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Preface to ”Broken Symmetry in Curved Spacetime

and Gravity”

Modern physics rests on a foundation of two fundamental theories: General Relativity (GR) and

the Standard Model (SM). Each theory agrees extremely well with experiments in a certain domain.

However, the predictions of the theories disagree with each other in certain situations. Therefore,

GR and the SM are likely to be low-energy approximations to some more fundamental theory.

A major current goal in physics is to determine the nature of this more fundamental theory.

The most natural approach to learning about the fundamental theory is to look for situations

where GR and the SM strongly disagree; in such situations, at least one of these theories must

make predictions that are clearly wrong. Unfortunately, all known situations where the theories

strongly disagree are untenable to study experimentally. This leads us to consider an alternate

approach—suppose that one or both of these theories is slightly wrong in a situation where we

can perform experiments with extremely high precision. Careful study of these high-precision

experiments could reveal a violation of one of the current theories. This is the approach taken in

studies of spacetime symmetry violation.

Charles D. Lane

Special Issue Editor
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Constraints on Lorentz Invariance Violation from
Optical Polarimetry of Astrophysical Objects

Fabian Kislat

Department of Physics and Space Science Center, University of New Hampshire, 8 College Road, Durham,
NH 03824, USA; fabian.kislat@unh.edu

Received: 7 September 2018; Accepted: 2 November 2018; Published: 5 November 2018

Abstract: Theories of quantum gravity suggest that Lorentz invariance, the fundamental symmetry
of the Theory of Relativity, may be broken at the Planck energy scale. While any deviation
from conventional Physics must be minuscule in particular at attainable energies, this hypothesis
motivates ever more sensitive tests of Lorentz symmetry. In the photon sector, astrophysical
observations, in particular polarization measurements, are a very powerful tool because tiny
deviations from Lorentz invariance will accumulate as photons propagate over cosmological distances.
The Standard-Model Extension (SME) provides a theoretical framework in the form of an effective
field theory that describes low-energy effects due to a more fundamental quantum gravity theory by
adding additional terms to the Standard Model Lagrangian. These terms can be ordered by the mass
dimension d of the corresponding operator and lead to a wavelength, polarization, and direction
dependent phase velocity of light. Lorentz invariance violation leads to an energy-dependent change
of the Stokes vector as photons propagate, which manifests itself as a rotation of the polarization angle
in measurements of linear polarization. In this paper, we analyze optical polarization measurements
from 63 Active Galactic Nuclei (AGN) and Gamma-ray Bursts (GRBs) to search for Lorentz violating
signals. We use both spectropolarimetric measurements, which directly constrain the change of
linear polarization angle, as well as broadband spectrally integrated measurements. In the latter,
Lorentz invariance violation manifests itself by reducing the observed net polarization fraction.
Any observation of non-vanishing linear polarization thus leads to constraints on the magnitude
of Lorentz violating effects. We derive the first set limits on each of the 10 individual birefringent
coefficients of the minimal SME with d = 4, with 95 % confidence limits on the order of 10−34 on the
dimensionless coefficients.

Keywords: Lorentz invariance; Standard-Model extension; polarization; Active Galactic Nuclei;
Gamma-ray Bursts

1. Introduction

Lorentz invariance is the fundamental symmetry of Einstein’s theory of Special Relativity. It has
been established by many classic experiments, such as Michelson–Morley, Kennedy–Thorndike,
and Ives–Stilwell [1–3], and tested to great precision by modern experiments [4]. Theories of quantum
gravity suggest that there may be minute deviations from Lorentz symmetry, which motivates ever
more sensitive tests [5–10].

Violations of Lorentz symmetry can lead to an energy-dependent vacuum photon dispersion
relation, birefringence as well as anisotropy of the vacuum [11]. All of these effects can be tested with
astrophysical observations, which are particularly sensitive because minuscule effects accumulate as
photons propagate over very large distances resulting in measurable effects [12]. Vacuum birefringence
leads to a wavelength-dependent change of the Stokes parameters, generally resulting in a rotation
of the linear polarization angle. Astrophysical tests of Lorentz symmetry include time of flight

Symmetry 2018, 10, 596; doi:10.3390/sym10110596 www.mdpi.com/journal/symmetry
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measurements (see, e.g., Refs. [13–17]) and polarization measurements (see, e.g., Refs. [18–20]).
The latter are generally more sensitive than time-of-flight measurements by the ratio between the
period of the light wave and the time resolution of dispersion tests, which is usually limited not by
the time resolution of the detector but by source-dependent flux variability time scales and photon
statistics.

The Standard-Model Extension (SME) is an effective field theory framework describing low-energy
effects of a more fundamental theory of quantum gravity, including violations of Lorentz and CPT
invariance [11,12]. It introduces additional terms in the Standard-Model Lagrangian, which can
in part be ordered by the mass dimension d of the underlying operator. Terms with d ≥ 5 are
non-renormalizable and generally thought to be suppressed by M4−d

Planck, whereas the minimal SME
with renormalizable operators of d ≤ 4 results in effects that are unsuppressed relative to conventional
physics, unless some hierarchy of scales exists. Operators of even d are CPT even, while odd-d
operators are CPT odd. In the photon sector, there are (d − 1)2 non-birefringent coefficients and
2(d − 1)2 − 8 birefringent coefficients describing photon propagation in vacuum for even d. For odd
d, there are (d − 1)2 birefringent coefficients. In general, these coefficients result in an anisotropy
of the vacuum, and time of flight or polarization measurements of a single astrophysical source
can only constrain combinations of these coefficients. A notable exception are measurements of the
polarization of the Cosmic Microwave Background, which resulted in extremely tight constraints on all
coefficients of d = 3 [21–23]. In previous papers, we used gamma-ray time-of-flight measurements and
optical polarization measurements from multiple sources to individually constrain all non-birefringent
parameters of mass-dimension d = 6 [16] and all parameters with d = 5 [20], respectively.

Here, we use the same optical polarization measurements of Active Galactic Nuclei (AGN)
and Gamma-ray Bursts (GRBs) as in Ref. [20] to individually constrain each of the 10 birefringent
coefficients with mass-dimension d = 4. The non-birefringent coefficients of d = 4 result in an
energy-independent anisotropy of the phase velocity of light. Laboratory searches using a variety
of resonating cavities have resulted in strong constraints on each of these coefficients [4], with the
strongest constraints from long-baseline gravitational wave interferometers [24]. On the other hand,
there are very few constraints of combinations of the birefringent coefficients, mostly from X-ray
polarimetry of GRBs [19].

The main challenge, compared to the analysis of the d = 5 case, is that unlike odd d at even
d the change of the linear polarization during propagation depends on the linear polarization
angle. Therefore, the analysis requires a different approach. As before, we make use both of
polarization measurements integrated over the relatively broad bandwidth of a telescope, as well
as spectropolarimetric measurements, which provide the Stokes parameters Q and U as a function
of wavelength.

The paper is structured as follows. In Section 2, we summarize the theoretical background and
derive expressions for the observable effects that will serve as the foundation for the data analysis.
In Section 3, we lay out the analysis of both spectropolarimetric and spectrally integrated polarization
measurements and their interpretation in terms of the SME. In Section 4, we describe the Markov-Chain
Monte Carlo method we use to derive limits on the individual SME coefficients and give the results.
Finally, in Section 5, we discuss these results and give an outlook to future possibilities. Furthermore,
Appendices A and B list the astrophysical sources used in this analysis and distributions of the different
SME coefficients derived from these measurements, respectively.

2. Theory

The photon vacuum dispersion relation of the Standard Model Extension (SME) can be written
as [12]

E �
(

1 − ς0 ±
√
(ς1)2 + (ς2)2 + (ς3)2

)
p (1)
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with the expansion in spin-weighted spherical harmonics sYjm and mass dimension d:

ς0 = ∑
djm

Ed−4
0Yjm(n̂)c

(d)
(I)jm, (2)

ς± = ς1 ∓ iς2 = ∑
djm

Ed−4 ±2Yjm(n̂)
(
k(d)
(E)jm ± ik(d)

(B)jm

)
, (3)

ς3 = ∑
djm

Ed−4
0Yjm(n̂)k

(d)
(V)jm, (4)

where n̂ is the direction towards the origin of the photon. For odd d, there are (d− 1)2 coefficients k(d)
(V)jm

and, for even d, there are (d − 1)2 non-birefringent coefficients c(d)
(I)jm and (d − 1)2 − 4 birefringent

coefficients k(d)
(E)jm and k(d)

(B)jm each. In this paper, we restrict our attention to the birefringent coefficients
with d = 4 in the minimal SME, i.e.,

ς±
∣∣
d=4 =

+2

∑
m=−2

±2Y2m(n̂)
(
k(4)
(E)2m ± ik(4)

(B)2m

)
(5)

with a total of 10 coefficients k(4)
(E)2m and k(4)

(B)2m, which comprise a total of 10 real components since

k(d)
(E,B)j(−m)

= (−1)m(k(d)
(E,B)jm

)∗. (6)

The polarization of an electromagnetic wave is completely described by the four Stokes
parameters: intensity I; linear polarization Q and U, where U describes linear polarization at an
angle of 45◦ relative to Q; and circular polarization V. General elliptical polarization is described
by the Stokes vector s = (Q, U, V)T . The polarization of photons with energy E will change as they
propagate through a birefringent vacuum:

ds
dt

= 2Eς × s (7)

with the birefringence axis ς = (ς1, ς2, ς3)T . In the CPT-odd case, this axis is aligned with the V axis
and as a result, linearly polarized light remains linearly polarized, but the polarization position angle
will rotate as light propagates.

In the CPT-even case, the birefringence axis lies in the Q − U plane. Consequently, the
Stokes vector will generally rotate out of this plane and linearly polarized light will become
elliptically polarized during propagation. However, light with s parallel to ς will remain unaffected.
The eigenmode of propagation is described by the polarization angle (following the convention used
in Ref. [12])

ξ/2 =
1
2

arctan
(−ς2

ς1

)
. (8)

The observed polarization of light emitted by a source at redshift z can conveniently be calculated
in a spin-weighted Stokes basis s = (s(+2), s(0), s(−2))

T with s(0) = V and s(±2) = Q ∓ i U and
ς = (ς+, ς3, ς−)T . Then, the observed Stokes vector s is related to the blueshifted Stokes vector sz

by [12]
s = Mz · sz (9)

with the Müller matrix

Mz =

⎛⎜⎝ cos2Φz −i sin(2Φz)e−iξ sin2 Φze−2iξ

− i
2 sin(2Φz)eiξ cos(2Φz)

i
2 sin(2Φz)e−iξ

sin2 Φze2iξ i sin(2Φz)eiξ cos2 Φz

⎞⎟⎠ (10)
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and, at d = 4,

Φz = E
∫ z

0

dz′

Hz′

∣∣∣∣∣∑m 2Y2m(n̂)
(
k(4)
(E)2m ± ik(4)

(B)2m

)∣∣∣∣∣ . (11)

For convenience, we define the following abbreviations:

S(n̂) = ∑
m

2Y2m(n̂)
(
k(4)
(E)2m ± ik(4)

(B)2m

)
, (12)

Lz =
∫ z

0

dz′

Hz′
, (13)

γ(n̂) = |S(n̂)|, (14)

ϑz(n̂) = Lzγ(n̂), (15)

so that
Φz = Eϑz(n̂) (16)

and

ξ = arctan
(−
(S)

�(S)
)

. (17)

Most astrophysically relevant emission mechanisms are not expected to produce any significant
circular polarization. Hence, assuming 100 % linearly polarized light at the source with the polarization
angle ψz,

Qz = cos(2ψz) Uz = sin(2ψz) Vz = 0, (18)

the observer Stokes parameters are

Q = cos(2ψz) cos2(Eϑz(n̂)
)
+ cos(2(ξ − ψz)) sin2(Eϑz(n̂)

)
(19)

U = sin(2(ξ − ψz)) sin2(Eϑz(n̂)
)
+ sin(2ψz) cos2(Eϑz(n̂)

)
. (20)

Since the data used in this analysis do not contain any information about circular polarization, we
do not consider V. The change in Stokes parameters is:

ΔQ = Q − Qz = −2 sin2(Eϑz(n̂)
)

sin ξ sin(ξ − 2ψz), (21)

ΔU = U − Uz = 2 sin2(Eϑz(n̂)
)

cos ξ sin(ξ − 2ψz). (22)

The above expressions can be further simplified by realizing that the reference direction for the
polarization angle can be chosen freely. Rotating the coordinate system such that ξ ′ = 0, we express all
position angles as ψ′ = ψ − ξ/2 and find

ΔQ′ = 0, (23)

ΔU′ = −2 sin2(Eϑz(n̂)
)
U′

z. (24)

All primed quantities are expressed in this rotated frame, while all polarization angles without
prime are given in a frame where a polarization angle of 0 corresponds to linear polarization in the
north/south direction and 90◦ to the east/west direction [25]. Quantities with subscript z refer to the
polarization of the source at redshift z, quantities without a subscript to the observer polarization
predicted by the SME, and quantities with subscript m, in the following, refer to measured quantities.

3. Astrophysical Polarization Measurements

Essentially, birefringence leads to an energy and ψz-dependent rotation of the polarization angle
and change in linear polarization fraction, as illustrated in Figures 1 and 2. By measuring the linear
polarization of photons emitted by distant objects, strong constraints on birefringence can be obtained.
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In the analysis presented here, we make use of two kinds of measurements: spectropolarimetric
measurements, where polarization fraction and angle are measured as a function of photon energy,
and spectrally integrated measurements, where the polarization fraction is measured by integrating
over a broad bandwidth determined by a filter in the optical path. Both analyses are based on the results
from the previous section, but proceed differently. The goal of this section is to develop statistical
measures for each type of observation that allows us to quantify the compatibility of a set of SME
coefficients with the observation. The results are then combined in Section 4 into a joint probability
function that is used to derive confidence intervals for each individual SME coefficient.

z = 0°

z = 20°

0.0 0.5 1.0 1.5 2.0

-20

0

20

40

Redshift z

[°
]

Figure 1. Difference of the observed polarization angle Δψ between photons of observer wavelengths
of 1033 nm and 443 nm that were emitted with the same linear polarization angle ψz = 0 (blue) and
ψz = 20◦ (orange) as a function of source red shift. The photons arrive from the direction of GRB 990510,

and �(k(4)
(E)21) = 10−32 with all other SME coefficients set to 0, resulting in an angle of the eigenmode

in the Q − U plane of the Stokes space of ξ = −24.8◦.

z = 0°

z = 40°

0.5 1.0 1.5 2.0

0.0

0.2

0.4

0.6

0.8

1.0

Redshift z

m
a
x

Figure 2. Effective polarization of light observed through the HOWPol R-band filter arriving
from the direction of GRB 091208B if the light at the source is 100 % linearly polarized with a
wavelength-independent polarization angle as a function of source redshift. For this illustration,

the SME coefficients were set to 0, except for �(k(4)
(E)21) = 2 × 10−32. The depolarization is due

to averaging over the bandwidth of the filter and the rotation of the polarization angle, as shown
for example in Figure 1, as well as the change of linear into circular polarization described by the
Müller matrix (Equation (10)). The combination of these two effects leads to the observed “ringing”.
As described in Section 2, the effect depends on the linear polarization angle ψz at the source.
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3.1. Spectropolarimetry

When measuring the polarization angle as a function of energy, ψ(E), we can directly compare
the result to the position angle resulting from Equations (19) and (20). Here, we reduce the problem to
comparing the change in polarization angle at a given wavelength as predicted by the SME given a set
of coefficients to the observed change over an instrument band pass. We start with a linear fit of the
measured polarization angle as function of energy,

ψm(E) = ψm(Ē) + ρm(E − Ē), (25)

where ψm(Ē) is the measured polarization angle at the median energy Ē = 2.26 eV of the fit range,
and ρm with the uncertainty σρ is the linear rate of change of polarization angle as a function of energy.
An example fit is shown in Figure 3.

1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2
Photon energy [eV]

140−

120−

100−

80−

60−

40−

20−

0

20

]° [
ψ

P
ol

ar
iz

at
io

n 
an

gl
e 

Figure 3. Example of a spectropolarimetric measurement. The figure shows the polarization angle of
4C 14.23 as a function of photon energy observed on 23 November 2009. The red line is a linear fit in
order to determine ρm for comparison with Equation (28) to calculate the probability in Equation (29).
All fit results are listed in Table A3.

To compare the measured rate of change ρm ± σρ with the prediction due to a given set of SME
parameters, we first find the source polarization angle ψ′

z from the observed polarization angle ψm(Ē)
at the median energy of the detector band pass. From Equations (23) and (24), we have

Q′
z = Q′

m(Ē) and U′
z =

U′
m(Ē)

cos(2Ēϑ)
, (26)

where Q′
m(Ē) = cos(2(ψm(Ē)− ξ/2)) and U′

m(Ē) = sin(2(ψm(Ē)− ξ/2)), so that

ψ′
z =

1
2

arctan
(

U′
z

Q′
z

)
. (27)

Then, we linearize the predicted change in polarization angle with energy as given by the Stokes
parameters in Equations (19) and (20), which is adequate for small changes over the bandwidth:

ρ̄ :=
dψ

dE
(Ē) =

dψ′

dE
(Ē) =

ϑ sin(2Ēϑ) sin(4ψ′
z)

2
(
cos2(2ψ′

z) + cos2(Ēϑ) sin2(2ψ′
z)
) . (28)

An example of the rotation of the linear polarization angle as a function of one of the SME
coefficients is shown in Figure 4. The observer polarization angle in general oscillates around the
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source polarization angle and the roots of ρ̄ seen in the figure correspond to values of k(4)
(E)20 for which

this oscillation is extremal at Ē.
This allows us to quantify the compatibility of the measurement with a given set of SME

coefficients. The probability to observe a change of polarization angle ρ < |ρm| assuming a true
change |ρ̄| given by Lorentz violation according to Equation (28) and given the uncertainty of the
measurement, σρ, is:

P(ρ < |ρm|
∣∣|ρ̄|, σρ) =

∫ |ρm |

−∞

1√
2πσ2

m
exp

(
− (ρ − |ρ̄|)2

2σ2
m

)
dρ. (29)
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z( ) = 20°

z( ) = 45°
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Figure 4. Rotation of the linear polarization angle with energy according to Equation (28) as a function

of the SME coefficient k(4)
(E)20 while keeping all other SME coefficients at 0. The source was assumed to

be at redshift z = 1 with a codeclination of θ = 90◦. Results are shown for three different values of
the polarization angle at the source, ψz. For ψz = 45◦, the Stokes vector rotates out of the Q − U plane,
but the linear polarization angle does not change because Q′

z = 0 (see Equations (26) and (27)).

An example of this probability as a function of one of the SME coefficients is shown in Figure 5.
The spikes are due to the roots of ρ̄, but their width decreases with increasing SME coefficients.
A single observation cannot be used to place constraints on the SME coefficients, unless additional
assumptions are made. However, combining multiple observations will lead to tight constraints
roughly corresponding to the width of the central peak, because the spikes at larger values of the SME
coefficients will not line up for different sources.
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Figure 5. Probability P(ρ < |ρm|
∣∣|ρ̄|, σρ) according to Equation (29) as a function of the SME

coefficient k(4)
(E)20 while keeping all other SME coefficients at 0. A measured change in polarization of

ρm = (0 ± 1) ◦/eV was assumed. Source distance and direction are the same as in Figure 4, and colors
have the same meaning. The roots of ρ̄ in Figure 4 lead to the spikes in the probability function
seen here.

The interpretation of the probability P is as follows. If |ρm| < |ρ̄|, a strong degree of cancellation
of the LIV-induced change of position angle with a source intrinsic change in position angle must have
occurred, resulting in a low probability and a strong constraint on the given value of ρ̄. On the other
hand, if |ρm| > |ρ̄|, there must be a strong source-intrinsic change of the polarization angle, irrespective
of ρ̄. Hence, P will be large and only a very weak constraint is placed on the given value of ρ̄. This has
deliberately been designed such that no claims of detection of Lorentz invariance violation will be
made, because we do not want to make any assumptions about source-intrinsic energy-dependent
changes of the polarization angle.

We applied this method to a large sample of publicly available spectropolarimetric measurements
of AGN [26] covering observer frame wavelengths between 4000 Å and 7550 Å. From all data published
in this archive until 30 March 2016, we selected all sources with redshift z > 0.6, which have at least
one observation with a spectrally averaged polarization fraction >10 %. For each source, we chose the
measurement that resulted in the largest average polarization fraction. We then fitted each polarization
angle measurement as a function (25) of photon energy in the range 1.77 eV to 2.76 eV with a linear
function centered at the median energy of this range in order to determine the change of polarization
angle ρm. The resulting dataset was further reduced by removing all sources with ρm/σρ > 3. The final
list of measurements is given in Appendix A (Table A3).

3.2. Polarimetry Integrated over a Broad Bandwidth

When integrating over the bandpass of a broadband polarimeter, vacuum birefringence will lead
to a reduction of the observed polarization compared to the polarization at the source due to the
rotation of the polarization angle. We derive the largest possibly observable linear polarization fraction
for an instrument with energy-dependent detection efficiency T(E), assuming that the emitted light
is 100 % linearly polarized with an energy-independent polarization angle ψz. We then quantify the
compatibility of this maximum possible polarization with measured polarization fractions and angles.
Any energy dependence of ψz will lead to an additional reduction of measured polarization, making
this a conservative approach. While it is in principle possible that birefringence and source-intrinsic
effects cancel, this is very unlikely, in particular when observing multiple astrophysical sources.
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We start by computing the effective Stokes parameters of a measurement for a given set of SME
coefficients and a 100 % polarized source. Additivity of Stokes parameters allows us to integrate them
over the detector bandpass,

Q′ =
∫

T(E)Q′(E)dE =
∫

T(E)(Q′
z + ΔQ′(E))dE = Q′

z

∫
T(E)dE = NQ′

z (30)

and

U′ =
∫

T(E)U′(E)dE =
∫

T(E)(U′
z + ΔU′(E))dE

= U′
z

(∫
T(E)dE − 2

∫
T(E) sin2(Eϑz(n̂)

)
dE

)
= U′

z N
(
1 −F (ϑz(n̂))

)
,

(31)

where we use the definitions in Equations (23) and (24) and introduce the instrument-dependent
normalization constant

N =
∫

T(E)dE (32)

and the instrument-dependent function

F (ϑ) =
2
N

∫
T(E) sin2(Eϑ)dE. (33)

These integrals must be computed numerically, since T(E) is typically measured for each
individual instrument. The advantage of formulating the problem in this way, however, is that N solely
depends on the instrument being used, and F (ϑ) can be tabulated for efficient evaluation. The integrals
in Equations (32) and (33) were calculated in the range 1.2 eV to 2.8 eV. All source properties (distance
and direction) and SME coefficients are combined into the single instrument-independent parameter ϑ.

In this analysis, we used data from various optical telescopes employing a variety of filters.
The filter transmission curves used in this analysis are shown in Figure 6. Table 1 lists the resulting
normalization constants N and Figure 7 shows the tabulated functions F (ϑ). With those definitions,
the maximum observable polarization for a 100 % linearly polarized source is

Πmax =

√Q′2 + U′2
N =

√
Q′2

z + U′2
z
(
1 −F (ϑ)

)2
=
√

1 − U′2
z F (ϑ)

(
2 −F (ϑ)

)
, (34)

where we used Q′2
z + U′2

z = 1 in the last step. The corresponding observed polarization angle is

Ψ′ = Ψ − ξ/2 =
1
2

arctan
(U′

Q′

)
=

1
2

arctan

(
U′

z
(
1 −F (ϑ)

)
±√1 − U′2

z

)
, (35)

where the sign in the denominator is chosen to match the sign of Q′
z.

Table 1. Integral of the filter transmission curves used in this analysis (see Equation (32)).

Instrument Filter N [10−10 GeV]

FORS1 R-band 3.840
FORS1 V-band 3.926
FORS2 RSpecial 4.548
ALFOSC R-band 3.135
EFOSCV V-band 3.763
HOWPol R-band 3.611
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Figure 6. Filter transmission as a function of photon energy for the instruments and filters used in this
analysis [27–31].
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Figure 7. Instrument-dependent modulation integrals F (ϑ) according to Equation (33) for the filter
transmission curves shown in Figure 6.

The function F (ϑ) determines the reduction of the observable linear polarization. It shows only
a minor dependence on the exact shape of the transmission curve (compare for example the FORS1
R-band and the FORS2 RSpecial filters), but a clear dependence on the energy range covered by the filter
can be seen: for small values of ϑ, the V-band filters lead to larger values of F (ϑ) than the R-band
filters, and hence stronger sensitivity to Lorentz invariance violation. It is easy to show that in the limit
of large SME coefficients

lim
ϑ→∞

F (ϑ) = 1 (36)

and it is obvious from Figure 7 that F (ϑ) oscillates around this value as ϑ increases. In these cases, i.e.,
for F (ϑ) = 1, one finds

Ψ′ =
{

π
2

π
4 ≤ ψ′

z <
3π
4

0 else
and Πmax =

√
1 − U′2

z . (37)

This result implies that only certain effective polarization angles Ψ can be observed in case ϑ is
large. Hence, the observed polarization angle itself already places constraints on the SME coefficients.

