for large eddy simulations in simulating
either the body fitted or immersed boundary problems. The paper by Ahmed and San [12] discusses a
partitioning approach to break the Kolmogorov barrier in projection based reduced order modeling of
transient flows. Finally, Xie et al. [13] introduced a machine learning approach to model the interaction
between the resolved and unresolved modes in reduced order models.

Conflicts of Interest: The author declare no conflict of interest.

Fluids 2020, 5, 73; doi:10.3390/fluids5020073 www.mdpi.com/journal/fluids1



Fluids 2020, 5, 73

References

1. Murea, C.M. Three-Dimensional Simulation of Fluid–Structure Interaction Problems Using Monolithic
Semi-Implicit Algorithm. Fluids 2019, 4, 94. [CrossRef]

2. Mohebbi, F.; Evans, B.; Sellier, M. On the Kutta Condition in Compressible Flow over Isolated Airfoils. Fluids
2019, 4, 102. [CrossRef]

3. Iqbal, A.; Abd Hamid, N.N.; Ismail, M.; Izani, A. Soliton Solution of Schrödinger Equation Using Cubic
B-Spline Galerkin Method. Fluids 2019, 4, 108. [CrossRef]

4. Karakouzian, M.; Nazari-Sharabian, M.; Karami, M. Effect of Overburden Height on Hydraulic Fracturing
of Concrete-Lined Pressure Tunnels Excavated in Intact Rock: A Numerical Study. Fluids 2019, 4, 112.
[CrossRef]

5. Cremades Rey, L.F.; Hinz, D.F.; Abkar, M. Reynolds Stress Perturbation for Epistemic Uncertainty
Quantification of RANS Models Implemented in OpenFOAM. Fluids 2019, 4, 113. [CrossRef]

6. Patel, S.K.; Mathew, J. Shock Capturing in Large Eddy Simulations by Adaptive Filtering. Fluids 2019, 4, 132.
[CrossRef]

7. Butcher, D.; Spencer, A. Cross-Correlation of POD Spatial Modes for the Separation of Stochastic Turbulence
and Coherent Structures. Fluids 2019, 4, 134. [CrossRef]

8. Idrissi, M.S.; Ben Salah, N.; Chrigui, M. Numerical Modelling of Air Pollutant Dispersion in Complex Urban
Areas: Investigation of City Parts from Downtowns Hanover and Frankfurt. Fluids 2019, 4, 137. [CrossRef]

9. Guilizzoni, M.; Santini, M.; Fest-Santini, S. Synchronized Multiple Drop Impacts into a Deep Pool. Fluids
2019, 4, 141. [CrossRef]

10. Bourantas, G.C.; Zwick, B.F.; Joldes, G.R.; Loukopoulos, V.C.; Tavner, A.C.; Wittek, A.; Miller, K. An Explicit
Meshless Point Collocation Solver for Incompressible Navier-Stokes Equations. Fluids 2019, 4, 164. [CrossRef]

11. Fakhari, A. A New Wall Model for Large Eddy Simulation of Separated Flows. Fluids 2019, 4, 197. [CrossRef]
12. Ahmed, S.E.; San, O. Breaking the Kolmogorov Barrier in Model Reduction of Fluid Flows. Fluids 2020, 5, 26.

[CrossRef]
13. Xie, X.; Webster, C.; Iliescu, T. Closure Learning for Nonlinear Model Reduction Using Deep Residual Neural

Network. Fluids 2020, 5, 39. [CrossRef]

© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

2



fluids

Article

Three-Dimensional Simulation of Fluid–Structure
Interaction Problems Using Monolithic
Semi-Implicit Algorithm

Cornel Marius Murea

Département de Mathématiques, IRIMAS, Université de Haute Alsace, 6, rue des Frères Lumière,
68093 Mulhouse CEDEX, France; cornel.murea@uha.fr

Received: 17 March 2019; Accepted: 13 May 2019; Published: 22 May 2019

Abstract: A monolithic semi-implicit method is presented for three-dimensional simulation of
fluid–structure interaction problems. The updated Lagrangian framework is used for the structure
modeled by linear elasticity equation and, for the fluid governed by the Navier–Stokes equations,
we employ the Arbitrary Lagrangian Eulerian method. We use a global mesh for the fluid–structure
domain where the fluid–structure interface is an interior boundary. The continuity of velocity at the
interface is automatically satisfied by using globally continuous finite element for the velocity in the
fluid–structure mesh. The method is fast because we solve only a linear system at each time step.
Three-dimensional numerical tests are presented.

Keywords: fluid–structure interaction; monolithic method; Updated Lagrangian; Arbitrary
Lagrangian Eulerian

1. Introduction

There exists a rich literature on solving numerically fluid–structure interaction problems.
Some methods are based on partitioned procedures, the fluid and structure sub-problems are
solved separately using iterative process: fixed point iterations [1–3], Newton-like methods [4–6]
or optimization techniques [7–9]. Monolithic methods solve the fluid–structure interaction problem as
a single system of equations, [10–13], or more recently [14–17].

In some methods such as the Arbitrary Lagrangian Eulerian (ALE) framework, the fluid
equations are written over a moving mesh which follows the structure displacement (see [18,19]).
Other methods use a fixed mesh for fluid domain: immersed boundary method [20], distributed
Lagrange multiplier [21,22], penalization [23,24], extended finite element method (XFEM) [25,26],
and Nitsche-XFEM [27]. Distributed Lagrange multiplier strategy with remeshing is used in [28] and
a monolithic fictitious domain without Lagrange multiplier is employed in [29,30].

Most of these methods are implicit. For a long time, the explicit methods were considered not
suitable because of the lack of stability, but these methods are successfully applied in [31,32]. A third
class of methods are so-called semi-implicit methods, where the domain is computed explicitly while
the fluid velocity and pressure as well as the structure displacement are computed implicitly, [33,34].
In [35], it is proved that a schema of this kind is unconditionally stable.

In this paper, a monolithic semi-implicit method is employed for three-dimensional simulation.
For the structure modeled by the linear elasticity equations, we use the updated Lagrangian
framework and, for the fluid governed by the Navier–Stokes equations, we employ the ALE method.
A similar strategy is used in [36] for a bi-dimensional compressible neo-Hookean model or in [37] for
a bi-dimensional linear elasticity model for the structure. As in [38], we employ a global mesh for the
fluid–structure domain where the fluid–structure interface is an interior boundary. Using globally
continuous finite element for the velocity in the fluid–structure mesh, the continuity of velocity at the

Fluids 2019, 4, 94; doi:10.3390/fluids4020094 www.mdpi.com/journal/fluids3
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interface is automatically satisfied. The method is fast because we solve only a linear system at each
time step. Three-dimensional numerical tests are presented.

In [14–17], a global mesh obtained from the deformed structure mesh and a fluid mesh generated
at each time step, compatible at the interface with the structure mesh are used. Remeshing the fluid
domain improves the quality of the mesh in the case of large deformation. The non-linear structure
equation written in the Eulerian coordinates is obtained by using Cayley–Hamilton theorem. The fluid
equations are solved by the characteristics method. The weak formulation of the fluid–structure
interaction problem is written in the Eulerian domain, which is unknown, and a fixed-point algorithm
solves the global non-linear problem at each time step.

In [30], it is assumed that the structure is viscoelastic with the same viscosity as the fluid. Based on
fictitious domain without Lagrange multiplier, the fluid is solved in a fixed mesh of the fluid–structure
domain. The weak formulation contains integrals over the unknown Eulerian domain of the structure.
At each time step, a fixed-point algorithm is employed.

In [36], by using the Updated Lagrangian framework for a compressible Neo-Hookean structure,
the weak formulation is written in the known configuration obtained at the precedent time step.
By linearization around this configuration, at each time step, only a linear system is solved for the
fluid–structure coupled equations and consequently the computing time is reduced. In the present
paper, we follow this approach for three-dimensional simulations using linear elastic model for
the structure.

If at each time step of the monolithic implicit methods, the fixed-point algorithm does not converge
quickly or the computational time by fixed-point iteration is very expensive, thus the monolithic
semi-implicit methods, which have similar stability properties and a reduced computational time,
could be a good alternative.

2. Problem Statement

The initial fluid domain ΩF
0 is a right circular cylinder of bases Σ1, Σ3 and lateral surface Γ0.

We denote by ΩS
0 the initial structure domain and we assume that it is a right annular cylinder of bases

Σ5, Σ7, interior lateral surface Γ0 and exterior lateral surface ΓN
0 (see Figure 1). We suppose that the

initial structure domain is undeformed (stress-free). The boundary Γ0 is common of both domains and
it represents the initial position of the fluid–structure interface.

Σ Σ

Σ Σ

5 1

7 3

Γ

Γ0

0
N

Figure 1. Initial geometrical configuration.

At the time instant t, the fluid occupies the domain ΩF
t bounded by the moving interface Γt and

by the fixed boundaries Σ1, Σ3, while the structure occupies the domain ΩS
t bounded by the moving

lateral surfaces Γt, ΓN
t and by the fixed boundaries Σ5, Σ7.

We denote by US : ΩS
0 × [0, T] → R3 the displacement of the structure. A particle of the structure

whose initial position was the point X will occupy the position x = X + US (X, t) in the deformed
domain ΩS

t . At the time instant t, the interface Γt is the image of Γ0 via the map X → X + US (X, t).
The same relationship exists between ΓN

t and ΓN
0 . On ΓD

0 = Σ5 ∪ Σ7, we impose zero displacements.

4



Fluids 2019, 4, 94

We set ∇XUS the gradient of the displacement US =
(
US

1 , US
2 , US

3
)T with respect to the Lagrangian

coordinates X = (X1, X2, X3)
T . We denote by F (X, t) = I + ∇XUS (X, t) the gradient of the

deformation, where I is the unity matrix and we set J (X, t) = det F (X, t). The second Piola–Kirchhoff
stress tensor is denoted by Σ.

We assume that the fluid is governed by the Navier–Stokes equations. For each time instant
t ∈ [0, T], we denote the fluid velocity by vF(t) =

(
vF

1 (t), vF
2 (t), vF

3 (t)
)T : ΩF

t → R3 and the fluid

pressure by pF(t) : ΩF
t → R. Let ε

(
vF) = 1

2

(
∇vF +

(
∇vF)T

)
be the fluid rate of strain tensor and let

σF = −pFI + 2μSε
(
vF) be the fluid stress tensor. To simplify the notation, we write ∇vF in place of

∇xvF, when the gradients are computed with respect to the Eulerian coordinates x.
The problem is to find the structure displacement US, the fluid velocity vF and the fluid pressure

pF such that:

ρS
0 (X)

∂2US

∂t2 (X, t)−∇X · (FΣ) (X, t) = ρS
0 (X) g, in ΩS

0 × (0, T) (1)

US (X, t) = 0, on ΓD
0 × (0, T) (2)

(FΣ) (X, t)NS (X) = 0, on ΓN
0 × (0, T) (3)

ρF
(

∂vF

∂t
+ (vF · ∇)vF

)
− 2μF∇ · ε

(
vF
)
+∇ pF = ρFg, ∀t ∈ (0, T), ∀x ∈ ΩF

t (4)

∇ · vF = 0, ∀t ∈ (0, T), ∀x ∈ ΩF
t (5)

σFnF = hin, on Σ1 × (0, T) (6)

σFnF = hout, on Σ3 × (0, T) (7)

vF
(

X + US (X, t) , t
)

=
∂US

∂t
(X, t) , on Γ0 × (0, T) (8)(

σFnF
)
(X+US(X,t),t)

= − (FΣ) (X, t)NS (X) , on Γ0 × (0, T) (9)

US (X, 0) = US,0 (X) , in ΩS
0 (10)

∂US

∂t
(X, 0) = VS,0 (X) , in ΩS

0 (11)

vF (X, 0) = vF,0 (X) , in ΩF
0 (12)

where ρS
0 : ΩS

0 → R is the initial mass density of the structure, g is the acceleration of gravity vector
and it is assumed to be constant, NS is the unit outer normal vector along the boundary ∂ΩS

0 , US,0

and VS,0 are the initial displacement and velocity of the structure, ρF > 0 and μF > 0 are constants
representing the mass density and the viscosity of the fluid, hin and hout are prescribed boundary
stress, nF is the unit outer normal vector along the boundary ∂ΩF

t , and vF,0 is the initial velocity of
the fluid.

3. Updated Lagrangian Framework for the Structure Approximation

Introducing VS, the velocity of the structure in the Lagrangian coordinates, Equation (1) can be
rewritten as

5
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ρS
0 (X)

∂VS

∂t
(X, t)−∇X · (FΣ) (X, t) = ρS

0 (X) g, in ΩS
0 × (0, T) (13)

∂US

∂t
(X, t) = VS (X, t) , in ΩS

0 × (0, T). (14)

Let N ∈ N∗ be the number of time steps and Δt = T/N the time step. We set tn = nΔt for
n = 0, 1, . . . , N. Let VS,n (X) and US,n (X) be approximations of VS (X, tn) and US (X, tn). In the sequel,

Fn = I +∇XUS,n, Σn = Σ(Fn), n ≥ 0.

Using the implicit Euler scheme, we approach the system in Equations (13) and (14) by

ρS
0 (X)

VS,n+1 (X)− VS,n (X)

Δt
−∇X ·

(
Fn+1Σn+1

)
(X) = ρS

0 (X) g, in ΩS
0 (15)

US,n+1 (X)− US,n (X)

Δt
= VS,n+1 (X) , in ΩS

0 (16)

Using Equation (16), we get Fn+1 = Fn + Δt∇XVS,n+1 and, consequently, Fn+1 and Σn+1 depend
on the velocity VS,n+1. We have eliminated the unknown displacement and we have now an equation
of unknown VS,n+1.

We can put Equation (15) in a weak form: find VS,n+1 : ΩS
0 → R3, VS,n+1 = 0 on ΓD

0 , such that

∫
ΩS

0

ρS
0

VS,n+1 − VS,n

Δt
· WS dX +

∫
ΩS

0

Fn+1Σn+1 : ∇XWS dX

=
∫

ΩS
0

ρS
0 g · WS dX +

∫
Γ0

Fn+1Σn+1NS · WS dS (17)

for all WS : ΩS
0 → R3, WS = 0 on ΓD

0 . For instance, we have assumed that the forces Fn+1Σn+1NS on
the interface Γ0 are known.

The above formulation is also called the total Lagrangian framework, since the equations are
written in the undeformed domain ΩS

0 . Now, we present the updated Lagrangian framework,
where the equations are written in the domain ΩS

n. We follow a similar method as in [36], where the
structure is a bi-dimensional compressible neo-Hookean material, or in [37], where the bi-dimensional
linear elasticity model is used.

We set ΩS
n the image of ΩS

0 via the map X → X + US,n (X) and we denote by Ω̂S = ΩS
n the

computational domain for the structure. The map from ΩS
0 to ΩS

n+1 defined by X → x = X+US,n+1 (X)

is the composition of the map from ΩS
0 to Ω̂S given by X → x̂ = X + US,n (X) with the map from Ω̂S

to ΩS
n+1 given by

x̂ → x = x̂ + US,n+1 (X)− US,n (X) = x̂ + û (x̂) .

Using the notations F̂ = I +∇x̂û and Ĵ = det F̂, Jn = det Fn, we get

Fn+1 (X) = F̂ (x̂) Fn (X) , Jn+1 (X) = Ĵ (x̂) Jn (X) . (18)

We have the relation between the Cauchy stress tensor of the structure σS and the second
Piola–Kirchhoff stress tensor Σ,

σS (x, t) =
(

1
J

FΣFT
)
(X, t) , x = X + US (X, t) .

The mass conservation assumption gives ρS (x, t) = ρS
0 (X)

J(X,t) , where ρS (x, t) is the mass density of
the structure in the Eulerian framework.

6



Fluids 2019, 4, 94

For the semi-discrete scheme, we use the notations

σS,n+1 (x) =

(
1

Jn+1 Fn+1Σn+1
(

Fn+1
)T
)
(X) , x = X + US,n+1 (X)

and ρS,n (x̂) =
ρS

0 (X)
Jn(X)

, x̂ = X + US,n (X) .

Let us introduce v̂S,n+1 : Ω̂S → R3 and vS,n : Ω̂S → R3 defined by v̂S,n+1 (x̂) = VS,n+1 (X) and
vS,n (x̂) = VS,n (X) . In addition, for WS : ΩS

0 → R3, we define ŵS : Ω̂S → R3 and wS : ΩS
n+1 → R3 by

ŵS (x̂) = wS (x) = WS (X) .
Now, we rewrite Equation (17) over the domain Ω̂S. For the first term of Equation (17), we get

∫
ΩS

0

ρS
0

VS,n+1 − VS,n

Δt
· WS dX =

∫
Ω̂S

ρS,n v̂S,n+1 − vS,n

Δt
· ŵS dx̂

and similarly ∫
ΩS

0

ρS
0 g · WS dX =

∫
Ω̂S

ρS,ng · ŵS dx̂.

Using the identity
(
∇wS (x)

)
Fn+1 (X) = ∇XWS (X) and the definition of σS,n+1, we get∫

ΩS
0

Fn+1Σn+1 : ∇XWS dX =
∫

ΩS
n+1

σS,n+1 : ∇wS dx.

Details about this kind of transformation can be found in [39], Chapter 1.2.
To write the above integral over the domain Ω̂S, let us introduce the tensor

Σ̂ (x̂) = Ĵ (x̂) F̂−1 (x̂) σS,n+1 (x) F̂−T (x̂) . (19)

Since
(
∇wS (x)

)
F̂ (x̂) = ∇x̂ŵS (x̂) (see [39], Chapter 1.2) and taking into account Equation (19),

we get ∫
ΩS

n+1

σS,n+1 : ∇wS dx =
∫

Ω̂S
F̂Σ̂ : ∇x̂ŵS dx̂.

Now, it is possible to present the updated Lagrangian version of Equation (17). Knowing US,n :
ΩS

0 → R3, Ω̂S = ΩS
n and vS,n : Ω̂S → R3, we try to find v̂S,n+1 : Ω̂S → R3, v̂S,n+1 = 0 on ΓD

0 such that

∫
Ω̂S

ρS,n v̂S,n+1 − vS,n

Δt
· ŵS dx̂ +

∫
Ω̂S

F̂Σ̂ : ∇x̂ŵS dx̂

=
∫

Ω̂S
ρS,ng · ŵS dx̂ +

∫
Γ0

Fn+1Σn+1NS · WS dS (20)

for all ŵS : Ω̂S → R3, ŵS = 0 on ΓD
0 . We recall that the forces Fn+1Σn+1NS on the interface Γ0 are

assumed known.
Using the identity û (x̂) = US,n+1 (X)− US,n (X) = Δt VS,n+1 (X) = Δt v̂S,n+1 (x̂), we obtain

F̂ = I + Δt∇x̂ v̂S,n+1. (21)

Using Equations (18) and (19), it follows that

Σ̂ = ĴF̂−1σS,n+1F̂−T = ĴF̂−1 1
Jn+1 Fn+1Σn+1

(
Fn+1

)T
F̂−T

=
1
Jn FnΣn+1 (Fn)T . (22)

7
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For the linear elastic material, we have

Σ(U) = λS(∇X · U) + μS
(
∇XU + (∇XU)T

)
where λS and μS are the Lamé coefficients. We have

Σn+1 = Σ(US,n+1) = Σ(US,n) + (Δt)Σ(VS,n+1) = Σn + (Δt)Σ(VS,n+1).

From Equations (21) and (22) and the above equality, we get

F̂Σ̂ =
1
Jn FnΣn (Fn)T + Δt∇x̂ v̂S,n+1 1

Jn FnΣn (Fn)T

+
Δt
Jn FnΣ(VS,n+1) (Fn)T +

(Δt)2

Jn ∇x̂ v̂S,n+1FnΣ(VS,n+1) (Fn)T

= σS,n + Δt∇x̂ v̂S,n+1σS,n

+
Δt
Jn FnΣ(VS,n+1) (Fn)T +

(Δt)2

Jn ∇x̂ v̂S,n+1FnΣ(VS,n+1) (Fn)T .

We introduce Σx̂(û) = λS(∇x̂ · û) + μS (∇x̂û + (∇x̂û)T) and ûS,n(x̂) = US,n(X). For small
deformations, we have Fn ≈ I, Jn ≈ 1, then Σ(VS,n+1) could be approached by Σx̂(v̂

S,n+1) and σS,n

by Σx̂(û
S,n).

Finally, we can approach the map v̂S,n+1 → F̂Σ̂, by the simplified linear application

L̂
(

v̂S,n+1
)

= Σx̂(û
S,n) + (Δt)Σx̂(v̂

S,n+1). (23)

The linearized updated Lagrangian weak formulation of the structure is: knowing US,n : ΩS
0 → R3,

Ω̂S = ΩS
n and vS,n : Ω̂S → R3, find v̂S,n+1 : Ω̂S → R3, v̂S,n+1 = 0 on ΓD

0 such that

∫
Ω̂S

ρS,n v̂S,n+1 − vS,n

Δt
· ŵS dx̂ +

∫
Ω̂S

L̂
(

v̂S,n+1
)

: ∇x̂ŵS dx̂

=
∫

Ω̂S
ρS,ng · ŵS dx̂ +

∫
Γ0

Fn+1Σn+1NS · WS dS (24)

for all ŵS : Ω̂S → R3, ŵS = 0 on ΓD
0 .

Remark 1. We can use a non-linear model for the structure such as St. Venant Kirchhoff, neo-Hookean,
etc. By linearization of F̂Σ̂ (around the deformed state at the precedent time instant), we obtain in place of
Equation (23)

L̂
(

v̂S,n+1
)
= n�(ûS,n) + (Δt)�(v̂S,n+1)

where n� is a non-linear operator and � a linear one. Since n�(ûS,n) is a known term, we can transfer it to the
right-hand side, then the problem to solve is linear, similar to Equation (24).

4. Arbitrary Lagrangian Eulerian (ALE) Framework for Approximation of Fluid Equations

The Arbitrary Eulerian Lagrangian (ALE) framework is a successful method to solve fluid
equations in moving domain (see [19]). Let Ω̂F be a reference fluid domain and let At, t ∈ [0, T]
be a family of transformations such that: At(x̂) = x̂ for all x̂ ∈ Σ1 ∪ Σ3 and At(Ω̂F) = ΩF

t ,
where x̂ = (x̂1, x̂2, x̂3)

T ∈ Ω̂F are the ALE coordinates and x = (x1, x2, x3)
T = At(x̂) the

Eulerian coordinates.
Let vF be the fluid velocity in the Eulerian coordinates. We denote by v̂F : Ω̂F → R3 the

corresponding function in the ALE coordinates, which is defined by v̂F(x̂, t) = vF(At(x̂), t) = vF(x, t).

8
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We denote the mesh velocity by ϑ(x, t) = ∂At
∂t (x̂) = ∂At

∂t (A−1
t (x)) and the ALE time derivative of the

fluid velocity by ∂vF

∂t

∣∣∣
x̂
(x, t) = ∂v̂F

∂t (x̂, t).
The Navier–Stokes equations in the ALE framework give:

ρF
(

∂vF

∂t

∣∣∣∣
x̂

+
((

vF − ϑ
)
· ∇
)

vF
)
− 2μF∇ · ε

(
vF
)
+∇pF = ρFg, in ΩF

t × (0, T)

∇ · vF = 0, in ΩF
t × (0, T).

We denote by vF,n, pF,n, and ϑn the approximations of vF(·, tn), pF(·, tn), and ϑ(·, tn), respectively,
all defined in ΩF

n . Here, we set Ω̂F = ΩF
n . The time advancing scheme for fluid equations is: find

v̂F,n+1 : ΩF
n → R3 and p̂F,n+1 : ΩF

n → R such that

ρF
(

v̂F,n+1 − vF,n

Δt
+
((

vF,n − ϑn
)
· ∇x̂

)
v̂F,n+1

)
−2μF∇x̂ · ε

(
v̂F,n+1

)
+∇x̂ p̂F,n+1 = ρFg, in ΩF

n (25)

∇x̂ · v̂F,n+1 = 0, in ΩF
n (26)

σF(v̂F,n+1, p̂F,n+1)nF = hn+1
in , on Σ1 (27)

σF(v̂F,n+1, p̂F,n+1)nF = hn+1
out , on Σ3 (28)

The above time discretization scheme is based on the backward Euler scheme and a linearization
of the convective term.

We multiply Equation (25) by a test function ŵF : ΩF
n → R3 and Equation (26) by a test function

q̂ : ΩF
n → R. After integrating them over the domain ΩF

n and using the Green’s formula and the
corresponding boundary conditions, we get the below discrete weak form. Find v̂F,n+1 : ΩF

n → R3

and p̂F,n+1 : ΩF
n → R such that:

∫
ΩF

n

ρF v̂F,n+1

Δt
· ŵFdx̂ +

∫
ΩF

n

ρF
(((

vF,n − ϑn
)
· ∇x̂

)
v̂F,n+1

)
· ŵFdx̂

−
∫

ΩF
n

(
∇x̂ · ŵF

)
p̂F,n+1dx̂ +

∫
ΩF

n

2μFε
(

v̂F,n+1
)

: ε
(

ŵF
)

dx̂

= LF(ŵ
F) +

∫
Γn

(
σF(v̂F,n+1, p̂F,n+1)nF

)
· ŵFds, (29)∫

ΩF
n

(∇x̂ · v̂F,n+1)q̂ dx̂ = 0, (30)

for all ŵF : ΩF
n → R3 and for all q̂ : ΩF

n → R, where

LF(ŵ
F) =

∫
ΩF

n

ρF v̂F,n

Δt
· ŵFdx̂ +

∫
ΩF

n

ρFg · ŵF +
∫

Σ1

hn+1
in · ŵF +

∫
Σ3

hn+1
out · ŵF.

We have assumed, for instance, that the forces σF(v̂F,n+1, p̂F,n+1)nF on the interface Γn are known.

The mesh velocity ϑ̂
n+1

: ΩF
n → R3 can be computed from⎧⎪⎪⎨⎪⎪⎩

Δx̂ϑ̂
n+1

= 0, in ΩF
n

ϑ̂
n+1

= 0, on Σ1 ∪ Σ3

ϑ̂
n+1

= v̂F,n+1, on Γn.

For all n = 0, · · · , N − 1, we denote by Atn+1 the map from ΩF
n to R3 defined by Atn+1(x̂1, x̂2, x̂3) =

(x̂1 + Δtϑn+1
1 , x̂2 + Δtϑn+1

2 , x̂3 + Δtϑn+1
3 ). We set ΩF

n+1 = Atn+1(Ω
F
n), Γn+1 = Atn+1(Γn) and we remark

that x̂ = Atn+1(x̂), for all x̂ ∈ Σ1 ∪ Σ3.

9
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We define the fluid velocity vF,n+1 : ΩF
n+1 → R3, the fluid pressure pF,n+1 : ΩF

n+1 → R and the
mesh velocity ϑn+1 : ΩF

n+1 → R3 by:

vF,n+1(x) = v̂F,n+1(x̂), pF,n+1(x) = p̂F,n+1(x̂), ϑn+1(x) = ϑ̂
n+1

(x̂),

for all x̂ ∈ ΩF
n , x = Atn+1(x̂) ∈ ΩF

n+1.

5. Monolithic Formulation for the Fluid–Structure Equations

Let Ωn = ΩF
n ∪ Γn ∪ ΩS

n be the global fluid–structure domain at time instant n and let us introduce
the global velocity and test function

v̂n+1 : Ωn → R
3, ŵ : Ωn → R

3

v̂n+1 =

{
v̂F,n+1 in ΩF

n
v̂S,n+1 in ΩS

n
ŵ =

{
ŵF in ΩF

n
ŵS in ΩS

n.

At each time step, we solve the linear coupled problem: find v̂n+1 ∈
(

H1 (Ωn)
)2, v̂n+1 = 0 on ΓD

0
and p̂F,n+1 ∈ L2 (ΩF

n
)
, such that:

∫
ΩF

n

ρF v̂n+1

Δt
· ŵdx̂ +

∫
ΩF

n

ρF
(
((vn − ϑn) · ∇x̂) v̂n+1

)
· ŵdx̂

−
∫

ΩF
n
(∇x̂ · ŵ) p̂F,n+1dx̂ +

∫
ΩF

n

2μFε
(

v̂n+1
)

: ε (ŵ) dx̂

+
∫

ΩS
n

ρS,n v̂n+1

Δt
· ŵ dx̂ +

∫
ΩS

n

L̂
(

v̂n+1
)

: ∇x̂ŵ dx̂

= LF(ŵ) +
∫

ΩS
n

ρS,n vn

Δt
· ŵ dx̂ +

∫
ΩS

n

ρS,ng · ŵ dx̂, (31)∫
ΩF

n

(∇x̂ · v̂n+1)q̂ dx̂ = 0, (32)

for all ŵ ∈
(

H1 (Ωn)
)3, ŵ = 0 on ΓD

0 and for all q̂ ∈ L2 (ΩF
n
)
.

From the regularity v̂n+1 ∈
(

H1 (Ωn)
)2, the traces of v̂F,n+1 and v̂S,n+1 on Γn are well defined and

v̂F,n+1
|Γn

= v̂S,n+1
|Γn

which is a discrete form of the continuity of the velocity at the interface (8). Similarly,

we get ŵF,n+1
|Γn

= ŵS,n+1
|Γn

.
Equation (31) is obtained by adding Equations (24) and (29). By enforcement of the hypothesis of

continuity of stress (Equation (9)) at the discrete level, the expression∫
Γ0

Fn+1Σn+1NS · WS dS +
∫

Γn

(
σF(v̂F,n+1, p̂F,n+1)nF

)
· ŵFds

does not appear anymore in Equation (31).

Algorithm for fluid–structure interaction
Time advancing scheme from n to n + 1

We assume that we know Ωn = ΩF
n ∪ Γn ∪ ΩS

n, vn : Ωn → R3, ϑn : ΩF
n → R3.

Step 1: Solve the linear system in Equations (31) and (32) and get the velocity v̂n+1 and the
pressure p̂F,n+1.

10
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Step 2: Compute the fluid mesh velocity ϑ̂
n+1

: ΩF
n → R3

⎧⎪⎪⎨⎪⎪⎩
Δx̂ϑ̂

n+1
= 0, in ΩF

n

ϑ̂
n+1

= 0, on Σ1 ∪ Σ3

ϑ̂
n+1

= v̂n+1, on Γn.

(33)

To improve the quality of the mesh, we can replace in Equation (33) the Laplacian by a linear
elasticity operator.

Step 3: Define the map Tn : Ωn → R3 by:

Tn(x̂) = x̂ + (Δt)ϑ̂
n+1

(x̂)χΩF
n
(x̂) + (Δt)v̂n+1(x̂)χΩS

n
(x̂)

where χΩF
n

and χΩS
n

are the characteristic functions of fluid and structure domains.
Step 4: Set ΩF

n+1 = Tn(ΩF
n), ΩS

n+1 = Tn(ΩS
n), and Γn+1 = Tn(Γn); consequently, Ωn+1 = Tn(Ωn).

Define vn+1 : Ωn+1 → R3 by

vn+1(x) = v̂n+1(x̂), ∀x̂ ∈ Ωn, x = Tn(x̂)

and pF,n+1 : ΩF
n+1 → R, ϑn+1 : ΩF

n+1 → R3 by:

pF,n+1(x) = p̂F,n+1(x̂), ϑn+1(x) = ϑ̂
n+1

(x̂), ∀x̂ ∈ ΩF
n , x = Tn(x̂).

Remark 2. (i) The domain is computed explicitly while the velocity and the pressure are computed implicitly.
This kind of schema is also called semi-implicit. The monolithic system in Equations (31) and (32) is linear.

(ii) Using globally continuous finite element for the velocity v̂n+1 ∈
(

H1 (Ωn)
)2 defined all over the

fluid–structure global mesh, the continuity of the velocity at the interface holds, automatically.
(iii) The vertices in the structure mesh are moved using the structure velocity, thus the structure mesh is of

updated Lagrangian type.

Remark 3. In [35], for linear elastic model for the structure and Navier–Stokes equations for the fluid,
a semi-implicit monolithic algorithm is introduced. The unconditional stability in time is established.
In a forthcoming paper, a proof of the unconditional stability of an algorithm will be presented for a non-linear
model of the structure. This stable algorithm is similar to the one presented in this paper, only a stabilization
term has been added, as in [35].

Remark 4. In this paper, the derivative of fluid velocity as well as the derivative of structure velocity are
approached by the implicit Euler scheme. It is possible to use different time discretization schemes, for example
Newmark for the structure and implicit Euler for the fluid. We have to pay attention to the time advancing
algorithm for the interface. One solution is to solve the fluid–structure coupled equations written in the domain
at the precedent time instant to find the fluid–structure velocity and the fluid pressure. Then, the structure
including the interface is advanced by the Newmark scheme, and finally the fluid mesh velocity is computed
using the new position and velocity of the interface.

6. Numerical Experiments

The numerical tests were produced using FreeFem++ (see [40]).

6.1. Straight Cylinder

We tested the benchmark studied in [3,4] concerning blood flow in artery. The geometrical
configuration is represented in Figure 1. The fluid occupies initially the straight cylinder of length

11
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L = 5 cm and radius R = 0.5 cm. The disk Σ1 is in the plane x1Ox2 and the axis of the cylinder is Ox3.
The viscosity of the fluid is μF = 0.03 g

cm·s and its density is ρF = 1 g
cm3 .

The fluid is surrounded by a structure of constant thickness hS = 0.1 cm. The others physical
parameters of the structure are: the Young’s modulus is E = 3 × 106 g

cm·s2 , the Poisson ratio is νS = 0.3,

and the density is ρS
0 = 1.2 g

cm3 . The Lamé parameters are computed by the formulas λS = νSE
(1−2νS)(1+νS)

and μS = E
2(1+νS)

.

For the volume force in fluid and structure, we put g = (0, 0, 0)T . The prescribed boundary
stress at the inlet Σ1 is hin =

(
0, 0, 1.3332 × 104) g

cm·s2 for t ≤ 0.005 s and hout = (0, 0, 0) g
cm·s2 at the

outlet Σ3. The structure is clamped at both ends, Σ5 and Σ7. The remaining boundary conditions are
Equations (3), (8) and (9). Initially, the fluid and the structure are at rest.

Using FreeFem++, it is possible to construct a global fluid–structure mesh with an “interior
boundary” that is the fluid–structure interface. For the finite element approximation of the
fluid–structure velocity, we used the finite element P1 + bubble and we employed for the pressure the
finite element P1. The parameters of meshes used for the numerical tests are presented in Table 1.

Table 1. The number of vertices, tetrahedra and degrees of freedom (DOF) of fluid–structure linear
system for each mesh.

Vertices Tetrahedra DOF

Mesh 1 768 3510 13,602
Mesh 2 2314 11,400 43,456
Mesh 3 8976 47,100 177,204
Mesh 4 63,731 356,400 1,324,124

The time step was set to Δt = 0.0005 s and the number of time steps to N = 40.
The radial displacement of the interface was measured at three points A(R, 0, L/4), B(R, 0, L/2),
and C(R, 0, 3L/4). We observed that the displacements were small, less than 0.012 cm (see Figure 2,
left). Similar results are observed in [41] using non-conforming meshes. In addition, we measured the
radial displacement along the line (R, 0, x3), x3 ∈ [0, L] on the interface (see Figure 2, right.)
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Figure 2. Constant stress at the inlet: the time history of the displacement of three points on the
interface (left); and the radial displacement at time instants t = 0.0060, t = 0.0080, t = 0.0100 (right).

To obtain visible displacement, we also tested with the sin-like stress at the inlet:

hin(x, t) =

{ (
0, 0, 5 × 1.3332 × 104 × (1−cos(2πt/0.001))

2

)
, x ∈ Σ1, 0 ≤ t ≤ 0.001

(0, 0, 0) , x ∈ Σ1, 0.001 ≤ t ≤ T

where T = 0.02 s. The other parameters were the same. The displacements at three points are plotted
in Figure 3 and the pressure at three time instants is plotted in Figure 4.
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Figure 3. The time history of the displacement of three points on the interface using sin-like stress at
the inlet.

At each time step, we had to solve a sparse non-symmetric linear system for the fluid–structure
velocity and pressure and a sparse symmetric positive definite linear system for the mesh displacement.
The linear systems were solved using MUMPS (MUltifrontal Massively Parallel sparse direct Solver),
implemented in FreeFem++. This method was very efficient; the total CPU time for the first three meshes
were: 44 s (1.1 s/iteration) for Mesh 1, 173 s (4.3 s/iteration) for Mesh 2 and 1083 s (27 s/iteration)
for Mesh 3, on a computer with a processor of 4 × 3.30 GHz frequency and 16 Go RAM. For Mesh 4,
the CPU time was about 10 min/iteration on a noed Intel Sandy-Bridge 16 × 3.30 GHz and 64 Go RAM.

Figure 4. The pressure obtained with Mesh 4 using sin-like stress at the inlet.

In [4], the mean number of iterations per time step is: 33.9 for the fixed-point with Aitken
acceleration and 8.9 iterations for a quasi-Newton algorithm. At each iteration of quasi-Newton
algorithm, a linear system is solved. In [41,42], the average number of Newton iterations per time step
is 3.
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6.2. Cane Cylinder

We considered the fluid–structure interaction in a cane-like geometry inspired from [4,43].
The parameters of the fluid domain were: R = 0.5 cm, R1 = 1 cm, L1 = 1 cm, L2 = 5 cm (see Figure 5,
left). The fluid was surrounded by a structure of constant thickness hS = 0.1 cm.

L1

L2

R

2R

1

Figure 5. The parameters of the fluid domain (left); and a global mesh for fluid–structure
domain (right).

The time step was Δt = 0.0005 s, but the final time was T = 0.04 s. The other parameters were
the same as in the case of the straight cylinder. The details of meshes used for the numerical tests are
presented in Table 2.

Table 2. The number of vertices, tetrahedra and degrees of freedom (DOF) of fluid–structure linear
system for each mesh.

Vertices Tetrahedra DOF

Mesh 1 2079 9828 37,800
Mesh 2 3632 17,784 67,880
Mesh 3 5802 29,106 110,526

We measured the displacement of the interface ar three points: US
1 at A(R1 + 2R, 0, 0), US

3 at
B(0, 0, R1 + 2R) and US

1 at C(−R1 − 2R, 0, 0) (see Figure 6). The pressure at three time instants is
plotted in Figure 7. We observed that, for the sin-like stress at the inlet, the structure displacements
were greater than 0.23 (cm) and a non-linear model for the structure could be more appropriate.
We chose a sin-like stress at the inlet with maximal value five times greater than the constant case to
obtain visible deformations. Even though we used the same sin-like stress at the inlet, the structure
displacements were larger than in the straight cylinder case because of the shape as well as because
the cane was longer. Recall that the structure was fixed at both ends.

The total CPU time for the three meshes were: 255 s (3.18 s/iteration) for Mesh 1, 502 s
(6.2 s/iteration) for Mesh 2 and 915 s (11.2 s/iteration) for Mesh 3, on a computer with a processor of
4 × 3.30 GHz frequency and 16 Go RAM.

In [4], the mean number of iterations per time step is 8.9 for quasi-Newton algorithm.
The fixed-point algorithm with Aitken acceleration failed.
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Figure 6. The time history of the displacement of three points on the interface using constant (left) and
sin-like (right) stress at the inlet.

Figure 7. The computed pressure obtained with sin-like stress at the inlet (Mesh 2).

6.3. Artery Stenosis

Now, we considered a fluid–structure interaction in artery stenosis inspired from the paper [42].
The inlet and outlet surfaces Σ1, Σ3 were disks of radius R, normal to the axis Ox1 of centers (xmin, 0, 0)
and (xmax, 0, 0), respectively. The lateral surface Γ0 of the initial fluid domain was composed by the
bottom half straight cylinder surface{

(x1, x2, x3) ∈ R
3; xmin < x1 < xmax,

√
x2

2 + x2
3 = R, x3 < 0

}
and the stenosis surface (see Figure 8), obtained from the top half straight cylinder surface{

(x1, x2, x3) ∈ R
3; xmin < x1 < xmax,

√
x2

2 + x2
3 = R, x3 ≥ 0

}
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via the map

(x1, x2, x3) →
(

x1, x2, x3 − (hS
max − hS

min)
(�2 − x2

1)

�2
(R2 − x2

2)

R2

)
, |x1| ≤ �, |x2| ≤ R.

The initial boundary of the structure domain was composed by: the interior lateral surface Γ0,
which is the fluid–structure interface; the exterior lateral surface

ΓN
0 =

{
(x1, x2, x3) ∈ R

3; xmin < x1 < xmax,
√

x2
2 + x2

3 = R + hS
min

}
;

and two annular surfaces Σ5, Σ7, of radii R and R + hS
min, normal to the axis Ox1, of centers (xmin, 0, 0)

and (xmax, 0, 0), respectively.

Figure 8. The stenosis interface.

The numerical values were: R = 0.5 cm, xmin = −3, xmax = 3, � = 1.5 cm, hS
min = 0.1 cm,

and hS
max = 0.5 cm. The details of meshes used for the numerical tests are presented in Table 3.

Table 3. The number of vertices, tetrahedra and degrees of freedom (DOF) of fluid–structure linear
system for each mesh.

Vertices Tetrahedra DOF

Mesh 1 5756 28,395 108,209
Mesh 2 20,970 95,202 369,486
Mesh 3 48,245 220,266 805,533
Mesh 4 92,228 425,872 1,554,300

We used the same sin-like stress at the inlet similar to the precedent experiments

hin(x, t) =

{ (
0, 0, mag × 1.3332 × 104 × (1−cos(2πt/0.001))

2

)
, x ∈ Σ1, 0 ≤ t ≤ 0.001

(0, 0, 0) , x ∈ Σ1, 0.001 ≤ t ≤ T

where T = 0.02 s and mag > 0 is a parameter.
For Mesh 1, the time step was set to Δt = 5 × 10−4 s, the number of time steps to N = 40

and mag = 5. The total CPU time was 323 s (8.07 s/iteration), on a computer with a processor of
4 × 3.30 GHz frequency and 16 Go RAM. The radial displacement of the interface was measured at
three points: A(−�, 0, R), B(0, 0, R − (hS

max − hS
min)), and C(�, 0, R) (see Figure 9). We observed that the

maximal displacement of point A was more than 0.08 cm, which was more important than in the case
of straight cylinder (see Figure 3). The artery deformation was more important in the uphill zone of
the stenosis than in the case of healthy artery.

16



Fluids 2019, 4, 94

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0  0.002  0.004  0.006  0.008  0.01  0.012  0.014  0.016  0.018  0.02

R
A

D
IA

L 
D

IS
P

LA
C

E
M

E
N

T
S

 (
C

M
)

TIME (S)

A
B
C

Figure 9. The time history of the displacement of three points on the interface using sin-like stress at
the inlet (Mesh 1).

For Mesh 2, the time step was set to Δt = 10−4 s, the number of time steps to N = 200 and mag = 2.
The total CPU time was 15,123 s (75.6 s/iteration), on a noed Intel Sandy-Bridge 16 × 3.30 GHz and
64 Go RAM.

For Mesh 3, the time step was set to Δt = 10−4 s, the number of time steps to N = 200 and
mag = 1. The average CPU time was 4 min 55 s by iteration, on a noed Intel Sandy-Bridge 16 ×
3.30 GHz and 64 Go RAM. The pressure at three time instants is plotted in Figure 10.

Figure 10. The computed pressure obtained with Mesh 3.

For Mesh 4, the time step was set to Δt = 5 × 10−5 s, the number of time steps to N = 400 and
mag = 1. The average CPU time was 18 min 8 s by iteration, on a noed Intel Sandy-Bridge 16 ×
3.30 GHz and 64 Go RAM.

For finer mesh, we were forced to use smaller time steps. This phenomenon was observed for
neither the three-dimensional tests presented above nor for the two-dimensional benchmark flow
around a flexible thin structure attached to a fixed cylinder (see [37]). The semi-implicit algorithms had
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good stability properties (see Remark 3). We suppose that the source of the problem is this particular
surface mesh of the stenosis zone obtained from the mesh of the top half straight cylinder surface by
vertical projection on the stenosis surface.

7. Conclusions

We have presented a monolithic semi-implicit method for three-dimensional fluid–structure
interaction problems. At each time step, we solve only a linear system to find the fluid–structure
velocity and the fluid pressure, thus the method is fast. We use a global mesh for the fluid–structure
domain where the fluid–structure interface is an interior boundary. Using globally continuous finite
element for the velocity in the fluid–structure mesh, the continuity of velocity at the interface is
automatically satisfied.
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Abstract: This paper presents a novel and accurate method to implement the Kutta condition in
solving subsonic (subcritical) inviscid isentropic compressible flow over isolated airfoils using the
stream function equation. The proposed method relies on body-fitted grid generation and solving the
stream function equation for compressible flows in computational domain using finite-difference
method. An expression is derived for implementing the Kutta condition for the airfoils with both
finite angles and cusped trailing edges. A comparison of the results obtained from the proposed
numerical method and the results from experimental and other numerical methods reveals that they
are in excellent agreement, which confirms the accuracy and correctness of the proposed method.

Keywords: computational aerodynamics; Kutta condition; compressible flow; stream function

1. Introduction

Nowadays, computational fluid dynamics complements its experimental and theoretical
counterpart. Benefiting from high-speed digital computers, the use of sophisticated numerical
methods has made possible the numerical solution of fluid flow problems which were heretofore
intractable. Compressible flows over airfoils and wings play a vital role in computational aerodynamics,
and demand advanced computational techniques. Since introducing the source and vortex panel
methods in the late 1960s [1], they have become the standard tools to numerically solve low-speed
flows over bodies of arbitrary shape, and have had extensive applications in flow modeling [2–6]. The
panel methods used for the simulation of flows over an airfoil are concerned with the vortex panel
strength and circulation quantities; the evaluation of such quantities allows one to calculate the velocity
distribution over the airfoil surface, and hence, to determine the pressure coefficients. The Kutta
condition (a viscous boundary condition based on physical observation used with inviscid theoretical
model) states that the flow leaves the sharp trailing edge of an airfoil smoothly [7]. Various methods
have been proposed to impose the Kutta condition [8–10]. In panel methods, the Kutta condition is
incorporated in the numerical formulation by requiring that the strength of vortex sheet is zero at the
airfoil trailing edge. Moreover, the use of panel methods along with the compressibility corrections
such as the Prandtl-Glauert method [11] allow one to consider the compressible flows over bodies. The
panel methods have been extensively investigated in the aerodynamics literature, so these will not be
discussed further here. However, these methods often have trouble with accuracy at the trailing edge
of airfoils with zero angle cusped trailing edges [12]. Moreover, the compressibility corrections do
not give accurate results for the compressible flows over airfoils of any shape at any angle of attack.
For example, the Prandtl-Glauert method is based on the linearized perturbation velocity potential
equation, and hence, it is limited to thin airfoils at small angles of attack [4].

Fluids 2019, 4, 102; doi:10.3390/fluids4020102 www.mdpi.com/journal/fluids21
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In this paper, we propose a novel method to numerically solve the steady irrotational compressible
flow over an airfoil which is exempt from considerations of quantities such as the vortex panel strength
and circulation. This method takes advantage of an O-grid, generated by the elliptic grid generation
technique, over the flow field and approximates the flow field quantities such as stream function,
density, velocity, pressure, speed of sound, and Mach number at the nodal points. An accurate
Kutta condition scheme is proposed and implemented into the computational loop by an exact
derived expression for the stream function. The exact expression is general and encompasses both
the finite-angle and cusped trailing edges. Finally, the results obtained from the proposed numerical
method, and the results from experimental and other numerical methods, are compared to reveal
the accuracy of the proposed method (The material given in this article are implemented in the code
FOILcom which is freely available at: DOI:10.13140/RG.2.2.36459.64801/1).

It is worth emphasizing that the stream function equation considered in this study is completely
equivalent to the full potential equation. Here, the stream function equation is solved in
non-conservative form and can be employed to obtain accurate results for subsonic (subcritical)
inviscid isentropic compressible flow over isolated airfoils. The conservative stream function equation,
along with upwinding schemes such as artificial compressibility [13], can be used to solve transonic
flows over airfoils which is not considered in this study.

2. Governing Equations

The stream function equation for two-dimensional, irrotational, steady, and isentropic flow of a
compressible fluid in non-conservative form is as follows [14–16]

(c2 − u2)ψxx + (c2 − v2)ψyy − 2uvψxy = 0 (1)

where ψ is the stream function, u and v are the components of the velocity vector V, i.e.,V = ui + vj (i
and j are the unit vectors in x and y directions, respectively). For a two-dimensional compressible flow,

u =
ρ0

ρ
ψy (2)

v = −ρ0

ρ
ψx (3)

c is the local sound speed [4]

c2 = c2
0 −

γ− 1
2

V2 = c2
0 −

γ− 1
2

(u2 + v2) (4)

c0 is the stagnation speed of sound, ρ is the density, ρ0 is the stagnation density, and γ = cp/cv

(cv and cp are the specific heats at constant volume and constant pressure, respectively) is the ratio of
specific heats of gas (for air at standard conditions, γ = 1.4). Dividing both sides of Equation (1) by
c2 and then substituting the expressions in Equations (2) and (3) into Equation (1) gives the stream
function equation as

[1− 1
c2 (

ρ0

ρ
)

2
ψ2

y]ψxx + [1− 1
c2 (

ρ0

ρ
)

2
ψ2

x]ψyy +
2
c2 (

ρ0

ρ
)

2
ψxψyψxy = 0 (5)

by substituting Equation (4) into Equation (5), we get

[1− 1
c2

0−
γ−1

2 (
ρ0
ρ )

2
(ψ2

x+ψ
2
y)
(
ρ0
ρ )

2
ψ2

y]ψxx + [1− 1
c2

0−
γ−1

2 (
ρ0
ρ )

2
(ψ2

x+ψ
2
y)
(
ρ0
ρ )

2
ψ2

x]ψyy+

2
c2

0−
γ−1

2 (
ρ0
ρ )

2
(ψ2

x+ψ
2
y)
(
ρ0
ρ )

2
ψxψyψxy = 0

(6)
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and from the local isentropic stagnation properties of an ideal gas, we have

ρ0

ρ
= (1 +

γ− 1
2

M2)

1
γ−1

= (1 +
γ− 1

2
u2 + v2

c2 )

1
γ−1

(7)

M = V
c is the local Mach number. Equations (6) and (7) should be solved simultaneously to obtain

the local values of ψ and ρ in the flow field.

2.1. Transformation

The solution of the governing PDE is based on transformation of the physical domain (x, y) and
the governing equations into the regular computational domain (ξ, η) (see Figure 1). Therefore, the
derivatives such as ψx, ψy, ψxx, ψyy, and ψxy in the stream function equation, Equation (1), should
be transformed from the physical domain (x, y) to the computational domain (ξ, η) [17–19]. This
transformation can be stated as

ξ ≡ ξ(x, y) (8)

η ≡ η(x, y) (9)

and the inverse transformation is given as below.

x ≡ x(ξ, η) (10)

y ≡ y(ξ, η) (11)

Since the stream function equation involves first and second derivatives, relationships are needed
to transform such derivatives from the (x, y) system to the (ξ, η) one. In order to do this, the Jacobian
of the transformation is needed, which is given below

2D : J = J(
x, y
ξ, η

) =

∣∣∣∣∣∣ xξ yξ
xη yη

∣∣∣∣∣∣ = xξyη − xηyξ � 0 (12)

As will be shown, the transformation relations involve the Jacobian in denominator. Hence, it
cannot be zero. Since we deal with the stream function equation, it is necessary to find relationships
for the transformation of the first and second derivatives of the variable ψ with respect to the variables
x and y. By using the chain rule, it can be concluded that

∂ψ

∂x
=
∂ψ

∂ξ
∂ξ
∂x

+
∂ψ

∂η

∂η

∂x
=
∂ψ

∂ξ
ξx +

∂ψ

∂η
ηx (13)

∂ψ

∂y
=
∂ψ

∂ξ
∂ξ
∂y

+
∂ψ

∂η

∂η

∂y
=
∂ψ

∂ξ
ξy +

∂ψ

∂η
ηy (14)

By interchanging x and ξ, and y and η, the following relationships can also be derived

∂ψ

∂ξ
=
∂ψ

∂x
∂x
∂ξ

+
∂ψ

∂y
∂y
∂ξ

=
∂ψ

∂x
xξ +

∂ψ

∂y
yξ (15)

∂ψ

∂η
=
∂ψ

∂x
∂x
∂η

+
∂ψ

∂y
∂y
∂η

=
∂ψ

∂x
xη +

∂ψ

∂y
yη (16)

By solving Equations (15) and (16) for ∂ψ
∂x and ∂ψ

∂y , we finally obtain

∂ψ

∂x
=

1
J
(yη

∂ψ

∂ξ
− yξ

∂ψ

∂η
) (17)
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∂ψ

∂y
=

1
J
(−xη

∂ψ

∂ξ
+ xξ

∂ψ

∂η
) (18)

where J = xξyη − xηyξ is Jacobian of the transformation. By comparing Equations (13) and (17), and
(14) and (18), it can be shown that

ξx =
1
J

yη, ξy = −1
J

xη (19)

ηx = −1
J

yξ, ηy =
1
J

xξ (20)

To transform terms in the stream function equation (Equation (6)), the second order derivatives
are needed. Therefore,

ψxx = (ψx)x = (
1
J
(yηψξ − yξψη))

x
(21)

ψyy = (ψy)y = (
1
J
(−xηψξ + xξψη))

y
(22)

ψxy = (ψx)y = (
1
J
(yηψξ − yξψη))

y
(23)

which result in the following expressions for the second order derivatives

ψxx =
(y2
ηψξξ−2yξyηψξη+y2

ξ
ψηη)

J2 +
(y2
ηyξξ−2yξyηyξη+y2

ξ
yηη)(xηψξ−xξψη)

J3 +
(y2
ηxξξ−2yξyηxξη+y2

ξ
xηη)(yξψη−yηψξ)

J3

(24)

ψyy =
(x2
ηψξξ−2xξxηψξη+x2

ξ
ψηη)

J2 +
(x2
ηyξξ−2xξxηyξη+x2

ξ
yηη)(xηψξ−xξψη)

J3 +
(x2
ηxξξ−2xξxηxξη+x2

ξ
xηη)(yξψη−yηψξ)

J3

(25)

ψxy = 1
J

[
−xη(

yξηψξ+yηψξξ−yξξψη−yξψξη
J − (yηψξ−yξψη)(xξξyη+xξyξη−xξηyξ−xηyξξ)

J2 )+

xξ(
yηηψξ+yηψξη−yξηψη−yξψηη

J − (yηψξ−yξψη)(xξηyη+xξyηη−xηηyξ−xηyξη)
J2 )

] (26)

The finite-difference method can be used to discretize the above expressions in the regular
computational domain (ξ, η). The actual values of ξ and η in the computational domain are immaterial,
because they do not appear in the final expressions. Thus, without a loss of generality, we can select
the coordinates of the node A in the computational domain as ξ = η = 1 and the mesh size as
Δξ = Δη = 1 [19]. Therefore, we have [17]

( fξ)i, j =
1
2
( fi+1, j − fi−1, j) (27)

( fη)i, j =
1
2
( fi, j+1 − fi, j−1) (28)

( fξξ)i, j = ( fi+1, j − 2 fi, j + fi−1, j) (29)

( fηη)i, j = ( fi, j+1 − 2 fi, j + fi, j−1) (30)

( fξη)i, j =
1
4
( fi+1, j+1 − fi−1, j+1 − fi+1, j−1 + fi−1, j−1) (31)

where f ≡ x, y,ψ.

24



Fluids 2019, 4, 102

  
(a) (b) 

Figure 1. The physical and the computational domains. (a) Physical domain. (b) Computational domain.

2.2. Boundary Conditions

Conditions at infinity: Far away from the airfoil surface (toward infinity), in all directions, the flow
approaches the free stream conditions. The known free stream conditions are the velocity V∞, the
pressure p∞, the density ρ∞, and the temperature T∞. Thus, the free stream Mach number is

M∞ =
V∞
c∞

< Mcritical (32)

and the speed of sound c∞ is
c∞ =

√
γRT∞ (33)

where R is the specific gas constant, which is a different value for different gases. For air at standard
conditions, Rair = 287J/(kg.K), γair = 1.4, ρ∞ = 1.23kg/m3, and p∞ = 1.01× 105 N/m2. The critical
Mach number Mcritical is that free stream Mach number at which sonic flow is first achieved on the
airfoil surface.

Condition on the airfoil surface: The relevant boundary condition at the airfoil surface for the inviscid
flow is the no-penetration boundary condition. Thus, the velocity vector must be tangential to the
surface. This wall boundary condition can be expressed by

∂ψ

∂s
= 0orψ = constant (34)

where s is tangent to the surface.

2.3. Grid Generation

Here, an O-grid is initially generated around the airfoil using elliptic grid generation method [17]
and then the stream function equation is solved in the computational domain. The size of mesh is
M×N where M is the number of nodes on the branch cut (a horizontal line connecting the trailing
edge to outer boundary) and N is the number of nodes on the airfoil surface (and hence, the outer
boundary), as shown in Figure 1. The physical domain before and after meshing using an O-grid of
size 110 × 101 is shown in Figure 2 (using a NACA 0012 airfoil). Moreover, the magnified view of
different parts of domain is shown in Figure 3 to highlight the orthogonality of the gridlines at airfoil
surface and outer boundary.
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(a) (b) 

Figure 2. The physical domain before and after meshing. (a) Physical domain before meshing.
(b) Physical domain after meshing.

Figure 3. Magnified view of different parts of domain.

2.4. Kutta Condition

In inviscid flows, because the flow cannot penetrate the surface, the velocity vector must be
tangential to the surface. In other words, the component of velocity normal to the surface must be zero
and only the tangential velocity component must be considered. The unit tangent vector on the airfoil
surface can be expressed as

τ(ξ) = n(ξ) × k (35)

τ(η) = n(η) × k (36)

26



Fluids 2019, 4, 102

where n(ξ) and n(η) are the outward-pointing unit normal vector to a airfoil surface in ξ and η directions,
respectively, and k is the unit vector in z direction.

At the airfoil surface, corresponding to surface S3 in Figure 4, we have

n(ξ) = − ∇ξ|∇ξ| = −
ξxi + ξyj√
ξ2

x + ξ2
y

(37)

 

1
S

2
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3
S

4
S

1
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3
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4
n

�

�

Figure 4. The outward—pointing unit normal vectors to ξ = constant and η = constant lines.

From the transformation relationships (Equation (19)), we have

n(ξ) = −
1
J yηi + (− 1

J xηj)√
(

yη
J )

2
+ (− xη

J )
2
=
−yηi + xηj√

α
(38)

where α = xη2 + yη2. Using Equation (35), we get

τ
(ξ)

S3
= n

(ξ)

S3
× k =

1√
α
(−yηi + xηj) × k =

1√
α
(−yη(−j) + xηi) =

1√
α
(xηi + yηj) (39)

The velocity component tangential to the airfoil surface (S3) is

Vt = V.τ(ξ)S3
= (ui + vj).

1√
α
(xηi + yηj) (40)

For compressible flows, the velocity components of u and v can be expressed in terms of stream
function ψ as

u =
ρ0

ρ
ψy =

ρ0

ρ
1
J
(−xηψξ + xξψη) (41)

and
v = −ρ0

ρ
ψx = −ρ0

ρ
1
J
(yηψξ − yξψη) (42)

where ρ0 is a constant. On the airfoil surface, ψs = ψη = 0 where s is the distance measured along
the airfoil surface because the airfoil contour is a streamline of the flow. Thus Equations (41) and (42)
become

u =
ρ0

ρ
1
J
(−xηψξ) (43)
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and
v = −ρ0

ρ
1
J
(yηψξ) (44)

By substituting Equations (43) and (44) into Equation (40), we get

Vt = (−ρ0
ρ

1
J xηψξi− ρ0

ρ
1
J yηψξj). 1√

α
(xηi + yηj) = −ρ0

ρ
1
J

1√
α

x2
ηψξ − ρ0

ρ
1
J

1√
α

y2
ηψξ =

−ρ0
ρ

1
J

1√
α
(x2
η + y2

η)ψξ = −ρ0
ρ

1
J

1√
α
(α)ψξ = −ρ0

ρ

√
α

J ψξ
(45)

Based on the Kutta condition, the velocity at the trailing edge of the airfoil must be the same when
approached from the upstream direction along the upper and lower airfoil surfaces [20] (see Figure 5).
Thus,

Vt|1,1 = Vt|1,N
= C

{
C = 0 for finite angle trailing edge
C � 0 for cusped trailing edge

(46)

For the finite angle trailing edge, we have

Vt|1,1 = 0

−ρ0

ρ

√
α

J
ψξ

∣∣∣∣∣∣
1,1

= 0

hence
ψξ

∣∣∣
1,1 = 0ψ2,1 −ψ1,1 = 0

ψ2,1 = ψ1,1 (47)

(The above expression is based on forward finite-difference coefficient with first-order accuracy.
The forward finite-difference coefficient with second-order accuracy can be used if more accurate Kutta
condition implementation is needed.)

Therefore, the wall boundary condition for the finite angle trailing edge becomes

ψ1, j = ψ2,1( j = 1, . . . , N) (48)

because the stream function on the airfoil surface is constant.
For the cusped trailing edge, we have

Vt|1,1 = Vt|1,N−
ρ0

ρ

√
α

J
ψξ

∣∣∣∣∣∣
1,1

= −ρ0

ρ

√
α

J
ψξ

∣∣∣∣∣∣
1,N

(49)

The points (1, 1) and (1, N) as well as the points (2, 1) and (2, N) are the same points (see Figure 5).
Therefore, ψ1,1 = ψ1,N and ψ2,1 = ψ2,N

ψξ
∣∣∣
1,1 = ψ2,1 −ψ1,1 = ψ2,N −ψ1,N = ψξ

∣∣∣
1,N

On the other hand, we know that

−ρ0

ρ

√
α

J

∣∣∣∣∣∣
1,1

� −ρ0

ρ

√
α

J

∣∣∣∣∣∣
1,N

(50)

Thus, the only possibility to satisfy Equation (49) is that

ψξ
∣∣∣
1,1 = ψξ

∣∣∣
1,N = 0
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which this relation again results in the same expression as for the finite angle trailing edge case. So,
the general expression to implement the Kutta condition based on the stream function for the 2D
compressible flow is

ψ1,1 = ψ2,1 (51)

which is the same as one for the incompressible flow [21]

 
 

(a) (b) 

Figure 5. Grid notation and tangential velocity components at trailing edge. (a) Finite angle trailing
edge. (b) Cusped trailing edge.

2.5. Computation Procedure

According to the mapping scheme adopted in Figure 1, there are four sections where the nodal
value of the flow variables fi, j ( f ≡ ψ,ρ, p, u, v, V, c, M, . . .) should be calculated.

1. Inside the domain to calculate the variables fi, j (i = 2, . . . , M− 1, j = 2, . . . , N − 1).
2. On the airfoil surface to calculate the variables f1, j ( j = 1, . . . , N).
3. At the outer boundary (far-field) to calculate the variables fM, j ( j = 1, . . . , N).
4. On the branch cut to calculate the variables fi,1 (i = 2, . . . , M− 1). We know that fi,N = fi,1.

The known free-stream variables are M∞, p∞, ρ∞, T∞, and the angle of attack α. Thus, we can write

MM, j = M∞( j = 1, . . . , N) (52)

TM, j = T∞( j = 1, . . . , N) (53)

ρM, j = ρ∞( j = 1, . . . , N) (54)

pM, j = p∞( j = 1, . . . , N) (55)

cM, j = c∞ =
√
γairRairT∞ =

√
(1.4)(287)TM, j( j = 1, . . . , N) (56)

VM, j = V∞ = M∞c∞ = MM, jcM, j( j = 1, . . . , N) (57)

from the local isentropic stagnation properties of an ideal gas, we have

ρ0M, j

ρM, j
= (1 +

γair − 1
2

M2
M, j)

1
γair−1

( j = 1, . . . , N) (58)

so the local total density ρ0M, j can be computed as

ρ0M, j = ρM, j(1 +
γair − 1

2
M2

M, j)

1
γair−1

( j = 1, . . . , N) (59)
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In a similar fashion, we can write

p0M, j = pM, j(1 +
γair − 1

2
M2

M, j)

γair
γair−1

( j = 1, . . . , N) (60)

T0M, j = TM, j(1 +
γair − 1

2
M2

M, j)( j = 1, . . . , N) (61)

c0M, j =
√
γairRairT0M, j =

√
(1.4)(287)T0M, j( j = 1, . . . , N) (62)

We know that if the general flow field is isentropic throughout, then the local total density ρ0, the
local total pressure p0, and the local total temperature T0 are constant values throughout the flow. Thus

c0i, j = c0M, j(i = 1, . . . , M, j = 1, . . . , N) (63)

ρ0i, j = ρ0M, j(i = 1, . . . , M, j = 1, . . . , N) (64)

p0i, j = p0M, j(i = 1, . . . , M, j = 1, . . . , N) (65)

T0i, j = T0M, j(i = 1, . . . , M, j = 1, . . . , N) (66)

Also, on the outer boundary (far-field) we have

uM, j = Vx∞ = V∞ cosα( j = 1, . . . , N) (67)

vM, j = Vy∞ = V∞ sinα( j = 1, . . . , N) (68)

If the number of nodes on the outer boundary (the side BG in Figure 1) is N, then, as shown in
Figure 6, the node number of two points at top (point E) and bottom (point F) of the circular outer
boundary would be (M, N+3

4 ) and (M, 3N+1
4 ), respectively.

 

Figure 6. Representation of node number of top and bottom points on the outer boundary (far-field).
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Then we can express the magnitude of the stream function on the outer boundary ψM, j in terms
of far-field velocity VM, j as (by considering the equal magnitudes but opposite in sign for stream
functions at top and bottom points of E and F, that is, ψF = −c and ψE = c, c is a constant)

uM, 3N+1
4

=
ρ0

M, 3N+1
4

ρ
M, 3N+1

4

∂ψ
∂y

∣∣∣∣
M, 3N+1

4

=
ρ0

M, 3N+1
4

ρ
M, 3N+1

4

(
ψ

M, N+3
4
−ψ

M, 3N+1
4

y
M, N+3

4
−y

M, 3N+1
4

) =

ρ0
M, 3N+1

4
ρ

M, 3N+1
4

(
−ψ

M, 3N+1
4
−ψ

M, 3N+1
4

y
M, N+3

4
−y

M, 3N+1
4

) = −
ρ0

M, 3N+1
4

ρ
M, 3N+1

4

(
2ψ

M, 3N+1
4

y
M, N+3

4
−y

M, 3N+1
4

)

(69)

Therefore,

ψM, 3N+1
4

= −
ρM, 3N+1

4

ρ0
M, 3N+1

4

uM, 3N+1
4

yM, N+3
4
− yM, 3N+1

4

2
(70)

Now the magnitude of the stream function on the outer boundary can be calculated as a (based
on the relation ψ = − ρ

ρ0
Vyx + ρ

ρ0
Vxy)

ψM, j = ψM, 3N+1
4

+
ρM, j

ρ0M, j

uM, j(yM, j − yM, 3N+1
4

) − ρM, j

ρ0M, j

vM, j(xM, j − xM, 3N+1
4

) (71)

In Equation (69), we should note that the two points E and F have the same x-coordinates and
hence ψ = − ρ

ρ0
Vyx + ρ

ρ0
Vxy = 0 + ρ

ρ0
Vxy =

ρ
ρ0

Vxy.

