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It is our pleasure to prologue the special issue on “Machine Learning in Insurance”,
which represents a compilation of ten high-quality articles discussing avant-garde developments
or introducing new theoretical or practical advances in this field.

Two articles deal with reserving in non-life insurance. In the first one, Bischofberger (2020)
provides an innovative approach to understanding operational time in this context: reverting the
time scale enables a very complex correlation structure to be modelled via one-dimensional models
only. Validation is performed appropriately based on state-of-the-art machine learning principles.
The second paper on reserving by Elpidorou et al. (2019) shows that prior knowledge can be
incorporated in the reserving process without violating standard mathematical statistics. The paper
does provide a likelihood principle to incorporate prior knowledge.

There are two articles on telematics in insurance by Qazvini (2019) and Pesantez-Narvaez et al.
(2019), where the authors present complicated mathematical statistical methodologies. Within the
spirit of machine learning, both use model selection and validation to choose the best-predicting model
out of a complex array of possibilities. The paper by Bermúdez et al. (2020) also considers claim count
models based on new actuarial techniques.

The remaining papers in this collection pertain also to finance. Assa et al. (2019) study deposit
insurance pricing, whereas Bärtl and Krummaker (2020) the accurate prediction of export credit
insurance claims. With a focus on deriving solvency capital requirements, Krah et al. (2020) analyze
adaptive machine learning approaches to proxy modelling of life insurance companies. The paper by
Sarabia et al. (2020) revisits the ideas of the so-called semiparametric methods which are very useful
when applying machine learning in insurance. For the modelling of prior knowledge, the authors
introduce classes of distributions for financial data. They then illustrate the proposed procedures with
data on stock returns. Finally, Mammen et al. (2019) apply machine learning to forecast the conditional
variance of long-term stock returns measured in excess of different benchmarks, considering the short
and long-term interest rate, the earnings-by-price ratio, and the inflation rate.

We are indebted to all the reviewers who collaborated and thankful to all the authors for their
contributions. It is our hope that the research articles that were assembled for this Special Issue will
cast light on the field and prove a fruitful reading for our audience.
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Abstract: While the main conceptual issue related to deposit insurances is the moral hazard risk, the
main technical issue is inaccurate calibration of the implied volatility. This issue can raise the risk of
generating an arbitrage. In this paper, first, we discuss that by imposing the no-moral-hazard risk,
the removal of arbitrage is equivalent to removing the static arbitrage. Then, we propose a simple
quadratic model to parameterize implied volatility and remove the static arbitrage. The process
of removing the static risk is as follows: Using a machine learning approach with a regularized
cost function, we update the parameters in such a way that butterfly arbitrage is ruled out and also
implementing a calibration method, we make some conditions on the parameters of each time slice to
rule out calendar spread arbitrage. Therefore, eliminating the effects of both butterfly and calendar
spread arbitrage make the implied volatility surface free of static arbitrage.

Keywords: deposit insurance; implied volatility; static arbitrage; parameterization; machine
learning; calibration

1. Introduction

Banks can lend or invest most of their money deposits. However, if bank’s borrowers default,
the bank’s creditors, particularly depositors, risk loss. In order to protect depositors from this risk,
policy makers have promoted deposit insurance schemes that are majorly issued by government run
institutions. In the global scale, International Association of Deposit Insurers (IADI) was formed in 2002
“to enhance the effectiveness of deposit insurance systems by promoting guidance and international
cooperation”. Even though experiences from bank runs during the 1929 Great Depression led to
the introduction of the first deposit insurances in the US, they have been identified as one of the
contributors to the 2008 financial crisis. The major issue due to these type of insurances is that they
encourage the risk of moral hazard. While this problem has been studied to some extent in the literature
(see Assa (2015) and Assa and Okhrati (2018)), there is another issue relevant to the incorrect contract
design and miss-pricing which needs further attention. More precisely, in addition to the moral hazard
risk, arbitrage also needs to be removed in designing a sound deposit insurance. In this paper, we first
show that the removal of the arbitrage for the policies with no risk of moral hazard is tantamount to
the removal of static arbitrage. This fact lead us to naturally use machine learning methods to improve
the precision of estimation for implied volatility.

As it is discussed in Assa and Okhrati (2018), in a very general framework a sound deposit
insurance that rules out the risk of moral hazard is a two layer policy. A two layer policy can be
considered as the subtract of two European options. This helps us to use the financial engineering
formalism on derivative pricing in our setting. There are some existing models for predicting the price
of an option, most of which spin around the Black-Scholes model. The Black-Scholes formula is one of
the most famous and frequently used methods of option pricing. However, it is derived under some

Risks 2019, 7, 45; doi:10.3390/risks7020045 www.mdpi.com/journal/risks
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constraining assumptions including variability due to the randomness of the underlying Brownian
motion, no transaction costs, and fixed volatility and interest rate (Black and Scholes (1973)). In the
Black-Scholes formula, all parameters are given in the market except the the stock price volatility.
However, this parameter can be estimated by the past stock price data; it usually gives different
Black-Scholes option prices than the market option prices because the assumption of fixed volatility
does not hold in real markets. To overcome this drawback, option traders use implied volatility to
adapt the market prices for options with the Black-Sholes formula. In fact, they consider an option
price in terms of the Black-Sholes implied volatility.

Volatility is a measure of the variability of returns for a given security and it can be measured by
the standard deviation of returns for a particular period of time usually for one year. However, implied
volatility is the estimated volatility of a security’s price and it can be obtained by options trading
prices based on the Black-Scholes framework. While historical volatility has only some information
about underlying price fluctuation for a period of time in the past, implied volatility contains more
information about option price future behavior.

The market volatility can be considered as a proxy of the bank portfolio riskiness, as proved in
Zhang (2015). Volatility modeling proven to be a challenging task and there are only a few popular
models for stochastic implied volatility. For instance, one can consider the stochastic alpha, beta, rho
(SABR) parameterization Avellaneda (2005), Vana-Volga (VV) model Castagno (2007), a parametric
model of implied volatility Zhao (2013) and Stochastic Volatility Inspired (SVI) of Gatheral (2014).
Furthermore, some other studies like Malliaris (1996), Cont (2002), Alentorn (2004) and Roux (2007)
tried to parameterize implied volatility using neural network, regression and other machine learning
tools. However, none of these models could eliminate arbitrage opportunity.

In this study, a machine learning approach is proposed to model implied volatility and also to
remove static arbitrage. Since the price of a European call option depends on the price movement
of the underlying asset, we implement a quadratic machine learning approach to parametrize total
implied variance for the European Black-Scholes call options with less than one year to maturity. That,
how much the model is qualified to fit the implied volatility data, is verified both theoretically and
empirically. We also use a regularized cost function for each volatility slice to rule out both underfitting
and overfitting Hastie (2002). The main observation of this study is to explore how a regularized cost
function can help eliminate static arbitrage, whereas this idea has not been successfully studied in
the literature.

This paper is organized as follows: In Section 2, first we design a risk management framework,
then provide some basic materials of implied volatility, static arbitrage and machine learning which
are necessary for the rest of the paper. We propose a quadratic model for implied volatility and then
some necessary conditions are provided on the parameters of the model to get rid of static arbitrage in
Section 3. In Section 4, we implement a numerical example to illustrate the validity of the proposed
model. Eventually, the paper is finished by a suggestion for future possible works in Section 5.

2. Sound Deposit Insurance

In Assa and Okhrati (2018), a deposit insurance where the risk of moral hazard is ruled out is
discussed. In their paper they have shown a sound insurance contract in many cases, including when
using VaR and CVaR to model the risk aversion behavior of the investors, has a two layer structure.
As we want to address another caveat, that is to rule out the arbitrage, in a similar setting we use
their framework. Adopting notations in Assa and Okhrati (2018), let (Ω, �, F = (�t)0≤t≤T , P) be
a completed probability space, where Ω is the set of all scenarios, P is the physical probability measure
and (�t)0≤t≤T is a filtration with usual conditions and � = �T is a σ-field of measurable subsets of Ω.
Furthermore, E denotes the mathematical expectation with respect to P. Policies are issued at t = 0,
and liabilities are settled at t = T. Random variables represent losses for different scenarios at time
T. The cumulative distribution function associated with a random variable X is denoted by FX . The
market risk free interest rate is a non-negative number r ≥ 0. Let us consider a bank with an initial
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capital1 exp (−rT) b, and a non-negative loss variable associated with the deposit insurance denoted
by L ≥ 0. The bank wants to hedge its global position by transferring part of its losses to another party
(usually an insurance company). The insurance policy is denoted by a non-negative random variable I
and it has to satisfy 0 ≤ I ≤ L. The price of the policy is given by a premium function π : D → R at
time 0, where D is the domain of π. Therefore, the bank’s position is composed of four parts:

1. The initial capital at time 0 i.e., exp (−rT) b;
2. The global loss, L;
3. The insurance policy, −I;
4. The premium payed for the insurance policies, at time T, exp (rT)π (I).

Therefore, the total loss is

Total loss = exp (rT)π (I) + L− b − I.

The bank wants its global position to be solvent. We use a risk measure to measure the solvency;
particularly in this paper we consider Value at Risk (VaR) or Conditional Value at Risk (CVaR)
recommended in the Basel II accord for the banking system (also in the Solvency II for the insurance
industry). In this paper, � denotes the risk measure recommended by regulator. The bank is solvent
if its capital b is adequate for the solvency i.e., � (exp (rT)π (I) + L− b − I) ≤ 0. Then, an optimal
decision for the bank is to buy the cheapest insurance contract i.e.,⎧⎪⎪⎨⎪⎪⎩

min π(I)

�(exp (rT)π (I) + L− b − I) ≤ 0

0 ≤ I ≤ L
(1)

Now, we move one step forward to use a more specific model for the bank’s asset. We use an
approach similar to Merton (1997), by considering that the bank’s asset follows a geometric Brownian
motion. This choice is very crucial, since one can use the risk neutral valuation in order to find the
“market (consistent) value” of an insurance contract which is a necessary practice by Solvency II.
Denoting the underlying by St, we assume it follows the following stochastic differential equation:{

dSt = μStdt + σStdWt

S0 > 0

Here Wt, μ and σ are respectively a standard Wiener process, drift, and volatility (constant
numbers). It is also known that:

St = S0 exp
((

μ − σ2

2

)
t + σWt

)
We assume that the bank’s loss is a non-negative and non-increasing function of its assets value.

In mathematical terms, L = L (ST), where L : R → R+ ∪ {0} is a non-increasing function:

L(x) =

{
exp (rT) S0 − x if x ≤ exp (rT) S0

0 if x > exp (rT) S0
(2)

It is clear that L is equal to (exp (rT) S0 − x)+.
In Assa and Okhrati (2018) it is assumed that there is no risk of moral hazard, meaning that

both bank and insurance feel risk of an adverse event. For that, Assa and Okhrati (2018) assume that

1 For technical reasons we assume the value of b at time T and discount it to make it comparable to today’s value.
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both the bank and insurance loss variables are non-decreasing functions of the global loss variable.
This assumption rules out the risk of moral hazard, as both sides have to feel any increase in the
global loss (see for example Heimer (1989) and Bernard and Tian (2009)) Therefore, we assume that
I = f (L) where both f and id − f are non-negative and non-decreasing functions (here id denotes the
identity function).

Using the no-moral-hazard assumption, Assa and Okhrati (2018) have managed to find the sound
deposit insurances where the risk of insolvency is measured by a distortion risk measure. However, in
this paper we only restrain ourselves to the one mentioned by regulator (and also the most popular
ones), VaR and CVaR:

VaRα(X) = inf {x ∈ R|P (X > x) ≤ 1 − α} , α ∈ [0, 1],

and

CVaRα(X) =
1

1 − α

∫ 1

α
VaRt(X)dt. (3)

For these particular risk measures, Assa and Okhrati (2018) have shown that the contract has
a two-layer structure. By combining Corollary 1, Theorem 3 and Theorem 4 in Assa and Okhrati (2018)
we get the following theorem:

Theorem 1. If � = VaRα or � = CVaRα, and μ − r ≥ 0 hold, then the optimal deposit insurance is a two
layer policy on loss L i.e.,

I = f (L) ,

where f is defined as

f (x) =

⎧⎪⎪⎨⎪⎪⎩
0 if x ≤ l

x − l if l ≤ x ≤ u

u − l if u ≤ x

, (4)

for upper and lower retention levels u and l, respectively.

Now it is important to observe that such a contract can be written as the difference of two call
option policies. To see this we have to take the following steps:

f ◦ L (x) =

⎧⎪⎪⎨⎪⎪⎩
0 if L (x) ≤ l

L (x)− l if l ≤ L (x) ≤ u

u − l if u ≤ L (x)

.

First, observe that if exp (rT) ≤ l then L (x) = (exp (rT) S0 − x)+ ≤ l always holds and as a result
I = 0. Otherwise, if exp (rT) > l, then L (x) = (exp (rT) S0 − x)+ ≤ l is equivalent to exp (rT) S0 −
l ≤ x. On the other hand, u ≤ L = (exp (rT) S0 − x)+ is always equivalent to x ≤ exp (rT) S0 − u. So
we have the following policies:

1. If exp (rT) ≤ l then I = 0
2. If exp (rT) > l

f ◦ L (x) =

⎧⎪⎪⎨⎪⎪⎩
0 if exp (rT) S0 − l ≤ x

exp (rT) S0 − x − l if exp (rT) S0 − u ≤ x ≤ exp (rT) S0 − l

u − l if x ≤ exp (rT) S0 − u

.

or
f ◦ L (x) = (x − exp (rT) S0 + l)+ − (x − exp (rT) S0 + u)+ + u − l.
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This indicates that I can be written as the difference of two call options

I = (ST − exp (−rT) S0 + l)+ − (ST − exp (−rT) S0 + u)+ + u − l. (5)

Now, we want to introduce the risk premium. An important implication of what we have done
above is that all insurance contracts are in the form of a contingent claim i.e., for f ∈ C, f (L) =

f (L (ST)) = ( f ◦ L) (ST). To find the market value of a contingent claim we use the no-arbitrage
valuation, so we have:

π (I) = exp (−rT)E
(

dQ
dP

I
)
= exp (−rT)E∗ (I) ,

where dQ
dP is the Radon-Nikodym derivative of the risk neutral probability measure Q with respect to P

and E∗is the expectation with respect to this measure. However, as we have seen in (5), this contract
can be written as the difference of two call options plus a constant value. So we can then use the
following valuation of the contract in our setup

π (I) = e−rTE∗ (I)

= CBS (S0, exp (rT) S0 − l, T, σ, r)− CBS (S0, exp (rT) S0 − u, T, σ, r)

+ exp (−rT) (u − l) , (6)

where in general CBS (S0, K, τ, σ, r) denotes the value of a call option with maturity τ, strike price K,
volatility σ, interest rate r and initial underlying value S0, in a Black-Scholes model. So we have the
following corollary:

Corollary 1. If � = VaRα or � = CVaRα, and μ − r ≥ 0 hold, then the optimal deposit insurance is the
difference of two call options plus a constant value. As a result, for a no-arbitrage valuation, the no-arbitrage
assumption needs only to hold for the call options.

2.1. Black-Scholes Model

The price of a European style call option Black and Scholes (1973) is calculated as follows:

CBS (S0, K, τ, σ, r) = exp (−rτ) E (ST − K)+
= S0N(d1)− exp (−rτ)KN(d2) (7)

d1 =
ln
(

S0
K

)
+
(

r + σ2

2

)
τ

σ
√

τ
, d2 = d1 − σ

√
τ

where S0 denotes the risky asset price at time 0, K is the exercise price, τ is the time to expiration, σ is
the standard deviation of the security’s return, N is the distribution function for the standard normal
distribution, and r is the rate of interest.

2.2. Implied Volatility

The implied volatility of a risky asset S is the unique value of σimp that solves the
following equation

C = CBS

(
τ, K, τσ2

imp, S, r, t
)

(8)

where C is the market price for the call option written at time t with strike price K and T is the
expiration time.
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Another version of implied volatility is calculated by the underlying price process being replaced
by the forward price in the Black-Scholes model. This version of implied volatility has some nice
properties that facilitate application of mathematical techniques. The Black formula is as follows:

CB

(
τ, K, τσ2

imp, S, r, t
)
= F[t,t+τ] N (d1)− KN (d2) (9)

d1 =
log

( F[t,t+τ]

k

)
+ 1

2 τσ2
imp√

τσ2
imp

, d2 =
log

( F[t,t+τ]

k

)
− 1

2 τσ2
imp√

τσ2
imp

where F[t,t+τ] = exp (−rτ) St is the forward price.

2.3. Static Arbitrage

Now, we provide mathematical definition Roper (2009) of static arbitrage and then present an
equivalent definition which connects it to the two other types of arbitrage called calendar spread
and butterfly.

Definition 1. A surface of call option C is said to be free of static arbitrage if there exists a non-negative
martingale X on (Ω, �, F = (�t)t≥0, P) which the call price formula can be reached by

C(K, τ) = E
(
(Xτ − k)+

)
, ∀(k, τ) ∈ [0, ∞) × [0, ∞) (10)

In other words, there exists a non-negative martingale which is associated with the security price
process in distribution, in fact both the security price and the equivalent martingale follow the same
probabilistic rules. The next two theorems by Kellerer (1972) provide some conditions on call surface
and some equivalent conditions on volatility surfaces to make them free of static arbitrage.

Theorem 2. A call option surface written on underlying S, with expiration time T

C : (0, ∞) × R → (0, ∞)

(τ, k) → E
(
(ST − k)+

)
is said to be free from static arbitrage if the following conditions are satisfied:

1. ∂τC > 0
2. lim

k→∞
C(τ, k) = 0

3. lim
k→−∞

C(τ, k) + k = a , a ∈ R

4. C(τ, k) is convex in k
5. C(τ, k) ≥ 0

Theorem 3. On the surface of total implied variance wimp = τσ2
imp where

wimp : (0, ∞) × R → (0, ∞) ,

(τ, K) → wimp (τ, K) ,

The conditions in Theorem 2 are derived by the following arguments

1. ∂τwimp > 0;
2. lim

k→∞
d1(k) = −∞;

3. τσimp ≥ 0;

4.
(

1 − x
2wimp

∂x(wimp)
)2

− 1
4

(
1

wimp
− 1

4

) (
∂x(wimp)

)2
+ 1

2 ∂xx(wimp) ≥ 0.
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The first condition in Theorem 3 which implies the first one in Theorem 2 means that total implied
variance is increasing with respect to time to maturity. Moreover, if this condition holds, there is
no calendar spread arbitrage Fengler (2009), otherwise the opportunity of calendar spread arbitrage
emerges in the market, so one can do a risk-free trading strategy at a given moment. As a matter
of fact, the existence of calendar spread arbitrage addresses a trader to buy a nearby option and sell
the farther in the case of the large time spread between the two options and sell the nearby and buy
the farther if the spread is narrow Carr and Madan (2005). Conditions 2 and 3 in Theorem 3 imply
condition 2 of Theorem 2 which reveals that the price of an option for large exercise prices, tends to
zero. The third argument in Theorem 2 is derived by conditions 2, 3 and 4 in Theorem 3. Finally, the
inequality 4, known as Durrleman’s condition Durrleman (2003), is a part of the second derivative of
call surface with respect to strike price.

Conditions 2 and 4 in Theorem 3 provide a volatility surface free of butterfly arbitrage. For
example, let C1 and C2 are two call options with expiration time T and exercise prices Ki that K1 < K2,
and suppose an option with the same maturity time T and the strike price K, where K1 < K < K2, exists
in the market. If the call surface is non-convex with respect to exercise price, there is an opportunity to
sell two options at the middle strike price K and buy one at the strike price K1 and one at the strike
price K2 and by this strategy a trader can gain a risk-free profit. So, condition 4 of Theorem 3 assigns
a non-negative value for the second derivative of a call surface to get rid of butterfly arbitrage.

Now it is time to provide another definition for a volatility call surface Gatheral (2011) to make
it free of static arbitrage based on materials related to both types of arbitrage, calendar spread
and butterfly.

Definition 2. There is no static arbitrage on a volatility surface if and only if

1. It is free of calendar spread arbitrage;
2. The volatility slice is free of butterfly arbitrage for any fixed time to maturity.

Particularly, no butterfly arbitrage is equivalent to the existence of a positive probability density
Breeden and Breeden and Litzenberger (1978), and no calendar spread arbitrage implies that the option
price is increasing with respect to time to expiration.

2.4. Parameterization of the Implied Volatility

For a fixed time to expiration, the SVI model Gatheral (2004) is given by

wSVI
imp (x) = a + b(ρ (x − m) +

√
(x − m)2 + σ2) (11)

a ∈ R , b ≥ 0 , |ρ| < 1 , m ∈ R , σ > 0 , x = log
K

F[t, t+τ]

in this parametrization, x is moneyness, wSVI
imp (x) = τσ2

imp is total implied variance and {a, b, σ, ρ, m}
is the set of parameters that are supposed to be estimated. The behavior of volatility smile is highly
affected by variations in these five parameters; moreover, the reason to use total implied variance
instead of implied volatility is that in Equation (9) the volatility parameter σ is always accompanied
with a

√
τ Zhu (2013).

2.5. Machine Learning Approach

Machine learning is a branch of artificial intelligence (AI) that has many applications used
to model the behavior of natural phenomena and predict their future outcomes. The basic
intuition behind this methodology is that there is a training set that consists of empirical data
(x(1), y(1)), (x(2), y(2)), ... , (x(m) , y(m)), where m is the number of training examples; moreover,
a learning algorithm (learning hypothesis) fits the data to determine how to learn from the training set
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and how well the result can be generalized to the unseen data. The vector of parameters θ is reached
by the following strategy:

θ̂ = arg min
θ

J(θ) = arg min
θ

1
2m

m

∑
i=1

V
(

hθ(x(i)), y(i)
)

(12)

V is the cost of predicting y(i) based on hypothesis hθ(x(i)) for the i-th training example. The cost V for
the i-th training example is a function of the difference between the target value y(i) and the estimated
values hθ(x(i)). Usually this function is considered to be L-1 norm or L-2 norm loss function that the
L-1 norm is absolute difference and the L-2 norm is the square difference. A learning hypothesis is
a predetermined function, usually chosen by experts, that is considered to fit the data to describe its
behavior inside and outside the training set.

However, sometimes choosing an adequate learning algorithm which best describes the trend of
data outside the training set is the area of difficulty and a wrong learning algorithm takes a lot of time
investigating without coming up to a real conclusion. So, we should know what is the best promising
avenue to spend time pursuing. If our selected hypothesis does an excellent job predicting y from x for
observations in the training set but not for those outside the training set, we face overfitting, on the
other hand, if the hypothesis does not do well, predicting y in both the training set and outside the
training set, we encounter underfitting. Most of the time the algorithm is faced with overfitting since
a learning algorithm usually does a good job for data that builds the model and the problem is how
well it fits to the unseen data. Conquering these obstacles, we add a regularization term to the cost
function and estimate parameters as follows:

θ̂ = arg min
θ

1
2m

(
V
(

hθ

(
x(i)

)
, y(i)

)
+ λR

(
hθ

(
x(i)

)))
(13)

The penalty term is used when there is model complexity, in other words, as long as the algorithm
encounters underfitting or overfitting the penalty term keeps the parameters small to preclude these
types of complexity. To give a break down explanation of regularization, the parameter λ is called
the regularization parameter assigned to control the trade-off between underfitting and overfitting.
R is the regularization function which provides a penalty for the hypothesis complexity to impose
some certain restrictions on parameters space. Furthermore, the regularization function improves the
hypothesis to generalize well to the data beyond the training set Nilsson (2005).

There are some methods to debug a learning algorithm to rule out underfitting and overfitting.
To fix overfitting, we can get more training examples try smaller sets of features and try increasing
λ; moreover, to rule out underfitting, some adjustments like getting additional features, adding
polynomial features, and trying to decrease λ are helpful according to Hastie (2002).

3. The Quadratic Parametrization

Different types of quadratic models have been proposed for implied volatility parameterization in
recent years, but none of them are qualified enough to be free of static arbitrage. For instance,
Avellaneda (2005) proposed a quadratic model to parameterize implied volatility, however, as
mentioned in Roper (2010), this model does not guarantee the Durrleman’s function to be everywhere
non-negative around ATM, so the absence of butterfly arbitrage is not satisfied. There are some other
types of quadratic models, like Roux (2007), but there is no condition on the parameters to remove
static arbitrage, hence it is seemingly impossible to be encountered with this inadequacy in the area of
quadratic parametrization of implied volatility. Now, we introduce our proposed quadratic model to
parameterize implied volatility for call options with less than one year time to expiration, then provide
some special conditions on the model parameters, we preclude static arbitrage.

3.1. The Raw Quadratic Model

The quadratic parameterization of total implied variance with respect to moneyness x is given by:
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wQ2

imp(x, η) = θ0 + θ1x + θ2x2 (14)

where θ0 > 0, θ1 ∈ R. The condition of θ2 > 0 along with the condition of θ2
1 − 4θ0θ2 < 0 make the

function x → wQ2

imp (x, η) positive and strictly convex for all x ∈ R.

3.2. Elimination of Static Arbitrage

In this section, we present some conditions on the parameters of the quadratic model (14) to make
it free of static arbitrage. However, since (14) is a model with fixed time to maturity, we introduce an
equivalent parameterization for implied variance with respect to ATM variance, ATM volatility skew
and the lower bound of variance. Then, we make some conditions on the parameters of the equivalent
model to guarantee the absence of calendar spread arbitrage. These parameters are more familiar for
market traders than the raw parameters in (14) since they reveal some characteristics of market data
which are known for investors. The idea begins with the following definition.

Definition 3. For a fixed time to maturity and a parameter set χ = {vτ , ψτ , μτ}, the equivalent quadratic
parameterization of implied variance is

σ2
imp = vτ + (2

√
vτψτ) x +

(
vτψ2

vτ − μτ

)
x2 (15)

vτ > 0 , ψτ ∈ R , μτ > 0,

where vτ is ATM variance, ψτ is ATM volatility skew, and μτ is the minimum level of variance. Therefore,
this is a calibration to three given quantities which are more understandable for market traders than the raw
parameters. For a fixed time to maturity, the following relations hold between the raw parameters and the
equivalent quadratic parameters:

vτ =
θ0

τ
, ψτ =

1√
τ

θ1

2
√

θ0
, μτ =

1
τ

(
θ0 −

θ2
1

4θ2

)

Proposition 1. The equivalent parameterization of implied variance is not affected by calendar spread arbitrage
if the following arguments are held

1. ψτ (∂τψτ) > 0

2. ∂τ

[
ln
(

vτ
vτ−μτ

)]
> (vτ−μτ)

4v3
τ

3. ∂τ [ln ψτ ] <
2vτ

vτ−μτ
− 1

vτ

Proof. We are supposed to show that the following expression, which is the first derivative of the
surface with respect to time to maturity, always takes positive values

∂τσ2
imp =∂τvτ + 2

{
ψτ

2
√

vτ
+
√

vτ(∂τψτ)

}
x

+

{{
2ψτ(∂τψτ)vτ + ψ2

τ(∂τvτ)
}
(vτ − μτ)−

{
vτψ2

τ∂τ(vτ − μτ)
}

(vτ − μτ)2

}
x2.

Since this is a quadratic function of x, we just need to show that the coefficient of the highest
degree is positive and the discriminant is negative. So, doing some rearrangement of the numerator of
the coefficient in the highest degree, we should proof the following inequality:
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{2ψτ(∂τψτ)vτ} (vτ − μτ) + ψ2
τ {(∂τvτ)(vτ − μτ)− vτ∂τ(vτ − μτ)} > 0

The above inequality is satisfied based on conditions 1 and 2 since vτ and (vτ − μτ) are positive
due to the initial conditions on raw quadratic parameters of Section 3.1. Another step to make the
quadratic function everywhere non-negative is to make the discriminant everywhere negative since
a strictly positive quadratic function should not cross the x axis. Therefore, by some simple rewriting
of the discriminant we come up with the following inequality:

a =
vτψ2

τ

vτ − μτ
, b = 2

√
vτψτ , c = vτ

4ac − b2 =4ψ2
τv2

τ

{
{(∂τvτ)(vτ − μτ)− vτ∂τ(vτ − μτ)} −

(vτ − μτ)2

4v2
τ

}
+4vτψτ(∂τψτ)(vτ − μτ)

{
2 v2

τ −
{

vτ
(∂τψτ)

ψτ
+ 1

}
(vτ − μτ)

}
> 0.

So, we are supposed to make the above function strictly positive by providing some conditions on
the three introduced parameters. The first part of the function above is positive due to the condition
2, and the second part is non-negative based on conditions 1 and 3. So, our convex quadratic model
never crosses the x axis. Therefore, the proof is complete.

Note that, in the previous proposition we provided some conditions on the parameters which are
familiar for market traders and each of them is a function of time to maturity. So, to implement this
strategy to market data all these parameters should be available in terms of expiry time. In the next
proposition, we provide some conditions on the raw parameters to rule out static arbitrage. We will
discuss ways and means of implementing this strategy to market data in Section 4.

Proposition 2. The quadratic surface 14 is not influenced by calendar spread arbitrage if for any two times
to maturity τ1 < τ2 corresponding to w(., τ1) and w(., τ2) by the parameters sets η1 = {θ01, θ11, θ21} and
η2 = {θ02, θ12, θ22} the following conditions satisfy:

1. θ22 − θ21 > 0;
2. θ22θ01 + θ21θ02 < θ12θ11

2 .

Proof. To show that the two volatility slices never cross each other we should prove that the following
quadratic function takes positive values everywhere. Hence, it should be a convex function with no
real root

w(., τ2)− w(., τ1) = (θ22 − θ21)x2 + (θ12 − θ11)x + (θ02 − θ01). (16)

Condition 1 guarantees the quadratic Function (16) to be convex. In addition, we need to show
that it does not have a real root, so the discriminant should take a negative value

Δ =(θ12 − θ11)
2 − 4(θ22 − θ21)(θ02 − θ01)

=(θ2
12 − 4θ22θ02) + (θ2

11 − 4θ21θ01) + 4(θ22θ01 + θ21θ02)− 2θ12θ11

The first two terms are negative based on the initial conditions in Section 3.1, and also condition 2
makes the other two expressions negative. Therefore, Δ < 0 and the proof is complete.

So, we use these conditions to parametrize total implied variance slice by slice. This means they
play the role of optimization constraints for each fixed time to maturity to preclude calendar spread
arbitrage. A common approach is a forward strategy which performs these conditions separately for
the shortest time to expiration up to the longest one. Now, we set some conditions on the parameters
to make a volatility slice free of butterfly arbitrage.
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Proposition 3. The quadratic volatility model in Section 3.1, for options with less than one year to maturity
(τ < 1), is free of butterfly arbitrage if

1. θ2
1 − 4θ0θ2 + θ2 < 0;

2. 1
4 < θ0 < 1.

Proof. First of all, we show that the minimum value of the proposed model belongs to the interval [0, 1]

since we assumed options with less than one year expiry time which makes wQ2

imp bounded between

0 and 1. So, the inequality 0 < wQ2

imp(−
θ1

2θ2
, η) < 1 and equivalently the inequality 4(θ0 − 1)θ2 <

θ2
1 < 4θ0θ2 must be held. It is easily satisfied because of conditions 2 and also the initial conditions of

Section 3.1. Moreover, another intuition behind the condition θ0 < 1 is to guarantee the model to be
less than one in case of ATM. Now, we do some rearrangement to make the Durrleman’s function take
positive values everywhere.

g(x) =
(

1 − x
2w

∂x(w)
)2

− 1
4

(
1
w

− 1
4

)
(∂x(w))2 +

1
2

∂xx(w)

=

(
1 − x(θ1 + 2θ2x)

2(θ0 + θ1x + θ2x2)

)2

+

(
− (θ1 + 2θ2x)2

4(θ0 + θ1x + θ2x2)
− (θ1 + 2θ2x)2

16
+ θ2

)
= f (x) + h(x)

For the Durrleman’s function g, we begin with the first expression as follows:

f (x) =
(

1 − x(θ1 + 2θ2x)
2(θ0 + θ1x + θ2x2)

)2

= 1 +
x2(θ1 + 2θ2x)2

4(θ0 + θ1x + θ2x2)2 − xθ1 + 2θ2x2

θ0 + θ1x + θ2x2

Rearranging the third term of function f, we get the following function:

x(θ1 + 2θ2x)
θ0 + θ1x + θ2x2 =

θ1x + θ2x2 + θ2x2 + θ0 − θ0

θ0 + θ1x + θ2x2 =
θ0 + θ1x + θ2x2 + θ2x2 − θ0

θ0 + θ1x + θ2x2

=1 +
θ2x2 − θ0

θ0 + θ1x + θ2x2

Therefore, we have

f (x) =
(

1 − x(θ1 + 2θ2x)
2w

)2

= 1 +
x2(θ1 + 2θ2x)2

4w2 − 1 − θ2x2 − θ0

w

=
θ2

1x2 + 4θ1θ2x3 + 4θ2
2x4 − 4θ0θ2x2 + 4θ2

0 − 4θ1θ2x3 + 4θ0θ1x − 4θ2
2x4 + 4θ0θ2x2

4w2

=
θ2

1x2 + 4θ0θ1x + 4θ2
0

4w2

Since θ2
1 > 0 and Δ = 0, the numerator of f is a convex and strictly positive quadratic function

which takes its minimum value at x = 0

f

(
−4θ0θ1

2θ2
1

)
= f

(−2θ0

θ1

)
= 4θ2

0 − 8θ2
0 + 4θ2

0 = 0

So, regardless of the value of the parameters, the convex function f takes its minimum at 0, so
we are not supposed to subtract any positive value from function f because we desire to make the
Durrleman’s function g everywhere positive. Now we have to work on other parts of g, working
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toward making some conditions on the parameters to rule out butterfly arbitrage. Based on condition 1
we have

(θ1 + 2θ2x)2 =θ2
1 + 4θ1θ2x + 4θ2

2x2

≤4θ0θ2 + 4θ1θ2x + 4θ2
2x2 = 4θ2w

So, the following inequality is satisfied for the function h

h(x) =− (θ1 + 2θ2x)2

4w
− (θ1 + 2θ2x)2

16
+ θ2

≥4wθ2 − (θ1 + 2θ2)
2

4w
− 4θ2w

16

=
1
4

(
4θ0θ2 − θ2

1
w

− θ2w

)

Since we assume this parameterization for options with less than one year to expiration (τ < 1),
we have w = τσ2

imp < 1; thus, the fact that −w ≥ − 1
w lets us make the function h everywhere positive

h(x) ≥1
4

(
4θ0θ2 − θ2

1
w

− θ2

w

)
=

1
4

(
4θ0θ2 − θ2

1 − θ2

w

)

=
1
4

(
θ2(4θ0 − 1)− θ2

1
w

)
≥ 0.

The last inequality is satisfied because of the first and second conditions we assumed for the
model, so g(θ) ≥ 0. Note that we limit our work on options with less than one year to maturity,
hence the data we use as w is between 0 and 1. Now we show that the second condition in Theorem 3
is satisfied

lim
k→∞

d1 ≤ lim sup
k→∞

d1 = lim sup
k→∞

log
( F[t, t+τ]

k

)
+ 1

2 τσ2
imp√

τσ2
imp

= lim sup
x→−∞

x + 1
2 (θ0 + θ1x + θ2x2)√
θ0 + θ1x + θ2x2

= lim sup
u→∞

−u + 1
2 (θ0 − θ1u + θ2u2)√
θ0 − θ1u + θ2u2

= lim sup
u→∞

−√
u√

2

( √
2u√

θ0 − θ1u + θ2u2
−

√
θ0 − θ1u + θ2u2

√
2u

)

Roper (2010) proved that if the superior limit of the second term in parenthesis tends to a constant
in the interval [0, 1), then the last limit above goes to minus infinity

lim sup
u→∞

√
θ0 − θ1u + θ2u2

√
2u

< lim sup
u→∞

1√
2u

= 0 ∈ [0, 1)

The inequality above is satisfied because we set θ1 ∈ R , therefore lim
k→∞

d1 = −∞ and the proposed

model is free of butterfly arbitrage.
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Now, due to the Propositions 1 and 3, we come up with the following conclusion that provides
some conditions to rule out static arbitrage when we parametrize implied variance with respect to
ATM variance, ATM volatility skew and the minimum level of variance.

Theorem 4. The equivalent parameterization of implied variance for options with less than one year to maturity,
is not faced with static arbitrage if

1. ψτ (∂τψτ) > 0
2. ∂τ

[
ln
(

vτ
vτ−μτ

)]
> (vτ−μτ)

4v3
τ

3. ∂τ [ln ψτ ] <
2vτ

vτ−μτ
− 1

vτ

4. 0 < τvτ < 1
4

5. vτψ2
τ

vτ−μτ
(4τμτ − 1) > 0

So far, we have provided some conditions that guarantee the absence of static arbitrage; thus, we
have everything to fit the proposed quadratic model to implied volatility data.

4. Numerical Implementation

In this section, we provide a learning algorithm to modeling implied volatility data which is
earned by S&P 500 European call options written on 15 December 2014. In other words, we consider
bank asset to be S&P 500 index fund and we implement the proposed strategy to price call options
written on this asset. The reason to choose S&P 500 as underlying asset is the simplicity and availability
of this important data to make the numerical part move straightforward upon a well-defined path;
whereas, underlying price process St, can be replaced by any type of risky asset.

The idea behind our strategy is that since the total implied variance of a security price is
a smile-shaped function of log-moneyness, we fit the quadratic model 14 to the data. In other words,
instead of just learning from input data x, we learn based on a mapping from x to its second degree
polynomial. The training set of this investigation includes x as log-moneyness and w as total implied
variance. To improve the robustness of the algorithm, training set data is randomly divided into two
portions: 70% for the training set and 30% for the cross-validation set. The cost function consists
of a penalty to control the trade-off between underfitting and overfitting. Finally, to illustrate the
efficiency of the proposed approach, we perform it for six different times to maturity.

4.1. The Cost Function

The cost function we use to estimate the parameters of each volatility slice (for a fixed time to
maturity) is a machine learning regularized cost function and the parameters are estimated by the
following strategy:

θ̂ = arg min
θ

1
2m

(
m

∑
i=1

(
wQ2

θ (x(i))− w(i)
)2

+ λ
2

∑
j=1

θ2
j

)
(17)

w(i) is the corresponding total implied variance for the i-th training example and wQ2

θ (x(i)) is the
quadratic model proposed in Section 3.1 and in this case, it plays the role of learning hypothesis.
The cost function is a L-2 norm loss function plus a penalty term. L-2 function is chosen because
it is the most common cost function; furthermore, it has one stable solution whereas the L-1 loss
function has unstable and possibly multiple solutions. Since the goal is to estimate the parameters
of a quadratic model, a L-2 regularization term is reasonable, and it encourages parameter values
toward zero, but not exactly zero; moreover, the distribution of parameters is approximately a zero
mean normal distribution. In case of model complexity (High test error), the penalty term keeps the
parameters small to make the hypothesis relatively simple to avoid overfitting. λ is the regularization
parameter that controls the trade-off between underfitting and overfitting.
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When we choose a lambda value, the goal is to provide the right balance between simplicity
and training-data fit. If lambda is too high, the model will be simple, but we may face the risk of
underfitting and the model will not learn enough from the training set to make useful predictions. On
the other hand, if lambda is too low, there is more model complexity, and we encounter the risk of
overfitting; in addition, the model will learn too much from the training set and will not be able to
generalize to unseen data. The ideal value of lambda provides a model that generalizes well to the
data outside the training set, but it depends on data and we need to do some tuning. Therefore, based
on a trial and error strategy, we check model complexity and change the value of λ, then the algorithm
runs again to update parameters based on the new value for λ. Finally, the value of λ with the lowest
complexity will be chosen as the ideal one. The way we choose the value of λ is clearly explained by
a pseudo code in the next section.

To perform the algorithm, we learn the parameters from the training set, then the training error
and the cross-validation error are computed based on the learned hypothesis in the training set, and
learning curve which is the plot of the cross-validation error and the training error versus the size of
the training set helps us diagnose if the model is affected by underfitting or overfitting. The training
error and the cross-validation error are computed as follows:

Jtrain(θ) =
1

2m
,

m

∑
i=1

(
wQ2

θ (x(i)train)− w(i)
train

)2

Jcv(θ) =
1

2m
,

m

∑
i=1

(
wQ2

θ (x(i)cv )− w(i)
cv

)2

To overcome the effects of underfitting and overfitting for each volatility slice, the validation
curve which is the cross-validation error plotted versus the regularization parameter λ helps us select
the value of λ which minimizes the cross-validation error.

4.2. The Algorithm, Step by Step

In this section, to provide a better understanding of the proposed algorithm, we itemize a simple
pseudo code to show how to plot the Durrleman’s function and also choose the optimum value of λ

that rule out both underfitting and overfitting. The algorithm runs as follows:

1. Start by a volatility data (x(i), w(i)) for any fixed time to maturity.
2. Using the training set data and the conditions in Propositions 2 and 3, estimate parameters by

minimizing the cost function for a fixed value of λ (For the first implementation let λ = 0).
3. Using the estimated parameters, compute training error and cross-validation error for different

values of m.
4. Plot learning curve which is the training error and the cross-validation error versus m.
5. (a) If the learning curve shows no drawback of overfitting and underfitting, plot Durrleman’s

function based on the estimated parameters.

(b) Otherwise, plot the validation curve which is the cross-validation error versus the
regularization parameter λ, and choose the value of λ which minimizes the cross-validation
error, then move on to step 2.

4.3. Ruling Out Calendar Spread Arbitrage

A forward approach is implemented to fit the proposed quadratic model 3.1 to the total implied
variance data calculated by the Black-Scholes implied volatility in 9. Considering the initial conditions
in Section 3.1 and others in Remark 3, the parameterization is not encountered with butterfly arbitrage
for each volatility slice, but we need to determine some relations among parameters of different slices
to organize them to be an increasing function of τ. First of all, we implement the optimization for the
shortest time to maturity and simultaneously we implement conditions in Section 3 and Remark 2
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to estimate the parameters, then we assign the conditions of Remark 2 for the second shortest expiry
time due to the values of the estimated parameters for the first slice. For example, if the estimated
parameters for the shortest expiry time are:

θ2(1) = a , θ1(1) = b , θ0(1) = c , a, b, c ∈ R

where θi(j) is the i-th estimated parameter in the optimization for the j-th slice, we add some extra
constraints for optimization in the second shortest expiry time as follows:

1. θ2(2) > a

2. cθ2(2) + aθ0(2) <
bθ1(2)

2

So, in this way it is guaranteed for the two slices not to cross each other and also the second
slice is everywhere greater than the first one. In the next step, doing the optimization forward, the
same strategy is performed to the third shortest expiry time by some additional constraints due to the
values of the parameters for the second slice. Therefore, by implementing the forward method from
the slice with the shortest expiry time up to the one with the longest time to maturity, we ensure that
the calibration provides a volatility surface with no calendar spread arbitrage for the volatility surface,
and also no butterfly arbitrage for each slice. In general, for the optimization of the n-th slice we have
the following calibration rules:

1. θ2(n) > θ2(n−1)

2. θ2(n)θ0(n−1) + θ2(n−1)θ0(n) <
θ1(n)θ1(n−1)

2

Therefore, based on Definition 2, we have everything to rule out static arbitrage.

4.4. Discussion

Numerical implementation of the quadratic approach is done over six different times to maturity
for S&P 500 call option data traded on December 15, 2014. Table 1 represents the optimal values of λ

for each of the six different times to maturity. Figure 1 illustrates the plots of total implied variance
for all six volatility slices and it shows that total implied variance is an increasing function of time
to expiration since the volatility slices never cross each other, so the calibration method eliminates
calendar spread arbitrage. Plots for all six Durrleman’s functions are shown separately for each
volatility slice in Figure 2. The plots of Durrleman’s function for all six times to maturity are strictly
positive around at-the-money, implying the absence of butterfly arbitrage for each volatility slice.
Therefore, due to the conditions of Definition 2, we parameterized total implied variance for S&P 500
call option data in such a way that there is no static arbitrage.

Table 1. Times to maturity and the optimum values of the regularization parameter for each
volatility slice.

Expiry Date Time to Maturity λ

20 December 2014 0.0136 0.3
2 January 2015 0.0465 3

17 January 2015 0.0876 1.2
23 January 2015 0.1041 2.8

20 February 2015 0.178 0.9
20 March 2015 0.232 1.3

To sum up, modeling implied volatility with respect to time to expiration and strike price, and
precluding static arbitrage simultaneously, we can be aware of the upcoming price fluctuation of the
risky asset and use it to price the options in Equation (6). Therefore, the risk management contract (6)
can be priced more precisely based on the behavior of implied volatility. It is necessary to note that
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we did not implement an algorithm to price the contract since the main focus of this paper is to
parametrize implied volatility to improve the precision of contract pricing and the rest is just related to
option pricing that is widely studied in the literature.
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Figure 1. Plots of the total implied variance for six different times to maturity following the forward
slice-by-slice method of Section 4.3.
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Figure 2. Plots of the Durrleman’s function implemented for six different times to maturity.

5. Conclusions

Deposit insurances are introduced after the 1929 Great Depression as a tool to reduce the risk of
depositors’ loss. There are two major issues related to deposit insurances: the risk of moral hazard
on the one hand, and the risk of miss-pricing and arbitrage on the other hand. The main objective
of this study is to focus on the second issue by correctly pricing deposit insurances via improving
the implied volatility calibration. As the deposit insurances have been blamed for generating the
moral hazard risk, we considered a framework where the risk of moral hazard is ruled out (Assa and
Okhrati (2018)) and we focused our attention on arbitrage. In the first step, we showed that in this
framework no-arbitrage assumption can be reduced to no-static-arbitrage assumption. This paves
the way towards parametrization of the implied volatility. After introducing a quadratic approach to
parameterized implied volatility, we mathematically proved that for options with less than one year to
maturity and under some special conditions on parameters of the model, there is no opportunity for
static arbitrage. The results of the numerical implementation have shown that the proposed quadratic
model can be a helpful strategy for modeling implied volatility. Furthermore, our approach improved
other quadratic approaches which have already been proposed, since none of them could take care
of arbitrage opportunity. Another interesting property of the model is the simplicity of the quadratic
function which is understandable by a basic knowledge of mathematics. However, we believe this
area of volatility modeling still has some room to improve based on additional market features like the
underlying price, time to expiration and strike price, which we leave for future works.
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Abstract: XGBoost is recognized as an algorithm with exceptional predictive capacity. Models for a
binary response indicating the existence of accident claims versus no claims can be used to identify
the determinants of traffic accidents. This study compared the relative performances of logistic
regression and XGBoost approaches for predicting the existence of accident claims using telematics
data. The dataset contained information from an insurance company about the individuals’ driving
patterns—including total annual distance driven and percentage of total distance driven in urban
areas. Our findings showed that logistic regression is a suitable model given its interpretability
and good predictive capacity. XGBoost requires numerous model-tuning procedures to match the
predictive performance of the logistic regression model and greater effort as regards to interpretation.

Keywords: dichotomous response; predictive model; tree boosting; GLM; machine learning

1. Introduction

Predicting the occurrence of accident claims in motor insurance lies at the heart of premium
calculation, but with the development of new artificial intelligence methods, the question of choosing
a suitable model has yet to be completely solved. In this article, the recently proposed methods of
XGBoost (Chen and Guestrin 2016) and logistic regression are considered and compared regarding
their predictive performance in a sample of insured drivers, along with their telematic information.

The advantages and disadvantages of XGBoost compared to logistic regression are discussed
and this study showed that a slightly improved predictive power is only obtained with the XGBoost
method, but this has complicated the interpretation of the impact of covariates on the expected response.
In the case of automobile insurance, where the premium calculation is regulated and has to be fully
specified, the weight of each risk factor in the final price needs to be disclosed and the connection
between the observed covariate value and the estimated probability of a claim needs to be shown.
If these conditions are not met, the regulating authority may deny the insurance company the right to
commercialize that product. This study discussed, nevertheless, why the use of an XGBoost algorithm
remains interesting for actuaries and how methods both old and new might be combined for optimum
results. This study does not examine any other boosting methods. However, excellent descriptions
can be found in Lee and Lin (2018), while extensions to high dimensional datasets are presented in
Lee and Antonio (2015), both of which presented cases studies of insurance applications. Many of
those alternatives placed their emphasis on algorithm speed, but in terms of their essential setups they
do not differ greatly from XGBoost.

To compare the two competing methods, a real dataset comprising of motor insurance policy
holders and their telematics measurements were used, that is, real-time driving information collected
and stored via telecommunication devices. More specifically, GPS-based technology captures an
insured’s driving behavior patterns, including distance travelled, driving schedules, and driving speed,
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among many others. Here, pay-as-you-drive (PAYD) insurance schemes represent an alternative method
for pricing premiums based on personal mileage travelled and driving behaviors. Guillen et al. (2019),
Verbelen et al. (2018), and Pérez-Marín and Guillén (2019) showed the potential benefits of analyzing
telematics information when calculating motor insurance premiums. Gao and Wüthrich (2019)
analyzed high-frequency GPS location data (second per second) of individual car drivers and trips.
Gao and Wüthrich (2018) and Gao et al. (2019) investigated the predictive power of covariates extracted
from telematics car driving data using the speed-acceleration heatmaps proposed by Wüthrich (2017).
Further, Hultkrantz et al. (2012) highlighted the importance of PAYD insurance plans insofar as they
allow insurance companies to personalize premium calculation and, so, charge fairer rates.

The rest of this paper is organized as follows. First, the notation is introduced and the logistic
regression and XGBoost methods are outlined. Second, our dataset is described and some descriptive
statistics are provided. Third, the results of our comparisons in both a training and a testing sample are
reported. Finally, following the conclusion, some practical suggestions are offered about the feasibility
of applying new machine learning methods to the field of insurance.

2. Methodology Description

In a data set of n individuals and P covariates, there is a binary response variable Yi, i = 1, . . . ,
n taking values 0, 1; and a set of covariates denoted as Xip, p = 1, . . . , P. The conditional probability
density function of Yi = t (t = 0, 1) given Xi (Xi1, . . . , XiP), is denoted as ht(Xi). Equivalently, it can be
said that Prob(Yi = t) = ht(Xi), and that E(Yi) = Prob(Yi = 1) = h1(Xi).

2.1. Logistic Regression

Logistic regression, a widely recognized regression method for predicting the expected
outcome of a binary dependent variable, is specified by a given set of predictor variables.
McCullagh and Nelder (1989) presented the logistic regression model as part of a wider class of
generalized linear models. A logistic regression is distinguished from a classical linear regression
model primarily because the response variable is binary rather than continuous in nature.

The logistic regression uses the logit function as a canonical link function, in other words, the log
ratio of the probability functions ht(Xi) is a linear function of X; that is:

ln
h1(Xi)

h0(Xi)
= ln

Prob(Yi = 1)
Prob(Yi = 0)

= β0 +
∑P

p=1
Xipβp, (1)

where β0, β1, . . . , βP are the model coefficients1, and Prob(Yi = 1) is the probability of observing the
event in the response (response equal to 1), and Prob(Yi = 0) is the probability of not observing the
event in the response (response equal to 0).

The link function provides the relationship between the linear predictor η = β0 +
∑P

p=1 Xipβp

and the mean of the response given certain covariates. In a logistic regression model, the expected
response is:

E(Yi) = Prob(Yi = 1) =
eβ0+

∑P
p=1 Xipβp

1 + eβ0+
∑P

p=1 Xipβp
. (2)

A logistic regression can be estimated by the maximum likelihood (for further details see,
for example, Greene 2002). Therefore, the idea underlying a logistic regression model is that there must
be a linear combination of risk factors that is related to the probability of observing an event. The data
analyst’s task is to find the fitted coefficients that best estimate the linear combination in (2) and to
interpret the relationship between the covariates and the expected response. In a logistic regression

1 Note we have opted to refer here to coefficients as opposed to parameters to avoid confusion with the values defined below
when describing the XGBoost method.



Risks 2019, 7, 70

model, a positive estimated coefficient indicates a positive association. Thus, when the corresponding
covariate increases, the probability of the event response also increases. If the estimated coefficient is
negative, then the association is negative and, therefore, the probability of the event decreases when
the observed value of the corresponding covariate increases. Odds-ratios can be calculated as the
exponential values of the fitted coefficients and they can also be directly interpreted as the change in
odds when the corresponding factor increases by one unit.

Apart from their interpretability, the popularity of logistic regression models is based on two
characteristics: (i) The maximum likelihood estimates are easily found; and (ii) the analytical form of
the link function in (2) always provides predictions between 0 and 1 that can be directly interpreted
as the event probability estimate. For these motives, logistic regression has become one of the most
popular classifiers, their results providing a straightforward method for predicting scores or propensity
values which, in turn, allow new observations to be classified to one of the two classes in the response.
For R users, the glm function is the most widely used procedure for obtaining coefficient estimates and
their standard errors, but alternatively, a simple optimization routine can easily be implemented.

2.2. XGBoost

Chen and Guestrin (2016) proposed XGBoost as an alternative method for predicting a response
variable given certain covariates. The main idea underpinning this algorithm is that it builds D
classification and regression trees (or CARTs) one by one, so that each subsequent model (tree) is
trained using the residuals of the previous tree. In other words, the new model corrects the errors
made by the previously trained tree and then predicts the outcome.

In the XGBoost, each ensemble model2 uses the sum of D functions to predict the output:

Ŷi = (Xi)=
∑D

d=1
fd(Xi), fd ∈ F, i = 1, . . . , n (3)

where F is the function space3 of the CART models, and each fd corresponds to an independent CART
structure which is denoted as q. In other words, q is the set of rules of an independent CART that
classifies each individual i into one leaf. The training phase involves classifying n observations so that,
given the covariates X, each leaf has a score that corresponds to the proportion of cases which are
classified into the response event for that combination of Xi. This score is denoted as wq(X).

Thus, q can be written as a function q: RP→ T, where T is the total number of leaves of a tree and j
is later used to denote a particular leaf, j = 1, . . . , T. To calculate the final prediction for each individual,
the score of the leaves are summed as in (3), where F = {f (X) = wq(X)}, with q: RP → T, and w ∈ RT.

In general, boosting methods fit D models in D iterations (each iteration denoted by d, d = 1,
. . . , D) in reweighted versions. Weighting is a mechanism that penalizes the incorrect predictions of
past models, in order to improve the new models. The weighting structures are generally optimal
values, which are adjusted once a loss function is minimized. Then, new learners incorporate the new
weighting structure in each iteration, and predict new outcomes.

In particular, the XGBoost method minimizes a regularized objective function, i.e., the loss function
plus the regularization term:

L =
∑n

i=1
�(Yi, Ŷi) +

∑D

d=1
( fd), (4)

2 Natekin and Knoll (2013) explain that the ensemble model can be understood as a committee formed by a group of base
learners or weak learners. Thus, any weak learner can be introduced as a boosting framework. Various boosting methods have
been proposed, including: (B/P-) splines (Huang and Yang 2004); linear and penalized models (Hastie et al. 2009); decision
trees (James et al. 2013); radial basis functions (Gomez-Verdejo et al. 2005); and Markov random fields (Dietterich et al. 2008).
Although Chen and Guestrin (2016) state fk as a CART model, the R package xgboost currently performs three boosters:
linear, tree and dart.

3 The XGBoost works in a function space rather than in a parameter space. This framework allows the objective function to be
customized accordingly.
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where � is a convex loss function that measures the difference between the observed response Yi and
predicted response Ŷi and ή = μT + 1

2λ‖w‖22, ή is the regularization term also known as the shrinkage
penalty which penalizes the complexity of the model and avoids the problem of overfitting. The tree
pruning parameter μ regulates the depth of the tree and λ is the regularization parameter that is
associated with l2-norm of the scores vector, which is a way of evaluating the magnitude of scores.
Including this norm, or any other similar expression, penalizes excessive sizes in the components of w.

It is noted that pruning is a machine learning technique which reduces the size of a decision tree by
removing decision nodes whose corresponding features have little influence on the final prediction of
the target variable. This procedure reduces the complexity of the model and, thus, corrects overfitting.

The l2-norm is used in the L2 or Ridge regularization method, while the l1-norm is used in the
L1 or Lasso regularization method. Both methods can take the Tikhonov or the Ivanov form (see
Tikhonov and Arsenin 1977; Ivanov et al. 2013).

2.2.1. A Closer Look at the XGBoost Minimization Algorithm

A loss function or a cost function like (4) measures how well a predictive algorithm fits the
observed responses in a data set (for further details, see Friedman et al. 2001). For instance, in a binary
classification problem, the logistic loss function is suitable because the probability score is bounded
between 0 and 1. Then, by selecting a suitable threshold, a binary outcome prediction can be found.
Various loss functions have been proposed in the literature, including: The square loss; the hinge loss
(Steinwart and Christmann 2008); the logistic loss (Schapire and Freund 2012); the cross entropy loss
(De Boer et al. 2005); and the exponential loss (Elliott and Timmermann 2003).

The intuition underpinning the regularization proposed in (4) involves reducing the magnitude
of w, so that the procedure can avoid the problem of overfitting. The larger the e, the smaller the
variability of the scores (Goodfellow et al. 2016).

The objective function at the d-th iteration is:

L(d) =
∑n

i=1
�(Yi, Ŷ(d−1)

i + fd(Xi)) + ( fd), (5)

where Ŷ(d−1)
i is the prediction of the i-th observation at the (d − 1)-th iteration. It is noted that

�(·, ·) is generally a distance so its components can be swapped, i.e., �(Yi, Ŷi) = �(Ŷi, Yi). Following
Chen and Guestrin (2016), it is assumed that the loss function is a symmetric function.

Due to the non-linearities in the objective function to be minimized, the XGBoost is an algorithm
that uses a second-order Taylor approximation of the objective function L in (5) as follows:

L(d) �
∑n

i=1
[�(Yi, Ŷ(d−1)

i ) + gi fd(Xi) +
1
2

hi fd
2(Xi)]+ ( fd), (6)

where gi = ∂ŷ(d−1)
i
�(Yi, Ŷ(d−1)

i ) and hi = ∂
2
Ŷ(d−1)

i

�(Yi, Ŷ(d−1)
i ) denote the first and second derivatives of

the loss function � with respect to the component corresponding to the predicted classifier.
Since the authors minimized (6) with respect to fd, this expression can be simplified by removing

the constant terms as follows:

L(d) =
∑n

i=1
[gi fd(Xi) +

1
2

hi fd
2(Xi)]+ ( fd). (7)

Substituting the shrinkage penalty ή of (4) in (7), the authors obtained:

L(d) =
∑n

i=1
[gi fd(Xi) +

1
2

hi fd
2(Xi)]+uT +

1
2
λ‖w‖22. (8)
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The l2-norm shown in (8) is equivalent to the sum of the squared weights of all T leafs. Therefore
(8) is expressed as:

L(d) =
∑n

i=1
[gi fd(Xi) +

1
2

hi fd
2(Xi)]+uT +

1
2
λ
∑T

j=1
w2

j . (9)

The definition of Ij = {i|q(Xi)}, Ij is the set of observations that are classified into one leaf j, j = 1,
. . . , T. Each Ij receives the same leaf weight wj. Therefore, L(d) in (9) can also be seen as an objective
function that corresponds to each set Ij. In this sense, the fd(Xi), which is assigned to the observations,
corresponds to the weight wj that is assigned to each set Ij. Therefore (9) is expressed as:

L(d) =
∑T

j=1

[(∑
i∈Ij

gi

)
wj +

1
2

(∑
i∈Ij

hi + λ

)
w2

j

]
+ uT. (10)

In order to find the optimal leaf weight w∗j, the authors derived (10) with respect to wj, let the new
equation be equal to zero, and cleared the value of w∗j. Then the authors obtained:

w∗j = −
∑

i∈Ij
gi∑

i∈Ij
hi + λ

. (11)

The (10) was updated by replacing the new w∗j. The next boosting iteration minimized the following
objective function:

L̂(d) =
∑T

j=1

⎡⎢⎢⎢⎢⎣(∑i∈Ij
gi
)(
−
∑

i∈I j
gi∑

i∈I j
hi+λ

)
+ 1

2

(∑
i∈Ij

hi + λ
)(
−
∑

i∈I j
gi∑

i∈I j
hi+λ

)2⎤⎥⎥⎥⎥⎦+ uT

= − 1
2
∑n

i=1

(∑
i∈I j

gi

)2
(∑

i∈I j
hi+λ

) + uT.

(12)

Once the best objective function has been defined and the optimal leaf weights assigned to Ij,
the best split procedure is considered. As (12) is derived for a wide range of functions, the authors
were not able to identify all possible tree structures q in each boosting iteration. This algorithm starts
by building a single leaf and continues by adding new branches. Consider the following example:

Here, IL and IR are the sets of observations that are in the left and right parts of a node following a
split. Therefore, I = IL + IR.

L̂(d) =
1
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣−
∑n

i=1

(∑
i∈Ij

gi
)2

(∑
i∈Ij

hi + λ
) +∑n

i=1

(∑
i∈IL

gi
)2

(∑
i∈IL

hi + λ
) +∑n

i=1

(∑
i∈IR

gi
)2

(∑
i∈IR

hi + λ
)
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦− u, (13)

L̂(d) of (13) is the node impurity measure, which is calculated for the P covariates. The split is
determined by the maximum value of (13). For example, in the case of CART algorithms, the impurity
measure for categorical target variables can be information gain, Gini impurity or chi-square, while for
continuous target variables it can be the Gini impurity.

Once the tree fd is completely built (i.e., its branches and leaf weights are established), observations
are mapped on the tree (from the root to one corresponding leaf). Thus, the algorithms will update from
(5) to (14) as many times as D boosting iterations are established and the final classification is the sum
of the D obtained functions which are shown in (3). Consequently, the XGBoost corrects the mistaken
predictions in each iteration, as far as this is possible, and tends to overfit the data. Thus, to prevent
overfitting, the regularization parameter value in the objective function is highly recommended.
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2.2.2. Implementation

An example of R code is given in the Appendix A.
The implementation of XGBoost has proved to be quite effective for fitting real binary response

data and a good method for providing a confusion matrix, i.e., a table in which observations and
predictions are compared, with very few false positives and false negatives. However, since the final
prediction of an XGBoost algorithm is the result of a sum of D trees, the graphical representation and
the interpretation of the impact of each covariate on the final estimated probability of occurrence may
be less direct than in the linear or logistic regression models. For instance, if the final predictor is a
combination of several trees, but each tree has a different structure (in the sense that each time the
order of segmentation differs from that of the previous tree), the role of each covariate will depend on
understanding how the covariate impacts the result in the previous trees and what the path of each
observation is in each of the previous trees. Thus, in the XGBoost approach, it is difficult to isolate the
effect on the expected response of one particular covariate compared to all the others.

Under certain circumstances, the XGBoost method can be interpreted directly. This happens when
fd has analytical expressions that can easily be manipulated to compute

∑D
d=1 fd(Xi). One example

is the linear booster, which means that each fd is a linear combination of the covariates rather than a
tree-based classifier. In this case of a linear function, the final prediction is also a linear combination of
the covariates, resulting from the sum of the weights associated with each covariate in each fd.

The results for the true XGBoost predictive model classifier can easily be obtained in R with the
xgboost package.

3. Data and Descriptive Statistics

Our case-study database comprised of 2767 drivers under 30 years of age who underwrote a
pay-as-you-drive (PAYD) policy with a Spanish insurance company. Their driving activity was recorded
using a telematics system. This information was collected from 1 January through 31 December 2011.
The data set contained the following information about each driver: The insured’s age (age), the age
of the vehicle (ageveh) in years; the insured’s gender (male); the driving experience (drivexp) in years;
the percentage of total kilometers travelled in urban areas (pkmurb); the percentage of total kilometers
travelled at night—that is, between midnight and 6 am (pkmnig); the percentage of kilometers above
the mandatory speed limits (pkmexc); the total kilometers (kmtotal); and, finally, the presence of an
accident claim with fault (Y) which was coded as 1 when, at least, one claim where the fault occurred
in the observational period and was reported to the insurance company, and 0 otherwise. This study
is interested in predicting Y using the aforementioned covariates. This data set has been extensively
studied in Ayuso et al. (2014, 2016a, 2016b) and Boucher et al. (2017).

Table 1 shows the descriptive statistics for the accident claims data set. This highlighted that a
substantial part of the sample did not suffer an accident in 2011, with just 7.05% of drivers reporting
at least one accident claim. The insureds with no accident claim seemed to have travelled fewer
kilometers than those presenting a claim. The non-occurrence of accident claims was also linked
to a lower percentage of driving in urban areas and a lower percentage of kilometers driven above
mandatory speed limits. In this dataset, 7.29% of men and 6.79% of women had an accident during the
observation year.

The data set was divided randomly into a training data set of 1937 observations (75% of the
total sample) and a testing data set of 830 observations (25% of the total sample). The function
CreateDataPartion of R was used to maintain the same proportion of events (coded as 1) of the total
sample in both the training and testing data sets.
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Table 1. The description of the variables in the accident claims data set 1.

Variables
Non-Occurrence of

Accident Claims
(Y = 0)

Occurrence of
Accident Claims

(Y = 1)
Total

Age (years) 25.10 24.55 25.06

Gender
Female 1263 (93.21%) 92 (6.79%) 1355

Male 1309 (92.71%) 103 (7.29%) 1412

Driving experience (years) 4.98 4.46 4.94

Age of vehicle (years) 6.37 6.17 6.35

Total kilometers travelled 7094.63 7634.97 7132.71

Percentage of total kilometers
travelled in urban areas 24.60 26.34 24.72

Percentage of total kilometers
above the mandatory speed limit 6.72 7.24 6.75

Percentage of total kilometers
travelled at night 6.88 6.66 6.86

Total number of cases 2572 (92.95%) 195 (7.05%) 2767
1 The mean of the variables according to the occurrence and non-occurrence of accident claims. The absolute
frequency and row percentage is shown for the variable gender.

4. Results

In this section, the results obtained in the training and testing samples were compared when
employing the methods described in Section 2.

4.1. Coefficient Estimates

Table 2 presents the estimates obtained using the two methods. It is noted, however, that the
values are not comparable in magnitude as they correspond to different specifications. The logistic
regression uses its classical standard method to compute the coefficients of the variables and their
standard errors. However, the boosting process of the XGBoost builds D models in reweighted versions
and, therefore, a historical record of the D times P + 1 coefficient estimates was obtained. XGBoost can
only obtain a magnitude of those coefficients if the base learner allows it, and this is not the case when
fd are CART models.

The signs obtained by the logistic regression point estimate and the mean of the XGBoost
coefficients are the same. The inspection of the results in Table 2 shows that older insureds are less
likely to suffer a motor accident than younger policy holders4. In addition, individuals who travel more
kilometers in urban areas are more likely to have an accident than those that travel fewer kilometers in
urban areas. The authors were not able to interpret the coefficients of the XGBoost, but by inspecting
the maximum and minimum values of the linear booster case, an idea of how the estimates fluctuate
until iteration D was obtained.

Only the coefficients of age and percentage of kilometers travelled in urban areas were significantly
different from zero in the logistic regression model, but the authors preferred to keep all the coefficients
of the covariates in the estimation results to show the general effect of the telematics covariates on the
occurrence of accident at-fault claims in this dataset, and to evaluate the performance of the different
methods in this situation.

4 In general, this is only partially true. The relation of the variable age is typically non-linear, U-shaped, as (very) young
drivers also cause a lot of accidents. The maximum age in this sample is 30 and so, even if models with age and age2 were
estimated, the results did not change substantially.
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Table 2. The parameter estimates of the logistic regression and XGBoost with linear booster.

Training Data Set

Parameter
Estimates

Logistic Regression XGBoost (Linear Booster)

Lower
Bound

Estimate
Upper
Bound

p-Value Minimum Mean Maximum

Constant −2.8891 −0.5442 1.8583 0.6526 −2.6760 −2.6690 −1.7270
* age −0.2059 −0.0994 0.0011 0.0591 −0.2573 −0.2416 −0.0757

drivexp −0.1285 −0.0210 0.0906 0.7060 −0.0523 −0.0517 −0.0069
ageveh −0.0786 −0.0249 0.0257 0.3481 −0.0897 −0.0885 −0.0220

male −0.3672 0.0039 0.3751 0.9837 0.0019 0.0020 0.0070
kmtotal −0.0203 0.0266 0.2505 0.0137 0.1164 0.1176
pkmnig −0.0354 −0.0046 0.0239 0.7625 −0.0292 −0.0290 −0.0061
pkmexc −0.0122 0.0144 0.0385 0.2650 0.0180 0.1007 0.1016

* pkmurb 0.0002 0.0146 0.0286 0.0425 0.0436 0.2008 0.2023

In the logistic regression columns, the point estimates are presented with the lower and upper bound of a 95%
confidence interval. In the XGBoost columns, the means of the coefficient estimates with a linear boosting of the D
iterations are presented. Similarly, bounds are presented with the minimum and maximum values in the iterations.
There are no regularization parameter values. * Indicates that the coefficient is significant at the 90% confidence
level in the logistic regression estimation. The calculations were performed in R and scripts are available from
the authors.

Figure 1 shows the magnitude of all the estimates of the XGBoost in 200 iterations.
From approximately the tenth iteration, the coefficient estimates tend to become stabilized. Thus,
no extreme changes were present during the boosting.

 
Figure 1. The magnitude of all the estimates in the D = 200 iterations. The different colors indicate each
of the coefficients in the XGBoost iteration.

4.2. Prediction Performance

The performance of the two methods was evaluated using the confusion matrix, which compares
the number of observed events and non-events with their corresponding predictions. Usually, the larger
the number of correctly classified responses, the better the model. However, the out-of-sample
performance was even more important than in-sample results. This means that the classifier must
be able to predict the observed events and non-events in the testing sample and not just in the
training sample.

The predictive measures used to compare the predictions of the models were sensitivity, specificity,
accuracy and the root mean square error (RMSE). Sensitivity measures the proportion of actual positives
that are classified correctly as such, i.e., True positive/(True positive + False negative). Specificity
measures the proportion of actual negatives that are classified correctly as such, i.e., True negative/(True
negative + False positive). Accuracy measures the proportion of total cases classified correctly (True
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positive + True negative)/Total cases. RMSE measures the distance between the observed and predicted
values of the response. It is calculated as follows:

√∑n

i=1

(Yi − Ŷi)
2

n
, (14)

The higher the sensitivity, the specificity and the accuracy, the better the models predict the
outcome variable. The lower the value of RMSE, the better the predictive performance of the model.

Table 3 presents the confusion matrix and the predictive measures of the methods (the logistic
regression, XGBoost with a tree booster and XGBoost with a linear booster) for the training and
testing samples. The results in Table 3 indicated that the performance of the XGBoost with the linear
booster (last column) was similar to that of the logistic regression both in the training and testing
samples5. XGBoost using the tree approach provided good accuracy and a good RMSE value in the
training sample, but did not perform as well as the other methods in the case of the testing sample.
More importantly, XGBoost failed to provide good sensitivity. In fact, the XGBoost with the tree booster
clearly overfitted the data, because while it performed very well in the training sample, it failed to
do so in the testing sample. For instance, sensitivity was equal to 100% in the training sample for the
XGBoost tree booster methods, but it was equal to only 7.9% in the testing sample.

Table 3. The confusion matrix and predictive measures of the logistic regression, XGBoost with a tree
booster and XGBoost with a linear booster for the testing and training data sets.

Testing Data Set

Predictive Measures Logistic Regression
XGBoost

(Tree Booster)
XGBoost

(Linear Booster)

Yi = 0, Ŷi = 0 524 692 516
Yi = 1, Ŷi = 0 38 58 38
Yi = 0, Ŷi = 1 243 75 251
Yi = 1, Ŷi = 1 25 5 25

Sensitivity 0.3968 0.0790 0.3968
Specificity 0.6831 0.9022 0.6728
Accuracy 0.6614 0.8397 0.6518

RMSE 0.2651 0.2825 0.2651

Training Data Set

Predictive Measures Logistic Regression
XGBoost

(Tree Booster)
XGBoost

(Linear Booster)

Yi = 0, Ŷi = 0 1030 1794 1030
Yi = 1, Ŷi = 0 55 0 55
Yi = 0, Ŷi = 1 775 11 775
Yi = 1, Ŷi = 1 77 132 77

Sensitivity 0.5833 1.0000 0.5833
Specificity 0.5706 0.9939 0.5706
Accuracy 0.5715 0.9943 0.5715

RMSE 0.2508 0.0373 0.2508

The threshold used to convert the continuous response into a binary response is the mean of the outcome variable.
The authors performed the calculations.

It cannot be concluded from the foregoing, however, that XGBoost has a poor relative predictive
capacity. Model-tuning procedures have not been incorporated in Table 3. However, tuning offers
the possibility of improving the predictive capacity by modifying some specific parameter estimates.

5 This is not surprising because XGBoost (linear) is a combination of linear probability models.
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The following are some of the possible tuning actions that could be taken: Fixing a maximum for
the number of branches of the tree (maximum depth); establishing a limited number of iterations of
the boosting; or fixing a number of subsamples in the training sample. The xgboost package in R
denotes these tuning options as general parameters, booster parameters, learning task parameters,
and command line parameters, all of which can be adjusted to obtain different results in the prediction.

Figure 2 shows the ROC curve obtained using the three methods on the training and testing
samples. This study confirmed that the logistic regression and XGBoost (linear) have a similar predictive
performance. The XGBoost (tree) presented an outstanding AUC in the case of the training sample,
and the same value as the logistic regression in the testing sample. However, as discussed in Table 3,
it failed to maintain this degree of sensitivity when this algorithm is used with new samples.

 
Figure 2. The receiver operating characteristics (ROC) curve obtained using the three methods on the
training and testing samples. The red solid line represents the ROC curve obtained by each method
in the training sample, and the blue dotted line represents the ROC curve obtained by each method
in the testing sample. The area under the curve (AUC) is 0.58 for the training sample (T.S) and 0.49
for the testing sample (Te.S) when logistic regression is used; 0.58 for the T.S and 0.53 for the Te.S
when XGBoost (linear booster) is used; and, 0.997 for the T.S and 0.49 for the Te.S when the XGBoost
(tree booster) is used.

4.3. Correcting the Overfitting

One of the most frequently employed techniques for addressing the overfitting problem is
regularization. This method shrinks the magnitude of the coefficients of the covariates in the modelling
as the value of the regularization parameter increases.

In order to determine whether the XGBoost (tree booster) can perform better than the logistic
regression model, a simple sensitivity analysis of the regularization parameters was proposed. In so
doing, the evolution of the following confusion matrix measures was evaluated: Accuracy, sensitivity
and specificity—according to some given regularization parameter values for the training and the
testing sample—and, finally, the regularization parameter was chosen that gives the highest predictive
measures in the training and testing samples.

Two regularization methods were considered. First, the L2 (Ridge) was considered, which
is Chen and Guestrin (2016) original proposal and takes the l2-norm of the leaf weights. It has a
parameter λ that is multiplied to the l2-norm. Second, the L1 (Lasso) method was considered, which is
an additional implementation possibility of the xgboost package in R that takes the l1-norm of the leaf
weights. It has a parameter α that is multiplied to the l1-norm. Consequently, λ and calibrated the
regularization term in (4). For simplicity, no tree pruning was implemented, so μ = 0 in (4).
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The values of α and λ should be as small as possible, because they add bias to the estimates,
and the models tend to become underfitted as the values of the regularization parameters become
larger. For this reason, their changes were evaluated in a small interval. Figure 3 shows the predictive
measures for the testing and training samples according to the values of α when the L1 regularization
method was implemented. When α = 0, exactly the same predictive measure values as in Table 3
(column 3) were obtained because the objective function had not been regularized. As the value of α
increased, the models’ accuracy and sensitivity values fell sharply—to at least α � 0.06 in the training
sample. In the testing sample, the fall in these values was not as pronounced. However, when α
was lower than 0.06, the specificity performance was the lowest of the three measures. Moreover,
selecting an α value lower than 0.05 resulted in higher accuracy and sensitivity measures, but lower
specificity. In contrast, when α equaled 0.06 in the testing sample, the highest specificity level of 0.5079
was obtained, with corresponding accuracy and sensitivity values of 0.5892 and 0.5988, respectively.
In the training sample, when α = 0.06 the specificity, accuracy and sensitivity were: 0.7227, 0.6086,
and 0.6000, respectively. As a result, when was fixed at 0.06, the model performed similarly in both the
testing and training samples.

 
Figure 3. The predictive measures according toα. L1 method applied to the training and testing samples.

Thus, with the L1 regularization method (α = 0.06), the new model recovered specificity, but lost
some sensitivity when compared with the performance of the first model in Table 3, for which no
regularization was undertaken. Thus, the authors concluded that α = 0.06 which can be considered
as providing the best trade-off between correcting for overfitting while only slightly reducing the
predictive capacity.

Figure 4 shows the predictive measures for the testing and training samples according to the
values of λ when the L2 regularization method is implemented. From λ = 0 to λ = 0.30. all predictive
measures were approximately 100% in the training sample. However, very different results were
recorded in the testing sample. Specifically, accuracy and sensitivity fell slowly, but specificity was
low—there being no single λ that made this parameter exceed at least 20%. Therefore, no λ could help
improve specificity in the testing sample. The L2 regularization method did not seem to be an effective
solution to correct the problem of overfitting in our case study data set.



Risks 2019, 7, 70

 
Figure 4. The predictive measures according toλ. L2 method applied to the training and testing samples.

The difference in outcomes recorded between the L1 and L2 regularization approaches might
also be influenced by the characteristics of each regularization method. Goodfellow et al. (2016) and
Bishop (2007) explained that L1 penalizes the sum of the absolute value of the weights, and that it
seems to be robust to outliers, has feature selection, provides a sparse solution, and is able to give
simpler but interpretable models. In contrast, L2 penalizes the sum of the square weights, has no
feature selection, is not robust to outliers, is more able to provide better predictions when the response
variable is a function of all input variables, and is better able to learn more complex models than L1.

4.4. Variable Importance

Variable importance or feature selection is a technique that measures the contribution of each
variable or feature to the final outcome prediction based on the Gini impurity. This method is of great
relevance in tree models because it helps identify the order in which the leaves appear in the tree.
The tree branches (downwards) begin with the variables that have the greatest effect and end with
those that have the smallest effect (for further details see, for example, Kuhn and Johnson 2013).

Table 4 shows the three most important variables for each method. The two agree on the
importance of the percentage of total kilometers travelled in urban areas as a key factor in predicting
the response variable. Total kilometers driven and age only appeared among the top three variables in
the case of logistic regression, while the percentage of kilometers travelled over the speed limits and
the percentage of kilometers driven at night appeared among the most important variables in the case
of the XGBoost method.
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Table 4. Variable Importance. The most relevant variables of the different methods.

Level of Importance Logistic Regression
XGBoost

(Tree Booster)

First percentage of total kilometers
travelled in urban areas

percentage of kilometers above the
mandatory speed limits

Second age percentage of total kilometers
travelled in urban areas

Third total kilometers percentage of total kilometers
travelled at night

5. Conclusions

XGBoost, and other boosting models, are dominant methods today among machine-learning
algorithms and are widely used because of their reputation for providing accurate predictions.
This novel algorithm is capable of building an ensemble model characterized by an efficient learning
method that seems to outperform other boosting-based predictive algorithms. Unlike the majority of
machine learning methods, XGBoost is able to compute coefficient estimates under certain circumstances
and, therefore, the magnitude of the effects can be studied. The method allows the analyst to measure
not only the final prediction, but also the effect of the covariates on a target variable at each iteration of
the boosting process, which is something that traditional econometric models (e.g., generalized linear
models) do in one single estimation step.

When a logistic regression and XGBoost compete to predict the occurrence of accident claims
without model-tuning procedures, the predictive performance of the XGBoost (tree booster) was much
higher than the logistic regression in the training sample, but considerably poorer in the testing sample.
Thus, a simple regularization analysis has been proposed here to correct this problem of overfitting.
However, the improvement in predictive performance of the XGBoost following this regularization
was similar to that obtained by the logistic regression. This means additional efforts have to be taken
to tune the XGBoost model to obtain a higher predictive performance without overfitting the data.
This might be considered as the trade-off between obtaining a better performance, and the simplicity it
provides for interpreting the effect of the covariates.

Based on our results, the classical logistic regression model can predict accident claims using
telematics data and provided a straightforward interpretation of the coefficient estimates. Moreover,
the method offered a relatively high predictive performance considering that only two coefficients
were significant at the 90% confidence level. These results are not bettered by the XGBoost method.

When the boosting framework of XGBoost is not based on a linear booster, interpretability
becomes difficult, as a model’s coefficient estimates cannot be calculated. In this case, variable
importance can be used to evaluate the weight of the individual covariates in the final prediction.
Here, different conclusions were obtained for the two methods employed. Thus, given that the
predictive performance of XGBoost was not much better than the logistic regression, even after
careful regularization, the authors concluded that the new methodology needs to be adopted carefully,
especially in a context where the number of event responses (accident) is low compared to the opposite
response (no accident). Indeed, this phenomenon of unbalanced response is attracting more and more
attention in the field of machine learning, because it is known that machine learning algorithms do not
work well in datasets with imbalanced responses (He and Garcia 2008). XGBoost might perform better
in other problems, especially when the number of events and no events are balanced. The reputation
of XGBoost (tree booster) may be due to its capacity of accuracy. In our case study, XGBoost has
proven the highest accuracy in the testing and training data sets, but it does not seem to be effective
for sensitivity.