Given a set of SME coefficients, source distance Lz and direction n̂, we use Equations (34) and (35)
to find the largest possible polarization fraction Πmax given a measured polarization angle Ψm. It is
important to note that this does not imply the assumption of 100 % polarization at the source, but simply
reflects the fact that we do not want to make any assumptions about the astrophysics of the source.
In realistic models, the polarization of optical emission from blazars is expected to be at most on
the order of 20–30 % [32,33]. Using such models as input, significantly tighter constraints would be
possible. However, optical polarization of blazars is highly variable (see, e.g., [34]), and in case of
GRB afterglows significantly higher degrees of polarization are possible [35]. To be conservative and
to avoid systematic uncertainties, we decided against using detailed source models, and follow the
approach used in previous work [19,20].
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We numerically solve Equation (35) for U′
z by requiring Ψ′ = Ψ′

m, where Ψ′
m = Ψm − ξ/2 is the

measured polarization angle in the rotated frame. Figure 8 illustrates this for different values of F (ϑ)

as function of the observed polarization angle Ψ′
m. The result is then used to calculate Πmax from

Equation (34), shown as a function of Ψ′
m and F (ϑ) in Figure 9. These results were also tabulated in

the range 0.01 ≤ F (ϑ) ≤ 1 in steps of δF (ϑ) = 0.005 and δΨ′
m = 1◦ for fast lookup at later stages of

the analysis. Values of Πmax for arbitrary F (ϑ) and Ψ′
m can be found from this table using bilinear

interpolation. Figure 10 shows an example of the maximum theoretically possible net polarization for
GRB 091208B as a function of one of the SME coefficients.
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Figure 8. Source Stokes parameter U′
z as a function of Ψm calculated by numerically solving

Equation (35) for Ψ′ = Ψ′
m for different values of the function F (ϑ).
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The probability to observe a polarization Π given a true polarization Π̂, can be written as [36,37]:

P(Π|Π̂, N) =
NΠ

2
exp

(
−N

4
(Π2 + Π̂2)

)
I0

(
N Π Π̂

2

)
=

NΠ
2

exp
(
−N(Π − Π̂)2

4

)
i0

(
N Π Π̂

2

)
,

(38)

where I0 is the modified Bessel function of order zero, i0(x) = exp(−|x|)I0(x), and N is related to the
statistical quality, e.g., the number of photons detected in a photon counting experiment. Use of the
scaled modified Bessel function i0(x) is advantageous for numerical implementation. Expectation
value and standard deviation of Π are then

Π̄ =

√
π

16N
exp

(
−N Π̂2

8

) [
(4 + N Π̂2)I0

(
N Π̂2

8

)
+ N Π̂2 I1

(
N Π̂2

8

)]
, (39)

σ̄Π =

(
Π̂2 +

4
N

− Π̄2
)1/2

, (40)

where I1 is the modified Bessel function of order 1. For each polarization measurement Πm ± σm, we
determine N by numerically solving σ̄Π = σm for N assuming Π̂ = Πm. This allows us to calculate the
cumulative probability by numeric integration of Equation (38):

P(Π ≤ Πmax|Πm, N) =
∫ Πmax

0
P(Π|Πm, N)dΠ. (41)

This result quantifies the probability that a given set of SME coefficients is compatible with the
measurement. Typical examples of the integral as a function of the upper limit Πmax are shown in
Figure 11. In practice, we replace P(Π|Π̂, N) from Equation (38) with a simple Gaussian distribution
with mean Πm and standard deviation σm if Πm/σm > 10 due to numerical issues when evaluating the
Bessel functions for large values of N. The error in this case is PGauss(x < 0|μ > 10σ) < 7.7 × 10−24.
An example of this cumulative distribution as a function of one of the SME coefficients is shown in
Figure 12.

GRB 021004 ( m = 0.0209, N = 5.3×10
4
)

GRB 091208B ( m = 0.104, N = 3.1×10
3
)

PKS 1303-250 ( m = 0.0091, N = 6.8×10
5
)

max

P
(
<

m
a

x
|

m
,

N
)

Figure 11. Three typical examples of the integral in Equation (41) as function of the upper limit Πmax.
The three cases illustrate a range of measured polarization fractions Πm and uncertainties σm.
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Figure 12. Probability that the observed polarization fraction of GRB 091208B is smaller than the
maximum theoretically possible polarization fraction according to Equation (41) (see Figure 10) as

function of the SME coefficient k(4)
(E)20 when keeping all other coefficients at 0. The measured polarization

fraction is 0.104(25).

We applied this method to a large sample of polarization measurements of AGN [38,39]. From
this catalog, we selected 36 sources for which polarization was measured with at least 5σ significance.
Furthermore, we included optical polarization measurements of eight GRBs [40–51]. This selection
of measurements is identical to the data used in Ref. [20] with the exception that we were unable
to use data from GRB 090102 because no polarization angle was published [52]. Details about all
astrophysical sources and measurements used here are shown in Tables A1 and A2 in Appendix A.

4. Results

The goal of this work is to obtain constraints on the individual coefficients k(4)
(E)2m and k(4)

(B)2m. From
the measurements described in the previous section, we find the combined probability distribution

P(k(4)
(E)2m, k(4)

(B)2m) = ∏
measurements i

Pi(k
(4)
(E)2m, k(4)

(B)2m), (42)

where the Pi(k
(4)
(E)2m, k(B)2m(4)) are the probabilities that each measurement is compatible with the

given set of SME coefficients calculated as described in the previous section (Equations (29) and (41)).
The product goes over all measurements of both types, listed in Tables A1–A3 in Appendix A.

To calculate constraints on each SME coefficient, we evaluate the probability in Equation (42)
and marginalize over all other coefficients. Using the Metropolis-Hastings Markov Chain Monte
Carlo method [53] with a normal distribution with σ = 6 × 10−35 for each coefficient as the proposal
distribution g(δk(4)

(E)2m, δk(4)
(B)2m), we sample the combined distribution. At each step t, we randomly

choose a new set of parameters k(4)
(E,B)2m,t+1 = k(4)

(E,B)2m,t + δk(4)
(E,B)2m according to g and calculate the

acceptance ratio α = P(k(4)
(E)2m,t+1, k(4)

(B)2m,t+1)/P(k(4)
(E)2m,t, k(4)

(B)2m,t) according to Equation (42). The step

is accepted if u ≤ α for a uniform random number u ∈ [0, 1], otherwise we set k(4)
(E,B)2m,t+1 = k(4)

(E,B)2m,t.

In this way, we iteratively construct a set of coefficients k(4)
(E,B)2m that can be shown to be distributed

according to the probability density in Equation (42).
The choice of proposal distribution g leads to a step acceptance rate of about 13 %. Starting from

all coefficients set to 0, we discarded the first 10,000 steps to reduce the dependence of the result on
the initial set of coefficients, and then took 107 steps recording each set of selected SME coefficients.
The distribution of these sets of coefficients is proportional to P(k(4)

(E)2m, k(4)
(B)2m). From the distribution

of values of each individual coefficient, we then find the 5th and 95th percentile as lower and upper
limits. The resulting distributions are shown in Figure A1 in Appendix B and the corresponding
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upper and lower limits on the SME coefficients are listed in Table 2. The constraints turned out to be
symmetrical around 0 within at least two-digit precision.

We also derived constraints from each of the two methods individually as a cross check. When
using only the spectrally integrated measurements described in Section 3.2, the upper limits on the
coefficients are about a factor 100 larger than those in Table 2. Consistently, we found that the results
obtained when only using the spectropolarimetric results from Section 3.1 differ from the final ones on
the order of 1 %.

By combining multiple spectropolarimetric measurements, the probability spikes in Figure 5
are eliminated as their location depends on source distance, direction, and measured polarization
angle. The “ringing” observed in the probability distribution derived from each spectrally integrated
measurement seen in Figure 12 cancels to some degree when combining multiple spectrally
integrated measurements. Furthermore, the spectropolarimetric measurements are significantly more
constraining than the spectrally integrated results. Combined, these effects result in the relatively
smooth probability distribution of each SME coefficient shown in Figure A1.

Figure A2 in Appendix B shows the correlation between the different coefficients. There is
significant correlation among most pairs of coefficients most likely due to the non-uniform sky coverage.
Therefore, the best way to improve on these results is to improve the sky coverage particularly with
spectropolarimetric measurements, which at this point were not available for most of the Southern sky.

Table 2. Limits at the 95 % confidence level on all independent SME parameters k(4)
(E)2m and k(4)

(B)2m

obtained in this analysis. The dependent parameters k(4)
(E)2(−m)

and k(4)
(B)2(−m)

can be calculated
according to Equation (6).

|k(4)
(E)20| < 2.4 × 10−34

|Re
(
k(4)
(E)21

)| < 1.0 × 10−34

| Im
(
k(4)
(E)21

)| < 1.6 × 10−34

|Re
(
k(4)
(E)22

)| < 2.4 × 10−34

| Im
(
k(4)
(E)22

)| < 2.6 × 10−34

|k(4)
(B)20| < 1.5 × 10−34

|Re
(
k(4)
(B)21

)| < 2.2 × 10−34

| Im
(
k(4)
(B)21

)| < 1.4 × 10−34

|Re
(
k(4)
(B)22

)| < 1.9 × 10−34

| Im
(
k(4)
(B)22

)| < 2.5 × 10−34

5. Discussion

Using optical polarization measurements of 63 AGN and GRBs, we searched for signals of Lorentz
invariance violation. We derived 95 % confidence level limits on each of the 10 coefficients with mass
dimension d = 4 of the minimal SME on the order of 10−34, as listed in Table 2. The results summarized
in Table 2 are the first constraints on the individual SME parameters in this sector. Furthermore,
the results are based on highly significant polarization measurements with well quantified uncertainties.
In comparison, the limits published in [19] only constrain combinations of SME parameters, and are
based on measurements of the polarization of the X-ray emission from GRBs with large systematic
uncertainties.

While there may not be a theory of quantum gravity currently under active consideration that
predicts a form of Lorentz invariance violation described by these coefficients, there is no generally
accepted quantum gravity theory, either. A broad search for possible effects is, thus, warranted as
neither the form of potential Lorentz invariance violation, nor its degree is known a priori. Given the
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tight constraints on the SME coefficients of d = 4 presented here and in prior work [4], any significant
violation of Lorentz symmetry at the Planck scale must be strongly suppressed at lower energies. If a
hierarchy of scales exists, suppression with (Mlow/MPlanck)

n is possible, where Mlow is the lower mass
scale and n is some power. SUSY-breaking is one scenario that could provide such a hierarchy [54].
Given extensive direct searches for deviations from the Standard Model of particle physics at energies
up to about 1 TeV [55], Mlow � 1 TeV must be assumed. A model with Mlow = 10 TeV and n = 2
would lead to a suppression of the order of 10−30. In this scenario, Lorentz invariance violating effects
of order unity at the Planck scale due to operators of mass dimension d = 4 can be ruled out by
the constraints presented here. For a similar model to be viable and to result in significant Lorentz
invariance violating effects at the Planck scale, one must assume that either n > 2 or Mlow � 10 TeV.

While optical polarization measurements are a powerful tool to constrain coefficients of d = 4 and
d = 5 [20], at higher mass dimension polarization measurements at higher energy will be significantly
stronger due to the Ed−3 dependence of the polarization signature. The Imaging X-ray Polarimetry
Explorer (IXPE, [56]) to be launched in early 2021 will provide highly significant X-ray polarization
measurements of a large number of astrophysical objects and one can expect that a similar analysis
with those data will significantly improve on the results presented here. Future Compton gamma-ray
telescopes, such as the proposed All-sky Medium-Energy Gamma-ray Observatory (AMEGO [57]) or
the Compton Spectrometer and Imager (COSI [58]) will be sensitive to gamma-ray polarization up to
MeV energies. These future instruments will significantly enhance our capability to search for Lorentz
invariance violation in the photon sector.
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Appendix A. Astrophysical Sources

Tables A1–A3 list all astrophysical sources used in this analysis, where the spectropolarimetric
results are given in Table A3.

Table A1. Sources observed by Sluse et al. [38,39], including the coordinates and redshifts listed in the
reference. All observations were made using the EFOSC2 instrument.

Source RA Dec. Redshift Polarization Position Angle
J2000 [◦] J2000 [◦] z [%] [◦]

SDSS J0242+0049 40.591 +0.820 2.071 1.47(24) −13(5)
FIRST03133+0036 48.328 +0.606 1.250 1.48(29) −55(6)
FIRST J0809+2753 122.256 +27.895 1.511 1.75(20) 73(3)
PG 0946+301 147.421 +29.922 1.220 1.65(19) −66(3)
PKS 1124-186 171.768 −17.045 1.048 11.68(36) 37(1)
He 1127-1304 172.583 −12.653 0.634 1.32(13) 46(3)
2QZ J114954+0012 177.479 +0.215 1.596 1.57(22) −24(4)
SDSS J1206+0023 181.615 +0.393 2.331 0.94(15) −57(5)
SDSS J1214-0001 183.673 +0.027 1.041 2.40(32) −77(4)
PKS 1219+04 185.594 +4.221 0.965 5.56(15) −61(1)
PKS 1222+037 186.218 +3.514 0.960 2.51(22) −82(2)
TON 1530 186.364 +22.587 2.058 0.92(14) −11(4)
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Table A1. Cont.

Source RA Dec. Redshift Polarization Position Angle
J2000 [◦] J2000 [◦] z [%] [◦]

SDSS J1234+0057 188.616 +0.966 1.532 1.35(23) 2(5)
PG 1254+047 194.250 +4.459 1.018 0.84(15) −4(5)
PKS 1256-229 194.785 −22.823 1.365 22.32(15) −23(1)
SDSS J1302-0037 195.534 +0.626 1.672 1.37(20) 35(4)
PKS 1303-250 196.564 −24.711 0.738 0.91(17) −75(5)
FIRST J1312+2319 198.056 +23.333 1.508 1.10(16) −14(4)
SDSS J1323-0038 200.769 +0.649 1.827 1.13(21) 15(5)
CTS J13.07 205.518 −17.700 2.210 0.83(15) 20(5)
SDSS J1409+0048 212.328 +0.807 1.999 3.91(28) 30(2)
HS 1417+2547 215.055 +25.568 2.200 1.03(18) −66(5)
FIRST J1427+2709 216.765 +27.161 1.170 1.35(25) 80(5)
FIRST J21079-0620 316.990 −5.664 0.644 1.12(22) −33(6)
SDSS J2131-0700 322.912 −6.996 2.048 1.78(32) 44(5)
PKS 2204-54 331.932 −52.224 1.206 1.81(26) −50(4)
PKS 2227-445 337.735 −43.725 1.326 5.26(48) 18(3)
PKS 2240-260 340.860 −24.258 0.774 14.78(21) −49(1)
PKS 2301+06 346.118 +6.336 1.268 3.69(26) −17(2)
SDSS J2319-0024 349.995 +0.414 1.889 1.85(30) −16(5)
PKS 2320-035 350.883 −2.715 1.411 9.56(20) 90(1)
PKS 2332-017 353.835 −0.481 1.184 4.86(19) −88(1)
PKS 2335-027 354.489 −1.484 1.072 3.55(30) −70(2)
SDSS J2352+0105 358.159 +1.098 2.156 1.59(26) 27(5)
SDSS J2356-0036 359.120 +0.601 2.936 1.81(34) 16(5)
QSO J2359-12 359.973 −11.303 0.868 4.12(20) −29(1)

Table A2. Optical GRB measurements.

Source Instrument RA Dec. Redshift Polarization Position Angle Refs.
J2000 [◦] J2000 [◦] z [%] [◦]

GRB 990510 FORS1 R-band 204.532 −80.497 1.619 1.6 ± 0.2 −84 ± 4 [41–43]
GRB 990712 FORS1 R-band 337.971 −73.408 0.430 2.9 ± 0.4 −59 ± 4 [44]
GRB 020813 FORS1 V-band 296.674 −19.601 1.25 1.42 ± 0.25 −43 ± 4 [47,48]
GRB 021004 NOT/ALFOSC 6.728 +18.928 2.330 2.1 ± 0.6 −7 ± 8 [45]
GRB 030329 NOT/ALFOSC 161.208 +21.522 0.169 2.4 ± 0.4 65 ± 7 [46]
GRB 091018 FORS2 32.192 −57.55 0.97 3.25 ± 0.35 57 ± 6 [49]
GRB 091208B HOWPol 29.410 16.881 1.06 10.4 ± 2.5 −88 ± 6 [50]
GRB 121024A FORS2 70.467 −12.268 2.298 4.83 ± 0.20 173 [51] †

† No uncertainty of the position angle was specified in the paper. We are able to use this measurement because
we always find the position angle the source to exactly match the observed position angle, irrespective of its
uncertainty.

Table A3. Sources selected from the Steward Observatory spectropolarimetric monitoring project [26].
The second column lists the highest observed polarization fraction during cycles 1–7 of the monitoring
program. Coordinates have been obtained from the SIMBAD database [59]. Individual references are
given for the red shifts. The last two columns give the position angle at the median energy of the linear
fit and the differential change in position angle.

Source Pmax RA Dec. Redshift PA at 2.26 eV ρ
[%] J2000 [◦] J2000 [◦] z [◦] [◦/eV]

3C 454.3 18.83 343.491 +16.148 0.859 [60] 61.19(23) −0.3(10)
4C 14.23 20.32 111.320 +14.420 1.038 [61] −34.42(18) −0.7(7)
4C 28.07 30.30 39.468 +28.802 1.206 [61] −62.36(9) 0.46(32)
AO 0235+164 39.79 39.662 +16.616 0.940 [62] −20.25(5) 0.16(17)
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Table A3. Cont.

Source Pmax RA Dec. Redshift PA at 2.26 eV ρ
[%] J2000 [◦] J2000 [◦] z [◦] [◦/eV]

B2 1633+382 27.26 248.815 +38.135 1.813 [63] −3.71(7) −0.69(26)
B2 1846+32A 28.88 282.092 +32.317 0.800 [61] 2.39(5) 1.49(18)
B3 0650+453 16.16 103.599 +45.240 0.928 [61] 79.3(5) 3.4(18)
B3 1343+451 10.07 206.388 +44.883 2.534 [61] 35.6(6) −0.7(26)
BZU J0742+5444 21.73 115.666 +54.740 0.723 [64] −87.84(19) 2.2(6)
CTA 26 26.21 54.879 −1.777 0.852 [65] 67.49(7) −0.13(24)
CTA 102 23.97 338.152 +11.731 1.037 [66] 64.81(9) 1.29(34)
MG1 J123931+0443 33.61 189.886 +4.718 1.760 [63] −72.28(8) −0.02(32)
OJ 248 18.09 127.717 +24.183 0.941 [63] −79.23(11) −0.9(4)
PKS 0420-014 28.67 65.816 −1.343 0.916 [67] 10.23(9) 0.44(31)
PKS 0454-234 35.27 74.263 −23.414 1.003 [60] 2.49(6) 0.22(20)
PKS 0502+049 17.59 76.347 +4.995 0.954 [68] −87.82(13) 2.1(5)
PKS 0805-077 28.27 122.065 −7.853 1.837 [60] 41.7(4) −1.4(11)
PKS 1118-056 22.54 170.355 −5.899 1.297 [60] 37.26(9) 1.4(7)
PKS 1124-186 10.49 171.768 −18.955 1.048 [62] −83.18(19) 0.2(7)
PKS 1244-255 13.97 191.695 −25.797 0.638 [60] −14.07(11) 1.9(4)
PKS 1441+252 37.70 220.987 +25.029 0.939 [61] −72.34(8) 0.51(28)
PKS 1502+106 45.16 226.104 +10.494 1.839 [63] 65.43(12) 0.1(4)
PKS 2032+107 12.36 308.843 +10.935 0.601 [61] 68.4(10) 9.2(34)
PMN J2345-1555 32.69 356.302 −15.919 0.621 [61] −0.46(4) 1.30(15)
S4 1030+61 37.71 158.464 +60.852 1.400 [63] −59.69(12) −1.3(4)
SDSS J084411+5312 18.72 131.049 +53.214 3.704 [63] 8.4(4) −2.0(17)
Ton 599 33.16 179.883 +29.246 0.724 [63] −52.69(7) 0.86(26)

Appendix B. Coefficient Distributions and Correlations

Figure A1 shows the probability distributions for all 10 SME coefficients with d = 4 derived in
this analysis. Figure A2 shows the correlations between coefficients.

0.6− 0.4− 0.2− 0 0.2 0.4 0.6
-33/10(4)

(E)20k

210

310

410

510

E
nt

rie
s

 < 0.24-33/10(4)
(E)20-0.24 < k

0.3− 0.2− 0.1− 0 0.1 0.2 0.3
-33)/10

(4)

(E)21
Re(k

210

310

410

510

E
nt

rie
s

 < 0.10-33)/10(4)

(E)21
-0.10 < Re(k

0.5− 0.4− 0.3− 0.2− 0.1− 0 0.1 0.2 0.3 0.4 0.5
-33)/10

(4)

(E)21
Im(k

210

310

410

510

E
nt

rie
s

 < 0.16-33)/10(4)

(E)21
-0.16 < Im(k

0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8
-33)/10

(4)

(E)22
Re(k

210

310

410

510

E
nt

rie
s

 < 0.24-33)/10(4)

(E)22
-0.23 < Re(k

0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8
-33)/10

(4)

(E)22
Im(k

210

310

410

510

E
nt

rie
s

 < 0.26-33)/10(4)

(E)22
-0.26 < Im(k

0.4− 0.3− 0.2− 0.1− 0 0.1 0.2 0.3 0.4
-33/10(4)

(B)20k

210

310

410

510

E
nt

rie
s

 < 0.15-33/10(4)
(B)20-0.15 < k

0.6− 0.4− 0.2− 0 0.2 0.4 0.6
-33)/10

(4)

(B)21
Re(k

210

310

410

510

E
nt

rie
s

 < 0.22-33)/10(4)

(B)21
-0.21 < Re(k

0.4− 0.3− 0.2− 0.1− 0 0.1 0.2 0.3 0.4
-33)/10

(4)

(B)21
Im(k

210

310

410

510

E
nt

rie
s

 < 0.14-33)/10(4)

(B)21
-0.14 < Im(k

0.6− 0.4− 0.2− 0 0.2 0.4 0.6
-33)/10

(4)

(B)22
Re(k

210

310

410

510

E
nt

rie
s

 < 0.19-33)/10(4)

(B)22
-0.19 < Re(k

1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1
-33)/10

(4)

(B)22
Im(k

210

310

410

510

E
nt

rie
s

 < 0.25-33)/10(4)

(B)22
-0.25 < Im(k

Figure A1. Distributions of all coefficients derived using the MCMC sampling of the coefficients
space, marginalized over the nine other coefficients. The constraints listed in each panel are 5th–95th
percentile.
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Figure A2. Correlations between SME coefficients found this analysis.
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Abstract: Many models in which Lorentz symmetry is spontaneously broken in a curved spacetime
do so via a “Lorentz-violating” (LV) vector or tensor field, which dynamically takes on a vacuum
expectation value and provides additional local geometric structure beyond the metric. The kinetic
terms of such a field will not necessarily be decoupled from the kinetic terms of the metric, and will
generically lead to a set of coupled equations for the perturbations of the metric and the LV field.
In some models, however, the imposition of certain additional conditions can decouple these
equations, yielding an “effective equation” for the metric perturbations alone. The resulting effective
equation may depend on the metric in a gauge-invariant way, or it may be gauge-dependent. The only
two known models yielding gauge-invariant effective equations involve differential forms; I show
in this work that the obvious generalizations of these models do not yield gauge-invariant effective
equations. Meanwhile, I show that a gauge-dependent effective equation may be obtained from any
“tensor Klein–Gordon” model under similar assumptions. Finally, I discuss the implications of this
work in the search for Lorentz-violating gravitational effects.

Keywords: Lorentz symmetry; linearized gravity; spontaneous symmetry breaking

1. Introduction

The prospect of Lorentz symmetry violation has received a fair amount of attention in recent
years [1]. In the realm of particle physics on flat spacetime, the Standard Model Extension (SME) [2] has
been developed as a descriptive framework for violations of Lorentz symmetry. The original Standard
Model Lagrangian can be thought of as including all possible gauge-invariant and Lorentz-invariant
combinations of local field operators up to some power-counting renormalizability cutoff, each with
its own coefficient; it is then a matter of determining these coefficients via experiments. In general,
a particular experiment will not be sensitive to a single coefficient in the Standard Model Lagrangian,
but will instead place bounds on one or more combinations of these coefficients, with different
experiments being sensitive to different combinations.

The SME “extends” the Standard Model by allowing the combinations of the field operators
appearing in the Lagrange density to be Lorentz tensors instead of Lorentz scalars. The “minimal”
SME contains all operators which are power-counting renormalizable; the “non-minimal” sector of
the SME includes operators of higher powers as well. Since the overall Lagrange density must still
be a scalar, this means that the “coefficients” of these new tensor operators must be tensors as well,
contracted with the operators to form a Lorentz scalar. It then becomes an experimental question to
measure the components of these coefficient tensors in some fiducial reference frame (usually taken to
be the sun-centered reference frame [3].) As with the original Standard Model, a given experiment
will be sensitive to some particular combinations of the components of the coefficient tensors. In the
same sense that the original Standard Model action contains “all possible low-energy physics” that is
consistent with the underlying gauge groups, locality, and Lorentz symmetry, the SME action contains
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“all possible low-energy physics” that is consistent with the underlying gauge groups and locality,
but including frame-dependent effects. The general philosophy of the particle physics SME has been
to remain agnostic concerning the underlying details of the “new physics” that might give rise to
Lorentz-violating effects and simply focus on the phenomenological consequences that can arise from
these violations; it is designed to be a framework rather than a model.

Given the utility of this framework in the arena of particle physics, one might wonder whether a
similar framework could be devised for gravitational physics as well. After all, both particle physics
and general relativity take Lorentz symmetry as one of their fundamental axioms, and a violation of
Lorentz symmetry could show up in either realm. However, the path from the action to experimental
signatures is significantly less straightforward in the gravitational sector than in the particle physics
sector. As a result, it is not as clear that the existing framework for the “gravity sector of the SME”
actually captures all possible signatures for Lorentz violation in the same way that the “particle physics
sector of the SME” captures all possible signatures for Lorentz violation in particle physics.

The purpose of the present work is to argue that the range of models that can be analysed within
the “minimal gravity sector of the SME”, as it exists, is limited. In particular, there are only two known
models in this category, and their obvious generalizations do not fall into the same category. In contrast,
a broad class of models containing a Lorentz-violating field can be cast into a more general form which
lies outside the minimal gravity sector of the SME. While it remains an open (and ill-defined) question
whether these latter models are viable, these results suggest that a broader framework for Lorentz
violation in the gravitational regime may be necessary.