The iterative process to obtain the value of ψi, j and ρi, j may be initiated by assuming
ρ0i, j
ρi, j

= 1
or ρi, j = ρ0i, j . This initial assumption implies that the magnitude of the speed of sound is infinite
(c = ∞⇒ 1

c2 = 0) and Equation (5) reduces to Laplace’s equation

ψxx +ψyy = 0 (72)

The first iteration is concerned with the solution of Laplace’s equation which is described
thoroughly in [21] and we do not elaborate further on it. After solving the Laplace’s equation to find the
value of the stream function at each node, ψi, j, in the flow field, the values of the velocity components
of ui, j and vi, j can be computed from Equations (2) and (3). Then, the value of the speed of sound
at each node, ci, j,can be calculated from Equation (4). Finally, the value of the density at each node,
ρi, j, can be determined from Equation (7). If the flow is compressible, ρi, j � ρ0i, j and from the second
iteration onwards, instead of Laplace’s equation, the stream function given in Equation (6) must be
solved by having the density ρi, j and the stream function ψi, j from the last iteration (i.e., iteration 1)
to get new values of the stream function ψi, j. The iterative process (solving Equations (6) and (7)
simultaneously) repeated until successive iterations produce a sufficiently small change in density ρi, j
and the stream function ψi, j. Equation (6) is solved by initially discretizing the partial differential terms
in Equations (21)–(26) using relations given in Equations (27)–(31) and then substituting the terms into
Equation (6), and finally, solving the obtained algebraic equation using an algebraic solver (such as
Maple) to get an explicit algebraic expression in terms of ψi, j. As stated before, the Kutta condition is
implemented as

ψ1,1 = ψ2,1 (73)

ψ1,N = ψ1,1(thesamenode) (74)

and the wall boundary condition is implemented as

ψ1, j = ψ1, j−1( j = 2, . . . , N − 1) (75)

and since the branch cut (AB or HG in Figure 1) is inside the flow field, the same procedure employed
to obtain an algebraic expression for ψi, j can also be used to obtain an expression for the stream
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function on the branch cut, ψi,1. However, some changes are needed in the terms discretized by the
finite-difference method (Equations (27)–(31)) as follows (see Figure 7)

( fξ)i,1 =
1
2
( fi+1,1 − fi−1,1) (76)

( fη)i,1 =
1
2
( fi,2 − fi,N−1) (77)

( fξξ)i,1 = ( fi+1,1 − 2 fi,1 + fi−1,1) (78)

( fηη)i,1 = ( fi,2 − 2 fi,1 + fi,N−1) (79)

( fξη)i,1 =
1
4
( fi+1,2 − fi−1,2 − fi+1,N−1 + fi−1,N−1) (80)

where f ≡ x, y,ψ.

 

Figure 7. Node notation on the branch cut.

and on the branch cut
ψi,N = ψi,1(i = 2, . . . , M− 1) (81)

In order to solve the elliptic grid generation equations (for x and y) and the stream function
equation, the iterative method Successive Over Relaxation (SOR) is used due to its high convergence rate

f (k)i, j = ω f (k−1)
i, j + (1−ω) f (k−2)

i, j (82)

where f ≡ x, y,ψ. In these relation for SOR, k is iteration number, and ω is relaxation factor which has a
value of 1 < ω < 2. A value of ω = 1.8 is chosen in this study and the code FOILcom.

We should define the stopping criteria for convergence of solution of the stream function equation
(Equation (6) and density equation (Equation (7)). These two equations constitute the system of
equations to be solved simultaneously. The stopping criteria are defined as follows

λψ =
M−1∑
i=2

N−1∑
j=2

(ψ
(k+1)
i, j −ψ(k)

i, j )
2 (83)

λρ =
M−1∑
i=2

N−1∑
j=2

(ρ
(k+1)
i, j − ρ(k)i, j )

2 (84)

where k is iteration number. A value of λψ = λρ = 10−4 can be considered to get sufficiently accurate
results. The other parameters of interest can also be computed after obtaining the density ρi, j and the
stream function ψi, j. The components of the velocity at each node, ui, j and vi, j, can be computed from

ui, j =
ρ0i, j

ρi, j
ψy

∣∣∣
i, j =

ρ0i, j

ρi, j

1
J
(−xηψξ + xξψη)

∣∣∣∣∣
i, j

(85)
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vi, j = −
ρ0i, j

ρi, j
ψx

∣∣∣
i, j = −

ρ0i, j

ρi, j

1
J
(yηψξ − yξψη)

∣∣∣∣∣
i, j

(86)

Then, the velocity at each node, Vi, j, is given by

Vi, j =
√

u2
i, j + v2

i, j (87)

and the local (nodal) Mach number can be obtained by

Mi, j =
Vi, j

ci, j
(88)

where the local speed of sound,ci, j, is calculated from Equation (4). And finally, the local pressure, pi, j,
is calculated from

p0i, j

pi, j
= (1 +

γair − 1
2

M2
i, j)

γair
γair−1

(89)

Now the values of drag and lift forces on the airfoil can be computed as follows

D = A cosα+ N sinα (90)

L = −A sinα+ N cosα (91)

where A and N are axial and normal forces, respectively (Figure 8) [4]. We can write the drag and lift
forces as

D =
N−1∑
j=1

(p1, j(y1, j − y1, j+1) cosα+ p1, j(x1, j+1 − x1, j) sinα) (92)

L =
N−1∑
j=1

(−p1, j(y1, j − y1, j+1) sinα+ p1, j(x1, j+1 − x1, j) cosα) (93)

and the drag and the lift coefficients may be expressed as

cd =
D

1
2ρ∞V2∞

(94)

cl =
L

1
2ρ∞V2∞

(95)

Furthermore, the flowchart of the computational procedure is presented in Figure 9.
The theoretical and computational details presented here for compressible flows are implemented

in the freely available code FOILcom. Interested readers can refer to the code and use it by changing
the airfoil shape, the free stream subcritical Mach number, and the angle of attack. The freely available
code FOILincom(DOI: 10.13140/RG.2.2.21727.15524) also takes advantage of the same computational
procedure but only for incompressible flow.
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Figure 8. Aerodynamic force R and the components into which it splits [4].

 

Figure 9. Flowchart of computational procedure.
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3. Results

A few test cases are given to reveal the accuracy and robustness of the numerical scheme. Here, the
results from FOILcom are compared with experimental and numerical results (alternative numerical
schemes) to show its accuracy and efficiency.

Test case 1: Critical Mach number for the NACA 0012 airfoil at zero angle of attack.
The airfoil surface pressure coefficient distribution using FOILcom is shown in Figure 10. The

critical Mach number for the NACA 0012 airfoil at zero angle of attack is obtained as 0.722 using
FOILcom with a grid of size 110× 101 and xM,1 = 10 m. The critical Much number in references [4,22]
is obtained as 0.725 (the experimental data in [22] is investigated in [4]). A comparison of results is
shown in Figure 11 which reveals an excellent agreement.

 

Figure 10. The pressure coefficient distribution for NACA0012 using FOILcom (M∞ = Mcritical = 0.722,
α = 0).
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Figure 11. The pressure coefficient distribution. Comparison of FOILcom result and the one from
References [4,22].

Test case 2: The airfoil surface pressure coefficient distribution for the NACA 0012 using a grid
of size 110 × 101, M∞ = 0.5, and α = 3◦ (Figures 12 and 13). The results from FOILcom (Figure 12)
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and both finite volume and meshless methods (the results from finite volume and meshless methods
in [23] are presented in one plot due to an excellent agreement between the results) are compared and
depicted in Figure 13.

 

Figure 12. The pressure coefficient distribution for NACA0012 using FOILcom (M∞ = 0.5, α = 3◦).
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Figure 13. The pressure coefficient distribution. Comparison of FOILcom result and the one from
Reference [23].

Test case 3: The airfoil surface pressure coefficient distribution for the NACA 0012 using a grid of
size 110× 101, M∞ = 0.63, and α = 2◦ (Figures 14 and 15). In this test case, the result from FOILcom is
compared to the one from the code FLO42. There is excellent agreement between the results.
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Figure 14. The pressure coefficient distribution for NACA0012 using FOILcom (M∞ = 0.63, α = 2◦).
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Figure 15. The pressure coefficient distribution. Comparison of FOILcom result and the one from
FLO42 [24].

Test case 4: The airfoil surface pressure coefficient distribution for the NACA 2414. M∞ = 0.435
and α = 2◦ (Figures 16 and 17). In this test case, 19,740 nodes (mesh size of 140× 141) and 51,792 nodes
are used in FOILcom and ANSYS Fluent, respectively. The drag and lift coefficients are calculated
as follows:

FOILcom : cd = −4.362× 10−3, cl = 0.573

ANSYS Fluent : cd = 9.985× 10−4, cl = 0.574

which shows perfect agreement. The results are obtained by a FORTRAN compiler and computations
are run on a PC with Intel Core i5 and 6G RAM. A tolerance of 10−7 is used in iterative loops to increase
the accuracy of results. The computation time is about 5 min which is high due to the iterative solution
of the elliptic grid generation and the stream function equations.
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Figure 16. The pressure coefficient distribution for NACA2414 using FOILcom (M∞ = 0.435, α = 2◦).

 

Figure 17. The pressure coefficient distribution. Comparison of FOILcom result and the one from
ANSYS Fluent (V19.2).

Test case 5: The airfoil surface pressure coefficient distribution using different grid sizes for NACA
2214 airfoil and M∞ = 0.55, α = 2◦.

Grid sizes are:

(a) 30× 41
(b) 80× 61
(c) 120× 161
(d) 200× 201

The results are shown in Figure 18. In this test case, four different grid sizes are used to obtain the
airfoil surface pressure coefficient distribution. As shown in Figure 18, the distribution can be obtained
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with reasonable accuracy using even a course grid (30× 41). The effect of grid size on the drag and lift
coefficients is depicted in Figure 19. Moreover, the drag and lift coefficients using the four different
grid sizes are compared to the ones from XFOIL (Figure 20) and are given in Table 1. As can be seen,
the results from FOILcom are in excellent agreement with the result from XFOIL.

 

Figure 18. The airfoil surface pressure coefficient distribution using different grid sizes for NACA 2214
airfoil (M∞ = 0.55, α = 2◦). The code FOILcom is used.

  

(a) (b) 

Figure 19. Effect of grid size on drag coefficient (a) and lift coefficient (b).
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Figure 20. The airfoil surface pressure coefficient distribution for NACA 2214 airfoil (M∞ = 0.55,
α = 2◦) using XFOIL.

Table 1. Drag and lift coefficients using different grid sizes. Codes FOILcom and XFOIL are used.

Code and Grid Size cd cl

FOILcom: 30 × 41 −3.1764 × 10−2 0.5893
FOILcom: 80 × 61 −1.4563 × 10−2 0.5839

FOILcom: 120 × 161 −5.2130 × 10−3 0.5983
FOILcom: 200 × 201 −4.2097 × 10−3 0.6032

XFOIL −7.23 × 10−3 0.6088

Test case 6: The airfoil surface pressure coefficient distribution for NACA 64-012airfoil and
M∞ = 0.3, α = 6◦. The mesh size used in FOILcom is 50 × 141. The computation time is 46 s.
The results from two codes FOILcom and FOILincom along with the Karman-Tsien compressibility
correction are compared and depicted in Figure 21. Moreover, the convergence history of λψ and λρ
are shown in Figure 22. As can be seen, in this test case five iterations are needed to satisfy the stopping
criteria (λψ = λρ = 10−4).
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Figure 21. Comparison of surface pressure coefficient distributions for NACA 64-012 airfoil
(M∞ = 0.3, α = 6◦) using the codes FOILcom and FOILincom along with the Karman-Tsien
compressibility correction.

 

λ ψ λ ρ

Figure 22. Convergence history of λψ and λρ.

Test case 7: The airfoil surface pressure coefficient distribution for NACA 2240 airfoil and M∞ = 0.3
at two different angles of attack α = 3◦ and α = 6◦. The mesh size used in FOILcom is 120× 141. In
this test case, a thick airfoil, NACA 2240, is used to reveal the accuracy of the proposed numerical
method in dealing with thick airfoils at high angles of attack. The results from FOILcom, FOILincom
along with the Karman-Tsien compressibility correction, and XFOIL are compared and depicted in
Figure 23 for the angle of attack α = 3◦ and Figure 24 for the angle of attack α = 6◦. Furthermore, the
results from XFOIL are given in Figure 25 for the angle of attack α = 3◦ and Figure 26 for the angle of
attack α = 6◦. The drag and lift coefficients using both codes for two different angles of attack are
given in Table 2.
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Figure 23. Comparison of surface pressure coefficient distributions for NACA 2240 airfoil (M∞ = 0.3,
α = 3◦) using the codes FOILcom, FOILincom along with the Karman-Tsien compressibility correction,
and XFOIL.

 

Figure 24. Comparison of surface pressure coefficient distributions for NACA 2240 airfoil (M∞ = 0.3,
α = 6◦) using the codes FOILcom, FOILincom along with the Karman-Tsien compressibility correction,
and XFOIL.
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Figure 25. The airfoil surface pressure coefficient distribution for NACA 2240 airfoil (M∞ = 0.3, α = 3◦)
using XFOIL.

 

Figure 26. The airfoil surface pressure coefficient distribution for NACA 2240 airfoil (M∞ = 0.3, α = 6◦)
using XFOIL.

Table 2. Drag and lift coefficients using FOILcom and XFOIL.

NACA 2240 Airfoil cd cl

M∞ = 0.3, α = 3◦ FOILcom: −0.01668
XFOIL: −0.01126

FOILcom: 0.7977
XFOIL: 0.7806

M∞ = 0.3, α = 6◦ FOILcom: −0.02684
XFOIL: −0.01418

FOILcom: 1.2714
XFOIL: 1.2718

4. Conclusions

The solution of 2D steady, irrotational, subsonic (subcritical) compressible flow over isolated
airfoils using the stream function equation and a novel method to implement the Kutta condition have
been presented. The numerical scheme takes advantage of transformation of the flow solver and the
boundary conditions from the physical domain to the computational domain. The physical domain
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was meshed by an O-grid elliptic grid generation method and the transformed flow solver is discretized
by finite-difference method, a method chosen for its simplicity and ease of implementation. The
numerical scheme is exempt from considering the panels and the quantities such as the vortex panel
strength and circulation used in the panel method. An accurate Kutta condition scheme is proposed
and implemented into the computational loop by an exact derived expression for the stream function
at the airfoil trailing edge. The exact expression is general, and encompasses both the finite-angle and
cusped trailing edges. Through several test cases, the proposed numerical scheme was validated by
results from the experimental and the other numerical methods. The obtained results revealed that the
proposed algorithm is very accurate and robust.
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Nomenclature

A axial force (N)

c speed of sound (m/s)
cd drag coefficient
cl lift coefficient
D drag force (N)

J Jacobian of transformation
L lift force (N)

M Mach number (V/c)
N normal force (N)

p pressure (N/m2)

T temperature (K)

u, v velocity components (m/s)
V velocity (m/s)
x, y Cartesian coordinates in the physical domain (m)

Greek symbols

α angle of attack, metric coefficient in 2-D elliptic grid generation
γ ratio of specific heats
λ stopping criterion
ρ density (kg/m3)

ω relaxation factor
ξ, η Cartesian coordinates in the computational domain
ψ stream function

Subscripts

0 stagnation condition
∞ free stream condition
i grid index in ξ-direction
j grid index in η-direction
M number of grid points in ξ-direction
N number of grid points in η-direction

Superscript

k iteration number
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Abbreviations

PDE Partial Differential Equation
FDM Finite Difference Method
SOR Successive Over Relaxation
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Abstract: The non-linear Schrödinger (NLS) equation has often been used as a model equation in
the study of quantum states of physical systems. Numerical solution of NLS equation is obtained
using cubic B-spline Galerkin method. We have applied the Crank–Nicolson scheme for time
discretization and the cubic B-spline basis function for space discretization. Three numerical problems,
including single soliton, interaction of two solitons and birth of standing soliton, are demonstrated to
evaluate to the performance and accuracy of the method. The error norms and conservation laws
are determined and found to be in good agreement with the published results. The obtained results
show that the approach is feasible and accurate. The proposed method has almost second order
convergence. The linear stability of the method is performed using the Von Neumann method.

Keywords: non-linear Schrödinger equation; cubic B-spline basis functions; Galerkin method

1. Introduction

The non-linear Schrödinger (NLS) equation describes how the behavior of quantum states of a
physical system changes in time and space. The NLS equation can be used to describe the propagation
of optical pulses and waves in water and plasmas, among other things. Due to the presence of
nonlinearity and the complex nature of the problem, it is still a challenge for researchers to determine
the most suitable method. Many theoretical and numerical studies have been carried out to overcome
this difficulty. The B-spline Galerkin method is quite advanced and has been used by researchers to
solve other complex problems.

Dag [1] presented the quadratic and cubic B-spline Galerkin finite element method for solving
the Burger’s equation. This method was found to give satisfactory results for the Burger’s equation,
particularly when continuity of the solutions was essential. Dag et al. [2] also proposed a cubic
B-splines collocation method for solving the one-dimensional Burger’s equation. The proposed scheme
was easy to implement and did not require any inner iteration to deal with the nonlinear term of
the Burger’s equation. Gorgulu et al. [3] presented exponential B-splines Galerkin finite element
method for the numerical solution of the advection-diffusion equation. In this study, a new algorithm
was developed for the numerical solution of differential equations. This algorithm was obtained by
utilizing exponential B-spline functions for the Galerkin finite element method. It was reported that
the proposed method gave satisfactory results. The exponential B-splines Galerkin method for the
numerical solution of the Burger’s equation was also applied by Gorgulu et al. [4].

Saka et al. [5] proposed a quartic B-splines Galerkin finite element method for solving the
regularized long wave equation. The performance and accuracy of the method were observed.
The method has a weakness because of its large number of matrix operations. The quartic B-spline
method was found to be very useful for finding the numerical solutions of the differential equation
when higher continuity of solutions occurs. Aksan [6] presented the quadratic B-spline finite element
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method for finding the approximate solution of the nonlinear Burger’s equation. The high accuracy of
the proposed method was thoroughly examined. Gardner et al. [7] also applied a cubic B-spline finite
element method for the numerical solution of the Burger’s equation. They noticed that the proposed
finite element method gave more accurate results than other approaches.

Sheng et al. [8] solved the NLS equation using a finite difference method based on quartic spline
approximation and semidiscretization. The NLS equation was approximated using a finite element
method by Zlotnik and Zlotnik [9]. Ersoy et al. [10] studied the numerical solution of the NLS
equation using an exponential B-spline with collocation method. In that paper, they used the Crank
Nicolson formulation for time integration and exponential cubic B-spline functions for space integration.
Mokhtari et al. [11] solved the NLS equation using delta-shaped basis functions. Saka [12] solved the
NLS using the collocation method with quintic B-spline functions. The generating function of the
Hermite polynomial and the orthogonal Hermite function were introduced with ordinary Hermite
polynomials by Cesarano et al. [13]. The nature of Hermite polynomials is described in the Schrödinger
Equation. Analytical solutions of the NLS equation for certain initial and boundary conditions were
presented by Zakharov and Shabat [14]. The numerical solution of the NLS equation was obtained by
Lin [15] using a septic spline function method with the collocation method. The Galerkin finite element
method for the NLS equation was applied by Dag, with quadratic B-spline functions as the weight and
trial functions over finite elements [16]. The numerical solution of the NLS equation was also obtained
by using the collocation method based on cubic B-spline by Gardner et al. [17]. Hu [18] presented
a conservative two-grid finite element method for the numerical solution of the NLS equation and
applied one Newton iteration for the linearization of the problem by using the coarse-grid solution
as the initial guess. The Galerkin B-spline method is not often used for the numerical solution of the
NLS equation. A review of some numerical methods for solving the NLS equation indicates that most
methods use the collocation finite element method.

In this paper, we study the use of the Galerkin method with cubic B-spline function as the
weight and trial functions over finite elements to solve the NLS equation. This paper is organized
as follows. In Section 2, we discussed the governing equation and fundamentals of Cubic B-spline
Galerkin method. In Section 3, the stability analysis of the numerical scheme is analyzed using the
Von Neumann method. The numerical results and test problems are discussed in Section 4. In the last
section, the conclusions are given.

2. Governing Equation and Cubic B-Spline Galerkin Method

The NLS equation is
iut + uxx + q|u|2u = 0, (1)

The equation in (1) is called a self-focusing NLS equation when q > 0 and a defocusing NLS
equation when q < 0. The subscripts x and t denote the spatial variable and time variable respectively;
q is a positive real parameter, and i =

√−1. u(x, t) is a complex-valued function and defined over the
whole real line. The initial condition is

u(x, 0) = f (x), x ∈ [a, b], (2)

and the boundary conditions are as follows:

u(a, t) = u(b, t) = 0. (3)

The solution u(x, t) is decomposed into its real and imaginary parts as

u(x, t) = r(x, t) + is(x, t), (4)
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Substituting Equation (4) into Equation (1), the following coupled partial differential equations
are obtained: ⎧⎪⎪⎨⎪⎪⎩ st − rxx − q

(
r2 + s2

)
r = 0,

rt + sxx + q
(
r2 + s2

)
s = 0.

(5)

The solution domain [a, b] is divided equally into N finite elements by the nodes xk such that
a = x0 < x1 < · · · xN = b and h = b−a

N = xk+1 − xk. In this paper, we choose cubic B-spline function
as the weight and trial function. The cubic B-splines ∅k(x), (k = −1, . . . , N + 1) are defined over the
interval [a, b] as follows [1]:

∅k(x)

= 1
h3

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(x− xk−2)
3 x ∈ [xk−2, xk−1],

h3 + 3h2(x− xk−1) + 3h(x− xk−1)
2 − 3(x− xk−1)

3 x ∈ [xk−1, xk],

h3 + 3h2(xk+1 − x) + 3h(xk+1 − x)2 − 3(xk+1 − x)3 x ∈ [xk, xk+1],

(xk+2 − x)3 x ∈ [xk+1, xk+2],

0 otherwise.

(6)

The approximate solution uN(x, t) to the analytical solution u(x, t) for Equation (1) is written in
terms of the cubic B-spline function as

uN(x, t) = sN(x, t) + rN(x, t) =
N+1∑
j=−1

δ j(t)∅ j(x), (7)

where δ j(t) = ρ j(t) +ψ j(t),

sN(x, t) =
N+1∑
j=−1

ρ j(t)∅ j(x),

rN(x, t) =
N+1∑
j=−1

ψ j(t)∅ j(x).
(8)

The coefficients ρ j(t) and ψ j(t) are unknown time-dependent parameters that will be determined
from the boundary and weighted residual conditions. Since each cubic B-spline covers 4 elements,
each element [xk, xk+1] is covered by 4 splines. Using the local coordinate’s transformation η = x− xk
for 0 ≤ η ≤ h, the cubic B-spline function over the element [xk, xk+1] can be written as

∅k−1

∅k

∅k+1

∅k+2

=
1

h3

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
(h− η)3

4h3 − 3h2η+ 3h(h− η)2 − 3(h− η)3

h3 + 3h2η+ 3hη2 − 3η3

η3

, 0 ≤ η ≤ h. (9)

Here, all other cubic B-spline functions are zero over the finite element [xk, xk+1]. The approximation
function (Equation (8)) over the finite element can be defined in terms of the basis functions
(Equation (9)) as

sN(x, t) =
k+2∑

j=k−1
ρ j(t)∅ j(x).

rN(x, t) =
k+2∑

j=k−1
ψ j(t)∅ j(x).

(10)
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Using the B-splines basis defined in Equation (6) and the trial function stated in Equation (8),
the nodal values of sk, rk, s′k and r′k at the knots xk are determined in terms of time-dependent element
parameters ρ j and ψ j as:

sk = s(xk) = ρk−1 + 4ρk + ρk+1,

rk = r(xk) = ψk−1 + 4ψk +ψk+1,

hs′k = hs′(xk) == 3(ρk+1 − ρk−1),

hr′k = hr′(xk) == 3(ψk+1 −ψk−1),

h2s′′ k = h2s′′ (xk) == 6(ρk−1 − 2ρk + ρk+1),

h2r′′ k = h2r′′ (xk) = 6( ψk−1 − 2ψk +ψk+1),

(11)

where the prime denotes differentiation with respect to x.
Applying the Galerkin approach to Equation (5) with the weight function W(x), the weak form of

Equation (5) over the finite element [xk, xk+1] is⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

xk+1∫
xk

[Wst + Wxrx − zkWr]dx = 0,

xk+1∫
xk

[Wrt −Wxsx + zkWs]dx = 0,

(12)

where
zk = q(r2 + s2). (13)

Using the weight function W as the cubic B-spline and substituting Equations (10) into (12) with
some manipulations, the following differential equations are obtained:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

k+2∑
j=k−1

⎡⎢⎢⎢⎢⎣⎛⎜⎜⎜⎜⎝ h∫
0
∅m∅ jdη

⎞⎟⎟⎟⎟⎠ .
ρ j +

⎛⎜⎜⎜⎜⎝ h∫
0
∅′m∅′ jdη

⎞⎟⎟⎟⎟⎠ψ j −
⎛⎜⎜⎜⎜⎝zk

h∫
0
∅m∅ jdη

⎞⎟⎟⎟⎟⎠ψ j

⎤⎥⎥⎥⎥⎦ = 0,

k+2∑
j=k−1

⎡⎢⎢⎢⎢⎣⎛⎜⎜⎜⎜⎝ h∫
0
∅m∅ jdη

⎞⎟⎟⎟⎟⎠ .
ψ j +

⎛⎜⎜⎜⎜⎝ h∫
0
∅′m∅′ jdη

⎞⎟⎟⎟⎟⎠ρ j −
⎛⎜⎜⎜⎜⎝zk

h∫
0
∅m∅ jdη

⎞⎟⎟⎟⎟⎠ρ j

⎤⎥⎥⎥⎥⎦ = 0,

(14)

Equation (14) can be written in matrix form as⎧⎪⎪⎨⎪⎪⎩ Ae .
ρ

e
+ Beψe − zkCeψe = 0,

Ae
.
ψ

e − Beρe + zkCeρe = 0,
(15)

where ρe = (ρk−1,ρk,ρk+1,ρk+2)
T and ψe = (ψk−1,ψk,ψk+1,ψk+2)

T are the element parameters and
dot (·) represents differentiation with respect to t. The element matrix Ae

mj, Be
mj and Ce

mj are given by

Ae
mj = Ce

mj =

h∫
0

∅m∅jdη, Be
mj =

h∫
0

∅
′
m∅
′
jdη. (16)
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where m, j = k− 1, k, k + 1, k + 2. The element matrix (16) is calculated as

Ae
mj = Ce

mj =
h∫

0
∅m∅jdη = h

140

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
20 129 60 1.0

129 1188 933 60
60 933 1188 129
1.0 60 129 20

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

Be
mj =

h∫
0
∅′m∅′jdη = 1

10h

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
18 21 −36 −3.0
21 102 −87 −36
−36 −87 102 21
−3.0 −36 21 18

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.
zk values are calculated by writing s = sm+sm+1

2 and r = rm+rm+1
2 in Equation (13). Using the values of

sN and rN at the points xk, we obtain

zk = q

⎡⎢⎢⎢⎢⎣ (ρk−1 + 5ρk + 5ρk+1 + ρk+2)
2

4
+

(ψk−1 + 5ψk + 5ψk+1 +ψk+2)
2

4

⎤⎥⎥⎥⎥⎦. (17)

Assembling the contributions from all of the elements, Equation (15) becomes⎧⎪⎨⎪⎩ A
.
ρ+ Bψ−C(zk)ψ = 0,

A
.
ψ− Bρ+ C(zk)ρ = 0,

(18)

where ρ = (ρ−1,ρ0, . . . ,ρk,ρk+1)
T and ψ = (ψ−1,ψ0, . . . , ψk,ψk+1)

T are global element parameters
and the matrices A, B and C(zk), which are global matrices with a generalized kth row, have the
following form:

A = h
140 (1, 120, 1191, 2416, 1191, 120, 1),

B = 1
10h (−3,−72,−45, 240,−45,−72,−3),

C(zk) =
h

140
(z1k, 60z1k + 60z2k, 129z1k + 933z2k + 129z3k, 20z1k + 1188z2k

+1188z3k + 20z4k, 129z2k + 933z3k + 129z4k, 60z3k + 60z4k, z4k).

(19)

where
z1k =

q
4

[
(ρk−2 + 5ρk−1 + 5ρk + ρk+1)

2 + (ψk−2 + 5ψk−1 + 5ψk +ψk+1)
2
]
,

z2k =
q
4

[
(ρk−1 + 5ρk + 5ρk+1 + ρk+2)

2 + (ψk−1 + 5ψk + 5ψk+1 +ψk+2)
2
]
,

z3k =
q
4

[
(ρk + 5ρk+1 + 5ρk+2 + ρk+3)

2 + (ψk + 5ψk+1 + 5ψk+2 +ψk+3)
2
]
,

z4k =
q
4

[
(ρk+1 + 5ρk+2 + 5ρk+3 + ρk+4)

2 + (ψk+1 + 5ψk+2 + 5ψk+3 +ψk+4)
2
]
.

(20)

Discretization by the Crank-Nicolson method gives us ρ =
(
ρn + ρ(n+1)

)
/2 and

ψ =
(
ψn +ψn+1

)
/2. Similarly, the time discretization by finite difference scheme gives us

.
ρ =

(
ρn+1 − ρn

)
/Δt and

.
ψ = (ψn+1 −ψn)/Δt. Substituting these discretizations into Equation (18),

we obtain the following system:{
Aρn+1 + 0.5Δt(B−C(zk))ψ

n+1 = Aρn − 0.5Δt(B−C(zk))ψ
n,

Aψn+1 − 0.5Δt(B−C(zk) )ρ
n+1 = Aψn + 0.5Δt(B−C(zk))ρ

n.
(21)

Using the boundary conditions in Equation (21) yields a septadiagonal matrix. This system is
solved by an appropriate method in MATLAB.
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First, the initial vectors of parameters ρ0 =
(
ρ0

0, . . . ,ρ0
N
)

and ψ0 =
(
ψ0

0, . . . ,ψ0
N
)

are calculated
to solve System (21) with the use of the initial condition using the relations

sN(x, 0) =
∑N+1

j=−1
∅ j(x)ρo

j and rN(x, 0) =
∑N+1

j=−1
∅ j(x)ψo

j , (22)

where all parameters ρ0 and ψ0 are determined. sN and rN require the following relations to be satisfied
at points xk:

sN(xk, 0) = s(xk, 0),

rN(xk, 0) = r(xk, 0), k = 0, 1, . . . , N.
(23)

The initial vectors ρ0 and ψ0 can be calculated using the initial and boundary conditions from the
following matrix equations:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 1 0 0 0
1 4 1 0
0 1 4 1

. . . . . . . . .
1 4 1
0 1 4 1

0 0 1 4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ0
0

ρ0
1

ρ0
2

...
ρ0

N−2

ρ0
N−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s0
0

s0
1

s0
2

...
s0

N−3

s0
N−2

s0
N−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

and ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 1 0 0 0
1 4 1 0
0 1 4 1

. . . . . . . . .
1 4 1
0 1 4 1

0 0 1 4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ψ0
0

ψ0
1

ψ0
2

...
ψ0

N−2

ψ0
N−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r0
0

r0
1

r0
2

...
r0

N−3

r0
N−2

r0
N−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

This system is solved using a suitable method in MATLAB. The approximate numerical solution
of sN(x, t) and rN(x, t) is obtained from the ρn and ψn using Equation (21).

3. Stability Analysis

Stability analysis of the numerical scheme is carried out using the von Neumann method.
The coupled system of Equation (5) is written as

∂U
∂t

+ M
∂2U
∂x2 + G(U)U = 0, (24)

where U =

[
s
r

]
, M =

[
0 −1
1 0

]
and G(U) =

[
0 −μ1

μ2 0

]
.

To perform linear stability analysis, we further linearize the nonlinear term in Equation (24) by
taking G(U) = μM. Here μ = max[μ1,μ2]. Therefore, the linearized form of Equation (24) is as follows:

∂U
∂t

+ M
∂2U
∂x2 + μMU = 0. (25)

The discretization of linear Equation (24) by the proposed scheme is given by

AUn+1
m −MDUn+1

m = AUn
m + MDUn+1

m , (26)
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where D = B− μI.
We use the following Fourier modes analysis for Scheme (25)

Un
m = PGneimυ. (27)

Here i =
√−1, P ∈ R2 and G ∈ R2×2 is the amplification matrix. Equation (26) is substituted into

Equation (25) to obtain the value of the amplification G. After tedious algebra, we obtain the value of G
as follows

G =
[A + MD

A−MD

]
(28)

Matrix M is a skew symmetric matrix, and therefore both the matrices A + MD and A−MD have
the same eigen values. Thus, the maximum value of |G| = 1. Hence, the linearized Scheme (25) is
unconditionally stable.

4. Numerical Results and Test Problems

Three test problems, including the single soliton, interaction of two solitons and birth of
standing soliton, are presented to evaluate the effectiveness and performance of the proposed method.
The accuracy of the proposed method is examined using the error norms L2andL∞ and conservation
laws defined as

L2 = ||uexact − uN ||2 =

√
h

N∑
k=0

∣∣∣uk
exact − (uN)k

∣∣∣2,

L∞ = ||uexact − uN ||∞ = max
0≤k≤N

∣∣∣uk
exact − (uN)k

∣∣∣. (29)

Moreover, Equation (1) must satisfy the two conservation laws

I1 =
b∫

a
|u|2dx,

I2 =
b∫

a

(
|ux|2 − 1

2 q|u|4
)
dx.

(30)

4.1. Single Soliton Solution to the NLS Equation

The analytical single soliton solution to the NLS equation is given as [2]:

u(x, t) = β

⎛⎜⎜⎜⎜⎜⎝
√

2
q

⎞⎟⎟⎟⎟⎟⎠expi
[1
2

Sx− 1
4

(
S2 − β2

)
t
]
sech(βx− βSt), (31)

where S is the speed of the soliton solution whose magnitude depends on the parameter β.
The numerical solution is computed using the following parameters: q = 2, S = 4, β = 1,

xL = −20, and xR = 20. The conservative quantities I1 and I2 and error norms L∞ and L2 are calculated.
Numerical simulations were carried out at different space steps and time steps for comparison with the
published results of the previous methods. The results are documented in Tables 1 and 2. The numerical
simulations and the absolute numerical error are shown at different times in Figure 1.

Table 2 displays a comparison between the results obtained by the proposed method and published
results. The results of the proposed method are in agreement with analytical solutions within very
satisfactory limits, and the proposed method exhibits the same results as the quintic B-spline collocation
method and quadratic B-spline method, as can be seen from the comparison in Table 2. We found good
results even for large step sizes. It is noted that the error norms of the Galerkin cubic B-spline are lower
than Explicit method [3], Implicit/explicit [3], and Split-step Fourier method [3] when we compare the
results of the proposed method with those referenced in [1,4,19].
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Table 1. Error norms and conservation laws for single soliton: with h = 0.04, q = 2, S = 4, β = 1.

Δt = 0.0025 Δt = 0.005

t L∞ L2 I1 I2 L∞ L2 I1 I2

0.5 0.0000896 0.0000914 2.0 7.33333332 0.00018 0.00018 2.0 7.33333327
1 0.0000896 0.0000914 2.0 7.33333332 0.00018 0.00018 2.0 7.33333327

1.5 0.0000896 0.0000914 2.0 7.33333332 0.00018 0.00018 2.0 7.33333327
2 0.0000896 0.0000914 2.0 7.33333331 0.00018 0.00018 2.0 7.33333327

2.5 0.0000896 0.0000914 2.0 7.33333330 0.00018 0.00018 2.0 7.33333325
3 0.0000896 0.0000914 2.0 7.33333223 0.00018 0.00018 2.0 7.33333219

3.5 0.0000896 0.0000914 1.99999 7.33327430 0.00018 0.00018 1.99999 7.33327425

Figure 1. Single soliton solution and errors |Numerical – Analytical|.
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Table 2. Comparisons of the present results with those of Taha et al. [20]., amplitude = 1 at time = 1.

h Δt L∞ L2 I1 I2 L∞ [20]

0.05 0.0025 0.0001086 0.0001106 2.0 7.33333330 0.008
0.05 0.000625 0.0000272 0.0000277 2.0 7.33333333 0.006
0.05 0.001 0.0000435 0.0000443 2.0 7.33333333 0.006
0.08 0.002 0.0000628 0.0000639 2.0 7.33333330 0.005

0.3125 0.00026 0.0003174 0.0004973 2.00001 7.33332035 0.005
0.3125 0.020 0.0024417 0.0038252 2.00010 7.33320599 0.005

0.05 0.0005 0.0000217 0.0000221 2.0 7.33333333 0.008
0.3125 0.0026 0.0003174 0.0004973 2.00001 7.33332035 0.006

The rate of convergence for spatial and temporal directions is calculated using the formula [21]:

rate of convergence ≈ log2
error(2h, 2Δt)
error(h, Δt)

,

where error(2h, 2Δt) is the error norms L∞ and L2 in spatial and temporal directions. The error norms
L∞, L2 and order of convergence rate at time t = 1 are shown in Table 3.

Table 3. Rate of convergence in spatial and temporal directions at t = 1 with h = Δt.

h L∞ Order L2 Order

0.050000 0.0020492 − 0.0019146 -
0.025000 0.0005730 1.83 0.0005302 1.85
0.012500 0.0001507 1.93 0.000139 1.93
0.001625 0.0000386 1.97 0.0000356 1.96
0.003125 0.00000965 2.00 0.0000089 2.00

In Table 4, the results are documented for when the soliton amplitude is equal to 2. It was
found that the results of the error norms at different times increase very slightly, as shown in Table 4.
One soliton solution with amplitude = 2 is calculated, and simulations are shown in Figure 2.

Table 4. Error norms and conservation laws for single soliton with h = 0.05, Δt = 0.0025 h = 0.05,
q = 2,S = 4, β = 2.

t L2 L∞
0.5 0.0005580 0.0007595
1 0.0005580 0.0007595

1.5 0.0005580 0.0007595
2 0.0005580 0.0007595

2.5 0.0005580 0.0007595
3 0.0005580 0.0007595

3.5 0.0005580 0.0007595
4 0.0005580 0.0007595

Table 5 displays the approximate results obtained using the proposed method compared with the
published methods listed in the reference for single soliton when the amplitude is 2. These results are
in good agreement with the analytical solution.
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Figure 2. Single soliton solution with amplitude 2.

Table 5. Comparisons of single soliton with those of Taha et al. [20], amplitude = 2 at time = 1.

h Δt L∞ L2 L∞ [20]

0.02 0.0025 0.0003909 0.0002859 0.0011
0.066 0.002 0.0009658 0.0007168 0.006
0.02 0.0001 0.0000156 0.0000114 0.009
0.03 0.00022 0.0000143 0.0000105 0.008
0.1 0.0025 0.0016852 0.0012732 0.0004

0.1563 0.0011 0.0010143 0.0007852 0.008

4.2. The Interaction of Two Solitons for the NLS Equation

In the second problem, we discuss the interaction of two solitons moving in opposite directions,
have the same amplitude of magnitude 1 with initial conditions as follows [16,17,20]

u(x, 0) =
2∑

k=1
uk(x, 0),

uk(x, 0) = βk

(√
2
q

)
expi

[
1
2 S(x− xk)

]
sech(βk(x− xk)).

(32)

where βk, q and xk are constants.
The numerical solution is computed by using the following parameters x1 = 10, x2 = −10,

q = 2, β1 = β2 = 1, S1 = −4 and S2 = 4. The first soliton is placed at x = 10 and is moving to the left
with speed 4, and the second soliton is placed on the other side at x = −10, traveling to the right with
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speed 4. Both solitons are moving in opposite directions, and they collide and separate. The interactions
of these two solitons are visualized in Figure 3. The error norms L∞ and L2 are computed at different
times and at different space steps and time steps. The calculated results are tabulated in Table 6.

Figure 3. Interaction of two solitons, amplitude = 1 at different space and time steps.

The error norms L∞ and L2 are very small compared with those of Taha et al. [20], as shown in
Table 7. It can be clearly seen that the error norms L∞ and L2 obtained by the present method are
smaller than those of previous methods [20], as shown in Table 7.
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Table 6. Two-solitons, amplitude = 1 at different space and time steps.

t h Δt L∞ L2

1 0.0667 0.0025 0.0001601 0.0002367
1.5 0.133 0.01 0.0012135 0.0018299
2 0.133 0.01 0.0011711 0.0017397

3.5 0.133 0.01 0.0012135 0.0018299
4.5 0.133 0.01 0.0012144 0.0018317
0.5 0.625 0.005 0.0018529 0.0030593
1 0.625 0.005 0.0017864 0.0030560
1 0.05 0.001 0.0000486 0.0000716

1.5 0.05 0.001 0.0000485 0.0000715
3 0.5 0.0036 0.0011024 0.0017556
3 0.5 0.0025 0.0007655 0.0012192
5 0.1 0.0025 0.0002342 0.0003495

Table 7. Comparisons of two solitons with Taha et al. [20], amplitude = 1.

Galerkin Cubic B-spline (Present Method) Taha et al. [20]

t h Δt L∞ L∞
1.6 0.05 0.001 0.0000485 0.00173
1.8 0.07 0.07 0.0047374 0.00158
1 0.05 0.0025 0.0001214 0.00096
1 0.05 0.001 0.0000486 0.00141
1 0.625 0.0071 0.0025367 0.00122
1 0.130 0.0036 0.0004304 0.00141

4.3. Birth of Standing Soliton with the Maxwellian Initial Condition

If ∞∫
−∞

u(x, 0) ≥ π, (33)

a soliton should appear over time with initial values greater than π, otherwise the soliton will decay
away [22].

Consider the birth of soliton with the Maxwellian initial condition given by [16]:

u(x, 0) = A exp
(
−x2

)
, (34)

The values of all parameters are chosen to be h = 0.08, Δt = 0.004 and q = 2 for the domain
[−45, 45] to exhibit the birth of a soliton. The numerical simulations are shown at different times for
the values of A = 1.78 over the domain [−45,45] in Figure 4. With A = 1, the soliton decays away
as expected.

The conserved quantities I1 and I2 are computed using the Maxwellian initial condition (34).
Analytical conserved quantities can be computed as:

I1 = A2
√
π
2 = 3.97100051267043,

I2 = 1
4 A2

(
2
√

2− qA2
)√
π = −4.92561762132093,

The conserved quantities I1 and I2 are tabulated in Table 8. The numerical results obtained are
compared with the published results of Mokhtari et al. [11] and the exact solution, as shown in Table 8.
The proposed method conserves I1 to 7 decimal places and I2 to 3 decimal places.
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Figure 4. Birth of a standing soliton for A = 1.78.

Table 8. Comparison of conserved quantities of the birth of a standing soliton with Mokhtari et al. [11],
h = 0.08, Δt = 0.004 and q = 2.

Galerkin Cubic B-spline (Present Method) Mokhtari et al. [11]

t I1 I2 EI1 EI2 EI1 EI2

1 3.97100052134110 −4.925146 8.67067 × 10−9 4.7 × 10−4 3.5 × 10−11 4.8 × 10−10

2 3.97100050351461 −4.925347 2.08442 × 10−8 2.7 × 10−4 3.8 × 10−11 6.9 × 10−10

3 3.97100050291892 −4.925138 2.02485 × 10−8 4.8 × 10−4 1.1 × 10−10 −6.4 × 10−9

4 3.9710005812876 −4.925325 6.86172 × 10−8 2.9 × 10−4 −2.0 × 10−8 −4.5 × 10−6

5 3.97100055661924 −4.925367 4.39488 × 10−8 2.5 × 10−4 −9.2 × 10−7 −4.7 × 10−5

6 3.97100053521529 −4.925432 2.25449 × 10−8 1.9 × 10−4 −6.0 × 10−6 −9.8 × 10−5

5. Conclusions

The approximate solution of the NLS equation was investigated using the Galerkin finite element
method with a cubic B-spline shape function. Three numerical problems, including single soliton,
interaction of two solitons, and birth of a standing soliton with the Maxwellian initial condition,
were demonstrated to evaluate to the performance and accuracy of the method. Furthermore,
we simulated the numerical solution by choosing different parameters for motion of the single soliton,
the interaction of two solitons and the birth of the standing soliton. The error norms L∞ and L2 and
conservation laws I1 and I2 were determined and compared with published results [11,16,17,20]. It was
seen that all of our results for the problems were computed to be reasonably low, and were found to be
in good agreement with the analytical solution. The present method was shown to be unconditionally
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stable. The method has almost a second-order convergence. In conclusion, the proposed scheme with
cubic B-spline presents an acceptable result for the NLS equation.
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Abstract: This study investigated the impact of overburden height on the hydraulic fracturing of
a concrete-lined pressure tunnel, excavated in intact rock, under steady-state and transient-state
conditions. Moreover, the Norwegian design criterion that only suggests increasing the overburden
height as a countermeasure against hydraulic fracturing was evaluated. The Mohr–Coulomb failure
criterion was implemented to investigate failure in the rock elements adjacent to the lining. A pressure
tunnel with an inner diameter of 3.6 m was modeled in Abaqus Finite Element Analysis (FEA), using
the finite element method (FEM). It was assumed that transient pressures occur inside the tunnel due
to control gate closure in a hydroelectric power plant, downstream of the tunnel, in three different
closure modes: fast (14 s), normal (18 s), and slow (26 s). For steady-state conditions, the results
indicated that resistance to the fracturing of the rock increased with increasing the rock friction angle,
as well as the overburden height. However, the influence of the friction angle on the resistance to
rock fracture was much larger than that of the overburden height. For transient-state conditions,
the results showed that, in fast, normal, and slow control gate closure modes, the required overburden
heights to failure were respectively 1.07, 0.8, and 0.67 times the static head of water in the tunnel
under a steady-state condition. It was concluded that increasing the height of overburden should not
be the absolute solution to prevent hydraulic fracturing in pressure tunnels.

Keywords: pressure tunnel; hydraulic fracturing; transient flow; finite element method (FEM);
Abaqus Finite Element Analysis (FEA)

1. Introduction

High-pressure water tunnels, usually excavated in rock, convey water from the upstream reservoir
toward the turbines in hydropower plants, and turn the energy of the flowing water into electricity.
These tunnels can be either steel-lined or concrete-lined; steel-lined pressure tunnels are safer, but
more costly to construct. Concrete-lined pressure tunnels are faced with serious challenges in design
and construction. In these tunnels, due to the lining permeability in areas where the rock is jointed,
water seeps into the joints and expands the cracks. In cases where the rock is intact and not jointed,
high internal pressure can fracture the rock. This phenomenon is called hydraulic fracturing, which
makes the rock mass on the tunnel unstable.

Researchers studied various aspects of hydraulic fracturing in pressure tunnels, some of which
are mentioned below. In 1986, Schleiss investigated leakage from pressure tunnels in the presence of
groundwater, and presented the leakage relationships under two conditions: cracked and non-cracked
concrete linings. The author concluded that dynamic pressure caused by various factors, such as a
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water hammer or earthquake, had a significant impact on the rate of leakage and expansion of rock
joints [1]. Fernández and Alvarez (1994) used the finite element method (FEM) to study water leakage
from a tunnel and effective stresses in the surrounding rock. The authors considered the ratio of total
stress to effective stress in the rock as a safety factor against hydraulic fracturing [2]. Furthermore,
using the FEM and a closed-form analytical solution, Bobet and Nam (2007) studied effective stresses
around pressure tunnels under steady-state operation. The authors assumed there was no groundwater
presence around the tunnel, and presented a new analytical solution for stresses and displacements
in the surrounding rock and the lining. Their solution considered the interaction between the lining,
surrounding rock, and pore pressure in the rock environment, as a result of leakage through the
lining [3]. Moreover, Hachem and Schleiss (2010) evaluated pressure wave velocities in steel-lined
pressure tunnels, with and without considering the fluid–structure interactions. The authors showed
changes in pressure wave velocity, due to the characteristics of the surrounding rock, the thickness of
the lining, and wave frequency [4].

Using the FEM, and in order to optimize the thickness of the concrete lining, Olumide and Marence
(2012) simulated a pressure tunnel in a two-dimensional elasto-plastic space in order to study the
effects of seepage on the tunnel’s concrete lining. The authors investigated cracks in the lining by
coupling in situ stresses in the rock with the stresses caused by leakage, and validated their numerical
model by the analytical method proposed by Schleiss (1986) [5]. Furthermore, Simanjuntak et al. (2014)
studied displacements and stresses in the concrete lining and rock mass using the FEM, considering
non-uniform in situ stresses around a pressure tunnel [6]. The authors showed that, in non-uniform
stress conditions around the tunnel, when the coefficient of lateral rock pressure (k0) is ≤1, cracks form
in the crown of the tunnel due to high internal pressure. In 2015, Zhou et al. considered the interactions
between fluid and the concrete lining in pressure tunnels in order to study stresses in a tunnel lining.
The authors considered the hydro-mechanical behavior of the surrounding rock and the tunnel lining
by simulating the fluid inside rock joints and cracks in the concrete lining [7]. More recently, Pachoud
and Schleiss (2016) investigated the impacts of the transient pressure wave in pressure tunnels due
to water hammer. The authors presented analytical formulas for stresses and displacements in the
environment around the tunnel [8]. In 2018, Zareifard presented an analytical solution for the design
of pressure tunnels, considering seepage from a tunnel [9]. It should be noted that, in addition to the
negative impacts of hydraulic fracturing in water resources and related structures, it is widely used in
the oil and gas industry as a novel method for the exploitation of underground reservoirs [10].

Based on the literature review, many researchers investigated cracking in the rock or tunnel
concrete lining in steady-state conditions with constant overburden, yet they did not consider the
interactive effects of overburden height and transient pressures on hydraulic fracturing in the rock
environment surrounding a tunnel. In the present study, in order to fill this gap in knowledge,
the impact of overburden height on the bearing capacity of a tunnel in a steady-state condition was
studied. For the next step, the effect of transient pressure caused by rapid gate operations on hydraulic
fracturing in a tunnel in critical conditions (e.g., load rejection of the powerhouse) was investigated.
The Mohr–Coulomb failure criterion was used to investigate the rock failure both in steady-state and
transient-state conditions.

2. Materials and Methods

Using the FEM and considering the environment around the tunnel as an intact rock with
elasto-plastic behavior, stresses around a tunnel were studied using the Abaqus Finite Element
Analysis (FEA) software [11]. Because cracks were not explicitly modeled in the numerical model,
principal stresses were used as indicators of potential fracturing. Since this solution involves the
hydraulics of water flow in the tunnel and the impacts of internal pressures on the surrounding
rock, the Hammer software and Abaqus FEA were linked for modeling and analyzing the system.
The Hammer software [12], which works based on the method of characteristics (MOC), was employed
to analyze the changes in the internal pressure inside the tunnel, as a function of time. The hydraulic
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analysis results, from the Hammer software in transient-state conditions, were transferred to the
Abaqus FEA in order to analyze stresses in the surrounding rock. It was assumed that, at first,
the internal pressure was in the steady-state condition. Afterward, because of sudden gate closure,
transient pressures built up in the tunnel. The flowchart below summarizes the main steps in this
study (Figure 1).

Figure 1. The flowchart of this study.

2.1. Governing Equations

Using the general Navier–Stokes equation (Equation (1)) and simplifying assumptions—(a) fluid
inside the tunnel is non-viscous, (b) fluid velocity fluctuations are ignored, and (c) water has linear
compressibility—the hydrodynamic pressure inside the tunnel can be obtained using Equations (1)
and (2) [13].

ρ

(
∂v
∂t

+ v.∇v
)
= −∇p + μ∇2v + B, (1)

ρ

K
∂2p
∂t2 = ∇2p, (2)

where v is the flow velocity (m/s), μ is the fluid viscosity (Pa·s), B is the vector of body forces (N), p is
the fluid hydrodynamic pressure in the tunnel (Pa), K is the bulk modulus (Pa), t is time (s), and ρ is
the water density (kg/m3). The only boundary condition governing the fluid inside the tunnel is the
boundary between the water and the lining. This boundary condition is defined as in Equation (3) [13].

∂p
∂n

= −ρ ..
usn , (3)

where n is a perpendicular vector to the shared surface between the water and the lining, and
..
us is the

second derivative of the lining elements’ displacements in contact with the fluid (m/s2). The above
equation is based on the assumption that the radial displacements of the fluid and lining are similar
at the contact surfaces. The connection between the hydrodynamic pressures inside the tunnel {p}
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and forces applied to the model caused by the hydrodynamic pressure {f } are linked by matrix [Q]
(Equation (4)) [14].

[Q]
{
p
}
=

{
f
}
. (4)

The coupling matrix [Q] links the hydrodynamic pressures due to gate closure, with forces
generated in the concrete lining. This equation is solved by the Abaqus FEA, by applying the boundary
and initial conditions. Finally, the displacements and stresses in the rock due to hydrodynamic
pressures are calculated. The forces in the concrete lining due to water pressure are transferred to the
surrounding rock. As a result, the equilibrium equation in the surrounding rock is as follows [14]:

[M]
{ ..
ur

}
+ [C]

{ .
ur

}
+ [K]{ur} = {Rr}, (5)

{Rr} = {f } − {fs}, (6)

where M, C, and K are mass, damping, and hardness matrices, respectively; Rr is the vector of external
forces on the rock;

..
ur and

.
ur are the second and first derivatives of the rock elements, respectively; and

ur is the displacement of the rock elements. Equation (6) shows that part of the hydrodynamic force is
resisted by the concrete lining (f s). Therefore, the relationship between hydrodynamic pressure and
displacements in the surrounding rock is obtained by linking Equations (4) and (5).

2.2. FEM and Effective Parameters

In the FEM modeling, the following factors were considered in the simulations:

• A circular tunnel was excavated in intact rock by a tunnel boring machine (TBM);
• Water pore pressure was considered in the concrete lining and in the rock;
• The Mohr–Coulomb failure criterion was implemented in order to study stresses in the rock;
• A damage plasticity behavior was considered in the concrete lining.

Using a trial-and-error procedure, the model boundaries were selected in a way so as to not affect
stress distribution around the tunnel. Therefore, the model boundaries were set at 6d × 25d (d = tunnel
diameter) (Figure 2). More details on the grid and boundary sensitivity analyses are presented in the
Appendix A. Table 1 shows the mechanical properties of the lining. It was assumed that the tunnel
was located above the groundwater level.

Figure 2. The geometry of the surrounding rock and the excavation section.
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Table 1. Mechanical properties of the lining [15,16].

Parameter Value

Elasticity (GPa) 25
Tensile strength (MPa) 3

Cohesion (MPa) 4.5
Inner friction angle (◦) 45

Poisson's ratio (-) 0.25
Density (kg/m3) 2400

Axial compressive strength (MPa) 28.3
Hydraulic conductivity (m/s) 1 × 10−8

The only degree of freedom inside a water pressure tunnel is pressure in the fluid nodes. In Abaqus
FEA, acoustic elements possess this feature and are appropriate for simulating the fluid movement
inside a tunnel. Since acoustic environments are elastic, shear stresses do not exist in these environments
and pressure is proportional to volume strain. In addition, the effects of inertia and compressibility are
considered in acoustic elements [17].

In this study, the interactions between the fluid, lining, and surrounding rock were considered,
and the fluid density was set at 1000 kg/m3, with a bulk modulus of 2.07 GPa. Taking into account the
interaction between the fluid and lining, the structure surfaces and fluid that are in contact were tied
together in Abaqus FEA. Applying the same reasoning, the external nodes of the lining were tied with
the nodes of the surrounding rock due to structure–rock interactions.

The environment around the tunnel has in situ stresses. By defining the height, specific weight,
and the lateral stress coefficients of the rock, equilibrium conditions between the horizontal and vertical
stresses were achieved, which resulted in zero ground settlement before tunnel excavation.

Since the transient pressure inside the tunnel depends on factors such as gate operations,
this pressure was applied to the model as a quasi-static load (by gradually increasing the loading,
so that the impacts of inertia became negligible). This means that, at different times, different pressures
were applied to the lining. In order to apply the time-variable pressure to all of the nodes in the acoustic
environment, the amplitude function in Abaqus FEA was used.

The plane strain elements with linear interpolation function were employed to mesh the
surrounding rock and concrete lining. In Abaqus FEA, these types of elements are called CPE4R
(continuum plain strain element 4-node reduced integration). Meshing was such that, by approaching
the tunnel section, the mesh size decreased to achieve more precise results. Moreover, plane stress
family elements were used for meshing the lining. In Abaqus FEA, these elements are called CPS4R
(continuum plain stress element 4-node reduced integration). Furthermore, in the lining and rock
elements, the reduced integration method was implemented, and AC2D4 elements (acoustic continuum
2-dimension 4-node) were used to simulate water transient pressure inside the tunnel [11,18].

The first step in this research study was simulating in situ stresses. In order to have zero ground-surface
settlement before tunnel excavation, these stresses should satisfy Equations (7) and (8) [19].

σv = γrh, (7)

σh = γrhk0, (8)

where γr is the specific weight of the rock, h is the height of the overburden rock, and k0 is the coefficient
of lateral rock pressure. In the next step, the tunnel excavation was simulated. It was assumed that the
tunnel was excavated by a tunnel boring machine. At this stage, the release of stress and displacements
occurred in the rock. After the tunnel cross-section, the concrete lining was simulated. In this step,
a concrete lining with the specifications presented in Table 1 was modeled. Interaction between
the rock and the lining was considered using tangential and normal stiffnesses. The final step was
applying steady-state conditions and hydrodynamic water pressure to the lining. It was assumed

67



Fluids 2019, 4, 112

that the transient pressure inside the tunnel would occur due to the turbine gate closure in a typical
hydropower plant (Figure 3).

Figure 3. Simplified hydropower plan.

Using the Hammer software, hydraulic analyses were performed in steady-state and transient-state
conditions, by defining the characteristics of the duct (water tunnel), reservoir, and gate closure schedule.
The parameters used for these analyses and their values are presented in Tables 2 and 3. Water velocity
was considered to be 6 m/s, according to the recommended value by the United States Bureau of
Reclamation [20]. Moreover, in order to create critical conditions in the tunnel to determine its bearing
capacity, it was assumed that the surge tank was disabled. The maximum flow rate was considered
to be 60 m3/s, and, according to the gate closure time in typical water tunnels, the gate closure times
were considered to be 14 s (fast), 18 s (normal), and 26 s (slow). Furthermore, based on the duct
characteristics, the pressure wave velocity according to the characteristics of the duct was determined
by Equation (9), where D is the inner diameter of the tunnel, E is the elastic concrete modulus, and tc is
the lining thickness [21].

a =

√
1

ρw(
(

1
Kw

)
+

(
Dλ
Etc

)
)

. (9)

Table 2. Geometric and hydraulic characteristics of the duct.

Inner
Diameter

(m)

Thickness
(mm)

Hazen
Williams

Coefficient (-)

Initial
Discharge

(m3/s)

Pressure Wave
Velocity (m/s)

Upstream
Head (m)

Initial Flow
Velocity

(m/s)

3.6 200 100 60 911 80 6

It was assumed that the lining could expand in the longitudinal direction, which results in a λ

(confinement coefficient) value of 1 [21].
The location for investigating stresses in the rock was considered to be near the penstock (Node C)

in the tunnel path. Finally, the pressure values at this point, obtained by the Hammer software, were
input to the Abaqus FEA, under hydrodynamic pressure loadings.
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Table 3. Node elevations and properties of node E (turbine).

Elevations (m) Node Properties of Node E (Turbine)

The diameter of the spherical valve (m) 1.5
A (inlet) 2305 Efficiency (%) 90

B 2263.1 Moment of inertia (N·m2) 107

C 2262.62 Speed (rpm) 580
D 1753.5 Specific speed 115
E 1714.9

Gate closure schedule curve VariableF (outlet) 1770

2.3. Parametric Study in Steady-State Conditions

In this study, the bearing capacity of the pressure tunnel under a steady-state condition was
investigated. The bearing capacity of a concrete-lined pressure tunnel is dependent either on the tensile
strength of the surrounding rock only, or both the concrete and the rock. Generally, in pressure tunnels
that are excavated in intact rock, the concrete lining does not contribute to the stability of the tunnel
during excavation and only provides an appropriate bed for water to be conveyed toward the turbine.

Crack formation in the surrounding rock (hydraulic fracturing), due to high internal pressure,
shows that the pressure tunnel reached its ultimate capacity; therefore, a parametric study was
performed to investigate the impact of overburden height on the ultimate bearing capacity of the
pressure tunnel in a steady-state condition. Figure 4 shows the effective parameters in the bearing
capacity of a tunnel. Pe(pi) is the water pressure on the outer surface of the concrete lining due to
seepage. According to Equation (10), this parameter is dependent on internal pressure, and it was
calculated using the FEM in the present study [22].

Pe( pi) =
pi

1 +

⎛⎜⎜⎜⎜⎜⎝ krln
(

re
ri

)
kcln( R

re )

⎞⎟⎟⎟⎟⎟⎠
, (10)

where t (thickness of the lining), k0, kr (hydraulic conductivity of the rock), and γr (specific weight of
the rock) were considered constant for all analyses, and their values are presented in Table 4. Moreover,
the values for Er, C, ϕ, and h are presented in Table 5.

Figure 4. Effective parameters in the parametric study.
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Table 4. Constant values in present study.

Parameter Value

t (cm) 20
k0 (-) 0.5

kr (m/s) 1 × 10−7

γr (kN) 28

Table 5. Parameters and their values in parametric analyses [23–25].

Parameter Range

Er (GPa) 2–10
C (MPa) 0.635–1
ϕ (◦) 27.57–35.47
h (m) 10–40

In each analysis, the bearing capacity of the tunnel was determined by increasing the internal
pressure (pi) to the point at which the first crack was formed in the surrounding rock. In this situation,
the corresponding pi was considered as the failure threshold, which indicates the ultimate bearing
capacity of the tunnel.

2.4. Verification of the FEM

Tunsakul et al. (2014) investigated fracture propagation in a rock mass surrounding a tunnel,
under high internal pressure, in an experimental model [26]. In order to verify the numerical model
developed in the present study, an experiment with k0 = 0.5 was considered. Other assumptions based
on the experimental model were as follows: no concrete lining exists (t = 0); the surrounding rock is
impermeable (Pe(pi) = 0). According to Tunsakul et al. (2014), the cracking location depends on the
coefficient of lateral rock pressure (k0). When k0 < 1, cracking occurs in the crown of the tunnel, and,
for k0 ≥ 1, cracks form at the sides of the tunnel. The FEM results were in agreement with the findings
of Tunsakul et al. (2014), since cracks formed in the crown of the tunnel (Figure 5).

Figure 5. Comparing the formation and location of cracks in the numerical model (a) vs. the
experimental model by Tunsakul et al. (2014) (b).

3. Results and Discussion

3.1. Changes in Pore Pressure

Since concrete is not completely impermeable, water passing through the pores penetrates into the
surrounding rock. The permeability of rock varies between 1 (completely permeable) and 10−12 m/s
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(almost impermeable). Figure 6 shows a comparison between the pore pressures obtained from
the numerical model and the value obtained from Bouvard’s and Pinto’s (1969) analytical solutions
(Equation (10)) [22]. According to Figure 6, the pore pressure obtained using the analytical solution is
greater than the value obtained from the numerical solution.

Figure 6. Numerical vs. analytical results for pore pressures in the rock.

The hydro-mechanical interaction is caused by jointing in rocks due to water pressure. As a result,
water penetration toward the rock increases, which consequently leads to more leakage from the tunnel,
and increases the pore pressure inside the rock joints. In analyses performed by Bouvard and Pinto,
it was assumed that the rock was a porous medium, without effective stresses due to overburden rock.
However, in the present numerical modeling, effective stresses due to overburden rock, which reduce
the pore pressure in the rock, were considered as important factors in the simulation.

3.2. Bearing Capacity of the Tunnel in Normal Operating Conditions (Steady-State Conditions)

Based on the mechanical characteristics of the rock, and using the Mohr–Coulomb failure criterion,
the failure of elements in the rock environment surrounding the tunnel was investigated. In this regard,
maximum and minimum principal stresses were calculated and are presented in Figure 7. Since the
problem was symmetric, half of the rock elements surrounding the tunnel were investigated.

In the Mohr–Coulomb failure criterion, the critical line divides the two-dimensional (2D) principal
stresses into the safe zone (below the critical line), and the area where stresses cause failure in the
element (above the critical line). Due to water pressure on the lining, and the transmission of part of
this pressure to the rock, tensile stresses appear around the tunnel. Figure 7 shows that the combined
stresses in elements surrounding the tunnel are located below the critical line, indicating that these
elements do not fail. In Figure 7, the elements located near the critical line are considered as critical
elements, which means higher water pressures will cause these elements to fail. Therefore, this internal
pressure is the ultimate value that the rock can endure.
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Figure 7. The principal stresses in elements surrounding the tunnel, and their locations relative to the
critical line.

Considering the ultimate bearing capacity (Pi
U) obtained from the FEM, the Norwegian design

criterion (NC) was evaluated to determine the overburden required to prevent hydraulic fracturing,
due to the internal static head in the pressure tunnel (Equation (11)).

h >
γw·H
γr· cos β

, (11)

where h is the minimum overburden height to prevent hydraulic fracturing, H is the static water height
in the tunnel, β is the slope of the valley that is equal to zero in this study, and γw and γr are the specific
gravities of water and rock, respectively. The NC estimated the ultimate bearing capacity of the tunnel
as 28 m water (for γw = 10 kN, γr = 28 kN, and h = 10 m).

Figure 8 shows (a) the ultimate bearing capacity of the tunnel under a steady-state condition based
on the FEM results and the NC, (b) stress distribution in the rock, and (c) vertical displacements in the
rock. According to the FEM results, the internal pressure equal to 8.7 bar (87 m water) is the maximum
bearing capacity of the tunnel. According to Figure 8d, at first, the concrete lining cracks, and then
cracking occurs in the surrounding rock. Afterward, a parametric study was performed and the effect
of overburden height on the bearing capacity of the tunnel was investigated (Figure 9 and Table 6).

Figure 8. Cont.
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Figure 8. (a) The bearing capacity of the tunnel; (b,c) maximum stress and vertical displacement
contours in the surrounding rock in a steady-state condition; (d,e) crack formation in the lining and rock.