For future work, it would be interesting to see bigger datasets with thousands of explanatory
variables to conclude whether or not XGBoost has better predictive performance than a regularized
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version of logistic regression. Similarly, it would also be interesting to see comparative studies for other
machine learning approaches using this dataset, including but not limited to neural network approaches.
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Appendix A

R Code

# Loading data

load(“data.Rdata”)
x<-data

# Training and test data sets

# We divide 70% of the data set as training, and 30% as testing
library(caret)
part<-createDataPartition(x$Y,p = 0.70, list = F)
train.set<-x[part,] # training data set
train.set<-train.set()[−1]
testing.set<- x[-part,] # testing data set
testing.set<-testing.set()[−1]

## First Method: Logistic Regression

logistic1 <- glm(factor(train.set$Y) ~ x2+I(x2ˆ2)+x3+x4+factor(x1)+x5+x6+x7+x8,
data = train.set,family = binomial(link = ‘logit’))
summary(logistic1)

# Predicting the output with the testing data set

predicted.log.test <- predict(logistic1,testing.set, type = ‘response’)
# Predicting the output with the training data set

predicted.log1.train<- predict(logistic1,train.set, type = ‘response’)
# Variable Importance

varImp(logistic1)
## Second Method: XGBoost (tree booster)

library(xgboost)
library(Matrix)

# Function xgboost requires sparsing data first

sparse_xx.tr<- sparse.model.matrix(Y ~ x2+I(x2ˆ2)+x3+x4+factor(x1)+x5+x6+x7+x8, data = train.set)
sparse_xx.te<- sparse.model.matrix(Y ~ x2+I(x2ˆ2)+x3+x4+factor(x1)+x5+x6+x7+x8,
data = testing.set)
xgboost_reg <- xgboost(data = sparse_xx.tr, label = train.set$Y, objective = “binary:logistic”,
nrounds = 100, verbose = 1)

# Predicting the output with testing data set

pred.xgboost.test<- predict(xgboost_reg,sparse_xx.te, outputmargin = F)
# Predicting the output with training data set

pred.xgboost.train<-predict(xgboost_reg,sparse_xx.tr, outputmargin = F)
# Variable Importance

importance <- xgb.importance(feature_names = sparse_xx.tr@Dimnames[(2)],
model = xgboost_reg)
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Abstract: In this study, we consider the problem of zero claims in a liability insurance portfolio
and compare the predictability of three models. We use French motor third party liability (MTPL)
insurance data, which has been used for a pricing game, and show that how the type of coverage and
policyholders’ willingness to subscribe to insurance pricing, based on telematics data, affects their
driving behaviour and hence their claims. Using our validation set, we then predict the number of
zero claims. Our results show that although a zero-inflated Poisson (ZIP) model performs better than
a Poisson regression, it can even be outperformed by logistic regression.

Keywords: validation; generalised linear modelling; zero-inflated poisson model; telematics

1. Introduction

There are two main types of machine learning: (i) predictive or supervised learning in which the
machine trains data and learns the relationship between inputs and outputs and (ii) descriptive and
unsupervised learning in which machine uses the inputs and discovers the outputs (Murphy 2012).
Classification and regression are two supervised learning approaches which are well-known in
general insurance. One of the objectives of the insurance companies is to charge premiums which
is commensurate with the risk characteristics of their policyholders and for this, they classify the
policyholders into homogeneous groups according to, say, age, sex, type of policy, subscription to
telematics-based insurance pricing (see, Section 3), etc. Regression analysis and its extensions such as
generalised linear modelling (GLM) are strong tools in insurance pricing. Unlike regression models, GLM
is not constrained to a normal distribution and can be applied to any distribution from an exponential
family. For example, a logistic regression model handles binary responses and thus is suitable for a
Bernoulli distribution and a Poisson regression model applies to count data and deals with discrete
random variables. GLM has long been used in actuarial practice to model claims amounts and claims
frequency in the insurance portfolio (Haberman and Renshaw 1996; McCullagh and Nelder 1998).

In this study, we consider motor third party liability (MTPL) insurance. One of the problems
in modelling claims frequency in this class of insurance is the number of zero claims and building
a model that can capture all these zero claims. Zero claims in MTPL does not necessarily mean that
there has been no accident during the term of a policy, rather it means that there has been no reported
accident to the insurance company. This particularly happens under a no claim discount (NCD) system
as some policyholders, known as bonus hunger, prefer to benefit from a discount by not reporting a
claim. Another problem which is related to the previous one is the problem of over-dispersion. In a
Poisson regression model, claims are distributed according to a Poisson distribution with equal mean
and variance. Therefore, to build an appropriate model we need to test our dataset for the presence of
over-dispersion (Peruman-Chaney et al. 2013; Wilson and Einbeck 2018). Binomial regression, negative
binomial (NB) regression and zero-inflated Poisson (ZIP) model are techniques that can handle over
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and under dispersed data with the latter being able to distinguish between structured and unstructured
zeros. Lambert (1992) considers a ZIP model where the probability of only possible observation, i.e., 0
and the parameter of a Poisson distribution depend on some covariates. Lambert (1992) applies this
technique to model the number of defects in manufacturing. Since then, this model has been applied
in different settings including insurance pricing. For example, Lee et al. (2002) use this model to
analyse the impact of lifestyle and motivations on car crashes involving young drivers in Australia.
Yip and Yau (2005) use ZIP to model claims frequency in car insurance. They compare different types
of zero-inflated count models and conclude that a zero-inflated double Poisson regression model is a
good fit for their dataset. Boucher et al. (2007) compare zero-inflated, hurdle and compound frequency
models and conclude that the bonus rate is an important factor for policyholders to report the claim.
In another study, Boucher et al. (2009) consider the problem of bonus hunger and construct a ZIP
model to distinguish between the distribution of the number of claims and the number of accidents.

Model fitting and the selection of risk factors can be challenging in some cases. There are some
papers that consider these problems. For example, Tang et al. (2014) propose a method to determine
the variables in a ZIP model. They combine EM algorithm and adaptive LASSO and find that their
technique performs better for the non-inflated part of the ZIP regression. Liu and Pitt (2017) also apply
LASSO and ridge regression to address this issue in a bivariate negative binomial regression model.
See, also, Cantoni and Auda (2018), Chowdhury et al. (2019) and Chen et al. (2019) among others.

The impact of mileage as a risk factor is considered by Lemaire et al. (2015). They conclude
that annual mileage is a powerful predictor of the number of claims at-fault. Tselentis et al. (2017)
provide a review of some Usage-based motor insurance (UBI) including Pay-as-you-drive (PAYD),
Pay-how-you-drive (PHYD) and Pay-at-the-pump (PATP). PATP is a pricing method that considers
fuel consumption as a rating factor but did not get enough attention from researchers. These new
pricing methods require telematics data. In recent years, there is much research on telematics data and
mileage based (MB) insurance. Boucher et al. (2017) apply generalised additive models and consider
both time and mileage in insurance pricing. See the following papers on the relevance of including the
mileage as a risk factor (Ayuso et al. 2019; Guillen et al. 2019; Verbelen et al. 2018).

In addition to regression analysis, neural network, decision tree, random forest and boosting
algorithms such as XGBoost, etc., are other machine learning techniques that can be applied to model
claims frequency and insurance pricing. However, although these models have good predictive power,
unlike regression models, it is difficult to interpret their parameters and their computation time is
long. Weerasinghe and Wijegunasekara (2016) study neural network, decision tree and multinomial
logistic regression models. Their results show that the neural network has the best predictive
performance among the three models. However, they state that to understand the relationship between
independent and dependent variables, the logistic regression is the best model. Fauzan and Murfi
(2018) compare XGBoost, neural network and random forest models and find that in terms of the Gini
index, XGBoost is a more accurate algorithm. See, also, Spedicato et al. (2018) and Gao et al. (2019) and
the references therein.

In this study, we consider the classical Poisson and logistic regression and compare our findings
with a ZIP model. We divide our dataset into training and validation (hold-out) set to predict the
number of zero claims. This paper is organised as follows. In the next section, we present models and
notation. Section 3 discusses our dataset. In Section 4, we build our models and in Section 5 we test
their validation. Finally, Section 6 concludes.

2. Methodology and Notation

Risk classification is an important concept in general insurance pricing. An insurance company
tries to determine the insurance premium according to risk characteristics of policyholders such
as age, sex, type of policy and car model, etc. Regression analysis is a well-known technique to
incorporate such risk (rating) factors. In this section, we review Poisson regression, Logistic regression
and ZIP model.
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Let yi ∈ {0, 1, 2, . . . } be a dependent or response variable such as number of claims, for i = 1, . . . , n
that follows a Poisson distribution with parameter λi. Assuming a log link function and that λi is a
linear combination of rating factors β0 + β1xi1 + · · ·+ βkxik we have

E[yi|xi] = λi = exp{β0 + β1xi1 + · · ·+ βkxik}, yi ∼ Pois(λi) for i = 1, 2, . . . , n. (1)

When we consider the average number of claims for each policyholder, we need to specify a
unit measure or exposure. We cannot expect two policyholders with the same risk characteristics,
but different terms, to be equally risky. Normally, the length of coverage is considered as an exposure.
However, in recent years, it is argued that even if policyholders join at different times, some may
drive fewer distances than others. Therefore, when such information is available as in telematics data,
mileage travelled is considered as a more appropriate exposure (Guillen et al. 2019). In our study,
all policyholders are under observation for one year and thus the exposure for each policyholder is 1.

We use logistic regression when yi ∈ {0, 1} is a binary, also called dichotomous variable.
In that case,

E[yi|xi] = πi(x) = g (β0 + β1xi1 + · · ·+ βkxik)

where g is a logistic link function to ensure that πi is between 0 and 1. Hence

πi(x) =
exp {β0 + β1xi1 + · · ·+ βkxik}

1 + exp {β0 + β1xi1 + · · ·+ βkxik}
(2)

or, more commonly

log
(

πi(x)
1 − πi(x)

)
= β0 + β1xi1 + · · ·+ βkxik.

In this paper, we use logistic regression to answer the question: “What is the probability of a claim
(yi = 1) and zero claims (yi = 0) for a given policyholder with particular risk characteristics?”

When the mean and variance of the underlying population is not equal, the assumption of a
Poisson distribution is not suitable and a better candidate is a distribution that can allow for over/under
dispersion such as a binomial or NB distribution. However, sometimes we deal with a large number of
zeros in our dataset. For example, we see in the next section that many policyholders have zero claims,
which does not necessarily mean that they were involved in no accidents, but they are low risk. In such
cases, we can apply a ZIP model which is a mixture of a point mass at zero, also called structural zeros,
and another claims frequency distribution, such as a Poisson or NB, which can be written as

Pr(yi = j) =

{
πi + (1 − πi)Pr(yi = 0) j = 0

(1 − πi)Pr(yi = j) j = 1, 2, . . .
(3)

where πi is given by Equation (2) and denotes the probability of zeros when zero is the only possible
observation. In a ZIP model, yi follows a Poisson distribution with parameters being given by Equation (1).

We can easily implement these models in R and the codes are provided in Appendix A (Frees et al.
2014, 2016).

3. Data

We use datasets provided by the French Institute of Actuaries for the 2017 pricing game, which
is based on French MTPL insurance. The dataset is available in Package ‘CASdatasets’ by Dutang
and Dutang and Charpentier (2019) and to the best of the author’s knowledge, this is the first time
it is used in a study. The dataset contains some information about the new pricing strategy of the
company. The policyholders were given a choice whether they would like to join a new mileage-based
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(MB) pricing system or not. We would like to see how policyholders’ perception regarding this
new system affects their driving behaviour and hence their number of claims. There are two types
of datasets: (i) underwriting and (ii) claims dataset. Underwriting datasets are available for three
years, whereas claims dataset is only publicly available for year 0. Therefore, we only use data from
year 0. After merging claims and underwriting datasets, we randomly split our data into training and
validation sets with 60% being in training and 40% in the validation set. As some policyholders have
more than one car, we assume that each policy covers only one car and therefore consider the number
of policies and claims per policy rather than claims per policyholder. We have 100,000 policies (rows
in underwriting dataset) and 12,654 policies with claims (rows in claims dataset after consolidation).
Table 1 shows the variables we use in our study. In addition to these variables, information about Insee
town code, make and model, marketing duration and age of driving license are also provided. However, we
do not take into account these variables as, for example, there is a considerable number of policies
with 113 years for driving license age which is not reasonable.

In Table 1 policy ID refers to the combination of the vehicle ID and policyholder ID. In this study,
we have 100,000 policy ID. Bonus coefficient is the percentage of the full premium that policyholders
pay allowing for their claims experience and the allocated discount. There are four types of coverage
available: Maxi, Median 2, Median 1 and Mini. The time from the last policy alteration, such as
the inclusion of a new driver, is represented by situation duration. Payments can be made annually,
semi-annually, quarterly and monthly. As it is usual for the liability insurance, some of the claims
amounts are negative1. Therefore, we set all claims amounts of less than 30 equal to zero (Ferreira and
Minikel 2012; Frees et al. 2014).

Table 1. Variables in our datasets.

Control Policy Driver (1 and 2) Vehicle Response

policy ID bonus coefficient driver 2? age number of claims
type of coverage age cylinder

duration gender din power
situation duration fuel type

payment frequency max speed
subscription to MB type

usage value
weight

Subscription to mileage-based (MB) policy refers to a new scheme in which one of the main risk
factors is the travel distance and policyholders are charged based on their mileage, also known as PAYD
scheme. Policy Usage includes WorkPrivate, Retired, Professional and AllTrips. If a policy covers
two drivers, age and gender are provided for both drivers. Different features of the car including
age, engine power (represented by Din), fuel type, max speed (provided by manufacturing company),
type—Tourism and Commercial, value and weight are provided and will be used as rating factors.
In this study, we only consider the number of claims as a dependent variable.

We now provide some explanatory analysis based on the training set. The minimum policy term
in our dataset is one year, which means all these policies have been under observation for at least one
year. Since claims have occurred in Year 0, we consider car years or earned exposure of one year for all
policies. The maximum claims number is 6, the oldest policyholder is 103 years old and the oldest car
is 66 years old. Table 2 presents mean and standard deviation of our numerical explanatory variables
for all policies, policies without claims and policies with at least one claim based on the training set.
In order to examine which variables are considerably different in the group of policies with claims and
the group of policies without claims and hence are effective on the frequency of claims, we can apply

1 This happens due to subrogation rights of the insurer.
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Mann-Whitney test. The Mann-Whitney test is a nonparametric test of the null hypothesis that it is
equally likely that a randomly selected value from one sample is less than or greater than a randomly
selected value from a second sample. The Mann-Whitney test shows that the difference in the mean
for all these variables is statistically significant with p-value < 0.0001, except for policy duration and
driver age 2 with p-values 0.001232 and 0.004252, respectively.

Table 2. The mean and standard deviation of numerical variables in the training set.

Variables
All Policies Policies without Claims Policies with Claims

Mean SD Mean SD Mean SD

Policy duration 11.09 8.56 11.13 8.57 10.78 8.56
Policy duration since the last change 2.74 2.36 2.78 2.41 2.40 2.36

Driver age 1 54.65 14.86 54.75 14.86 53.84 14.86
Driver age 2 46.93 16.21 47.06 16.19 46.04 16.21
Vehicle value 18,086 8677.92 17,858 8618.47 19,894 8677.92
Vehicle age 9.56 7.03 9.84 7.19 7.30 7.03

Engine cylinder 1645 460.59 1,639 464.05 1,696 460.59
Speed 170.71 23.48 170.13 23.69 175.31 23.48
Weight 1171.59 288.39 1164.36 288.68 1228.89 288.39

Motor power (din) 91.43 34.41 90.58 34.35 98.23 34.41

Figure 1 shows the distribution of the number of claims. We can observe that zero claims form a
large part of our portfolio.

Figure 1. Distribution of claims frequency.

Figure 2 illustrates how policies are distributed across categorical variables. As we can see,
most of our policies cover one driver and most of the drivers are men aged between 51 and 70.
Our policyholders prefer Maxi and drive tourism cars for work and private purposes. Most of them
pay annually and are distributed almost evenly across monthly and biannual payment categories.
They have not registered for MB scheme and they use diesel with very few of them using a hybrid car.
Next, we see how claims are distributed across categorical variables.
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Table 3 presents the distribution of the number of claims across different categories. For the
variable policy usage, although professional usage forms a small portion of our portfolio, claims under
professional group is more than private and retired groups. However, from Figure 3 professional and
retired groups have almost the same median loss and except for all trips we can see little difference
among policies in this group. Under this insurance, the most comprehensive protection is provided
by maxis and as can be expected this may lead to moral hazard. We can see there are more claims
under maxis than under other types of coverage. The order of coverage is maxis, median 2, median 1 and
mini and unsurprisingly, the percentage of claims reduces in the same order. Under mini, 97.39% of
the policies have made zero claims. Perhaps lower coverage is a motivation for policyholders to take
more precautious measures. Figure 3 shows the effect of policy coverage on the amounts of claims
and as we can see this will be an effective covariate in our model. From Table 3 those policyholders
who were willing to subscribe to MB plan are less likely to have an accident. Figure 3 shows that the
subscribers are less dispersed than those who have not subscribed. From the regulatory point of view,
gender cannot be used as a discriminatory factor. In fact, we can see there is no considerable difference
between male’s and female’s number of claims. In Figure 2 the least favourable payment frequency is
quarterly payment, but we do not see considerable differences in claim numbers and amounts for
different categories of payments. A large number of policies provide coverage only for one driver,
but policies with two drivers have a slightly greater chance of making claims. The age of the first driver
ranges from 19 to 103. We classify the policyholders in different age groups as 18–30, 31–50, 51–70,
71–85 and 85+. Most of the policyholders are in the range 51–70 and the next largest group is between
31 and 50. Both Table 3 and Figure 3 do not show a significant difference in claims frequency and
claim amounts for different age categories and it seems that some categories can be combined together.
In fact, in the next section we see that instead of these categories, we use age as a numerical covariate
in our models as some categories are not statistically significant.

Figure 2. Distribution of policies according to categorical variables.
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Figure 3. Distribution of log of claims amounts according to categorical variables.

Most of our policyholders drive gasoline cars and very few of them have hybrid cars.2 According
to Table 3, hybrid cars make more claims than gasoline and diesel cars. Most policies cover tourism
cars and claims percentage made by this type of cars is more than commercial cars. Our initial analysis
suggests that payment frequency and gender are not significant variables and therefore can be removed
from our study. In the next section, we will see that they are indeed insignificant and are not included
in our final models.

Table 3. Frequency of claims per categorical variables in the training set.

Variables Categories
Claim frequency

Total
0 1 2 3 4 5 6

Policy usage WorkPrivate 35,248 3, 877 450 49 7 0 1 39,632
88.94% 9.78% 1.14%

Retired 14,193 1, 462 191 20 3 0 0 15,869
89.44% 9.21% 1.20%

Professional 3, 729 544 76 10 0 0 0 4, 359
85.55% 12.48% 1.74%

All trips 41 10 1 0 0 0 0 52
78.85% 19.23% 1.92%

Policy coverage Maxis 33,459 4,489 600 70 9 0 1 38,628
86.62% 11.62% 1.55%

Median 2 9,628 862 82 7 1 0 0 10,580
91.00% 8.15% 0.78%

Median 1 5, 122 412 32 2 0 0 0 5, 568
91.99% 7.04% 0.57%

Mini 5, 002 130 4 0 0 0 0 5, 136
97.39% 2.53% 0.08%

2 According to the game document, hybrid cars were not popular at the time of collecting this dataset.
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Table 3. Cont.

Variables Categories
Claim frequency

Total
0 1 2 3 4 5 6

Subscription to MB No 50,946 5, 714 693 76 10 0 1 57,440
88.69% 9.95% 1.21%

Yes 2, 265 179 25 3 0 0 0 2, 472
91.63% 7.24% 1.01%

Payment Yearly 20,094 2, 106 263 25 3 0 1 22,492
89.34% 9.36% 1.17%

Biannual 15,930 1,746 199 29 3 0 0 17,907
88.96% 9.75% 1.11%

Monthly 15,880 1, 875 234 23 4 0 0 18,016
88.14% 10.41% 1.30%

Quarterly 1, 307 166 22 2 0 0 0 1, 497
87.31% 11.09% 1.47%

Policy with 2 drivers No 35,675 3, 814 457 47 6 0 0 39,999
89.19% 9.54% 1.14%

Yes 17,536 2,079 261 32 4 0 1 19,913
88.06% 10.44% 1.31%

Gender 1 Male 32,118 3, 501 433 52 4 0 0 36,108
88.95% 9.70% 1.20%

Female 21,093 2, 392 285 27 6 0 1 23,804
88.61% 10.05% 1.20%

Age 1 18–30 2, 471 299 29 4 0 0 1 2, 804
88.12% 10.66% 1.03%

31–50 18,961 2, 228 256 24 4 0 0 21,473
88.30% 10.38% 1.19%

51–70 22,978 2, 479 322 40 3 0 0 25,822
89.99% 9.60% 1.25%

71–85 8,154 822 105 9 3 0 0 9, 093
89.67% 9.04% 1.15%

85+ 647 65 6 2 0 0 0 720
89.86% 9.03% 0.83%

Vehicle fuel Diesel 28,605 3, 783 475 54 7 0 1 32,925
86.88% 11.49% 1.44%

Gasoline 24,565 2, 104 241 25 3 0 0 26,938
91.19% 7.81% 0.89%

Hybrid 41 6 2 0 0 0 0 49
83.67% 12.24% 4.08%

Vehicle type Tourism 47,891 5, 387 668 73 10 0 1 54,030
88.64% 9.97% 1.24%

Commercial 5, 320 506 50 6 0 0 0 5, 882
90.45% 8.60% 0.85%

Total 53,211 5,893 718 79 10 0 1 59,912

4. Results

In this section, we use statistical software R and package “pscl” to build Poisson, logistic and ZIP
models (Zeileis et al. 2008). Our purpose is to estimate the frequency and the probability of claims
and compare our results with a ZIP model using Akaike Information Criterion (AIC) and Bayesian
Information Criterion (BIC).

Table 4 presents three Poisson regression models with their estimated coefficients and their
corresponding p-values. Model 1 is the full model where we consider all the variables from Section 3.
However, according to pricing game document, there is a correlation between vehicle cylinder, weight,
value, speed and power and in our dataset, some of the entries for weight, value and cylinder are
missing. Therefore, we only incorporate speed and power into our models. We build Model 2 using
the stepwise selection of variables that can be implemented in R. In Model 3 we only consider variables
which are statistically significant at 0.05.
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Table 4. Regression coefficient of Poisson models.

Coefficients
Model 1: All Variables Model 2: Stepwise Selection Model 3: Only Significant

Estimate p-Value Estimate p-Value Estimate p-Value

Intercept −2.6883 <0.0001 −2.5645 <0.0001 −2.4729 <0.0001
Age 1 0.0048 0.0001 0.0048 0.0002 0.0036 0.0026
Age 2 −0.0034 0.0084 −0.0034 0.0087 −0.0033 0.0111

Female 1 0.0380 0.1251 0.0374 0.1285
Driver2? 0.1790 0.0057 0.1781 0.0060 0.1717 0.0080

Situation duration −0.0185 0.0078 −0.0185 0.0080 −0.0220 0.0013
Bonus 0.8677 <0.0001 0.8683 <0.0001 0.9125 <0.0001

Coverage(Med2) −0.1854 <0.0001 −0.1847 <0.0001 −0.1877 <0.0001
Coverage(Med1) −0.2282 <0.0001 −0.2280 <0.0001 −0.2306 <0.0001
Coverage(Mini) −1.2611 <0.0001 −1.2631 <0.0001 −1.2723 <0.0001

Payment(biannual) 0.0485 0.0919 0.0487 0.0908
Payment(quarterly) 0.1676 0.0184 0.1681 0.0181
Payment(monthly) 0.0911 0.0018 0.0912 0.0018
Subscription to MB −0.1586 0.0198 −0.1587 0.0197 −0.1675 0.01370

Usage(retired) −0.0304 0.4331 −0.0297 0.4433 −0.0315 0.4146
Usage(professional) 0.1536 0.0003 0.1535 0.0002 0.1481 0.0002

Usage(all trips) 0.3451 0.2328 0.3456 0.2321 0.3448 0.2332
Duration −0.0025 0.0969 −0.0025 0.0978

Fuel(gasoline) −0.2621 <0.0001 −0.2630 <0.0001 −0.2607 <0.0001
Fuel(hybrid) 0.1265 0.6896 0.1225 0.6988 0.1196 0.70588

Type(commercial) 0.0318 0.5466
Din(power) 0.0022 0.0004 0.0026 <0.0001 0.0024 <0.0001
Vehicle age −0.0316 <0.0001 −0.0318 <0.0001 −0.0332 <0.0001

Vehicle speed 0.0009 0.3967

Log-likelihood −23,207 −23,207 −23,216
Degrees of freedom 24 22 17

AIC 46,462 46,458 46,466
BIC 46,678 46,656 46,619

Running time (s) 0.761 7.336 0.601

As we can see, some of the coefficients are statistically significant at 0.0001. For example,
the coefficient associated with the Bonus is significant and positive as expected. The bonus represents
the percentage of the full premium and a large percentage shows an adverse claims history of a
policyholder. The positive sign indicates that as the percentage of the full premium increases, the mean
of claims frequency will increase. The coefficients associated with Coverage are negative for all
categories and significant. The coefficient of Median 2 shows that the policyholders with this type of
coverage have fewer claims than policyholders with Maxi coverage (the reference level). For example,
in Model 1, a policyholder with a Median 2 has fewer claims than a policyholder with a Maxi
coverage by exp(−0.1854) = 0.83 and a policyholder with a Mini coverage has fewer claims by
exp(−1.2611) = 0.28. The coefficient of the car’s power, represented by Din, is positive and significant,
which indicates that powerful cars are more likely to be involved in an accident and therefore the
mean of claims frequency for the owners of the powerful cars is higher. Unlike Ayuso et al. (2019) and
Guillen et al. (2019), we found that Vehicle age has a negative impact on the number of claims. In our
study, most of the policyholders are middle-aged and more likely to have old cars. In Section 3 we
saw that the mean of the vehicle age is 9.56 for all policies and 7.30 for policies with at least one claim.
Our portfolio of middle-aged policyholders also affects the sign of the coefficient associated with Age 1.
Our dataset includes drivers as old as 103. Therefore, it seems reasonable to find a positive impact
of age on the mean of the number of claims. In Model 1 the coefficients which are not significantly
different from zero include Female 1, car usage for Retired and All trips, Hybrid fuel, Type and Speed.
The coefficient of Professional usage indicates that Professional usage increases the mean of claims
frequency compared to Work and private usage (the reference level) by exp(0.1536) = 1.17. This is in
line with Table 3 that policies for professional purposes make more claims. We obtain similar results
for gasoline cars as in Table 3. Owners of Gasoline cars have fewer claims than owners of Diesel cars
by exp(−0.2621) = 0.77. We can see that the coefficient associated with Driver2 is positive. This seems
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reasonable as a policy that covers two drivers is more likely to make claims. The coefficient of Age 2
is negative. One interpretation can be that the average age of the second drivers is lower than the
average age of the first drivers. However, in Section 3, we saw that driver age 2 is not significantly
different for policies with claims and policies without claims. The coefficients associated with Duration
and Policy duration are both negative. This implies that more experienced policyholders make fewer
claims and also the more stable a policy is, the lower the mean of the number of claims. The coefficient
of subscription to MB is negative and therefore this variable reduces the mean of claims frequency.
Perhaps those who are willing to be monitored by telematics technology are more confident about
their driving behaviour. We saw in the previous section that payment frequency is not a significant
variable. As we can see, their corresponding p-values for some categories in models 1 and 2 are not
significant at 0.05 and therefore we have removed them from Model 3. However, we decided to keep
the variable Usage, although not all categories are significant at 0.05, as we found in the previous
section that it is effective on the number of claims. Among our three models, Model 2 has the lowest
AIC and Model 3 has the lowest BIC. As we can see, the computation time for Model 2 is longer than
the other two models. The reason is that the stepwise algorithm examines different models to find the
one with the smallest AIC.

Table 5 presents three logistic models with their coefficients and the corresponding p-values.
Similar to Table 4, Model 1 includes all variables, Model 2 is based on the stepwise algorithm and
Model 3 only includes significant variables. The interpretation of the coefficients in logistic regression
is similar to Poisson regression and as we can see, the signs of the coefficients are the same. The only
difference is that in logistic regression we look at the impact of variables on the odds of the occurrence
of claims. So, for example, the interpretation of the coefficient associated with Bonus is that, the greater
the percentage of the full premium (adverse claims history) is, the higher the odds of the occurrence
of the claims for the coefficient associated with professional usage; we can say that the odds of the
occurrence of claims for policyholders with professional usage increases by exp(0.1691) = 1.18 as
opposed to policyholders with work and private usage. For the negative coefficient associated with
subscription to MB, we can say that the odds of the occurrence of claims fall for a policyholder who
joins this scheme. Other variables can be similarly interpreted. Model 2 is built by examining different
models and finding the one with the lowest AIC. All variables in this model are the same as the
variables in stepwise Poisson regression except for duration which is not included in stepwise logistic
regression. For Model 3 we again remove all variables with a p-value greater than 0.05. In addition,
we do not include payment frequency as this has been proved to be insignificant in Section 3. As we
can see, Model 2 has the smallest AIC and Model 3 has the smallest BIC. Further, the computation time
for the stepwise algorithm is longer than the stepwise Poisson regression model.

When building a model, it is important to consider the underlying assumptions. For example,
to fit a ZIP model to our data, we first need to test for the presence of over-dispersion. One approach is
to fit a quasi-Poisson and to determine the dispersion parameter, i.e., θ in Var(y) = θ E[y]. In our case,
using only significant variables from Tables 4 and 5, the dispersion parameter is 1.1. Alternatively,
we can fit NB regression and compare our new model with Poisson regression. In our case, AIC and
BIC for NB regression are 46,184 and 46,346, respectively, which are lower than AIC and BIC for the
Poisson regression. Now, since we have the problem of over-dispersion and excess zeros, we can fit
a ZIP model to our data. Table 6 shows the estimated coefficients and their p-values for the Poisson
(count) part and zero-inflated part of three ZIP models. Model 1 is the full model where we consider
the variables of the full model in Table 4 for the count part and the variables of the full model in Table 5
for the zero-inflated part. As we can see, most variables are not significantly different from zero. If we
consider the significant level of 0.1, the coefficient associated with Age 1 is positive as in Table 4 and
statistically significant in the count part. In addition, the coefficient associated with Age 2 is positive
and significant in the zero-inflated part, but not in the count part. From Section 3, we know that the
second divers are younger than the first drivers. Therefore, we can claim that in this group older
drivers are more likely to have zero claims. The coefficient of situation duration in the count part is
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negative and significant as in Table 4 with the same interpretation. The coefficients associated with
coverage are significant at 0.01 in the count part with the identical signs as in Table 4, but they are
not significant in the zero-inflated part. The interpretation is that the mean frequency of claims for
policyholders covered under, for example, Mini coverage is less than the policyholders covered under
Maxi coverage by exp(−1.0487) = 0.35.

The coefficient of fuel (gasoline) is positive and significant which indicates that the odds of zero
claims for drivers of gasoline cars increases by exp(0.5066) = 1.66 as opposed to drivers of diesel cars.
Further, in the zero-inflated part, the coefficient of Driver2? is negative and significant. Therefore,
a policy with two drivers is less likely to have zero claims, in other words, a policy with the 2nd
driver is more likely to be involved in an accident and to make a claim. The associated coefficient of
vehicle age is positive and significantly different from zero in the zero-inflated part, which is in line
with our findings for Poisson and logistic models that it is more likely for the owners of older cars
to have zero claims. All other variables including subscription to MB are not significantly different
from zero. The variables of Model 2 in the count and zero-inflated part come from the variables of
stepwise models in Tables 4 and 5, respectively. The coefficients have the same sign and therefore
similar interpretation as in Model 1. Again the coefficient of subscription to MB is not significantly
different from zero. Model 3 can be built using the variables of the models that contain only significant
variables in Tables 4 and 5. Coverage in the count part and Age 2, Driver2?, fuel and vehicle age
in the zero-inflated part are all significantly different from zero. In Table 6 the signs of some of the
coefficients do not conform to Tables 4 and 5. For example, subscription to MB is positive both in the
count part and in the zero-inflated part. Since such coefficients are not statistically significant, we can
conclude that they are not significantly different from zero. Comparing AIC and BIC of these three
models, we can see that the smallest AIC can be obtained by Model 2 where the variables come from
stepwise models in Tables 4 and 5 and the smallest BIC by Model 3. In addition, AIC has considerably
improved for ZIP models compared to Poisson models in Table 4. In the next section, we show that the
prediction of zero claims by ZIP is considerably better than Poisson regression.

Table 5. Regression coefficients of logistic models.

Coefficients
Model 1: All variables Model 2: Stepwise Selection Model 3: Only Significant

Estimate p-Value Estimate p-Value Estimate p-Value

Intercept −2.6571 <0.0001 −2.5321 <0.0001 −2.4255 <0.0001
Age 1 0.0043 0.0036 0.0038 0.0066 0.0032 0.0226
Age 2 −0.0048 0.0011 −0.0047 0.0013 −0.0047 0.0013

Female 1 0.0441 0.1198 0.0428 0.1275
Driver2? 0.2410 0.0012 0.2363 0.0014 0.2340 0.0016

Situation duration −0.0234 0.0027 −0.0248 0.0013 −0.0265 0.0006
Bonus 0.9017 <0.0001 0.9151 <0.0001 0.9447 <0.0001

Coverage(Med2) −0.1814 <0.0001 −0.1786 <0.0001 −0.1832 <0.0001
Coverage(Med1) −0.2111 0.0005 −0.2061 0.0007 −0.2132 0.0004
Coverage(Mini) −1.2481 <0.0001 −1.2438 <0.0001 −1.2589 <0.0001

Payment(biannual) 0.0522 0.1121 0.0490 0.1335
Payment(quarterly) 0.1852 0.0240 0.1883 0.0217
Payment(monthly) 0.0939 0.0049 0.0936 0.0051
Subscription to MB −0.2014 0.0088 −0.2038 0.0080 −0.2098 0.0063

Usage(retired) −0.0180 0.6847 −0.0149 0.7364 −0.0203 0.6455
Usage(professional) 0.1691 0.0007 0.1733 0.0002 0.1664 0.0004

Usage(all trips) 0.4841 0.1577 0.4856 0.1563 0.4835 0.1577
Duration −0.0019 0.2708

Fuel(gasoline) −0.2885 <0.0001 −0.2914 <0.0001 −0.2875 <0.0001
Fuel(hybrid) 0.0707 0.8560 0.0691 0.8592 0.0598 0.8778

Type(commercial) 0.0462 0.4402
Din(power) 0.0022 0.0019 0.0027 <0.0001 0.0025 <0.0001
Vehicle age −0.0336 <0.0001 −0.0336 <0.0001 −0.0332 <0.0001

Vehicle speed 0.0010 0.4404

Log-likelihood −20,292 −20,293 −20,299
Degrees of freedom 24 21 17

AIC 40,632 40,628 40,633
BIC 40,848 40,817 40,785

Running time (s) 0.634 31.611 0.431
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Table 6. Regression coefficients of zero-inflated Poisson (ZIP) models.

Coefficients
Model 1 * Model 2 * Model 3 *

Estimate p-Value Estimate p-Value Estimate p-Value

Poisson (count) part
Intercept −2.2750 <0.0001 −2.1404 <0.0001 −2.0736 <0.0001

Age 1 0.0066 0.0513 0.0063 0.0542 0.0046 0.1347
Age 2 0.0012 0.6647 0.0013 0.6290 0.0019 0.4998

Female 1 −0.0448 0.4746 −0.0479 0.4324
Driver2? −0.0473 0.7366 −0.0536 0.6972 −0.0809 0.5584

Situation duration −0.0009 0.0194 −0.0017 0.9282 −0.0011 0.9558
Bonus 0.5787 0.2021 0.5953 0.2068 0.5433 0.2026

Coverage(Med2) −0.3670 0.0006 −0.3734 0.0004 −0.3646 0.0006
Coverage(Med1) −0.4294 0.0022 −0.4231 0.0022 −0.4269 0.0024
Coverage(Mini) −1.0487 0.0017 −1.0599 0.0016 −1.1031 0.0007

Payment(biannual) −0.0691 0.3318 −0.0668 0.3472
Payment(quarterly) -0.0569 0.7525 −0.0452 0.8002
Payment(monthly) 0.0091 0.8961 0.0137 0.8427
Subscription to MB 0.0596 0.7580 0.0462 0.8099 0.0126 0.9486

Usage(retired) −0.0623 0.5523 −0.0623 0.5455 −0.0538 0.6006
Usage(professional) 0.0723 0.5491 0.0710 0.5063 0.0952 0.3725

Usage(all trips) 0.2543 0.6523 0.2375 0.6765 −0.0332 0.9544
Duration −0.0043 0.2948 −0.0025 0.1145

Fuel(gasoline) −0.0346 0.6549 −0.0387 0.6228 −0.0759 0.3854
Fuel(hybrid) 0.6976 0.2553 0.7050 0.2500 0.6366 0.3302

Type(commercial) 0.0284 0.8457
Din(power) 0.0023 0.3055 0.0026 0.1207 0.0024 0.3063
Vehicle age 0.0024 0.7925 0.0032 0.1207 0.0063 0.4799

Vehicle speed 0.0010 0.7557
Zero-inflation part

Intercept −0.5544 0.6449 −0.4634 0.6883 −0.4819 0.6826
Age 1 0.0040 0.5922 0.0032 0.6558 0.0020 0.7736
Age 2 0.0108 0.0653 0.0111 0.0546 0.0121 0.0356

Female 1 −0.1962 0.1572 −0.2020 0.1358
Driver2? −0.5491 0.0892 −0.5633 0.0748 −0.6165 0.0522

Situation duration 0.0331 0.3289 0.0309 0.3575 0.0387 0.2442
Bonus −0.8651 0.4958 −0.8200 0.5308 −1.0637 0.3802

Coverage(Med2) −0.3798 0.1014 −0.3932 0.0848 −0.3595 0.1139
Coverage(Med1) −0.4030 0.1541 −0.3871 0.1601 −0.3847 0.1645
Coverage(Mini) 0.2803 0.5949 0.2610 0.6222 0.2052 0.6923

Payment(biannual) −0.2596 0.0910 −0.2547 0.0963
Payment(quarterly) −0.5661 0.2637 −0.5354 0.2798
Payment(monthly) −0.1721 0.2518 −0.1615 0.2751
Subscription to MB 0.4226 0.2041 0.3978 0.2310 0.3560 0.3030

Usage(retired) −0.0775 0.7250 −0.0783 0.7177 −0.0533 0.8043
Usage(professional) −0.2215 0.4672 −0.2273 0.4063 −0.1510 0.5703

Usage(all trips) −0.3050 0.8550 −0.3668 0.8345 −1.8681 0.7405
Duration −0.0040 0.6448

Fuel(gasoline) 0.5066 0.0017 0.5002 0.0021 0.4090 0.0236
Fuel(hybrid) 114.80 0.1984 116.60 0.1890 1.0632 0.2829

Type(commercial) 0.0041 0.9901
Din(power) 0.0000 0.9944 -0.0000 0.9959 −0.0002 0.9627
Vehicle age 0.0696 <0.0001 0.0712 <0.0001 0.0756 <0.0001

Vehicle speed 0.0006 0.9258

Log-likelihood −23,044 −23,045 −23,054
Degrees of freedom 48 43 34

AIC 46,184 46,175 46,177
BIC 46,616 46,563 46,482

Running time (s) 16.719 18.81 13.951

* Model 1: full model; Model 2: based on the variables of stepwise models in Tables 4 and 5; Model 3: based
on the variables of only significant models in Tables 4 and 5.
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5. Validation

In this section, we use our validation set to compare the predictability of the models discussed
in Section 4. Table 7 presents the predicted number of zero and non-zero claims by our models in
Section 4. In this table, individual 1 refers to an 85-year-old male policyholder with a maxi policy
that pays biannually with the bonus (percentage of the full premium) of 0.5. He holds this policy for
retired usage, for 29 years and has not signed to MB scheme. The policy was modified nine years
ago. He owns a 10-year-old tourism car with gasoline, the din of 98 and max speed of 182. In year 0,
this policyholder has not made any claim and the probability of zero claims predicted by Poisson
regression according to full model is exp(−0.1036) where 0.1036 is the estimated parameter λ and the
probability of zero claims predicted by logistic regression is 1 − 0.0903 where 0.0903 is the estimated
π = Pr(y = 1). Prediction of zero claims by ZIP is 0.9104. Individual 2 is a male policyholder with a
maxi policy. This policy covers two drivers aged 54 and 56 and has been held for six years and been
modified two years ago with a bonus of 0.5 and monthly premium payment. The policyholder owns
a two-year old tourism car with diesel for work and private purposes with the din of 75 and max
speed of 163. The estimated parameter by Poisson regression is λ = 0.1794 and by logistic regression
is π = 0.1525. As we can see, the count part of ZIP for the two policyholders is very close to the
estimated value of Poisson regression. If we add the probability of zero claims in all these models,
we can approximate the number of zero claims. Results show that ZIP models considerably outperform
Poisson regression and logistic regression performs better than ZIP models in predicting zero claims.
Further, we can see that there is a slight difference between predictions made by full models, stepwise
models and the models with only significant variables.

Table 7. Prediction of the probability and the number of zero claims by our models.

Prob Zero Claims: Prob Zero Claims: Total No. of Total No. of
Individual 1 ** Individual 2 *** Zero Claims Non-Zero Claims

Observed value 0 1 35,772 4316

Poisson Full model 0.9016 0.8358 35,361.44 4726.56
Stepwise 0.9019 0.8350 35,361.27 4726.73

Significant 0.9019 0.8410 35,360.50 4727.50

Logistic Full model 0.9097 0.8475 35,606.88 4481.12
Stepwise 0.9091 0.8480 35,606.95 4481.05

Significant 0.9102 0.8512 35,606.62 4481.38

ZIP Model 1 * Count 0.1024 0.1778 35,602 4486Zero 0.9104 0.8446

Model 2 * Count 0.1016 0.1785 35,601.27 4486.74Zero 0.9113 0.8440

Model 3 * Count 0.1020 0.1710 35,601.06 4486.94Zero 0.9113 0.8495

* Model 1: full model; Model 2: based on the variables of stepwise models in Tables 4 and 5; Model 3: based on
the variables of only significant models in Tables 4 and 5. ** An 85-year-old male policyholder with biannual
maxi coverage and bonus of 0.5 for retired usage. He had this policy for 29 years and changed it nine years
ago. He has not registered for MB and owns a 10-year old tourism car with gasoline, the din of 98 and max
speed of 182. *** A 54-year-old male with monthly maxi coverage and bonus of 0.5 for private usage. The 2nd
driver is a 56-year-old female. The policy was written six years ago and was modified two years ago. It covers
a two-year-old tourism car with diesel and din of 75 and max speed of 163. It is not part of MB scheme.

6. Conclusions

We have divided our dataset into training and validation sets. Using our training set, we have
developed three models and compared our models according to their AIC and BIC values. We found
that type of coverage, vehicle age and fuel are statistically significant in most of our models. We then
validated our models and showed that a ZIP model can predict the frequency of claims better than a
Poisson regression. Further, we have shown that if we are just concerned about the number of zero
and non-zero claims, logistic regression can even outperform a ZIP model. In fact, logistic regression
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is a one layer neural network and there is a scope to extend our study to a more generalised form of
logistic regression for future research. We saw that the policyholders who were willing to be monitored
by telematics devices are less likely to make a claim. A thorough study of the policyholders’ behaviour
before and after being monitored by telematics devices can be another area of future research. Given
the current concern regarding climate change and sustainability, the possibility of the inclusion of fuel
consumption into a pricing model may be considered in the future (Tselentis et al. 2017).
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Appendix A

# Loading the prepared data

Data <- read.csv("Year0.csv", header = TRUE)

# Creating training and validation datasets

set.seed(123567)

random <- runif(dim(Data)[1])

# Training set is our data <<0.6

train <- random < 0.6

DataTrain <- cbind(Data, random, train)

# Validation set is everything not included in training set

valid <- !(train) ; DataValid <- cbind(Data, random, valid)

# Exporting our sets

write.csv(DataTrain[train == TRUE,], "DataTrain.csv")

write.csv(DataValid[valid == TRUE,], "DataValid.csv")

# Codes to produce Table~\ref{tab.2}:

DataTrain <- read.csv("DataTrain.csv", header = TRUE)

# Remove negative claim amounts

DataTrain$claim_amount[DataTrain$claim_amount < 30] <- 0

# Adjusting claim numbers

DataTrain$claim_nb <- DataTrain$claim_nb * (DataTrain$claim_amount > 0)

# Removing zeros

DataTrain$drv_age2[DataTrain$drv_age2==0] <- NA

DataTrain$vh_value[DataTrain$vh_value==0] <- NA

DataTrain$vh_cyl[DataTrain$vh_cyl==0] <- NA

DataTrain$vh_weight[DataTrain$vh_weight==0] <- NA

DataTrain$drv_drv2[DataTrain$drv_drv2==0] <- NA

# Separating the training set into two sets of policies with and without claims

NClaim <- subset(DataTrain, DataTrain$claim_nb == 0)

Claim <- subset(DataTrain, DataTrain$claim_nb > 0)

# Calculations for all policies

Mydata <- data.frame(cbind(DataTrain$claim_nb, DataTrain$pol_duration,

DataTrain$pol_sit_duration, DataTrain$drv_age1, DataTrain$drv_age2,

DataTrain$vh_value, DataTrain$vh_age, DataTrain$vh_cyl,

DataTrain$vh_speed, DataTrain$vh_weight, DataTrain$vh_din))

Mean <- sapply(Mydata, mean, na.rm = TRUE)

SD <- sapply(Mydata, sd, na.rm = TRUE)

# Calculations for policies without claims

NMydata <- data.frame(cbind(NClaim$claim_nb, NClaim$pol_duration,

NClaim$pol_sit_duration, NClaim$drv_age1, NClaim$drv_age2,

NClaim$vh_value, NClaim$vh_age, NClaim$vh_cyl, NClaim$vh_speed,

NClaim$vh_weight,NClaim$vh_din))

NMean <- with(NClaim, sapply(NMydata, mean, na.rm = TRUE))

NSD <- with(NClaim, sapply(NMydata, sd, na.rm = TRUE))

# Calculations for policies with claims

CMydata <- data.frame(cbind(Claim$claim_nb, Claim$pol_duration,

Claim$pol_sit_duration, Claim$drv_age1, Claim$drv_age2,

Claim$vh_value, Claim$vh_age, Claim$vh_cyl, Claim$vh_speed,

Claim$vh_weight, Claim$vh_din))
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CMean <- with(Claim, sapply(CMydata, mean, na.rm = TRUE))

CSD <- with(Claim, sapply(CMydata, sd, na.rm = TRUE))

# Modelling

DataTrain <- read.csv("DataTrain.csv", header = TRUE)

DataTrain$claim_amount[DataTrain$claim_amount < 30] <- 0

DataTrain$claim_nb <- DataTrain$claim_nb * (DataTrain$claim_amount > 0)

# Re-leveling categorical variables:

DataTrain$drv_sex1_r <- relevel(factor(DataTrain$drv_sex1), ref = "M")

DataTrain$pol_coverage_r <- relevel(factor(DataTrain$pol_coverage), ref = "Maxi")

DataTrain$pol_pay_freq_r <- relevel(factor(DataTrain$pol_pay_freq), ref = "Yearly")

DataTrain$pol_payd_r <- relevel(factor(DataTrain$pol_payd), ref = "No")

DataTrain$pol_usage_r <- relevel(factor(DataTrain$pol_usage), ref = "WorkPrivate")

DataTrain$vh_fuel_r <- relevel(factor(DataTrain$vh_fuel), ref = "Diesel")

DataTrain$vh_type_r <- relevel(factor(DataTrain$vh_type), ref = "Tourism")

DataTrain$drv_drv2_r <- relevel(factor(DataTrain$drv_drv2), ref = "No")# Poisson regression

Model.poi <- glm(claim_nb ~ drv_age1 + drv_age2 + drv_sex1_r + drv_drv2_r + pol_sit_duration

+ pol_bonus + pol_coverage_r + pol_pay_freq_r + pol_payd_r + pol_usage_r

+ pol_duration + vh_fuel_r + vh_type_r + vh_din + vh_age + vh_speed,

data = DataTrain,

family = poisson(link = "log"), offset = log(Exposures), na.action = na.omit)

# Logistic regression

# y=1 represents claim and y=0 no claim

DataTrain$y[DataTrain$claim_nb==0] <- 0

DataTrain$y[DataTrain$claim_nb > 0] <- 1

# Model:

Model.log <- glm(y ~ drv_age1 + drv_age2 + drv_sex1_r + drv_drv2_r + pol_sit_duration

+ pol_bonus + pol_coverage_r + pol_pay_freq_r + pol_payd_r + pol_usage_r

+ pol_duration + vh_fuel_r + vh_type_r + vh_din + vh_age + vh_speed,

data = DataTrain,

family = binomial(link = "logit"), na.action = na.omit)# ZIP regression

library("pscl")

Model.zeropoi <- zeroinfl(claim_nb ~ drv_age1 + drv_age2 + drv_sex1_r + drv_drv2_r

+ pol_sit_duration + pol_bonus + pol_coverage_r + pol_pay_freq_r

+ pol_payd_r + pol_usage_r

+ pol_duration + vh_fuel_r + vh_type_r + vh_din + vh_age + vh_speed,

data = DataTrain, na.action = na.omit,

dist = "poisson", link = "logit")

# Validation:

# loading validation set

DataValid <- read.csv("DataValid.csv", header = TRUE)

DataValid$claim_amount[DataValid$claim_amount < 30] <- 0

DataValid$claim_nb <- DataValid$claim_nb * (DataValid$claim_amount > 0)

#

DataValid$pol_coverage_r <- DataValid$pol_coverage

DataValid$vh_fuel_r <- DataValid$vh_fuel

DataValid$vh_type_r <- DataValid$vh_type

DataValid$pol_pay_freq_r <- DataValid$pol_pay_freq

DataValid$pol_payd_r <- DataValid$pol_payd

DataValid$drv_drv2_r <- DataValid$drv_drv2

DataValid$pol_usage_r <- DataValid$pol_usage

DataValid$drv_sex1_r <- DataValid$drv_sex1

DataValid$y[DataValid$claim_nb==0] <- 0

DataValid$y[DataValid$claim_nb > 0] <- 1

# Prediction:

predict.poi <- predict(Model.poi, DataValid, type = "response")

#

predict.log <- predict(Model.log, DataValid, type = "response")

#

predict.zeropoi <- cbind( DataValid, Mean = predict(Model.zeropoi,

DataValid, type = "response"),Probab = predict(Model.zeropoi,

DataValid, type = "prob"))

# Test for dispersion

library("AER")
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dispersiontest(Model.poi,trafo=1)

Model.neg <- MASS::glm.nb(claim_nb ~ drv_age1 + drv_age2 + drv_drv2_r + pol_sit_duration

+ pol_bonus + pol_coverage_r + pol_payd_r + pol_usage_r

+ vh_fuel_r + vh_din + vh_age , data = DataTrain,

link = "log", na.action = na.omit)

odTest(Model.neg)

# Codes to predict zero claims:

sum(exp(-predict(Model.poi, DataValid, type = "response")))

sum(1-predict(Model.log, DataValid, type = "response"))

sum(predict(Model.zeropoi, DataValid, type = "prob")[,1])
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1. Introduction

The volatility of financial assets has important implications for the theory and practice of
asset pricing, portfolio selection, risk management, and market-timing strategies. Therefore, it is
of fundamental interest to measure ex ante, or forecast successfully, the conditional variance of
returns. Of course, the evaluation of the latter and the forecasting itself have been complicated by
the unobservability of the realised conditional variance (Galbraith and Kisinbay 2005). An extensive
amount of research is engaged in analysing the distributional and dynamic properties of stock market
volatility; see, for example, Andersen et al. (2001) and citations therein. The standard approaches
applied include parametric (G)ARCH-type or stochastic volatility models and estimate the underlying
returns based on specific distributional assumptions. Alternatives, especially for data of higher
frequency, are based on constructing model-free estimates of ex-post realized volatilities by adding up
the squares and cross-products of intraday high-frequency returns (Andersen et al. 2001).

The present paper instead uses annual U.S. stock market data to construct excess stock
returns at the one-year and five-year horizon and to examine their model-based variance forecasts.
Note that the risk depends on the investment horizon considered and that different horizons are
relevant for different applications (Christoffersen and Diebold 2000). Little is known about the
forecastability of variance at horizons beyond a year. Here, we take the long-term actuarial view
and extend the work of Kyriakou et al. (2019a, 2019b). In a two-step procedure, we first apply
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machine learning (ML) to predict stock returns in excess of different benchmarks, considering the
short- and long-term interest rate, the earnings-by-price ratio, and the inflation rate. Second, the
squared residuals are used to analyse model-based volatility forecastability. Here, we compare these
forecasts with the forecast implicit in the unconditional residual variance, as proposed, for example,
by Galbraith and Kisinbay (2005). We find that volatility forecastability is much less important at
longer horizons regardless of the chosen model and that the homoscedastic historical average of
the squared return prediction errors gives an adequate approximation of the unobserved realised
conditional variance for both the one-year and five-year horizon.

Our preferred ML technique applied in this paper is local-linear smoothing in combination with
a leave-k-out cross-validation for the following reasons.1 First, we are interested in longer-horizon
stock returns based on annual observations and their volatility. Thus, we are not in the high-frequency
context where the number of observations is huge and the set of possible predictive variable
combinations is enormous (and, thus, dimension reduction or shrinkage are indispensable). Our data
set is, instead, sparse and a careful imposition of structure to the statistical modelling process is much
more promising, as shown, for example, by Nielsen and Sperlich (2003) and Scholz et al. (2015, 2016).
Second, the evidence of stock return predictability is much stronger once one allows for nonlinear
functions as documented, for example, in Lettau and Van Nieuwerburgh (2008), Chen and Hong (2010),
or Cheng et al. (2019). Thus, the local-linear smoother is ideally suited as it can estimate a linear
function—the classical benchmark in this context—without any bias. Finally, our procedures are
analytically well studied, i.e., sound and rigorous, statistical tools which let us operate in a glasshouse,
not in a black box—in contrast to other fancier but less clear ML methods.2

Note further that longer horizons are important to long-term investors, such as pension funds
or market participants saving for distant payoffs. These investors are generally willing to take
on more risk for higher rewards and, thus, volatility forecastability is for them of fundamental
interest. Rapach and Zhou (2013) show that longer horizons tend to produce better estimates than
shorter horizons, while Munk and Rangvid (2018) point out that major finance houses today use longer
horizons—up to ten years—to stabilise and improve future predictions. In our paper, we exemplarily
concentrate on the one-year and five-year view.3 However, shorter horizons based on monthly, weekly,
or even daily data do not seem to provide the pension saver with good information about future
income as a pensioner. Therefore, these type of short-term predictions—sometimes called investment
robots—are not suitable when a pensioner should define his or her risk appetite.

The remaining of this paper is organized as follows. Section 2 presents our framework for the
purpose of conditional variance prediction. We define the underlying financial model, introduce our
two-step procedure, and present our validation criterion for model selection. In addition, we review
different ways of estimating the conditional variance and discuss bootstrap-tests for the null hypothesis
of no predictability. In Section 3, we provide a description of our data set and of our empirical findings
from different validated scenarios: (i) a single benchmarking approach that uses the dependent
variable transformed with the benchmark, and (ii) the case where both the independent and dependent
variables are transformed with the benchmark (full benchmarking approach). Finally, we take the
long-term view and comment on real income pension prediction. Section 4 summarizes the key points
of our analysis and concludes the paper.

1 Our methodology of validating a fully nonparametric structure can be viewed as one of the simplest and therefore also most
transparent version of machine learning; see Section 2 of Kyriakou et al. (2019a) for more details justifying the label machine
learning for our approach.

2 Note that the use of a different ML method would come with the cost of losing interpretability, smoothness, or flexibility
due to restrictions on the functional form. A comparison of different ML techniques in finding that one which gives the best
predictions, wins an investment horse-race out-of-sample, or being the most robust method over different periods is out of
the scope of our work.

3 The choice of the one-year horizon is related to the frequency of the data. In contrast, the five-year horizon is arbitrary but is
intended to be a starting point for actuarial long-term models for real-income savings. Other horizons and related questions
remain for future research.
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2. A Framework for Conditional Variance Prediction

In this section, we focus on nonlinear predictive relationships between squared residuals of
model-based predicted stock returns over the next T years in excess of a benchmark and a set of
explanatory variables. Our aim is the investigation of different benchmark models and their volatility
predictability over return horizons of one year and five years. We consider four different benchmarks:
the short- and the long-term interest rate, the earnings-by-price ratio, and the inflation rate.

2.1. One-Year Predictions

Let Pt denote the (nominal) stock price at the end of year t and Dt the (nominal) dividends
paid during year t. We investigate stock returns St = (Pt + Dt)/Pt−1 in excess (log-scale) of a given
benchmark B(A)

t−1:

Y(A)
t = ln

St

B(A)
t−1

, (1)

where A ∈ {R, L, E, C} with, respectively,

B(R)
t = 1 +

Rt

100
, B(L)

t = 1 +
Lt

100
, B(E)

t = 1 +
Et

Pt
, B(C)

t =
CPIt

CPIt−1
,

using the short-term interest rate, Rt, the long-term interest rate, Lt, the earnings accruing to the index
in year t, Et, and the consumer price index for year t, CPIt. The predictive and fully nonparametric
regression model for a one-year horizon is then given by the location-scale model

Y(A)
t = m(Xt−1) + ν(Xt−1)

1/2ζt, (2)

where
m(x) = E(Y(A)|X = x) and ν(x) = Var(Y(A)|X = x), x ∈ Rq (3)

are unknown smooth functions for the conditional mean and variance, resp., ζt are serially uncorrelated
zero-conditional-mean random error terms, given the past, with the conditional variance of one, and
Xt−1 is a q-dimensional vector of available explanatory variables.4

Our aim is to forecast the conditional variance of excess stock returns Y(A)
t based on model (2)

and popular explanatory variables with predictive power reported in the literature, for example,
the dividend-by-price ratio, dt−1 = Dt−1/Pt−1, the earnings-by-price ratio, et−1 = Et−1/Pt−1,
the short-term interest rate, rt−1 = Rt−1/100, the long-term interest rate, lt−1 = Lt−1/100, inflation,
πt−1 = (CPIt−1 −CPIt−2)/CPIt−2, the term spread, st−1 = lt−1 − rt−1, and lagged excess stock return,
Y(A)

t−1 .

Based on (2), in a two-step procedure, we first estimate Ŷ(A)
t = m̂(Xt−1) as in

Kyriakou et al. (2019b), and, in a second step, we estimate ν̂(Xt−1) from

ν(x) = E((Y(A) − m(X))2|X = x), x ∈ Rq, (4)

using the squared residuals ε̂2
t := (Y(A)

t − m̂(Xt−1))
2 as the dependent variable and a local-linear

smoother in both steps. The estimates m̂ and ν̂ depend on smoothing parameters (bandwidths) h and g,
respectively. As we are interested in predictions, we take the values which minimize the out-of-sample
prediction error using cross-validation. More details are provided in Section 2.4.5

4 Note that the set of explanatory variables in (2) could be different or overlapping for the mean and variance function.
5 For a description and statistical properties of the local-linear smoother, see, for example, Section 2.3 in Kyriakou et al. (2019b).

Note further that the smoothing parameters h and g are separately chosen in each step.
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2.2. Longer-Horizon Predictions

For longer horizons T, we consider the sum of annual continuously compounded returns:

Z(A)
t =

T−1

∑
i=0

Y(A)
t+i .

Note that we use here overlapping returns Z(A)
t , which require a careful econometric modelling.

For illustrative purposes, assume a linear relationship in (2) between Y(A)
t and Xt−1, as well as the

persistence of the forecasting variable (treating the variables as deviations from their means):

Y(A)
t = βXt−1 + ξt and Xt = γXt−1 + ηt,

with ξt := νθ(Xt−1)
1/2ζt similar to the error term in (2) and a parametric specification for the

conditional variance νθ(·), and ηt being white noise. The T-year regression problem that is implied by
this pair of one-year regressions is now

Z(A)
t = Y(A)

t + . . . + Y(A)
t+T−1 = (βXt−1 + ξt) + . . . + (βXt+T−2 + ξt+T−1)

= β
T−1

∑
i=0

γiXt−1 + β
T−1

∑
i=0

T−1−i

∑
j=0

γjηt+i +
T−1

∑
i=0

ξt+i = φXt−1 + ψt,

i.e., the excess stock return for the year t over the next T years can be decomposed in a predictive part
depending on the variable Xt−1 and an unpredictable error term ψt. In estimating the conditional
mean and variance functions for the T-year returns Z(A)

t , we use nonparametric models because they
can capture possible misspecification due to violation of the linear models assumed above. Thus,
we set up our predictive nonparametric regression model in the same fashion as in (2)

Z(A)
t = m(Xt−1) + ν(Xt−1)

1/2ωt, (5)

where
m(x) = E(Z(A)|X = x) and ν(x) = Var(Z(A)|X = x), x ∈ Rq (6)

are the unknown smooth conditional mean- and variance-function. The predictive variables X under
consideration are the same as for the one-year horizon. The important difference between Equations (2)
and (5) is now that the error process ψt := ν(Xt−1)

1/2ωt in Equation (5) will be serially correlated by
construction.6,7 For a discussion on asymptotic properties of our nonparametric estimators of model
(5) and (6), see Section 2.3 in Kyriakou et al. (2019b).

6 Our flexible location-scale model in (5), could be easily extended to time-lags of higher order. However, in the
empirical application in Section 3, we see that, for example, for real-earnings—the main driver of real-returns—an
AR1-type model is ideally suited. This is in line with findings from Kothari et al. (2006). Note further that one
might expect risk and return to be somehow related (see, for example, Merton 1973). The parametric GARCH-in-Mean
process captures this idea (Linton and Yan 2011). However, the inclusion of an interaction of mean and variance in
a fully nonparametric fashion is out of the scope of this paper. To our knowledge, only semiparametric versions
where either the mean or variance function is modeled parametrically can be found in the literature, see, for example,
Linton and Perron (2003); Pagan and Hong (1991); Pagan and Ullah (1988).

7 For possible solutions to the problem of autocorrelation, see, for example, Xiao et al. (2003), Su and Ullah (2006),
Linton and Mammen (2008), or more recently Geller and Neumann (2018). The implementation and analysis of these
techniques remain for future research. In our approach, we account for autocorrelation in the validation criterion with a
leave-k-out strategy, where k = 2T − 1; see Section 2.4.
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Based on (5), our two-step procedure consists now of, first, estimating Ẑ(A)
t = m̂(Xt−1), and

second, estimating ν̂(Xt−1) from

ν(x) = E((Z(A) − m(X))2|X = x), x ∈ Rq, (7)

using the squared residuals ε̂2
t := (Z(A)

t − m̂(Xt−1))
2 as the dependent variable and a local-linear

smoother again in both steps.

2.3. Alternative Ways in Estimating the Conditional Variance Function

For the estimation of the conditional variance or volatility function of a response variable Y
in a location-scale model similar to (2) or (5), four different approaches are mainly proposed in the
literature: the direct, the residual-based, the likelihood-based, and the difference-sequence method.

(i) The direct method uses the variance expressed as the difference of the first two conditional
moments (see, for example, Härdle and Tsybakov 1997): Var(Y|X = x) = E(Y2|X = x)−E(Y|X = x)2.
Both parts of the right-hand side are separately estimated and, thus, the result is not necessarily
nonnegative and also not fully adaptive to the mean function.8

(ii) The residual-based method consists of two stages—first, estimating the conditional mean
function m(·) and calculating the squared residuals ε̂2 = (Y − m̂(X))2. Second, estimating the
conditional variance function ν(·) by regressing ε̂2 on a set of explanatory variables X. There exist
different variants of residual based methods for the second step.9

(iii) The preferred estimators of Yu and Jones (2004) build on a localised normal likelihood and
use a standard local-linear form for estimating the mean, a local log-linear form for estimating the
variance, and allow for separating bandwidths for mean and variance estimation.

(iv) Finally, examples for the difference-sequence method in a fixed design can be found for
the homoscedastic case in Wang and Yu (2017) and citations therein. Wang et al. (2008) analyse
for the heteroscedastic case the effect of the unknown (smooth) mean function on the estimation
of the variance function. They also compare the performance of the residual-based estimators to
a first-order-difference-based estimator. Their results indicate that it is not desirable to estimate
the variance function based on the residuals from an optimal estimator of the mean in case the
mean function is not smooth. Wang et al. (2008) recommend instead an estimator for the mean with
minimal bias.

In the empirical part of this paper in Section 3, we show the results of the residual-based method
applying a local-linear kernel smoother in both stages. As a robustness check, we have implemented
in the second step the local-exponential estimator (Ziegelmann 2002) and the combined estimator
(Mishra et al. 2010) getting almost always very similar results.10 We do not consider: (i) the direct
method, since it is not fully adaptive to the mean function, (ii) the re-weighted local constant estimator
(Xu and Phillips 2011) due to its asymptotic similarity to the local-linear method, (iii) the method based
on the assumption of normal error terms (Yu and Jones 2004), since skewness and excess kurtosis
are common properties of stock returns, and (iv) the difference-sequence method, since it was not
convincingly performing in a small sample study, the mean functions are rather smooth in our problem,
and bias reduction is key due to sparsity.11

8 It does not estimate the volatility function as efficiently as if the true mean were known.
9 Examples of these variants are: (i) Applying a local-linear kernel smoother in both stages (Fan and Yao 1998). The result is

again not necessarily nonnegative but asymptotically fully adaptive to the unknown mean function. (ii) Using the local
exponential estimator to ensure nonnegativity (Ziegelmann 2002). (iii) Implementing a combined estimator (a multiplicative
bias reduction technique), where a parametric guide captures some roughness features of the unknown variance function
(Glad 1998; Mishra et al. 2010). (iv) Utilising a re-weighted local constant estimator maximising the empirical likelihood
such that it becomes a bias-reducing moment restriction (Xu and Phillips 2011).

10 Those results are available upon request by the authors.
11 There is also a lack of studies using the difference-sequence method in a random design and in multivariate problems as in

our case.



Risks 2019, 7, 113

2.4. The Validation Criterion for the Choice of Smoothing Parameters and Model Selection

For the nonparametric technique applied in this study, we require an adequate measure of
predictive power. In-sample measures, such as the classical R2 or the adjusted R2, are not appropriate
because they either prefer the most complex model or need a degrees of freedom adjustment which
is an unclear concept in nonparametric estimation. Furthermore, our focus lies on prediction. Thus,
we are interested in the out-of-sample performance of a model and not in how well it explains the
variation inside the sample. Therefore, our preferred measure estimates the prediction error directly.

For the purpose of model selection and optimal bandwidth choice, we use the validated R2
V

introduced in the actuarial literature by Nielsen and Sperlich (2003) and based on a leave-k-out
cross-validation. Note that this criterion is very similar to the forecast content function of
Galbraith (2003) and Galbraith and Kisinbay (2005) defined as the proportionate reduction in the
mean square forecast error achievable relative to the unconditional mean forecast.

Our validation criteria for the first and second step are defined as

R2
V,m = 1 −

∑
t
(Z(A)

t − m̂−t)2

∑
t
(Z(A)

t − Z̄(A)
−t )2

and R2
V,ν = 1 −

∑
t
(ε̂2

t − ν̂−t)2

∑
t
(ε̂2

t − ε̂2
−t)

2
. (8)

Note that leave-k-out estimators are used: m̂−t and ν̂−t for the nonparametric functions m and ν,
resp., Z̄(A)

−t and ε̂2
−t for the unconditional mean of Z(A)

t and ε̂2
t , resp. These are computed by removing

k = 2T − 1 observations: (T − 1) before the tth time point, t itself, and (T − 1) after t. We need to
exclude k = 2T − 1 data points due to the construction of the dependent variable over a horizon of T
years, i.e., we use for the one-year horizon the classical leave-one-out estimator, while, for example, for
the five-year horizon the leave-nine-out estimator. Note that the validated R2

V measures the predictive
power of a model in comparison to the predictive power of the cross-validated historical mean.
Thus, positive values imply that the regression model based on explanatory variables outperforms the
corresponding historical average over T years. Negative values in the first step of our approach suggest
that the historical mean return should be preferred over a model-based approach, while negative
values in the second step indicate a constant homoscedastic conditional variance forecast. Note further
that the numerator in the ratio of R2

V,m and R2
V,ν corresponds to the classical cross-validation criterion.

Thus, choosing the bandwidth which minimizes this criterion for a given set of explanatory variables
is equivalent in maximizing the validated R2

V . This means that we can use the validated R2
V as a single

criterion for both purposes: model and bandwidth selection.12

It is well known from the literature that cross-validation often requires to omit more than one
observation and, possibly, additional correction when the omitted fraction of data are considerable
(see, for example, Burman et al. 1994). In addition, when serial correlation arises, as in our longer-
horizon application, and the structure of the error terms is ignored, De Brabanter et al. (2011)
show that automatic methods for the choice of smoothing parameters, such as cross-validation or
plug-in, fail. The problem is that the chosen bandwidths become smaller for increasing correlations
(Opsomer et al. 2001), and the corresponding model fits become progressively more under-smoothed.
The bias of the predictor reduces this way and, as it contributes in a squared fashion to the prediction
mean squared error—the numerator of the ratio in (8), R2

V increases (not because the fit is good
but due to the ignored correlation structure). A misleading decision on the bandwidth or model
specification, as well the set of preferred covariates is the consequence. To overcome those problems,
Chu and Marron (1991) propose the use of bimodal kernel functions. Such functions are known to
remove the correlation structure very effectively, but the estimator m̂ suffers from increased mean
squared error, as discussed in De Brabanter et al. (2011). They also propose correlation-corrected

12 Model selection in the sense of composition of the set of explanatory variables.
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cross-validation that consists of, first, finding the amount of data k to be left out in the estimation
process when a bimodal kernel function is used; and, second, applying the actual choice of the
smoothing parameter using leave-k-out cross-validation with a unimodal kernel function. In our
application, we can skip the first step because k is known by construction. For example, in the five-year
case, we have Z(A)

t = Y(A)
t + . . . + Y(A)

t+4 . Now, we want to exclude the complete information included

at time t, i.e., skip all Z(A)
s that include any of Y(A)

t , . . . , Y(A)
t+4 ; it is easy to see that this amounts to a

leave-nine-out set of Z(A)
t−4, . . . , Z(A)

t+4 (see, for example, Kyriakou et al. 2019b, Figure 1).

2.5. A Bootstrap-Test: No Predictability vs. Predictability of the Conditional Variance

We test the null of no predictability of the conditional variance applying the tests proposed by
Kreiss et al. (2008) (hereafter KNY-test) and Scholz et al. (2015) (hereafter SNS-test). Formally, this is
equivalent to say that, under the null, ν is a constant function, which essentially corresponds to the
historical average of the squared residuals, i.e., constant volatility. In particular, let ν(·) be the true
volatility function as in (2) or (5) for some specified set of regressors Xt, i.e., (4) or (7) holds. Let ε̂2 be
the sample mean of the squared residuals from step one in our approach. The KNY-test is based on
the distance ∫ ∣∣∣ν (x)− ε̂2

∣∣∣2 w (x) dx, (9)

for some weighting function w, which has been studied by several authors and statistics have been
derived from the above, for example, in Härdle and Mammen (1993) or Kreiss et al. (2008). We use the
statistic derived in Equation 2.3 of Kreiss et al. (2008)

hq/2T
∫ ∣∣∣∣∣ 1

T

T

∑
t=1

Kh (x − Xt)
(

ε̂2
t − ε̂2

)∣∣∣∣∣
2

w (x) dx, (10)

where Kh (x) is a symmetric kernel smoother with bandwidth h. The bandwidth is selected using R2
V for

the Nadaraya–Watson kernel estimator rather than a local-linear one. We choose w to be proportional
to the uniform density with support in the range of the sample data and replace integration by the
mean over uniform independent observations X′

1, X′
2, . . . , X′

N in the range of the data:

τ :=
hq/2T

N

N

∑
i=1

∣∣∣∣∣ 1
T

T

∑
t=1

Kh
(
X′

i − Xt
) (

ε̂2
t − ε̂2

)∣∣∣∣∣
2

. (11)

Then, the error in the integral is O
(

N−1/2
)

(Geweke 1996). Under the null, the above test
statistic τ is small. This choice could lead to a statistic whose power is lower than the one in
Härdle and Mammen (1993) due to some implicit over-smoothing resulting in the weight function w
(see comment in Kreiss et al. 2008, just after their Equation 2.5). Power may also improve by using
a local-linear smoother in the test. However, the theory for this has not been developed yet, so we
refrain from such extension.

Critical values for τ are best derived via wild bootstrap (Härdle and Mammen 1993). For the
bootstrap critical values to be consistent, the procedure needs to be independent of whether the null is
true or not. Hence, in correspondence with Equation 2.10 in Kreiss et al. (2008), for b = 1, . . . , B,

τb :=
hq/2T

N

N

∑
i=1

∣∣∣∣∣ 1
T

T

∑
t=1

Kh
(
X′

i − Xt
) [

ub
t

(
ε̂2

t − ν̂ (Xt)
)]∣∣∣∣∣

2

, (12)
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where the ub
t ’s are independent and identically distributed random variables with a mean of zero and

a variance of one, for example, ub
t ∼ N(0, 1). To decide if we reject or not, we use as critical values the

corresponding quantiles of the empirical distribution13,

F∗(τ) =
1
B ∑

b
1I{τb≤τ}. (13)

The consistency of the procedure for stationary sequences is given in Kreiss et al. (2008).
An alternative version for a wild bootstrap test is the SNS-test proposed in Scholz et al. (2015).

There the B bootstrap samples are constructed using the residuals under the null, ι0t := ε̂2
t − ε̂2, and

ub
t ’s as above, such that

ε̂2,b
t = ε̂2 + ι0t · ub

t .

Then, in each bootstrap repetition b, the cross-validated mean is calculated of the ε̂2,b
t , t = 1, . . . , T,

as well the estimates of the predictor-based model ν̂b
−t in order to get R2,b

V,ν like in (8). Critical values
are chosen from corresponding quantiles of the empirical distribution function similar to (13).

Both tests have their own merits. We expect the KNY-test to be more conservative and potentially
with less power in comparison to the SNS-test but with clear and well-established asymptotic theory.
For more discussion on standard smoothing based tests and other examples for tests of the variance
function, see, for example, the survey of Gonzales-Manteiga and Crujeiras (2013).

3. Empirical Application: Conditional Variance Prediction for Stock Returns in Excess of
Different Benchmarks

3.1. The Data

In this paper, we extend the analysis of Kyriakou et al. (2019b), who considered the forecasting
of long-term stock returns, to conditional variance predictions. Thus, we base our predictions on
the same annual US data set which is provided by Robert Shiller and can be downloaded from
http://www.econ.yale.edu/~shiller/data.htm. It includes, among other variables, the Standard
and Poor’s (S&P) Composite Stock Price Index, the consumer price index, and interest rate data
from 1872 to 2019. We use here an updated and revised version of Shiller (1989, chp. 26), which
provides a detailed description of the data. Note that the risk-free rate in this data set (based on the
six-month commercial paper rate until 1997 and afterwards on the six-month certificate of deposit rate,
secondary market) was discontinued in 2013. We follow the strategy of Welch and Goyal (2008) and
replace it by an annual yield that is based on the six-month Treasury-bill rate, secondary market, from
https://fred.stlouisfed.org/series/TB6MS. This new series is only available from 1958 to 2019. In the
absence of information prior to 1958, we had to estimate it. To this end, we regressed the Treasury-bill
rate on the risk-free rate from Shiller’s data for the overlapping period 1958 to 2013, which yielded

Treasury-bill rate = 0.0961 + 0.8648 × commercial paper rate

with an R2 of 98.6%. Therefore, we instrumented the risk-free rate from 1872 to 1957 with the predicted
regression equation. The correlation between the actual Treasury-bill rate and the predictions for the
estimation period is 99.3%. Table 1 displays standard descriptive statistics for one-year and five-year
returns as well as the available covariates.

13 The symbol 1IA denotes the indicator function of an appropriate condition A, i.e., it is one when A is true and zero otherwise.
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Table 1. US market data (1872–2019).

Max Min Mean Sd Skew Exc. kurt

S&P stock price index P 2789.80 3.25 277.58 558.13 2.43 5.50
Dividend accruing to index D 53.75 0.18 6.04 10.56 2.45 6.00
Earnings accruing to index E 132.39 0.16 13.96 26.31 2.43 5.35

Dividend-by-price d 9.88 1.17 4.31 1.71 0.46 0.25
Earnings-by-price e 17.75 1.72 7.28 2.75 1.05 1.39
Short-term interest rate r 14.93 0.07 3.97 2.50 0.96 2.34
Long-term interest rate l 14.59 1.88 4.53 2.27 1.81 3.63
Inflation π 20.69 −15.65 2.23 5.96 0.26 1.60
Spread s 3.64 −3.71 0.56 1.32 −0.05 0.02

One-year excess stock returns Y(R) 42.39 −58.26 4.58 17.28 −0.57 0.68
One-year excess stock returns Y(C) 54.04 −48.81 6.41 18.05 −0.40 0.64
Five-year excess stock returns Z(R) 107.27 −78.54 23.49 36.69 −0.14 −0.37
Five-year excess stock returns Z(C) 122.96 −57.34 32.34 36.42 −0.05 −0.40

3.2. Single Benchmarking Approach

In this section, we consider a single benchmarking approach as in Kyriakou et al. (2019a, 2019b),
i.e., only the dependent variable St is benchmark adjusted, as shown in (1), while the independent
variable(s) is (are) measured on the original (nominal) scale. The models (2) and (5) are estimated in
both steps with a local-linear kernel smoother using the quartic kernel. The optimal bandwidths are
chosen by cross-validation, i.e., by maximizing the corresponding validation measure given by (8).
Given that we apply a local-linear smoother, it should be kept in mind that the nonparametric method
can estimate linear functions without any bias. Thus, the linear model is automatically embedded
in our approach. This is an important observation as the linear model is the usual benchmark in
financial applications. In addition, in case that the true (but in advance) unknown function is really
linear, our approach would exactly pick the line against all other functional alternatives. We study
the R2

V,ν values based on different validated scenarios shown for the one-year horizon in Table 2
and the five-year horizon in Table 3. Here, the same predictive variables Xt−1 are used in both steps
of our approach. Note that we have only about 150 observations in our records. The small sample
size clearly limits the complexity of our analysis in the sense of using higher dimensional vectors of
explanatory variables. In what follows, we consider only one- and two-dimensional models. For a
discussion on sparsely distributed annual observations in higher dimensions and ways to circumvent
the curse-of-dimensionality, see, for example, Kyriakou et al. (2019a).

Overall, we find for the one-year horizon that only a few variables have small positive validated
R2

V,ν’s and thus possibly some low explanatory power. For example, for the benchmarks B(R), B(L),
and B(E), the excess stock return has the largest validated R2

V,ν values for one-dimensional models
(2.2%, 2.4%, and 1.5%). This finding would support an ARCH-type variance structure. For the inflation
benchmark B(C), the model with the long-term interest rate produces the largest validated R2

V,ν of
0.5%. When we apply the bootstrap tests introduced in Section 2.5, the KNY-test does not reject the
null of no predictability for all cases at the 5%-level. The SNS-test rejects the null only for the Y(A)

t−1
covariate under the benchmarks B(R), B(L) and B(E) at the 5%-level.14 Note that the two-dimensional
models do not add predictive power as the validated R2

V,ν values remain in the same low range.

14 The tests were conducted with 1000 repetitions at the 5% significance level for a selected number of cases. We do not present
the p-values of the tests to save space. The results are available upon request by the authors.
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Table 2. Predictive power for the variance of one-year excess stock returns Y(A)
t : the single

benchmarking approach. The prediction problem is defined in (2). The same predictive variables Xt−1

are used in the predictions for the conditional mean and variance function. The predictive power (%)
is measured by R2

V,ν as defined in (8). The benchmarks B(A) considered are based on the short-term
interest rate (A ≡ R), long-term interest rate (A ≡ L), earnings-by-price ratio (A ≡ E), and consumer
price index (A ≡ C). The predictive variables used are Xt−1, given by the dividend-by-price ratio dt−1,
earnings-by-price ratio et−1, short-term interest rate rt−1, long-term interest rate lt−1, inflation πt−1,

term spread st−1, excess stock return Y(A)
t−1 , or the possible different pairwise combinations as indicated.

Benchmark B(A) Explanatory Variable(s) Xt−1

Y(A) d e r l π s
Short-term rate 2.2 −1.1 −0.6 −0.3 0.3 −1.2 −0.1
Long-term rate 2.4 −1.2 −0.6 0.3 0.6 −1.4 −0.1
Earnings-by-price 1.5 −1.3 −0.7 −0.1 0.5 −1.4 0.1
Inflation 0.2 0.1 −1.3 −0.4 0.5 −1.2 −0.6

(Y(A), d) (Y(A), e) (Y(A), r) (Y(A), l) (Y(A), π) (Y(A), s)
Short-term rate 2.4 1.9 1.1 2.2 0.1 0.3
Long-term rate 1.5 1.4 1.1 2.1 −0.2 0.1
Earnings-by-price 1.6 1.4 0.9 2.0 −0.2 0.1
Inflation −1.0 −1.1 −0.6 0.6 −2.1 −1.0

(d, e) (d, r) (d, l) (d, π) (d, s)
Short-term rate −2.1 −1.5 −0.8 −2.4 −1.5
Long-term rate −2.0 −1.1 −0.6 −2.2 −1.5
Earnings-by-price −1.9 −1.4 −0.7 −2.3 −1.5
Inflation −0.4 −1.0 −0.2 −2.3 −1.3

(e, r) (e, l) (e, π) (e, s)
Short-term rate −1.0 −0.4 −2.3 −0.8
Long-term rate −0.6 −0.2 −2.2 −0.8
Earnings-by-price −1.0 −0.2 −2.2 −0.8
Inflation −1.7 −0.9 −2.2 −1.6

(r, l) (r, π) (r, s)
Short-term rate 1.3 −1.5 1.4
Long-term rate 1.3 −1.0 1.4
Earnings-by-price 1.4 −1.5 1.6
Inflation 1.3 −1.5 1.2

(l, π) (l, s)
Short-term rate −1.2 1.4
Long-term rate −0.9 1.4
Earnings-by-price −1.0 1.6
Inflation −0.9 1.3

(π, s)
Short-term rate 0.2
Long-term rate 0.2
Earnings-by-price −0.6
Inflation −0.1

Contrary to the mean prediction, where Kyriakou et al. (2019b) find that five-year predictability
improves over the one-year case, we observe that the majority of predictor based volatility models do
not surpass the constant volatility alternative for the five-year horizon. Even though some models
produce small positive R2

V,ν values, this time both the SNS- and the KNY-test do not reject the null of
no predictability. Note that our results are in line with Christoffersen and Diebold (2000) who conclude
that volatility forecastability may be much less important at longer horizons.
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Table 3. Predictive power for the variance of five-year excess stock returns Z(A)
t : the single benchmarking

approach. The prediction problem is defined in (5). The same predictive variables Xt−1 are used in the
predictions for the conditional mean and variance function. Additional notes: see Table 2.