2. Linearized Equations for Lorentz-Violating Gravity

A framework for the study of Lorentz symmetry violation in the context of gravity was developed
by Kostelecký & Bailey [4], and much experimental work in the years since has searched for the effects
described within this framework (see [5] for a review.) This framework attempts to follow the method
taken by the particle physics sector of the SME by obtaining a Lorentz-violating equation of motion for
the metric perturbations of a flat background, and then examining the phenomenology of the modified
metrics. One begins by assuming a gravitational action of the form

S =
∫

d4x
√−g

[
1
2
(R + uR + sabRT

ab + tabcdCabcd) + Lmat

]
. (1)

Here, the first term is the standard Einstein–Hilbert action (with Λ = 0); the second through
fourth terms are “small” couplings of tensors u, sab, and tabcd to the Ricci scalar, trace-free Ricci tensor,
and Weyl tensor, respectively; and the final term encodes the dynamics of the fields other than the
metric (we use reduced Planck units, i.e., c = 8πG = h̄ = 1). The tensors u, sab, and tabcd are “coupled”
to the spacetime curvature in this action, much as the particle physics SME coefficients are coupled to
the fermion and boson fields. One would therefore expect that an action of this form could give rise to
Lorentz-violating effects in gravitational physics. (As in [4], we restrict attention here to a Riemann
spacetime with vanishing torsion, rather than the more general case of Riemann–Cartan spacetime.
We also restrict attention to the “minimal” sector of the gravitational SME, in which higher derivatives
of the Riemann tensor do not appear in the Lagrangian).

However, some important differences between this action and the particle physics SME action
immediately arise. In particular, it is difficult to write down an action that includes a fixed background
tensor (“prior geometry”) in the context of a model with a dynamical metric. The equations of
motion resulting from this prior geometry can easily violate the Bianchi identities, leading to a
mathematically inconsistent model [6] (however, see [7] for a recent discussion of how these difficulties
might be evaded).

For this reason, it has generally been assumed that the objects u, sab, and tabcd in (1) are not fixed
background tensors, but are instead constructed from some dynamical tensor which we denote as Ψ···

(the dots here denote a generic index structure). As this field is intended to dynamically provide us
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with the extra geometric background structure required for Lorentz symmetry violation, we refer to Ψ···

as the Lorentz-violating field (or LV field). Similar approaches have been proposed for the spontaneous
breaking of another spacetime symmetry, namely scale-invariance [8,9]. However, as the fields used
there were scalars, the issues outlined in this work do not arise.

In this picture, diffeomorphism symmetry is broken spontaneously: while the underlying action
is assumed to be diffeomorphism-invariant, a certain class of solutions to the equations of motion
have some or all of this symmetry broken. Since the SME focuses on local field operators, it is natural
to assume that the underlying theory arises from a locally constructed Lagrangian as well. Finally,
I assume that the full equations of motion resulting from this action are second-order. The condition
that the action be locally constructed and diffeomorphism-invariant implies that the Lagrangian must
be locally constructed from the metric, the Riemann tensor (and its derivatives), and the symmetrized
derivatives of the other fields [10]; the condition that the equations of motion be second-order then
prohibits any derivatives of the Riemann tensor or more than two derivatives of the other fields from
appearing in any term in the Lagrangian. The full action is thus of the following form:

S =
∫

d4x
√−g

⎡⎢⎢⎢⎣R
2
+

ξ

2
f (Ψ···)R···︸ ︷︷ ︸
coupling

+
1
2
(∇Ψ)(∇Ψ)︸ ︷︷ ︸

kinetic

+V(Ψ···)︸ ︷︷ ︸
potential

⎤⎥⎥⎥⎦ . (2)

In (2), we divided the terms that could appear in a general action into three broad categories;
the action (2) could, in principle, include multiple expressions of each type. The “kinetic” terms
determine the dynamics of Ψ···; by choosing different combinations of cross-contractions and traces of
the tensor ∇Ψ, we can obtain different dynamics for the LV field. The “coupling” terms allow for a
direct coupling between Ψ··· and the curvature, with each term multiplied by a coupling constant ξi.
By adjusting the size of ξ, we can hope to “tune” the Lorentz-violating effects. Finally, the “potential”
term consists of a potential energy V(Ψ···) for the field Ψ···. Each of these terms must be a spacetime
scalar, with all of the indices in each term fully contracted.

To investigate the linearized limit of an action of the form (2), we must first vary the action with
respect to the metric gab and the LV field Ψ··· to obtain the equations of motion. An important question
arises: which of the three types of term (kinetic, coupling, or potential) contribute when we vary the
action with respect to gab? It turns out that all three types of terms will vary when we vary the metric:

• The kinetic terms can vary in two ways when we change the metric. The more obvious way
is that the full contraction of the tensor ∇Ψ with itself may require some raising and lowering
of indices, which requires an implicit use of the metric or the inverse metric; these terms will
change when the metric is varied. A more subtle point (but in some ways a more important one)
is that the covariant derivative operator ∇a also varies when the metric is varied. One could also
consider Palatini-type theories, where the connection is viewed as a variable independent from
the metric. As the correspondence between the “metric” and “Palatini” versions of a generalized
gravity theory is not straightforward [11], I focus on the “metric” versions here for simplicity.

• The coupling terms explicitly depend on the Riemann tensor, which varies with the metric.
As with the kinetic terms, they can also contain implicit factors of the metric or inverse metric
that arise from index raising and lowering.

• The potential term must be a spacetime scalar constructed out of Ψ···; this will again usually
require the raising and lowering of Ψ’s indices, and so, implicitly depends on the metric.

The variation of the kinetic terms and coupling terms is particularly problematic. For the kinetic
terms, the variation of the fields will yield something of the form (with indices temporarily suppressed)
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δ

(
1
2
(∇Ψ)(∇Ψ)

)
∼ (∇Ψ) [∇(δΨ) + Ψ(∇δg)] + (∇Ψ)(∇Ψ)(δg)

∼ −(∇∇Ψ)δΨ + [−Ψ(∇∇Ψ) + (∇Ψ)(∇Ψ)] δg (3)

which is integrated by parts in the second step. Note, in particular, that the coefficient of δg generically
contains second derivatives of Ψ···; thus, second derivatives of Ψ··· will appear in the Einstein equation.
Similarly, variation of the coupling terms will yield terms of the form

(ΨR) ∼ R(δΨ) + Ψ(δR) ∼ R(δΨ) + Ψ(∇∇δg) ∼ R(δΨ) + (∇∇Ψ)δg. (4)

All told, then, a generic action of the form (2) gives rise to equations of motion that are of
schematically of the form

G + ξF1(Ψ)R + Ψ(∇∇Ψ)′ + (∇Ψ)(∇Ψ) + F2(Ψ) = 0, (5a)

(∇∇Ψ) + ξF3(Ψ)R + F4(Ψ) = 0, (5b)

where G stands for the Einstein tensor, R stands for the Riemann tensor, and the Fi functions are some
combinations (not necessarily invariants) of the LV field Ψ. The combinations of second derivatives
that appear in the modified Einstein Equation (5a) will generically not be the same as those that appear
in the equation of motion (5b) for Ψ itself; this is indicated by the use of the prime on the second
derivatives of Ψ in the Einstein equation.

In the particle physics sector of the SME, the Lorentz-violating tensor coefficients are assumed to
be constant throughout all of the flat spacetime, and to arise from the vacuum expectation value of the
LV tensor field. We therefore require that there exists a solution to the equations of motion (5) with a
flat metric (gab = ηab) and a constant LV field (∇Ψ = 0). It is not too hard to see that if the metric is flat
and the tensor field is constant, the equations of motion from (2) will reduce to the form

− 1
2

V(Ψ)ηab +
δV

δgab

∣∣∣∣
g→η

= 0 (6)

and
δV
δΨ

∣∣∣∣
g→η

= 0. (7)

As a particularly simple example, suppose V is a single-argument function that depends only
on a Lorentz invariant X(Ψ) constructed from Ψ··· and the metric gab. In such an case, these
equations become

− 1
2

V(X)ηab + V′(X)
δX

δgab

∣∣∣∣
g→η

= 0 (8)

and

V′(X)
δX

δΨ···

∣∣∣∣
g→η

= 0, (9)

and are satisfied if V(X) = 0 and V′(X) = 0. By constructing the potential appropriately, we can find
models where there exist backgrounds consisting of a flat metric and a constant but non-zero LV field.
We denote the background value of Ψ··· as Ψ̄···.

The linearized limit of our model is found by looking at linearized perturbations about this background:

gab = ηab + εhab, Ψ··· = Ψ̄··· + εψ̃···. (10)
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This results in a set of linearized equations of the form

(δG) + ξΨ̄(δR) + Ψ̄δ(∇∇Ψ)′ + . . . = 0, (11a)

δ(∇∇Ψ) + ξδR + . . . = 0, (11b)

where δG and δR stand for the linearized Einstein and Riemann tensors, respectively, and the ellipses
in these equations contain terms that do not depend on the derivatives of h or ψ̃. Throughout this
paper, we use δ to denote the linear-order perturbation of a quantity of the flat background.

Since our full Lagrangian (2) is diffeomorphism invariant, the linearized equations are invariant
under the infinitesimal diffeomorphisms hab → hab + Lvηab and ψ̃··· → ψ̃··· + LvΨ̄···, where va is the
vector field generating the diffeomorphism and Lv is the Lie derivative along this vector field. In terms
of familiar index notation, these transformations are

hab → hab + ∂avb + ∂bva (12)

ψ̃a1···ak b1···bl
→ ψ̃a1···ak b1···bl

−
k

∑
i=1

Ψ̄a1···c···ak b1···bl
∂cvai +

l

∑
i=1

Ψ̄a1···ak b1···c···bl
∂bi

vc. (13)

These can be thought of as gauge transformations for the linearized fields; perturbations of this
form do not contain any physical information.

The ultimate goal in this process is to obtain a second-order partial differential equation for h
alone, without reference to the LV fluctuations ψ̃. To do this, we must be able to eliminate the terms
that are dependent on ψ̃ and its derivatives from (11a). We have certain tools at our disposal for this
task. We may impose gauge conditions on hab, rewrite antisymmetrized derivatives of Ψ in terms of
the Riemann tensor, or apply the linearized tensor equation (11b). We may also choose to restrict our
solution space by imposing boundary conditions on various combinations of fields. Depending on the
exact forms of the equations (11), we can envision three possibilities:

1. We can obtain a linearized second-order equation for hab that is manifestly gauge-invariant.
Since the linearized Riemann tensor contains all of the “gauge-invariant information” encoded in
the linearized metric, this means that the resulting equation is simply of the form

δGab + ξΨ̄···δR··· = 0. (14)

The process for obtaining this equation may (and, in the examples below, will) require boundary
conditions to be set, but should not rely on any particular choice of gauge. Equations of this
type are sometimes taken as the starting point for the study of Lorentz violation in gravitational
physics [12,13], while remaining agnostic about the underlying model of Lorentz violation.
However, it has also been pointed out that not all LV gravity models lead to such an equation [14].

2. We cannot obtain a linearized second-order equation for hab alone that is gauge-invariant, but we
can find some particular gauge that allows us to eliminate ψ̃ from the Equation (11b). Again,
the imposition of some appropriate set of boundary conditions may be necessary.

3. The Equations (11a) and (11b) are inextricably coupled. This means that we cannot write down a
second-order equation for the metric alone without knowing the behavior of the LV field as well.
In such a case, it could, in principle, still be possible to solve Equation (11b) for ψ̃ in terms of h
and whatever other fields are present by Green’s functions; one could then insert this solution for
ψ̃ into (11a). However, the resulting equation would include some kind of integral over spacetime
and would not result in a local second-order partial differential equation for hab.

As a shorthand, we can call these types of equations “Type I”, “Type II”, and “Type III”, respectively.
In general, it is not immediately clear from simple examination of the action (2) whether a particular
model will yield equations of a particular type; one must generally work through the above process to
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find out. If we can obtain a Type I or Type II equation, we can, in principle, solve for the metric without
having detailed knowledge of the LV field dynamics. In a model for which only Type III equations can
be found, on the other hand, one must have knowledge of the LV field dynamics in order to figure out
the weak-field limit; it is difficult to “remain agnostic” about the dynamics of the new fields (as one
could with a Type I equation) and still make meaningful predictions.

3. n-Form Fields

As examples of models in which Type I equations can be obtained, I first consider the class of
models where the LV field is an n-form field Ψa1···an : a completely antisymmetric tensor of rank (n, 0).
For what follows, it is useful to denote a sequence of indices with braces, for example, we denote

Ψa1···an Ψa1···an ≡ Ψ{a}Ψ{a}. (15)

The number of indices in a pair of braces should usually be evident from the context.
A particular feature of n-forms is that it is possible to define a natural notion of differentiation

(the exterior derivative) that is independent of the metric. If Ψ{a} is an n-form, then (dΨ){a} is an
(n + 1)-form defined in abstract-index notation as

(dΨ)a{b} = (n + 1)∇[aΨ{b}]. (16)

It is not hard to show that this quantity is independent of the derivative operator ∇a used.
One might imagine that this will make one’s life easier; since the derivative is independent of the
metric, the terms involving the second derivatives of the LV field in (5a)—and therefore in (11a)—will
not arise. However, while this property is necessary for obtaining a decoupled equation for the metric,
it is not sufficient.

We can use the exterior derivative to construct a kinetic term for a Lorentz-violating n-form
field Ψ:

S =
∫

d4x
√−g

[
R − 1

2(n + 1)
(dΨ){a}(dΨ){a} − V(Ψ2) + Lcoupling

]
, (17)

where Ψ2 ≡ Ψ{a}Ψ{a} and

Lcoupling = ξ1Ψab{e}Ψcd{e}Rabcd + ξ2Ψa{c}Ψb{c}Rab + ξ3Ψ2R. (18)

In what follows, we also find it necessary to require that

4ξ1 + (n − 1)ξ2 = 0. (19)

Both the bumblebee model described in [6] and the tensor models described in [15] fall into
this category, using a one-form or a two-form (respectively) as the LV field. (The models in [15]
can also include a potential that depends on the invariant ΨabΨcdεabcd as well as the tensor norm
ΨabΨab. In general, such an invariant only exists if n = d/2, where d is the dimension of the spacetime.
The arguments which follow can be generalized to such cases straightforwardly). In the former work,
the ξ1 term does not exist and ξ2 is unconstrained; in the latter work, the condition (19) (with n = 2) is
found to be necessary to obtain a “decoupled” effective equation. The generalized bumblebee models
described in [14] are also of this general form, with the modification that the indices in the kinetic term
for the one-form Ψa are contracted using an “effective metric” constructed out of the spacetime metric
gab and Ψa itself.

To understand how the full decoupling of the equations can be accomplished in this case, we must
first look at the linearized equation of motion for the LV field. This is

∂d(dψ̃)dab{c} − λΨ̄ab{c}δ(Ψ2) + 2ξ1Ψ̄de[{c}δRab]
de + 2ξ2Ψ̄d[b{c}δRa]

d + 2ξ3Ψ̄ab{c}δR = 0, (20)
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where λ ≡ V′′(Ψ̄2), δ(Ψ2) is the linear variation in Ψ2, and the tensor (dψ){a} ≡ δ(dΨ){a}
is defined similarly to (16). (Note that for any tensor t{b} which vanishes in the background,
∇at{b} = ∂at{b} + O(ε2)).

In general, the derivatives present in the linearized LV equation of motion (11b) (Equation (20) in
the present case) are the only tools we have to eliminate the derivatives of ψ̃ in the linearized Einstein
Equation (11a). However, the structure of the kinetic term for an n-form field leads to two auxiliary
conditions which turn out to be crucial for the decoupling. First, if we take the divergence of (20),
the kinetic term identically vanishes and we obtain

− λΨ̄ab{c}∂aδ(Ψ2) + 2ξ1Ψ̄de[{c}∂aδRab]
de + 2ξ2Ψ̄d[b{c}∂aδRa]

d + 2ξ3Ψ̄ab{c}∂aδR = 0. (21)

However, the Riemann tensor satisfies the Bianchi identity ∇[aRbc]de = 0. At linear order,
this becomes ∂[aδRbc]de = 0, and taking the traces of this equation implies that 2∂[aδRb]c = ∂dδRdcab
and 2∂aδRab = ∂bδR. Splitting up the antisymmetrizers in (21) and applying the Bianchi identities lets
us rewrite the second and third terms as

2ξ1Ψ̄de[{c}∂aδRab]
de + 2ξ2Ψ̄d[b{c}∂aδRa]

d

=
ξ2

n
Ψ̄dbc1···cn−2 ∂dδR +

2[4ξ1 + (n − 1)ξ2]

n(n − 1)

[
Ψ̄adc1···cn−2 ∂[aδRd]

b −
n−2

∑
i=1

Ψ̄adc1···b···cn−2 ∂aδRd
ci

]
. (22)

Since we assume the condition (19) applies to the coupling constants, this means that (21)
simplifies greatly:

Ψ̄ab{c}∂a

[
−λδ(Ψ2) +

(
ξ2

n
+ 2ξ3

)
δR

]
= 0. (23)

A possible solution to this equation (though not the only one) is that the quantity in square
brackets vanishes:

λδ(Ψ2) =

(
ξ2

n
+ 2ξ3

)
δR. (24)

I call this the “massive mode condition”, since it effectively requires that δ(Ψ2) only deviates
by a small amount (i.e., O(ξi)) from zero. Note, however, that this condition can only be applied
if (19) holds; for a general set of coupling constants, imposing such a condition would be more
poorly motivated.

The second condition can be found by taking the “curl” of (20). Since we now know that we can
choose a solution such that λδ(Ψ2) is O(ξi), the linearized Equation (20) reduces to

∂b(dψ̃)b{a} = O(ξi). (25)

If we take the antisymmetrized derivative of the left-hand side, we obtain

∂[c∂b(dψ̃)|b|a1···an ] = ∂[c∂b∂|b|ψ̃a1···an ] − n∂[c∂b∂a1 ψ̃|b|a2···an ] = �∂[cψ̃a1···an ], (26)

where the second term in the middle step vanishes due to the antisymmetrization over the partial
derivatives. Thus, we have

�(dψ̃{a}) = O(ξi). (27)

As an aside, the identity (26) can also be derived elegantly using the language of differential
forms. Define d and δ as the exterior derivative and codifferential on the manifold (note that this
δ is an operator that takes n-forms to (n − 1)-forms, and is distinct from the usage of δ to denote
linearized perturbations in this work.) The kinetic term in (20) can be written as δdψψψ. We then have
dδ(dψψψ) = (dδ + δd)(dψψψ), since d2 = 0. This operator acting on (dψψψ) is the so-called Laplace–de Rham
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operator, which differs from the “conventional” tensor Laplacian � = ∇a∇a by (at most) various
contractions of the curvature with the n-form.

Equation (27) is a hyperbolic differential equation on our manifold, and via an appropriate
choice of boundary conditions, we can require that the linearized field strength (dψ̃){a} remains O(ξi)

throughout our spacetime:
dψ̃{a} = O(ξi). (28)

I call this condition the “curl condition”. As with the massive mode condition (24), it must be
noted that this condition is not true for the most general solution of the equation (27) from which
it stems.

With these in mind, we can now attempt to decouple the n-form fluctuations from the metric
fluctuations. The linearized Einstein equations in this case are of the form

δGab − nλδ(Ψ̄2)Ψ̄a
{c}Ψ̄b{c} + ∑

i
ξi

[
(A(i))ab

cde f δRcde f + (B(i))ab
cde f {g}δ(∇(c∇d)Ψe f {g})

]
= 0, (29)

where the (A(i))ab
cde f and (B(i))ab

cde f {g} tensors are constructed out of the background fields Ψ̄{a} and
ηab. (Recall from above that the antisymmetrized second derivative of Ψ{a} can be written in terms
of contractions of the Riemann tensor with Ψ{a}.) It is important here to note that there are no terms
that arise involving the second derivatives of Ψ{a} at O(ξ0). For a generic model, such terms would
arise from the variation in the kinetic term for the LV field, since the covariant derivative operator
is dependent on the metric. However, the field strength (16) is independent of the metric, and so it
evades this obstacle.

Assuming the massive mode condition (24) holds, we can replace the second term in (29) with
curvature terms multiplied by coefficients of O(ξi), and the third term is already of the desired form.
It is the second derivatives of Ψ{a} that arise in (29) (the terms contracted with (B(i))ab

cde f {g}) that we
need to eliminate. Explicitly, these tensors are

(B(1))ab
cde f {g} = 4Ψ̄(a

(c|{g}ηb)
eη|d) f (30)

(B(2))ab
cde f {g} = ηabΨ̄(c| f {g}η|d)e − Ψ̄c f {g}ηd

(aηe
b) + Ψ̄(a

f {g}ηcdηb)
e − Ψ̄(a

f {g}ηceηb)
d, (31)

(B(3))ab
cde f {g} = 2Ψ̄e f {g}(ηabηcd − η(a

cηb)
d). (32)

If we can show that these tensors contracted with δ(∇(c∇d)Ψe f {g}) are automatically O(ξi),
then we will be able to write down an approximate equation, correct to O(ξi), that only contains
various contractions of the linearized Riemann tensor with the background values of Ψ̄{a}. This is the
desired form of the equations of motion underlying the gravitational sector of the SME.

Enforcing the massive mode condition (24), under which δΨ2 is O(ξi), implies that

1
2

δ(∇aΨ2) = δ(Ψ{b}∇aΨ{b}) = Ψ̄{b}δ(∇aΨ{b}) (33)

is O(ξi) as well. This allows us to eliminate any terms where we have contracted Ψ̄e f {g} with
δ(∇(c∇d)Ψe f {g}) in the linearized equations of motion. In particular, this guarantees that both terms
arising from (32) do not contribute to the equations of motion at O(ξi).

Enforcing the curl condition (28) allows us to eliminate more of the above derivatives. We have

Ψ̄b1···bn(dψ̃)ab1···bn =
1

n + 1
Ψ̄b1···bn

[
δ(∇aΨb1···bn)− nδ(∇[b1

Ψ|a|b2···bn ])
]

. (34)

Since we are assuming that (dψ̃){a} is O(ξi) throughout the spacetime, and since the first term on
the right-hand side is also O(ξi) via the massive mode condition, we conclude that

Ψ̄b1···bn δ(∇[b1
Ψ|a|b2···bn ]) = O(ξi) (35)
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as well. We conclude that any contraction of the form Ψ̄c f {g} or Ψ̄d f {g} (and by symmetry, Ψ̄ce{g} or
Ψ̄de{g}) with δ(∇(c∇d)Ψe f {g}) will also be of the form O(ξi); this eliminates the first two terms of (31).

What remains are (30) and the last two terms of (31), and the only tool we have not yet used is the
equation of motion itself. The kinetic term in (20) can be rewritten as

∂p(dψ̃)pqr{s} = (n + 1)δ(∇c∇dΨe f {g})ηcpη[p
dηq

eηr
f η

g1···gn−2
s1···sn−2]

, (36)

where η
g1···gn
s1···sn ≡ ηs1

g1 · · · ηsn
gn . If we contract (36) with the tensor η

q
(aΨ̄b)

r{s}, then we obtain the tensor
δ(∇c∇dΨe f {g}) contracted with the tensor

(n + 1)
[
ηcpη(a

qΨ̄b)
r{s}

]
η[p

dηq
eηr

f η{s}]{g}

=
1
n!

(
2ηcdη(a

[eΨ̄b)
f ]{g} − 2ηc[eη(a

|d|Ψ̄b)
f ]{g} + 2ηc[eη(a

f ]Ψ̄b)
d{g} + . . .

)
, (37)

where the ellipses stand for terms involving permutations where two or more of the indices d, e,
and f are attached to the background LV field Ψ̄, along with one of the free indices a or b. Such terms
only exist if n > 2. These latter terms do not arise in linearized Einstein Equations (29). Further,
they cannot be eliminated via the auxiliary conditions (33) or (35), as these conditions require Ψ̄ to be
fully contracted with the perturbation δ(∇c∇dΨe f {g}). Thus, a Lorentz-violating model including an
n-form LV field with n > 2 cannot be analysed in the SME gravitational framework.

The exceptions are the lowest-rank cases of n = 1 and n = 2. For n = 1, the ξ1 term (30) does not
exist, and the kinetic term in the LV equation of motion contracted with η(a

cΨ̄b) is simply

(ηcdη(a
eΨ̄b) − ηceη(a

dΨ̄b))δ(∇c∇dΨe). (38)

These terms are exactly the remaining terms in (31) in this case, and so all non-curvature terms
in (29) are O(ξ2) or higher. For n = 2, the remaining terms in (30) and (31) can be combined to equal
the terms explicitly written out in (37) (recalling from (19) that 4ξ1 = ξ2 in this case.) The remaining
terms in (20) are all of the form O(ξi), either explicitly or via the massive mode condition, and thus,
all non-curvature terms in (29) are O(ξ2

i ) or higher.
It is worth taking stock of all of the assumptions that have gone into obtaining these effective

equations. Only in two cases (n = 1, and n = 2 in the case 4ξ1 = ξ2) can this procedure be completed.
In both cases, auxiliary conditions concerning the solutions—namely, (24) and (28)—are required to
obtain a linearized metric equation that fully eliminates the LV field perturbations from the linearized
Einstein equation. A general linearized solution will not satisfy these conditions, and will therefore
not obey the effective equation derived by this procedure. Moreover, while the arguments leading to
these auxiliary conditions can be generalized to higher-rank n-forms, the conditions are insufficient to
eliminate the LV field perturbations from the equations of motion. It seems unlikely that a general
action for a LV n-form field (17) can be reduced to an effective equation of the form (14).

4. Tensor Klein–Gordon Fields

It may occur that we cannot write an analog of the linearized Einstein equation solely in terms of
the linearized Riemann tensor in a model containing an LV field. However, we can still hope to find an
equation of motion for the linearized metric that, while not invariant under the “gauge transformations”
hab → hab + ∂(aξb), is at least decoupled from any explicit dependence on the fluctuations of the LV
field. Such an equation is what I called a “Type II” equation above.