Figure 9. Effect of overburden height on the bearing capacity of the tunnel. (a) h = 10 m; (b) h = 20 m;
(c) h = 30 m; (d) h = 40 m.
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Table 6. Theultimatebearingcapacityof the tunnel (PU
i ), underdifferentscenarios. FEM—finiteelementmodel.

Scenario No. Er (MPa) h (m) C (MPa) ϕ (◦) PU
i (m) Based on the FEM

M-1 2177.94

10

0.635 27.57 87.3373
M-2 3076.42 0.701 29.34 87.2097
M-3 6138.26 0.851 32.86 93.5221
M-4 8185.51 0.929 34.32 120.7
M-5 10,304.94 1.003 35.47 138.62

M-6 2177.94

20

0.635 27.57 83.0878
M-7 3076.42 0.701 29.34 116.1696
M-8 6138.26 0.851 32.86 118.795
M-9 8185.51 0.929 34.32 114.442
M-10 10,304.94 1.003 35.47 100.166

M-11 3076.42

30

0.701 29.34 89.491
M-12 2177.94 0.635 27.57 110.301
M-13 6138.26 0.851 32.86 120.613
M-14 8185.51 0.929 34.32 100.115
M-15 10,304.94 1.003 35.47 119.295

M-16 2177.94

40

0.635 27.57 58.334
M-17 3076.42 0.701 29.34 126.234
M-18 6138.26 0.851 32.86 98.698
M-19 8185.51 0.929 34.32 100.362
M-20 10,304.94 1.003 35.47 101.633

For validation of the results, an actual pressure tunnel project (Herlansfoss, Norway) was
considered. In this project, the rock surrounding the tunnel is made of non-cracked schist with a friction
angle equal to 30◦. At chainages 150–200 m of the tunnel path, the tunnel is horizontal, with overburden
height and an internal pressure of 45 m and 136 m water, respectively. In this range, no failure of the
rock due to the internal pressure is observed [23]. The Pi

U values based on the FEM results (Figure 9),
the NC, and in the actual project, are equal to 138, 126, and 136 m water, respectively, indicating that
the FEM results are reliable. According to Table 6 and Figure 9, changes in Pi

U with increasing the
overburden height are more dependent on ϕ than E and C.

In this study, the NC estimated the ultimate bearing capacity of the concrete-lined tunnel with
20 cm of the lining thickness and 3.6 m of diameter in intact rock, less than the value obtained from the
numerical model in most cases (Figure 10). According to Figure 10, for all friction angles, up to 30 m
of overburden height, the NC estimated Pi

U less than the FEM. By increasing the overburden height
to values greater than 30 m, for all quantities of friction angles, Pi

U obtained from the FEM results
approached the value obtained from the NC. Therefore, the NC overestimates the overburden required
to prevent hydraulic fracturing in pressure tunnels located near the ground surface (h ≤ 30 m).

Figure 10. Comparing Pi
U based on the finite element model (FEM) results, the Norwegian design

criterion (NC), and an actual pressure tunnel project, under steady-state conditions.
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3.3. Applying Pressure Fluctuations in Transient-State Conditions

While the gate is being closed, the velocity upstream of the gate decreases, which results in a
pressure build-up in the tunnel. The maximum pressure occurs when the gate is fully closed. Figure 11
shows the pressure fluctuations upstream of the gate during the total time of hydraulic analysis. In this
study, it was assumed that the gate closure was done at a constant rate. Under sudden load rejection,
which happens when the gate is closed quickly at a constant rate, critical conditions occur in the
hydropower tunnel. This often occurs in special situations, such as a turbine generator shut down
due to an earthquake. If the gate is closed in several stages, with different closure rates, the maximum
transient pressure and the consequent damage to the lining will decrease.

Figure 11. Pressure fluctuations upstream of the gate during the hydraulic analysis.

In this study, the maximum pressure that was reached after complete gate closure was considered
as the hydrodynamic load in the simulations; therefore, the rock resisted maximum water pressure,
and the probability of hydraulic fracturing increased. The pressure–time curves at three different gate
closure times are presented in Figure 12.

Figure 12. Changes in pressure upstream of the gate, in different scenarios: 14 s, 18 s, and 26 s.

Figure 12 shows that the curves have a rising trend. According to Figure 12, by increasing
the gate closure time, the maximum hydrodynamic pressure was reduced; during the first few
seconds, kinetic energy converts into pressure energy at a faster rate; during the last seconds of gate
closure, as water upstream of the gate reaches a steady-state condition, the pressure energy decreases.
Transferring these loads to the Abaqus FEA and employing the Mohr–Coulomb failure criterion,
the stresses in the rock elements surrounding the tunnel were calculated for different gate closure
times, and are presented in Figure 13. According to Figure 13, the stress in almost all of the elements is
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above the critical line, which indicates that these elements failed. When the gate closes in 14 seconds,
hydrodynamic pressures impose greater forces on the surrounding rock. Increasing the gate closure
time decreases the pressures resulting from the transient-state condition. Figure 13c shows that some
elements are in the safe zone, which demonstrates that increasing the gate closure time decreases the
possibility of hydraulic fracturing in the rock.

Figure 13. Stress in the elements by closing the gate in (a) 14 s, (b) 18 s, and (c) 26 s.

The Effect of Increasing the Overburden Height on Preventing Hydraulic Fracturing

In order to investigate the impact of the overburden rock on hydraulic fracturing, the critical gate
closure time of 14 s was considered. In this regard, the failure of the elements in the rock around the
lining was investigated by considering the overburden height as 10, 20, 40, and 70 m. Figure 14 shows
the stresses in these elements, with respect to the critical line, under different overburdens.

According to Figure 14, by increasing the overburden from 0.13H to 0.26H, stresses in some
elements are higher than the critical value; therefore, these elements are located above the critical line.
On the other hand, in some elements, stresses are less than the critical value, and they are located below
the critical line. By increasing the overburden to 0.26H, as expected, the risk of hydraulic fracturing
decreased as more elements appeared below the critical line. By increasing the overburden to 0.53H,
more elements appeared below the critical line, but a number of elements were still above the critical
line. For the case of an overburden equal to 0.93H, all elements appeared in the safe zone below the
critical line, since the elements on the sides of the tunnel section are under the influence of stress
concentration. As a result, they appear in the safe zone earlier than the other elements, due to an
increase in the overburden.
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Figure 14. The main stresses in surrounding rock by increasing overburden: (a) 0.13H, (b) 0.26H, (c)
0.53H, and (d) 0.93H (gate closure time in all cases was 14 s).

Furthermore, Figure 15 shows the relationship between the overburden and the percentage of
fractured elements around the tunnel. According to Figure 15, an increase in the overburden is not a
safe solution to prevent the hydraulic fracturing phenomenon. In other words, due to rock overburden,
the environment around the tunnel has in situ stresses. If the combination of stresses caused by the
transient pressure inside the tunnel and the rock in situ stresses reaches a critical state, the elements
will fail. The occurrence of hydraulic fracturing in one element will lead to a critical state in other
elements. Therefore, it should be noted that increasing the overburden does not necessarily put all
elements in the safe zone.

Figure 15. Percentage of cracked elements due to increased overburden height for gate closure times of
(a) 14 s, (b) 18 s, and (c) 26 s.
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4. Conclusions

Different aspects of hydraulic fracturing in pressure tunnels were investigated in previous studies,
and various strategies were proposed to prevent this serious issue. One strategy is to increase the
height of overburden rock. In the present study, using the FEM, and considering the fluid–structure
interactions, a pressure tunnel with an inner diameter of 3.6 m was modeled in intact elasto-plastic rock,
and the Mohr–Coulomb failure criterion was employed to investigate failure in the rock environment
surrounding the tunnel. A parametric study was performed to evaluate the bearing capacity of the
tunnel, and the effect of transient pressure on the failure of the rock elements around the tunnel was
investigated. Moreover, the applicability of the Norwegian design criterion was evaluated. Hydraulic
analyses in transient hydraulic states were performed using Hammer software. The output of this software,
including pressure–time values, were used in Abaqus FEA in order to analyze stresses in the rock.

The results showed the following:

• Firstly, the concrete lining cracked, and then the elements in the surrounding rock failed;
• Initial cracks were formed in the crown of the tunnel;
• Increasing the overburden height had a less significant impact than a higher friction angle of the

rock, on preventing the hydraulic fracturing of the rock elements;
• The Norwegian design criterion is not an appropriate measure to prevent hydraulic fracturing in

pressure tunnels with a typical diameter of about 3 m in intact rock with an approximate specific
weight of 28 kN, and low overburden height (h ≤ 30 m);

• The rate of gate closure is a significant factor causing damage to the tunnel’s structure;
• Increasing the gate closure time caused the maximum hydrodynamic pressure to decrease upstream

of the gate, which resulted in a fewer number of failed elements in the rock around the tunnel;
• Maximum transient pressures occurred in the early stages of gate closure and, consequently,

hydraulic fracturing occurred during that time;
• Analyses of the effects of different overburden heights indicated that increasing the overburden

height would not always decrease the fracturing of rock elements;
• Based on the Mohr–Coulomb failure criterion results, by increasing the overburden height, fewer

elements in the rock environment surrounding the tunnel failed, which can be attributed to the
combination of principal stresses.

In order to prevent hydraulic fracturing in the rock, construction of a grouted zone around the
pressure tunnel, along with increasing the overburden height, is recommended. The grout integrates
the rock, in case any cracks exist, and improves its mechanical properties. In addition, the grouted
zone results in decreased pore pressure in the rock, and reduces the possibility of hydraulic fracturing.

Author Contributions: Conceptualization, M.K. (Karakouzian), M.K. (Karami) and M.N.-S.; methodology, M.K.
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Appendix A

Grid and Boundary Sensitivity Analyses

Based on a trial-and-error procedure, a grid sensitivity analysis was performed in the model,
in order to ensure convergence of the finite element equations, and the optimum pattern of meshing
was determined. The mesh sizes used near the tunnel cross-section were smaller than those near the
model boundaries (Figure 2).

78



Fluids 2019, 4, 112

Moreover, a sensitivity analysis was performed on the side boundaries of the model. According to
Figure A1, for x ≥ 6D (D is the tunnel diameter) the side boundaries do not affect stresses in the rock
environment surrounding the tunnel. In order to ensure preventing errors in the model calculations,
this distance was considered twice the value obtained from grid sensitivity analysis (Figure 2).

Figure A1. Sensitivity analysis on the model boundaries: (a) changes in stress in the rock environment,
vertically; (b) changes in stress in the rock environment, horizontally; x is the distance from the tunnel
lining, σH is the horizontal stress in the rock, σV is the vertical stress in the rock, PH is the initial
horizontal stress in the rock, and PV is the initial vertical stress in the rock.
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Abstract: Reynolds-averaged Navier-Stokes (RANS) models are widely used for the simulation of
engineering problems. The turbulent-viscosity hypothesis is a central assumption to achieve closures
in this class of models. This assumption introduces structural or so-called epistemic uncertainty.
Estimating that epistemic uncertainty is a promising approach towards improving the reliability of
RANS simulations. In this study, we adopt a methodology to estimate the epistemic uncertainty by
perturbing the Reynolds stress tensor. We focus on the perturbation of the turbulent kinetic energy
and the eigenvalues separately. We first implement this methodology in the open source package
OpenFOAM. Then, we apply this framework to the backward-facing step benchmark case and
compare the results with the unperturbed RANS model, available direct numerical simulation data
and available experimental data. It is shown that the perturbation of both parameters successfully
estimate the region bounding the most accurate results.

Keywords: computational fluid dynamics; RANS closures; uncertainty quantification; Reynolds
stress tensor; backward-facing step; OpenFOAM

1. Introduction

The motion of a fluid in the turbulent regime is fully described by the Navier-Stokes equations.
A numerical solution encompassing all spatial and temporal scales is referred to as direct numerical
simulation (DNS). Due to the significant computational cost of DNS, approximations like large-eddy
simulation (LES) and Reynolds-averaged Navier-Stokes (RANS) have been developed and are more
widely used, in particular for practical engineering problems. RANS models use ensemble averages
of the physical quantities, thereby decreasing the computational cost of the simulations. Due to the
assumptions that are required to achieve closure, all RANS closures naturally introduce structural,
or epistemic, uncertainty.

A systematic approach of the epistemic uncertainty quantification (EUQ) in RANS models,
focusing on the Reynolds stress tensor, was first proposed by Emory et al. [1]. They introduced
perturbation on the Reynolds stress tensor using the barycentric map proposed by Banerjee et al. [2],
as a mean to visualize the degree of anisotropy. The same method was used later in a
simulation by Gorle et al. [3] comparing RANS with LES results for an under-expanded jet in a
supersonic cross flow. Another contribution, proposed by Gorle et al. [3] and further developed
by Gorle and Iaccarino [4], was to introduce the perturbation not only in the momentum equations
but also in the turbulent scalar fluxes in the scalar transport equation.

Gorle et al. [5] further developed the methodology with the goal of defining the uncertainty
in the separation region. They introduced the idea of a marker, which identifies the regions of the

Fluids 2019, 4, 113; doi:10.3390/fluids4020113 www.mdpi.com/journal/fluids81
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flow where the introduction of perturbations would be useful. In this case the marker is designed to
recognize regions with parallel shear flow. Emory et al. [6] recognized the importance of testing the
method for various cases and successfully applied EUQ to plane channel flow, square duct flow and a
shock/boundary layer interaction with flow separation. In their work, they showed that the method is
model-independent.

The latest contribution to EUQ taken into consideration for this research was provided
by Iaccarino et al. [7]. In their studies, they proposed a combined perturbation of different quantities in
the normalized Reynolds stress tensor. They focused on the simultaneous perturbation of eigenvalues
and eigenvectors, which is refered as eigenspace perturbation. With this approach, the ellipsoid
describing the eigenspace not only varies in its shape but also in its orientation.

This article is organized as follows. Section 2 presents the mathematical details of the EUQ
approach. This methodology is applied to a turbulent flow over a backward-facing step. Section 3
presents the behaviour of the pressure coefficient, friction coefficient, mean velocity field and Reynolds
stress tensor after perturbing the eigenvalues and the turbulent kinetic energy separately. These results
are compared to the DNS data [8] and the experimental results [9]. A summary and conclusions are
provided in Section 4.

2. Methodology

2.1. Epistemic Uncertainty

RANS models decompose the quantities into an averaged part ū and a fluctuating part u′ such that

u = ū + u′. (1)

Substituting (1) into the Navier–Stokes equations and applying Reynolds averaging leads to the
RANS equations (see e.g., [10–12])

∂tūi + ūj∂jūi = ∂i p̄ + ν∂j∂jūi − ∂jRij (2)

and the Reynolds-averaged incompressibility constraint

∂i ūi = 0, (3)

where t is time, ūi is the mean velocity in the i−direction, where i = 1, 2, 3 respectively represents the
streamwise (x), wall-normal (y) and lateral (z) directions, p̄ is the mean kinematic pressure, ν is the
kinematic viscosity, and

Rij = u′
iu

′
j (4)

is the Reynolds stress tensor. The Reynolds stress tensor is an extra term that arises as a result of the
Reynolds decomposition and contains the fluctuating parts of the velocity.

The closure problem in RANS amounts to finding approximations for Rij that do not include
the fluctuating part, since that information is not available in an actual RANS simulation. Yet,
any model for Rij will be an approximation that introduces an additional epistemic uncertainty.
Most popular RANS closure models are based on the Boussinesq turbulent-viscosity hypothesis (or
eddy-viscosity hypothesis) that approximates the Reynolds stress tensor as a function of the stretching
tensor (mean strain-rate tensor Sij = (∂i ūj + ∂jūi)/2), the turbulent kinetic energy (k = u′

iu
′
i/2) and

the turbulent viscosity (effect of turbulent eddies on the flow νt) such that

Rij =
2
3

kδij − 2νtSij. (5)
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2.2. Decomposition of the Reynolds Stress Tensor

The Reynolds stress tensor can be decomposed into components that establish its amplitude,
shape and orientation. This is done by defining the turbulence anisotropy tensor aij as

aij = Rij −
2
3

kδij. (6)

Equation (6) can be normalized by dividing by 2k, yielding

bij =
aij

2k
=

Rij

2k
− 1

3
δij. (7)

The eigenvalues of Rij are non-negative due to the condition of realizability established
by Speziale et al. [13] and the Cauchy–Schwartz inequality holds for the off-diagonal components.
Hence, the values are constrained within the intervals

bii ∈ [−1/3, 2/3] ∀i = 1, ..., 3 (8)

and
bij ∈ [−1/2, 1/2] ∀i = j. (9)

In view of (7), the Reynolds stress tensor can be written as

Rij =
2
3

kδij + bij2k = 2k(
1
3

δij + bij). (10)

The eigendecomposition of the normalized anisotropy tensor yields (see e.g., [14])

binvnl = vinΛnl , (11)

where

• Λnl is a diagonal tensor containing the eigenvalues of the anisotropy tensor in an order such that
λ1 > λ2 > λ3,

• vij is a tensor containing the eigenvectors of the anisotropy tensor in the same order as
the eigenvalues.

Isolating bij in (11) yields
bij = vinΛnlvlj. (12)

Substituting (12) into (10), the Reynolds stress tensor becomes

Rij = 2k(
1
3

δij + vinΛnlvlj). (13)

2.3. Perturbation of the Reynolds Stress Tensor

In Section 2.2, the Reynolds stress tensor is rearranged into components that define the amplitude
(k), shape (Λ) and orientation (v). Perturbation of these components yields an estimate on the epistemic
uncertainty. The perturbation yields

R∗
ij = 2k∗(

1
3

δij + v∗inΛ∗
nlv

∗
l j), (14)

where

• v∗ = v + Δv is the perturbation on the orientation of the Reynolds stresses,
• Λ∗ = Λ + ΔΛ is the perturbation on the anisotropy of the Reynolds stresses,

83



Fluids 2019, 4, 113

• and k∗ = [k/nk, nkk], is the amplitude of the perturbation of the turbulent kinetic energy. It is
established as a range with a minimum and a maximum k∗.

In this article, we focus on the perturbation of the turbulent kinetic energy k and the eigenvalues
Λ. The perturbation of k is realized through the parameter nk ≥ 1 that determines the limits
of perturbation. The maximum perturbation corresponds to k∗ = nkk and the minimum to
k∗ = k/nk. The perturbation of the eigenvalues is realized using the barycentric map proposed
by Banerjee et al. [2] and illustrated in Figure 1.

Figure 1. Barycentric map. The limiting states are represented in the vertices as one-component X1c,
two-component X2c and three-component (isotropic) X3c turbulence. The anisotropy is zero at X3c and
maximum at X1c. The dashed line denotes plane shear flow, where at least one of the eigenvalues λl is
zero. The arrows show perturbations toward limiting states of turbulence [6].

The barycentric map can represent any stress tensor as a function of the limiting states:
one-component, two-component and three-component turbulence. The limiting states

C1c = λ1 − λ2,

C2c = 2(λ2 − λ3),

C3c = 3λ3 + 1,

(15)

are functions of the eigenvalues associated with the Reynolds stress tensor. The limiting states are
normalized such that

C1c + C2c + C3c = 1. (16)

The limiting state of the tensor can be represented in a two-dimensional coordinate system
with coordinates

x = C1cx1c + C2cx2c + C3cx3c,

y = C1cy1c + C2cy2c + C3cy3c,
(17)

or

x = Bλl

= x1c(λ1 − λ2) + x2c(2λ2 − 2λ3) + x3c(3λ3 + 1),
(18)

where B−1x1c = (2/3,−1/3,−1/3)T , B−1x2c = (1/6, 1/6,−1/3)T and B−1x3c = (0, 0, 0)T .
Once the coordinates of the anisotropy tensor are located in the barycentric map, the perturbation

is based on two parameters, the direction of the perturbation x(t) and the magnitude of perturbation
δB. The direction of the perturbation defines the chosen corner in the barycentric map and magnitude
describes the distance of displacement to the chosen corner in the barycentric map in a range of [0, 1]
as shown in Figure 1,

x∗ = x + δB(x
(t) − x). (19)

The perturbed eigenvalues are calculated as [6]
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λ∗
l = B−1x∗

= (1 − δB)B−1x + δBB−1x(t)

= (1 − δB)λl + δBB−1x(t).

(20)

Here, it is noteworthy to mention that, in the RANS simulation of two-dimensional flows using
eddy-viscosity models, at least one of the eigenvalues (λl) of the normalized anisotropy tensor (bij) is
zero. Hence, all the points in the flow domain will be located along the line representing the plane
shear flow (see Figure 1) [6].

3. Results and Analysis

We applied the previously explained methodology to the backward-facing step at Reh = 5100
(Re is dependent on the step height h, the inlet velocity u0 and the kinematic viscosity ν, Reh = u0h/ν),
for which DNS [15] and experimental data [9] are available. The backward facing step offers a
simple two-dimensional case, similar to the canonical channel flow but adds a certain component of
complexity in the physics right after the expansion appears.

The calculation was performed using the open source software OpenFOAM. The implementation
of the Reynolds stress perturbation in OpenFOAM is explained in detail in the Appendix A. The
boundary and initial conditions of the case were the same as the ones used by Le and Moin [15]
and Jovic and Driver [9], including the mean velocity profile imposed at the inlet by Spalart [16].
They are summarized in Table 1. The k-ω SST model is chosen as RANS closure. The transport
equations and their initial conditions were calculated following Ferziger and Peric [17] and Versteeg
and Malalasekera [18]. Figure 2 shows the dimensions of the flow domain and its corresponding areas.

Table 1. Description of the boundary conditions imposed in each part of the flow domain.

Boundary Velocity (ū) Pressure (p̄)

Upper Wall No-stress wall Zero gradient
Lower Wall No-slip condition Zero gradient
Inlet Non-uniform inlet Zero gradient
Outlet Zero gradient Uniform, p̄ = 0

Figure 2. Dimensions of the flow domain as a function of the step height h. The domain is divided in
seven blocks in order to design and optimize the mesh. It also shows the location of the boundaries.

The topology and mesh resolution is similar to the one described in [19]. Three different mesh
resolutions were considered to assess the sensitivity of the results to the grid. A relevant parameter to
be taken into account, in this case, is the dimensionless wall distance y+ which is defined as

y+ ≡ y
δν

=
uτy

ν
. (21)

Keeping this value below one (y+ < 1) allowed the simulation to capture the physics of the
viscous sub-layer. Figure 3 shows the mesh topology. It can be seen that the grid gets finer when
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it approaches the bottom of the domain and also when it gets closer to the step, which is the most
relevant part of the domain. Table 2 summarizes the topology and refinement used in each of the
blocks of the domain. The mesh is designed such that the size of the first and last cells can be computed
as a function of the grading and the number of cells. The grading is the ratio of the size of the last cell
divided by the size of the first cell.

Figure 3. Mesh topology in the flow domain.

Table 2. Mesh refinement and topology for each of the three types of refinements applied. The Cells
columns represent the amount of cells in each block in the x- and y-direction, respectively. The Grading
columns represent the refinement in each block in the x- and y-direction, respectively.

Coarse Mesh Intermediate Mesh Fine Mesh

Cells Grading Cells Grading Cells Grading

Block x y x y x y x y x y x y

A 40 11 50 11.29 80 21 50 10.61 160 42 50 10.91
B 21 11 1 11.29 41 21 1 10.61 81 42 1 10.91
C 40 11 50 0.09 80 21 50 0.09 160 42 50 0.09
D 21 11 1 0.09 41 21 1 0.09 81 42 1 0.09
E 21 20 1 100 41 40 1 100 81 80 1 100
F 40 20 50 100 80 40 50 100 160 80 50 100
G 40 20 0.02 100 80 40 0.02 100 160 80 0.02 100

Figure 4 illustrates the zoom into the corner where the step starts and the expansion begins. It can
be seen that the size of the cells does not change sharply. It changes smoothly in both directions and it
gets finer towards the lower wall.

Figure 4. Mesh topology in the flow domain zoomed in where the step is located and expansion starts,
x/h = 0.

In Figure 5, all three refinements were compared for the pressure coefficient, friction coefficient,
mean velocity and Reynolds stresses at x/h = 4, x/h = 6 and x/h = 10. The comparisons between
different mesh refinements show the grid convergence for the intermediate and the fine grids. The rest
of the work is based on the fine mesh described in Table 2. While the focus on the present article are the
structural uncertainties in the RANS closures, it is worth mentioning that numerical uncertainties can
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make up a significant contribution to the overall model error. For a summary of different uncertainty
contributions in computational fluid dynamics refer to the ASME standard [20] or more specifically
to Roache [21] and Roache [22] in which the estimation of the numerical uncertainty associated with
finite grid sizes is addressed.
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Figure 5. (a) Convergence of the pressure coefficients calculated at the bottom of the flow domain after
and before the expansion, computed as ( p̄ − p0)/(0.5ρu2

0). (b) Convergence of the friction coefficients
calculated at the bottom of the flow domain after and before the expansion, computed as τw/(0.5ρu2

0).
(c) Convergence of the mean streamwise velocity profiles calculated at x/h = 4, x/h = 6, x/h = 10
and normalized with respect to the inlet mean velocity (ū/u0). (d) Convergence of the Reynolds shear
stress component calculated at x/h = 4, x/h = 6, x/h = 10 and normalized with respect to the inlet
mean velocity (−u′v′/u2

0).

The following subsections show the behaviour of: pressure coefficient, friction coefficient, mean
velocity profile and Reynolds stress computed at several positions in the domain (perturbed and
unperturbed). The corresponding DNS and experimental data are also included for comparison.

3.1. Pressure Coefficient

The pressure coefficient was computed at the bottom of the domain throughout the stream-wise
direction as

Cp =
p̄ − p0

0.5ρu2
0

, (22)

where po is the reference wall static pressure, p is the mean pressure computed at any location in the
domain and u0 is the upstream freestream reference velocity. We can see in Figure 6 that the results are
bounded in a well defined area, thus decreasing the level of uncertainty. We can also see that a small
amount of perturbation does not capture properly the physics of the problem. When the amount of
perturbation increases, the bounds widen and they are able to cover better the discrepancy between
the RANS model and the reference DNS and experimental data.
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Figure 6. Pressure coefficients at y/h = 0, computed as: ( p̄− p0)/(0.5ρu2
0). (a) Turbulent kinetic energy

perturbation nk = 1.5, (b) turbulent kinetic energy perturbation nk = 2, (c) eigenvalue perturbation
with δB = 0.1 and (d) eigenvalue perturbation with δB = 0.25. X1c, X2c and X3c represent perturbations
toward the three corners of the barycentric map. direct numerical simulation (DNS) data [15] (−·);
experiment data [9] (•); Reynolds-averaged Navier-Stokes (RANS) k-ω SST model (−). The uncertainty
bounds are shown with gray areas.

3.2. Friction Coefficient

The friction coefficient
Cf =

τw

0.5ρu2
0

, (23)

with τw the wall shear stress was computed at the bottom of the domain, throughout the stream-wise
direction. The results seen in Figure 7 show similar behavior as the one seen in Figure 6 with the
exception that the turbulent kinetic energy perturbation for nk = 2 almost entirely defines the bounds
of discrepancy between RANS and DNS and experimental results.

3.3. Mean Velocity in the x-Direction

The mean streamwise velocity ū/u0 throughout the y-axis was computed at x/h = 4, x/h = 6 and
x/h = 10, respectively. The comparison between the models with perturbed kinetic energy, perturbed
eigenvalue and the non perturbed model in Figure 8 show the pattern seen in previous parameters.
The higher the amount of perturbation, the wider the bounds, thus the proportion of data covered in
the bounds is higher. These results show the capability of the framework to capture the uncertainty in
the simulation results.

3.4. Reynolds Shear Stress

Reynolds shear stress was computed vertically at x/h = 4, x/h = 6 and x/h = 10, respectively,
and normalized with respect to the upstream reference velocity. As can be seen from Figure 9, there is
some discrepancies between the unperturbed RANS model and the reference data from experiments and
DNS. By introducing the structural uncertainties to the RANS, the model can bound the experimental
data. It is also observed that the model uncertainty is not uniformly distributed in the domain. In some
regions of the flow, the model uncertainty is larger due to the shortcoming of the model assumptions
in capturing the physics of the flow. Also, it can be seen that increasing the amount of perturbation in
both the magnitude and shape widen the gray regions that envelop the baseline results. For instance,
increasing the amount of perturbation for turbulent kinetic energy from nk = 1.5 to nk = 2 widens the
uncertainty bound (gray region) by a factor of about 2. A relatively similar trend is observed when the
injected uncertainty into the shape of the stress tensor increases from δB = 0.1 to δB = 0.25.
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Figure 7. Friction coefficients at y/h = 0. Computed as: τw/(0.5ρu2
0). (a) Turbulent kinetic energy

perturbation nk = 1.5, (b) turbulent kinetic energy perturbation nk = 2, (c) eigenvalue perturbation
with δB = 0.1 and (d) eigenvalue perturbation with δB = 0.25. X1c, X2c and X3c represent perturbations
toward the three corners of the barycentric map. DNS data [15] (−·); experiment data [9] (•); RANS
k-ω SST model (−). The uncertainty bounds are shown with gray areas.
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Figure 8. Mean streamwise velocity profiles calculated at x/h = 4, x/h = 6 and x/h = 10 and
normalized by the inlet mean velocity (ū/u0). (a) k perturbation with nk = 1.5 at x/h = 4, (b) k
perturbation with nk = 1.5 at x/h = 6, (c) k perturbation with nk = 1.5 at x/h = 10, (d) k perturbation
with nk = 2 at x/h = 4, (e) k perturbation with nk = 2 at x/h = 6, (f) k perturbation with nk = 2 at
x/h = 10, (g) eigenvalue perturbation with δB = 0.1 at x/h = 4, (h) eigenvalue perturbation with
δB = 0.1 at x/h = 6, (i) eigenvalue perturbation with δB = 0.1 at x/h = 10, (j) eigenvalue perturbation
with δB = 0.25 at x/h = 4, (k) eigenvalue perturbation with δB = 0.25 at x/h = 6 and (l) eigenvalue
perturbation with δB = 0.25 at x/h = 10. X1c, X2c and X3c represent perturbations toward the three
corners of the barycentric map. DNS data [15] (−·); experimental data [9] (•); RANS k-ω SST model
(−). The uncertainty bounds are shown with gray areas.
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Figure 9. Reynolds shear stress calculated at x/h = 4, x/h = 6 and x/h = 10 and normalized by the
inlet mean velocity (−u′v′/u2

0). (a) k perturbation with nk = 1.5 at x/h = 4, (b) k perturbation with
nk = 1.5 at x/h = 6, (c) k perturbation with nk = 1.5 at x/h = 10, (d) k perturbation with nk = 2
at x/h = 4, (e) k perturbation with nk = 2 at x/h = 6, (f) k perturbation with nk = 2 at x/h = 10,
(g) eigenvalue perturbation with δB = 0.1 at x/h = 4, (h) eigenvalue perturbation with δB = 0.1 at
x/h = 6, (i) eigenvalue perturbation with δB = 0.1 at x/h = 10, (j) eigenvalue perturbation with
δB = 0.25 at x/h = 4, (k) eigenvalue perturbation with δB = 0.25 at x/h = 6 and (l) eigenvalue
perturbation with δB = 0.25 at x/h = 10. X1c, X2c and X3c represent perturbations toward the three
corners of the barycentric map. DNS data [15] (−·); experimental data [9] (•); RANS k-ω SST model
(−). The uncertainty bounds are shown with gray areas.

4. Summary and Conclusions

In this article, we applied the framework, originally proposed by Emory et al. [6] for quantifying
the structural uncertainties in RANS models. The quantification consisted in bounding the regions,
where the most accurate results are certain to be located. This methodology focuses on the perturbation
of the Reynolds stress tensor in the momentum equation. The Reynolds stress tensor is decomposed
into components that represent the amplitude (turbulent kinetic energy), the shape (eigenvalues)
and the orientation (eigenvectors). This investigation focused only on the influence of the amplitude
and shape perturbations.

This perturbation is carried out by the turbulent kinetic energy and the eigenvalues of the
Reynolds stress tensor separately and is applied to the backward-facing step case using the open-source
software OpenFOAM. In this investigation, the following quantities were monitored: pressure and
friction coefficients at the wall, mean streamwise velocity field and the Reynolds stress tensor.
The investigation shows promising results. The results showed that for a specific amount of
perturbation, the model provides a range of values where the physics of the case are well represented.
An interesting feature of this research is that the perturbation of the turbulent kinetic energy shows
results as good as the perturbation of the eigenvalues. The eigenvalues have well-established limits of
the perturbation through the barycentric map, while the turbulent kinetic energy has not. This implies
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that the amount of the perturbation applied to the turbulent kinetic energy is not chosen systematically,
thus it is left for future investigation.

In view of the results of this article, it is recommended for future work to focus on applying the
perturbation to other parameters of the Reynolds stress such as the eigenvectors or a combination that
optimizes the range that captures the most precise solution [7]. Recent studies [23,24] suggested that
machine learning can be used as a powerful tool to predict discrepancies in the magnitude, anisotropy
and orientation of the Reynolds stress tensor. It would be useful to continue applying this methodology
to a new set of cases to monitor its behavior.
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Appendix A. Implementation of the Reynolds Stress Perturbation in OpenFOAM

The application of the Reynolds stress perturbation results in the appearance of an extra term
(i.e., ΔRij) in the right-hand side of Equation (2) as

∂tui + uj∂jui = ∂i p + ν∂j∂jui − ∂j(Rij + ΔRij), (A1)

where ΔRij is the discrepancy between the perturbed Reynolds stress tensor shown in Equation (14)
and the original one. This extra term is evaluated separately and added in OpenFOAM as a new line
of code into the momentum equations as highlighted in Figure A1.

Figure A1. Modification to the Momentum predictor subroutine implemented in OpenFOAM.

Figure A2 shows the mean velocity field obtained from the baseline RANS solver. To better
describe the procedure of the Reynolds stress perturbation, three different locations are chosen and
their positions in the barycentric map are shown in Figure A3. This figure shows how the extracted
Reynolds stress tensor from the baseline case is perturbed toward different corners in the barycentric
map. This procedure is done for all the points in the domain and the perturbed Reynolds stress
tensor is computed following Equation (14). Next, the discrepancy between the perturbed Reynolds
stress tensor and the original one from the baseline case (i.e., ΔRij) is evaluated (here using a separate
Matlab code) and added to the right-hand side of the momentum equations in OpenFOAM. The
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simulations are run again until the results are converged. The corresponding flowchart is also plotted
in Figure A4.

Figure A2. Mean velocity field in the x-direction, normalized with respect to the inlet velocity (ū/u0)
obtained from the baseline case. Three different locations have been chosen in the flow domain to
study their positions in the barycentric map. The points 1, 2 and 3 are respectively located at (h, 0.7h),
(10h, 0.7h) and (8h, 5h).

Figure A3. Locations of the chosen points shown in Figure A2 in the barycentric map. The points were
perturbed towards the three limiting states and the amount of perturbation is δB = 0.25.

Figure A4. A flowchart describing the implementation of Reynolds stress perturbation in OpenFOAM.
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Abstract: A method for shock capturing by adaptive filtering for use with high-resolution, high-order
schemes for Large Eddy Simulations (LES) is presented. The LES method used in all the examples
here employs the Explicit Filtering approach and the spatial derivatives are obtained with sixth-order,
compact, finite differences. The adaptation is to drop the order of the explicit filter to two at gridpoints
where a shock is detected, and to then increase the order from 2 to 10 in steps at successive gridpoints
away from the shock. The method is found to be effective in a series of tests of common inviscid
1D and 2D problems of shock propagation and propagation of waves through shocks. As a prelude
to LES, the 3D Taylor–Green problem for the inviscid and a finite viscosity case were simulated.
An assessment of the overall performance of the method for LES was carried out by simulating an
underexpanded round jet at a Reynolds number of 6.09 million, based in centerline velocity and
diameter at nozzle exit plane. Very close quantitative agreement was found for the development of
centerline mean pressure when compared to experiment. Simulations on several increasingly finer
grids showed a monotonic extension of the computed part of the inertial range, with little change
to low frequency content. Amplitudes and locations of large changes in pressure through several
cells were captured accurately. A similar performance was observed for LES of an impinging jet
containing normal and curved shocks.

Keywords: large eddy simulations (LES); shock capturing; adaptive filter; explicit filtering; jet

1. Introduction

Large eddy simulation (LES) has now become a widely-used technique. The greater expense
in computing resources and time is justified when it provides accurate solutions, especially when
the more common RANS (Reynolds-averaged Navier–Stokes) methods yield qualitatively incorrect
solutions. From this general experience, practitioners have come to rely on their own set of
procedures—combinations of numerical method and sub-grid-scale (SGS) model—that they have
found to be reliable and accurate. Thus, several models co-exist, including the explicit filtering method.
This paper concerns a proposal to extend explicit filtering to compressible flows with shocks by filter
adaptation. Our results, from a sequence of elementary problems leading to a general turbulent flow
of an underexpanded jet, reveals its excellent potential.

A recent review of methods for direct numerical simulation (DNS) and LES of compressible flows
with shocks was provided by Pirozzoli [1]. There have been many efforts to devise methods that could
handle shocks in inviscid flows—to incorporate procedures or terms to obtain correctly the jumps
across shocks, and suppress oscillations at these jumps to avoid instability. The successes have carried
over to RANS computations as well. However, specific assessments of shock-capturing methods for
DNS/LES are far fewer, even though methods found to be successful for inviscid flows have been
employed for DNS/LES. Pirozzoli [1] noted that such methods “exhibit excessive numerical viscosity”
when combined with high-order methods designed for DNS/LES of smooth flows, and suggests that
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an optimal hybrid is needed for DNS/LES of flows with shocks. Typical hybrid schemes switch to
a shock-capturing scheme where indicated by a shock sensor, and over a small set of neighboring
gridpoints. Some examples are studies that employed a sixth-order compact scheme switching to
sixth-order essentially non-oscillatory (ENO) near the shock [2], compact upwind with fifth-order
ENO [3], and a fifth-order compact upwind with seventh-order weighted essentially non-oscillatory
(WENO) [4]. An alternative to discontinuous switching is to apply the same discretization scheme
with a continuously variable coefficient that adds artificial dissipation near shocks and nearly vanishes
in smooth regions [5]. Cook and Cabot [6,7] proposed an artificial stress tensor with both shear and
bulk viscosity. The generalization is to use artificial thermal conductivity and species diffusivity as
well [8]. It was observed that artificial bulk viscosity provided shock capturing without affecting the
vorticity field, but artificial shear viscosity damped vortical fluctuations. These artificial properties
were scaled with high-order derivatives of the flow field and are therefore continuous, but rapidly
changing, functions. Artificial diffusivity may also be suitable for dealing with other types of large
derivatives (e.g., mixing of fluids with large density differences) [9].

A recent examination of these several approaches by Johnsen et al. [10] did not find any of
the methods to be completely satisfactory: WENO provides sharp shocks but overwhelms physical
dissipation; artificial viscosity works well when shocks are not too close to each other, but can be
excessive when there are multiple shocks in the turbulent flow; and all methods exhibit post-shock
oscillations. It would thus appear that there is still a need to study variants and other strategies that
may yield reliable and accurate solutions. In this paper, we present studies with adaptive filtering.
It is a natural extension for the explicit filtering approach of Mathew et al. [11] because spatial,
low-pass filtering of transported fields after every time-step is an indispensable part of this LES
method. The extension is to change the filter-order alone in the vicinity of shocks. An advantage
is that there is no discontinuity due to switching numerical schemes since the same scheme is used.
Visbal and Gaitonde [12] examined this strategy. They compared results of two proposals against a
standard. In one, a 10th-order filter was applied at gridpoints away from shocks, while at the shock
and at adjacent (buffer) points the filter formula was dropped to second order, but with a very high
filter cutoff. At successive gridpoints away from the shock, filter order increased in steps to 10th order.
In the second method, the Roe scheme was applied at cells spanning the shock and adjacent ones.
Test cases included 1D and 2D inviscid flows and shock reflection from a laminar boundary layer.
They found that their adaptive filter method provided a significant improvement—oscillation-free
solution—over their baseline filter-stabilized compact scheme, but shocks were smeared over a few
cells; the hybrid compact-Roe scheme gave sharper shocks.

To the best of our knowledge, no further studies or applications of this technique have appeared.
However, the method is appealing for its simplicity and minimal overhead, thus seemed worth
re-visiting. Although the study reported here also employed filter-order adaptation, the adaptation
stencil is different. Here, as explained in Section 2.2, the lowest order filter was applied at only
one adjacent buffer point; adaptation in a direction was selected only when the angle between the
coordinate direction and the normal to the shock was not too large. Results from tests with usual
problems for shock capturing, and LES of two turbulent jets with multiple shock cells show much
promise. A possible criticism of this method is that the filtering seems to be ad hoc—none of filter type,
shape, or filter cut-off was obtained by some kind of optimization. We argue below that optimization
to arrive at the best filter is possible, but perhaps not essential.

Filter adaptation was tested in Bogey and Bailly [13] as well. Near shocks, they applied an
optimized, explicit second-order filter whose filter response function lies between those of standard
second- and fourth-order explicit filters. They varied the extent of the region where the lower-order
filter was applied. Test cases of 1D and 2D inviscid flows were presented.

In the following, first, we discuss the basic numerical method (sixth-order, Hixon–Turkel split
compact scheme for spatial derivatives, and fourth-order Runge–Kutta for time-stepping) and the
proposal for filter adaptation. Then, results of a sequence of 1D and 2D inviscid test cases are presented,
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followed by those for the Taylor–Green problem, and LES of underexpanded, free and impinging,
round jets. The five inviscid test cases reveal accurate evolution of the flow and crisp shock-capturing.
Quantitative errors are at least as small as other recent strategies. The Taylor–Green problem is
included to record the correctness of the code for viscous flows that develop a wide range of scales,
as well as the effectiveness as LES for the inviscid case. With these elements of flows completed,
we turned to LES of supersonic jets at Reynolds numbers of O(106) (based on jet diameter and jet
velocity at the nozzle exit). These are representative of applications where LES is needed since DNS
is prohibitive. With the free underexpanded jet, which develops a series of shock cells, we observed
close quantitative agreement with measured centerline pressure on a grid of about nine million points.
By simulating on successively larger grids, up to 200 million points, we observed the extension of the
computed part of the inertial range, with little change to low frequency content. The present proposal
for shock capturing by adaptive filtering showed no discernible adverse effects on the development
over several shock cells. The second LES of an impinging jet provides further support for the method
as a suitable approach for applications.

2. Numerical Method

The governing equations for compressible flow were cast in the strong conservation form

∂Û
∂t

+
∂F̂
∂ξ

+
∂Ĝ
∂η

+
∂Ĥ
∂ζ

= 0, (1)

in a curvilinear coordinate system (ξ, η, ζ). Here, Û = U/J, and U = (ρ, ρu, ρv, ρw, E) is the vector
of conserved variables with density ρ, Cartesian velocity components (u, v, w), and energy E =

p/(γ− 1)+ ρ(u2 + v2 +w2)/2; p is the pressure; and γ is the specific heat ratio. J = ∂(ξ, η, ζ)/∂(x, y, z)
is the Jacobian of the transformation between Cartesian and curvilinear coordinate systems. F̂,Ĝ, and Ĥ
include inviscid and viscous fluxes (see, for example, Tannehill et al. [14]). The fluid is Newtonian,
with viscosity as per Sutherland’s law, Fourier’s law for conduction applies, the Prandtl number is 0.7,
γ = 1.4, and specific heat cp = 1.005.

LES Model

The explicit filtering approach of Mathew et al. [11] was used for the LES presented here.
The essential requirements of this approach are that the numerical method used should consist of
high-resolution spatial approximations, and that a spatial, high-resolution, low-pass filter be applied to
transported fields after every time step. The high-resolution numerical method should ensure that the
evolution of a range of low wavenumber content is obtained accurately, while the high-resolution filter
removes only a small range of the smallest computed scales. Examples of high resolution numerical
methods are those that use spectral, implicit difference, or high-order explicit difference methods
for derivative evaluations. Typically, implicit difference formulas, also known as compact difference
formulas, have better resolution properties compared to explicit differences of the same order [15].
If explicit formulas are used instead of compact differences, they should be of higher order, and would
require large stencils [16]. Here, a procedure that is approximately equivalent to a sixth-order compact
scheme was used for first derivatives. Its resolution characteristics can be noted from its modified
wavenumber curve (6/2 curve) plotted in Figure 1a. Filter response functions of several implicit
filters of different orders and values of filter parameter are shown in Figure 3a. Either high values
of the filter parameter, or high order, results in a flat response (negligible filtering) over a range of
low wavenumbers. The arguments for the correctness of this approach have been given before [11,17].
LES of many different kinds of flows, by at least two other groups [18,19] who applied essentially
this approach, are available. Although originally devised for high accuracy by using compact
schemes [18], or unusually high-order explicit differences [16], with high wavenumber filtering for
stability, the authors then demonstrated that these methods were suitable for LES. The performance of
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computations with our method for incompressible, variable density and compressible flows has also
been documented [20–22].

2.1. Spatial Discretization

As noted above, an essential requirement of the LES approach adopted here is the use of
high-resolution numerical schemes. While resolution quality of difference formulas increases with
order, implicit difference formulas have smaller resolution error for a given order. Here, we use an
extension to sixth order of the splitting proposed by Hixon and Turkel [23]. A sixth-order compact
difference formula is

1
5

Di+1 +
3
5

Di +
1
5

Di−1 =
7
15

fi+1 − fi−1

Δx
+

1
60

fi+2 − fi−2

Δx
, (2)

where Di is the first derivative of the function fi. A MacCormack-like splitting

Di =
DF

i + DB
i

2
, (3)

leads to the two relations

(1 − a)DF
i + aDF

i+1 =
1

Δx
(−m fi−1 + (l + m) fi − l fi+1) , (4)

aDB
i−1 + (1 − a)DB

i =
1

Δx
(l fi−1 − (l + m) fi + m fi+1) . (5)

When

a =
1
2
−

√
5

10
, m =

1
3(5 −

√
5)

, l =
3
√

5 − 14
3(5 −

√
5)

,

DF
i = fx + O(Δx), DB

i = fx + O(Δx), but (DF
i + DB

i )/2 = fx + O(Δx)6. In their terminology, this
would be a 6/2 scheme [23]. Equation (2) leads to a tridiagonal system, whereas Equations (4) and (5)
form bidiagonal systems. Instead of finding derivatives as the mean of DF and DB, we use either
alone as the estimate of the derivative in successive evaluations. Tests showed that the higher-order
truncation error was obtained when the time discretization error was small enough. The great
advantage in splitting is that the number of operations per derivative, per time step is roughly halved,
which is a tremendous saving for an LES or DNS.

Figure 1 shows the modified wavenumber k̃ of the 6/2 scheme. The fourth-order schemes 4/2 and
4/4 that Hixon and Turkel [23] studied are also shown. The 4/2 scheme has a first-order truncation
error for each split part, while 4/4 was designed for this error to be third order. To demonstrate that
higher-order behavior can be realized, we show the fall in error in solutions of the linear wave equation
with unit phase speed after unit time over the region [0,5]. The initial condition was the Gaussian
u = exp[−10(x − 1)2]. Solutions were obtained on grids with spacing 1/5, 1/10, 1/20 and 1/40,
and fourth-order Runge–Kutta time integration with CFL numbers 0.01 and 0.001. The fall in rms of
the difference between numerical solutions and the exact solution is shown in Figure 1b. Solutions with
the fourth-order (4/2) and sixth-order (6/2) schemes and lines with Slopes 4 and 6 are shown for
reference. Clearly, the order behavior of the equivalent symmetric compact scheme has been recovered.
Due to time-stepping error, the decay rate reduces at the higher CFL for the sixth-order scheme.
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Figure 1. (a) Modified wavenumber characteristics of Hixon–Turkel split derivative formulas.
(b) Effective orders of truncation error. (a) Modified wavenumber, (b) Order behavior.

2.2. Treatment of Regions with Shocks

An essential requirement of shock capturing methods is that the growth of oscillations in the
vicinity of the shock must be prevented. Visbal and Gaitonde [12] proposed an adaptive filtering
strategy, but do not seem to have pursued it further. It is an attractive strategy because it requires but a
simple modification of coefficients of a filter that is anyway applied for the LES. A 2Nth-order implicit
filter (denoted filter F2N) is represented by the relation

α f f̄i−1 + f̄i + α f f̄i+1 =
N

∑
n=0

an

2
( fi+n + fi−n) (6)

connecting filtered and unfiltered vectors, f̄ and f , respectively. As filter order increases, the response
function becomes flatter at low wavenumbers. As filter parameter α f is increased the spectral content
of the function that is filtered out is over a smaller range of high wavenumbers.

The explicit filtering LES sub-grid-scale (SGS) model prescribes that transported variables be
filtered with a high-resolution, low-pass, spatial filter after every time-step [11]. Accordingly, filter F10
was applied to all transported fields in all three directions, after every timestep, for LES of flows
without shocks. When there are shocks, filters of different orders were applied in the vicinity of
the shock. The effectiveness of the adaptive filter is dependent on the shock sensor. In fact, both a
review [1] and an assessment of methods [10] emphasize its importance in achieving good results.
Pirozzoli [1] examined the effectiveness of four types of sensors. The Ducros sensor [24] selected only
the shock, whereas other sensors selected parts of regions without shocks as well. Here, the sensor
proposed by Bhagatwala and Lele [25] was used. A shock was considered to be near a gridpoint if

1
2

(
1 − tanh

(
2.5 +

10Δ
c

(∇ · u)

))
(∇ · u)2

(∇ · u)2 + |∇ × u|2 + 10−32 > ε. (7)

From our numerical experiments, ε = 0.02 was found to work well for various flows containing
Mach waves to strong normal shocks. After a gridpoint was detected as being “in” a shock,
the inclination of the shock was determined to ensure filter adaptation was in required directions only.
The filter was adapted along a coordinate direction i if x̂i · ∇M/|∇M| or x̂i · ∇ρ/|∇ρ| > 1/

√
3 at that
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point, where x̂i is the unit vector along the ith coordinate direction. The second-order filter F2 was
applied at that point and at the two neighboring points. Filter order was increased progressively from
2 to 10, from shock to the smooth region, as shown in Figure 2a for a single shock and Figure 2b for
multiple nearby shocks. Then, all filter stencils (F4–F10) include the point detected by the shock sensor,
but do not straddle that point.

(a)

(b)

Figure 2. Scheme for changing filter order near isolated and proximate shocks: (a) isolated shock;
and (b) proximate shocks.

By testing with a normal shock, Visbal and Gaitonde [12] determined that filter order had to be
reduced to 2 to prevent the appearance of wiggles. However, the filter parameter could be set to a high
value α f = 0.498. From a large number of our own tests, we found the following parameter-order
combinations to provide wiggle-free shocks in several different simulations: filter parameter α f = 0.47
for filter F2; 0.48 for F4; and 0.498 for F6, F8 and F10. Filter response functions of filters of various orders
are shown in Figure 3a. Higher-order filters, F6–F10, remove very little of the solution over a small
range of the largest represented wavenumbers. A larger value of filter parameter for F2 may improve
solutions in some cases as discussed in Section 3.1. Another comparison of filter characteristics that
accentuates low wavenumber differences is obtained by plotting damping functions D(k) = 1 − T(k)
(Figure 3b).
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The resolution error of a derivative formula is k̃/k − 1. To compare with filter characteristics,
the function k̃/k of the 6/2 derivative scheme has been included in Figure 3a, and k − k̃ in Figure 3b.
Even when filter F2 is applied, its significant effects are over a high wavenumber range comparable
to that of the sixth-order derivative formula. A formal optimization to obtain filter parameters was
not carried out. It has been our practice to use the values listed above for new problems as long as
stable solutions are obtained. Solution accuracy improves readily with grid refinement, thus it has not
seemed worthwhile to implement formal optimization procedures, which may be problem dependent,
especially when multiple interacting shocks are present.
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Figure 3. Response and damping functions of filters and scheme. F2–F10 are filters of various orders,
and S6 is the sixth-order difference scheme. Filter parameters: α f (F2) = 0.47, α f (F4) = 0.48 and
α f (F6, F8, F10) = 0.498. (a) Filter response functions; and (b) filter damping functions.

The second-order explicit Runge–Kutta scheme was used for the time integration. For simplicity,
let us write the 1D version of Equation (1) in the form Ut + Finv

ξ + Fvis
ξ = 0, where Finv and Fvis are the

inviscid and viscous fluxes, respectively. Then, the field Un+1 at time-step tn+1 is obtained from the
field at tn as follows:

Un+1 = Un +
h(1)

2
+

h(2)

2
(8)

with,

h(1) = −Δt
∂F

∂ξ

[
Finv(Un) + Fvis,B(Un)

]
h(2) = −Δt

∂B

∂ξ

[
Finv(Un) + Fvis,F(Un)

]
The superscripts F and B signify the use of forward and backward relations (Equations (4) and (5)),

respectively. The expressions above can be denoted an FBBF rule. During integration, the sequence is
alternated after every time step, i.e., if FBBF is used at a time step, then at the following time step the
relations are BFFB.
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3. Basic Tests

Several tests were conducted to understand effects of adapting filtering in flows with shocks
and simple fluctuations. The first three are Riemann problems and the following two are of shocks
interacting with 1D and 2D waves sinusoidal incident waves.

3.1. Riemann Problems

Sod’s conditions for a 1D Riemann problem is a common example. The initial pressure ratio is 10
and density ratio is 8 across the initial discontinuity. The fluid is air. In the simulations, viscosity μ = 0,
and conduction terms also vanish. Grid spacing Δx = 0.005. The numerical solution at t = 0.2 is
displayed as the density distribution in Figure 4a, with the analytical solution for comparison. The filter
order at the same gridpoints are also shown. Figure 4b shows the solution to Lax’s shock problem.
The initial conditions were ρ = 0.445, u = 0.698 and p = 3.528 for x < 0, and ρ = 0.5, u = 0.0 and
p = 0.571 for x > 0. The solution is everywhere very close to the exact solution. For both problems,
grid spacing and times at which their solutions have been presented are the same as those in Kawai and
Lele [26] for direct comparison against their artificial diffusivity solutions. They found that artificial
viscosity was enhanced at the shock and at the ends of the expansion, and artificial conductivity
was enhanced at the shock and contact surface. Here, filter order changes are near the shock only.
Small oscillations and a slight smearing at the shock are evident in the solution of the Lax problem.
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Figure 4. Solution of shock tube problems. exact (——), numerical (– – –), filter order (•); α f (F2) =
0.47, α f (F4) = 0.48 and α f (F6, F8, F10) = 0.498. (a) Sod’s problem at t = 0.2; and (b) Lax’s problem at
t = 0.13.

The third basic test is with a 2D Riemann problem listed as Case 13 by Lax and Liu [27].
Initial conditions in the four quadrants are listed in Table 1. These conditions imply that there
are shocks along the line y = 0 which move to y < 0 but at different speeds, and a slip line along x = 0.
This case was used by Pirozzoli [1] to illustrate the relative performance of standard and hybrid WENO
schemes. Figure 5a shows the density distribution at time t = 0.3 on a grid with Δx = Δy = 1/1200.
Gridpoints where filter order has been lowered for treatment of shocks are marked in Figure 5b;
where shocks are nearly perpendicular to the y-axis, adaptation is along y only. The shocks are crisp.
The vortex sheet is unstable to perturbations of any wavelength. Here, the rolled-up vortices seen
along the slip line are selected by the grid spacing, which selects the smallest wavelength. Owing to
the high-resolution derivative formula and restriction of low-order filtering to the vicinity of shocks,
there is no discernible smearing of the vortices along the slip line. Flow features, especially shock
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locations, agree closely with the solution given in Lax and Liu [27] using their scheme. Shocks are
sharper in the present solution. In their solution, the slip line is thicker and, understandably for an
inviscid scheme, does not have any of the vortices shown here.

Table 1. Initial condition for 2D Riemann problem—Case 13 by Lax and Liu [27].

Quadrant ρ p v

I 1.0 1.0 −0.3
II 2.0 1.0 0.3
III 1.0625 0.4 0.8145
IV 0.5313 0.4 0.4276

(a) (b)

Figure 5. Solution at t = 0.3 for Case 13 by Lax and Liu [27], and filter adaptation: (a) Density; and (b)
Filter adaptation ((3) (cyan) adapted along x and y; (2) (red) along y only; and (1) (blue) along x only).

3.2. Interaction of Plane Waves with Shocks

In view of the intended application of the proposed method to LES, it is useful to examine its
performance on flows in which fluctuations pass through a shock wave. The Shu–Osher problem [28]
is initialized with a Mach 3 shock wave travelling into a quiescent region with sinusoidal density
variations. The initial conditions are

(ρ, p, u) =

{
(3.857143, 10.33333, 2.629369) (−5 < x < −4),
(1 + 0.2 sin 5x, 1, 0) (−4 ≤ x < 5).

A solution on a grid with spacing Δx = 0.05 at t = 1.8 is shown in Figure 6. The reference solution
is that on a finer grid with spacing Δx = 6.25 × 10−3. These are the spacings used in Johnsen et al. [10].
The solutions are identical on the finer grid. At this time, acoustic waves have traveled farther into
the post-shock region than the entropy waves, and have themselves steepened into weak shocks
(in −2.5 < x < 0). The most noticeable differences between solutions on the two grids are in density
and entropy immediately downstream of the shock. Entropy fluctuations are damped at the shock
only, visible as a drop in amplitude at the peak adjacent to the one at the shock (Figure 6c). There is no
further loss to this wave as it propagates away from the shock. The present solution is comparable to
that with the Hybrid scheme (sixth-order central switching to fifth-order WENO over discontinuous
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regions) in Johnsen et al. [10]. It is slightly worse than the artificial diffusivity methods, but better than
WENO methods; entropy continues to decay along the wave for WENO methods.
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Figure 6. Shu–Osher problem at t = 1.8 (red dotted curve: Δx = 0.05; black curve: Δx = 6.25 × 10−3).

A 2D version of the Shu–Osher problem can be posed as the interaction between a plane shock and
an inclined plane wave with sinusoidal vorticity and entropy variations. Johnsen et al. [10] examined
the performance of several schemes on this problem (considered earlier by Mahesh [29]). The region
of interest is 0 < x < 4π and −π < y < π. The solution is periodic in y with period 2π. There is a
supersonic inflow at x = 0, and a subsonic outflow. A buffer region over 4π < x < 5.2π ensured that
there were no reflections. An initial field was setup, representing steady flow separated by a plane
shock at Mach 1.5, given by left and right states

(ρ0, p0, u0) =

{
(ρL, pL, uL) = (1, 0.714286, 1.5) (0 ≤ x ≤ 3π/2),
(ρR, pR, uR) = (1.862069, 1.755952, 0.8055556) (3π/2 ≤ x ≤ 4π).
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To this, fluctuations

ρ′ = ρL Ae cos(kxx + kyy), p′ = 0,

u′ = uL Av sin ψ cos(kxx + kyy), v′ = −uL Av cos ψ cos(kxx + kyy),

representing a plane wave incident at angle ψ = tan−1 ky/kx were added. This wave enters at x = 0
from the unsteady boundary conditions

ρ = ρL + ρL Ae cos(kyy − kxuLt), p = pL,

u = uL + uL Av sin ψ cos(kyy − kxuLt), v = −uL Av cos ψ cos(kyy − kxuLt).

Grid spacings of Δx = π/50, Δy = π/32 are identical to those of Johnsen et al. [10]. The change
due to refinement along x alone (Δx = π/100, Δy = π/32) and two levels of refinement in both
directions are presented below. Taking small values for amplitudes (Ae = Av = 0.025) allow
quantitative comparisons against linear theory (linearization of Rankine–Hugoniot jump conditions)
as in [29].

Contours of vorticity ωz for a wave train incident at angle ψ = 45◦ are shown in Figure 7a.
The wave refracts and its amplitude changes. The solution along a line (y = 0) is found to be free
of oscillations. On halving Δx alone, a sharper jump is obtained at the shock. Oscillations appear in
the vicinity of the shock when the wave is incident at a higher angle (Figure 7c), and are carried into
the post-shock region. The grid refinement has confined significant oscillations to a smaller region,
and made the post-shock solution smoother. The differences in solution structure arise because the
post-shock wave is evanescent at ψ = 75◦ [29].
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Figure 7. Shock-vorticity/entropy wave interaction. Δy = π/32; Red curve: Δx = π/50; black curve
(finer grid): Δx = π/100. (a) Vorticity ωz contours at t = 25 for ψ = 45◦, ky = 1; (b) ωz along y = 0 for
ψ = 45◦, ky = 1 at t = 25; and (c) ωz along y = 0 for ψ = 75◦, ky = 1 at t = 32.

Quantitative comparisons against linear theory are shown in Figure 8. The amplification of the
mean enstrophy < ω2

z > across the shock is shown for ψ = 45◦, 75◦, and ky = 1, 2. Averaging is over the
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time period 2π/(kxuL). The amplification factor obtained in the simulation is slightly smaller than that
of linear analysis at ψ = 45◦, and slightly larger for ψ = 75◦. The differences increase as wavenumber
is increased. On halving grid spacing, in every case, there is a significant improvement as solution
comes closer to that of linear theory. In addition, the amplitude of the post-shock oscillations and the
extent of the region where these occur decrease significantly. With further refinement, the numerical
solution is essentially the same as that of linear theory for ψ = 45◦. When ψ = 75◦, there is further
improvement for ky = 2 although not significantly for ky = 1.
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Figure 8. Shock-vorticity/entropy wave interaction. Black dotted line: linear solution; black: grid as in
Johnsen et al. [10]; red: medium grid, Δx, Δy halved; blue: fine grid Δx, Δy halved again. (a) ψ = 45◦,
ky = 1; (b) ψ = 45◦, ky = 2; (c) ψ = 75◦, ky = 1; and (d) ψ = 75◦, ky = 2.
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The solutions can be compared with the results of Johnsen et al. [10]. On the same grid as theirs,
the amplification factor in the present solutions differ more from the linear analysis solution than some
other methods (Hybrid WENO/central differences, WENO and ADPDIS3D). However, when the grid
was refined, the differences fell in all cases, and post shock oscillations also reduced in amplitude
and occurred over a smaller region. They supposed (Section 4.2.1 in Johnsen et al. [10]) that these
are post-shock oscillations owing to, generally, slowly moving shocks in shock-capturing schemes;
these oscillations would “not disappear under grid or time step refinement” [10]. In the present
simulations, the differences between numerical solutions and linear theory generally diminish with
grid refinement.

In all the tests reported above, the same adaptation of filter order as in Figure 2, and same set of
filter parameters as in Figure 3 was used. For a given problem, it is always possible to find a set of
filter parameters that result in a “better” solution on a given grid. Not only would the solutions look
more attractive because of reduced oscillation amplitudes, even accuracy can improve. For example,
in the 2D extension of the Shu–Osher problem, with slightly less filtering, the amplification factor
comes closer to that of linear theory. However, our proposal is not to seek a new, optimal set of filter
parameters for every problem, but to use, e.g., the set given here. Since the computations remained
stable for all the problems reported here with this set of parameters, and solutions tend to the reference
one (or DNS/experiment), this appears to be a reliable method for obtaining accurate solutions.

3.3. 3D Evolution

The Taylor–Green vortex problem evolves from a periodic initial field and develops smaller scales
due to nonlinearity. We consider both inviscid and viscous solutions. No shocks form in this problem.
It is included to demonstrate accuracy of the numerical scheme, and convergence with grid refinement
by comparisons with reference solutions.

For the inviscid case, there is no lower limit on the scale. An LES model and/or numerical method
must stabilize the computation beyond the time at which structures of the order of the grid spacing
appear. Excessive damping can be revealed by this test problem. The initial condition is

ρ = 1, p = 100 +
(cos 2z + 2)(cos 2x + cos 2y)− 2

16
,

u = sin x cos y cos z, v = − cos x sin y cos z, w = 0.

Simulations were carried out in a cube of edge length 2π on uniformly-spaced grids of 5123,
1283 and 643 points. The growth of enstrophy in the box is shown in Figure 9a. A semi-analytical
solution is included for comparison [30]. All simulations remained stable but departed from each
other when t > 4, approximately. As the grid is refined, the numerical solution agrees with enstrophy
of the reference solution to later times. The kinetic energy in the box should be preserved because
there is no viscous dissipation. Figure 9b shows the kinetic energy to begin to fall at t ≈ 4 on the 643

grid, and later on the finer grids. Comparisons at two times are shown in Table 2. The monotonic
convergence with grid refinement is evident. Owing to the flat filter characteristics, dissipation is
active only after small scales have grown.

The viscous Taylor–Green solution was found for Re = 1600 based on the initial length scale
(length of cube edge, 2π), and maximum velocity. The reference data for comparison are from
DeBonis [31] (available at https://eprints.soton.ac.uk/401892/1/512.dat). The simulation was carried
out for 0 ≤ t ≤ 20. Differences are evident on coarse grids, but diminishes with refinement.
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Figure 9. Evolution of Taylor–Green vortex. Curves are from simulations on grids of 5123 (black),
2563 (blue), 1283 (green), and 643 (red) points. (a,b) Inviscid case with symbols from [30]; and (c,d)
viscous case with solid line, present LES and symbols from [31].

Table 2. Measures of Taylor–Green vortex solution.

643 1283 5123 Brachet et al. [30]

Inviscid
Energy (t = 5) 0.9846 0.9943 0.9992 1.00

Enstrophy (t = 3.5) 3.276 3.402 3.458 3.459
Viscous

Energy (t = 5) 0.9423 0.9468 0.9476
Enstrophy (t = 3.5) 3.080 3.145 3.154

4. Jet LES

Now that the performance of the proposed method has been evaluated carefully in canonical
problems of isolated shocks, wave refraction by a shock, and the evolution of a turbulent flow at
a moderate Reynolds number accessible to DNS, we turn to simulations of high Reynolds number,
turbulent, supersonic jets. Imperfectly expanded jets exhibit a train of shocks. As turbulent fluctuations
travelling through these shocks are distorted, turbulent dissipation and production can get affected.
Excessive numerical dissipation can then alter the jet’s development. The following two test cases
are model turbulent flows with stationary shocks that can indicate the accuracy that can be expected
from LES for compressible flow applications. Comparisons with experiments, and another LES for the
impinging case are shown. The Reynolds numbers are quite large, O(106). The intent is to examine the
usefulness of this method for practical applications. It is shown that, as the grid is refined, the energy
spectrum broadens by extending the computed part of the inertial range.
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4.1. Free, Underexpanded Round Jet

Large eddy simulations were performed on the supersonic round jet experiments of Norum
and Seiner [32]. A contoured C-D nozzle designed for exit plane Mach number ME = 2 was used.
The nozzle pressure ratio (NPR), which is the ratio of reservoir pressure to nozzle exit pressure,
was 9.187. Because the jet was slightly underexpanded, the fully expanded Mach number would be
Mj = 2.103. The Reynolds number based on these nozzle exit plane conditions, centerline velocity
Uj, and nozzle inner diameter d, was 6.09 × 106. The simulation was set up in a rectangular domain
that was 7d along jet axis, and 4d in cross stream directions. Simulations were performed on a
sequence of grids. Each was distinguished by the number of uniformly spaced gridpoints across the
jet diameter. Outside the jet, the grid was stretched—spacing increased in geometric progression at 1%
in cross stream directions. A much milder stretching of 0.1% was used in the streamwise direction.
Buffer zones, with twenty points at the lateral and thirty points at the outflow boundaries, were added
with a stretching of 10%. On the coarsest grid there were 20 points across the jet diameter leading to
2.23 × 106 gridpoints in total. A refined grid had 40 points across the jet and 9.3 × 106 points in total
(medium grid). Finer grids had 23 million (fine), 43 million (finer), and 200 million (finest) points.