Benchmark B(A) Explanatory Variable(s) Xt−1

Y(A) d e r l π s
Short-term rate 0.6 −1.7 −1.7 −1.2 −1.0 −2.0 −3.0
Long-term rate 0.0 −1.5 −1.3 −1.2 −1.1 −1.2 −2.7
Earnings-by-price 0.8 −1.8 −1.1 −1.8 −2.7 −0.3 −3.8
Inflation −1.0 −3.8 −4.7 −0.7 −1.5 1.4 0.5

(Y(A), d) (Y(A), e) (Y(A), r) (Y(A), l) (Y(A), π) (Y(A), s)
Short-term rate −2.8 −2.5 −1.7 −1.7 −1.7 −3.9
Long-term rate −2.5 −2.1 −1.6 −1.8 −1.2 −3.4
Earnings-by-price −2.3 −2.1 −1.2 −4.1 0.4 −3.4
Inflation −5.1 −4.7 −1.5 −2.6 0.4 −0.9

(d, e) (d, r) (d, l) (d, π) (d, s)
Short-term rate −3.6 −3.1 −2.2 −2.8 −4.1
Long-term rate −3.1 −3.2 −2.7 −2.3 −4.3
Earnings-by-price −4.1 −4.0 −5.3 −2.3 −4.9
Inflation −5.2 −5.0 −8.9 −2.5 −3.2

(e, r) (e, l) (e, π) (e, s)
Short-term rate −3.3 −3.3 −3.5 −4.9
Long-term rate −2.8 −3.3 −2.9 −4.9
Earnings-by-price −4.5 −5.5 −2.7 −6.5
Inflation −8.5 −7.8 −4.9 −6.4

(r, l) (r, π) (r, s)
Short-term rate −3.8 −1.7 −3.9
Long-term rate −4.1 −1.3 −4.2
Earnings-by-price −5.3 −1.9 −5.4
Inflation −3.9 0.3 −1.9

(l, π) (l, s)
Short-term rate −1.7 −3.9
Long-term rate −1.3 −4.2
Earnings-by-price −2.6 −5.4
Inflation −1.2 −1.8

(π, s)
Short-term rate −4.4
Long-term rate −3.5
Earnings-by-price −4.8
Inflation −0.1

3.3. Full Benchmarking Approach

In the next step, we consider the double benchmarking approach of Kyriakou et al. (2019a, 2019b)
to analyze now whether transforming the explanatory variables can improve the predictions for
the volatility function. Recall that fully nonparametric models suffer in general by the curse of
dimensionality. Problems with sparsely distributed annual observations in higher dimensions, as in our
framework, could be reduced or circumvented by importing more structure in the estimation process.

Here, we extend the study presented in Section 3.2 transforming both the dependent and
independent variables according to the same benchmark. To this end, in our full (double) benchmarking
approach, the prediction problems are reformulated as
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Y(A)
t = m(X(A)

t−1) + ν(X(A)
t−1)

1/2ζt, (14)

Z(A)
t = m(X(A)

t−1) + ν(X(A)
t−1)

1/2ωt, (15)

where we use transformed predictive variables

X(A)
t−1 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1+Xt−1

B(A)
t−1

, X ∈ {d, e, r, l, π}
st−1

B(A)
t−1

= lt−1−rt−1

B(A)
t−1

Y(A)
t−1

, A ∈ {R, L, E, C}. (16)

This approach can be interpreted as a simple way of reducing the dimensionality of the estimation
procedure. The adjusted variable X(A)

t−1 includes now an additional predictive variable, the benchmark
itself. Results of this empirical study are presented for the one-year horizon in Table 4 and for the
five-year horizon in Table 5.

We find that, in comparison to the single-benchmarking approach in the one-year case, the double
benchmarking improves in 15 out of 82 models (in the sense of producing a positive and higher
R2

V,ν as before). However, predictability is still questionable. The best model under the long-term

interest rate benchmark B(L) uses the pair (Y(L)
t−1, e(L)

t−1) and yields R2
V,ν = 3.0, while the best model

under B(E) uses the pair (Y(E)
t−1, l(E)

t−1) and yields R2
V,ν = 2.5. The SNS-test rejects for both the null of no

predictability, while the KNY-test does not. For the rest of the new combinations of predictive variables
in all benchmarks, both tests again do not reject.

For the five-year case, we find that in comparison to the single-benchmarking the double
benchmarking improves in 11 out of 82 models. The best model under B(E) uses d(E)

t−1 and yields

R2
V,ν = 1.8, while under B(C) the covariates d(C)t−1 and l(C)t−1 both yield R2

V,ν = 1.6. Nevertheless, we do
not find any combination of covariates with statistically significant predictive power.
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Table 4. Predictive power for the variance of one-year excess stock returns Y(A)
t : the double benchmarking

approach. The prediction problem is defined in (14). The same predictive variables X(A)
t−1 are used in

the predictions for the conditional mean and variance. The predictive power (%) is measured by R2
V,ν

as defined in (8). The benchmarks B(A) considered are based on the short-term interest rate (A ≡ R),
long-term interest rate (A ≡ L), earnings-by-price ratio (A ≡ E), and consumer price index (A ≡ C).

The predictive variables used are X(A)
t−1 using the indicated benchmark B(A)

t−1 as shown in (16). Xt−1

are given by the dividend-by-price ratio dt−1, earnings-by-price ratio et−1, short-term interest rate

rt−1, long-term interest rate lt−1, inflation πt−1, term spread st−1, excess stock return Y(A)
t−1 , or the

possible different pairwise combinations as indicated. “–” are not applicable cases of matched covariate
with benchmark. Note: s(R) and l(R) (and their combinations with Y, d, e, π) have the same R2

V by

construction of the transformed spread according to (16). For example, s(R)t−1 = (lt−1 − rt−1)/B(R)
t−1 =

(1 + lt−1)/(1 + rt−1)− 1 and l(R)t−1 = (1 + lt−1)/(1 + rt−1). The case of s(L) and r(L) is similar.

Benchmark B(A) Explanatory Variable(s) Xt−1

Y(A) d(A) e(A) r(A) l(A) π(A) s(A)

Short-term rate 2.2 −0.3 0.7 – −0.2 0.1 −0.2
Long-term rate 2.4 0.2 −0.5 −0.1 – −0.2 −0.1
Earnings-by-price 1.5 −0.2 – 0.6 −0.2 −0.7 0.0
Inflation 0.2 −0.9 −1.2 −0.3 −0.2 – −0.7

(Y(A), d(A)) (Y(A), e(A)) (Y(A), r(A)) (Y(A), l(A)) (Y(A), π(A)) (Y(A), s(A))
Short-term rate 0.8 0.7 – 0.2 0.1 0.2
Long-term rate 1.3 3.0 0.1 – −0.3 0.1
Earnings-by-price 0.2 – 0.7 2.5 0.0 0.1
Inflation −3.1 −1.4 −1.5 −1.9 – −1.0

(d(A), e(A)) (d(A), r(A)) (d(A), l(A)) (d(A), π(A)) (d(A), s(A))
Short-term rate −1.3 – 0.9 0.0 0.9
Long-term rate −1.0 0.9 – −0.7 0.9
Earnings-by-price – −0.3 -0.8 −1.8 0.4
Inflation −1.9 0.7 1.6 – −0.7

(e(A), r(A)) (e(A), l(A)) (e(A), π(A)) (e(A), s(A))
Short-term rate – −0.4 −2.6 −0.4
Long-term rate −0.6 – −2.5 −0.6
Earnings-by-price – – – –
Inflation −1.6 −1.5 – −1.6

(r(A), l(A)) (r(A), π(A)) (r(A), s(A))
Short-term rate – – –
Long-term rate – −1.2 –
Earnings-by-price −0.5 −2.1 −0.3
Inflation −1.9 – −1.6

(l(A), π(A)) (l(A), s(A))
Short-term rate −1.4 –
Long-term rate – –
Earnings-by-price −2.5 −0.5
Inflation – −1.7

(π(A), s(A))
Short-term rate −1.4
Long-term rate −1.2
Earnings-by-price −1.6
Inflation –
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Table 5. Predictive power for the variance of five-year excess stock returns Z(A)
t : the double

benchmarking approach. The prediction problem is defined in (15). The same predictive variables X(A)
t−1

are used in the predictions for the conditional mean and variance. Additional notes: see Table 4.

Benchmark B(A) Explanatory Variable(s) Xt−1

Y(A) d(A) e(A) r(A) l(A) π(A) s(A)

Short-term rate 0.6 −2.2 −3.2 – −3.1 −3.2 −3.1
Long-term rate 0.0 −3.4 −2.8 −2.8 – −1.3 −2.8
Earnings-by-price 0.8 1.8 – −2.3 −3.2 0.6 −3.8
Inflation −1.0 1.6 0.3 0.6 1.6 – 0.3

(Y(A), d(A)) (Y(A), e(A)) (Y(A), r(A)) (Y(A), l(A)) (Y(A), π(A)) (Y(A), s(A))
Short-term rate −2.1 −4.3 – −4.0 −1.2 −4.0
Long-term rate −3.8 −3.2 −3.6 – −1.1 −3.6
Earnings-by-price 1.1 – −2.8 −3.8 −0.5 −3.4
Inflation 0.3 −0.8 −0.3 0.4 – −1.0

(d(A), e(A)) (d(A), r(A)) (d(A), l(A)) (d(A), π(A)) (d(A), s(A))
Short-term rate −3.7 – −5.4 −2.1 −5.4
Long-term rate −4.2 −5.8 – −3.3 −5.8
Earnings-by-price – −0.4 −2.6 0.3 −3.3
Inflation −4.3 −0.2 −0.8 – −0.8

(e(A), r(A)) (e(A), l(A)) (e(A), π(A)) (e(A), s(A))
Short-term rate – −5.9 −4.9 −5.9
Long-term rate −6.1 – −4.1 −6.1
Earnings-by-price – – – –
Inflation −4.8 −4.1 – −2.1

(r(A), l(A)) (r(A), π(A)) (r(A), s(A))
Short-term rate – – –
Long-term rate – −2.3 –
Earnings-by-price −6.3 −3.2 −6.1
Inflation −1.0 – 0.5

(l(A), π(A)) (l(A), s(A))
Short-term rate −3.4 –
Long-term rate – –
Earnings-by-price −3.6 −6.2
Inflation – 0.5

(π(A), s(A))
Short-term rate −3.4
Long-term rate −2.3
Earnings-by-price −4.6
Inflation –

3.4. Real-Income Long-Term Pension Prediction

In long-term pension planning or other asset allocation problems optimized with regard to
real-income protection (Gerrard et al. (2019a, 2019b); (Merton 2014)), the econometric models should
reflect those needs and use covariates net-of-inflation. Therefore, we take the inflation benchmark
B(C) and analyse in more detail the best model found by Kyriakou et al. (2019b), which uses the
earnings-by-price variable for the mean prediction and produced a R2

V,m = 12.2 for the one-year
horizon and R2

V,m = 12.4 for the five-year horizon (see Kyriakou et al. 2019b, Tables 4 and 5) in
the double benchmarking case. For this specific model, we are now interested in finding the set of
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covariates that best predicts the conditional variance.15,16 The empirical findings in terms of R2
V,ν

are shown for the one-year horizon in Table 6 and the five-year horizon in Table 7. For the one-year
horizon, we find in the double benchmarking approach when inflation is the benchmark, B(C) that
the dividend-by-price d(C) together with the short-term interest-rate r(C) or the long-term interest-rate
l(C) are chosen as best predictive variables in terms of R2

V,ν (2.9% and 2.0%). Note that these values
are rather low and that the SNS-test does reject the null of no predictability for both models, while
the KNY-test does not reject. For all other combinations and also the five-year case, we do not find
evidence for statistical significant predictability of the conditional variance. Therefore, we conclude
that the constant volatility model is appropriate for practical purposes.

Note further that the ratio in our validation criterion for the mean prediction, R2
V,m, in (8)

compares the sample variance of the estimated residuals from our model based on earnings-by-price
(the numerator) with the sample variance of the benchmarked stock returns (the denominator). For
the one-year case, we find from Table 1 the latter to be equal to 0.18052 = 0.03258. A simple calculation
using the corresponding RV,m = 12.2% leads then to 0.03258(1 − 0.122) = 0.02861 or a standard
deviation of 16.91% for returns based on the earnings-model. This means that the linear expression of
real stock returns in terms of real earnings-by-price presented in Kyriakou et al. (2019b) as

Real one-year stock return = 0.004875 + 1.119 × real earnings-by-price (17)

gives on average 2.4% higher returns at the same risk as the historical mean Ȳ(C).17 Similarly, for the
five-year case, we get from Table 1 that 0.36422 = 0.1326. From the RV,m = 12.4%, we obtain then
0.1326(1 − 0.122) = 0.1162 or a standard deviation of 34.08% for returns based on the earnings-model.
Thus, the linear expression of real stock returns in terms of real earnings-by-price presented in
Kyriakou et al. (2019b) as

Real five-year stock return = 0.2068 + 2.264 × real earnings-by-price (18)

gives on average 6.1% higher returns at the same risk as the historical mean Ȳ(C).18 Figure 1 shows the
estimated nonparametric function m̂ (red solid line) for the one-year horizon (left) and the five-year
horizon (right) under the double inflation benchmark for the earnings-by-price covariate together
with the corresponding historical mean (dashed green line). Figure 2 depicts histograms and a kernel
density estimate (red solid line) of the standardized predicted returns for the one-year horizon (left)
and the five-year horizon (right). The similarity for both horizons is striking and driven by the fact that
the ratio of the slope of the regression lines in (17) and (18) with the corresponding standard deviation
given above yields almost the same value of 6.63.

15 Note that until now we have used the same set of covariates in both steps of our analysis to reduce the overwhelming
number of models. It is also clear that not all combinations of variables are practically relevant. Now, we relax this restriction
for the model with the highest predictive power for the returns.

16 Tables 6 and 7 also present the results for the short- and long-term interest benchmarks B(R) and B(L). However, it is again
hard to find predictability at all in these cases. Note that the benchmark using the earnings-by-price variable B(E) is not
applicable since it matches the covariate and the benchmark in the first step.

17 Here, we use the Sharpe-ratio for the comparison. From Table 1, we get Ȳ(C) = 6.41% and divide it either by 18.05% or by
16.91%. We obtain 0.355 and 0.379, which corresponds to a difference of 2.4% points.

18 Here, we use again the Sharpe-ratio for the comparison. From Table 1, we get Ȳ(C) = 32.34% and divide it either by 36.42%
or by 34.08%. We obtain 0.888 and 0.949, which corresponds to a difference of 6.1% points.
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Finally, we consider a simple mean-reverting autoregressive model of order one for the real
earnings-by-price—the main drivers of real returns in Equations (17) and (18)—and estimate it
with ordinary least squares (OLS) 19:

Change in real earnings-by-price

= −0.715 × (real earnings-by-price − mean of real earnings-by-price). (19)

Note that, for the whole sample period (1872–2019), the mean and standard deviation of real
earnings-by-price are 0.0524 and 0.0595, resp. Moreover, using the current (30/09/2019) value of
real earnings-by-price of 0.0278, model (19) predicts a change in real earnings-by-price of 0.0176,
i.e., an expected value of real earnings-by-price of 0.0454 for 2020Q3, which is still below the
long-term average.20

We subsequently calculate the correlation between the estimated residuals of models (17) and (19)
to be −0.014. A standard stationary block-bootstrap (Politis and Romano 1994) based on 10,000
repetitions and a block-length of 12 suggests that this correlation is not statistically significantly
different from zero. The correlation structure between returns and their drivers is important while
searching for optimal investment strategies in a dynamic market, see Kim and Omberg (1996).
Gerrard et al. (2019c) follow the approach of Kim and Omberg (1996) in a long-term return setting and
show that the above correlation is very hard to estimate with precision. Sometimes, it is negative and,
with a slight change of data, it is positive, and a test would almost always provide that zero correlation
cannot be rejected. When this added insight is provided that zero correlation significantly simplifies
that technical calculation of the optimal dynamic strategy while significantly reducing parameter
uncertainty, the conclusion seems clear: we should work with zero correlation unless there is a strong
argument not to do that. In our case—which is a discrete analogue to the continuous models considered
in Gerrard et al. (2019c) and Kim and Omberg (1996)—it is, therefore, comforting that we can provide a
simple zero-correlation econometric model to guide the market dynamics. In further work, we expect
the simple econometric model of this paper to be used while generalizing the non-dynamic new
approach to pension products of Gerrard et al. (2019a, 2019b).

19 The estimated coefficient is significant at the 0.1%-level (with a corresponding standard error of 0.08), the residual standard
error of the regression is 0.0572, and its R2 has a value of 0.357.

20 The following values are used for the calculation of the current real earnings-by-price: P = 2976.74, E = 135.53,
B(C) = 1.0173.
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Table 6. Predictive power for the variance of one-year excess stock returns Y(A)
t : the double

benchmarking approach for the conditional mean model with earnings-by price as single covariate.
The prediction problem is defined in (14). The predictive power (%) is measured by R2

V,ν as defined

in (8). The benchmarks B(A) considered are based on the short-term interest rate (A ≡ R), long-term

interest rate (A ≡ L), and consumer price index (A ≡ C). The predictive variables used are X(A)
t−1

using the indicated benchmark B(A)
t−1 as shown in (16). Xt−1 are given by the dividend-by-price ratio

dt−1, earnings-by-price ratio et−1, short-term interest rate rt−1, long-term interest rate lt−1, inflation

πt−1, term spread st−1, excess stock return Y(A)
t−1 , or the possible different pairwise combinations

as indicated. “–” are not applicable cases of matched covariate with benchmark. Note: s(R) and
l(R) (and their combinations with Y, d, e, π) have the same R2

V,ν by construction of the transformed

spread according to (16). For example, s(R)
t−1 = (lt−1 − rt−1)/B(R)

t−1 = (1 + lt−1)/(1 + rt−1) − 1 and

l(R)
t−1 = (1 + lt−1)/(1 + rt−1). Similar is the case of s(L) and r(L).

Benchmark B(A) Explanatory Variable(s) Xt−1

Y(A) d(A) e(A) r(A) l(A) π(A) s(A)

Short-term rate 1.0 0.3 0.7 – 0.1 −0.4 0.1
Long-term rate 1.4 0.1 −0.5 0.9 – −0.1 0.9
Inflation 0.4 −0.6 −1.2 −0.4 −0.1 – 0.8

(Y(A), d(A)) (Y(A), e(A)) (Y(A), r(A)) (Y(A), l(A)) (Y(A), π(A)) (Y(A), s(A))
Short-term rate 0.6 0.7 – 0.2 −0.5 0.2
Long-term rate 0.7 2.0 0.7 – −0.6 0.7
Inflation −1.7 −1.6 −1.5 −1.7 – −0.4

(d(A), e(A)) (d(A), r(A)) (d(A), l(A)) (d(A), π(A)) (d(A), s(A))
Short-term rate 0.0 – −0.5 −0.4 −0.5
Long-term rate −1.0 0.3 – −1.4 0.3
Inflation −1.9 2.9 2.0 – 1.5

(e(A), r(A)) (e(A), l(A)) (e(A), π(A)) (e(A), s(A))
Short-term rate – 0.5 −2.2 0.5
Long-term rate −0.7 – −2.5 −0.7
Inflation −0.9 −1.7 – −0.3

(r(A), l(A)) (r(A), π(A)) (r(A), s(A))
Short-term rate – – –
Long-term rate – −0.4 –
Inflation −0.5 – 0.7

(l(A), π(A)) (l(A), s(A))
Short-term rate 0.1 –
Long-term rate – –
Inflation – −0.2

(π(A), s(A))
Short-term rate 0.1
Long-term rate −0.4
Inflation –
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Table 7. Predictive power for the variance of five-year excess stock returns Z(A)
t : the double

benchmarking approach for the conditional mean model with earnings-by price as single covariate.
The prediction problem is defined in (15). Additional notes: see Table 6.

Benchmark B(A) Explanatory Variable(s) Xt−1

Y(A) d(A) e(A) r(A) l(A) π(A) s(A)

Short-term rate 0.1 −1.8 −3.2 – −4.5 −2.5 −4.5
Long-term rate 0.6 −3.9 −2.8 −4.2 – −1.1 −4.2
Inflation 0.0 −0.1 0.3 −0.4 −0.1 – −2.6

(Y(A), d(A)) (Y(A), e(A)) (Y(A), r(A)) (Y(A), l(A)) (Y(A), π(A)) (Y(A), s(A))
Short-term rate −1.7 −4.6 – −5.7 −3.7 −5.7
Long-term rate −4.5 −4.5 −4.2 – −2.5 −4.2
Inflation −1.9 −1.8 −1.9 −1.7 – −3.9

(d(A), e(A)) (d(A), r(A)) (d(A), l(A)) (d(A), π(A)) (d(A), s(A))
Short-term rate −6.2 – −7.1 −4.3 −7.1
Long-term rate −4.5 −7.9 – −5.2 −7.9
Inflation −3.9 −2.1 −3.2 – −2.8

(e(A), r(A)) (e(A), l(A)) (e(A), π(A)) (e(A), s(A))
Short-term rate – −8.1 −5.8 −8.1
Long-term rate −6.6 – −4.9 −6.6
Inflation −2.8 −3.4 – −2.6

(r(A), l(A)) (r(A), π(A)) (r(A), s(A))
Short-term rate – – –
Long-term rate – −5.7 –
Inflation −3.0 – −3.1

(l(A), π(A)) (l(A), s(A))
Short-term rate −6.5 –
Long-term rate – –
Inflation – −3.0

(π(A), s(A))
Short-term rate −6.5
Long-term rate −5.7
Inflation –

Figure 1. Double inflation benchmark. Relation between real stock returns and real earnings-by-price.
Estimated nonparametric function m̂ (red solid line) and historical average (dashed green line).
Left: one-year horizon. Right: five-year horizon. Period: 1872–2019. Data: annual S&P 500.
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Figure 2. Standardized predicted stock returns in excess of the inflation benchmark (based on the model
using earnings-by-price as covariate for mean-prediction; double benchmarking). Histogram, kernel
density estimate (red), and fitted normal distribution (green). Left: one-year horizon. Right: five-year
horizon. Period: 1872–2019. Data: annual S&P 500.

4. Conclusions

In this paper, we extend the original working framework of Kyriakou et al. (2019a, 2019b) of
forecasting stock returns to modelling their conditional variance and test for predictability in this
context. We consider returns of one-year and five-year horizons in excess of different benchmarks,
considering the short- and long-term rate, the earnings-by-price ratio, and the inflation rate. We use
popular explanatory variables with predictive power such as the dividend-by-price ratio, the earnings-
by-price ratio, the short- and long-term interest rates, the term spread, the inflation rate, as well as the
lagged excess stock return, in one- and two-dimensional settings, with the returns benchmarked or
also the covariates used to predict them.

In our analysis, we find only little to no evidence of model-based volatility predictability for the
one-year and five-year horizon. Only for a few of the models considered under different benchmarks,
we get validation measures that are positive and significantly different from zero but of a rather small
magnitude. We thus conclude that volatility forecastability is much less important at longer horizons
regardless of the chosen combination of explanatory variables. The homoscedastic historical average
of the squared return prediction errors gives an adequate approximation of the unobserved realised
conditional variance for both the one-year and five-year horizon.

In the practically important double inflation benchmarking case, we find that the model with
the largest predictive power is not only of linear functional form based on real earnings-by-price
but also has a constant variance for both horizons. A simple mean-reverting linear AR1-model for
the real-earnings-by-price allows then to analyse the correlation structure between returns and their
main drivers. We find zero correlation which significantly simplifies the econometric modelling to
guide market dynamics. This is an important observation and a relatively simple starting point when
constructing forecasting models for real-value pension prognoses for long-term saving strategies.
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Abstract: A new Bornhuetter–Ferguson method is suggested herein. This is a variant of the traditional
chain ladder method. The actuary can adjust the relative ultimates using externally estimated
relative ultimates. These correspond to linear constraints on the Poisson likelihood underpinning
the chain ladder method. Adjusted cash flow estimates were obtained as constrained maximum
likelihood estimates. The statistical derivation of the new method is provided in the generalised linear
model framework. A related approach in the literature, combining unconstrained and constrained
maximum likelihood estimates, is presented in the same framework and compared theoretically.
A data illustration is described using a motor portfolio from a Greek insurer.

Keywords: chain ladder; Bornhuetter–Ferguson; maximum likelihood; exponential families;
canonical parameters; prior knowledge

1. Introduction

While high dimensional data and its validation is important for many machine learning
experiments, it is also true that many machine learning applications combine mathematical statistical
methods with prior knowledge. The difficulty is to include this prior knowledge to upgrade the
statistical analysis without violating the fundamental principles of mathematical statistics. These kinds
of applications are omnipresent in insurance reserving, which often cite the original paper of
Bornhuetter and Ferguson from 1972. This combination of prior knowledge and mathematical statistics
is the purpose of this paper, where we are able to make it while sticking to the classical maximum
likelihood technique of mathematical statistics.

The chain ladder method is the basic actuarial tool for reserving in general insurance. This method
is based on the paid run-off triangle and provides estimates for the ultimate reserve along with
development factors that are used for determining cash flow. In practice, the actuary usually adjusts
the ultimates using additionally available information. With the Bornhuetter et al. (1972) method
the chain ladder ultimates are adjusted using prior knowledge while the adjusted cash flow is
proportional to the original chain ladder cash flow. Mack (2000) gave a credibility interpretation
of the Bornhuetter–Ferguson method.

The adjustment of the ultimates can be done in two ways. Either by correcting the levels of the
ultimates or the relative levels of the ultimates. By this, we distinguish between the situation where the
actuary has an estimate for the ultimate for a given policy year and the situation where the actuary is
more comfortable with the forecast that the ultimate for a given policy year is 10% higher, say, than in
the previous year. Such an estimate could, for instance, come from chain ladder analysis of incurred
data. Indeed, we provide an empirical illustration where this is the case. The levels approach is most
common in the literature; see for instance (Mack 2000, 2006), Taylor (2000), Verrall (2004), Wüthrich

Risks 2019, 7, 119; doi:10.3390/risks7040119 www.mdpi.com/journal/risks



Risks 2019, 7, 119

and Merz (2008) and Heberle and Thomas (2016). The relative levels approach is more recent; see
(Martínez-Miranda et al. 2013, 2015).

There are potentially two concerns with the traditional Bornhuetter–Ferguson correction. It may
move the reserves too much, and the cash flow distribution is not adjusted in light of the external
information. Verrall (2004) addressed this in a Bayesian setup and Mack (2006) proposed an alternative
approach where new weights are computed by combining actual payments and the externally
estimated reserves.

Our proposal is related to that of Mack (2006), but with weights derived from a likelihood function.
Adjusting relative ultimates as opposed to level ultimates is natural when working with the likelihood
function in the same way as traditional chain ladder development factors are concerned with relative
effects. A feature of our approach is, therefore, that external information is linked directly to the
parameters of the underlying Poisson model and it is possible to express the Bornhuetter–Ferguson
adjustment in terms of adjustments to the development factors. Another feature of this approach is
that we can evaluate how much the adjustment moves the reserves and establish inequalities relating
our approach and the traditional Bornhuetter–Ferguson adjustments.

A fundamental interpretation of the Bornhuetter–Ferguson method arises when combining chain
ladder with credibility formulas. Credibility formulas have been investigated in reserving by, for
instance, de Vylder (1982), Mack (2000). and more recently, Bühlmann and Moriconi (2015). We have
been particularly influenced by Mack (2000), who gives a credibility formula showing that adjusting
the ultimates with prior knowledge yields a partial adjustment of the reserves. He then continues to
show that the iterations of the credibility formula leads to the Benktander (1976) approach. These ideas
are taken a step further by Gigante et al. (2013), whereas Taylor (2000) and Wüthrich and Merz (2008)
give general overviews of the Bornhuetter–Ferguson method. Our first contribution is to show that the
credibility formula also applies when adjusting the relative levels of the ultimates.

It is useful to recall that the chain ladder method has the nice interpretation as maximum likelihood
in a Poisson model. Kremer (1985) (see also Mack 1991) showed that the chain ladder forecasts are
maximum likelihood. These forecasts are the product of observed accident year row sums and functions
of the development factors; see (4). Renshaw and Verrall (1998) showed that the development factors
themselves are maximum likelihood estimators in a conditional Poisson model conditioning on row
sums, while Kuang et al. (2009) showed that they are also maximum likelihod in the unconditional
Poisson model. The maximum likelihood result means that it is possible to compute the chain ladder
estimates using generalised linear model methods. In practice the Poisson assumption is not realistic as
the paid data typically have considerable over-dispersion; see for instance England and Verrall (2002).
Nonetheless, the chain ladder method provides good reserve estimates that are, at least, anchored in a
quasi-likelihood.

The main idea of our approach is to impose the externally estimated relative ultimates on the
Poisson likelihood. Initially, it is useful to work with the standard parametrisation of the generalised
linear model as opposed to the development factors. We can then formulate the relative ultimates’
constraint as a linear constraint on the parameters and derive maximum likelihood estimators.
Subsequently, we translate these estimators into adjusted development factors.

The constrained maximum likelihood approach satisfies a monotonicity result. If, for instance,
all the relative ultimates are increased relative to the chain ladder ultimates, then it follows
that the reserves are increased. However, these new reserves increase less than the traditional
Bornhuetter–Ferguson reserves that would arise by combining the adjusted relative ultimates with the
chain ladder development factors.

In this paper we focus on classical mathematical statistics through the maximum likelihood
method. Recent work in reserving has emerged in the literature using modern machine learning
techniques. Kuo (2019) proposes deep neural networks to joint modelling paid data and total
claims outstanding, claiming that no manual input is required during model updates or forecasting.
Additionally, using neural networks Gabrielli and Wüthrich (2018) develop a “stochastic simulation
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machine” that generates individual claims histories of non-life insurance claims. Another individual
claims approach but based on the classification and regression trees is suggested by De Felice and
Moriconi (2019). Chukhrova and Johannssen (2017) describe a state space model for cumulative
payments (that extend the chain ladder method) in combination with the Kalman filter.

The rest of the paper is organised as follows. In Section 2 we first describe the chain ladder
forecasts in terms of the development factors and certain weights. Using this formulation we describe
two Bornhuetter–Ferguson approaches in the literature: the interpretation offered by Mack (2000) that
uses levels of ultimates, and the approach of Martínez-Miranda et al. (2013) using relative ultimates.
From these two approaches the future cash flow is not influenced by the external information. We then
present our proposed Bornhuetter–Ferguson reserves which are determined by a Poisson likelihood
constrained by the external information. The formal derivation of our proposal is provided in Section 3
in the generalised, lineal model framework. Our proposal is derived as the solution of a constrained
maximum likelihood approach, where the constraint is given by the imposed external information.
Later, in Section 3.5 we show that the approach by Martínez-Miranda et al. (2013) is a mixed approach
which combines unconstrained and constrained maximum likelihood estimators. Reserve forecasts and
cash flow are described from our proposal, the mixed approach and the traditional chain ladder method.
Only our proposed cash flow is affect by the external information, which is explicitly shown in terms
of some pseudo development factors introduced in Section 3.6. In Section 4 we illustrate our proposal
using a motor portfolio from a Greek insurer. These data include both paid and incurred triangles.
In addition, an external estimate of the reserve is available so that this example nicely illustrates
the practical issues that lead to the use of the Bornhuetter–Ferguson method. Conclusions and final
remarks are provided in Section 5.

2. The Bornhuetter–Ferguson Problem

We present two standard Bornhuetter–Ferguson approaches. For now we will not formulate
a statistical model, but just use the standard chain ladder formulas.

2.1. Data Structure

Consider a standard run-off triangle of paid amounts. The dimension is denoted k and we use the
incremental form of the triangle. Each entry is denoted Yij so that i is the accident year index and j
is the development year index. The indices vary in the upper triangle with indices 1 ≤ i, j ≤ k and
i + j − 1 ≤ k. This is the area I in Figure 1. The objective is to forecast values of Yij in the lower triangle
with indices 1 ≤ i, j ≤ k and k + 1 ≤ i + j − 1 ≤ 2k − 1. This is the area J in Figure 1.

In the analysis we will be interested in row sums, column sums and rectangular sums

Ri =
k+1−i

∑
j=1

Yij, Cj =
k+1−j

∑
i=1

Yij, Sr =
r

∑
�=1

k−r

∑
j=1

Y�j, (1)

for 1 ≤ i, j ≤ k and 1 ≤ r ≤ k − 1. In practice the payments Yij may be negative. This is at odds
with the Poisson model interpretation of the chain ladder method which requires the payments to
be non-negative. With the Poisson formulation we need the further requirement that the rectangular
sums, the row sums and the column sums are positive Kuang et al. (2009) (Theorem 2); that is,

S1, . . . , Sk−1, R2, . . . , Rk, C2, . . . , Ck > 0. (2)

We will assume these constraints throughout the paper, while noting that constraints in (2) may be
satisfied even if some payments Yij are negative.
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Figure 1. Illustration of data layout.

2.2. Chain Ladder Method

The chain ladder method is computed from row sums or cumulative payments Ri as in (1) and
development factors

Fj =
∑

k+1−j
i=1 ∑

j
�=1 Yi�

∑
k+1−j
i=1 ∑

j−1
�=1 Yi�

for j = 2, . . . , k. (3)

The development factors are larger than one under the constraint (2) to Ri, Cj, Sr; see Theorem 2
in Kuang et al. (2009). The chain ladder forecasts of the amounts in the lower triangle are then

Ỹij = Ri(Fj − 1)
j−1

∏
�=k+2−i

F�. (4)

From this we compute the reserve for accident year i, for i = 2, . . . , k, as

Vi =
k

∑
j=k+2−i

Ỹij = Ri(Fprod
i − 1) where Fprod

i =
k

∏
�=k+2−i

F�, (5)

and the predicted ultimate payment as; see also Section 2.1.3 of England and Verrall (2002),

Ui = Ri + Vi = RiF
prod
i for i = 2, . . . , k. (6)

If we use the convention that empty products are unity, this matches with U1 = R1 and V1 = 0, so
that the in-sample prediction of the sum of the payments for accident year one equals the observation.
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It will be convenient to express the above formulas in terms of certain weights.
Thus, define weights, for i = 2, . . . , k, j = k + 2 − i, . . . , k,

Wij = (Fj − 1)
∏

j−1
�=k+2−i F�

Fprod
i

=
Fj − 1

∏k
�=j F�

, (7)

Wi =
Fprod

i − 1

Fprod
i

=
k

∑
j=k+2−i

Wij. (8)

These are numbers between zero and unity when the development factors are larger than unity.
The weights Wi approach unity when the product of the development factors approaches infinity.
We can then write the forecasts for each cell and each row in the lower triangle as

Ỹij = UiWij, Vi = UiWi, i = 2, . . . , k. (9)

These formulas show how the reserve Vi can be found as a fraction of the predicted ultimate Ui, while
Yij indicates how the cash flow is distributed.

The chain ladder is maximum likelihood in a Poisson model that will be presented in Section 3.
A feature of the likelihood function (25) is that it is symmetrical in the indices for accident year i
and development year j. This observation leads to a new expression for the forecast of the reserve,
which will be proved in the Appendix A. Traditionally, we forecast by computing row sums Ri of the
data and multiplying by the column wise forward factors Fj as in (4). Alternatively, we can compute
columns sums Cj as in (1) and row-wise forward factors

Gi =
∑k+1−i

j=1 ∑i
�=1 Y�j

∑k+1−i
j=1 ∑i−1

�=1 Y�j
for i = 2, . . . , k (10)

and combine these to get the forecasts for the lower triangle, proved in the Appendix A,

Ỹij = Ri(Fj − 1)
j−1

∏
�=k+2−i

F� = Cj(Gi − 1)
i−1

∏
�=k+2−j

G�. (11)

2.3. Bornhuetter–Ferguson Using Levels of Ultimates

This section presents the Bornhuetter–Ferguson interpretation offered by Mack (2000); see also
England and Verrall (2002) and Alai et al. (2009).

England and Verrall present the Bornhuetter–Ferguson idea as follows. Suppose we replace the
chain ladder ultimate Ui by an externally estimated reserve Ulevel

i in the Formula (9). Then we get the
level-based Bornhuetter–Ferguson reserve

VBF,level
i = Ulevel

i Wi for i = 2, . . . , k.. (12)

Thus, the Bornhuetter–Ferguson reserve is the proportion Wi of the externally estimated level of
the ultimate. In a similar fashion the Bornhuetter–Ferguson cash flow is given by

ỸBF,level
ij = Ulevel

i Wij for i = 2, . . . , k, j = k + 2 − i, . . . , k.. (13)

The predicted ultimate payout turns out to be a convex combination of the chain ladder reserve
Ui and the externally generated number Ulevel

i . To see this, use the Formulas (6) and (8) to write the

cumulated payments as Ri = Ui/Fprod
i = Ui(1 − Wi). It then follows that

UBF,level
i = Ri + VBF,level

i = Ui(1 − Wi) + Ulevel
i Wi. (14)
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Mack (2000) refers to this a credibility formula and traces it back to Benktander (1976). He points
out that it can be iterated by replacing Ulevel

i by UBF,level
i . Another consequence is the following

ordering, assuming 0 < Wi < 1,

Ui < Ulevel
i ⇒ Ui < UBF,level

i < Ulevel
i . (15)

2.4. Bornhuetter–Ferguson Using Relative Ultimates

This section presents the Bornhuetter–Ferguson approach of Martínez-Miranda et al. (2013).
The idea is now to replace the relative ultimates rather than levels of ultimates. We then rewrite (9) as

Vi = R1
Ui
U1

Wi for i = 2, . . . , k, (16)

recalling that U1 = R1. We now replace Ui/U1 by some external measure Urel
i /Urel

1 , which only
provides information about the relative ultimates, such as the figure for year i being 10% higher than
that for year i − 1. This results in the relative level-based Bornhuetter–Ferguson reserve

VBF,rel
i = R1

Urel
i

Urel
1

Wi for i = 2, . . . , k. (17)

The corresponding cash flow is then

ỸBF,rel
ij = R1

Urel
i

Urel
1

Wij for i = 2, . . . , k, j = k + 2 − i, . . . , k. (18)

The relative Bornhuetter–Ferguson reserve also satisfies an actuarial credibility formula. To see
this define U1 = R1, write Ri = R1(Ri/U1) and combine it with Ri = Ui(1 − Wi) as before, to get

UBF,rel
i = Ri + VBF,rel

i = R1

{
Ui
U1

(1 − Wi) +
Urel

i

Urel
1

Wi

}
. (19)

Once again, we have the ordering, for i = 2, . . . k and assuming 0 < Wi < 1,

Ui
U1

<
Urel

i

Urel
1

⇒ Ui < UBF,rel
i . (20)

Martínez-Miranda et al. (2013) suggested that the relative external numbers could be computed
from an incurred triangle. They extended this further to allow for reporting delays using
a double chain ladder method. However, in the present paper we focus on the consequences of
a Bornhuetter–Ferguson correction rather than how the external numbers are generated.

2.5. Proposed Bornhuetter–Ferguson Reserves

With the above approaches the future cash flow is determined by the chain ladder method through
the weights Wij and not influenced by the external information. As argued by Verrall (2004) and Mack
(2006) it may be desirable that the cash flow is also influenced by the external information. Our
proposal allows the cash flow to be determined by a Poisson likelihood, constrained by the external
information. Before we give the derivation it is useful to give a brief overview of the results.

The proposed Bornhuetter–Ferguson approach evolves around the chain ladder reserving Formula
(11) involving column sums Cj and row-wise forward factors Gi. Suppose we have externally given
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relative ultimates Urel
i /Urel

1 for i = 2, . . . , k, with the convention that Urel
i /Urel

1 = 1 for i = 1. We then
construct Bornhuetter–Ferguson row-wise forward factors

Γrel
i =

∑i
�=1(U

rel
� /Urel

1 )

∑i−1
�=1(U

rel
� /Urel

1 )
for i = 2, . . . , k. (21)

In Section 3.3 we show that Γrel
i naturally comes from a constrained likelihood. For now,

the intuition is that the traditional development factors Fj, and Gi, are relative effects computed
as ratios of sums over data rectangles of different sizes. This compensates for the fact that the data are
only available in triangular form, so that column and row lengths are unbalanced. Once we impose
the relative ultimates, which are relative row effects, then the unbalanced row lengths are essentially
eliminated and we can capture relative row effects in a simpler fashion, as shown in (21).

The Bornhuetter–Ferguson forecasts of individual payments and of reserves are, then,

Ỹij = Cj(Γrel
i − 1)

i−1

∏
�=k+2−j

Γrel
� , Vrel

i =
k

∑
j=k+2−i

Ỹij. (22)

3. Generalised Linear Model Framework

We present a Generalised Linear Model framework for Bornhuetter–Ferguson analysis. The usual
chain ladder estimators are maximum likelihood in a Poisson model; see Kremer (1985). In practice,
reserving data have considerable over-dispersion; see England and Verrall (2002), so that Poisson
likelihood becomes a quasi likelihood. In the present paper this distinction is not so important as
we will only be concerned with point forecasts. Now, if we maximise the likelihood while imposing
constraints from external relative levels of ultimates, we get a closed form cash flow forecast that
adapts to both data and the imposed constraints.

Next we describe the unconstrained and constrained Poisson likelihood. The first one provides
the chain ladder forecasts without external information in Section 3.2, and the second one provides our
proposed forecasts in Section 3.3. The approach of Martínez-Miranda et al. (2013) is shown in Section
3.5 as a mixed approach that combines constrained and unconstrained maximum likelihood estimates.
Our proposed forecasts have an equivalent expression involving new column-wise development
factors provided in Section 3.6. These development factors will be different for different accident years.
For this reason we refer to them as pseudo development factors. This kind of formulation is also
possible for the mixed approach, but with the standard chain ladder development factors, as we show
in Section 3.7. A monotonicity result provided in Section 3.8 gives some insight about the effect that
the imposed external information has on our proposed forecasts and those from the mixed approach.

3.1. Statistical Model

We assume that the incremental observations Yij are independent Poissons with log expectation
EYij = exp(μij), where the predictor is given by

μij = αi + β j + δ. (23)

Here αi is the level of the accident year effect, β j is the level of the development year effect and
δ is an overall level. The parametrisation presented in (23) does not identify the distribution, so we
switch to the invariant parametrisation of Kuang et al. (2009); that is,

μij = μ11 +
i

∑
�=2

Δα� +
j

∑
�=2

Δβ�, (24)
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with the convention that empty sums are zero. Here Δαi = αi − αi−1 is the relative accident year effect
and Δβ j = β j − β j−1 is the relative development year effect, while the overall level is determined by
μ11. The Poisson log likelihood function is

�(μ11, Δαi, Δβ j) = ∑
1≤i,j,i+j−1≤k

{μijYij − exp(μij)− log(Yij!)}. (25)

This is a regular exponential family with canonical parameters μ11, Δαi, Δβ j.

3.2. The Chain Ladder

The chain ladder arises by maximising the unconstrained likelihood. Theorem 3 in Kuang et al.
(2009) shows that the maximum likelihood estimators are

Δα̂i = Δ log Ri + log Fk+2−i for i = 2, . . . k, (26)

Δβ̂ j = Δ log Cj + log Gk+2−j for j = 2, . . . k, (27)

μ̂11 = log R1 −
k

∑
j=2

log Fj. (28)

When inserting these estimators into Equation (23) we get estimators μ̂ij. In turn, the relative
ultimates are estimated by

Ui
U1

=
∑k

j=1 exp(μ̂ij)

∑k
j=1 exp(μ̂1j)

= exp(
i

∑
�=2

Δα̂�) for i = 2, . . . k, (29)

which are the relative ultimates entering in Equation (16). It is convenient to define U1 = R1, as this
says that the ultimate for first accident year equals the claims observed. With this definition, we find
that R1 = U1 is the maximum likelihood estimator for the expected ultimates ER1 for the first accident
year. In turn, the maximum likelihood estimators for the ultimate levels satisfy

Ui = U1
Ui
U1

= U1 exp(
i

∑
�=2

Δα̂�) for i = 2, . . . k. (30)

Now, insert the expression for Δα̂i in (26) to get

Ui = U1

i

∏
�=2

(
R�

R�−1
Fk+2−�) = U1

Ri
R1

i

∏
�=2

Fk+2−� = Ri

k

∏
�=k+2−i

F�, (31)

which are the ultimates in (6). Thus, in both cases the ultimate formulas are closely linked to the
estimated relative accident year effects Δα̂i.

An additional result from Theorem 3 in Kuang et al. (2009) is that the forward factors Fj and Gi
can be viewed as maximum likelihood estimators for certain combinations of the canonical parameters
Δβ j and Δαi, respectively. These combinations are, for i, j = 2, . . . , k,

Φj =
∑

j
�=1 exp(∑�

h=2 Δβh)

∑
j−1
�=1 exp(∑�

h=2 Δβh)
, Γi =

∑i
�=1 exp(∑�

h=2 Δαh)

∑i−1
�=1 exp(∑�

h=2 Δαh)
, (32)

with the convention that empty sums are zero. The development factors are the corresponding
maximum likelihood estimators; that is, Fj = Φ̂j and Gi = Γ̂i.
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3.3. Imposing External Information on the Relative Ultimates

Suppose some external values are available for the relative ultimates, Urel
i /Urel

1 .
Equivalently, we have external values for the relative accident year effects Δα†

i ; that is,

Δα†
i = log(Urel

i /Urel
i−1). (33)

We could impose these as a constraint on the likelihood (25). The constraint is linear and the
likelihood remains that of a regular exponential family.

The constrained maximum likelihood estimators have a simple analytical form. In line with the
parameters Γi defined in (32), define

Γ†
i =

∑i
�=1 exp(∑�

h=2 Δα†
h)

∑i−1
�=1 exp(∑�

h=2 Δα†
h)

. (34)

We then have the following result, which is proven in the Appendix A.

Theorem 1. Consider the Poisson likelihood (25) with known Δαi = Δα†
i for i = 2, . . . , k and define Γ†

i as
(32), computed using Δα†

i . The constrained maximum likelihood estimator is unique if and only if Cj > 0 for all
j = 1, . . . k and given by

Δβ̂†
j = Δlog Cj + log Γ†

k+2−j for j = 2, . . . , k, (35)

μ̂†
11 = log C1 − log{1 +

k

∑
i=2

exp(
i

∑
�=2

Δα†
� )}= log C1 −

k

∑
�=2

log Γ†
� . (36)

As a consequence, the out-of-sample forecast from the constrained chain ladder has a simple
explicit form, as shown in the following result, which is proven in the Appendix A. The result resembles
the forecast in the unrestricted chain ladder computed from column sums and row-wise development
factors as described in (11).

Theorem 2. Consider the setup in Theorem 1. Point forecasts for the lower triangle are given by

Ỹ†
ij = Cj(Γ†

i − 1)
i−1

∏
�=k+2−j

Γ†
� . (37)

We can now compute a Bornhuetter–Ferguson reserve based on Theorem 2. For each accident
year we get

V†
i =

k

∑
j=k+2−i

Ỹ†
ij . (38)

In the case where we impose external relative ultimates, the above expressions reduce to those
presented previously in (22). In the above expression the notation reflects that the external information
is concerned with the relative accident year parameters Δα†

i . Now, suppose the relative ultimates
Urel

i /Urel
1 are taken as given. We then apply the Formula (30) to get cumulated relative accident

parameters exp(∑i
�=2 Δα†

� ) = Urel
i /Urel

1 . Inserting this in the expression (34) for Γ†
i in (34) gives

Γ†
i =

∑i
�=1 exp(∑�

h=2 Δα†
h)

∑i−1
�=1 exp(∑�

h=2 Δα†
h)

=
∑i
�=1 Urel

� /Urel
1

∑i−1
�=1 Urel

� /Urel
1

= Γrel
i , (39)

which is the expression for Γrel
i in (21). Since Γ†

i = Γrel
i we see that the point forecast Ỹ†

ij in (37) equals

the point forecast Ỹij in (22). In turn the reserve V†
i in (38) equals the reserve Vrel

i in (22).
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3.4. Implementation in GLM Software

The constrained model can also be estimated using ready-made algorithms for generalised linear
models. The analysis presented above shows that the constrained model is a regular exponential
family so the algorithms should perform well.

For the implementation we organise the triangle Y as a vector Y, say, of dimension k(k + 1)/2.
A design matrix X can be constructed from the formula (24). It has dimension {k(k + 1)/2} × (2k − 1)
and the row corresponding to entry i, j is given by

X′
ij = {1, 1(2≤i), . . . , 1(k≤i), 1(2≤j), . . . , 1(k≤j)}, (40)

where the indicator function 1(m≤i) takes the value unity if m ≤ i and zero otherwise. The unrestricted
model is then estimated through a generalised linear model regression of Y on X using the Poisson
distribution with a log-link function.

In the constrained model the parameters θknown = (Δα†
2, . . . , Δα†

k)
′ are known. Deleting the

corresponding columns from X gives a design matrix Xreduced with k columns. The deleted columns
are collected as Xknown, say. The model is then estimated as a generalised linear model regression of Y

on Xreduced using the Poisson distribution with a log-link function and offset given by Xknownθknown.

3.5. A Mixed Approach

By now we have two maximum likelihood approaches: the classical chain ladder and the restricted
maximum likelihood approach derived above. These give different point forecasts for the lower
triangle. A third type of point forecast arises from the Bornhuetter–Ferguson double chain ladder
(BDCL) method in Martínez-Miranda et al. (2013). In the following it is shown how the three are
connected.

Let us first summarise the results we obtained so far in terms of the log likelihood. In the classical
chain ladder approach, we maximise the unrestricted likelihood in (25), which leads to the unrestricted
estimator

ξ̂ = max
ξ

�(ξ) = (μ̂11, Δα̂i, Δβ̂ j)
′. (41)

The restricted likelihood from Section 3.3 with restriction Δαi = Δα†
i has a restricted likelihood

maximum likelihood estimator given by

ξ̂† = max
ξ :Δα=Δα†

�(ξ) = (μ̂†
11, Δα†

i , Δβ̂†
j )

′. (42)

Notice, that if Δα†
i = Δα̂i, then μ̂†

11 = μ̂11 and Δβ̂†
j = Δβ̂ j.

A third estimator is achieved by mixing the above estimators. This combines the unrestricted
estimators for μ11 and β j with the given Δα†

i , such that

ξ̂‡ = (μ̂11, Δα†
i , Δβ̂ j)

′. (43)

In the following, parameters resulting from this mixed approach will be marked with the index
“‡,” just as parameters resulting from the constrained method will be marked with “†.” The forecast
for future payments computed from ξ̂‡ is

Ỹ‡
ij = exp(μ̂11 +

i

∑
h=2

Δα†
h +

j

∑
h=2

Δβ̂h). (44)
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In the Appendix A we prove the identities

Ỹ‡
ij = Ỹij

exp(∑i
h=2 Δα†

h)

exp(∑i
h=2 Δα̂h)

= Ỹ†
ij

∑
k+1−j
�=2 exp(∑�

h=2 Δα†
h)

∑
k+1−j
�=2 exp(∑�

h=2 Δα̂h)
. (45)

In the case when the known accident parameters are derived by applying chain ladder on
the incurred data, such that Δα†

i = Δα̂inc
i , this method gives exactly the same results as the

Bornhuetter–Ferguson double chain ladder (BDCL) method in Martínez-Miranda et al. (2013).
The log likelihood function evaluated in the three points satisfies

�(ξ̂) ≥ �(ξ̂†) ≥ �(ξ̂‡).

The first inequality holds since ξ̂ is maximum likelihood, while ξ̂† is restricted maximum
likelihood. The second inequality holds since ξ̂‡ satisfies the restriction, but it is not
maximum likelihood.

3.6. Pseudo Development Factors

It is common practice to think about the classical chain ladder method in terms of row sums Ri
and column wise development factors Fj given in (1) and (3). For the restricted maximum likelihood
approach there are no natural development factors in a maximum likelihood sense. Since development
factors are important in daily actuarial work it is of interest to develop pseudo-development factors
that keep the chain ladder pattern.

In the classical chain ladder, the forecasts for the lower triangle are computed using the
Formula (11) by forwarding the row sums Ri using the factors Fj. However, in this classical setting
the predicted value for the row sum equals the row sum. In the likelihood analysis, this stems from a
likelihood equation of the type Ri = E(Ri); see Equation (20) in Kuang et al. (2009). Thus, we can also
interpret the chain ladder forecast as forwarding the predicted row sums.

Once we have imposed external information on the relative ultimates, then the forecast changes
and we break the link to the original row sums and development factors. We can, however, construct
pseudo forecasts of the row sums and pseudo forward factors that satisfy a relationship like (11) but
with the new forecasts.

Under the constraint that Δα = Δα† we compute estimates μ̂†
11 and Δβ̂†

j using (35) and (36) in
Theorem 1. From these we compute pseudo forward factors from (32); that is,

F†
j =

∑
j
�=1 exp(∑�

h=2 Δβ̂†
h)

∑
j−1
�=1 exp(∑�

h=2 Δβ̂†
h)

, (46)

and a pseudo first row sum from (28) as

log R†
1 = μ̂†

11 +
k

∑
j=2

log F†
j , (47)

and then the remaining pseudo row sums from (26) as

Δ log R†
i = Δα†

i − log F†
k+2−i. (48)

We show in the Appendix A that the forecast from (37) can be computed as

Ỹ†
ij = R†

i (F†
j − 1)

j−1

∏
�=k+2−i

F†
� . (49)
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The above formulas for predicted reserve and the cash flow can also be written in the credibility
format we saw in (17) and (18). To see this introduce the weights

W†
ij = (F†

j − 1)
∏

j−1
�=k+2−i F†

�

Fprod†
i

, W†
i =

Fprod†
i − 1

Fprod†
i

,

where, as before, Fprod†
i = ∏k

�=k+2−i F†
� . Introducing the ultimates and relative ultimates

U†
i = R†

i Fprod†
i ,

U†
i

U†
i−1

=
R†

i
R†

i−1
F†

k+2−i = exp(Δα†
i )

we can then write the predicted reserve and cash flow as

Ỹ†
ij = U†

i W†
ij, V†

i = U†
i W†

i .

3.7. Chain Ladder Forecasts with the Mixed Approach

In the mixed approach we follow a similar procedure to satisfy a relationship like (11) in order to
obtain the new forecasts. The difference to the constrained method is that we can keep the forward
factors from the unconstrained chain ladder model, Fj. However, we need to construct pseudo row

sums R‡
i as follows.

We fix the pseudo first row sum as

log R‡
1 = log R1, (50)

and then compute the remaining pseudo row sums from (26) as

Δ log R‡
i = Δα†

i − log Fk+2−i. (51)

We show in the Appendix A that the forecast from (44) can be computed as

Ỹ‡
ij = R‡

i (Fj − 1)
j−1

∏
�=k+2−i

F�. (52)

The forecast can be written in terms of weights, as before. Since the cash flow is derived from the
chain ladder development factors, the weights are as defined in (7) and (8). In particular we have the
ultimates and relative ultimates

U‡
i = R‡

i Fprod
i ,

U‡
i

U‡
i−1

=
R‡

i

R‡
i−1

Fk+2−i = exp(Δα†
i ).

We can then write the forecast of future payments and the cash flow as

Ỹ‡
ij = U‡

i Wij, V‡
i = U‡

i Wi. (53)

3.8. Monotonicity

The idea of the Bornhuetter–Ferguson approach is to first compute the chain ladder, and then
adjust it by imposing values for the ultimates. This is a quite complicated approach and it is not
immediately clear what the effect is. However, when all adjustments are in the same direction it is
actually possible to show a monotonicity result for the effect of the Bornhuetter–Ferguson adjustment.

Let us consider the case when the known accident parameters, Δα†
i , are bigger than the accident

parameters we obtain from the chain ladder method on paid data, Δα̂i. The following theorem, proved
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in the Appendix A, shows monotonicity results regarding the remaining parameters given in Theorem
1, and the resulting forecasts we obtain from the constrained approach in Section 3.3, Ỹ†

ij , and the mixed

approach in Section 3.5, Ỹ‡
ij .

Theorem 3. Suppose Δα†
i > Δα̂i for all 2 ≤ i ≤ k. Then,

(a) Γ†
i > Gi for all 2 ≤ i ≤ k;

(b) Δβ̂†
j > Δβ̂ j for all 2 ≤ j ≤ k;

(c) μ̂†
11 < μ̂11;

(d) Ỹ‡
ij > Ỹ†

ij > Ỹij for all i, j so that k < i + j − 1 < 2k;

(e) F†
j > Fj for all 2 ≤ j ≤ k;

( f ) R‡
i > R†

i for all 2 ≤ i ≤ k;

(g) R‡
i > Ri for all 2 ≤ i ≤ k.

To interpret this, suppose all imposed relative ultimates Urel
i /Urel

i−1 = exp(Δα†
i ) are larger than the

chain ladder forecasts of the relative ultimates Ui/Ui−1 = exp(Δα̂i). Suppose also that the imposed
relative ultimates are taken from incurred estimates as in the Bornhuetter–Ferguson double chain
ladder (BDCL) method in Martínez-Miranda et al. (2013). We then get that the point forecasts for the
lower triangle are ordered so that the Bornhuetter–Ferguson double chain ladder forecast Ỹ‡

ij is larger

than the Bornhuetter–Ferguson-restricted maximum likelihood forecast Ỹ†
ij , which is larger than the

chain ladder forecast Ỹij. This will be the situation in the empirical illustration in Section 4.

4. Empirical Illustration

We illustrate the new methods by an example where the external knowledge comes from incurred
payments. In practice, the external knowledge may also come from incurred counts, from other
business lines or from other sources.

We used data from a Greek non-life insurer for motor third party liability, aggregated over bodily
injury and property damage. The data are presented as cumulative run-off triangles for accident years
from 2005 to 2013. Table 1 shows payments, while Table 2 shows incurred amounts.

Table 1. Payments in Euros.

2005 34,492,471 47,124,007 55,244,404 59,817,460 62,550,940 66,042,036 69,311,560 70,992,659 72,265,079
2006 39,467,733 54,003,286 61,349,336 69,986,825 76,412,887 81,768,759 86,684,598 90,726,054
2007 38,928,855 57,087,550 65,905,902 77,128,507 84,158,380 92,436,441 97,838,371
2008 34,202,332 50,932,726 60,560,484 68,566,905 76,409,739 82,082,804
2009 35,657,409 52,397,264 59,849,582 66,698,806 72,724,524
2010 25,404,394 37,040,589 42,371,049 50,709,319
2011 21,268,516 31,311,410 35,973,015
2012 17,404,447 27,786,399
2013 17,676,374



Risks 2019, 7, 119

Table 2. Incurred amounts in Euros.

2005 54,018,141 56,699,807 60,273,204 61,112,600 63,729,660 67,142,341 69,733,859 71,980,196 72,738,376
2006 68,706,483 70,534,436 70,254,136 75,919,965 77,900,147 83,401,774 88,690,144 92,171,660
2007 64,613,205 72,600,950 76,163,387 82,388,057 87,424,383 96,246,891 102,854,340
2008 58,071,632 66,701,421 69,420,629 75,280,537 81,978,240 89,923,269
2009 60,368,719 67,868,349 72,528,239 80,726,223 85,339,588
2010 47,282,519 56,488,940 60,896,832 65,900,623
2011 49,905,225 54,801,141 60,026,903
2012 48,425,940 52,652,928
2013 47,449,977

Table 3 shows parameter estimates for the paid data computed using the chain ladder and the
Bornhuetter–Ferguson constrained model. For the moment we focus on the canonical parameters Δαi
for the relative accident year effect, Δβ j for the relative development year effect and μ11 for the overall
level. First, the chain ladder estimates are reported as Δα̂i, Δβ̂ j and Δμ̂11. Second, for the constrained
model we first applied chain ladder to the incurred data. The estimates for the relative accident year
effect are reported as Δα†

i . The estimates Δβ̂†
j and Δμ̂†

11 were then computed from the paid data using

Theorem 1. We note that the ordering Δα†
i > Δα̂i applies for these data for all i = 2, ..., k = 9. Thus, the

monotonicity results from Theorem 3 apply. In particular, we see that Δβ̂†
j > Δβ̂ j for all j = 2, ..., k = 9

and μ̂†
11 < μ̂11 in Table 3.

Table 3. Estimates.

Δα̂i Δα†
i Δβ̂j Δβ̂†

j

0.24526809 0.247261682 −0.80044252 −0.76965582
0.11149938 0.145178053 −0.68857388 −0.65777806
−0.12057425 −0.077312634 0.02370846 0.06137844
−0.04769497 0.027019249 −0.32208939 −0.29855013
−0.27637689 −0.204202408 −0.05908884 −0.03399479
−0.21412347 −0.018592530 −0.22363447 −0.20684905
−0.11353717 −0.078902778 −0.37786842 −0.36440835
−0.08135422 −0.005083078 −0.68021278 −0.67909386

μ̂11 = 17.18463300 μ̂†
11 = 17.00538277

A third approach is to use the mixed approach outlined in Section 3.5. Here we use the external
estimate Δα†

i for the relative accident year effects along with the chain ladder estimates Δβ̂ j and
Δμ̂11. When the external estimate is based on the incurred data, as in here, this is the same as the
Bornhuetter–Ferguson double chain ladder (BDCL) approach of Martínez-Miranda et al. (2013).

Table 4 presents the estimated (pseudo) forward factors and the (pseudo) row sums. For the chain
ladder, we have the observed row sums Ri and the traditional forward factors Fj computed by (1)
and (3). For the Bornhuetter–Ferguson constrained model we have the pseudo row sums R†

i and the
pseudo forward factors F†

j computed by (46)–(48). For the mixed approach we have the pseudo row

sums R‡
i computed by (50) and (51) and the traditional forward factors Fj. Once again we see that the

monotonicity results from Theorem 3 apply so that R‡
i > R†

i and F†
j > Fj.
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Table 4. Row sums and forward factors.

i,j Ri R†
i R‡

i Fj F†
j

1 72,265,079 63,989,145 72,265,079
2 90,726,054 80,309,654 90,907,105 1.449130 1.463172
3 97,838,371 80,309,654 101,391,484 1.155676 1.163975
4 82,082,804 77,559,430 88,824,492 1.137937 1.149793
5 72,724,524 73,428,364 84,802,647 1.087838 1.096652
6 50,709,319 54,589,726 63,556,691 1.076112 1.085188
7 35,973,015 46,603,309 54,823,701 1.056555 1.063832
8 27,786,399 37,000,367 43,839,471 1.036684 1.041678
9 17,676,374 25,159,556 30,098,881 1.017923 1.020288

Table 5 shows the reserves resulting from the classical chain ladder method, ∑k
i=2 Vi from (5);

the constrained approach, ∑k
i=2 V†

i from (38); and the mixed approach, ∑k
i=2 V‡

i from (53). We see
that the ordering from Theorem 3 applies. For comparison we note that this portfolio was evaluated
at 137 million by an external actuary, with the comment that this figure may be slightly too low.
This valuation is based on the information that since 2009, the case reserves incurred were gradually
increased, but the gap between incurred and paid reserves was not fully closed as of 2014. In light of
this, the Bornhuetter–Ferguson constrained method appears to apply rather well in this situation.

Table 5. Reserves in million Euros.

∑k
i=1 Vi External Valuation ∑k

i=1 V†
i ∑k

i=1 V‡
i

110.1 137 149.1 156.6

5. Conclusions

The paper introduces a Bornhuetter–Ferguson approach that replaces the relative ultimates rather
than levels of ultimates. This approach has been suggested in the Bornhuetter–Ferguson double
chain ladder (BDCL) method in Martínez-Miranda et al. (2013). The traditional Bornhuetter–Ferguson
method uses chain ladder weights, whereas we have estimated weights.

We made use of the fact that the chain ladder method has a nice interpretation as maximum
likelihood in a Poisson model, and we formulated the relative ultimates constraint as a linear constraint
on the parameters and derived maximum likelihood estimators. Furthermore, we followed this
approach to reproduce the results of the BDCL method in a mixed approach, combining the constrained
method with the classical chain ladder.

Monotonicity results compare the constrained method, the mixed approach and the original chain
ladder results. An example illustrates the mentioned results with data from a Greek general insurer.
The example shows that, when comparing all methods mentioned above, including chain ladder, the
reserve given by the constrained method is in fact the closest estimate to the number given by an
external expert.

Our proposal incorporates prior knowledge in a transparent way, keeping the standard principles
of maximum likelihood and its well known mathematical properties. In this sense we recommend our
approach over traditional Bornuetter-Ferguson adjustments as a formal statistical method for the same
purpose, which keeps the simplicity and the intuition of traditional reserving. This is further shown
in the convenient formulation of the forecasts in terms of the pseudo development factors provided
above. Apart from this, one would also benefit from the practical advantages of using maximum
likelihood that include standard inference and distribution forecasting. This cannot be done with such
a level of formality in the classical approach, while for the BDCL method it has been done using intense
bootstrap techniques. Another advantage of our approach is that it can, unlike the BDCL method,
be applied using only one triangle, usually the payments triangle. On the other hand, this has the
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disadvantage of not being able to distinguish between IBNR and RBNS reserves as the BDCL method
does. Another limitation of our proposal is that it cannot handle negative cells, as it is sometimes the
case in the payments triangle. Further refinements are required to deal with this problem.

An outstanding problem is to provide distribution forecasts of Bornhuetter–Ferguson adjusted
reserves. In practice the data will have considerable over-dispersion. By modelling that we could
complement the point forecasts with distribution forecasts. Recently, Harnau and Nielsen (2018)
developed an asymptotic distribution theory for the chain ladder within an over-dispersed Poisson
framework. The present situation is a special case of their setup so it could potentially be extended
with Bornhuetter–Ferguson adjustments. That was beyond the scope of this paper though.

Finally, because there is a full statistical model specification incorporating prior knowledge,
one could implement the same type of cash-flow data validation as in Agbeko et al. (2014), based on
back-testing (see also De Felice and Moriconi 2019). However, this approach has several drawbacks,
more so for small datasets. Controversy also exits about which error criteria should be considered. We
did not consider empirical validation in this paper and focused on theoretical statistical properties when
comparing reserving methods under the generalised linear models framework. A recent discussion on
empirical validation methods in reserving can be found in Matinek (2019). These can be potentially
used in the context of this paper.
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Appendix A. Proofs of Theorems

Proof of Equation (11). Consider the Poisson model. The predictor is given in (24) and has the form
μij = μ11 + ∑i

�=2 Δα� + ∑
j
�=2 Δβ�, while the log likelihood is as in (25). This results in maximum

likelihood estimators Δα̂i, Δβ̂ j and μ̂11 presented in (26)–(28), and in turn, the development factor Fj is
maximum likelihood estimator for Φj given in (32). When combining these we get the chain ladder

forecast Ỹij = Ri(Fj − 1)∏
j−1
�=k+2−i F� in (11).

The derivations sketched above are symmetric in row and column. Suppose we transpose the
data triangle by swapping rows and columns, so that i, j become j, i and Ri, Cj become Cj, Ri, while
Δαi, Δβ j become Δβ j, Δαi. Correspondingly, Δα̂i, Δβ̂ j and Gi, Fj become Δβ̂ j, Δα̂i and Fj, Gi; and then,
second expression for the chain ladder forecast arises; that is, Ỹij = Cj(Gi − 1)∏i−1

�=k+2−j G�.

Proof of Theorem 1. The likelihood. When the Δα†
i s are known the likelihood is

�(μ11, Δβ) = μ11

k

∑
j=1

Cj +
k

∑
j=2

Δβ j

k

∑
�=j

Cj − κ(μ11, Δβ) + h(data),

where h is a function of the data, not depending on the unknown parameters, while

κ(μ11, Δβ) =
k

∑
i=1

k+1−i

∑
j=1

exp(μij) =
k

∑
i=1

k+1−i

∑
j=1

exp(μ11 +
i

∑
�=2

Δα†
� +

j

∑
�=2

Δβ�),

is the cumulant generating function. Empty sums are zero.
Uniqueness of the estimator. For a full exponential family the likelihood has a maximum if and only

if the natural statistic is interior to its convex support, and then the maximum likelihood estimator



Risks 2019, 7, 119

is unique Barndorff-Nielsen (1978) (Theorem 9.13). The natural statistic T†
k = ∑i,j∈I (Yij, C2, . . . , Ck)

′

arises through a bijective, linear mapping of (C1, . . . , Ck)
′. Since Yij ≥ 0 by the Poisson assumption,

Cj ≥ 0, with Cj = 0 as a possible outcome. Since C1, . . . , Ck are based on unrelated observations, the
interior of the convex support is given by the condition that Cj > 0 for all j = 1, . . . , k.

Likelihood equations. Since the exponential family is regular, the k likelihood equations are T†
k =

ET†
k Barndorff-Nielsen (1978) (Corollary 9.6). Since ∑k

i=1 ∑k+1−i
j=1 Yij = ∑k

j=1 Cj, this in turn implies
the equations

Cj = ECj, for j = 1, . . . k. (A1)

Estimating the level. The expression for μ̂†
11 arises from the first likelihood equation

C1 = EC1 = exp(μ11)
k

∑
i=1

exp(αi − α1),

since the parameters αi − α1 = ∑i
�=2 Δα� are known.

Estimating the development parameters. The expression for Δβ̂†
j arises by combining the (j − 1)th

and jth likelihood equations

Cj

Cj−1
=

ECj

ECj−1
=

exp(μ11 + β j − β1)∑
k+1−j
i=1 exp(αi − α1)

exp(μ11 + β j−1 − β1)∑
k+2−j
i=1 exp(αi − α1)

.

Recalling the expression for Γi in (10) this reduces to

Cj

Cj−1
=

exp (Δβ j)

Γk+2−j
,

which has the desired solution.

Proof of Theorem 2. Use the expressions from Theorem 1 to get

Ỹ†
ij = exp(μ̂†

11 + α†
i − α†

1 + β̂†
j − β̂†

1)

=
C1

∏k
�=2 Γ†

�

(Γ†
i − 1)

(
i−1

∏
�=2

Γ†
�

)
Cj

C1

j

∏
�=2

Γ†
k+2−� = Cj(Γ†

i − 1)
∏k

�=k+2−j Γ†
�

∏k
�=i Γ†

�

.

We get the desired result by simplifying the last fraction using i > k + 2 − j.

Proof of Equation (45). First identity. Combine the forecasts; see (44).

Ỹ‡
ij = exp(μ̂11 +

i

∑
h=2

Δα†
h +

j

∑
h=2

Δβ̂h), Ỹij = exp(μ̂11 +
i

∑
h=2

Δα̂h +
j

∑
h=2

Δβ̂h).

Second identity. From (11) we have Ỹij = Cj(Gi − 1)∏i−1
�=k+2−j G�. Write Gi = N̂i/N̂i−1 where N̂i =

∑i
�=1 exp(∑�

h=2 Δα̂h) and N̂i − N̂i−1 = exp(∑i
h=2 Δα̂h). Then, we get

Ỹij = Cj
N̂i − N̂i−1

N̂i−1

i−1

∏
�=k+2−j

N̂�

N̂�−1
= Cj

N̂i − N̂i−1

N̂k+1−j
= Cj

exp(∑i
h=2 Δα̂h)

∑
k+1−j
�=1 exp(∑�

h=2 Δα̂h)
.

Correspondingly, we get from (37), that

Ỹ†
ij = Cj

exp(∑i
h=2 Δα†

h)

∑
k+1−j
�=1 exp(∑�

h=2 Δα†
h)

.
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Then, combine the expressions for Ỹ†
ij and Ỹ†

ij .

Proof of Equation (49). The point forecast is Ỹ†
ij = exp(μ̂†

11 + ∑i
h=2 Δα†

h + ∑
j
h=2 Δβ̂†

h). Insert the

expression for μ̂†
11 from (47), for Δα†

i from (48) and exp(∑
j
h=2 Δβ̂†

h) = (F†
j − 1)∏

j−1
�=2 F†

� , which follows
from (46), to get

Ỹ†
ij =

R†
1

∏k
�=2 F†

�

(
R†

i
R†

1

i

∏
�=2

F†
k+2−�

)
(F†

j − 1)
j−1

∏
�=2

F†
� .

Equation (49) follows by reducing common factors and noting that j > k + 2 − i.

Proof of Equation (52). The point forecast is Ỹ‡
ij = exp(μ̂11 + ∑i

h=2 Δα†
h + ∑

j
h=2 Δβ̂h), as given in

(44). Insert the expression for μ̂11 from (28), the expression for Δα†
i from (51) and exp(∑

j
h=2 Δβ̂h) =

(Fj − 1)∏
j−1
�=2 F�, which follows from (32) noting that Fj = Φ̂j, to get

Ỹ‡
ij =

R1

∏k
�=2 F�

(
R‡

i
R1

i

∏
�=2

Fk+2−�

)
(Fj − 1)

j−1

∏
�=2

F�.

Equation (52) follows by reducing common factors and noting that j > k + 2 − i.

Proof of Theorem 3. (a) We show that Γi defined in (32) increases in the Δαi’s. Write Γi = Ni/Ni−1
where Ni = ∑i

�=1 exp(∑�
h=2 Δαh). Thus, we must show that the derivative of Γi with respect to Δαn

is positive for all n ≤ i and zero otherwise. It suffices to consider the numerator of that derivative,
which is Ṅi Ni−1 − Ni Ṅi−1. Now,

Ṅi =
∂Ni

∂Δαn
=

i

∑
�=n

exp(
�

∑
h=2

Δαh) = Ni − Nn−1,

for n ≤ i and zero otherwise. This implies Ṅi Ni−1 − Ni Ṅi−1 = Nn−1(Ni − Ni−1), noting that the cases
where n < i and n = i have to be checked separately. The desired result now follows by noting that
Nn−1 and Ni − Ni−1 are both positive.

(b) Using (35) and (a) we get

Δβ̂†
j = Δ log Cj + log Γ†

k+2−j > Δ log Cj + log Gk+2−j = Δβ̂ j,

where the last equality is of a similar type as (35) and comes from Theorem 3 in Kuang et al. (2009).
(c) Using (36) and (a) we get

μ̂†
11 = log C1 −

k

∑
�=2

log Γ†
� < log C1 −

k

∑
�=2

log G� = μ̂11,

where the last equality comes from from Theorem 3 in Kuang et al. (2009).
(d) First, we compare the new reserve Ỹ†

ij with Δα†
i known to the old reserve Ỹij from CL. Since

1 ≤ Gi < Γ†
i for 2 ≤ i ≤ k, by (11), (a) and (37),

Ỹij = Cj(Gi − 1)
i−1

∏
�=k+2−j

G� < Cj(Γ†
i − 1)

i−1

∏
�=k+2−j

Γ†
� = Ỹ†

ij .
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Second, we compare the new reserve Ỹ†
ij , using Δα†

i , μ̂†
11 and Δβ̂†

j , to the mixed reserve Ỹ‡
ij , using

Δα†
i , μ̂11 and Δβ̂ j. From (45) we have

Ỹ‡
ij = Ỹ†

ij
∑

k+1−j
�=2 exp(∑�

h=2 Δα†
h)

∑
k+1−j
�=2 exp(∑�

h=2 Δα̂h)
.

Since Δα†
i > Δα̂i, for all 2 ≤ i ≤ k it follows that Ỹ‡

ij > Ỹ†
ij .

(e) Similar to the argument in (a), but using the ordering for Δβ̂ derived in (b).
( f ) Equations (49) and (52) applied for any k + 2 − i ≤ j ≤ k show that

R‡
i

R†
i
=

Y‡
ij

Y†
ij

(F†
j − 1)∏

j−1
�=k+2−i F†

�

(Fj − 1)∏
j−1
�=k+2−i F�

.

Then, apply the orderings Ỹ‡
ij > Ỹ†

ij and F†
j > Fj from (d), (e).

(g) Use (32), (52) to get R‡
i /Rij = Ỹ‡

i /Ỹij for all k + 2 − i ≤ j ≤ k. Apply ( f ).
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Abstract: We introduce a generalization of the one-dimensional accelerated failure time model
allowing the covariate effect to be any positive function of the covariate. This function and the baseline
hazard rate are estimated nonparametrically via an iterative algorithm. In an application in non-life
reserving, the survival time models the settlement delay of a claim and the covariate effect is often
called operational time. The accident date of a claim serves as covariate. The estimated hazard rate
is a nonparametric continuous-time alternative to chain-ladder development factors in reserving
and is used to forecast outstanding liabilities. Hence, we provide an extension of the chain-ladder
framework for claim numbers without the assumption of independence between settlement delay
and accident date. Our proposed algorithm is an unsupervised learning approach to reserving that
detects operational time in the data and adjusts for it in the estimation process. Advantages of the new
estimation method are illustrated in a data set consisting of paid claims from a motor insurance
business line on which we forecast the number of outstanding claims.

Keywords: accelerated failure time model; chain-ladder method; local linear kernel estimation;
non-life reserving; operational time

1. Introduction

The parametric accelerated failure time (AFT) model has been well established in medical statistics
and other applications (Kalbfleisch and Prentice 2002) for decades. The aim of this paper is to introduce
a nonparametric generalization of the one-dimensional AFT model for right-truncated data and apply
it to estimate the number of outstanding claims in non-life insurance.

Given a covariate X ∈ Rd and given no failure has occurred until time t, the AFT specifies
that the probability of a failure between time t and t + dt equals θα0(θt)dt with θ = exp(−β′X)

for an underlying hazard rate α0 and a deterministic vector β ∈ Rd. More formally, this model is
expressed through the conditional hazard rate

α(t|X) = θα0(θt), θ = exp(−β′X).

Its interpretation is straightforward, for example, in a medical context where failure time T
describes the amount of time for a tumor to reach a critical stage. For each individual i, the value
of θi depends on its covariate Xi (the patient’s medical data). A value of θi = 2, for instance,
means that the development of the tumor happens twice as fast for a patient and θi = 0.9
means 10% slower development than usual. This is in contrast to the proportional hazard model
α(t|X) = θα0(t), where the interpretation of θ is non-trivial (Cox 1972). For the statistical analysis
in the AFT model, one can transform the observed failure times through Ti �→ θiTi (if one knows θi).
The transformed survival time θiTi follows the same distribution for all individuals and is independent
of the covariate Xi.

The AFT model has been studied by various authors including Buckley and James (1979); Louis
(1981); Miller (1976), and Ritov and Wellner (1988). Comprehensive overviews have been given in Cox
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and Oakes (1984) and Andersen et al. (1993). The model is still widely used and adapted to new problems
in medical research. A recent modification of the AFT model has been introduced in Li and Jin (2018)
and recent applications include AIDS research (Fulcher et al. 2017) and cancer research (Cho et al. 2018)
among many others.

This article focuses on the one-dimensional case d = 1 and provides a nonparametric generalization
of the parametric AFT model above assuming θ = 1/ϕ(X). We estimate ϕ nonparametrically and impose
no structural assumption. In a finance or insurance context, the unknown function ϕ is often called
operational time and it can accelerate or slow down the survival time T. However, with our definition,
ϕ(x) has the same effect as θ−1 in the AFT model, i.e., the effect is reversed. We can transform observed
survival times Ti and covariates Xi via Ti �→ Ti/ϕ(Xi) = T̃i to obtain identically distributed survival
times T̃i that are independent of their covariates Xi as in the AFT model. In our application of non-life
reserving, X is the accident date of an insurance claim and T is its settlement delay which can be
affected by calendar effects, seasonal effects or a trend in the speed of claims finalization over time,
e.g., due to new organizational structures in the insurance company, more efficient IT systems, or changes
in legislation. The latter trends over time are captured by our operational time function ϕ. We estimate
ϕ and the marginal hazard rate of T̃. Together, they yield an estimate of the conditional hazard rate
of T given X, which contains full information of the distribution of T given X. This hazard rate is
used to estimate outstanding claim numbers through extrapolation with a chain-ladder type algorithm.
The proposed algorithm in this article detects the effects of operational time and adjusts for them. If there
is no operational time present, the algorithm still estimates smoothed chain-ladder development factors
for an optimal bandwidth that is selected through cross-validation.

The concept of operational time was originally developed for stochastic processes in Feller (1971).
In actuarial research, it was first used for processes of claim numbers in Bühlmann (1970) and for
non-life reserving in Reid (1978) and Taylor (1981,1982). Comprehensive summaries about operational
time in reserving have been provided in Taylor et al. (2008) and Taylor and McGuire (2016).
For an overview of its use in mathematical finance, we refer to Swishchuk (2016).

The algorithm in this paper is an alternative to the most widely used algorithm in non-life
reserving, the chain-ladder method. The difference is that, in chain-ladder, it is assumed that accident
date and settlement delay are independent, and thus chain-ladder does not account for calendar time
effects like court rulings, emergence of latent claims, or changes in operational time. The first stochastic
model around the chain-ladder method was introduced in Mack (1993). Chain-ladder is still widely
used in the insurance industry and as a benchmark for new methods in research as explained in
overviews of reserving methods in England and Verrall (2002) and, more recently, Taylor (2019). Based
on the idea of chain-ladder, different multiplicative models with independent effects of accident date
and settlement delay were introduced in Kremer (1982); Kuang et al. (2009); Renshaw and Verrall
(1998), and Verrall (1991).

Aside from these publications, the greater part of the research on claims reserving can be
summarized into two streams: a Poisson process approach and a two-dimensional kernel estimation
approach for truncated data. The first (older and more extensive) stream of research focuses on Poisson
process models in Antonio and Plat (2014); Avanzi et al. (2016); Huang et al. (2015); Jewell (1989, 1990);
Larsen (2007), and Norberg (1993,1999). Extensions that investigate dependent covariates or marked
Cox processes include Zhao and Zhou (2010); Zhao et al. (2009), or Badescu et al. (2016), respectively.
A semiparametric approach very similar to operational time is given in Crevecoeur et al. (2019),
in which the authors allow time on weekends and public holidays to pass faster in order to make up
for less claim reports on these days while ensuring a continuous distribution of reporting delay.

The approach in this present paper fits into the second stream of reserving research based
on “continuous chain-ladder” (Hiabu et al. (2016); Lee et al. 2015, 2017; Martínez-Miranda
et al. (2013)). In a broader statistical context, the problem was introduced as “in-sample
forecasting” (Mammen et al. 2015) and said papers applied their results to forecasting problems
beyond actuarial research. These articles have in common that no distributional assumptions are
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made and that kernel estimation is performed under the assumption of a structural model for
the joint density or conditional hazard rate. In the operational time model, Lee et al. (2017) assume
the nonparametric factor θ = ψ(X), i.e., ψ(X) = ϕ−1(X), and estimate ψ as well as the two marginal
densities of accident year and settlement delay. The latter is the closest approach to this present paper;
however, we estimate a conditional hazard rate instead of a multivariate density. The advantage of
our approach is that we only estimate two functions (ϕ and α0) instead of three, and then extrapolate
claim numbers to estimate the number of outstanding claims. This extrapolation is analogous to
the algorithm in the chain-ladder method. Since our estimated conditional hazard rates are similar
to chain-ladder development factors (Hiabu 2017), we consider it more natural to extrapolate in
a hazard framework than to perform extrapolation with density functions. Therefore, we only forecast
the effect of the accident date X and do not estimate its distribution. All mentioned continuous
chain-ladder publications including this present paper focus on claim numbers instead of payment
amounts. Recently, Bischofberger et al. (2019) have shown how to extend the models and estimators
for payment amounts. This extension is also feasible for our approach; however, adding extensive
additional technicalities is beyond the scope of this paper.