An example of a class of models that can yield such equations are the “tensor Klein–Gordon”
actions, of the form

S =
∫

d4x
√−g

[
R − 1

2
∇aΨ{b}∇aΨ{b} − V(Ψ2)

]
, (39)
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where Ψ{b} is now an arbitrary rank-(n, 0) tensor field without any particular symmetry structure.
Note the absence of any particular explicit coupling between the LV field Ψ{b} and the Riemann tensor
in the Lagrangian. The linearized equation of motion for the LV field in such a model is

ηcdδ(∇c∇dΨ{a})− 2λΨ̄{a}δ(Ψ2) = 0, (40)

with λ = V′′(Ψ̄2), as before. In terms of the perturbations ψ̃{a} and hab, the first term above becomes

ηcdδ(∇c∇dΨ{a}) = ηcd

(
∂c∂dψ̃{a} − ∑

i
∂cΓ f

dai
Ψ̄a1...b...an

)

= �
(

ψ̃{a} −
1
2 ∑

i
Ψ̄a1...

b
...an haib

)
− ∑

i
∂c∂[ai

hb]cΨ̄a1...
b

...an . (41)

However, in the standard harmonic gauge ∂bhab = 1
2 ∂ah (where h ≡ ha

a), we have

∂c∂[ai
hb]c = ∂[ai

∂chb]c =
1
2

∂[ai
∂b]h = 0. (42)

Moreover, in terms of the perturbations, we have

δ(Ψ2) = 2Ψ̄{a}ψ̃{a} − ∑
i

Ψ̄a1...ai ...an Ψ̄a1...
b

...an haib = 2Ψ̄{a}
(

ψ̃{a} −
1
2 ∑

i
Ψ̄a1...

b
...an haib

)
. (43)

(The negative sign arises from δ(gab) = −ηacηbdhcd.) Putting this all together, the linearized
equation of motion for the LV field is (in the harmonic gauge)

�
(

ψ̃{a} −
1
2 ∑

i
Ψ̄a1...

c
...an haic

)
− 4λΨ̄{a}Ψ̄{b}

(
ψ̃{b} −

1
2 ∑

i
Ψ̄b1...

c
...bn hbic

)
= 0. (44)

This is a hyperbolic equation for the quantity in parentheses above, which means that if we choose
the appropriate boundary conditions, we can make the said quantity as small as we want:

ψ̃{a} −
1
2 ∑

i
Ψ̄a1...

c
...an haic ≈ 0. (45)

In other words, via a choice of boundary condition, the LV field perturbations ψ̃{a} can be
written in terms of the background tensor values Ψ̄{a} and the metric perturbations hab. The LV
field perturbations can therefore be completely eliminated from the linearized Einstein Equation (11a)
in favor of the metric perturbations. The result will be an equation which holds only in harmonic
gauge, but which does not contain any explicit dependence on the LV field fluctuations. While such
an equation will not fit into the gravitational framework of the SME, one could still analyze the
resulting equation in terms of its predicted post-Newtonian effects, its predictions for gravitational
wave propagation, and so forth. The linearized metric found in Section IV.B of [4], for example, is
the linearized metric for a model containing a Lorentz-violating “vector Klein–Gordon” field, and in
obtaining that metric, the same assumption (45) concerning the perturbations of the LV field is made.

This result for tensor Klein–Gordon models could be generalized to other gauges; for example,
the result (42) would still hold in which ∂bh̄ab (where h̄ab = hab − 1

2 ηabh) is equal to the gradient of
some scalar function f , rather than vanishing as assumed in the harmonic gauge. Imposing a different
gauge choice would yield an effective equation of motion for hab that appears superficially different
from the equation obtained in the original gauge. However, the solutions to this new equation should
simply be the solutions of the original equation modified by a gauge transformation; the choice of
gauge would not cause a change in the physically measurable aspects of the metric.
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Finally, we note that as with the differential forms in Section 3, the most general solutions to the
linearized equations of motion will not obey (45), and will therefore not necessarily obey the effective
equation derived from it.

5. Discussion

In general, the Euler–Lagrange equations for a model containing both a tensor field and a dynamical
metric contain coupled kinetic terms, and if the tensor field takes on a vacuum expectation value in
flat spacetime, this coupling will persist in the linearized equations about this background. One can
try to evade this by using an n-form field for which the “natural” kinetic term for the field (involving
the tensor norm of the field strength) does not couple directly to the metric perturbations. With such
an equation of motion for the linearized metric in hand, one could proceed to follow the analysis of [4],
looking for the observational signatures of Lorentz violation of the types derived there. However, this
assumption is not sufficient to fully “decouple” the equations; one must also restrict attention to the
solutions satisfying (24) and (35), and even in such instances, the decoupling only occurs when n = 1
or n = 2.

Even granting these assumptions, it appears that the great majority of models one can write down
in which a vector or tensor field takes on a vacuum expectation value do not yield Type I equations.
To date, only the two above-mentioned models have been found to yield equations of Type I, and their
obvious generalizations to higher-rank differential forms fail to yield a decoupled, gauge-invariant
equation for the linearized metric. (One could generalize the two-form fields in [15] in the same
way that the “generalized bumblebee models” of [14] generalized the original bumblebee model [6];
see the discussion following (18). It seems likely that such a model could yield Type I equations as well,
though this remains to be shown rigorously.) If the linearized equations are Type II or III, the form
of the linearized metric will almost certainly differ from the predicted linearized metric in the SME,
and thus, the experimental signatures of this model will not match those of the SME. Such models
would have to be analyzed on a case-by-case basis from first principles. Indeed, in [4], the second
derivatives of the fields that cannot be eliminated are implicitly placed into a divergence-free tensor
Σab. It is conjectured in that work that models in which Σab does not vanish “may even be generic”;
the current work lends credence to this conjecture.

In the particle physics sector of the SME, the size of the coefficients of the Lorentz-violating terms
in the action bears directly on the size of the effects that are physically observed. One would therefore
naïvely expect that an action of the form (2) containing a “small” coupling term would lead to “small”
violations of Lorentz symmetry. For the known models [6,14,15] that yield Type I equations, this is
effectively the case—small values of the coefficients ξi lead to small contributions to the linearized
equations of motion.

In contrast, the size of the Lorentz-violating effects in a model yielding a Type II or Type III
equation may not be determined by the size of the “coupling” terms in the action. For example,
the tensor Klein–Gordon models described in Section 4 have no coupling terms at all, but give rise to
an effective equation with a kinetic term of the form

�hab + Ψ̄···Ψ̄···D···[h] + · · · = 0, (46)

where D···[h] is some second-order differential operator acting on hab, and the indices of the two Ψ̄
tensors are contracted with this operator in some way. The difference between this equation of motion
and the linearized Einstein equation is therefore governed by coefficients of O(E2), where E is the
energy scale of the LV field’s vacuum expectation value in reduced Planck units. Since these deviations
would increase with the magnitude of the background field, one could, in principle, completely exclude
such models via both precision gravitational experiments (thereby excluding sufficiently large energy
scales) and accelerator experiments (excluding sufficiently small energy scales).
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Of course, the gap between “sufficiently large” and “sufficiently small” may be quite large indeed.
As a very rough estimate, one might assume that a linearized metric solving (46) would differ from
the weak-field GR solution by deviations of O(E2). Given that spacetime-anisotropic deviations from
the weak-field GR solution are currently bounded to about one part in 1011 [1], this implies that the
vacuum expectation value for Ψ could be no larger than about 10−5mP ≈ 1012 GeV, nowhere near the
current bounds from accelerator experiments.

It is also possible that a model that yields Type II or Type III equations will be phenomenologically
non-viable for reasons other than the form of its linearized metric. The tensor Klein–Gordon fields
in Section 4, for example, include a kinetic term that is of indeterminate sign, and do not contain any
gauge degrees of freedom. This is likely to lead to a Hamiltonian that is unbounded below, running a
strong risk of runaway solutions. Thus, while it may be possible to find a linearized metric in a Type
II model (as was done for the vector Klein–Gordon model in [4]), such a solution would need to be
checked for stability. Similarly, while a Type II equation can be reduced to a single equation involving
the metric perturbation hab, the number of physical degrees of freedom of the metric may be different
from those of a metric obeying a Type I equation; the lack of gauge symmetry in a Type II equation
means that degrees of freedom that correspond to gauge transformations in a Type I equation may
now become physically meaningful. The extra propagating modes arising in such a model could be
used to constrain it or rule it out.

One might conjecture that all viable Lorentz-violating models of gravity yield equations of Type I.
Unless we simply define a “viable model” to be one that can yield linearized equations of Type I—which
is somewhat tautological, and requires clear motivation—we must have a clear idea of what we mean
by “viable”. The criteria for a model to be viable on purely theoretical grounds are something of
a judgement call. Most physicists would probably agree that a model with a Hamiltonian that is
unbounded below is probably not a good one, but whether or not one should be interested in a model
with extra metric degrees of freedom is more open to debate. Many other possible criteria for a “viable”
model could be proposed, depending on the context one is interested in. Moreover, such a conjecture
elides the fact that a given model may have some linearized solutions that obey such an equation and
some that do not; in the known examples [6] and [15], extra conditions on the linearized solutions are
needed to obtain a“Type I” equation. Without a more precise and well-motivated statement of the
properties of a viable model, and justifications for any necessary auxiliary conditions on the linearized
solutions, this “conjecture” is really more of a hope.

The SME framework has been incredibly useful for discussing the signatures of Lorentz violation
in the realm of particle physics. Any self-consistent model of Lorentz violation in particle physics can
be mapped onto one or more coefficients in the SME action (either in the minimal or the non-minimal
versions of the framework), and there is a well-developed machinery that maps these coefficients into
experimental results. In the realm of particle physics, therefore, the SME can legitimately claim to be a
mature framework for the study of violations of Lorentz symmetry.

In contrast, the gravitational sector of the SME does not yet have this same status. Under certain
assumptions, certain n-form models mentioned above do fit within the SME gravity framework
developed in [4]. However, if one starts with a particular action involving a dynamical metric and a
tensor field with a vacuum expectation value, one cannot easily discern which of the above three types
it falls into. There is no way to determine this other than to go through the long process of deriving the
perturbational equations of motion (11) and trying to eliminate the LV tensor fluctuations from the
linearized Einstein equation. Even then, the process is not guaranteed to be straightforward. It may
rely on subtle auxiliary conditions (such as the massive mode condition (24) or the curl condition (28))
that are not immediately evident from the linearized equations of motion and that a general linearized
solution of the equations of motion may not satisfy. Finally, there is no guarantee that any particular
model will result in a linearized equation that yields the same linearized gravity phenomenology as a
Type I equation; the experimental signatures of Type II and Type III models can, in principle, be totally
different from those of the well-studied Type I models. It is therefore unclear that the gravitational
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sector of the SME has the same level of phenomenological universality that the particle physics sector
of the SME enjoys.
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Abstract: We consider a model of noncommutative gravity that is based on a spacetime with
broken local SO(2,3)� symmetry. We show that the torsion-free version of this model is contained
within the framework of the Lorentz-violating Standard-Model Extension (SME). We analyze in
detail the relation between the torsion-free, quadratic limits of the broken SO(2,3)� model and the
Standard-Model Extension. As part of the analysis, we construct the relevant geometric quantities to
quadratic order in the metric perturbation around a flat background.

Keywords: Lorentz violation; noncommutative geometry; gravity

1. Introduction

While noncommutative geometry has been studied for more than 70 years [1], it has been
especially popular as a possible framework for physics beyond the Standard Model in recent
decades [2,3]. In particular, several extensions to general relativity that incorporate noncommutative
geometry have been proposed [4–10]. In this paper, we consider one particular model that is based on
a flat spacetime with broken SO(2,3)� symmetry [11,12].

Any physical model that includes noncommutative effects and that reduces to conventional
physics in the proper limit is expected to break Lorentz symmetry [13]. A general framework for
the study of Lorentz violation has been developed over the last 30 years [14–18]. Indeed, numerous
experimental and observational limits exist already on many different a priori independent types of
Lorentz violation [19]. Additionally, this effective-field-theory framework should contain any realistic
noncommutative model. This has already been shown for non-gravitational models [13]. In this work,
we argue that the noncommutative SO(2,3)� gravity model also fits into the gravitational sector of
the Standard-Model Extension (SME). This serves as an example of the general notion that the SME
contains all specific action-based Lorentz-violating models.

2. Noncommutative SO(2,3)� Gravity

Consider a model consisting of a flat four-dimensional spacetime with an SO(2,3) gauge field [12].
Suppose that this symmetry is spontaneously broken along a timelike direction, with the field in
that direction achieving a vacuum expectation value �. The corresponding action takes the form
of a model of gravity, with pieces corresponding to Einstein–Hilbert terms, cosmological-constant
terms, and Gauss-Bonnet terms; this action is symmetric under an SO(1,3) subgroup of the broken
SO(2,3) symmetry. If conventional field products are then translated into Moyal–Weyl �-products
and a Seiberg–Witten map is used to re-express quantities in terms of commutative products, we get
a broken-SO(2,3)� gravitational theory.

This process has been carried out in Ref. [12] and we present the relevant results here. This theory
may be expressed as a model with noncommutative local SO(1,3)� symmetry. The result is expanded
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in terms of the noncommutative background θαβ, with leading terms at second order in this quantity.
To display the action, we note that the geometric quantities that will appear use conventional notation:
eμ

a is the vierbein (with determinant e), ωγ
ab is the associated spin connection, Γρ

γα are the Christoffel
symbols associated with spacetime metric gαβ, Rαβγδ is the Riemann tensor, Rαβ is the Ricci tensor,
and R is the curvature scalar.

Once spacetime torsion Tλμν is set to zero, the action for the model ([12], Equation (4.2)) may be
expressed in the form

SNCR = − 1
2κ

∫
d4x e

[
R − 6

�2 (1 + c2 + 2c3)
]

+ 1
16κ�4

∫
d4x ∑6

u=1 eθαβθγδC(u)L
(u)
αβγδ ,

(1)

where κ = 8πGN and � is a length parameter. The antisymmetric coefficients θαβ are to be thought of
as a fixed background field describing the degree of noncommutativity of spacetime. Note that natural
units are adopted (h̄ = c = 1), which implies that � has units of length or inverse mass and θ has units
of length squared.

The top row of Equation (1) is the action for conventional general relativity with a cosmological
constant Λ = −3

(
1 + c2 + 2c3

�2

)
. (Note that this is the correct value of the cosmological constant only in

the commutative limit θ = 0. For θ �= 0, other terms in the action will also effectively contribute to
it.) The parameters c2 and c3 describe the relative weights of various contributions to the unbroken
SO(2,3)� action. Thus, the action SCNR may be thought of as a family of actions parameterized by c2, c3,
and �. The tensors L(u)

αβγδ are geometric quantities; the weights C(u) measure the relative contributions
of these quantities to the action. The tensors and their weights are listed in Table 1.

Table 1. Geometric quantities and their weights that appear in the action SCNR.

u Weight C(u) Geometric Quantity L(u)
αβγδ

1 3c2 + 16c3 Rαβγδ

2 −6 − 22c2 − 36c3 gβδRαγ

3 1
�2 (6 + 28c2 + 56c3) gαγgβδ

4 −4 − 16c2 − 32c3 eμ
a eβb(∇̃γea

α)(∇̃δeb
μ)

5 4 + 12c2 + 32c3 eδaeμ
b (∇̃αea

γ)(∇̃βeb
μ)

6 2 + 4c2 + 8c3 gβδeμ
a eν

b [(∇̃αea
ν)(∇̃γeb

μ)− (∇̃γea
μ)(∇̃αeb

ν)]

The adjusted covariant derivatives ∇̃μ of the vierbein that appear in terms 4 through 6 include
contributions from the SO(1,3) connection but not from the Christoffel symbols:

∇̃γeα
a = ∂αeα

a + ωγ
abeab = ∇γeα

a + Γρ
γαeρ

a . (2)

If the vierbein satisfies the usual compatibility condition ∇γeα
a = 0, then the adjusted covariant

derivative may be expressed as
∇̃γeα

a = Γρ
γαeρ

a . (3)

This implies the explicit appearance of the Christoffel symbols in the Lagrangian, the consequences
of which are discussed in the next section.

The model acts like a relativistic theory of gravity in several ways, but there are some issues with
interpreting it as such. For example, it is derived with the assumption that ∂αθμν = 0. This assumption
is reasonable in the original flat-spacetime context of the model. However, if the model is to be
interpreted in curved spacetime, this assumption is clearly coordinate dependent. We may attempt
to fix this issue by instead assuming that ∇αθμν = 0, but even this condition cannot apply in many
situations. Nonzero tensor fields with vanishing covariant derivative cannot exist on many manifolds,
including, say, spacetime with a Schwarzschild metric [15,20]. Therefore, if we wish to seriously
consider action 1 to represent a theory of gravity, then we must consider it to be an approximation
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to a more realistic model with ∇αθμν �= 0. In what follows, we will assume that terms involving
derivatives of θμν that may appear in a more-realistic model are negligible in comparison to all other
terms.

3. Gravitational Sector of the Lorentz-Violating Standard-Model Extension

The full action [15] describing the gravitational sector of the SME can be expressed as a sum of
terms, each of which contracts a coefficient with spacetime indices with geometric quantities such as
the Riemann tensor Rαβγδ, the torsion Tλμν, and their covariant derivatives:

Sgravity =
1

2κ

∫
d4x e

[
(kT)

λμνTλμν + (kR)
κλμνRκλμν + (kDT)

κλμνDκTλμν + · · ·
]

. (4)

The tensors kT , kR, etc. are coefficients for Lorentz and diffeomorphism violation and the ellipses
represent terms with higher powers of curvature and torsion and derivative terms [21,22]. Note that
a violation of local Lorentz symmetry generically implies a violation of diffeomorphism symmetry,
as explained in the literature [15,23]. As with θμν, it is not possible for the coefficients to be covariant
derivative constants on most spacetime manifolds, and so they must be functions of spacetime position,
though we may assume that their partial derivatives are negligible in experimentally relevant frames.

In this work, we consider two limits of this full action: the minimal set of terms necessary for
Lorentz violation and the weakly-curved-spacetime limit (or quadratic limit) of the full action.

3.1. Covariant Match

In the gravity sector of the fully observer-covariant SME, the minimal set of terms that arises are
given by the action [15],

SLV,cov =
1

2κ

∫
d4x e

[
R + (kR)αβγδRαβγδ

]
, (5)

where (kR)αβγδ are the 20 (background) coefficients for local Lorentz and diffeomorphism violation.
It is clear that there is overlap with the noncommutative model Equation (1). However, there are no
terms in the SME containing explicit dependence on the non-tensorial connection coefficients Γα

βγ.
It is important at this stage to distinguish two types of symmetry transformations. The first is

called an observer diffeomorphism, or general coordinate transformation, which is a diffeomorphism
that affects both the background, (kR)αβγδ and the dynamical fields eμ

a. The second is called a particle
diffeomorphism, which is a diffeomorphism that leaves the background (kR)αβγδ unchanged while the
dynamical fields eμ

a transform in the usual way. It is this second type of symmetry breaking, particle
diffeomorphism symmetry breaking, that is described by the SME approach and is broken by the
second term in Equation (5). Because the action terms in the SME are scalars under general coordinate
transformations, they trivially satisfy observer symmetry. These points are discussed in more detail in
the literature [15,24,25].

The explicit appearance of Γρ
γα in terms 4–6 of Equation (1) implies that each of these terms is not

symmetric under observer diffeomorphisms. Whether the model can be massaged into an observer
covariant form, for example by a special choice of the parameters c2 and c3, remains to be shown. Note
that the model does appear covariant under observer local Lorentz transformations while breaking
particle local Lorentz symmetry. Despite the difficulty, we can proceed at the quadratic-action level,
where a model that breaks observer diffeomorphism invariance cannot be distinguished from a model
that breaks particle diffeomorphism invariance.
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3.2. Linearized Lorentz-Violating Standard-Model Extension

If we restrict the full SME to a version with equations of motion that are linear in hμν [26–28], then
the action takes the form, after a rescaling by 1/2κ,

S =
∫

d4x

[
L0 +

1
8κ hμν ∑

d
K̂(d)μνρσhρσ

]
. (6)

In this expression, L0 = e(R − 2Λ)/2κ is the usual quadratic Einstein–Hilbert Lagrange density
and hμν := gμν − ημν is the metric perturbation, assumed to be small. The K̂(d)μνρσ are general
derivative operators formed from background coefficients and derivatives. The summation is over the
mass dimension d of the operators. In general, apart from surface terms, this sum includes 14 classes
of irreducible representations involving tensors and derivative operators, all detailed in [28].

A primary goal of this paper is to argue that the non-commutative (broken-)SO(2,3)� action SNCR
in the linearized limit is a special case of this general linearized Lorentz-violating action. We explicitly
calculate the map that shows this correspondence. We will show that the subset of the operator terms
in the action Equation (6) that occur in the non-commutative model Equation (1) can be written as

SLV,NC = 1
8κ

∫
d4x hμν

{[
s(4)μρανσβ + s(4,1)μρνσαβ + s(4,2)μρανσβ + k(4,3)μανβρσ

]
∂α∂β

+ s(2,1)μρνσ + k(2,1)μνρσ
}

hρσ.
(7)

Each of these terms has distinct tensor symmetries described by a particular Young tableau [29].
The coefficients with the (4, #) label are coefficients for mass dimension 4 operators, while those
without derivatives labeled (2, #) are coefficients for mass dimension 2 operators. The latter represent
an arbitrary mass matrix for the gravitational fluctuations hμν. Incidently, none of the terms in
Equation (1) contain odd mass dimension operators, and therefore the CPT symmetry is maintained.

4. Connecting NC SO(3,2)� Gravity to the SME

The action for any linearized theory of gravity is quadratic in the perturbation hμν. Therefore,
we need to calculate each of the quantities that appears in SNCR to second order in hμν. Calculations
of these quantities to first order are widespread in the literature, but calculations to second order
are not, so we summarize the key results in the Appendix. With these formulæ, we may expand the
noncommutative action SNCR in powers of hμν. The results may then be manipulated into the form of
the linearized action Equation (6).

First, we show the match to the SME for the massive u = 3 term. Expanding this term from
Equation (1) in the quadratic action limit, we obtain

SNC,Mass =
C(3)

16κ�6

∫
d4xeθαβθγδgαγgβδ

= 1
8κ

∫
d4x

{C(3)
2�6

(
θ2 +

[
1
2 θ2ημν + 2θα

μθαμ
]

hμν

)
+

C(3)
16�4 hμν

[
θ2ημνηρσ − 2θ2ημρηνσ + 8θα

μθανηρσ + 8θμρθνσ
]

hρσ

}
,

(8)

where θ2 := θμνθμν. Note that all indices on the right-hand sides of these expressions are raised and
lowered with η, as they are considered to act in the flat spacetime with field hμν. The first term with
just θ2 is a constant and irrelevant for dynamics, while the second term linear in hμν acts as a constant
contribution to the stress-energy tensor (of the form of a cosmological constant). The last line can
be matched to the last two terms in Equation (7) using Young tableau projections. The coefficients
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appearing, s(2,1)μρνσ and k(2,1)μνρσ, correspond to the Young tableaus
μ ν
ρ σ and μ ν ρ σ , respectively.

The explicit results we find are

s(2,1)μρνσ =
C(3)
12�4

[
2ημνθραθσ

α + 2ηρσθμαθν
α − 2ηρνθσαθ

μ
α − 2ημσθραθν

α

+ 2θρνθσμ + 4θρμθσν + 2θμνθρσ + (ηρσημν − ηρνησμ) θ2] ,

k(2,1)μνρσ =
C(3)
48�4

[
4ημνθραθσ

α + 4ηρσθμαθν
α + 4ηρνθσαθ

μ
α + 4ημσθραθν

α

+4ησνθραθ
μ

α + 4ηρμθσαθν
α − (ηρσημν + ηρνησμ + ηρμησν) θ2] .

(9)

We classify the remaining terms in Equation (1) as kinetic terms that only involve mass dimension
4 operators. After expanding these terms in the quadratic-action limit and manipulating the result into
the form of Equation (7), we obtain

SNC,Kin =
1

8κ

∫
d4x hμν(KNC)

μνρσαβ∂α∂βhρσ, (10)

where the quantity (KNC)
μνρσαβ is given by

(KNC)
μνρσαβ = 1

16�4 (2C(1) − 2C(2) + C(4))(η
αβθρνθσμ + ηαβθρμθσν)

+ 1
64�4 (4C(1) − 2C(2) + C(4))

({(ηναθβρθσμ − ησαθβμθρν + ηνβθαρθσμ − ησβθαμθρν)

+ (ρ ⇀↽ σ)}+ {μ ⇀↽ ν})
+ 1

16�4 (2C(1) + C(2) − C(5))
(
ημνθραθβσ + ηρσθμαθβν + ημνθρβθασ + ηρσθμβθαν

)
+ 1

16�4 (C(2) − C(6))
({( 1

2 ησαηβνθργθ
μ

γ + 1
2 ησβηανθργθ

μ
γ − ησνηαβθργθ

μ
γ) + (μ ⇀↽ ν)

+ ηρνησμθαγθ
β

γ}+ {ρ ⇀↽ σ} − 2ηρσημνθαγθ
β

γ

)
+ 1

16�4 C(1)
({(ησνθραθβμ + ησνθρβθαμ) + (μ ⇀↽ ν)}+ {ρ ⇀↽ σ}) .

(11)

At this stage, one can project Equation (11) into the irreducible tensors that appear in Equation (7).
Consider the first coefficients, s(4)μρανσβ, for which the operator it is contracted with, ∼ h∂∂h, is

a gauge invariant combination (invariant under the transformation δhμν = −∂μξν − ∂νξμ). Calculation
with Young Tableau projection PY reveals

s(4)μρανσβ = P

μ ν
ρ σ
α β

Y (KNC)
μνρσαβ

= 1
36�4 (2C(1) − 3C(2) + C(4) + C(5))

( 1
2 ηρσθανθβμ − 1

2 ηνρθασθβμ + ηρσθαμθβν + ...
)
,

(12)

where the ellipses stand for the remaining symmetrizing terms. The explicit terms are not shown for
brevity and because this contribution can be more profitably expressed using an equivalent two-tensor
set of coefficients defined by

sγδ = − 1
36 εμραγενσβδs(4)μρανσβ. (13)

Employing this, the portion of the Lagrangian containing the s(4) coefficients can be expressed as

LLV,NC ⊃ 1
4κ

∫
d4xhμνsκλGμκνλ, (14)

where, for the non-commutative model under study, we have

sκλ = − 1
24�4 (2C(1) − 3C(2) + C(4) + C(5))

(
θκαθ α

λ − 1
4 ηκλθ2

)
, (15)

and we have removed the trace of these coefficients since they contribute only as a scaling of GR at
this level. This result shows that the non-commutative model overlaps with, in part, the minimal SME
gravity sector in the weak-field limit. In this model, the nine coefficients sκλ are evidently controlled
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by the six non-commutative parameters θαβ. Note that the size of these coefficients depends on the
relative size of the non-commutative parameters and the the length parameter �.