Boundary conditions at the inflow plane (x = 0) were obtained from radial profiles

u
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1
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1
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tanh
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2δθ

)
,

p
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)
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(
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Uj

)
.

(9)

Here, rj = d/2 is the mean jet radius and δθ the momentum thickness of the jet (taken to be
rj/20). Subscripts j and ∞ denote jet centerline and ambient conditions, respectively. To anchor the
inflow profile, the following procedure proposed by Bogey and Bailly [19] was employed at every
time step. Flow variables U = {ρ, u, v, w, p} at the inflow plane, obtained after applying non-reflecting
conditions, were corrected to Uc = (1 − σr)U + σrUref. Here, Ure f is the prescribed inflow profile
(Equation (9)), and σr = 5 × 10−2 for r ≤ 2r0 and 5 × 10−3 for r > 2r0. Within the jet shear layer alone,
small perturbations,

u′

Uj
= 10−1

[
4u
Uj

(
1 − u

Uj

)]
6

∑
i=1

cos
(

Sti
Uj

d
+ φi

)
, (10)

were added to the inflow axial velocity to represent inflow turbulence of the nozzle boundary.
Strouhal numbers Sti and phase φi varied from 0.1 to 0.6 and 0 to 5π/6, respectively. The quantity
within square brackets ensures that fluctuations are added within the shear layer only.

Figure 10a is a visualization of the jet in terms of the mean pressure on a plane containing the jet
axis, showing the expected cell structures. Static pressure along the centerline in the experiment was
reported (page 27 [32]). Figure 10b shows solutions from the coarse, medium and finest grids along
with data from the experiment. There is little change in mean pressure between the medium (9 million
points) and the finest grid (200 million points). We can observe that both the locations and strengths of
the pressure variations through the cells have been captured accurately. On refining from coarse to
medium, pressure variations occur at the same places, but peaks are slightly sharper. The pressure
distribution at an instant is also shown. Significant fluctuations on the centerline appear only beyond
x/d > 3. Where such fluctuations are significant, we can observe that gradients at an instant are
slightly larger than in the mean (see pressure rise near x/d = 4 and 6). Contours of pressure on a
longitudinal plane also show that significant unsteadiness sets in the 3rd shock cell.

The effect of grids finer than the medium one can be seen in energy spectra. Figure 10b shows
spectra from the five simulations, calculated from time series at a point near the jet boundary at
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x/d = 5.7. As the grid spacing is reduced, a clear inertial range develops, and extends to smaller
scales. The magnitude of low frequency content changes little. At the Reynolds number of the flow,
the dynamically significant range of scales is still larger, but quantities such as the centerline mean
pressure can be obtained accurately in an LES, on a grid of moderate size. Especially, shock positions
and strengths change little with refinement. This serves as strong support for the adaptive filtering
method for shock capturing used in these simulations. The quality of the simulation was similar for an
overexpanded jet [33].
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Figure 10. LES of underexpanded jet for Mj = 2.103, p0/pa = 9.187. Experiment by Norum and
Seiner [32] (case on page 27 of their report). (a) Mean pressure on longitudinal plane. (b) Pressure along
jet axis. Curves for simulation data, symbol for experiment. (c) Instantaneous pressure on longitudinal
plane (Medium grid). (d) Energy spectra (at green dot in the left figure).

4.2. Impinging Round Jet

The second case, representative of flows of interest in applications, is the impinging jet experiment
of Henderson et al. [34]. Velocity data from PIV were reported. This is a sonic jet with NPR = 4.03
impinging on a flat wall placed at a distance of 4.16d from the nozzle exit. Dauptain et al. [35] reported
an LES of this problem. They used 7.5, 16 and 22 million tetrahedral volumes including a region
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within the nozzle as well. Here, two grids with 30 and 60 points across the jet at the inflow plane were
taken, with 5% stretching in the lateral direction. Only lateral buffer zones were used in the current
simulation. The total number of points were then 2.38 × 106 for the coarse grid and 7.70 × 106 for the
fine grid. The Reynolds number was 1.5× 106. A comparison of the mean streamwise velocity with the
experiment along the jet axis is shown in Figure 11a. The simulations are consistent among themselves:
on the finer grid, the gradients are sharper everywhere. Surprisingly, Dauptain et al. [35] found their
coarsest grid to be closest to the experiment. Especially in the vicinity of x/d ≈ 1, the velocity dropped
to about 150 m/s whereas in the experiment it is about 300 m/s. Smaller but significant differences
were found where flow decelerates again (x/d ≈ 3). They supposed that, in these strongly decelerating
regions, the measurement could be in error. Our simulations do not show such large differences
with experiment. Figure 11b compares present simulations with data from Dauptain et al. [35] of the
pressure along the centerline (experimental data of pressure were not available). Pressure data agree
quite closely with the other simulation. Since the pressure jump near x/d ≈ 1 is about the same, it is
surprising that the velocity jump could be different.
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Figure 11. Mean axial velocity and pressure along centerline of impinging jet. Coarse grid (black curve);
fine grid (red), experiment of Henderson et al. [34] (black circles), and simulation of Dauptain et al. [35]
(blue curve with filled symbol). (a) Velocity; and (b) Pressure.

Since the objective of this test was to determine the usefulness of the proposed shock-capturing
scheme, and not the other implications of this flow, such as impingement acoustics, the simulation
domain did not include the flow within the nozzle. There has not been any adverse effect on the
quantities that we could compare with experiment and another LES, such as any shift in locations of
Mach disk or extent of the cells. Indeed, the very close agreement between our simulations and the
one which included the nozzle flow [35] in the initial region (0 < x/d < 1) affirms this.

5. Conclusions

An explicit filtering approach to LES of flows has been extended to flows with shocks by filter
order adaptation. Although the usual treatment of flows with shock capturing is to reduce the order of
the spatial discretization in the vicinity of shocks, here, the discretization remains the same everywhere,
and was sixth-order. Instead, the order of the spatial filter was reduced from 10 in smooth regions
to 2 at gridpoints where a shock was detected. Filter order was increased in steps at neighboring
gridpoints. However, filtering is an essential part of this method for LES. Thus, the adaptation is a
convenience. Adaptive filtering had been proposed by Visbal and Gaitonde [12] earlier, but does not
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appear to have been taken forward either in method assessment or in applications. They lowered filter
order to 2 at a band of seven points spanning shocks. Here, it sufficed to use a band of three points.
It is not surprising that Bogey and Bailly [13], who also performed LES with an explicit filter, examined
filter adaptation briefly. We can expect that the studies presented here may invite its further use.

Although, generally, the results of adaptive filtering are very encouraging, quantitative
comparisons with the results in Johnsen et al. [10], for the 2D Shu–Osher problem (Section 3.2),
revealed that, on the same grid, some other methods have better performance. Nevertheless, close
quantitative agreement with the reference solution was readily obtained on grid refinement. Indeed,
it is a common experience in the problems considered here that solutions tend to the reference ones
as the grid is refined (explicitly included above for the 2D Shu–Osher, Taylor–Green and free jet
problems). For the 2D Shu–Osher problem, not only does the amplification factor approach the linear
analysis result, the post-shock oscillations diminish in amplitude and extent. Since computations were
stable for all these problems with the same set of parameters, and tend monotonically to reference or
exact solutions, we find this to be a reliable method. No search for an optimal set of parameters was
considered, since such an optimal set may offer small improvements in computation economy but may
be problem-dependent.

Although filter adaptation is but a small change in the LES method used in the examples presented
here, because there is always a filtering step, the adaptation strategy can also be used with any other
LES code. For example, it can be an alternative to other strategies for shock capturing such as adding
artificial diffusion in the vicinity of shocks.
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Abstract: This article describes a proper-orthogonal-decomposition (POD) based methodology
proposed for the identification and separation of coherent and turbulent velocity fluctuations.
Typically, POD filtering requires assumptions to be made on the cumulative energy content of
coherent modes and can therefore exclude smaller, but important contributions from lower energy
modes. This work introduces a suggested new metric to consider in the selection of POD modes to be
included in a reconstruction of coherent and turbulent features. Cross-correlation of POD spatial
modes derived from independent samples is used to identify modes descriptive of either coherent
(high-correlation) or incoherent (low-correlation) features. The technique is demonstrated through
application to a cylinder in cross-flow allowing appropriate analysis to be carried out on the coherent
and turbulent velocity fields separately. This approach allows identification of coherent motions
associated with cross-flow transport and vortex shedding, such as integral length scales. Turbulent
flow characteristics may be analysed independently from the coherent motions, allowing for the
extraction of properties such as turbulent length scale.

Keywords: proper orthogonal decomposition; coherent structures; turbulence; vector flow fields; PIV

1. Introduction

In the field of fluid mechanics, it is possible to obtain detailed, highly-resolved time-space velocity
information from both experimental and computational approaches. Contained within these datasets
are coherent structures and stochastic turbulence, often indistinguishable in raw velocity vector
fields, the understanding of which is crucial in research and development. Coherent structures, often
considered as vortices, are responsible for many flow phenomena, across many applications—lift, drag,
mixing and heat transfer, for example. Similarly, an understanding of the turbulent characteristics of
an aerodynamic system is vital in the study of many processes such as turbulent combustion. It is
therefore important that these distinct structure classes be effectively identified and separated before
further analysis may be carried out on each.

There have been multiple approaches suggested in literature to achieve velocity field
decomposition. Ölçmen et al. [1] present a comparative analysis of suggested approaches—Reynolds
decomposition (referred to as ensemble averaging in that study), proper orthogonal decomposition
(POD) and frequency filtering amongst others.

Of these, Reynolds decomposition is the least computationally expensive to calculate and is often
a useful first step in the analysis of a flow field. However, cyclic or oscillatory structures would be
considered together with the turbulent field and therefore for many applications further decomposition
is required. This is demonstrated by Stone [2] and Butcher [3] in the field of internal combustion
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engines, where there is a cyclic variation and a relatively increased frequency turbulent fluctuation
both included within the fluctuating term which should be separated as in Equation (1):

Ui = U + U∗i + U′i (= Utrue + ε) (1)

where Ui is velocity measurement, U is ensemble mean velocity and U∗ and U′ are coherent and
turbulent fluctuations, respectively.

Frequency filtering, such as LES decomposition [4], applies a homogeneous filter to identify all
structures above or below a cut-off scale allowing this separation. Using a priori knowledge of the
flow field and expected structure sizes, the cut-offmay be set such that coherent fluctuations, U∗, be
filtering in (or out) as required.

POD is a commonly used technique in the fluid mechanics field for this purpose and will be the
focus of this paper. The following subsection provides a background to the technique.

Proper Orthogonal Decomposition

Since its introduction to fluid mechanics by Lumley [5], the proper orthogonal decomposition
(POD) technique has been widely adopted to identify coherent structures in flow fields. In the context of
fluid mechanics, POD decomposes a velocity field into spatiotemporal modes according to Equation (2):

(x, ti) =
M∑

k = 1

ak(ti)ϕk(x) (2)

where u is the velocity, M is the number of modes, ak is the temporal coefficient and ϕk is the eigenmode
(or spatial mode). In the determination of spatial modes, ϕk, it is commonly accepted that the classical
method [6,7] is inefficient for typical PIV datasets—where the number of spatial locations is significantly
greater than the temporal steps—and therefore the ‘snap-shot’ method is used [8]. The modes are then
typically arranged according to their energy content, i.e., the associated eigenvalue.

For the reconstruction of velocity fields, it is possible to consider a reduced order representation of
velocity if the number of POD modes; M is less than the total number of snapshots. This is a commonly
employed technique for filtering velocity field data. If the number of POD modes for the reconstruction
is equal to the number of snapshots in the original dataset, then the reconstructions would be exactly
equal to the original snap-shots. Therefore, the methodology for the selection of M is integral to the
analysis process—as it defines how much information is represented.

The most commonly used criteria for determining a cut-off value, M, are based on the cumulative
energy threshold [9], E, defined in Equation (3):∑M

k = 1 λk∑T
k = 1 λk

> E (3)

where T is the total number of snap-shots in the original data and λ is the mode eigenvalue.
Defining the cut-off mode in this manner allows a total fraction of the energy desired in the

reconstructions to be considered—meaning that only the most energetic structures and fluctuations
are considered. Typically, 90% is used for the cumulative energy threshold [8,9], but the subjective
user-defined, arbitrary nature of the criterion has led to a range of values being defined in literature
between 75 and 90%. Physically, by limiting the amount of energy included in the reconstructions,
desired information may be inadvertently excluded, particularly in cases with high levels of turbulence
and/or when that energy is similar to periodic or cyclic fluctuations as is the case, for example, in
internal combustion engines in-cylinder flow [3,10]. In addition, defining the cut-off based on energy
may increase the susceptibility to corruption by erroneous velocity vectors with large magnitude and
therefore large energy value, if these have not been successfully removed prior [11].
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The corruption of higher energy modes by erroneous vectors is highlighted by Epps and Techet [11]
who suggest the consideration of the root mean square (RMS) stating that only those modes whose RMS
velocity exceeds that of the underlying PIV measurement RMS should be considered. Raiola et al. [12]
propose that the POD spectrum instead be optimised based on the comparison between the POD
eigenvalue decay rate and the turbulent spectrum in Fourier space, defining the cut-off mode, M
according to Equation (4):

M =

(
Tq

σ2ξ(5/3)

) 3
5

(4)

where q is the average turbulent kinetic energy (TKE) over all spatiotemporal data and ξ(s) is the
Euler–Riemann zeta function. Brindise and Vlachos [9] propose the combination of discrete cosine
transform (DCT) and Shannon entropy to define which modes should be considered. A significant
difference in this approach is that the modes are re-ordered by entropy before a cut-off is defined. This
allows for some low order modes which may be corrupted by erroneous vectors to be disregarded,
irrespective of their surrounding energy-ordered POD modes.

A novel approach to defining the cut-off is employed by Doosttalab et al. [13]. In the study
of a bio-inspired coating on an airfoil, the cut-off is determined by considering the streamwise
auto-correlation. An iterative approach is used, increasing the cut-off and comparing the zero-crossing
point of the streamwise auto-correlation from the pre-cutoff estimation and the original data. When
this occurs at the same location, this mode number is used. It is worth noting that, using this approach,
the authors observed a cutoff of 532 from a possible 4000 modes. This is significantly larger than the
cutoff values typically referenced elsewhere in literature.

2. Methodology

The literature presented thus far highlights the criteria commonly used for the selection of POD
modes. The methodology presented in this paper provides an alternative approach to defining which
POD spatial modes are associated with the coherent motions, and which represent flow features
representative of turbulence.

The methodology is underpinned by considering a pair of repeated experiments under similar
conditions. In this situation, it would be expected that when considering flow statistical measures,
the two sets of results would be highly similar, albeit with some stochastic variation evident in the
comparison of instantaneous flow fields. Further, performing decomposition, POD, independently on
each set of results would result in similar spatial modes representing the coherent motions; with a
similar number of POD modes comprising the turbulent energy content of the flow for each experiment.
Therefore, by the comparison of these independently calculated POD spatial modes from each result set,
it may be deduced that those spatial modes that appear in both sets contain coherent flow information.
In addition, the stochastic nature of turbulence suggests that there should be no similarity in the spatial
modes, other than the number of modes and the total flow energy proportion that they represent.

Building on this concept, the presented identification technique allows a new definition of coherent
and stochastic turbulent parts of a single set of velocity vector field to be separated for further analysis
as required. This is achieved by generating two sets of POD modes each based on half of the original set
of velocity fields. The process will be described in detail by application to an experimentally obtained
dataset. The details of the experimental setup are given in Section 2.1, and the identification technique
is described in Section 2.2.

2.1. Experimental Setup

The dataset to be used for demonstration of the identification methodology is an example of
the cross-flow behind a cylinder—a case which is well studied in literature [14,15]. For this study,
flow fields are experimentally obtained using planar image velocimetry (PIV) in the Loughborough
University (LU) horizontal water flow tunnel facility, depicted in Figure 1. The test piece is a single
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1” (25.4 mm) diameter, D, brass cylinder which is placed within the 0.3 m × 0.37 m working section,
spanning the full height. The blockage co-efficient (diameter width) was 0.069. Further design details
of the tunnel may be found in literature [16]. Upstream velocity, U0 = 0.302. m/s, giving a Reynolds
number based on cylinder diameter, Re = 8600, i.e., turbulent flow.

 
Figure 1. Schematic of LU horizontal water flow tunnel. Indicative measurement plane represented
with horizontal green line, downstream of test piece.

Water PIV measurements were made in the mid-height plane, 0.15 m, (as indicated in Figure 1)
immediately downstream of the test piece in a region covering 0.12 m × 0.12 m using well-mixed 20 μm
polyamide seeding particles. A new Wave Pegasus 527 nm laser provided illumination of 10 mJ/pulse
at 1 kHz. A single Photron APX 1MP camera, operating at 1 kHz, was used to capture PIV images. All
timing, synchronisation and vector field processing was controlled and carried out using LaVision
hardware, PTU8 and software, DaVis v7. A Multi-pass, reducing size interrogation window strategy
was used on the image pairs to produce 2-component, 2-dimentional (2C2D) vector fields. Interrogation
windows for initial passes were 64 × 64 with 50% overlap, with two subsequent passes at 32 × 32,
50% overlap. The resulting temporal and spatial resolutions were 1 kHz and 1.905 mm × 1.905 mm
respectively. Flow was set according to an upstream, streamwise velocity of 0.3 m/s. Measurements
show that the average velocity was 0.302 m/s in the streamwise direction. Upstream RMS velocity was
also assessed for both streamwise and cross components and was 0.004 m/s and 0.003 m/s respectively.

It should be noted that in the experimental testing, an optical aberration was present around the
center line, in the region of X = 45–60 mm. This was a result of an imperfection on the tunnel wall
which caused a lens/blurring effect over a small, localized area. This is not visible in ensemble average
(Figure 2b), instantaneous or decomposed figures. However, it is considered that the data in this area
would not be reliable in the calculation of higher-order statistics and frequency content. Therefore, this
has been masked from all subsequent presented figures, and the region has not been included for any
of the presented analysis.

2.2. Flow Characteristics

An example of instantaneous flow and the ensemble average is presented in Figure 2a,b respectively,
with the cylinder placed at (0,0). Throughout the paper, distance is non-dimensionalised by the
cylinder diameter.

The flow exhibits a counter-rotating vortex pair immediately behind the cylinder, visible in the
ensemble average. Free-stream regions exist either side of a central turbulent region, with a slight bias
in the negative y-direction, as further evident in the profiles presented in Figure 3.

There is little fluctuation in the free-stream area, as evident in the velocity RMS presented in
Figure 4, indicating low turbulence in this region. As the ensemble average is removed prior to POD
analysis as is convention, it is expected that many of the POD modes will contain information relating
to the central region.
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(a) (b) 

 

Figure 2. Experimentally obtained flow fields. (a) Instantaneous vector field, (b) Ensemble average
stream lines. Colour represents velocity magnitude, normalized by free-stream velocity, U0.

 
(a) 

 
(b) 

Figure 3. Velocity profiles (y-direction) at selected points downstream. (a) x-component, (b) y-component.

 
Figure 4. Velocity RMS distribution for full dataset.
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Analysis of the velocity frequency content, presented in Figure 5, reveals a peak at between
1.953 Hz and 2.279 Hz. The true peak appears to be located between these values, with the resolution
limited by the duration of the measurement.

 
Figure 5. Field averaged spectral energy density for measured velocity components.

The frequencies correspond to a non-dimensional Strouhal number in the range 0.164–0.192
calculated according to Equation (5). This is related to the vortex shedding that occurs in this flow
case, agreeing with reported studies in literature, for example, Perrin et al. [17,18]. In that work, flow
past a cylinder in a wind tunnel is studied, with a peak frequency of 22.5 Hz observed (in air flow),
corresponding to a similar Strouhal number of 0.21.

St =
f D
U

(5)

2.3. Identification Methodology

Firstly, it should be determined that the dataset is of sufficient size (N) to adequately represent
the flow features using half of the time instances captured (N/2), ordered randomly. This may be
effectively assessed by considering the convergence of statistics between the two half-datasets (set
A and set B) and the full dataset such as a comparison of the rms velocity component distributions.
Figure 6 demonstrates parameters that may be used to assess the suitability of the number of snapshots
considered. Here, the order has been randomised and the mean velocity distribution for a given
number of snapshots is compared with the population mean and the velocity error, ε, the difference
between population mean velocity at each point and the mean velocity at each point for a given number
of snapshots, is evaluated by a PDF. Figure 6a presents the PDF for 1536 (i.e., half of the dataset)
snapshots error from which the standard deviation may be extracted.

Further, if this process is repeated from 1 up to the number of available snapshots, the trend may
be plotted as in Figure 6b. It can be seen that after a modest number of snapshots, the error is less than
0.01 magnitude, and by 1536 it is approximately of magnitude 0.001 which in this case is deemed to be
acceptable. In addition to this check, the velocity RMS Figure 6c for a given number of snapshots can
be seen to converge after approximately 1000 snapshots. Therefore, it is deemed that using half of the
dataset, 1536 snapshots may sufficiently represent the full dataset.

Whilst here it has been determined that N/2 vector fields are sufficient, this may not always be
the case; this would depend on many factors including the frequency of both the large-scale flow
structures and the measurement.

Once it is determined that both set A and set B are statistically similar to each other, and to the full
dataset, POD analysis may be performed on each set independently. Following decomposition according
to Equation (2), two sets of POD spatial modes should exist, allowing a comparison between them.
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(a) 

 
(b) 

 
(c) 

Figure 6. Demonstration of velocity convergence with number of samples. (a) PDF of error in u velocity,
εu for 1536 snapshots; (b) Trend of standard deviation of error, σ with increasing samples calculated
from PDFs; (c) Field average velocity RMS convergence.

Following conventional POD processes, the energy contained within each mode may be calculated
according to Equation (3) and examined. This is calculated for set A and B and presented in Figure 7.
Both sets provide a similar distribution of energy with the first two modes for each containing the
majority of flow information. This indicates that much of the large-scale, dominant flow structures are
captured by these modes.

It should be noted that during the application of the POD approach, the ensemble average
is first subtracted. This is because it would otherwise appear as the first, most energetic mode,
sometimes referred to as mode 0 in cases where it is not removed prior to POD analysis. Therefore, the
decomposition is only carried out on the fluctuating velocity component. The mean is later recombined
in the reconstruction.

As previously discussed, one method for determining the cut-offmode between coherent and
turbulent motions is to consider the energy knee-point, which using Figure 7 would suggest mode 3.
However, there may be subsequent modes which still contain coherent motions, but at lower energy.
Considering the first three modes only, Figure 8 presents the associated spatial modes obtained from
each of the two sets. Firstly, there is clear evidence from Figure 8e,f that visually similar spatial modes
are obtained for the third mode in both sets, which would indicate the likelihood of good correlation
and therefore imply that these modes are representative of coherent motions and therefore should be
considered as such.
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Figure 7. Comparison of energy fraction for each proper-orthogonal-decomposition (POD) mode of Set
A and B. Curtailed at mode 25 for clarity.

Examination of both the energy content, Figure 7, and the spatial mode distributions, Figure 8, for
modes 1 and 2 suggests that there is a pairing between them. Pairs of modes often exhibit very similar
energy as is the case here, when their pairing is descriptive of oscillatory behaviour. By exploring
the temporal coefficient information, this pairing can be further characterised. Firstly, Figure 9a
presents the first two modes plotted against each other, revealing the pairing dependence of these two
modes. Considering the frequency content of the temporal coefficients in Figure 9b reveals strong
evidence that the oscillatory pairing is actually that which is responsible for the same frequency peak
at approximately 2 Hz identified earlier. For comparison, the frequency content of mode 3, a3 is also
plotted, exhibiting similar frequency energy distribution across the frequency range, outside of the
2 Hz peak.

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 8. Cont.
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(e) 

 
(f) 

Figure 8. POD spatial modes: (a) SA = 1, (b) SB = 1, (c) SA = 2, (d) SB = 2, (e) SA = 3, (f) SB = 3. Color
scale represents magnitude and is normalized to a common factor across all subfigures.

(a) (b) 

Figure 9. POD temporal coefficient analysis for early modes. (a) First, a1 and second, a2 temporal
coefficients; (b) Spectral energy content for the first three sets of temporal modes.

Now, considering higher order modes, which are not expected to be representative of coherent
motions, Figure 10 presents POD spatial mode 30 for each set. In contrast to those modes presented in
Figure 8, there is no clear visual similarity between the two POD spatial modes. This indicates that the
two presented modes are not representative of coherent motions. However, if the size of the structures
represented in each mode is considered, these are of similar character and of an expected magnitude
for turbulent length scales in this flow. Further, the region in which the POD spatial mode structures
are contained is within the central, turbulence containing region, with insignificant contributions in
the free-stream area.
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(a) 

 
(b) 

Figure 10. POD spatial modes for higher order: (a) SA = 30, (b) SB = 30. Color scale represents
magnitude and is normalized to a common factor.

Similarity between two flow fields—or in this case spatial modes represented as velocity
vectors—may be achieved by considering two-point statistics, specifically the cross-correlation function.

The generalized equation for the cross-correlation function between any two-points separated by
the vector, r and time τ may be defined as:

Rij(x, r, τ) =
〈ui(x, t)uj(x + r, t + τ)〉√
〈u2

i (x, t)〉
√
〈u2

j (x + r, t)〉
(6)

where ui and uj are the velocity components for correlation. It is common to use a simplified form
of Equation (6) for correlations at the same point in time, spatial velocity correlation (SVC, τ = 0)
or correlations performed at the same point in space, autocorrelation function (ACF, r = 0). For the
application presented, it is the cross-correlation of POD spatial modes that is to be considered, thus no
true time association exists. However, for the purposes of the comparison, it is convenient to consider
the two desired POD modes for comparison as two time-steps at the same spatial location, leading to
the following equation:

Rii,AB =

∣∣∣∣∣∣∣∣∣
〈ui(x)Aui(x)B〉√
〈u2

i (x)A〉
√
〈u2

i (x)B〉

∣∣∣∣∣∣∣∣∣ (7)

where subscripts A and B define the POD mode from set A and its corresponding (or other as
appropriate) POD mode from set B respectively.

Each mode number is considered in turn from mode 1 through to the total number of spatial
modes available in each of the two datasets. For each spatial mode, the surrounding +/−5 modes may
also be compared. For example, SA = 10 will be compared using Equation (7) to modes SB = 5:15. This
is to account for any minor re-ordering of POD modes which can occur when two or more consecutive
POD modes have similar energy and therefore may be slightly re-ordered during the calculation of
eigenvalues. This leads to a set of (11) correlation values for each mode considered, as represented in
Figure 11. It should be noted that the absolute correlation should be considered as it is possible for two
POD analyses of nominally the same velocity fields to produce an equal but opposite velocity spatial
mode, with the corresponding reversed temporal co-efficient.
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Figure 11. Absolute cross-correlation of POD spatial modes from set A and B. Curtailed at 31 for clarity.

It can be seen in Figure 11 that for the majority of modes in set A, the strongest correlation occurs
with the corresponding mode in set B as one would expect. However, there is evidence of some mode
re-ordering, for example, for the modes 18 and 22 where the strongest correlation occurs with a mode
+2 and −2 respectively, showing evidence of a pair with similar energy whose order has been swapped.
Following this approach, the most significant correlation value is extracted for each mode in set A
to obtain Figure 12. For the purposes of selecting a cut-offmode, it has been deemed appropriate to
smooth the trend to easier identify the point at which POD spatial modes have poor self-correlation.
The reasoning is that in turbulent fields, with similar sized features, spikes of increased correlation
may be observed for a single spatial mode. In addition, in consideration of correlation in Figure 12, it
is necessary to define a value below which it is considered poor correlation. The introduction of this
new parameter, R, allows tuning of the coherent structures to be included in the low order model. In
this case, 0.6 is selected as the threshold to poor correlation.

 
Figure 12. Maximum absolute correlation for each POD spatial mode (curtailed at mode 50). Smoothed
data is used to produce trend. A cut-off at 60% correlation is indicated.

From Figure 12, it is apparent that poor correlation (defined here as less than 60%) occurs at
greater than 23 POD modes for the datasets presented. Therefore, it follows that the first 23 modes
contain high levels of coherent information and should therefore be considered when POD filtering is
applied to these velocity fields. Subsequent analysis of coherent structures and their characteristics
may be carried out on a reconstruction using the first 23 POD modes. Analysis on stochastic turbulence
characteristics of the flow should be carried out on a reconstruction using the remaining 24-1536 POD
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modes (otherwise known as the residual fields). At this point, it would be possible to instead only
consider the modes which have a significant correlation.

The final step of the technique is to recombine the POD spatial and respective temporal co-efficients
to obtain coherent and turbulent velocity fields. The cut-off POD mode should be used (in this case 23)
for the reconstruction of coherent fields of each dataset, SA and SB. The two datasets may then be
recombined, taking note of the randomization carried out earlier in the presented methodology. This is
particularly important if subsequent frequency analysis of coherent structures is to be carried out.

The resulting decomposed flow field provides a coherent and incoherent part of each instantaneous
velocity field as presented in Figure 13a,b respectively. The original, raw velocity field is also presented
in Figure 13c. The effect of reconstructing the velocity field using only the POD modes associated with
coherence is a smoothed velocity distribution which still contains the larger, bulk features without the
small-scale structures—this is visually evident in a direct comparison between Figure 13a,c.

 
(a) 

 
(b) 

 
(c) 

 

Figure 13. Example of a decomposed instantaneous vector field. (a) Coherent part; (b) incoherent part
(vectors shown white for clarity); (c) raw velocity field. Colour scale represents velocity magnitude
normalized with free-stream velocity, U0.
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The entire process is summarised as a flowchart in Figure 14 which should be followed for
implementation with any new dataset. It is possible to omit some stages such as the check for
convergence, if desired.

 
Figure 14. Diagrammatic overview of methodology.

3. Analysis of Separated Velocity Fields

Once the velocity vector distributions have been reconstructed and re-ordered in the original
order, analysis of coherent structures and turbulent parts may be carried out separately, as appropriate.
Figure 15 presents an example instantaneous flow field, with each of the possible decomposed velocity
fields. Figure 15c,d are the results of the presented methodology, representing coherent and turbulent
parts respectively.

For reference, Figure 15b presents the Reynolds decomposed fluctuations, which are equal to the
sum of the fields in (c) and (d). However, the purpose of presenting the Reynolds decomposed field
is to illustrate that visibly, the large-scale motions are evident, but it is difficult to make quantitative
evaluation due to the inclusion of turbulence. Considering the coherent fluctuating motions only,
Figure 15c, these may be characterised by large vortices responsible for the bulk transport in the y-axis
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direction. The structures lead to relatively large integral length scales associated with the coherent
part, as is evident in Figure 16a,b. The inhomogeneous distribution of length scales is influenced by
the presence of these structures with values in the region of 1L11 = 22 mm and 2L22 = 50 mm in the
surrounding region (approximately 1–2 D), compared to a field average length scales of 15 mm and
42 mm respectively. Further, there is a clear link between these structures, and the first two POD modes
presented in Figure 8a,c (or Figure 8b,d), underlining the dominance of these modes as expected from
the significant energy contained within, as demonstrated in Figure 7. It should be noted that having a
masked region within the flow has an impact on the calculated length scales, particularly where these
are particularly large. This is most evident in Figure 16b; here, it is not possible to calculate the length
scale immediately below the masked region as it is expected to be larger than the distance between
the masked region and the edge of the domain. This strip of data should not be regarded any further
in analysis. However, in the case where the integral length scale is much smaller, for example in the
turbulent field, Figure 16d, there is no evidence of this artifact.

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 

Figure 15. Comparison of fluctuating flow fields for an example flow field. (a) Original flow field;
(b) All fluctuations (Reynolds decomposition); (c) Coherent part; (d) incoherent part. Colour scale
represents velocity magnitude (common scale).
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(a) (b) 

 
(c) (d) 

Figure 16. Integral length scales associated with (a,b) coherent fields, 1L11 and 2L22 respectively;
(c,d) turbulent fields, 1L11 and 2L22 respectively. Note colour scale changes between subfigures.
Parentheses values in (c) and (d) are mm.

Similar analysis of integral length scales of the turbulent field, presented in Figure 16c,d reveals a
distribution with substantially smaller associated length scales of 1.5–3.5 mm (approximately 0.1 D).
The length scale distributions show how only the wake region contains significant turbulence, as one
may expect, with little evident in the freestream area.

It is commonly acknowledged that the velocity and velocity gradient distributions should conform
to a Gaussian distribution in the case of stochastic turbulence. It is therefore expected that a study of
these parameters in the incoherent decomposed velocity fields presented will exhibit the characteristics
of turbulent flow. Figure 17 presents the bivariate distributions for u and v velocity components for
each of the considered velocity sets.

Firstly, if the original velocity data is considered in Figure 17a, there is evidence of a strong bias
as would be expected in the direction of the freestream velocity (i.e., positive u), peaking at close to
u/U0 = 1, the mean upstream velocity. Performing Reynolds decomposition effectively removes this
bias, as demonstrated in Figure 17b. While the peak is now centered close to (0,0), the spread is much
greater in the cross-flow direction, v, compared to streamwise due to the shape of the large (coherent)
structures that can be seen to dominate, for example, in Figure 15b. This is further evidenced when
considering the distribution associated with the decomposed coherent velocity data in Figure 17c which
has a similar distribution, showing the domination of these motions in the Reynolds decomposed
flow fields.
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In contrast, Figure 17d presents the distribution associated only with the incoherent decomposed
velocity fields. In this case, the velocities appear to adhere to a Gaussian distribution in both u and v
components, centered on (0,0). However, in both the u and v components, calculation of the fourth
standardized moment, kurtosis, shows a slight leptokurtic tendency, i.e., the distribution exhibits a
more asymptotic tail than would be expected from a true Gaussian distribution. This may be attributed
to experimental error noise inherent in the incoherent velocity data.

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 17. Probability density functions (pdf) of velocity components. (a) Original data; (b) all
fluctuations—Reynolds decomposed; (c) coherent part; (d) turbulent part.

Further turbulent characteristics may be identified in the incoherent velocity data by consideration
of the spectral energy content. Figure 18 presents the density energy spectra for both u and v
components of the decomposed incoherent velocity dataset. In the figure, a line representing the
−5/3 law is plotted, showing that the inertial range exhibits expected behavior up to 100 Hz, with the
higher frequency content expected to be attributed to experimental error and noise.

This may be directly compared to the spectra obtained from the coherent velocity fields, presented
in Figure 19. The behavior of this velocity data does not fit with the spectra expected for turbulent
content. Furthermore, the peak at approximately 2 Hz is maintained from the original dataset, presented
earlier in Figure 5. To aid interpretation of the presented spectra, the five-thirds law is plotted as a
dashed line to contextualise the gradient.
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Figure 18. Spectral energy density for turbulent fluctuations, u’. Five-thirds law plotted for reference.

Figure 19. Spectral energy density for coherent fluctuation velocities, u*. Five-thirds law plotted
for reference.

In a similar fashion to the length scales discussed, it is possible to use the time resolved point-based
information to calculate the integral time scales associated with the flow. Figure 20a,b present the
integral time scales associated with the decomposed turbulent fields for u-component and v-component
respectively. It can be seen that the calculated values within the wake region are comparable for both
components, indicating significant isotropy.

Outside of the wake area, much lower values are calculated, of the order 0.001 and below; this
appears to be a consequence of the flow in this area having negligible turbulence, as shown in Figure 4.
Therefore, once the coherent content is removed, the calculation is not reliable in this area due to low
auto-correlation. The average time scale may be obtained from the two distributions in Figure 20,
allowing the equivalent frequencies to be calculated, presented in Figure 21. The upper limit for colour
scale is chosen to cover the range of frequencies within the wake region (high RMS). It is evident that
the majority of the content in the wake region is below 150 Hz, suggesting that the tail in Figures 18
and 19 is associated with experimental noise, evident when considering the freestream region. This
noise may be filtered by an appropriate method such as low-pass frequency filter, as required.
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(a) 

 
(b) 

 

 
(c) 

Figure 20. Integral time scale distributions associated with turbulent parts. (a) uu; (b) vv;
(c) Auto-correlation function, uu about two example points, locations indicated in (a) and (b).

 
Figure 21. Spatial distribution of frequency content associated with integral time scales in turbulent
field (1/τ), scaled appropriately to the wake region only.
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Evident in the wake region is an anomalous area which has been omitted from analysis throughout
the paper and masked in all figures except Figure 2a. An optical aberration, as mentioned in the
method section was responsible for this. In all but the time and length scale analysis, the data in this
region has looked contiguous and credible within the rest of the field (up to and including Figure 15).
However, the frequency and lengthscale analysis identified that there is a strong noise content to the
velocity signal in this region, hence it has not been included within the analysis. This is highlighted
here to show how only considering first and second order statistical analysis of data may not always
indicate when there could be underlying quality issues with the measured data.

4. Conclusions

In this paper, a methodology for the separation of coherent motions and turbulent fluctuations from
spatially distributed experimentally obtained datasets is suggested and described. The methodology
uses the well-established proper orthogonal decomposition (POD) technique to derive spatial
eigenmodes associated with the flow which are then cross-correlated between two independent
datasets, introducing a new metric, R. This value presents the correlation matrix between spatial modes
of the independent datasets, allowing definition of those which relate to coherent motions, through
high correlation, and those related to incoherent motions, through low correlation.

The methodology has been demonstrated on the commonly studied condition, a cylinder in
cross-flow, revealing reported phenomena in addition to information that would otherwise not be
possible to extract. Distributions of turbulent length and time scales reveal the characterisation of the
structures within the wake region that would overwise be distorted by including coherent fluctuations
within the analysis, for example, considerably overestimating the integral lengthscale.

Author Contributions: Conceptualization, A.S. and D.B.; Methodology, D.B. and A.S.; Programming, D.B.;
Manuscript preparation, D.B.; Manuscript review and editing D.B. and A.S.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Ölçmen, S.; Ashford, M.; Schinestsky, P.; Drabo, M. Comparative Analysis of Velocity Decomposition Methods
for Internal Combustion Engines. Open J. Fluid Dyn. 2012, 2, 70–90. [CrossRef]

2. Stone, R. Introduction to Internal Combustion Engines, 4th ed.; Palgrave Mscmillan: Basingstoke, UK, 2012;
ISBN1 9780230576636 (hbk.). ISBN2 023057663X.

3. Butcher, D.S.A. Influence of Asymmetric Valve Timing Strategy on In-Cylinder Flow of the Internal Combustion
Engine; Loughborough University: Loughborough, UK, 2016.

4. Adrian, R.J.; Christensen, K.T.; Liu, Z.-C. Analysis and interpretation of instantaneous turbulent velocity
fields. Exp. Fluids 2000, 29, 275–290. [CrossRef]

5. Lumley, J.L. The Structure of Inhomogeneous Turbulent Flows. In Atmospheric Turbulence and Wave Propagation;
Publishing House Nauka: Moscow, Russia, 1967; pp. 166–178.

6. Chatterjee, A. An introduction to the proper orthogonal decomposition. Curr. Sci. 2000, 78, 808–817.
[CrossRef]

7. Holmes, P.; Lumley, J.L.; Berkooz, G. Turbulence, Coherent Structures, Dynamical Systems and Symmetry;
Cambridge University Press: Cambridge, UK, 1996.

8. Sirovich, L. Turbulence and Dynamics of Coherent Structues. Part I: Coherent Structures. Q. Appl. Math.
1987, 45, 561–571. [CrossRef]

9. Brindise, M.C.; Vlachos, P.P. Proper orthogonal decomposition truncation method for data denoising and
order reduction. Exp. Fluids 2017, 58, 28. [CrossRef]

10. Butcher, D.; Spencer, A.; Chen, R. Influence of asymmetric valve strategy on large-scale and turbulent
in-cylinder flows. Int. J. Engine Res. 2018, 19, 631–642. [CrossRef]

11. Epps, B.P.; Techet, A.H. An error threshold criterion for singular value decomposition modes extracted from
PIV data. Exp. Fluids 2010, 48, 355–367. [CrossRef]

133



Fluids 2019, 4, 134

12. Raiola, M.; Discetti, S.; Ianiro, A. On PIV random error minimization with optimal POD-based low-order
reconstruction. Exp. Fluids 2015, 56. [CrossRef]

13. Doosttalab, A.; Dharmarathne, S.; Bocanegra Evans, H.; Hamed, A.M.; Gorumlu, S.; Aksak, B.; Chamorro, L.P.;
Tutkun, M.; Castillo, L. Flow modulation by a mushroom-like coating around the separation region of a
wind-turbine airfoil section. J. Renew. Sustain. Energy 2018, 10. [CrossRef]

14. Norberg, C.; Sunden, B. Turbulence and reynolds number effects on the flow and fluid forces on a single
cylinder in cross flow. J. Fluids Struct. 1987, 1, 337–357. [CrossRef]

15. Park, J.; Choi, H. Numerical solutions of flow past a circular cylinder at reynolds numbers up to 160.
KSME Int. J. 1998, 12, 1200–1205. [CrossRef]

16. Behrouzi, P.; McGuirk, J. Experimental data for CFD validation of impinging jets in cross-flow with application
to ASTOVL flow problems. In Proceedings of the AGARD Conference Proceedings 534, Computational and
Experimental Assessment of Jets in Cross-Flow, Winchester, UK, 19–22 April 1993.

17. Perrin, R.; Cid, E.; Cazin, S.; Sevrain, A.; Braza, M.; Moradei, F.; Harran, G. Phase-averaged measurements of
the turbulence properties in the near wake of a circular cylinder at high Reynolds number by 2C-PIV and
3C-PIV. Exp. Fluids 2007, 42, 93–109. [CrossRef]

18. Perrin, R.; Braza, M.; Cid, E.; Cazin, S.; Barthet, A.; Sevrain, A.; Mockett, C.; Thiele, F. Obtaining phase
averaged turbulence properties in the near wake of a circular cylinder at high Reynolds number using POD.
Exp. Fluids 2007, 43, 341–355. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

134



fluids

Article

Numerical Modelling of Air Pollutant Dispersion in
Complex Urban Areas: Investigation of City Parts
from Downtowns Hanover and Frankfurt

Mohamed Salah Idrissi 1, Nabil Ben Salah 2 and Mouldi Chrigui 1,3,*

1 Research Unit “Mechanical modeling, Materials and Energy”, National school of engineer of Gabes,
University of Gabes, Gabes 6029, Tunisia

2 CADFEM AN, Sousse Technopole, Sousse 4000, Tunisia
3 Institute for energy and power-plant Technology, Darmstadt University of Technology, Otto-Berndt-Str.3,

64287 Darmstadt, Germany
* Correspondence: mouldi.cherigui@gmx.de; Tel.: +216-753-92-100

Received: 7 May 2019; Accepted: 16 July 2019; Published: 18 July 2019

Abstract: Hazardous gas dispersion within a complex urban environment in 1:1 scaled geometry
of German cities, Hanover and Frankfurt, is predicted using an advanced turbulence model.
The investigation involves a large group of real buildings with a high level of details. For this
purpose, Computer Aided Design (CAD) of two configurations are cleaned, then fine grids meshed
in. Weather conditions are introduced using power law velocity profiles at inlets boundary.
The investigation focused on the effects of release locations and material properties of the contaminants
(e.g., densities) on the convection/diffusion of pollutants within complex urban area. Two geometries
demonstrating different topologies and boundaries conditions are investigated. Pollutants are
introduced into the computational domain through chimney and/or pipe leakages in various locations.
Simulations are carried out using Large Eddy Simulation (LES) turbulence model and species
transport for the pollutants. The weather conditions are accounted for using a logarithmic velocity
profile at inlets. CH4 and CO2 distributions, as well as turbulence quantities and velocity profiles,
show important influences on the dispersion behavior of the hazardous gas.

Keywords: buildings; urban area; pollution dispersion; turbulence; Large Eddy Simulation (LES)

1. Introduction

A growing concern about air pollution in urban environments results in stringent legislation for
devices certification and energy utilization [1]. Several studies have been interested in the pollutant
emissions reduction and the optimization of combustion systems by the use of new burners [2,3] or
by capturing target species [4]. To assess the problem in detail, accurate prediction of the transport
and dispersion of airborne contaminants in urban environments is needed. Several methods have
been used to investigate air pollution [5,6]. Wind tunnels only provide an understanding of the
dynamics and scaled data. Such approaches are able to perform parameters sampling points and
to deliver well-documented data sets for the evaluation of numerical models [7]. Yet, due to scale
limitations, it is a challenge for such models to fully be tested in large scale atmospheric turbulent flow
conditions [8]. Numerical approaches have numerous advantages, e.g., high controllability, lower cost,
three-dimensional (3D) data output, etc. [9].

Many preceding studies showed that Computational Fluid Dynamics (CFD) simulations, based on
the Reynolds averaged Navier-Stokes (RANS) equations, delivered unaccrued results in reproducing
the wind-flow pollutant dispersion around buildings [10–14]. Britter and Hanna [11] pointed out that
the RANS turbulence model can be used in simple geometry (isolated building) to produce reasonable
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qualitative results for mean flows. When compared with laboratory or field experiments, this model
showed a better performance than that of simple operational models. Blocken et al. [13] tested three cases
of tracer gas dispersion in a neutrally stable atmospheric boundary layer and compared their results
against wind tunnel full-scale measurements. For all three cases, they concluded that RANS simulations
significantly underestimate the cross-wind (lateral) dispersion of the pollutants. Tominaga and
Stathopoulos [14] numerically studied the dispersion around an isolated cube. They found that RANS
models underpredict horizontal concentrations at the roof of simulated buildings.

To reach more accurate results, several researchers have turned to the Large-Eddy Simulation
(LES) approach, which demonstrated its capability and potential in microscale atmospheric dispersion
modelling [15–25]. Liu and Barth [15] studied the flow in 3D streets using scalar transport. Their results
showed the limitations of eddies developments with sizes larger than 0.5H (H height of the building)
in the so-called free surface layer and produce less turbulent kinetic energy (TKE) above the rooftop.
Sada and Sato [18] simulated the stack-gas diffusion around a cubical building in order to predict the
instantaneous concentration fluctuation of a plume. Their results were compared with data from wind
tunnel experiments and showed a good agreement. Liu et al. [25] used the one-equation subgrid-scale
(SGS) parameterization and the LES model to study the flow and pollutant transport in 2D urban street
canyons. Their results showed that the combined model is an appropriate method for predicting wind
field and pollutant dispersion in the crowded urban area.

Recent works [26–30] focused on the study of more complex geometries. Gausseau et al. [26] used
LES to investigate the effect of two wind directions on near-field pollutant dispersion from stacks located
at a low-rise building in downtown Montreal Canada. Their results showed some similarities with the
case of dispersion around an isolated building. Van Hoof and Blocken [28] studied the CO2 dispersion
in a semi-enclosed stadium and validated their results using onsite measurements. The validated
model was used to evaluate the carbon dioxide concentration in the stadium. Amorim et al. [29]
chose two European urban areas (Lisbon and Aveiro, Portugal) to evaluate the effect of trees over the
dispersion of carbon monoxide (CO) emitted by road traffic. They found that trees are responsible for
an increase of 12% CO concentration in the first configuration (nonaligned wind 45◦). In the second
configuration (aligned wind), they observed a decrease of 16% of CO concentration.

In light of presented studies, there are many qualitative, as well as quantitative parameters,
which need to be studied when investigating pollutants dispersion in an urban area, especially for
complex geometries. Hence, the present study aims at providing more insight into the dispersion
process by analyzing the effect of buildings arrangement and the material properties (such as density)
on the dispersion of hazardous gases. For this purpose, two different configurations, which exhibit
complex geometries of Hanover and Frankfurt cities, Germany, are investigated. The most challenging
point is the high density of the surrounding buildings, which makes the carrier phase flow and
pollutants concentration field complex, anisotropic, and difficult for prediction. Different scenarios
of pollutant injection into the computational domain are tested. Dense buildings are included up to
a distance of 600 m in diameter and a high-resolution refined grid with over 40 million cells was used.
LES simulations are performed, then results are compared against published data from Leitl, B. and
Schatzmann. [30] in order to validate the numerical models [31].

2. Methodology

2.1. Turbulence Model

In LES, the flow variables are decomposed into the resolved-scale components and the (SGS)
components using a filtering operation [32]. The filtering process effectively filters out eddies whose
scales are smaller than the filter width or grid spacing used in the computations. Resulting in filtered,
continuity and momentum equations, the incompressible Navier–Stokes equations are given as follows:

∂ρ

∂t
+
∂ρũi

∂xi
= 0 (1)
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where bars and over-bars express mean and filtered quantities. The variables u, ρ, p, g, and δi j
denote the velocity, the density, the hydrostatic pressure, the gravitational force, and the kronecker
delta, respectively.

The quantity ν̃ represents the molecular viscosity and S is the source term. The Smagorinsky
SGS model is applied to close the system of equations and determine the SGS stresses τSGS

ij using the
Equation (3)

τSGS
ij = ũiuj − ũiũ j = −2νSGSS̃i j +

1
3
δi jτ

SGS
kk (3)

2.2. Dispersion Model

Numerous models are accessible to predict the dispersion of airborne material. In this
study, pollution dispersion was modelled using the species transport approach by calculating
convection-diffusion as described by Equation (4). This equation is solved for N-1 species, where N is
the total number of species in the fluid flow. The sum of the mass fractions of all species must be equal
to unity, the Nth mass fraction is given from the sum of the N-1 solved mass fractions.

The conservation equation takes the following general formula:

∂
∂t
(ρỸi) +

∂
∂xj

(ρũ jỸi) =
∂
∂xj

(ρDi
∂Ỹi
xj

) + R̃i + S̃i (4)

where ρ is the density, R̃i is the net rate of production of species by chemical reaction, S̃i is the rate of
creation by addition from the dispersed phase, Di is the diffusion flux of species, Ỹi is the mass fraction
of specie I, and ũ j is the flow velocity.

2.3. Numerical Procedure

The commercial CFD software ANSYS FLUENT 17.0 is employed to simulate the airflow and
pollutants dispersion. For all configurations, the dispersion of the pollutant is simulated using LES and
dynamic Smagorinsky, SGS, along with the species transport model. The bounded central-differencing
scheme is used to discretize the momentum equation. A second order upwind scheme is applied for the
pollutant concentration and energy equation. Time integration is bounded to second order implicit and
pressure interpolation is second order. For both cases, the time step advancement is set to Δt = 10−3s,
which produces a Courant number “C” less than one within the computational domain. The presented
results are averaged over a period of 220 s, which corresponds to five flow-through times.

2.4. Validation of the Numerical Model

In order to validate the numerical model, the (CEDVAL B1-1) configuration [30] (Figure 1) is
investigated using the same boundaries conditions and physical models. This study was conducted in
the BLASIUS wind tunnel at the Meteorological Institute of the University of Hamburg [30]. A modified
Standing-Spires and uniform LEGO-roughness was used to generate a neutral atmospheric boundary
layer ABL at a scale of 1:200 with Re = 37,252. First, the boundary layer flow was validated based
on detailed flow measurements and comparison with full-scale data. Then, the building models
were placed in the test section. Inside the wind tunnel, a 3 × 7 array of buildings composed of
rectangular blocks with the same dimensions H = 0.125 m are used to model the dispersion of carbon
dioxide (CO2). The CO2 was emitted by four sources, located at the leeward of building source,
with exhaust velocity we = 0.033 m/s. Validation is achieved by comparing LES results against the
published measurement [30]. The horizontal plane at z = 1.5 m (full-scale) height was used as
a measurement plane in which pollutants data were acquired. The same experiment is also simulated
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by Longo et al. [31]. Identical computational domain, as well as boundary conditions, are used for the
present work. The inlet boundary is set to 1 m upstream of the buildings, in which the ABL profiles
are measured within the wind tunnel. The outlet boundary is located at 4 m downstream of the last
array of the buildings. The width, depth and height of the domain are 1 m, 5 m, and 1 m, respectively,
which correspond to the wind tunnel size.

Figure 1. Dimensions of the building models, the source building, and the source [30].

In the simulation, a power law velocity profile is used at the inlet, a zero-pressure gradient is
used at the outlet and top, no-slip velocity is used at the ground and walls, and symmetry is used
for lateral boundary conditions. All the boundaries and initial conditions are summarized in Table 1.
Although the temperature is isothermal (300 k), due to thermal stratification, the buoyancy is not
present. Yet, we do have stratification due to density difference between carbon dioxide and air.
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Table 1. Initial and boundaries conditions used for CEDVAL configuration.

CEDVAL B1-1

Boundary Velocity Temperature Species

Inlet Profile: Experimental Data 300 K air
Pollutant source 0.033 m/s 300 K CO2

Outlet Neuman BC for the pressure - -
Top Neuman BC for the pressure - -

Walls No slip - -

An unsteady, 3D, double precision, pressure-based solver with second order schemes for
momentum, turbulence quantities, and concentrations are used. The coupled algorithm is selected
for pressure-velocity coupling. A transport equation approach is used for the dispersion study.
A grid-independent performance of the numerical simulation results is verified by comparing the
results of test cases having different grid numbers. Three meshes with different levels of resolution are
investigated. A fine resolved mesh of 10 million elements is used for all computations. Simulations are
performed using parallels computation of 40 CPUs. The total flow period is set to 12.0 s, which allows
the flow to sweep the domain five times.

Figure 2 shows a comparison between the dimensionless turbulent kinetic energy, dimensionless
velocity components, and the dimensionless concentration of CO2 obtained by numerical simulation
against the wind tunnel experimental data. This figure demonstrates a good agreement
between LES numerical results and measurements. The values of turbulent kinetic energy,
velocity components, and CO2 concentration are well-predicted and follow the experimental
measurements, demonstrating the ability of LES Smagorinsky, SGS, and species transport models in
predicting the pollutants dispersion in atmospheric conditions.
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Figure 2. Comparison between the numerical and experimental results of the normalized turbulent
kinetic energy (a,b), non-dimensional velocity (c,d), and dimensionless concentration (e,f).

3. Computational Domain and Boundaries Conditions

3.1. Geometry and Boundaries Conditions

In order to represent real case scenarios, two computational domains are generated, one for each
case (Figure 3a,b). In case 1 (Hanover city), the focus is placed on the effect of buildings arrangement,
whereas in case 2 (Frankfurt city), the behaviors of two hazardous gases with different densities
are studied. At the inlet, flow is perpendicular to the injection plane. The streamwise, spanwise,
and vertical coordinates are represented by x, y, and z, respectively. The buildings are modeled based
on the existing full-scale data. To limit the number of cells, vegetation is not considered. Figure 3a
depicts the computational domain used to simulate the configuration of Hanover city sited at the
Latitude and Longitude coordinates of 52◦22′18.3”N and 9◦44′23.3”E, respectively. The dimensions of
the computational domain are L = 600 m in length, W = 580 m in width, and H = 200 m in height,
inside of which various buildings having different dimensions and showing multiple features are
included. In the case of Frankfurt city, shown in Figure 3b, the configuration is located at the coordinates
50◦6′49.19”N and 8◦39′51.13”E. The dimensions of the computational domain are L = 500 m in length,
W = 500 m in width, and H = 300 m in height.
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Figure 3. Geometry, boundaries conditions and release locations: (a) Geometry and boundaries
conditions used for Hanover city, (b) Release locations used for Hanover city, (c) Geometry and
boundaries conditions used for Frankfurt city, (d) Release locations used for Frankfurt city.

In case 1, shown in Figure 3a, results highlight the effect of buildings arrangement. For this
purpose, two different scenarios dealing with different release locations are investigated. The first
one is an accidental leakage of methane. The hazardous gas (methane) is introduced through an
opening located at a confined geometry (x = −27 m, y = 26 m, z = 1 m). The choice of this location
is based on its closeness to the buildings and/or distance to the exit. CH4 is injected toward the wall
of a building from an inlet having 1 m2, a velocity of 8 m/s, and a temperature of 310 K. The second
leakage scenario focuses on the dispersion of methane within an open surface, i.e., along the street
and far from buildings (x = 110 m, y = −29 m, z = 1 m). Identical boundary conditions for methane
are applied at the location 2. For both leakages, CH4 is injected with 100% mass-fraction. Figure 3b
shows the effect of gas density for case 2. Two gases having different densities, i.e., methane and
carbon dioxide, are used for the investigation. The choice of these gases is based on the density ratio to
the ambient air. CO2 is heavier than ambient air (ρ (CO2) = 1.84 kg/m3), while the methane is lighter
than ambient air (ρ (CH4) = 0.71 kg/m3). The CO2 and CH4 gases are injected from a chimney sited at
(x = 0 m, y = 0 m, z = 20 m) by applying an inlet velocity of 2 m/s and a temperature equal to 310 K.

For the carrier phase boundary conditions, a power law profile is used to describe the variation of
the inlet wind speed as a function of the height given in Equation (5) [33]

U(z)
Ure f

=

(
z

zre f

)a

(5)
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where Uref = 9 m/s is the velocity reference at zref = 10 m and a = 0.21.
The turbulence was generated using the inlet boundary condition. For LES simulation, the vortex

method was used with a number of vortices Nv = 190 in order to establish a time-dependent inlet
profile for the inlet velocity. In this method, a number of vortices Nv are generated and convected
randomly at each time step.

With this approach, a perturbation is added on a specified mean velocity profile via a fluctuating
vorticity field (i.e., two-dimensional in the plane normal to the streamwise direction). The vortex
method is based on the Lagrangian form of the 2D evolution equation of the vorticity and the
Biot-Savart law. A particle discretization is used to solve this equation. These particles, or “vortex
points',' are convected randomly and carry information about the vorticity field. If N is the number of
vortex points and A is the area of the inlet section, the amount of vorticity carried by a given particle i
is represented by the circulation Γi and an assumed spatial distribution η:

Γi(x, y) = 4

√
πAk(x, y)

3N[2 ln(3) − 3 ln(2)]
(6)

η(
→
x ) =

1
2πσ2

(
2e−|x|

2/2σ2 − 1
)
2e−|x|

2/2σ2
(7)

where k is the turbulence kinetic energy. The parameter σ provides control over the size of a vortex
particle. The resulting discretization for the velocity field is given by

→
u(
→
x ) =

1
2π

N∑
i=1

Γi
((
→
x i −→x ) ×→z )(1− e|

→
x−→x ′|2/2σ2

))

|→x −→x ′|2
(8)

where
→
z is the unit vector in the streamwise direction. Originally, the size of the vortex was fixed by

an adhoc value of σ. To make the vortex method generally applicable, a local vortex size is specified
through a turbulent mixing length hypothesis.

The turbulent kinetic energy, k, and the turbulence dissipation rate, ε, used for RANS simulations
are determined using the Equations (9) and (10) [26]:

Iu is the streamwise turbulence intensity (Iu = σu/U, with σu the standard deviation of u)

k(z) = (Iu U)2 (9)

ε(z) =
(u∗)3

κ(z + z0)
(10)

The variable u* is the friction velocity, κ = 0.41 represents the von Karman constant and z0 = 1
m (full scale) is the aerodynamic roughness length. All the boundaries and initial conditions are
summarized in Table 2.

Table 2. Initial and boundaries conditions used for Hanover and Frankfurt city.

Hanover City Case Frankfurt City Case

Boundary Velocity Temperature Species Velocity Temperature Species

Inlet Profile: Equation (5) 300 K air Profile: Equation (5) 300 K air
Pollutant

source 8 m/s 310 K CH4 2 m/s 310 K CO2
CH4

Outlet Neuman BC for the
pressure - - Neuman BC for the

pressure - -

Top Neuman BC for the
pressure - - Neuman BC for the

pressure - -

Walls No slip - - No slip - -
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3.2. Computational Grid

Figure 4a exhibits the mesh used for Hanover city simulations. A mesh having 40 million
elements is generated by the patch independent algorithm. This algorithm is based on the top-down
approach, in which volumes are meshed first and cells are projected to faces and edges. It is mainly
used for complex geometries that demonstrate various features having different tolerances. In order
to well-capture the boundary layer and well=predict the continuous phase physics, an appropriate
refinement near the source of CH4 and close to the ground was performed. The grid quality is improved
by increasing the cell number. Figure 4b shows the grid used for the Frankfurt city case. In the
building zones, the high-resolution computational grids are composed of prism and tetra elements
only. Faraway from the building areas, a hexahedral mesh is applied. For both meshes, the resolution
is determined using a grid-sensitivity analysis. It is worth mentioning that grid quality varies between
0.05 and 0.95. The metrics used to quantify the quality is the orthogonality, which relates the angles
between adjacent elements. The optimum angle is 90◦ for quadrilateral faced cells and 60◦ for triangular
faces elements. The mesh quality plays a significant impact on the accuracy of the numerical prediction,
as well as the stability of the simulation.

Figure 4. (a) Mesh used for Hanover city case 40 million cells, (b) mesh used for Frankfurt city case
10 million cells.

4. Results and Discussion

4.1. Hanover City Results

Figure 5 shows the characteristics of the flow at the section z = 3 m (Figure 5a) and at vertical
section y = −250 m, (Figure 5b,c). The maximum velocity magnitude, 7 m/s, is at the central location
section, which is the narrowest passage along the street. This is explained by the conservation of mass,
i.e., if a fluid flow having a constant flow rate passes through smaller section, it will be accelerated.
As the flow is incompressible, the transport and dispersion of pollutant species is governed by the
wind velocity. Behind buildings, zones of recirculation are noticed. Figure 5b,c depict the resulting
vertical profiles of the mean streamwise velocity <u> and the turbulence intensity (I), obtained at
(y = −250 m) using LES model. The low power profile is well-reproduced and clearly shows the
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frictional effect of the ground. For the turbulence intensity, one notices a low variation from 4%
(z = 4 m) to 6% (z = 200 m), which are smaller values compared to the literature [23] that predicted 12%.
Consequently, one concludes that inlet turbulence has a relatively low influence on the dispersion of
pollutants. In fact, the turbulence at the release location is mainly governed by the presence of the
surrounding buildings, which generate velocity gradients, in turn enhancing the turbulence.

Figure 5. Characteristics of approaching flow: (a) Velocity at z = 3 m, (b) mean streamwise velocity
<u> at y = −250 m, (c) turbulent intensity at y = −250 m.

Figure 6 shows qualitative results of methane dispersion. Two different injection locations are
investigated. The release location significantly affects the dispersion of pollutants. When methane is
injected for a time period of 220 s, the burnable methane-air mixture, represented by an iso-surface
equal 4% of CH4-mass fraction, reaches the wall of the nearby building (Figure 6b). The burnable
mixture shows a well-developed vertical plume. Parts of this mixture are in touch with the ground.
In this zone, the buildings interfere with the wind velocity, delivering a flow that is mainly characterized
by the urban canopy and loosely dependent on atmospheric wind flow. As a result, the methane
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concentration increases in the wakes of the building where wind speed is considerably reduced and the
recirculation zone becomes remarkably larger. Figure 6a depicts the concentration on buildings surfaces
and demonstrates a critical value of 4% close to the wall of the nearby building. From a practical point
of view, if a leakage occurs at this location, the ventilation intakes of these buildings should preferably
not be located on this face. Indeed, pollutants can contaminate the indoor air of the nearby building if
the windows of the leeward faces are open.

Figure 6. Qualitative results showing the dispersion of methane CH4: (a,b) From location 1 sited at
(x = −27 m, y = 26 m, z = 1 m) (c,d) from location 2 sited at (x = 110 m, y = −29 m, z = 1 m).

Figure 6c,d show a different behavior of methane dispersion due to the new location of the
pollutant source, which is placed in an open area in which convective transport prevails. Thus, a change
in the stack location results in a very different plume behavior. The pollutant species are subjected to
a carrier phase flow having anisotropic convective fluctuations. The turbulence intensity along the
y-direction is more important than that in all other directions, making the species iso-surfaces show
a narrowly opened cone (Figure 6c).

Figure 6d shows the streamlines starting from the CH4 source (location 2), in which the velocity
of the carrier phase is the highest and exceeds 7 m/s. CH4 mass fraction shows different pattern
compared to location 1. Pollutants are transported horizontally more than that in the vertical direction.
The important carrier phase momentum demonstrates a dominant effect. The horizontal time scale of
the mixture momentum is clearly smaller than that in the vertical direction. Despite the importance of
buoyancy forces, it appears that the dynamic/momentum of the carrier phase is the parameter that
controls the motion and dispersion of CH4.
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Figure 7a,b depicts the quantitative result of the CH4 dispersion obtained in location 1-simulation.
The hazardous zone of an explosion and/or toxicity (mass fraction between 0.04 and 0.14) is bounded
between (29 m < x < −28 m), (26 m < y < 27 m) and (2 m < z < 10 m). At the level z = 5 m,
the curve bandwidth is less important in “y-direction” than that in “x-direction”. The flow diffusion
(dominated by the turbulence) is clearly not isentropic. This can be explained by the vortex effect
behind buildings, which transports methane in the positive x-direction. Faraway from the source
(z = 10 m), the concentration of methane decreases significantly to reach 0.1. Yet, it is strong enough
to cause an explosion. Figure 7d,c shows the quantitative distribution of CH4 dispersion produced
in the simulation of location 2-case. The hazardous zone is bounded between (109 m < x < 111 m),
(−29 m < y < 24 m) and (0 m < z < 2 m). Moving toward the outlet in the positive y-direction,
the concentration decreases considerably and falls below 10% after 5 m. This demonstrates that the
wind flow transports rapidly CH4 and prevents a pollutants accumulation.

Figure 7. Methane (CH4) mass fraction distribution in x and y directions: (a,b) For location 1 (at z = 2,
5, 10 m); and (c,d) for location 2 (at z = 2 m).

4.2. Frankfurt City Results

Figure 8a shows an instantaneous velocity contour of air at level z = 10 m. The velocity magnitude
varies between zero and 9 m/s. Close to the buildings, obvious stagnation zones are registered.
Velocity gradients are also observed downstream the buildings. Figure 8b depicts the streamlines
obtained at level z = 10 m. The streamlines demonstrate a separation in front of the first raw of
buildings and an acceleration of the carrier phase. The form of streamlines changes as we move toward
the center of the geometry, and recirculation zones are observed behind buildings. Figure 8c,d display
an instantaneous concentration of CH4 and CO2 at the ground, respectively. The CO2 concentration
is one order of magnitude larger than that of CH4. This concentration difference demonstrates that
the deposition of pollutants is mainly controlled by the density ratio and not by the air-velocity.
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The maximum concentration of both gases is observed behind the source building. A significant
pollutant concentration is observed in the vicinity of computational domain outlet. This is due to
the horizontal convective transport of the pollutant toward the outlet due to high wind velocity and
negligible diffusion.