In traditional statistical learning, learning problems are classified as “supervised”
and “unsupervised” (Hastie et al. 2008). For supervised learning algorithms, the goal is to predict
an outcome measure for a given input. For this purpose, the algorithm trains on paired data consisting
of (input, output) and then applies the learned structure to predict an output from a new input.
On the other hand, in unsupervised learning, there is no output in the data and the goal of the algorithm
is often to find patterns in the data minimizing a loss criterion. Nonparametric kernel estimation
is used in both approaches: for nonparametric regression in supervised learning and for kernel
density estimation in unsupervised learning (Hastie et al. 2008). The new forecasting procedure in
this article can be classified as an unsupervised machine learning technique. Although the goal is
to give an estimate of the number of outstanding claims from past data, our algorithm cannot be
trained on a data set of input and output (in form of past claims and future claims) and then applied
to a new input. The presented algorithm estimates the conditional distribution of settlement delay
given the accident date that is specific for the data set it is used on. This estimation involves kernel
hazard estimators and the minimization of a loss function.

Very recently, following a trend in applied statistics, various other machine learning approaches
to claims reserving that do not belong to any of the previous streams have arisen. Soon these articles
may constitute a third big stream of research. Useful machine learning techniques for reserving
include regression trees (Baudry and Robert 2019; Wüthrich 2018) and neural networks (Kuo 2019)
among others. These approaches also take dependence between accident date and delay into account
and are thus more flexible than many of the aforementioned models. In contrast to the algorithm in
this article, they are all based on supervised learning. A neural network architecture based on classical
chain-ladder literature, into which the over-dispersed Poisson reserving model of Renshaw and Verrall
(1998) is embedded, has been introduced in Gabrielli et al. (2019).

This article is structured as follows. The underlying mathematical model is introduced in Section 2.
Section 3 explains an algorithm to estimate operational time and the baseline hazard. Section 4 illustrates
how to estimate outstanding liabilities from an operational time and a baseline hazard estimate.
A data-driven bandwidth selection procedure is introduced in Sections 5 and 6 containing an illustration
for a real data set.

2. Model

We start with a general mathematical model for hazard rates with operational time but without
filtering and afterwards adapt it to observations on a run-off triangle in the context of claims reserving.
Since this particular triangular data structure can be expressed as truncated data, a counting process
survival model lends itself to our cause.
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2.1. General Model

Let (T, X) be a two-dimensional random variable on the square S = {(t, x) : 0 ≤ t, x ≤ T }) for
T ≥ 0. Suppose that T can be written as

T = T̃ϕ(X) (1)

for a random variable T̃ that is independent of X and a function ϕ : [0, T ] → [0, T /T̃ ]. We call
ϕ operational time and Equation (1) operational time model. The support of T̃ is [0, T̃ ] for some
0 ≤ T̃ ≤ T . In the sequel, we define quantities for each realization (Ti, Xi) of (T, X) with i = 1, . . . , n.

In a counting process framework, we identify the survival time with Ti and treat Xi
as a one-dimensional covariate. We first define the counting process setting before linking it to
the random variable (Ti, Xi). Suppose we observe a counting process {Ni(t) : 0 ≤ t ≤ T } with respect
to a suitable filtration {F i

t : 0 ≤ t ≤ T } (Andersen et al. 1993, p. 60). The intensity of Ni at time t is
defined as

λi(t) = lim
h↓0

h−1E[Ni((t + h)−)− Ni(t−)| Fi,t−].

To illustrate the effect of operational time on the intensity, we start with a simple model for
unfiltered data, denoted by the superscript unfilt. We use the notation with superscripts since we will
focus on a specific hazard later on, for which we want to reserve the plain notation λ and N.
For illustration, we define the counting process Nunfilt

i (t) = I(Ti ≤ t) with the adapted filtration
Funfilt

i,t = σ({Nunfilt
i (s), Xi(s), s ≤ t}). The intensity of Nunfilt

i given Xi(t) = x satisfies Aalen’s
multiplicative model (Aalen 1980) with

λunfilt
i (t) = αunfilt(t|x)I(t ≤ Ti),

=
1

ϕ(x)
αunfilt

0

(
t

ϕ(x)

)
I(t ≤ Ti),

where αunfilt(t|x) = limh↓0 h−1P(T ∈ [t, t + h)| T ≥ t, X = x) is the conditional hazard of T given X
and αunfilt

0 (t̃) = limh↓0 h−1P(T̃ ∈ [t̃, t̃ + h)|T̃ ≥ t̃) is the marginal hazard of T̃. We want to emphasize

that the hazard rate αunfilt
0 of T̃ is in particular not conditioned on X because T̃ and X are independent.

The fact that αunfilt
0 is a function of just one argument is the advantage of assuming the structural

Model (1) because one can now easily derive an estimator for αunfilt
0 . For unique identification of ϕ,

we choose the normalization ϕ(0) = 1 in the sequel.
The advantage of this framework is that we can easily handle certain filtering schemes

like right-censoring and left-truncation. If the observations of T are right-censored, we observe

(Xi, T∗
i , δi) where T∗

i = min{Ti, C} is the censored value of Ti with respect to some censoring
time C and δi = I(Ti < C) is the corresponding censoring variable. Moreover, suppose our
observations to be left-truncated. In particular, we assume the special case of left-truncation Xi ≤ Ti.
Hence, we use the counting process Nfilt

i (t) = I(Ti ≤ t)δi with respect to its adapted filtration
Ffilt

i,t = σ({Nfilt
i (s), Xi(s), s ≤ t}) and with intensity

λfilt
i (t) = αfilt(t|Xi(t))Zfilt

i (t),

for exposure Zfilt
i (t) = I(Xi ≤ t < T∗

i ). The conditional hazard has the same structure as in the last case,

αfilt(t|x) = 1
ϕ(x)

αfilt
0

(
t

ϕ(x)

)
. (2)

The model in Equation (2) has been investigated for nonparametric regression
in Linton et al. (2011); however, their model did not allow for right-truncation in run-off triangles.
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The next chapter introduces the operational time hazard model for right-truncation, which will be
used in the sequel.

2.2. Model on the Run-Off Triangle with Right-Truncation

When estimating future claim numbers, reserving departments in the non-life insurance industry
work with data of historical claims aggregated in two dimensions: the accident date of the claim
and the settlement delay, i.e., the time between accident date and payment to the policy holder.
Note that, as in the chain-ladder method, we will not need the number of individuals under
risk (the number of underwritten policies) for the estimation of future claim numbers. Therefore,
we suppose the data contain only paid claims.

We denote by X the underwriting date of the policy and by T the settlement delay. Hence,
adopting the notation from above, we follow the settlement delay as survival time and the accident
date as covariate on which we will condition. In Model (1), the operational time function ϕ links
a non-observable random delay T̃ to the observed settlement delay depending on the accident date.
The independent delay T̃ can be seen as pure delay, cleared of all external factors. A value ϕ(x) > 1
implies a larger delay T with the heuristic that “time is running slower” and vice versa. This is
best explained on the data set that is used in Section 6. The estimator of ϕ has values smaller
than 1 for accident dates after January 2006 (see Section 6). This phenomenon is most likely due to
the improved use of technology in the insurance company and has also been observed on the same
data set in Lee et al. (2017). Instead of treating this as a special case, we let time run faster in this period
and use the same delay throughout the whole range of accident dates. In particular, this does prevent
discontinuities in the distribution of the delay. Since time was running faster for accident dates in
2006 and later, their actual delay effect T̃, cleared of operational time, is larger (and sometimes even
beyond the diagonal in the run-off triangle) in Figure 1. The operational time estimate already has
a downwards trend for accident dates in 2004 and 2005; however, values in 2004 and and at the end
of 2005 are larger than 1. On these dates, time was running slower in our model which is why
the independent delay T̃ for early accidents is slightly shorter than in the original data.

To adapt the operational time hazard Model (2) to the needs of our application, we assume
pairs of observations (Ti, Xi), i = 1, . . . , n, on the triangle I = {(t, x) ∈ S : 0 ≤ x + t ≤ T }.
Hence, we have right-truncated observations of T because it now holds Ti ≤ T − Xi. To circumvent
this difficulty, we invert time and look at observations (T − Ti, Xi) which are left-truncated in T −
Ti (Ware and DeMets 1976), so we can apply Model (2). Note that our observations (Xi, Ti) only have
the same distribution as (X, T) if conditioned on {X + T ≤ T }. We do not assume any censoring in
the following.

As before, we focus on a counting process Ni(t) = I(T − Ti ≤ t). The intensity of
the time-reversed counting process Ni with respect to its natural filtration now equals

λi(t) = α(t|x)Zi(t),

where α(t|x) is the conditional hazard of T − T given X = x and Zi(t) = I(t + Xi ≤ T , t ≤ T − Ti).
In particular, we get

α(t|x) = 1
ϕ(x)

α0

(
T − T − t

ϕ(x)

)
, (3)

with the marginal hazard α0(z) = limh↓0 h−1P(T − T̃ ∈ [z, z + h)|T − T̃ ≥ z) of T − T̃ since T − T̃
and X are independent. We will also refer to α0 as a baseline hazard in the following. The reason for
the unintuitive argument of α0 is that operational time is defined for T in “forward time”; however, α0

is the hazard rate in reversed time but cleared of operational time, c.f., Equation (2).
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(a) (b)

Figure 1. Original data and data with unobservable delay T̃ cleared of operational time. The operational
time in (b) is estimated in Section 6. Claim counts are aggregated into monthly bins for visualization,
and settlement delay is displayed in years. The red line represents the date of data collection
and the green points are the date of data collection cleared of operational time effects (with respect to
accident date). (a) original data; (b) data cleared of operational time.

It can be easily derived that our model coincides with the structured model f (x, t) =

f1(x) f2(tψ(x)) on the joint density f considered in Lee et al. (2017) for the choice f1 and f2 being
the marginal densities of X, T̃, respectively, and ψ(x) = ϕ(x)−1. The advantage of our approach
is that we only estimate two functions ϕ and α0 instead of three because we use the algorithm
illustrated in Section 4 to estimate the outstanding reserve. Hence, we only forecast the effect of given
underwriting data X = x and do not estimate the distribution of X. For full inference on X, the roles
of T and X have to be swapped.

Note that a multivariate extension of the operational time Model (1) for covariates X ∈ Rd

and ϕ : Rd → R with d > 1 is possible and would result in the same hazard Model (3) with analogous
baseline hazard α0 if right-truncation is well-defined (for instance T − Ti ≤ Xi,1 with Xi,1 being first
component of Xi). However, the estimation of ϕ and α0 explained in the next section would get rather
involved including a d-dimensional numerical minimization for the estimation of ϕ.

3. Estimation of Baseline Hazard and Operational Time

In this section, we show how to estimate the components ϕ and α0 and then combine the estimators
into a structured estimator of the conditional hazard. We want to recall that the whole estimation
procedure is done in reversed time T − T instead of T for the reporting delay. Hence, the following
estimators are defined for Ni(t) = I(T − Ti ≤ t) and Zi(t) = I(t + Xi ≤ T , t ≤ T − Ti). This technical
difficulty is necessary because of the right-truncation described in the last section. However, it does not
constitute an issue since, once the components are estimated, we can evaluate all functions at T − t to
get the results for t. We also want to remark again that the underwriting date X is always considered in
“forward time”. In the following, we see the conditional hazard α(t|x) as a function of two arguments
α(t, x) and denote its estimators by α̂(t, x). The unstructured hazard estimator in step 1 is analogously

denoted by α̂[0](t, x).
The proposed estimation procedure is as follows. The necessary expressions (7) and (10), and the loss

criterion (11) will be introduced below:
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1. Estimate the (unstructured) conditional hazard by α̂[0](t, x) through Equation (7).
2. Set ϕ̂[0] ≡ 1 and r = 1.
3. Estimate α̂

[r]
0 through Equation (10) using ϕ̂[r−1].

4. Estimate ϕ̂[r] by minimizing the loss in (11) numerically for every x using α̂
[r−1]
0 .

5. Repeat steps 3 and 4 for r = 2, 3, 4, . . . until the convergence criterion

∫ T

0

(
ϕ̂[r](x)− ϕ̂[r−1](x)

)2
dx < 10−5

is satisfied in iteration r∗.
6. Set the final conditional hazard estimator to

α̂(t, x) =
1

ϕ̂(x)
α̂0

(
T − T − t

ϕ̂(x)

)
, (4)

for

ϕ̂ = ϕ̂[r∗ ], (5)

α̂0 = α̂
[r∗ ]
0 . (6)

The final estimator in (non-reversed) “forward time” is set to

α̂ f (t, x) = α̂(T − t, x).

Note that the first conditional estimator α̂[0](t, x) in step 1 is unstructured, which means that, in general,
it does not satisfy Equation (3). We also want to remark that the final estimator α̂ f (t, x) is used to
extrapolate claim numbers in the next section. Despite being more intuitive, it does not occur in
a well-defined model because of the right-truncation T ≤ T − X.

All estimators α̂[0](t, x), α̂
[r]
0 , ϕ̂[r] are defined via integrated quadratic loss criteria and the hazard

estimators α̂[0](t, x), α̂
[r]
0 have closed form representations as local linear kernel estimators.

3.1. Pre-Step: Unstructured Conditional Hazard

We start with the unstructured conditional hazard estimator. Let Ui(t) = (t, Xi(t)) and u = (t, x)
to simplify the notation. For convenience, we will also write u = (u1, u2). For any (t, x), the local linear

kernel hazard estimator α̂[0](t, x) is defined as the first component θ0 minimizing the loss function

L(θ0, θ1) =
n

∑
i=1

∫ [(
1
ε

∫ s+ε

s
dNi(v)− θ0 − θT

1 (u − Ui(s))
)2

− ξ(ε)

]
Kb(u − Ui(s))Zi(s)ds,

for θ0, θ1 ∈ R. Moreover, we use a two-dimensional kernel K and bandwidth b = (b1, b2)

for b1, b2 > 0 as well as the common notation Kb(u1, u2) = b−1
1 b−1

2 K(u1/b1, u2/b2). The term

ξ(ε) =
(
ε−1

∫ s+ε
s dNi(s)

)2 is needed to make the expression well-defined. The loss criterion L results
in the closed form solution

α̂[0](t, x) =
Ô(t, x)
Ê(t, x)

, (7)

for occurrence and exposure estimators

Ô(u1, u2) =
1
n

n

∑
i=1

∫ [
1 − (u − Ui(s))D(u)−1c1(u)

]
Kb(u − Ui(s))dNi(s),

Ê(u1, u2) =
1
n

n

∑
i=1

∫ [
1 − (u − Ui(s))D(u)−1c1(u)

]
Kb(u − Ui(s))Zi(s)ds,

(8)
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where the components of the two-dimensional vector c1 are

c1j(u) = n−1
n

∑
i=1

∫
Kb(u − Ui(s))(uj − Uij(s))Zi(s)ds, j = 0, . . . , d,

and the entries (djk)j,k=1,2 of the (2 × 2)-dimensional matrix D(u) are given by

djk(u) = n−1
n

∑
i=1

∫
Kb(u − Ui(s))(uj − Uij(s))(uk − Uik(s))Zi(s)ds.

The closed form solution α̂[0] has been derived in Nielsen (1998). This paper focusses on the local
linear kernel estimator because of its good performance at boundaries. The simpler and more intuitive
(Nadaraya–Watson type) local constant hazard estimator is given in Appendix A as an alternative.
However, on bounded support, it is known to suffer from bias at boundaries (Nielsen 1998; Nielsen
and Tanggaard 2001).

3.2. Estimation of Baseline Hazard Given Operational Time

Starting with the pilot estimator ϕ̂[0] ≡ 1, we calculate the first iteration α̂
[1]
0 and then recursively

update α̂
[r]
0 making use of ϕ̂[r−1]. For the r-th iteration, we define α̂

[r]
0 as the hazard rate α0 minimizing

the loss

l(α0, ϕ, α̂) =
∫ T

0

∫ T

0

[
α̂(t, x)− 1

ϕ(x)
α0

(
T − T − t

ϕ(x)

)]2
(α̂(t, x))−1Ê(t, x)w(t, x)dx dt, (9)

for operational time ϕ = ϕ̂[r−1] and the conditional hazard estimate α̂ = α̂[0]. The loss function reflects
the principle of minimizing a chi-square criterion (Berkson 1980) in which a least squares criterion is
weighted by an estimate of the inverse of the asymptotic variance of α̂(t, x)), here (α̂(t, x))−1Ê(t, x).
The function w is a weighting function, which is used to ensure that the resulting hazard estimator
is a ratio between an occurrence estimator and an exposure estimator. It will be specified later.
The minimization of (9) has the analytic solution

α̂0(t) =

∫ T
0 Ê(ϕ̂

[r−1]
∗ (t, x), x)w(ϕ̂

[r−1]
∗ (t, x), x)dx∫ T

0 Ê(ϕ̂
[r−1]
∗ (t, x), x)w(ϕ̂

[r−1]
∗ (t, x), x)ϕ̂(x)−1α̂(ϕ̂

[r−1]
∗ (t, x), x)−1dx

,

where ϕ̂
[r−1]
∗ (t, x) = T − (T − t)ϕ̂[r−1](x) for t ∈ [0, T ]. The derivation is analogous to Linton et al.

(2011). Now, setting the weighting w(t, x) = ϕ̂[r−1](x)α̂(t, x) results in

α̂
[r]
0 (t) =

∫ T
0 Ô(ϕ̂

[r−1]
∗ (t, x), x)ϕ̂[r−1](x)dx∫ T

0 Ê(ϕ̂
[r−1]
∗ (t, x), x)dx

. (10)

The transformation ϕ∗(t, x) = T − (T − t)ϕ(x) = tϕ(x) + (1 − ϕ(x))T adds the effect of
operational time to occurrence and exposure estimators that were constructed with respect to T̃.
The function ϕ̂

[r]
∗ is the estimate of ϕ∗ in the r-th iteration. Hence, we evaluate Ô and Ê at x but

at the value of t that was corrected with the operational time effect.
It is worth pointing out that we do not get two marginal one-dimensional hazard estimator

despite X and the cleared delay T̃ = T/ϕ(X) being independent. This makes the implementation
quite involved.
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3.3. Estimation of Operational Time Given Baseline Hazard

To estimate ϕ in the r-th iteration, we minimize the loss function in Equation (9) in ϕ given
the baseline hazard α0 = α̂

[r−1]
0 and the conditional hazard estimate α̂ = α̂[0]. Since there is no closed

form solution to this problem (Linton et al. 2011), one has to minimize it numerically point-wise
in x. Moreover, we set w(t, x) = ϕ̂[r−1](x)α̂(t, x) with the last estimator ϕ̂[r−1] of ϕ as above. Hence,
for every x ∈ [0, T ], we minimize

lϕ̂[−1] (α̂
[r−1]
0 , θ, x, α̂) =

∫ T

0

[
α̂(t, x)− 1

θ
α̂
[r−1]
0

(
T − T − t

θ

)]2
ϕ̂[−1](x)Ê(t, x)dt (11)

numerically for values θ ∈ [c1, c2]. The values c1 ≤ 1 ≤ c2 have to be chosen manually. We define
ϕ̂[r] to be the function minimizing (11) point-wise in x. For unique identification of ϕ and α0, we set
the normalization ϕ(0) = 1.

Since there is no closed form solution of ϕ̂[r] and the occurrence and exposure estimators Ô and Ê
in Equation (10) depend on both t and x, asymptotic theory of our results is not straightforward
and thus beyond the scope of this present paper. These difficulties arise due to the time-reversion
that was necessary to derive estimators for right-truncated data. Asymptotic properties for analogous
estimators on observations that are not right-truncated have been derived in Linton et al. (2011)
in a non-parametric regression context. The fact that we cope with both right-truncation as present
in run-off triangles and operational time distinguishes this present paper from preceding work.
For a straightforward derivation of asymptotic properties of α̂0 with standard counting process
arguments as in Andersen et al. (1993), one would have to make further assumptions. A feasible
approach would be to assume that ϕ can be estimated at a parametric n−1/2-rate, which is possible for
instance in a finite parametrization. Being against the distribution-free nature of this paper (and its
benchmark the chain-ladder method), we decided against this simplification.

A modification of the proposed hazard estimator α̂(t, x) that has been proved efficient for large
sample sizes would be a two-step multiplicative bias correction, which has been introduced for local
linear kernel hazard estimators in Nielsen and Tanggaard (2001). Since this paper aims at explaining
a new model and estimation procedure, and a bias correction method would add a lot of notation
and complexity that might distract from our new idea, such an extension is left for future research.

4. Estimating Outstanding Claim Amounts

We use our hazard estimator α̂(t, x) to forecast outstanding claim amounts in a similar way
development factors are used in the chain-ladder method. In chain-ladder with yearly aggregated
data, the j-th development factor λ̂j is effectively the ratio between claims whose payments are up to
j + 1 years delayed and those whose payments are up to j years delayed. For each claim, this yields
an estimate of the probability that the payment will be j + 1 years delayed given it has not been made
within the first j years. Certainly, for more granular data, the time periods are shorter, but the principle
stays the same.

In order to formally define development factors, one must first introduce the way data are
aggregated in run-off triangles (England and Verrall 2002). The data are given as (Ti, Xi) ∈ I ,
i = 1, . . . , n, for the triangle I = {(t, x) ∈ S : 0 ≤ x + t ≤ T }. The accident date Xi is given in
days from the beginning of data collection and settlement delay Ti is given in days. The last day of
data collection T is also expressed in days since day 0, and it is implicitly assumed to be the largest
possible delay. The last assumption is commonly made in industry for data sets covering large enough
time periods (usually if T ≥ 7 years or T ≥ 10 years). It is then said that the triangle I is “fully
run off”.

We adopt the notation of England and Verrall (2002) to introduce development factors.
Suppose our data have been aggregated into m × m bins with edge length δ. In the (m × m)-matrix
C, we count the number of observations per bin. Its entries Ckj are defined as the number of claims



Risks 2020, 8, 3

i for which Ti is in bin j and Xi is in bin k. In another matrix D, the cumulative numbers of events
with respect to T are given by Dkj = ∑

j
l=1 Ckl for j, k = 1, . . . , m. The triangle {Dkj : j + k > T }

represents the future and therefore contains no claim counts. This is the part we want to forecast.
Now, the development factors {λj : j = 1, . . . , m − 1} are defined as

λ̂j =
∑

m−j
k=1 Dk,j+1

∑
m−j
k=1 Dk,j

=
∑

m−j
k=1 ∑

j+1
k=1 Ckl

∑
m−j
k=1 ∑

j
l=1 Ckl

, j = 1, . . . , m − 1.

For the calculation of λ̂j, the last available entry with claims that were delayed j − 1 years
(Dm−j+2,j in row m − j + 2) is omitted, which can be seen as scaling by exposure. In the chain-ladder
method, the development factors λ̂j are then used to extrapolate the claim numbers in the cumulative
matrix D into the future via

D̂CL
k,m−k+2 = Dk,m−k+1λ̂m−k+1,

D̂CL
k,l = D̂CL

k,l−1λ̂l−1, l = m − k + 3, . . . , m,
(12)

and for k = 2, . . . , n. The total number of outstanding claims is then given by the last column of
the estimated cumulative aggregated data ∑m

j=2 D̂CL
k,j .

We now link development factors to hazard estimation. Hiabu (2017) has proved the
asymptotic relationship

λ̂j =
1

1 − δα̂H(T − tj)
+ oP(1), tj ∈ Ij,

for α̂H being a histogram-type hazard estimator of the delay in reversed time, Ij the j-th bin of
the aggregated data, and δ the bin width that satisfies δ = δn → 0 for n → ∞. However, this relationship
was introduced under the assumption that accident date and settlement delay are independent.
As an alternative for our Model (1), we define granular time-dependent development factors as

λ̂k,j =
1

1 − δα̂(T − tj, xk)
, (xk, tj) ∈ Ik × Jj,

where Ij is the j-th bin for the delay and Jk the k-th one for accident date for k = 2, . . . , m.
Then, we use our time-dependent development factors to forecasts reserves from a granular cumulative
triangle D via

D̂op
k,m−k+2 = Dk,m−k+1λ̂k,m−k+1,

D̂op
k,l = D̂op

k,l−1λ̂k,l−1, l = m − k + 3, . . . , m,
(13)

and for k = 2, . . . , m. The difference to chain-ladder is that our development factors additionally
depend on the row k and that we calculate them on a finer grid, i.e., smaller δ, larger m, and more
granular matrices C and D. In the application in Section 6, we use monthly aggregated data for
the operational time hazard estimator and quarterly aggregated data for chain-ladder. Ideally, daily or
even more granular data should be used for the proposed hazard estimator; however, this was
practically computationally infeasible in our application. Analogously to chain-ladder, our final
estimate for the number of outstanding payments is the last column in the estimated cumulative
triangle ∑m

j=2 D̂op
k,j .

Figure 2 illustrates how development factors are used for extrapolation. The cumulated data is given
in black, forecasts are in red and all development factors are given in blue. Our proposed time-dependent
development factors can be used like traditional development factors but vary for different rows of
the cumulative triangle. The illustration in Figure 2 does not show the fact that our time-dependent
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development factors are computed on a finer scale than for chain-ladder. Moreover, the shift x-direction
through operational time ϕ(x) cannot be seen in the illustration.

1 2 3 4 5

2004 D11 D12 D13 D14 D15

2005 D21 D22 D23 D24 D̂op
25

2006 D31 D32 D33 D̂op
34 D̂op

35

2007 D41 D42 D̂op
43 D̂op

44 D̂op
45

2008 D51 D̂op
52 D̂op

53 D̂op
54 D̂op

55

λ̂5,1 λ̂5,2 λ̂5,3 λ̂5,4

λ̂4,2 λ̂4,3 λ̂4,4

λ̂3,3 λ̂3,4

λ̂2,4

(a)

1 2 3 4 5

2004 D11 D12 D13 D14 D15

2005 D21 D22 D23 D24 D̂CL
25

2006 D31 D32 D33 D̂CL
34 D̂CL

35

2007 D41 D42 D̂CL
43 D̂CL

44 D̂CL
45

2008 D51 D̂CL
52 D̂CL

53 D̂CL
54 D̂CL

55

λ̂1 λ̂2 λ̂3 λ̂4

λ̂2 λ̂3 λ̂4

λ̂3 λ̂4

λ̂4

(b)

Figure 2. Forecasting outstanding claim numbers with time-dependent development factors
and chain-ladder development factors. Illustrative example with five accident years and maximum
settlement delay of five years. (a) forecasting with time-dependent development factors via Equation (13);
(b) forecasting with chain-ladder development factors via Equation (12).

5. Bandwidth Selection

For computational reasons, bandwidth selection is done via K-fold cross-validation
(Lee et al. 2017) for K = 20. The set of observations is randomly split into K disjoint parts of equal size
via {1, . . . , n} = I1∪̇ . . . ∪̇IK. To find the optimal bandwidth, we minimize the score function

Q̂(b) = n−1
K

∑
j=1

Q̂j(b)

for partial validation scores

Q̂j(b) =

⎛⎝∑
i∈Ij

∫ T

0

(
α̂
[−Ij ]

b (t, Ui)

)2
Yi(s)ds − 2 ∑

i∈Ij

∫ T

0
α̂
[−Ij ]

b (t, Ui)dNi(t)

⎞⎠.

The estimator α̂
[−Ij]

b is the estimator α̂ defined in Equation (4) with bandwidth b, but computed
for observations i ∈ {1, . . . , n} \ Ij only. It is being validated against the observations Ij.
Being asymptotically equivalent, the estimate Q̂(b) is a proxy to the first two terms of the validation score

Q(b) = n−1
n

∑
i=1

∫ T

0

(
α̂b(t, Ui)− α(t, Ui)

)2Yi(s)ds

that occur after solving the quadratic expression in the integral, in which the true hazard α is
unknown (Gámiz et al. 2013; Nielsen and Linton 1995). The preferred alternative, leave-one-out
cross-validation, is practically unfeasible since the algorithm in Section 3 is too computationally expensive.

6. Application: Estimation of Outstanding Liabilities

We apply our estimation procedure on a data set from a Cypriot motor insurance business line.
This data set contains n = 51,216 paid claims that were recorded between 1 January 2004
and 31 December 2013. First, we estimate operational time ϕ and the baseline hazard α0 on the data set.
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Making use of the resulting structured conditional hazard estimate α̂, we estimate outstanding liabilities
through the approach with time-dependent development factors λ̂k,j illustrated in Section 4.

For each claim i = 1, . . . , n, the data set contains the accident date and the payment date. Instead of
the settlement date, we define the settlement delay as the difference between payment date and accident
date. Afterwards, we normalize the data such that the accident date Xi and settlement delay Ti take
values in 0, . . . , 3652. Now, the data are arranged on a triangular shaped support Idaily = {(x, t) ∈ S :
x + t ≤ T } for T = 3652 days with accident date x and settlement delay t as described in Section 2.2.
For computational reasons, the data are aggregated into a monthly run-off triangle

I = {Cj,k : j, k = 1, . . . , 120; j + k − 1 ≤ 120},

on which ϕ and α0 are estimated. As the kernel function, we choose a multiplicative kernel K(u1, u2) =

k(u1)k(u2) with k being the Epanechnikov kernel k(s) = 0.75(1 − s2)I(|s| ≤ 1). The data-driven
bandwidth selection procedure in Section 5 leads to the optimal bandwidths b1 = 5 months and b2 = 8
months for delay and accident date, respectively. For the estimation of ϕ, we minimize the loss
functions (11) in the interval [0.5, 1.5] for every x = 1, . . . , 120 in every iteration of the algorithm.

The estimated baseline hazard and operational time are shown in Figure 3. For the operational
time estimate ϕ̂ in Figure 3a, the settlement delay at 1 January 2004 is used as benchmark and claim
settlement for most accident dates between February 2004 and December 2005 is slightly slower than
this benchmark. In November 2004, the operational time estimator catches a trend towards faster
settlement of claims despite short declines in 2005 and 2009. This phenomenon is most likely due to
the improved use of technology in the insurance company and has also been observed on the same
data set in Lee et al. (2017). The decrease of speed in claims finalization at the end of 2005 and 2009
could be due to new employees in the reserving department who are training in their first months.
The average accident that happened after January 2006 was settled faster than our benchmark with
the value of the operational time estimate ϕ̂ being below 1 for this period. After 2010, our model shows
the fastest processing and payments of claims. Due to high variation in the estimation of ϕ in the lower
corner of the run-off triangle, we recommend to set ϕ̂ to the value of the previous month for the last
five months (about the last 5% of the support of ϕ). Note that this adjustment is still in the spirit of
our approach to improve in the estimation by chain-ladder (and even multiplicative nonparametric
methods as in Martínez-Miranda et al. (2013) and Hiabu et al. (2016)) because a constant operational
time value corresponds to the case where T and X are independent and we still allow for dependency
through operational time for 95% of the accident dates. We want to remark that this issue does not
occur if un-truncated data (on a squared support instead of a triangular one) is given. The baseline
hazard estimate α̂0(T − t) of the payment delay (in forward time) in Figure 3b has the expected
shape with a steep decrease for short delays and a value close to zero for delays larger than 1.5 years.
This shape indicates that the vast majority of the claims in this data set were paid off within the first
year as can be seen in Figure 1.

The estimated outstanding liabilities by accident year and by payment year are given in Table 1.
The results from the chain-ladder method with quarterly aggregated data are used as a benchmark.
The shift through operational time yields less claims than chain-ladder for all payment years except
for 2016. Since the value of the operational time estimate (Figure 3a) is below the benchmark 1
for all claims with accident year later than 2005, these claims were settled faster than older claims.
These claims constitute the majority of outstanding claims since most claims are estimated to be settled
within one and a half years (Figure 3b). Hence, most claims are expected to be paid out earlier than
estimated through average payment delay in the chain-ladder method. The same effect can be seen
with respect to accident years. On 31 December 2013, the date of data collection, our operational time
estimator forecasts old claims from accidents before 2009 to be paid off since their settlement delay
is expected to be shorter than average settlement. On the other hand, chain-ladder still estimates
a few claims from accidents between 2005 and 2008. In total, for this data set, the estimated number
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of outstanding payments by operational time is lower (1054) than the reserve estimate by quarterly
chain-ladder (1414).

(a) (b)

Figure 3. Estimated components of hazard rate of the payment delay T: (a) operational time estimate
ϕ̂(t) with optimal bandwidths; (b) baseline hazard estimate α̂0(T − t) of payment delay (in forward
time) with optimal bandwidths.

Table 1. Estimated number of outstanding claims through hazard with operational time (op. time)
and quarterly chain-ladder (CL) by accident year and payment year.

Accident Year 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 Total

Op. Time 0 0 0 0 0 23 92 171 254 513 1054
CL 0 2 8 20 32 54 75 128 224 871 1414

Payment Year 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 Total

Op. Time 590 256 143 58 5 0 0 0 0 0 1054
CL 856 261 130 71 45 27 16 7 2 0 1414

Although the comparison might seem unfair at first due to different levels of aggregation, more
granular aggregation for chain-ladder would not improve the quality of its estimates. As shown
in a simulation study in Baudry and Robert (2019), even when enough data are available for
monthly aggregation, chain-ladder reserve estimates based on monthly data show very high variance,
making them effectively unreliable in practice; however, monthly data are necessary for chain-ladder
if one is interested, for instance, in the estimation of monthly cash-flows. This phenomenon has been
confirmed in a simulation in Bischofberger et al. (2019), in which kernel estimators picked larger
bandwidths while still being able to yield monthly cash-flow predictions. Furthermore, chain-ladder
is typically used on at least quarterly aggregated data to prevent columns that contain only zeros in
the run-off triangle. Where the chain-ladder algorithm cannot handle this issue, our operational time
hazard estimator can cope with it.

In an independence test based on Conditional Kendall’s tau for truncated data (Austin and
Betensky 2014; Martin and Betensky 2005), the hypothesis of independent settlement delay T
and accident date X was rejected. Hence, the assumptions of the chain-ladder model of Mack (1993)
are violated (Hiabu 2017) and one cannot rely on its estimate in this data set. Since the chain-ladder
model with independent variables is nested within our prosed operational time Model (1),
we recommend our model—although inference for our operational time structure has not been
carried out. With the hazard Model (3) being rather involved, the theory for a hypothesis test for
the operational time structure is beyond the scope of this article.

Choices of bandwidths with higher validation scores can lead to unrealistic reserve estimates that
differ from the chain-ladder estimate by up to 100%. On the one hand, the operational time hazard
estimator is sensitive to the choice of bandwidth. On the other hand, the result obtained through
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cross-validation is stable with four bandwidth choices close to the optimal validation score Q̂ resulting
in very similar estimates of the number of outstanding claims.

7. Conclusions

We introduced a new hazard model that allows for operational time in right-truncated data
as present in run-off triangles. In a structured hazard model, the conditional hazard rate of
the settlement delay given the accident date is expressed through operational time (a function of
the accident date) and the baseline hazard of the settlement delay (cleared of effects from accident date).
Minimizing an integrated squared loss, we define nonparametric estimators of operational time
and the baseline hazard. These estimators are calculated through an iterative algorithm that updates
the estimates of operational time and the baseline hazard in each iteration until it converges. If no
right-truncation is present, our hazard model is a nonparametric extension of the accelerated failure
model with a one-dimensional covariate.

Our estimation procedure detects operational time in the data and corrects for it in
the estimation process. Therefore, it can be classified as an unsupervised machine learning technique.
Since operational time is a common source of dependence between accident date and settlement date
in the data, we recommend the approach illustrated here if one cannot prove independent covariates
in the date through hypothesis testing (and other structural dependencies like seasonal effects can be
ruled out). Even if the accident date and settlement are independent, our estimator works and estimates
operational time ϕ ≈ 1. However, in the latter case or if independence is not rejected by a statistical
test, estimation via chain-ladder tends to be more stable than our operational time hazard estimates
and should be considered.

In an application in a real data set of paid claims, we forecast the number of outstanding claims
for a motor insurance business line. For this purpose, we suggested to transform our operational time
and baseline hazard estimators into time-dependent development factors. These are then used to
extrapolate the claim numbers in the data set analogously to what is done in the chain-ladder method.

The downsides of the approach illustrated here are computational complexity and numerical
instability of the operational time estimator on the data in the last 5–10% of accident dates,
i.e., in the lower corner of the run-off triangle. The latter issue also arises in many other approaches
to non-life claims reserving. Our suggested way to deal with it in our model is to set the value of
operational time to the last stable value for the affected dates, which corresponds to the assumption
of independent accident date and settlement delay on the most recent accident dates. Therefore, our
approach still corrects for operational time on more than 90–95% of the data and in the remaining data
it is as good as kernel hazard methods that assume independent variables.
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Appendix A. Alternative Local Constant Estimators

As an alternative to the local linear estimator of α(t, x) in Equation (7), one could use the local
constant estimator

α̂LC(t, x) =
ÔLC(t, x)
ÊLC(t, x)

,
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with

ÔLC(u1, u2) =
n

∑
i=1

∫ T

0
Kb(u − Ui(s))dNi(s),

ÊLC(u1, u2) =
n

∑
i=1

∫ T

0
Kb(u − Ui(s))Zi(s)ds.

It is defined through the integrated squared loss minimization

arg min
θ∈R

n

∑
i=1

∫ T

0

[(
1
ε

∫ s+ε

s
dNi(v)− θ

)2
− ξ(ε)

]
Kb(u − Ui(s))Zi(s)ds,

for u = (t, x) and Ui(t) = (t, Xi(t)) as before. The term ξ(ε) =
(
ε−1

∫ s+ε
s dNi(s)

)2 is again needed to
make the expression well-defined.
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and Jan Rosiński. New York: Springer, vol. 2, pp. 1–25.

Andersen, Per K., Ørnulf Borgan, Richard D. Gill, and Niels Keiding. 1993. Statistical Models Based on Counting
Processes. New York: Springer.

Antonio, Katrien, and Richard Plat. 2014. Micro-level stochastic loss reserving for general insurance. Scandinavian
Actuarial Journal 2014: 649–69. [CrossRef]

Austin, Matthew D., and Rebecca A. Betensky. 2014. Eliminating bias due to censoring in kendall’s tau estimators
for quasi-independence of truncation and failure. Computational Statistics & Data Analysis 73: 16–26.

Avanzi, Benjamin, Bernard Wong, and Xinda Yang. 2016. A micro-level claim count model with overdispersion
and reporting delays. Insurance: Mathematics and Economics 71: 1–14. [CrossRef]

Badescu, Andrei L., X. Sheldon Lin, and Dameng Tang. 2016. A marked Cox model for the number of IBNR
claims: Theory. Insurance: Mathematics and Economics 69: 29–37. [CrossRef]

Baudry, Maximilien, and Christian Y. Robert. 2019. A machine learning approach for individual claims reserving
in insurance. Applied Stochastic Models in Business and Industry 35: 1127–55. [CrossRef]

Berkson, Joseph 1980. Minimum chi-square, not maximum likelihood! The Annals of Statistics 8: 457–87. [CrossRef]
Bischofberger, Stephan M., Munir Hiabu, and Alex Isakson. 2019. Continuous chain-ladder with paid data.

Scandinavian Actuarial Journal. [CrossRef]
Buckley, Jonathan, and Ian James. 1979. Linear regression with censored data. Biometrika 66: 429–36. [CrossRef]
Bühlmann, Hans 1970. Mathematical Methods in Risk Theory. Berlin: Springer.
Cho, Youngjoo, Chen Hu, and Debashis Ghosh. 2018. Covariate adjustment using propensity scores for dependent

censoring problems in the accelerated failure time model. Statistics in Medicine 37: 390–404. [CrossRef]
Cox, David R. 1972. Regression models and life tables. Journal of the Royal Statistical Society: Series B 34: 187–220.
Cox, David R., and David Oakes. 1984. Analysis of Survival Data, 1st ed. Boca Raton: Chapman & Hall/CRC.
Crevecoeur, Jonas, Katrien Antonio, and Roel Verbelen. 2019. Modeling the number of hidden events subject to

observation delay. European Journal of Operational Research 277: 930–44. [CrossRef]
England, Peter D., and Richard J. Verrall. 2002. Stochastic claims reserving in general insurance. British Actuarial

Journal 8: 443–544. [CrossRef]
Feller, William. 1971. An Introduction to Probability Theory and Its Applications. New York: John Wiley & Sons, vol. 2.
Fulcher, Isabel R., Eric Tchetgen Tchetgen, and Paige L. Williams. 2017. Mediation analysis for censored survival

data under an accelerated failure time model. Epidemiology 28: 660–66. [CrossRef] [PubMed]
Gabrielli, Andrea, Ronald Richman, and Mario V. Wüthrich. 2019. Neural network embedding of

the over-dispersed Poisson reserving model. Scandinavian Actuarial Journal [CrossRef]
Gámiz, María Luz, Lena Janys, María Dolores Martínez-Miranda, and Jens Perch Nielsen. 2013. Bandwidth

selection in marker dependent kernel hazard estimation. Computational Statistics & Data Analysis 68: 155–69.



Risks 2020, 8, 3

Hastie, Trevor, Robert Tibshirani, and Jerome Friedman. 2008. The Elements of Statistical Learning: Data Mining,
Inference and Prediction. New York: Springer.

Hiabu, Munir. 2017. On the relationship between classical chain ladder and granular reserving. Scandinavian
Actuarial Journal 2017: 708–29. [CrossRef]

Hiabu, Munir, Enno Mammen, María Dolores Martínez-Miranda, and Jens Perch Nielsen. 2016. In-sample
forecasting with local linear survival densities. Biometrika 103: 843–59. [CrossRef]

Huang, Jinlong, Chunjuan Qiu, Xianyi Wu, and Xian Zhou. 2015. An individual loss reserving model with
independent reporting and settlement. Insurance: Mathematics and Economics 64: 232–45. [CrossRef]

Jewell, William S. 1989. Predicting IBNYR events and delays I. Continuous time. ASTIN Bulletin 19: 25–55.
[CrossRef]

Jewell, William S. 1990. Predicting IBNYR events and delays II. Discrete time. ASTIN Bulletin 20: 93–111.
[CrossRef]

Kalbfleisch, John D., and Ross L. Prentice. 2002. The Statistical Analysis of Failure Time Data, 2nd ed. Wiley Series in
Probability and Statistics. Hoboken: John Wiley & Sons.

Kremer, Erhard. 1982. IBNR-claims and the two-way model of ANOVA. Scandinavian Actuarial Journal 1982: 47–55.
[CrossRef]

Kuang, Di, Bent Nielsen, and Jens Perch Nielsen. 2009. Chain-ladder as maximum likelihood revisited. Annals of
Actuarial Science 4: 105–21. [CrossRef]

Kuo, Kevin. 2019. Deeptriangle: A deep learning approach to loss reserving. Risks 7: 97. [CrossRef]
Larsen, Christian Roholte. 2007. An individual claims reserving model. ASTIN Bulletin 37: 113–32. [CrossRef]
Lee, Young K., Enno Mammen, Jens Perch Nielsen, and Byeong U. Park. 2015. Asymptotics for in-sample density

forecasting. The Annals of Statistics 43: 620–51. [CrossRef]
Lee, Young K., Enno Mammen, Jens Perch Nielsen, and Byeong U. Park. 2017. Operational time and in-sample

density forecasting. The Annals of Statistics 45: 1312–41. [CrossRef]
Li, Jialiang, and Baisuo Jin. 2018. Multi-threshold accelerated failure time model. The Annals of Statistics

46: 2657–82. [CrossRef]
Linton, Oliver B., Enno Mammen, Jens Perch Nielsen, and Ingrid Van Keilegom. 2011. Nonparametric regression

with filtered data. Bernoulli 17: 60–87. [CrossRef]
Louis, Thomas A. 1981. Nonparametric analysis of an accelerated failure time model. Biometrika 68: 381–90.

[CrossRef]
Mack, Thomas. 1993. Distribution-free calculation of the standard error of chain ladder reserve estimates. ASTIN

Bulletin 23: 213–25. [CrossRef]
Mammen, Enno, María Dolores Martínez-Miranda, and Jens Perch Nielsen. 2015. In-sample forecasting applied

to reserving and mesothelioma. Insurance: Mathematics and Economics 61: 76–86. [CrossRef]
Martin, Emily C., and Rebecca A. Betensky. 2005. Testing quasi-independence of failure and truncation times via

conditional Kendall’s tau. Journal of the American Statistical Association 100: 484–92. [CrossRef]
Martínez-Miranda, María Dolores, Jens Perch Nielsen, Stefan Sperlich, and Richard J. Verrall. 2013. Continuous

chain ladder: Reformulating and generalising a classical insurance problem. Expert Systems with Applications
40: 5588–603. [CrossRef]

Miller, Rupert G. 1976. Least squares regression with censored data. Biometrika 63: 449–64. [CrossRef]
Nielsen, Jens Perch. 1998. Marker dependent kernel hazard estimation from local linear estimation. Scandinavian

Actuarial Journal 1998: 113–24. [CrossRef]
Nielsen, Jens Perch, and Oliver B. Linton. 1995. Kernel estimation in a non-parametric marker dependent hazard

model. The Annals of Statistics 23: 1735–48. [CrossRef]
Nielsen, Jens Perch, and Carsten Tanggaard. 2001. Boundary and bias correction in kernel hazard estimation.

Scandinavian Journal of Statistics 28: 675–98. [CrossRef]
Norberg, Ragnar. 1993. Prediction of outstanding liabilities in non-life insurance. ASTIN Bulletin 23: 95–115.

[CrossRef]
Norberg, Ragnar. 1999. Prediction of outstanding liabilities II. Model variations and extensions. ASTIN Bulletin

29: 5–25. [CrossRef]
Reid, D. H. 1978. Claim reserves in general insurance. Journal of the Institute of Actuaries 105: 211–315. [CrossRef]
Renshaw, Arthur E., and Richard J. Verrall. 1998. A stochastic model underlying the chain-ladder technique.

British Actuarial Journal 4: 903–23. [CrossRef]



Risks 2020, 8, 3

Ritov, Ya’acov, and Jon A. Wellner. 1988. Censoring, martingales, and the cox model. Contemporary
Mathematics 80: 191–219.

Swishchuk, Anatoliy. 2016. Change of Time Methods in Quantitative Finance. New York: Springer.
Taylor, Greg. 2019. Loss reserving models: Granular and machine learning forms. Risks 7: 82. [CrossRef]
Taylor, Greg, and Gráinne McGuire. 2016. Stochastic Loss Reserving Using Generalized Linear Models. Arlington:

Casualty Actuarial Society. CAS Monograph Series, Number 3.
Taylor, Greg, Gráinne McGuire, and James Sullivan. 2008. Individual claim loss reserving conditioned by case

estimates. Annals of Actuarial Science 3: 215–56. [CrossRef]
Taylor, Greg. 1981. Speed of finalization of claims and claims runoff analysis. ASTIN Bulletin 12: 81–100. [CrossRef]
Taylor, Greg. 1982. Zehnwirth’s comments on the see-saw method: A reply. Insurance: Mathematics and Economics

1: 105–108. [CrossRef]
Verrall, Richard J. 1991. Chain ladder and maximum likelihood. Journal of the Institute of Actuaries 118: 489–99.

[CrossRef]
Ware, James H., and David L. DeMets. 1976. Reanalysis of some baboon descent data. Biometrics 32: 459–63.

[CrossRef]
Wüthrich, Mario V. 2018. Machine learning in individual claims reserving. Scandinavian Actuarial Journal

2018: 465–80. [CrossRef]
Zhao, Xiao Bing, and Xian Zhou. 2010. Applying copula models to individual claim loss reserving methods.

Insurance: Mathematics and Economics 46: 290–99. [CrossRef]
Zhao, Xiao Bing, Xian Zhou, and Jing Long Wang. 2009. Semiparametric model for prediction of individual claim

loss reserving. Insurance: Mathematics and Economics 45: 1–8. [CrossRef]

c© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).





risks

Article

Modelling Unobserved Heterogeneity in Claim
Counts Using Finite Mixture Models

Lluís Bermúdez 1,*, Dimitris Karlis 2 and Isabel Morillo 1

1 Departament de Matemàtica Econòmica, Financera i Actuarial, Universitat de Barcelona, Diagonal 690,
08034 Barcelona, Spain; imorillo@ub.edu

2 Department of Statistics, Athens University of Economics and Business, 10434 Athens, Greece;
karlis@aueb.gr

* Correspondence: lbermudez@ub.edu; Tel.: +34-93-403-4853; Fax: +34-93-403-4892

Received: 20 December 2019; Accepted: 22 January 2020; Published: 29 January 2020

Abstract: When modelling insurance claim count data, the actuary often observes overdispersion
and an excess of zeros that may be caused by unobserved heterogeneity. A common approach
to accounting for overdispersion is to consider models with some overdispersed distribution as
opposed to Poisson models. Zero-inflated, hurdle and compound frequency models are typically
applied to insurance data to account for such a feature of the data. However, a natural way to
deal with unobserved heterogeneity is to consider mixtures of a simpler models. In this paper,
we consider k-finite mixtures of some typical regression models. This approach has interesting
features: first, it allows for overdispersion and the zero-inflated model represents a special case,
and second, it allows for an elegant interpretation based on the typical clustering application of
finite mixture models. k-finite mixture models are applied to a car insurance claim dataset in order
to analyse whether the problem of unobserved heterogeneity requires a richer structure for risk
classification. Our results show that the data consist of two subpopulations for which the regression
structure is different.

Keywords: zero-inflation; overdispersion; automobile insurance; risk classification; risk selection
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1. Introduction and Aims

In insurance datasets, for the purposes of modelling claim counts, there is a problem of unobserved
heterogeneity caused by differences in driving habits and behaviour among policyholders that cannot
be observed or measured by the actuary (for example, driving ability, driving aggressiveness or the
degree of obeying traffic regulations). This often leads to overdispersion and a relatively large number
of zeros, which cannot be fully remedied by Poisson regression models. Many attempts have been made
in the actuarial literature to account for such features of the data (for example, compound frequency
models, also known as mixture models, and their zero-inflated or hurdle versions). This paper aims to
explore whether the problem of unobserved heterogeneity requires a richer structure, though the use
of finite mixtures of regression models, than the previous models have.

In a competitive market, insurance companies need to use a pricing structure that ensures that the
exact weight of each risk is fairly distributed within the portfolio. If an insurance company does not
achieve at least the same success with respect to this goal as their competitors, the policyholders
with lower risk will be tempted to move to another company that offers better rates for them.
Such an adverse selection process would lead the less unsuccessful company to lose its financial
equilibrium, with insufficient income from premiums to pay for the claims reported by the remaining
policyholders with higher risk.

Risks 2020, 8, 10; doi:10.3390/risks8010010 www.mdpi.com/journal/risks
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In most developed countries, the car insurance market is a highly competitive market. Therefore,
to avoid such an adverse selection process, a particularly complex pricing structure is designed by
actuaries. A thorough review of the modelling of claim counts for car insurance can be found in
(Denuit et al. 2007). In general terms, to handle this problem, the actuary segments the portfolio
into homogeneous classes so that all the insured parties belonging to a particular class pay the same
premium. This procedure is referred to as risk classification, tariff segmentation or a priori ratemaking.

In short, the classification or segmentation of risks involves establishing different classes of risk
according to the nature of claims and probability of their occurrence. To this end, factors are determined
to classify each risk, and its influence on the observed number of claims is estimated. To achieve
this, risk analysis based on generalized linear models (GLMs) is widely accepted. Focusing on claim
frequency, a regression component is included in the claim count distribution to take individual
characteristics into account.

A very common GLM used for these purposes is the Poisson regression model and its
generalisations. Introduced by Dionne and Vanasse (1989) in the context of car insurance, the model
can be applied if a series of classification variables, referred to as a priori variables, plus the number of
claims for each individual policy are known. However, the Poisson regression model is usually rejected
because of the presence of overdispersion and an excess of zeros. This rejection may be interpreted
as a sign that the portfolio is still heterogeneous: not all factors influencing risk can be identified,
measured and introduced into the a priori modelling. This phenomena is known as the problem of
unobserved heterogeneity.

In parallel, another way to account for unobserved heterogeneity is to consider that the
claims record for each insured party reveals the differences in driving habits and behaviour among
policyholders that cannot be observed or measured via the a priori variables. Therefore, the idea of
considering individual differences in policies within the same a priori class by using an a posteriori
mechanism has emerged, i.e., tailoring an individual premium based on the claims record for each
insured party. This concept has received the name of a posteriori ratemaking, experience rating or the
bonus-malus system (see Denuit et al. (2007)).

One way to deal with overdispersion is to consider compound frequency models (mixture models)
with some overdispersed distribution. This is best achieved by moving from the simple Poisson model
to the negative binomial model (Dionne and Vanasse (1992)) or to the Poisson-inverse Gaussian model
(Dean et al. (1989)). To account for the excess of zeros, some generalizations of the Poisson model have
been considered. Lambert (1992) introduced the zero-inflated Poisson regression model and, since then,
there has been a considerable increase in the number of applications of zero-inflated regression models
based on several different distributions. A comprehensive discussion of these applications can be
found in Winkelmann (2008). Similarly, hurdle models are also widely applied to insurance claim
count data. A common assumption in all these models is that all policyholders behave in the same
way with regard to a priori variables, and thus they all have the same regression structure.

In this paper, we examine whether this assumption is realistic. The models proposed in this paper
account for unobserved heterogeneity by choosing a finite number of subpopulations. To account for
overdispersion and an excess of zeros, we consider a k-finite mixture of Poisson and negative binomial
regression models. As Park and Lord (2009) show for vehicle crash data analysis, a finite mixture of
Poisson or negative binomial regression models is especially useful where count data are drawn from
heterogeneous populations. For modelling claim counts, the idea behind this is that the data consist of
subpopulations of policyholders, “caused" by the unobserved heterogeneity, for which the regression
structure, used to account for the observed or a priori variables, is different. These models allow each
component in the discrete mixture to have its own score, i.e., for there to be different behaviour for
each group of policyholders, whereas classical claim frequency models use a single score.

To sum up, this paper aims to explore whether resolving the problem of unobserved heterogeneity
requires a richer structure than that which is present in typical compound frequency models and their
zero-inflated or hurdle versions. By applying finite mixtures of regression models, we will examine
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whether unobserved risk factors that are not considered in the a priori tariff, such as a driver’s reflexes,
aggressiveness, or knowledge of the Highway Code, establish the existence of subpopulations of
policyholders with different a priori behaviour. To achieve this goal, the proposed models are fitted to
a set of car insurance claims data to compare their goodness of fit with the traditional claim frequency
models and to assess if we need to account for this extra heterogeneity. Finally, we discuss whether the
proposed models help to search for better alternatives to account for unobserved heterogeneity.

In the next section, the models and computational details used are defined. In Section 3,
we summarize the database obtained from a Spanish insurance company and the results from fitting
the models to it. Finally, we offer some concluding remarks in Section 4.

2. Finite Mixture of Regression Models

The central idea for a finite mixture of regression models is that we assume that the entire
population can be split into k subpopulations (also called clusters, components or segments).
Assuming a discrete-valued response yi for the i-th individual, we then assume that

P(yi) = P(Yi = yi) =
k

∑
j=1

πjP(yi|θij), θij > 0, yi = 0, 1, . . . ,

where 0 < πj < 1 with
k
∑

j=1
πj = 1 are the mixing proportions indicating the probability that a randomly

selected observation belongs to the j-th subpopulation and P(y|θ) is some discrete distribution indexed
by some parameter vector θ. In our case presented below, P(y|·) will be assumed to belong to one of
the Poisson or negative binomial families. Note that we assume that for each individual we have a set
of parameters θij that depend on each component and they may depend on some covariate information
for the i-th individual.

We further assume that the mean of the j-th component can be modelled by a vector of covariates
containing information on the i-th individual, denoted by xi. In the general setting, this covariate
vector that characterises the i-th individual can be different for different components, and therefore we
should use also a subscript j. As, in our model, we use the same covariates for all components, we drop
this second index. Assuming, without loss of generality, that θ = (μ, φ), where μ is the mean of the
distribution (this can be easily obtained with a reparameterisation) and φ some parameter related to
overdispersion (set equal to 1 for the Poisson distribution), we further assume that:

log μij = x′iβ j

where now β j is a component-specific vector of coefficients.
Note that the above formulation can be seen in the context of a GLM. However, we prefer to

describe the model in a more general setting since some of the families we may use instead of Poisson
and negative binomial models do not belong to the exponential family or therefore to the general
GLM setting.

The above generic formulation can be expanded by allowing additional covariates to the rest of
the parameters for each component, as well as to the vector of mixing proportions. A well-known
model of this type is the finite mixture of Poisson regressions in Wang et al. (1996) (see also Grun and
Leisch 2007, 2008). Finite mixtures of regression models have been widely used in different settings,
see Hennig (2000) for a thorough discussion.

This type of modelling has some interesting features: first, the zero-inflated model is a special
case; second, it allows for overdispersion; and third, it allows for a neat interpretation based on the
typical clustering application of finite mixture models.
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It is useful to show that if we denote by μj and σ2
j the mean and the variance of the j-th component,

then the mean μ and the variance σ2 of the mixture are given by

μ =
k

∑
j=1

πjμj, and σ2 =
k

∑
j=1

πj(μ
2
j + σ2

j )− μ2 (1)

These formulas will be useful later on for our calculations.

2.1. Finite Mixture of Poisson Regressions

The case of a finite mixture of Poisson regressions is by far the best known and most commonly
applied in practice. It dates back to Wang et al. (1996) and assumes that

P(yi|μij) =
k

∑
j=1

πj
exp(−μij)μ

yi
ij

yi!
, yi = 0, 1, . . .

with μij = exp(xi
′β j). The zero-inflated Poisson regression is a special case. The model allows for

overdispersion with respect to the simple Poisson regression model. For more details see Grun and
Leisch (2007); Wang et al. (1996).

2.2. Finite Mixture of Negative Binomial Regressions

For the negative binomial model, we assume

P(yi|μij, φj) =
Γ(φj + yi)

Γ(φj)yi!

(
μij

φj + μij

)yi
(

φj

φj + μij

)φj

, φj > 0, yi = 0, 1, . . .

and μij = exp(xi
′β j), i.e., the probability function of a negative binomial with mean μij and

variance μij +
μ2

ij
φj

.
Note that we assume a separate overdispersion parameter φj for each component. Such a model

has been fitted by Byung-Jung et al. (2014) and Zou et al. (2013). With respect to the finite mixture of
Poisson regressions, the model has an extra overdispersion parameter and therefore allows for more
flexible distributions in terms of components.

It is evident that the negative binomial model also contains the simple Poisson model as a special
case (φj → ∞).

2.3. Other Models

Although in this paper we focus on the two families of models introduced above, there are other
models that fit into this context for which we do not present results. They relate to Poisson-inverse
Gaussian regression models (Dean et al. (1989)) and finite mixtures of them; some nonparametric
random effects Poisson regression models (see Aitkin (1999)), i.e., the model assumes some random
effect on the intercept of the Poisson regression and thus actually fits a finite mixture of Poisson
regression model where the estimated coefficients (apart from the intercept) are the same for
all components; and hurdle-type models (a hurdle model is a modified count model in which
the two processes generating the zeros and the positives are not constrained to be the same,
see Mullahy (1986)). As mentioned above, we do not formulate zero-inflated models as we treat
them as special cases of finite mixture models.

2.4. Estimation via EM Algorithm

Under the umbrella of a finite mixture, estimation for this particular family of models is rather
simple. We follow the standard approach of combining the observed data (Yi, Xi) with unobserved
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latent vectors Zi = (Zi1, . . . , Zik) with Zij = 1 if the i-th observation belongs to the j-th component,
and 0 otherwise. As is typical, the EM algorithm consists of estimating the Z’s by their conditional
expectation and then fitting a standard regression model to the response, Y, using a weighted likelihood,
based on the weights derived during the E-step. A formal description of a generic algorithm is given
in what follows.

E-step: Using the current estimates, π̂j and θ̂ij, i = 1, . . . , n and j = 1, . . . , k, calculate

wij = E(Zij) =
π̂jP(yi|θ̂ij)

k
∑

j=1
π̂jP(yi|θ̂ij)

, i = 1, . . . , n, j = 1, . . . , k (2)

and then
M-step:

M1 Update the mixing proportions using

π̂j =

n
∑

i=1
wij

n
, j = 1, . . . , k

M2 Update the regression coefficients and the component-specific parameters by fitting a single
regression model for the j-th component with response yi, covariates xi using a weighted
likelihood approach with weights wij.

It is clear that the M-step is not in a closed form. Also, note that actually we fit k models with the
same data but different weights. This can be run in parallel to speed up the process. All the pros and
cons of the EM algorithm for finite mixtures apply. Also, standard procedures for finite mixtures are
applicable, such as for example model selection. We will discuss some computational details later.

Finally, we need to emphasize the issue of identifiability. Conditions for identifiability for such
finite mixtures of regression models are given in Hennig (2000). For such a finite mixture of regression
models for count data, problems may occur if the covariates are categorical and they can have
a small number of different combinations. In our case, we have seven binary variables leading
to 27 combinations. Not all of them appear in the data but we still have quite a large number of
distinct combinations for the model matrix. In general, it is hard to show that identifiability exists
since the conditions are hard to evaluate. We believe that in our case no particular problem exists.
From a practical point of view we have worked with several initial values to examine whether we
became trapped with different solutions. This did not happen, adding to our belief that our model
is identifiable.

2.5. Computational Details

An important aspect for the successful application of the EM algorithm is that appropriate initial
values need to be selected, as otherwise one may be trapped in local rather than global maxima.
We selected our initial values as follows.

We started by fitting a simple Poisson regression model. This also gave sufficient initial values
for the simple negative binomial regression. Initial values for the overdispersion parameter in these
two models were set equal to the observed overdispersion (as proposed in Breslow (1984)).

From here on we describe the approach for each model. Therefore, when we refer to “model”,
we imply either the mixture of Poisson models or the mixture of negative binomial models.
Initial values for k = 2 were selected by perturbing the simple (k = 1) regression model. Specifically,
we fitted a single regression and keeping the fitted values, we split them into two components with
mixing probabilities of 0.5 each, and means equal to 1.2 and 0.8 of the fitted values. Then, to fit a
model with k + 1 components, we used the solution with k components and a new component at the
centre (that of a single one-component regression), with mixing probability 0.05. The other mixing
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probabilities were rescaled to sum to 1. Extensive simulation has shown that this approach works well
to locate the maximum. Other approaches can be found in Papastamoulis et al. (2016).

All our computations were made in R. We used our own code, while some of the models can
be fitted using the gamlss, VGAM and flexmix packages in R. However, we found some convergence
problems and less flexibility while using the standard packages.

Convergence was detected when the relative change between two successive iterations was
smaller than 10−8. For fitting the separate regression models we used the standard GLM approach
(IRLS algorithm) for Poisson and negative binomial regression.

3. Data and Results

3.1. Data Description

The original database is a random sample of the car portfolio of a major insurance company
operating in Spain in 1996. Only cars categorized as being for private use were considered. The data
contain information from 80,994 policyholders. Seven exogenous variables plus the annual number
of accidents recorded were considered here. For each policy, the information at the beginning of the
period and the total number of claims from policyholders were reported. The definition and some
descriptive statistics of the variables are presented in Table 1. This dataset has previously been used
in Pinquet et al. (2001), Brouhns et al. (2003), Bolancé et al. (2003, 2008), Boucher et al. (2007, 2009),
Boucher and Denuit (2008), Bermúdez (2009) and Bermúdez and Karlis (2012).

The meaning of the variables that refer to the Spanish market should also be clarified. The variable
ZON distinguishes between driving zones of greatest risk (Madrid, Catalonia and central northern
Spain) and the rest. Regarding the type of coverage provided by the of policies (variable COV),
the classification adopted here responds to the most common types of car insurance policy available
on the Spanish market. The simplest policy only includes third-party liability. This simplest type of
policy makes up the baseline group, while variable COV equals 1 denotes policies which, apart from
the guarantees contained in the simplest policies, also include comprehensive and collision coverage.

Table 1. Dependent and explanatory variables used in the models.

Variable Definition Mean St. dev.

N total number of claims reported by policyholders 0.1833 0.5873
(0: 71,087; 1: 6,744; 2: 2,067; 3: 690; 4: 248; 5: 95; 6: 34; >6: 29)

GEN equals 1 for women and 0 for men 0.1600 0.3666
URB equals 1 when driving in urban area, 0 otherwise 0.6690 0.4706
ZON equals 1 when driving in Madrid, Catalonia or northern Spain, 0 otherwise 0.4326 0.4954
LIC equals 1 if the driving license is 4 or more years old, 0 otherwise 0.9766 0.1511
LOY equals 1 if the client is in the company for more than 5 years, 0 otherwise 0.1441 0.3512
COV equals 1 if includes comprehensive and collision coverage, 0 otherwise 0.5087 0.4999
POW equals 1 if horsepower is greater than or equal to 5500cc, 0 otherwise 0.8058 0.3955

3.2. Fitted Models

We fitted models of increasing complexity to this dataset, starting from a simple Poisson regression
model. We used AIC and BIC to select the best among a series of candidate models. All models were run
in R. Table 2 compares the fitted models for Poisson and negative binomial distributions, resulting in
the best fit being obtained with a 2-finite mixture of negative binomial regression models (2FMNB).
Finite mixture models with k > 2 were also fitted, but no improvement in terms of AIC or BIC
was achieved. This result gives rise to the conclusion that this portfolio is comprised of two groups
of policyholders.
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Table 2. Information criteria for selecting the best model for the data.

Model Log-Likelihood Parameters AIC BIC

Poisson −42,585.08 8 85,186.15 85,260.57
Negative binomial −38,453.13 9 76,924.27 77,007.98

Zero-inflated Poisson −38,836.59 9 77,691.19 77,774.91
Zero-inflated negative binomial −38,453.13 10 76,926.27 77,019.28

2-Finite Poisson mixture −38,449.61 17 76,933.21 77,091.36
2-Finite negative binomial mixture −38,347.81 19 76,733.62 76,910.36

As expected, a large improvement is obtained by moving from a simple Poisson model to
a compound frequency model with some overdispersed distributions. The best fit is achieved by the
negative binomial model. Zero-inflated models, while providing an improvement on the basic Poisson
model, allowing for overdispersion in this case, were not helpful for the negative binomial model.
It seems that the problem is not extra zeros but the existence of another group of policyholders.
Therefore, assuming that we have two distinct subpopulations, we may move towards a finite
mixture model.

In this case, using a 2-finite mixture of regression models, a large improvement was obtained by
moving from one component Poisson to a 2-finite mixture of Poisson regression models. Note that
this improvement is better than that obtained with the zero-inflated Poisson model. However, as the
best fit is obtained by the 2FMNB, it seems that there is still some extra overdispersion which needs
to be modelled appropriately, assuming within each component an overdispersed distribution like
a negative binomial.

Figure 1 shows boxplots for the fitted mean values per component for both mixture models.
We can observe that the group separation is not the same for the two models. Different models can
have similar likelihoods but very different properties and potential. Comparing Poisson and negative
binomial mixtures we see that they model different aspects and therefore, as they are close in likelihood
terms, can focus on separate things. The first component for the Poisson model is more concentrated
towards 0. The opposite is true for the second component. Clearly, 2FMNB fits the data better than the
2-finite mixture of Poisson regression models.

Figure 1. Boxplots of the fitted means for each of the two components for both models.

Figure 1 shows the distinct characteristics of the two assumed distributions. For the case of the
Poisson distribution, as the variance is determined from the mean, we see that the two components are
further away as an attempt to model the excess of variance. Recall that the total variance is in fact the
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sum of the between variance (how much the components differ) and the within variance (inside each
component). In contrast, in the negative binomial case, the two components are closer since the extra
overdispersion parameter regulates the variability. This is also a warning that use of the Poisson model
can lead to an erroneous inference of the mean for each component.

From Figure 1, we can also observe that the group separation is characterised by a low mean
for the first component and a high mean with higher variance for the second. One may assume that
this group separation is revealed by driving characteristics, such as driving ability, aggressiveness
or degree of obeying traffic regulations, that are the source of the unobserved heterogeneity. In this
case, we can consider those policyholders who belong to the first component to be “good” drivers,
whereas policyholders in the second component can be considered “bad” drivers.

Table 3 summaries the results for the 2FMNB and the case with k = 1, i.e., no mixture. For the
2FMNB, we report the estimated regression coefficients for each component and p-values for testing
the hypothesis that the variable is statistically significant. For the simple negative binomial model,
we report the coefficient and standard p-values based on the Wald test.

Table 3. The fitted models for both the negative binomial and the 2FMNB. The p-value for the 2FMNB
refers to that of LRT when the variables is removed from both components, whereas for the simple
negative binomial it refers to the Wald test.

2FMNB Negative Binomial

1st comp. 2nd comp. p-Value Estimate p-Value

Intercept −6.1420 −1.1364 <0.0001 Intercept −2.4144 <0.0001
GEN 0.2633 0.0086 0.0124 GEN 0.0774 0.0103
URB 0.3407 −0.0762 0.0017 URB 0.0165 0.4870
ZON 0.3745 0.0564 <0.0001 ZON 0.1324 <0.0001
LIC 0.2413 −0.2423 0.0448 LIC −0.1610 0.0230
LOY 0.3707 0.1289 <0.0001 LOY 0.2019 <0.0001
COV 3.1438 0.6373 <0.0001 COV 1.0024 <0.0001
POW 0.2502 0.1148 <0.0001 POW 0.1440 <0.0001

φ 0.2321 0.6051 φ 0.2527
π 0.6686 0.3314

For the 2FMNB model, to assess the significance of the variables, we calculated a Likelihood Ratio
Test (LRT) statistic. Note that this, as a variable selection problem, is not standard, as each covariate
appears in both components. Also note that even since standard errors can be derived through the
Hessian, such a procedure can be very unstable. Also bootstrap based standard errors can be very
time-consuming. Therefore, to see the importance of the covariates, we maximised the log-likelihood
with and without each variables and we obtained the LRT, compared with a χ2 distribution with
2 degrees of freedom. Also, note that covariates that perhaps were not significant for a simple model
(no mixture) can be significant in the mixture model, as the two components can allow for separate
effects, which are lost when combining to one model.

Comparing the models from Table 3, we can see some interesting points. First, coefficient estimates
of the negative binomial model are in some way a linear combination of coefficient estimates of each
component of the 2FMNB. Second, in the negative binomial model, only URB is not significant at
a level of 95%, whereas in the 2FMNB all covariates are significant at that level: the URB variable that
is deemed significant for the mixture is not significant in the simple model. The reason is that they
have opposite signs in the mixture, and therefore when we estimate one coefficient for the simple
case, the effect is cancelled out: we estimate some average effect which is close to zero and has large
variance. This implies that the mixture can more clearly reflect the importance of the variables and the
existence of two groups of policyholders that behave in different ways with regard to these a priori
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covariates. Finally, focusing on the dispersion parameters of the negative binomial distribution for
each component, we can conclude that the second component presents larger dispersion than the first.

To summarize, we may assume two groups of policyholders with different regression structures.
This is is particularly noticeable for the variable URB. For policyholders considered to be “good”
drivers, driving in an urban area increases the probability of making a claim; whereas it decreases
for “bad” drivers. This is reasonable: “good” drivers who make a claim are more likely to make it
when driving in an urban area, and it will probably just be a small claim. In contrast, “bad” drivers are
less likely to make a claim in an urban area since with their driving behaviour (more aggressive and
ignoring traffic rules) they are more likely to make a claim when driving outside the urban areas.

3.3. Usage of FM Models for Actuarial Purposes

In this section, we aim to show the advantages and limitations of using a finite mixture of
regression models with respect to other models, such as compound frequency models and their
zero-inflated or hurdle versions.

First, with respect to compound frequency models, 2-finite mixture models account for
unobserved heterogeneity more effectively, providing a better fit. 2FMNB separates the policyholders
in two groups allowing for better classification and thus providing a better picture for managerial
matters. Assuming that this group separation is caused by their driving capabilities or behaviour,
we may consider that we have a group of “good” drivers and another of “bad” drivers.

Second, with respect to zero-inflated and hurdle models, the problem of unobserved heterogeneity
is addressed in a more parsimonious way, trying to fix two issues at the same time: overdispersion
and an excess of zeros. Zero-inflated and hurdle models focus on the excess of zeros and only
implicitly correct for overdispersion; while finite mixture models do both explicitly. Also, note that
the interpretation offered by finite mixtures is more reasonable: zero-inflation implies that some
drivers will never have an accident, whereas finite mixture models say that there is still some small
probability that good drivers will have an accident, this sounds more reasonable in practice from the
actuarial point of view (see the discussion in Lord et al. (2007) on the usage of zero-inflated models for
car accidents).

Third, the regression structure for each component provided by the 2-finite mixture models is
very different from the single score given by compound frequency models and their zero-inflated or
hurdle versions. This supports the aforementioned idea that the data consist of two subpopulations,
“caused” by, or as a result of, the unobserved factors, for which the regression structure, used to account
for the observed factors, is different. The 2-finite mixture models produce a wider picture of the
portfolio and therefore offer better chances for accurate risk analysis. As mentioned above, the 2-finite
mixture models enable us to see the importance of the variables more clearly. Significant variables
according to the LRT test used here, with opposite signs in the mixture, may not be significant for the
simple models as they only estimate one coefficient and the effect is cancelled out, estimating some
average effect which is close to zero.

However, finite mixture models presents a limitation that impedes their effective use for
ratemaking purposes. Although the 2-finite mixture models proposed here separate the policyholders
into two types of drivers, they do not allow us to know the type of driver a particular new policyholder
is. In other words, for a new customer, although we can estimate different premiums for each
component, i.e., for “good” drivers and for “bad” drivers, we cannot find out in which category
the new driver belongs, unless we have already observed the number of claims they have made,
which is useless. This is because the model is a regression-type model and one needs to observe
both the response (number of claims) together with the covariates in order to calculate the posterior
probability. Also note that the mixing proportions, πj, do not offer information on this since they refer
to a randomly selected client without taking into account their characteristics. One solution might be
to move some of the covariates to the mixing proportions. Therefore, for each new driver, we can have
an estimate on the component that they belong to and use this to calculate their premium.
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To evaluate the usefulness of finite mixture models, the differences between the 2FMNB and its
respective regression model with one component (negative binomial) are analysed through the mean
(a priori pure premium) and the variance (necessary for a priori loaded premium) of the number of
claims per year for some profiles of the insured parties. Five different, yet representative, profiles were
selected from the portfolio and classified according to their risk level. The profiles can be seen in Table 4.
We selected the profiles so as to have different increasing means. The first can be classified as the
best profile since it presents the lowest mean score. The second was chosen from among the profiles
considered as good drivers, with a lower mean value than the mean of the portfolio. The third profile
was chosen with a mean score lying very close to the mean of the portfolio. Finally, a profile considered
as being for a bad driver (with a mean score above the mean of the portfolio) and the worst driver
profile were selected.

Table 4. The 5 profiles used for the comparisons.

Profile Name GEN URB ZON LIC LOY COV POW

Best 0 1 0 1 0 0 0
Good 1 1 0 0 0 0 1

Average 0 0 0 1 0 1 0
Bad 1 1 0 0 0 1 1

Worst 1 1 1 0 1 1 1

Table 5 shows the results for the five profiles for the two models with respect to the mean and the
variance. For the finite mixture model, we have used the same mixing proportion (π = (0.6686, 0.3314))
for all profiles when we calculate the total mean (2FMNB) from the mean for each component (2FMNB-1
and 2FMNB-2). With respect to the mean, one can see that 2FMNB coincides to a great extend with
the negative binomial model. However, we observe larger differences between the means for each
component. The group of “good” drivers is far below the group of “bad” drivers. From a practical
point of view, the means for each component can be considered as a lower bound and upper bound of
the negative binomial means.

Meanwhile, the variance for 2FMNB is greater than for the negative binomial model for all the
profiles. As we have commented, finite mixture models allow for unobserved heterogeneity more
efficiently. In the same way as mentioned above for means, we see major differences between the
variances for each component. Thus, “bad” drivers present greater dispersion than “good” drivers.

Table 5. The mean and the variance derived from the simple negative binomial model (NB) and
the 2FMNB.

Profile
Mean Variance

NB 2FMNB 2FMNB-1 2FMNB-2 NB 2FMNB 2FMNB-1 2FMNB-2

Best 0.077 0.080 0.004 0.233 0.101 0.183 0.004 0.323
Good 0.113 0.115 0.005 0.336 0.164 0.279 0.005 0.524
Average 0.207 0.200 0.063 0.476 0.378 0.496 0.081 0.852
Bad 0.309 0.289 0.117 0.636 0.688 0.756 0.176 1.306
Worst 0.432 0.419 0.247 0.766 1.170 1.159 0.509 1.735

Following the traditional two-step methodology, finite mixture models may open up the
opportunity to evaluate the extent of a posteriori ratemaking. Bonus-malus systems are usually
applied to account for the unobserved heterogeneity. In a posteriori ratemaking, actuaries consider the
past claims record of each policyholder in order to update their a priori premiums, assuming that the
number of claims reported by policyholders reveals unobservable risk characteristics. In this context,
the mean for the first component (2FMNB-1) can be seen as the limit of the a posteriori premium with
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bonuses. In this assumption, we consider the group of “good” drivers as the policyholders that do not
report a claim in many years. In contrast, the mean for the second component would be the limit of the
a posteriori premiums with maluses.

In summary, on the basis of the 2FMNB outcome, we can conclude that the use, for ratemaking
purposes, of a negative binomial model, together with a bonus-malus system to account for the
unobserved heterogeneity, has at least two limitations. First, after an a priori premium is obtained with
a negative binomial model, we need to take many years with no claims to reach the level of 2FMNB
means for the group of “good” drivers. Second, in the mean time, we may fail to account for the effect
of the a priori variables because we assume that all drivers, “good” and “bad”, behave in the same
way with respect to these a priori variables.

4. Conclusions

In this paper, we propose the use of a 2-finite mixture of Poisson and negative binomial regression
models to allow for the overdispersion and the excess of zeros usually detected in a car insurance
dataset and commonly explained by the presence of unobserved heterogeneity. Assuming the existence
of two types of clients, described separately by each component in the mixture, improves the modelling
of the dataset. The idea is that the data consist of two subpopulations for which the regression structures
are different.

These models are applied to a car insurance claims dataset in order to analyse whether the
problem of unobserved heterogeneity requires richer structure for risk classification compared with
the classical models used to allow for such a feature of the data, i.e., compound frequency models and
their zero-inflated versions. From this application, we conclude the following.

First, our results show that this portfolio is comprised of two groups of policyholders or drivers.
According to their driving habits or behaviour, such as driving ability, aggressiveness and degree of or
obeying traffic regulations, the first group, characterised by a very low mean, can be considered the
group of policyholders who are “good” drivers. In contrast, the second group, defined by a high mean
with higher variance, can be considered as the group of policyholders who are “bad” drivers.

Second, the two groups of policyholders exhibits different regression structures, i.e., they behave
in different ways with regard to the a priori factors. This is is highlighted particularly for the variable
related to driving in an urban area or not: for policyholders considered “good” drivers, driving in
a urban area increases the probability of having a claim, whereas it decreases for “bad” drivers.
Furthermore, simpler models, such as a negative binomial model, fail to reflect the importance of the
variables, and therefore lead to an inadequate risk classification.

Third, the two groups of policyholders have very different expected claim frequency values.
When using the usual two-step ratemaking procedure, to prevent an adverse selection process,
and assuming that the number of claims reported by policyholders reveals their unobservable risk
characteristics, a bonus-malus system is considered to update the a priori premiums obtained with
a compound frequency model. However, in this case, we would need many years without observing
claims from a certain policyholder to reach the premium level provided by the 2FMNB for the group
of “good” drivers.

To avoid the aforementioned limitations, we highly recommend the use of telematics devices for
ratemaking purposes (see Guillén et al. (2019)). Vehicle telematics allows driving habit information
to be collected that will dramatically reduce the unobserved heterogeneity caused by driving
habits behavioural variation. Combining traditional a priori rating factors with the new information
obtained telemetrically would make it unnecessary to use a time-consuming bonus-malus system
and, simultaneously, it will lead to a more efficient risk classification. In other words, including this
new information in the a priori ratemaking would allow us to differentiate between “good” and “bad”
drivers from the beginning, without the need of a posteriori adjustment and taking into account the
importance of all the rating factors more clearly.
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Finally, although the 2-finite mixture models proposed here separate the policyholders into
two types of drivers, they do not allow us to know the type of driver a particular policyholder
is. This could be achieved in different ways, i.e. taking into account the past claim record of each
individual or introducing covariates into the mixing probabilities of the mixtures. This may be the
goal for future research.
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Abstract: Under the Solvency II regime, life insurance companies are asked to derive their solvency
capital requirements from the full loss distributions over the coming year. Since the industry
is currently far from being endowed with sufficient computational capacities to fully simulate
these distributions, the insurers have to rely on suitable approximation techniques such as the
least-squares Monte Carlo (LSMC) method. The key idea of LSMC is to run only a few wisely
selected simulations and to process their output further to obtain a risk-dependent proxy function
of the loss. In this paper, we present and analyze various adaptive machine learning approaches
that can take over the proxy modeling task. The studied approaches range from ordinary and
generalized least-squares regression variants over generalized linear model (GLM) and generalized
additive model (GAM) methods to multivariate adaptive regression splines (MARS) and kernel
regression routines. We justify the combinability of their regression ingredients in a theoretical
discourse. Further, we illustrate the approaches in slightly disguised real-world experiments and
perform comprehensive out-of-sample tests.

Keywords: least-squares monte carlo method; machine learning; proxy modeling; life insurance;
Solvency II

1. Introduction

The Solvency II directive of the European Parliament and European Council (2009) requires from
insurance companies a derivation of the solvency capital requirement (SCR) using the full probability
distributions of losses over a one-year period. Some life insurers comply with this requirement by
setting up internal models. Other insurers opt for the much simpler standard formula, which enables
an aggregation of the company’s exposures to single risks. Lacking an analytical valuation formula for
the losses in a one-year period, life insurers with an internal model are supposed to utilize a Monte
Carlo approach usually called nested simulations approach (Bauer et al. (2012)). In practice their
cash-flow-projection (CFP) models need to be simulated several hundred thousand to several million
times for a robust implementation of the nested simulations approach. But the insurers are currently
far from being endowed with sufficient computational capacities to perform such expensive simulation
tasks. By applying suitable approximation techniques like the least-squares Monte Carlo (LSMC)
approach of Bauer and Ha (2015), the insurers are able to overcome these computational hurdles
though. For example, they can implement the LSMC framework formalized by Krah et al. (2018)
and applied by, for example, Bettels et al. (2014), to derive their full loss distributions. The central
idea of this framework is to carry out a comparably small number of wisely chosen nested Monte
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Carlo simulations and to feed the simulation results into a supervised machine learning algorithm that
translates the results into a proxy function of the insurer’s loss (output) with respect to the underlying
risk factors (input).