For the other classes of coefficients appearing in Equation (7), we can proceed in a similar fashion
with the Young Tableau projection. All terms are summarized in Table 2 below. The explicit expressions
for the Young projections are lengthy and omitted here for brevity, but they can be calculated with
standard methods [29].

Table 2. Young Projections for the kinetic portion of the NC action.

SME Coefficients Young Projection

s(4)μρανσβ P

μ ν
ρ σ
α β

Y (KNC)
μνρσαβ

s(4,1)μρνσαβ P
μ ν α β
ρ σ

Y (KNC)
μνρσαβ

s(4,2)μρανσβ P

μ ν β
ρ σ
α

Y (KNC)
μνρσαβ

k(4,3)μανβρσ P
μ ν ρ σ
α β

Y (KNC)
μνρσαβ

5. Conclusions, Prospects for Further Work

We have shown that the model proposed in Ref. [12], in its quadratic limit, is a subset of the
Lorentz- and diffeomorphism-violating Standard-Model Extension. The main results are understood
as a series of Young Tableau maps described in Section 4.

One consequence of the match obtained relates to experimental and observational constraints on
the noncommutative model considered. For the gauge-preserving portion of the Lagrangian, for which
the observable effects are controlled by the sμν coefficients, an extensive study of phenomenology
has been performed [30–34]. To date, numerous experiments and observations have reported
measurements on these coefficients [19,35,36]. The best current astrophysical limits come from a recent
comparison of the arrival times of electromagnetic and gravitational waves from a pair of colliding
neutron stars [37]. Lunar laser ranging and ground-based gravimetry also place limits on these
coefficients [38–41]. The best limits imply constraints on the order of sμν < 10−14. Heuristically then,
this would imply that the non-commutivity coefficients θαβ and the length parameter � are related
by θ2/�4 < 10−15. However, a more precise statement would require a thorough phenomenological
analysis of the diffeomorphism-violating terms in Section 4 above.

It would be of interest to explore the role of additional terms in the non-commutative model, as
in Ref. [11] that involve higher derivatives. These terms have been generally classified in the SME
approach and a match should exist [28].
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Appendix A. Geometric Quantities to 2nd Order in the Metric Perturbation

Consider a pair of theories. The first operates in curved-spacetime, including a manifold M,
a metric gμν, a local flat metric for tangent spaces ηab, and a set of vierbein eμ

a that relate the metrics
through gμν = eμ

aeν
bηab. (Equivalently, the vierbein may be thought of as a position-dependent
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change-of-basis matrix that relates a manifold coordinate basis {�vμ} to a local tangent-space basis
{�ua}.) The second theory operates in a flat spacetime with an auxiliary field hμν. For this theory,
the manifold is simply R

4, the manifold metric is ημν, the tangent-space metric is ηab, and global
coordinates may be found so that the vierbein is just the Kronecker delta δμ

a.
A perturbation scheme is a map

(M, gμν, ηab, eμ
a) → (R4, ημν, ηab, δμ

a) + hμν (A1)

between these theories so that they approximately describe the same physical effects. In particular,
we will consider situations where gμν ≈ ημν, so that the map may be nicely approximated by a power
series in gμν − ημν. We wish to calculate an action in terms of hμν that mimics the physical effects of
the original theory up to order h2.

The first piece of the map is defined by the correspondence

gμν = ημν + hμν . (A2)

This is the definition of hμν and hence is correct to all orders in h. Our goal in this section is to
find expressions for other geometric quantities gμν, eμ

a, and so on that appear in the action of the full
theory. The formulas for these quantities should only involve the flat-spacetime tensors hμν, ημν, ηab,
and δμ

a.
It is important to note that the defining map Equation (A2) is not a tensor equation in the original

spacetime. This implies that indices on hμν cannot be raised and lowered like the indices of true tensors.
That is, hμν is not equal to gμαgνβhαβ. The geometry of the original manifold does not by itself define
a unique value of such quantities, and we have some freedom in choosing our definition of them.
The most convenient choice is defining them so that hμν acts like a true tensor in the flat spacetime.
That is, we pick hμ

ν := ημαhαν, hμν := ημαηνβhαβ, etc. Similarly, we may choose to relate global and
tangent-space indices with the flat-space veirbein δμ

a: hμa := hμνδν
a, hμ

a := hμνηνλδa
λ, etc.

The raised-index metric gμν may then be evaluated to second order in hμν through the following
strategy. The fundamental definition of gμν is that it is the matrix inverse of gμν:

δμ
λ = gμνgνλ . (A3)

We proceed by using the ansatz gνλ = ηνλ + jνλ + kνλ + o(h3) where jνλ is first order in h and kνλ

is second order. If we insist that Equation (A3) hold order-by-order in h, then we need

jαλ = −ηαμηνλhμν and kαλ = ηαμηνβηλγhμνhβγ . (A4)

Using the definitions of upper-index h quantities described in the previous paragraph, we may
then write

gμν = ημν − hμν + hμαhα
ν + o(h3) . (A5)

Note again that gμν �= ημν + hμν as the breakdown of gμν into ημν + hμν is not a true
tensor operation.

The quadratic approximation for the vierbein may be calculated by using the ansatz
eμ

a = δμ
a + fμ

a + �μ
a + o(h3), where f is first order in h and � is second order, and insisting

that the exact relation
gμν = eμ

aeν
bηab (A6)

hold order-by-order in h. This results in the expression

eμ
a = δμ

a + 1
2 hμ

a − 1
8 hμλhλa + o(h3) , (A7)
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where again h quantities are related to each other with the flat-spacetime metrics ημν, ηab and
flat-spacetime vierbein δμ

a. Explicitly, hμ
a := ηνρδρ

ahμν and hλa := ηλμηνρδρ
ahμν.

Once we have these, calculations of other geometric quantities are rather straightforward
if tedious.

Metric:
gμν = ημν + hμν ,
gμν = ημν − hμν + hμαhα

ν + o(h3) .
(A8)

Vierbein:
eμ

a = δμ
a + 1

2 hμ
a − 1

8 hμλhλa + o(h3) ,
eμa = ημa +

1
2 hμa − 1

8 hμλhλ
a + o(h3) ,

eμa = ημa − 1
2 hμa + 3

8 hμ
λhλa + o(h3) ,

eμ
a = δμ

a − 1
2 hμ

a +
3
8 hμλhλa + o(h3) ,

e := det(eμ
a) = 1 + 1

2 hμ
μ + 1

8 (hμ
μhν

ν − 2hμ
νhν

μ) + o(h3) .

(A9)

Note again that the expressions for the vierbein quantities cannot be related to each other simply
by raising and lowering indices: eμa �= ημλeλ

a, etc. Note also that the index placement in the
definition of e is important: det(eμ

a) =
1

det(eμ
a)

.

Connection coefficients:

Γαμν = 1
2 (∂μhνα + ∂νhμα − ∂αhμν) ,

Γα
μν = 1

2 (η
ασ − hασ)(∂μhνσ + ∂νhμσ − ∂σhμν) + o(h3) ,

ωμ
ab =

[
− 1

2 ∂ahμ
b +− 1

8 haλ∂μhλ
b + 1

4 haλ∂λhμ
b − 1

4 haλ∂bhλμ

]
−
[

a ⇀↽ b
]
+ o(h3) .

(A10)

Derivative compatibility:

∇γgμν = 0 ,
∇γeμ

a = 0 .
(A11)

Riemann tensor:

Rαβμν =
[(

− 1
2 ∂α∂μhβν − 1

8 ∂αhμλ∂βhν
λ − 1

8 ∂μhαλ∂νhβ
λ − 1

8 ∂λhαμ∂λhβν

− 1
4 ∂αhμλ∂νhβ

λ + 1
4 ∂αhμλ∂λhβν +

1
4 ∂μhαλ∂λhβν

)
−
(

α ⇀↽ β
)]

−
[
μ ⇀↽ ν

]
+ o(h3). (A12)

Ricci tensor:

Rαμ = gβνRαβμν =
[

1
2 ∂α∂λhμ

λ − 1
4 ∂α∂μhλ

λ − 1
4 ∂λ∂λhαμ

− 1
2 hλρ

(
∂α∂λhμρ − 1

2 ∂α∂μhλρ − 1
2 ∂λ∂ρhαμ

)
+
(

1
4 ∂λhρ

ρ − 1
2 ∂ρhρλ

)(
∂αhμ

λ − 1
2 ∂λhαμ

)
− 1

4 (∂λhμ
ρ)
(

∂ρhα
λ − 1

2 ∂λhαρ

)
+ 1

8 (∂αhλρ)(∂μhλρ)
]
+
[
α ⇀↽ μ

]
+ o(h3).

(A13)
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Abstract: It is well known that a theory with explicit Lorentz violation is not invariant under
diffeomorphisms. On the other hand, for geometrical theories of gravity, there are alternative
transformations, which can be best defined within the first-order formalism and that can be regarded
as a set of improved diffeomorphisms. These symmetries are known as local translations, and among
other features, they are Lorentz covariant off shell. It is thus interesting to study if theories with
explicit Lorentz violation are invariant under local translations. In this work, an example of such a
theory, known as the minimal gravity sector of the Standard Model Extension, is analyzed. Using a
robust algorithm, it is shown that local translations are not a symmetry of the theory. It remains to be
seen if local translations are spontaneously broken under spontaneous Lorentz violation, which are
regarded as a more natural alternative when spacetime is dynamic.

Keywords: local Lorentz invariance; diffeomorphism invariance; local translations; first-order formalism

1. Introduction

Conventional theories of gravity, when geometrical, are invariant under diffeomorphisms (Diff)
and local Lorentz transformations (LLT). In addition, such theories are invariant under the so-called
local translations (LT), which can be regarded as improved Diff in the sense that they are fully Lorentz
covariant, among other properties [1]. As expected, for theories that are invariant under LLT, on shell,
invariance under Diff implies invariance under LT and vice versa [2,3]. Thus, in light of this result, it is
interesting to study the logical relation between Diff and LT when LLT is explicitly broken. This is
the main goal of this work. Clearly, symmetry is a very powerful tool that simplifies calculations and
provides conceptual clarity; therefore, elucidating if there is a symmetry left in theories with explicit
Lorentz violation can be extremely relevant.

This work is motivated by the idea that general relativity is a low energy limit of a more fundamental
theory of gravity that incorporates the quantum principles [4]. Several interesting quantum gravity
approaches have been developed. The leading candidates include string theory, loop quantum gravity,
spin networks, noncommutative geometry, causal sets and causal dynamical triangulations (see the
corresponding contributions in [5]). Notably, even though this theory is still unknown, research fields
like quantum cosmology are making steady progress by appealing to effects inspired by quantum
gravity [6,7].

On the other hand, there is an approach to quantum gravity where the priority is to make contact
with experiments and which is known as quantum gravity phenomenology. Within quantum gravity
phenomenology, it is customary to look for traces of Lorentz violation. The motivation to do this
stems from the fact that within the most prominent approaches to quantum gravity, it has been
argued that LLT may not be a fundamental symmetry [8–12], and thus, it may be possible to look for
empirical traces of quantum gravity by searching for violations of LLT. Inspired by this possibility,
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a parametrization of Lorentz violation based on effective field theory has been developed [13,14],
which is known as the Standard Model Extension (SME).

The SME action contains Lorentz-violating extensions to all sectors of conventional physics,
including general relativity [15]; this latter sector is known as the gravity sector. Moreover, within the
gravity sector, the part that produces second-order field equations for the metric is called the minimal
gravity sector, and using a post-Newtonian expansion [16], it has been tested with several interesting
experiments including atom interferometry [17], frame dragging [18], lunar ranging [19,20], pulsar
timing [21,22] and planetary motion [23]. There are also tests in the context of cosmology [24]. Other
experiments related to the SME are reported in [25].

It should be stressed that the dominant position in the SME community is that, in the presence of
gravity, Lorentz violation must occur spontaneously. This is assumed to deal with the severe restrictions
arising from the contracted Bianchi identity [15], i.e., the fact that the Einstein tensor is divergence free.
This, in turn, is closely related to the invariance under Diff. In addition, some relations between Diff
and LLT are known in the literature. For example, it has been shown that spontaneous violation of Diff
implies spontaneous violation of LLT, and vice versa [26–28]. In these regards, some surprising results
have already been uncovered by using LT. In particular, in the unimodular theory of gravity [29],
explicit breaking of Diff produces a breakdown of LT, but contrary to the expectations, LLT is unaffected
[30]. Thus, it is interesting to analyze the fate of the LT when LLT is spontaneously broken. Here,
however, attention is restricted to explicit symmetry breaking in the minimal gravity sector of the SME.
This assumption is adopted for simplicity, but also since the dynamics associated with spontaneous
Lorentz violation may spoil the Cauchy initial value formulation [31]. Moreover, this setup allows one
to study if torsion, which modifies the Bianchi identities, can relax the restrictions that have driven
the SME community to consider spontaneous Lorentz violation. Other alternatives to deal with these
restrictions include a Stückelberg-like mechanism [32] and the use of Finsler geometries [33].

2. Gauge Theories of Gravity and Local Translations

Local translations can be best defined in gauge theories of gravity [1,34,35] that consider
two independent gravitational fields: the tetrad ea

μ and the Lorentz connection ωab
μ = −ωba

μ.
This setup includes the well-known Poincaré gauge theories ([3], Chapter 3). Here, spacetime indices
are represented by Greek letters and tangent-space indices with Latin characters; the summation
convention on repeated indices is understood. The four-dimensional spacetime metric gμν is related to
the tetrad by gμν = ηabea

μeb
ν, where ηab = diag (−,+,+,+). Note that ηab and its inverse, ηab, can be

used to lower and raise tangent-space indices, and that the tetrad and its inverse, Eμ
a, which is such

that ea
μEμ

b = δa
b and ea

μEν
a = δ

μ
ν , can be used to map spacetime indices to tangent-space indices and

vice versa. In addition, the Lorentz connection and the spacetime connection Γλ
μν are related through

the tetrad postulate:
∂μea

ν + ωa
bμeb

ν = Γλ
μνea

λ. (1)

The left-hand side of this equation can be written as Dμea
ν where Dμ is the covariant derivative

with respect to the Lorentz connection. Notice that the covariant derivative used here differs from
the operator widely used in SME papers (e.g., [15]), which is represented by Dμ, in that, when acting
on a tensor, Dμ does not add a connection term for each spacetime index. These two operators are
discussed in [36] in a notation that does not coincide with the one used here.

Curvature and torsion can be derived from the tetrad and the Lorentz connection through Cartan’s
structure equations:

1
2

Rab
μν = ∂[μωab

ν] + ωa
c[μωcb

ν], (2)

1
2

Ta
μν = D[μea

ν], (3)
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where the squared brackets denote antisymmetrization of the n indices enclosed (with a 1/n! factor).
Clearly, Rab

μν = R[ab]
[μν] and Ta

μν = Ta
[μν], and from Equations (1) and (3), it can be verified that

Ta
μν/2 = Γλ

[μν]ea
λ. Furthermore, the Bianchi identities take the form:

D[μRab
νλ] − Tc

[μνRab
λ]ρEρ

c = 0, (4)

D[μTa
νλ] − Tb

[μνTa
λ]ρEρ

b = Ra
[μνλ]. (5)

As usual, (active) infinitesimal Diff are implemented by the Lie derivative. Since the tetrad and
the Lorentz connection are one-forms, it reads:

Diff =

{
δDiff(ρ)ea

μ = ρν∂νea
μ + ∂μρνea

ν,

δDiff(ρ)ω
ab

μ = ρν∂νωab
μ + ∂μρνωab

ν.
(6)

Moreover, under LLT, the tetrad and Lorentz connection respectively transform as a vector and
gauge connection, that is:

LLT =

{
δLLT(λ)ea

μ = −λa
beb

μ,

δLLT(λ)ω
ab

μ = Dμλab.
(7)

The fact that Diff involves partial derivatives and not covariant derivatives under LLT already
suggests that Diff are not Lorentz covariant. However, this observation also points to its cure: define a
transformation replacing the partial derivative by a covariant derivative. This is the most conventional
way to introduce the LT [1] and the result, for the case where the gauge group is LLT, is:

LT =

{
δLT(ρ)ea

μ = Dμρa + ρνTa
νμ,

δLT(ρ)ω
ab

μ = ρνRab
νμ,

(8)

where ρa = ea
μρμ. Remarkably, it is easy to verify that, acting on ea

μ or ωab
μ,

δDiff(ρ) = δLT(ρ) + δLLT(λ̃), (9)

where:
λ̃ab = ρμωab

μ. (10)

From this relation, it can be verified that Diff and LT are equivalent in theories that are invariant
under LLT. What is more, if a theory is invariant under two of these symmetries, it has to be invariant
under the third. Conversely, this suggests that, if a theory breaks a symmetry, as is the case of the SME,
it should break at least one of the remaining symmetries.

Recall that general relativity is invariant under the two symmetry classes: LLT and Diff.
The former acts locally on the tangent space, and it thus can be regarded as the gauge (or internal)
symmetry of the theory, while the latter connects different spacetime points. Note that, from
Equation (9), it seems that the LT act in both, the tangent space, through LLT, and the manifold,
via the Diff. However, the fact that the gravitational potentials transform under LT as Lorentz tensors,
which does not occur under Diff, can be used to argue that they only act on the tangent space.

Now, it is possible to construct theories where the gauge group is different from LLT. Perhaps
the most popular examples of such theories are those where the gauge group is de Sitter or anti-de
Sitter [36–39]. Fortunately, the LT definition can be generalized to theories invariant under arbitrary
gauge transformations (GT). Thus, for the sake of generality, in the remainder of this section, the role of
the LLT is played by a general GT. To obtain the generalized LT, one simply needs to replace the partial
derivatives, in Equation (6), by covariant derivatives associated with the corresponding gauge group.
Equivalently, they can be defined [40] as the difference of δDiff(ρ) and δGT(λ̃), for the corresponding
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λ̃ab, thus generalizing Equation (9). It is important to remark that the action of LT on the geometrical
fields depends on the gauge symmetry, and for theories invariant under generic GT, it does not need
to coincide with Equation (8).

Interestingly, an algorithm has been developed [30] that, starting from the action, allows one
to verify if the theory is invariant under LT and GT, and if it does, it gives the corresponding
transformations of the dynamical fields (see also [41]). What is more, in certain cases, the algorithm
leads to the corresponding contracted Bianchi identities and the matter conservation laws. Since the
algorithm is closely related to Nöther’s theorem, as can be seen from Equations (16) and (17), it selects
the fundamental symmetries of the theory. In fact, the algorithm’s output contains the transformation
laws of the dynamical fields under GT and LT; whether the theory is invariant under Diff can be
derived from such transformations. In this sense the GT and LT are more fundamental than the Diff.
The covariant derivative associated with GT is denoted by D̄μ, and the situation in which GT is the
Lorentz group, which leads to Equation (8), arises as a particular case. Furthermore, for simplicity,
the algorithm is done in a four-dimensional spacetime that has no boundaries, and all dynamical fields
besides the tetrad and Lorentz connection, which are denoted by Ψ, are assumed to be zero-forms in a
nontrivial representation of the Lorentz group. Notice that Ψ may be Dirac spinors. Also observe that
the fact that the formalism is based on the action, and not the Hamiltonian, allows one to disregard all
issues related with spacetime foliations.

The basic steps of the algorithm are: (i) Consider an action principle:

S[ea
μ, ωab

μ, Ψ] =
∫

d4x e L (ea
μ, ωab

μ, Ψ), (11)

where d4x e is the covariant four-volume element and L is an arbitrary Lagrangian. (ii) Perform an
arbitrary variation of the action with respect to the dynamical fields:

δS =
∫

d4x e
(

δea
μFμ

a + δωab
μFμ

ab + δΨF
)

, (12)

which implicitly defines Fμ
a, Fμ

ab and F. Note that Fμ
a includes the variation of the volume element,

namely Fμ
a = (1/e)δ(eL )/δea

μ, and that these objects vanish on shell. Then, (iii) apply a covariant
derivative D̄μ to Fμ

a, Fμ
ab and F. Step (iv): Verify if the resulting expressions can be written as linear

combinations of Fμ
a, Fμ

ab and F, where the coefficients can be spacetime functions. If possible, it reads:

D̄μFμ
a = αμFμ

a + βb
μFμ

ab + γaF, (13)

D̄μFμ
ab = πμ[aFμ

b] + θμFμ
ab + μ[ab]F, (14)

D̄μF = 0, (15)

where the fact that F is a four-form is used. Note that the precise form of the coefficients in
Equations (13) and (14) depends on the theory and, in particular, on the gauge group. Step (v): Multiply
Equations (13) and (14), respectively, with gauge parameters ρa(x) and ξab(x) = −ξba(x). Finally,
(vi) integrate over spacetime using the appropriate four-volume element. At this stage, one must use
that D̄μ can be replaced by ∂μ when acting on a scalar under the gauge group. Furthermore, the Leibniz
rule, Gauss’s theorem and the assumption that there are no spacetime boundaries are utilized to take
the equations to the form:
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0 =
∫

d4x ∂μ (e Fμ
aρa)

=
∫

d4x e [
(
ρa∂μ ln e + D̄μρa + αμρa)︸ ︷︷ ︸

δLT(ρ)ea
μ

Fμ
a + ρ[aβb]

μ︸ ︷︷ ︸
δLT(ρ)ωab

μ

Fμ
ab + γaρa︸︷︷︸

δLT(ρ)Ψ

F], (16)

0 =
∫

d4x ∂μ

(
e Fμ

abξab
)

=
∫

d4x e [−πμbξab︸ ︷︷ ︸
δGT(ξ)ea

μ

Fμ
a +

(
ξab∂μ ln e + D̄μξab + θμξab

)
︸ ︷︷ ︸

δGT(ξ)ωab
μ

Fμ
ab + μabξab︸ ︷︷ ︸

δGT(ξ)Ψ

F]. (17)

Then, comparing with the action variation (12), it is possible to read off the field transformations
under LT and GT. On the other hand, if it is impossible to write the covariant derivatives of Fμ

a and
Fμ

ab as in Equations (13) and (14), then one can identify which symmetries are broken and which terms
are responsible for such breakdowns. In the next section, this algorithm is applied to the minimal
gravity sector of the SME.

3. Explicit Lorentz Violation in the Gravity Sector

A theory with explicit Lorentz violation is one in which identical experiments done in different
inertial frames can produce different results. It is thus easy to imagine experiments designed to look for
such violations. In fact, the Earth’s rotation (translation) gives a natural family of instantaneous inertial
frames in which Lorentz violations can manifest themselves as signals with a daily (yearly) period.
Moreover, there are concrete models that incorporate Lorentz violation to account for astrophysical
puzzles like the presence of cosmic rays above the GZK cutoff [42]. Here, attention is restricted to a
sector of the SME, which should be regarded as a generic parametrization of Lorentz violation.

The action of the minimal gravity sector of the SME, in the first-order formalism, takes the form
S = Sg + Sm, where the Lorentz-violating gravitational part is:

Sg[ea
μ, ωab

μ] =
1

2κ

∫
d4x e Eμ

aEν
b

(
Rab

μν + kcd
abRcd

μν

)
. (18)

Here, κ = 8πGN is the gravitational coupling constant, and e = det ea
μ. The first term of this

action is the Einstein–Hilbert action, and kcd
ab is a non-dynamical zero-form parametrizing possible

Lorentz violations and whose components are known as the SME coefficients. The SME coefficients
are typically expressed in terms of spacetime indices, and this can be achieved by using the tetrad and
its inverse to translate the Latin indices in kcd

ab to spacetime indices. From the index symmetries of
Rab

μν, it is clear that kcd
ab = k[cd]

[ab]. However, from Equation (5), it can be seen that, in the presence of
torsion, it is not necessary to assume that ka[bcd] = 0. Thus, there are 36 independent components of
kcd

ab; this should be compared with the 20 independent components that are present when torsion
vanishes. Note that the SME coefficients sensitive to torsion are studied in [15]. For simplicity, even
though it has been shown that there is a York–Gibbons–Hawking term for the minimal gravity SME
sector [43], spacetime boundaries are not considered. Furthermore, the SME coefficients are assumed
to be extremely small in any relevant reference frame; thus, they should not damage the Cauchy initial
value formulation of general relativity [44].

The matter action is:
Sm =

∫
d4x eLm[ea

μ, ωab
μ, Ψ], (19)

where Ψ denotes the matter fields, which are taken to be zero-forms in a nontrivial representation of
the Lorentz group (recall that Ψ includes spinors). As is customary, the energy-momentum and spin
densities are respectively defined by:
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τμ
a =

1
e

δ(eLm)

δea
μ

, (20)

σμ
ab = 2

δLm

δωab
μ

. (21)

Furthermore, since the gravity action does not depend on Ψ, it is possible to define, using the
notation of the previous section, F = δLm/δΨ. The main assumption on Sm is that it is invariant under
Diff and LLT. This leads to two off-shell conservation laws:

(Dμ + Tμ)τ
μ

a = Tb
μνEμ

aτν
b +

1
2

Rbc
μνEμ

aσν
bc − FEμ

a∂μΨ

− 1
2

Eμ
aωbc

μ[(Dν + Tν)σ
ν

bc − 2gνρEν
bτρ

c], (22)

(Dμ + Tμ)σ
μ

ab = 2gμνEμ
[aτν

b] + FJabΨ, (23)

where Tμ = Ta
μνEν

a and Jab are the generators of LLT associated with Ψ, i.e., δLLT(λ)Ψ = −λab JabΨ/2.
Notice that the presence of a Tμ term next to every Dμ is closely related to the presence of ∂μ ln e in the
transformations that are read off from Equations (16) and (17).