Figure 8. (a) Instantaneous velocity contour at z = 10 m, (b) streamline at z = 10 m, (c) methane (CH4)
concentration at the ground z = 0 m, (d) carbon dioxide (CO2) concentration at the ground.

Figure 9 depicts the CO2 and CH4 mass fraction variations along vertical lines defined by (x, y)
coordinates. Six different locations are chosen to investigate the effect of the density on the dispersion
of pollutants. They are located behind the building source sited at (x = 0 m, y = 0 m). All profiles of CO2

mass fraction show larger concentration than CH4. This is caused by the buoyancy force. The heavier
gas is dragged downward (to the ground) by the effect of gravitational force. Carbon dioxide CO2 is
heavier than ambient air. As a result, its higher concentration is close to the ground.
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Figure 9. (a) CO2 and CH4 mass fraction distribution at different vertical lines, (b) vector showing
vortex located behind building source (red roof).

Pollutant transport is also influenced by the vortex located behind the building source
(see Figure 9c). This zone is created by the separation of fluid flow from the edges of the buildings.
The appearance of this zone strongly affects the transport and diffusion of pollutants. Due to the
recirculation of the carrier phase (air), methane is dragged downward, and CH4 is accumulated at
the ground.

A maximum concentration of CO2 mass fraction is recorded at (x = 11 m, y = 0), which is the
closest location to the wall boundary. In this region, the effect of the non-slip condition reduces the
velocity magnitudes, resulting in the formation of stagnating zone in which pollutants are collected.
Faraway from the recirculation zone (x = 13 m, y = −17 m) and (x = 13 m, y = 17 m), the concentration
of pollutants, CO2 and CH4, is very low and mostly negligible.

Figure 10 shows the effect of the density ratio on the dispersion of CH4 and CO2. The density of
pollutant-air mixture increases (CH4)/decreases (CO2) rapidly and reaches the density of ambient air at
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a height of z = 5 m, far from the injection source (Figure 10a). The density ratio controls the shape and
the volume of the pollutant plume. Figure 10b,c show iso-surfaces of CH4 and CO2 concentration.
In order to compare the dispersion of pollutant gases, an iso-value of 4% mass fraction is represented.
The plume of CH4 is first transported vertically by the inlet flows and then carried by the wind
horizontally to cover the roof of nearby buildings. In the case of CO2, the dispersion of the plume is
located immediately at the top of the building that include the pollutant source. Compared to CH4,
the dispersion is remarkably reduced.

Figure 10. (a) Density ratio ρCO2/ρair, ρCH4/ρair distribution at the vertical line (x = 0 m, y = 0 m) as a
function of the height z, (b) iso-surface, representing the plume of CH4, (c) iso-surface representing the
plume of CO2.

5. Conclusions

High-resolution CFD simulations of near- and far-field pollutant dispersion in a building group in
downtown Hanover and Frankfurt are predicted using LES turbulence model along with the dynamic
Smagorinsky SGS. The simulations focus on the concentration of pollutants in the vicinity of the release
sources and the spatial distribution of the transported species following different building structures
and boundary conditions. The following remarks can be drawn:

(1) Smagorinsky LES shows reasonable results of the velocities and turbulence quantities compared to
experimental data of generic building configuration. The results agreement is used as validation
of the flow model to investigate a larger full-scale 1:1 city geometry.

(2) Methane dispersion is controlled by the air-CH4 density ratio in cases of pollutant injection close
to buildings. The buoyancy forces are responsible for the stratification of gases. CH4 species are
first transported in the vertical direction then dragged by the carrier phase toward the outlet.
The velocity direction of pollutant injection and magnitude, as well as temperature difference
between CH4 and ambient air, do not play important roles.

(3) If CH4 is injected far from buildings, i.e., in open area in which carrier phase velocity is important,
then the transport of pollutant showed different behavior. CH4 was dragged horizontally much
faster than in the vertical direction. It followed the street and kept almost a constant altitude until
reaching the outlet.
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(4) The main parameter that controls the dispersion in Frankfurt city configuration is the density
ratio of CO2 and CH4 to ambient air. Despite the injection of both gases in the vertical direction,
only CO2 shows a significant concentration at the ground.

Future works should focus on the existence of vegetation, as well as the implementation of new
sources that account for additional species creation, e.g., CO, NOx, SOx, which describe the transport
means in the cities.
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Abstract: Drop impacts (onto dry or wet surfaces or into deep pools) are important in a wide range
of applications, and, consequently, many studies, both experimental and numerical, are available in
the literature. However, such works are focused either on statistical analyses of drop populations
or on single drops. The literature is heavily lacking in information about the mutual interactions
between a few drops during the impact. This work describes a computational fluid dynamics (CFD)
study on the impact of two, three, and four synchronized drops into a deep pool. The two-phase
finite-volume solver interFoam of the open source CFD package OpenFOAM® was used. After
validation with respect to high speed videos, to confirm the performance of the solver in this field,
impact conditions and aspects that would have been difficult to obtain and to study in experiments
were investigated: namely, the energy conversion during the crater evolution, the effect of varying
drop interspace and surface tension, and multiple drop impacts. The results show the very significant
effect of these aspects. This implies that an extension of the results of single-drop, distilled-water
laboratory experiments to real applications may not be reliable.

Keywords: multiple drop impact; computational fluid dynamics (CFD) simulation; volume-of-fluid;
OpenFOAM; crater dimensions; vorticity

1. Introduction

A large number of phenomena, both of natural and technological interest, involve the interaction
between one or—much more commonly—many liquid drops and a solid surface or a gas-liquid
interface. This interaction may be mechanical, thermal, or chemical, and it usually starts with an impact
of the drop onto the surface or interface. The impact velocity may be low or high, normal or oblique,
and in most cases, a series of drops impact the surface at the same time or nearly simultaneously.
For example, this happens in internal combustion engines, firefighting systems, surface cooling,
or painting by sprays, pesticide deposition in agriculture, pollution and microbial transport in air
and water, forensic analysis of blood stains, and rain effects on planes, wind turbines, and buildings.
This, therefore, demonstrates the importance of a deep understanding of this phenomenon, which
is still not fully understood despite its apparent simplicity and more than a century of investigation.
In particular, many studies can be found in the literature about:

• The impact of a single drop onto dry solid surfaces, onto surfaces wetted by a liquid film, and onto
gas-liquid interfaces alone in deep pools;

• The behavior of sprays, where the multitude of drops in the spray are considered in statistical
terms, mainly with empirical models.
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Detailed introductory information and reviews can be found in [1–5]. On impacts into deep pools,
the work by Cole [6] is a specifically valuable reference. On the contrary, studies are quite scarce about
the intermediate step, i.e., the outcomes of the combined impact of more than one drop in parallel
(with simultaneous or delayed impacts) [7–10] or in a series [11–13].

As it may involve solid, one, or more liquids, and a surrounding gas, drop impact is a multiphase
fluid mechanics problem, where inertial, viscous, and capillary forces merge their effects. It may also
become a multi-physics problem in the case of heat or mass transfer, or chemical reactions may play a
significant role (e.g., for hot or cold drops or surfaces or for drops impacting onto a chemically different
liquid, for reactive wetting). Therefore, a rigorous model of the phenomenon can theoretically be
created, but its analytical solution is not viable. Consequently, very simplified models and experiments
have been the primary method of investigation for a long time. In recent years, the increase in the power
of calculus has also made computational fluid dynamics (CFD) simulations feasible. Many remarkable
studies were developed (e.g., [14–18]) using different approaches, ranging from the most used Eulerian
models in finite volume or finite element frameworks, to Lattice Boltzmann and molecular dynamic
simulations. Commercial, open-source, and in-house software packages were used. Specifically,
the Volume-of-Fluid [19] approach is one of the most used algorithms, even though other techniques
were also developed, e.g., Level-Set [20], markers [21], combined models [22–26], and (as already
noted) Lattice Boltzmann [27,28] and molecular dynamics simulations (for nanodrops) [29].

In this study, CFD was used to investigate the outcomes of double and multiple synchronized drop
impacts into a deep pool with the same temperature as the drops. The numerical campaign consisted
of two steps: the first for validation, with simulations carried out to replicate experimental conditions
that had been previously investigated by means of high-speed video acquisitions, and the second, to
simulate conditions that would have been difficult to obtain in experiments. Energy conversion during
the crater evolution and the effects of varying drop interspace and surface tension and multiple drop
impacts were investigated. For the first phase, the agreement between simulations and experiments
was satisfactory, particularly for some impact conditions. The results of the second phase evidenced the
very significant effect of the investigated aspects. This outcome implies that an extension of the results
from single-drop, distilled-water laboratory experiments to real applications may not be reliable.

2. Materials and Methods

2.1. Experimental Setup

The experimental set-up and procedures, including uncertainty analysis of the main parameters,
were described in detail in a previous paper [10], so they will be only briefly summarized here.
A thorough analysis of the experimental data against which the simulation results will be validated is
available in the same paper. Drop impact experiments were performed by high-speed visualization
with continuous back-light illumination. Millimeter-size deionized water droplets were produced with
an on-demand droplet generator [7], which allows the synchronous detaching of two drops of equal size.
Falling drops are accelerated by gravity, and during their free fall, they are detected by a light sensor,
triggering the high-speed (1000 fps) charge-coupled device (CCD) camera acquisitions. Then, the drops
impact the pool, which is contained in a cubic box with a side length of 40 mm. The pool depth is
one order of magnitude larger than the drop diameter, to avoid any influence on the studied relevant
part of the crater evolution. The drops are pigmented by a solution with well-known rheological
behavior [30] and with a concentration of 1% in weight, so that the drop water can be distinguished
from the pool water in the high-speed video frames, without significantly affecting the water’s density
and viscosity. For each recorded sequence, the images before drop impact are post-processed by
an algorithm that comprises background subtraction, contrast enhancement, image cleaning, edge
detection using the Laplacian of Gaussian (LoG) method, and feature detection to determine the drop
section and center of each drop [31]. Using consecutive images coupled with the camera acquisition
rate and the pixel-to-meter conversion factor, the diameter and velocity of the impinging droplets can
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be evaluated with an accuracy of ±0.03 mm and ±0.02 m/s, respectively. The drop sphericity S is also
calculated for each falling drop, defined here as the aspect ratio of the vertical to horizontal axis (thus,
S > 1 represents a prolate-shaped and S < 1 represents an oblate-shaped drop) before the instant of
impact, and assuming a rotational symmetry around the vertical axis. The sphericity of the falling
drops before impact is crucial for obtaining accurate and repeatable experimental results, as sphericity
heavily affects crater dimensions and impact-generated vorticity [32–35]. Another critical aspect is
the oscillation mode of the drop at the instant of impact [36,37]. The experiments were performed
at ambient pressure, with the temperature of the pool equal to 30 ± 1 ◦C and the temperature of
the drops equal to 27 ± 1 ◦C. The investigated experimental conditions in terms of drop diameter D,
inter-drop distance L0, and impact velocity w are summarized in Table 1, along with the values of the
dimensionless groups typically used for drop impact characterization.

Table 1. Investigated conditions.

Case D (mm) w (m/s) L0/D S We Fr

A 2.27 1.0 2.0 0.97 32 45
B 2.29 1.4 2.0 0.97 63 87
C 2.32 2.0 2.0 0.98 130 176

D: drop diameter; w: impact velocity, L0: inter-drop distance; S: drop sphericity; We: Weber number ρDw2/σ; Fr:
Froude number w2/(gD), where ρ density, σ surface tension, g gravity.

2.2. Numerical Simulations

Concerning the numerical setup, simulations were performed using the interFoam solver of
the OpenFOAM® open source CFD toolbox [38]. interFoam is an isothermal finite volume (FV)
solver based on the volume-of-fluid (VOF) method and implementing a model to include surface
tension at the interface [39]. OpenFOAM® was selected due to its free and open source nature and
because of its many favorable reviews [40–43] and successful cases of use, which are described in
the literature [42–48]. The model implemented in interFoam includes the continuity and momentum
equations for a Newtonian and incompressible fluid, whose density and viscosity are calculated on the
basis of an indicator function named volume fraction γ. The latter assumes a value of 0 for one phase,
1 for the other, and between 0 and 1 in the interfacial regions, and it is transported by the fluid velocity
field w. Volume tracking and interface reconstruction (typically as the isosurface at γ = 0.5), with no
explicit interface tracking, is, therefore, performed. The advantage of the VOF method with respect to
the two-fluid models is that a single set of equations must be solved. The expressions of all the used
equations, a discussion of the meaning of the included terms, and further details about the interFoam
solver and models can be found in [47,49,50]. Very promising modified versions of interFoam were
also presented in the literature [48,51], but the source code was not made publicly available, so the
version included in the official OpenFOAM® distribution was used.

As the investigation is at a constant temperature and the impact velocities are low, both phases
were assumed to be incompressible and in laminar motion, in agreement with all the previously cited
papers in this field. For each phase, the values of all the relevant thermophysical properties were
taken at the respective temperatures measured during the experiments. The initial conditions of
the two phases and their positions within the domain were fixed using the setFields OpenFOAM®

utility. The implicit Euler scheme (first-order accurate) was used for the time derivative, as it proved
to offer better results in comparison with the second-order Crank-Nicholson discretization schemes
that were tested during preliminary simulations, selecting different blending factors between 0.5 and
1. The conventional advection term was discretized using Gauss schemes: limited Van Leer for the
volume fraction and limited linear for the velocity. For the latter, variations of the limiter parameter
were tested, but the best results were obtained by keeping it equal to 1. Finally, the OpenFOAM®

specific “interface compression” scheme [52] proved to be the best choice for the discretization of
the compression term. The maximum allowed Courant–Friedrichs–Lewy (CFL) number was 0.3. In
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fact, the solver is allowed to adapt the time step to keep the CFL number under the desired limit,
and the requirement for the interface compression scheme used in interFoam for 3D cases is to limit
it under 0.3 for 3D cases [40,52]. Some volume fraction sub-cycles are also performed to further
improve the accuracy. Three-dimensional simulations were performed within a domain that is a
rectangular cuboid having dimensions 0.015 m × 0.015 m × 0.020 m. This domain represents 1/4 of
the real pool system, as the computational effort was reduced by exploiting two symmetry planes:
the longitudinal plane passing through the two impact points and the transversal plane orthogonal
to the previous one, passing through the midpoint between the impact points [10]. To reduce the
domain height, drops’ detachment from the drop generator and their fall towards the pool surface
were not simulated. The drops were directly initialized as spheres near the free surface of the pool,
with an initial velocity corresponding to the experimental one. This approach has a weakness in
the fact that drop oscillations after the detachment from the needle are not considered. As already
mentioned, drop shape and oscillatory behavior have an important influence on the impact outcomes
(as it was confirmed also by the preliminary simulations described in the following section), but in
the experiments, the drops’ shapes were also nearly spherical, so this approximation seemed to be
acceptable for these cases. The used mesh was a purely structured one, with hexahedral cells and
grading along the axis connecting the drop centers (with a size ratio of 10 between the last and the first
cell) to better capture the thin neck that separates the craters created by neighboring impact drops.
In the other directions, the aspect ratio was fixed to 1 for all the cells. For the simulations involving
three drops with one centered in the origin of the axes, no grading was used, and the mesh resolution
was doubled along both the horizontal axes (x,z).

Domain characteristics, together with the imposed boundary conditions, the initial position of the
interfaces, and the mesh details are summarized in Figure 1.

Figure 1. Domain dimensions, boundary conditions, and mesh details.

Single drop impacts were also performed for comparison, leaving everything equal to the double
impact cases apart from the initial drop position, which was centered on the y-axis.
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3. Results and Discussion

3.1. Validation against Experimental Data

To validate the numerical simulations, crater evolution and drop-formed vortex structures were
compared with those observed by means of high-speed video acquisitions. Details about the latter
can be found in [10]. All these simulations were performed using the properties of distilled water for
the liquid phase. Simulation results were sliced along the longitudinal plane and saved as images
with the same pixel-to-meter ratio of the experimental images, then, the time steps corresponding
to the experimental frames were selected and superposed to the latter. Figures 2 and 3 show the
results, up to time τ = 8 ms for all three investigated cases and for the entire simulated time for cases A
(w = 1.0 m/s) and B (w = 1.4 m/s). This comparison is the most severe in evaluating the agreement, as it
allows a direct visualization of the correspondence between the experimental features of the craters
and the numerical ones. The agreement is very good for all the investigated cases during the inertial
phase of the impact (Figure 2) and for case B during the crater recession (Figure 3, column b). On the
contrary, some significant discrepancies appear during this second phase for case A (Figure 3, column
a). This will be commented on in the following section, when discussing the crater depth profiles.
The results after τ = 8 ms are not shown for case C because, with all the used meshes, the two craters
merge, such that the crater depth is still reproduced well, but the crater shape is substantially altered,
and the agreement is completely lost. With the VOF approach, air regions coming into contact merge
instantaneously because the underlying model is not able to represent retarded coalescence (modified
models would be needed, e.g., see [53]). On the other hand, real-world interfaces may resist even with
direct contact—at least for a certain time—if the pressure of the contacting regions is not too different
(e.g., bouncing bubbles or drops). Thus, in the experiments, the very thin neck between the two crates
in case C is conserved, while in the simulations, a much finer mesh than that used for the simulations
would have been needed to avoid crater contact and merging (OpenFOAM® is very slow in adaptive
remeshing, so this feature could not be exploited).

Different mesh sizes were evaluated to analyze the mesh independence of the solution, which,
for fine details, is always an issue when using the VOF technique. Mesh sizes were varied between
176 kcell and 12.35 Mcell, but meshes under 1 Mcell proved unsuitable because the already mentioned
neck between the craters also disappeared (resulting in a coalescence of the cavities not observed in the
experiments) for cases A and B. Thus, only the finest two meshes (1.4 Mcell and 12.35 Mcell) were
used for the final simulations. For the latter, a good overall mesh independence was found, even if
some details are still captured differently. No mesh is always the most accurate (as can be seen in
Figures 2 and 3 for case B).

The vortices generated by drop impacts—peculiar and different from the single-drop impact
case [10]— were visualized in the experiments by dying the drop water. In this way, the dye highlights
the drop water, distinguishing it from the pool water, and allowing to follow its motion. In the
simulations, this could be accomplished by numerically “dying” the drop water with a passive tracer,
by using a multiphase solver (e.g., multiphaseInterFoam) or simply by tracing the flow streamlines [18].
An example of the latter approach is shown in Figure 4, which includes two pictures referring to case
A at τ = 18 ms. These two images were obtained by tracing streamlines with different origins, thereby
evidencing how the streamline aspect heavily depends on the latter. The complex structure of the
simulated flow streamlines is consistent with the experimental observation of vortex structures in
the same region [10]. This behaviour is also in agreement with the experimental findings by other
authors [54], who showed that after a certain time from the drop impact (for the investigated case, this
time should be around 14 ms) the original azimuthal vorticity is progressively tilted and becomes a
stream-wise vorticity. Despite the validity of this approach, using it to cover all the domain regions
with good resolution would require a very large number of streamlines, such that they would be
difficult to follow. Therefore, another visualization technique was preferred. Pictures showing the
calculated vorticity (the curl of the velocity vector field) on the longitudinal plane were compared with
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the experimental images. Even if the vortex and vorticity are not related in a biunique way (due to
irrotational vortices or vortex parts), vorticity offers a picture of the regions where vortices are most
likely to occur, with a resolution equal to the number of mesh cells. Figure 5 shows the results for
cases A and B. As can be seen, the agreement between simulations and experiments is also good for
regions of high vorticity. The discrepancies are due to the differences in the crater evolution between
the simulations and experiments. These differences influence the motion of the drop water under the
crater itself. In any case, they are not significant enough to undermine the correct identification of the
regions reached by the drop water and its swirling motion.

 

Figure 2. Superposition of the numerical crater contours to the experimental high-speed photos, for the
three investigate cases A (w = 1.0 m/s), B (w = 1.4 m/s), C (w = 2.0 m/s), time up to 8 ms. In case B, the
red line shows the results of the 12.35 Mcell simulation, while the yellow line shows the results of the
1.4 Mcell simulation.
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Figure 3. Superposition of the numerical crater contours to the experimental high-speed photos, for
case A and case B (for the latter: red line, results from the 12.35 Mcell simulation; yellow line, results
for the 1.4 Mcell simulation); time up to 18 ms.

 

Figure 4. Simulated flow streamlines in a region where vortices are experimentally observed (case A,
w = 1.0 m/s, τ = 18 ms).
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Figure 5. Comparison between the experimentally detected vortex structures and the vorticity calculated
by numerical simulations, for cases A and B, time up to 18 ms.

For case A in Figure 5, the drop fluid is symmetrically distributed below the liquid–air interface
(τ = 4 ms). Later (τ = 6 ms), the drop fluid begins to roll up. The continuous deformation of the
liquid–air interface generates an outer vortex structure in the form of a vortex filament, which is also
visible in the numerically calculated vorticity in the same region. The roll-up is continuous while
the expanding crater causes downward convection of the dyed drop fluid. Asymmetries of the outer
vortex rings, having their origins in different convection velocities, are also found in the numerical
results. When the crater recedes (τ = 9 ms), a central vortex structures is formed. Both vortex structures,
the central vortex and the outer vortex, separate from the receding crater and form a unique complex
vortex blob that continuous to move downward. This complex structure could not be captured in the
simulation, but the region of vorticity is represented very well.

For case B in Figure 5, the generation of the outer vortex structure is superposed, and the dyed
liquid spreads around the cavity. The interaction between the two evolving craters causes a local
enlargement of the spreading dyed drop liquid, showing a vortical structure in both investigations (the
experiment and simulation (τ = 8 ms)). When the cavities recede, apparently disorganized structures
separate and move downward. The numerical results clearly show these downward moving structures.
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In terms of the characteristic dimensions of the drop craters, the crater’s maximum penetration
depth zmax, the maximum crater penetration depth in the transverse plane including the impact point
zc (i.e., parallel to the yz-plane and at a x-coordinate equal to half of the drop interspace [10]), and the
crater penetration depth along the vertical line including the impact point zuip, were measured from
both the experiments and the simulations. In this work, these quantities are always presented in a
dimensionless form, by dividing them by the drop diameter before impact. Therefore, their symbols
are completed by a “dl” subscript in all the following charts. For double drop impacts, these quantities
do not always coincide during the crater evolution (differently from what happens for single drop
impacts). This can be clearly seen, e.g., in Figures 2 and 3. zmax and zc are accessible both to experiments
and simulations, while zuip can be evaluated only by simulation because its measurement requires a
cross-section of the craters (along the xy plane) and not just a side view. Figures 6 and 7 show the values
of these quantities for case A (w = 1.0 m/s) and case B (w = 1.4 m/s) as a function of time. As for all the
charts in this paper, the initial time τ = 0 was fixed at the instant of impact. In the experimental results,
the two craters are not perfectly equal, but their difference is very slight (as can be seen for zmax for case
B in Figure 7). Therefore, only the values for the left crater are shown in Figure 6. More specifically,
Figure 6 reports the results for case A (w = 1.0 m/s), comparing simulations and experiments for the
two values of the water–air surface tension set in the simulations.

 
Figure 6. Dimensionless zmax, zc and zuip extracted from the experiments and from the numerical
simulations for case A (w = 1.0 m/s): (a) the results using σ = 71 mN/m; (b) the results using σ = 65
mN/m.

Figure 7. Dimensionless zmax, zc and zuip extracted from the experiments and from the numerical
simulations for case B (w = 1.4 m/s). volume-of-fluid (VOF) results using σ = 71 mN/m.

As can be seen in Figure 6, the experimental values are better reproduced when σ = 65 mN/m
(Figure 6a) instead of σ = 71 mN/m (distilled water value, Figure 6b). This seems reasonable as the dye
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used for the droplet in the experiments [10] contains surfactants, which may cause—despite the very
dilute solution—a reduction in the drop surface tension. For case B, reported in Figure 7, the agreement
is already good for simulations with σ = 71 mN/m. This can be explained by the fact that in case B,
the impact velocity is higher, so the importance of the capillary actions and surface tension is reduced
with respect to case A.

In any case, the overall maximum depth reached by the crater during its evolution—which is one
of the most important quantities because it limits the water layer directly reached by the crater—is
always reproduced very well by the simulations. The deviation when using σ = 71 mN/m is −6.1% for
case A, −1.7% for case B, and −0.14% for case C. The deviation for case A is reduced to −0.68% when
using σ = 65 mN/m. In all cases, the numerical simulation underestimates the experimental value,
with a discrepancy that decreases with an increasing impact velocity. This is again consistent with the
fact that the set surface tension is probably larger than the correct experimental value (thus, the free
surface more strongly opposes pulling).

3.2. Energy Conversion During Impact

After validation, the numerical simulations were used to extract information about some aspects
that would be difficult or very time-consuming to study experimentally. Post-processing of the
numerical results was first carried out to extract the kinetic and surface energies within the domain for
all the simulated time steps. Given the small involved heights, the changes in the potential energy
(of the drop liquid and of the pool liquid displaced by the drop) are minor, so the latter will not be
described. Kinetic energy was calculated for each cell as:

Ek = 1/2 wcell
2 [(γ ρwater + (1 − γ) ρair] (1)

where wcell is the velocity magnitude in the cell, ρwater and ρair are the water and air densities, and γ is
the volume fraction. Summation over all cells was then performed to calculate the total Ek over the
whole domain, which, before impact, is obviously equal to the kinetic energy of the drop alone. Surface
energy Es was calculated as the product of the air–water interfacial energy σ (taken at its reference
value for distilled water at the drop temperature, 71 N/m) by the total area of the air–water interface
obtained as the isosurface of the color function γ = 0.5. This value was then decremented by the value
of the total interfacial energy of the undisturbed pool surface, so that a direct comparison between the
interfacial energy of the drop before the impact and the interfacial energy during crater evolution can
be evaluated.

For both kinetic and surface energy, the values extracted from the numerical results at the time
step immediately before impact were compared with the theoretical predictions for drops of known
diameters and velocities to check their correctness and reliability. The average deviation was 0.78%
for kinetic energy and 1.31% for surface energy, which was considered satisfactory. Figure 8 shows
the results for both the double drop impacts and the corresponding (i.e., with same impact velocity)
single drop impact, after normalization of the values with respect to the kinetic energy and the surface
energy immediately before the impact. The time evolution of the two energy contributions appears
consistent with the experimentally observed behavior and with each other. When kinetic energy
increases, surface energy decreases, and vice versa. Surface energy decreases during the first instants
after impact because the drop coalesces with the pool (so a part of the drop and the pool’s external
surfaces are merged, with a consequent reduction in the total interface area), but the crater is not
formed yet. The profiles also show a very regular evolution for impact velocity. The most interesting
outcome is that the evolutions for single and double impacts are extremely similar, even if minor
differences are obviously present due to the more complex evolution of the crater shape in double drop
cases (e.g., causing the mutual intersections between the curves). This suggests that the latter has only
a minor influence on energy conversion during the crater’s expansion and recession.
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Figure 8. Time evolution of the normalized kinetic energy (a) and normalized surface energy (b) in
the domain after double drop impact, as a function of time for single (dash-dot lines) and double
(continuous lines) drop impacts.

3.3. Sensitivity Analysis on Surface Tension

As water is easily contaminated, particularly in real applications, its surface energy may be quite
different from the distilled water case. Given the observed influence of σ on the results, a sensitivity
analysis was carried out on its value. Case B (w = 1.4 m/s) was selected as a reference case, changing
only the surface tension value. It can be expected that larger surface tension values cause a more
significant influence of the capillary action and thus a higher internal pressure within the original
drop and a “tenser” pool interface. As can be observed from Figure 9, the trend of the inertial phase,
in which the crater is expanding, is influenced only slightly by the water surface tension. The maximum
expansion of the crater is reduced when the surface tension is larger (meaning that the tensing effect
dominates with respect to the larger capillary pressure in the drop). The receding phase is heavily
changed, and for larger surface tension values, the crater closes much faster. A few sudden changes in
the path can be observed. These changes correspond to instants when the capillary waves caused very
fast modification in the crater evolution. In fact, once the crater reaches its maximum depth and width,
its starts receding, and the surface tension reduces the interface area. This causes the closure of the
crater and perturbations of the interface that propagate as waves along the crater interface, resulting in
peculiar shapes (e.g., see the time instants between τ = 10 ms and τ = 16 ms in Figure 3) and seemingly
irregular trends in the charts. In particular, the changes in the maximum crater depth evidence the
instants when different crater regions become deepest.

 
Figure 9. Time evolution of zmax dl as a function of the water surface tension for case A (w = 1.0 m/s,
(a)) and for case B (w = 1.4 m/s, (b)).
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3.4. Sensitivity Analysis on Drop Spacing

The second parameter that was varied is the distance between the drop centers. This distance was
changed in the range of 2.58 to 6.58 mm by modifying the reference drop distance (L0 = 4.58
mm) of ±1 and ±2 mm. This resulted in a series of dimensionless drop distances equal to
L/D = 1.127 ÷ 2.873, L/L0 =0.345 ÷ 1.437. Figure 10 shows the results in terms of zmax (a) and zuip (b),
including also single drop impacts for comparison. Here, too, the sudden changes in the paths are
evident. Paths are consistent between the different cases, with a progressive shift of the instants at
which the crater’s main parameters change their trends due to the combined actions of inertia and
capillarity. As expected, when the drop distance is large, the crater tends to behave as in a single
drop impact. On the other hand, reduction of the interspace causes the deformation of the craters,
which interact with each other first indirectly and then directly merge, affecting more and more the
crater dimensions. A peculiar result is that for drops nearly touching each other, the time at which the
maximum value of zmax is reached tends to the value for a single drop with double the volume and
mass (as the density is not changed), but the maximum value of zmax dl is much larger than that in the
corresponding single drop case. Thus, it can be concluded that direct interaction (merging) between
the craters enhances crater penetration even more than a simple summation of inertial contributions
would predict.

 
Figure 10. Time evolution of zmax dl (a) and zuip dl (b) as a function of the distance L between the drops.
Reference case (L0/D = 2) is case B; the other cases are with the drop interspace decreased and increased
by 1 mm and 2 mm. Single drop impact (sdi) includes the same drop diameter and impact velocity;
the single drop impact for a drop with the same impact velocity but a volume and mass double of the
original one (sdi2V) is also added.

3.5. Three-Dimensional Visualization

Unlike the experiments, where a single side or top view of the drop impacts can be observed, from
the numerical simulations, a fully 3D description of the phenomenon can be obtained. First, the air–water
interface can be extracted and visualized. Figure 11 shows a rendering of the crater evolution at
different time instants—for case B (w = 1.4 m/s), simulated with 12.35 Mcell. For a more intuitive
visualization, the simulated domain was mirrored once to reconstruct half of the real domain. It can be
noticed how not only the major features, but also the details (including the neck and the surface and
capillary waves) are very well captured.
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Figure 11. Rendering of some frames showing the crater evolution from the simulation of case B
(w = 1.4 m/s), simulated with 12.35 Mcells.

3.6. Impact of Three and Four Synchronized Drops.

Finally, simulations of multiple drop impacts were tested in all cases for impact velocity w = 1.4 m/s.
For these cases, no corresponding experimental tests were performed. Three drops in a single row,
aligned along the x-axis, and four drops, two aligned along x and two along z, were tested. Four cases
were simulated—one with a drop interspace L equal to L0 for both three- and four-drop cases,
a three-drop case with a drop interspace equal to 0.75 L0, and a four-drop case with a drop interspace
of 1.5 L0. Figure 12 shows some rendered frames of the crater’s evolution for three of these simulated
cases. It can be observed how for the three-drop case with L = L0 the craters do not merge, while for
the other cases they do, resulting in a different evolution and a maximum crater depth that becomes
much larger, as reported in Figure 13. In these cases, too, the interaction between the craters appears
to have a significant effect on the maximum depth. Further studies will be needed to verify how
multiple drop interactions would affect the crater depth when there is no “free space” left for expansion.
On the other hand, each crater finds its way blocked by other interfaces in all directions. In this case,
the crater depths might be reduced. Further studies will also be needed to investigate the effect of
non-synchronous impacts.
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Figure 12. Rendering of some frames showing the crater evolution from the simulations of three-drop
and four-drop cases (w = 1.4 m/s).
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Figure 13. Dimensionless zmax as a function of time from the numerical simulations for multiple drop
impact cases (three drops, tdi, and four-drops, qdi) having w = 1.4 m/s and different inter-drop spacing.
Results for single drop impacts for drops having the same volume (sdi) and two times the volume
(sdi2V) are also added for comparison.

4. Conclusions

Numerical simulations of double and multiple synchronised drop impacts were performed using
the interFoam solver of the OpenFOAM® open-source CFD package. Results for double drop impacts
were validated against experimental data acquired by high-speed imaging. Crater shape and depth and
vortex generation were compared between the simulation and experiments for double drop impacts,
and a good agreement was found, particularly in the inertial phase (leading to the maximum crater
penetration depth). Simulations were then performed to investigate energy conversion during the
crater evolution, the effect of varying surface tension, and drop interspace and multiple drop impacts.
The main findings are:

• Energy conversion between the kinetic and surface energies during double drop impacts shows a
consistent behaviour very similar to that of single drop impacts, thus evidencing that it is not
significantly influenced by the crater shape;

• Both the surface tension and the interspace have a very significant influence on the crater shape
and depth. Concerning the surface tension, in real applications water is easily contaminated.
This aspect must be kept in mind when using laboratory results obtained with distilled water.
Concerning the drop interspace, obviously the more the drops are spaced, the more similar the
crater evolution is to a single-drop impact case. More interestingly, when the drop interspace is
large enough to avoid crater merging, the maximum depth reached by the crater is only slightly
affected by the presence of other drops (even if the crater shape is heavily affected by the indirect
(mediated by the liquid) interaction. Contrarily, when the craters merge, the maximum depth is
heavily affected, with an increase that may reach more than the value corresponding to the impact
of a single drop, with double the volume and mass.

In summary, direct extension of results from the study of single drop impacts to the case of multiple
impacts with many unevenly spaced drops and non-simultaneous contact times (much more common
in applications), appears not to be straightforward; on the contrary, neglecting mutual interactions can
be quite misleading. It seems, therefore, mandatory to perform further studies including both more
drops and different drop interactions (delayed impacts, different drop interspaces, etc.) to cast further
light on these aspects. This would lead to the possibility of developing new models and correlations
for multiple drop impacts, which are more reliable for use in all the applications fields where the
phenomenon is of importance.

For such studies, improvements in the VOF approach may also be needed:
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• Retarded coalescence or other related models should be added, to be able to manage situations in
which interfaces are very near without need of extremely fine meshes. Otherwise, a much faster
self-adaptive remeshing should be implemented;

• Hybrid methods, e.g., a combined VOF-Level Set, could be used to better manage the interface
curvature and, consequently, reduce spurious velocities.

In addition, comparison with other methods (e.g., diffuse interface methods) could be interesting.
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Abstract: We present a strong form, meshless point collocation explicit solver for the numerical
solution of the transient, incompressible, viscous Navier-Stokes (N-S) equations in two dimensions.
We numerically solve the governing flow equations in their stream function-vorticity formulation. We
use a uniform Cartesian embedded grid to represent the flow domain. We discretize the governing
equations using the Meshless Point Collocation (MPC) method. We compute the spatial derivatives
that appear in the governing flow equations, using a novel interpolation meshless scheme, the
Discretization Corrected Particle Strength Exchange (DC PSE). We verify the accuracy of the numerical
scheme for commonly used benchmark problems including lid-driven cavity flow, flow over a
backward-facing step and unbounded flow past a cylinder. We have examined the applicability of
the proposed scheme by considering flow cases with complex geometries, such as flow in a duct
with cylindrical obstacles, flow in a bifurcated geometry, and flow past complex-shaped obstacles.
Our method offers high accuracy and excellent computational efficiency as demonstrated by the
verification examples, while maintaining a stable time step comparable to that used in unconditionally
stable implicit methods. We estimate the stable time step using the Gershgorin circle theorem. The
stable time step can be increased through the increase of the support domain of the weight function
used in the DC PSE method.

Keywords: transient incompressible Navier-Stokes; meshless point collocation method; stream
function-vorticity formulation; strong form; explicit time integration

1. Introduction

In this paper, we describe the development of a strong form meshless point collocation method
for numerically solving the two-dimensional, non-stationary, incompressible Navier-Stokes (N-S)
equations in their stream function-vorticity formulation. Our method relies on the ability of meshless
methods to accurately compute spatial derivatives, and on their flexibility to solve partial differential
equations (PDEs) in complex geometries. The proposed numerical method can efficiently handle
uniform Cartesian point clouds embedded in a complex geometry, and/or irregular sets of nodes that
directly discretize the flow domain. To compute the spatial derivatives that appear in the governing
flow equations, we apply an interpolation meshless scheme, which computes spatial derivatives on
both Cartesian embedded grids and irregular nodal distributions.

The mathematical formulation of the N-S equations, depending on the choice of dependent
variables, can be classified as (i) primitive variables, (ii) stream function-vorticity, and (iii)
velocity-vorticity. The majority of numerical methods are expressed in the primitive variables
(velocity-pressure) formulation [1–3]. Although the primitive variables formulation is widely employed,
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difficulties occur when dealing with pressure boundary conditions, and coupling of the velocity and
pressure fields is challenging. The vorticity-vector-potential [4–6] and velocity-vorticity [7] formulations
have a clear advantage over the primitive variables formulation, because pressure does not appear in the
field equations, and the difficulty of determining the pressure boundary conditions in incompressible
flows is avoided [8]. The extension to 3D flow is also straightforward, although the number of field
variables increases from three to six. For 2D cases, stream function-vorticity is the preferable method for
the numerical solution of the incompressible N-S equations, since the continuity equation (conservation
of mass) is inherently fulfilled [4].

The non-stationary N-S equations can be numerically solved using explicit, explicit-implicit or
implicit time integration schemes in the framework of finite element (FE), finite volume (FV), finite
difference (FD) or spectral methods. Fletcher [9] provides an overview of finite element and finite
difference techniques for incompressible fluid flow, while Gresho and Sani [10] review the field, focusing
on finite elements. Standard texts on computational fluid dynamics (CFD) using finite difference and
finite volume methods can be found in [11–13], and finite elements in [14–16].

Substantial effort has been invested in reducing or eliminating problems related to mesh generation.
Attempts to eliminate the human and computational effort related to mesh generation have resulted
in the development of meshless methods (MMs). Various MMs, developed for computational fluid
dynamics (CFD), have been used to solve the incompressible N-S equations. Of particular interest is the
Meshless Local Petrov-Galerkin (MLPG) method, which has been used to solve the N-S equations in
their primitive variables [17], velocity-vorticity [18,19] and stream function-vorticity [20] formulations.
The moving least squares (MLS) approximation method has been used to compute shape functions
and derivatives. Additionally, radial basis functions (RBFs) are able to interpolate shape function
and its derivatives [21]. The Local Boundary Integral Method (LBIE) has been successfully applied
to solve incompressible, laminar flow cases [22], while the multi-region Local Boundary Integral
Equation (LBIE) has been combined with the radial basis functions (RBF) interpolation method [23].
The mesh-free Local Radial Basis Function Collocation Method (LRBFCM) for transient heat transfer
and fluid dynamics problems was presented in [24], while others [25,26] reported the use of an
indirect/integrated radial-basis-function network (IRBFN) method to solve transient partial differential
equations (PDEs) governing fluid flow problems. Velocity-vorticity flow equations were solved
in [27–29] using a point collocation method, along with a velocity-correction method, while a meshless
point collocation with both velocity and pressure correction methods [30] was applied in several fluid
mechanics problems. Eulerian based meshless methods, in contrast to Lagrangian based meshless
methods, such as Smoothed Particle Hydrodynamics (SPH), have been mainly applied to regular
geometries (square, circles, tubes), where generating a computational grid is relatively straightforward.

In this work, we focus on the Eulerian formulation of the N-S equations. A meshless point
collocation method is used for the numerical solution of the non-stationary, incompressible, laminar
2D N-S equations in their stream function-vorticity formulation in complex geometries. The stream
function-vorticity formulation is an effective way to describe 2D incompressible flow, since the
incompressibility constraint for the velocity is automatically satisfied and the pressure variable
is eliminated. The method is generalizable to three dimensions via vector potential-vorticity
formulation [4–6]. The vorticity boundary conditions are imposed in a local form. We treat the
transient term using a Euler explicit time integration scheme. Since the explicit integration scheme is
conditionally stable, we compute the critical time step that ensures stable numerical results using the
Gershgorin circle theorem [31,32]. This circumvents the need to calculate eigenvalues, which would be
time consuming. The requirement for a stable time-step is counterbalanced by the low computational
cost of each step, since only one Poisson-type equation is solved for the stream function equation and
the vorticity field is updated using the explicit solver (in three dimensions three Poisson-type equations
need to be solved [4–6]). The proposed scheme applies to both uniform embedded and irregular nodal
distributions and can be used with ease in complex geometries.
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This paper is structured as follows: in Section 2, we (i) present the governing equations (ii)
present a numerical scheme for the stream function-vorticity formulation based on the meshless point
collocation method (iii) briefly describe the Discretization Correction Particle Strength Exchange (DC
PSE) differentiation method and (iv) discuss issues related to the accuracy and the computational cost
of the proposed scheme. In Section 3, we highlight the accuracy of the scheme through benchmark
problems, while in Section 4, we demonstrate the accuracy, efficiency and the ease of use of the
proposed scheme using numerical examples. Finally, in Section 5 we present our conclusions and
preliminary results for 3D lid-driven cavity flow using the generalization of the proposed scheme via
vorticity-vector potential formulation.

2. Methods Governing Equations and Solution Procedure

2.1. Stream Function-Vorticity Formulation of Navier-Stokes Equations

The governing equations for the non-stationary, viscous, laminar flow of an incompressible
fluid are based on conservation of mass and momentum. The non-dimensional form of the stream
function-vorticity (ψ-ω) formulation is:

∂ω
∂t

+
∂ψ

∂y
∂ω
∂x
− ∂ψ
∂x
∂ω
∂y

=
1

Re
∇2ω (1)

∇2ψ = −ω (2)

where Re = UL
v is the Reynolds number, with U and L being a characteristic velocity and length,

respectively, and v the kinematic viscosity of the fluid. Taking the spatial derivative of the stream
function ψ yields the velocity components u and v, as follows:

u =
∂ψ

∂y
(3)

v = −∂ψ
∂x

(4)

We require a solution to Equations (1) and (2), defined in the spatial domain Ω with boundary ∂Ω,
given the initial conditions at time t = 0

u = u0 (5)

ω = ω0 = ∇× u0, (6)

and boundary conditions
u = u∂Ω (7)

ω = (∇× u∂Ω)·k̂ (8)

with k̂ being the unit vector in the direction of the z axis of a three-dimensional Cartesian coordinate
system. We solve the governing equations using an explicit Euler time integration scheme for the
transient terms and a strong form meshless collocation method to discretize the flow equations.

2.2. Temporal Discretization Using Explicit Euler Method

We treat the viscous term explicitly [33] to obtain the following difference formula in time:

ωn+1 −ωn

Δt
+
∂ψn

∂y
∂ωn

∂x
− ∂ψ

n

∂x
∂ωn

∂y
=

1
Re
∇2ωn. (9)

∇2ψn+1 = −ωn+1 (10)
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using the notation ωn+1 = ω
(
tn+1

)
and ψn+1 = ψ

(
tn+1

)
, where tn+1 = tn + δt. The proposed

scheme computes the stream function (along with velocity components) and vorticity field by applying
a three-step marching algorithmic procedure:

Step 1 Update vorticity at the interior grid points

ωn+1 = ωn − Δt
∂ψn

∂y
∂ωn

∂x
+ Δt

∂ψn

∂x
∂ωn

∂y
+ Δt

1
Re

(
∂2ωn

∂x2 +
∂2ωn

∂y2

)
(11)

Step 2 Compute stream function by solving Poisson type problem

∂2ψn+1

∂x2 +
∂2ψn+1

∂y2 = −ωn+1 (12)

Step 3 Update velocity u(n+1)

un+1 =
∂ψn+1

∂y
(13)

vn+1 = −∂ψ
n+1

∂x
(14)

2.3. Discretization Corrected Particle Strength Exchange (DC PSE) Method

The accuracy of the proposed scheme relies on the accurate computation of spatial derivatives for
the unknown field functions in Equations (11)–(14). In the present study, we use the Discretization
Corrected Particle Strength Exchange (DC PSE) method, which, to our knowledge, is one of the most
accurate meshless methods for computing spatial derivatives. The DC PSE method originated as a
Lagrangian particle-based numerical method [34] and is based on Particle Strength Exchange (PSE)
operators. To solve PDEs using the DC PSE meshless method, the authors in [35] reformulated the
Lagrangian DC PSE method to work in the Eulerian framework. For completion, the PSE operators
and the DC PSE method are described below.

2.3.1. Particle Strength Exchange (PSE) Operators

The Particle Strength Exchange (PSE) method utilizes kernels to approximate differential operators
that conserve particle strength in particle-particle interactions. The PSE method was proposed by
Degond and Mas-Gallic [36] for diffusion and convection-diffusion problems. Eldredge et al. [37] then
developed a framework for approximating arbitrary derivatives.

In general, a PSE operator Qβ f (x) for approximating the derivative Dβ f (x) has the form

Qβ f (x) =
1
ε|β|

∫
( f (y) ∓ f (x))ηβε (x− y)dy (15)

with ηβε = ηβ(x/ε)/εd a scaled kernel of radius ε, and d the number of dimensions. The sign in
Equation (15) is negative when |β| is even and positive when |β| is odd, with β a multi-index [34]. Now,
let β = (β1, β2, . . . , βn), where βi, i = 1, 2, . . . , n is a non-negative integer. Then the partial differential
operator Dβ can be expressed as Dβ = ∂|β|

∂x
β1
1 ∂xβ2

2 ...∂xβn
n

. The challenge is to find a kernel ηβε that leads

to good approximations for Dβ. To find such kernels for arbitrary derivatives we adopt the idea in
Eldredge et al. [37] and start from the Taylor expansion of a function f (y) about a point x:

f (y) = f (x) +
∞∑

|a| = 1

1
a!
(y− x)aDa f (x). (16)
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Next, we subtract or add f (x), depending on whether |β| is odd or even, to both sides and convolute
the equation with the unknown kernel ηβε . Considering Equation (15), this leads to:

Qβ f (x) =
1
ε|β|

∞∑
|a| = 1

1
a!

Da f (x)
∫

(y− x)aη
β
ε (x− y)dy. (17)

Introducing the continuous α-moments

Ma =

∫
(x− y)αηβ(x− y)dy =

∫
zαηβ(z)dz (18)

and isolating the derivatives Dβ on the right-hand side of Equation (17) we obtain:

Qβ f (x) =
(−1)|β|

β!
MβDβ f (x) +

∞∑
|a| = 1

a � β

(−1)|a|

a!
ε|a|−|β|MaDa f (x). (19)

Finally, to approximate Qβf (x) with order of accuracy r, the following set of conditions is imposed
for the moments Ma:

Ma =

⎧⎪⎪⎨⎪⎪⎩(−1)|β|β! a = β

0, a � β, 1 ≤ |a| ≤
∣∣∣β∣∣∣+ r− 1.

(20)

In addition, if we impose ∫
|z||β|+r

∣∣∣ηβ(z)∣∣∣dz < ∞ (21)

the mollification error εε(x) =Dβ f (x) is bounded [34]. The procedure to construct a kernel that satisfies
the conditions in Equation (16) has been described in [34]. Once the kernel is defined, the operator in
Equation (17) can be discretized using a midpoint quadrature over the nodes as

Qβh f (x) =
1
ε|β|

∑
p∈N(x)

(
f
(
xp

)
∓ f (x)

)
η
β
ε

(
x− xp

)
Vp , (22)

where N(x) is the number of all nodes in a neighborhood around x, which can be defined by a cut-off
radius rc, usually chosen such that N(x) coincides to a certain level of accuracy with the kernel support,
and Vp is the volume associated with each particle. Given such a discretization, the discretization error

εh(x) = Qβf (x) − Qβh f (x) is also bounded [34].

2.3.2. The Discretization Corrected PSE Operators

The Discretization Corrected PSE operators were introduced by Schrader et al. [34] to reduce the
discretization error εh(x) in the PSE operator approximation. We can derive the DC PSE approximation
from Equation (22), aiming of finding a kernel function which minimizes the difference between
this discrete operator and the actual derivative. We can achieve this, by replacing each term f (xp)
in Equation (22) with its Taylor expansion about x. This leads to the following expression for the
derivative approximation:

Qβh f (x) =
(−1)|β|

β!
Zβh Dβ f (x) +

∞∑
|a| = 1

a � β

(−1)|a|

a!
ε|a|−|β|Za

hDa f (x) + r0 (23)
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with

r0 =

⎧⎪⎪⎨⎪⎪⎩0,
∣∣∣β∣∣∣ even

2e−|β|Z0
h f (x)

∣∣∣β∣∣∣ odd
(24)

and the discrete moments defined as:

Za
h =

1
εd

∑
p∈N(x)

(x− xp

ε

)a
ηβ

(x− xp

ε

)
. (25)

Therefore, the set of moment conditions becomes:

Za
h =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(−1)|β|β! a = β

0 a � β

< ∞ otherwise

amin ≤ |a| ≤
∣∣∣β∣∣∣+ r− 1 (26)

for all
∣∣∣β∣∣∣ � 0, where amin is one when

∣∣∣β∣∣∣ is odd and zero when
∣∣∣β∣∣∣ is even. The kernel ηβ is chosen as:

ηβ(x, z) =

⎛⎜⎜⎜⎜⎜⎜⎝
|β|+r−1∑
|γ| = amin

aγ(x)zγ
⎞⎟⎟⎟⎟⎟⎟⎠e−|z|

2
= P(x, z)W(z), z =

x− xp

ε
. (27)

The kernel function consists of a polynomial correction function P(x, z) and the weight function
W(z). Different types of weight functions can be applied with the possible choices described in [38].

The unknown coefficients aγ(x) are obtained by requiring the kernel given by Equation (28) to
satisfy the conditions in Equation (27), resulting in the following linear system of equations:

|β|+r−1∑
|γ| = amin

aγ(x)w
γ
a(x) =

⎧⎪⎪⎨⎪⎪⎩(−1)|β|β! a = β

0 a � β
, ∀ amin ≤ |a| ≤

∣∣∣β∣∣∣+ r− 1 (28)

with weights

wγa(x) =
1

ε|a+γ|+d

∑
p∈N(x)

(
x− xp

)a+γ
e−(

|x−xp |
ε )

2

(29)

To compute the approximated derivative Qβh f (x) at node xp, the coefficients are found by solving
the linear system of Equation (28) for x = xp. Given our choice of kernel function, the DC PSE derivative
approximation becomes:

Qβh f
(
xp

)
=

1

ε
(
xp

)β ∑
xq∈N(xp)

(
f
(
xq

)
∓ f

(
xp

))
p

⎛⎜⎜⎜⎜⎜⎜⎝x− xp

ε
(
xp

) ⎞⎟⎟⎟⎟⎟⎟⎠aT
(
xp

)
e
−( |xp−xq |

ε(xp)
)

2

(30)

where p(x) = [p1(x), p2(x), pl(x)] and a(x) are the vectors of terms in the monomial basis and their
coefficients, respectively. By using the DC PSE method, the spatial derivatives Qβ up to second order
are given as:

Q1,0 ≡ ∂
∂x

, Q0,1 ≡ ∂
∂y

(31)

and

Q1,1 ≡ ∂2

∂x∂y
=

∂2

∂y∂x
, Q2,0 ≡ ∂2

∂x2 , Q0,2 ≡ ∂2

∂y2 (32)
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2.4. Vorticity Boundary Conditions

In finite difference methods, a number of formulae can be used to impose the vorticity boundary
conditions [33,39]. These formulae, generally referred to as local, compute vorticity values on a given
node on the boundary from the vorticity values in the interior domain, without involving other nodes
on the boundary. The most widely used method is Thom’s formula [39]. Unfortunately, applying these
formulae in real applications had limited success. As stated in [33], vorticity boundary conditions
should be global, in the sense that computing the boundary vorticity values should involve vorticity
values at nodes in the interior and the boundary. Herein, to achieve global vorticity boundary conditions,
we impose vorticity boundary conditions through strong form meshless differential operators, used to
compute spatial derivatives. This way, imposing vorticity boundary conditions is consistent with the
rest of the algorithm (described in Section 2.2) and becomes quite straightforward.

DC PSE methods are recognized as one of the most accurate and efficient numerical methods
to compute derivatives on an irregularly distributed set (cloud) of nodes [34,35,38]. For the stream
function-vorticity N-S Equations, given the velocity field values computed previously by the updated
stream function values ψn+1 (Step 2, Section 2.2), we can compute the updated vorticity values ωn+1

for the entire spatial domain (including boundaries) using the strong form meshless operators for first
order spatial derivative as

ωn+1 =
∂vn+1

∂x
− ∂un+1

∂y
(33)

We have already computed the updated values ωn+1 at the interior nodes (Step 1 in the Euler
explicit solver). The updated vorticity values on the boundary nodes are computed using the
updated velocity values and the DC PSE operators (described in Section 2.3) for spatial derivatives
(Equation (27)).

2.5. Poisson Solver

To compute the stream function field values (Equation (2)), we numerically solve a Poisson-type
equation. Depending on the flow problem and spatial discretization, a direct or iterative solver is
chosen accordingly. Iterative and direct solvers for elliptic type PDEs are well established. Direct
solvers are robust and easy to use but can be computationally costly and memory intensive when the
systems of equations to be solved are very large (e.g., a few million degrees of freedom). On the other
hand, a decisive advantage of iterative solvers is their low memory usage, which is significantly less
than a direct solver for the same sized problems. Unfortunately, iterative solvers are less robust than
direct solvers and may fail to compute the numerical solution.

It is computationally more efficient to use iterative solvers to solve the Poisson equation when
a large number of nodes is used. There are many iterative solvers for Poisson type equations. For
example, Gauss-Seidel or successive over relaxation (SOR) algorithms have been widely used. These
solvers are accurate but relatively computationally demanding because they need O (N2) iterations
to converge (N being the total number of grid points). Multi-grid algorithms have been developed
to accelerate convergence and the computational effort has been significantly reduced [40]. For
equally-spaced grids, fast Fourier transform (FFT) solvers are the fastest available algorithms for
solving Poisson equations [41].

In the present study, we use a direct solver. The discrete Laplace operator defined in the Poisson
type equation is accurately discretized using DC PSE method, which performs accurately on uniform
and locally refined Cartesian grids. The grid is fixed in time so a LU factorization can be precomputed,
which reduces the computational cost significantly. For up to 4 million nodes, the factorization is fast
and requires low memory. For larger number of nodes, we utilize iterative solvers, such as conjugate
gradient (CG) and biconjugate gradient stabilized (BiCGSTAB), since the linear systems are always
positive definite, diagonally dominant and symmetric.
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2.6. Critical Time Step

To compute the critical time step needed to obtain stable results, we rewrite Equation (1) as

ωn+1 = ωn + dt
(
∂ψn

∂x
∂ωn

∂y
− ∂ψ

n

∂y
∂ωn

∂x
+

1
Re
∇2ωn

)
(34)

which can be written in matrix form as

ωn+1 = [I + δtA]ωn (35)

where ωn+1 is a column vector of dimension N × 1 (N is the number of nodes). The N ×N matrix A is
defined as the DC PSE approximation of the convection and diffusion terms, viz.

A = K + L =
∂ψn

∂x
∂ωn

∂y
− ∂ψ

n

∂y
∂ωn

∂x
+

1
Re
∇2ωn. (36)

where
K = diag

(
Q1,0ψn

)
·Q0,1 − diag

(
Q0,1ψn

)
·Q1,0 (37)

and
L =

1
Re

(
Q2,0 + Q0,2

)
(38)

with diag
(
Q1,0ψn

)
and diag

(
Q1,0ψn

)
being diagonal matrices of dimension N ×N. The explicit method

defined by Equation (34) is stable if
|1 + δtλA| ≤ 1 (39)

where λA are the eigenvalues of the matrix A. The above stability condition requires the eigenvalues
λA to be either real or negative, leading to

δt ≤ 2
|λA| (40)

or complex with negative real parts, leading to

δt ≤ 2Re(λA)

|λA|2
(41)

When the problem discretization includes a large number of nodes, matrix A becomes very large,
and calculating the eigenvalues is not practical. The terms of matrix A are determined by the Laplacian
operator L, which consists of second order derivatives, and by the advection operator K, which includes
only first order derivatives. The relative weight of the two operators on the structure of matrix A is
dictated by discretisation and velocity field values (velocity is related to stream function and vector
potential field values); a more refined discretization leads to a higher weight of operator L (diffusion)
and lower influence of operator K (convection), while higher Reynolds number and higher velocity
field values leads to a higher influence of operator K. When the nodal discretization is not adequately
refined, the higher weight of the operator K can lead to eigenvalues with a positive real part; in such
case explicit time integration is not possible and discretization has to be refined.

For refined discretizations, the resulting matrix is diagonally dominant, having its eigenvalues
distributed close to the real axis. We can use the Gershgorin circle theorem [31] to estimate the
maximum time step using Equations (36) and (37) with an upper bound of the maximum eigenvalue
of matrix A. Given the composition of matrix A, the upper bound of the maximum eigenvalue can be
computed without assembling the matrix:
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|λA| ≤ max
i

⎛⎜⎜⎜⎜⎜⎜⎝∑
j

(∣∣∣Lij
∣∣∣+ ∣∣∣Kij

∣∣∣)⎞⎟⎟⎟⎟⎟⎟⎠ (42)

Equation (42) clearly shows that the eigenvalues of matrix A depend on the spatial derivatives of
the field variables, computed using the DC PSE method. Therefore, how derivatives are computed
reflects on the critical time step. We notice that for the same Reynolds number and the same nodal
discretization, the critical time step increases when spatial derivatives are computed using a large
number of nodes (more than 40) in the support domain of each node, compared with the critical time
step computed using a small number of nodes (around 15). In some cases, this increase in the critical
time step can be up to two orders of magnitude, which decreases the computational cost dramatically.

The reason for the increased critical time step is the upwind inherent nature of meshless methods.
Meshless methods are locally based methods and use neighboring nodes to compute spatial derivatives.
Furthermore, since matrix A involves derivatives of the stream function, by computing the critical time
step using the Gershgorin circle theorem we ensure that the computation resembles the estimation of
the critical time step based on the nodal spacing

(
∝ Δx−1

)
and the Courant−Friedrichs−Lewy (CFL)

condition
(
∝ uReΔx−1

)
. Therefore, by adjusting the number of support domain nodes, we can adjust

the critical time step to be comparable to that used by implicit time integration schemes.

3. Algorithm Verification

To demonstrate the efficiency and accuracy of the proposed numerical scheme, we first apply
our method to well-established benchmark problems in computational fluid dynamics, including
lid-driven cavity flow, the backward-facing step (BFS), and the unbounded flow past a cylinder.

For all the examples presented here, we examine the accuracy and the efficiency of the proposed
scheme for each benchmark problem. Furthermore, we examine the dependence of the critical time
step on the grid resolution, Reynolds number and nodes in the support domain. Computations were
conducted using an Intel i7 quad core processor with 16 GB RAM.

3.1. Lid-Driven Cavity

Our first example involves incompressible, non-stationary flow in a square cavity (Figure 1).
Despite its geometrical simplicity, the lid-driven cavity flow problem exhibits a complex flow regime,
mainly due to the vortices formed in the center and at the corners (bottom left and right, and upper
left) of the square domain. We impose no-slip boundary conditions at the bottom and vertical walls
(left and right wall), while the top wall slides with unit velocity (U = 1), generating the interior
viscous flow.

 
Figure 1. Geometry and boundary conditions for the lid-driven cavity flow problem.
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In most numerical studies on the lid-driven cavity flow problem, the flow regime reaches a steady
state solution for Reynolds (Re) numbers lower than Re = 10,000. In our study, we report on the results
obtained by the proposed scheme for Reynolds numbers Re = 7500 and 10,000. We consider both
uniform Cartesian and irregular nodal distributions. For uniform nodal distributions, our previous
studies [27–29,35] show that for Reynolds numbers up to Re = 10,000, a uniform Cartesian grid with
resolution of 361× 361 captures the forming vortices and provides a grid-independent and accurate
numerical solution. In the present study, to highlight the efficiency of the proposed scheme, we use
successively finer uniform Cartesian grids, from 601 × 601 to 2048× 2408 nodes. We notice that for
Re = 10,000 the 1024× 1024 grid resolution can capture all the flow scales and can be used for Direct
Numerical Simulation (DNS) studies.

We use the Gershgorin circle theorem to define the critical time step for different nodal distributions
(Tables 1 and 2) and for various Reynolds numbers. Table 1 lists the critical time step computed using
the Gershgorin circle theorem for several grid resolutions and different Reynolds numbers (up to
Re = 10,000). For the results reported in Table 1, 20 nodes were used in the support domain. We further
examine the dependence of the critical time step on the number of neighboring nodes in the support
domain. Table 2 lists the critical time step computed using the Gershgorin circle theorem with 40 nodes
in the support domain. We can observe that the critical time step increases with the number of nodes
in the support domain.

Table 1. Critical time step for various grid resolution and Reynolds (Re) numbers, using 20 nodes in
the support domain.

Grid Resolution Re = 5000 Re = 7500 Re = 10,000

601× 601 3.4× 10−3 5.1× 10−3 6.7× 10−3

1024× 1024 1.1× 10−3 1.6× 10−3 2× 10−3

2048× 2048 3.1× 10−4 4.4× 10−4 5× 10−4

Table 2. Critical time step for various grid resolution and Re numbers, using 40 nodes in the
support domain.

Grid Resolution Re = 5000 Re = 7500 Re = 10,000

601× 601 7.6× 10−3 8.2× 10−3 9.2× 10−3

1024× 1024 3.1× 10−3 3.5× 10−3 3.7× 10−3

2048× 2048 1.2× 10−3 1.3× 10−3 9.1× 10−4

Table 3 lists the computational time (in s) for computing the spatial derivatives for various grid
resolutions, and for the numerical solution of N-S equations (for each time iteration) in the case of
Re = 10,000. Recall that we precompute the LU factorization for the discrete Laplacian operator defined
for the Poisson type equation for the stream function. Hence, steps 1 and 2 must be performed only
once at the beginning of the simulation.

Table 3. Computational time (in seconds) for computing (1) spatial derivatives, (2) factorization and (3)
numerical solution for various grid resolutions.

Grid Resolution 1. Derivatives 2. Factorization 3. Solution (in s)/Iteration

601× 601 3.92 s 4.97 s 0.22 s
1024× 1024 11.10 s 21.35 s 0.67 s
2048× 2048 56.79 s 274.70 s 41.39 s

Figure 2 shows the u- velocity profiles along the vertical line passing through the geometric center
of the cavity, and the v- velocity profiles along the horizontal line passing through the geometric center
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of the cavity, for Re = 7500 and 10,000, obtained using the proposed scheme and compared to those
reported by Ghia et al. [42], which are considered as benchmark solution.

 
Figure 2. Velocity profiles along the vertical line passing through the geometric center of the cavity
for u- velocity component (left) and horizontal line passing through the geometric center of the cavity
for the v- velocity component (right) for (a) Re = 7500 and (b) Re = 10,000. The results we obtained
in this study using our methods described in section Methods Governing Equations and Solution
Procedure (indicated as “Meshless” in the velocity profiles) are compared with the results reported in
Ghia et al. [42].

Table 3 demonstrates the efficiency of the proposes scheme and its ability to solve relatively large
algebraic systems (Poisson equation for stream function) with low computational cost.

We set the Reynolds number to Re = 10,000 and the total time for the flow simulation to Tfinal = 250.
At that time, the flow regime has all the characteristic features of steady state [42]. We use a 1024× 1024
grid resolution and a time step for the simulations of dt = 5× 10−4.

Figures 3–5 show stream function and vorticity contours and demonstrate the formation of
secondary vortices (Figures 3 and 4) which appear as the Reynolds number increases. There are often
used as qualitative results, to highlight the accuracy of the numerical method. In detail, Figure 3 shows
the stream function contour plots for Re = 7500, while Figure 4 shows the stream function contour
plots for Re = 10,000. Magnified views of the secondary vortices are also included. The stream function
values for these contours are listed in Table 4.

181



Fluids 2019, 4, 164

Figure 3. Streamline contours of primary, secondary and additional corner vortices for lid-driven cavity
flow with Re = 7500.
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Figure 4. Streamline contours of primary, secondary and additional corner vortices for lid-driven cavity
flow with Re = 10,000.

Figure 5. Vorticity isocontour patterns for (a) Re = 7500 and (b) Re = 10,000.
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Table 4. Values for streamline and vorticity contours in Figures 3 and 4.

Stream Function Vorticity

Contour Level Value of ψ Contour Number Value of ψ Contour Number Value of ψ

a −1.0 × 10−10

b −1.0 × 10−7 0 1.0 × 10−8

c −1.0 × 10−5 1 1.0 × 10−7

d −1.0 × 10−4 2 1.0 × 10−6 0 0
e −0.0100 3 1.0 × 10−5 ±1 ±0.5
f −0.0300 4 5.0 × 10−5 ±2 ±1.0
g −0.0500 5 1.0 × 10−4 ±3 ±2.0
h −0.0700 6 2.5 × 10−4 ±4 ±3.0
i −0.0900 7 5.0 × 10−4 5 4.0
j −0.1000 8 1.0 × 10−3 6 5.0
k −0.1100 9 1.5 × 10−3

l −0.1150 10 3.0 × 10−3

m −0.1175

Figure 5 shows the vorticity contours for Re = 7500 and 10,000. The vorticity values for the
contours are listed in Table 4.

To verify the applicability of the proposed scheme in irregular nodal configurations, we compute
the flow regime for Re = 10,000 using randomly distributed nodes. We use 496,987 nodes to discretize
the spatial domain, which provides a grid-independent numerical solution (for the uniform Cartesian
grid, a grid independent solution was obtained using a 401× 401 grid resolution with 160,801 nodes).
We obtain the irregular point cloud through a 2D triangular mesh generator (MESH2D-Delaunay-based
unstructured mesh-generation). To compare the results with those obtained using the uniform nodal
distribution (regular Cartesian grid), we interpolate the velocity, stream function and vorticity values
computed using the irregular point cloud onto the uniform nodal distribution using the moving least
squares (MLS) approximation method [43] and compute the maximum normalized root mean square
error (NRMSE), defined as [44],

NRMSE =

√
1
N

∑N
i = 1

(
uCartesian

i − uIrregular
i

)2

uIrregular
max − uIrregular

min

(43)

For all field variables considered, the NRMSE was less than 10−4, which highlights the accuracy
of the proposed method for irregular nodal distributions.