Our starting point is the LSMC framework from Krah et al. (2018). In the following the same
approach for the proxy derivation is assumed, we will only amend the calibration and validation steps.
Therefore, we neither repeat the simulation setting nor the procedure for the full loss distribution
forecast and SCR calculation here in detail. The purpose of this exposition is to introduce different
machine learning methods that can be applied in the calibration step of the LSMC framework, to point
out their similarities and differences and to compare their out-of-sample performances in the same
slightly disguised real-world LSMC example already used in Krah et al. (2018).

We describe the data basis used for calibration and validation in Section 2.1, the structure of the
calibration algorithm in Section 2.2 and our validation approach in Section 2.3. Our focus lies on
out-of-sample performance rather than computational efficiency as the latter becomes only relevant if
the former gives reason for it. We analyze a very realistic data basis with 15 risk factors and validate
the proxy functions based on a very comprehensive and computationally expensive nested simulations
test set comprising the SCR estimate.

The main idea of our approach is to combine different regression methods with an adaptive
algorithm, in which the proxy functions are built up of basis functions in a stepwise fashion. In a
four risk factor LSMC example, Teuguia et al. (2014) applied a full model approach, forward selection,
backward elimination and a bidirectional approach as, for example, discussed in Hocking (1976) with
orthogonal polynomial basis functions. They stated that only forward selection and the bidirectional
approach were feasible when the number of risk factors or the polynomial degree exceeded 7, as then
the resulting other models exploded. Life insurance companies covering a wide range of contracts
in their portfolio are typically exposed to even more risk factors like, for example, 15. Complex
business regulation frameworks such as those in Germany cause non-linear dependencies between
risk factors and losses, which naturally lead to polynomials of higher degrees in the chosen proxy
models. In these cases, even the standard forward selection and bidirectional approaches become
infeasible as the sets of candidate terms from which the basis functions are chosen will explode then as
well. We therefore follow the suggestion of Krah et al. (2018) to implement the so-called principle of
marginality, an iteration-wise update technique of the set of candidate terms that lets the algorithm get
along with comparably few carefully selected candidate terms.

Our main contribution is to identify, explain and illustrate a collection of regression methods
and model selection criteria from the variety of regression design options that provide suitable proxy
functions in the LSMC framework when applied in combination with the principle of marginality.
After some general remarks in Section 3.1, we describe ordinary least-squares (OLS) regression in
Section 3.2, generalized linear models (GLMs) by Nelder and Wedderburn (1972) in Section 3.3,
generalized additive models (GAMs) by Hastie and Tibshirani (1986) and Hastie and Tibshirani
(1990) in Section 3.4, feasible generalized least-squares (FGLS) regression in Section 3.5, multivariate
adaptive regression splines (MARS) by Friedman (1991) in Section 3.6, and kernel regression by
Watson (1964) and Nadaraya (1964) in Section 3.7. While some regression methods such as OLS and
FGLS regression or GLMs can immediately be applied in conjunction with numerous model selection
criteria such as Akaike information criterion (AIC), Bayesian information criterion (BIC), Mallow’s
CP or generalized cross-validation (GCV), other regression methods such as GAMs, MARS, kernel,
ridge or robust regression require well thought-through modifications thereof or work only with
non-parametric alternatives such as k-fold or leave-one-out cross-validation. For adaptive approaches
of FGLS, ridge and robust regression in life insurance proxy modeling, see also Hartmann (2015),
Krah (2015) and Nikolić et al. (2017), respectively.

In the theory sections, we present the models with their assumptions, important properties
and popular estimation algorithms and demonstrate how they can be embedded in the adaptive
algorithm by proposing feasible implementation designs and combinable model selection criteria.
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While we shed light on the theoretical basic concepts of the models to lay the groundwork for the
application and interpretation of the later following numerical experiments, we forego describing
in detail technical enhancements or peculiarities of the involved algorithms and instead refer the
interested reader to further sources. Additionally we provide the practicioners with R packages
containing useful implementations of the presented regression routines. We complement the theory
sections by corresponding empirical results in Section 4, throughout which we perform the same Monte
Carlo approximation task to make the performance of the various methods comparable. We measure
the approximation quality of the resulting proxy functions by means of aggregated validation figures
on three out-of-sample test sets.

Conceivable alternatives to the entire adaptive algorithm are other typical machine learning
techniques such as artificial neural networks (ANNs), decision tree learning or support vector machines.
In particular, the classical feed forward networks proposed by Hejazi and Jackson (2017) and applied
in various ways by Kopczyk (2018), Castellani et al. (2018), Born (2018) and Schelthoff (2019) were
shown to capture the complex nature of CFP models well. A major challenge here is not only to
find reliable hyperparameters such as the numbers of hidden layers and nodes in the network, batch
size, weight initializer probability distribution, learning rate or activation functions but also the high
dependence on the random seeds. We plan to contribute to this in a further publication which will be
dedicated to hyperparameter search algorithms and stabilization methods such as ensemble methods.
As an alternative to feed forward networks, Kazimov (2018) suggested to use radial basis function
networks albeit so far none of the tested approaches performed better than the ordinary least squares
regression in Krah et al. (2018).

In decision tree learning, random forests and tree-based gradient boosting machines were
considered by Kopczyk (2018) and Schoenenwald (2019). While random forests were outperformed
by feed forward networks but did better than the least absolute shrinkage and selection operator
(LASSO) by Tibshirani (1996) in the example of the former author, they generally performed worse
than the adaptive approaches by Krah et al. (2018) with OLS regression in numerous examples of the
latter author. The gradient boosting machines, requiring more parameter tuning and thus being more
versatile and demanding, came overall very close to the adaptive approaches.

Castellani et al. (2018) compared support vector regression (SVR) by Drucker et al. (1997) to ANNs
and the adaptive approaches by Teuguia et al. (2014) in a seven risk factor example and found the
performance of SVR placed somewhere inbetween the other two approaches with the ANNs getting
closest to the nested simulations benchmark. As some further non-parametric approaches, Sell (2019)
tested least-squares support-vector machines (LS-SVM) by Suykens and Vandewalle (1999) and shrunk
additive least-squares approximations (SALSA) by Kandasamy and Yu (2016) in comparison to ANNs
and the adaptive approaches by Krah et al. (2018) with OLS regression. In his examples, SALSA was
able to beat the other two approaches whereas LS-SVM was left far behind. The analyzed machine
learning alternatives have in common that they require at least to some degree a fine-tuning of some
model hyperparameters. Since this is often a non-trivial but crucial task for generating suitable proxy
functions, finding efficient and reliable search algorithms should become a subject of future research.

2. Calibration and Validation in the LSMC Framework

2.1. Fitting and Validation Points

2.1.1. Outer Scenarios and Inner Simulations

Our starting point is the LSMC approach (Krah et al. (2018)). LSMC proxy functions are calibrated
conditional on the fitting points generated by the Monte Carlo simulations of the CFP model. Additional
out-of-sample validation points serve as a mean for an assessment of the goodness-of-fit. The explaining
variables of a proxy function are financial and actuarial risks the insurance company is exposed to.
Examples for these risks are changes in interest rates, equity, credit, mortality, morbidity, lapse and
expense levels over the one-year period. The dependent variable is an economic variable like the
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available capital, loss of available capital or best estimate of liabilites over the one-year period. Figure 1
plots the fitting values of an exemplary economic variable with respect to a financial risk factor. By an
outer scenario we refer to a specific realized stress level combination of these risk factors over one year,
and by an inner simulation to a stochastic path of an outer scenario in the CFP model under the given
risk-neutral probability measure. Each outer scenario is assigned the probability weighted mean value
of the economic variable over the corresponding inner simulations. In the LSMC context the fitting
values are the mean values over only few inner simulations whereas the validation values are derived
as the mean values over many inner simulations.

Figure 1. Fitting values of best estimate of liabilities with respect to a financial risk factor.

2.1.2. Different Trade-Off Requirements

According to the law of large numbers, this construction makes the validation values comparably
stable while the fitting values are very volatile. Typically, the very limited fitting and validation
simulation budgets are of similar sizes. Hence the few inner simulations in the case of the fitting points
allow a great diversification among the outer scenarios whereas the many inner simulations in the case
of the validation points let the validation values be quite close to their expectations but at the cost of
only little diversification among the outer scenarios. These opposite ways to deal with the trade-off
between the numbers of outer scenarios and inner simulations reflect the different requirements for
the fitting and validation points in the LSMC approach. While the fitting scenarios should cover the
domain of the real-world scenarios well to serve as a good regression basis, the validation values
should approximate the expectations of the economic variable at the validation scenarios well to
provide appropriate target values for the proxy functions.

2.2. Calibration Algorithm

2.2.1. Five Major Components

The calibration of the proxy function is performed by an adaptive algorithm that can be
decomposed into the following five major components: (1) a set of allowed basis function types for the
proxy function, (2) a regression method, (3) a model selection criterion, (4) a candidate term update
principle, and (5) the number of steps per iteration and the directions of the algorithm. For illustration,
we adopt the flowchart of the adaptive algorithm from Krah et al. (2018) and depict it in Figure 2.
While components (1) and (5) enter the flowchart implicitly through the start proxy, candidate terms
and the order of the processes and decisions in the chart, components (2), (3) and (4) are explicitly
indicated through the labels “Regression”, “Model Selection Criterion” and “Get Candidate Terms”.
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Figure 2. Flowchart of the calibration algorithm.

Let us briefly recapitulate the choice of components (1)–(5) from the successful applications of the
adaptive algorithm in the insurance industry as described in Krah et al. (2018). As the function types
for the basis functions (1), let only monomials be allowed. Let the regression method (2) be ordinary
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least-squares (OLS) regression and the model selection criterion (3) Akaike information criterion (AIC)
from Akaike (1973). Let the set of candidate terms (4) be updated by the principle of marginality to
which we will return in greater detail below. Lastly, when building up the proxy function iteratively,
let the algorithm make only one step per iteration in the forward direction (5) meaning that in each
iteration exactly one basis function is selected which cannot be removed anymore (adaptive forward
stepwise selection).

2.2.2. Iterative Procedure

The algorithm starts in the upper left side of Figure 2 with the specification of the start proxy basis
functions. We specify only the intercept so that the first regression (k = 0) reduces to averaging over
all fitting values. In order to harmonize the choices of OLS regression and AIC, we assume that the
errors are normally distributed and homoscedastic because then the OLS estimator coincides with the
maximum likelihood estimator. AIC is a relative measure for the goodness-of-fit of the proxy function
and is defined as twice the negative of the maximum log-likelihood plus twice the number of degrees
of freedom. The smaller the AIC score, the better the fit, and thus the trade-off between a too complex
(overfitting) and too simple model (underfitting).

At the beginning of each iteration (k = 1, . . . , K − 1), the set of candidate terms is updated by the
principle of marginality which stipulates that a monomial basis function becomes a candidate if and
only if all its derivatives are already included in the proxy function. The choice of a monomial basis
is compatible to the principle of marginality. Using such a principle saves computational costs by
selecting the basis functions conditionally on the current proxy function structure. In the first iteration
(k = 1), all linear monomials of the risk factors become candidates as their derivatives are constant
values which are represented by the intercept.

The algorithm proceeds on the lower left side of the flowchart with a loop in which all candidate
terms are separately added to the proxy function structure and tested with regard to their additional
explanatory power. With each candidate, the fitting values are regressed against the fitting scenarios
and the AIC score is calculated. If no candidate reduces the currently smallest AIC score, the algorithm
terminates, and otherwise, the proxy function is updated by the one which reduces AIC most. Then
the next iteration (k + 1) begins with the update of the set of candidate terms, and so on. As long as no
termination occurs, this procedure is repeated until the prespecified maximum number of terms Kmax

is reached.

2.3. Validation Figures

2.3.1. Validation Sets

Since it is the objective of this paper to propose suitable regression methods for the proxy function
calibration in the LSMC framework, we introduce several validation figures serving as indicators for
the approximation quality of the proxy functions. We measure the out-of-sample performance of each
proxy function on three different validation sets by calculating five validation figures per set.

The three validation sets are a Sobol set, a nested simulations set and a capital region set. Unlike the
Sobol set, the nested simulations and capital region sets do not serve as feasible validation sets in
the LSMC routine as they become known only after evaluating the proxy function as explained
below. Furthermore, they require massive computational capacities. Yet they can be regarded as the
natural benchmark for the LSMC-based method and are thus very valuable for this analysis. Figure 3
plots the nested simulation values of an exemplary economic variable with respect to a financial
risk factor. The Sobol set consists of, for example, between L = 15 and L = 200 Sobol validation
points, of which the scenarios follow a Sobol sequence covering the fitting space uniformly. Thereby,
the fitting space is the cube on which the outer fitting scenarios are defined. It has to cover the space
of real-world scenarios used for the full loss distribution forecast sufficiently well. For interpretive
reasons, sometimes the Sobol set is extended by points with, for example, one-dimensional risk
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scenarios or scenarios producing a risk capital close to the SCR (= 99.5% value-at-risk) in previous risk
capital calculations.

Figure 3. Nested simulation values of best estimate of liabilities with respect to a financial risk factor.

The nested simulations set comprises the, for example, L = 820 to L = 6554 validation points
of which the scenarios correspond to the, for example, highest 2.5% to 5% losses from the full loss
distribution forecast made by the proxy function that had been derived under the standard calibration
algorithm choices described in Section 2.2. Like in the example of Chapter 5.2 in Krah et al. (2018),
the order of these losses-which scenarios lead to which quantiles?following from the fourth and last
step of the LSMC approach is very similar to the order following from the nested simulations approach.
Therefore the scenarios of the nested simulations set are simply chosen by the order of the losses
resulting from the LSMC approach. Several of these scenarios consist of stresses falling out of the
fitting space. Compare Figures 1 and 3 which depict fitting and nested simulation values from the
same proxy modeling task with respect to the same risk factor. Severe outliers due to extreme stresses
far outside of the fitting space should be excluded from the set. The capital region set is a subset of the
nested simulations set containing the nested simulations SCR estimate, that is, the scenario leading to
the 99.5% loss, and the, for example, 64 losses above and below, which makes in total, for example,
L = 129 validation points.

2.3.2. Validation Figures

The five validation figures reported in our numerical experiments comprise two normalized mean
absolute errors (MAEs), one with respect to the magnitude of the economic variable itself and one
with respect to the magnitude of the corresponding market value of assets. They comprise further the
mean error, that is, the mean of the residuals, as well as two validation figures based on the change of
the economic variable from its base value (see the definition of the base value below): the normalized
MAE with respect to the magnitude of the changes and the mean error of these changes. The smaller
the normalized MAEs are, the better the proxy function approximates the economic variable. However,
the validation values are afflicted with Monte Carlo errors so that the normalized MAEs serve only
as meaningful indicators as long as the proxy functions do not become too precise. The means of
the residuals should be possibly close to zero since they indicate systematic deviations of the proxy
functions from the validation values. While the first three validation figues measure how well the proxy
function reflects the economic variable in the CFP model, the latter two address the approximation
effects on the SCR, compare Chapter 3.4.1 of Krah et al. (2018).

Let us write the absolute value as |·| and let L denote the number of validation points. Then we
can express the MAE of the proxy function f̂

(
xi) evaluated at the validation scenarios xi versus the
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validation values yi as 1
L ∑L

i=1

∣∣∣yi − f̂
(

xi)∣∣∣. After normalizing the MAE with respect to the mean of

the absolute values of the economic variable or the market value of assets, that is, 1
L ∑L

i=1
∣∣di

∣∣ with
di ∈

{
yi, ai}, we obtain the first two validation figures, that is,

mae =
∑L

i=1

∣∣∣yi − f̂
(
xi)∣∣∣

∑L
i=1

∣∣di
∣∣ . (1)

In the following, we will refer to (1) with di = yi as the MAE with respect to the relative metric, and to (1)
with di = ai as the MAE with respect to the asset metric. The mean of the residuals is given by

res =
1
L

L

∑
i=1

(
yi − f̂

(
xi
))

. (2)

Let us refer by the base value y0 to the validation value corresponding to the base scenario x0 in
which no risk factor has an effect on the economic variable. In analogy to (1) but only with respect to
the relative metric, we introduce another normalized MAE by

mae0 =
∑L

i=1

∣∣∣(yi − y0)− (
f̂
(
xi)− f̂

(
x0))∣∣∣

∑L
i=1

∣∣yi − y0
∣∣ . (3)

The mean of the corresponding residuals is given by

res0 =
1
L

L

∑
i=1

((
yi − y0

)
−
(

f̂
(

xi
)
− f̂

(
x0
)))

. (4)

In addition to these five validation figures, let us define the base residual which can be used as
a substitute for (4) depending on personal taste. The base residual can easily be extracted from (2)
and (4) by

resbase = y0 − f̂
(

x0
)
= res − res0. (5)

3. Machine Learning Regression Methods

3.1. General Remarks

As the main part of our work, we will compare various types of machine learning regression
approaches for determining suitable proxy functions in the LSMC framework. The methods we present
in this section range from ordinary and generalized least-squares regression variants over GLM and
GAM approaches to multivariate adaptive regression splines and kernel regression approaches.

The performance of the newly derived proxy functions when applied to the described validation
sets is one way of comparing the different methods. Another way consists of ensuring compatibility
with the principle of marginality and utilizing a suitable model selection criterion such as AIC in order
to be able to compare iteration-wise the candidate models inside the approaches.

We will in the following sections shortly introduce the different methods, collect some theoretical
properties and then concentrate on aspects of their implementation. Their numerical performance on
the different validation sets is the subject of Section 4.

Our aim in the calibration step below is to estimate the conditional expectation Y(X) under
the risk-neutral measure given an outer scenario X. In contrast to Krah et al. (2018) Y(X) does not
necessarily have to be the available capital but can instead be, for example, the best estimate of liabilites
or the market value of assets. The D-dimensional fitting scenarios are always generated under the
physical probability measure P′ on the fitting space which itself is a subspace of RD.
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3.2. Ordinary Least-Squares (OLS) Regression

3.2.1. The Regression Model

In iteration K − 1 of the adaptive forward stepwise algorithm (as given in Section 2.2), the OLS
approximation consists of a linear combination of suitable linearly independent basis functions ek (X) ∈
L2 (RD,B,P′) , k = 0, 1, . . . , K − 1, that is,

Y(X)
K<∞≈ f (X) =

K−1

∑
k=0

βkek (X). (6)

We call f (X) the predictor of Y(X) or the systematic component.
With the fitting points

(
xi, yi) , i = 1, . . . , N, and uncorrelated errors εi (the random components)

having the same variance σ2 > 0 (= homoscedastic errors), we obtain the classical linear
regression model

yi =
K−1

∑
k=0

βkek

(
xi
)
+ εi, (7)

where e0
(

xi) = 1 and β0 is the intercept. Then, the ordinary least-squares (OLS) estimator β̂OLS of the
coefficients is given by

β̂OLS = arg min
β∈RK

⎧⎨⎩ N

∑
i=1

(
yi −

K−1

∑
k=0

βkek

(
xi
))2

⎫⎬⎭ . (8)

Using the notation zik = ek
(

xi) the OLS problem is solved explicitly by

β̂OLS =
(

ZTZ
)−1

ZTy. (9)

The proxy function f̂ (X) for the economic variable Y(X) given an outer scenario X is

Y(X)
K,N<∞≈ f̂ (X) =

K−1

∑
k=0

β̂OLS,kek (X). (10)

For a practical implementation see, for example, function lm(·) in the R package stats of R Core
Team (2018).

3.2.2. Gauss-Markov Theorem, ML Estimation and AIC

Under the assumptions of strict exogeneity E [ε | Z] = 0 (A1), a spherical error variance
V [ε | Z] = σ2 IN with IN the N-dimensional identity matrix (A2), and linearly independent basis
functions (A3), we have (compare, for example, Hayashi (2000)):

• The OLS estimator is the best linear unbiased estimator (BLUE) of the coefficients in the classical
linear regression model (7) (Gauss-Markov Theorem).

• If the errors ε in (7) are in addition normally distributed (A4), then the OLS estimator and the
maximum likelihood (ML) estimator of the coefficients coincide.

• Under Assumptions (A1)-(A4) the Akaike information criterion (AIC) has the form

AIC = −2l
(

β̂OLS, σ̂2
)
+ 2 (K + 1) = N

(
log

(
2πσ̂2

)
+ 1

)
+ 2 (K + 1) . (11)
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3.3. Generalized Linear Models (GLMs)

3.3.1. The Regression Model

The systematic component of a GLM (see Nelder and Wedderburn (1972) for its introduction)
equals the linear predictor η = f (X) of the model in (6). However, one uses a monotonic link function
g(·) that relates the economic variable Y(X) to the linear predictor via

g(Y(X)︸ ︷︷ ︸
= μ

)
K<∞≈ f (X)︸ ︷︷ ︸

= η

=
K−1

∑
k=0

βkzk = zT β, (12)

with z = (e0 (X) , . . . , eK−1 (X))T .
Of course, the choice of the link function g(.) is a critical aspect. A possible motivation is

a non-negativity requirement on Y(X) that can be satisfied using g(y) = ln(y). Further comments on
choices of the link function are motivated below.

3.3.2. Canonical Link Function, GLM Estimation and IRLS Algorithm

While the normal distribution assumption for the random component allowed the derivation of
nice properties in the linear model of the preceding section, the GLM considers random components
with (conditional) distributions from the exponential family. Its canonical form with parameter θ is
given by the density function

π(y | θ, φ) = exp
(

yθ − b(θ)
a(φ)

+ c(y, φ)

)
, (13)

where a(φ), b(θ) and c(y, φ) are specific functions. For example, a normally distributed economic
variable with mean μ and variance σ2 is given by a(φ) = φ, b(θ) = θ2

2 and c(y, φ) =

− 1
2

(
y2

σ2 + log
(
2πσ2)) with θ = μ and φ = σ2.

For a random variable Y with a distribution from the exponential family, we have

E(Y) = μ = b′(θ), Var(Y) = b′′(θ)a(φ) =: V [μ] a(φ) . (14)

a(φ) is called a dispersion parameter, V[.] the variance function. We will in the following make the
simplifying assumption a(φi) = φ, i = 1, ..., N for a constant value of φ (A5) and then obtain the ML
estimator in the GLM from Equation (13) as

β̂GLM = arg max
β∈RK

{
N

∑
i=1

(
yiθi − b(θi)

φ
+ c(yi, φ)

)}
. (15)

Under (A5), there does in general not exist a closed-form solution for the GLM coefficient
estimator (15). The resulting iterative method will be simplified for so-called canonical link functions
g(μ) = θ which due to relation (14) are given by

g(μ) = (b′)−1(μ), (16)

with b(.) from the definition of the exponential family. Examples of pairs of canonical link functions
and corresponding distributions are g(μ) = μ and the normal, g(μ) = 1/μ and the gamma,
and g(μ) = 1/μ2 and the inverse Gaussian distribution.

In Chapter 2.5, McCullagh and Nelder (1989) apply Fisher’s scoring method to obtain an
approximation to the GLM estimator. Further, McCullagh and Nelder (1989) justify how Fisher’s
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scoring method can be cast in the form of the iteratively reweighted least squares (IRLS) algorithm.
To state the IRLS algorithm in our context, we need some notation.

Let η̂i
(t) = f̂

(
xi) be the estimate for the linear predictor evaluated at fitting scenario xi,

compare (12). Let μ̂i
(t) = g−1

(
η̂i
(t)

)
be the estimate for the economic variable, and dη

dμ

(
μ̂i
(t)

)
=

g′
(

μ̂i
(t)

)
the first derivative of the link function with respect to the economic variable evaluated at

μ̂i
(t). Furthermore, we introduce the weight matrix W(t) = diag

(
w1

(
β̂(t)

)
, . . . , wN

(
β̂(t)

))
with

components given by

ŵi
(

β̂(t)
)
=

(
dη

dμ

(
μ̂i
(t)

))−2
V
[
μ̂i
(t)

]−1
, (17)

and V
[
μ̂i
(t)

]
the variance function from above evaluated at μ̂i

(t). Finally, we define D(t) =

diag(d1
(t), ..., dN

(t)) with di
(t) = g′

(
μ̂i
(t)

)
which allows us to formulate the IRLS algorithm for canonical

link functions.

IRLS algorithm. Perform the iterative approximation procedure below with an initialization of μ̂i
(0) = yi + 0.1

and η̂i
(0) = g

(
μ̂i
(0)

)
as proposed by Dutang (2017) until convergence:

β̂(t+1) =
(

ZTW(t)Z
)−1

ZTW(t)ŝ(t)
(

β̂(t)
)

, (18)

ŝ(t)
(

β̂(t)
)

= Zβ̂(t) + D(t)(y − μ̂t) (19)

After convergence, we set β̂GLM = β̂(t+1).

Green (1984) proposes to solve the system
(

ZTW(t)Z
)

β̂(t+1) = ZTW(t)ŝ(t) which is equivalent
to (18) via a QR decomposition to increase numerical stability. For a practical implementation of GLMs
using the IRLS algorithm, see, for example, function glm(·) in R package stats of R Core Team (2018).

By inserting (17), (19) and the GLM estimator into (18) and by using (12), we obtain

β̂GLM = arg min
β∈RK

{
N

∑
i=1

V
[
μ̂i

GLM

] (
yi − μ̂i

GLM

)2
}

, (20)

that is, the GLM estimator minimizes the squared sum of raw residuals scaled by the estimated
individual variances of the economic variable.

The Pearson residuals are defined as the raw residuals divided by the estimated individual
standard deviations, that is,

ε̂i =
yi − μ̂i

GLM√
V
[
μ̂i

GLM
] . (21)

3.3.3. AIC and Dispersion Estimation

Since AIC depends on the ML estimators, it is combinable with GLMs in the adaptive algorithm.
Here, it has the form

AIC = −2l
(

β̂GLM, φ̂
)
+ 2 (K + p) , (22)

where K is the number of coefficients and p indicates the number of the additional model parameters
associated with the distribution of the random component. For instance, in the normal model, we have
p = 1 due to the error variance/dispersion. A typical estimate of the dispersion in GLMs is the Pearson
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residual chi-squared statistic divided by N − K as described by Zuur et al. (2009) and implemented,
for example, in function glm(·) belonging to R package stats, that is,

φ̂ =
1

N − K

N

∑
i=1

(
ε̂i
)2

, (23)

with ε̂i given by (21). Even though this is not the ML estimator, it is a good estimate because, if the
model is specified correctly, the Pearson residual chi-squared statistic divided by the dispersion is
asymptotically χ2

N−K distributed and the expected value of a chi-squared distribution with N − K
degrees of freedom is N − K.

3.4. Generalized Additive Models (GAMs)

3.4.1. The Regression Model

Generalized additive models (GAMs) as introduced by Hastie and Tibshirani (1986) and
Hastie and Tibshirani (1990) can be regarded as richly parameterized GLMs with smooth functions.
While GAMs inherit from GLMs the random component (13) and the link function (12), they inherit
from the additive models of Friedman and Stuetzle (1981) the linear predictor with the smooth
functions. In the adaptive algorithm, we apply GAMs of the form

g(Y(X)︸ ︷︷ ︸
= μ

)
K<∞≈ f (X)︸ ︷︷ ︸

= η

= β0 +
K−1

∑
k=1

hk (zk), (24)

where zk = ek (X), β0 is the intercept and hk (·) , k = 1, . . . , K − 1, are the smooth functions to be
estimated. In addition to the smooth functions, GAMs can also include simple linear terms of the basis
functions as they appear in the linear predictor of GLMs. A smooth function hk (·) can be written as a
basis expansion

hk (zk) =
J

∑
j=1

βkjbkj (zk), (25)

with coefficients βkj and known basis functions bkj (zk) , j = 1, . . . , J, which should not be confused
with their arguments, namely the first-order basis functions zk = ek (X) , k = 0, . . . , K − 1. The slightly
adapted Figure 4 from Wood (2006) depicts an exemplary approximation of y by a GAM with a basis
expansion in one dimension zk without an intercept. The solid colorful curves represent the pure basis
functions bkj (zk) , j = 1, . . . , J, the dashed colorful curves show them after scaling with the coefficients
βkjbkj (zk) , j = 1, . . . , J, and the black curve is their sum (25).

Figure 4. Generalized additive model (GAM) with a basis expansion in one dimension.
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Typical examples for basis functions are thin plate regression splines, duchon splines, cubic
regression splines or Eilers and Marx style P-splines. See, for example, function gam(·) in R package
mgcv of Wood (2018) for a practical implementation of GAMs admitting these types of basis functions
and using the PIRLS algorithm, which we present below.

In vector notation, we can write β =
(

β0, βT
1 , . . . , βT

K−1
)T with βk =

(
βk1, . . . , βkJ

)T and a =(
1, b1 (z1)

T , . . . , bK−1 (zK−1)
T
)T

with bk (zk) =
(
bk1 (zk) , . . . , bkJ (zk)

)T , hence (24) becomes

g(Y(X)︸ ︷︷ ︸
= μ

)
K<∞≈ f (X)︸ ︷︷ ︸

= η

= aT β. (26)

In order to make the smooth functions hk (·) , k = 1, . . . , K − 1, identifiable, identifiability constraints
∑N

i=1 hk (zik) = 0 with zik = ek
(

xi) can be imposed. According to Wood (2006) this can be achieved by
modification of the basis functions bkj (·) with one of them being lost.

3.4.2. Penalization and GAM Estimation via PIRLS Algorithm

Let the deviance corresponding to observation yi be Di (β) = 2
(
li
sat − li (β, φ)

)
φ where Di (β)

is independent of dispersion φ, where li
sat = maxβi li (βi, φ

)
is the saturated log-likelihood and

li (β, φ) the log-likelihood. Then the model deviance can be written as D (β) = ∑N
i=1 Di (β). It is a

generalization of the residual sum of squares for ML estimation. For instance, in the normal model
the unit deviance is

(
yi − μi)2. For given smoothing parameters λk > 0, k = 1, . . . , K − 1, the GAM

estimator β̂GAM of the coefficients is defined as the minimizer of the penalized deviance

β̂GAM = arg min
β∈R(K−1)J+1

{
D (β) +

K−1

∑
k=1

λk

∫
h′′k (zk)

2 dzk

}
, where (27)

∫
h′′k (zk)

2 dzk = βT
k

(∫
b′′

k (zk)b′′
k (zk)

T dzk

)
βk = βT

k Skβk

are the smoothing penalties. The smoothing parameters λk control the trade-off between a too
wiggly model (overfitting) and a too smooth model (underfitting). The larger the λk values are,
the more pronounced is the wiggliness of the basis functions reflected by their second derivatives in
the minimization problem (27), and the higher is thus the penalty associated with the coefficients and
the smoother is the estimated model.

A major advantage of the definition of GAMs via (24), (25), and (27) is its compatibility with
information criteria and other model selection criteria such as generalized cross-validation. Besides,
the resulting penalty matrix favors numerical stability in the PIRLS algorithm.

Since the saturated log-likelihood is a constant for a fixed distribution and set of fitting
points, we can turn the minimization problem (27) into the maximization task of the penalized
log-likelihood, that is,

β̂GAM = arg max
β∈R(K−1)J+1

{
l (β, φ)− 1

2

K−1

∑
k=1

λkβT
k Skβk

}
. (28)

Wood (2000) points out that Fisher’s scoring method can be cast in a penalized version of the iteratively
reweighted least squares (PIRLS) algorithm when being used to approximate the GAM coefficient
estimator (28). We formulate the PIRLS algorithm based on Marx and Eilers (1998) who indicate the
iterative solution explicitly.

Let β̂(t) now be the GAM coefficient approximation in iteration t. Then the vector of the

dependent variable ŝ(t) =
(

ŝ1
(

β̂(t)
)

, . . . , ŝN
(

β̂(t)
))T

and the weight matrix given by W(t) =
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diag
(

w1
(

β̂(t)
)

, . . . , wN
(

β̂(t)
))

have the same form as in the IRLS algorithm, see (19) and (17).
Additionally, let S = blockdiag (0, λ1S1, . . . , λK−1SK−1) with S11 = 0 belonging to the intercept be the
penalty matrix.

PIRLS algorithm. Perform the iterative approximation procedure below with initialization of μ̂i
(0) = yi + 0.1

and η̂i
(0) = g

(
μ̂i
(0)

)
until convergence occurs:

β̂(t+1) = arg min
β∈R(K−1)J+1

⎧⎨⎩ N

∑
i=1

wi
(

β̂(t)
)−1

(
ŝi
(

β̂(t)
)
− β0 −

K−1

∑
k=1

J

∑
j=1

βkjbkj (zik)

)2

+
K−1

∑
k=1

λk βT
k Sk βk

⎫⎬⎭
=

(
ZTW(t)Z + S

)−1
ZTW(t) ŝ(t). (29)

After convergence, we set β̂GAM = β̂(t+1).

3.4.3. Smoothing Parameter Selection, AIC and Stagewise Selection

The smoothing parameters λk can be selected such that they minimize a suitable model selection
criterion, for the sake of consistency, preferably the one used in the adaptive algorithm for basis
function selection. The GAM estimator (28) does not exactly maximize the log-likelihood, therefore
AIC has another form for GAMs than for GLMs. Hastie and Tibshirani (1990) propose a widely
used version of AIC for GAMs, which uses effective degrees of freedom df in place of the number of
coefficients (K − 1)J + 1. This is

AIC = −2l
(

β̂GAM, φ̂
)
+ 2 (df + p) , (30)

where
df = tr

(
(I + S)−1 I

)
. (31)

Note that I + S = ZTWZ + S is already approximately calculated in the PIRLS algorithm. For GAMs,
an estimate of the dispersion φ̂ is obtained similarly to GLMs by (23). The parameter p is defined as
in (22).

Another popular and effective smoothing parameter selection criterion invented by Craven and
Wahba (1979) is generalized cross-validation (GCV), that is,

GCV =
ND

(
β̂GAM

)
(N − df)2 , (32)

with the model deviance D
(

β̂GAM

)
evaluated at the GAM estimator and the effective degrees of

freedom defined just like for AIC.
Note that the adaptive forward stepwise algorithm depicted in Figure 2 can become

computationally infeasible with GAMs as opposed to, for example, GLMs. In iteration k, a GAM
has (K − 1)J + 1 coefficients which need to be estimated while a GLM has only K coefficients.
This difference in the estimation effort is increased further due to the iterative nature of the IRLS and
PIRLS algorithms. Moreover, GAMs involve the task of optimal smoothing parameter selection. To deal
with this aspect, Wood (2000), Wood et al. (2015) and Wood et al. (2017) have developed practical GAM
fitting methods for large data sets. However, the suitable application of these methods in the adaptive
algorithm is beyond the scope of our analysis, in particular as our focus is not on computational
performance. Besides parallelizing the candidate loop on the lower left side of Figure 2, we achieve the
necessary performance gains in GAMs by replacing the stepwise algorithm by a stagewise algorithm.
This means that in each iteration, a predefined number L or proportion of candidate basis functions is
selected simultaneously until a termination criterion is fulfilled. Thereby we select in one stage those
basis functions which reduce the model selection criterion of our choice most when added separately
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to the current proxy function structure. When there are not at least as many basis functions as targeted,
the algorithm shall be terminated after the ones which lead to a reduction in the model selection
criterion have been selected.

3.5. Feasible Generalized Least-Squares (FGLS) Regression

3.5.1. The Regression Model

The regression model here equals the OLS case. However, we now let the errors have the
covariance matrix Σ = σ2Ω where Ω is positive definite and known and σ2 > 0 is unknown.
We transform the generalized regression model according to Hayashi (2000) to obtain a model (*) which
satisfies Assumptions (A1), (A2) and (A3) of the classical linear regression model. For this, choose
an invertible matrix H with Ω−1 = HT H which can, for example, be the Cholesky matrix. Then, the
generalized response vector y∗, design matrix Z∗ and error vector ε∗ are given by

y∗ = Hy, Z∗ = HZ, ε∗ = y∗ − Z∗β = H (y − Zβ) = Hε. (33)

In analogy to the OLS estimator, the generalized least-squares (GLS) estimator β̂GLS of the
coefficients is given as the minimizer of the generalized residual sum of squares, that is,

β̂GLS = arg min
β∈RK

{
N

∑
i=1

(
ε∗,i

)2
}

. (34)

The closed-form expression of the GLS estimator is

β̂GLS =
(

Z∗TZ∗
)−1

Z∗Ty∗ =
(

ZTΩ−1Z
)−1

ZTΩ−1y, (35)

and the proxy function becomes
f̂ (X) = zT β̂GLS, (36)

where z = (e0 (X) , . . . , eK−1 (X))T . The scalar σ2 can be estimated in analogy to OLS regression by
sGLS = 1

N−K ε̂∗T ε̂∗ where ε̂∗ = y∗ − Z∗ β̂GLS is the residual vector.

3.5.2. Gauss-Markov-Aitken Theorem and ML Estimation

Under the assumptions (A1), (A3), and a covariance matrix Σ = σ2Ω of which Ω is positive
definite and known (A6), we have:

• The GLS estimator is the BLUE of the coefficients in the generalized regression model (7)
(Gauss-Markov-Aitken theorem).

• If in addition we have jointly normally distributed errors conditional on the fitting scenarios (A7)
then the ML coefficient estimator coincides with the GLS estimator. Further, the ML estimator of
the scalar σ̂2 can be expressed as N

N−K times sGLS.

As a consequence, given a known matrix Ω, we have a closed form solution for the GLS estimator
that coincides with the ML estimator of the regression coefficients and the adaptive algorithm inside
the LSMC approach goes through.

3.5.3. Unknown Ω and FGLS Estimation via ML Algorithm

In the LSMC framework, Ω is unknown. However, if a consistent estimator Ω̂ exists, we can
apply feasible generalized least-squares (FGLS) regression, of which the estimator

β̂FGLS =
(

ZTΩ̂−1Z
)−1

ZTΩ̂−1y (37)
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has asymptotically the same properties as the GLS estimator (35).
With z = (e0 (X) , . . . , eK−1 (X))T the FGLS proxy function is then given as

f̂ (X) = zT β̂FGLS. (38)

For the estimation of Ω we will in the following set σ2 = 1 which can be done without
loss of generality and consider Σ = Ω. Furthermore, we assume in addition to (A1), (A3) and
(A7) that the elements of the covariance matrix Σ are twice differentiable functions of parameters
α = (α0, . . . , αM−1)

T with K + M ≤ N. We then write Σ = Σ (α) (A8). The following result is the
basis of the iterative ML algorithm for the regression coefficients and the variance matrix.

Theorem 1. The generalized regression model (7) under Assumptions (A1), (A3), (A7) and (A8) has the
following first-order ML conditions:

β̂ML =
(

ZTΣ̂−1Z
)−1

ZTΣ̂−1y, (39)

∂l
∂αm

=
1
2

tr
(

∂Σ−1

∂αm
Σ
)

α=α̂ML

− 1
2

ε̂T
(

∂Σ−1

∂αm

)
α=α̂ML

ε̂ = 0, (40)

where m = 0, . . . , M − 1, Σ̂ = Σ (α̂ML) and ε̂ = y − Zβ̂ML.

The system in (39) and (40) is then solved iteratively (see, for example, Magnus (1978)). We start
the procedure with β(0) and then use PORT optimization routines as described in Gay (1990) and
implemented in function nlminb(·) belonging to R package stats of R Core Team (2018). In this
iterative routine, α̂(t+1) can be initialized, for example, by random numbers from the standard normal
distribution.

ML algorithm. Perform the following iterative approximation procedure with, for example, an initialization of
β̂(0) = β̂OLS until convergence:

1. Calculate the residual vector ε̂(t+1) = y − Zβ̂(t).
2. Substitute ε̂(t+1) into the M equations in M unknowns αm given by (40) and solve them. If an explicit

solution exists, set α̂(t+1) = α
(

ε̂(t+1)
)

. Otherwise, select the maximum likelihood solution α̂(t+1)

iteratively, for example, by using PORT optimization routines.
3. Calculate

Σ̂(t+1) = Σ
(

α̂(t+1)
)

,

β̂(t+1) =

(
ZT

(
Σ̂(t+1)

)−1
Z
)−1

ZT
(

Σ̂(t+1)
)−1

y. (41)

Continue with the next iteration.

After convergence, we set β̂ML = β̂(t+1) and α̂ML = α̂(t+1).

Theorem 5 of Magnus (1978) states that under some further regularity conditions the FGLS
coefficient estimator can be derived as the ML coefficient estimator by the ML algorithm under
Assumptions (A1), (A3), (A7) and (A8).

3.5.4. Heteroscedasticity, Variance Model Selection and AIC

Besides Assumption (A8) about the structure of the covariance matrix, we assume that the
errors are uncorrelated with possibly different variances (= heteroscedastic errors), that is, Σ =

diag
(
σ2

1 , . . . , σ2
N
)
. We model each variance σ2

i , i = 1, . . . , N, by a twice differentiable function in
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dependence of parameters α = (α0, . . . , αM−1)
T and a suitable set of linearly independent basis

functions em (X) ∈ L2 (RD,B,P′) , m = 0, 1, . . . , M − 1, with vi =
(
e0
(

xi) , . . . , eM−1
(
xi))T , that is,

σ2
i = σ2V

[
α, vi

]
, (42)

where V
[
α, vi] is referred to as the variance function in analogy to V [μ] for GLMs and GAMs. Without

loss of generality, we set again σ2 = 1.
Hartmann (2015) has already applied FGLS regression with different variance models in the

LSMC framework. In her numerical examples, variance models with multiplicative heteroscedasticity
led to the best performance of the proxy function in the validation. Therefore, we restrict our analyis
on these kinds of structures, compare, for example, Harvey (1976), that is,

V
[
α, vi

]
= exp

(
viTα

)
. (43)

Like the proxy function, the variance function (43) has to be calibrated to apply FGLS regression,
which means that the variance function has to be composed of suitable basis functions. Again, such a
composition can be found with the aid of a model selection criterion. We still choose AIC, but have
to take care for the fact that in FGLS regression the covariance matrix now contains M unknown
parameters instead of only one in the OLS case (the same variance for all observations). Under
Assumption (A7), AIC is given as

AIC = −2l
(

β̂FGLS, Σ̂
)
+ 2 (K + M) (44)

= N log (2π) + log
(

det Σ̂
)
+
(

y − Zβ̂FGLS

)T
Σ̂−1

(
y − Zβ̂FGLS

)
+ 2 (K + M) .

When using a variance model with multiplicative heteroscedasticity, AIC becomes

AIC = N log (2π) +

(
N

∑
i=1

viT

)
α̂ +

N

∑
i=1

exp
(
−viT α̂

) (
ε̂i
)2

+ 2 (K + M) . (45)

As an alternative or complement, the basis functions of the variance model can be selected with
respect to their correlations with the final OLS residuals or based on graphical residual analysis.

For the final implementation of a variance model we use modified versions of two algorithms
from Hartmann (2015). Our type I variant starts with the derivation of the proxy function by the
standard adaptive OLS regression approach and then selects the variance model adaptively from the
set of proxy basis functions of which the exponents sum up to at most two. The type II variant builds
on the type I algorithm by taking the resulting variance model as given in its adaptive proxy basis
function selection procedure with FGLS regression in each iteration.

Note further, that we should only apply FGLS regression as a substitute of OLS regression if
heteroscedasticity prevails. This can be tested with the help of the Breusch-Pagan test of Breusch and
Pagan (1979) for the following special structure of the variance function

V
[
α, vi

]
= h

(
vi,Tα

)
, (46)

where the function h(·) is twice differentiable and the first element of vi is vi
0 = 1. Further,

the assumption of normally distributed errors is made. We use it in the numerical computations
to check if heteroscedasticity still prevails during the iteration procedure.
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3.6. Multivariate Adaptive Regression Splines (MARS)

3.6.1. The Regression Model

The multivariate adaptive regression splines (MARS) were introduced by Friedman (1991).
The classical MARS model is a form of the classical linear regression model (7) where the basis
functions ek

(
xi) are so-called hinge functions. Therefore, the theory of OLS regression applies in this

context. GLMs (12) can also be applied in conjunction with MARS models. In this case we speak of
generalized MARS models.

We describe the standard MARS algorithm in the LSMC routine according to Chapter 9.4 of
Hastie et al. (2017). The building blocks of MARS proxy functions are reflected pairs of piecewise
linear functions with knots t as depicted in Figure 5, that is,

(Xd − t)+ = max (Xd − t, 0) , (t − Xd)+ = max (t − Xd, 0) , (47)

where the Xd, d = 1, . . . , D, represent the risk factors that together form the outer scenario
X = (X1, . . . , XD)

T .

Figure 5. Reflected pair of piecewise linear functions with a knot at t.

For each risk factor, reflected pairs with knots at each fitting scenario stress xi
d, i = 1, . . . , N,

are defined. All pairs are united in the following collection serving as the initial candidate basis
function set of the MARS algorithm, that is,

C1 =
{
(Xd − t)+ , (t − Xd)+

}
t∈{x1

d ,x2
d ,...,xN

d } | d=1,...,D . (48)

We call the elements of C1 hinge functions and consider them as functions h (X) over the entire input
space RD. C1 contains in total 2DN basis functions.

The adaptive basis function selection algorithm now consists of two parts, the forward and the
backward pass.

3.6.2. Adaptive Forward Stepwise Selection and Forward Pass

The forward pass of the MARS algorithm can be viewed as a variation of the adaptive forward
stepwise algorithm depicted in Figure 2. The start proxy function consists only of the intercept, that
is, h0 (X) = 1. In the classical MARS model, the regression method of choice is the standard OLS
regression approach with the estimator (8), where in each iteration a reflected pair of hinge functions is
selected instead of ek

(
xi). Similarly, the regression method of choice in the generalized MARS model is
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the IRLS algorithm (18). Let us denote the MARS coefficient estimator by β̂MARS. Note that the theory
on AIC cannot be transferred without any adjustments since the notion of the degrees of freedom has
to be reconsidered due to the knots in the hinge functions acting as additional degrees of freedom.

After each iteration, the set of candidate basis functions is extended by the products of the last
two selected hinge functions with all hinge functions in C1 that depend on risk factors of which the
last two selected hinge functions do not depend on. Let the reflected pair selected in the first iteration
(k = 1) be

h1 (X) =
(
Xd1 − t1

)
+

,

h2 (X) =
(
t1 − Xd1

)
+

. (49)

Further, let C1,− = C1 \ {h1 (X) , h2 (X)}. Then, the set of candidate basis functions is updated at
the beginning of the second iteration (k = 2) such that

C2 = C1,− ∪
{
(Xd − t)+ h1 (X) , (t − Xd)+ h1 (X)

}
t∈{x1

d ,x2
d ,...,xN

d } | d=1,...,D, d �=d1

∪
{
(Xd − t)+ h2 (X) , (t − Xd)+ h2 (X)

}
t∈{x1

d ,x2
d ,...,xN

d } | d=1,...,D, d �=d1
. (50)

The second set C2 thus contains 2 (DN − 1) + 4 (D − 1) N basis functions. Often, the order of
interaction is limited to improve the interpretability of the proxy functions. Besides the maximum
allowed number of terms, a minimum threshold for the decrease in the residual sum of squares can be
employed as a termination criterion in the forward pass. Typically, the proxy functions generated in the
forward pass overfit the data since model complexity is only penalized conservatively by stipulating a
maximum number of basis functions and a minimum threshold.

3.6.3. Backward Pass and GCV

Due to the overfitting tendency of the proxy function generated in the forward pass, a backward
pass is executed afterwards. Apart from the direction and slight differences, the backward pass is
similar to the forward pass. In each iteration, the hinge function of which the removal causes the
smallest increase in the residual sum of squares is removed and the backward model selection criterion
for the resulting proxy function is evaluated. By this backward procedure, we generate the “best”
proxy functions of each size in terms of the residual sum of squares. Out of all these best proxy
functions, we finally select the one which minimizes the backward model selection criterion. As a
result, the final proxy function will not only contain reflected pairs of hinge functions but also single
hinge functions of which the complements have been removed. Optionally, the backward pass can
also be omitted.

Let the number of basis functions in the MARS model be K and the number of knots be T.
The standard choice for the backward model selection criterion is GCV defined as

GCV =
ND

(
β̂MARS

)
(N − df)2 , (51)

with the effective degrees of freedom df = K + 3T.
An especially fast MARS algorithm was later developed by Friedman (1993) and is implemented,

for example, in function earth(·) of R package earth provided by Milborrow (2018).

3.7. Kernel Regression

3.7.1. The One-dimensional Regression Model

Kernel regression (which goes back to Nadaraya (1964) and Watson (1964)) is a type of locally
weighted OLS regression where the weights vary with the input variable (the target scenario). We start
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with locally constant (LC) regression where for each x0 ∈ R the fixed univariate kernel with given
bandwidth λ > 0 be

Kλ

(
x0, xi

)
= D

(∣∣xi − x0
∣∣

λ

)
, (52)

where D (·) denotes the specified kernel function. Solving the corresponding least squares problem

β̂LC (x0) = arg min
β(x0)∈R

{
N

∑
i=1

Kλ

(
x0, xi

) (
yi − β0 (x0)

)2
}

, (53)

one obtains the Nadaraya-Watson kernel smoother as the kernel-weighted average at each x0 over the
fitting values yi, that is,

f̂LC (x0) = β̂LC (x0) =
∑N

i=1 Kλ

(
x0, xi) yi

∑N
i=1 Kλ

(
x0, xi

) . (54)

Typical examples for the fixed kernel are the Epanechnikov (see the green shaded areas of Figure 6
inspired by Hastie et al. (2017)), tri-cube and uniform kernels or gaussian kernel. Note that a kernel
smoother is continuous and varies over the domain of the target scenarios x0, it needs to be estimated
separately at all of them.

Figure 6. Locally constant (LC) and LL kernel regression using the Epanechnikov kernel with λ = 0.2
in one dimension.

The bias at the boundaries of the domain of the LC kernel estimator (53) (see the left panel of
Figure 6) is mainly eliminated by fitting locally linear functions instead of locally constant functions,
see the right panel of Figure 6. At each target x0, the LL kernel estimator is defined as the minimizer of
the kernel-weighted residual sum of squares, that is,

β̂LL (x0) = arg min
β(x0)∈R2

{
N

∑
i=1

Kλ

(
x0, xi

) (
yi − β0 (x0)− β1 (x0) xi

)2
}

, (55)

with β (x0) = (β0 (x0) , β1 (x0))
T . The proxy function at x0 is given by

f̂LL (x0) = β̂LL,0 (x0) + β̂LL,1 (x0) x0. (56)
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Again the minimization problem (55) must be solved separately for all target scenarios so that
the coefficients of the proxy function vary across their domain. For each target scenario x0 a weighted
least-squares (WLS) problem with weights Kλ

(
x0, xi) has to be solved. Its solution is the WLS estimator

β̂LL (x0) =
(

ZTW (x0) Z
)−1

ZTW (x0) y, (57)

with y the response vector, W (x0) = diag
(
Kλ

(
x0, x1) , . . . , Kλ

(
x0, xN)) the weight matrix and Z the

design matrix which contains row-wise the vectors
(
1, xi)T . We call H the hat matrix if ŷ = Hy such

that ŷ =
(

f̂LL
(
x1) , . . . , f̂LL

(
xN))T

contains the proxy function values at their target scenarios.
When we use proxy functions in LL regression that are composed of polynomial basis functions

with exponents greater than one, we could also speak of local polynomial regression.

3.7.2. The Multidimensional Regression Model

We generalize LC regression to RK by expressing the kernel with respect to the basis function
vector z = (e0 (X) , . . . , eK−1 (X))T following from the adaptive forward stepwise selection with OLS
regression and small Kmax. At each target scenario vector z0 ∈ RK with elements z0k, basis function
vector zi ∈ RK with elements zik evaluated at fitting scenario xi and given bandwidth vector λ =

(λ0, . . . , λK−1)
T , the multivariate kernel is defined as the product of univariate kernels, that is,

Kλ

(
z0, zi

)
=

K−1

∏
k=0

D
( |zik − z0k|

λk

)
. (58)

The LC kernel estimator in RK is defined at each z0 as

f̂LC (z0) = β̂LC (z0) =
∑N

i=1 Kλ

(
z0, zi) yi

∑N
i=1 Kλ

(
z0, zi

) . (59)

Since we let e0 (X) represent the intercept so that zi0 = z00 = 1, the corresponding univariate
kernel D

(
|zi0−z00|

λ0

)
= D (0) is constant over all fitting points, thus cancels in (59) and can be omitted

in (58).
The LL kernel estimator in RK is given as the multidimensional analogue of (55) at each z0, that is,

β̂LL (z0) = arg min
β(z0)∈RK

{
N

∑
i=1

Kλ

(
z0, zi

) (
yi − zi,T β (z0)

)2
}

, (60)

with β (z0) = (β0 (z0) , . . . , βK−1 (z0))
T and the proxy function at z0 is given by

f̂LL (z0) = zT
0 β̂LL (z0) . (61)

The LL kernel estimator can again be computed by WLS regression, that is,

β̂LL (z0) =
(

ZTW (z0) Z
)−1

ZTW (z0) y, (62)

where W (z0) = diag
(
Kλ

(
z0, z1) , . . . , Kλ

(
z0, zN)) is the weight matrix and Z the design

matrix containing row-wise the vectors zi,T . The hat matrix H satisfies ŷ = Hy with ŷ =(
f̂LL

(
z1) , . . . , f̂LL

(
zN))T

containing the proxy function values at their target scenario vectors.
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3.7.3. Bandwidth Selection, AIC and LOO-CV

The bandwidths λk in kernel regression can be selected similarly to the smoothing parameters
in GAMs by minimization of a suitable model selection criterion. In fact, kernel smoothers can be
interpreted as local non-parametric GLMs with identity link functions. More precisely, at each target
scenario the kernel smoother can be viewed as a GLM (12) where the parametric weights V

[
μ̂i

GLM
]

in (20) are the non-parametric kernel weights Kλ

(
z0, zi) in (60). Since GLMs are special cases of

GAMs and the bandwidths in kernel regression can be understood as smoothing parameters, kernel
smoothers and GAMs are sometimes lumped together in one category. If the numbers N of the fitting
points and K of the basis functions are large, from a computational perspective it might be beneficial to
perform bandwidth selection based on a reduced set of fitting points.

Hurvich et al. (1998) propose to select the bandwidths λ1, . . . , λK−1 based on an improved version
of AIC which works in the context of non-parametric proxy functions that can be written as linear
combinations of the observations. It has the form

AIC = log
(

σ̂2
)
+

1 + tr (H) /N
1 − (tr (H) + 2) /N

, (63)

where σ̂2 = 1
N (y − ŷ)T (y − ŷ) and H is the hat matrix.

As an alternative, leave-one-out cross-validation (LOO-CV) is suggested by Li and Racine (2004)
for bandwidth selection. Let us refer to

β̂LL,−j (z0) = arg min
β(z0)∈RK

{
N

∑
i �=j,i=1

Kλ

(
z0, zi

) (
yi − zi,T β (z0)

)2
}

(64)

as the leave-one-out LL kernel estimator and to f̂LL,−j (z0) = zT
0 β̂LL,−j (z0) as the leave-one-out proxy

function at z0. The objective of LOO-CV is to choose the bandwidths λ1, . . . , λK−1 which minimize

CV =
1
N

N

∑
i=1

(
yi − f̂LL,−i (z0)

)2
. (65)

3.7.4. Adaptive Forward Stepwise OLS Selection

A practical implementation of kernel regression can be found, for example, via the combination
of functions npreg(·) and npregbw(·) from R package np of Racine and Hayfield (2018).

In the other sections, basis function selection depends on the respective regression methods.
Since the crucial process of bandwidth selection in kernel regression takes a very long time in the
implementation of our choice, it would be infeasible to proceed here in the same way. Therefore,
we derive the basis functions for LC and LL regression by adaptive forward stepwise selection based
on OLS regression, by risk factor wise linear selection or a combination thereof. Thereby, we keep
the maximum allowed number Kmax of terms rather small as we aim to model the subtleties by
kernel regression.

4. Numerical Experiments

4.1. General Remarks

4.1.1. Data Basis

In our slightly disguised real-world example, the life insurance company has a portfolio with
a large proportion of traditional German annuity business. This choice was made in order to challenge
the regression techniques since German traditional annuity business features high interest rate
guarantees which may lead to large losses in low interest rate environments. We let the insurance
company be exposed to D = 15 relevant financial and actuarial risk factors. For the derivation of the
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fitting points, we run its CFP model conditional on N = 25, 000 fitting scenarios with each of these
outer scenarios entailing two antithetic inner simulations. For a subset of the resulting fitting values of
the best estimate of liabilities (BEL), see Figure 1, for summary statistics, the left column of Table 1,
and for a histogram, the left panel of Figure 7.

Table 1. Summary statistics of fitting and nested simulation values of best estimate of liabilities (BEL).

Fitting Values Nested Simulation Values

Minimum: 10,883 12,479
1st quartile: 13,824 14,515
Median: 14,907 14,940
Mean: 14,922 14,922
3rd quartile: 15,989 15,330
Maximum: 19,354 17,080

Std. deviation: 1519 610
Skewness: 0.067 −0.081
Kurtosis: 2.478 3.214

The Sobol validation set is generated based on L = 51 validation scenarios with 1000 inner
simulations, comprising 26 Sobol scenarios, 15 one-dimensional risk scenarios, 1 base scenario and
9 scenarios that turned out to be capital region scenarios in the previous year risk capital calculations.
The nested simulations set which is due to its high computational costs not available in the regular
LSMC approach reflects the highest 5% real-world losses and is based on L = 1638 outer scenarios with
respectively 4000 inner simulations. From the 1638 real-world scenarios, 14 exhibit extreme stresses far
beyond the bounds of the fitting space and are therefore excluded from the analysis. For the remaining
nested simulation values of BEL, see Figure 3, for summary statistics, the right column of Table 1,
and for a histogram, the right panel of Figure 7. The capital region set consists of the L = 129 nested
simulations points which correspond to the nested simulations SCR estimate (= 99.5% highest loss)
and the 64 losses above and below (= 99.3% to 99.7% highest losses).

Figure 7. Histograms of fitting and nested simulation values of BEL.

4.1.2. Validation Figures

We will output validation figure (1) with respect to the relative and asset metric, and additionally
figures (2)–(4). While figures (3) and (4) are evaluated with respect to a base value resulting from 1000
inner simulations on the Sobol set, that is, v.mae0, v.res0, they are computed with respect to a base
value resulting from 16, 000 inner simulations on the nested simulations set, that is, ns.mae0, ns.res0,
and capital region set, that is, cr.mae0, cr.res0. The latter base value is supposed to be the more reliable
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validation value since it is the one associated with a lower standard error. Therefore it is worth noting
here that figure v.res0 can easily be transformed such that it is also evaluated with respect to the latter
base value by subtracting from it the difference of 14 which the two different base values incur. We will
not explicitly state the base residual (5) as it is just (2) minus (4).

4.1.3. Economic Variables

We derive the OLS proxy functions for two economic variables, namely for the best estimate
of liabilities (BEL) and the available capital (AC) over a one-year risk horizon, that is, Y(X) ∈
{BEL(X), AC(X)}. Their approximation quality is assessed by validation figures (1) with respect to
the relative and asset metric and (2). Essentially, AC is obtained as the market value of assets minus
BEL, which means that AC reflects the negative behavior of BEL. Therefore, we will only derive BEL
proxy functions with the other regression methods. The profit resulting from a certain risk constellation
captured by an outer scenario X can be computed as AC(X) minus the base AC. Validation figures (3)
and (4) address the approximation quality of this difference. Taking the negative of the profit yields
the loss and evaluating the loss at all real-world scenarios the real-world loss distribution from which
the SCR is derived as the 99.5% value-at-risk. The out-of-sample performances of two different OLS
proxy functions of BEL on the Sobol, nested simulations and capital region sets serve as the benchmark
for the other regression methods.

4.1.4. Numerical Stability

Let us discuss the subject of numerical stability of QR decompositions in the OLS regression
design under a monomial basis. If the weighting in the weighted least-squares problems associated
with GLMs, heteroscedastic FGLS regression and kernel regression is good-natured, similar arguments
apply as they can also be solved via QR decompositions according to Green (1984) where the weighting
is just a scaling. However, the weighting itself raises additional numerical questions that need to be
taken into consideration when making the regression design choices. In GLMs, these choices are the
random component (13) and link function (12), in FGLS regression it is the functional form of the
heteroscedatic variance model (42) and in kernel regression it is the kernel function (58). The following
arguments do not apply to GAMs and MARS models as these are constructed out of spline functions,
see (25) and (47), respectively. In GAMs, the penalty matrix increases numerical stability.

McLean (2014) justifies that from the perspective of numerical stability performing a QR
decomposition on a monomial design matrix Z is asymptotically equivalent to using a Legendre
design matrix Z′ and transforming the resulting coefficient estimator into the monomial one. Under
the assumption of an orthonormal basis, Weiß and Nikolić (2019) have derived an explicit upper
bound for the condition number of non-diagonal matrix 1

N (Z′)T(Z′) for N < ∞, where the factor 1
N is

used for technical reasons. This upper bound increases in (1) the number of basis functions, (2) the
Hardy-Krause variation of the basis, (3) the convergence constant of the low-discrepancy sequence,
and (4) the outer scenario dimension. Our previously defined type of restriction setting controls aspect
(1) through the specification of Kmax and aspect (2) through the limitation of exponents d1d2d3. Aspects
(3) and (4) are beyond the scope of the calibration and validation steps of the LSMC framework and
therefore left aside here.

4.1.5. Interpolation and Extrapolation

In the LSMC framework, let us refer by interpolation to prediction inside the fitting space and by
extrapolation to prediction outside the fitting space. Runge (1901) found that high-degree polynomial
interpolation at equidistant points can oscillate toward the ends of the interval with the approximation
error getting worse the higher the degree is. In a least-squares problem, Runge’s phenomenon was
shown by Dahlquist and Björck (1974) not to apply to polynomials of degree d fitted based on N
equidistant points if the inequality d < 2

√
N holds. With N = 25,000 fitting points the inequality

becomes d < 316 so that we clearly do not have to impose any further restrictions in OLS, FGLS and
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kernel regression as well as in GLMs to keep this phenomenon under control. Splines as they occur in
GAMs and MARS models do not suffer from this oscillation issue by construction.

Since Runge’s phenomenon concerns the ends of the interval and the real-world scenarios for the
insurer’s full loss distribution forecast in the fourth step of the LSMC framework partly go beyond the
fitting space, its scope comprises the extrapolation area as well. High-degree polynomial extrapolation
can worsen the approximation error and play a crucial role if many real-world scenarios go far beyond
the fitting space.

4.1.6. Principle of Parsimony

Another problem that can occur in an adaptive algorithm is overfitting. Burnham and Anderson
(2002) state that overfitted models often have needlessly large sampling variances which means that
their precision of the predictions is poorer than that of more parsimonious models which are also free
of bias. In cases where AIC leads to overfitting, implementing restriction settings of the form Kmax -
d1d2d3 becomes relevant for adhering to the principle of parsimony.

4.2. Ordinary Least-Squares (OLS) Regression

4.2.1. Settings

We build the OLS proxy functions (10) of Y(X) ∈ {BEL(X), AC(X)} with respect to an outer

scenario X out of monomial basis functions that can be written as ek (X) = ∏15
l=1 X

rl
k

l with rl
k ∈ N0

so that each basis function can be represented by a 15-tuple
(
r1

k , . . . , r15
k
)
. The final proxy function

depends on the restrictions applied in the adaptive algorithm. The purpose of setting restrictions
is to guarantee numerical stability, to keep the extrapolation behavior under control and the proxy
functions parsimonious. In order to illustrate the impact of restrictions, we run the adaptive algorithm
for BEL under two different restriction settings with the second one being so relaxed that it will not
take effect in our example. Additionally, we run the adaptive algorithm under the first restriction
setting for AC to give an example of how the behavior of BEL can transfer to AC. As the first ingredient
of our restriction setting acts the maximum allowed number of terms Kmax. Furthermore, we limit
the exponents in the monomial basis. Firstly we apply a uniform threshold to all exponents, that is,
rl

k ≤ d1. Secondly we restrict the degree, that is, ∑15
l=1 rl

k ≤ d2. Thirdly we restrict the exponents in
interaction basis functions, that is, if there are some l1 �= l2 with rl1

k , rl2
k > 0, we require rl1

k , rl2
k ≤ d3.

Let us denote this type of restriction setting by Kmax - d1d2d3.
As the first and second restriction settings, we choose 150–443 and 300–886, respectively, motivated

by Teuguia et al. (2014) who found in their LSMC example in Chapter 4 with four risk factors and
50,000 fitting scenarios entailing two inner simulations that the validation error computed based on 14
validation scenarios started to stabilize at degree 4 when using monomial or Legendre basis functions
in different adaptive basis function selection procedures. Furthermore, they pointed out that the LSMC
approach becomes infeasible for degrees higher than 12.

We apply R function lm(·) implemented in R package stats of R Core Team (2018).

4.2.2. Results

Table A1 contains the final BEL proxy function derived under the first restriction setting 150–443
with the basis function representations and coefficients. Thereby reflect the rows the iterations of the
adaptive algorithm and depict thus the sequence in which the basis functions are selected. Moreover,
the iteration-wise AIC scores and out-of-sample MAEs (1) with respect to the relative metric in % on
the Sobol, nested simulations and capital region sets are reported, that is, v.mae, ns.mae and cr.mae.
Table A2 contains the AC counterpart of the BEL proxy function derived under 150–443 and Table A3
the final BEL proxy function derived under the more relaxed restriction setting 300–886. Tables A4
and A5 indicate respectively for the BEL and AC proxy functions derived under 150–443 the AIC
scores and all five previously defined validation figures evaluated on the Sobol, nested simulations
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and capital region sets after each tenth iteration. Similarly, Table A6 reports these figures for the BEL
proxy function derived under 300-886. Here the last row corresponds to the final iteration.

Lastly, we manipulate the validation values on all three validation sets twice insofar as we subtract
respectively add pointwise 1.96 times the standard errors from respectively to them (inspired by 95%
confidence interval of gaussian distribution). We then evaluate the validation figures for the final BEL
proxy functions under both restriction settings on these manipulated sets of validation value estimates
and depict them in Table A7 in order to assess the impact of the Monte Carlo error associated with the
validation values.

4.2.3. Improvement by Relaxation

Tables A1 and A2 state that the adaptive algorithm terminates under 150–443 for both BEL
and AC when the maximum allowed number of terms is reached. This gives reason to relax the
restriction setting to, for example, 300–886 which eventually lets the algorithm terminate due to no
further reduction in the AIC score without hitting restrictions 886, compare Table A3 for BEL. In fact,
only restrictions 224–464 are hit. Except for the already very small figures cr.mae, cr.maea and cr.res
all validation figures are further improved by the additional basis functions, see Tables A4 and A6.
The largest improvement takes place between iterations 180 and 190. The result that at maximum
degrees 464 are selected is consistent with the result of Teuguia et al. (2014) who conclude in their
numerical examples of Chapter 4 that under a monomial, Legendre or Laguerre basis the optimum
degree is probably 4 or 5. Furthermore, Bauer and Ha (2015) derive a similar result in their one
risk factor LSMC example of Chapter 6 when using 50, 000 fitting scenarios and Legendre, Hermite,
Chebychev basis functions or eigenfunctions.

According to our Monte Carlo error impact assessment in Table A7, the slight deterioration at
the end of the algorithm is not sufficient to indicate a slight overfitting tendency of AIC. Under the
standard choices of the five major components, compare Section 2.2, the adaptive algorithm manages
thus to provide a numerically stable and parsimonious proxy function even without a restriction
setting. Here, allowing a priori unlimited degrees of freedom is thus beneficial to capturing the
complex interactions in the CFP model.

4.2.4. Reduction of Bias

Overall, the systematic deviations indicated by the means of residuals (2) and (4) are reduced
significantly on the three validation sets by the relaxation but not completely eliminated. For the
300–886 OLS residuals on the three sets, see the diamond-shaped residuals in Figures 8–10, respectively.
While the reduction of the bias comes along with the general improvement stated above, the remainder
of the bias indicates that sample size is not sufficiently large or that the functional form is not flexible
enough to replicate the complex interactions in CFP models. Note that if the functional form is correctly
specified, Proposition 3.2 of Bauer and Ha (2015) states that if sample size is not sufficiently large,
the AC proxy function will on average be positively biased in the tail reflecting the high losses and
the BEL proxy function will thus be negatively biased there. Since Propositions 1 and 2 of Gordy and
Juneja (2010) state that this result holds for the nested simulations estimators as well, the validation
values of the nested simulations and capital region sets need to be more accurate in order to serve
for bias detection in this case. For an illustration of such as bias, see Figures 5 and 6 of Bauer and
Ha (2015). The bias in our one sample example is in the opposite systematic direction, which is an
indication of insufficiency of polynomials. This is also consistent with the observations in the industry
that the polynomials seem not to able to replicate the sudden changes in steepness of AC and BEL
which are a consequence of regulation and complex management actions in the CFP models.
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Figure 8. Residual plots on Sobol set.

Figure 9. Residual plots on nested simulations set.

Unlike figures (1) and (2), figures (3) and (4) do not forgive a bad fit of the base value if the
validation values are well approximated by a proxy function. Contrariwise, if a proxy function shows
the same systematic deviation from the validation values and the base value, (3) and (4) will be close
to zero whereas (1) and (2) will be not. The comparisons |v.res| <

∣∣v.res0
∣∣, |cr.res| <

∣∣cr.res0
∣∣ but

|ns.res| >
∣∣ns.res0

∣∣, holding under both restrictions settings, indicate that on the Sobol and capital
region sets primarily the base value is not approximated well whereas on the nested simulations set
not only the base value but also the validation values are missed. The MAEs capture this result, too,
that is, v.mae, cr.mae < ns.mae but ns.mae0 < v.mae0, cr.mae0.
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Figure 10. Residual plots on capital region set.

4.2.5. Relationship between BEL and AC

The MAEs with respect to the relative metric for BEL are much smaller than for AC since the two
economic variables are subject to similar absolute fluctuations with, for example, in the base case BEL
being approximately 20 times the size of AC. The similar absolute fluctuations are reflected by the
iteration-wise very similar MAEs with respect to the asset metric of BEL and AC, compare v.maea,
ns.maea and cr.maea given in % in Tables A4 and A5. Furthermore, they manifest themselves in the
iteration-wise opposing means of residuals v.res, v.res0, ns.res and cr.res as well as in the similar-sized
MAEs v.mae0, ns.mae0 and cr.mae0.

4.3. Generalized Linear Models (GLMs)

4.3.1. Settings

We derive the GLMs (12) of BEL under restriction settings 150–443 and 300–886 which we also
employed for the derivation of the OLS proxy functions. Thereby, we run each restriction setting
with the canonical choices of random components for continuous (non-negative) response variables,
that is, the gaussian, gamma and inverse gaussian distributions, compare McCullagh and Nelder
(1989). In cases where the economic variable can also attain negative values (for example, AC),
a suitable shift of the response values in a preceding step would be required. We combine each of the
three random component choices with the commonly used identity, inverse and log link functions,
that is, g (μ) ∈

{
id (μ) , 1

μ , log (μ)
}

, compare Hastie and Pregibon (1992). In combination with the

inverse gaussian random component, we consider additionally link function 1
μ2 . Further choices are

conceivable but go beyond this first shot.
We take R function glm(·) implemented in R package stats of R Core Team (2018).

4.3.2. Results

While Tables A8–A10 display the AIC scores and five previously defined validation figures after
each tenth iteration for the just mentioned combinations under 150–443, Tables A11–A13 do so under
300-886 and include furthermore the final iterations. Table A14 gives an overview of the AIC scores
and validation figures corresponding to all considered final GLMs and highlights in green and red
respectively the best and worst values observed per figure.
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4.3.3. Improvement by Relaxation

The OLS regression is the special case of a GLM with gaussian random component and identity
link function which is why the first sections of Tables A8 and A11 coincide respectively with Tables A4
and A6. The adaptive algorithm terminates under 150–443 not only for this combination but also for
all other ones when the maximum allowed number of terms is reached. Under 300–886 termination
occurs due to no further reduction in the AIC score without hitting the restrictions-the different GLMs
stop between 208–454 and 250–574.

For all GLMs except for the one with gamma random component and identity link, the AIC scores
and eight most significant validation figures for measuring the approximation quality, namely leftmost
figure v.mae to rightmost figure ns.res in the tables, are improved through the relaxation as can be
seen in Table A14. For gamma random component with identity link, the deteriorations are negligible.
Overall, figures ns.mae0 and cr.mae0 are deteriorated by at maximum 0.5% points and figures ns.res0

and cr.res0 by at maximum 4 units. Figures cr.mae and cr.maea are especially small under 150–443
so that slight deteriorations by at maximum 0.05% points under 300-886 towards the levels of v.mae
and v.maea or ns.mae and ns.maea are not surprising. Similar arguments apply to the acceptability of
the maximum deterioration of cr.res by 13 to 17 units for inverse gaussian with 1

μ2 link. We conclude
that the more relaxed restriction setting 300–886 performs better than 150–443 for all GLMs in our
numerical example. This result appears plausible in comparison with the OLS result from the previous
section and hence also compared to the OLS results of Teuguia et al. (2014) and Bauer and Ha (2015).

AIC cannot be said to show an overfitting tendency according to Tables A11–A13 and also Table A7
since the validation figures do not deteriorate in the late iterations more than they underly Monte
Carlo fluctuations, compare the OLS interpretation. Using GLMs instead of OLS regression in the
standard adaptive algorithm, compare Section 2.2, lets the algorithm thus maintain its property to
yield numerically stable and parsimonious proxy functions even without restriction settings.

4.3.4. Reduction of Bias

According to Table A14, inverse gaussian with 1
μ2 link shows the most significant decrease in

v.mae by −0.088% points when moving from 150–443 to 300–886. Under 300–886 this combination even
outperforms all other ones (highlighted in green) whereas under 150–443 it is vice versa (highlighted
in red). Hence, the performance of a random component link combination under 150–443 does not
generalize to 300–886. On the Sobol and nested simulations sets, the MAEs (1) are not only considerably
lower for inverse gaussian with 1

μ2 link than for all others but also the closest together even when the
capital region set is included. This speaks for a great deal of consistency.

In fact, the systematic overestimation of 81% of the points on the nested simulations set by
inverse gaussian with 1

μ2 link is certainly smaller than, for example, that of 89% by gaussian with
identity link but still very pronounced. On the capital region set, the overestimation rates for these
two combinations are 41% and 56%, respectively, meaning that here the bias is negligibe. Surprisingly,
for most GLMs the bias is here smaller than for inverse gaussian with 1

μ2 link but since this result does
not generalize to the nested simulations set, we regard it as a chance event and do not question the
rather mediocre performance of inverse gaussian with 1

μ2 link here further. Interpreting the mean of
residuals (2) provides similar insights.

In particular, for inverse gaussian 1
μ2 link GLM the reduction of the bias comes along with the

general improvement by the relaxation. The small remainder of the bias indicates not only that this
GLM is a promising choice here but also that identifying suitable regression methods and functional
forms is crucial to further improving the accuracy of the proxy function. For the residuals on the three
sets, see the triangle-shaped residuals in Figures 8–10, respectively.
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4.3.5. Major and Minor Role of Link Function and Random Component

Apart from the just considered case, for all three random components, the relaxation to 300–886
yields the largest out-of-sample performance gains in terms of v.mae with identity link (between
−0.047% and −0.058% points), closely followed by log link (between −0.033% and −0.047% points),
and the least gains with inverse link (between −0.017% and −0.020% points). While with identity link
the largest improvements before finalization take place for gaussian, gamma and inverse gaussian
random components between iterations 180 to 190, 170 to 180, and 150 to 160, respectively, with log
link they occur much sooner between iterations 120 to 130, 110 to 120, and 110 to 120, respectively,
see Tables A11–A13. As a result of this behavior, under 150–443 log link performs better than identity
link for gaussian and inverse gaussian whereas under 300–886 it is vice versa. Inverse link always
performs worse than identity and log links, in particular under 300–886.

Applying the same link with different random components does not bring much variation under
300–886 with gamma and inverse gaussian being slightly better than gaussian for all considered links
though. A possible explanation is that the distribution of BEL is slightly skewed conditional on the
outer scenarios. Thereby results the skewness in the inner simulations from an asymmetric profit
sharing mechanism in the CFP model. While the policyholders are entitled to participate at the profits
of an insurance company, see, for example, Mourik (2003), the company has to bear its losses fully by
itself. Since gaussian performs only slightly worse than the skewed distributions, it should still be
considered for practical reasons because it has a closed-form solution and a great deal of statistical
theory has been developed for it, compare, for example, Dobson (2002). By conclusion, the choice of
the link is more important than that of the random component so that trying alternative link functions
might be beneficial.

4.4. Generalized Additive Models (GAMs)

4.4.1. Settings

For the derivation of the GAMs (26) of BEL, we apply only restriction settings Kmax-443 with
Kmax ≤ 150 in the adaptive algorithm since we use smooth functions (25) constructed out of splines
that may already have exponents greater than 1 to which the monomial first-order basis functions
are raised. As the model selection criterion we take GCV (32) used by our chosen implementation by
default. We vary different ingredients of GAMs while holding others fixed to carve out possible effects
of these ingredients on the approximation quality of GAMs in adaptive algorithms and our application.

We rely on R function gam(·) implemented in R package mgcv of Wood (2018).

4.4.2. Results

Table A15 contains the validation figures for GAMs with varying number of spline functions per
smooth function, that is, J ∈ {4, 5, 8, 10}, after each tenth and the finally selected smooth function.
In the case of adaptive forward stepwise selection the iteration numbers coincide with the numbers of
selected smooth functions. In contrast, table sections with adaptive forward stagewise selection results
do not display the iteration numbers in the smooth function column k. In Table A16, we display the
effective degrees of freedom, p-values and significance codes of each smooth function of the J = 4
and J = 10 GAMs from the previous table at stages k ∈ {50, 100, 150}. The p-values and significance
codes are based on a test statistic of Marra and Wood (2012) having its foundations in the frequentist
properties of Bayesian confidence intervals analyzed in Nychka (1988). Tables A17 and A18 report
the validation figures respectively for GAMs with numbers J = 5 and J = 10, where the types of the
spline functions are varied. Thin plate regression splines, penalized cubic regression splines, duchon
splines and Eilers and Marx style P-splines are considered. Thereafter, Tables A19 and A20 display
the validation figures respectively for GAMs with numbers J = 4 and J = 8 and different random
component link function combinations. As in GLMs, we apply the gaussian, gamma and inverse
gaussian distributions with identity, log, inverse and 1

μ2 (only inverse gaussian) link functions.
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Table A21 compares by means of two exemplary GAMs the effects of adaptive forward stagewise
selection of length L = 5 and adaptive forward stepwise selection. Last but not least, Table A22
contains a mixture of GAMs challenging the results which we will have deduced from the other GAM
tables. Table A23 gives an overview of the validation figures corresponding to all derived final GAMs
and highlights in green and red respectively the best and worst values observed per figure.

4.4.3. Efficiency and Performance Gains by Tailoring the Spline Function Number

Table A15 indicates that the MAEs (1) and (3) of the exemplary GAMs built up of thin plate
regression splines with gaussian random component and identity link tend to increase with the
number J of spline functions per dimension until k = 100. Running more iterations reverses this
behavior until k = 150. Hence, as long as comparably few smooth functions have been selected
in the adaptive algorithm fewer spline functions tend to yield better out-of-sample performances
of the GAMs whereas many smooth functions tend to perform better with more spline functions.
A possible explanation of this observation is that an omitted-variable bias due to too few smooth
functions is aggravated here by an overfitting due to too many spline functions. For more details on
an omitted-variable bias, see, for example, Pindyck and Rubinfeld (1998), and for the needlessly large
sampling variances and thus low estimation precision of overfitted models, see, for example, Burnham
and Anderson (2002). Differently, the absolute values of the means of residuals (2) and (4) tend to
become smaller with increasing J regardless of k.

According to Table A16, the components of the effective degrees of freedom (31) associated
with each smooth function tend to decrease for J = 4 and J = 10 slightly in k. This is plausible as
the explanatory power of each additionally selected smooth term is expected to decline by trend
in the adaptive algorithm. Conditional on df > 1, that is for proportions of at least 40% of all
smooth terms, the averages of the effective degrees of freedom belonging to k ∈ {50, 100, 150} amount
for J = 4 and J = 10 to {2.494, 2.399, 2.254} and {5.366, 4.530, 4.424}, respectively. The values are
by construction smaller than J − 1 since one degree of freedom per smooth function is lost to the
identifiability constraints. Hence, for at least 40% of the smooth functions, on average J = 6 is a
reasonable choice to capture the CFP model properly while maintaining computational efficiency,
compare Wood (2017). The other side of the coin here is that up to 60% of the smooth functions are
supposed to be replacable by simple linear terms without losing accuracy so that here tremendous
efficiency gains can be realized by making the GAMs more parsimonious. Furthermore, setting J
individually for each smooth function can help improve computational efficiency (if J should be set
below average) and out-of-sample performance (if J should be set above average). However, such a
tailored approach entails the challenge that the optimal J per smooth function is not stable across all k,
compare row-wise the degrees of freedom in the table for J = 4 and J = 10.

4.4.4. Dependence of Best Spline Function Type

According to Tables A17 and A18, the adaptive algorithm terminates only due to no further
decrease in GCV when the GAMs are composed of duchon splines discussed in Duchon (1977).
Whether GCV has an overfitting tendency here cannot be deduced from this example since only
restriction settings with Kmax ≤ 150 are tested. The thin plate regression splines of Wood (2003) and
penalized cubic regression splines of Wood (2017) perform similarly and significantly better than the
duchon splines for both J = 5 and J = 10. For J = 5 the Eilers and Marx style P-splines proposed
by Eilers and Marx (1996) perform by far best when Kmax = 100 smooth functions are allowed.
However, for J = 10 they are outperformed by both the thin plate regression splines and penalized
cubic regression splines when between Kmax = 125 and 150 smooth functions are allowed. This result
illustrates well that the best choice of the spline function type varies with J and Kmax, meaning that it
should be selected together with these parameters.