Equation (22) is the generalization of the energy-momentum conservation law. In this equation,
the issues associated with Diff invariance, which are mentioned in Section 2, become evident: there is
a partial derivative of Ψ and the Lorentz connection appears explicitly and these two terms are not
covariant under LLT. Of course, this is not an issue when Equation (23) is valid because, when these
two equations are put together, the term with the Lorentz connection gets replaced by a term with
Jab that combines with the partial derivative to transform covariantly. In addition, since these terms
are multiplied by F, they vanish on-shell. Of course, the LT are precisely built in such a way that the
problematic terms do not even arise.

An arbitrary variation of the total action is given by Equation (12) with:

Fμ
a = −τμ

a − 1
κ

[
Gμ

a − 1
2

kbc
deRbc

ρσ (2Eμ
eEρ

aEσ
d + Eμ

aEρ
dEσ

e)

]
, (24)

Fμ
ab = −1

2
σμ

ab +
1

2κ

[(
Tc

ρσ + 2ec
ρTσ

)
Eρ

[aEσ
b]E

μ
c + kab

cdTe
ρσEρ

cEσ
dEμ

e

−2Eν
cEμ

d(Dν + Tν)kab
cd
]

, (25)

where Ga
μ = Rbc

ρσ(δa
bδ

ρ
μEσ

c − ea
μEρ

bEσ
c/2) is the Einstein tensor in the presence of torsion. Thus,

on-shell, Equation (24) is the generalization of the Einstein equation, which is not necessarily symmetric,
and Equation (25) plays the role of the so-called Cartan equation.

The key step in the algorithm presented above is to take the covariant derivative of Equations (24)
and (25). The results are the contracted Bianchi identities, which, using Equations (22) and (23), can be
cast into the form:

(Dμ + Tμ)Fμ
a = Tb

μνEμ
aFν

b + Rbc
μνEμ

aFν
bc − Eμ

a

(
∂μΨ +

1
2

ωab
μ JabΨ

)
F

− 1
2κ

Rbc
ρσEμ

aEρ
dEσ

eDμkbc
de, (26)

(Dμ + Tμ)Fμ
ab = 2gμνEμ

[aFν
b] +

1
κ

(
Rcd

μνkcd[a
eEμ

b]E
ν

e − Rc
[a|μν|kb]c

deEμ
dEν

e

)
. (27)

Clearly, the term with Dμkab
cd in Equation (26) breaks LT invariance since it cannot be written as a

linear combination of Fμ
a, Fμ

ab or F. Analogously, in Equation (27), the terms in the parenthesis break
LLT. This answers the central question of this paper: the theory is generically not invariant under any
of the symmetries considered. Still, by making the last term in Equation (26) equal to zero while letting
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the parenthesis in Equation (27) be nonzero, one can break LLT while the theory is invariant under
LT. Clearly, it is also possible to have invariance under LLT while LT is broken. However, tuning the
values of the SME coefficients goes against the SME philosophy of keeping them arbitrary until they
are constrained by experiments.

Remarkably, from Equation (25), it can be realized that kab
cd acts as a torsion source, as it occurs in

theories with nonminimal scalar couplings (see [45] and the references therein). Thus, even in vacuum,
the presence of kab

cd generates torsion. This is very unusual since, in most theories, vacuum torsion
vanishes. Moreover, this torsion field could be probed with spinors. In fact, for a Dirac spinor ψ,
the equation of motion for ψ takes the form [46]:

iEμ
aγa

(
∂μψ +

i
4

ω̃bc
μσbcψ

)
+ Eμ

a Aμγ5γaψ = 0, (28)

where γa are the Dirac matrices satisfying Clifford’s algebra {γa, γb} = −2ηab, σab = iγ[aγb] and
γ5 = iγ0γ1γ2γ3. In addition, ω̃ab

μ is the torsion-free spin connection (i.e., it satisfies the torsion-free
tetrad postulate) and Aμ = ερσνμTρσν/6, with εμνρσ the Levi–Civita tensor. Notably, bounds on vacuum
torsion like those discussed in [46] could be motivated by the presence of torsion in the minimal gravity
sector of the SME. On the other hand, if torsion is assumed to be nonzero, one can use the very stringent
bounds on the matter sector of the SME (see [25]) to put limits on kab

cd; this is similar to what can be
done using field redefinitions in the matter-gravity SME sector [47]. Furthermore, the conventional
SME phenomenology is recovered when torsion and spin density are both set to zero. Notice that the
former can be rigorously turned off with a Lagrange multiplier [48]. However, even in this case, it is
expected that the LT will not be a symmetry of the theory since the structure of Equations (26) and (27)
does not change by the presence of this Lagrange multiplier.

Finally, as is mentioned in the Introduction, in the SME community, Equation (26) is seen as
a strong restriction linking matter, geometry and kabcd. However, when torsion and spin density
are considered, this condition is relaxed in the sense that it involves more degrees of freedom of
both the matter and the geometry. This may be a valuable alternative in addition to spontaneous
Lorentz violation.

4. Conclusions

In this work, the so-called local translations are studied in a gravity theory with explicit Lorentz
violation, which is introduced by a non-dynamical zero-form kab

cd. It was known that the theory is
not diffeomorphism invariant, and in this work, it is shown that the theory is also not invariant under
translational invariance. This is interesting since the local translations can be regarded as improved
diffeomorphisms in the sense that they are fully covariant under local Lorentz transformations, thus
having the potential to be unaffected by Lorentz violation. Another interesting aspect that becomes
evident is that the minimal gravity sector of the SME, in the presence of torsion, has additional
coefficients, which generate vacuum torsion.

There are interesting issues that could be addressed in future contributions. For example, what
happens with the local translations in theories with spontaneous Lorentz violation? In this case, kab

cd

would be dynamical, and it thus transforms under all symmetries. Furthermore, even if the local
translations are indeed spontaneously broken, there could still be advantages of using them when there
is spontaneous Lorentz violation. The ultimate role of these local translations needs to be carefully
analyzed but, if some traces of them remain, they could play very important roles.
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Abstract: This work reviews our current understanding of Cherenkov-type processes in vacuum
that may occur due to a possible violation of Lorentz invariance. The description of Lorentz
violation is based on the Standard Model Extension (SME). To get an overview as general as
possible, the most important findings for vacuum Cherenkov radiation in Minkowski spacetime
are discussed. After doing so, special emphasis is put on gravitational Cherenkov radiation. For a
better understanding, the essential properties of the gravitational SME are recalled in this context.
The common grounds and differences of vacuum Cherenkov radiation in Minkowski spacetime and
in the gravity sector are emphasized.
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1. Introduction

Cherenkov radiation emerges when a massive, electrically charged particle travels through an
optical medium with a velocity v that is larger than the phase velocity cmed of light in that medium.
In fact, the characteristic, blueish glow that can be observed in the cooling water of nuclear reactors
corresponds to this particular type of radiation. The effect was discovered by the Russians Cherenkov
and Vavilov in 1934 [1]. Just about three years later, a theoretical explanation of their observation
was provided by Frank and Tamm in the context of classical electromagnetism [2]. Cherenkov, Frank,
and Tamm shared the Nobel prize of 1958. The fact that Vavilov was excluded is the likely explanation
for why his name is usually omitted when referring to this phenomenon. The standard book reference
on Cherenkov radiation is [3], which delivers explanations for various aspects of the effect. Although
the book was first published several decades ago, most of the material covered is still valid and useful.

A microscopic explanation for Cherenkov radiation is as follows. As long as the charged particle
travels with a speed v < cmed, the few atoms or molecules polarized in the vicinity of the trajectory
emit their wave trains out of phase leading to destructive interference. A particle propagating with
a high velocity v ≥ cmed enables the atoms or molecules of the medium to emit their wave trains in
phase. Hence, wave trains interfere constructively producing coherent radiation far away from the
source, which corresponds to the radiation observed. Constructive interference occurs on the surface of
a Mach cone that bears the name Cherenkov cone. The radiation is emitted in directions perpendicular
to the cone. These directions enclose an angle θc with the trajectory of the particle where θc is the
Cherenkov angle. The latter is usually small, which means that Cherenkov radiation is emitted almost
collinearly with the propagating particle. On the contrary, the Cherenkov cone is wide open.

Violations of Lorentz invariance are predicted by certain approaches to physics at the Planck
scale [4,5]. An effective description of Lorentz violation, which is supposed to be valid for energies
much smaller than the Planck energy, is known as the Standard Model Extension (SME) [6,7]. The SME
parameterizes Lorentz and CPT-violation in terms of background fields that are properly contracted
with field operators. A background field remains fixed under Lorentz transformations of matter
fields and it decomposes into controlling coefficients that describe the magnitude of Lorentz violation.
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The existence of a Lorentz-violating background field for a photon can also be interpreted as a vacuum
with a nontrivial refractive index. The latter can depend on photon energy, direction, and polarization
leading to the effects of dispersion, anisotropy, and birefringence, respectively. It is expected that
a nontrivial vacuum may be accompanied by the presence of some kind of Cherenkov-type effect.
As this effect occurs in vacuo, it is reasonable to refer to it as vacuum Cherenkov radiation.

In pre-relativity times, Sommerfeld was probably the first one to mention the concept of
vacuum Cherenkov radiation [8–10]. Many decades later, Beall referred to it in the context of
modified gravitational couplings [11]. Coleman and Glashow presumably performed the first modern
investigation in [12]. The purpose of the current article is to provide a review on the research carried
out on vacuum Cherenkov radiation since the point of time around the advent of the SME. For the past
20 years, a large number of articles has appeared shedding light on particular aspects of this interesting
process [13–30]. Studies have been carried out within classical field theory [13,14,16,17,22,23,30] and
quantum theory for spinless particles [18] as well as elementary fermions [15,18–20,27,28]. The latter
references deal with effective theories in the sense that the authors consider pointlike approximations
of extended particles such as mesons, hadrons, and even atomic nuclei. The substructure of hadrons
was taken into account in some papers where sophisticated analyses were carried out based on parton
distribution functions of the proton and neutron [24,29]. It was also discovered that Cherenkov-type
processes are not limited to the emission of photons [21,26,29]. For example, as neutrinos are not
electrically charged, they cannot emit photons. However, they can still lose energy in the presence
of Lorentz violation by radiating Z bosons [21]. Last but not least, vacuum Cherenkov radiation can
occur in the context of a modified gravity [25]. Lorentz violation in the pure-gravity sector modifies
the dispersion relation and, therefore, the phase speed of gravitons. In a scenario where particles can
travel faster than gravitons, they may lose energy by graviton emission. Special emphasis will be put
on the SME gravity sector and the Cherenkov process associated with it.

2. Fundamentals of the Process

To understand the physics of vacuum Cherenkov radiation qualitatively, it is reasonable to study
the structure of the nullcone and mass shell in momentum space. This nullcone is a surface plot of
the photon dispersion law ω = ω(p) as a function of the momentum p, whereas the mass shell is an
analog surface plot of the massive dispersion law E = E(p). For the studies that we are interested
in, it is sufficient to consider one-dimensional slices of these surfaces as shown in Figures 1 and 2.
Vacuum Cherenkov radiation does not occur in the standard case simply due to the fact that the
nullcone approaches the mass shell asymptotically for large momenta. Hence, it is not possible
to shift one of the straight lines of the sliced nullcone such that it intersects the mass shell in two
different points.

Vacuum Cherenkov radiation can emerge either for Lorentz violation in the sector of force
carriers or for Lorentz violation in the matter sector, i.e., when either the nullcone or the mass shell
(or both) are deformed. We will consider two examples of the first scenario. The first example is a
quantum electrodynamics with an isotropic modification of the photon sector that is characterized by
a controlling coefficient κ̃tr > 0. The modified nullcone structure is shown in Figure 1a. In this case,
the opening angle of the nullcone is larger in comparison to the standard theory, which means that
photons travel with a phase velocity vph ≡ ω(p)/|p| < 1. Now, it is possible without any problems
to draw lines parallel to the nullcone such that they intersect the mass shell at two distinct points.
Therefore, the massive particle will lose energy by photon emission where the recoil due to the photon
emitted can be large enough to reverse the direction of the particle momentum. An analog process
with a final-state photon of lower energy can take place subsequently, as we can again construct a line
parallel to the nullcone having two intersections with the mass shell. In the second emission process,
the recoil of the emitted photon is not sufficient anymore to reverse the momentum direction of the
massive particle. After the two photon emissions, the mass shell can no longer be intersected twice
with lines parallel to the nullcone, i.e., the massive particle ceases to radiate photons. The second
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example in the scenario of modified photons is shown in Figure 1b. It is based on an anisotropic
Maxwell–Chern–Simons (MCS) term in the photon sector with dimensionful coefficient k3

AF = 5mψ,
where mψ is the fermion mass. Here, the nullcone is totally deformed due to dispersion. Parts of
the deformed nullcone can be shifted to connect pairs of points on the standard mass shell such
that the lower points are identified with the minimum of the deformed nullcone. For both photon
emissions shown, the recoil is large enough to reverse the momentum direction of the radiating particle.
The construction illustrated in Figure 2b can be perpetuated such that photons of ever increasing energy
are emitted. This shows that vacuum Cherenkov radiation need not necessarily be a threshold process.

Vacuum Cherenkov radiation can also occur when the fermion sector is altered. The first example
deals with a spin-degenerate modification of Dirac theory where the curvature of the modified
mass shell is larger compared to the standard case, cf. Figure 2a. Two points on the mass shell can
then be connected with lines parallel to the standard nullcone. Several photons may be emitted
subsequently where the fermion momentum direction reverses by each emission. An alternative
interesting possibility is that of a spin-nondegenerate modification of Dirac fermions shown in
Figure 2b. In such a case, the modified mass shell splits into two distinct branches dependent on the
spin direction of the fermion with respect to the quantization axis. The process qualitatively differs
from that illustrated in Figure 2a, as one point sitting on a certain branch can be connected with a
second point on the other branch by a line parallel to the standard nullcone. Photon emission takes
place once and ceases when the second branch is reached. Furthermore, the direction of the fermion
momentum does not reverse anymore, as a helicity change of the fermion is already caused by a spin
flip due to the change of branch.

(a) (b)

Figure 1. Standard nullcone (black, dashed), standard mass shell (blue), and modified photon
dispersion relation (red) in momentum space with the momentum p = (p1, p2, p3). Photon emissions
from a standard Dirac fermion with a certain energy are indicated by green, wiggly curves. (a) CPT-even
isotropic modification of the photon sector with κ̃tr = 3/5. The wiggly lines run parallel to parts of
the modified nullcone. In this particular example, two subsequent photon emissions are possible until
the process ceases; (b) CPT-odd Maxwell–Chern–Simons (MCS) theory with k3

AF = 5mψ where only
one of the two modified photon dispersion laws is illustrated. The wiggly lines run along properly
shifted parts of the deformed nullcone such that the minimum is at the lower one of the two points
that it connects. Two subsequent photon emissions are shown.
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(a) (b)

Figure 2. Standard nullcone (black), standard mass shell (blue, dashed), and modified mass shell (red)
in momentum space. (a) isotropic spin-degenerate modification of Dirac theory with c00 = −1/2.
From the initial energy of the modified fermion, two photon emissions are possible until the fermion
stops radiating; (b) isotropic spin-nondegenerate modification of Dirac theory with b0 = mψ. There are
two distinct modified dispersion laws. Photon emission can occur from one to the other branch.

3. Properties of Vacuum Cherenkov Radiation in Minkowski Spacetime

3.1. Classical Description

The presumably first detailed study of vacuum Cherenkov radiation was carried out by Coleman
and Glashow in [12]. Amongst other things, they consider an isotropic modification of the speed of
light such that c < 1. They find that massive particles start emitting photons once their energy lies
above a certain threshold energy. The rate of energy loss dE/dx is stated in the paper as well, and it
goes to 0 when the particle energy approaches the threshold energy from above. Since they do not state
a modified action, it is, first of all, not clear how they obtained dE/dx. A calculation of the energy loss
requires knowledge of the dynamics of the process that can be inferred from a theory only. As will be
explained later, the authors most probably considered the standard Feynman rules of a scalar quantum
electrodynamics and a phase space modified due to Lorentz violation.

The first articles on vacuum Cherenkov radiation in the realm of the SME were written by Lehnert
and Potting in 2004 [13,14]. They are based on a spacelike MCS electromagnetism coupled to standard
massive particles. MCS theory is characterized by a dimensionless preferred direction ζμ and a mass
scale mcs. This framework is birefringent, i.e., it provides two distinct modified propagation modes �
and ⊕ of electromagnetic waves. Independently of the observer frame chosen, ω� < |k| < ω⊕.
The properties of the dispersion laws are quite obscure in a purely timelike frame. For example, in such
a frame, the mode ⊕ has a cusp for a vanishing momentum and a gap exists where the energy of �
becomes complex.

To simplify the analysis, the authors study the vacuum Cherenkov process in the rest frame
of the massive particle, which is possible due to observer Lorentz invariance. In the rest frame,
the four-current jμ is stationary. The solution to the four-potential can be written as an integral over
momentum space involving a product of the Green’s function of MCS theory and the Fourier transform
j̃μ of the four-current:

Aμ(�r) =
∫

Cω

d3k
(2π)3

Nμν(�k) j̃ν(k) exp(ik ·�r)
D(0, k)

, (1)
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where Cω is an appropriate contour in the complex |k| plane and Nμν is a tensor structure characteristic
for MCS theory. The Green’s function involves the inverse of the MCS dispersion equation D(k0, k) for
k0 = 0. The contour integral in the complex plane picks up contributions from the poles inside the
contour only. If these poles are purely imaginary, the integrand will be exponentially damped for large
distances from the trajectory. This means that the far-field vanishes whereupon there is no radiation far
away from the source, which is the situation in standard electrodynamics. Hence, vacuum Cherenkov
radiation occurs once there are real solutions of D(0, k) = 0 (corresponding to spacelike dispersion
relations) such that the exponential function is oscillatory. From the brief discussion of the modes of
MCS theory above, we already know that such solutions exist indeed. They are given by the modes �.
The condition of real, spacelike solutions of the dispersion equation is equivalent to the existence of a
refractive index n > 1 of the vacuum. A boost to an arbitrary observer frame provides the condition
on the Cherenkov angle: cos θc = 1/(n|β|), where β is the three-velocity of the particle.

Furthermore, Lehnert and Potting found that the emitted radiation can be right-handed or
left-handed polarized, dependent on the emission direction with respect to β and the spacelike
preferred direction ζ. Using the energy-momentum tensor, it can be shown that there is no net radiated
energy in the rest frame of a localized source. Furthermore, the radiated three-momentum vanishes
due to the symmetry of the integrand as long as the integrand itself is regular. For real solutions of
D(0, k) = 0, the integrand is singular, in fact, and there are nonvanishing contributions to the radiated
three-momentum. The latter has a backreaction on the radiating particle. Due to such recoil effects,
the particle will no longer move on a geodesic, i.e., the weak equivalence principle is violated under
this condition.

Further results on vacuum Cherenkov radiation at the classical level were obtained by Altschul in
a series of papers. Studies on the nonbirefringent part of the CPT-even modification of Maxwell theory
were carried out in [16]. These nine nonbirefringent coefficients are characterized by a symmetric,
traceless matrix κ̃μν. Altschul finds that there exists a coordinate transformation between the cμν

coefficients in the fermion sector and the κ̃μν coefficients in the photon sector. Hence, investigating
vacuum Cherenkov radiation in both sectors should produce equivalent results at first order in
Lorentz violation. The possible problem of a missing frequency cutoff is identified in the computation
of the total radiated energy. Therefore, integrating the radiated-energy spectrum P(ω) over the
photon frequency ω may produce infinite results, as the modified theory allows for arbitrarily high ω.
A hypothetical cutoff is introduced via the argument that there are possible causality problems of the
theory in the vicinity of the threshold. However, we will see below that such a cutoff is obsolete when
taking into account recoil effects. In the subsequent paper [17], Altschul studies additional properties
of vacuum Cherenkov radiation for both MCS theory and modified Maxwell theory. He points out that
MCS theory allows for a single subluminal mode only, whereas two such modes can arise in modified
Maxwell theory dependent on the propagation direction. A consequence is that there is always a single
Cherenkov cone only for MCS theory, whereas in modified Maxwell theory there may be two distinct
cones for certain directions.

Timelike MCS theory is plagued by several problems. The energy density for the timelike sector
is known to be unbounded from below. Thus, there exist runaway modes whose amplitudes increase
exponentially as a function of the distance from the source. The possible origin of these issues is
the gap of complex energies for the mode � indicated above. This gap exists for small momenta
and long wavelengths, respectively, which is the motivation to study the power emitted by these
long-wavelength modes in [22]. The power of the short-wavelength modes is found by a phase space
estimate to be proportional to v3 at least (with the velocity v of the radiating particle). As radiation of
long wavelengths is likely to be emitted in the nonrelativistic regime and as these contributions cannot
be estimated from the phasespace, they must be of O(v2). The timelike MCS theory leads to a modified
Ampère law where the additional term Jeff = 2ζ0B is interpreted as a current. Altschul obtains
the perturbative solution of the modified Ampère law at leading order in ζ0 and v in a clever way.
Based on this solution, the outgoing Poynting vector flux S · êr at O(v2) is shown to be an odd function
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of cos θ where θ is the polar angle. Hence, the total integral of S · êr over a closed surface vanishes
demonstrating that the runaway modes do not contribute to vacuum Cherenkov radiation.

The latter result is generalized in [23] for the situation of a steady motion of the charge, i.e.,
recoil effects are neglected. The authors expand the electric and magnetic field W in terms of ζ0

and the particle velocity v. They argue that each term of this expansion is either of toroidal nature,
W = Wr(r, θ)êr + Wθ(r, θ)êθ , or of azimuthal form, W = Wφ(r, θ)êφ. The central finding is that the
functions Wr, Wθ , Wφ for the electric field E, the magnetic field B, and the vector potential A are either
even or odd with respect to cos θ. As a result of that, each combination that contributes to the outgoing
Poynting flux S · êr provides an odd function in cos θ. Therefore, any integral of S · êr over a sphere
vanishes and there is no net outflow of energy at all!

A possible interpretation of the latter result is that the negative energy carried away from
the long-wavelength modes compensates the contributions of positive energy associated with the
short-wavelength modes. Interestingly, a paper appeared very recently demonstrating this proposed
cancelation explicitly [30]. The authors work in the same framework as that developed in [23].
They calculate the Fourier transform of the magnetic field at first order in ζ0 and v. Based on this finding,
all magnetic field terms of odd orders in ζ0 can be obtained iteratively. Summing these contributions
corresponds to a geometric series whose limit is an expression that is quadratic in the photon
momentum and involves a singularity for the photon momentum equal to 2|ζ0|. When the momentum
approaches the singularity from above, there is a sign change of the whole expression demonstrating the
cancelation between contributions of large momentum with those of low momentum. The singularity
itself is not problematic, as its principal value can be considered formally.

3.2. Quantum Effects

The presumably first studies of the vacuum Cherenkov process in the context of quantum field
theory were carried out in [15,18]. The first paper is based on a MCS theory coupled to standard
Dirac fermions. Due to the issues of timelike MCS theory, an observer frame with a purely spacelike
preferred direction ζ is considered. The matrix element squared of the process at tree-level is obtained
based on a set of modified Feynman rules. The decay rate follows from integrating the latter result
over the modified phase space. As long as the fermion under consideration has a nonvanishing
momentum component q‖ parallel to ζ, the decay rate is found to be nonzero. For |q‖| � mψ,
the decay rate depends on q‖ in a polynomial manner, whereas for |q‖| � mψ it involves a logarithmic
term. Such logarithmic dependencies are nonperturbative in Lorentz violation and they seem to be
characteristic for the ultra-high energy regime of a birefringent theory. An additional example for a
behavior of this kind will be encountered below. Furthermore, the authors find that the emitted photon
is circularly polarized for large photon momenta and linearly polarized for vanishing photon momenta.

In their second paper [18], Klinkhamer and Kaufhold extend their analysis of [15]. Apart from
MCS theory coupled to standard Dirac fermions, they also consider a modified scalar quantum
electrodynamics, i.e., they couple MCS theory to the Lagrange density of a massive, spinless field.
Including the second framework into their investigation permits them to calculate the decay rates Γ
and radiated-energy rates dW/dt for spin-1/2 fermions and spinless bosons, respectively. For fermion
momenta |q‖| � mψ, spin effects are found to be highly suppressed. However, at least for large
fermion momenta, they play a certain role:

dWscalar
dt

∣∣∣∣|q‖|�mψ

=
α

4
mcs|q‖|+ . . . ,

dWspinor

dt

∣∣∣∣|q‖|�mψ

=
α

3
mcs|q‖|+ . . . , (2)

where α is the fine-structure constant.



Symmetry 2018, 10, 424

It is interesting that these leading-order results can be obtained from a semiclassical description
based on the following nontrivial refractive index of the vacuum:

n(ω) = 1 +
mcs| cos θ|

2ω
+ . . . , (3)

with the photon energy ω and the angle θ between the photon momentum and ζ. Now, the photon
spectrum for ordinary Cherenkov radiation in macroscopic media, which is provided by the
Frank–Tamm formula, is reinterpreted in the context of a vacuum with the refractive index given by
Equation (3). Taking the photon momentum into account, which is a quantum effect, introduces a
finite maximum energy of the emitted photon. Hence, the Frank–Tamm spectrum can be integrated
over the photon frequency resulting in the first radiated-energy rate of Equation (2). This finding
makes sense, as Frank and Tamm did not consider the spin of the radiating particle. The latter leads to
an extra contribution that adds up to the second rate of Equation (2).