We further demonstrate the accuracy of the proposed scheme, providing quantitative results. We
use a uniform Cartesian grid of 1024× 1024 resolution and we set the time step to dt = 5× 10−4. In
Table 5, we present the strengths and positions of the primary (located in the center of the cavity),
secondary (bottom right corner) and ternary vortexes (bottom and top left corners). The numerical
results are in excellent agreement with the results reported in Ghia et al. [42]. Table 6 lists the u-
velocity values along vertical line through the center of cavity, and Table 7 the v- velocity values along
horizontal line through the center of cavity.
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Table 6. u- velocity along vertical line through the center of cavity.

Re = 7500 Re = 10,000

y Ghia [42] Present Ghia [42] Present

1.00000 1.00000 1.00000 1.00000 1.00000
0.9766 0.47244 0.46956 0.47221 0.47244
0.9688 0.47048 0.46818 0.47783 0.47797
0.9609 0.47323 0.47186 0.48070 0.48034
0.9531 0.47167 0.47184 0.47804 0.47814
0.8516 0.34228 0.3381 0.34635 0.34685
0.7344 0.20591 0.19527 0.20673 0.20665
0.6172 0.08342 0.08142 0.08344 0.08332
0.5000 −0.03800 −0.03798 0.03111 0.03154
0.4531 −0.07503 −0.07245 −0.07540 −0.07534
0.2813 −0.23176 −0.23905 −0.23186 −0.23136
0.1719 −0.32393 −0.31801 −0.32709 −0.32729
0.1016 −0.38324 −0.38291 −0.38000 −0.38012
0.0703 −0.43025 −0.42988 −0.41657 −0.41648
0.0625 −0.4359 −0.43050 −0.42537 −0.42587
0.0547 −0.43154 −0.42935 −0.42735 −0.42775
0.0000 0.0000 0.0000 0.0000 0.0000

Table 7. v- velocity along horizontal line through the center of cavity.

Re = 7500 Re = 10,000

x Ghia [42] Present Ghia [42] Present

1.00000 0.00000 0.00000 0.00000 0.00000
0.9688 −0.53858 −0.53889 −0.54302 −0.54367
0.9609 −0.55216 −0.55258 −0.52487 −0.52432
0.9531 −0.52347 −0.52363 −0.49099 −0.49056
0.9453 −0.4859 −0.48576 −0.45863 −0.45834
0.9063 −0.41050 −0.41082 −0.41496 −0.41439
0.8594 −0.36213 −0.36257 −0.36737 −0.36756
0.8047 −0.30448 −0.30432 −0.30719 −0.30739
0.5000 0.00824 0.00851 0.00831 0.00845
0.2344 0.27348 0.27378 0.27224 0.27267
0.2266 0.28117 0.28135 0.28003 0.28056
0.1563 0.3506 0.35082 0.35070 0.35078
0.0938 0.41824 0.41867 0.41487 0.41463
0.0781 0.43564 0.43591 0.43124 0.43165
0.0703 0.4403 0.44059 0.43733 0.43745
0.0625 0.43979 0.43962 0.43983 0.43953
0.0000 0.00000 0.00000 0.00000 0.00000

3.2. Backward-Facing Step

The second benchmark problem considered is the backward-facing step [45]. This problem has
been studied by several researchers using different numerical methods and is considered to be a
demanding flow problem to solve, mainly due to the flow separation that occurs when the fluid passes
over a sharp corner and re-attaches downstream [1,45,46].

Figure 6 shows the spatial domain for the backward facing step. The coordinate system is
centered at the step corner, with the x-coordinate being positive in the downstream direction, and the y-
coordinate across the flow channel. The height H of the channel is set to H = 1 (ranging from (0, −0.5)
to (0, 0.5)), while the step height and upstream inlet region are set to H/2. To ensure fully developed
flow, the downstream channel length L is set to L = 30 H. The inlet velocity has a parabolic profile, with
horizontal component u(y) = 12y − 24y2 for 0 ≤ y ≤ 0.5, which gives a maximum inflow velocity of
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umax = 1.5 and average velocity of uavg = 1. At the outlet, we assume fully developed flow (du/dx = 0,
v = 0). The Reynolds number is defined as Re = uavgH/vf, with vf being the kinematic viscosity.

Figure 6. Geometry for the backward-facing step flow problem.

We first discretize the flow domain with a uniform Cartesian grid. In our previous studies [29,35],
we have shown that grid with resolution 31× 901 is sufficient to compute a grid-independent numerical
solution for Reynolds numbers up to Re = 800. As in the previous section, to highlight the efficiency of
our scheme, we use a denser grid with resolution 121× 3630, resulting in 439,230 nodes. We set the
total time Ttotal = 250 (to ensure that the solution will reach steady state), and the time step dt = 10−4.
The simulation terminates when the NRMSE of the time derivative of the stream function and vorticity
field values in two successive time steps is less than 10−6. The time needed to create the grid was 0.023
s, and it takes 0.3 s to update the solution for each time step. We obtained a steady state solution after
100,000 time steps.

Figure 7 shows the stream function and vorticity contours for Re = 800. The flow separates at
the step corner and vortices are formed downstream. We can observe the two vortices formed at the
lower and upper wall. After reattachment of the upper wall eddy, the flow in the duct slowly recovers
towards a fully developed flow. We compute the separation and reattachment points at Llower ≈ 6.1
for the lower wall separation zone, Lupper ≈ 5.11 for the upper separation zone, where the separation
begins at x ≈ 5.19. Our numerical findings show good agreement with other numerical methods for
2D computations [1,46]. In [1], the authors used a finite difference method and predicted separation
lengths of Llower ≈ 6.0 and Lupper ≈ 5.75, while [46] using the A Fluid Dynamics Analysis Program
(FIDAP) code (Fluid dynamics International Inc., Evanston, IL, USA) predicted Llower ≈ 5.8 and the
upper Lupper ≈ 4.7.

 
Figure 7. Contour plots of the (a) stream function and (b) vorticity for Re = 800 for the backward-facing
step flow problem using the stream function and vorticity values reported in Gartling [45].
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Figure 8 shows the comparisons of the u- and v- velocity components and vorticity values, between
the present scheme and those obtained using the finite element method (FEM) [45], along the line x = 7
and x = 15 for Re = 800. Additionally, we computed the shear stress, defined as ∂u

∂y on the lower and
upper wall, for increasingly refined nodal resolution. Figure 9a shows plots of the shear stress for the
upper and lower wall, while Figure 9b displays the convergence of the upper wall shear stress when
successively denser point clouds are used. We can see that shear stress converges and is accurate when
compared to results of [45]. The accurate computation of spatial derivatives is a particular advantage
of the strong form meshless method. In contrast, convergence of many finite element methods can be
obtained only in terms of integral norms, and the point-wise convergence for the velocity gradient
cannot be guaranteed even in the case of a smooth numerical solution [47].

 

Figure 8. (a) Horizontal and (b) vertical velocity profiles, and (c) vorticity profiles at x = 7 and x = 15
for the backward-facing step flow problem with Re = 800.

 
Figure 9. (a) Shear stress for the upper and lower wall for Re = 800 for the backward-facing step flow
problem (b) convergence of the upper wall shear stress with successively denser point clouds (40, 80
and 120 correspond to the number of nodes in the y-direction).

Tables 8 and 9 list the velocity and vorticity field values at the at x = 7 and x = 15, respectively, for
Re = 800.
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Table 8. Cross-sectional profile at x = 7.

y u v
(
×10−2

)
ω

Gartling [45] Present Gartling [45] Present Gartling [45] Present

0.50 0.000 0.000 0.000 0.000 −1.034 −1.033
0.45 −0.038 −0.038 −0.027 −0.027 −0.493 −0.491
0.40 −0.049 −0.049 −0.086 −0.085 0.061 0.065
0.35 −0.032 −0.031 −0.147 −0.144 0.635 0.641
0.30 0.015 0.016 −0.193 −0.186 1.237 1.245
0.25 0.092 0.093 −0.225 −0.213 1.888 1.894
0.20 0.204 0.205 −0.268 0.249 2.588 2.585
0.15 0.349 0.349 −0.362 −0.333 3.267 3.246
0.10 0.522 0.523 −0.544 −0.502 3.751 3.709
0.05 0.709 0.709 −0.823 −0.767 3.821 3.767
0.00 0.885 0.885 −1.165 −1.095 3.345 3.295
−0.05 1.024 1.024 −1.507 −1.425 2.362 2.328
−0.10 1.105 1.104 −1.778 −1.691 1.046 1.034
−0.15 1.118 1.117 −1.925 −1.838 −0.374 −0.367
−0.20 1.062 1.061 −1.917 −1.836 −1.684 −1.661
−0.25 0.948 0.947 −1.748 −1.678 −2.719 −2.687
−0.30 0.792 0.792 −1.423 −1.378 −3.392 −3.355
−0.35 0.613 0.613 −1.000 −0.960 −3.658 −3.636
−0.4 0.428 0.427 −0.504 −0.482 −3.687 −3.719
−0.45 0.232 0.232 −0.118 −0.113 −4.132 −4.177
−0.50 0.000 0.000 0.000 0.000 −5.140 −5.146

Table 9. Cross-sectional profile at x = 15.

y u v
(
×10−2

)
ω

Gartling [45] Present Gartling [45] Present Gartling [45] Present

0.50 0.000 0.000 0.000 0.000 2.027 2.033
0.45 0.101 0.101 0.021 0.021 2.013 2.018
0.40 0.202 0.202 0.072 0.072 2.023 2.027
0.35 0.304 0.304 0.140 0.139 2.058 2.058
0.30 0.408 0.408 0.207 0.206 2.090 2.085
0.25 0.512 0.512 0.260 0.259 2.075 2.063
0.20 0.613 0.613 0.288 0.286 1.959 1.943
0.15 0.704 0.704 0.283 0.281 1.703 1.687
0.10 0.779 0.779 0.245 0.243 1.298 1.283
0.05 0.831 0.831 0.180 0.177 0.761 0.751
0.00 0.853 0.853 0.095 0.093 0.141 0.137
−0.05 0.844 0.844 0.003 0.002 −0.500 −0.447
−0.10 0.804 0.804 −0.081 −0.081 −1.096 −1.086
−0.15 0.737 0.737 −0.147 −0.147 −1.588 −1.574
−0.20 0.649 0.649 −0.185 −0.185 −1.939 −1.923
−0.25 0.547 0.547 −0.191 −0.191 −2.139 −2.125
−0.30 0.438 0.438 −0.166 −0.166 −2.213 −2.203
−0.35 0.328 0.328 −0.119 −0.119 −2.210 −2.206
−0.40 0.218 0.218 −0.065 −0.065 −2.184 −2.185
−0.45 0.109 0.109 −0.019 −0.019 −2.174 2.177
−0.50 0.000 0.000 0.000 0.000 −2.185 −2.189

3.3. Unbounded Flow Past a Cylinder

We examine the case of external flow past a circular cylinder in an unbounded domain [48].
The flow domain is large compared to the dimensions of the cylinder, as shown in Figure 10. The
cylinder cross-section has a radius Rc = 0.5 and is located at the origin O (0,0) of a square domain with
dimensions −10 ≤ x ≤ 30 and −20 ≤ y ≤ 20.

The uniform flow is not perturbed near the inlet, which is far from the body. Therefore, we assume
that the inflow velocity uinlet behaves like the potential flow upotential given as:
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upotential =

⎛⎜⎜⎜⎜⎝U∞
⎛⎜⎜⎜⎜⎝1− R2

c

x2 + y2 +
2R2

c y2

(x2 + y2)2

⎞⎟⎟⎟⎟⎠, U∞
−2R2

c xy

(x2 + y2)2

⎞⎟⎟⎟⎟⎠ (44)

or in terms of the stream function:

ψpotential = U∞y
(
1− R2

c

x2 + y2

)
(45)

 

Figure 10. Geometry and boundary conditions for flow past a cylinder.

The boundary conditions for the stream function ψ and vorticity ω on the remaining boundaries
(the top and bottom wall, outlet and cylinder surface) are:

• At the inlet, top and bottom walls (B = inlet, top and bottom)

uB = upotential
∣∣∣
B

ψB = ψpotential
⌉

B

• At the outlet
∂ψ

∂x
= 0

∂ω
∂x

= 0

• On the cylindrical surface
ψcylinder = 0

ucylinder = 0

We represent the flow domain with a uniform Cartesian embedded grid, locally refined in the
vicinity of the cylinder (Figure 11a). We use 402,068 nodes (0.5 s to create the nodal distribution) and
we set Reynolds number to Re = 40. We use a time step of dt = 10−4 for the entire flow simulation.
It takes 0.3 s to update the solution for each time step, and we obtained a steady state solution after
20,000 time steps. The spatial derivatives (up to 2nd order) are computed in 4.24 s using a C++ code.
Additionally, we solve the flow problem using an irregular nodal distribution with 221,211 nodes,
locally refined in the vicinity of the cylinder.
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Figure 11. (a) Locally refined Cartesian and (b) irregular nodal configurations for the flow past cylinder
flow problem.

We compute the following flow parameters: the pressure coefficient (Cp) on the body surface, the
length (L) of the wake behind the body, the separation angle (θs), and the drag coefficient (CD) of the
body. The drag and lift coefficient of the body are given by:

CD =
2Fb·êx

U2∞D
(46)

CL =
2Fb·êy

U2∞D
(47)

where D is the characteristic length of the body, êx and êy are the unit normal vector in x- and y-
direction, respectively, and Fb is the total drag force acting on the body. The total drag force is given as:

Fb = Fp + F f (48)

where Fp, the pressure drag, can be determined from the flux of vorticity on the surface of the cylinder
as:

Fp = −RC

∫ 2π

0
v f
∂ω
∂r

êθdθ (49)

The friction drag F f may be computed from the vorticity on the surface of the body as:

F f = RC

∫ 2π

0
v fωêθdθ (50)

with êθ = − sinθi + cosθj.Table 5 lists the recirculation length (Lrec) of the wake behind the body, the
separation angle (θs), and the drag coefficient (CD) for Re = 40.

The numerical findings obtained by the proposed scheme are listed in Table 10, and are in good
agreement with those in the literature [48–51]. The stream function and vorticity contours around the
cylinder are illustrated in Figure 12 (as in [48]).

Table 10. Comparison of the wake length (Lsep), the separation angle (θsep), and the drag coefficient
(CD) for Reynolds number Re = 40.

Re Reference Lsep θsep CD

40

Dennis and Chang [49] 2.345 53.8 1.522
Fornberg [50] 2.24 N/A 1.498

Ding et al. [51] 2.20 53.5 1.713
Kim et al. [48] 2.187 55.1 1.640

Present 2.30 53 1.542
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Figure 12. (a) Stream function and (b) vorticity contours around the body for flow behind a cylinder
using a Cartesian embedded nodal distribution.

4. Numerical Results

In this section, we examine the applicability and reproducibility of the proposed scheme for
several flow cases involving complex geometries.

4.1. Vortex Shedding Behind Cylinders

In the previous example (unbounded flow past a cylinder), we considered the flow past a cylinder
in an unbounded domain. In this example, we study the vortex shedding behind a cylinder in a
rectangular duct [52] (internal flow), as shown in Figure 13. The duct has length L = 2.2 m and height
H = 0.41 m, while the cylinder is located at point O (0.2, 0.2) and has diameter D = 0.1 m. The kinematic
viscosity of the fluid is set to vf = 0.001 m2/s. The Reynolds number is defined as Re = UmD/vf, with the
mean velocity Um given as Um(x,y,t) = 2U(0,H/2,t)/3. The inflow velocity (x- direction component) is
set to U(0, y) = 4Umy

(H−y
H2

)
, and for Um = 1.5 m/s yields a Reynolds number Re = 100. At the outlet,

we consider fully developed flow (du/dx = 0), while at the remaining boundaries we apply no-slip
boundary conditions. The total time for the simulation was set to Ttot = 8 s. The critical time step is
computed and monitored for each time step (the calculation involves stream function and vorticity
values) to ensure that CFL conditions are fulfilled.

Figure 13. Spatial domain for flow behind a cylinder.

First, we consider a uniform Cartesian embedded grid with grid spacing h, defined by the average
distance of the boundary nodes on the cylinder circumference. We conducted a grid independence
analysis, applying successively refined Cartesian grids, starting from 34,999 (90 nodes on the circular
boundary) up to 406,678 (720 nodes on the circular boundary) nodes.

The time needed to create the grid of 406,678 nodes is 0.8 s. We delete the nodes located close
to the boundary (with distance less than 0.25 h), since they would increase the condition number of
the Vandermonde matrix. A Vandermonde matrix with too large condition number would affect the
accuracy of the spatial derivative computation and consequently the overall precision of the numerical
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simulation. A grid independent solution is obtained with 203,890 nodes (360 nodes on the circular
boundary). The critical time step computed for this grid resolution is δtcritical = 2 × 10−3. In the
simulations, we set the time step to dt = 10−3 s. For each time step, it takes 0.38 s to update the solution.

Figure 14a shows the stream function contours at time instances t = 2, 4 and 8 s, while Figure 14b

plots the vorticity isocontours. Figure 15 plots the drag CD =
2Fb·êx
U2

mD
and lift CL =

2Fb·êy

U2
mD

coefficients,
computed with our meshless explicit scheme (as in the previous example). To highlight the applicability
of our code for locally refined nodal distributions, we use a uniform Cartesian embedded grid, locally
refined in the vicinity of the cylinder. As before, the average distance of the cylinder nodes dictates the
nodal spacing hd of the Cartesian grid in the refined part of the domain. Nodes of the coarse grid have
spacing hc = 2h, and nodes located close to the cylinder (with distance less than 0.25 hd) are deleted
since they affect the condition number of the Vandermonde matrix and decrease the accuracy of the
numerical results. The flow domain is represented by 321,897 nodes, which ensure a grid independent
solution. For the simulations, we set the time step to dt = 10−3 s.

 
Figure 14. (a) Stream function and (b) vorticity contours for flow around a cylinder at time t = 2, 4 and 8 s.
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Figure 15. (a) Drag and (b) lift coefficient in time computed by the proposed scheme.

Additionally, to highlight the versatility of the proposed scheme, we examined the flow in the
rectangular duct with multiple (seven in total) cylindrical obstacles. The length of the duct was
increased to L = 4.4 m in order to ensure fully developed flow at the outlet. The boundary conditions
applied are the same as before. We use Cartesian embedded and irregular nodal distributions (Figure 16)
to represent the flow domain.

 

Figure 16. (a) Cartesian embedded and (b) irregular nodal distributions used in duct flow problems
considering multiple cylindrical obstacles.

We conducted a comprehensive analysis in order to obtain a grid independent numerical solution.
For the Cartesian grid we use 279,178 nodes (0.42 s to create the nodal distribution), while for the
irregular point cloud we use 353,617 nodes (1.2 s to create the irregular nodal distribution). Both nodal
distributions provided a grid independent numerical solution. The total time was set to Ttot = 8 s, the
time step was set to dt = 10−4 s. For each time step, the time needed to update the solution was 0.32 s.
Figure 17 displays the stream function and vorticity contours for Re = 100 at time t = 1 and t = 2 s.

We further demonstrate the accuracy of the proposed scheme, by comparing our results with those
computed using the finite element method (FEM). Flow equations were solved using the Incremental
Pressure Correction Scheme (IPCS), which is an operator splitting method [53]. For the meshless
solver, we use 353,617 nodes, generated using a triangular mesh generator, and we set the time step to
dt = 10−3 s. For the finite element model, we solve the flow equations using the generated mesh and
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FEniCS (https://fenicsproject.org). We compute the Normalized Root Mean Square Error (NRMSE),
as defined in Equation (43), for both velocity components (ux, uy), considering as gold standard the
velocity field values calculated using FEniCS. Figure 18 shows the NRMSE for the velocity components
for the time interval between t = 0 and t = 1 s.

 

Figure 17. (a) Stream function and (b) vorticity contours for flow behind multiple cylinders at time
t = 1 and t = 2 s.

 
Figure 18. Normalized Root Mean Square Error (NRMSE) for the velocity components between the
proposed scheme and the finite element solution.

4.2. Flow in a Duct with Irregular Geometry

Finally, we consider two flow cases in the flow domains shown in Figure 19. The first one has
an irregularly shaped obstacle downstream, while in the second the flow domain is split into two
branches, forming a bifurcation.
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Figure 19. Geometry for the flow in the (a) bypass and (b) bifurcation domain.

The length L is set to L = 0.12 and 0.041 m for the first (Figure 19a) and second (Figure 19b) flow
domain, respectively. In both test cases, the height of the duct is set to H = 0.0041 m.

The dynamic viscosity is defined as μ= 0.00032 kg/m s, and the fluid density is ρ= 1050 kg/m3. The
inflow condition Uinlet = 4Umy

(H−y
H2

)
, with Um = 0.035 m/s. The Reynolds number Re = ρUmH/μ,

with D being a characteristic length defined separately for each case. At the outlet, the flow is fully
developed (du/dx = 0). For the remaining boundaries we applied no-slip conditions. In both cases, we
represent the flow domain with uniform Cartesian embedded grid, and irregular nodal distribution
(Figure 20).

 
Figure 20. (a) Cartesian embedded and (b) irregular nodal distribution for the complex flow geometries.

First, we represent the flow domain with a uniform Cartesian embedded grid. For the irregularly
shaped obstacle (bypass), we consider successively denser nodal distributions to obtain a grid
independent numerical solution. We start with a grid spacing of h = 1/8200, h = 1/12,300 and
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h = 1/16,400 for the coarse, moderate and dense Cartesian embedded grids, resulting in 51,468, 114,387
and 201,468 nodes, respectively (for the denser grid (201,468 nodes) it takes 0.25 s to create the nodal
distribution). The total time for the simulation was set to Ttot = 30 s and the time step used was
dt = 10–4 s (for each time step the solution is computed in 0.35 s). Figure 21 shows the iso-contours for
the stream function and vorticity field functions, at different time instances: t = 0.5 and t = 1 s, and
for steady state (steady state is reached when, for two successive time instances tn+1 and tn for both
vorticity and stream function field values, NRMSE/dt < 10−8).

 

Figure 21. Stream function and vorticity contours for the bypass test case at (a) t = 0.5 s and (b) t = 1 s
and (c) steady state.

We observe that two vortices are formed; the first is located at the inlet of the bypass, the second
at the upper domain of the bypass which is moving towards the outlet of the flow domain. Figure 22a
plots the u- velocity profile, computed at x = 0.07 m and x = 0.08 m at time t = 3 s for the coarse,
moderate and dense nodal distributions, while Figure 22b plots the u- velocity profile, computed at
x = 0.07 m and x = 0.08 m at time t = 3 s for the denser grid used.

Additionally, to highlight the applicability of the method to irregular nodal distributions, we
solved the flow equations by representing the flow domain with nodes generated by a 2D triangular
mesh generator (we use only the coordinates and not their connectivity). We used 392,122 nodes,
which is higher than the number of nodes used in the Cartesian embedded grid. The numerical
results obtained were compared against those obtained by the Cartesian grid and they were in
excellent agreement.
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(a) (b) 

Figure 22. (a) u-velocity profiles at x = 0.07 at time t = 3 s for the coarse, moderate and dense nodal
distributions for Re = 474 (Um = 0.035 m/s) and (b) u-velocity profiles at x = 0.07 and 0.08 for flow in the
bypass geometry.

For the bifurcated geometry, we use both uniform Cartesian and irregular nodal distributions.
In the case of Cartesian embedded grid, we obtain a grid independent numerical solution by using
successively denser nodal distributions, with the denser one consisting of 678,967 nodes (for the
fine grid it takes 0.68 s to create the nodal distribution). The total time for the simulation was set to
Ttot = 30 s and the time step used is dt = 10−4 s, which is smaller than the critical time that ensures
stability for the explicit solver (the solution in each time step is computed in 0.52 s). The inflow velocity
Uinlet = 4Umy

(H−y
H2

)
, with Um = 0.015 m/s results in Reynolds number Re = 212. Figure 23 shows

the iso-contours for the stream function and vorticity field functions, at time t = 0.5 and t = 1 s and
for steady state (steady state is reached when, for two successive time instances tn+1 and tn for both
vorticity and stream function field values, NRMSE/dt < 10−8).

 

Figure 23. (a) Stream function and (b) vorticity contours for the bifurcation test case.

To further demonstrate the accuracy of the proposed scheme, we compare our numerical
findings for both flow cases (bypass and bifurcation geometry) with those obtained using the finite
element method. The flow domain is discretized using 392,122 and 678,967 nodes, respectively, and
Taylor-Hood elements (as in the vortex shedding behind cylinders example). We use the IPCS flow
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solver to numerically solve the flow equations. We compare both numerical solutions, computing the
NRMSE for the two velocity components (ux and uy) on the vertices of the triangular elements (the
same nodes are used in the meshless point collocation flow solver). Figure 24 shows the NRMSE for
the velocity components (bypass and bifurcation flow examples) for the time interval between t = 0
and t = 1 s.

  
(a) (b) 

Figure 24. Normalized Root Mean Square Error (NRMSE) for the velocity components between the
proposed scheme and the finite element solution for (a) bypass and (b) bifurcation flow cases.

5. Conclusions

In this contribution, we described a meshless point collocation algorithm for solving the stream
function-vorticity formulation of N-S equations. We demonstrated our algorithm to work well in
complex geometries like the ones shown in Section 4.1 (Vortex Shedding Behind Cylinders) and 4.2
(Flow in a Duct with Irregular Geometry). We demonstrate the accuracy of the proposed scheme by
comparing our numerical results with those computed using the finite element method. An important
advantage of our method is the ease and speed with which one can construct computational grids for
flow domains with irregular shapes.

The meshless scheme based on DC PSE methods to compute spatial derivatives can be used in the
case of Cartesian and Cartesian-embedded grids. The method works both efficiently and accurately
for uniform Cartesian (embedded) grids and for irregular point clouds. We verified the accuracy
of the proposed scheme through the following three benchmark problems: lid-driven cavity flow,
backward-facing step and unbounded flow past a cylinder. The results were in good agreement with
other published numerical studies.

Our proposed scheme offers several advantages over other commonly used methods:

• Rapid and easy generation of computational grids, as demonstrated by examples of the flow
in vortex shedding behind cylinders and flow in a duct with irregular geometry in Sections 4.1
and 4.2, respectively.

• High accuracy, as demonstrated in verification examples discussed in Section 3.
• Computational efficiency, as demonstrated by time per iteration (Table 3) and total simulation

time given for all examples in this paper. Our approach makes Direct Numerical Simulations
(DNS) [54] possible (see lid driven cavity example with 1024 × 1024 grid resolution), even on
personal computers.

• Critical time step is easily computed with low computational cost.
• Long critical time steps, comparable to those used in implicit schemes. The critical time step is

related to the number of nodes located in the support domain and increases as the number of
nodes increases (see Tables 1 and 2).

• The imposition of Dirichlet boundary conditions is straightforward.
• Easy and straightforward way to impose vorticity boundary conditions using spatial derivatives

computed using the DC PSE method (Equation (33))
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• Fast and accurate solution of the Poisson solver for the stream function equation (Equation (2)). The
solution time/iteration (Table 3) is shorter compared to the solution time of other well-established
numerical methods (see Figure 1 in [54]).

• Simplicity: we use a MATLAB code of ca. 150 lines to solve flow equations, and a C++ code of ca.
140 lines to compute spatial derivatives.
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Abstract: The aim of this work is to propose a new wall model for separated flows which is combined
with large eddy simulation (LES) of the flow field in the whole domain. The model is designed to
give reasonably good results for engineering applications where the grid resolution is generally coarse.
Since in practical applications a geometry can share body fitted and immersed boundaries, two different
methodologies are introduced, one for body fitted grids, and one designed for immersed boundaries.
The starting point of the models is the well known equilibrium stress model. The model for body fitted
grid uses the dynamic evaluation of the von Kármán constant κ of Cabot and Moin (Flow, Turbulence
and Combustion, 2000, 63, pp. 269–291) in a new fashion to modify the computation of shear velocity
which is needed for evaluation of the wall shear stress and the near-wall velocity gradients based on
the law of the wall to obtain strain rate tensors. The wall layer model for immersed boundaries is an
extension of the work of Roman et al. (Physics of Fluids, 2009, 21, p. 101701) and uses a criteria based
on the sign of the pressure gradient, instead of one based on the friction velocity at the projection point,
to construct the velocity under an adverse pressure gradient and where the near-wall computational
node is in the log region, in order to capture flow separation. The performance of the models is tested
over two well-studied geometries, the isolated two-dimensional hill and the periodic two-dimensional
hill, respectively. Sensitivity analysis of the models is also performed. Overall, the models are able to
predict the first and second order statistics in a reasonable way, including the position and extension of
the downward separation region.

Keywords: wall layer model; LES; separated flow; body fitted; immersed boundary

1. Introduction

Wall bounded turbulent flows, especially at high Reynolds numbers, require a high resolution near
the wall, because of the need to solve the thin viscous sub-layer [1–3]. In LES, this resolution is comparable
with that required by direct numerical simulation (DNS). As far as Reynolds number increases, the cost
of a wall-resolving LES augments with Re2.5 (for a discussion, see Piomelli and Balaras [1]). Moreover,
for applications where wall roughness is the rule rather than the exception, it is not feasible to describe the
wall boundary in a deterministic sense.

The most practical way of simulating a wall-bounded, high Reynolds number flow, is to consider
coarse grid, and model the wall shear stress with a wall function. This function is designed to mimic
the stress induced by the wall, produced by the adherence condition and ruled by the turbulent field.
Several wall layer models have been developed in the past (for a discussion, see Piomelli and Balaras [1]
and Piomelli [2]). They are designed to work under certain conditions, and in particular they may suffer
in the presence of massive separation. This subject is still challenging for improvement.

Fluids 2019, 4, 197; doi:10.3390/fluids4040197 www.mdpi.com/journal/fluids
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In equilibrium stress models, the grid is generated in such a way that the first near-wall computational
node is placed in the log region of the boundary layer. So, based on the law of the wall, the instantaneous
or mean horizontal velocity can be fitted to determine the wall stress. These models are valid only under
the equilibrium assumption and work for both smooth and rough walls.

Deardorff [4] and Schumann [5] first used the concept of wall layer modeling in conjunction with
LES. Applying LES on plane channel flow and annuli at large Reynolds numbers, they assumed the
existence of an equilibrium-stress layer near the wall and used the outer flow velocity to calculate the wall
stress based on the logarithmic law.

Deardorff [4] considered a second order velocity derivative in vertical direction and forced plane
averaged stream-wise and spanwise velocity gradients to follow logarithmic law. Schumann [5] obtained
the plane averaged wall shear stress from plane averaged velocity at the first grid point, using the iterative
method so that the shear velocity is computed from the law of the wall from the averaged velocity. These
methods are the least expensive wall layer models. They also provide roughness corrections easily from
the logarithmic law modification, which is an important feature in environmental and oceanographic
flows. The models suffer in cases of marginal separation, or strong pressure gradient [2].

In zonal approaches (two-layer models, TLMs), stress derives from the solution of a separate set of
equations on a finer mesh close to the wall. This model was proposed by Balaras and Benocci [6] who
applied turbulent boundary layer equations inside the boundary layer (inner layer) and LES on the outer
region. In this model, a finer grid is considered between the wall and the first computational node of the
coarser grid. A uniform pressure field is applied from LES for the inner layer, and velocity field from LES is
considered at the edge of the Reynolds Averaged Navier-Stokes (RANS) region as its boundary condition.
The coupling between the inner and outer regions of the boundary layer is weak, and these models have
problems when a perturbation extends from the wall to the outer layer. Balaras and Benocci [6] used an
algebraic eddy viscosity to parametrize the near-wall region. In addition to plane channel flow, this method
was tested on square ducts and also rotating channel, the cases in which equilibrium stress model was not
valid or even failed; this method showed a good accuracy in simulating these flows. These methods, able
to simulate equilibrium as well as non-equilibrium flows were not designed to deal with separated flows.

Cabot [7] applied this approach to simulate flow over a backward-facing step with only 10% grid
points fewer than those used in former wall-resolved LES. He found that stream-wise pressure gradient
has an important effect in boundary layers of TLMs. In this case, mean velocity and skin friction coefficient
were predicted well; however, the backward-facing step is just a simple case where separation is induced
by the sharp discontinuity in the streamlines.

Cabot and Moin [8] used the wall layer model in conjunction with LES to simulate the flow over a
backward-facing step. They considered a zonal approach using thin boundary layer equations (TBLEs)
in the inner layer and LES (dynamic SGS model) in the outer region. This way, they were able to use
eight uniform cells from the bottom of the wall up to half the height of the step, greatly reducing the total
number of cells with respect to a stretched-grid case previously used for the wall-resolved LES.

Finally, in hybrid methods, a single grid is used and the turbulence models are different in inner and
outer layers. Detached eddy simulation (DES) is a hybrid approach proposed by Spalart et al. [9] as a
method to compute massive separation. According to DES, a stretched grid is used close to the wall to
resolve the boundary layer. RANS is applied in the inner and LES in the outer region.

Since there is no zonal interface between the inner and the outer layer, velocity profile is smooth
everywhere. Some weaknesses of this method are logarithmic layer mismatch between the two regions
and high grid resolution dependency near the wall. In addition, time and length scales of the eddies in the
inner layer (modelled by unsteady RANS equations with the Spalart-Allmaras 1-equation turbulent model)
are much larger than those computed in the outer region by LES; this leads to much lower resolved stress
by LES than the modelled stress (by RANS) at the RANS/LES interface and even farther Piomelli [2].
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A review of DES and the two modifications of it, which are delayed detached eddy simulation (DDES) and
improved delayed detached eddy simulation (IDDES), can be seen in Mockett et al. [10].

The total shear stress in plane channel flow only depends on the distance from the wall, therefore a
reduction of eddy viscosity farther than the RANS/LES interface affects the velocity profile and generates a
high gradient at the transition into LES region. This phenomenon is called the DES buffer layer. To eliminate
this, Keating and Piomelli [11] added stochastic force in the interface region to accelerate resolved eddy
generation, thus obtaining better results. Temmerman et al. [12] also computed the constant required to
calculate eddy viscosity in the RANS region in such a way to equate the eddy viscosity of RANS and LES
at the interface of their hybrid RANS/LES application.

While the hybrid RANS/LES methods work satisfactorily in flows with instabilities such as those
with adverse pressure gradient and concave curvature, they are weak in attached flows, and, in general, in
flows with a low level of instability; in these cases a false merging region may appear at the RANS/LES
interface. Since the grid near the wall must be resolved, they are the most expensive ones in the wide
family of wall layer models. In addition to the three main wall layer frameworks herein discussed, there
are other models which are not mentioned here.

The near-wall modelisation must be implemented in the algorithms that solve the governing equations
using different strategies. A body fitted (also called boundary fitted) case is the case in which a grid is
generated to follow the geometry. Since the grid boundaries coincide with the solid surface of a solid body,
boundary conditions are imposed on certain grid nodes or cell faces. This facilitates the computation of all
the vectorial quantities as well as of their gradients.

In complex geometry, where a structured grid can hardly follow the boundary complexities,
alternative approaches must be employed. Among others, the immersed boundary method (IBM) has
proved to be simple, effective and accurate (Mittal and Iaccarino [13]). The domain grid can be either
Cartesian or curvilinear. In this approach the cells are cut by the solid surface and the cell boundaries
in the general cases do not coincide with the solid boundaries. Hence the fluxes at the solid surfaces are
difficult to define. Finally, the velocities in near-wall computational nodes are reconstructed and thus
a local frame of reference must be introduced at each near-wall node to identify directions normal and
tangential to the immersed boundary.

A number of papers have been published discussing different implementations of immersed boundary
methods (see Mittal and Iaccarino [13]). Among others, Roman et al. [14] extended IBM to the general
case of curvilinear coordinates, and simulated both steady and unsteady flows in complex geometric
configurations showing the flexibility of this methodology when compared to the Cartesian counterpart.
However, few papers have dealt with the development of wall layer models in conjunction with immersed
boundaries. This is a matter of great importance when flows at a high Reynolds number over complex
geometry must be simulated.

Tessicini et al. [15] applied wall layer model LES in the presence of immersed boundaries to simulate
the flow past a 25◦, asymmetric trailing edge of a model hydrofoil. The Reynolds number, based on free
stream velocity and the hydrofoil chord (C), was chosen equal to ReC = 2.15 × 106. They used turbulent
boundary layer equations for modelling the wall layer. In general, their results were good, although they
had a deviation at the second off-the-wall node, which was considered as the outer boundary for the wall
model. This discrepancy was sensitive to the distance of the second node from the wall, and was more
evident where the distance was larger.

Posa and Balaras [16] proposed a new near-wall reconstruction model to account for the lack of
resolution and provided correct wall shear stress and hydrodynamic forces. They used a zonal approach
(TLM), boundary layer equations with a finer grid in the near-wall region (called in this case the full
boundary layer FBL) and LES in the outer region. They validated their model to simulate flow around a
cylinder and a sphere.
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Then, they considered a coarser grid, and set one node inside the boundary layer and neglected the
advective term in boundary layer equations. This was justified by the fact that, if the first point off the
wall is located inside the boundary layer, neglecting this term does not provide significant errors. They
assumed a constant pressure gradient between the first and second nodes, and obtained tangential velocity
with two approaches: The reduced diffusion model (RDM) and the hybrid reconstruction method (HRM).
The Reynolds number in the cylinder case was Re = 300 based on free stream velocity and the cylinder
diameter, and in the sphere was Re = 1000. The pressure coefficient for all cases was predicted well, while
the skin friction was underestimated in all cases, but an improvement was observed using RDM and HRM
in comparison with linear reconstruction. The prediction of separation was also improved a lot using these
two approaches.

Chen et al. [17] also proposed a wall layer model based on turbulent boundary layer equations at
high Reynolds numbers for implicit LES in the presence of immersed boundaries. First, they tested it on a
turbulent channel flow in the range of Reynolds numbers (based on shear velocity) from Reτ = 395 to
Reτ = 100, 000. They used a minimum of 20 cells inside the boundary layer for lower Reynolds numbers
and 40 cells for higher values. Inside the boundary layer (inner region), the pressure gradient and friction
are dominant, thus advection is neglected in cases where there are slow changes in wall parallel direction
and sharp changes in wall normal direction. The fact that the changes in wall normal direction are sharper
at higher Reynolds numbers requires more resolution for capturing the flow in this direction.

They also simulated flow over a backward-facing step at a Reynolds number based on the step height
Reh = 5000 in a Cartesian grid. Finally they simulated the flow over periodic hills at ReH = 10,595 based
on hill height, using different resolutions, and they obtained comparatively good results. To summarize,
different models have an acceptable accuracy under some special conditions; therefore, more general
models are needed to work well in different situations characterized by attached as well as separated
flow conditions.

In the present study, attempts are made to overcome some of the difficulties mentioned above,
proposing wall layer model to be used in conjunction with LES, suited for both attached and detached
flows. Since in engineering applications a combination of body fitted solid walls and immersed boundaries
is often employed, a comprehensive model must include the two aspects. Here the models are designed to
work in body fitted cases and in the presence of immersed boundaries, respectively. The solver for the
simulations is the LES model (LES–COAST) developed over the years at the Laboratory of Environmental
and Industrial Fluid Mechanics of the University of Trieste, Italy, and which has successfully been used in a
number of environmental real-scale applications (see among others Roman et al. [18] and Galea et al. [19]).
The paper is organized as follows: In Section 2 the governing equations are described and the numerical
method employed; in Section 3, the wall layer model for body fitted grids, its improvement and application
to a case characterized by the presence of a boundary layer together with massive separation, namely the
case of the flow over an isolated hill, are shown; in Section 4 the model in the presence of the immersed
boundary is presented, together with its application to the case of single hill and to the case of periodic hill.
Concluding remarks are given in Section 5.

2. Governing Equations

The incompressible form of the filtered Navier-Stokes equations read as:

∂uj

∂xj
= 0, (1)

∂ui
∂t

+
∂(uiuj)

∂xj
= − 1

ρ0

∂p
∂xi

−
∂τij

∂xj
+ ν

∂2ui
∂xj∂xj

. (2)
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The filter operation (denoted by overbar) allows reproduction of the space–time evolution of the large
scales of motion, which are anisotropic and energetic, while the effect of the small sub-grid scales (SGS)
is contained in the SGS stress terms (τij) in the momentum equation. It is here modeled through an SGS
eddy viscosity model:

τij −
δij

3
τkk = −2νTSij, (3)

where Sij is the resolved-scale tensor, defined as:

Sij =
1
2
(

∂ui
∂xj

+
∂uj

∂xi
), (4)

νT is the SGS turbulent viscosity, also known as eddy viscosity. The standard Smagorinsky model [20]
is based on the equilibrium assumption. Considering the length scale l ∼ Δ, the eddy viscosity can be
written as:

νT = (CsΔ)2|S|, (5)

where Cs is the constant of the model (the Smagorinsky constant), and |S| =
√

2SijSij is the contraction of

the strain rate tensor of the large scales, Sij. Finally, the SGS stresses are calculated as:

τij = −2νTSij. (6)

The Smagorinsky constant is commonly considered to range between 0.065 and 0.2; Lilly [21] found
a theoretical value of 0.18, but the Smagorinsky constant depends on the type of the flow, e.g., in shear
flows it must be declined to 0.1 [22]. A comprehensive study of the Smagorinsky constant in plane channel
flows can be found in Stocca [23]. The filter width is proportional to the grid size in all directions, and is
equal to Δ = (ΔxΔyΔz)1/3. Near the walls, where the eddy viscosity is expected to vanish, the van Driest
damping function is adopted.

In the dynamic Smagorinsky model proposed by Germano et al. [24], the coefficient is calculated
dynamically by defining an additional test filter (denoted by a caret) with a width Δ̂ larger than the grid
filter width Δ; here Δ̂ = 2Δ. The dynamic Smagorinsky coefficient is computed in a least-square sense
over tensor components:

C = −1
2
〈Lij Mij〉
〈Mij Mij〉

, (7)

where <> denotes spatial average and Lij resolved turbulent stresses:

Lij ≡ ûiuj − ûiûj, Mij ≡ 2(Δ2 |̂S|Sij − Δ̂2|Ŝ|Ŝij) (8)

and then eddy viscosity can be calculated as below.

νT = CΔ̂2|S|. (9)

The advantage of the dynamic model over the standard one is that the eddy viscosity vanishes near the
walls and in laminar flows [24]; so, the model allows to treat transitional and wall bounded flow without
the need to use special treatments of the constant. In order to follow the solid boundaries, the numerical
model uses the curvilinear-coordinate form of the Navier-Stokes equations frame. Spatial discretization in
the computational space is carried out using second order central finite differences. Temporal integration
is carried out by using the second order accurate Adams-Bashforth scheme for the convective term and
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the implicit Crank-Nicolson scheme for the diagonal viscous terms. A collocated grid is considered where
pressure and Cartesian velocity components are defined at the cell centers, and the volume fluxes are
defined at the midpoints of the cell faces. For the numerical model see Zang et al. [25], whereas for the
implementation of the SGS models see Armenio and Piomelli [26]. A new parallel version of the model
has been developed over the years and a version suited for environmental applications (LES-COAST) is
available [27].

3. Wall Layer Model for Body Fitted Geometry

A basic equilibrium wall stress model is present in the solver. The wall stress is obtained from
instantaneous horizontal velocity at the first off-wall centroid based on the law of the wall:

u+
p =

⎧⎨⎩
1
κ

ln(y+c (1)) + B i f y+c (1) > 11

y+c (1) i f y+c (1) ≤ 11
(10)

where

u+
p =

up

uτ
=

√
u2 + w2

uτ

is the modulus of instantaneous non-dimensional velocity at the first off-wall computational node P, which
has a distance yc(1) from the wall; κ = 0.41 is the von Kármán constant, and B varies between 5 and 5.5 [2].
Here B = 5.1 was used for all the simulations. The friction velocity uτ is calculated from the velocity up

at each near-wall computational node, and depends on the distance from the wall y+c (1), either from the
linear or logarithmic law. Then, wall shear stress τw is calculated from friction velocity; τw = ρu2

τ . More
details of the procedure can be found in Fakhari [28].

In addition to this, the knowledge of the contraction of the resolved strain rate tensor is required in
order to use an SGS eddy viscosity at the wall in the Smagorinsky model. Since the tangential velocity at
the wall is not determined, the evaluation of the leading terms of Sij becomes increasingly wrong with
decreasing grid resolution.

To overcome this problem, the leading terms of the strain rate tensor Sij are set analytically based on
the location of yc(1). If the first point P is in the logarithmic region, the leading terms of the strain rate
tensor are:

S12 =
uτ

κyc(1)
u
up

+
∂v
∂x

, S32 =
uτ

κyc(1)
w
up

+
∂v
∂z

. (11)

Consequently the value of the eddy viscosity near the wall adjusts consistently with the imposed
stress. The wall layer model mentioned above is for smooth surfaces. If we deal with a rough surface with
the roughness height y0, the velocity profile is:

u+
p =

1
κ

ln(
yc(1)

y0
) yc(1) > y0. (12)

The same procedure based on Equation (11) can be used to modify the leading terms of Sij.
This wall layer model is very economic and reasonably accurate in attached flows. Its main drawback

is the simulation of separated flows [1,2] as will be discussed with details in Section 3.2. The logarithmic
law does not capture separation; therefore, in detached flows a stretched grid near-wall is required to have
more resolution there to set the near-wall computational nodes inside the viscous layer.

Cabot and Moin [8] used wall layer models with LES to simulate flow over a backward-facing step.
They considered a zonal approach using the thin boundary layer equation (TBLE) in the inner layer and
LES with dynamic SGS model in the outer region. They used 8 uniform cells from the bottom of the
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wall up to half the height of the domain, much less than in a former stretched-grid which was used for a
wall-resolving LES. The authors introduced a dynamic treatment of the von Kármán constant to equate

the stress predicted by TBLE in the inner layer (κyûτ Ŝij) in a least-square sense to the total one (resolved +
SGS) computed by LES in the outer region (−ûiuj − τ̂ij). The dynamic κ was used to calculate the eddy
viscosity in the inner region, νt = κyuτ D, D = [1 − exp(−y+/A+)]2 in which A+ = 17, but in that case
since y+ � A+ they considered D as unity. In Cabot and Moin [8] the use of dynamic κ was justified by
the fact that their wall model (TBLE) would carry shear stress both in the RANS eddy viscosity and the
RANS convective terms, thus they needed a reduced RANS eddy viscosity, and by using the dynamic κ

which had the values less than the von Kármán constant, and reduced the shear stress.

3.1. Model Optimization for Body Fitted Geometry

In this work the context is different. It is known that the equilibrium stress wall function works well
in equilibrium flows, and has a drawback in the presence of separation [1,2]. In addition, in separated
regions the velocity profile does not follow the standard log law; therefore, a modification of the standard
log law is required. Here, the aim of using dynamic κ is not to reduce stress, but to have it deviate from
the standard log law. The dynamic κ is calculated here to match analytical stress from the boundary layer
and the stress computed with dynamic Smagorinsky using a coefficient:

κ = −coe f f ·
< yc(1)ûτ Ŝij(ûiuj + τ̂ij) >

< yc(1)2û
2
τ ŜijŜij >

, (13)

in which <> denotes averaging over the directions of homogeneity. First, a simulation of a periodic open
channel flow was carried out in order to obtain a cross-sectional plane of data instantaneously to be used
as the inflow over the hill, as will be discussed in Section 3.2. For the simulation of periodic open channel
flow, a plane averaged approach was performed to compute coe f f in such a way that the dynamic κ

becomes equal to the von Kármán constant. In LES–COAST, coe f f = 0.4 was obtained, and this will be
explained in Section 3.2.

3.2. Application of the Wall Layer Model for Body Fitted Geometry

The wall layer model is here tested on a detached flow case. The accuracy of the wall layer model is
checked and then the model is improved to increase the accuracy of the wall function. Most of the wall
layer models have weakness in capturing the points of flow separation and re-attachment, separately,
especially when the slope of a solid wall changes gradually. Thus, this work focuses on flow simulation
over a single two-dimensional hill, which, from one side, is a very challenging problem for wall layer
models and, from the other side, literature data are available.

The geometry and boundary conditions are collected from ERCOFTAC classic database,
environmental flows area, case 69 (http://ERCOFTAC/case69) [29]. The hill height is H = 0.117 m
and the amplitude of the hill is a = 3H (Figure 1a). The wind tunnel experiments were carried out
by Khurshudyan et al. [30]. A wall-resolved LES of turbulent boundary layer over a 2D hill was also
performed by Chaudhari et al. [31] and Chaudhari [32] for two different aspect ratios a = 3H and 5H.
Since they faced difficulty in validating the reattachment point for the aspect ratio of a = 3H with the
experiment, this case was specifically chosen for this study as a challenging problem.
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(a) Hill geometry in which H is the hill height, a is the aspect
ratio, with courtesy of ERCOFTAC, Environmental Flows
[29].

(b) Computational domain.

Figure 1. The hill geometry and the domain grid with resolution of 96 × 20 × 32 cells in streamwise, wall
normal and spanwise directions, respectively, for simulation of flow over hill using dynamic κ (body
fitted approach).

A domain dimension with streamwise length Lx = 7.12 δ, height δ and width (in spanwise direction)
Lz = δ is considered where δ = 1 m.

The boundary conditions are given as follows: At the inlet, inflow is obtained from simulation of
a periodic open channel flow with the same cross-sectional grid resolution; a cross-sectional plane was
considered to collect the instantaneous data at each time step after the channel flow reached a steady
state and the collected data was used as inflow for the flow simulation over the hill. The roughness
characteristic height of the wall for this case is y0 = 1.57 mm, shear velocity uτ = 0.178 m/s and the
Reynolds number based on shear velocity is Reτ = uτδ/ν = 1187; at the outlet, radiative boundary
conditions were given; at the upper boundary the free slip condition is imposed; periodic conditions
are applied along the spanwise direction. The dynamic SGS model wis employed for simulations with
body fitted grid, with the constant obtained from spanwise averaging; simulations were run with a fixed
Courant number equal to 0.2.

The results of this simulation, which was initially performed using 96 × 32 × 32 cells in streamwise,
wall normal and spanwise directions, respectively, show that the wall layer model described in Section 3,
with a fixed value of the von Kármán constant, is not able to capture flow separation when a uniform grid
is employed (where y+c (1) = 18.5). Conversely, stretching the grid to set the first computational node off
the wall inside the viscous layer allows obtaining flow separation. Figure 2 shows a comparison between
the experiment by Khurshudyan et al. [30] and three simulations: The case with uniform grid, and two
cases with stretched grids in which the first centroids are at y+c (1) = 4 and y+c (1) = 7, respectively. All the
grids share the same number of grid cells and the resolution in streamwise and spanwise directions, while
the two grids are stretched vertically using the Vinokur approach [33] to have the largest cells at the top of
the domain with Δy+ ≈ 64. The free surface velocity is used as Ure f to normalize the velocity plots.
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(a) Mean stream-wise velocity upstream, over
and slightly downstream from the hill.

(b) Mean stream-wise velocity downstream
from the hill.

(c) RMS of streamwise velocity fluctuations
upstream, over and slightly downstream from
the hill.

(d) RMS of streamwise velocity fluctuations
downstream from the hill.

Figure 2. Mean streamwise velocity and root mean square (RMS) of its fluctuations obtained from
simulation using 32 cells in the wall normal direction for the cases with y+c (1) = 4 and y+c (1) = 7
compared to the experiment by Khurshudyan et al. [30]; the hill starts from x = −a and ends at x = a.
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For the cases with fixed value of κ, the starting point of flow separation is at x = 0.5a using the
stretched grids; the reattachment point is predicted well in these cases. This test reveals that the resolutions
in streamwise and spanwise directions are sufficient to capture boundary layer separation. Overall,
separation is predicted with a grid that for the vertical resolution near the wall resembles that of a
wall-resolving LES. This is opposite the expectations from a wall layer model, which is supposed to work
well with a poor resolution in the wall region.

The improved model which makes use of the dynamic evaluation of the von Kármán constant κ is
tested on the uniform mesh. In this case separation is captured; at x = 0.5a the first centroid is too far from
the wall to capture the starting point of separation, while at the other locations, separation is predicted
correctly as well as boundary layer reattachment.

Applying the dynamic evaluation of κ in the case of the stretched grids reveals that in the case
with y+c (1) = 4 the mean velocity profile at x = 0 demonstrates a better acceleration at the first centroid
compared to the case with a fixed value of κ; moreover, at x = 0.5a, which is the starting point of separation,
the negative velocity displays a larger magnitude at the few cells above the wall, which is closer to the
experimental values, while a bit farther from the wall, the case with constant κ is in a better agreement with
the experiment. In the separation region and even after reattachment, the mean velocity at the near-wall
centroid is smaller than using the fixed value of κ, and the reattachment point is predicted correctly for
y+c (1) = 4. The case with y+c (1) = 7 demonstrates higher velocity at the near-wall computational node
using dynamic κ in the beginning of separation (x = 0.5a), while at x = a and beyond, the velocity gets
smaller than the fixed κ, and the reattachment point is delayed.

The root mean square (RMS) of streamwise velocity fluctuations exhibits an overestimation close
to the wall for stretched grids using both fixed and dynamic κ, while the uniform grid with dynamic κ

slightly underestimates this quantity in most of the regions. This overestimation is due to the fact that the
equilibrium stress model for the rough surface computes the shear velocity and wall shear stress from
the logarithmic law (Equation (12)), while the near-wall computational nodes in the stretched grids are
located inside or near the viscous sub-layer.

Figure 3 contains mean velocity profiles related to the present simulations, the wall-resolved LES
by Chaudhari et al. [31] and the experiment by [30] at three critical locations: The hill crest, the starting
point of separation and just beyond the reattachment point. For the wall-resolved LES case, the data were
obtained by extraction of significant points from their plots. The mean velocity profile shows that at the
top of the hill, the flow acceleration for wall-resolved LES agrees well with the experiment. Moreover, the
point of separation is captured well, but the flow experiences an early reattachment at x = 2a.

The wall-resolved LES underestimates root mean square of streamwise velocity fluctuations except at
the start of separation x = 0.5a close to the wall, as depicted in Figure 3b.

Figure 3a shows that, overall, the present results exhibit a reasonable accuracy, also in view of the
grid herein employed. It is to be noted that the reference wall-resolved LES by Chaudhari et al. [31] with
495 × 70 × 136 numerical grids (48 times more expensive than the current wall layer model simulation)
had an early prediction of reattachment point, while in this simulation there is a better agreement of the
reattachment point with the experiment.

Successively, a different grid resolution was applied in the vertical direction (96 × 20 × 32 cells in
streamwise, wall normal and spanwise directions, respectively) on the same geometry with the same
boundary conditions. The domain grid is shown in Figure 1b, with the first computational node situated
in the logarithmic region at y+c (1) ≈ 30.

The simulations were carried out as follows. First, an open channel flow at Reτ = 1187 based on
the friction velocity uτ and the channel height was simulated, with a grid resolution of 40 × 20 × 32
cells in streamwise, wall normal and spanwise directions, respectively. Before the simulation, a test
was carried out to compute the dynamic (Smagorinsky) model constant and also coe f f of Equation (13)
applying a plane average approach, and using coe f f = 0.4 as a target value of the von Kármán constant κ.
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Thereafter, in another attempt, spanwise averaging of the numerator and denominator of Equation (13)
with coe f f = 0.4 and also the dynamic model constant was performed. Note that κ must be positive since
it is used in the denominator to calculate friction velocity and strain rate tensor (see Section 3). Setting the
minimum value of 0.06 avoided unrealistic values of velocity due to the near-zero or negative value of κ.
Moreover, larger threshold values were tested to check the sensitivity to this lower bound; the analysis
showed that it does not affect the results, hence the method is robust from this aspect.

(a) Mean streamwise velocity.

(b) Root mean square of streamwise velocity.

Figure 3. Mean streamwise velocity and RMS of its fluctuations at three critical positions from simulation
using 32 cells in the wall normal direction for the cases with y+c (1) = 4 and y+c (1) = 7 using constant and
dynamic k, and uniform grid with dynamic κ compared to resolved LES by Chaudhari et al. [31] and the
experiment by Khurshudyan et al. [30] at the hill crest, the beginning of separation and just before the
reattachment points.

Figure 4a shows time- and spanwise-averaged velocity profiles at different positions along the
streamwise direction. As expected (Figure 4a), the current resolution is too coarse, since the first
computational node is out of the separation region; this explains the absence of separation at x = 0.5a.
However, separation occurs at x = 2a which has a delay with respect to both the wall-resolved LES and
the experiment, and reattachment is obtained at x = 3a which is closer to the experiment, while the
wall-resolved LES exhibits an earlier reattachment.
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Figure 4b shows the root mean square of streamwise velocity fluctuations. Generally there is an
underestimation of the velocity fluctuations especially right before and at the starting point of the
separation region. Chaudhari et al. [31] also underestimated the RMS of the streamwise velocity
fluctuations uphill, and overestimated it in the separation region.

As was discussed in the previous section, the use of dynamic κ in this method is different than in
Cabot and Moin [8]. To understand this better, instantaneous values of the dynamic κ along x for the flow
over the single hill of this simulation in Figure 5. Since κ is in the numerator to calculate the shear velocity
and wall shear stress (uτ = u ∗ κ/ln(y/y0)), on top of the hill, there is an increase of κ, which gives a better
acceleration rather than the standard log law (κ = 0.41). Then, at the starting point of separation, κ reduces
and therefore the wall shear stress goes close to zero. Thereafter, inside the separation region, at most
of the spots κ is large, leading to a negative value of the wall shear stress with a larger magnitude, and
finally it goes close to 0.41 after reattachment. In this way, the equilibrium stress model is applicable on
separated flows.

(a) Mean streamwise velocity.

(b) Root mean square of streamwise velocity fluctuations.

Figure 4. Mean streamwise velocity and RMS of its fluctuations obtained from simulation using 20 cells in
the wall normal direction, applying dynamic κ compared to the experiment by Khurshudyan et al. [30];
the hill starts from x = −a and ends at x = a.
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Figure 5. Instantaneous values of dynamic κ on a stream line in the current simulation of flow over the
single hill.

4. Wall Layer Model for Immersed Boundary Methodology (IBM)

This part of the work takes advantage of the model developed in Roman et al. [34]. The velocity
reconstruction method is briefly recalled here. With reference to Figure 6, the velocity at the projection
point (PP) is interpolated from velocities at its surrounding points (empty square points in Figure 6). Then,
shear velocity at the PP point is computed. Finally, based on the distance of the first centroid off-the-wall,
i.e., the IB node, from wall in wall units, the velocity at the IB node is calculated using the law of the wall:

uIB =

⎧⎪⎪⎨⎪⎪⎩
uPP − 1

κ

√
τw

ρ
ln(

dPP
dIB

) i f d+IB > 11

dIBuτ2

ν
i f d+IB ≤ 11

(14)

Considering that the velocity is known at the PP point, a parabolic interpolation is carried out to
compute the wall normal velocity at the IB node:

un,IB = un,PP
d2

IB
d2

PP
. (15)

A reconstruction of shear stress at the cell face is also done using a RANS-like eddy viscosity. The
eddy viscosity at the IB nodes is calculated analytically from mixing the length theory from the equation

νt = CwκuτdIB, (16)

where κ is the von Kármán constant, and Cw is an intensification coefficient to be determined such that the
Reynolds shear stress is a fraction of the wall shear stress near the wall (where νT is set). Consequently,
this coefficient can be written as:

Cw =
τFdF
τwdIB

, (17)

where the index F denotes a quantity calculated at the cell face, dF is the distance between the cell face and
the immersed surface. A more detailed description can be found in Roman et al. [34] and Roman [35].
This wall layer model is very economic since the velocity is just interpolated from the projection point
PP, and works well in attached flows using a very coarse grid [34]. Since the interpolation is based on
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the logarithmic law, and the velocity direction at the IB node always follows the velocity at the PP, this
method has a drawback in separated flows even setting the IB node inside the viscous layer.

Figure 6. Discretization of a fluid–solid interface with the immersed boundary method by Roman et al. [34].
Solid squares, empty squares and empty circles represent solid, fluid and IB nodes respectively. Reproduced
with permission from AIP Publishing [4714120594491].

Simulation of the flow over the hill, applying Cartesian and curvilinear grids, using the
Roman et al. [34] model in its original formulation, does not allow to obtain acceptable results, since
the flow does not separate even with increasing resolution close to the immersed boundary and with
setting the of the IB node inside the viscous layer [28]. Here, first the Roman et al. [34] model on a standard
open channel flow is re-analysed and successively the flow over the hill is investigated.

4.1. Calibration of the Wall Layer Model with IBM

In order to check the accuracy of the current IBM, an open channel is considered with a resolution of
48 × 20 × 32 cells in the streamwise, wall normal and spanwise directions, respectively, and a dimension of
7.12δ × 1δ × 1δ in which δ is the height of the open channels. The lower wall is reproduced with immersed
boundaries and the simulation is carried out imposing a non-dimensional driving pressure gradient
(dp/dx = 1). The friction Reynolds number is Reτ = 2000, giving the IB node as located at y+ = 50.

The velocity profile scaled with the friction velocity collapses over the theoretical line as has already
been shown in Roman et al. [34]. However, considering the non-scaled averaged velocity, the method
underestimates the velocity compared to the logarithmic law at the same rate as the shear velocity, thus
demonstrating a loss of momentum. In particular, the wall shear stress is underestimated by approximately
16% in the simulation. This has to be attributed to the current implementation of IBs, which does not
conserve momentum perfectly. This is a common issue in a number of IB methodologies, although more
recent implementations appear more conservative (Kim et al. [36], Meyer et al. [37] and Rapaka and
Sarkar [38]).

After this observation, several cases of open channel geometries are created sharing the same
dimension and resolution; the only difference stands in the fact that the immersed boundary surface was
moved slightly to check whether the position of the IB node affects the results. Five cases are considered:
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Cases 1 to 4 in which the IB node was located in the logarithmic region, and case 5 in which it was in the
viscous layer. The positions of the immersed boundary for the five cases are displayed in Figure 7 and
details are given in Table 1. Simulations are hence carried out for all cases at Reτ = 2000, with the same
boundary conditions as the original case. The results show an underestimation of friction velocity for cases
1 to 4 in which the IB node is set in the logarithmic region, and an overestimation of shear velocity for case
1 which has the IB node in the viscous layer (see Table 1), indicating that the IBM of Roman et al. [34] is
sensitive to the position of the immersed surface with respect to the grid line, and it is geometry dependent.
Figure 8a displays a non-scaled mean velocity profile for all cases compared to the theoretical velocity
based on the law of the wall.

Apart from the shear velocity deviation, the non-dimensional velocity profile compared well with the
wall law for the first four cases (Figure 8b). A calibration of the IBM is carried out to avoid momentum
loss. For this purpose, the coefficient which is used to calculate eddy viscosity at the IB nodes (Cw) in
Equation (16) is varied to reach the target value of the wall stress.

Figure 7. Five different channels using the immersed boundary as the lower wall in different positions,
cases 1 to 5 in order from left to right. Filled squares display IB node.

Table 1. Different geometries description of IB cases and shear velocity obtained from simulation.

Case IB Surface Position d+
IB uτ

1 just above centroid 101 0.8883
2 between centroid and grid line 82 0.8816
3 just above grid line 43.5 0.8541
4 overlapping grid line 50 0.8393
5 just below centroid 5 1.2740

(a) Dimensional mean velocity profiles
before calibration

(b) Scaled mean velocity profiles before
calibration

Figure 8. Cont.
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(c) Dimensional mean velocity profiles
after calibration

(d) Scaled mean velocity profiles after
calibration

Figure 8. Mean velocity for IBM cases before and after calibration versus law of the wall.

Figure 9. Cubic line fitted to the calibrated values computed for the 5 cases.

Table 2 shows the optimal coefficients and friction velocities obtained after running the simulations
for all five cases. Further, it has been verified that changes in the coefficients by 10% produced very small
variations in the shear velocity, thus showing the robustness of the method.

Table 2. Optimal coefficient for different positions of the IB.

Case dIB/dy Coefficient (Coptimal) uτ

1 0.93318 1.13 0.9987
2 0.74818 1.20 1.0043
3 0.38909 1.47 0.9966
4 0.5 1.3 0.9974
5 0.04386 3.4 0.9942

The simulations are then repeated at Reτ = 4000 to check the accuracy of the calibration; it appeared
insensitive to variations in the Reynolds number [28]. The coefficient can be written as a function of the

218



Fluids 2019, 4, 197

non-dimensional distance from the wall (dIB/dy), which is within the interval of 0–1. As it can be seen in
Figure 9, a cubic law can be fitted to the numerical points is written below.

Cc = −6.9576
(

dIB
dy

)3
+ 15.051

(
dIB
dy

)2

−10.902
(

dIB
dy

)
+ 3.8493 (18)

The dimensional and non-dimensional mean velocity profiles after calibration for all the cases are
shown in Figure 8c,d, respectively. All cases are non-dimensionalized with shear velocity obtained from
the mean velocity at the IB nodes based on the law of the wall. An improvement can be observed after
calibration, especially for case 5 in which the IB node is located close to the immersed boundary. Finally
the RANS-like eddy viscosity at the IB nodes can be calculated from the calibrated coefficient Cc, which is
obtained from the cubic fitting:

νT = CckuτdIB. (19)

Calibration of the coefficient allows to improve the prediction of the wall shear stress, hence, the
velocity profile. The results of the simulations for all cases show that the mean velocity and root mean
square of velocity fluctuations are in good agreement with the law of the wall and also the DNS of plane
channel flow of Hoyas and Jimenez [39] for a channel at Reτ = 2000 [28]. Only for cases 3 and 4 in which
IB nodes are at the beginning of the log-region (d+IB ≤ 50) is there a deviation of the mean velocity profile.
However, this is a case that can be hardly encountered in real-scale flows, characterized by very high
values of Re. It is important to point out that calibration may not be necessary in the presence of IB
methodologies strictly conservative for momentum.

While the wall layer model predicts the velocity profile well, it underestimates the wall normal
velocity fluctuations. Thus, random fluctuations near the wall are added to improve the model. In hybrid
LES/RANS and DES, stochastic forcing is needed to reduce the effect of excessive damping coming from
the RANS eddy viscosity [11,12]. In the present model, stochastic forcing is more likely required because
of the grid coarseness, which is, however, a standard in simulations for engineering purposes.

Taylor and Sarkar [40] used random stochastic forcing in the wall normal direction after finding that
the near-wall model (NWM) LES with the dynamic eddy viscosity model (DEVM) underrated vertical
velocity fluctuations in their body fitted plane-channel-flow simulation.