Risks 2020, 8, 21

4.4.5. Minor Role of Link Function and Random Component

For GLMs, we have seen that varying the random component barely alters the validation results
whereas varying the link function can make a noticeable impact. While this result mostly applies
to the earlier compositions of GAMs as well, it certainly does not to the later ones. See for instance
early composition k = 40 in Table A19. Here identity link GAMs with gamma and inverse gaussian
random components perform more similar to each other than identity and log link GAMs with gamma
random component or identity and log link GAMs with inverse gaussian random component do.
Log link GAMs with gamma and inverse gaussian random components show such a behavior as well.
However identity link GAM with the less flexible gaussian random component (no skewness) does not
show at all a behavior similar to that of identity link GAMs with gamma or inverse gaussian random
components. Now see later compositions k ∈ {70, 80} to verify that all available GAMs in the table
produce very similar validation results.

For another example see Table A20. For early composition k = 50, identity link GAMs with
gaussian and gamma random components behave very similar to each other just like log link GAMs
with gaussian and gamma random components do. For later compositions k ∈ {100, 110}, again all
available GAMs produce very similar validation results. A possible explanation of this result is that
the impact of the link function and random component decreases with the number of smooth functions
as the latter take the modeling over. By conclusion, the choices of the random component and link
function do not play a major role when the GAM is built up of many smooth functions.

4.4.6. Consistency of Results

Table A21 shows based on two exemplary GAMs constructed out of J = 8 thin plate regression
splines per dimension varying in the random component and link function that the adaptive forward
stagewise selection of length L = 5 and adaptive forward stepwise selection lead to very similar GAMs
and validation results. As a result, stagewise selection should be preferred due to its considerable run
time advantage. As we will see in the following, the run time can be further reduced without any
drawbacks by dynamically selecting even more than 5 smooth functions per iteration.

The purpose of Table A22 is to challenge the hypotheses deduced above. Like Table A15, this table
contains the results of GAMs with varying spline function number J ∈ {5, 8, 10} and fixed spline
function type. Instead of thin plate regression splines, now Eilers and Marx style P-splines are
considered. Since adaptive forward stepwise and stagewise selection do not yield significant differences
in the examples of Table A21, we do not expect that permutations thereof affect the results much here
as well. This allows us to randomly assign three different adaptive forward selection approaches to
the three exemplary proxy function derivation procedures. As one of these approaches, we choose a
dynamic stagewise selection approach in which L is determined in each iteration as the proportion 0.25
of the size of the candidate term set. Again we see that as long as only k ∈ {90, 100} smooth functions
have been selected, J = 5 performs better than J = 8 and J = 8 better than J = 10. However, k = 150
smooth functions are not sufficient this time for J = 10 to catch up with the performance of J = 5.
The observed performance order is consistent with the hypotheses of a high stability of the GAMs
with respect to the adaptive selection procedure and random component link function combination.

4.4.7. Potential of Improved Interaction Modeling

Table A23 presents as the most suitable GAM the one with highest allowed maximum number of
smooth functions Kmax = 150 and highest number of spline functions J = 10 per dimension. The slight
deterioration after k = 130 reported by Table A15 indicates that at least one of the parameters is
already comparably high. According to Table A16, there are a few smooth terms which might benefit
from being composed of more than ten spline functions and increasing Kmax might be helpful to
capturing the interactions in the CFP model more appropriately, particularly in the light of the fact that
the best GLM, having 250 basis functions, outperforms the best GAM on both the Sobol and nested
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simulations set, compare Table A14, with the best GAM showing a comparably low bias across the
three validation sets though, see the dot-shaped residuals in Figures 8–10, respectively. Variations in
the random component link function combination and adaptive selection procedure are not expected
to change the performance much. By conclusion, we recommend the fast gaussian identity link GAMs
(several expressions in the PIRLS algorithm simplify) with tailored spline function numbers per smooth
function and simple linear terms under stagewise selection approaches of suitable lengths L ≥ 5 and
more relaxed restriction settings where Kmax > 150.

4.5. Feasible Generalized Least-Squares (FGLS) Regression

4.5.1. Settings

Like the OLS proxy functions and GLMs, we derive the FGLS proxy functions (38) under
restriction settings 150–443 and 300–886. For the performance assessment of FGLS regression, we
apply type I and II algorithms with variance models of different complexity, where type I results
are obtained as a by-product of type II algorithm since the latter algorithm builds upon the former
one. We control the complexity through the maximum allowed numbers of variance model terms
Mmax ∈ {2; 6; 10; 14; 18; 22}.

We combine R functions nlminb(·) and lm(·) implemented in R package stats of R Core Team (2018).

4.5.2. Results

Tables A24 and A25 display respectively the adaptively selected FGLS variance models of BEL
corresponding to maximum allowed numbers of terms Mmax based on final 150–443 and 300–886 OLS
proxy functions given in Tables A1 and A3. For reasons of numerical stability and simplicity, only basis
functions with exponents summing up to at max two are considered as candidates. Additionally,
the AIC scores and MAEs with respect to the relative metric are reported in the tables. By construction,
these results are also the type I algorithm outcomes. Tables A26 and A27 summarize respectively
under 150–443 and 300–886 all iteration-wise out-of-sample test results. The results of type II algorithm
after each tenth and the final iteration of adaptive FGLS proxy function selection are respectively
displayed by Tables A28 and A29. Table A30 gives an overview of the AIC scores and validation
figures corresponding to all final FGLS proxy functions and highlights as in the previous overview
tables in green and red respectively the best and worst values observed per figure.

4.5.3. Consistency Gains by Variance Modeling

By looking at Tables A24 and A25 we see similar out-of-sample performance patterns during
adaptive variance model selection based on the basis function sets of 150–443 and 300–886 OLS proxy
functions. In both cases, the p-values of Breusch-Pagan test indicate that heteroscedasticity is not
eliminated but reduced when the variance models are extended, that is, when Mmax is increased.
In fact, in a more good-natured LSMC example Hartmann (2015) shows that a type I alike algorithm
manages to fully eliminate heteroscedasticity. While the MAEs (1) barely change on the Sobol set,
they decrease significantly on the nested simulations set and increase noticeably on the capital region
set. Under 300–886 the effects are considerably smaller than under 150–443 since the capital region
performance of 300–886 OLS proxy function is less extraordinarily good than that of 150–443 OLS
proxy function. The three MAEs approach each other under both restriction settings. Hence the
reductions in heteroscedasticity lead to consistency gains across the three validation sets.

Tables A26 and A27 complete the just discussed picture. The remaining validation figures on the
Sobol set improve through type I FGLS regression slightly compared to OLS regression. Like ns.mae,
figure ns.res and the base residual improve a lot with increasing Mmax under 150–443 and a little less
under 300-886 but ns.mae0 and ns.res0 do not alter much as the aforementioned two figures cancel each
other out here. On the capital region set, the figures deteriorate or remain comparably high in absolute
values. The type I FGLS figures converge fast so that increasing Mmax successively from 10 to 22 barely
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affects the out-of-sample performance anymore. As a result of heteroscedasticity modeling, the proxy
functions are shifted such that overall approximation quality increases. Unfortunately, this does not
guarantee an improvement in the relevant region for SCR estimation as our example illustrates well.

4.5.4. Monotonicity in Complexity

Let us address the type II FGLS results under 150-443 in Table A28 now. For Mmax = 2, figures (3)
and (4) are improved on all three validation sets significantly compared to OLS regression with the
type I figures lying inbetween. The other validation figures are similar for OLS, type I and II FGLS
regression, which traces the performance gains in (3) and (4) back to a better fit of the base value.
For Mmax = 6 to 22, the type II figures show the same effects as the type I ones but more pronouncedly,
see the previous two paragraphs. These effects are by trend the more distinct the more complex the
variance model becomes. The type II figures stabilize less than the type I ones because of the additional
variability coming along with adaptive FGLS proxy function selection. Hartmann (2015) shows in
terms of Sobol figures in her LSMC example that increasing the complexity while omitting only one
regressor from the simpler variance model can deteriorate the out-of-sample performance dramatically.
Intuitively, it is plausible that the FGLS validation figures are the farther from the OLS figures away
the more elaborately heteroscedasticity is modeled.

Now let us relate the type II FGLS results under 300-886 in Table A29 to the other FGLS results.
Under 300–886 for Mmax = 2, figures (3) and (4) are already at a comparably good level with both
OLS and type I FGLS regression so that they do not alter much or even deteriorate with type II FGLS
regression. Like under 150–443 for Mmax = 6 to 22, the type II figures show the effects of the type I ones
more pronouncedly. Under both restriction settings, ns.mae and ns.res decrease thereby significantly.
While this barely causes ns.res0 to change under 150–443, it lets ns.res0 increase in absolute values
under 300–886. The slight improvements on the Sobol set and the deteriorations on the capital region
set carry over to 300–886. When Mmax is increased up to 22, the type II FGLS validation figures under
300–886 do not stop fluctuating. The variability entailed by adaptive FGLS proxy function selection
intensifies thus through the relaxation of the restriction setting in this numerical example. According
to Breusch-Pagan test, heteroscedasticity is neither eliminated by the type II algorithm here nor by a
type II alike approach of Hartmann (2015) in her more good-natured example.

4.5.5. Improvement by Relaxation

Among all FGLS proxy functions listed in Table A30, we consider type II with Mmax = 14 in
variance model selection under 300–886 as the best performing one. Apart from nested simulations
validation under type I algorithm, 300–886 performs better than 150–443. Since on the other hand type
II algorithm performs better than type I algorithm under the respective restriction settings, 300–886
and type II algorithm are the most promising choices here. Differently Mmax = 14 does not constitute
a stable choice due to the high variability coming along with 300–886 and type II algorithm.

While all type I FGLS proxy functions are by definition composed of the same basis functions as
the OLS proxy function, the compositions of type II FGLS proxy functions vary with Mmax because of
their renewed adaptive selection. Consequently, under 300–886 all type I FGLS proxy functions hit the
same restrictions 224–464 as the OLS proxy function does, whereas the restrictions hit by type II FGLS proxy
functions vary between 224–454 and 258–564. This variation is consistent with the OLS and GLM results
from the previous sections and hence the OLS results of Teuguia et al. (2014) and Bauer and Ha (2015).

AIC does not have an overfitting tendency according to Tables A26–A29 as the validation figures
do not deteriorate in the late iterations more than they underly Monte Carlo fluctuations, compare
the OLS and GLM interpretations. Using FGLS instead of OLS regression in the standard adaptive
algorithm, compare Section 2.2, lets the algorithm thus yield numerically stable and parsimonious
proxy functions without restriction settings as well.
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4.5.6. Reduction of Bias

The type II Mmax = 14 FGLS proxy function under 300-886 reaches with 258 terms the highest
observed number across all numerical experiments and not only outperforms all derived GLMs and
GAMs in terms of combined Sobol and nested simulations validation, it also shows by far the smallest
bias on these two validation sets and approximates the base value comparably well. This observation
speaks for a high interaction complexity of the CFP model. The reduction of the bias comes again along
with the general improvement by the relaxation. Given the fact that the capital region set presents the
most extreme and challenging validation set in our analysis, the still mediocre performance here can
be regarded as acceptable for now. Nevertheless, especially the bias on this set motivates the search for
even more suitable regression methods and functional forms. For the residuals of the 300–886 FGLS
proxy function on the three sets, see the x-shaped residuals in Figures 8–10, respectively.

4.6. Multivariate Adaptive Regression Splines (MARS)

4.6.1. Settings

We undertake a two-step approach to identify suitable generalized MARS models out of numerous
possibilities. In the first step, we vary several MARS ingredients over a wide range and obtain in
this way a large number of different MARS models. To be more specific, we vary the maximum
allowed number of terms Kmax ∈ {50, 113, 175, 237, 300} and the minimum threshold for the decrease
in the residual sum of squares tmin ∈ {0, 1.25, 2.5, 3.75, 5} · 10−5 in the forward pass, the order of
interaction o ∈ {3, 4, 5, 6}, the pruning method p ∈ {’n’, ’b’, ’f’, ’s’} with ’n’ = ’none’, ’b’ = ’backward’,
’f’ = ’forward’ and ’s’ = ’seqrep’ in the backward pass, as well as the random component link function
combination of the GLM extension. In addition to the 10 random component link function combinations
applied in the numerical experiments of the GLMs, compare, for example, Table A14, we use poisson
random component with identity, log and squareroot link functions. We work with the default fast
MARS parameter fast.k = 20 of our chosen implementation.

We use R function earth(·) implemented in R package earth of Milborrow (2018).

4.6.2. Results

In total, these settings yield 4 · 5 · 5 · 4 · 13 = 5200 MARS models with a lot of duplicates in our
first step. We validate the 5200 MARS models on the Sobol, nested simulations and capital region
sets through evaluation of the five validation figures. Then we collect the five best performing MARS
models in terms of each validation figure per set which gives us in total 5 · 5 = 25 best performing
models per first step validation set. Since the MAEs (1) with respect to the relative and asset metric
entail the same best performing models, only 5 · 4 = 20 of the collected models per first step set are
potentially different. Based on the ingredients of each of these 20 MARS models per first step set,
we define 5 · 5 = 25 new sets of ingredients varying only with respect to Kmax and tmin and derive
the corresponding new but similar MARS models in the second step. As a result, we obtain in total
20 · 25 = 500 new MARS models per first step set. Again, we assess their out-of-sample performances
through evaluation of the five validation figures on the three validation sets. Out of the 500 new MARS
models per first step set, we collect then the best performing ones in terms of each validation figure per
second step set. Now this gives us in total 5 · 3 = 15 best MARS models per first step set, or taking into
account that the MAEs (1) with respect to the relative and asset metric entail once more the same best
performing models, 4 · 3 = 12 potentially different best models per first step set. In total, this makes
12 · 3 = 4 · 9 = 36 best MARS models, which can be found in Table A31 sorted by first and second step
validation sets.

4.6.3. Poor Interaction Modeling and Extrapolation

In Table A31, the out-of-sample performances of all MARS models derived in our two-step
approach are sorted using the first step validation set as the primary and the second step validation
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set as the secondary sort key. Let us address the first step second step validation set combinations
by the headlines in Table A31. By construction, the combinations Sobol set2, Nested simulations set2

and Capital region set2 yield respectively the MARS models with the best validation figures (1)–(4) on
the Sobol, nested simulations and capital region sets. See that in the table all corresponding diagonal
elements are highlighted in green. But the best MAEs (1) and (3) are not even close to what OLS
regression, GLMs, GAMs and FGLS regression achieve. Finding small residuals (2) and (4) regardless
of the other validation figures is not sufficient. The performances on the nested simulations and capital
region sets, comprising several scenarios beyond the fitting space, are especially poor. All these results
indicate that MARS models do not seem very suitable for our application. Despite the possibility to
select up to 300 basis functions, the MARS algorithm selects only at maximum 148 basis functions,
which suggests that without any alterations, the algorithm is not able to capture the behavior of the
CFP model properly, in particular extrapolation behavior is comparably poor.

The MARS model with the set of ingredients Kmax = 50, tmin = 0, o = 4, p = ’b’, inverse gaussian
random component and identity link function is selected as the best one six times out of 36, or once
for each Sobol and nested simulations first step validation set combination. Furthermore, this model
performs best in terms of v.res0, ns.mae0 and ns.maea. Since there is no other MARS model with a
similar high occurrence and performance, we consider it the best performing and most stable one
found in our two-step approach. For illustration of a MARS model, see this one in Table A32. The fact
that this best MARS model performs worse than other ones in terms of several validation figures
stresses the infeasibility of MARS models in this application.

4.6.4. Limitations

Table A31 suggests that, up to a certain upper limit, the higher the maximum allowed number
of terms Kmax the higher tends the performance on the Sobol set to be. However, this result does not
generalize to the nested simulations and capital region sets. Since at maximum 148 basis functions
are selected here even if up to 300 basis functions are allowed, extending the range of Kmax in the
first step of this numerical experiment would not affect the output in this regard. The threshold tmin

is an instrument controlling the number of basis functions selected in the forward pass up to Kmax

which cannot be extended below zero, meaning that its variability has already been exhausted here
as well. For the interaction order o similar considerations as for Kmax apply. The pruning method
p used in the backward pass does not play a large role compared to the other ingredients as it only
helps reduce the set of selected basis functions. In terms of Sobol validation, inverse gaussian random
component with identity link performs best, whereas in terms of nested simulations and capital region
validation, inverse gaussian random component with any link or log link with gaussian or poisson
random component perform best. We conclude that if there was a suitable MARS model for our
application, our two-step approach would have found it.

4.7. Kernel Regression

4.7.1. Settings

We make a series of adjustments affecting either the structure or the derivation process of the
multidimensional LC and LL proxy functions (59) and (61) to get as broad a picture of the potential of
kernel regression in our application as possible. Our adjustments concern the kernel function and its
order, the bandwidth selection criterion, the proportion of fitting points used for bandwidth selection,
and the sets of basis functions of which the local proxy functions are composed of. Thereby we combine
in various ways the gaussian, Epanechnikov and uniform kernels, orders o ∈ {2, 4, 6, 8}, bandwidth
selection criteria LOO-CV and AIC, and between 2500 (proportion bw = 0.1) and 25,000 (proportion
bw = 1) fitting points for bandwidth selection.

We work with R functions npregbw(·) and npreg(·) implemented in R package np of Racine and
Hayfield (2018).
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4.7.2. Results

Furthermore, we alternate the four basis function sets contained in Tables A33 and A34. The first
two basis function sets with Kmax ∈ {16, 27} are derived by adaptive forward stepwise selection
based on OLS regression, the third one with Kmax = 15 by risk factor wise linear selection and the
last one with Kmax = 22 by a combination thereof. All combinations including their out-of-sample
performances can be found in Table A35. Again, the best and worst values observed per validation
figure are highlighted in green and red, respectively.

4.7.3. Poor Interaction Modeling and Extrapolation

We draw the following conclusions based on the validation results in Table A35. The comparisons
of LC and LL regression applied with gaussian kernel and 16 basis functions or Epanechnikov kernel
and 15 basis functions suggest that LL regression performs better than LC regression. However, even
the best Sobol, nested simulations and capital region results of LL regression are still outperformed
by OLS regression, GLMs, GAMs and FGLS regression. Possible explanations for this observation
are that kernel regression is not able to model the interactions of the risk factors equally well with its
few basis functions and that local regression approaches perform rather poorly close to and especially
beyond the boundary of the fitting space because of the thinned out to missing data basis in this region.
While the first explanation applies to all three validation sets, the latter one applies only to the nested
simulations and capital region sets on which the validation figures are indeed worse than on the Sobol
set. While LC regression produces interpretable results with the sets of 22 and 27 basis functions, the
more complex LL regression does not in most cases.

4.7.4. Limitations

On the Sobol and capital region sets, both LC and LL regression show similar behaviors when
relying on gaussian kernel and 16 basis functions compared to Epanechnikov kernel and 15 basis
functions. But on the nested simulations set, gaussian kernel and 16 basis functions are the superior
choices. Using a uniform kernel with LC regression deteriorates the out-of-sample performance.
The results of LC regression indicate furthermore that an extension of the basis function sets from 15 to
27 only slightly affects the validation performance. With gaussian kernel switching from 16 to 27 basis
functions barely has an impact and with Epanechnikov kernel only the nested simulations and capital
region validation performance improve when using 27 as opposed to 15, 16 or 22 basis functions.
While increasing the order of the gaussian or Epanechnikov kernel deteriorates the validation figures
dramatically, for the uniform kernel the effects can go in both directions. AIC performs worse than
LOO-CV when used for bandwidth selection of the gaussian kernel in LC regression. For LC regression,
increasing the proportion of fitting points entering bandwidth selection improves all validation figures
until a specific threshold is reached. But thereafter the nested simulations and capital region figures
are deteriorated. For LL regression no such deterioration is observed.

Overall we do not see much potential in kernel regression for our practical example compared
to most of the previously analyzed regression methods. Nonetheless in order to achieve comparably
good kernel regression results, we consider LL regression more promising than LC regression due to
the superior but still poor modeling close to and beyond the boundary of the fitting space. We would
apply it with gaussian, Epanechnikov or other similar kernel functions. A high proportion of fitting
points for bandwidth selection is recommended and it might be worth trying alternative comparably
small basis function sets reflecting, for example, the risk factor interactions better than in our examples.

5. Conclusions

For high-dimensional variable selection applications such as the calibration step in the LSMC
framework, we have presented various machine learning regression approaches ranging from
ordinary and generalized least-squares regression variants over GLM and GAM approaches to
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multivariate adaptive regression splines and kernel regression approaches. At first we have justified the
combinability of the ingredients of the regression routines such as the estimators and proposed model
selection criteria in a theoretical discourse. Afterwards we have applied numerous configurations
of these machine learning routines to the same slightly disguised real-world example in the LSMC
framework. With the aid of different validation figures, we have analyzed the results, compared the
out-of-sample performances and adviced to use certain routine designs.

In our slightly disguised real-world example and given LSMC setting, the adaptive OLS regression,
GLM, GAM and FGLS regression algorithms turned out to be suitable machine learning methods for
proxy modeling of life insurance companies with potential for both performance and computational
efficiency gains by fine-tuning model hyperparameters and implementation designs. Differently,
the MARS and kernel regression algorithms were not found to be convincing in our application. In
order to study the robustness of our results, the approaches can be repeated in multiple other LSMC
examples.

After all, none of our tested approaches was able to completely eliminate the bias observed in the
validation figures and to yield consistent results across the three validation sets though. Investigations
on whether these observations are systematic for the approaches, a result of the Monte Carlo error or
a combination thereof help further narrow down the circle of recommended regression techniques.
In order to assess the variance and bias of the proxy estimates conditional on an outer scenario,
seed stability analyses in which the sets of fitting points are varied and convergence analyses in which
sample size is increased need to be carried out. While such analyses would be computationally very
costly, they would provide valuable insights into how to further improve approximation quality,
that is, whether additional fitting points are necessary to reflect the underlying CFP model more
accurately, whether more suitable functional forms and estimation assumptions are required for a more
appropriate proxy modeling, or whether both aspects are relevant. Furthermore, one could deduce
from such an analysis the sample sizes needed by the different regression algorithms to meet certain
validation criteria. Since the generation of large sample sizes is currently computationally expensive
for the industry, algorithms getting along with comparably few fitting points should be striven for.

Picking a suitable calibration algorithm is most important from the viewpoint of capturing
the CFP model and hence the SCR appropriately. Therefore, if the bias observed in the validation
figures indicates indeed issues with the functional forms of our approaches, doing further research
on techniques not entailing such a bias or at least a smaller one is vital. On the one hand, one can
fine-tune the approaches of this exposition and try different configurations thereof, and on the other
hand, one can analyze further machine learning alternatives such as the ones mentioned in the
introduction and already used in other LSMC applications. Ideally, various approaches like adaptive
OLS regression, GLM, GAM and FGLS regression algorithms, artificial neural networks, tree-based
methods and support vector machines would be fine-tuned and compared based on the same realistic
and comprehensive data basis. Since the major challenges of machine learning calibration algorithms
are hyperparameter selection and in some cases their dependence on randomness, future research
should be dedicated to efficient hyperparameter search algorithms and stabilization methods such as
ensemble methods.
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Appendix A

Table A1. Ordinary least squares (OLS) proxy function of BEL derived under 150–443 in the adaptive
algorithm with the final coefficients. Furthermore, Akaike information criterion (AIC) scores and
out-of-sample mean absolute errors (MAEs) in % after each iteration.

k r1
k r2

k r3
k r4

k r5
k r6

k r7
k r8

k r9
k r10

k r11
k r12

k r13
k r14

k r15
k β̂OLS,k AIC v.mae ns.mae cr.mae

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 14, 718.24 437, 251 4.557 3.231 4.027

1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 7850.17 386, 722 2.474 0.845 0.913
2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −269.33 375, 144 2.065 2.139 1.831
3 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 145.21 366, 567 1.656 0.444 0.496
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −5.36 358, 894 1.647 1.006 0.556
5 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 434.04 355, 732 1.635 0.853 0.469
6 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1753.40 354, 318 1.679 0.956 0.374
7 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 19, 145.78 349, 759 1.234 0.491 0.628
8 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 33.33 347, 796 0.999 0.340 0.594
9 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 868.25 346, 444 0.912 0.357 0.602

10 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 30.59 345, 045 0.839 0.389 0.650

11 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1.65 341, 083 0.759 0.398 0.465
12 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 86.79 339, 360 0.718 0.394 0.390
13 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 33.35 337, 731 0.574 0.653 0.512
14 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 49.59 336, 843 0.589 0.658 0.518
15 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 71.25 335, 980 0.628 0.678 0.512
16 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 2667.92 335, 351 0.609 0.671 0.503
17 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 96.43 334, 876 0.579 0.701 0.545
18 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 −6.31 334, 413 0.593 0.720 0.531
19 0 0 0 0 0 0 0 2 0 0 0 0 0 0 1 −47.09 333, 904 0.562 0.621 0.474
20 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 48.93 333, 447 0.565 0.597 0.454

21 1 0 0 0 0 0 0 2 0 0 0 0 0 0 0 −3412.68 333, 116 0.553 0.543 0.407
22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0.02 332, 806 0.562 0.478 0.358
23 2 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −0.12 332, 547 0.550 0.450 0.381
24 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 43.77 332, 294 0.545 0.468 0.378
25 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 118.94 332, 042 0.530 0.464 0.362
26 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 −1288.45 331, 687 0.522 0.453 0.355
27 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 −44.72 331, 405 0.525 0.444 0.343
28 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 −24, 908.99 331, 136 0.499 0.405 0.327
29 2 0 0 0 0 0 0 1 0 0 0 0 0 0 0 −86.88 330, 562 0.504 0.348 0.268
30 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0.55 330, 361 0.518 0.418 0.264

31 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 77.26 330, 163 0.512 0.443 0.272
32 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 24.78 329, 988 0.508 0.443 0.264
33 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 14.33 329, 834 0.477 0.491 0.286
34 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 −0.39 329, 688 0.477 0.500 0.290
35 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 28.36 329, 550 0.476 0.502 0.291
36 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 −370.92 329, 442 0.472 0.499 0.288
37 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 −17.90 329, 147 0.462 0.505 0.301
38 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 8574.53 329, 043 0.472 0.518 0.300
39 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 −2.17 328, 935 0.474 0.510 0.295
40 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 223.91 328, 832 0.475 0.509 0.291

41 0 0 0 0 0 1 0 2 0 0 0 0 0 0 0 −1801.73 328, 733 0.455 0.445 0.248
42 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 −102.10 327, 927 0.372 0.345 0.237
43 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0.70 327, 858 0.368 0.353 0.235
44 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0.56 327, 792 0.366 0.352 0.233
45 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 −3034.32 327, 729 0.365 0.356 0.228
46 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 −13, 127.81 327, 659 0.368 0.364 0.227
47 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 −17.54 327, 603 0.368 0.366 0.226
48 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 −187.07 327, 537 0.374 0.367 0.226
49 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 −300.54 327, 483 0.369 0.367 0.230
50 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 −0.09 327, 432 0.368 0.391 0.221

51 0 0 0 0 0 2 0 1 0 0 0 0 0 0 0 −60.84 327, 382 0.359 0.390 0.228
52 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 −20.91 327, 331 0.352 0.390 0.225
53 1 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0.00 327, 287 0.346 0.377 0.206
54 0 0 0 0 0 0 0 1 0 0 0 0 0 0 2 −0.09 327, 149 0.339 0.357 0.185
55 2 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1.44 327, 105 0.315 0.321 0.173
56 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 −0.50 327, 064 0.315 0.322 0.173
57 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 −6.06 327, 025 0.322 0.317 0.175
58 0 0 0 0 0 0 1 2 0 0 0 0 0 0 0 −6600.49 326, 986 0.317 0.310 0.172
59 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 −407.57 326, 823 0.308 0.302 0.183
60 0 0 1 0 0 0 0 2 0 0 0 0 0 0 0 3378.82 326, 787 0.306 0.301 0.183

61 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 205.28 326, 733 0.304 0.299 0.183
62 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 −18.73 326, 700 0.306 0.299 0.182
63 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 175.39 326, 668 0.304 0.296 0.182
64 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 −0.20 326, 638 0.304 0.298 0.181
65 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 2.45 326, 610 0.301 0.296 0.183
66 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0.11 326, 572 0.297 0.299 0.180
67 2 0 0 0 0 1 0 1 0 0 0 0 0 0 0 −13.02 326, 545 0.292 0.286 0.169
68 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 93.69 326, 519 0.292 0.287 0.172
69 0 1 0 0 0 0 0 2 0 0 0 0 0 0 0 891.58 326, 478 0.294 0.282 0.173
70 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 −6.21 326, 453 0.291 0.281 0.175

71 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 −112.56 326, 428 0.289 0.281 0.176
72 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 −5.27 326, 398 0.284 0.282 0.173
73 1 0 0 0 0 0 0 3 0 0 0 0 0 0 0 1129.77 326, 374 0.276 0.264 0.162
74 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 −0.29 326, 352 0.272 0.266 0.158
75 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 −56.54 326, 331 0.269 0.266 0.157
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Table A1. Cont.

k r1
k r2

k r3
k r4

k r5
k r6

k r7
k r8

k r9
k r10

k r11
k r12

k r13
k r14

k r15
k β̂OLS,k AIC v.mae ns.mae cr.mae

76 2 0 0 0 0 0 0 0 1 0 0 0 0 0 0 −3.02 326, 313 0.271 0.266 0.155
77 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 −10.59 326, 295 0.264 0.270 0.151
78 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 −6.99 326, 278 0.264 0.275 0.153
79 1 0 0 0 0 2 0 0 0 0 0 0 0 0 0 −2.25 326, 261 0.252 0.285 0.154
80 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 −14.77 326, 245 0.263 0.309 0.157

81 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1.95 326, 229 0.267 0.306 0.155
82 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 2248.54 326, 214 0.266 0.307 0.156
83 0 0 0 0 0 0 0 3 0 0 0 0 0 0 1 −111.77 326, 201 0.263 0.302 0.158
84 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 −0.11 326, 187 0.262 0.302 0.157
85 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 −0.18 326, 174 0.263 0.305 0.156
86 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 45.58 326, 161 0.265 0.303 0.157
87 0 0 0 1 0 0 0 2 0 0 0 0 0 0 0 −83, 291.89 326, 149 0.267 0.308 0.156
88 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 −56.20 326, 137 0.267 0.308 0.156
89 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 −5.32 326, 126 0.267 0.310 0.156
90 0 0 0 0 0 2 1 0 0 0 0 0 0 0 0 −10.87 326, 116 0.267 0.313 0.158

91 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 −32.75 326, 106 0.265 0.317 0.158
92 0 0 0 0 0 0 0 2 0 0 0 0 0 0 2 −0.09 326, 097 0.265 0.308 0.151
93 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 10.87 326, 089 0.265 0.308 0.151
94 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 −48.93 326, 081 0.264 0.306 0.148
95 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 69.57 326, 073 0.256 0.288 0.141
96 0 0 0 1 0 0 0 3 0 0 0 0 0 0 0 −542, 688.19 326, 066 0.256 0.289 0.141
97 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 10.44 326, 058 0.248 0.275 0.136
98 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 −1.08 326, 051 0.248 0.276 0.136
99 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 419.05 326, 045 0.249 0.275 0.136

100 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 12.80 326, 038 0.250 0.276 0.136

101 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 −3.94 326, 033 0.250 0.276 0.136
102 1 0 0 0 0 0 0 2 0 0 0 0 0 0 1 −10.12 326, 027 0.248 0.281 0.138
103 2 0 0 0 0 0 0 1 0 0 0 0 0 0 1 −0.36 326, 017 0.244 0.283 0.135
104 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 1.74 326, 012 0.244 0.282 0.136
105 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0.00 326, 006 0.242 0.268 0.132
106 2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 −7.09 326, 001 0.238 0.265 0.131
107 2 0 0 0 0 0 1 1 0 0 0 0 0 0 0 −109.46 325, 982 0.238 0.263 0.129
108 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 −0.10 325, 977 0.237 0.263 0.128
109 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 5.76 325, 972 0.235 0.263 0.129
110 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 54.51 325, 968 0.237 0.264 0.129

111 1 0 0 0 0 0 1 2 0 0 0 0 0 0 0 −1386.73 325, 963 0.235 0.264 0.129
112 0 0 0 0 0 0 0 0 1 0 0 0 0 0 2 0.00 325, 959 0.237 0.265 0.130
113 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0.11 325, 955 0.235 0.265 0.130
114 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0.05 325, 951 0.234 0.266 0.130
115 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 4.30 325, 948 0.236 0.265 0.127
116 1 0 0 0 0 2 0 1 0 0 0 0 0 0 0 −19.81 325, 944 0.237 0.262 0.126
117 2 0 0 0 0 2 0 0 0 0 0 0 0 0 0 −0.87 325, 938 0.241 0.267 0.124
118 0 1 0 0 0 1 0 1 0 0 0 0 0 0 1 −0.36 325, 935 0.241 0.267 0.124
119 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 −80.29 325, 931 0.241 0.267 0.125
120 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 −6.95 325, 928 0.241 0.267 0.124

121 0 0 0 0 0 1 0 0 0 0 0 0 0 0 2 0.00 325, 925 0.243 0.259 0.121
122 0 0 0 0 0 0 0 2 0 0 1 0 0 0 0 436.56 325, 923 0.241 0.259 0.121
123 0 0 0 0 0 2 0 0 0 0 0 0 0 0 1 −0.03 325, 920 0.243 0.263 0.121
124 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 2.99 325, 918 0.242 0.263 0.120
125 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1 −0.59 325, 916 0.241 0.261 0.119
126 2 0 0 0 0 1 0 0 0 0 0 0 0 0 1 −0.02 325, 908 0.247 0.265 0.124
127 0 0 0 0 0 1 0 2 0 0 0 0 0 0 1 −4.66 325, 902 0.249 0.279 0.123
128 0 0 0 0 0 0 1 3 0 0 0 0 0 0 0 −8179.68 325, 900 0.249 0.280 0.124
129 0 0 0 0 0 1 0 3 0 0 0 0 0 0 0 691.40 325, 898 0.249 0.280 0.123
130 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0.04 325, 896 0.250 0.281 0.122

131 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 7.04 325, 894 0.246 0.264 0.120
132 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 −27.72 325, 892 0.247 0.264 0.119
133 2 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1.26 325, 891 0.247 0.264 0.119
134 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 −2.67 325, 889 0.249 0.265 0.118
135 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1.53 325, 887 0.250 0.266 0.119
136 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 −0.07 325, 885 0.250 0.265 0.120
137 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 40.44 325, 884 0.251 0.265 0.119
138 0 0 0 0 0 0 0 2 0 0 0 1 0 0 0 434.50 325, 878 0.249 0.264 0.119
139 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 −5.99 325, 877 0.248 0.264 0.119
140 0 0 0 0 0 0 0 0 2 0 0 1 0 0 0 14.64 325, 873 0.246 0.263 0.120

141 0 0 0 0 0 2 0 2 0 0 0 0 0 0 0 −119.42 325, 871 0.247 0.270 0.121
142 0 0 0 0 0 0 0 1 0 0 0 0 0 0 3 0.00 325, 870 0.248 0.271 0.121
143 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0.07 325, 868 0.248 0.271 0.121
144 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 1.06 325, 861 0.246 0.271 0.121
145 1 0 0 0 0 0 1 1 0 0 0 0 0 0 1 −0.74 325, 859 0.247 0.271 0.121
146 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 −5.61 325, 858 0.246 0.271 0.121
147 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 −0.08 325, 857 0.247 0.270 0.121
148 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 −37.16 325, 855 0.247 0.271 0.122
149 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0.41 325, 851 0.247 0.271 0.122
150 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 −7290.99 325, 850 0.247 0.271 0.122
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Table A2. OLS proxy function of available capital (AC) derived under 150–443 in the adaptive algorithm
with the final coefficients. Furthermore, AIC scores and out-of-sample MAEs in % after each iteration.

k r1
k r2

k r3
k r4

k r5
k r6

k r7
k r8

k r9
k r10

k r11
k r12

k r13
k r14

k r15
k β̂OLS,k AIC v.mae ns.mae cr.mae

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 745.35 391, 375 60.620 97.518 257.762

1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 5766.61 382, 610 50.402 99.306 256.789
2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 272.75 367, 667 35.285 38.124 99.902
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 5.46 359, 997 30.739 18.210 72.719
4 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 128.41 356, 705 30.119 25.088 29.357
5 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 −1750.72 355, 354 30.867 28.173 21.870
6 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 −19, 127.27 351, 002 22.942 14.948 44.668
7 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −33.25 349, 147 19.030 12.142 42.535
8 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 307.32 347, 777 18.221 10.928 35.420
9 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 −868.05 346, 423 16.662 11.527 35.941

10 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 −87.54 345, 025 15.987 10.264 31.461

11 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 −30.51 343, 570 14.858 11.187 34.502
12 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1.66 339, 282 13.092 12.669 23.174
13 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 −33.33 337, 648 10.427 20.976 30.402
14 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 −70.63 336, 840 11.087 21.598 29.972
15 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 −41.37 336, 120 11.436 21.764 30.408
16 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 −2666.44 335, 495 11.088 21.543 29.890
17 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 −96.48 335, 022 10.545 22.479 32.334
18 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 6.30 334, 563 10.804 23.095 31.519
19 0 0 0 0 0 0 0 2 0 0 0 0 0 0 1 47.02 334, 058 10.232 19.913 28.128
20 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 −48.77 333, 610 10.292 19.163 26.995

21 1 0 0 0 0 0 0 2 0 0 0 0 0 0 0 3412.54 333, 281 10.083 17.438 24.190
22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 −0.02 332, 970 10.246 15.328 21.326
23 2 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0.12 332, 714 10.020 14.436 22.671
24 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 −120.68 332, 457 9.834 14.283 21.608
25 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1287.63 332, 108 9.725 13.969 21.273
26 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 44.71 331, 832 9.755 13.661 20.501
27 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 24, 899.66 331, 569 9.275 12.462 19.873
28 2 0 0 0 0 0 0 1 0 0 0 0 0 0 0 87.04 331, 004 9.292 10.757 17.022
29 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 −43.38 330, 742 9.171 11.183 16.023
30 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 −0.55 330, 543 9.444 13.409 15.766

31 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 −77.35 330, 345 9.324 14.207 16.192
32 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 −25.20 330, 161 9.246 14.203 15.692
33 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 −14.37 330, 007 8.672 15.764 16.964
34 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0.39 329, 859 8.682 16.031 17.223
35 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 −27.80 329, 728 8.665 16.110 17.264
36 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 −8757.49 329, 619 8.871 16.530 17.005
37 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 2.17 329, 513 8.937 16.276 16.790
38 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 369.16 329, 408 8.842 16.169 16.738
39 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 17.97 329, 109 8.637 16.387 17.527
40 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 −222.55 329, 008 8.656 16.359 17.271

41 0 0 0 0 0 1 0 2 0 0 0 0 0 0 0 1791.70 328, 910 8.297 14.282 14.748
42 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 101.23 328, 111 6.783 11.112 14.144
43 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 −0.70 328, 041 6.713 11.355 14.013
44 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 −0.57 327, 972 6.683 11.325 13.867
45 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 3083.05 327, 905 6.654 11.456 13.595
46 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 12, 863.79 327, 837 6.700 11.721 13.500
47 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 17.78 327, 780 6.710 11.777 13.450
48 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 190.46 327, 711 6.824 11.818 13.468
49 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 300.76 327, 657 6.724 11.793 13.716
50 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0.09 327, 607 6.718 12.565 13.182

51 0 0 0 0 0 2 0 1 0 0 0 0 0 0 0 60.83 327, 557 6.543 12.533 13.558
52 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 20.91 327, 507 6.415 12.530 13.394
53 1 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0.00 327, 463 6.314 12.118 12.252
54 0 0 0 0 0 0 0 1 0 0 0 0 0 0 2 0.08 327, 327 6.176 11.486 11.049
55 2 0 0 0 0 1 0 0 0 0 0 0 0 0 0 −1.46 327, 284 5.751 10.339 10.295
56 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0.50 327, 242 5.746 10.367 10.287
57 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 6.08 327, 203 5.871 10.211 10.450
58 0 0 0 0 0 0 1 2 0 0 0 0 0 0 0 6593.98 327, 165 5.780 9.973 10.274
59 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 406.73 327, 003 5.618 9.722 10.897
60 0 0 1 0 0 0 0 2 0 0 0 0 0 0 0 −3364.02 326, 968 5.581 9.671 10.904

61 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 −204.12 326, 914 5.542 9.626 10.921
62 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 18.90 326, 881 5.588 9.611 10.837
63 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 −175.17 326, 849 5.546 9.514 10.817
64 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0.21 326, 818 5.540 9.597 10.799
65 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 −2.44 326, 791 5.494 9.532 10.896
66 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 −0.11 326, 753 5.413 9.616 10.708
67 2 0 0 0 0 1 0 1 0 0 0 0 0 0 0 12.99 326, 726 5.317 9.215 10.046
68 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 −93.57 326, 700 5.329 9.255 10.231
69 0 1 0 0 0 0 0 2 0 0 0 0 0 0 0 −890.62 326, 660 5.355 9.090 10.326
70 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 113.04 326, 635 5.313 9.095 10.357

71 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 5.23 326, 605 5.231 9.101 10.164
72 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 6.20 326, 581 5.186 9.068 10.265
73 1 0 0 0 0 0 0 3 0 0 0 0 0 0 0 −1133.83 326, 556 5.034 8.488 9.647
74 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0.29 326, 534 4.950 8.580 9.374
75 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 56.56 326, 513 4.908 8.559 9.323
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Table A2. Cont.

k r1
k r2

k r3
k r4

k r5
k r6

k r7
k r8

k r9
k r10

k r11
k r12

k r13
k r14

k r15
k β̂OLS,k AIC v.mae ns.mae cr.mae

76 2 0 0 0 0 0 0 0 1 0 0 0 0 0 0 3.02 326, 495 4.936 8.573 9.223
77 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 10.61 326, 477 4.824 8.705 8.996
78 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 6.97 326, 461 4.821 8.849 9.071
79 1 0 0 0 0 2 0 0 0 0 0 0 0 0 0 2.25 326, 444 4.602 9.170 9.162
80 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 −1.94 326, 429 4.688 9.069 8.997

81 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 −2257.40 326, 414 4.676 9.099 9.070
82 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 14.06 326, 399 4.853 9.831 9.278
83 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0.11 326, 385 4.844 9.851 9.203
84 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0.18 326, 372 4.861 9.935 9.174
85 0 0 0 0 0 0 0 3 0 0 0 0 0 0 1 111.58 326, 358 4.796 9.769 9.270
86 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 −45.11 326, 346 4.826 9.724 9.330
87 0 0 0 1 0 0 0 2 0 0 0 0 0 0 0 82, 935.66 326, 334 4.871 9.865 9.284
88 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 56.00 326, 322 4.867 9.862 9.267
89 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 5.35 326, 311 4.857 9.938 9.258
90 0 0 0 0 0 2 1 0 0 0 0 0 0 0 0 10.88 326, 301 4.870 10.043 9.414

91 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 32.81 326, 291 4.833 10.156 9.394
92 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 48.96 326, 283 4.812 10.085 9.185
93 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 −10.90 326, 274 4.801 10.083 9.210
94 0 0 0 0 0 0 0 2 0 0 0 0 0 0 2 0.09 326, 266 4.803 9.818 8.787
95 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 −69.45 326, 258 4.659 9.250 8.413
96 0 0 0 1 0 0 0 3 0 0 0 0 0 0 0 543, 840.26 326, 251 4.663 9.269 8.393
97 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 −10.31 326, 244 4.510 8.841 8.101
98 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1.07 326, 237 4.523 8.847 8.091
99 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 −417.88 326, 231 4.531 8.840 8.101

100 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 −12.92 326, 224 4.546 8.847 8.081

101 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 3.94 326, 219 4.558 8.866 8.072
102 1 0 0 0 0 0 0 2 0 0 0 0 0 0 1 10.10 326, 213 4.513 9.012 8.203
103 2 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0.36 326, 204 4.453 9.084 8.035
104 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 −1.74 326, 198 4.445 9.063 8.070
105 2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 7.09 326, 193 4.383 8.967 8.008
106 2 0 0 0 0 0 1 1 0 0 0 0 0 0 0 109.50 326, 174 4.371 8.899 7.889
107 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0.00 326, 169 4.332 8.454 7.669
108 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 −5.85 326, 164 4.290 8.456 7.689
109 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0.10 326, 159 4.282 8.457 7.657
110 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 −54.88 326, 154 4.313 8.463 7.689

111 1 0 0 0 0 0 1 2 0 0 0 0 0 0 0 1380.74 326, 150 4.291 8.489 7.700
112 0 0 0 0 0 0 0 0 1 0 0 0 0 0 2 0.00 326, 146 4.315 8.498 7.751
113 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 −0.11 326, 142 4.287 8.501 7.736
114 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 −4.30 326, 138 4.320 8.461 7.558
115 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 −0.05 326, 135 4.299 8.514 7.566
116 1 0 0 0 0 2 0 1 0 0 0 0 0 0 0 20.09 326, 131 4.320 8.417 7.498
117 2 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0.87 326, 125 4.393 8.561 7.371
118 0 1 0 0 0 1 0 1 0 0 0 0 0 0 1 0.36 326, 122 4.389 8.564 7.409
119 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 79.51 326, 118 4.394 8.560 7.411
120 0 0 0 0 0 1 0 0 0 0 0 0 0 0 2 0.00 326, 115 4.430 8.304 7.187

121 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 6.91 326, 113 4.420 8.305 7.176
122 0 0 0 0 0 0 0 2 0 0 1 0 0 0 0 −435.81 326, 110 4.390 8.301 7.212
123 0 0 0 0 0 2 0 0 0 0 0 0 0 0 1 0.03 326, 107 4.419 8.450 7.206
124 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 −2.99 326, 105 4.407 8.434 7.163
125 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0.59 326, 103 4.394 8.366 7.095
126 2 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0.02 326, 096 4.502 8.499 7.382
127 0 0 0 0 0 1 0 2 0 0 0 0 0 0 1 4.66 326, 089 4.543 8.962 7.340
128 0 0 0 0 0 1 0 3 0 0 0 0 0 0 0 −692.59 326, 088 4.537 8.961 7.248
129 0 0 0 0 0 0 1 3 0 0 0 0 0 0 0 8097.70 326, 086 4.539 8.995 7.316
130 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 −0.04 326, 084 4.555 9.024 7.285

131 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 2.73 326, 082 4.590 9.065 7.246
132 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 −1.53 326, 080 4.612 9.097 7.280
133 2 0 0 0 0 0 0 0 0 0 1 0 0 0 0 −1.28 326, 078 4.616 9.086 7.251
134 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0.07 326, 077 4.607 9.055 7.287
135 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 −6.96 326, 075 4.533 8.527 7.230
136 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 27.74 326, 073 4.556 8.520 7.115
137 0 0 0 0 0 2 0 2 0 0 0 0 0 0 0 122.08 326, 071 4.571 8.746 7.171
138 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 6.00 326, 070 4.556 8.745 7.190
139 0 0 0 0 0 0 0 0 2 0 0 1 0 0 0 −14.50 326, 066 4.533 8.699 7.199
140 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 −0.07 326, 064 4.532 8.722 7.227

141 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 −1.05 326, 057 4.507 8.733 7.250
142 1 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0.74 326, 056 4.515 8.719 7.238
143 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 5.71 326, 054 4.503 8.706 7.263
144 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 −39.87 326, 053 4.499 8.715 7.244
145 0 0 0 0 0 0 0 2 0 0 0 1 0 0 0 −431.71 326, 047 4.470 8.669 7.215
146 0 0 0 0 0 0 0 1 0 0 0 0 0 0 3 0.00 326, 046 4.488 8.698 7.207
147 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0.08 326, 045 4.494 8.694 7.223
148 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 37.33 326, 043 4.496 8.703 7.236
149 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 −0.42 326, 039 4.508 8.706 7.253
150 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 7224.25 326, 038 4.512 8.712 7.265
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Table A3. OLS proxy function of BEL derived under 300–886 in the adaptive algorithm with the final
coefficients. Furthermore, AIC scores and out-of-sample MAEs in % after each iteration.

k r1
k r2

k r3
k r4

k r5
k r6

k r7
k r8

k r9
k r10

k r11
k r12

k r13
k r14

k r15
k β̂OLS,k AIC v.mae ns.mae cr.mae

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 14, 689.75 437, 251 4.557 3.231 4.027

1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 7990.98 386, 722 2.474 0.845 0.913
2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −274.24 375, 144 2.065 2.139 1.831
3 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 145.73 366, 567 1.656 0.444 0.496
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −5.11 358, 894 1.647 1.006 0.556
5 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 416.79 355, 732 1.635 0.853 0.469
6 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 2332.91 354, 318 1.679 0.956 0.374
7 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 24, 914.36 349, 759 1.234 0.491 0.628
8 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 49.42 347, 796 0.999 0.340 0.594
9 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 859.49 346, 444 0.912 0.357 0.602

10 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 29.50 345, 045 0.839 0.389 0.650

11 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1.71 341, 083 0.759 0.398 0.465
12 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 91.65 339, 360 0.718 0.394 0.390
13 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 36.34 337, 731 0.574 0.653 0.512
14 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 51.78 336, 843 0.589 0.658 0.518
15 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 68.02 335, 980 0.628 0.678 0.512
16 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 2661.47 335, 351 0.609 0.671 0.503
17 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 109.14 334, 876 0.579 0.701 0.545
18 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 −12.63 334, 413 0.593 0.720 0.531
19 0 0 0 0 0 0 0 2 0 0 0 0 0 0 1 −114.48 333, 904 0.562 0.621 0.474
20 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 35.40 333, 447 0.565 0.597 0.454

21 1 0 0 0 0 0 0 2 0 0 0 0 0 0 0 −4570.15 333, 116 0.553 0.543 0.407
22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0.02 332, 806 0.562 0.478 0.358
23 2 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −0.26 332, 547 0.550 0.450 0.381
24 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 47.17 332, 294 0.545 0.468 0.378
25 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 123.47 332, 042 0.530 0.464 0.362
26 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 −1240.44 331, 687 0.522 0.453 0.355
27 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 −43.82 331, 405 0.525 0.444 0.343
28 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 −32, 661.61 331, 136 0.499 0.405 0.327
29 2 0 0 0 0 0 0 1 0 0 0 0 0 0 0 −140.90 330, 562 0.504 0.348 0.268
30 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0.56 330, 361 0.518 0.418 0.264

31 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 87.33 330, 163 0.512 0.443 0.272
32 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 25.31 329, 988 0.508 0.443 0.264
33 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 14.22 329, 834 0.477 0.491 0.286
34 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 −0.44 329, 688 0.477 0.500 0.290
35 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 26.88 329, 550 0.476 0.502 0.291
36 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 −391.81 329, 442 0.472 0.499 0.288
37 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 −18.58 329, 147 0.462 0.505 0.301
38 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 11, 959.32 329, 043 0.472 0.518 0.300
39 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 −2.15 328, 935 0.474 0.510 0.295
40 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 228.32 328, 832 0.475 0.509 0.291

41 0 0 0 0 0 1 0 2 0 0 0 0 0 0 0 −1938.37 328, 733 0.455 0.445 0.248
42 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 −112.83 327, 927 0.372 0.345 0.237
43 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0.71 327, 858 0.368 0.353 0.235
44 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0.72 327, 792 0.366 0.352 0.233
45 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 −4230.29 327, 729 0.365 0.356 0.228
46 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 −10, 720.30 327, 659 0.368 0.364 0.227
47 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 −18.39 327, 603 0.368 0.366 0.226
48 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 −212.78 327, 537 0.374 0.367 0.226
49 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 −177.64 327, 483 0.369 0.367 0.230
50 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 −0.09 327, 432 0.368 0.391 0.221

51 0 0 0 0 0 2 0 1 0 0 0 0 0 0 0 −57.40 327, 382 0.359 0.390 0.228
52 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 −23.55 327, 331 0.352 0.390 0.225
53 1 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0.00 327, 287 0.346 0.377 0.206
54 0 0 0 0 0 0 0 1 0 0 0 0 0 0 2 −0.08 327, 149 0.339 0.357 0.185
55 2 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1.15 327, 105 0.315 0.321 0.173
56 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 −0.65 327, 064 0.315 0.322 0.173
57 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 −4.41 327, 025 0.322 0.317 0.175
58 0 0 0 0 0 0 1 2 0 0 0 0 0 0 0 −6095.97 326, 986 0.317 0.310 0.172
59 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 −332.88 326, 823 0.308 0.302 0.183
60 0 0 1 0 0 0 0 2 0 0 0 0 0 0 0 3624.77 326, 787 0.306 0.301 0.183

61 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 191.46 326, 733 0.304 0.299 0.183
62 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 −17.49 326, 700 0.306 0.299 0.182
63 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 183.68 326, 668 0.304 0.296 0.182
64 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 −0.20 326, 638 0.304 0.298 0.181
65 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 2.55 326, 610 0.301 0.296 0.183
66 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0.13 326, 572 0.297 0.299 0.180
67 2 0 0 0 0 1 0 1 0 0 0 0 0 0 0 −29.57 326, 545 0.292 0.286 0.169
68 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 95.55 326, 519 0.292 0.287 0.172
69 0 1 0 0 0 0 0 2 0 0 0 0 0 0 0 922.48 326, 478 0.294 0.282 0.173
70 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 −6.22 326, 453 0.291 0.281 0.175

71 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 −134.95 326, 428 0.289 0.281 0.176
72 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 −4.47 326, 398 0.284 0.282 0.173
73 1 0 0 0 0 0 0 3 0 0 0 0 0 0 0 −26, 186.72 326, 374 0.276 0.264 0.162
74 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 −0.29 326, 352 0.272 0.266 0.158
75 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 −58.01 326, 331 0.269 0.266 0.157
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Table A3. Cont.

k r1
k r2

k r3
k r4

k r5
k r6

k r7
k r8

k r9
k r10

k r11
k r12

k r13
k r14

k r15
k β̂OLS,k AIC v.mae ns.mae cr.mae

76 2 0 0 0 0 0 0 0 1 0 0 0 0 0 0 −3.11 326, 313 0.271 0.266 0.155
77 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 −2.10 326, 295 0.264 0.270 0.151
78 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 −8.73 326, 278 0.264 0.275 0.153
79 1 0 0 0 0 2 0 0 0 0 0 0 0 0 0 −1.93 326, 261 0.252 0.285 0.154
80 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 −14.90 326, 245 0.263 0.309 0.157

81 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 −1.22 326, 229 0.267 0.306 0.155
82 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 3341.29 326, 214 0.266 0.307 0.156
83 0 0 0 0 0 0 0 3 0 0 0 0 0 0 1 −43.84 326, 201 0.263 0.302 0.158
84 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 −0.12 326, 187 0.262 0.302 0.157
85 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 −0.18 326, 174 0.263 0.305 0.156
86 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 67.19 326, 161 0.265 0.303 0.157
87 0 0 0 1 0 0 0 2 0 0 0 0 0 0 0 −432, 954.98 326, 149 0.267 0.308 0.156
88 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 −34.58 326, 137 0.267 0.308 0.156
89 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 −5.10 326, 126 0.267 0.310 0.156
90 0 0 0 0 0 2 1 0 0 0 0 0 0 0 0 −10.78 326, 116 0.267 0.313 0.158

91 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 −66.99 326, 106 0.265 0.317 0.158
92 0 0 0 0 0 0 0 2 0 0 0 0 0 0 2 −0.09 326, 097 0.265 0.308 0.151
93 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0.35 326, 089 0.265 0.308 0.151
94 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 −93.83 326, 081 0.264 0.306 0.148
95 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 70.45 326, 073 0.256 0.288 0.141
96 0 0 0 1 0 0 0 3 0 0 0 0 0 0 0 −1, 073, 454.04 326, 066 0.256 0.289 0.141
97 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 −21.59 326, 058 0.248 0.275 0.136
98 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 −1.10 326, 051 0.248 0.276 0.136
99 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 398.94 326, 045 0.249 0.275 0.136

100 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 22.03 326, 038 0.250 0.276 0.136

101 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 −4.12 326, 033 0.250 0.276 0.136
102 1 0 0 0 0 0 0 2 0 0 0 0 0 0 1 1.30 326, 027 0.248 0.281 0.138
103 2 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0.20 326, 017 0.244 0.283 0.135
104 1 0 0 0 0 0 0 3 0 0 0 0 0 0 1 351.11 326, 009 0.245 0.289 0.138
105 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 1.09 326, 003 0.244 0.288 0.139
106 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0.00 325, 997 0.242 0.274 0.136
107 2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 −7.78 325, 992 0.239 0.271 0.134
108 2 0 0 0 0 0 1 1 0 0 0 0 0 0 0 −126.28 325, 973 0.238 0.269 0.132
109 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 −0.10 325, 968 0.238 0.269 0.131
110 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 57.61 325, 963 0.239 0.269 0.132

111 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 9.91 325, 959 0.237 0.269 0.132
112 1 0 0 0 0 0 1 2 0 0 0 0 0 0 0 −1698.92 325, 954 0.236 0.270 0.132
113 0 0 0 0 0 0 0 0 1 0 0 0 0 0 2 −0.01 325, 950 0.237 0.270 0.133
114 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0.10 325, 946 0.236 0.271 0.133
115 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0.05 325, 942 0.234 0.272 0.132
116 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 5.00 325, 939 0.236 0.271 0.129
117 1 0 0 0 0 2 0 1 0 0 0 0 0 0 0 −17.60 325, 935 0.238 0.268 0.127
118 2 0 0 0 0 2 0 0 0 0 0 0 0 0 0 −0.79 325, 929 0.242 0.273 0.128
119 0 1 0 0 0 1 0 1 0 0 0 0 0 0 1 −0.55 325, 925 0.241 0.273 0.128
120 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 −119.81 325, 922 0.242 0.273 0.129

121 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 −7.16 325, 919 0.241 0.273 0.128
122 0 0 0 0 0 1 0 0 0 0 0 0 0 0 2 0.00 325, 916 0.243 0.265 0.124
123 0 0 0 0 0 0 0 2 0 0 1 0 0 0 0 497.02 325, 914 0.241 0.265 0.125
124 0 0 0 0 0 2 0 0 0 0 0 0 0 0 1 −0.03 325, 911 0.243 0.269 0.125
125 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1 −0.58 325, 909 0.242 0.267 0.123
126 2 0 0 0 0 1 0 0 0 0 0 0 0 0 1 −0.02 325, 901 0.248 0.271 0.129
127 0 0 0 0 0 1 0 2 0 0 0 0 0 0 1 −4.48 325, 895 0.251 0.286 0.129
128 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 2.93 325, 893 0.250 0.285 0.128
129 0 0 0 0 0 0 1 3 0 0 0 0 0 0 0 −5069.15 325, 891 0.250 0.286 0.128
130 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0.03 325, 889 0.251 0.287 0.127

131 0 0 0 0 0 1 0 3 0 0 0 0 0 0 0 2631.07 325, 887 0.251 0.287 0.125
132 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 30.03 325, 885 0.246 0.270 0.124
133 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 −27.79 325, 883 0.248 0.270 0.123
134 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 −2.68 325, 881 0.249 0.271 0.122
135 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 2.18 325, 879 0.251 0.272 0.123
136 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 −0.07 325, 878 0.250 0.271 0.124
137 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 52.06 325, 876 0.251 0.272 0.123
138 0 0 0 0 0 0 0 2 0 0 0 1 0 0 0 507.79 325, 870 0.250 0.270 0.123
139 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0.09 325, 869 0.248 0.270 0.123
140 0 0 0 0 0 0 0 0 2 0 0 1 0 0 0 14.53 325, 865 0.246 0.269 0.123

141 0 0 0 0 0 0 0 1 0 0 0 0 0 0 3 0.00 325, 864 0.247 0.270 0.122
142 2 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1.48 325, 862 0.247 0.269 0.121
143 0 0 0 0 0 2 0 2 0 0 0 0 0 0 0 −98.06 325, 861 0.248 0.276 0.122
144 1 0 0 0 0 0 1 1 0 0 0 0 0 0 1 −0.68 325, 859 0.248 0.276 0.122
145 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0.08 325, 858 0.248 0.276 0.122
146 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 1.10 325, 850 0.247 0.277 0.122
147 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 −5.64 325, 849 0.247 0.276 0.123
148 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 −0.08 325, 847 0.247 0.276 0.123
149 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 20.58 325, 846 0.246 0.277 0.123
150 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 −60.89 325, 841 0.242 0.274 0.123
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Table A3. Cont.

k r1
k r2

k r3
k r4

k r5
k r6

k r7
k r8

k r9
k r10

k r11
k r12

k r13
k r14

k r15
k β̂OLS,k AIC v.mae ns.mae cr.mae

151 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 −26.95 325, 840 0.242 0.275 0.123
152 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0.42 325, 835 0.243 0.275 0.123
153 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 −10, 592.62 325, 834 0.243 0.275 0.123
154 2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0.93 325, 833 0.243 0.275 0.125
155 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 2.96 325, 832 0.244 0.275 0.124
156 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 −3.87 325, 830 0.244 0.275 0.125
157 0 0 0 0 0 0 2 0 0 0 0 0 1 0 0 −68.29 325, 829 0.243 0.277 0.125
158 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 −9773.54 325, 828 0.243 0.278 0.125
159 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 120.51 325, 822 0.242 0.278 0.125
160 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0.03 325, 821 0.243 0.278 0.127

161 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 −19.68 325, 820 0.243 0.278 0.127
162 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 −24.62 325, 819 0.240 0.261 0.127
163 0 0 0 0 0 0 0 0 1 0 0 0 0 0 3 0.00 325, 818 0.239 0.261 0.128
164 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 −5.28 325, 817 0.239 0.262 0.128
165 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 2.36 325, 816 0.240 0.262 0.129
166 1 1 0 0 0 1 0 0 0 0 0 0 0 0 1 −0.02 325, 814 0.238 0.264 0.129
167 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 −5.06 325, 813 0.238 0.264 0.129
168 1 0 1 0 0 1 0 1 0 0 0 0 0 0 0 20.18 325, 812 0.238 0.263 0.129
169 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 −461.05 325, 812 0.239 0.264 0.130
170 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 6.14 325, 811 0.238 0.265 0.130

171 0 0 0 1 0 0 0 2 0 0 0 0 0 0 1 2708.64 325, 810 0.237 0.265 0.130
172 0 0 0 1 0 0 0 3 0 0 0 0 0 0 1 9307.25 325, 805 0.239 0.265 0.129
173 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 −0.17 325, 805 0.238 0.265 0.129
174 0 1 0 0 0 0 0 0 0 0 0 0 0 2 0 5.94 325, 804 0.238 0.264 0.128
175 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 −0.07 325, 804 0.238 0.264 0.127
176 0 0 1 0 0 0 1 2 0 0 0 0 0 0 0 −1367.33 325, 803 0.238 0.264 0.128
177 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1133.78 325, 803 0.237 0.264 0.128
178 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 −1.86 325, 802 0.237 0.264 0.128
179 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.99 325, 802 0.241 0.274 0.131
180 3 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −0.01 325, 766 0.241 0.300 0.149

181 3 0 0 0 0 1 0 0 0 0 0 0 0 0 0 −0.68 325, 744 0.248 0.335 0.172
182 3 0 0 0 0 0 0 1 0 0 0 0 0 0 0 −70.02 325, 727 0.245 0.326 0.157
183 2 0 0 0 0 0 0 2 0 0 0 0 0 0 0 −1883.77 325, 700 0.238 0.313 0.144
184 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1.21 325, 672 0.231 0.327 0.173
185 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 −157, 391.76 325, 655 0.225 0.309 0.175
186 0 0 0 0 0 0 0 4 0 0 0 0 0 0 1 2127.74 325, 644 0.221 0.303 0.176
187 2 0 0 0 0 0 0 2 0 0 0 0 0 0 1 21.17 325, 583 0.206 0.296 0.190
188 3 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0.62 325, 524 0.198 0.268 0.164
189 0 0 0 1 0 0 0 4 0 0 0 0 0 0 0 5, 216, 336.05 325, 515 0.199 0.270 0.166
190 3 0 0 0 0 0 1 0 0 0 0 0 0 0 0 −0.54 325, 506 0.201 0.275 0.173

191 4 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0.01 325, 500 0.195 0.281 0.184
192 2 0 0 0 0 0 1 2 0 0 0 0 0 0 0 136.68 325, 499 0.193 0.279 0.182
193 0 0 0 0 0 0 2 1 0 0 0 0 0 0 0 −526.83 325, 498 0.194 0.280 0.182
194 1 0 0 0 0 0 2 0 0 0 0 0 0 0 0 −32.63 325, 494 0.192 0.270 0.178
195 0 0 0 0 0 0 2 2 0 0 0 0 0 0 0 −2791.14 325, 492 0.190 0.261 0.176
196 2 0 0 0 0 0 2 0 0 0 0 0 0 0 0 11.06 325, 491 0.191 0.265 0.178
197 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0.09 325, 491 0.190 0.265 0.179
198 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 13.23 325, 490 0.186 0.258 0.178
199 0 0 2 0 0 0 1 0 0 0 0 0 0 0 0 143.48 325, 488 0.187 0.261 0.179
200 2 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0.46 325, 488 0.186 0.262 0.181

201 2 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0.98 325, 487 0.185 0.262 0.181
202 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 8.97 325, 487 0.185 0.263 0.180
203 0 0 0 1 0 0 0 4 0 0 0 0 0 0 1 −33, 222.10 325, 487 0.184 0.263 0.179
204 2 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0.01 325, 487 0.184 0.264 0.180
205 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 −0.32 325, 487 0.184 0.263 0.178
206 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0.20 325, 486 0.183 0.264 0.177
207 2 0 0 0 0 1 1 0 0 0 0 0 0 0 0 −2.44 325, 486 0.185 0.265 0.179
208 3 0 0 0 0 1 1 0 0 0 0 0 0 0 0 −1.76 325, 485 0.184 0.261 0.173
209 2 0 0 0 0 1 1 1 0 0 0 0 0 0 0 −12.48 325, 482 0.183 0.260 0.173
210 2 0 0 0 0 2 0 1 0 0 0 0 0 0 0 3.93 325, 482 0.184 0.258 0.170

211 0 0 0 0 0 2 0 3 0 0 0 0 0 0 0 −495.92 325, 481 0.184 0.257 0.168
212 0 0 0 0 0 1 1 2 0 0 0 0 0 0 0 −434.12 325, 481 0.185 0.260 0.169
213 0 0 0 0 0 1 1 3 0 0 0 0 0 0 0 −2854.58 325, 479 0.185 0.260 0.167
214 2 0 0 0 0 0 0 1 0 0 1 0 0 0 0 6.58 325, 479 0.184 0.261 0.167
215 1 0 0 0 0 0 0 0 0 0 0 0 0 2 0 7.08 325, 479 0.183 0.257 0.167
216 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 −20.06 325, 479 0.184 0.257 0.167
217 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 11.90 325, 468 0.186 0.257 0.166
218 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0.20 325, 468 0.186 0.257 0.166
219 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 18.33 325, 468 0.186 0.257 0.165
220 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 9.56 325, 468 0.185 0.258 0.165

221 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 37.24 325, 463 0.194 0.265 0.168
222 0 1 0 0 0 0 0 0 0 0 0 0 0 3 0 17.46 325, 460 0.196 0.265 0.168
223 1 0 0 0 0 0 0 0 0 0 0 0 0 3 0 −5.47 325, 460 0.194 0.266 0.166
224 1 0 0 0 0 0 0 0 0 0 0 0 0 4 0 −11.21 325, 459 0.194 0.268 0.168
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Table A4. Out-of-sample validation figures of the OLS proxy function of BEL under 150–443 after each
tenth iteration.

k v.mae v.maea v.res v.mae0 v.res0 ns.mae ns.maea ns.res ns.mae0 ns.res0 cr.mae cr.maea cr.res cr.mae0 cr.res0

0 4.557 4.357 −238 100.000 38 3.231 3.121 0 100.000 261 4.027 3.942 106 100.000 367
10 0.839 0.802 0 21.468 104 0.389 0.376 23 21.659 113 0.650 0.636 89 27.112 179
20 0.565 0.540 −10 16.780 82 0.597 0.577 −75 8.274 2 0.454 0.445 −40 10.083 38
30 0.518 0.496 1 17.501 100 0.418 0.404 −47 7.970 37 0.264 0.259 1 13.378 85
40 0.475 0.454 −10 16.888 98 0.509 0.492 −66 6.234 27 0.291 0.285 −26 10.497 68
50 0.368 0.352 −15 13.268 78 0.391 0.378 −50 6.060 29 0.221 0.217 −9 10.674 69
60 0.306 0.293 −17 10.760 62 0.301 0.290 −36 5.863 29 0.183 0.179 5 10.651 69
70 0.291 0.278 −18 10.451 60 0.281 0.272 −33 6.060 30 0.175 0.171 8 10.958 72
80 0.263 0.251 −23 9.389 54 0.309 0.298 −41 4.837 22 0.157 0.154 −4 8.945 59
90 0.267 0.256 −24 9.196 54 0.313 0.303 −42 4.689 22 0.158 0.155 −7 8.587 57

100 0.250 0.239 −18 9.152 53 0.276 0.266 −35 4.637 22 0.136 0.133 0 8.606 57
110 0.237 0.226 −18 8.494 48 0.264 0.255 −34 4.144 18 0.129 0.126 −2 7.634 50
120 0.241 0.230 −16 8.896 50 0.267 0.258 −34 4.153 18 0.124 0.122 −2 7.679 51
130 0.250 0.239 −18 9.839 57 0.281 0.272 −37 4.810 24 0.122 0.120 −1 8.900 59
140 0.246 0.235 −15 9.855 57 0.263 0.254 −33 4.809 24 0.120 0.117 1 8.822 58
150 0.247 0.237 −14 9.924 57 0.271 0.262 −35 4.612 22 0.122 0.120 −1 8.537 56

Table A5. Out-of-sample validation figures of the OLS proxy function of AC under 150–443 after each
tenth iteration.

k v.mae v.maea v.res v.mae0 v.res0 ns.mae ns.maea ns.res ns.mae0 ns.res0 cr.mae cr.maea cr.res cr.mae0 cr.res0

0 60.620 3.178 −296 100.000 −207 97.518 2.936 −453 100.000 −369 257.762 4.251 −653 100.000 −568
10 15.987 0.838 −1 29.161 −110 10.264 0.309 −6 32.492 −119 31.461 0.519 −67 31.704 −180
20 10.292 0.540 10 21.029 −82 19.163 0.577 75 12.240 −21 26.995 0.445 39 13.324 −57
30 9.444 0.495 −1 21.971 −100 13.409 0.404 47 15.583 −56 15.766 0.260 −1 18.759 −105
40 8.656 0.454 10 21.197 −98 16.359 0.492 67 12.740 −46 17.271 0.285 26 15.434 −87
50 6.718 0.352 15 16.655 −78 12.565 0.378 50 12.938 −47 13.182 0.217 9 15.666 −88
60 5.581 0.293 17 13.506 −62 9.671 0.291 36 12.985 −48 10.904 0.180 −5 15.640 −88
70 5.313 0.279 19 13.026 −59 9.095 0.274 34 13.289 −49 10.357 0.171 −8 15.975 −90
80 4.688 0.246 21 11.326 −51 9.069 0.273 36 11.131 −41 8.997 0.148 0 13.590 −77
90 4.870 0.255 24 11.525 −53 10.043 0.302 42 10.995 −41 9.414 0.155 7 13.285 −75

100 4.546 0.238 18 11.471 −53 8.847 0.266 35 11.041 −41 8.081 0.133 0 13.308 −76
110 4.313 0.226 18 10.650 −48 8.463 0.255 34 9.999 −37 7.689 0.127 2 12.181 −69
120 4.430 0.232 16 11.350 −51 8.304 0.250 33 10.596 −39 7.187 0.119 −1 12.763 −73
130 4.555 0.239 18 12.345 −57 9.024 0.272 37 11.491 −42 7.285 0.120 1 13.663 −78
140 4.532 0.238 15 12.470 −57 8.722 0.263 35 11.282 −42 7.227 0.119 0 13.448 −76
150 4.512 0.237 14 12.459 −57 8.712 0.262 35 11.136 −41 7.265 0.120 1 13.242 −75
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Table A6. Out-of-sample validation figures of the OLS proxy function of BEL under 300–886 after each
tenth and the final iteration.

k v.mae v.maea v.res v.mae0 v.res0 ns.mae ns.maea ns.res ns.mae0 ns.res0 cr.mae cr.maea cr.res cr.mae0 cr.res0

0 4.557 4.357 −238 100.000 38 3.231 3.121 0 100.000 261 4.027 3.942 106 100.000 367
10 0.839 0.802 0 21.468 104 0.389 0.376 23 21.659 113 0.650 0.636 89 27.112 179
20 0.565 0.540 −10 16.780 82 0.597 0.577 −75 8.274 2 0.454 0.445 −40 10.083 38
30 0.518 0.496 1 17.501 100 0.418 0.404 −47 7.970 37 0.264 0.259 1 13.378 85
40 0.475 0.454 −10 16.888 98 0.509 0.492 −66 6.234 27 0.291 0.285 −26 10.497 68
50 0.368 0.352 −15 13.268 78 0.391 0.378 −50 6.060 29 0.221 0.217 −9 10.674 69
60 0.306 0.293 −17 10.760 62 0.301 0.290 −36 5.863 29 0.183 0.179 5 10.651 69
70 0.291 0.278 −18 10.451 60 0.281 0.272 −33 6.060 30 0.175 0.171 8 10.958 72
80 0.263 0.251 −23 9.389 54 0.309 0.298 −41 4.837 22 0.157 0.154 −4 8.945 59
90 0.267 0.256 −24 9.196 54 0.313 0.303 −42 4.689 22 0.158 0.155 −7 8.587 57

100 0.250 0.239 −18 9.152 53 0.276 0.266 −35 4.637 22 0.136 0.133 0 8.606 57
110 0.239 0.229 −18 9.132 52 0.269 0.260 −35 4.577 22 0.132 0.129 −1 8.358 55
120 0.242 0.231 −16 9.519 54 0.273 0.263 −35 4.569 21 0.129 0.126 −1 8.380 55
130 0.251 0.240 −18 10.506 61 0.287 0.277 −37 5.421 27 0.127 0.125 0 9.724 64
140 0.246 0.235 −15 10.530 61 0.269 0.260 −34 5.329 27 0.123 0.120 2 9.526 63
150 0.242 0.232 −14 10.556 61 0.274 0.265 −35 5.119 26 0.123 0.120 0 9.261 61
160 0.243 0.232 −15 10.483 60 0.278 0.268 −36 5.018 25 0.127 0.124 0 9.144 60
170 0.238 0.228 −13 10.140 58 0.265 0.256 −33 4.968 24 0.130 0.127 2 8.884 59
180 0.241 0.230 −12 10.128 57 0.300 0.290 −37 4.552 18 0.149 0.146 2 8.716 58
190 0.201 0.192 −13 6.458 32 0.275 0.266 −33 4.124 −2 0.173 0.169 −4 4.721 27
200 0.186 0.178 −9 6.111 29 0.262 0.254 −29 4.460 −4 0.181 0.177 3 4.920 27
210 0.184 0.176 −9 6.210 30 0.258 0.249 −28 4.337 −3 0.170 0.167 3 4.846 28
220 0.185 0.177 −8 6.433 32 0.258 0.250 −28 4.286 −3 0.165 0.161 3 4.850 28
224 0.194 0.186 −9 6.659 34 0.268 0.259 −30 4.200 −2 0.168 0.165 1 5.007 29

Table A7. Out-of-sample validation figures of the derived OLS proxy functions of BEL under 150–443
and 300–886 after the final iteration based on three different sets of validation value estimates. Thereby
emerges the first set of validation value estimates from pointwise subtraction of 1.96 times the standard
errors from the original set of validation values. The second set is the original set. The third set is the
addition counterpart of the first set.

k v.mae v.maea v.res v.mae0 v.res0 ns.mae ns.maea ns.res ns.mae0 ns.res0 cr.mae cr.maea cr.res cr.mae0 cr.res0

150–443 figures based on validation values minus 1.96 times standard errors

150 0.286 0.273 −30 9.878 57 0.330 0.319 −46 3.915 16 0.151 0.148 −13 7.473 49

150–443 figures based on validation values

150 0.247 0.237 −14 9.924 57 0.271 0.262 −35 4.612 22 0.122 0.120 −1 8.537 56

150–443 figures based on validation values plus 1.96 times standard errors

150 0.231 0.221 1 9.977 57 0.219 0.212 −24 5.473 28 0.130 0.127 11 9.591 64

300–886 figures based on validation values minus 1.96 times standard errors

224 0.236 0.225 −24 6.757 34 0.325 0.314 −41 4.610 −8 0.191 0.187 −11 4.307 22

300–886 figures based on validation values

224 0.194 0.186 −9 6.659 34 0.268 0.259 −30 4.200 −2 0.168 0.165 1 5.007 29

300–886 figures based on validation values plus 1.96 times standard errors

224 0.184 0.177 7 6.625 35 0.218 0.211 −19 3.982 4 0.173 0.169 13 5.813 37
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Table A8. AIC scores and out-of-sample validation figures of the gaussian generalized linear models
(GLMs) of BEL with identity, inverse and log link functions under 150–443 after each tenth iteration.

k AIC v.mae v.maea v.res v.mae0 v.res0 ns.mae ns.maea ns.res ns.mae0 ns.res0 cr.mae cr.maea cr.res cr.mae0 cr.res0

Gaussian with identity link

0 437, 251 4.557 4.357 −238 100.000 38 3.231 3.121 0 100.000 261 4.027 3.942 106 100.000 367
10 345, 045 0.839 0.802 0 21.468 104 0.389 0.376 23 21.659 113 0.650 0.636 89 27.112 179
20 333, 447 0.565 0.540 −10 16.780 82 0.597 0.577 −75 8.274 2 0.454 0.445 −40 10.083 38
30 330, 361 0.518 0.496 1 17.501 100 0.418 0.404 −47 7.970 37 0.264 0.259 1 13.378 85
40 328, 832 0.475 0.454 −10 16.888 98 0.509 0.492 −66 6.234 27 0.291 0.285 −26 10.497 68
50 327, 432 0.368 0.352 −15 13.268 78 0.391 0.378 −50 6.060 29 0.221 0.217 −9 10.674 69
60 326, 787 0.306 0.293 −17 10.760 62 0.301 0.290 −36 5.863 29 0.183 0.179 5 10.651 69
70 326, 453 0.291 0.278 −18 10.451 60 0.281 0.272 −33 6.060 30 0.175 0.171 8 10.958 72
80 326, 245 0.263 0.251 −23 9.389 54 0.309 0.298 −41 4.837 22 0.157 0.154 −4 8.945 59
90 326, 116 0.267 0.256 −24 9.196 54 0.313 0.303 −42 4.689 22 0.158 0.155 −7 8.587 57

100 326, 038 0.250 0.239 −18 9.152 53 0.276 0.266 −35 4.637 22 0.136 0.133 0 8.606 57
110 325, 968 0.237 0.226 −18 8.494 48 0.264 0.255 −34 4.144 18 0.129 0.126 −2 7.634 50
120 325, 928 0.241 0.230 −16 8.896 50 0.267 0.258 −34 4.153 18 0.124 0.122 −2 7.679 51
130 325, 896 0.250 0.239 −18 9.839 57 0.281 0.272 −37 4.810 24 0.122 0.120 −1 8.900 59
140 325, 873 0.246 0.235 −15 9.855 57 0.263 0.254 −33 4.809 24 0.120 0.117 1 8.822 58
150 325, 850 0.247 0.237 −14 9.924 57 0.271 0.262 −35 4.612 22 0.122 0.120 −1 8.537 56

Gaussian with inverse link

0 437, 251 4.557 4.357 −238 100.000 38 3.231 3.121 0 100.000 261 4.027 3.942 106 100.000 367
10 343, 426 1.036 0.990 1 33.705 192 0.650 0.628 −63 21.481 114 0.391 0.382 44 33.482 221
20 334, 985 0.689 0.659 −6 21.313 118 0.515 0.498 −62 10.319 49 0.324 0.317 −4 16.493 107
30 331, 426 0.512 0.490 −16 18.836 109 0.393 0.380 −45 12.277 65 0.248 0.243 15 18.960 125
40 328, 875 0.433 0.414 −5 14.354 82 0.317 0.306 −26 9.312 47 0.294 0.288 26 15.188 99
50 327, 877 0.383 0.366 −8 12.959 76 0.285 0.276 −24 8.961 46 0.271 0.265 25 14.592 95
60 327, 274 0.337 0.323 −16 12.572 73 0.328 0.316 −37 7.636 38 0.219 0.215 10 13.087 85
70 326, 875 0.290 0.277 −14 11.248 64 0.271 0.261 −32 6.233 31 0.156 0.153 6 10.588 70
80 326, 603 0.259 0.248 −16 9.976 58 0.287 0.278 −38 5.042 22 0.158 0.155 −8 8.014 52
90 326, 390 0.254 0.243 −20 8.462 47 0.392 0.379 −51 4.451 1 0.220 0.215 −17 5.676 36

100 326, 225 0.270 0.258 −21 8.884 49 0.393 0.379 −51 4.454 5 0.219 0.215 −12 6.732 44
110 326, 152 0.272 0.260 −20 8.558 47 0.375 0.363 −48 4.441 4 0.208 0.204 −10 6.545 42
120 326, 094 0.267 0.255 −19 8.418 47 0.380 0.367 −49 4.414 3 0.209 0.205 −12 6.194 40
130 326, 058 0.266 0.254 −19 8.638 48 0.379 0.367 −49 4.329 4 0.203 0.199 −11 6.362 41
140 325, 982 0.258 0.247 −17 8.353 45 0.363 0.351 −46 4.380 2 0.197 0.193 −10 6.059 38
150 325, 952 0.258 0.247 −16 8.468 45 0.353 0.341 −44 4.282 3 0.192 0.188 −8 6.088 39