A further step towards a better understanding of vacuum Cherenkov radiation in the quantum
regime is achieved via [19]. In the latter reference, isotropic modified Maxwell theory based on the
single coefficient κ̃tr is coupled to standard Dirac fermions. The process is found to have a threshold
Eth ≈ mψ/

√
2κ̃tr. Furthermore, the decay rate and radiated-energy rate are computed again using a set

of modified Feynman rules for photons and a modified phase space. For comparison, a semiclassical
analysis is performed in addition based on a modified refractive index n(ω) = 1 + κ̃tr + . . . of the
vacuum. Recoil effects lead to a finite radiated-energy rate that is found to be equal to the corresponding
result in [12] for large momenta. The deduction from this finding is that Coleman and Glashow also
did not take into account the particle spin. By doing so, the leading-order classical result is equal to the
leading-order rate of the quantum field theory analysis including Dirac fermions.

At around the same time, the paper [20] was published. The latter also deals with isotropic
modifications of both the photon and the fermion sector. In a quantum field theory analysis, the authors
derive both the threshold and the decay rate for the vacuum Cherenkov process at leading order in
Lorentz violation. These results are consistent with those of [19] at leading order. A constraint on
isotropic Lorentz violation in the photon and electron sector follows from the assumption that an
energy loss by vacuum Cherenkov radiation hides within the uncertainty of the synchrotron losses at
the Large Electron-Positron Collider (LEP).

A couple of years later, Díaz and Klinkhamer refined the study carried out in [24]. Here, the parton
model is used to understand effects related to a possible internal structure of the incoming fermion.
In this approach, a Cherenkov photon can be emitted from a single parton inside a fermion,
i.e., neutrons can radiate vacuum Cherenkov radiation, as well. The authors determine the emission
rate by an electrically charged parton carrying the fraction xp of the incoming fermion momentum p.
The maximum photon energy is found to be proportional to the fraction x. Hence, Cherenkov emission
is suppressed for small momentum fractions, which practically excludes this process for the sea quarks.
Another interesting property is that emissions of very hard photons may lead to momentum transfers
large enough to destroy the initial hadron and to produce new ones in the final state. Finally, the total
power radiated by a composite proton and neutron, respectively, is determined based on very recent
data on parton distribution functions. The rates for both an initial proton and neutron are suppressed
by around one order of magnitude in comparison to the rate in [19] for a structureless Dirac fermion.
This result does not change the constraint obtained in [19] though.

A quantum field theory analysis that complements the classical studies of [22,23,30] for vacuum
Cherenkov radiation in timelike MCS theory is carried out in [27]. Complex energies of the mode �
can be avoided by introducing a nonvanishing photon mass. Note that the current experimental
limit on a photon mass is mγ < 1 × 10−27 GeV [31], which is many orders of magnitudes larger than
the best constraint on the controlling coefficient under consideration, which is ζ0 � 10−43 GeV [32].
A nonzero photon mass also allows for a consistent quantization procedure whereupon the decay rate
for vacuum Cherenkov radiation can be calculated in quantum field theory. The process has a threshold
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and the decay rate for initial fermion momenta much larger than this threshold is characterized by
two different regimes. There is a range of momenta where it is suppressed quadratically by Lorentz
violation and increases quadratically with the fermion momentum. For very large momenta, it is only
linearly suppressed by Lorentz violation and grows linearly with momentum.

After the big amount of investigations of vacuum Cherenkov radiation with modified photons,
time was ready to study the vacuum Cherenkov process for Lorentz-violating fermions in [28].
The coordinate transformation moving Lorentz violation between the photon and fermion sector [16]
only covers the CPT-even, nonbirefringent c coefficients for fermions. Such a transformation is neither
known for the CPT-odd a, b, e, f , and g coefficients nor for the CPT-even, birefringent d, H coefficients,
which is why such an analysis is definitely reasonable. Note also that for the birefringent b, d, H,
and g coefficients, there are two fermion modes that will be denoted as ⊕X and �X where the index
X stands for a controlling coefficient. This property leads to interesting new effects that do not have
a counterpart in the photon sector. The base of the analysis performed in [28] are the modified
Feynman rules for external fermion legs developed in the technical work [33]. Due to calculational
complexities, decay rates and radiated-energy rates are obtained numerically for a broad range of
coefficients. The essential properties are that the processes for the c, d, e, f , and g coefficients have
thresholds. Furthermore, for large incoming fermion momenta, the decay rates for the c, d coefficients
are linearly suppressed in Lorentz violation, whereas the decay rates for e, f , and g are quadratically
suppressed. The processes ⊕d,g → ⊕d,g + γ are allowed for a certain sign of the controlling coefficients
and �d,g → �d,g + γ occur for the opposite sign. Analog decays for the a, b, and H coefficients are
found to be forbidden. However, the birefringent nature of the spin-nondegenerate coefficients opens
up the possibility of spin–flip processes ⊕b,d,H,g → �b,d,H,g + γ and the analog ones with ⊕ and �
interchanged. These decays have peculiar properties. First, they do not have a threshold and, second,
their decay rates are highly suppressed by several powers of the controlling coefficients in contrast to
the spin-conserving decays. Furthermore, the decay rates involve logarithmic terms for large momenta
similarly to the results for MCS theory obtained in [15].

3.3. Radiation of Particles Other Than Photons

A plethora of alternative Cherenkov-type processes is conceivable in Lorentz-violating theories.
The radiating particle does not necessarily have to be a massive fermion and the radiated particles
need not inevitably be photons. One of the first articles in this realm was published by Altschul [26].
Here, an effective theory for Lorentz-violating pions is considered coupled to standard photons. In this
framework, high-energy photons can lose energy by radiating pions where the process involves a
threshold. At leading order in Lorentz violation, the threshold has parallels with the analog expression
for nonbirefringent modified Maxwell theory in [16]. After all, both frameworks are quite similar
from a merely kinematic point of view. As the direct calculation of the decay rate is cumbersome,
an estimate of the rate is obtained from the prominent process Γ(π0 → 2γ).

A further interesting Cherenkov-type process is explored in [29]. The authors consider a
Lorentz-violating modification of the free W-boson sector. Such a term enables a Cherenkov-type
process in vacuo where a fermion of mass m1 < mW decays into a fermion of mass m2 < mW under the
emission of a W boson. An analysis in the rest frame of the incoming particle is feasible. It reveals that
the process is energetically possible for a quite large controlling coefficient in the rest frame showing
that this frame must be strongly boosted with respect to a concordant frame where Lorentz violation
is supposed to be small. Analogous to [24], the authors perform a sophisticated parton model study
based on the elementary process mentioned before. Hence, the decay rate of W-boson emission of
a single quark is convoluted with appropriate parton distribution functions. As the probability of
finding quarks with a large momentum fraction xp steeply decreases for x �→ 1, the decay rate of a
proton right at the threshold region is considerably suppressed in comparison to the decay rate of the
elementary process.
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After the detection of superluminal neutrinos had been announced by the OPERA collaboration
in 2011, Cohen and Glashow quickly published a paper studying Cherenkov-type radiation of
electron-positron pairs by neutrinos via virtual Z bosons [21]. Based on the value for Lorentz violation
in the neutrino sector announced by OPERA, they showed that neutrinos would quickly lose their
energy via this Cherenkov process making it impossible for them to arrive at the Gran Sasso laboratory
with the energy that was measured by OPERA. Few months later, OPERA announced that errors had
occurred in the course of the measurement process rendering their results incorrect.

4. Cherenkov-Type Radiation in Modified Gravity

In this review, special emphasis shall be put on Cherenkov-type processes in theories of modified
gravity. Before doing so, it is reasonable to recall certain properties of General Relativity that are crucial
in the context of Lorentz violation. We will refer to the Einstein equations without the cosmological
constant that are given by

Gμν = 8πGN(TM)μν , (4a)

Gμν = Rμν − R
2

gμν . (4b)

Here, Gμν is the Einstein tensor that decomposes into the Ricci tensor Rμν and the Ricci scalar R.
The spacetime metric is given by gμν and (TM)μν stands for the energy-momentum tensor of matter.
The coupling constant of gravity and matter corresponds to Newton’s constant GN .

4.1. Lorentz Violation in Gravity

General Relativity exhibits invariance under diffeomorphisms and under general coordinate
transformations where these concepts are equivalent. A diffeomorphism is a differentiable map
of a manifold onto itself whose inverse has the same properties. Diffeomorphism invariance can
also be understood as a gauge symmetry of the theory. It is possible to choose a gauge fixing
condition appropriately to remove four of the ten independent components of the spacetime metric.
Hence, only six metric components may possibly be physical. Since one set of Bianchi identities of
Riemannian geometry provides DμGμν = 0 with the covariant derivative Dμ, an alternative argument
is that the latter four identities eliminate four spacetime metric components. Thus, we see that
the Bianchi identities are closely connected to diffeomorphism invariance. Diffeomorphisms in
Minkowski spacetime simply correspond to translations. After all, translations map Minkowski
spacetime onto itself.

The global Lorentz invariance of Special Relativity is lost in General Relativity. However, there
still exists the concept of local Lorentz invariance. To understand what that means, it is useful to
formulate General Relativity with the vierbein approach. The vierbein (tetrad) allows for transforming
between the coordinate basis of the spacetime manifold and the basis of a local inertial (freely falling)
reference frame at each spacetime point. The great advantage of dealing with the vierbein formalism is
that it allows us to introduce Lorentz invariance as a local concept, i.e., a symmetry that is valid in a
local frame [34].

In the context of gravity, matter in curved spacetimes is described by minimally coupling
appropriate fields to the Einstein–Hilbert action. This means that the Minkowski metric has to
be replaced by a curved spacetime metric wherever it occurs. Furthermore, ordinary partial derivatives
are replaced by covariant derivatives on the manifold. Dependent on whether the metric or vierbein
formalism is used, the determinant of the metric and the vierbein, respectively, has to be taken into
account in the volume element of the action. Furthermore, the vierbein formalism is indispensable
when introducing Dirac fermions into the theory due to their additional spinor structure. As it is clear
how to deal with the spinor structure in a local inertial frame, the vierbein formalism extends the
concept of a spinor from such a local frame to the frame of spacetime coordinates.
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There are two types of local Lorentz transformations: observer and particle transformations.
With matter coupled to General Relativity, it is easier to clarify their implications. Observer Lorentz
transformations correspond to rotations and boosts of a local reference frame, whereas particle Lorentz
transformations deal with rotations and boosts of matter fields in such local frames. (Note that the
SME community avoids the terms passive and active transformations that are actually used in the
literature. One of the reasons is that an active transformation may be supposed to transform both
the background field and the matter fields leaving the coordinates unchanged. In contrast, a particle
transformation touches the matter field only, whereas the background field remains fixed.) The term
general coordinate transformations already suggests that this type of transformations only changes the
choice of coordinates of the base manifold. On the contrary, diffeomorphisms transform the matter
fields including the metric tensor, which in the context of General Relativity is considered as a field
as well. Therefore, general coordinate transformations as well as observer Lorentz transformations
merely change the description of the physics, but leave the physics itself untouched. On the other
hand, both diffeomorphisms and particle Lorentz transformations act on the physical fields though.
Diffeomorphisms and general coordinate transformations are equivalent in General Relativity and so
are particle and observer Lorentz transformations. However, when including Lorentz violation into
the theory, these concepts have to be distinguished from each other carefully, cf. Figures 3 and 4 for an
illustration on a curved manifold and its tangent plane, respectively.

The gravitational part of the SME is developed in [34] and its formulation is based on the vierbein
formalism. In the gravitational SME, the conceptual differences between diffeomorphisms and general
coordinate transformations as well as particle and observer Lorentz transformations become evident.
The SME introduces background fields that break local particle Lorentz invariance, i.e., there may
be one or several preferred directions in each freely falling reference frame. The background field
does not transform like a tensor anymore under particle Lorentz transformations, but it remains fixed.
However, there is still the freedom to choose coordinates within these frames as desired. A violation
of local particle Lorentz invariance leads to a violation of diffeomorphism invariance and vice versa.
The reason is that any coordinate-dependent vector field on a curved manifold has a homogeneous
counterpart in a local inertial reference frame at each point of the manifold and vice versa. As local
observer Lorentz invariance is still granted, so is invariance under general coordinate transformations.

In the gravitational SME, the minimal matter-sector SME contributions, which were originally
formulated in Minkowski spacetime, are minimally coupled to a curved spacetime. The vierbein must
be accompanied by an object known as the spin connection granting that the covariant derivative of
the vierbein vanishes. The spin connection and the affine connection (Christoffel symbols) are not
independent from each other. Apart from Lorentz violation in the matter sector, the gravitational
SME describes Lorentz violation in the pure-gravity sector. The dimension-4 contributions
incorporate a single Lorentz-invariant term multiplied by the curvature scalar, a symmetric matrix
of nine nonbirefringent coefficients contracted with the Ricci tensor, and 10 birefringent coefficients
contracted with the Weyl tensor, which is the totally traceless Riemann tensor [34].

In addition to the properties outlined above, there is a further highly subtle statement on
the origin of Lorentz violation in gravity. First of all, the Lorentz-violating background fields in
Minkowski spacetime are usually taken as independent from the spacetime coordinates, which implies
energy-momentum conservation. This choice is reasonable from a physical perspective, since a constant
background can be considered as the dominant contribution and a part dependent on the spacetime
coordinates is interpreted as a correction. In the context of a curved spacetime, however, it is not clear
what “constant” means. A first justified thought may be to require that the covariant derivative of
a background field vanish. However, there are only few manifolds that permit such a requirement
and those are not that interesting in the context of gravity. Anyhow, background fields in gravity
will have some dependence on the spacetime coordinates. Therefore, Lorentz violation in the matter
sector leads to modifications of the conservation law of the energy-momentum tensor where the
latter now includes nonvanishing spacetime derivatives of the controlling coefficients. However, the



Symmetry 2018, 10, 424

identity DμGμν = 0 is still valid even in the presence of Lorentz violation, as it simply follows from
the underlying Riemannian framework. Hence, there is a clash when including Lorentz violation
into a gravity theory by hand (explicit Lorentz violation) [34]. The way out of this no-go theorem
is to consider spontaneous Lorentz violation, i.e., Lorentz-violating background fields that have a
dynamical origin and satisfy field equations on their own. Therefore, the action of the gravitational
SME must also include terms that describe possible mechanisms providing a way of how to break
local Lorentz invariance spontaneously.

(a) (b) (c)

(d) (e) (f)

Figure 3. (a) two-sphere (S2) parameterized in terms of the polar angle ϑ and the azimuthal angle
ϕ. The coordinate lines of constant ϑ are circles parallel to the equator where the coordinate lines
of constant ϕ are great circles linking the north and south poles with each other; (b) illustration of a
general coordinate transformation for S2 that deformes the original coordinate lines; (c) illustration of
a diffeomorphism for S2. To distinguish it from a general coordinate transformation, the unchanged
coordinate lines are not shown. The graphics demonstrates how an original geodesic connecting the
north and the south pole gets deformed by the diffeomorphism; (d) S2 endowed with an additional
vector field that could correspond to a matter field in physics; (e) general coordinate transformation
applied to S2. The coordinate lines are deformed, but the vector field itself stays untouched. As
the coordinates change, however, the explicit representation of the vector field changes as well; (f)
diffeomorphism applied to S2 with an intrinsic vector field. In contrast to before, the coordinates
remain unchanged, but the vector field transforms in a nontrivial manner.

An explicit violation of Lorentz invariance in a theory of modified gravity is analogous to an
explicit violation of gauge invariance in a gauge theory. The latter is obviously considered as destructive
for the fate of a gauge theory because it leads to a breakdown of unitarity, the production of unphysical
modes, etc. In contrast to that, a spontaneous violation of gauge invariance is a tremendously useful
physical mechanism capable of explaining a multitude of effects both in particle physics and in
condensed-matter physics. For a spontaneously violated gauge symmetry, the underlying theory is
still perfectly gauge-invariant. It is just the ground state of the theory that randomly picks a certain
gauge configuration, cf. the vacuum expectation value of the Higgs field in the Higgs mechanism.
In the context of Lorentz violation, a background field emerges as vacuum expectation values of a
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tensor-valued fundamental field. Hence, the underlying fundamental theory is Lorentz invariant,
but the ground state picks certain preferred directions in spacetime. As the background field is
dynamic, picking a definite ground state is accompanied by fluctuations, i.e., both Nambu–Goldstone
modes and massive modes are created. The first correspond to small fluctuations of the preferred
directions around the direction chosen by the vacuum expectation values. The second are associated
with fluctuations of the magnitude of controlling coefficients.

(a) (b) (c)

(d) (e) (f)

Figure 4. (a) tangent plane of S2 with coordinate lines shown; (b) observer Lorentz transformation
rotating the coordinate lines; (c) diffeomorphism (translation) that simply maps the points of a geodesic
(straight line) to the points of a parallel geodesic. The unmodified coordinate lines are omitted for
clarity; (d) tangent plane endowed with a vector field; (e) observer Lorentz transformation that changes
the coordinate lines, but leaves the vector field untouched; (f) particle Lorentz transformation that
induces a nontrivial transformation of the vector field. The coordinate lines are not modified.

4.2. Gravitational Vacuum Cherenkov Radiation

After reviewing some of the crucial implications of Lorentz violation in gravity, we are now ready
to discuss the characteristics of the Cherenkov-type process in gravity that is investigated in [25].
In their paper, Kostelecký and Tasson consider the nonbirefringent coefficients of the pure-gravity
sector. In contrast to [34], all operators of even mass dimension d ≥ 4 are taken into account. Therefore,
this analysis is currently the only one including contributions from operators of higher mass dimension.
For the purpose of studying Cherenkov-type processes in gravity, it suffices to restrict their analysis to
linearized gravity, i.e., the metric perturbation hμν is neglected at second and higher orders in the field
equations [35,36]. The metric perturbation has 10 components out of which four are gauge degrees of
freedom, as discussed before. Another four components are auxiliary and two are physical ones that
propagate. The latter two correspond to the polarization modes of a gravitational wave.

Lorentz violation is restricted to first order as well. The corresponding coefficients are assumed
to be constant and small. In principle, they are put in by hand, which is why Lorentz invariance
breaking is explicit in this treatment. However, the coefficients considered are chosen such that gauge
symmetry (diffeomorphism invariance) is restored at linear order [35]. (In [36], the claim for gauge
invariance is relaxed and sets of coefficients are included that violate gauge invariance.) Therefore, the
number of polarization modes of a gravitational wave remains fixed and merely Lorentz-violating
perturbations of the standard polarizations are expected. Both the gauge and auxiliary components are
removed by appropriately adapted gauge fixing conditions. These are modifications of the standard
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Hilbert gauge and transverse traceless gauge conditions that are usually employed in the context of
linearized gravity.

The resulting Einstein equations have the form of a wave equation for the metric perturbation hμν.
The solutions of these equations are interpreted as gravitational waves perturbed by Lorentz violation.
A description of this kind introduces a nontrivial refractive index of the vacuum. In the current context,
the latter is a refractive index for gravitational waves instead of electromagnetic waves. At linear
order in Lorentz violation, the refractive index involves a sum over all possible Lorentz-violating
contributions of even mass dimension d ≥ 4 where the coefficients for d > 4 are contracted with
additional wave four-vectors. Therefore, the modified gravity theory exhibits anisotropy, but no
dispersion for d = 4, whereas, for d > 4, both anisotropy and dispersion play a role.

Within a semiclassical approach, a gravitational wave is quantized in the sense that it carries
a momentum in analogy to a photon resulting from the quantization of electromagnetic waves.
Quanta of the linearized gravitational field are introduced as well, and they are known as gravitons.
Within this semiclassical treatment of linearized gravity, Kostelecký and Tasson derive modified
perturbative Feynman rules for distinct particle sectors. They consider graviton emission from spinless
bosons, photons, and Dirac fermions. Each of these vertices is proportional to the square root of
Newton’s constant GN , i.e., the matrix element squared is directly proportional to GN and quadratically
suppressed by Lorentz violation, in addition.

The notion of conserved quantities along geodesics is a very subtle one in General Relativity.
It requires some knowledge of isometries of the underlying curved spacetime metric encoded in
the Killing vectors. However, local energy-momentum conservation directly follows from Einstein’s
equations combined with ∂μGμν = 0. Since interactions occur locally in the language of perturbation
theory and Feynman rules, energy-momentum conservation at each vertex is granted. Hence, kinematic
arguments such as those outlined in Section 2 also apply.

The radiated-energy rate follows from integrating the matrix element squared over an
appropriately modified phase space. Due to the nontrivial refractive index of the vacuum, particles may
travel faster than the phase velocity of gravity in vacuo, rendering graviton emission possible.
This process is of Cherenkov-type and can occur for all known particles, as they all interact with gravity.
Analogous to conventional vacuum Cherenkov radiation, a Cherenkov angle can be introduced as
the angle between the propagation direction of the radiating particle and the gravitons radiated.
The Cherenkov angle is defined only above a certain velocity of the incoming particle demonstrating
that gravitational Cherenkov radiation is a threshold process. Another interesting property is that
energy-momentum conservation introduces an upper cutoff for the energy of the emitted gravitons.
The latter corresponds approximately to the incoming particle momentum. Thus, the phase space
integral is rendered finite without any issues. Recall the analog behavior found for vacuum Cherenkov
radiation in Minkowski spacetime [15,18,19].

In the ultrarelativistic limit, integration over phase space for any of the three processes considered
simply delivers a factor Fw(d) that depends on the mass dimension of the Lorentz-violating operators.
Here, w = {φ, ψ, γ} for scalars, Dirac fermions, and photons, respectively. In general, the energy loss
per time has the form

dE
dt

= −Fw(d)GN(s(d))2|p|2d−4 , (5)

with the incoming particle momentum p and the Lorentz-violating operator s(d), which is a
direction-dependent combination of coefficients of mass dimension d. The factors Fw(d) have the
property that Fφ < Fψ < Fγ, where Fφ ∼ 16/d, Fψ ∼ 8, and Fγ ∼ 16d for d �→ ∞. Hence, a photon
loses more energy by gravitational Cherenkov radiation than a Dirac fermion and a Dirac fermion more
than a spinless particle. The reason for this behavior is to be found in the spin of the radiating particle.
A graviton is a spin-2 excitation, i.e., its spin projection Sξ with respect to some quantization axis ξ̂ can
take each value out of the set Sξ = {−2,−1, 0, 1, 2}. Hence, the emission of gravitons with Sξ = ±2 is
only possible for photons of polarizations λ+ = 1 and λ− = −1, respectively. A complete flip of the
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polarization λ± �→ λ∓ during the process can deliver Sξ = ±2 necessary to produce such gravitons.
For Dirac fermions, only gravitons with Sξ = {−1, 0, 1} can be emitted where for scalars Sξ = 0 is the
remaining possibility. Since there are less decay channels for Dirac fermions in comparison to photons,
energy loss of fermions is suppressed. A similar argument holds for scalars in comparison to fermions.

The main objective of [25] is to place stringent bounds on Lorentz violation in the pure-gravity
sector. From the behavior of Fw(d), we see that high-energy cosmic photons have the largest potential
of doing so. However, as cosmic fermions with much higher energy are observed, the analysis in [25]
is based on fermions. To simplify it, the authors consider operators of a particular mass dimension
at a time. To constrain isotropic Lorentz violation, a single cosmic-ray event is sufficient. However,
to carry out the same for a whole set of anisotropic coefficients, several such events coming from
different directions are needed. It is convenient to state these directions in terms of azimuthal and
polar angles on the celestial sphere. Hence, it also makes sense to expand the controlling coefficients in
spherical harmonics. A considerable compilation of high-energy cosmic-ray events is chosen. To obtain
conservative constraints, Kostelecký and Tasson base their analysis on iron nuclei where a graviton is
assumed to be emitted by one of the fermionic partons. In contrast to [24], they do not consider parton
distribution functions explicitly. Instead, the fermionic parton emitting gravitons is taken to have 10%
of the total incoming cosmic-ray energy. A set of bounds for a given d is obtained by a maximizing
procedure to fulfill the requirement that Lorentz violation can only be as large as to not obstruct cosmic
rays with a certain energy from arriving on Earth.

By doing so, it is possible to constrain Lorentz violation for d = 4, 6, and 8. The isotropic
constraints are one-sided, whereas the anisotropic ones are two-sided. The rough order of magnitude
of the constraints is 10−13 for d = 4, 10−29 GeV−2 for d = 6, and 10−45 GeV−4 for d = 8. These bounds
are impressive and are currently the best ones in the pure-gravity sector. As constraints on Lorentz
violation in the neutrino sector are the tightest ones, they can serve as a reference for comparisons.
Very recently, the ICECUBE collaboration published a paper including novel neutrino bounds obtained
from the observation of ultra-high energy neutrinos [37]. The constraints for the dimension-6 neutrino
coefficients are better than those in the gravity sector by several orders of magnitude, whereas the
sensitivities for the dimension-8 coefficients can compete with each other. If ultrahigh-energy protons
can clearly be identified as primaries of cosmic-ray air showers, the gravity sector bounds have a
tremendous potential of improvement.

5. Conclusions

The intention of the current review was to provide a summary of the crucial concepts of vacuum
Cherenkov radiation developed over the past 20 years. At this point, it makes sense to take a look at
the set of constraints on SME coefficients obtained from the absence of vacuum Cherenkov radiation,
which are compiled in Table 1. Most of the bounds are on dimensionless coefficients except for
the constraints in the W boson and the graviton sector partially. A subset of the bounds in the
graviton sector are the only ones on nonminimal coefficients showing that most studies on vacuum
Cherenkov radiation so far have been restricted to the minimal SME. The birefringent coefficients
of both MCS theory and modified Maxwell theory have never been constrained via the absence of
vacuum Cherenkov radiation. The reason is that this type of coefficients can be much more tightly
bounded by the absence of vacuum birefringence.