This forcing term was applied to the right-hand side of the momentum equation in the wall normal
direction to increase velocity fluctuations in this direction and control the Reynolds stress in order to allow
it to fit the logarithmic velocity profile. This term is written as:

fy(x, y, z) = ±R ∗ A(y), (20)

where R is a random number between 0 and 1, and A(y) is an amplitude function. At each time step,
the latter can be obtained from summation of the amplitude at the previous iteration, and another term
including the error function:

A(y)n+1 = A(y)n +
uτε(y)

τ
, (21)
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where the error function is the difference between the resolved shear stress and the theoretical value based
on the logarithmic law:

ε(y) =
ky
uτ

(
d〈u〉
dy

2

+
d〈w〉

dy

2
) 1

2

− 1, (22)

where τ is a relaxation time. This approach is correct if the first computational node is in the logarithmic
region since in Equation (22) the error is established upon ky/uτ , which is the theoretical resolved shear
stress based on the logarithmic law. However, this is not a serious issue, since the model is designed to
work for high Re number flows. Finally, the sign of the function is computed to reduce the correlation
between streamwise and vertical velocity fluctuations (u′ and v′) if the error is positive, and to enhance
this correlation if the error is negative:

sgn
(

fy(x, y, z)
)
= −sgn

(
d〈us〉

dy

)
∗ sgn (ε(y))

∗sgn
(
u′

s(x, y, z)
)

, (23)

where us is the velocity in the direction of the mean wall shear stress.
The stochastic random force in case 4 is imposed instantaneously at every iteration of the simulation.

Since the IB node is located in the logarithmic region, the horizontal velocity is interpolated based on the
logarithmic law from the projection point PP; adding this force to the first two nodes does not improve the
velocity profile. Considering one more point to impose the forcing term on, it makes the deviation from
the log law disappear (Figure 10).

This happens because the stochastic forcing allows to obtain a more accurate prediction of the resolved
Reynolds shear stress (associated to the resolved velocity fluctuations) as can be seen in Figure 11.

Figure 10. Mean velocity profile before and after adding stochastic forces for case 4 compared to the log law.
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Figure 11. Reynolds shear stresses in global coordinates compared to the calibrated IBM for case 4.

The relaxation time plays an important role in the simulation. It has to be large enough to let the
flow adapt itself to the force. On the other hand, if the relaxation time is too large the effect of force is
diluted. In the present simulations, 0.0006 uτ/δ ≤ 1/τ ≤ 0.002 uτ/δ gave the best results. Values larger
than 0.002 uτ/δ increased the velocity continuously since the flow did not have time to adjust itself to the
force; values smaller than 0.0006 uτ/δ displayed a very small improvement in velocity profile.

This method works very well when the IB node is located in the logarithmic region and in attached
flows since a logarithmic law for the velocity profile is expected. However, in the present form, it is not
able to predict massive separation.

Steady two-dimensional separation is known to be related to the sign of the streamwise pressure
gradient. After neglecting advective terms, the boundary layer equation in the streamwise direction
simplifies as:

ν

(
∂2u
∂y2

)
wall

=
1
ρ

∂p
∂x

. (24)

Considering the flow over a curved surface, a negative streamwise pressure gradient develops
upward, associated to an acceleration of the flow. Thereafter, the change of curvature makes the pressure
gradient become unfavourable, and from the continuity equation it contributes to an enhancement of
the boundary layer thickness. Hence the second derivative of velocity is positive and therefore there
is a change of sign of the velocity curvature inside the boundary layer. At a point called inflection,
the second derivative of streamwise velocity becomes zero; ∂2u/∂y2 = 0. If the unfavourable pressure
gradient is strong enough, the flow next to the wall changes direction giving rise to a recirculation region.
As already noted, in this method the velocity at the IB node is calculated from the friction velocity at the
projection point. This means that uIB is always in the same direction of UPP, and the flow is not allowed to
separate, since the above-described physical mechanism is not accounted for. For this reason, the method
of calculation of the velocity at the IB point is modified as follows. The boundary layer equation close to
the wall, after neglecting advective terms is:

νT

(
∂2u
∂y2

)
IB

∼
(

1
ρ

∂p
∂x

)
IB

. (25)

Using the central difference scheme (CDS) in order to discretize the second derivative of velocity for a
non-uniform grid (Ferziger and Peric [41]) considering PP, IB and IP nodes, it can be written as:
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(
∂2u
∂y2

)
IB

≈ uPP(dIB) + uIP(dPP−IB)− uIB(dPP)
1
2 (dPP)(dPP−IB)(dIB)

, (26)

in which dPP−IB is the distance between IB and PP points. Finally the streamwise tangential velocity at the
IB node can be written as a function of the tangential pressure gradient instead of the friction velocity;

uIB = uPP

(
dIB
dPP

)
− C

(
∂p
∂x

)
IB

(dPP−IB)(dIB)

νT
, (27)

where the eddy viscosity is also the calibrated value obtained from Equation (19).
Using a coefficient (C) of the order of 10−3 inside the second term containing the pressure gradient at

the IB avoids problems in regions characterized by the presence of large values of the pressure gradient
with small values of turbulent eddy viscosity. Many simulations have been carried out to find out the best
criterion for using this new scheme. Finally, applying Equation (27) under the following conditions:(

∂p
∂x

)
IB

> 0, (28)

d+IB < 40, (29)

gave the best results for simulating separated flows. The two criteria physically mean that the new scheme
to calculate tangential velocity at the IB is used if the tangential pressure gradient at the IB is unfavourable,
and the distance of the IB node from the immersed boundary is such that the velocity point does not
belong to the log region of the velocity profile.

4.2. Flow Simulation over a Single Hill Using IBM

This new model is applied for simulation of the flow over a two-dimensional hill. First an open
channel is constructed in which the immersed boundary is set as the lower wall. After the periodic
open channel flow reached a steady state, instantaneous data are collected from a cross sectional plane at
different time steps. Then the bottom of the domain including the hill shape is created as the immersed
boundary, and the data that are obtained from the plane channel flow are used as inflow for the flow
simulation over the hill.

The simulation is performed using two different grids (Cartesian and curvilinear) at Reτ = 1187.
Applying the new scheme, it is feasible to capture separation in the simulation with a grid resolution of
128 × 40 × 32 cells in the streamwise, wall normal and spanwise directions, respectively. With this
resolution, the IB node upward and downward from the hill is located at d+IB ≈ 15. The mean
velocity profiles for both grids are compared with the body fitted approach and the experiment by
Khurshudyan et al. [30] as shown in Figure 12a. In the simulation for both grids, the starting point
of separation is predicted well at x = 0.5a. The reattachment points for both cases are anticipated
before x = 2a; therefore, at x = 2a the mean velocities are positive, although very small close to the
immersed boundary.

In addition, for the Cartesian grid a simulation without calibration is performed to check the
effect of eddy viscosity calibration on flow separation; as it can be observed in Figure 12a, the case
without calibration is not able to capture the starting point of separation properly, and in general it
underestimates separation.

The root mean square of streamwise velocity fluctuations of the present simulations (Figure 12b)
are in a good agreement with the experimental data. While there is an overestimation of fluctuations
beyond the starting point of separation, the behavior of this quantity is similar to that of the experiment.
Comparing the results of the present model with the one developed for the body fitted grid, it appears
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that the present IBM anticipates the starting point of separation in better agreement with the wall-resolved
LES and the experiment, while the prediction of the reattachment point is similar to the wall-resolved LES,
earlier than in the body fitted approach and the experiment. The present IBM gives more energetic velocity
fluctuations than the body fitted approach. Moreover, comparing this result with the wall-resolved LES by
Chaudhari et al. [31], it can be stated that the mean velocity profile has similar behavior: Predicting the
starting point of separation well, and undergoing an early reattachment. The RMS of streamwise velocity
fluctuations is also similar to the wall-resolved LES; depicting marginal underestimation before and after
the separation region especially far from the wall, and an overestimation inside the separation region near
the wall.

(a) Mean velocity.

(b) Root mean square of streamwise velocity fluctuations.

Figure 12. The results for the simulation of flow over a single hill using new the IBM scheme in Cartesian
and curvilinear grids compared to the body fitted approach and experiment by Khurshudyan et al. [30];
the hill starts at x = −a and ends at x = a.
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4.3. Flow Simulation over 2D Periodic Hills

Finally, the new scheme is tested on flow over two-dimensional periodic hills with
polynomial shape (Almeida et al. [42]). It is Case 81 of the ERCOFTAC classic database
(http://ERCOFTAC/cases/case81)[43]. The shape of the domain is shown in Figure 13.

The edges of the domain are at the top of the hill. The hill height is h = 28 mm, and the crests of
the two successive hills are separated by Lx = 9h. The height of the channel is equal to Ly = 3.035h, and
the channel width is Lz = 4.5h. The reference for comparing the results are the mean velocity and RMS
of the velocity fluctuations obtained from resolved LES by Temmerman and Leschziner [44] available in
ERCOFTAC, and for separation and reattachment points, obtained from resolved LES by Fröhlich et al. [45]
from the NASA Langley Research Center database (http://nasa/LES/2dhillperiodic) [46].

The computational domain is created in two different ways, using Cartesian and curvilinear grids,
respectively (see Figure 14). The latter is shaped in such a way as to follow the hill geometry. In both cases,
the bottom surface is created as an immersed boundary. The Reynolds number based on the hill height
and bulk velocity on top of the first hill is equal to Re = Ubh/ν = 10595, where ν is the molecular viscosity.
The flow is periodic in the x and z directions, using immersed boundary at the bottom and free-slip surface
at top.

Figure 13. Domain characteristics for the simulation of flow over 2D periodic hills, with courtesy of
ERCOFTAC [43].

(a) Curvilinearn grid.

(b) Cartesian grid.

Figure 14. Two different grids for simulation of periodic hills using immersed boundaries, 96 × 64 × 32
cells in x, y and z directions, respectively.
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A domain with grid resolution of 96 × 64 × 32 cells out of immersed boundary in streamwise, wall
normal and spanwise directions, respectively, is constructed. This is equivalent to the coarsest grid of
Chen et al. [17], who simulated flow over periodic hills using immersed boundary and applied a zonal
approach (TLM); in particular, the authors used the turbulent boundary layer equations close to the
immersed boundary and LES in the interior region.

The robustness of the method to reproduce separation is tested under a large variation of the threshold
values employed in Equation (29). The results of this test for the threshold in the range of 30–50 are shown
in Figure 15. The mean velocity profile in Figure 15a shows that in all cases separation is captured at
x = 1a, but using d+IB < 50 makes the reattachment point shift back slightly with respect to the other cases
and the wall-resolved LES. The mean velocity profile for d+IB < 40 is marginally closer to the resolved LES
compared to d+IB < 30 (which overestimates it narrowly). In addition to the mean velocity profile, Reynolds
shear stresses for d+IB < 40 demonstrates better agreement to the wall-resolved LES in the separation
region and after reattachment (Figure 15b). Overall, it can be stated that the method is robust for large
variations of the threshold value chosen to switch from one to the other law for the velocity at the first grid
point. Large variations of this value produce marginal variations in the results.

(a) Mean streamwise velocity.

(b) Reynold stresses.

Figure 15. Mean streamwise velocity and Reynolds shear stresses for a Cartesian grid compared to
resolved LES by Temmerman and Leschziner [44], applying three different criteria to use the new scheme;
(∂p/∂x)IB > 0 and: d+IB < 40 (square), d+IB < 30 (circle), d+IB < 50 (delta).
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Figure 16 depicts statistics of the simulations of flow over periodic hills compared to the wall-resolved
LES by Temmerman and Leschziner [44] at ten different streamwise locations. Velocities are made
non-dimensional with Ub which is the bulk velocity on the first hill crest; moreover, Reynolds stress and
turbulent kinetic energy are non-dimensionalized with U2

b .

(a) Mean streamwise velocity profiles.

(b) Mean vertical velocity profiles.

(c) Reynolds shear stress profiles.

Figure 16. Cont.
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(d) Kinetic energy.

Figure 16. Results for simulation of flow over periodic hills at different positions, using Cartesian and
curvilinear grids compared to the resolved LES by Temmerman and Leschziner [44].

Figure 16a shows mean streamwise velocity profiles (averaged in time and the spanwise direction)
at different streamwise locations. They are overall in good agreement with the wall-resolved LES by
Temmerman and Leschziner [44]. While the mean velocity for the Cartesian grid at x = 0.5h matches
the profile obtained from the wall-resolved LES, the velocity is not negative at the IB node, while the
curvilinear grid displays a negative velocity at the IB node in this location. Separation is captured in both
Cartesian and curvilinear grid cases, and the reattachment point for the Cartesian grid is a bit earlier than
the resolved LES, while the flow in the curvilinear grid reattaches earliest before x = 4h.

The mean vertical velocity profiles in Figure 16b show a slight underprediction for both grids downhill,
but in the other locations they matched the wall-resolved LES data.

Figure 16c displays the Reynolds shear stress for both cases (based on the resolved fluctuations).
It behaves similarly to that of the resolved LES, while a marginal underestimation is observed before the
end of downhill at x = 1h near the immersed boundary, especially in the case with curvilinear grid.

As illustrated in Figure 16d, turbulent kinetic energy for the Cartesian grid is slightly overpredicted
with respect to the wall-resolved LES, while the curvilinear grid demonstrates a closer value to the reference
data. Overall, the behavior of this quantity is similar to that of the wall-resolved LES for both cases.

Table 3 displays the separation and reattachment points in the current simulation, the wall-resolved
LES of Fröhlich et al. [45] and WMLES (using two-layer model) of Chen et al. [17]. In the present
simulation, the boundary layer separation occurs at x ≈ 0.54h with the Cartesian grid and at x ≈ 0.47h
with the curvilinear grid; in the wall-resolved LES it happens at x ≈ 0.22h. Therefore a delay is observed to
predict the separation point. Moreover, the intensity of the recirculation bubble predicted by the optimized
IBM simulations is smaller than that of the wall-resolved LES (comparing the present simulation values
with the large negative values of the reference simulation). The wall-resolved LES shows the reattachment
point at x ≈ 4.69h, while in the current simulation the boundary layer reattaches a bit earlier in both cases;
the Cartesian grid predicts the reattachment point at x ≈ 4.20h, while the curvilinear grid anticipates it at
x ≈ 3.81h.

Overall, the agreement of the simulation result is acceptable, considering the simplicity of the model,
which does not require the solution of an additional equation in the wall layer and the number of grid
points employed in the tests. Moreover, in comparison to the simulations of [17], the new wall layer model
on the Cartesian grid predicts the separation point better than their case with the same resolution, and on
the curvilinear grid it is even closer to the reference data than the WMLES of [17], but the reattachment
point in their case is predicted closer to the reference. The other statistics obtained from the current
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simulation, especially the mean vertical velocity profile, are in better agreement with the wall-resolved
LES than the simulations of [17].

Table 3. Resolution, separation point (xs) and reattachment point (xr) in resolved LES Fröhlich et al. [45],
the present optimized IBM simulations and the wall model LES by Chen et al. [17].

Case Resolution xs xr

Resolved LES (Fröhlich et al.) 196×128×186 0.224h 4.69h
IBM Cartesian (n2 =64) 96 × 64 × 32 0.54h 4.20h

IBM curvilinear (n2 =64) 96 × 64 × 32 0.47h 3.81h
WMLES (TBLE/LES at y+=30) 96 × 64 × 32 0.65h 4.00h
WMLES (TBLE/LES at y+=15) 192 × 72 × 48 0.50h 4.42h

5. Summary and Conclusions

In the present paper, a wall layer modeling for massive separation has been developed within the LES
context. Two main frameworks have been considered; namely, the case where the solid wall is reproduced
using a body fitted curvilinear grid and the case where the solid surface is simulated with immersed
boundaries. The research aimed at developing a simple wall layer model to be used in conjunction with
LES for engineering applications where the near-wall resolution is generally coarse. The starting point was
the equilibrium wall layer model, which gives good results in attached flows [47]. In the case of body fitted
curvilinear grids, the equilibrium wall layer model was improved using the dynamic κ procedure of Cabot
and Moin [8] in a new fashion. The dynamic κ was applied on the log law without using TBLE in order to
deviate the wall shear stress and the two components of strain rate tensor from the standard log law.

When the solid surface was simulated with immersed boundaries, a different strategy was
accomplished. The starting point was the equilibrium wall layer model of Roman et al. [34], in which
the velocity at the near-wall nodes was reconstructed from a farther point (the projection point) based
on the law of the wall, and a RANS-like eddy viscosity was given at the IB node. To reconstruct the
fluctuations in the wall normal direction well, especially near wall, random stochastic forcing was applied
to the first three near-wall cells. Moreover, the model was complemented with a procedure designed at
reproducing massive separation without the need to use zonal approaches. Specifically, after removing
the advective terms from the boundary layer equation, the tangential streamwise velocity at the IB node
(uIB) was obtained from the pressure gradient instead of calculating it from shear velocity at the projection
point based on the law of the wall: When the pressure gradient was unfavourable and the IB node was
not in the log region, the tangential velocity was obtained through a balance between the wall normal
diffusion term and the streamwise pressure gradient. In some sense, this represents a simplified procedure
with respect to the zonal approach where the boundary layer equation is solved within the near-wall layer.
In order to check what grid topology is best suited for reproducing this kind of flow, both Cartesian and
curvilinear grids were considered in conjunction with immersed boundaries.

The models were tested and validated over two two-dimensional geometries, both being well studied
in the literature through physical and high-resolution LESs: First the isolated hill (case 69 of the ERCOFTAC
classic database) was considered; then, the periodic hill which is case 81 of ERCOFTAC classic datasbe
was considered.

The model for body fitted geometry was generally in good agreement with the reference data; the
starting point of separation was delayed with respect to the wall-resolved LES and the experiment, but
the reattachment point was closer to the experiment, while the wall-resolved LES displayed an early
reattachment. Applying 32 and 20 cells in the vertical direction correspondent to Δy+ ≈ 37 and 60,
respectively, the results were comparatively acceptable. However, decreasing the vertical resolution
further would delay the starting point of separation more. The model developed for immersed boundaries
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gave a mean velocity profile and other statistics in acceptable agreement with the reference data on both
isolated and periodic hills, also in consideration of the coarseness of the grids employed; for the isolated
hill, 40 cells in the vertical direction were required to cover the hill with four cells applying the Cartesian
grid, which was correspondent to Δy+ ≈ 30; higher resolution was not used to avoid the near-wall
computational node being located in the viscous sub-layer, and lower resolution did not capture the
flow separation.

For the periodic hill, 64 cells in the vertical direction gave Δy+ ≈ 105 applying the Cartesian
grid. Lower resolution did not display flow separation because of an excessive under-resolution of the
hill geometry.
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Abstract: Turbulence modeling has been always a challenge, given the degree of underlying spatial
and temporal complexity. In this paper, we propose the use of a partitioned reduced order modeling
(ROM) approach for efficient and effective approximation of turbulent flows. A piecewise linear
subspace is tailored to capture the fine flow details in addition to the larger scales. We test the
partitioned ROM for a decaying two-dimensional (2D) turbulent flow, known as 2D Kraichnan
turbulence. The flow is initiated using an array of random vortices, corresponding to an arbitrary
energy spectrum. We show that partitioning produces more accurate and stable results than standard
ROM based on a global application of modal decomposition techniques. We also demonstrate
the predictive capability of partitioned ROM through an energy spectrum analysis, where the
recovered energy spectrum significantly converges to the full order model’s statistics with increased
partitioning. Although the proposed approach incurs increased memory requirements to store
the local basis functions for each partition, we emphasize that it permits the construction of more
compact ROMs (i.e., of smaller dimension) with comparable accuracy, which in turn significantly
reduces the online computational burden. Therefore, we consider that partitioning acts as a converter
which reduces the cost of online deployment at the expense of offline and memory costs. Finally,
we investigate the application of closure modeling to account for the effects of modal truncation on
ROM dynamics. We illustrate that closure techniques can help to stabilize the results in the inertial
range, but over-stabilization might take place in the dissipative range.

Keywords: reduced order modeling; Kolmogorov n-width; Galerkin projection; proper orthogonal
decomposition; turbulent flows

1. Introduction

Reduced order modeling (ROM) has been a hot topic in response to the increasing complexity of
engineering systems and the requirement of near real-time and multi-query responses along with the
limited advancement in computational resources [1–5]. This is vital for informed decision-making in
the context of digital twins [6–14], model-based control [15–22], data assimilation [23–33], parameter
estimation [34–37], and uncertainty quantification [38–44]. In fluid systems, this has been feasible
thanks to the existence of a few underlying structures (e.g., vortices) that dominate the flow dynamics
as well as the tremendous availability of data, which enables us to identify those structures (also called
modes or basis functions) in a data-driven fashion [45–57]. However, most of the ROM developments
have been applied mainly on prototypical flow problems. In particular, there is a limited number
of investigations regarding ROMs in turbulent flows (e.g., see [58–64]). This is basically due to the
excessive complexity of turbulent flows and existence of so many scales that interact with each other
and control the mass, momentum, and energy transfer.
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Challenges in the development of ROM for turbulent flows are also related to the Kolmogorov
n-width for these systems. The Kolmogorov n-width is a concept from approximation theory that
determines the linear reducibility of a system [65,66]. Mathematically, it is defined as [66–68]

dn(M) := inf
Sn

sup
q∈M

‖q − ΠSn q‖, (1)

where Sn is a linear n-dimensional subspace, M is the solution manifold, and ΠSn is the orthogonal
projector onto Sn. In other words, dn(M) quantifies the maximum possible error that might arise from
the projection of solution manifold onto the best-possible n-dimensional linear subspace. When the
decay of dn(M) with increasing n is fast, this means that the energy cascade and modal hierarchy
allow the reduction of the system and the solution trajectory can be adequately approximated to evolve
on a reduced linear subspace. However, for systems with strong nonlinearity, like turbulent flows,
the intense interactions between different modes reduce the decay rate of the Kolmogorov n-width.
Consequently, the linear reducibility is hindered. In ROM context, this is denoted as the “Kolmogorov
barrier” because it necessitates involving more modes in ROM to guarantee sufficient approximation of
the underlying dynamics. In short, turbulent flows are generally characterized by a slow decay of the
Kolmogorov n-width, which raises the Kolmogorov barrier and the present work aims at addressing
this issue.

In particular, we propose the use of a time domain partitioning approach, called principal interval
decomposition (PID) [69–73] to break the Kolmogorov barrier of turbulent flows. PID has been
investigated in previous studies and has been proven to be more accurate than standard ROMs
based on the global basis construction (see [71,73] for example). Here, we aim at addressing a more
complicated and involved flow problem characterizing two-dimensional turbulence. This allows us
to investigate the effect of PID to capture the scales responsible for energy transfer and dissipation
through an energy spectrum analysis. In addition, we relate the notion of the Kolmogorov barrier to
the well-defined concept of relative information content in ROM context. Although turbulence
is, by nature, three-dimensional, we investigate it in a simplified two-dimensional (2D) setting.
It was shown that many aspects of idealized 2D turbulence are relevant for physical systems like
geostrophic turbulence [74] and large-scale motions in the atmosphere and oceans [75,76]. The study
of 2D turbulence idealizes geophysical phenomena and provides a starting point for their modeling.
Specifically, we study ROM application on 2D Kraichnan turbulence. Moreover, we present a spectral
study of the energy spectrum to emphasize the efficiency of PID approach for ROM in turbulence.
Finally, we investigate the possibility of applying closure models for ROM stabilization. As a standard
ROM technique, we employ proper orthogonal decomposition (POD) [46] for basis construction and
Galerkin projection for dynamics approximation [58,77].

Fluid flow systems often include some sort of nonlinear interactions (e.g., corresponding to the
convective effects). This implies that different modes (including the truncated ones) experience strong
dynamical interactions between each others. Therefore, many modes need to be included for certain
flows (especially for complex geometries and/or high Reynolds numbers). For example, Zhang and
Stevens [78] stated that 2000 modes are necessary to capture 80% of the total energy in a neutral
atmospheric boundary layer (ABL) process, while Shah and Bou-Zeid [79] found that about 500 POD
modes are required to capture the same amount of energy by using a two-dimensional snapshot POD.
Nonetheless, the computational cost of a Galerkin ROM usually scales with R3 in case of quadratic
nonlinearity, where R is the number of retained/resolved modes. This necessitates the use of only a few
modes for feasible ROM computations, especially for real-time control applications or multiple-query
estimations. Other than the accuracy loss that would be incurred due to modal truncation, instabilities
can easily occur. For instance, Östh et al. [80] showed a case for a flow around Ahmed body where
the solution of a POD Galerkin model with 100 (or less) modes converges to infinity. Instabilities in
standard ROMs have been attributed mainly to the truncation of higher modes, but Grimberg et al. [81]
recently demonstrated that these instabilities are largely due to the standard Galerkin projection
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where the left and right set of basis functions match. To mitigate the instabilities encountered in
Galerkin projection-based ROMs, Carlberg et al. [82] showed that least-squares Petrov–Galerkin can
indeed build more accurate ROMs while Galerkin ROM becomes unstable for long time intervals.
Alternatively, closure and stabilization models represent a feasible choice in the accuracy/stability-cost
trade-off for Galerkin ROMs. Closure models have been popular in turbulence community, and
found their way into ROM for fluid flows as well. Therefore, we also investigate the effect of a linear
mode dependent eddy viscosity type closure model to stabilize the solution of ROM in case of 2D
Kraichnan turbulence.

2. Two-Dimensional Kraichnan Turbulence

The two-dimensional (2D) turbulence cannot be realized in practice or experiments, but only in
numerical simulations. Furthermore, 2D turbulence behaves differently from realistic 3D turbulence.
In 3D turbulence, energy is transferred forward, from large scales to smaller scales, via vortex stretching.
Conversely, in 2D turbulence, most of the forcing and dissipation energy will be transferred from
smaller scales to larger scales and follows the Kraichnan–Batchelor–Leith (KBL) theory [83–85]. Despite
the apparent simplicity in dealing with two spatial dimensions, 2D turbulence is very rich in its
dynamics due to the inverse energy and forward enstrophy cascading mechanisms, which makes it
a feasible testbed for a study of ROM in turbulence. Nonetheless, readers should be cautious while
trying to extend the investigated framework into more realistic 3D turbulence cases.

The decaying homogeneous isotropic 2D Kraichnan turbulence follows the 2D Navier–Stokes
equations, which can be written in vorticity-streamfunction formulation as below,

∂ω

∂t
+ J(ω, ψ) =

1
Re

∇2ω, (2)

where ω is the vorticity and ψ is the streamfunction. Re is Reynolds number relating the inertial and
viscous effects. J(ω, ψ) and ∇2ω are the Jacobian and Laplacian operators, respectively, which can be
defined as

J(ω, ψ) =
∂ω

∂x
∂ψ

∂y
− ∂ω

∂y
∂ψ

∂x
, (3)

∇2ω =
∂2ω

∂x2 +
∂2ω

∂y2 . (4)

The vorticity-streamfunction formulation enforces the incompressibility condition, where the vorticity
and streamfunction fields are related by the following Poisson equation,

∇2ψ = −ω. (5)

According to the KBL theory for 2D turbulence, the inertial range in the energy spectrum is
proportional to k−3 in the inviscid limit. In our numerical experiments, the initial energy spectrum in
Fourier space is given by

E(k) =
4k4

3
√

πk5
p

exp

[
−
(

k
kp

)2
]

, (6)

where k =
√

k2
x + k2

y and kp is the wavenumber at which the maximum value of initial energy spectrum
occurs. During the time evolution process, due to the nonlinear interactions, this spectrum quickly
approaches toward k−3 spectrum as we will show later when we present our results. The magnitude
of the vorticity Fourier coefficients is related to the energy spectrum as

|ω̃(k)| =
√

k
π

E(k). (7)
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Then, the initial vorticity distribution (in Fourier space) is obtained by introducing a random phase.
More details regarding derivation of the initial vorticity distribution from an assumed energy spectrum
can be found in [86]. In the present study, we use a spatial computational domain of (x, y) ∈ [0, 2π]×
[0, 2π] and a time domain of t ∈ [0, 4]. Periodic boundary conditions are applied in both x- and
y-directions. A spatial grid of 10242 and a timestep of Δt = 0.001 are used. A fourth-order accurate
Arakawa scheme [87] is used for spatial discretization and a third-order total variation diminishing
Runge–Kutta scheme (TVD-RK3) [88] is adopted for temporal discretization.

The energy spectrum for different values of Reynolds number is given in Figure 1 at t = 2 and
t = 4. We can observe that the energy spectrum in the inertial range flattens toward the classical
k−3 scaling limit as Re increases, in agreement with the KBL theory for two-dimensional turbulence.
It should be noted that the same initial vorticity distribution is enforced for all numerical experiments,
by fixing the seed of the random numbers generator. In order to verify the validity of the used spatial
resolution, Figure 2 shows the energy spectrum for Re = 16,000 (left) and Re = 32,000 (right) using two
spatial resolutions (i.e., 10242 and 20482). A good match between the energy spectra corresponding to
the two spatial resolutions can be seen, even for Re = 32,000. Nonetheless, we will consider Re = 16,000
with a spatial grid of 10242 for the rest of the present study. In addition, results obtained from solving
Equation (2) using the aforementioned numerical schemes and resolution will be denoted as the full
order model (FOM) results.

(a) (b)

Figure 1. Evolution of energy spectra in 2D decaying Kraichnan turbulence for Re ∈ {2000, 4000, 8000,
16,000, 32,000 } at t = 2 (a) and t = 4 (b). Notice the convergence of energy spectrum in the inertial
range to the k−3 scaling with increasing Reynolds number.

(a) (b)

Figure 2. A mesh independence test for Re = 16,000 (a) and Re = 32,000 (b) using two spatial resolutions.
An acceptable match is obtained from both resolutions.
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3. Reduced Order Modeling

In order to build a Galerkin projection-based reduced order model (ROM) of a physical system,
the system’s state, u(x, t), is assumed to live in a reduced trial subspace. Then, the high-dimensional
operators are projected onto the same subspace, constraining the residual to be orthogonal to that
subspace. Therefore, generating effective reduced subspaces that sufficiently contain the solution
manifold is vital for the successful construction of Galerkin ROMs. One of the very early-developed
and well-known approaches to build reduced subspaces is Fourier analysis. However, it assumes
universal basis functions (or modes) which have no specific relation to the system in hand, except
for boundary conditions. More efficiently, snapshot-based model reduction techniques can tailor a
reduced subspace that best fits the problem by extracting the underlying coherent structures that
control the major dynamical evolution we are interested in. Among those snapshot-based techniques,
proper orthogonal decomposition (POD) is the most popular and well-established approach extracting
the modes which contribute the most to the total system’s energy [4,89]. The basic implementation of
POD is presented in the following subsection.

3.1. Proper Orthogonal Decomposition

As mentioned before, proper orthogonal decomposition (POD) is a snapshot-based approach.
Therefore, a collection of system’s realizations (called snapshots) are required in advance. Assuming
that a number of snapshots (Ns) of the 2D vorticity field, denoted as ω(x, y, tn), are stored at consecutive
times tn for n = 1, 2, . . . , Ns, the time-averaged field, called “base flow”, can be computed as

ω̄(x, y) =
1
N

N

∑
n=1

ω(x, y, tn). (8)

The mean-subtracted snapshots, also called anomaly or fluctuation fields, are then computed as the
difference between the instantaneous fields and the mean field,

ω′(x, y, tn) = ω(x, y, tn)− ω̄(x, y). (9)

This mean-subtraction is common in ROM community, and it guarantees that ROM solution would
satisfy the same boundary conditions as a full order model [90]. This anomaly field procedure is also
interpreted as a mapping of snapshot data to its origin (i.e., centering), and will be used for constructing
the POD basis functions. The POD approach basically relies on an eigenvalue decomposition of a
snapshot correlation (or covariance) matrix. Since the number of snapshots (O(102)) is usually much
less than the number of grid points (O(106)), we follow the method of snapshots [54] for efficient
implementation of the POD algorithm.

An Ns × Ns temporal correlation data matrix A = [aij] is computed from the inner product of
temporal anomaly fields as

aij = 〈ω′(x, y, ti); ω′(x, y, tj)〉, (10)

where the angle-parenthesis denotes the inner product in Hilbert space defined as

〈ω′(x, y, ti); ω′(x, y, tj)〉 =
∫

Ω
ω′(x, y, ti)ω

′(x, y, tj)dxdy, (11)

where Ω represent the physical (spatial) domain. Then, an eigenvalue decomposition of A is
performed as

AV = VΛ, (12)

where Λ is a diagonal matrix whose entries are the eigenvalues λk of A, and V is a matrix whose
columns vk are the corresponding eigenvectors. A is a Gramian matrix, a property which can be
utilized for efficient solution of the eigenvalue problem (e.g., using Jacobi transformations [91]).
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The eigenvalues λk represent the amount of information contained in each mode; therefore, they
should be arranged in a descending order (i.e., λ1 ≥ λ2 ≥ · · · ≥ λN), for proper selection of the POD
modes. The POD modes φk are finally computed as

φk(x, y) =
1√
λk

N

∑
n=1

vn
k ω′(x, y, tn), (13)

where vn
k is the n-th component of the eigenvector vk. It can be easily verified that the POD modes are

orthonormal (i.e., 〈φi; φj〉 = δij), which simplifies the derivation of ROM.

3.2. Galerkin Projection

With the POD algorithm implemented, a set of POD basis functions are obtained {φk(x, y)}R
k=1,

where R is the number of POD modes retained in ROM (i.e., the size of the reduced subspace).
The solution is therefore approximated as a superposition of the contributions of these selected modes
as follows:

ω(x, y, t) = ω̄(x, y) +
R

∑
k=1

αk(t)φk(x, y), (14)

where αk(t) are the so-called temporal modal coefficients. Since the vorticity and streamfunction are
related by the kinematic relationship given by Equation (5), the basis functions (θk(x, y)) and mean field
(ψ̄(x, y)) corresponding to the streamfunction can be obtained from those of the vorticity as follows:

∇2ψ̄(x, y) = −ω̄(x, y), (15)

∇2θk(x, y) = −φk(x, y), k = 1, 2, . . . , R, (16)

which might result in a set of basis functions for the streamfunction that are not necessarily
orthonormal. Moreover, the reduced order approximation of streamfunction can share the same
temporal coefficients αk(t),

ψ(x, y, t) = ψ̄(x, y) +
R

∑
k=1

αk(t)θk(x, y). (17)

Those approximations are then substituted in Equation (2), as follows:

∂

∂t

[
ω̄(x, y) +

R

∑
k=1

αk(t)φk(x, y)

]
=− J

([
ω̄(x, y) +

R

∑
k=1

αk(t)φk(x, y)

]
,

[
ψ̄(x, y) +

R

∑
k=1

αk(t)θk(x, y)

])

+
1

Re
∇2

[
ω̄(x, y) +

R

∑
k=1

αk(t)φk(x, y)

]
.

Then, we use the definition of Jacobian operator and expand the above expression as

∂

∂t
ω̄(x, y) +

∂

∂t

[
R

∑
k=1

αk(t)φk(x, y)

]
=− J (ω̄(x, y), ψ̄(x, y))− J

(
R

∑
k=1

αk(t)φk(x, y),
R

∑
k=1

αk(t)θk(x, y)

)

− J

(
ω̄(x, y),

R

∑
k=1

αk(t)θk(x, y)

)
− J

(
R

∑
k=1

αk(t)φk(x, y), ψ̄(x, y)

)

+
1

Re
∇2ω̄(x, y) +

1
Re

∇2

[
R

∑
k=1

αk(t)φk(x, y)

]
.
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Note that the first term
∂

∂t
ω̄(x, y) is zero. In addition, the Jacobian and Laplacian operators are spatial

functions; therefore, the following can be written (after change of indices)

∂

∂t

[
R

∑
i=1

αi(t)φi(x, y)

]
=− J (ω̄(x, y), ψ̄(x, y))−

R

∑
i=1

R

∑
j=1

αi(t)αj(t)J
(
φi(x, y), θj(x, y)

)
−

R

∑
i=1

αi(t)J (ω̄(x, y), θi(x, y))−
R

∑
i=1

αi(t)J (φi(x, y), ψ̄(x, y))

+
1

Re
∇2ω̄(x, y) +

R

∑
i=1

αi(t)
1

Re
∇2φi(x, y).

Then, we can collect the constant, linear, and nonlinear terms (in time) as follows:

∂

∂t

[
R

∑
i=1

αi(t)φi(x, y)

]
=

[
−J (ω̄(x, y), ψ̄(x, y)) +

1
Re

∇2ω̄(x, y)
]

+
R

∑
i=1

αi(t)
[
−J (ω̄(x, y), θi(x, y))− J (φi(x, y), ψ̄(x, y)) +

1
Re

∇2φi(x, y)
]

−
R

∑
i=1

R

∑
j=1

αi(t)αj(t)J
(
φi(x, y), θj(x, y)

)
.

Finally, an inner product with an arbitrary basis function φk(x, y) is performed, where we make use
of the orthonormality of the vorticity basis functions. Therefore, a reduced order model is obtained,
which can be simply represented by the following set of ODEs for αk(t),

dαk
dt

= Bk +
R

∑
i=1

Li,kαi +
R

∑
i=1

R

∑
j=1

Ni,j,kαiαj, k = 1, 2, ..., R, (18)

where the predetermined model coefficients can be computed by the following numerical integration
(offline computing)

Bk =
〈
− J(ω̄, ψ̄) +

1
Re

∇2ω̄; φk
〉
,

Li,k =
〈
− J(ω̄, θi)− J(φi, ψ̄) +

1
Re

∇2φi; φk
〉
,

Ni,j,k =
〈
− J(φi, θj); φk

〉
. (19)

To complete the dynamical system given by Equation (18), the initial conditions for αk(t) may be
obtained by the following projection of the initial vorticity field onto the respective basis functions,

αk(t0) =
〈
ω(x, y, t0)− ω̄(x, y); φk

〉
, (20)

where ω(x, y, t0) is the vorticity field specified at initial time t0.
We note that the approach described here is called tensorial ROM, since the model predetermined

terms (especially those corresponding to nonlinear terms) are computed in advance as tensors
during an offline stage, while the online solution of Equation (18) scales with R3. Alternatively,
the model terms can be calculated online while minimizing the cost of computing the nonlinear terms
through approximating approaches like discrete empirical interpolation method (DEIM) [92,93], gappy
POD [60,94], and missing point estimation (MPE) [95,96]. An overview of these techniques can be
found in [97,98].
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4. Partitioned ROM

A representative solution subspace is a key factor in the construction of ROMs of physical
systems and POD has been successfully offering a systematic approach for building such a subspace.
However, POD in principle depends on a global approximation of the snapshot data. This has several
consequences, a few of which are mentioned here. First, local temporary excursions in state space
which contain small amounts of energy can be overlooked by POD because their contribution to the
total energy may be negligible. These excursions can, however, be of interest and have significant
impact on the dynamical evolution (see [99], for example). Second, the global nature of POD approach
can result in overall deformation of the obtained modes for systems with fast variations in state. As a
result, the constructed POD modes are smoothed out and cannot capture any dominant structure at all.
This in turn causes an energy distribution across a large number of modes; therefore, the truncated
modes contain a significant amount of system’s energy, which causes inaccuracies and instabilities in
the solution unless the size of the ROM is increased.

An alternative approach which preserves the optimality of POD, while giving care to the system’s
local characteristics, is called principal interval decomposition (PID) [69–73]. In PID, the time domain
is divided into a few partitions, each characterizing a specific stage in the system’s dynamics and
evolution. Then, the same POD algorithm is applied within each partition to generate a set of basis
functions that best fit the respective partition locally. In a sense, the PID approach can be viewed as
decomposing the global POD subspace into a few of locally optimal subspaces. As a result, accurate
partitioned ROMs with smaller sizes can be dedicated to each individual sub-interval. More details
about the properties of PID can be found in [73]. This partitioning idea can also be performed in the
physical domain, state space, or parameter space [64,100–102].

In brief, the time domain T = [t0, t f ] is divided into a number P of non-overlapping partitions
(every two consecutive partitions share only the interface). Adaptive partitioning and clustering
techniques can be used to tailor partitions with arbitrary widths if no a priori information is available
about the dynamics of the systems. However, for simplicity and clarity of presentation, we assume
equidistant decomposition of the time domain. In other words, the total number of snapshots Ns is
divided into Ns/P sets. After that, local mean fields ω̄(l)(x, y) and ψ̄(l)(x, y) are computed and the
POD algorithm described in Section 3.1 is applied to each group of snapshots to generate local basis
functions {φ

(l)
k (x, y)}R

k=1 and {θ
(l)
k (x, y)}R

k=1 for l = 1, 2, . . . , P. Then, the Galerkin ROM equations are
obtained for each interval as

dα
(l)
k

dt
= B

(l)
k +

R

∑
i=1

L
(l)
i,k α

(l)
i +

R

∑
i=1

R

∑
j=1

N
(l)
i,j,kα

(l)
i α

(l)
j , k = 1, 2, ..., R, l = 1, 2, . . . , P, (21)

where the predetermined model coefficients can be computed partition-wise by the following
numerical integrations:

B
(l)
k =

〈
− J(ω̄(l), ψ̄(l)) +

1
Re

∇2ω̄(l); φ
(l)
k
〉
,

L
(l)
i,k =

〈
− J(ω̄(l), θ

(l)
i )− J(φ(l)

i , ψ̄(l)) +
1

Re
∇2φ

(l)
i ; φ

(l)
k
〉
,

N
(l)
i,j,k =

〈
− J(φ(l)

i , θ
(l)
j ); φ

(l)
k
〉
, (22)

and the initial conditions for α
(1)
k (t) are obtained by the following projection:

α
(1)
k (t0) =

〈
ω(x, y, t0)− ω̄(1)(x, y); φ

(1)
k
〉
. (23)

240



Fluids 2020, 5, 26

It remains to enforce the interface constraints to enable solution transition from one partition to the
next, if no access to the true field at the interface instant is available. We do so by imposing the
following condition at the interface [103],〈

ω(l)(x, y, tl)− ω(l+1)(x, y, tl); φ
(l+1)
k

〉
= 0, (24)

where tl represents the time instant at the interface between the interval l and l + 1. Here, ω(l)(x, y, tl)

is the reconstructed vorticity field at the interface using the left interval (l), while ω(l+1)(x, y, tl) is
reconstructed at the same instant, but using the right interval (l + 1). Those can be rewritten as

ω(l)(x, y, tl) = ω̄(l)(x, y) +
R

∑
k=1

α
(l)
k (tl)φ

(l)
k (x, y), (25)

ω(l+1)(x, y, tl) = ω̄(l+1)(x, y) +
R

∑
k=1

α
(l+1)
k (tl)φ

(l+1)
k (x, y). (26)

This reduces to performing the following computation at the interface to re-initiate our solver at
the first timestep of the new time interval,

α
(l+1)
k (tl) =

〈 R

∑
i=1

α
(l)
i (tl)φ

(l)
i (x, y) + ω̄(l)(x, y)− ω̄(l+1)(x, y); φ

(l+1)
k (x, y)

〉
. (27)

5. Results

As indicated in Section 2, the full order model is solved over a square domain with a side length
of 2π using a spatial grid of 10242 for t ∈ [0, 4] with a timestep of 0.001. These were shown to be
sufficient resolutions to solve the problem at a Reynolds number of 16, 000. To build the reduced order
subspace using the POD and PID algorithms, described in Sections 3.1 and 4, 800 snapshots of vorticity
field were collected (i.e., every five timesteps). It was also shown that the sampling rate has minor
effect on POD-based modal decomposition, as long as the Nyquist–Shannon sampling criterion is
met [104]. Another factor we consider in our choice of sampling rate is to have adequate number of
snapshots in each sub-interval (after partitioning the time domain).

The partitioned ROM approach is used to solve Equation (21) using different numbers of partitions.
In particular, we present the results for P ∈ {1, 4, 8}. Note that, for P = 1, the approach reduces to
the standard Galerkin-POD ROM with a single interval covering the whole time domain. In Figure 3,
the energy spectrum at t = 4 is used to illustrate the effect of increasing the number of partitions on
ROM accuracy and convergence to the FOM solution. This is shown for P = 1 (top), P = 4 (middle),
and P = 8 (bottom), along with a compensated (for zooming-in) view of the energy spectrum at the
inertial range on the right. We can easily observe that increasing the number of partitions improves
the convergence of ROM energy spectrum to the true one for all values of R.

Although increasing the number of retained modes generally improves the ROM accuracy, this
does not help a lot in the case with P = 1. This is shown in Figure 3, where we still see a large deviation
of ROM results in the inertial range even with 32 modes. This might be attributed to the smoothing-out
of constructed basis functions in such a way that information is distributed across a large number
of modes. Consequently, the effect of modal truncation on system’s dynamics is no more negligible.
On the other hand, a partitioned ROM with P = 8 enables us to build accurate ROMs with relatively
compact sizes (e.g., R = 16).
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(a) (b)

(c) (d)

(e) (f)

Figure 3. Energy spectra obtained from partitioned ROM with P = 1 (a,b), P = 4 (c,d), and P = 8 (e,f).
Note that P = 1 corresponds to the standard Galerkin-based reduced order model (ROM) with global
proper orthogonal decomposition (POD) modes.

To provide more insights about the scales resolved with partitioned ROM, we plot the evolution
of the temporal coefficients of the first and eighth modes in Figure 4. We can notice that a ROM with
global POD modes (i.e., P = 1) can adequately capture the evolution of the first mode’s contribution
(with increasing deviations toward the end of the time domain). On the other hand, a phase shift
and amplification of the temporal evolution of the 8th modal coefficient are spotted after a small
initial period. From a physical point of view, the first modes correspond to the large dominating
scales, while the last ones correspond to the small (or fine) scales. This indicates that a global POD
application provides ROMs that moderately capture the large scales, but can fail to capture the finer
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details. Moreover, we can deduce from Figure 4a that the dynamics at different time instants is different
(where all the snapshots are projected onto the same set of basis functions). This justifies the use of
paritioned ROM to tailor unique bases for each sub-interval. On the other hand, with partitioned
ROMs (i.e., P = 4 and P = 8), the evolution of both α1 and α8 is tracked accurately, implying that
the presented partitioning approach improves the ROM’s capabilities to represent the fine scales.
Moreover, the accuracy of α1 prediction is improved compared to P = 1. Although the evolution of
temporal coefficients in different sub-intervals looks similar, this is because the fields in each region are
projected onto their respective bases. Therefore, once reconstructed, the dynamics in the full order space
will be different. In addition, we can note the “jump” at the interfaces (e.g., at t ∈ {1, 2, 3, 4} for P = 4)
corresponding to updating the solution manifold. The true modal coefficients (denoted as FOM) is
obtained from projecting the vorticity field at different times on the corresponding basis function as

α
(l)
k (t) =

〈
ω(x, y, t)− ω̄(l)(x, y); φ

(l)
k (x, y)

〉
. (28)

More visualizations of ROM’s predictability are provided in Figures 5 and 6, showing the vorticity
(in color) and streamfunction (in height) at the final time (i.e., t = 4), compared to the FOM results.
In Figure 5, we illustrate that ROM with P = 1 fails to correctly predict the final fields at different
values of R. At R = 16, even the large scales are not captured accurately (recall the larger deviation of
α1 at final time from Figure 4). Conversely, both the large fine scales are predicted reliably using the
partitioned ROM approach as shown in Figure 6 with R = 16.

In order to obtain more insights about the scales resolved by partitioned ROM, compared to
standard POD-based ROM, we compare PID ROM results for P = 8 and R = 16, with standard ROM
(i.e., P = 1) and increased number of modes. The root-mean-squares errors between Galerkin ROMs
and FOM are shown in Table 1. We find that at least around R = 128 modes are needed for standard
Galerkin ROM to achieve similar accuracy as partitioned ROM, which suggests that the relevant scales
represented in those global 128 modes are almost encapsulated in 16 local modes if eight partitions are
used. The computational gain of the PID approach can be easily seen from this analysis since online
computational cost scales with O(R3).

Table 1. Root-mean-squares error at time t = 4 between Galerkin ROM (without any additional
stabilization κ = 0) and FOM at Re = 16,000.

Model ||ψROM − ψFOM || ||ωROM − ωFOM ||

P = 8 (R = 16) 7.47 × 10−3 1.2774

P = 1 (R = 16) 1.14 × 10−1 9.7322

P = 1 (R = 24) 7.43 × 10−2 8.8779

P = 1 (R = 32) 4.48 × 10−2 7.6098

P = 1 (R = 48) 1.77 × 10−2 5.2468

P = 1 (R = 64) 1.12 × 10−2 4.1695

P = 1 (R = 96) 5.99 × 10−3 2.7428

P = 1 (R = 128) 3.86 × 10−3 1.9213
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(a) (b)

(c) (d)

(e) (f)

Figure 4. Temporal evolution of the first and eighth modal coefficients using different numbers of
partitions, compared to the true values obtained from the projection of FOM vorticity field on the
corresponding basis function. (a) shows the first modal coefficient with P = 1, while the eighth is given
in (b). Results for P = 4 are shown in (c,d), while those for P = 8 are given in (e,f).
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(a) (b)

(c) (d)

Figure 5. Predicted results at time t = 4 showing vorticity contours in color with the level of
streamfunction as height. (a) Full order model (FOM), (b) ROM (R = 16) with P = 1, (c) ROM
(R = 24) with P = 1, and (d) ROM (R = 32) with P = 1. Note that P = 1 refers to the standard Galerkin
ROM approach using a single partitioning zone.

(a) (b)

(c) (d)

Figure 6. Predicted results at time t = 4 showing vorticity contours in color with the level of
streamfunction as height. (a) Full order model (FOM), (b) ROM (R = 16) with P = 1, (c) ROM
(R = 16) with P = 4, and (d) ROM (R = 16) with P = 8.
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5.1. Kolmogorov n-Width and Relative Information Content

The Kologorov n-width provides a measure of the system’s reducibility, and in POD/PID context,
it can be considered as a measure of how well a linear superposition of POD modes might represent the
underlying dynamics. Similarly, a relative information content (RIC) of the snapshot matrix can be used
as a simple quantitative metric to understand the Kolmogorov n-width of the system. The following
RIC formula [105] is used to compute the percentage modal energy,

RIC(l)(k) =

⎛⎝ ∑k
j=1 λ

(l)
j

∑Ns/P
j=1 λ

(l)
j

⎞⎠× 100. (29)

In other words, RIC(k) represents the fraction of information (variance) of the snapshot matrix
that can be recovered using a specific number (k) of basis functions. Figure 7 shows the growth of RIC
values with increasing k for different values of P. We can observe that, in case of P = 1, the increase of
the fraction of preserved information is relatively slow and more modes are required to exceed a 90%
RIC. On the other hand, with the use of a partitioned ROM approach, the slope of RIC curve increases
significantly. For example, less than 10 modes are enough to hit the 90% RIC value. In Kolmogorov
n-width context, a faster increase in RIC corresponds to a faster decrease of the Kolmogorov n-width.
Therefore, we consider that partitioned ROM can, in turn, help to break the Kolmogorov barrier and
increase the system’s reducibility.

(a) (b)

Figure 7. Relative information content (RIC) of the snapshot matrix. (a) varying the number of
partitions P, and (b) its sensitivity with respect to different zones for P = 4 case.

We note that, in Figure 7a, we only show the RIC in the first sub-interval (i.e., l = 1) for the
sake of clarity. In Figure 7b, we plot the RIC curves for P = 4 in the four sub-intervals, where they
almost match each other. An interesting observation from Figure 7b is that the slopes of RIC in the
second and third sub-intervals are the lowest, compared to those in the first and last sub-intervals.
This might be justified by the fact that flow is just initiated in the first sub-interval with relatively
smooth dynamics. After that, most of the system’s vortical evolution and energy exchange take place
within the following sub-intervals, decaying to quasi steady-state in the last sub-interval. For fast
evolution and strong dynamics, more modes are required to capture sufficient amount of information.
Alternatively, constructing local modes (through further partitioning) can help to accurately capture
those dynamics. Since we use fixed number of modes in each sub-interval, this might correspond to
different RIC values. That is the ROM approximation in some regions might be more or less accurate
than the approximation in other regions. This might be crucial for flow problems with stronger
and more complicated dynamics, where that difference in RIC values can cause inconsistencies of
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approximations. Alternatively, varying values of R can be used to satisfy pre-determined level of RIC
in each partition.

5.2. Closure Modeling

It turns out that the partitioning approach helps with building more accurate and stable ROM
due to several effects. First, it helps to construct more compact and localized subspaces which capture
fine scales efficiently. Second, the energy (information) is concentrated in fewer modes. As a result of
these two effects, modal truncation works effectively as the discarded modes have negligible effects
on the system’s dynamics. However, as shown in previous discussions, a large number of partitions
might be needed to provide acceptable accuracy. Other than the increased storage requirement to
store basis function for each sub-interval, a projection error is accumulated due to interface treatment.
If the true field data are available at the interface, it can be projected onto the respective basis functions
to obtain the corresponding modal coefficients at the beginning of the sub-interval. Since this is not
generally available, the update of ROM solution manifold is performed using Equation (27), where
the obtained reduced order approximation of the field from the previous partition is projected onto
the basis functions of the following partition. Since that approximation depends on the accuracy of
the ROM in the current partition, and lives in a reduced subspace different than that of the following
subspace, discontinuities can easily occur at the interface. In Figure 8, we show the modal coefficients
at the interfaces for P = 4 obtained from ROMs with different R dimensions. Moreover, the mismatch
between initial conditions at each interface increases in subsequent partitions, due to the successive
interface treatment, resulting in amplification of the error. However, we highlight that the projection
error generated at the interface is bounded and overall accuracy gain due to the localization in the PID
approach surpasses that error.

Figure 8. Close-up views of temporal coefficients at the interfaces for P = 4 case.
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Conversely, for ROM with global POD application without any partitioning, the truncated
modes might include substantial amount of energy and/or have strong interactions with the retained
modes. Hence, inaccuracies and instabilities can easily take place in the produced ROM. Therefore, a
compromise between accuracy gain from localization and projection error from interfaces should be
considered while selecting the number of intervals. To enhance the stability of ROMs, closure models
have been effectively incorporated (inspired from large eddy simulation (LES) studies). Here, we
investigate the effect of closure modeling to stabilize and correct ROMs based on global application
of POD (i.e., P = 1). We utilize a linear mode length eddy viscosity closure based on Rempfer’s
model [72,106,107], where the 2D Navier–Stokes equation (given in Equation (2)) is re-written as

∂ω

∂t
+ J(ω, ψ) =

1
Re

(
1 + κ

k
R

)
∇2ω, (30)

where κ is a free-parameter controlling the amount of stabilization added to the model, R is the number
of modes, and k is the mode index (i.e., k = 1, 2, . . . , R). More recently, several ideas from a plethora of
predictive turbulence models have been used in ROMs in the spirit of closure modeling to account for
the effects of the truncated scales [108–115]. In the present study, we test the effect of the linear mode
dependent eddy viscosity closure model for κ ∈ {0, 4, 8}, where κ = 0 corresponds to the standard
Galerkin ROM without stabilization.

In Figure 9, we present the temporal evolution of α1 and α8 for ROM with 16 modes and a single
global interval (i.e., P = 1). We find that the closure significantly improves the predictive capabilities
of the ROM, and with increasing κ (i.e., adding more stabilization), results converge to the true values
of the modal coefficients.

(a) (b)

Figure 9. Temporal evolution of the first (a) and eighth (b) modal coefficients in the presence of
closure modeling.

In addition, the final vorticity and streamfunction fields at t = 4 are shown in Figure 10. We can
notice tremendous improvement of predicted results with closure modeling. With close investigation
of surface topology, we can observe that Figure 10d captures the correct large scales as Figure 10a.
However, we can see that smaller and finer details are overlooked and smoothed-out. This is to be
expected given the fact that closure models try to compensate the effect of the truncated modes on the
dynamics of the retained modes. In other words, it helps to improve our predictions of the dynamics of
these retained modes, but does not add the contribution of the truncated modes into our reduced order
approximation. Therefore, our ROM prediction will always be restricted to the scales represented by
the retained modes. In case of global POD modes, only the large scales are captured and the fine scales
are smoothed-out, which justifies Figure 10d.
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(a) (b)

(c) (d)

Figure 10. Predicted results in the presence of closure modeling at time t = 4 showing vorticity
contours in color with the level of streamfunction as height. (a) full order model (FOM), (b) ROM with
κ = 0, (c) ROM with κ = 4, and (d) ROM with κ = 8. For (b–d): R = 16 and P = 1.

Finally, the energy spectrum at final time is given in Figure 11, where we can see the influence
of closure modeling in improving ROM results. A very nice observation from this figure is that
stabilization helps a lot in the inertial regime of energy spectrum, but it causes over-stabilization in the
dissipative regime.

(a) (b)

Figure 11. Energy spectra at final time predicted by ROMs in the presence of stabilization, compared
to the FOM spectrum and k−3 scaling (a), with a compensated view in (b).

The root-mean-squares errors (RMSE) between Galerkin ROM approximation (with P = 1 and
R = 16), in the presence of stabilization, and FOM solution are shown in Table 2, compared to the base
case without closure. It is clear that the addition of stabilization to Galerkin ROM helps to improve
the predictions and reduces the approximation error. However, compared to Table 1, we can deduce
that the accuracy gain due to partitioning is much more superior than that of closure. In addition, the
RMSE is sensitive to the value of the stabilization parameter. Therefore, a dynamic selection of this
parameter might be needed to guarantee sufficient correction.
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Moreover, it should be noted that there might exist situations where the gain from only closure
is minimum, even in case of “optimal” closure [73]. Hence, a combination of both partitioning and
stabilization seems to be a feasible choice for building accurate, stable, and compact ROMs for turbulent
flows. Indeed, Ahmed and San [72] demonstrated that an eddy viscosity based closure in conjunction
with PID yields significant improvements in accuracy for capturing strong moving discontinuities
with a negligibly small computational overhead. In addition, Table 3 shows the effect of stabilization
through closure modeling in the partitioned ROM (with P = and R = 16). It is clear that the closure
slightly improves the RMSE of vorticity field approximation. In addition, we can see that further
increase in κ can actually increase the RMSE due to over stabilization. It can be also observed that
RMSE in streamfunction predictions in case of closure modeling with PID is generally larger than that
in case of PID without closure. This can be attributed to the nature of streamfunction being inverse of
the Laplacian operator of vorticity, making it a smoother field by construction. Therefore, closure with
PID might cause over-stabilization and excessive smoothing of the streamfunction fields predictions.
This again suggests the development of a dynamical strategy to estimate optimal values of eddy
viscosity coefficient.

Table 2. Root-mean-squares error at time t = 4 between the standard Galerkin ROM (P = 1, R = 16)
and FOM in order to demonstrate the sensitivity with respect to the additional stabilization through κ

at Re = 16,000.

Model with 16 Modes (P = 1) ||ψROM − ψFOM || ||ωrom − ωFOM ||

κ = 0 1.14 × 10−1 9.7322

κ = 0.1 1.11 × 10−1 9.6010

κ = 0.25 1.07 × 10−1 9.4103

κ = 1.0 8.97 × 10−2 8.5579

κ = 2.0 7.24 × 10−2 7.6032

κ = 4.0 5.39 × 10−2 6.3506

κ = 8.0 5.27 × 10−2 5.6756

κ = 16.0 6.41 × 10−2 5.7574

Table 3. Root-mean-squares error at time t = 4 between the partitioned ROM (P = 8, R = 16) and
FOM in order to demonstrate the sensitivity with respect to the additional stabilization through κ at
Re = 16,000.

Model with 16 Modes (P = 8) ||ψROM − ψFOM || ||ωROM − ωFOM ||

κ = 0 7.47 × 10−3 1.2774

κ = 0.1 7.62 × 10−3 1.2627

κ = 0.25 7.85 × 10−3 1.2445

κ = 1.0 8.89 × 10−3 1.2058

κ = 2.0 1.01 × 10−2 1.2322

κ = 4.0 1.18 × 10−2 1.3574

κ = 8.0 1.40 × 10−2 1.5752

κ = 16.0 1.61 × 10−2 1.8108
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5.3. Computational Cost

In addition to the accuracy gains through the partitioned ROM approach, presented in previous
subsections, a comparison in terms of computational cost is required for fair assessment. Here, we
consider two phases of ROM computations: offline and online. By offline, we refer to the evaluation of
the vectors, matrices, and tensors corresponding to the constant, linear, and nonlinear predetermined
model coefficients (i.e., B, L, and R). Meanwhile, we denote the actual prediction and solution of
Equation (21) as the online stage. Table 4 provides the CPU times in the offline and online stages for
different number of partitions and modes. From this table, we can see that increasing the number of
modes increases the CPU times for both the offline (due to computation of larger vectors, matrices,
and tensors) and online (due to solving an increased number of equations) stages. Interestingly,
we can observe that the computational cost of the online stage scales cubically with increasing R.
This conforms to the quadratic nonlinearity in the investigated system, making the online cost an order
of O(R3).

On the other hand, increasing the number of partitions has a negligible effect on the online
CPU time. Therefore, the partitioned ROM approach provides more accurate results with similar
online costs as standard ROM with the same number of modes. However, increasing P (with fixed
R) results in an increase in the offline CPU time. This corresponds to the computation of B, L, and
R for each individual partition. That is why the offline CPU time scales linearly with increasing P.
Nonetheless, it was shown in [73] that the CPU times for basis construction are largely reduced in the
PID framework due to the solution of smaller eigenvalue problems rather than solving a large one.
Finally, it is noteworthy that the partitioned ROM approach requires more memory to store the local
basis functions and model predetermined coefficients in each partition. Therefore, we can consider
that partitioned ROM converts the offline and storage costs into a speed-up of the online deployment.

Table 4. CPU time (in seconds) for ROM prediction and predetermined model coefficients computations,
denoted as online and offline stages, respectively. We note that the CPU time assessments documented
in this table are based on Fortran executions.

R = 16 R = 24 R = 32

P = 1

online 0.3889 1.1448 2.6925

offline 153.1237 393.5841 745.8216

P = 4

online 0.3719 1.1568 2.6026

offline 619.4428 1507.8947 3032.1081

P = 8

online 0.3699 1.1368 2.6036

offline 1142.9432 2882.4478 5776.0589

6. Conclusions and Future Works

We utilize a partitioning approach in the current study in order to build a compact reduced
order models of 2D turbulent flows. We demonstrate the framework using the two-dimensional
decaying Kraichnan turbulence. It is shown that this partitioned ROM helps to break the Kolmogorov
n-width barrier, in the context of a relative information content criterion. An energy spectrum analysis
is performed to emphasize the capabilities of the presented framework to sufficiently capture both
the large and fine scales and recover the energy spectra within the inertial and dissipative ranges.
The partitioned ROM produces significantly more accurate predictions than standard ROM without
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partitioning. A computational CPU time analysis reveals that the partitioned ROM minimizes the
online cost at the expense of offline cost and increased memory to build reduced order approximation
with acceptable accuracy. In addition, we investigate the use of a linear mode dependent eddy viscosity
to stabilize ROM prediction. We find that closure improves the results in the inertial kinetic energy
regime, corresponding to the large scales. However, it presents over-stabilization in the dissipative
regime, which smoothens out the field finer details. This might advocate a strategy to develop optimal
(or near optimal) estimates for the eddy viscosity coefficients to be posed. Therefore, we suggest
the use of partitioning along with closure as an enabler for more efficient ROMs turbulent flow
systems. Incorporating PID with closure would provide the flexibility of constructing ROMs with
less modes (and same number of partitions), or with less partitions (and same number of modes).
The former would provide higher speed-ups during online deployment, while the latter would reduce
the offline cost.

To this end, the partitioned ROM has been shown to improve the predictions for the investigated
2D Kraichnan turbulence case. However, scaling this framework into a 3D setting is still required to
fully assess the validity of the framework to address realistic turbulent flows with strong anisotropy.
In addition, the PID has been shown to capture finer details than standard global POD. Application
of this approach onto flow situations where global basis fails drastically and results in completely
unstable and inaccurate ROMs can be an interesting extension to the current study. Also, the adopted
PID approach assumes evenly-spaced partitions with an equal number of modes. Despite the resulting
simplicity of implementation, this fixed partitioning might be less meaningful for more challenging
flow problems where dynamics change rapidly. Therefore, an adaptive partitioning with varying
number of modes can be another extension to generalize the present work. The assumption of
non-overlapping partitions might also be relaxed to allow overlapping sub-intervals with an indicator
for smooth transition between partitions based on the actual flow conditions. Finally, the development
of a strategy to dynamically update the basis functions using data assimilation techniques would
enable the extrapolation of ROM in time while reflecting local phenomena.
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17. McNamara, A.; Treuille, A.; Popović, Z.; Stam, J. Fluid control using the adjoint method. ACM Trans. Graph.

2004, 23, 449–456. [CrossRef]
18. Bergmann, M.; Cordier, L. Optimal control of the cylinder wake in the laminar regime by trust-region

methods and POD reduced-order models. J. Comput. Phys. 2008, 227, 7813–7840. [CrossRef]
19. Ravindran, S.S. A reduced-order approach for optimal control of fluids using proper orthogonal

decomposition. Int. J. Numer. Methods Fluids 2000, 34, 425–448. [CrossRef]
20. Graham, W.; Peraire, J.; Tang, K. Optimal control of vortex shedding using low-order models.

Part I–open-loop model development. Int. J. Numer. Methods Eng. 1999, 44, 945–972. [CrossRef]
21. Graham, W.; Peraire, J.; Tang, K. Optimal control of vortex shedding using low-order models.

Part II–model-based control. Int. J. Numer. Methods Eng. 1999, 44, 973–990. [CrossRef]
22. Brunton, S.L.; Noack, B.R. Closed-loop turbulence control: Progress and challenges. Appl. Mech. Rev. 2015,

67, 050801. [CrossRef]
23. Daescu, D.N.; Navon, I.M. Efficiency of a POD-based reduced second-order adjoint model in 4D-Var data

assimilation. Int. J. Numer. Methods Fluids 2007, 53, 985–1004. [CrossRef]
24. Navon, I.M. Data assimilation for numerical weather prediction: A review. In Data Assimilation for

Atmospheric, Oceanic and Hydrologic Applications; Park, S.K., Xu, L., Eds.; Springer: New York, NY, USA, 2009;
pp. 21–65.

25. Cao, Y.; Zhu, J.; Navon, I.M.; Luo, Z. A reduced-order approach to four-dimensional variational data
assimilation using proper orthogonal decomposition. Int. J. Numer. Methods Fluids 2007, 53, 1571–1583.
[CrossRef]

26. He, J.; Sarma, P.; Durlofsky, L.J. Use of reduced-order models for improved data assimilation within an
EnKF context. In Proceedings of the SPE Reservoir Simulation Symposium, The Woodlands, TX, USA, 21–23
February 2011; Society of Petroleum Engineers: Richardson, TX, USA, 2011.

27. Houtekamer, P.L.; Mitchell, H.L. Data assimilation using an ensemble Kalman filter technique. Mon. Weather.
Rev. 1998, 126, 796–811. [CrossRef]

253



Fluids 2020, 5, 26

28. Houtekamer, P.L.; Mitchell, H.L. A sequential ensemble Kalman filter for atmospheric data assimilation.
Mon. Weather. Rev. 2001, 129, 123–137. [CrossRef]

29. Bennett, A.F. Inverse Modeling of the Ocean and Atmosphere; Cambridge University Press: New York, NY,
USA, 2005.

30. Evensen, G. Data Assimilation: The Ensemble Kalman Filter; Springer: Berlin/Heidelberg, Germany, 2009.
31. Law, K.J.; Stuart, A.M. Evaluating data assimilation algorithms. Mon. Weather. Rev. 2012, 140, 3757–3782.