Gaussian with log link

0 437, 251 4.557 4.357 −238 100.000 38 3.231 3.121 0 100.000 261 4.027 3.942 106 100.000 367
10 342, 325 0.879 0.840 26 25.171 132 0.422 0.408 −17 15.628 74 0.530 0.519 52 22.034 143
20 334, 417 0.661 0.632 −5 22.474 125 0.532 0.514 −64 10.764 51 0.330 0.323 −3 17.317 112
30 330, 901 0.560 0.536 −3 21.780 126 0.474 0.458 −55 11.199 59 0.266 0.261 3 17.802 117
40 328, 444 0.411 0.393 −10 13.639 78 0.315 0.304 −29 8.610 44 0.264 0.258 19 14.162 92
50 327, 574 0.341 0.326 −16 12.936 75 0.334 0.323 −35 8.294 42 0.262 0.257 12 13.642 89
60 327, 029 0.315 0.302 −17 11.991 69 0.312 0.301 −36 7.024 36 0.192 0.188 10 12.465 82
70 326, 637 0.279 0.267 −16 10.620 61 0.266 0.257 −31 6.142 31 0.162 0.158 9 10.797 71
80 326, 449 0.266 0.254 −21 10.069 59 0.304 0.294 −40 5.195 25 0.153 0.149 −4 9.234 61
90 326, 287 0.273 0.261 −22 9.742 57 0.300 0.290 −40 5.082 25 0.141 0.138 −5 8.990 59

100 326, 082 0.269 0.257 −23 8.052 45 0.370 0.358 −48 4.094 6 0.210 0.205 −13 6.314 41
110 326, 021 0.258 0.247 −19 8.043 44 0.343 0.331 −43 4.102 5 0.198 0.193 −7 6.381 41
120 325, 950 0.252 0.241 −17 7.891 42 0.329 0.318 −41 4.086 3 0.191 0.187 −7 5.883 37
130 325, 881 0.251 0.240 −18 8.049 45 0.359 0.347 −46 4.238 2 0.194 0.190 −10 5.924 38
140 325, 849 0.245 0.234 −17 7.978 44 0.340 0.328 −43 4.045 4 0.183 0.179 −7 6.131 40
150 325, 823 0.240 0.229 −15 7.980 44 0.316 0.305 −38 4.014 6 0.170 0.167 −2 6.434 42
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Table A9. AIC scores and out-of-sample validation figures of the gamma GLMs of BEL with identity,
inverse and log link functions under 150–443 after each tenth iteration.

k AIC v.mae v.maea v.res v.mae0 v.res0 ns.mae ns.maea ns.res ns.mae0 ns.res0 cr.mae cr.maea cr.res cr.mae0 cr.res0

Gamma with identity link

0 437, 243 4.557 4.357 −238 100.000 38 3.231 3.121 0 100.000 261 4.027 3.942 106 100.000 367
10 345, 605 0.872 0.834 1 23.485 114 0.315 0.304 6 19.861 105 0.530 0.519 68 25.266 167
20 333, 911 0.553 0.529 −12 16.265 79 0.599 0.579 −76 8.268 0 0.464 0.454 −43 9.895 34
30 330, 707 0.503 0.481 0 17.404 99 0.425 0.411 −49 7.754 35 0.267 0.262 −2 12.959 82
40 328, 589 0.376 0.359 −13 13.317 76 0.341 0.330 −39 7.187 35 0.238 0.233 6 12.341 80
50 327, 668 0.348 0.333 −15 13.173 77 0.356 0.344 −44 6.656 34 0.227 0.222 −4 11.348 74
60 327, 135 0.305 0.292 −16 11.190 65 0.304 0.294 −37 6.059 30 0.175 0.172 3 10.843 71
70 326, 686 0.273 0.261 −15 9.730 55 0.257 0.249 −30 5.364 26 0.165 0.161 9 9.928 65
80 326, 461 0.268 0.257 −21 9.471 54 0.287 0.277 −36 5.151 25 0.149 0.146 2 9.549 63
90 326, 328 0.259 0.248 −23 8.889 52 0.304 0.293 −40 4.373 20 0.148 0.145 −6 8.255 55

100 326, 246 0.238 0.227 −20 8.321 48 0.262 0.253 −34 4.279 19 0.137 0.134 −1 7.845 52
110 326, 184 0.233 0.223 −18 8.045 45 0.255 0.246 −33 3.907 16 0.130 0.127 −1 7.182 47
120 326, 135 0.228 0.218 −16 8.191 46 0.253 0.245 −33 3.696 15 0.129 0.126 −2 6.870 45
130 326, 093 0.244 0.233 −17 9.530 55 0.272 0.263 −35 4.628 22 0.124 0.122 0 8.596 57
140 326, 068 0.238 0.228 −17 9.416 54 0.271 0.261 −35 4.523 22 0.125 0.123 −1 8.371 55
150 326, 041 0.236 0.226 −14 9.329 53 0.260 0.251 −33 4.321 20 0.121 0.118 1 8.206 54

Gamma with inverse link

0 437, 243 4.557 4.357 −238 100.000 38 3.231 3.121 0 100.000 261 4.027 3.942 106 100.000 367
10 343, 969 1.037 0.991 0 33.818 193 0.661 0.639 −64 21.601 115 0.397 0.389 44 33.752 223
20 335, 495 0.679 0.649 −7 20.888 115 0.530 0.512 −65 9.637 43 0.335 0.328 −9 15.410 99
30 332, 646 0.627 0.600 −9 26.098 152 0.621 0.600 −82 12.361 64 0.346 0.339 −24 18.470 122
40 329, 192 0.409 0.391 −10 14.061 81 0.317 0.306 −27 9.719 50 0.289 0.283 23 15.405 101
50 328, 114 0.339 0.324 −12 12.599 73 0.313 0.302 −30 8.084 40 0.271 0.265 15 13.146 85
60 327, 513 0.328 0.313 −16 12.247 71 0.294 0.284 −29 8.341 43 0.240 0.235 18 13.902 91
70 327, 115 0.285 0.272 −12 11.127 64 0.251 0.243 −28 6.463 33 0.166 0.162 11 10.915 72
80 326, 795 0.252 0.241 −17 8.376 45 0.315 0.305 −39 4.069 9 0.196 0.192 −8 6.416 40
90 326, 615 0.250 0.239 −20 8.113 45 0.384 0.371 −51 4.414 0 0.218 0.213 −16 5.478 34

100 326, 445 0.263 0.252 −20 8.724 48 0.382 0.369 −49 4.410 5 0.211 0.206 −11 6.595 43
110 326, 370 0.266 0.255 −19 8.251 45 0.369 0.357 −47 4.494 2 0.205 0.201 −9 6.288 40
120 326, 310 0.258 0.247 −17 8.003 44 0.357 0.345 −45 4.435 2 0.196 0.192 −8 6.087 39
130 326, 277 0.259 0.248 −17 8.331 47 0.357 0.344 −45 4.356 4 0.187 0.183 −7 6.509 42
140 326, 246 0.262 0.250 −17 8.583 48 0.357 0.345 −45 4.304 5 0.183 0.179 −7 6.620 43
150 326, 222 0.254 0.243 −15 8.410 46 0.327 0.316 −40 4.111 7 0.171 0.167 −3 6.722 44

Gamma with log link

0 437, 243 4.557 4.357 −238 100.000 38 3.231 3.121 0 100.000 261 4.027 3.942 106 100.000 367
1 388, 234 2.365 2.261 −4 67.494 277 0.773 0.747 22 54.214 287 1.193 1.168 170 65.932 435

10 342, 942 0.870 0.832 21 24.998 131 0.440 0.425 −24 15.145 71 0.505 0.494 43 21.396 138
20 334, 881 0.649 0.621 −5 19.899 110 0.519 0.501 −65 8.283 36 0.312 0.306 −11 14.105 90
30 331, 227 0.544 0.520 −4 21.752 126 0.479 0.463 −57 11.010 58 0.262 0.257 0 17.458 115
40 328, 727 0.374 0.357 −10 14.009 81 0.329 0.318 −33 8.553 43 0.268 0.263 15 13.990 91
50 327, 806 0.328 0.313 −16 12.750 74 0.327 0.316 −33 8.325 42 0.272 0.266 14 13.779 90
60 327, 270 0.302 0.289 −15 11.825 68 0.297 0.287 −33 7.147 37 0.197 0.193 14 12.637 83
70 326, 866 0.264 0.253 −15 10.159 58 0.249 0.241 −28 6.071 31 0.165 0.162 12 10.693 70
80 326, 669 0.255 0.244 −19 9.819 57 0.288 0.279 −37 5.085 24 0.146 0.143 −2 9.090 60
90 326, 433 0.266 0.254 −23 8.891 51 0.327 0.316 −45 4.079 15 0.171 0.167 −12 7.353 48

100 326, 302 0.265 0.253 −23 7.839 44 0.361 0.349 −47 4.030 5 0.205 0.201 −12 6.246 40
110 326, 224 0.256 0.244 −18 8.139 45 0.335 0.324 −41 4.211 8 0.191 0.187 −3 7.043 46
120 326, 147 0.250 0.239 −18 7.817 43 0.340 0.328 −43 4.122 4 0.188 0.184 −6 6.247 41
130 326, 111 0.247 0.236 −17 7.750 43 0.341 0.329 −43 4.115 3 0.186 0.183 −7 6.060 39
140 326, 050 0.247 0.236 −17 7.730 43 0.336 0.324 −42 4.073 4 0.179 0.176 −6 6.117 40
150 326, 022 0.243 0.232 −15 7.820 43 0.323 0.312 −40 4.040 3 0.174 0.170 −4 6.010 39



Risks 2020, 8, 21

Table A10. AIC scores and out-of-sample validation figures of the inverse gaussian GLMs of BEL with
identity, inverse, log and 1

μ2 link functions under 150–443 after each tenth iteration.

k AIC v.mae v.maea v.res v.mae0 v.res0 ns.mae ns.maea ns.res ns.mae0 ns.res0 cr.mae cr.maea cr.res cr.mae0 cr.res0

inverse gaussian with identity link

0 437, 338 4.557 4.357 −238 100.000 38 3.231 3.121 0 100.000 261 4.027 3.942 106 100.000 367
10 346, 132 0.871 0.833 1 23.559 115 0.314 0.304 7 20.269 107 0.534 0.523 70 25.673 169
20 334, 430 0.549 0.524 −13 15.996 77 0.599 0.579 −77 8.273 −1 0.468 0.458 −44 9.809 32
30 331, 453 0.488 0.467 −4 15.939 89 0.517 0.499 −67 6.532 11 0.413 0.405 −40 9.280 38
40 328, 985 0.370 0.354 −13 13.279 76 0.338 0.327 −39 7.193 35 0.238 0.233 6 12.301 80
50 328, 064 0.332 0.317 −15 12.727 74 0.338 0.327 −40 6.871 35 0.232 0.227 1 11.664 76
60 327, 533 0.298 0.285 −17 10.994 64 0.304 0.294 −37 5.868 29 0.172 0.168 3 10.646 69
70 327, 082 0.274 0.262 −15 9.387 53 0.243 0.235 −27 5.535 27 0.171 0.167 13 10.253 67
80 326, 849 0.267 0.255 −20 9.426 54 0.278 0.268 −34 5.271 25 0.152 0.148 5 9.783 65
90 326, 715 0.247 0.236 −21 8.546 49 0.275 0.266 −35 4.399 20 0.140 0.137 −1 8.302 55

100 326, 630 0.236 0.225 −20 7.879 45 0.262 0.253 −34 3.979 16 0.140 0.137 −2 7.249 48
110 326, 564 0.225 0.215 −17 7.728 43 0.243 0.235 −31 3.850 15 0.129 0.126 0 6.958 46
120 326, 507 0.237 0.226 −18 8.776 50 0.270 0.260 −35 4.120 19 0.130 0.127 −3 7.710 51
130 326, 475 0.240 0.230 −17 9.225 53 0.265 0.256 −34 4.516 21 0.123 0.120 0 8.400 55
140 326, 447 0.241 0.230 −16 9.415 54 0.270 0.261 −35 4.543 21 0.124 0.122 −1 8.426 56
150 326, 352 0.249 0.238 −17 9.375 54 0.337 0.326 −44 4.224 12 0.150 0.146 −4 7.930 52

Inverse gaussian with inverse link

0 437, 338 4.557 4.357 −238 100.000 38 3.231 3.121 0 100.000 261 4.027 3.942 106 100.000 367
10 344, 458 1.129 1.079 −25 35.685 202 1.138 1.099 −150 14.423 63 0.639 0.626 −63 22.713 149
20 336, 004 0.682 0.652 −5 21.011 117 0.534 0.516 −67 8.866 41 0.321 0.314 −12 14.895 95
30 333, 060 0.626 0.598 −10 24.463 142 0.623 0.602 −83 10.859 55 0.376 0.369 −31 16.233 107
40 329, 632 0.412 0.394 −14 15.912 93 0.345 0.333 −29 12.096 64 0.318 0.311 28 18.446 121
50 328, 515 0.335 0.320 −12 12.387 71 0.305 0.295 −29 8.122 40 0.276 0.270 18 13.333 86
60 327, 916 0.321 0.307 −15 11.970 70 0.286 0.276 −27 8.385 44 0.247 0.241 20 13.973 91
70 327, 543 0.278 0.266 −12 10.488 60 0.246 0.238 −28 6.106 31 0.164 0.161 9 10.331 67
80 327, 196 0.249 0.238 −17 8.227 45 0.308 0.297 −38 4.037 9 0.193 0.189 −7 6.381 40
90 327, 012 0.247 0.236 −19 8.016 44 0.376 0.363 −49 4.390 −1 0.212 0.207 −15 5.407 33

100 326, 837 0.261 0.250 −20 8.469 46 0.375 0.363 −48 4.428 4 0.208 0.204 −10 6.569 43
110 326, 762 0.262 0.250 −18 8.090 44 0.365 0.353 −46 4.505 2 0.201 0.197 −8 6.242 40
120 326, 699 0.259 0.248 −18 8.106 45 0.367 0.355 −47 4.402 2 0.192 0.188 −9 6.082 39
130 326, 667 0.259 0.247 −17 7.987 44 0.352 0.340 −44 4.303 2 0.187 0.183 −8 5.958 38
140 326, 642 0.258 0.246 −16 8.243 46 0.340 0.328 −42 4.228 6 0.173 0.169 −5 6.602 43
150 326, 617 0.253 0.242 −15 8.152 44 0.324 0.313 −39 4.148 5 0.172 0.169 −3 6.476 42

Inverse gaussian with log link

0 437, 338 4.557 4.357 −238 100.000 38 3.231 3.121 0 100.000 261 4.027 3.942 106 100.000 367
10 343, 530 0.866 0.828 19 24.925 131 0.450 0.435 −28 14.940 69 0.494 0.484 39 21.122 136
20 335, 355 0.644 0.616 −5 19.653 109 0.526 0.509 −67 7.947 33 0.318 0.311 −14 13.490 85
30 331, 675 0.536 0.512 −4 21.697 125 0.482 0.465 −58 10.885 57 0.262 0.256 −2 17.245 113
40 329, 140 0.366 0.350 −10 13.913 80 0.325 0.314 −32 8.604 44 0.269 0.264 16 14.011 91
50 328, 190 0.324 0.310 −16 12.640 73 0.319 0.308 −32 8.482 43 0.274 0.268 16 13.966 91
60 327, 666 0.296 0.283 −15 11.626 67 0.290 0.280 −31 7.181 37 0.201 0.197 15 12.695 83
70 327, 263 0.261 0.250 −15 9.948 57 0.244 0.236 −27 6.042 30 0.172 0.168 12 10.531 69
80 327, 061 0.251 0.240 −18 9.746 56 0.284 0.275 −37 4.988 24 0.145 0.142 −1 8.964 59
90 326, 825 0.263 0.251 −23 8.769 51 0.321 0.310 −44 4.059 15 0.168 0.165 −11 7.316 48

100 326, 695 0.261 0.249 −22 7.727 43 0.352 0.340 −45 4.048 6 0.203 0.199 −10 6.341 41
110 326, 598 0.239 0.229 −17 7.408 40 0.343 0.332 −43 4.444 −1 0.185 0.181 −7 5.572 35
120 326, 530 0.249 0.238 −18 7.520 41 0.343 0.331 −43 4.247 1 0.191 0.187 −7 5.928 38
130 326, 494 0.246 0.235 −17 7.602 42 0.337 0.326 −43 4.108 2 0.183 0.179 −6 5.964 39
140 326, 471 0.246 0.235 −17 7.772 43 0.332 0.321 −42 4.068 4 0.177 0.173 −6 6.092 39
150 326, 413 0.247 0.237 −15 7.716 42 0.324 0.313 −40 4.095 2 0.172 0.168 −4 5.892 38

Inverse gaussian with 1
μ2 link

0 437, 338 4.557 4.357 −238 100.000 38 3.231 3.121 0 100.000 261 4.027 3.942 106 100.000 367
10 344, 467 0.985 0.941 −14 31.473 176 0.993 0.959 −130 12.573 46 0.561 0.549 −52 18.986 124
20 336, 815 0.668 0.639 −7 21.404 122 0.591 0.571 −75 9.506 38 0.372 0.364 −22 14.521 91
30 331, 792 0.478 0.457 −5 15.821 90 0.367 0.354 −28 10.573 53 0.373 0.365 33 17.496 114
40 330, 089 0.421 0.403 −1 15.183 89 0.295 0.285 −19 10.660 56 0.316 0.309 34 16.657 109
50 329, 020 0.376 0.359 −10 14.443 85 0.300 0.290 −21 11.439 60 0.320 0.313 34 17.553 115
60 328, 452 0.330 0.316 −12 12.905 75 0.290 0.280 −24 9.196 48 0.273 0.267 25 14.952 98
70 327, 925 0.316 0.302 −16 11.733 69 0.301 0.291 −35 7.090 35 0.200 0.195 6 11.701 76
80 327, 639 0.262 0.250 −18 8.128 43 0.298 0.288 −35 4.425 11 0.208 0.203 −1 7.205 45
90 327, 265 0.278 0.266 −22 8.311 46 0.355 0.343 −44 4.383 9 0.202 0.197 −7 7.090 46

100 327, 148 0.288 0.275 −22 8.166 44 0.357 0.345 −44 4.408 8 0.207 0.203 −6 7.039 46
110 327, 078 0.274 0.262 −20 7.943 43 0.354 0.342 −44 4.451 4 0.196 0.192 −7 6.434 41
120 326, 920 0.269 0.257 −18 8.350 46 0.374 0.361 −47 4.579 3 0.198 0.193 −9 6.419 41
130 326, 887 0.270 0.258 −18 8.437 47 0.360 0.348 −44 4.544 6 0.196 0.192 −4 7.151 46
140 326, 807 0.267 0.255 −18 8.193 45 0.345 0.333 −43 4.318 5 0.188 0.184 −5 6.661 43
150 326, 778 0.262 0.250 −16 8.258 44 0.332 0.321 −41 4.238 5 0.177 0.174 −3 6.518 42
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Table A11. AIC scores and out-of-sample validation figures of the gaussian GLMs of BEL with identity,
inverse and log link functions under 300–886 after each tenth and the final iteration.

k AIC v.mae v.maea v.res v.mae0 v.res0 ns.mae ns.maea ns.res ns.mae0 ns.res0 cr.mae cr.maea cr.res cr.mae0 cr.res0

Gaussian with identity link

0 437, 251 4.557 4.357 −238 100.000 38 3.231 3.121 0 100.000 261 4.027 3.942 106 100.000 367
10 345, 045 0.839 0.802 0 21.468 104 0.389 0.376 23 21.659 113 0.650 0.636 89 27.112 179
20 333, 447 0.565 0.540 −10 16.780 82 0.597 0.577 −75 8.274 2 0.454 0.445 −40 10.083 38
30 330, 361 0.518 0.496 1 17.501 100 0.418 0.404 −47 7.970 37 0.264 0.259 1 13.378 85
40 328, 832 0.475 0.454 −10 16.888 98 0.509 0.492 −66 6.234 27 0.291 0.285 −26 10.497 68
50 327, 432 0.368 0.352 −15 13.268 78 0.391 0.378 −50 6.060 29 0.221 0.217 −9 10.674 69
60 326, 787 0.306 0.293 −17 10.760 62 0.301 0.290 −36 5.863 29 0.183 0.179 5 10.651 69
70 326, 453 0.291 0.278 −18 10.451 60 0.281 0.272 −33 6.060 30 0.175 0.171 8 10.958 72
80 326, 245 0.263 0.251 −23 9.389 54 0.309 0.298 −41 4.837 22 0.157 0.154 −4 8.945 59
90 326, 116 0.267 0.256 −24 9.196 54 0.313 0.303 −42 4.689 22 0.158 0.155 −7 8.587 57

100 326, 038 0.250 0.239 −18 9.152 53 0.276 0.266 −35 4.637 22 0.136 0.133 0 8.606 57
110 325, 963 0.239 0.229 −18 9.132 52 0.269 0.260 −35 4.577 22 0.132 0.129 −1 8.358 55
120 325, 922 0.242 0.231 −16 9.519 54 0.273 0.263 −35 4.569 21 0.129 0.126 −1 8.380 55
130 325, 889 0.251 0.240 −18 10.506 61 0.287 0.277 −37 5.421 27 0.127 0.125 0 9.724 64
140 325, 865 0.246 0.235 −15 10.530 61 0.269 0.260 −34 5.329 27 0.123 0.120 2 9.526 63
150 325, 841 0.242 0.232 −14 10.556 61 0.274 0.265 −35 5.119 26 0.123 0.120 0 9.261 61
160 325, 821 0.243 0.232 −15 10.483 60 0.278 0.268 −36 5.018 25 0.127 0.124 0 9.144 60
170 325, 811 0.238 0.228 −13 10.140 58 0.265 0.256 −33 4.968 24 0.130 0.127 2 8.884 59
180 325, 766 0.241 0.230 −12 10.128 57 0.300 0.290 −37 4.552 18 0.149 0.146 2 8.716 58
190 325, 506 0.201 0.192 −13 6.458 32 0.275 0.266 −33 4.124 −2 0.173 0.169 −4 4.721 27
200 325, 488 0.186 0.178 −9 6.111 29 0.262 0.254 −29 4.460 −4 0.181 0.177 3 4.920 27
210 325, 482 0.184 0.176 −9 6.210 30 0.258 0.249 −28 4.337 −3 0.170 0.167 3 4.846 28
220 325, 468 0.185 0.177 −8 6.433 32 0.258 0.250 −28 4.286 −3 0.165 0.161 3 4.850 28
224 325, 459 0.194 0.186 −9 6.659 34 0.268 0.259 −30 4.200 −2 0.168 0.165 1 5.007 29

Gaussian with inverse link

0 437, 251 4.557 4.357 −238 100.000 38 3.231 3.121 0 100.000 261 4.027 3.942 106 100.000 367
10 343, 426 1.036 0.990 1 33.705 192 0.650 0.628 −63 21.481 114 0.391 0.382 44 33.482 221
20 334, 985 0.689 0.659 −6 21.313 118 0.515 0.498 −62 10.319 49 0.324 0.317 −4 16.493 107
30 331, 426 0.512 0.490 −16 18.836 109 0.393 0.380 −45 12.277 65 0.248 0.243 15 18.960 125
40 328, 875 0.433 0.414 −5 14.354 82 0.317 0.306 −26 9.312 47 0.294 0.288 26 15.188 99
50 327, 877 0.383 0.366 −8 12.959 76 0.285 0.276 −24 8.961 46 0.271 0.265 25 14.592 95
60 327, 274 0.337 0.323 −16 12.572 73 0.328 0.316 −37 7.636 38 0.219 0.215 10 13.087 85
70 326, 875 0.290 0.277 −14 11.248 64 0.271 0.261 −32 6.233 31 0.156 0.153 6 10.588 70
80 326, 603 0.259 0.248 −16 9.976 58 0.287 0.278 −38 5.042 22 0.158 0.155 −8 8.014 52
90 326, 390 0.254 0.243 −20 8.462 47 0.392 0.379 −51 4.451 1 0.220 0.215 −17 5.676 36

100 326, 224 0.269 0.257 −21 9.365 53 0.403 0.389 −52 4.500 7 0.225 0.220 −12 7.174 47
110 326, 135 0.266 0.254 −19 8.894 49 0.377 0.364 −49 4.334 5 0.205 0.201 −12 6.497 42
120 326, 069 0.266 0.254 −19 8.564 48 0.381 0.368 −50 4.271 4 0.204 0.200 −14 6.102 39
130 326, 033 0.265 0.253 −19 8.498 47 0.386 0.373 −50 4.445 2 0.212 0.207 −14 5.917 38
140 325, 950 0.253 0.242 −17 8.151 44 0.358 0.346 −46 4.345 1 0.189 0.185 −11 5.598 35
150 325, 924 0.255 0.244 −17 8.485 46 0.364 0.352 −46 4.288 3 0.192 0.188 −11 5.894 38
160 325, 886 0.258 0.247 −15 8.842 48 0.349 0.337 −44 4.199 5 0.178 0.174 −8 6.359 41
170 325, 869 0.249 0.238 −14 8.503 46 0.331 0.320 −40 4.254 5 0.174 0.171 −5 6.182 40
180 325, 850 0.248 0.237 −12 8.505 45 0.312 0.302 −37 4.099 6 0.164 0.161 −3 6.095 40
190 325, 820 0.238 0.228 −12 8.240 43 0.313 0.303 −37 4.137 4 0.169 0.166 −3 5.825 38
200 325, 803 0.244 0.234 −13 8.458 45 0.320 0.309 −38 4.073 6 0.171 0.167 −4 6.132 40
210 325, 800 0.241 0.231 −13 8.376 45 0.313 0.302 −36 4.059 6 0.171 0.167 −2 6.248 41
213 325, 797 0.241 0.230 −12 8.325 44 0.310 0.299 −36 4.063 6 0.171 0.167 −1 6.284 41

Gaussian with log link

0 437, 251 4.557 4.357 −238 100.000 38 3.231 3.121 0 100.000 261 4.027 3.942 106 100.000 367
10 342, 325 0.879 0.840 26 25.171 132 0.422 0.408 −17 15.628 74 0.530 0.519 52 22.034 143
20 334, 417 0.661 0.632 −5 22.474 125 0.532 0.514 −64 10.764 51 0.330 0.323 −3 17.317 112
30 330, 901 0.560 0.536 −3 21.780 126 0.474 0.458 −55 11.199 59 0.266 0.261 3 17.802 117
40 328, 444 0.411 0.393 −10 13.639 78 0.315 0.304 −29 8.610 44 0.264 0.258 19 14.162 92
50 327, 574 0.341 0.326 −16 12.936 75 0.334 0.323 −35 8.294 42 0.262 0.257 12 13.642 89
60 327, 029 0.315 0.302 −17 11.991 69 0.312 0.301 −36 7.024 36 0.192 0.188 10 12.465 82
70 326, 637 0.279 0.267 −16 10.620 61 0.266 0.257 −31 6.142 31 0.162 0.158 9 10.797 71
80 326, 449 0.266 0.254 −21 10.069 59 0.304 0.294 −40 5.195 25 0.153 0.149 −4 9.234 61
90 326, 287 0.273 0.261 −22 9.742 57 0.300 0.290 −40 5.082 25 0.141 0.138 −5 8.990 59

100 326, 082 0.269 0.257 −23 8.052 45 0.370 0.358 −48 4.094 6 0.210 0.205 −13 6.314 41
110 326, 021 0.258 0.247 −19 8.043 44 0.343 0.331 −43 4.102 5 0.198 0.193 −7 6.381 41
120 325, 950 0.252 0.241 −17 7.891 42 0.329 0.318 −41 4.086 3 0.191 0.187 −7 5.883 37
130 325, 743 0.208 0.199 −13 6.208 30 0.310 0.299 −38 4.994 −10 0.191 0.187 −8 4.273 21
140 325, 693 0.211 0.202 −13 6.620 34 0.302 0.292 −36 4.522 −3 0.186 0.182 −3 5.037 30
150 325, 665 0.210 0.200 −13 6.729 35 0.298 0.288 −36 4.385 −2 0.180 0.176 −3 5.168 31
160 325, 626 0.214 0.205 −14 6.549 33 0.302 0.292 −36 4.410 −3 0.183 0.179 −4 5.076 30
170 325, 610 0.214 0.204 −14 6.590 33 0.291 0.281 −35 4.273 −3 0.173 0.169 −2 5.028 30
180 325, 584 0.214 0.204 −13 6.587 33 0.296 0.286 −35 4.386 −4 0.176 0.172 −2 4.973 29
190 325, 575 0.212 0.203 −12 6.502 32 0.283 0.273 −33 4.363 −4 0.173 0.170 0 4.950 29
200 325, 567 0.201 0.192 −9 6.272 30 0.264 0.255 −29 4.491 −4 0.171 0.168 3 4.863 27
210 325, 553 0.205 0.196 −9 6.655 32 0.267 0.258 −29 4.398 −2 0.176 0.173 3 5.165 30
214 325, 552 0.206 0.197 −10 6.640 32 0.267 0.258 −29 4.402 −2 0.177 0.173 3 5.180 30
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Table A12. AIC scores and out-of-sample validation figures of the gamma GLMs of BEL with identity,
inverse and log link functions under 300–886 after each tenth and the final iteration.

k AIC v.mae v.maea v.res v.mae0 v.res0 ns.mae ns.maea ns.res ns.mae0 ns.res0 cr.mae cr.maea cr.res cr.mae0 cr.res0

Gamma with identity link

0 437, 243 4.557 4.357 −238 100.000 38 3.231 3.121 0 100.000 261 4.027 3.942 106 100.000 367
10 345, 605 0.872 0.834 1 23.485 114 0.315 0.304 6 19.861 105 0.530 0.519 68 25.266 167
20 333, 911 0.553 0.529 −12 16.265 79 0.599 0.579 −76 8.268 0 0.464 0.454 −43 9.895 34
30 330, 707 0.503 0.481 0 17.404 99 0.425 0.411 −49 7.754 35 0.267 0.262 −2 12.959 82
40 328, 589 0.376 0.359 −13 13.317 76 0.341 0.330 −39 7.187 35 0.238 0.233 6 12.341 80
50 327, 668 0.348 0.333 −15 13.173 77 0.356 0.344 −44 6.656 34 0.227 0.222 −4 11.348 74
60 327, 135 0.305 0.292 −16 11.190 65 0.304 0.294 −37 6.059 30 0.175 0.172 3 10.843 71
70 326, 686 0.273 0.261 −15 9.730 55 0.257 0.249 −30 5.364 26 0.165 0.161 9 9.928 65
80 326, 461 0.268 0.257 −21 9.471 54 0.287 0.277 −36 5.151 25 0.149 0.146 2 9.549 63
90 326, 328 0.259 0.248 −23 8.889 52 0.304 0.293 −40 4.373 20 0.148 0.145 −6 8.255 55

100 326, 244 0.240 0.229 −20 9.273 54 0.282 0.273 −37 4.759 22 0.144 0.141 −2 8.662 57
110 326, 178 0.236 0.225 −18 8.837 51 0.262 0.254 −34 4.454 20 0.135 0.132 0 8.139 54
120 326, 117 0.237 0.226 −18 9.668 56 0.275 0.266 −36 4.845 24 0.129 0.126 −1 8.799 58
130 326, 084 0.245 0.235 −17 10.148 59 0.270 0.260 −35 5.236 26 0.122 0.120 1 9.375 62
140 326, 058 0.243 0.232 −17 10.153 58 0.273 0.264 −35 5.092 25 0.125 0.122 −1 9.122 60
150 326, 031 0.239 0.229 −14 10.130 58 0.263 0.254 −33 4.914 24 0.121 0.118 2 9.014 60
160 325, 871 0.232 0.222 −15 7.898 44 0.317 0.307 −39 3.918 5 0.174 0.170 −4 6.237 40
170 325, 729 0.199 0.190 −13 6.235 30 0.280 0.271 −34 4.288 −5 0.176 0.172 −2 4.684 27
180 325, 718 0.201 0.192 −13 6.171 30 0.279 0.270 −34 4.253 −5 0.172 0.169 −2 4.623 27
190 325, 703 0.197 0.189 −12 6.158 30 0.278 0.268 −33 4.269 −5 0.171 0.168 −3 4.521 26
200 325, 697 0.194 0.185 −11 5.943 28 0.264 0.255 −30 4.416 −5 0.169 0.165 0 4.470 25
210 325, 689 0.190 0.181 −10 5.992 28 0.261 0.252 −29 4.381 −5 0.169 0.165 1 4.534 25
212 325, 689 0.189 0.180 −11 5.975 28 0.261 0.252 −29 4.384 −5 0.169 0.165 1 4.545 25

Gamma with inverse link

0 437, 243 4.557 4.357 −238 100.000 38 3.231 3.121 0 100.000 261 4.027 3.942 106 100.000 367
10 343, 969 1.037 0.991 0 33.818 193 0.661 0.639 −64 21.601 115 0.397 0.389 44 33.752 223
20 335, 495 0.679 0.649 −7 20.888 115 0.530 0.512 −65 9.637 43 0.335 0.328 −9 15.410 99
30 332, 646 0.627 0.600 −9 26.098 152 0.621 0.600 −82 12.361 64 0.346 0.339 −24 18.470 122
40 329, 192 0.409 0.391 −10 14.061 81 0.317 0.306 −27 9.719 50 0.289 0.283 23 15.405 101
50 328, 114 0.339 0.324 −12 12.599 73 0.313 0.302 −30 8.084 40 0.271 0.265 15 13.146 85
60 327, 513 0.328 0.313 −16 12.247 71 0.294 0.284 −29 8.341 43 0.240 0.235 18 13.902 91
70 327, 115 0.285 0.272 −12 11.127 64 0.251 0.243 −28 6.463 33 0.166 0.162 11 10.915 72
80 326, 795 0.252 0.241 −17 8.376 45 0.315 0.305 −39 4.069 9 0.196 0.192 −8 6.416 40
90 326, 615 0.250 0.239 −20 8.113 45 0.384 0.371 −51 4.414 0 0.218 0.213 −16 5.478 34

100 326, 445 0.263 0.252 −20 9.213 52 0.387 0.374 −50 4.469 8 0.219 0.214 −10 7.316 48
110 326, 355 0.272 0.260 −21 8.812 49 0.384 0.371 −50 4.313 5 0.209 0.205 −14 6.489 42
120 326, 297 0.267 0.255 −20 8.378 46 0.377 0.365 −48 4.470 2 0.206 0.202 −11 6.140 39
130 326, 248 0.259 0.248 −17 8.210 45 0.365 0.352 −46 4.437 1 0.200 0.196 −10 5.933 38
140 326, 214 0.258 0.247 −17 8.212 45 0.355 0.343 −45 4.404 3 0.192 0.188 −9 6.077 39
150 326, 190 0.260 0.248 −17 8.701 49 0.349 0.337 −44 4.217 7 0.180 0.176 −7 6.781 44
160 326, 147 0.247 0.236 −15 8.556 47 0.329 0.317 −40 4.091 7 0.174 0.170 −4 6.643 43
170 326, 070 0.247 0.236 −15 8.355 46 0.332 0.321 −41 4.077 5 0.173 0.169 −6 6.182 40
180 326, 045 0.243 0.233 −14 8.143 43 0.307 0.297 −37 4.001 6 0.164 0.160 −3 6.107 40
190 326, 026 0.236 0.225 −13 7.996 42 0.305 0.295 −36 4.039 5 0.165 0.161 −2 5.973 39
200 325, 979 0.239 0.229 −12 8.320 45 0.284 0.274 −31 4.162 11 0.154 0.151 5 7.110 47
208 325, 969 0.234 0.223 −11 8.162 44 0.288 0.278 −31 4.185 9 0.158 0.154 5 6.832 45

Gamma with log link

0 437, 243 4.557 4.357 −238 100.000 38 3.231 3.121 0 100.000 261 4.027 3.942 106 100.000 367
10 342, 942 0.870 0.832 21 24.998 131 0.440 0.425 −24 15.145 71 0.505 0.494 43 21.396 138
20 334, 881 0.649 0.621 −5 19.899 110 0.519 0.501 −65 8.283 36 0.312 0.306 −11 14.105 90
30 331, 227 0.544 0.520 −4 21.752 126 0.479 0.463 −57 11.010 58 0.262 0.257 0 17.458 115
40 328, 727 0.374 0.357 −10 14.009 81 0.329 0.318 −33 8.553 43 0.268 0.263 15 13.990 91
50 327, 806 0.328 0.313 −16 12.750 74 0.327 0.316 −33 8.325 42 0.272 0.266 14 13.779 90
60 327, 270 0.302 0.289 −15 11.825 68 0.297 0.287 −33 7.147 37 0.197 0.193 14 12.637 83
70 326, 866 0.264 0.253 −15 10.159 58 0.249 0.241 −28 6.071 31 0.165 0.162 12 10.693 70
80 326, 669 0.255 0.244 −19 9.819 57 0.288 0.279 −37 5.085 24 0.146 0.143 −2 9.090 60
90 326, 433 0.266 0.254 −23 8.891 51 0.327 0.316 −45 4.079 15 0.171 0.167 −12 7.353 48

100 326, 302 0.265 0.253 −23 7.839 44 0.361 0.349 −47 4.030 5 0.205 0.201 −12 6.246 40
110 326, 224 0.256 0.244 −18 8.139 45 0.335 0.324 −41 4.211 8 0.191 0.187 −3 7.043 46
120 326, 015 0.220 0.210 −17 6.898 36 0.317 0.306 −40 4.411 −1 0.194 0.190 −7 5.364 33
130 325, 973 0.216 0.207 −15 6.654 33 0.307 0.296 −37 4.544 −4 0.196 0.192 −4 5.114 30
140 325, 919 0.212 0.203 −15 6.334 31 0.302 0.292 −37 4.556 −5 0.191 0.187 −4 4.883 28
150 325, 878 0.215 0.205 −14 6.486 33 0.297 0.287 −36 4.375 −3 0.181 0.177 −3 4.968 29
160 325, 858 0.216 0.206 −14 6.619 34 0.299 0.289 −35 4.442 −2 0.181 0.177 −1 5.275 32
170 325, 826 0.213 0.203 −14 6.485 33 0.302 0.292 −36 4.464 −4 0.183 0.180 −3 5.109 30
180 325, 816 0.213 0.204 −14 6.505 33 0.300 0.290 −36 4.468 −3 0.179 0.176 −1 5.238 31
190 325, 797 0.210 0.201 −14 6.580 33 0.295 0.285 −35 4.406 −3 0.179 0.176 −2 5.157 31
200 325, 783 0.208 0.199 −13 6.496 32 0.290 0.280 −34 4.421 −3 0.178 0.174 −1 5.140 30
210 325, 777 0.200 0.191 −10 6.260 30 0.263 0.254 −28 4.471 −3 0.176 0.173 4 5.107 30
220 325, 774 0.199 0.190 −10 6.248 30 0.264 0.255 −28 4.541 −3 0.179 0.175 4 5.085 29
226 325, 767 0.198 0.189 −8 6.256 29 0.249 0.241 −24 4.532 −1 0.184 0.180 8 5.417 32
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Table A13. AIC scores and out-of-sample validation figures of the inverse gaussian GLMs of BEL with
identity, inverse, log and 1

μ2 link functions under 300–886 after each tenth and the final iteration.

k AIC v.mae v.maea v.res v.mae0 v.res0 ns.mae ns.maea ns.res ns.mae0 ns.res0 cr.mae cr.maea cr.res cr.mae0 cr.res0

Inverse gaussian with identity link

0 437, 338 4.557 4.357 −238 100.000 38 3.231 3.121 0 100.000 261 4.027 3.942 106 100.000 367
10 346, 132 0.871 0.833 1 23.559 115 0.314 0.304 7 20.269 107 0.534 0.523 70 25.673 169
20 334, 430 0.549 0.524 −13 15.996 77 0.599 0.579 −77 8.273 −1 0.468 0.458 −44 9.809 32
30 331, 453 0.488 0.467 −4 15.939 89 0.517 0.499 −67 6.532 11 0.413 0.405 −40 9.280 38
40 328, 985 0.370 0.354 −13 13.279 76 0.338 0.327 −39 7.193 35 0.238 0.233 6 12.301 80
50 328, 064 0.332 0.317 −15 12.727 74 0.338 0.327 −40 6.871 35 0.232 0.227 1 11.664 76
60 327, 533 0.298 0.285 −17 10.994 64 0.304 0.294 −37 5.868 29 0.172 0.168 3 10.646 69
70 327, 082 0.274 0.262 −15 9.387 53 0.243 0.235 −27 5.535 27 0.171 0.167 13 10.253 67
80 326, 849 0.267 0.255 −20 9.426 54 0.278 0.268 −34 5.271 25 0.152 0.148 5 9.783 65
90 326, 715 0.247 0.236 −21 8.546 49 0.275 0.266 −35 4.399 20 0.140 0.137 −1 8.302 55

100 326, 627 0.234 0.224 −20 8.454 49 0.266 0.257 −34 4.414 20 0.144 0.141 −1 8.023 53
110 326, 557 0.225 0.215 −17 8.350 47 0.246 0.238 −31 4.337 19 0.132 0.129 2 7.841 52
120 326, 505 0.233 0.223 −17 8.897 51 0.256 0.247 −33 4.428 21 0.125 0.123 0 8.106 54
130 326, 465 0.243 0.232 −16 9.965 58 0.265 0.256 −34 5.126 26 0.122 0.120 1 9.216 61
140 326, 442 0.244 0.233 −16 10.175 59 0.273 0.264 −35 5.079 25 0.125 0.122 0 9.098 60
150 326, 357 0.252 0.241 −16 10.133 58 0.352 0.340 −45 4.601 15 0.169 0.166 −1 8.831 58
160 326, 130 0.206 0.197 −15 6.294 31 0.293 0.283 −36 4.360 −5 0.187 0.183 −4 4.711 26
170 326, 112 0.204 0.195 −15 6.173 30 0.289 0.279 −35 4.284 −5 0.179 0.175 −4 4.688 27
180 326, 099 0.203 0.194 −14 6.130 30 0.283 0.273 −34 4.277 −5 0.177 0.173 −3 4.654 26
190 326, 088 0.204 0.195 −14 6.143 30 0.282 0.272 −34 4.280 −5 0.178 0.174 −3 4.699 27
200 326, 076 0.204 0.195 −14 6.172 30 0.286 0.276 −34 4.347 −4 0.184 0.180 −3 4.823 27
210 326, 071 0.199 0.190 −12 6.140 30 0.273 0.264 −32 4.277 −4 0.183 0.179 0 4.868 28
217 326, 069 0.191 0.183 −11 5.967 28 0.261 0.252 −29 4.364 −5 0.178 0.175 2 4.779 27

Inverse gaussian with inverse link

0 437, 338 4.557 4.357 −238 100.000 38 3.231 3.121 0 100.000 261 4.027 3.942 106 100.000 367
10 344, 458 1.129 1.079 −25 35.685 202 1.138 1.099 −150 14.423 63 0.639 0.626 −63 22.713 149
20 336, 004 0.682 0.652 −5 21.011 117 0.534 0.516 −67 8.866 41 0.321 0.314 −12 14.895 95
30 333, 060 0.626 0.598 −10 24.463 142 0.623 0.602 −83 10.859 55 0.376 0.369 −31 16.233 107
40 329, 632 0.412 0.394 −14 15.912 93 0.345 0.333 −29 12.096 64 0.318 0.311 28 18.446 121
50 328, 515 0.335 0.320 −12 12.387 71 0.305 0.295 −29 8.122 40 0.276 0.270 18 13.333 86
60 327, 916 0.321 0.307 −15 11.970 70 0.286 0.276 −27 8.385 44 0.247 0.241 20 13.973 91
70 327, 543 0.278 0.266 −12 10.488 60 0.246 0.238 −28 6.106 31 0.164 0.161 9 10.331 67
80 327, 196 0.249 0.238 −17 8.227 45 0.308 0.297 −38 4.037 9 0.193 0.189 −7 6.381 40
90 327, 012 0.247 0.236 −19 8.016 44 0.376 0.363 −49 4.390 −1 0.212 0.207 −15 5.407 33

100 326, 836 0.261 0.250 −20 9.073 51 0.382 0.369 −49 4.438 8 0.215 0.211 −9 7.237 47
110 326, 750 0.268 0.257 −21 8.679 47 0.386 0.373 −50 4.510 4 0.217 0.212 −12 6.490 42
120 326, 674 0.263 0.251 −19 8.191 45 0.378 0.365 −49 4.499 1 0.207 0.203 −12 6.011 38
130 326, 636 0.261 0.250 −18 8.380 46 0.373 0.360 −48 4.402 2 0.198 0.193 −12 5.985 38
140 326, 607 0.258 0.247 −17 8.253 46 0.349 0.337 −44 4.289 4 0.185 0.181 −8 6.277 40
150 326, 581 0.258 0.246 −17 8.437 47 0.350 0.338 −44 4.228 6 0.183 0.179 −7 6.505 42
160 326, 538 0.246 0.235 −15 8.445 47 0.326 0.315 −40 4.077 7 0.173 0.169 −4 6.572 43
170 326, 522 0.249 0.238 −15 8.148 45 0.322 0.311 −39 4.119 6 0.175 0.172 −2 6.603 43
180 326, 468 0.245 0.234 −14 8.583 47 0.298 0.288 −34 4.303 13 0.162 0.159 4 7.724 51
190 326, 455 0.243 0.233 −14 8.506 47 0.299 0.289 −34 4.290 13 0.163 0.160 4 7.641 50
200 326, 399 0.231 0.221 −12 7.918 42 0.286 0.277 −31 4.208 9 0.158 0.155 6 6.856 45
210 326, 365 0.233 0.223 −12 7.983 43 0.288 0.279 −31 4.208 9 0.159 0.155 5 6.765 45
219 326, 363 0.233 0.223 −11 8.040 43 0.283 0.274 −31 4.130 9 0.153 0.150 5 6.786 45
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Table A13. Cont.

k AIC v.mae v.maea v.res v.mae0 v.res0 ns.mae ns.maea ns.res ns.mae0 ns.res0 cr.mae cr.maea cr.res cr.mae0 cr.res0

Inverse gaussian with log link

0 437, 338 4.557 4.357 −238 100.000 38 3.231 3.121 0 100.000 261 4.027 3.942 106 100.000 367
10 343, 530 0.866 0.828 19 24.925 131 0.450 0.435 −28 14.940 69 0.494 0.484 39 21.122 136
20 335, 355 0.644 0.616 −5 19.653 109 0.526 0.509 −67 7.947 33 0.318 0.311 −14 13.490 85
30 331, 675 0.536 0.512 −4 21.697 125 0.482 0.465 −58 10.885 57 0.262 0.256 −2 17.245 113
40 329, 140 0.366 0.350 −10 13.913 80 0.325 0.314 −32 8.604 44 0.269 0.264 16 14.011 91
50 328, 190 0.324 0.310 −16 12.640 73 0.319 0.308 −32 8.482 43 0.274 0.268 16 13.966 91
60 327, 666 0.296 0.283 −15 11.626 67 0.290 0.280 −31 7.181 37 0.201 0.197 15 12.695 83
70 327, 263 0.261 0.250 −15 9.948 57 0.244 0.236 −27 6.042 30 0.172 0.168 12 10.531 69
80 327, 061 0.251 0.240 −18 9.746 56 0.284 0.275 −37 4.988 24 0.145 0.142 −1 8.964 59
90 326, 825 0.263 0.251 −23 8.769 51 0.321 0.310 −44 4.059 15 0.168 0.165 −11 7.316 48

100 326, 695 0.261 0.249 −22 7.727 43 0.352 0.340 −45 4.048 6 0.203 0.199 −10 6.341 41
110 326, 589 0.240 0.230 −19 7.484 41 0.342 0.330 −44 4.124 1 0.192 0.188 −11 5.484 35
120 326, 409 0.216 0.207 −16 6.397 32 0.299 0.289 −37 4.534 −2 0.195 0.191 −4 5.170 30
130 326, 363 0.216 0.207 −15 6.314 31 0.308 0.298 −37 4.693 −6 0.201 0.196 −4 4.957 28
140 326, 331 0.218 0.208 −15 6.537 33 0.303 0.292 −36 4.505 −3 0.195 0.191 −1 5.362 32
150 326, 270 0.216 0.207 −14 6.457 32 0.302 0.291 −36 4.524 −4 0.189 0.185 −2 5.049 30
160 326, 249 0.217 0.208 −14 6.596 34 0.298 0.288 −36 4.418 −2 0.182 0.178 −1 5.291 32
170 326, 231 0.217 0.207 −15 6.492 32 0.296 0.286 −35 4.391 −3 0.179 0.175 −2 5.189 31
180 326, 206 0.214 0.205 −15 6.426 32 0.302 0.291 −36 4.466 −4 0.179 0.175 −3 4.950 29
190 326, 191 0.206 0.197 −13 6.472 33 0.288 0.279 −34 4.422 −3 0.173 0.170 0 5.149 31
200 326, 176 0.208 0.199 −13 6.545 33 0.286 0.276 −33 4.430 −2 0.179 0.175 0 5.288 31
210 326, 161 0.208 0.199 −13 6.501 33 0.286 0.276 −33 4.439 −2 0.184 0.180 1 5.318 32
220 326, 153 0.202 0.193 −10 6.280 30 0.260 0.251 −27 4.455 −2 0.178 0.174 5 5.190 31
222 326, 153 0.201 0.192 −10 6.291 30 0.261 0.252 −28 4.494 −3 0.180 0.177 5 5.176 30

Inverse gaussian with 1
μ2 link

0 437, 338 4.557 4.357 −238 100.000 38 3.231 3.121 0 100.000 261 4.027 3.942 106 100.000 367
10 344, 467 0.985 0.941 −14 31.473 176 0.993 0.959 −130 12.573 46 0.561 0.549 −52 18.986 124
20 336, 815 0.668 0.639 −7 21.404 122 0.591 0.571 −75 9.506 38 0.372 0.364 −22 14.521 91
30 331, 792 0.478 0.457 −5 15.821 90 0.367 0.354 −28 10.573 53 0.373 0.365 33 17.496 114
40 330, 089 0.421 0.403 −1 15.183 89 0.295 0.285 −19 10.660 56 0.316 0.309 34 16.657 109
50 329, 020 0.376 0.359 −10 14.443 85 0.300 0.290 −21 11.439 60 0.320 0.313 34 17.553 115
60 328, 452 0.330 0.316 −12 12.905 75 0.290 0.280 −24 9.196 48 0.273 0.267 25 14.952 98
70 327, 925 0.316 0.302 −16 11.733 69 0.301 0.291 −35 7.090 35 0.200 0.195 6 11.701 76
80 327, 639 0.262 0.250 −18 8.128 43 0.298 0.288 −35 4.425 11 0.208 0.203 −1 7.205 45
90 327, 265 0.278 0.266 −22 8.311 46 0.355 0.343 −44 4.383 9 0.202 0.197 −7 7.090 46

100 327, 148 0.288 0.275 −22 8.166 44 0.357 0.345 −44 4.408 8 0.207 0.203 −6 7.039 46
110 327, 077 0.275 0.262 −20 7.965 42 0.366 0.353 −45 4.676 2 0.207 0.202 −7 6.410 40
120 326, 916 0.274 0.262 −18 8.313 45 0.393 0.380 −47 5.133 1 0.228 0.223 −5 6.790 43
130 326, 876 0.269 0.257 −18 8.133 43 0.396 0.382 −47 5.217 0 0.234 0.229 −5 6.625 42
140 326, 789 0.259 0.248 −18 8.149 44 0.395 0.381 −47 5.074 1 0.249 0.244 −6 6.697 42
150 326, 576 0.227 0.217 −15 6.896 34 0.341 0.329 −39 5.291 −5 0.221 0.217 −3 5.510 31
160 326, 479 0.214 0.205 −16 6.274 29 0.291 0.281 −35 4.571 −6 0.206 0.202 −8 4.617 22
170 326, 451 0.210 0.201 −15 6.035 26 0.285 0.275 −34 4.611 −8 0.202 0.198 −8 4.441 19
180 326, 426 0.196 0.187 −13 5.753 25 0.250 0.242 −28 4.373 −6 0.187 0.183 −2 4.426 21
190 326, 408 0.195 0.187 −13 5.682 24 0.249 0.241 −28 4.360 −6 0.188 0.184 −2 4.464 21
200 326, 397 0.193 0.184 −13 5.686 24 0.245 0.237 −27 4.252 −5 0.186 0.182 −3 4.382 20
210 326, 305 0.187 0.179 −13 5.721 27 0.237 0.229 −26 3.811 0 0.162 0.159 2 4.510 27
220 326, 172 0.176 0.168 −14 5.110 26 0.197 0.191 −22 3.346 4 0.146 0.143 6 4.919 31
230 326, 160 0.175 0.168 −14 4.994 25 0.206 0.199 −21 3.583 3 0.159 0.155 8 5.114 32
240 326, 141 0.166 0.159 −11 5.012 24 0.197 0.190 −16 3.909 5 0.182 0.178 14 5.560 35
250 326, 124 0.174 0.166 −12 5.058 25 0.193 0.186 −15 3.833 9 0.188 0.184 17 6.266 41
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Table A14. AIC scores and out-of-sample validation figures of the gaussian, gamma and inverse
gaussian GLMs of BEL with identity, inverse, log and 1

μ2 link functions under 150–443 and 300–886
after the final iteration. Highlighted in green and red respectively the best and worst AIC scores and
validation figures.

k AIC v.mae v.maea v.res v.mae0 v.res0 ns.mae ns.maea ns.res ns.mae0 ns.res0 cr.mae cr.maea cr.res cr.mae0 cr.res0

Gaussian with identity link under 150-443

150 325, 850 0.247 0.237 −14 9.924 57 0.271 0.262 −35 4.612 22 0.122 0.120 −1 8.537 56

Gaussian with inverse link under 150-443

150 325, 952 0.258 0.247 −16 8.468 45 0.353 0.341 −44 4.282 3 0.192 0.188 −8 6.088 39

Gaussian with log link under 150-443

150 325, 823 0.240 0.229 −15 7.980 44 0.316 0.305 −38 4.014 6 0.170 0.167 −2 6.434 42

Gamma with identity link under 150-443

150 326, 041 0.236 0.226 −14 9.329 53 0.260 0.251 −33 4.321 20 0.121 0.118 1 8.206 54

Gamma with inverse link under 150-443

150 326, 222 0.254 0.243 −15 8.410 46 0.327 0.316 −40 4.111 7 0.171 0.167 −3 6.722 44

Gamma with log link under 150-443

150 326, 022 0.243 0.232 −15 7.820 43 0.323 0.312 −40 4.040 3 0.174 0.170 −4 6.010 39

Inverse gaussian with identity link under 150-443

150 326, 352 0.249 0.238 −17 9.375 54 0.337 0.326 −44 4.224 12 0.150 0.146 −4 7.930 52

Inverse gaussian with inverse link under 150-443

150 326, 617 0.253 0.242 −15 8.152 44 0.324 0.313 −39 4.148 5 0.172 0.169 −3 6.476 42

Inverse gaussian with log link under 150-443

150 326, 413 0.247 0.237 −15 7.716 42 0.324 0.313 −40 4.095 2 0.172 0.168 −4 5.892 38

Inverse gaussian with 1
μ2 link under 150-443

150 326, 778 0.262 0.250 −16 8.258 44 0.332 0.321 −41 4.238 5 0.177 0.174 −3 6.518 42

Gaussian with identity link under 300-886

224 325, 459 0.194 0.186 −9 6.659 34 0.268 0.259 −30 4.200 −2 0.168 0.165 1 5.007 29

Gaussian with inverse link under 300-886

213 325, 797 0.241 0.230 −12 8.325 44 0.310 0.299 −36 4.063 6 0.171 0.167 −1 6.284 41

Gaussian with log link under 300-886

214 325, 552 0.206 0.197 −10 6.640 32 0.267 0.258 −29 4.402 −2 0.177 0.173 3 5.180 30

Gamma with identity link under 300-886

212 325, 689 0.189 0.180 −11 5.975 28 0.261 0.252 −29 4.384 −5 0.169 0.165 1 4.545 25

Gamma with inverse link under 300-886

208 325, 969 0.234 0.223 −11 8.162 44 0.288 0.278 −31 4.185 9 0.158 0.154 5 6.832 45

Gamma with log link under 300-886

226 325, 767 0.198 0.189 −8 6.256 29 0.249 0.241 −24 4.532 −1 0.184 0.180 8 5.417 32

Inverse gaussian with identity link under 300-886

217 326, 069 0.191 0.183 −11 5.967 28 0.261 0.252 −29 4.364 −5 0.178 0.175 2 4.779 27

Inverse gaussian with inverse link under 300-886

219 326, 363 0.233 0.223 −11 8.040 43 0.283 0.274 −31 4.130 9 0.153 0.150 5 6.786 45

Inverse gaussian with log link under 300-886

222 326, 153 0.201 0.192 −10 6.291 30 0.261 0.252 −28 4.494 −3 0.180 0.177 5 5.176 30

Inverse gaussian with 1
μ2 link under 300-886

250 326, 124 0.174 0.166 −12 5.058 25 0.193 0.186 −15 3.833 9 0.188 0.184 17 6.266 41
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Table A15. Out-of-sample validation figures of selected generalized additive models (GAMs) of BEL
with varying spline function number per dimension and fixed spline function type under 150–443 after
each tenth and the finally selected smooth function.

k Kmax v.mae v.maea v.res v.mae0 v.res0 ns.mae ns.maea ns.res ns.mae0 ns.res0 cr.mae cr.maea cr.res cr.mae0 cr.res0

4 Thin plate regression splines under gaussian with identity link in stagewise selection of length 5

0 150 4.557 4.357 −238 100.000 38 3.231 3.121 0 100.000 261 4.027 3.942 106 100.000 367
10 150 0.632 0.604 28 22.019 116 0.345 0.334 −8 13.247 65 0.479 0.469 66 21.072 139
20 150 0.406 0.388 0 11.330 44 0.375 0.362 −42 7.254 −12 0.341 0.334 −6 7.709 24
30 150 0.399 0.382 −11 12.268 59 0.465 0.449 −61 5.744 −6 0.314 0.307 −26 6.116 29
40 150 0.371 0.355 −8 11.415 53 0.480 0.463 −64 6.380 −16 0.340 0.332 −34 5.283 13
50 150 0.392 0.375 −13 12.079 59 0.520 0.503 −70 5.961 −12 0.365 0.358 −39 5.368 19
60 150 0.306 0.292 −15 9.833 48 0.405 0.391 −51 5.283 −2 0.273 0.267 −10 6.484 39
70 150 0.272 0.260 −15 9.896 56 0.321 0.310 −35 5.227 22 0.232 0.228 12 10.460 69
80 150 0.249 0.238 −17 8.627 49 0.308 0.297 −36 4.588 16 0.205 0.201 9 9.100 60
90 150 0.261 0.250 −17 9.262 54 0.325 0.314 −39 4.639 18 0.195 0.191 5 9.340 62

100 150 0.254 0.243 −18 9.593 55 0.340 0.328 −42 4.626 17 0.196 0.192 3 9.312 62
110 150 0.255 0.244 −18 9.407 54 0.336 0.324 −40 4.640 18 0.207 0.203 4 9.325 62
120 150 0.243 0.233 −16 8.474 48 0.307 0.296 −38 4.023 13 0.186 0.182 1 7.819 51
130 150 0.241 0.230 −16 8.481 49 0.308 0.298 −37 4.108 13 0.183 0.179 2 8.075 53
140 150 0.235 0.225 −15 8.018 45 0.295 0.285 −35 3.865 10 0.173 0.169 2 7.182 47
150 150 0.240 0.229 −15 8.192 46 0.291 0.281 −35 3.907 13 0.176 0.172 3 7.641 50

5 Thin plate regression splines under gaussian with identity link

0 100 4.557 4.357 −238 100.000 38 3.231 3.121 0 100.000 261 4.027 3.942 106 100.000 367
10 100 0.643 0.615 27 23.278 125 0.344 0.332 −6 15.238 78 0.493 0.483 69 23.151 153
20 100 0.387 0.370 1 10.371 35 0.364 0.352 −40 7.855 −20 0.335 0.328 −6 7.454 14
30 100 0.382 0.366 −10 11.235 50 0.454 0.439 −60 6.247 −14 0.317 0.310 −28 5.603 18
40 100 0.368 0.352 −11 10.931 48 0.463 0.447 −61 6.266 −16 0.337 0.329 −33 5.343 12
50 100 0.355 0.339 −11 10.086 40 0.481 0.465 −64 7.752 −28 0.351 0.344 −37 5.481 0
60 100 0.344 0.329 −9 10.015 40 0.490 0.474 −66 8.152 −30 0.364 0.356 −38 5.593 −3
70 100 0.339 0.324 −6 10.035 45 0.476 0.460 −64 7.578 −27 0.345 0.337 −37 5.078 0
80 100 0.295 0.282 −11 9.397 49 0.404 0.390 −51 5.513 −6 0.241 0.236 −11 5.820 34
90 100 0.296 0.283 −12 9.694 52 0.393 0.380 −49 5.155 0 0.206 0.202 −7 6.605 41

100 100 0.287 0.274 −11 9.431 48 0.397 0.383 −50 5.402 −5 0.202 0.198 −9 5.945 36

8 Thin plate regression splines under gaussian with identity link

0 150 4.557 4.357 −238 100.000 38 3.231 3.121 0 100.000 261 4.027 3.942 106 100.000 367
10 150 0.639 0.611 27 23.176 125 0.340 0.329 −3 15.517 80 0.516 0.505 73 23.627 156
20 150 0.375 0.359 3 9.604 26 0.334 0.322 −33 8.378 −24 0.341 0.333 1 7.711 10
30 150 0.361 0.345 −7 10.444 41 0.415 0.401 −52 6.961 −19 0.304 0.297 −21 5.871 13
40 150 0.356 0.340 −5 10.098 36 0.425 0.410 −54 7.920 −28 0.311 0.304 −27 5.647 −1
50 150 0.339 0.324 −7 9.712 33 0.418 0.404 −53 7.746 −27 0.311 0.304 −26 5.596 0
60 150 0.325 0.311 −6 9.037 26 0.411 0.397 −52 8.706 −34 0.310 0.304 −26 5.850 −8
70 150 0.325 0.311 −4 9.180 31 0.429 0.414 −55 8.773 −34 0.326 0.319 −30 5.912 −9
80 150 0.309 0.296 −5 8.618 29 0.430 0.415 −55 8.984 −35 0.336 0.329 −29 6.382 −9
90 150 0.313 0.299 −5 8.981 32 0.384 0.371 −48 7.390 −26 0.300 0.293 −26 5.430 −4

100 150 0.328 0.313 −6 9.910 47 0.400 0.387 −51 5.572 −12 0.291 0.285 −25 5.064 13
110 150 0.256 0.245 −10 7.985 38 0.326 0.315 −40 4.655 −6 0.201 0.197 −6 5.002 28
120 150 0.253 0.242 −9 7.340 30 0.321 0.310 −39 5.542 −14 0.209 0.204 −5 4.541 20
130 150 0.252 0.241 −9 7.767 34 0.326 0.315 −40 5.197 −11 0.205 0.201 −5 4.770 24
140 150 0.245 0.234 −8 7.592 33 0.322 0.311 −41 5.315 −15 0.197 0.193 −7 4.317 20
150 150 0.217 0.208 −11 6.477 32 0.239 0.231 −26 3.652 2 0.179 0.175 6 5.578 34

10 Thin plate regression splines under gaussian with identity link

0 150 4.557 4.357 −238 100.000 38 3.231 3.121 0 100.000 261 4.027 3.942 106 100.000 367
10 150 0.642 0.614 27 23.354 126 0.344 0.332 −5 15.463 80 0.509 0.499 71 23.654 156
20 150 0.382 0.365 2 10.101 33 0.341 0.329 −34 7.780 −18 0.338 0.331 1 7.728 18
30 150 0.370 0.354 −7 10.922 45 0.416 0.402 −52 6.497 −14 0.305 0.299 −20 6.103 18
40 150 0.354 0.338 −7 10.412 39 0.404 0.391 −51 6.747 −20 0.308 0.301 −24 5.600 8
50 150 0.347 0.331 −7 10.119 38 0.426 0.412 −54 7.258 −24 0.310 0.304 −27 5.467 4
60 150 0.342 0.327 −4 9.766 34 0.400 0.387 −50 7.600 −26 0.298 0.292 −23 5.615 0
70 150 0.334 0.319 −4 9.601 35 0.428 0.414 −55 8.158 −30 0.318 0.311 −29 5.618 −5
80 150 0.315 0.301 −5 9.093 35 0.432 0.418 −55 8.113 −29 0.334 0.327 −29 6.087 −3
90 150 0.323 0.309 −5 9.436 38 0.388 0.375 −49 6.558 −20 0.297 0.291 −26 5.194 2

100 150 0.309 0.296 −6 8.722 27 0.409 0.395 −54 8.780 −36 0.261 0.255 −27 4.994 −9
110 150 0.309 0.295 −6 8.542 26 0.411 0.397 −54 8.711 −37 0.284 0.278 −33 4.768 −15
120 150 0.206 0.197 −9 5.768 25 0.216 0.209 −23 3.806 −4 0.164 0.161 5 4.519 24
130 150 0.205 0.196 −10 5.759 24 0.226 0.218 −24 3.952 −5 0.175 0.172 4 4.579 24
140 150 0.214 0.205 −10 6.761 34 0.228 0.220 −25 3.363 5 0.167 0.163 6 5.762 36
150 150 0.212 0.203 −10 7.070 37 0.230 0.223 −24 3.575 8 0.173 0.170 8 6.337 40
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Table A16. Effective degrees of freedom, p-values and significance codes per dimension of GAMs
of BEL built up of thin plate regression splines with gaussian random component and identity
link function under 150–443 for spline function numbers J ∈ {4, 10} per dimension at stages
k ∈ {50, 100, 150}. The confidence levels corresponding to the indicated significance codes are
*** = 0.001, ** = 0.01, * = 0.05, = 0.1, = 1.

J = 4, k = 50 J = 4, k = 100 J = 4, k = 150 J = 10, k = 50 J = 10, k = 100 J = 10, k = 150
k df p-val sign df p-val sign df p-val sign df p-val sign df p-val sign df p-val sign

1 2.858 2−16 *** 2.350 2−16 *** 1.948 2−16 *** 9.000 2−16 *** 8.941 2−16 *** 7.724 2−16 ***
2 3.000 2−16 *** 2.104 2−16 *** 1.000 2−16 *** 7.857 2−16 *** 4.436 2−16 *** 1.000 2−16 ***
3 3.000 2−16 *** 2.901 2−16 *** 2.922 2−16 *** 5.600 2−16 *** 1.000 2−16 *** 1.000 2−16 ***
4 2.997 2−16 *** 2.962 2−16 *** 2.998 2−16 *** 7.073 2−16 *** 6.791 2−16 *** 7.288 2−16 ***
5 2.729 2−16 *** 1.000 2−16 *** 1.000 2−16 *** 8.679 2−16 *** 8.870 2−16 *** 8.210 2−16 ***
6 3.000 2−16 *** 3.000 2−16 *** 1.043 2−16 *** 3.417 2−16 *** 1.000 2−16 *** 1.000 2−16 ***
7 3.000 2−16 *** 2.806 2−16 *** 2.841 2−16 *** 7.990 2−16 *** 8.608 2−16 *** 1.000 2−16 ***
8 3.000 2−16 *** 2.956 2−16 *** 2.961 2−16 *** 8.282 2−16 *** 8.292 2−16 *** 8.122 2−16 ***
9 1.000 2−16 *** 1.000 2−16 *** 2.223 2−16 *** 7.710 2−16 *** 6.510 2−16 *** 6.549 2−16 ***

10 2.991 2−16 *** 2.924 2−16 *** 3.000 2−16 *** 1.000 2−16 *** 1.000 2−16 *** 1.000 2−16 ***

11 2.587 2−16 *** 2.922 2−16 *** 2.889 2−16 *** 6.535 2−16 *** 7.014 2−16 *** 5.672 2−16 ***
12 2.645 2−16 *** 1.874 2−16 *** 1.000 2−16 *** 7.235 2−16 *** 7.284 2−16 *** 8.346 2−16 ***
13 2.244 2−16 *** 2.425 2−16 *** 1.000 2−16 *** 2.372 2−16 *** 2.531 2−16 *** 1.000 2−16 ***
14 1.000 2−16 *** 1.000 2−16 *** 1.000 2−16 *** 1.000 2−16 *** 1.000 2−16 *** 1.000 2−16 ***
15 3.000 2−16 *** 1.000 2−16 *** 2.285 2−16 *** 5.430 2−16 *** 5.640 2−16 *** 4.437 2−16 ***
16 1.000 2−16 *** 1.000 2−16 *** 2.783 2−16 *** 1.000 2−16 *** 1.000 2−16 *** 1.000 2−16 ***
17 2.344 2−16 *** 1.670 2−16 *** 1.646 2−16 *** 3.886 2−16 *** 1.610 2−16 *** 1.624 2−16 ***
18 3.000 2−16 *** 3.000 2−16 *** 3.000 2−16 *** 8.751 2−16 *** 8.620 1.4−5 *** 5.367 6.9−5 ***
19 1.000 2−16 *** 1.000 2−16 *** 1.000 2−16 *** 1.000 2−16 *** 1.000 2−16 *** 1.000 2−16 ***
20 1.497 2−16 *** 1.501 2−16 *** 2.148 2−16 *** 1.754 2−16 *** 1.000 2−16 *** 3.141 8.1−16 ***

21 1.441 2−16 *** 1.000 2−16 *** 1.000 2−16 *** 1.000 2−16 *** 1.000 2−16 *** 1.000 2−16 ***
22 1.770 2−16 *** 2.192 2−16 *** 1.400 2−16 *** 1.000 2−16 *** 1.000 2−16 *** 3.985 1.9−9 ***
23 2.395 2−16 *** 2.746 2−16 *** 2.911 2−16 *** 2.057 2−16 *** 1.428 2−16 *** 2.663 2−16 ***
24 1.000 2−16 *** 1.000 2−16 *** 1.000 2−16 *** 2.964 2−16 *** 1.000 3.3−13 *** 1.000 1.1−13 ***
25 1.000 2−16 *** 1.000 2−16 *** 1.000 2−16 *** 1.000 2−16 *** 1.000 2−16 *** 1.000 2−16 ***
26 1.000 2−16 *** 1.485 2−16 *** 1.000 2−16 *** 1.000 2−16 *** 1.000 2−16 *** 1.000 2−16 ***
27 1.000 2−16 *** 1.000 2−16 *** 1.000 2.2−10 *** 1.000 2−16 *** 1.000 2−16 *** 1.000 1.6−10 ***
28 1.000 2−16 *** 2.607 2−16 *** 1.839 2−16 *** 1.000 2−16 *** 2.780 2−16 *** 1.914 2−16 ***
29 1.000 2−16 *** 1.000 2−16 *** 1.809 2−16 *** 1.000 2−16 *** 1.000 2−16 *** 1.000 2−16 ***
30 1.000 2−16 *** 1.000 2−16 *** 1.000 2−16 *** 6.740 2−16 *** 6.416 2−16 *** 6.508 2−16 ***

31 1.000 2−16 *** 1.000 2−16 *** 1.000 2.4−16 *** 1.000 2−16 *** 1.000 2−16 *** 1.000 2−16 ***
32 1.000 2−16 *** 1.000 2−16 *** 1.000 2−16 *** 1.000 2−16 *** 1.000 2−16 *** 1.000 2−16 ***
33 1.000 2−16 *** 2.055 4.9−15 *** 1.893 2.2−15 *** 7.111 2−16 *** 7.175 6.3−12 *** 6.728 2−16 ***
34 1.000 3.2−16 *** 1.000 2.9−16 *** 1.000 8.7−11 *** 1.000 2−16 *** 1.213 2−16 *** 1.635 4.9−16 ***
35 3.000 2−16 *** 1.000 2−16 *** 1.000 2.5−16 *** 4.780 2−16 *** 4.013 2−16 *** 4.224 2−16 ***
36 1.000 2−16 *** 1.000 2−16 *** 1.000 2−16 *** 7.825 4.8−16 *** 7.867 1.1−15 *** 7.738 2.3−3 **
37 1.000 2−16 *** 1.000 2−16 *** 1.000 2−16 *** 1.000 4.6−16 *** 1.000 7.5−16 *** 1.000 2−16 ***
38 2.512 1.1−14 *** 2.303 2−16 *** 2.057 2−16 *** 1.233 2−16 *** 1.000 2−16 *** 1.000 1.1−4 ***
39 1.000 2.7−12 *** 1.000 1.2−13 *** 1.000 1.9−13 *** 1.000 1.1−15 *** 1.000 2.6−16 *** 1.000 1.2−14 ***
40 1.826 6.4−11 *** 1.000 2−16 *** 1.915 3.6−15 *** 1.000 1.2−13 *** 1.514 2−16 *** 1.000 2−16 ***

41 2.668 7.5−16 *** 2.701 5.3−15 *** 1.787 9.8−7 *** 1.823 8.1−12 *** 1.319 9.4−15 *** 1.000 2−16 ***
42 1.000 1.1−15 *** 1.000 2−16 *** 1.000 2−15 *** 1.000 2.9−12 *** 1.000 8−12 *** 5.275 3.8−4 ***
43 1.000 3.8−10 *** 1.000 9.5−10 *** 1.000 2−9 *** 1.000 3.3−10 *** 1.000 7.7−11 *** 1.000 1.1−10 ***
44 1.713 1.3−8 *** 1.887 8.2−9 *** 1.892 6.2−9 *** 2.109 6−8 *** 1.779 5.3−8 *** 2.061 3.4−8 ***
45 1.000 5.7−9 *** 1.000 6.4−9 *** 1.000 1.9−8 *** 1.000 8−9 *** 1.000 2.1−8 *** 1.000 8.8−9 ***
46 1.917 3.5−9 *** 1.000 2−16 *** 1.000 1.3−15 *** 1.305 1.9−6 *** 1.610 1.1−6 *** 1.000 8.7−8 ***
47 1.451 1.2−6 *** 1.507 5.8−7 *** 1.234 1−6 *** 1.000 7.7−13 *** 1.000 5.5−13 *** 1.000 7.4−12 ***
48 2.753 3.2−7 *** 2.863 6.5−8 *** 2.804 2.1−8 *** 1.000 2.4−8 *** 1.000 7.8−8 *** 1.000 2.9−6 ***
49 1.000 5.5−7 *** 1.000 4.7−14 *** 1.000 1.6−11 *** 1.000 6.9−7 *** 1.000 9.6−12 *** 1.000 1.6−12 ***
50 1.000 9.2−7 *** 1.372 8.3−11 *** 1.000 1.1−12 *** 1.000 1.1−6 *** 1.000 2−10 *** 1.000 2−11 ***

51 1.004 2−16 *** 1.000 2−16 *** 1.000 1.1−6 *** 1.000 1.3−6 ***
52 2.839 2−16 *** 1.334 2−16 *** 1.000 4.3−13 *** 1.000 3−13 ***
53 2.640 2−16 *** 2.421 2−16 *** 1.000 4.7−10 *** 1.000 7.1−11 ***
54 2.664 2−16 *** 1.000 2−16 *** 3.237 2.8−6 *** 3.168 4.9−6 ***
55 1.000 9.2−9 *** 1.000 3.1−6 *** 3.906 5.8−8 *** 3.493 1−9 ***
56 1.000 2.8−9 *** 2.376 2.3−8 *** 1.098 3.5−5 *** 3.513 2−16 ***
57 1.000 3.3−15 *** 1.000 2.8−13 *** 5.574 5.1−3 ** 5.019 6.7−2 .
58 1.000 2−16 *** 1.000 2−16 *** 1.000 7.3−5 *** 1.000 1−5 ***
59 1.000 1.2−11 *** 1.000 2−11 *** 1.000 1.8−6 *** 1.000 8.8−8 ***
60 1.000 2−16 *** 1.000 2−16 *** 3.717 5.2−4 *** 3.286 5.6−3 **

61 1.000 7.5−11 *** 1.000 7.1−11 *** 1.000 6.7−5 *** 1.000 1.5−5 ***
62 2.613 4.2−4 *** 2.868 2−16 *** 1.000 1.1−5 *** 1.000 4.6−6 ***
63 1.000 7.9−15 *** 1.867 1.6−14 *** 4.210 6.6−3 ** 3.543 7.3−4 ***
64 1.000 2.4−6 *** 1.000 1.2−6 *** 1.000 1.7−4 *** 1.000 3.4−4 ***
65 2.960 2.3−13 *** 2.976 2−16 *** 2.799 7.1−3 ** 2.861 3−3 **
66 1.904 2−16 *** 2.115 2−16 *** 3.054 1.7−3 ** 3.159 8.8−6 ***
67 2.859 9.1−14 *** 2.778 1.1−13 *** 3.671 7.6−3 ** 3.788 8.4−4 ***
68 1.000 2.9−1 1.000 5.2−11 *** 1.000 4−4 *** 1.000 1.2−4 ***
69 2.797 2.8−3 ** 2.954 2.2−3 ** 1.000 2.8−3 ** 1.000 3.3−3 **
70 1.000 2.4−6 *** 1.000 1.5−6 *** 1.000 6.7−3 ** 1.000 1.1−3 **

71 2.957 6−14 *** 2.996 6.1−15 *** 1.000 8.6−3 ** 1.000 5−3 **
72 2.612 1.4−13 *** 2.101 6.3−11 *** 1.000 1.2−2 * 1.000 8.9−3 **
73 1.196 2−16 *** 3.000 2−16 *** 1.000 1.5−2 * 1.000 6.1−5 ***
74 2.994 3.8−6 *** 2.559 1.8−3 ** 3.644 1.2−1 2.988 1.4−1
75 1.000 1.7−14 *** 1.000 3−14 *** 1.000 1.7−2 * 1.000 1.8−2 *
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Table A16. Cont.