The isotropic c coefficients and the isotropic κ̃tr are linked by the coordinate transformation
between the photon and the matter sector found in [16]. Furthermore, the f coefficients squared
correspond to c coefficients [38]. Hence, bounds are usually placed on combinations of these coefficients.
The related ones in the proton sector are quite stringent, whereas the bound in the electron sector
is weaker. As free electrons are not expected as a component of high-energy cosmic rays, the latter
constraint is based on the maximum energy reached at LEP [20]. The constraints for the e and g
coefficients are also weaker, since the related threshold energies depend inversely on these coefficients
instead of via an inverse square root of the coefficient [28].
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As the bound on Lorentz violation in the minimal gravity sector is dimensionless, it can
be compared to the remaining dimensionless constraints. Although the results obtained in the
pure-gravity sector are currently the best ones, they are weaker than the best dimensionless constraints
in the photon and fermion sector. The reason is that gravity involves the dimensionful coupling
constant GN in comparison to the other three fundamental interactions. Hence, the energy loss of
Equation (5) is directly proportional to GN and needs two additional powers of the incoming fermion
momentum to cancel the inverse mass dimensions of GN . The additional powers of the momentum
are not enough to compensate for the smallness of GN . Furthermore, Equation (5) is not just linear in
Lorentz violation, but depends quadratically on it.

The future perspective in this interesting subfield is to continue studying Cherenkov-type
processes in vacuo based on Lorentz violation of the nonminimal SME. With the detection of cosmic-ray
events of higher energy and an improved identification of primaries in air showers, there is a great
potential of even better tests of the very foundations of both the Standard Model and General Relativity.

Table 1. Compilation of constraints on SME coefficients obtained from the absence of Cherenkov-type
radiation in the vacuum. Most of the constraints can be found in the data tables [32]. As the number
of constraints in the gravity sector is extensive, approximate constraints on groups of coefficients are
given where 0 < j ≤ d − 2 (with the mass dimension d) and 0 ≤ m ≤ j.

Sector Constraint Reference

Proton −5 × 10−23 < c̊UR(4) [12]

Proton, Photon κ̃tr − (4/3)c(4)p00 < 6 × 10−20 [19]

Electron, Photon κ̃tr − (4/3)c(4)e00 < 1.2 × 10−11 [20]

Gravity s(4)00 > −3 × 10−14 [25]

Gravity |s(4)jm | � 10−13 [25]

Gravity s(6)00 < 2 × 10−31 GeV−2 [25]

Gravity |s(6)jm | � 10−29 GeV−2 [25]

Gravity s(8)00 > −7 × 10−49 GeV−4 [25]

Gravity |s(8)jm | � 10−45 GeV−4 [25]

Pion δπ > −7 × 10−13 [26]

Quark, Photon −3 × 10−23 ≤ c(4)u00 − (3/4)κ̃tr − (3/8)( f (4)u0 )2 [28]

Quark |d(4)u00 | < 3 × 10−23 [28]

Quark |e(4)u0 | < 9 × 10−12 [28]

Quark |g̊(4)u1 | < 9 × 10−12 [28]
W boson |(k1)

μ| < 1.7 × 10−8 GeV [29]
W boson |(k2)

μ| < 1.1 × 10−7 GeV [29]
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Abstract: A black hole in a Schwarzschild spacetime is considered. A transformation is proposed
that describes the relationship between the coordinate systems exterior and interior to an event
horizon. The application of this transformation permits considerations of the (a)symmetry of a range
of phenomena taking place on both sides of the event horizon. The paper investigates two distinct
problems of a uniformly accelerated particle. In one of these, although the equations of motion are
the same in the regions on both sides, the solutions turn out to be very different. This manifests the
differences of the properties of these two ranges.

Keywords: black hole; event horizon; asymmetry

1. Introduction

Outside the horizon of a black hole the Killing vector is time-like and it becomes space-like
inside the horizon—this means that energy conservation is broken (see e.g., [1]). Such a conversion
of the Killing vector results in a lot of interesting phenomena, with the Hawking radiation and the
information paradox being the most prominent among them [2,3]. The status of these two outcomes
arising from the presence of the event horizon is, in a sense, similar: both appeared mainly due to
the work of Hawking and both of them are still debated [4]. More recent studies have considered
a range of interesting questions. One of the latest was the supposition that black holes (BH) do indeed
have hair [5]; another interesting outcome was the claim that the volume of a BH may be infinite [6].
In view of the argument that there is not enough space inside a black hole to store arbitrarily large
amounts of information, this discovery turns out to be a contribution that is strictly associated with
the problem of information stored and lost within an event horizon [7]. Following a proposal by
Unruh [8] of development of gravity analogues, condensed, soft matter or photonic black hole-like
systems that develop an event horizon have been experimentally realized [9]. A recent experiment has
led to a Kerr-like BH, including an ergosphere, not just an event horizon, opening up the possibility of
experimental observations of the Penrose effect [10].

The interior of a black hole itself has been the subject of fewer but more diverse considerations.
Hamilton et al. [11] presented a discussion on the question of (spectroscopic) vision inside the horizon
of a Schwarzschild BH. In another approach Hamilton and Leslie [12] considered the exterior and
interior of a BH within a so-called river model that was based on the use of a Painleve-Gullstrand
co-moving frame. It is well-known that the static spacetime outside a BH’s horizon turns out to be
dynamic inside the outer horizon in the situation when two horizons are formed. Such a dynamic
interior of a BH may be viewed as a cosmological model [13].

The aim of this paper is to study the properties of the interior of a Schwarzschild BH, i.e., which is
isotropic and static outside the horizon. The investigations are presented from a special perspective.
One finds a formal, specific symmetry between the exterior and interior ranges, even though the
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properties of these two regions are found to be completely different. We illustrate the differences using
two problems that are related to the behavior of a test particle uniformly accelerated outside and inside
the horizon. In the first example, the particle moves radially outside the horizon; inside the horizon,
corresponding motion takes place along a homogeneity axis (see below). It is found then that although
the equations of motion are the same in both regions the solutions differ significantly. In the other
example, a test particle follows a circular trajectory belonging to the photon sphere [14] and inside the
horizon the test particle moves along a photon sphere analogue.

The paper is organized as follows. In Section 2, we present a transformation between coordinate
systems outside and inside the horizon of the Schwarzschild black hole. Section 3 is devoted to
a thorough investigation of the problem of uniformly accelerated motion along a straight line: radially
outside the horizon, and along the homogeneity direction inside the horizon. In Section 4, we consider
the case of uniform acceleration for motion along a circle on a photon sphere outside horizon and its
analogue inside the horizon. A discussion and final remarks are provided in the last section.

2. Systems of Co-Ordinates in Space-Time with a Horizon

Arbitrary co-ordinate system constitute a diffeomorphism Φ from an open set U of the space-time
M into an open set U′ of the real Euclidean flat space Rn, where n is the dimension of M:

Φ : U ⊂ M → U′ ⊂ Rn

Φ(p) = (x1, . . . xn) where p ∈ U. (1)

We will consider a spherically symmetric spacetime with a black hole defined by a horizon. The
horizon H, which is a global property of such a spacetime, divides M into an exterior M+ and an
interior M−:

M = M− ∪ H ∪ M+. (2)

On M+ (which is static) one can introduce a coordinate system which in spherical coordinates
(r, θ, ϕ) on R3 takes the form:

Φ+ : M+ → R4

Φ+(p) = (t, r, θ, ϕ) = (xμ), (3)

where r > rg and rg is a (gravitational) radius of the horizon H. The metric ds2
+ on M+ in this

framework has the form

ds2
+ =

(
1 − rg

r

)
dt2 −

(
1 − rg

r

)−1
dr2 − r2dΩ2. (4)

This is the well-known Schwarzschild space-time with rg = 2M, and dΩ2 = dθ2 + sin2θ dϕ2 is
a unit metric on S2.

On M− one can introduce the following coordinate system:

Φ− : M− → R4

Φ−(p) = (T, R, θ, ϕ) = (Xα), (5)

where 0 < T < rg. The metric ds2− on M− in this coordinate system has the following form (see [11])

ds2− =
dT2

−1 + rg
T

−
( rg

T
− 1

)
dR2 − T2dΩ2. (6)
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Hence, on M, there are two coordinate systems with two metrics ds2
+ = gαβ(x)dxαdxβ and

ds2− = hαβ(X)dXαdXβ. The transformation T between these two systems of coordinates has the form:

T : M+ → M−, (7)

where T is given by the matrix:

T =

⎛⎜⎜⎜⎝
0 1
1 0

0 0
0 0

0 0
0 0

1 0
0 1

⎞⎟⎟⎟⎠ = T
−1. (8)

It acts as follows:
Tx = X,

T = r, R = t, θ = θ, ϕ = ϕ, (9)

and
h(X) = Tg(Tx)T, (10)

where h(X) =
(
hαβ(X)

)
and g(Tx) =

(
gαβ(Tx)

)
.

There are two Killing vectors manifesting symmetry properties in the exterior M+ and interior
M− of the horizon. In M+, there is a time-like one, ∂t representing energy conservation due to the
static character of the spacetime and a space-like one, ∂ϕ reflecting angular momentum conservation.
In M−, there is a space-like one, ∂R reflecting R-momentum conservation due to homogeneity along
the R-axis and another space-like one, ∂ϕ representing angular momentum conservation.

The exterior of the Schwarzschild black hole, M+ is a static spacetime and its interior, M− is
a dynamic spacetime. One can introduce a class of static observers in the former and a class of resting
observers in the latter case. The velocity vector of such observers has only a temporal non-vanishing
coordinate U = α∂0. It appears natural to label them as:

(a) t-observers

Ut =
1√
gtt

∂t (11)

outside the horizon and
(b) T-observers

UT = − 1√
hTT

∂T (12)

inside the horizon.

3. Uniformly Accelerated Motion along Straight Line

In this section we will consider the problem of a uniformly accelerated test particle in the exterior
and interior of the horizon. The motion of such a test particle will be confined to the x0, x1 and X0, X1

hyperplanes, respectively. So, one can discuss the case of a 1 + 1 dimensional spacetime

ds2 = f (dξ0)
2 − f−1(dξ1)

2
(13)

such that

(a) Outside the horizon, ξα ≡ xα and f = gtt is a function of spatial coordinate ξ1

(b) Inside the horizon, ξα ≡ Xα and f = hTT is a function of temporal coordinate ξ0.
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The components of the velocity vector u

u = uα∂α (14)

of the test particle, uα will depend on ξ1 in the case (a) and on ξ0 in case (b).
An acceleration vector field a for u is:

a = ∇uu (15)

and one obtains the following equations for its components:

(a) outside the horizon

at = −grrur d
dr

(gttut) (16)

ar = gttut d
dr

(gttut) (17)

and
(b) inside the horizon

aT = hRRuR d
dT

(hRRuR) (18)

aR = −hTTuT d
dT

(hRRuR) (19)

Hence, one finds that these two pairs of equations are transformed into each other under the
interchange of the temporal and spatial coordinates, t ↔ R and r ↔ T as emphasized in the former
section (see Equation (9)). Uniform acceleration is defined by the condition:

a2 = f (a0 )
2 − f−1(a1)

2
= −α2 (20)

where α = const. The equations for the world line of the test particle are then derived, as follows.

(a) Outside the horizon
d
dr

(gttut) = ±α. (21)

Thus, the world line γ = {t(τ), r(τ)} of the uniformly accelerated particle is given in the case of
a static metric by the integral curve of the vector field:

ut =
dt
dτ

=
1

gtt

(
E ± α

∫
dr
)

(22)

ur =
dr
dτ

= ±
√(

E ± α
∫

dr
)2

− gtt (23)

where E is an integration constant.

(b) Inside the horizon
d

dT
(hRRuR) = ±α. (24)

In this case of a dynamic spacetime the world line of the test particle is given, as follows:

uR = ± 1
hRR

(
E′ ± α

∫
dT

)
(25)
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uT =

√
(E′ ± α

∫
dT)

2
− hRR. (26)

Applying the fact that inside the horizon

gtt = 1 − rg

r
= hRR(r) (27)

one finds that the world line equations for the outer and inner horizon regions, Equations (22) and (23)
and Equations (25) and (26) take the same form:

.
t =

E + αr
1 − rg

r

(28)

.
r =

√
(E + αr)2 −

(
1 − rg

r

)
. (29)

Here, we will examine the following point: how does the speed of a uniformly accelerated test
particle change with respect to the static observers? In general a relative velocity four-vector w of u′,
as measured by another observer characterized by velocity u at the same event p = (xα) is given by
(see [15])

w =
u′

(u, u′) − u, (30)

where (u, u′) is the scalar product of the two velocity four-vectors, u and u′, u2 = u′2 = 1. Velocity w
is orthogonal to u, (w, u) = 0, i.e., w is a space-like vector,

w2 =
1

(u, u′)2 − 1 < 0. (31)

Then, the squared speed v2 is given as:

v2 = −w2 > 0. (32)

3.1. Black Hole Exterior

In the exterior of the Schwarzschild black hole the spacetime is static and static observers denoted
as t-o are characterized by their velocity vector Ut (see Equation (11)). Such an observer measures the
speed v of a nearby passing uniformly accelerated (ua) test particle,

uua =
.
t∂t +

.
r∂r. (33)

Hence, for u = Ut, and u′ = uua, one applies the procedure described above to find:

w2 = −
.
r2

(gtt
.
t)

2 . (34)

Using Equations (28) and (29), we obtain

v2 =
(E + αr)2 − gtt

(E + αr)2 . (35)

This case of a uniformly accelerated test particle initially at rest, r = 2rg is illustrated in Figure 1.
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Figure 1. Squared speed v2 (Equation (35)) of a uniformly accelerated test particle initially at rest at
r0 = 2rg ≡ 4 (in this case rg ≡ 2) escaping radially from the gravitational field for different values of α
= 0.1 (red), α = 0.5 (green), α = 1 (black).

3.2. Black Hole Interior

Inside the horizon, hTT =
(

rg
T − 1

)−1
. A class of resting (or co-moving, see below) observers is

determined by (12)

UT = −
√

rg

T
− 1∂T . (36)

Using Equations (26), (32), and (36), one obtains the squared speed ṽ2 of the uniformly accelerated
test particle inside the horizon:

ṽ2 =
(E′ + αT)2

(E′ + αT)2 − (1 − rg
T )

. (37)

Using the relation T = r inside the horizon, one can express the squared speed ṽ2 as a function
of a temporal coordinate, r. In Figure 2, the squared speed of the uniformly accelerated test particle
initially at rest is illustrated by applying expression (37). The speed initially increases, reaches some
(non-universal) maximal value and finally decreases to zero at the ultimate singularity, r → 0 .

 

Figure 2. Squared speed ṽ2 (Equation (37)) of a test particle initially, T0 = 0.9 rg at rest (in this case
rg ≡ 10) uniformly accelerated along homogeneity axis R(=t) for different values of α = 0.05 (blue),
α = 0.1 (red), α = 0.2 (green), α = 1 (black).
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4. Uniform Acceleration on a Photon Sphere and on Its Analogue inside the Horizon

A photon sphere outside the horizon, r > rg, has a radius, rpsh = 3
2 rg. It consists of null geodesic

circles, k = kt∂t + kϕ∂ϕ, k2 = 0 (r = rpsh). Its analogue inside the horizon, r < rg, consists of planar
null geodesics having two non-vanishing components, k = kr∂r + kϕ∂ϕ. However, in this case, the
radius, r of such a “sphere” diminishes from rg to 0. We shall consider the problem of a uniformly
accelerated test particle on a circle belonging to the photon sphere and on a “circle” belonging to the
photon sphere analogue.

4.1. Black Hole Exterior

In a case of a test particle moving outside the horizon along a circle of radius r0 ≥ rpsh the velocity
vector is two-component

u = ut∂t + uϕ∂ϕ, (38)

where without loss of generality, we have considered a circle in an equatorial plane, θ = π/2.
An acceleration vector field a = ∇uu in the case of motion with constant speed is found to be
a = ar∂r (see [14]).

ar = −1
2

[
(ut)

2 dgtt

dr
+ (uϕ)2 dgϕϕ

dr

]
. (39)

Applying a normalization condition, u2 = 1, one finds that the acceleration of a photon sphere,
r0 = rpsh = 3

2 rg, turns out to be speed independent [14]

ar = −1
2

1
gtt

dgtt

dr
=

2
3rg

. (40)

Hence, in this case, one can consider a generalization of the twin-paradox and other features, such
as specific non-geodesic motion [16].

4.2. Black Hole Interior

Motion along a photon sphere analogue in this case, r < rg is as follows.
The two-component velocity vector of a test particle takes the form:

u = ur∂r + uϕ∂ϕ, (41)

and its components will be r-dependent. An acceleration vector field a = ∇uu is found to
be two-component,

a = ar∂r + aϕ∂ϕ, (42)

and its components are:

ar = − uϕ

grr

d
dr

(gϕϕuϕ), (43)

aϕ =
ur

gϕϕ

d
dr

(gϕϕuϕ). (44)

Uniform acceleration is defined by the condition (see Equation (13))

a2 = grr(ar)2 + gϕϕ(aϕ)2 = −β2 = const. (45)

The equations for the world line of the test particle are then derived as follows. Applying
Equations (43)–(45), one finds,

d
dr

(gϕϕuϕ) = ±β
√−grrgϕϕ. (46)
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Thus, the world line γ = {r(τ), ϕ(τ)} of the test particle uniformly accelerated on a sphere of
ever diminishing radius, is given by an integral curve of the vector field u:

ur =
dr
dτ

= ± 1√
grr

(
1 − 1

gϕϕ
(C ± β

∫ √−grrgϕϕdr)
2)

, (47)

uϕ =
dϕ

dτ
=

1
gϕϕ

(C ± β
∫ √−grrgϕϕdr), (48)

where C is an integration constant. Here, we are interested in the following question (see above): how
does the speed of a uniformly accelerated test particle change with respect to the static (resting)
observers? Similarly, as in the former section, the speed is measured by (resting) T-observers,
Equation (36). In this case, one finds:

ṽ2 = 1 − 1

grr(ur)2 =
(C ± β

∫ √−grrgϕϕdr)2

(C ± β
∫ √−grrgϕϕdr)2 − gϕϕ

. (49)

The meaning of the result (49) is: the speed of the uniformly accelerated test particle,
of total acceleration β tends to the speed of light as the ultimate singularity, r → 0 approaches,
as gϕϕ = −r2 → 0 .

5. Discussion and Final Remarks

In order to investigate the properties of the interior of a Schwarzschild black hole one can apply
a specific symmetry to the coordinate systems of its exterior and interior. The meaning of such
a symmetry is that the radial and temporal coordinates interchange their roles. This symmetry may
be regarded as a justification of the fact that one can apply a Schwarzschild system of coordinates,
(t, r, θ, ϕ) both outside as well as inside the horizon. It is an almost trivial notion, but it is important
to remember the existence of a singularity in this system, which is the horizon itself.

In the case of radial motion outside the horizon and motion along the direction of homogeneity
inside the horizon, one finds that the equations of motion on both sides of the horizon obey the
symmetry: they are transformed into each other under transformation T (7–10). This is because the
motion takes place in the hyper-planes t − r and T − R that are transformed into each other under T.
However, the properties of the solutions are very different. Outside the horizon, a radially accelerated
particle departs with ever increasing speed (if the acceleration is larger than some critical value).
The speed of a test particle uniformly accelerated along the homogeneity axis inside the horizon,
whose equation of motion is the same as the one outside the horizon, initially increases but then
decreases to zero when approaching the ultimate singularity. This means that transformation T does
not lead to particular physical consequences (at least in this case).

In the case of circular motion on a photon sphere and “circular” motion on a photon sphere
analogue, outside and inside the horizon, respectively, the equations of motion are (rather obviously)
different. Apart from the fact of the existence of a photon sphere and its analogue inside the horizon,
there are no features that are in common for accelerated motion of a test particle in such orbits.
The radial acceleration during circular motion of the test particle on the photon sphere is independent
of its speed (which is a well-known result); the speed of a test particle following accelerated motion
along a circle belonging to the photon sphere analogue (of ever decreasing radius) increases to the
speed of light when approaching the ultimate singularity.

Having in mind an (intimate) symmetry T between the exterior and interior of the Schwarzschild
black hole, leading in the simplest case to the same equation of motion, one may wonder how it arises
that the properties of the solutions are so different. The answer is: it is because r and t, spatial (radial)
and temporal coordinates, respectively, outside the horizon interchange their roles, becoming temporal
and spatial (in the direction of homogeneity) coordinates inside the horizon. Such an exchange of
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roles has a deeper consequence: outside the horizon, spacetime is spherically symmetric and static and
inside the horizon it is no longer static, it is dynamically changing (i.e., an “anisotropic cosmology”,
see [13]), but homogeneous along one of its spatial directions.

It should be noted that our discussion has been presented within a specific system of coordinates,
namely Schwarzschild coordinates outside the horizon, revealing a singularity, namely the horizon
itself. One may ask then: what is the significance of these results? The answer is as follows.

When considering the case of uniformly accelerated motion along a straight line (Section 3),
one finds acceleration vectors outside, Equations (16) and (17) and inside, Equations (18) and (19) the
horizon. These quantities (being vectors) may be transformed in a covariant way to another (arbitrary)
coordinate system, e.g., a Kruskal-Szekeres coordinate system (see e.g., [1]), one free of singularities.
Transformation between Schwarzschild, t, r and Kruskal-Szekeres, u, v coordinates,

∂(u, v)
∂(t, r)

=

⎛⎝ 1
4M v 1

4M
1

1− 2M
r

u
1

4M u 1
4M

1
1− 2M

r
v

⎞⎠
enables us to confirm that symmetry of the equations of motion Equations (16)–(19) found in the
former system is also preserved in the latter one.

The condition of a uniform acceleration, (20) is in fact independent of coordinate system (as it
refers to a scalar product, i.e., a squared acceleration vector). The world line itself is characterized
by velocity vectors, outside, Equations (22) and (23) and inside, Equations (25) and (26) the
horizon; this characteristic, velocity vector, is also transformed in a covariant way to other systems
of coordinates.

A physical quantity illustrating the properties of the interior of a Schwarzschild black hole, such as
the (squared) speed of a uniformly accelerated test particle, as measured by a resting T-observer
inside the horizon is expressed in terms of a scalar product, Equations (30)–(32) and (37); hence, it is
independent of the coordinate system.

The case of a test particle following a circular orbit and its analogue inside the horizon may be
analyzed in a similar manner leading to a similar outcome. The conclusion that the squared speed
inside the horizon of an accelerated test particle tends to the value of the speed of light at the ultimate
singularity is obviously a coordinate independent result.

One should underline however that the choice of the specific system of coordinates allows for
one to (easily) solve Equation (21), leading to the explicit form Equations (28) and (29); solving the
equation of motion in another coordinate system may not be such an easy task.

Author Contributions: P.G.: The idea of (a)symmetry, uniform acceleration, calculations; A.A.: Conceptual
discussions, manuscript preparation and editing; F.F.: Numerical support, preparations of illustrations;
A.R.: Discussing and developing the concepts of uniformly accelerated test particles as viewed by resting
observers, calculations.

Funding: Department of Quantum Technologies, Wroclaw University of Science and Technology.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Hartle, J.B. Gravity; Addison Wesley: Boston, MA, USA, 2003; Chapter 12, p. 13.
2. Hawking, S.W. Black hole explosions? Nature 1974, 248, 30–31. [CrossRef]
3. Hawking, S.W. Breakdown of predictability in gravitational collapse. Phys. Rev. D 1976, 14, 2460–2473.

[CrossRef]
4. Almheiri, A.; Marolf, D.; Polchinski, J.; Sully, J. Black holes: Complementarity or firewalls? J. High Energy Phys.

2013, 62, 1–19. [CrossRef]
5. Hawking, S.W.; Perry, M.; Strominger, A. Soft Hair on Black Holes. Phys. Rev. Lett. 2016, 116. [CrossRef]

[PubMed]
6. Christodoulou, M.; Rovelli, C. How big is a black hole? Phys. Rev. D 2015, 91, 1–7. [CrossRef]



Symmetry 2018, 10, 366

7. Mathur, S. A model with no firewall. arXiv 2015, arXiv:1506.04342.
8. Unruh, W.G. Experimental Black-Hole Evaporation? Phys. Rev. Lett. 1981, 46, 1351–1353. [CrossRef]
9. Nguyen, H.S.; Gerace, D.; Carusotto, I.; Sanvitto, D.; Galopin, E.; Lemaître, A.; Sagnes, I.; Bloch, J.; Amo, A.

Acoustic Black Hole in a Stationary Hydrodynamic Flow of Microcavity Polaritons. Phys. Rev. Lett. 2015, 114.
[CrossRef] [PubMed]

10. Vocke, D.; Maitland, C.; Prain, A.; Biancalana, F.; Marino, F.; Faccio, D. Rotating black hole geometries in
a two-dimensional photon superfluid. Optica 2018, in press.

11. Hamilton, A.J.S.; Polhemus, G. Stereoscopic visualization in curved spacetime: Seeing deep inside a black
hole. New J. Phys. 2010, 12, 123027–123052. [CrossRef]

12. Hamilton, A.J.S.; Lisle, J.P. The river model of black holes. Am. J. Phys. 2008, 76, 519–532. [CrossRef]
13. Doran, R.; Lobo, F.S.N.; Crawford, P. Interior of a Schwarzschild black hole revisited. Found. Phys.

2008, 38, 160–187. [CrossRef]
14. Abramowicz, M.A.; Bajtlik, S.; Kluzniak, W. The twin paradox on the photon sphere. Phys. Rev. A 2007, 75.

[CrossRef]
15. Bolos, V.J. Intrinsic Definitions of “Relative Velocity” in General Relativity. Comm. Math. Phys.

2007, 273, 217–236. [CrossRef]
16. Abramowicz, M.A.; Bajtlik, S. Adding to the paradox: The accelerated twin is older. arXiv 2009,

arXiv:0905.2428v1 2009.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).



MDPI
St. Alban-Anlage 66

4052 Basel
Switzerland

Tel. +41 61 683 77 34
Fax +41 61 302 89 18

www.mdpi.com

Symmetry Editorial Office
E-mail: symmetry@mdpi.com

www.mdpi.com/journal/symmetry





MDPI  
St. Alban-Anlage 66 
4052 Basel 
Switzerland

Tel: +41 61 683 77 34 
Fax: +41 61 302 89 18

www.mdpi.com ISBN 978-3-03936-450-3 


	Blank Page