[CrossRef]
32. Buljak, V. Inverse Analyses with Model Reduction: Proper Orthogonal Decomposition in Structural Mechanics;

Springer: Berlin/Heidelberg, Germany, 2011.
33. Xiao, D.; Du, J.; Fang, F.; Pain, C.; Li, J. Parameterised non-intrusive reduced order methods for ensemble

Kalman filter data assimilation. Comput. Fluids 2018, 177, 69–77. [CrossRef]
34. Navon, I. Practical and theoretical aspects of adjoint parameter estimation and identifiability in meteorology

and oceanography. Dyn. Atmos. Ocean. 1998, 27, 55–79. [CrossRef]
35. Fu, H.; Wang, H.; Wang, Z. POD/DEIM reduced-order modeling of time-fractional partial differential

equations with applications in parameter identification. J. Sci. Comput. 2018, 74, 220–243. [CrossRef]
36. Boulakia, M.; Schenone, E.; Gerbeau, J.F. Reduced-order modeling for cardiac electrophysiology. Application

to parameter identification. Int. J. Numer. Methods Biomed. Eng. 2012, 28, 727–744. [CrossRef] [PubMed]
37. Kramer, B.; Peherstorfer, B.; Willcox, K. Feedback control for systems with uncertain parameters using

online-adaptive reduced models. SIAM J. Appl. Dyn. Syst. 2017, 16, 1563–1586. [CrossRef]
38. Galbally, D.; Fidkowski, K.; Willcox, K.; Ghattas, O. Non-linear model reduction for uncertainty

quantification in large-scale inverse problems. Int. J. Numer. Methods Eng. 2010, 81, 1581–1608. [CrossRef]
39. Biegler, L.; Biros, G.; Ghattas, O.; Heinkenschloss, M.; Keyes, D.; Mallick, B.; Tenorio, L.; Waanders, B.V.B.;

Willcox, K.; Marzouk, Y. Large-Scale Inverse Problems and Quantification of Uncertainty; Wiley Online Library:
Chichester, UK, 2011.

40. Mathelin, L.; Hussaini, M.Y.; Zang, T.A. Stochastic approaches to uncertainty quantification in CFD
simulations. Numer. Algorithms 2005, 38, 209–236. [CrossRef]

41. Smith, R.C. Uncertainty Quantification: Theory, Implementation, and Applications; SIAM: Philadelphia, PA,
USA, 2014.

42. Najm, H.N. Uncertainty quantification and polynomial chaos techniques in computational fluid dynamics.
Annu. Rev. Fluid Mech. 2009, 41, 35–52. [CrossRef]

43. Zahr, M.J.; Carlberg, K.T.; Kouri, D.P. An efficient, globally convergent method for optimization under
uncertainty using adaptive model reduction and sparse grids. SIAM/ASA J. Uncertain. Quantif. 2019,
7, 877–912. [CrossRef]

44. Fairbanks, H.R.; Jofre, L.; Geraci, G.; Iaccarino, G.; Doostan, A. Bi-fidelity approximation for uncertainty
quantification and sensitivity analysis of irradiated particle-laden turbulence. J. Comput. Phys. 2020,
402, 108996. [CrossRef]

45. Kevlahan, N.R.; Hunt, J.; Vassilicos, J. A comparison of different analytical techniques for identifying
structures in turbulence. Appl. Sci. Res. 1994, 53, 339–355. [CrossRef]

46. Holmes, P.; Lumley, J.L.; Berkooz, G. Turbulence, Coherent Structures, Dynamical Systems and Symmetry;
Cambridge University Press: New York, NY, USA, 1998.

47. Rowley, C.W.; Colonius, T.; Murray, R.M. Model reduction for compressible flows using POD and Galerkin
projection. Phys. D Nonlinear Phenom. 2004, 189, 115–129. [CrossRef]

48. Ma, Z.; Ahuja, S.; Rowley, C.W. Reduced-order models for control of fluids using the eigensystem realization
algorithm. Theor. Comput. Fluid Dyn. 2011, 25, 233–247. [CrossRef]

49. Rowley, C.W. Model reduction for fluids, using balanced proper orthogonal decomposition. Int. J.
Bifurc. Chaos 2005, 15, 997–1013. [CrossRef]

50. Willcox, K.; Peraire, J. Balanced model reduction via the proper orthogonal decomposition. AIAA J. 2002,
40, 2323–2330. [CrossRef]

51. Schmid, P.J. Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 2010,
656, 5–28. [CrossRef]

52. Williams, M.O.; Kevrekidis, I.G.; Rowley, C.W. A data–driven approximation of the koopman operator:
Extending dynamic mode decomposition. J. Nonlinear Sci. 2015, 25, 1307–1346. [CrossRef]

254



Fluids 2020, 5, 26

53. Peterson, J.S. The reduced basis method for incompressible viscous flow calculations. SIAM J. Sci.
Stat. Comput. 1989, 10, 777–786. [CrossRef]

54. Sirovich, L. Turbulence and the dynamics of coherent structures. I. Coherent structures. Q. Appl. Math. 1987,
45, 561–571. [CrossRef]

55. Rim, D.; Peherstorfer, B.; Mandli, K.T. Manifold Approximations via Transported Subspaces: Model
reduction for transport-dominated problems. arXiv 2019, arXiv:1912.13024.

56. Lai, X.; Wang, X.; Nie, Y.; Li, Q. Characterizing complex flows via adaptive sparse dynamic mode
decomposition with error approximation. Int. J. Numer. Methods Fluids 2019. [CrossRef]

57. Kastian, S.; Reese, S. An Adaptive Way of Choosing Significant Snapshots for Proper Orthogonal
Decomposition. In Proceedings of the IUTAM Symposium on Model Order Reduction of Coupled Systems,
Stuttgart, Germany, 22–25 May 2018; Springer: Berlin/Heidelberg, Germany, 2020; pp. 67–79.

58. Aubry, N.; Holmes, P.; Lumley, J.L.; Stone, E. The dynamics of coherent structures in the wall region of a
turbulent boundary layer. J. Fluid Mech. 1988, 192, 115–173. [CrossRef]

59. Wang, Z.; Akhtar, I.; Borggaard, J.; Iliescu, T. Proper orthogonal decomposition closure models for turbulent
flows: A numerical comparison. Comput. Methods Appl. Mech. Eng. 2012, 237, 10–26. [CrossRef]

60. Carlberg, K.; Farhat, C.; Cortial, J.; Amsallem, D. The GNAT method for nonlinear model reduction: Effective
implementation and application to computational fluid dynamics and turbulent flows. J. Comput. Phys.
2013, 242, 623–647. [CrossRef]

61. Protas, B.; Noack, B.R.; Östh, J. Optimal nonlinear eddy viscosity in Galerkin models of turbulent flows.
J. Fluid Mech. 2015, 766, 337–367. [CrossRef]

62. Stabile, G.; Ballarin, F.; Zuccarino, G.; Rozza, G. A reduced order variational multiscale approach for
turbulent flows. Adv. Comput. Math. 2019, 45, 2349–2368. [CrossRef]

63. Xiao, D.; Heaney, C.; Mottet, L.; Fang, F.; Lin, W.; Navon, I.; Guo, Y.; Matar, O.; Robins, A.; Pain, C. A reduced
order model for turbulent flows in the urban environment using machine learning. Build. Environ. 2019,
148, 323–337. [CrossRef]

64. Xiao, D.; Heaney, C.; Fang, F.; Mottet, L.; Hu, R.; Bistrian, D.; Aristodemou, E.; Navon, I.; Pain, C. A domain
decomposition non-intrusive reduced order model for turbulent flows. Comput. Fluids 2019, 182, 15–27.
[CrossRef]

65. Kolmogoroff, A. Über die beste Annäherung von Funktionen einer gegebenen Funktionenklasse. Ann. Math.
1936, 37, 107–110. [CrossRef]

66. Pinkus, A. N-Widths in Approximation Theory; Springer Science & Business Media: Berlin/Heidelberg,
Germany, 2012; Volume 7.

67. Taddei, T. A registration method for model order reduction: Data compression and geometry reduction.
arXiv 2019, arXiv:1906.11008.

68. Greif, C.; Urban, K. Decay of the Kolmogorov N-width for wave problems. Appl. Math. Lett. 2019,
96, 216–222. [CrossRef]

69. IJzerman, W. Signal Representation and Modeling of Spatial Structures in Fluids. Ph.D. Thesis, University
of Twente, Enschede, The Netherlands, 2000.

70. Borggaard, J.; Hay, A.; Pelletier, D. Interval-based reduced order models for unsteady fluid flow. Int. J.
Numer. Anal. Model. 2007, 4, 353–367.

71. San, O.; Borggaard, J. Principal interval decomposition framework for POD reduced-order modeling of
convective Boussinesq flows. Int. J. Numer. Methods Fluids 2015, 78, 37–62. [CrossRef]

72. Ahmed, M.; San, O. Stabilized principal interval decomposition method for model reduction of nonlinear
convective systems with moving shocks. Comput. Appl. Math. 2018, 37, 6870–6902. [CrossRef]

73. Ahmed, S.E.; Rahman, S.M.; San, O.; Rasheed, A.; Navon, I.M. Memory embedded non-intrusive reduced
order modeling of non-ergodic flows. Phys. Fluids 2019, 31, 126602. [CrossRef]

74. Charney, J.G. Geostrophic turbulence. J. Atmos. Sci. 1971, 28, 1087–1095. [CrossRef]
75. Kraichnan, R.H.; Montgomery, D. Two-dimensional turbulence. Rep. Prog. Phys. 1980, 43, 547. [CrossRef]
76. Boffetta, G.; Ecke, R.E. Two-dimensional turbulence. Annu. Rev. Fluid Mech. 2012, 44, 427–451. [CrossRef]
77. Rempfer, D. On low-dimensional Galerkin models for fluid flow. Theor. Comput. Fluid Dyn. 2000, 14, 75–88.

[CrossRef]
78. Zhang, M.; Stevens, R.J. Characterizing the Coherent Structures Within and Above Large Wind Farms.

Bound.-Layer Meteorol. 2019, 1–20. [CrossRef]

255



Fluids 2020, 5, 26

79. Shah, S.; Bou-Zeid, E. Very-large-scale motions in the atmospheric boundary layer educed by snapshot
proper orthogonal decomposition. Bound.-Layer Meteorol. 2014, 153, 355–387. [CrossRef]
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Abstract: Developing accurate, efficient, and robust closure models is essential in the construction of
reduced order models (ROMs) for realistic nonlinear systems, which generally require drastic ROM
mode truncations. We propose a deep residual neural network (ResNet) closure learning framework
for ROMs of nonlinear systems. The novel ResNet-ROM framework consists of two steps: (i) In the
first step, we use ROM projection to filter the given nonlinear system and construct a spatially filtered
ROM. This filtered ROM is low-dimensional, but is not closed. (ii) In the second step, we use ResNet
to close the filtered ROM, i.e., to model the interaction between the resolved and unresolved ROM
modes. We emphasize that in the new ResNet-ROM framework, data is used only to complement
classical physical modeling (i.e., only in the closure modeling component), not to completely replace
it. We also note that the new ResNet-ROM is built on general ideas of spatial filtering and deep
learning and is independent of (restrictive) phenomenological arguments, e.g., of eddy viscosity type.
The numerical experiments for the 1D Burgers equation show that the ResNet-ROM is significantly
more accurate than the standard projection ROM. The new ResNet-ROM is also more accurate and
significantly more efficient than other modern ROM closure models.

Keywords: reduced order model; closure model; variational multiscale method; deep residual
neural network

1. Introduction

Many scientific and engineering applications, such as weather forecasting, ocean modeling,
and cardiovascuar flow simulation, can often be represented by multiscale systems of ordinary
differential equations (ODE) in high-dimensional modal spaces. The analysis and high-fidelity
simulation of such systems can be very expensive even on high-performance computing systems.
Consequently, using the full order model (FOM) for such simulations can be impractical for time
critical applications, such as flow control and parameter estimation. To alleviate the computation
burden of the FOM simulation, reduced order models (ROMs) have been successfully used.

ROMs seek a low-dimensional approximation of the FOM with orders of magnitude reduction
in computational cost. The classical projection based ROM approach is first to construct a low
dimensional space using data-driven reduction methods, such as proper orthogonal decomposition
(POD) or dynamical modal decomposition (DMD). The ROM dynamics can be obtained via Galerkin
projection of the FOM onto the reduced space [1–5].

The Galerkin projection reduced order model (GP-ROM) can be very efficient and relatively
accurate for many systems [3,4]. There are, however, systems (e.g., convection-dominated fluid flows)
for which the GP-ROM can generate inaccurate approximations. There are several approaches to
address this inaccuracy (see, e.g., [6–9]). In this paper, we focus on one of the main reasons for this
inaccuracy: the ROM closure problem, i.e., modeling the interaction between the GP-ROM modes
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and the discarded modes. Indeed, due to the inherently drastic mode truncation required in realistic
settings, the dimension of the GP-ROM space is too low to resolve the complex nonlinear interactions
of the fluid system [1,2,10,11]. GP-ROMs that do not include a ROM closure model can yield inaccurate
results, often in the form of spurious numerical oscillations [1,2,12,13]. Endowing GP-ROM with
closure models could extend the applicability of GP-ROM in many fluid mechanics applications,
such as flow control, climate modeling, and weather forecasting [1,2].

ROM closure models for nonlinear systems have been proposed in, e.g., [14–24]. The vast
majority of the current ROM closure models aim at mitigating the numerical instability observed in
GP-ROMs that do not include a closure model. Some of these ROM closure models use stabilization
techniques that have been developed in standard discretization methods (e.g., in the finite element
community) [25–27]. Other ROM closure models have imported ideas developed in standard CFD
methodologies, e.g., large eddy simulation (LES) [1,24,28,29]. The overwhelming majority of the
current ROM closure models can be categorized as stabilization techniques (for a notable exception,
see the approximate deconvolution ROM closure model [28] that uses a mathematical framework
inspired from image processing).

This is in stark contrast with classical LES, where a plethora of closure models have been proposed
over the years. The main difference between ROM closure and LES closure is that the latter has been
entirely built around physical insight from the statistical theory of turbulence (e.g., energy cascade and
Kolmogorov’s theory), which is generally posed in the Fourier setting [30,31]. This physical insight is
generally not available in the ROM setting (see, however, [32] for initial steps). Thus, current ROM
closure models have generally been deprived of this powerful methodology that represents the core of
most LES closure models.

We believe that machine learning represents a natural solution for ROM closure modeling. Indeed,
since physical insight cannot be easily extended to the ROM setting, available data and machine
learning can be utilized instead to develop ROM closure models.

We propose a novel ROM closure modeling framework that is constructed by using available
data and deep residual neural network (ResNet) (for details, see, e.g., [33–37]). The resulting ROM,
which we call the residual neural network ROM (ResNet-ROM), is schematically illustrated in (1) and
Figure 1 (see Section 3 for details). We emphasize that, in the new ResNet-ROM framework, data is used
only to complement classical physical modeling (i.e., only in the closure modeling component) [29,38],
not to completely replace it [39]. Thus, the resulting ResNet-ROM combines the strengths of both
physical and data-driven modeling.

FOM
filtering−−−−→ GP-ROM

learning closure−−−−−−−−→ ROM (1)

The main contributions of this paper can be summarized as follows:

• A novel ROM closure learning framework centered around deep neural networks.
• A hybrid framework that synthesizes the strengths of physical modeling and

data-driven modeling.
• Very good performance in numerical tests, in both the reconstructive and the predictive regime.
• Significant improvement in numerical accuracy compared with state of the art ROM

closure models.

Machine learning has recently been utilized to construct ROM closure models (see, e.g., [22,38,40–42]).
The ROM closure model proposed in [22] is similar to the new ResNet-ROM. There are, however, two major
differences between the two ROM closure models: The first difference is that the ROM closure model
in [22] uses FOM data to model both the linear and the nonlinear terms in the underlying equations (see
Section 5.1 in [22]). In contrast, in the LES spirit [31], the ResNet-ROM models only the nonlinear terms
(see Algorithm 1). One motivation for modeling only the nonlinear terms is given in the theoretical and
numerical investigation in [43], where it was shown that the contribution of the linear terms to the ROM
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closure term (i.e., the commutation error) is not significant in convection-dominated problems, such as
those we consider in this study. The second major difference between the ROM closure model in [22] and
the ResNet-ROM is the machine learning approach used to construct the ROM closure model: Bayesian
regularization and extreme learning machine approaches are used in [22], whereas a deep residual neural
network (ResNet) is used to construct the ResNet-ROM.

Figure 1. Flow chart of the new ResNet-ROM.

2. Reduced Order Model

To construct the novel ResNet-ROM framework, we use the Navier-Stokes equations (NSE) for
incompressible fluid flows: ⎧⎨⎩

∂u
∂t

− Re−1 Δu + (u · ∇) u +∇p = 0,

∇ · u = 0,
(2)

which are defined on a spatial domain Ω and on the time interval [0, T]. In the NSE (2), u is the velocity,
p the pressure, and Re the Reynolds number. The ROM basis {ϕ1, . . . ,ϕr}, where r is small, represents
the large, energy containing structures in the flow, and is obtained by using available numerical or
experimental data and, e.g., the POD or DMD methods [1,3,4]. The ROM velocity approximation is
defined as

ur(x, t) ≡
r

∑
j=1

aj(t)ϕj(x) , (3)

where {aj(t)}r
j=1 are the sought time-varying coefficients. To determine these coefficients, we use

a Galerkin procedure. We replace u in (2) with the ROM approximation (3), we take the L2 inner
product between the resulting system and each ROM basis function {ϕ1, . . . ,ϕr}, and then we integrate
by parts: ∀ i = 1, . . . , r,(

∂ur

∂t
,ϕi

)
+

1
Re

(∇ur,∇ϕi) +

(
(ur · ∇) ur,ϕi

)
= 0.

To derive the above equation, we assumed that the ROM velocity modes are perpendicular to the
discrete pressure space, which is the case if standard mixed FEs (e.g., Taylor-Hood) are used for the
snapshot creation [1,29]. Using (3), we obtain the standard Galerkin projection ROM (GP-ROM):

ȧ = A a + a� B a , (4)
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which can be written componentwise as follows: ∀ i = 1 . . . r,

ȧi =
r

∑
m=1

Aim am(t) +
r

∑
m=1

r

∑
n=1

Bimn an(t) am(t) , (5)

where Aim = −Re−1 (∇ϕm,∇ϕi) and Bimn = −
(
ϕm · ∇ϕn,ϕi

)
.

3. Closure Learning

3.1. Residual Neural Network (ResNet)

Deep residual neural network (ResNet) has been first introduced for image recognition
in [33]. ResNet has been widely studied and applied in many supervised learning tasks. Recent
mathematical understanding of deep ResNet has been achieved in the ODE representation of ResNet;
for a comprehensive introduction, see, e.g., [35–37,44].

To construct the novel ResNet-ROM framework, we consider the ResNet model, which is
illustrated in Figure 2.

Figure 2. ResNet block used in our training. Each ResNet block consists of a flatten fully connected
layer with a tanh activation function, followed by a drop out layer to prevent overfitting. 128 neurons
and 5% drop out rate are used.

The input values of forward propagation in the ResNet are given by

Xt+1 = Xt + tanh(WtXt + bt), t = 1, . . . , N − 1, (6)

where N is the number of layers in the network architecture, and Xt ∈ �s is the output from each
ResNet block at time t. Wt and bt are the weight matrix and bias at each layer, respectively. The ResNet
propagation starts from step t = 1 with the nonlinear activation function tanh. The initial input layer
for the network is X0 = [Re, t, a1, . . . , ar]T . For a standard ResNet in image classification, a convolution
layer (CNN) is often included in a residual block. In our work, we use a simplified version of the
ResNet that does not include CNN.

3.2. ROM Closure Modeling

In realistic nonlinear systems (e.g., convection-dominated flows), current GP-ROMs of the form (4)
generally yield inaccurate results, often in the form on numerical instabilities. This inaccurate behavior
is due to the fact that, in order to maintain a low computational cost, GP-ROMs are constructed with
a drastically truncated ROM basis {ϕ1, . . . ,ϕr}, where r is generally small (e.g., r = O(10)). In realistic
nonlinear systems, this extreme truncation cannot capture the complex nonlinear interactions among
the various degrees of freedom of the system. Thus, current GP-ROMs are computationally efficient,
but numerically inaccurate. To alleviate this inaccurate behavior, GP-ROMs are often supplemented
with a ROM closure model [1,24], i.e., a model for the important interactions between the ROM basis

262



Fluids 2020, 5, 39

{ϕ1, . . . ,ϕr} and the discarded ROM modes {ϕr+1, . . . ,ϕR}, where R is the dimension of the input
data. For example, for the NSE, the standard GP-ROM (4) is generally modified as follows:

ȧ = A a + a� B a + τ, (7)

where τ is a ROM closure model that represents the interactions between the ROM modes and the
discarded modes.

We emphasize that the same closure problem needs to be addressed when classical numerical
discretization schemes (e.g., finite element or spectral methods) are used in the numerical simulation
of turbulent flows. In those settings, classical discretizations schemes are used in inherently
under-resolved regimes (i.e., they use coarse meshes or too few spectral modes). To ensure the relative
accuracy of these under-resolved simulations, various types of closure models for the unresolved
(e.g., subgrid-scale) information are generally utilized. These closure models are central to, e.g.,
large eddy simulation (LES) [31], one of the main approaches to the numerical simulation of turbulent
flows. The vast majority of LES closure models have been constructed by using physical insight
from Kolmogorov’s statistical theory of turbulence. The concept of energy cascade is central in the
development of LES closure models. The energy cascade states that energy enters the system at
the large scales, is transferred to smaller and smaller scales through nonlinear interactions, and is
dissipated at the smallest scale (i.e., the Kolmogorov’s scale). Thus, most LES closure models (e.g.,
of eddy viscosity type) aim at recovering the energy cascade displayed by the original system (i.e.,
the NSE).

This physical insight cannot be easily extended to the ROM setting (see, however, [32] for
a preliminary numerical investigation). Thus, current ROM closure models have generally been
deprived of this powerful methodology that represents the main tool in the development of most LES
closure models.

3.3. ROM Closure Learning

Our vision is that machine learning represents a natural approach for constructing ROM closure
modeling. Indeed, since physical insight cannot generally be used in a ROM setting, data and machine
learning can be utilized instead to develop ROM closure models. Furthermore, data is used only to construct
the ROM closure model; the other ROM operators are built by using the classical Galerkin projection. Thus,
data and machine learning complement (instead of replace) physical based modeling, yielding a hybrid
framework that synthesizes the strengths of both approaches [17,18,22,27,29,42,45–48].

In this section, we propose a novel ROM closure modeling framework that is constructed by using
available data and the ResNet approach described in Section 3.1. The resulting ROM, which we call
the residual neural network ROM (ResNet-ROM), is schematically illustrated in (1) and Figure 1, and is
summarized in Algorithm 1.

To obtain the explicit formula (11) in Algorithm 1, we develop a large eddy simulation ROM
(LES-ROM) framework [24,28]: First, we filter the high-resolution (R-dimensional) ROM approximation
of the NSE with a low-pass ROM spatial filter, denoted by overbar in (11). In this paper, as a ROM
spatial filter, we use the ROM projection onto the space spanned by the first r ROM modes [29,48]
(see [28] for an alternative ROM spatial filter): For a given u ∈ span{ϕ1, . . . ,ϕR}, the ROM projection
seeks u ∈ span{ϕ1, . . . ,ϕr} such that

(u, ϕi) = (u, ϕi) ∀ i = 1, . . . , r , (8)

where (·, ·) denotes the L2 inner product. The resulting filtered equations can be cast within a variational
multiscale (VMS) framework [49], yielding a two-scale VMS-ROM [50]. Equation (11) represents the
explicit VMS-ROM formula for the ROM closure term τ in (10). In the two-scale VMS-ROM [50],
the ROM closure model is developed in two steps. First, an ansatz is used to approximate the ROM
closure term: τ ≈ Ã a + a� B̃ a. Then, FOM data for τ in the training time interval is used to solve
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a least squares problem to determine the optimal entries in Ã and B̃. In the new ResNet-ROM,
we construct the ROM closure model in a fundamentally different way. Instead of making an ansatz
on the structural form of the ROM closure term τ (as in the two-scale VMS-ROM [50]), in Algorithm 1
we consider a general structural formulation and use the ResNet approach to construct the ROM
closure model. To this end, in (6), we make the following choices: The initial layer contains the
Reynolds number (Re), the current time (t), and the current ROM coefficients in (3) (a1, . . . , ar), i.e.,
X0 = [Re, t, a1, . . . , ar] ∈ �(s+2). The final output layer provides an approximation for the closure term,
i.e., XN ≈ τFOM. The optimization problem associated with this ResNet is given by

min ‖τansatz − τFOM‖2
F + λR(W, b), (9)

where the regularizer R penalizes undesirable parameters and can prevent overfitting,
τansatz = f (a, Re, tj) is the output from the neural network, W and b are weights in the network, ‖ · ‖F is
the Frobenius norm, and λ is a hyperparameter for the L2 regularization to prevent overfitting [36,37].
The minimization problem (9) is over the parameters defining the structural form of the function f
used to define τansatz.

Algorithm 1 ResNet-ROM

1: Consider the ROM closure model

ȧ = A a + a� B a + τ . (10)

2: Use snapshot data to compute the true vector τ in (10), τFOM:

τFOM
i (tj) = −

( (
uFOM

R (tj) · ∇
)

uFOM
R (tj)

r

−
(
uFOM

r (tj) · ∇
)

uFOM
r (tj) , ϕi

)
, (11)

where an overbar indicates spatial filtering with ROM projection.
3: Use snapshot data and (11) to define the approximation function τ in (10), τansatz:

τansatz(tj) = f (a, Re, tj), (12)

where f is a generic function that needs to be determined.
4: Use ResNet to train the closure term, i.e., to find the form of f in (12) that is optimal with respect

to the minimization problem (9).
5: The novel ResNet-ROM has the following form:

ȧ = A a + a� B a + f (a, Re, t) . (13)
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4. Numerical Experiments

4.1. Implementation

As a test problem for our new approach, we use the 1D Burgers equation, which has been used to
test new ROM ideas in simplified settings [29,51,52]:⎧⎪⎨⎪⎩

ut − Re−1uxx + uux = 0 x ∈ Ω,
u(x, 0) = u0(x) x ∈ Ω,
u(x, t) = 0 x ∈ ∂Ω,

(14)

where, for consistency with the notation used for the NSE, the diffusion parameter is denoted as
Re−1. In our numerical tests, Ω = [0, 1] is the computational domain and the time domain is [0, 1].
We use the same initial conditions as those utilized in [29,51,52]: u0(x) = 1, x ∈ (0, 1/2], u0(x) =

0, x ∈ (1/2, 1]. These initial conditions yield a steep internal layer that is difficult to capture in the
convection-dominated regime that we consider [29,51,52]. We first use a piecewise linear finite element
discretization to generate the FOM solution. To this end, we utilize a uniform mesh with N = 1024
grid points (which yields a meshsize h = 1/1024) and the forward Euler method with Δt = 10−4

for the time discretization. To construct the ROM basis, we collect 101 snapshots sampled from [0, 1].
We build the neural network in PyTorch and we train the ROM closure model with a 6 block ResNet
with the common Adam optimizer [53]. We perform all the computational experiments on a Linux
system laptop with Nvidia Geforce GTX GPU hardware.

4.2. Reconstruction

In this section, we consider the reconstructive regime, i.e., we test the ROMs at the same Re as
the Re at which the ROMs are constructed. We choose Re = 1000 in (14) and we use r = 6 basis
functions in all ROMs. In Figure 3, we plot the solutions of the FOM (top left), GP-ROM (top right),
and ResNet-ROM (bottom left). When compared with the FOM data, the ResNet-ROM solution is
significantly more accurate than the standard GP-ROM solution. In Figure 3, we also plot the FOM,
GP-ROM, and ResNet-ROM solutions at the final time step (i.e., at t = 1). This plot shows that
the closure term in the ResNet-ROM plays an important role in stabilizing the ROM approximation.
Indeed, the GP-ROM solution displays large, spurious numerical oscillations. These oscillations are
dramatically decreased in the ResNet-ROM solution.

In Figure 4, we plot the the time evolution of the ROM coefficients a for the FOM, GP-ROM,
and ResNet-ROM. The plots show that the ResNet-ROM is significantly more accurate than the
standard GP-ROM.
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Figure 3. Reconstructive regime, Re = 1000: FOM (top left), GP-ROM (top right), ResNet-ROM
(bottom left), and final time solution for all three simulations (bottom right). ResNet-ROM yields the
most accurate solution.

Figure 4. Reconstructive regime, Re = 1000: Time evolution of ROM coefficients a1 and a3 for FOM,
GP-ROM, and ResNet-ROM. ResNet-ROM yields the most accurate solution.

4.3. Prediction

To study the robustness of the new ResNet-ROM, we test its predictability, i.e., we train
the ResNet-ROM closure term on data from multiple Re and we then test the ResNet-ROM
to predict the ROM dynamics at different Re. The training data space is sampled at
Re = [20, 50, 100, 200, 500, 800, 1000], and the test data contains Re = [30, 80, 300, 1200]. Note that the
solution of the Burgers equation is affected by Re. Small Re values yield a slow movement of the sharp
internal layer, while large Re values can speed up this movement.

In Figure 5, for Re = 30, 80, and 1200 (which are different from the training Re values), we plot the
solutions for the DNS (first column), GP-ROM (second column), ResNet-ROM (third column), and final
time solution for all three simulations (fourth column). These plots show that the ResNet-ROM is
consistently the most accurate ROM, especially for the largest Re value. In Figure 5, we also plot the
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FOM, GP-ROM, and ResNet-ROM solutions at the final time step (i.e., at t = 1). These plots show that
the closure term in the ResNet-ROM plays an important role in stabilizing the ROM approximation.

In Figure 6, we plot the the time evolution of the ROM coefficients a for the FOM, GP-ROM,
and ResNet-ROM. These plots show that the ResNet-ROM is significantly more accurate than the
standard GP-ROM.

Overall, we draw the same conclusion as in the reconstructive regime (Section 4.2): In all cases,
the ResNet-ROM is significantly more accurate than the standard GP-ROM in the predictive regime.

Figure 5. Predictive regime: ROMs are trained on data from Re = [20, 50, 100, 200, 500, 800, 1000] and
are tested at Re = 30 (first row), Re = 80 (second row), Re = 1200 (third row). Results presented for
FOM (first column), GP-ROM (second column), ResNet-ROM (third column), and final time solution
for all three simulations (fourth column).

Figure 6. Predictive regime: Time evolution of ROM coefficients a1 and a3 for FOM, GP-ROM,
and ResNet-ROM. Results for Re = 30 (top) and Re = 1200 (bottom). ResNet-ROM yields the
most accurate solution.
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4.4. Comparison

In this section, in the numerical simulation of the Burgers equation, we also make
a numerical comparison between the new ResNet-ROM and several modern ROM closure models:
the POD artificial viscosity model (POD-AV) [51], the POD Smagorinsky model (POD-L) [54],
the evolve-then-filter ROM (EF-ROM) [55], the approximate deconvolution ROM (AD-ROM) [28],
and the data-driven filtered ROM (DDF-ROM) [29].

In Table 1, we list the L2 errors of the ResNet-ROM and the other closure models. These results
show that the ResNet-ROM error is at least an order of magnitude lower than the errors of the other ROM
closure models.

Table 1. L2 errors of the new ResNet-ROM and other closure models.

Model L2 Error

ResNet-ROM 4.32 × 10−4

POD-AV [51] 9.01 × 10−3

POD-L [54] 1.73 × 10−2

EF-ROM [55] 6.99 × 10−2

AD-ROM [28] 6.33 × 10−2

DDF-ROM [29] 6.27 × 10−2

For the online ResNet-ROM integration, we use the scipy package with the built-in integration
function odeint. In the online stage, the new ResNet-ROM is more efficient than the other ROM closure
models: The online CPU time of the ResNet-ROM is 3.89 s, whereas the online CPU times of the
EF-ROM, AD-ROM, and DDF-ROM are 6.91, 7.26, and 4.42 s, respectively [28,29,55].

The CPU time of the offline training of the new ResNnet-ROM is 122.74 s for the current dataset
with 10,000 epochs (iterations). Thus, even though the online cost for ResNet-ROM is lower than
the online cost of the other closure models that are compared in this paper, the neural network
training cost of ResNet-ROM is much higher than the offline training cost of the other ROM closure
models [28,29,55].

4.5. Sensitivity

In this section, we perform a sensitivity study of the new ResNet-ROM with respect to two
parameters: (i) the hyperparameter λ used in the regularization of the neural network training; and (ii)
the meshsize h used in the snapshot generation. We also investigate the potential improvement
in GP-ROM accuracy when the number of snapshots and the dimension r of the ResNet-ROM
are increased.

The parameter λ is an L2 regularization parameter used in the neural network training to prevent
overfitting. In our numerical simulations, we pick the parameter λ based on the validation error
performance in the training phase. In our training dataset for Re = [20, 50, 100, 200, 500, 800, 1000],
we test the following parameter values: λ = 0, 1, 10−1, 10−2, 10−3. In Figure 7, we plot the ResNet-ROM
error for different parameter values. The plot in Figure 7 shows that the ResNet-ROM is not very
sensitive to the hyperparameter λ. Thus, in our numerical tests, we fix λ = 0.01 with 10,000 epochs
(iterations) in the Resnet-ROM training.

We also perform a sensitivity study for the new ResNet-ROM with respect to the meshsize h.
In Figure 8, for the reconstructive regime and Re = 1000, we plot the FOM, GP-ROM, and ResNet-ROM
results for three coarse meshsize values. The plots in Figure 8 show that the ResNet-ROM is still
significantly more accurate than the GP-ROM. In the predictive regime, however, both the ResNet-ROM
and the GP-ROM yield inaccurate results for these three coarse meshes. The relationship between the
FOM mesh utilized to generate the snapshots and the ROM accuracy is subject of current research (see,
e.g., [56,57]) and should be further investigated for the new ResNet-ROM.
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Figure 7. Validation error performance for different values of the regularization parameter λ.

Figure 8. Reconstructive regime, Re = 1000: FOM (first column), GP-ROM (second column),
and ResNet-ROM (third column), for meshsizes h = 1/64 (first row), h = 1/128 (second row),
and h = 1/256 (third row). ResNet-ROM yields the most accurate solution.

We also investigate the ResNet-ROM rate of convergence with respect to the meshsize h. To this
end, we fixed the ResNet-ROM dimension at r = 30 and the time-step size at Δt = 10−3. The plot in
Figure 9 shows that the rate of convergence (obtained with a least squares fit) is about h1.70, which is
an acceptable approximation to the theoretical rate of convergence of h2.

Finally, we investigate the potential improvement in GP-ROM accuracy when the number of
snapshots and the dimension r of the ResNet-ROM are increased.

First, we collect the maximum number of snapshots that are available from the FOM simulations
in the training interval. That is, we collect 1001 snapshots, which yield a snapshot matrix whose rank is
251. Comparing the left plot in Figure 10 (for the highest number of snapshots) with the top right plot
in Figure 3 (for the lower number of snapshots), we conclude that increasing the number of snapshots
does not seem to improve the ResNet-ROM accuracy.
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Figure 9. The ResNet-ROM rate of convergence with respect to the meshsize h.

Next, we increase the GP-ROM dimension. In Figure 10, we plot the GP-ROM results for
three r values: r = 10, r = 20, and r = 30. As expected, the GP-ROM accuracy improves as
we increase r. We emphasize, however, that the ROM closure models (such as that used in the
new ResNet-ROM) are designed to improve the GP-ROM accuracy in under-resolved numerical
simulations, i.e., when only a few ROM basis functions can be used, which is often the case in realistic
settings [1,2,14,16–18,20–23,25,27–29,32,38,40–42,46–48,50,51,54,58]. As shown earlier, for r = 10,
the ResNet-ROM is significantly more accurate than the GP-ROM both in the reconstructive and
the predictive regimes.

Figure 10. Reconstructive regime, Re = 1000, GP-ROM results: r = 10 (left), r = 20 (middle),
and r = 30 (right).

5. Conclusions

In this paper, we used available data and deep residual neural networks (ResNet) to construct
a novel reduced order model (ROM) closure for complex nonlinear settings. We emphasize that the
ResNet-ROM closure terms are much more general than the phenomenological ansatzes generally used
in ROM closure modeling [29]. We tested the novel ResNet-ROM in the numerical simulation of the
Burgers equation. For comparison purposes, we investigated the standard Galerkin projection ROM
(GP-ROM) and the full order model (FOM). We considered two settings: (i) a reconstructive regime,
in which the Reynolds number Re is the same in the training and testing stages; and (ii) a predictive
regime, in which Re used in the testing regime is different from the Re used in the training regime.
In both regimes, the new ResNet-ROM was consistently more accurate than the standard GP-ROM.
Furthermore, the ResNet-ROM was also dramatically more accurate than several other ROM closure
models from the literature.

There are several research directions that we plan to pursue: We will test the novel ResNet-ROM
on realistic test problems (e.g., 3D turbulent flows) and we will compare it with state of the art closure
models. We will also investigate alternative approaches to develop the ROM closure term τ. Indeed,
in this paper we used the ROM projection as a spatial filter in the construction of the ROM closure
term τ. We plan to investigate different ROM spatial filters, such as the ROM differential filter [55].
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This alternative ROM filter will yield a different ROM closure term τ and, therefore, a different
ResNet-ROM. Finally, a numerical investigation of alternative machine learning approaches (see,
e.g., [22]) could yield improved ROM closure models. Indeed, for the one-dimensional Burgers
equation test case considered in this paper, the computational cost of training the ROM closure model
with ResNet was acceptable. For more complex settings, however, this computational cost could be
much higher. In those cases, neural networks with a lower computational cost could be more effective.
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Abstract: The present work deals with an analysis of the cooling system for a two-stroke aircraft
engine with compression ignition. This analysis is carried out by means of a 3D finite-volume RANS
equations solver with k-ε closure. Three different cooling system geometries are critically compared
with a discussion on the capabilities and limitations of each technical solution. A first configuration of
such a system is considered and analyzed by evaluating the pressure loss across the system as a function
of the inlet mass-flow rate. Moreover, the velocity and vorticity patterns are analyzed to highlight the
features of the flow structure. Thermal effects on the engine structure are also taken into account and the
cooling system performance is assessed as a function of both the inlet mass-flow rate and the cylinder
jackets temperatures. Then, by considering the main thermo-fluid dynamics features obtained in the case
of the first configuration, two geometrical modifications are proposed to improve the efficiency of the
system. As regards the first modification, the fluid intake is split in two manifolds by keeping the same
total mass-flow rate. As regards the second configuration, a new single-inlet geometry is designed by
inserting restrictions and enlargements within the cooling system to constrain the coolant flow through
the cylinder jackets and by moving downstream the outflow section. It is shown that the second geometry
modification achieves the best performances by improving the overall transferred heat of about 20%
with respect to the first one, while keeping the three cylinders only slightly unevenly cooled. However,
an increase of the flow characteristic loads occurs due to the geometrical restrictions and enlargements of
the cooling system.

Keywords: internal combustion engines; liquid-cooling system; heat transfer; computational fluid dynamics

1. Introduction

It is well known that internal combustion engines for aeronautical applications operate within a specific
temperature range to avoid structural damages, detonations and loss of efficiency of the combustion process.
The heat released by combustion is only partially converted to work: a certain amount is within exhaust
gases, while the remaining part warms-up the engine structure. This heat needs to be some how dissipated
by keeping the engine within its optimal temperature range as to ensure reliability and long service life [1].
This temperature range (roughly from 350 to 380 K) ensures that the engine is efficiently working from the
thermodynamic point of view. Indeed, a high cooling would reduce the engine thermal efficiency whereas
if the engine temperature exceeds this range, the engine may over-heat and this over-heating is likely to
damage the engine. The engine over-heating can be prevented by using efficient cooling systems to assist
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the engine running at its optimal performance. Hence, there is a need to look at the total heat balance and
control system for the aircraft in order to search for performance optimization [2–4].

Generally, for piston aircraft engines, either air or liquid cooling systems are employed; only a few
modern engines implement a combination of both, all with their own advantages and disadvantages [5].
Inline four, six or eight cylinders engines are almost exclusively air-cooled, except for the Rotax, Viking
and Subaru engines and some aero diesels [6]. Such a cooling technique represents a good compromise
between the structure design and the low weight achieved when compared to liquid cooling circuits.
Nevertheless, air-cooled cylinders present a large number of fins cast around the heads increasing the
total exposed surface. Indeed, the engine may be shock-cooled at high altitudes [7]. On the other hand,
liquid-cooling systems have a weight penalty with respect to air-based systems while they are able to
keep the temperature of all of the cylinders quite even and the engine cannot be shock-cooled during high
speed or low power descends. Moreover, the coolant liquid is usually thermostatically controlled so that
the engine is quickly warmed up at the start-up and works all the time around the optimal operating
temperature [8].

In this context, a detailed analysis of such cooling systems is required by the designer to optimize
the heat distribution of the engine structure. Computational Fluid Dynamics (CFD) simulations provide
a means to optimize cooling circuit configurations by employing sensitivity analysis to the components
of such circuits. Indeed, simulation models are very useful for engineers not only to support but also to
reduce the amount of testing required during the design of the engine. Numerical models and simulations
can greatly enhance development efforts by predicting performance trends and trade-offs and will,
therefore, result in more efficient and better-optimized heating and cooling systems for high-performing
engines [9–14]. Specifically, due to the wide spatial and temporal scales involved in internal combustion
engine simulations, steady and unsteady Reynolds-averaged Navier–Stokes (RANS) solvers are largely
employed supporting the rational design of such engines. Moreover, recently, hybrid approaches involving
both unsteady RANS and Large Eddy Simulations (LES) techniques have also been proposed thus
achieving the required resolutions needed for a comprehensive analysis of such engines [15–17].

In this work, a liquid cooling system for a specific aircraft engine is analyzed by means of
a 3D finite-volume RANS equations solver with k-ε closure. Specifically, the RANS equations for
an incompressible thermal fluid is used to analyze the cooling system performance as a function of
the inlet mass-flow rate GIn. Such analysis is carried out by varying the cylinder jackets temperature
and by comparing the outflow temperature and the transferred thermal power as a function of coolant
mass-flow rate. The CFD results enable us to notice the drawbacks of the cooling system geometry and
suggest some improvements that can be used to enhance the heat transfer. Two geometrical modifications
to the cooling system are proposed. The first modification consists of two coolant inlets while keeping
the same total mass-flow rate; the second configuration consists of a new single-inlet geometry with new
restrictions and enlargements within the cooling system to constrain the coolant flow through the cylinder
jackets and also by positioning downstream the outflow manifold. Capabilities and limitations of these
three cooling system geometries are critically discussed and compared providing useful insights for the
internal combustion engine community.

2. The Model

2.1. Mathematical Model

The steady three-dimensional Reynolds-Averaged Navier-Stokes (RANS) system of equations with
the k–ε closure reads:

∂(E − Ev)

∂x
+

∂(F − Fv)

∂y
+

∂(G − Gv)

∂z
= S , (1)
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where E, F and G are the inviscid flux vectors:

E =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u
ρu2 + pt

ρuv
ρuw

ρcpTu
ρuk
ρuε

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, F =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

v
ρuv

ρv2 + pt

ρvw
ρcpTv

ρvk
ρvε

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, G =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

w
ρuw
ρvw

ρw2 + pt

ρcpTw
ρwk
ρwε

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
; (2)

where overbar indicates Reynolds-averaging of the physical variable; ρ is the density; (u, v, w) and T
are the Reynolds-averaged velocity components and temperature, respectively; pt = p + 2

3 k being p the
Reynolds-averaged pressure; k and ε are the turbulent kinetic energy and its dissipation rate.
Ev, Fv and Gv represent the viscous flux vectors, reading:

Eν =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
μ ∂u

∂x

μ ∂v
∂x

μ ∂w
∂x

λ ∂T
∂x + μ[2( ∂u

∂x )
2 + ( ∂v

∂x + ∂u
∂y )

2]

μt
∂k
∂x

μt
∂ε
∂x

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, Fν =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
μ ∂u

∂y

μ ∂v
∂y

μ ∂w
∂y

λ ∂T
∂y + μ[2( ∂v

∂y )
2 + ( ∂w

∂y + ∂v
∂z )

2]

μt
∂k
∂y

μt
∂ε
∂y

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

Gν =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
μ ∂u

∂z

μ ∂v
∂z

μ ∂w
∂z

λ ∂T
∂z + μ[2( ∂w

∂z )
2 + ( ∂u

∂z + ∂w
∂x )

2]

μt
∂k
∂z

μt
∂ε
∂z

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
; (3)

being μ, μt and λ the molecular viscosity, turbulent viscosity and thermal diffusivity, respectively. Finally,
S corresponds to the source term vector,

S =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
Sk
Sε

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (4)

where Sk and Sε are the source terms related to k and ε, respectively.
The steady-state RANS equations with k–ε turbulence closure are solved by means of a cell-centered

finite volume numerical scheme. The computational domain is discretized by a multi-block unstructured
mesh. A pressure-based solver is employed where the equations are solved segregated one to each other,
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i.e., each equation is decoupled from all the others. Indeed, this segregated algorithm is memory-efficient,
since the discretized equations need only to be located in the memory one at a time [18]. Specifically,
the SIMPLE solver by Patankar and Spalding [19] is employed. Viscous terms are discretized by
a second-order-accurate least-squares cell-centered scheme [20], while convective terms are treated with
a second-order upwind scheme [21]. The pressure and velocity fields are solved by using a SIMPLE-type
pressure-velocity coupling in which the momentum equation is solved using an estimated initial pressure
field. Then, the SIMPLE correction for the pressure field is employed to satisfy the continuity equation.
The pressure-correction equation is solved by using the algebraic multigrid (AMG) method by Hutchinson
and Raithby [22]. In the present work, only steady flows are considered; therefore, the algorithm is iterated
in a pseudo-time until a residual drop of at least four orders of magnitude for all of the conservation-law
equations is achieved. No-slip conditions are imposed along the engine walls while the near-wall region of
the flow field is treated with the standard wall-functions approach proposed by Launder and Spalding [23].

2.2. Computational Domain and Boundary Conditions

In this work, a six-cylinder aircraft compression ignition engine with two opposite banks is considered.
Specifically, due to the specular geometries of the banks, only one of the two cooling system banks is
considered (Figure 1a). The bank is characterized by an inlet section and an outlet section and presents
three slots corresponding to the three cylinders jackets. Moreover, two modifications of this geometry are
proposed and discussed to provide improvements in terms of mass-averaged outflow temperature and
cylinder specific and total transferred thermal power (see Figure 1b,c). These geometries are discretized
by means of about 8,000,000 tetrahedral elements with an average cell size of about 1.5 mm and a global
minimum size of about 0.05 mm. The spatial discretization used in the computations for the single-inlet
geometry (depicted in Figure 1a) is shown in Figure 2. Three sections are considered along with close-ups
to show the quality of the discretization in the near-wall regions. Specifically, two transversal sections
are located at y = −0.250 m and y = −0.325 m and the longitudinal section corresponds to the valve
plane at z = −0.01 m. The minimum and maximum y+ for this numerical discretization are 20 and 97,
respectively. These values are well confined in the range of 10 ≤ y+ ≤ 300, which represents a constraint
for the employed k–ε closure joined with the use of standard wall functions.

The comparison between the three geometries is provided in terms of both the thermodynamic
and kinematic flow fields, i.e., velocity, vorticity and temperature distributions, and of the evaluation of
the pressure loss through the bank, the outflow temperature, as well as the cylinder specific and total
transferred thermal power. To this end, two sets of simulations with five inlet mass-flow rates, namely
Gin = 0.5, 1.0, 1.5, 2.0, and 2.5 kg/s are considered. At first instance, thermal effects are neglected, i.e.,
fluid temperature is constant through the bank. This analysis is mainly carried out to provide a picture
of the overall flow structure and to identify flow features under such an assumption. The working fluid
is assumed to be water at 353 K with density and viscosity equal to 972 kg/s and 3.54 × 10−4 Pa·s,
respectively. The second set of computations includes heat transfer between fluid and walls with the
inlet coolant water temperature equal to 343 K and the crankcase external temperature equal to 380 K,
whereas the cylinder jacket temperature ranges from 400 K to 460 K. For such thermal analysis, the water
density and viscosity are computed as functions of the water temperature by employing a second-order
polynomial fitting [24]. For both sets of computations, the mass-flow rate is set at the inlet section with
an outlet pressure pout = 1 bar. As regards turbulence, the inlet turbulence intensity is u′

in = 0.25 uin and
the turbulence characteristic length is equal to 0.3 din, being din and uin the inlet diameter and the inlet
mass-averaged fluid velocity, respectively.
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Figure 1. Geometry of the cooling system for the three configurations. (a) Sketch of the right bank of the
cooling system. (b) Sketch of the right bank of the cooling system with a second intake duct (In2) on the
opposite side with respect to the old one (In1). (c) Sketch of a new single inlet geometry (left bank) obtained
by inserting enlargements and restrictions to the old one and by moving downstream the outlet duct. All of
the graphics are represented from an internal (left column) and external (right column) point of view.
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Figure 2. Spatial discretization of the cooling system for the single-inlet configuration. (a) Computational
mesh of the right bank of the cooling system. (b,c) Transversal sections of the computational mesh at (b)
y = −0.250 m and (c) y = −0.325 m. (d) Longitudinal section of the computational mesh at the valve plane
z = −0.01 m.

3. Results and Discussion

3.1. Analysis of the Single-Inlet Geometry

At first instance, the flow field of the single-inlet geometry (see Figure 1a) is analyzed by neglecting
thermal effects. The pressure drop across the cooling system is computed as a function of the inlet
mass-flow rate and shown in Figure 3. The head losses are computed as the difference between the
inlet (< pin >) and the outlet (< pout >) surface-averaged pressure, Δp =< pin >Ain − < pout >Aout ,
where < pin/out >Ain/out correspond to the surface-averaged pressure related to the inlet (outlet) sections.
The diagram shows that Δp vs. Gin follows a quadratic trend due to the fully developed turbulent
regime of the flow field. The figure shows that Δp is of the order of 10−2 bar for all the investigated inlet
mass-flow rates.
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The velocity and vorticity magnitude contour plots, given in Figure 4, show that a large fraction of
the flow pattern sweeps over the cylinder that is closer to the inlet section, i.e., cylinder 5. Then, the flow is
almost totally short-circuited from the inlet directly to the outlet for all values of Gin. Indeed, the cylinder
in between, i.e., cylinder 3, is directly affected by the fluid flow, whereas cylinder 1 results poorly cooled
down even for large values of Gin, as shown in Figure 4c. On the other hand, the small values of Δp
(O(10−2) bar) reflect that the flow is somehow short-circuited so that the path actually performed by
the fluid is relatively short and without much cross-sectional area variations. An interesting view of the
flow structure is given in Figure 5 for GIn = 0.5, 1.5, and 2.5 kg/s, where the velocity magnitude colored
streamlines are drawn to provide a qualitative picture of the coolant internal flow structure.

Figure 3. Single-inlet cooling system characteristic loads. Pressure loss as a function of the inlet mass-flow rate.

Figure 4. Velocity and vorticity contour plots for the single-inlet geometry. Distribution of velocity (left)
and vorticity (right) magnitude for GIn = 0.5 (a), 1.5 (b), and 2.5 (c) kg/s.
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Figure 5. Velocity magnitude colored streamlines for the single-inlet geometry. Velocity magnitude colored
streamlines, starting from the inlet section, for GIn = 0.5 (a), 1.5 (b), and 2.5 (c) kg/s. Internal (left) and
external (right) point of view.

In order to consider thermal effects, the temperatures of the inlet water and of the crankcase are
kept constant and equal to 343 K and 380 K, respectively. Several simulations have been performed
by changing the cylinder jackets temperatures (TCyls) from 400 to 460 K with a 20 K step. For the sake
of conciseness, only the temperature contour plots for the case TCyls = 440 K are reported in Figure 6.
Like the velocity and the vorticity patterns, the fluid temperature field clearly shows that the highest
temperature is located around cylinder 1, regardless of Gin. The water, flowing through cylinder 5 jacket,
results colder than that through cylinder 3 jacket which is colder than that through cylinder 1 jacket.
As regards the mass-averaged outflow temperature, Table 1 shows that TOut decreases, by increasing
GIn, with a smaller rate with respect to the mass flow rates (see Figure 7a). Besides, Table 1 shows the
cylinder-specific and the total heat transferred. The cylinder-specific heat is computed by considering
only the numerical cells that surround each cylinder, whereas the total heat is the sum over all the cells of
the computational domain. The values of Table 1 clearly show that the cooling of the cylinder reduces as
the distance between the cylinders and the inlet section increases. Specifically, the cylinder closest to the
inlet transfers to the fluid a thermal power that is 2 to 3 times that of the furthest cylinder. Q̇Tot increases
linearly with GIn as depicted in Figure 7b. The distributions of TOut for TCyls = 400, 420, 440, and 460 K
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are summarized in Figure 7c. Indeed, the functional form of these distributions is roughly constant with
respect to the parameter TCyls, while the distributions themselves are displaced with an offset which varies
between 1.3 and 1.7 K. Two convenient thresholds for both the mass-averaged outflow temperature and
the total transferred heat flux have been selected, which are superimposed to Figure 7c,d. TOut has been
supposed to be lower than 363 K since too high values would represent an inefficient cooling for the engine
itself. Besides, since the output mechanical power of the six-cylinder engine ranges from 200 to 250 kW,
the total transferred heat flux for each bank should range from 100 to 120 kW. The second condition is
more stringent than the first and returns only some of the couples (TCyl , GIn) which are acceptable in the
parameter space spanned with the simulations. The physically acceptable parameters are enlighten in
Table 2.

Figure 6. Temperature patterns for TCyls = 440 K for the single-inlet geometry. Temperature contour plots
for TCyls = 440 K and GIn = 0.5 (a), 1.5 (b), and 2.5 (c) kg/s.
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Figure 7. Outflow temperature and transferred heat flux for the single-inlet geometry. (a) Mass-averaged
outflow temperature as a function of GIn for TCyls = 440 K. (b) Cylinder specific and total transferred heat
flux as a function of GIn for TCyls = 440 K. (c) Mass-averaged outflow temperature as a function of GIn for
TCyls = 400, 420, 440, and 460 K. (d) Total transferred heat flux as a function of GIn for TCyls = 400, 420, 440,
and 460 K.

Table 1. Mass-averaged temperature, cylinder-specific and total transferred heat flux for TCyls = 440 K and
GIn = 0.5, 1.0, 1.5, 2.0, and 2.5 kg/s obtained considering the single-inlet geometry.

GIn [kg/s] TOut [K] Q5 [kW] Q3 [kW] Q1 [kW] QTot [kW]

0.5 362.6 9.6 6.9 4.4 40.8

1.0 360.2 17.5 11.4 6.7 71.4

1.5 359.2 25.4 16.3 9.0 100.7

2.0 358.7 32.9 21.3 11.4 130.3

2.5 358.5 40.8 25.9 13.9 160.5

Table 2. Mass-averaged outflow temperature and total transferred heat flux tabulated as a function of GIn

and TCyls for the single-inlet geometry.

TCyls = 400 K TCyls = 420 K TCyls = 440 K TCyls = 460 K

GIn [kg/s] TOut [K] QTot [kW] TOut [K] QTot [kW] TOut [K] QTot [kW] TOut [K] QTot [kW]

0.5 359.3 33.7 360.9 37.1 362.6 40.8 364.3 44.3

1.0 357.1 58.7 358.7 65.1 360.2 71.4 361.7 77.8

1.5 356.3 82.4 357.9 92.7 359.2 100.7 360.7 109.9

2.0 355.8 107.1 357.4 119.3 358.7 130.3 360.2 142.3

2.5 355.5 129.0 357.0 145.6 358.5 160.5 359.9 175.3
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3.2. A First Cooling Improvement: The Double-Inlet Geometry

To overcome the uneven distribution of the cylinder-specific heat transfer with the single inlet
geometry, a first simple geometrical modification is to double the intake manifold but with the same total
inlet mass-flow rate GIn, as reported in Figure 1b. Specifically, the second inlet section is placed close to
cylinder 1 to promote heat transfer for this cylinder. The non-thermal analysis is firstly considered and
shown in Figure 8. The internal flow streamlines depict an even distribution of the fluid between the
three cylinders. Nonetheless, it must be stressed that the up-left region close to cylinder 1 results in the
less-cooled region regardless of GIn. This is qualitatively given in Figure 8a for GIn = 0.5, 1.5, and 2.5 kg/s.
The head losses computed separately for both inlets as a function of GIn are comparable to the single inlet
geometry case as shown in Figure 8c, where GIn is the total mass flow rate through the two inlets.

Figure 8. Velocity streamlines and characteristic loads for the double-inlet geometry. (a) Velocity magnitude
colored streamlines obtained for the double-inlet geometry for GIn = 0.5, 1.5 and 2.5 kg/s. (b) Distribution
of the pressure loss as a function of the inlet mass-flow rate.
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In order to account for the thermal effects, with the same fashion as per the single inlet geometry,
the mass-averaged outflow temperature, as well as the cylinder-specific and the total transferred heat,
are computed as a function of both GIn and TCyls. These data are given in Table 3 for TCyls = 440 K.
Regardless of GIn, the double inlet geometry returns outflow temperatures somewhat smaller than those
of the single inlet geometry. Moreover, although an almost perfectly even distribution of transferred heat
among the three cylinders, the total transferred thermal power is about 12-20% less than the previous
geometry (see Table 1). This is because, even with a second inlet section, this geometry provides less
cooling than the previous geometry. Indeed, it must be pointed out that the total intake mass-flow rate
is the same as before but supplied by the two inlets. This reduces the amount of coolant fluid flowing
into the system from each inlet, so that cylinder 5 jacket exchanges less heat with the less supplied water.
As regards cylinder 3 and cylinder 1, the amount of water is about the same of cylinder 5 but not enough
to efficiently cool down the overall system. For all of the investigated values of TCyls, the total transferred
heat and the outflow temperatures are given in Table 4 which reflects the same picture drawn for the single
inlet geometry.

Table 3. Mass-averaged temperature, cylinder-specific and total transferred heat flux for TCyls = 440 K and
GIn = 0.5, 1.0, 1.5, 2.0, and 2.5 kg/s when considering the double-inlet geometry.

GIn [kg/s] TOut [K] Q5 [kW] Q3 [kW] Q1 [kW] QTot [kW]

0.5 361.2 6.0 6.1 5.8 35.8

1.0 358.1 9.7 9.9 9.4 58.9

1.5 357.2 13.9 13.5 13.3 82.6

2.0 356.5 17.6 17.2 17.3 104.5

2.5 356.3 21.5 20.9 21.2 128.5

Table 4. Mass-averaged outflow temperature and total transferred heat flux tabulated as a function of GIn

and TCyls for the double inlet geometry.

TCyls = 400 K TCyls = 420 K TCyls = 440 K TCyls = 460 K

GIn [kg/s] TOut [K] QTot [kW] TOut [K] QTot [kW] TOut [K] QTot [kW] TOut [K] QTot [kW]

0.5 357.6 27.7 359.7 32.6 361.6 35.8 362.7 38.9
1.0 355.6 48.3 356.9 53.6 358.1 58.9 359.5 65.0
1.5 354.8 67.6 356.0 75.1 357.2 82.6 358.4 90.3

2.0 354.3 86.2 355.5 96.0 356.5 104.5 357.8 115.7

2.5 353.9 104.5 355.1 116.5 356.3 128.5 357.4 140.5

3.3. A New Single Inlet Geometry

An interesting geometrical improvement for the cooling system is proposed in Figure 1c. This new
geometry is shown for the left bank of the cooling system. Indeed, right and left banks slightly differ
due to the quasi-symmetric position of the cylinder seats. However, these differences are negligible for
the purposes of the present work. Specifically, the geometrical improvement is twofold. On one hand,
the geometry considers some enlargements and restrictions within the bank (see the intra-cylinder jackets
regions), and, on the other hand, the outlet manifold is moved from the inlet section. In this context,
enlargements and restrictions are designed to guide the flow from the inlet through all of the three-cylinder
jackets and then to the outflow section, while the outlet is placed between cylinder 4 and cylinder 2
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to avoid any possible short-circuiting of the flow itself. The velocity magnitude colored streamlines of
the simulations without thermal effects for the new geometry are depicted in Figure 9a for GIn = 0.5,
1.5 and 2.5 kg/s. The figure shows that the fluid flow supplies, almost uniformly, the three-cylinder jackets
and reaches the outlet section without being short-circuited. Indeed, the water flowing over the three
cylinders results enhanced for large values of the intake mass-flow rate as shown by the increased number
of streamlines sweeping over the jackets and the cylinder heads. Moreover, the increasing complexity of
the flow path with respect to the previous single-inlet geometry, due to the provided enlargements and
restrictions, reflects into an increase of Δp, as shown in Figure 9b.

Figure 9. Velocity streamlines and characteristic loads for the new single-inlet geometry. (a) Velocity
magnitude colored streamlines obtained for the new single-inlet geometry for GIn = 0.5, 1.5 and 2.5 kg/s
(b) Pressure loss as a function of the inlet mass-flow rate.

Thermal effects are also considered in order to analyze the cooling efficiency of this new geometry
in terms of computed temperature field, mass-averaged outflow temperature and total transferred heat.
As shown in Figure 10, the temperature field results quite homogeneous with respect to the old single-inlet
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geometry. Specifically, for GIn = 0.5 kg/s, around the farthest cylinder jacket from the inlet, i.e., cylinder 1,
a temperature between 370 and 380 K is computed for the old geometry (see Figure 6a) whereas, for the
new geometry the farthest cylinder jacket from the inlet, i.e., cylinder 2, provides a temperature between
360 and 370 K. This improvement is also quantitatively assessed by the outflow mass-average temperature
in Table 5. Indeed, for the TCyls = 440 K case, TOut is higher for the new geometry with respect to the
old configuration. Moreover, an improvement of about 20% for the total transferred thermal power is
observed for all the investigated GIn. All of those data are summarized in Figure 11a,b for TOut and Q̇,
respectively. A direct comparison between the two single inlet geometries is obtained by considering TOut
and Q̇ as a function of GIn and TCyls and depicted in Figure 11c,d. Regardless of the cylinder jacket wall
temperatures, the outflow water temperature was higher with the new configurations due to the larger
amount of thermal power (≈20%) transferred to the water. As per the old geometry, two thresholds are
considered. The outflow temperature threshold is set to 363 K while the bandwidth for Q̇ corresponds to
110 kW ± 10 kW. The practical values in the spanned parameter space are enlightened in Table 6.

Figure 10. Temperature patterns for the new single-inlet geometry. Temperature contour plots obtained for
TCyls = 440 K and GIn = 0.5 (a), 1.5 (b), and 2.5 (c) kg/s.
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Figure 11. Outflow temperature and transferred heat flux for the new geometry. (a) Mass-averaged outflow
temperature as a function of GIn for TCyls = 440 K. (b) Cylinder specific and total transferred heat flux
as a function of inlet mass-flow rate for TCyls = 440 K. (c) Comparison of the mass-averaged outflow
temperature as a function of GIn and TCyls between the old and the new single-inlet geometry. (d) Total
transferred heat flux as a function of the inlet mass-flow rate obtained with the old and the new geometry.

Table 5. Mass-averaged temperature, cylinder-specific and total transferred heat flux for TCyls = 440 K and
GIn = 0.5, 1.0, 1.5, 2.0, and 2.5 kg/s when considering the new geometry.

GIn [kg/s] TOut [K] Q6 [kW] Q4 [kW] Q2 [kW] QTot [kW]

0.5 366.0 10.1 9.0 6.8 47.9

1.0 363.1 18.3 15.5 11.4 83.7

1.5 362.2 25.1 22.5 16.3 119.9

2.0 361.5 33.2 28.9 20.8 155.3

2.5 361.2 39.9 36.4 25.0 189.4

Table 6. Mass-averaged outflow temperature and total transferred heat flux tabulated as a function of GIn

and TCyls for the new geometry.

TCyls = 400 K TCyls = 420 K TCyls = 440 K TCyls = 460 K

GIn [kg/s] TOut [K] QTot [kW] TOut [K] QTot [kW] TOut [K] QTot [kW] TOut [K] QTot [kW]

0.5 361.7 38.9 363.9 43.5 366.0 47.9 368.1 52.1

1.0 359.3 67.7 361.2 75.7 363.1 83.7 365.2 92.5

1.5 358.5 96.6 360.3 108.1 362.2 119.9 364.0 131.1

2.0 358.1 125.5 359.8 139.4 361.5 155.3 363.5 170.9

2.5 357.7 152.4 359.6 172.0 361.2 189.4 363.0 207.9
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4. Conclusions

In this work multi-dimensional CFD is employed to enhance the performance of the cooling system
of an aircraft engine. Capabilities and limitations of different geometries are highlighted, in order to
give guidelines as regards an efficient design of the engine. The analysis is carried out by means of
a finite-volume RANS equations solver with k-ε closure.

An initial configuration of the cooling system without any thermal effects is firstly considered,
with constant temperature, density and viscosity for the water. The pressure loss of the cooling system as
a function of the inlet mass-flow rate is computed. Velocity and vorticity patterns are also given to point out
features of the flow field. Then, thermal effects are taken into account and the cooling performance of such
a configuration is assessed as a function of both the inlet mass-flow rate and the cylinder jackets temperatures.
Specifically, the outflow temperature and both the total and the cylinder-specific transferred thermal power
are computed. This geometry is demonstrated to be not very efficient because the cylinder-specific transferred
heat decreases as the distance between the cylinders and the intake section increases.

Two geometrical improvements are then proposed: first, the inlet sections are doubled while keeping
the same total mass-flow rate; second, a new single-inlet geometry is designed by inserting restrictions
and enlargements within the cooling system to constrain the coolant flow and by moving downstream
the outflow duct. The double-inlet geometry exchanges less thermal power than the initial single inlet
geometry (≈12-20%) with an almost perfectly even cylinder-specific transferred heat distribution. The new
single inlet geometry improves the overall abilities of the cooling system of about 20% (referring to the total
transferred thermal power) while keeping the three cylinders only slightly unevenly cooled. Moreover,
the new single-inlet geometry presents, as expected, an increase of the characteristic loads due to the
restrictions and enlargements within the flow field. However, since this head loss represents only about
10% of the total head loss of the whole cooling circuit, the new single-inlet geometry may be a reasonable
choice to optimize the efficiency of the cooling system.
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