J = 4, k = 50 J = 4, k = 100 J = 4, k = 150 J = 10, k = 50 J = 10, k = 100 J = 10, k = 150
k df p-val sign df p-val sign df p-val sign df p-val sign df p-val sign df p-val sign

76 1.000 4.4−13 *** 2.334 3.8−14 *** 2.469 1−1 2.077 1.8−1
77 1.353 4−9 *** 1.411 8.8−9 *** 1.000 2.5−2 * 1.000 1.1−2 *
78 1.000 1.5−5 *** 1.000 6.5−6 *** 1.000 2−16 *** 1.000 1.6−4 ***
79 1.000 3−5 *** 1.000 1.5−5 *** 5.186 1.5−6 *** 1.000 2−16 ***
80 1.000 1−7 *** 1.000 7.8−8 *** 1.892 2.2−2 * 1.795 1.9−2 *

81 2.725 1.3−4 *** 2.739 7.1−5 *** 1.000 5.2−6 *** 1.000 5.8−1
82 1.000 7.6−5 *** 2.175 1.4−5 *** 1.000 1.8−3 ** 1.000 5.1−1
83 2.240 1.3−3 ** 2.075 9−4 *** 7.020 2−16 *** 4.809 2.9−3 **
84 1.000 6.8−5 *** 2.902 1.5−5 *** 4.003 1.5−1 4.722 9.8−3 **
85 1.000 7.5−5 *** 1.000 4−6 *** 1.000 1−9 *** 1.000 1.8−4 ***
86 1.000 3.7−4 *** 1.000 7.7−4 *** 3.115 1.2−1 2.748 1.2−1
87 1.000 3.4−4 *** 1.000 9.1−5 *** 5.294 1.4−1 5.598 1.3−1
88 1.000 1.9−4 *** 1.000 9.6−5 *** 2.263 1.5−1 1.788 2.5−1
89 2.828 2.1−3 ** 3.000 6−5 *** 1.000 3.4−4 *** 1.000 3.3−4 ***
90 1.000 7.8−4 *** 1.000 5.6−4 *** 1.000 3.7−2 * 1.000 3.8−2 *

91 1.000 2.5−3 ** 1.000 2.9−3 ** 1.000 1.8−3 ** 1.000 1.2−3 **
92 1.000 3.8−3 ** 1.000 3.5−3 ** 1.000 1.7−2 * 1.000 1.2−2 *
93 1.000 1.8−3 ** 1.000 1.1−3 ** 1.000 3.8−2 * 1.000 2.8−2 *
94 2.776 3.6−5 *** 1.000 1.8−7 *** 5.921 4.2−3 ** 3.962 2−16 ***
95 2.103 4.9−2 * 1.974 1.3−1 8.154 2−16 *** 2.290 2−16 ***
96 2.023 1.2−4 *** 1.000 4.6−10 *** 1.000 2.8−12 *** 1.000 1.6−5 ***
97 2.811 1.5−2 * 2.873 5.9−3 ** 3.748 7.1−4 *** 1.000 1.2−6 ***
98 1.000 7.1−3 ** 1.000 1.1−2 * 1.000 3.9−6 *** 7.349 2.8−1
99 1.000 1.4−2 * 1.000 1.9−2 * 2.149 1.2−3 ** 1.000 2.8−8 ***

100 2.764 2.9−2 * 2.321 9−2 . 1.000 3.1−3 ** 1.000 2.1−1

101 1.000 1.1−4 *** 1.000 8.2−10 ***
102 1.000 7.7−2 . 1.000 1.6−2 *
103 1.000 2.9−3 ** 4.084 5.8−4 ***
104 1.000 6.8−5 *** 1.000 3.2−2 *
105 1.000 9.3−3 ** 1.000 6.8−2 .
106 1.000 2.1−9 *** 1.000 5.2−3 **
107 1.000 1.9−2 * 3.397 1−1
108 2.187 9.6−2 . 1.248 3.4−1
109 1.000 2.1−3 ** 3.079 3.9−1
110 1.000 4.6−2 * 1.000 3.9−4 ***

111 1.000 2−16 *** 0.979 4.3−8 ***
112 1.000 2.9−2 * 8.555 2−16 ***
113 1.000 9.5−1 8.952 1.7−12 ***
114 1.644 9.6−2 . 1.000 2−16 ***
115 1.000 2−2 * 1.000 2−16 ***
116 1.000 1.8−2 * 1.000 1.7−13 ***
117 1.000 4.8−3 ** 2.988 3.4−13 ***
118 1.000 2.4−2 * 8.401 1.2−10 ***
119 2.704 8.3−2 . 2.493 4.7−5 ***
120 1.000 1.8−2 * 1.000 4.1−7 ***

121 1.413 6.7−1 1.000 9−5 ***
122 1.886 6.2−1 2.745 1.2−3 **
123 1.000 1.4−5 *** 1.000 3.4−3 **
124 2.499 1.8−1 1.000 1.5−2 *
125 1.000 3.6−2 * 1.000 1.4−2 *
126 2.416 1−1 1.000 5.8−3 **
127 1.000 5.1−5 *** 3.120 5.7−2 .
128 1.000 3.8−2 * 1.000 9.2−4 ***
129 1.000 1.3−3 ** 1.000 3.9−3 **
130 1.000 5.7−2 . 3.778 1.7−1

131 1.000 1.3−2 * 2.752 2.7−2 *
132 1.000 1.2−2 * 1.000 6.9−3 **
133 1.970 2.5−1 1.000 4.8−3 **
134 1.000 3.5−2 * 1.000 5.5−2 .
135 1.000 5.9−4 *** 1.000 3.8−2 *
136 1.176 7.1−3 ** 5.289 1.4−1
137 2.357 3.4−1 1.000 3.7−2 *
138 1.000 6.7−2 . 1.000 2−4 ***
139 1.000 7.9−2 . 1.000 5.1−3 **
140 1.000 6.9−2 . 1.000 1.6−1

141 1.000 4.7−2 * 8.453 2.5−3 **
142 1.000 1.3−3 ** 1.000 4−2 *
143 2.602 4.1−2 * 3.975 1.4−1
144 1.631 4.6−1 1.000 4.2−4 ***
145 1.000 8.3−2 . 1.000 3.7−3 **
146 1.000 1−2 * 2.147 1.9−1
147 1.000 3.6−2 * 1.000 5−2 .
148 1.251 1.6−1 1.000 4.1−2 *
149 2.376 2.1−1 1.000 5.4−2 .
150 1.482 2−1 1.000 6.3−2 .
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Table A17. Out-of-sample validation figures of selected GAMs of BEL with varying spline function
type and fixed spline function number of 5 per dimension under 100–443 after each tenth and the
finally selected smooth function.

k Kmax v.mae v.maea v.res v.mae0 v.res0 ns.mae ns.maea ns.res ns.mae0 ns.res0 cr.mae cr.maea cr.res cr.mae0 cr.res0

5 Thin plate regression splines under gaussian with identity link

0 100 4.557 4.357 −238 100.000 38 3.231 3.121 0 100.000 261 4.027 3.942 106 100.000 367
10 100 0.643 0.615 27 23.278 125 0.344 0.332 −6 15.238 78 0.493 0.483 69 23.151 153
20 100 0.387 0.370 1 10.371 35 0.364 0.352 −40 7.855 −20 0.335 0.328 −6 7.454 14
30 100 0.382 0.366 −10 11.235 50 0.454 0.439 −60 6.247 −14 0.317 0.310 −28 5.603 18
40 100 0.368 0.352 −11 10.931 48 0.463 0.447 −61 6.266 −16 0.337 0.329 −33 5.343 12
50 100 0.355 0.339 −11 10.086 40 0.481 0.465 −64 7.752 −28 0.351 0.344 −37 5.481 0
60 100 0.344 0.329 −9 10.015 40 0.490 0.474 −66 8.152 −30 0.364 0.356 −38 5.593 −3
70 100 0.339 0.324 −6 10.035 45 0.476 0.460 −64 7.578 −27 0.345 0.337 −37 5.078 0
80 100 0.295 0.282 −11 9.397 49 0.404 0.390 −51 5.513 −6 0.241 0.236 −11 5.820 34
90 100 0.296 0.283 −12 9.694 52 0.393 0.380 −49 5.155 0 0.206 0.202 −7 6.605 41

100 100 0.287 0.274 −11 9.431 48 0.397 0.383 −50 5.402 −5 0.202 0.198 −9 5.945 36

5 Cubic regression splines under gaussian with identity link

0 100 4.557 4.357 −238 100.000 38 3.231 3.121 0 100.000 261 4.027 3.942 106 100.000 367
10 100 0.637 0.609 28 22.739 122 0.337 0.326 −4 14.733 75 0.505 0.494 71 22.781 150
20 100 0.388 0.371 2 10.094 32 0.358 0.346 −40 8.256 −25 0.319 0.313 −5 7.161 10
30 100 0.389 0.372 −6 11.426 50 0.436 0.421 −55 6.652 −14 0.289 0.283 −19 5.849 22
40 100 0.359 0.343 −9 10.508 41 0.448 0.433 −59 7.171 −23 0.310 0.303 −29 5.175 6
50 100 0.345 0.330 −9 9.906 35 0.476 0.460 −63 8.736 −34 0.328 0.321 −34 5.373 −5
60 100 0.338 0.323 −7 9.817 34 0.475 0.459 −63 9.192 −37 0.330 0.324 −34 5.491 −8
70 100 0.307 0.294 −8 9.341 47 0.430 0.416 −58 6.081 −18 0.234 0.229 −26 3.871 15
80 100 0.289 0.277 −13 10.157 55 0.410 0.396 −53 5.106 0 0.237 0.232 −11 6.939 43
90 100 0.283 0.271 −13 10.307 56 0.407 0.394 −53 5.067 1 0.229 0.224 −10 7.035 44

100 100 0.268 0.256 −12 9.903 52 0.399 0.386 −51 5.182 −2 0.226 0.221 −9 6.533 40

5 Duchon splines under gaussian with identity link

0 100 4.557 4.357 −238 100.000 38 3.231 3.121 0 100.000 261 4.027 3.942 106 100.000 367
10 100 0.753 0.720 −4 20.570 98 0.428 0.413 −39 11.806 49 0.408 0.399 6 15.241 93
20 100 0.704 0.673 −22 17.488 74 0.441 0.426 −51 8.606 31 0.380 0.372 −16 11.600 66
30 100 0.661 0.632 −32 19.699 95 0.376 0.363 −40 14.235 73 0.319 0.312 11 19.168 124
40 100 0.663 0.634 −21 18.426 84 0.292 0.282 −18 14.138 73 0.377 0.370 33 19.007 123
50 100 0.666 0.636 −17 18.534 86 0.287 0.277 −12 14.785 76 0.410 0.402 41 19.896 130
56 100 0.666 0.636 −18 18.532 86 0.288 0.279 −14 14.643 75 0.406 0.397 40 19.757 129

5 Eilers and Marx style P-splines under gaussian with identity link

0 100 4.557 4.357 −238 100.000 38 3.231 3.121 0 100.000 261 4.027 3.942 106 100.000 367
10 100 0.643 0.615 29 22.836 123 0.344 0.332 −9 13.951 70 0.471 0.461 65 21.854 144
20 100 0.389 0.372 1 10.496 37 0.365 0.353 −41 7.778 −20 0.336 0.329 −8 7.402 13
30 100 0.384 0.367 −9 11.377 53 0.459 0.444 −60 6.138 −13 0.320 0.313 −30 5.512 17
40 100 0.371 0.354 −10 10.977 49 0.454 0.439 −60 6.095 −16 0.327 0.320 −34 5.092 11
50 100 0.357 0.341 −9 10.459 45 0.467 0.451 −62 6.909 −22 0.335 0.328 −34 5.059 6
60 100 0.339 0.324 −10 9.932 43 0.492 0.476 −66 7.640 −28 0.365 0.357 −40 5.155 −2
70 100 0.343 0.328 −10 10.523 52 0.546 0.527 −75 7.681 −27 0.366 0.358 −46 4.576 2
80 100 0.334 0.319 −7 9.920 45 0.520 0.503 −67 8.655 −29 0.346 0.339 −36 5.036 1
90 100 0.228 0.218 −10 6.973 35 0.279 0.269 −31 4.299 0 0.208 0.204 3 5.810 34

100 100 0.225 0.215 −11 6.897 34 0.256 0.248 −30 3.716 2 0.164 0.161 1 5.212 32
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Table A18. Out-of-sample validation figures of selected GAMs of BEL with varying spline function
type and fixed spline function number of 10 per dimension under between 100–443 and 150–443 after
each tenth and the finally selected smooth function.

k Kmax v.mae v.maea v.res v.mae0 v.res0 ns.mae ns.maea ns.res ns.mae0 ns.res0 cr.mae cr.maea cr.res cr.mae0 cr.res0

10 Thin plate regression splines under gaussian with identity link

0 150 4.557 4.357 −238 100.000 38 3.231 3.121 0 100.000 261 4.027 3.942 106 100.000 367
10 150 0.642 0.614 27 23.354 126 0.344 0.332 −5 15.463 80 0.509 0.499 71 23.654 156
20 150 0.382 0.365 2 10.101 33 0.341 0.329 −34 7.780 −18 0.338 0.331 1 7.728 18
30 150 0.370 0.354 −7 10.922 45 0.416 0.402 −52 6.497 −14 0.305 0.299 −20 6.103 18
40 150 0.354 0.338 −7 10.412 39 0.404 0.391 −51 6.747 −20 0.308 0.301 −24 5.600 8
50 150 0.347 0.331 −7 10.119 38 0.426 0.412 −54 7.258 −24 0.310 0.304 −27 5.467 4
60 150 0.342 0.327 −4 9.766 34 0.400 0.387 −50 7.600 −26 0.298 0.292 −23 5.615 0
70 150 0.334 0.319 −4 9.601 35 0.428 0.414 −55 8.158 −30 0.318 0.311 −29 5.618 −5
80 150 0.315 0.301 −5 9.093 35 0.432 0.418 −55 8.113 −29 0.334 0.327 −29 6.087 −3
90 150 0.323 0.309 −5 9.436 38 0.388 0.375 −49 6.558 −20 0.297 0.291 −26 5.194 2

100 150 0.309 0.296 −6 8.722 27 0.409 0.395 −54 8.780 −36 0.261 0.255 −27 4.994 −9
110 150 0.309 0.295 −6 8.542 26 0.411 0.397 −54 8.711 −37 0.284 0.278 −33 4.768 −15
120 150 0.206 0.197 −9 5.768 25 0.216 0.209 −23 3.806 −4 0.164 0.161 5 4.519 24
130 150 0.205 0.196 −10 5.759 24 0.226 0.218 −24 3.952 −5 0.175 0.172 4 4.579 24
140 150 0.214 0.205 −10 6.761 34 0.228 0.220 −25 3.363 5 0.167 0.163 6 5.762 36
150 150 0.212 0.203 −10 7.070 37 0.230 0.223 −24 3.575 8 0.173 0.170 8 6.337 40

10 Cubic regression splines under gaussian with identity link

0 125 4.557 4.357 −238 100.000 38 3.231 3.121 0 100.000 261 4.027 3.942 106 100.000 367
10 125 0.638 0.610 27 23.397 127 0.341 0.329 −3 15.829 82 0.519 0.509 73 23.960 158
20 125 0.380 0.364 2 10.038 34 0.339 0.328 −34 7.650 −16 0.345 0.338 0 7.865 18
30 125 0.377 0.360 −6 11.458 53 0.411 0.397 −50 6.035 −5 0.309 0.302 −14 6.976 30
40 125 0.364 0.348 −10 10.929 47 0.421 0.407 −53 5.791 −10 0.315 0.308 −25 5.824 18
50 125 0.348 0.333 −11 10.437 44 0.436 0.421 −56 6.263 −15 0.319 0.312 −27 5.636 13
60 125 0.342 0.327 −5 9.791 36 0.403 0.389 −50 7.282 −23 0.308 0.302 −23 5.789 4
70 125 0.355 0.340 −3 10.502 48 0.442 0.427 −56 7.001 −20 0.327 0.320 −30 5.570 6
80 125 0.349 0.334 −2 10.275 46 0.434 0.419 −55 7.159 −22 0.326 0.319 −29 5.592 4
90 125 0.282 0.269 −5 7.978 37 0.275 0.266 −30 4.426 −3 0.215 0.210 −2 5.088 25

100 125 0.263 0.251 −5 7.109 29 0.301 0.291 −37 5.637 −17 0.200 0.196 −8 3.969 12
110 125 0.255 0.244 −7 6.999 30 0.303 0.292 −37 5.435 −15 0.202 0.198 −6 4.230 16
120 125 0.257 0.246 −7 7.052 30 0.304 0.294 −37 5.371 −14 0.200 0.196 −6 4.232 17
125 125 0.254 0.243 −7 7.139 31 0.299 0.289 −36 5.189 −13 0.197 0.192 −6 4.228 17

10 Duchon splines under gaussian with identity link

0 100 4.557 4.357 −238 100.000 38 3.231 3.121 0 100.000 261 4.027 3.942 106 100.000 367
10 100 0.786 0.752 −5 22.143 110 0.445 0.430 −44 12.588 57 0.406 0.397 1 16.238 102
20 100 0.783 0.749 −32 20.489 101 0.494 0.477 −62 11.319 58 0.357 0.350 −21 15.316 98
30 100 0.782 0.748 −39 21.134 98 0.538 0.520 −59 12.715 64 0.422 0.413 −3 18.621 121
40 100 0.816 0.780 −45 22.125 98 0.559 0.540 −63 13.071 65 0.450 0.440 −10 18.616 119
50 100 0.823 0.787 −45 21.473 96 0.555 0.536 −63 12.672 63 0.451 0.441 −10 18.114 116
53 100 0.821 0.785 −44 21.348 94 0.545 0.526 −61 12.593 62 0.446 0.437 −8 18.091 116

10 Eilers and Marx style P-splines under gaussian with identity link in stagewise selection of length 5

0 150 4.557 4.357 −238 100.000 38 3.231 3.121 0 100.000 261 4.027 3.942 106 100.000 367
10 150 0.648 0.619 27 23.688 128 0.349 0.337 −7 15.566 80 0.506 0.495 71 23.889 158
20 150 0.398 0.380 1 10.946 45 0.358 0.346 −37 7.063 −7 0.338 0.331 1 8.102 31
30 150 0.393 0.376 −9 11.983 59 0.435 0.421 −55 5.575 −2 0.299 0.293 −17 6.928 36
40 150 0.371 0.355 −8 11.374 55 0.449 0.434 −57 5.738 −9 0.314 0.308 −26 5.770 23
50 150 0.363 0.347 −9 10.956 50 0.460 0.444 −60 6.249 −14 0.315 0.308 −28 5.492 17
60 150 0.349 0.334 −8 10.479 46 0.443 0.428 −56 6.526 −17 0.305 0.298 −26 5.427 14
70 150 0.349 0.333 −6 10.629 51 0.464 0.449 −60 6.687 −17 0.325 0.318 −29 5.501 13
80 150 0.350 0.335 −7 10.465 48 0.468 0.452 −60 7.036 −19 0.335 0.328 −29 5.563 11
90 150 0.350 0.335 −7 10.639 51 0.470 0.454 −60 6.683 −17 0.330 0.323 −29 5.453 14

100 150 0.334 0.319 −8 9.960 46 0.468 0.452 −60 7.170 −20 0.339 0.332 −29 5.835 11
110 150 0.337 0.323 −9 10.249 48 0.450 0.435 −58 6.171 −15 0.329 0.322 −31 5.267 12
120 150 0.339 0.324 −7 10.283 45 0.433 0.419 −55 6.420 −17 0.320 0.313 −28 5.340 10
130 150 0.269 0.257 −13 8.912 43 0.365 0.352 −46 4.891 −4 0.244 0.238 −12 5.503 30
140 150 0.255 0.244 −12 8.157 36 0.356 0.344 −44 5.415 −10 0.246 0.241 −10 5.196 24
150 150 0.261 0.250 −12 8.514 39 0.368 0.355 −46 5.267 −9 0.245 0.240 −12 5.162 25
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Table A19. Out-of-sample validation figures of selected GAMs of BEL with varying random component
link function combination and fixed spline function number of 4 per dimension under between 40–443
and 150–443 after each tenth and the finally selected smooth function.

k Kmax v.mae v.maea v.res v.mae0 v.res0 ns.mae ns.maea ns.res ns.mae0 ns.res0 cr.mae cr.maea cr.res cr.mae0 cr.res0

4 Thin plate regression splines under gaussian with identity link in stagewise selection of length 5

0 150 4.557 4.357 −238 100.000 38 3.231 3.121 0 100.000 261 4.027 3.942 106 100.000 367
10 150 0.632 0.604 28 22.019 116 0.345 0.334 −8 13.247 65 0.479 0.469 66 21.072 139
20 150 0.406 0.388 0 11.330 44 0.375 0.362 −42 7.254 −12 0.341 0.334 −6 7.709 24
30 150 0.399 0.382 −11 12.268 59 0.465 0.449 −61 5.744 −6 0.314 0.307 −26 6.116 29
40 150 0.371 0.355 −8 11.415 53 0.480 0.463 −64 6.380 −16 0.340 0.332 −34 5.283 13
50 150 0.392 0.375 −13 12.079 59 0.520 0.503 −70 5.961 −12 0.365 0.358 −39 5.368 19
60 150 0.306 0.292 −15 9.833 48 0.405 0.391 −51 5.283 −2 0.273 0.267 −10 6.484 39
70 150 0.272 0.260 −15 9.896 56 0.321 0.310 −35 5.227 22 0.232 0.228 12 10.460 69
80 150 0.249 0.238 −17 8.627 49 0.308 0.297 −36 4.588 16 0.205 0.201 9 9.100 60
90 150 0.261 0.250 −17 9.262 54 0.325 0.314 −39 4.639 18 0.195 0.191 5 9.340 62

100 150 0.254 0.243 −18 9.593 55 0.340 0.328 −42 4.626 17 0.196 0.192 3 9.312 62
110 150 0.255 0.244 −18 9.407 54 0.336 0.324 −40 4.640 18 0.207 0.203 4 9.325 62
120 150 0.243 0.233 −16 8.474 48 0.307 0.296 −38 4.023 13 0.186 0.182 1 7.819 51
130 150 0.241 0.230 −16 8.481 49 0.308 0.298 −37 4.108 13 0.183 0.179 2 8.075 53
140 150 0.235 0.225 −15 8.018 45 0.295 0.285 −35 3.865 10 0.173 0.169 2 7.182 47
150 150 0.240 0.229 −15 8.192 46 0.291 0.281 −35 3.907 13 0.176 0.172 3 7.641 50

4 Thin plate regression splines under gaussian with log link in stagewise selection of length 5

0 40 4.557 4.357 −238 100.000 38 3.231 3.121 0 100.000 261 4.027 3.942 106 100.000 367
10 40 0.788 0.754 8 23.011 114 0.423 0.408 26 22.471 118 0.700 0.685 94 28.248 186
20 40 0.452 0.432 −4 12.761 50 0.421 0.406 −48 7.626 −9 0.360 0.352 −11 8.166 29
30 40 0.462 0.442 −10 14.180 72 0.527 0.509 −68 6.209 −1 0.368 0.360 −32 7.116 36
40 40 0.438 0.419 −7 13.382 66 0.524 0.506 −69 6.189 −10 0.373 0.365 −39 5.913 20

4 Thin plate regression splines under gamma with identity link in stagewise selection of length 5

0 70 4.557 4.357 −238 100.000 38 3.231 3.121 0 100.000 261 4.027 3.942 106 100.000 367
10 70 0.625 0.598 31 21.068 110 0.332 0.321 −5 12.421 60 0.486 0.475 68 19.997 132
20 70 0.394 0.377 1 10.887 41 0.357 0.345 −39 7.283 −15 0.340 0.333 −6 7.641 19
30 70 0.383 0.367 −10 11.985 56 0.467 0.451 −62 5.853 −10 0.331 0.324 −30 5.742 22
40 70 0.289 0.277 −11 9.447 45 0.346 0.335 −41 5.159 0 0.256 0.250 −2 6.682 39
50 70 0.307 0.293 −11 10.339 53 0.389 0.376 −50 4.922 0 0.252 0.247 −11 6.294 38
60 70 0.308 0.295 −14 10.455 56 0.372 0.360 −49 4.377 7 0.222 0.218 −9 7.143 46
70 70 0.270 0.259 −16 9.999 57 0.325 0.314 −36 5.280 23 0.245 0.240 10 10.416 69

4 Thin plate regression splines under gamma with log link in stagewise selection of length 5

0 120 4.557 4.357 −238 100.000 38 3.231 3.121 0 100.000 261 4.027 3.942 106 100.000 367
10 120 0.780 0.745 12 22.104 101 0.436 0.421 35 21.150 110 0.736 0.720 101 26.692 175
20 120 0.497 0.475 −1 14.721 71 0.457 0.442 −55 6.794 2 0.360 0.352 −16 8.605 41
30 120 0.437 0.418 −7 13.581 66 0.483 0.467 −61 6.042 −3 0.364 0.357 −28 7.018 31
40 120 0.418 0.400 −7 12.575 58 0.505 0.488 −67 6.530 −16 0.382 0.374 −40 5.844 11
50 120 0.416 0.397 −11 12.456 58 0.522 0.505 −70 6.310 −15 0.392 0.384 −42 5.536 12
60 120 0.407 0.390 −11 12.201 59 0.547 0.529 −74 6.706 −19 0.411 0.403 −47 5.476 8
70 120 0.407 0.390 −7 12.104 59 0.480 0.464 −64 5.741 −13 0.356 0.349 −39 5.173 12
80 120 0.274 0.262 −9 10.461 60 0.319 0.309 −31 5.409 23 0.257 0.251 16 10.636 70
90 120 0.252 0.241 −10 9.362 52 0.289 0.279 −31 4.594 17 0.195 0.191 9 8.753 58

100 120 0.239 0.229 −13 8.404 46 0.254 0.245 −26 4.423 18 0.182 0.178 13 8.710 57
110 120 0.251 0.240 −15 8.307 46 0.256 0.248 −28 4.442 19 0.174 0.171 11 8.708 57
120 120 0.252 0.241 −16 8.368 47 0.263 0.254 −29 4.585 20 0.171 0.167 9 8.830 58

4 Thin plate regression splines under inverse gaussian with identity link in stagewise selection of length 5

0 85 4.557 4.357 −238 100.000 38 3.231 3.121 0 100.000 261 4.027 3.942 106 100.000 367
10 85 0.622 0.595 33 20.643 108 0.328 0.317 −3 12.034 57 0.488 0.478 68 19.473 129
20 85 0.443 0.423 0 13.176 63 0.412 0.398 −49 6.644 −1 0.336 0.329 −11 8.149 37
30 85 0.390 0.373 −10 12.087 60 0.481 0.465 −65 5.771 −9 0.334 0.327 −33 5.777 23
40 85 0.280 0.268 −9 9.655 48 0.339 0.327 −39 5.079 4 0.255 0.250 1 7.154 44
50 85 0.296 0.283 −10 9.742 48 0.374 0.362 −48 4.933 −3 0.242 0.237 −10 5.768 34
60 85 0.310 0.297 −14 10.405 54 0.367 0.354 −48 4.592 6 0.232 0.227 −8 7.165 46
70 85 0.272 0.260 −12 10.279 58 0.313 0.303 −34 5.205 22 0.249 0.244 12 10.286 67
80 85 0.247 0.236 −14 8.583 48 0.293 0.283 −33 4.594 15 0.217 0.213 10 8.776 58
85 85 0.250 0.239 −17 8.739 50 0.325 0.314 −38 4.585 14 0.218 0.213 6 8.871 58

4 Thin plate regression splines under inverse gaussian with log link in stagewise selection of length 5

0 75 4.557 4.357 −238 100.000 38 3.231 3.121 0 100.000 261 4.027 3.942 106 100.000 367
10 75 0.778 0.744 14 21.780 95 0.446 0.431 40 20.520 106 0.756 0.740 104 25.969 170
20 75 0.491 0.470 −1 14.542 69 0.452 0.437 −55 6.759 0 0.362 0.355 −17 8.423 38
30 75 0.425 0.407 −7 13.142 62 0.472 0.456 −60 6.123 −5 0.366 0.358 −27 6.854 27
40 75 0.406 0.388 −7 12.151 54 0.499 0.482 −66 6.757 −19 0.389 0.381 −41 5.920 7
50 75 0.412 0.394 −11 12.543 56 0.513 0.495 −69 6.309 −16 0.396 0.388 −42 5.655 10
60 75 0.298 0.285 −12 9.519 47 0.392 0.379 −50 5.298 −4 0.265 0.260 −10 6.172 36
70 75 0.263 0.251 −13 9.789 56 0.298 0.288 −31 5.406 23 0.227 0.222 16 10.673 70
75 75 0.258 0.246 −14 9.181 52 0.300 0.290 −33 5.049 19 0.223 0.219 13 9.837 65

4 Thin plate regression splines under inverse gaussian with 1
μ2 link in stagewise selection of length 5

0 55 4.557 4.357 −238 100.000 38 3.231 3.121 0 100.000 261 4.027 3.942 106 100.000 367
10 55 0.803 0.768 2 23.425 117 0.383 0.370 −24 15.197 76 0.435 0.426 27 19.713 127
20 55 0.448 0.428 8 12.645 61 0.331 0.320 −29 7.088 10 0.330 0.323 18 9.983 56
30 55 0.387 0.370 1 12.458 64 0.331 0.320 −29 6.701 20 0.311 0.304 22 11.099 70
40 55 0.341 0.326 −5 11.661 61 0.339 0.328 −35 5.920 17 0.271 0.266 11 9.851 63
45 55 0.343 0.328 −9 10.928 55 0.361 0.349 −38 6.111 12 0.300 0.294 9 9.451 59
50 55 0.336 0.321 −7 10.645 55 0.355 0.343 −40 5.319 8 0.250 0.245 7 8.525 54
55 55 0.328 0.314 −9 10.595 56 0.328 0.317 −35 5.325 15 0.241 0.236 16 10.249 67
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Table A20. Out-of-sample validation figures of selected GAMs of BEL with varying random component
link function combination and fixed spline function number of 8 per dimension under between 50–443
and 150–443 after each tenth and the finally selected smooth function.

k Kmax v.mae v.maea v.res v.mae0 v.res0 ns.mae ns.maea ns.res ns.mae0 ns.res0 cr.mae cr.maea cr.res cr.mae0 cr.res0

8 Thin plate regression splines under gaussian with identity link

0 150 4.557 4.357 −238 100.000 38 3.231 3.121 0 100.000 261 4.027 3.942 106 100.000 367
10 150 0.639 0.611 27 23.176 125 0.340 0.329 −3 15.517 80 0.516 0.505 73 23.627 156
20 150 0.375 0.359 3 9.604 26 0.334 0.322 −33 8.378 −24 0.341 0.333 1 7.711 10
30 150 0.361 0.345 −7 10.444 41 0.415 0.401 −52 6.961 −19 0.304 0.297 −21 5.871 13
40 150 0.356 0.340 −5 10.098 36 0.425 0.410 −54 7.920 −28 0.311 0.304 −27 5.647 −1
50 150 0.339 0.324 −7 9.712 33 0.418 0.404 −53 7.746 −27 0.311 0.304 −26 5.596 0
60 150 0.325 0.311 −6 9.037 26 0.411 0.397 −52 8.706 −34 0.310 0.304 −26 5.850 −8
70 150 0.325 0.311 −4 9.180 31 0.429 0.414 −55 8.773 −34 0.326 0.319 −30 5.912 −9
80 150 0.309 0.296 −5 8.618 29 0.430 0.415 −55 8.984 −35 0.336 0.329 −29 6.382 −9
90 150 0.313 0.299 −5 8.981 32 0.384 0.371 −48 7.390 −26 0.300 0.293 −26 5.430 −4

100 150 0.328 0.313 −6 9.910 47 0.400 0.387 −51 5.572 −12 0.291 0.285 −25 5.064 13
110 150 0.256 0.245 −10 7.985 38 0.326 0.315 −40 4.655 −6 0.201 0.197 −6 5.002 28
120 150 0.253 0.242 −9 7.340 30 0.321 0.310 −39 5.542 −14 0.209 0.204 −5 4.541 20
130 150 0.252 0.241 −9 7.767 34 0.326 0.315 −40 5.197 −11 0.205 0.201 −5 4.770 24
140 150 0.245 0.234 −8 7.592 33 0.322 0.311 −41 5.315 −15 0.197 0.193 −7 4.317 20
150 150 0.217 0.208 −11 6.477 32 0.239 0.231 −26 3.652 2 0.179 0.175 6 5.578 34

8 Thin plate regression splines under gaussian with log link in stagewise selection of length 5

0 50 4.557 4.357 −238 100.000 38 3.231 3.121 0 100.000 261 4.027 3.942 106 100.000 367
10 50 0.757 0.724 10 21.570 101 0.444 0.429 39 22.141 116 0.755 0.739 106 27.693 182
20 50 0.401 0.383 1 10.278 23 0.359 0.347 −35 9.154 −28 0.362 0.354 −1 8.110 7
30 50 0.396 0.379 −5 11.249 43 0.438 0.424 −53 7.692 −20 0.339 0.332 −19 6.803 14
40 50 0.382 0.365 −5 11.036 45 0.470 0.454 −60 7.846 −25 0.351 0.344 −31 6.234 4
50 50 0.370 0.353 −8 10.487 39 0.464 0.448 −60 8.000 −28 0.340 0.333 −32 5.901 0

8 Thin plate regression splines under gamma with identity link in stagewise selection of length 5

0 100 4.557 4.357 −238 100.000 38 3.231 3.121 0 100.000 261 4.027 3.942 106 100.000 367
10 100 0.637 0.609 29 22.743 123 0.334 0.323 −3 14.941 77 0.510 0.500 72 22.871 151
20 100 0.370 0.354 4 9.537 27 0.324 0.313 −31 8.076 −22 0.340 0.333 1 7.725 10
30 100 0.359 0.344 −8 10.558 44 0.414 0.400 −52 6.415 −15 0.305 0.298 −22 5.909 16
40 100 0.329 0.314 −9 9.643 37 0.402 0.388 −51 6.673 −21 0.321 0.314 −26 5.702 4
50 100 0.342 0.327 −7 9.631 33 0.409 0.395 −52 7.553 −27 0.326 0.320 −28 5.863 −3
60 100 0.324 0.310 −6 9.114 28 0.409 0.395 −52 8.421 −32 0.327 0.320 −28 6.067 −9
70 100 0.328 0.314 −6 9.617 41 0.451 0.435 −59 7.631 −26 0.349 0.342 −35 5.796 −2
80 100 0.270 0.258 −9 7.944 37 0.324 0.313 −38 5.068 −7 0.221 0.217 −2 5.461 29
90 100 0.279 0.267 −10 8.926 47 0.341 0.329 −40 4.595 2 0.224 0.219 −2 6.713 41

100 100 0.272 0.260 −11 8.654 44 0.335 0.324 −40 4.532 0 0.216 0.211 −2 6.397 38

8 Thin plate regression splines under gamma with log link in stagewise selection of length 5

0 110 4.557 4.357 −238 100.000 38 3.231 3.121 0 100.000 261 4.027 3.942 106 100.000 367
10 110 0.762 0.729 13 21.360 95 0.458 0.443 45 21.527 112 0.773 0.756 108 26.743 176
20 110 0.442 0.422 2 12.416 49 0.396 0.382 −44 7.515 −12 0.349 0.342 −8 8.083 24
30 110 0.387 0.370 −3 11.147 45 0.414 0.400 −49 7.058 −16 0.338 0.331 −18 6.847 16
40 110 0.372 0.356 −6 10.826 43 0.458 0.442 −59 7.546 −24 0.360 0.352 −34 6.225 1
50 110 0.357 0.342 −9 10.240 36 0.458 0.443 −60 7.977 −29 0.357 0.349 −36 6.073 −5
60 110 0.351 0.336 −5 9.866 30 0.439 0.424 −56 9.066 −36 0.353 0.346 −35 6.537 −15
70 110 0.354 0.339 −5 10.130 37 0.458 0.442 −59 8.442 −31 0.364 0.356 −37 6.271 −9
80 110 0.359 0.344 −6 10.122 37 0.463 0.447 −60 8.529 −32 0.371 0.363 −37 6.412 −9
90 110 0.282 0.270 −10 9.017 47 0.364 0.352 −44 4.991 −2 0.249 0.244 −6 6.286 36

100 110 0.268 0.256 −11 7.807 37 0.320 0.309 −38 4.748 −5 0.209 0.204 −1 5.604 32
110 110 0.259 0.247 −11 7.373 34 0.312 0.302 −37 4.801 −7 0.201 0.197 0 5.354 31
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Table A21. Out-of-sample validation figures of selected GAMs of BEL in adaptive forward stepwise
and stagewise selection of length 5 under between 25–443 and 100–443 after each tenth and the finally
selected smooth function.

k Kmax v.mae v.maea v.res v.mae0 v.res0 ns.mae ns.maea ns.res ns.mae0 ns.res0 cr.mae cr.maea cr.res cr.mae0 cr.res0

8 Thin plate regression splines under gaussian with log link

0 25 4.557 4.357 −238 100.000 38 3.231 3.121 0 100.000 261 4.027 3.942 106 100.000 367
10 25 0.663 0.634 26 23.298 123 0.341 0.330 1 16.218 84 0.547 0.536 78 24.370 161
20 25 0.398 0.381 2 10.221 23 0.361 0.349 −35 9.380 −28 0.375 0.367 −1 8.460 6
25 25 0.411 0.393 2 11.892 47 0.410 0.397 −47 7.709 −17 0.324 0.317 −11 7.120 19

8 Thin plate regression splines under gaussian with log link in stagewise selection of length 5

0 50 4.557 4.357 −238 100.000 38 3.231 3.121 0 100.000 261 4.027 3.942 106 100.000 367
10 50 0.757 0.724 10 21.570 101 0.444 0.429 39 22.141 116 0.755 0.739 106 27.693 182
20 50 0.401 0.383 1 10.278 23 0.359 0.347 −35 9.154 −28 0.362 0.354 −1 8.110 7
30 50 0.396 0.379 −5 11.249 43 0.438 0.424 −53 7.692 −20 0.339 0.332 −19 6.803 14
40 50 0.382 0.365 −5 11.036 45 0.470 0.454 −60 7.846 −25 0.351 0.344 −31 6.234 4
50 50 0.370 0.353 −8 10.487 39 0.464 0.448 −60 8.000 −28 0.340 0.333 −32 5.901 0

8 Thin plate regression splines under gamma with identity link

0 71 4.557 4.357 −238 100.000 38 3.231 3.121 0 100.000 261 4.027 3.942 106 100.000 367
10 71 0.637 0.609 29 22.743 123 0.334 0.323 −3 14.941 77 0.510 0.500 72 22.871 151
20 71 0.386 0.369 8 10.141 31 0.310 0.299 −26 7.904 −18 0.358 0.350 8 8.140 16
30 71 0.359 0.344 −8 10.558 44 0.414 0.400 −52 6.415 −15 0.305 0.298 −22 5.909 16
40 71 0.329 0.314 −9 9.643 37 0.402 0.388 −51 6.673 −21 0.321 0.314 −26 5.702 4
50 71 0.338 0.324 −7 9.543 32 0.412 0.399 −53 7.748 −28 0.324 0.318 −29 5.805 −4
60 71 0.324 0.310 −6 9.114 28 0.409 0.395 −52 8.421 −32 0.327 0.320 −28 6.067 −9
70 71 0.327 0.313 −5 9.417 36 0.434 0.419 −56 8.017 −29 0.342 0.335 −32 5.967 −5
71 71 0.291 0.278 −4 8.639 41 0.341 0.329 −43 5.205 −12 0.196 0.192 −17 3.898 14

8 Thin plate regression splines under gamma with identity link in stagewise selection of length 5

0 100 4.557 4.357 −238 100.000 38 3.231 3.121 0 100.000 261 4.027 3.942 106 100.000 367
10 100 0.637 0.609 29 22.743 123 0.334 0.323 −3 14.941 77 0.510 0.500 72 22.871 151
20 100 0.370 0.354 4 9.537 27 0.324 0.313 −31 8.076 −22 0.340 0.333 1 7.725 10
30 100 0.359 0.344 −8 10.558 44 0.414 0.400 −52 6.415 −15 0.305 0.298 −22 5.909 16
40 100 0.329 0.314 −9 9.643 37 0.402 0.388 −51 6.673 −21 0.321 0.314 −26 5.702 4
50 100 0.342 0.327 −7 9.631 33 0.409 0.395 −52 7.553 −27 0.326 0.320 −28 5.863 −3
60 100 0.324 0.310 −6 9.114 28 0.409 0.395 −52 8.421 −32 0.327 0.320 −28 6.067 −9
70 100 0.328 0.314 −6 9.617 41 0.451 0.435 −59 7.631 −26 0.349 0.342 −35 5.796 −2
80 100 0.270 0.258 −9 7.944 37 0.324 0.313 −38 5.068 −7 0.221 0.217 −2 5.461 29
90 100 0.279 0.267 −10 8.926 47 0.341 0.329 −40 4.595 2 0.224 0.219 −2 6.713 41

100 100 0.272 0.260 −11 8.654 44 0.335 0.324 −40 4.532 0 0.216 0.211 −2 6.397 38



Risks 2020, 8, 21

Table A22. Out-of-sample validation figures of selected GAMs of BEL with varying spline function
number per dimension and fixed spline function type under between 91–443 and 150–443 after each
tenth and the finally selected smooth function or after each dynamically stagewise selected smooth
function block. Thereby furthermore a variation in the random component link function combination.

k Kmax v.mae v.maea v.res v.mae0 v.res0 ns.mae ns.maea ns.res ns.mae0 ns.res0 cr.mae cr.maea cr.res cr.mae0 cr.res0

5 Eilers and Marx style P-splines under gaussian with identity link

0 100 4.557 4.357 −238 100.000 38 3.231 3.121 0 100.000 261 4.027 3.942 106 100.000 367
10 100 0.643 0.615 29 22.836 123 0.344 0.332 −9 13.951 70 0.471 0.461 65 21.854 144
20 100 0.389 0.372 1 10.496 37 0.365 0.353 −41 7.778 −20 0.336 0.329 −8 7.402 13
30 100 0.384 0.367 −9 11.377 53 0.459 0.444 −60 6.138 −13 0.320 0.313 −30 5.512 17
40 100 0.371 0.354 −10 10.977 49 0.454 0.439 −60 6.095 −16 0.327 0.320 −34 5.092 11
50 100 0.357 0.341 −9 10.459 45 0.467 0.451 −62 6.909 −22 0.335 0.328 −34 5.059 6
60 100 0.339 0.324 −10 9.932 43 0.492 0.476 −66 7.640 −28 0.365 0.357 −40 5.155 −2
70 100 0.343 0.328 −10 10.523 52 0.546 0.527 −75 7.681 −27 0.366 0.358 −46 4.576 2
80 100 0.334 0.319 −7 9.920 45 0.520 0.503 −67 8.655 −29 0.346 0.339 −36 5.036 1
90 100 0.228 0.218 −10 6.973 35 0.279 0.269 −31 4.299 0 0.208 0.204 3 5.810 34

100 100 0.225 0.215 −11 6.897 34 0.256 0.248 −30 3.716 2 0.164 0.161 1 5.212 32

8 Eilers and Marx style P-splines under inverse gaussian with 1
μ2 link in dynamically stagewise selection of proportion 0.25

0 91 4.557 4.357 −238 100.000 38 3.231 3.121 0 100.000 261 4.027 3.942 106 100.000 367
5 91 1.574 1.505 −18 41.688 233 0.732 0.708 −75 30.201 161 0.384 0.376 42 42.135 278

11 91 0.817 0.781 −3 22.381 113 0.396 0.383 −34 13.475 68 0.412 0.404 23 19.322 124
21 91 0.679 0.650 −9 24.203 138 0.763 0.738 −102 8.222 31 0.424 0.415 −44 13.548 89
37 91 0.525 0.502 1 15.485 79 0.521 0.504 −63 6.154 0 0.397 0.389 −30 7.461 33
62 91 0.505 0.482 −1 14.208 64 0.507 0.490 −61 6.842 −10 0.418 0.410 −33 7.405 18
91 91 0.309 0.296 −11 9.688 45 0.335 0.324 −36 5.239 6 0.279 0.273 2 7.420 43

10 Eilers and Marx style P-splines under gaussian with identity link in stagewise selection of length 5

0 150 4.557 4.357 −238 100.000 38 3.231 3.121 0 100.000 261 4.027 3.942 106 100.000 367
10 150 0.648 0.619 27 23.688 128 0.349 0.337 −7 15.566 80 0.506 0.495 71 23.889 158
20 150 0.398 0.380 1 10.946 45 0.358 0.346 −37 7.063 −7 0.338 0.331 1 8.102 31
30 150 0.393 0.376 −9 11.983 59 0.435 0.421 −55 5.575 −2 0.299 0.293 −17 6.928 36
40 150 0.371 0.355 −8 11.374 55 0.449 0.434 −57 5.738 −9 0.314 0.308 −26 5.770 23
50 150 0.363 0.347 −9 10.956 50 0.460 0.444 −60 6.249 −14 0.315 0.308 −28 5.492 17
60 150 0.349 0.334 −8 10.479 46 0.443 0.428 −56 6.526 −17 0.305 0.298 −26 5.427 14
70 150 0.349 0.333 −6 10.629 51 0.464 0.449 −60 6.687 −17 0.325 0.318 −29 5.501 13
80 150 0.350 0.335 −7 10.465 48 0.468 0.452 −60 7.036 −19 0.335 0.328 −29 5.563 11
90 150 0.350 0.335 −7 10.639 51 0.470 0.454 −60 6.683 −17 0.330 0.323 −29 5.453 14

100 150 0.334 0.319 −8 9.960 46 0.468 0.452 −60 7.170 −20 0.339 0.332 −29 5.835 11
110 150 0.337 0.323 −9 10.249 48 0.450 0.435 −58 6.171 −15 0.329 0.322 −31 5.267 12
120 150 0.339 0.324 −7 10.283 45 0.433 0.419 −55 6.420 −17 0.320 0.313 −28 5.340 10
130 150 0.269 0.257 −13 8.912 43 0.365 0.352 −46 4.891 −4 0.244 0.238 −12 5.503 30
140 150 0.255 0.244 −12 8.157 36 0.356 0.344 −44 5.415 −10 0.246 0.241 −10 5.196 24
150 150 0.261 0.250 −12 8.514 39 0.368 0.355 −46 5.267 −9 0.245 0.240 −12 5.162 25
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Table A23. Maximum allowed numbers of smooth functions and out-of-sample validation figures of
all derived GAMs of BEL under between 25–443 and 150–443 after the final iteration. Highlighted in
green and red respectively the best and worst validation figures.

k Kmax v.mae v.maea v.res v.mae0 v.res0 ns.mae ns.maea ns.res ns.mae0 ns.res0 cr.mae cr.maea cr.res cr.mae0 cr.res0

4 Thin plate regression splines under gaussian with identity link

150 150 0.240 0.229 −15 8.192 46 0.291 0.281 −35 3.907 13 0.176 0.172 3 7.641 50

5 Thin plate regression splines under gaussian with identity link

100 100 0.287 0.274 −11 9.431 48 0.397 0.383 −50 5.402 −5 0.202 0.198 −9 5.945 36

8 Thin plate regression splines under gaussian with identity link

150 150 0.217 0.208 −11 6.477 32 0.239 0.231 −26 3.652 2 0.179 0.175 6 5.578 34

10 Thin plate regression splines under gaussian with identity link

150 150 0.212 0.203 −10 7.070 37 0.230 0.223 −24 3.575 8 0.173 0.170 8 6.337 40

5 Cubic regression splines under gaussian with identity link

100 100 0.268 0.256 −12 9.903 52 0.399 0.386 −51 5.182 −2 0.226 0.221 −9 6.533 40

5 Duchon splines under gaussian with identity link

56 100 0.666 0.636 −18 18.532 86 0.288 0.279 −14 14.643 75 0.406 0.397 40 19.757 129

5 Eilers and Marx style P-splines under gaussian with identity link

100 100 0.225 0.215 −11 6.897 34 0.256 0.248 −30 3.716 2 0.164 0.161 1 5.212 32

10 Cubic regression splines under gaussian with identity link

125 125 0.254 0.243 −7 7.139 31 0.299 0.289 −36 5.189 −13 0.197 0.192 −6 4.228 17

10 Duchon splines under gaussian with identity link

53 100 0.821 0.785 −44 21.348 94 0.545 0.526 −61 12.593 62 0.446 0.437 −8 18.091 116

10 Eilers and Marx style P-splines under gaussian with identity link in stagewise selection of length 5

150 150 0.261 0.250 −12 8.514 −39 0.368 0.355 −46 5.267 9 0.245 0.240 −12 5.162 −25

8 Thin plate regression splines under gaussian with log link

25 25 0.411 0.393 2 11.892 47 0.410 0.397 −47 7.709 −17 0.324 0.317 −11 7.120 19

8 Thin plate regression splines under gaussian with log link in stagewise selection of length 5

50 50 0.370 0.353 −8 10.487 39 0.464 0.448 −60 8.000 −28 0.340 0.333 −32 5.901 0

8 Thin plate regression splines under gamma with identity link

71 71 0.291 0.278 −4 8.639 41 0.341 0.329 −43 5.205 −12 0.196 0.192 −17 3.898 14

8 Thin plate regression splines under gamma with identity link in stagewise selection of length 5

100 100 0.272 0.260 −11 8.654 44 0.335 0.324 −40 4.532 0 0.216 0.211 −2 6.397 38

4 Thin plate regression splines under gaussian with identity link in stagewise selection of length 5

150 150 0.240 0.229 −15 8.192 46 0.291 0.281 −35 3.907 13 0.176 0.172 3 7.641 50

4 Thin plate regression splines under gaussian with log link in stagewise selection of length 5

40 40 0.438 0.419 −7 13.382 66 0.524 0.506 −69 6.189 −10 0.373 0.365 −39 5.913 20

4 Thin plate regression splines under gamma with identity link in stagewise selection of length 5

70 70 0.270 0.259 −16 9.999 57 0.325 0.314 −36 5.280 23 0.245 0.240 10 10.416 69

4 Thin plate regression splines under gaussian with log link in stagewise selection of length 5

120 120 0.252 0.241 −16 8.368 47 0.263 0.254 −29 4.585 20 0.171 0.167 9 8.830 58

4 Thin plate regression splines under inverse gaussian with identity link in stagewise selection of length 5

85 85 0.250 0.239 −17 8.739 50 0.325 0.314 −38 4.585 14 0.218 0.213 6 8.871 58

4 Thin plate regression splines under inverse gaussian with log link in stagewise selection of length 5

75 75 0.258 0.246 −14 9.181 52 0.300 0.290 −33 5.049 19 0.223 0.219 13 9.837 65

4 Thin plate regression splines under inverse gaussian with 1
μ2 link in stagewise selection of length 5

55 55 0.328 0.314 −9 10.595 56 0.328 0.317 −35 5.325 15 0.241 0.236 16 10.249 67

8 Thin plate regression splines under gamma with log link in stagewise selection of length 5

110 110 0.259 0.247 −11 7.373 34 0.312 0.302 −37 4.801 −7 0.201 0.197 0 5.354 31

8 Eilers and Marx style P-splines under inverse gaussian with 1
μ2 link in dynamic stagewise selection of proportion 0.25

91 91 0.309 0.296 −11 9.688 45 0.335 0.324 −36 5.239 6 0.279 0.273 2 7.420 43
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Table A24. Feasible generalized least-squares (FGLS) variance models of BEL corresponding to Mmax ∈
{2, 6, 10, 14, 18, 22} derived by adaptive selection from the set of basis functions of the 150–443 OLS
proxy function given in Table A1 with exponents summing up to at max two. Furthermore, p-values of
Breusch-Pagan test, AIC scores and out-of-sample MAEs in % after each iteration.

m r1
m r2

m r3
m r4

m r5
m r6

m r7
m r8

m r9
m r10

m r11
m r12

m r13
m r14

m r15
m BP.p-val AIC v.mae ns.mae cr.mae

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1−20 325, 850 0.238 0.252 0.154

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1−20 322, 452 0.238 0.246 0.122
2 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1−20 315, 980 0.239 0.255 0.153

3 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1−20 314, 077 0.237 0.226 0.165
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1−20 312, 280 0.231 0.206 0.184
5 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1−20 312, 114 0.231 0.205 0.185
6 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1−20 311, 949 0.231 0.203 0.186

7 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1−20 311, 794 0.232 0.202 0.187
8 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1−20 311, 700 0.235 0.200 0.190
9 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1−20 311, 610 0.233 0.198 0.190

10 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 1−20 311, 363 0.227 0.194 0.195

11 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1−20 311, 293 0.229 0.194 0.197
12 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 1−20 311, 237 0.228 0.193 0.198
13 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1−20 311, 196 0.230 0.193 0.198
14 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1.5−20 311, 161 0.231 0.193 0.200

15 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 7.1−19 311, 136 0.231 0.191 0.202
16 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 5−15 311, 091 0.228 0.189 0.201
17 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 5.8−13 311, 067 0.228 0.188 0.203
18 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 8.3−13 311, 048 0.228 0.187 0.204

19 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 3.2−12 311, 030 0.228 0.188 0.204
20 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 2.7−12 311, 003 0.230 0.188 0.205
21 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1.3−11 310, 988 0.230 0.188 0.206
22 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 9.4−11 310, 974 0.230 0.187 0.207

Table A25. FGLS variance models of BEL corresponding to Mmax ∈ {2, 6, 10, 14, 18, 22} derived by
adaptive selection from the set of basis functions of the 300–886 OLS proxy function given in Table A3
with exponents summing up to at max two. Furthermore, p-values of Breusch-Pagan test, AIC scores
and out-of-sample MAEs in % after each iteration.

m r1
m r2

m r3
m r4

m r5
m r6

m r7
m r8

m r9
m r10

m r11
m r12

m r13
m r14

m r15
m BP.p-val AIC v.mae ns.mae cr.mae

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1−20 325, 459 0.195 0.275 0.175

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1−20 322, 077 0.199 0.273 0.166
2 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1−20 315, 615 0.196 0.275 0.175

3 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1−20 313, 659 0.195 0.255 0.175
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1−20 311, 864 0.198 0.239 0.182
5 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1−20 311, 704 0.198 0.236 0.182
6 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1−20 311, 554 0.200 0.240 0.183

7 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1−20 311, 454 0.199 0.241 0.183
8 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1−20 311, 360 0.199 0.238 0.186
9 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1−20 311, 318 0.201 0.236 0.188

10 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1−20 311, 287 0.203 0.234 0.189

11 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1−20 311, 260 0.203 0.233 0.189
12 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 1−20 311, 237 0.203 0.232 0.189
13 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 3.7−17 311, 001 0.200 0.223 0.192
14 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1.7−16 310, 980 0.200 0.222 0.194

15 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 7.6−13 310, 934 0.200 0.220 0.196
16 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 4.2−11 310, 912 0.200 0.218 0.197
17 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 1.3−10 310, 895 0.200 0.219 0.198
18 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 2.3−10 310, 881 0.200 0.217 0.198

19 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 7.6−10 310, 867 0.200 0.218 0.197
20 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 3.4−9 310, 854 0.200 0.218 0.196
21 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 9.9−9 310, 843 0.200 0.218 0.196
22 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 3.1−8 310, 832 0.200 0.217 0.196
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Table A26. Iteration-wise out-of-sample validation figures in adaptive variance model selection of
BEL corresponding to Mmax ∈ {2, 6, 10, 14, 18, 22} based on the 150–443 OLS proxy function given in
Table A1 with exponents summing up to at max two. Simultaneously type I FGLS regression results.

m v.mae v.maea v.res v.mae0 v.res0 ns.mae ns.maea ns.res ns.mae0 ns.res0 cr.mae cr.maea cr.res cr.mae0 cr.res0

0 0.238 0.228 −15 8.103 45 0.252 0.243 −30 3.984 16 0.154 0.151 3 7.379 49

1 0.238 0.228 −15 8.668 49 0.246 0.238 −30 4.120 19 0.122 0.120 3 7.873 52
2 0.239 0.229 −16 8.147 46 0.255 0.246 −30 4.032 17 0.153 0.149 2 7.489 49

3 0.237 0.226 −15 7.789 43 0.226 0.218 −24 4.423 20 0.165 0.162 10 8.117 54
4 0.231 0.221 −13 7.684 42 0.206 0.199 −18 4.817 22 0.184 0.180 17 8.756 58
5 0.231 0.221 −13 7.666 42 0.205 0.198 −18 4.803 22 0.185 0.181 17 8.740 58
6 0.231 0.221 −13 7.577 41 0.203 0.196 −18 4.762 22 0.186 0.183 17 8.637 57

7 0.232 0.222 −12 7.661 42 0.202 0.195 −17 4.787 22 0.187 0.183 18 8.691 57
8 0.235 0.225 −12 7.774 42 0.200 0.193 −17 4.914 23 0.190 0.186 19 8.912 59
9 0.233 0.223 −11 7.692 42 0.198 0.191 −16 4.838 23 0.190 0.186 19 8.763 58

10 0.227 0.217 −10 7.460 40 0.194 0.188 −15 4.708 21 0.195 0.191 20 8.537 56

11 0.229 0.219 −10 7.447 40 0.194 0.187 −15 4.686 21 0.197 0.193 20 8.455 56
12 0.228 0.218 −10 7.426 40 0.193 0.186 −14 4.687 21 0.198 0.194 20 8.444 56
13 0.230 0.220 −9 7.513 41 0.193 0.187 −14 4.696 21 0.198 0.194 21 8.491 56
14 0.231 0.221 −9 7.527 41 0.193 0.186 −14 4.701 21 0.200 0.195 21 8.497 56

15 0.231 0.221 −9 7.523 41 0.191 0.185 −13 4.742 21 0.202 0.197 22 8.569 57
16 0.228 0.218 −9 7.437 40 0.189 0.182 −13 4.730 21 0.201 0.197 22 8.557 56
17 0.228 0.218 −9 7.421 40 0.188 0.182 −13 4.747 21 0.203 0.199 22 8.568 56
18 0.228 0.218 −9 7.433 40 0.187 0.181 −13 4.780 22 0.204 0.200 22 8.621 57

19 0.228 0.218 −9 7.435 40 0.188 0.182 −13 4.786 22 0.204 0.200 22 8.628 57
20 0.230 0.219 −9 7.442 40 0.188 0.182 −13 4.796 22 0.205 0.201 22 8.650 57
21 0.230 0.220 −9 7.466 40 0.188 0.181 −13 4.800 22 0.206 0.201 23 8.648 57
22 0.230 0.220 −8 7.436 40 0.187 0.180 −12 4.802 22 0.207 0.203 23 8.639 57

Table A27. Iteration-wise out-of-sample validation figures in adaptive variance model selection of
BEL corresponding to Mmax ∈ {2, 6, 10, 14, 18, 22} based on the 300–886 OLS proxy function given in
Table A3 with exponents summing up to at max two. Simultaneously type I FGLS regression results.

m v.mae v.maea v.res v.mae0 v.res0 ns.mae ns.maea ns.res ns.mae0 ns.res0 cr.mae cr.maea cr.res cr.mae0 cr.res0

0 0.195 0.186 −9 6.468 33 0.275 0.266 −30 4.601 −3 0.175 0.171 5 5.315 32

1 0.199 0.190 −9 6.648 34 0.273 0.263 −31 4.272 −3 0.166 0.162 1 5.005 30
2 0.196 0.187 −9 6.527 33 0.275 0.266 −30 4.564 −3 0.175 0.171 5 5.401 32

3 0.195 0.186 −9 6.487 33 0.255 0.247 −27 4.350 1 0.175 0.171 9 5.916 37
4 0.198 0.189 −9 6.305 32 0.239 0.231 −23 4.262 4 0.182 0.178 13 6.303 40
5 0.198 0.190 −9 6.298 32 0.236 0.228 −22 4.252 4 0.182 0.178 14 6.336 40
6 0.200 0.191 −9 6.399 33 0.240 0.232 −23 4.292 4 0.183 0.179 13 6.389 40

7 0.199 0.190 −9 6.364 32 0.241 0.233 −23 4.304 4 0.183 0.179 13 6.324 40
8 0.199 0.190 −8 6.381 32 0.238 0.230 −22 4.313 4 0.186 0.182 14 6.407 40
9 0.201 0.193 −8 6.432 33 0.236 0.228 −22 4.313 5 0.188 0.184 15 6.521 41

10 0.203 0.194 −8 6.473 33 0.234 0.226 −21 4.310 5 0.189 0.185 16 6.621 42

11 0.203 0.195 −8 6.492 33 0.233 0.225 −21 4.303 5 0.189 0.185 16 6.628 42
12 0.203 0.194 −8 6.476 33 0.232 0.224 −21 4.294 5 0.189 0.186 16 6.641 42
13 0.200 0.191 −7 6.254 32 0.223 0.216 −19 4.252 5 0.192 0.188 17 6.615 42
14 0.200 0.191 −7 6.246 31 0.222 0.214 −19 4.257 6 0.194 0.190 18 6.697 42

15 0.200 0.191 −7 6.216 31 0.220 0.213 −18 4.243 6 0.196 0.192 19 6.773 43
16 0.200 0.191 −7 6.180 31 0.218 0.211 −18 4.239 6 0.197 0.193 19 6.753 43
17 0.200 0.192 −7 6.197 31 0.219 0.211 −18 4.249 6 0.198 0.194 19 6.804 43
18 0.200 0.191 −7 6.194 31 0.217 0.210 −18 4.250 6 0.198 0.194 19 6.801 43

19 0.200 0.191 −7 6.207 31 0.218 0.210 −18 4.238 6 0.197 0.193 19 6.787 43
20 0.200 0.191 −7 6.229 32 0.218 0.211 −18 4.226 6 0.196 0.192 19 6.793 43
21 0.200 0.192 −7 6.240 32 0.218 0.211 −18 4.224 7 0.196 0.192 19 6.814 43
22 0.200 0.192 −7 6.256 32 0.217 0.210 −18 4.223 7 0.196 0.192 19 6.844 44
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Table A28. AIC scores and out-of-sample validation figures of type II FGLS proxy functions of BEL
under 150–443 with variance models of varying complexity Mmax after each tenth iteration.

k AIC v.mae v.maea v.res v.mae0 v.res0 ns.mae ns.maea ns.res ns.mae0 ns.res0 cr.mae cr.maea cr.res cr.mae0 cr.res0

Mmax = 2 in variance model selection

0 437, 251 4.557 4.357 −238 100.000 38 3.231 3.121 0 100.000 261 4.027 3.942 106 100.000 367
10 336, 390 1.786 1.708 184 44.082 198 1.402 1.354 209 39.152 209 2.290 2.242 344 52.033 344
20 323, 883 0.826 0.790 25 22.007 111 0.424 0.409 −28 10.764 44 0.437 0.428 28 16.424 99
30 319, 958 0.465 0.445 3 12.876 55 0.288 0.278 2 9.650 40 0.467 0.457 57 15.234 96
40 318, 945 0.401 0.384 −16 11.036 51 0.357 0.345 −37 7.158 16 0.330 0.323 3 10.127 55
50 318, 206 0.355 0.339 −24 9.270 35 0.336 0.324 −36 6.611 8 0.339 0.332 −8 8.602 36
60 317, 485 0.323 0.309 −25 8.407 36 0.309 0.298 −36 5.548 11 0.279 0.273 −11 7.244 36
70 317, 197 0.306 0.293 −28 7.631 28 0.345 0.334 −43 5.405 −1 0.272 0.266 −17 5.899 25
80 316, 263 0.272 0.260 −24 6.946 32 0.320 0.310 −42 4.051 0 0.227 0.222 −17 4.898 25
90 316, 021 0.260 0.249 −23 7.143 39 0.298 0.288 −37 3.854 10 0.173 0.169 −5 6.461 42

100 315, 871 0.256 0.245 −23 7.424 41 0.294 0.284 −35 4.078 14 0.186 0.182 0 7.443 49
110 315, 784 0.256 0.245 −22 7.396 41 0.302 0.292 −37 3.962 12 0.189 0.185 −3 7.013 46
120 315, 719 0.257 0.245 −23 6.923 38 0.296 0.286 −36 3.870 11 0.181 0.177 −2 6.872 45
130 315, 675 0.258 0.247 −25 6.506 35 0.295 0.285 −36 3.760 9 0.188 0.184 −3 6.461 42
140 315, 649 0.252 0.241 −23 6.424 34 0.283 0.274 −34 3.749 9 0.184 0.180 −1 6.399 42
150 315, 629 0.239 0.229 −21 6.467 34 0.261 0.252 −30 3.796 10 0.177 0.173 3 6.654 44

Mmax = 6 in variance model selection

0 437, 251 4.557 4.357 −238 100.000 38 3.231 3.121 0 100.000 261 4.027 3.942 106 100.000 367
10 332, 479 2.014 1.926 259 49.098 213 2.000 1.933 298 44.745 238 2.964 2.901 445 58.341 385
20 320, 873 0.881 0.842 51 22.821 115 0.341 0.329 16 13.428 66 0.622 0.609 84 20.790 134
30 316, 187 0.429 0.410 19 10.875 32 0.308 0.297 29 8.537 28 0.561 0.549 73 12.633 72
40 315, 132 0.366 0.350 6 10.243 45 0.254 0.246 1 7.853 25 0.401 0.393 36 11.221 61
50 314, 473 0.303 0.289 3 9.346 46 0.229 0.222 0 7.543 28 0.361 0.353 34 10.776 62
60 313, 643 0.307 0.293 −18 7.567 28 0.251 0.242 −21 5.808 11 0.266 0.261 9 7.676 41
70 313, 301 0.280 0.268 −17 7.768 30 0.222 0.214 −12 6.229 21 0.268 0.262 23 9.315 56
80 313, 060 0.270 0.258 −20 7.092 28 0.230 0.222 −13 6.273 22 0.280 0.274 25 9.554 59
90 312, 883 0.262 0.251 −22 6.754 29 0.239 0.231 −17 5.977 20 0.253 0.248 19 9.077 56

100 312, 100 0.246 0.235 −19 6.177 29 0.202 0.195 −14 4.814 18 0.221 0.216 21 8.305 54
110 311, 656 0.231 0.221 −16 6.446 33 0.189 0.182 −12 4.827 22 0.211 0.206 25 8.964 59
120 311, 574 0.236 0.225 −16 6.545 34 0.209 0.202 −16 4.594 19 0.207 0.202 22 8.637 57
130 311, 511 0.238 0.227 −17 6.551 35 0.207 0.200 −16 4.797 21 0.204 0.200 23 9.104 60
140 311, 461 0.231 0.221 −16 6.026 31 0.189 0.183 −12 4.726 21 0.216 0.212 25 8.853 58
150 311, 426 0.224 0.215 −14 5.904 31 0.177 0.171 −9 4.756 22 0.226 0.221 29 9.005 59

Mmax = 10 in variance model selection

0 437, 251 4.557 4.357 −238 100.000 38 3.231 3.121 0 100.000 261 4.027 3.942 106 100.000 367
10 328, 519 2.120 2.027 288 50.524 221 2.206 2.132 329 46.563 248 3.194 3.127 480 60.396 399
20 319, 481 0.971 0.928 95 24.185 105 0.439 0.424 53 11.839 49 0.821 0.803 117 18.086 112
30 316, 529 0.655 0.627 56 16.560 74 0.420 0.406 57 12.301 61 0.780 0.764 113 18.285 117
40 314, 460 0.379 0.362 19 10.089 42 0.268 0.259 19 8.120 28 0.473 0.463 54 11.608 63
50 313, 842 0.324 0.310 2 8.422 33 0.229 0.221 −4 6.420 12 0.339 0.331 20 8.600 36
60 313, 022 0.297 0.284 −13 7.619 31 0.223 0.215 −13 6.123 17 0.277 0.271 14 8.292 43
70 312, 692 0.282 0.269 −17 7.494 26 0.221 0.213 −5 6.762 24 0.326 0.319 35 10.467 64
80 312, 443 0.271 0.259 −19 7.171 27 0.218 0.211 −7 6.625 25 0.303 0.297 33 10.306 65
90 312, 264 0.261 0.249 −21 6.610 27 0.222 0.215 −11 6.300 23 0.278 0.272 28 9.806 62

100 312, 187 0.262 0.250 −21 6.568 26 0.216 0.208 −10 6.265 23 0.272 0.266 28 9.707 61
110 312, 108 0.256 0.244 −21 6.031 23 0.203 0.196 −5 6.324 25 0.288 0.282 31 9.754 61
120 312, 043 0.261 0.250 −23 5.989 20 0.200 0.194 −4 6.287 25 0.293 0.287 33 9.857 62
130 311, 078 0.226 0.216 −18 5.466 25 0.160 0.155 −4 5.115 24 0.244 0.239 32 9.192 60
140 310, 918 0.220 0.210 −16 5.451 25 0.153 0.148 −4 4.820 23 0.233 0.228 31 8.859 58
150 310, 868 0.212 0.203 −14 5.375 25 0.148 0.143 0 5.098 25 0.256 0.250 36 9.296 61
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Table A28. Cont.

k AIC v.mae v.maea v.res v.mae0 v.res0 ns.mae ns.maea ns.res ns.mae0 ns.res0 cr.mae cr.maea cr.res cr.mae0 cr.res0

Mmax = 14 in variance model selection

0 437, 251 4.557 4.357 −238 100.000 38 3.231 3.121 0 100.000 261 4.027 3.942 106 100.000 367
10 326, 308 2.120 2.027 290 50.306 220 2.215 2.141 331 46.129 246 3.197 3.130 480 59.909 396
20 319, 199 1.024 0.979 100 26.049 137 0.527 0.509 75 18.639 98 1.044 1.022 155 27.142 178
30 316, 093 0.702 0.671 67 17.574 79 0.503 0.486 73 13.745 70 0.901 0.882 133 20.208 131
40 314, 155 0.393 0.376 24 10.363 44 0.282 0.273 25 8.426 31 0.505 0.494 62 12.131 68
50 313, 562 0.327 0.313 6 8.561 34 0.225 0.217 1 6.535 15 0.352 0.345 27 8.936 41
60 312, 811 0.298 0.285 −10 7.608 29 0.203 0.196 4 7.086 29 0.336 0.329 37 10.283 62
70 312, 455 0.289 0.276 −15 7.409 26 0.219 0.211 −2 6.863 25 0.343 0.335 38 10.612 65
80 312, 235 0.273 0.261 −17 7.222 28 0.215 0.208 −4 6.738 26 0.322 0.316 37 10.662 67
90 312, 057 0.264 0.253 −22 6.680 27 0.222 0.214 −10 6.406 24 0.283 0.277 28 9.981 63

100 311, 953 0.255 0.244 −21 6.117 24 0.201 0.194 −5 6.381 25 0.290 0.284 31 9.780 61
110 311, 898 0.252 0.241 −20 5.929 22 0.200 0.193 −4 6.236 24 0.293 0.287 32 9.583 60
120 311, 832 0.263 0.251 −23 5.962 19 0.198 0.192 −3 6.300 25 0.303 0.296 34 9.878 62
130 310, 916 0.223 0.213 −17 5.363 23 0.154 0.149 −1 5.233 25 0.263 0.257 36 9.305 61
140 310, 757 0.215 0.206 −15 5.339 24 0.147 0.142 0 4.954 24 0.251 0.246 35 8.972 59
150 310, 714 0.214 0.205 −14 5.368 25 0.146 0.141 −1 4.857 23 0.244 0.239 34 8.906 59

Mmax = 18 in variance model selection

0 437, 251 4.557 4.357 −238 100.000 38 3.231 3.121 0 100.000 261 4.027 3.942 106 100.000 367
10 326, 125 2.127 2.034 292 50.425 220 2.226 2.151 332 46.222 246 3.209 3.142 482 60.019 396
20 318, 762 1.036 0.991 111 25.668 113 0.538 0.520 75 13.429 64 0.983 0.962 144 20.708 133
30 315, 995 0.710 0.679 69 17.741 80 0.523 0.505 76 13.963 72 0.925 0.906 137 20.465 133
40 314, 060 0.401 0.383 27 10.529 45 0.292 0.282 28 8.560 33 0.521 0.510 66 12.341 70
50 313, 483 0.329 0.315 9 8.687 35 0.225 0.217 4 6.620 16 0.362 0.354 31 9.120 43
60 312, 938 0.316 0.302 −5 7.840 30 0.209 0.202 5 6.855 26 0.347 0.340 41 10.297 62
70 312, 363 0.270 0.258 −10 6.960 21 0.215 0.207 11 7.089 28 0.389 0.381 48 10.795 65
80 312, 166 0.259 0.248 −12 6.558 22 0.204 0.198 9 7.008 29 0.369 0.361 47 10.718 67
90 311, 963 0.234 0.223 −15 6.141 24 0.196 0.189 1 6.432 26 0.313 0.306 37 9.844 61

100 311, 883 0.241 0.231 −18 6.031 24 0.194 0.187 −1 6.449 26 0.299 0.293 34 9.777 61
110 311, 830 0.239 0.229 −18 5.836 22 0.193 0.187 0 6.298 25 0.303 0.296 35 9.610 60
120 311, 766 0.244 0.234 −19 5.713 18 0.191 0.184 3 6.340 26 0.321 0.314 39 9.866 62
130 311, 045 0.225 0.215 −15 5.396 23 0.148 0.143 0 5.061 24 0.259 0.254 35 8.950 59
140 310, 694 0.213 0.204 −13 5.314 24 0.139 0.134 1 4.855 24 0.245 0.240 34 8.672 57
150 310, 644 0.211 0.202 −14 5.131 23 0.139 0.135 1 4.816 23 0.250 0.245 35 8.618 57

Mmax = 22 in variance model selection

0 437, 251 4.557 4.357 −238 100.000 38 3.231 3.121 0 100.000 261 4.027 3.942 106 100.000 367
10 325, 988 2.127 2.034 292 50.414 220 2.226 2.151 332 46.259 246 3.210 3.143 482 60.061 397
20 318, 926 1.034 0.988 105 26.160 137 0.569 0.550 83 19.043 101 1.098 1.075 163 27.621 181
30 315, 805 0.712 0.681 71 17.763 79 0.537 0.519 78 14.063 72 0.943 0.923 140 20.603 134
40 313, 973 0.409 0.391 29 10.730 46 0.301 0.291 31 8.709 34 0.539 0.527 70 12.589 72
50 313, 411 0.349 0.334 7 8.950 34 0.223 0.216 3 6.618 16 0.357 0.349 30 9.081 42
60 312, 873 0.308 0.295 −2 8.205 37 0.203 0.196 8 7.490 33 0.350 0.343 43 10.853 67
70 312, 286 0.271 0.260 −9 6.950 21 0.217 0.210 12 7.124 28 0.398 0.389 50 10.856 66
80 312, 091 0.261 0.249 −11 6.557 22 0.207 0.200 10 7.051 29 0.377 0.369 48 10.793 68
90 311, 893 0.235 0.225 −15 6.043 23 0.196 0.189 1 6.367 25 0.314 0.307 36 9.683 60

100 311, 815 0.238 0.228 −17 5.970 23 0.194 0.187 1 6.462 26 0.311 0.304 37 9.829 61
110 311, 761 0.237 0.227 −17 5.780 21 0.194 0.188 2 6.364 25 0.313 0.307 37 9.694 60
120 311, 697 0.243 0.232 −19 5.818 18 0.191 0.185 2 6.325 25 0.320 0.313 39 9.885 62
130 311, 655 0.232 0.222 −17 5.688 18 0.195 0.188 8 6.714 29 0.353 0.346 46 10.509 67
140 310, 748 0.215 0.206 −14 5.206 23 0.148 0.143 5 5.578 27 0.293 0.287 42 9.788 64
150 310, 590 0.208 0.199 −13 5.209 23 0.139 0.134 5 5.193 26 0.275 0.270 40 9.256 61
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Table A29. AIC scores and out-of-sample validation figures of type II FGLS proxy functions of BEL
under 300–886 with variance models of varying complexity Mmax after each tenth and the final iteration.

k AIC v.mae v.maea v.res v.mae0 v.res0 ns.mae ns.maea ns.res ns.mae0 ns.res0 cr.mae cr.maea cr.res cr.mae0 cr.res0

Mmax = 2 in variance model selection

0 437, 251 4.557 4.357 −238 100.000 38 3.231 3.121 0 100.000 261 4.027 3.942 106 100.000 367
10 336, 390 1.786 1.708 184 44.082 198 1.402 1.354 209 39.152 209 2.290 2.242 344 52.033 344
20 323, 883 0.826 0.790 25 22.007 111 0.424 0.409 −28 10.764 44 0.437 0.428 28 16.424 99
30 319, 958 0.465 0.445 3 12.876 55 0.288 0.278 2 9.650 40 0.467 0.457 57 15.234 96
40 318, 945 0.401 0.384 −16 11.036 51 0.357 0.345 −37 7.158 16 0.330 0.323 3 10.127 55
50 318, 206 0.355 0.339 −24 9.270 35 0.336 0.324 −36 6.611 8 0.339 0.332 −8 8.602 36
60 317, 485 0.323 0.309 −25 8.407 36 0.309 0.298 −36 5.548 11 0.279 0.273 −11 7.244 36
70 317, 197 0.306 0.293 −28 7.631 28 0.345 0.334 −43 5.405 −1 0.272 0.266 −17 5.899 25
80 316, 263 0.272 0.260 −24 6.946 32 0.320 0.310 −42 4.051 0 0.227 0.222 −17 4.898 25
90 316, 021 0.260 0.249 −23 7.143 39 0.298 0.288 −37 3.854 10 0.173 0.169 −5 6.461 42

100 315, 871 0.256 0.245 −23 7.424 41 0.294 0.284 −35 4.078 14 0.186 0.182 0 7.443 49
110 315, 784 0.256 0.245 −22 7.396 41 0.302 0.292 −37 3.962 12 0.189 0.185 −3 7.013 46
120 315, 719 0.257 0.245 −23 6.923 38 0.296 0.286 −36 3.870 11 0.181 0.177 −2 6.872 45
130 315, 675 0.258 0.247 −25 6.506 35 0.295 0.285 −36 3.760 9 0.188 0.184 −3 6.461 42
140 315, 641 0.250 0.239 −23 6.441 34 0.284 0.275 −34 3.741 9 0.182 0.178 −2 6.338 41
150 315, 622 0.238 0.228 −20 6.433 34 0.258 0.250 −29 3.821 11 0.177 0.174 4 6.740 44
160 315, 599 0.233 0.223 −20 6.578 35 0.256 0.247 −28 3.920 12 0.183 0.179 6 6.988 46
170 315, 573 0.232 0.222 −19 6.616 35 0.254 0.246 −28 3.880 12 0.181 0.178 5 6.927 45
180 315, 535 0.225 0.215 −19 6.502 35 0.252 0.243 −28 3.773 11 0.172 0.169 5 6.797 44
190 315, 523 0.229 0.219 −19 6.809 37 0.244 0.236 −26 4.020 15 0.164 0.161 9 7.607 50
200 315, 507 0.215 0.206 −18 6.738 36 0.243 0.235 −26 3.969 14 0.164 0.161 9 7.387 49
210 315, 500 0.214 0.205 −18 6.704 35 0.234 0.226 −24 3.989 14 0.162 0.159 10 7.323 48
220 315, 492 0.217 0.207 −18 6.769 35 0.239 0.231 −26 3.930 14 0.159 0.155 9 7.277 48
224 315, 491 0.209 0.199 −17 6.584 34 0.226 0.219 −22 3.999 14 0.165 0.161 12 7.290 48

Mmax = 6 in variance model selection

0 437, 251 4.557 4.357 −238 100.000 38 3.231 3.121 0 100.000 261 4.027 3.942 106 100.000 367
10 332, 479 2.014 1.926 259 49.098 213 2.000 1.933 298 44.745 238 2.964 2.901 445 58.341 385
20 320, 873 0.881 0.842 51 22.821 115 0.341 0.329 16 13.428 66 0.622 0.609 84 20.790 134
30 316, 187 0.429 0.410 19 10.875 32 0.308 0.297 29 8.537 28 0.561 0.549 73 12.633 72
40 315, 132 0.366 0.350 6 10.243 45 0.254 0.246 1 7.853 25 0.401 0.393 36 11.221 61
50 314, 473 0.303 0.289 3 9.346 46 0.229 0.222 0 7.543 28 0.361 0.353 34 10.776 62
60 313, 643 0.307 0.293 −18 7.567 28 0.251 0.242 −21 5.808 11 0.266 0.261 9 7.676 41
70 313, 301 0.280 0.268 −17 7.768 30 0.222 0.214 −12 6.229 21 0.268 0.262 23 9.315 56
80 313, 060 0.270 0.258 −20 7.092 28 0.230 0.222 −13 6.273 22 0.280 0.274 25 9.554 59
90 312, 883 0.262 0.251 −22 6.754 29 0.239 0.231 −17 5.977 20 0.253 0.248 19 9.077 56

100 312, 100 0.246 0.235 −19 6.177 29 0.202 0.195 −14 4.814 18 0.221 0.216 21 8.305 54
110 311, 656 0.231 0.221 −16 6.446 33 0.189 0.182 −12 4.827 22 0.211 0.206 25 8.964 59
120 311, 574 0.236 0.225 −16 6.545 34 0.209 0.202 −16 4.594 19 0.207 0.202 22 8.637 57
130 311, 507 0.234 0.223 −16 6.706 36 0.206 0.199 −16 4.801 21 0.204 0.200 23 9.094 60
140 311, 456 0.226 0.216 −16 6.102 32 0.189 0.182 −12 4.717 21 0.215 0.211 25 8.827 58
150 311, 419 0.224 0.214 −15 5.899 31 0.178 0.172 −10 4.712 22 0.213 0.209 27 8.971 59
160 311, 355 0.217 0.207 −15 5.536 29 0.160 0.154 −4 5.013 25 0.246 0.241 33 9.420 62
170 311, 308 0.198 0.189 −13 5.090 23 0.141 0.137 −4 4.144 19 0.221 0.216 27 7.491 49
180 311, 266 0.202 0.193 −14 5.112 24 0.132 0.127 −3 4.433 22 0.218 0.213 27 7.868 52
190 311, 248 0.208 0.198 −16 5.287 23 0.143 0.138 −5 4.163 19 0.213 0.208 25 7.630 50
200 311, 228 0.202 0.193 −14 5.269 24 0.137 0.133 −4 4.148 20 0.213 0.209 27 7.639 50
210 311, 196 0.192 0.184 −14 5.032 20 0.125 0.121 4 4.655 23 0.253 0.248 32 7.919 52
220 311, 164 0.195 0.187 −15 5.079 21 0.122 0.118 1 4.620 23 0.237 0.232 31 8.070 53
230 311, 148 0.194 0.185 −15 5.146 22 0.122 0.118 1 4.571 23 0.236 0.231 29 7.949 52
237 311, 144 0.196 0.188 −15 5.342 23 0.125 0.121 0 4.765 24 0.235 0.230 30 8.243 54

Mmax = 10 in variance model selection

0 437, 251 4.557 4.357 −238 100.000 38 3.231 3.121 0 100.000 261 4.027 3.942 106 100.000 367
10 331, 056 2.073 1.982 273 50.085 216 2.113 2.041 315 45.714 244 3.090 3.025 464 59.451 393
20 320, 199 0.924 0.884 76 23.133 101 0.375 0.362 25 10.921 35 0.655 0.641 82 15.999 92
30 316, 044 0.543 0.519 31 14.068 56 0.372 0.359 45 11.729 56 0.742 0.727 107 18.450 118
40 314, 821 0.385 0.368 11 10.626 47 0.256 0.248 6 8.118 28 0.424 0.415 43 11.685 65
50 314, 201 0.327 0.313 2 9.206 41 0.240 0.232 −8 6.713 17 0.336 0.329 21 9.103 45
60 313, 386 0.269 0.257 −5 7.831 34 0.220 0.213 6 7.506 31 0.365 0.357 46 11.223 71
70 312, 986 0.290 0.278 −17 7.316 26 0.210 0.203 −4 6.646 25 0.310 0.304 33 9.955 61
80 312, 722 0.280 0.268 −18 7.425 31 0.223 0.215 −8 6.792 27 0.300 0.293 33 10.652 68
90 312, 545 0.270 0.259 −22 7.110 32 0.233 0.225 −13 6.634 26 0.273 0.267 27 10.450 67

100 312, 469 0.265 0.253 −21 6.800 29 0.224 0.217 −11 6.420 25 0.274 0.268 29 10.128 64
110 312, 397 0.254 0.243 −19 6.136 25 0.202 0.195 −4 6.360 25 0.290 0.284 33 9.940 63
120 312, 346 0.247 0.236 −19 5.940 22 0.193 0.187 1 6.468 27 0.307 0.301 38 10.078 64
130 312, 299 0.240 0.230 −17 5.784 21 0.192 0.185 4 6.563 28 0.329 0.322 43 10.369 66
140 312, 274 0.247 0.236 −18 5.811 22 0.193 0.186 5 6.870 31 0.338 0.331 45 10.944 71
150 312, 243 0.249 0.238 −19 5.950 24 0.193 0.186 3 6.872 31 0.324 0.317 43 10.984 71
160 312, 222 0.255 0.244 −19 6.162 25 0.198 0.191 1 6.859 30 0.324 0.318 42 11.092 72
170 311, 204 0.228 0.218 −14 5.957 31 0.161 0.156 −1 5.874 30 0.276 0.270 40 10.703 71
180 311, 040 0.223 0.213 −13 6.021 31 0.154 0.149 −1 5.594 29 0.265 0.259 39 10.356 68
190 310, 996 0.222 0.213 −13 6.152 32 0.154 0.149 −2 5.584 28 0.258 0.253 38 10.311 68
200 310, 968 0.206 0.197 −10 6.163 32 0.144 0.139 3 5.924 31 0.285 0.279 42 10.568 70
210 310, 953 0.211 0.202 −10 5.930 30 0.143 0.138 3 5.615 29 0.276 0.270 41 10.153 67
220 310, 927 0.208 0.199 −11 6.353 33 0.147 0.142 −1 5.602 29 0.252 0.247 37 10.225 67
230 310, 919 0.211 0.202 −11 6.454 34 0.149 0.144 −1 5.702 29 0.259 0.253 38 10.376 69
240 310, 908 0.210 0.201 −11 6.559 35 0.152 0.147 −3 5.570 28 0.251 0.245 36 10.218 67
244 310, 905 0.208 0.199 −11 6.577 35 0.153 0.147 −2 5.617 29 0.252 0.247 37 10.259 68
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Table A29. Cont.

k AIC v.mae v.maea v.res v.mae0 v.res0 ns.mae ns.maea ns.res ns.mae0 ns.res0 cr.mae cr.maea cr.res cr.mae0 cr.res0

Mmax = 14 in variance model selection

0 437, 251 4.557 4.357 −238 100.000 38 3.231 3.121 0 100.000 261 4.027 3.942 106 100.000 367
10 327, 049 2.133 2.039 292 50.561 222 2.233 2.157 333 46.686 249 3.222 3.154 484 60.524 400
20 318, 965 1.020 0.976 108 25.288 111 0.507 0.490 69 12.759 57 0.931 0.912 136 19.634 124
30 316, 262 0.694 0.663 65 17.386 78 0.484 0.468 69 13.341 68 0.872 0.853 128 19.643 127
40 314, 272 0.392 0.375 23 10.373 44 0.277 0.268 23 8.322 30 0.493 0.483 59 11.941 66
50 313, 691 0.349 0.333 1 8.772 32 0.228 0.220 −5 6.440 12 0.335 0.328 19 8.633 36
60 312, 860 0.289 0.276 −10 7.475 30 0.204 0.197 −2 6.583 24 0.302 0.295 28 9.218 53
70 312, 542 0.286 0.273 −16 7.501 26 0.219 0.211 −3 6.802 24 0.334 0.327 37 10.548 64
80 312, 337 0.281 0.269 −18 7.254 27 0.215 0.207 −4 6.834 27 0.323 0.316 37 10.655 67
90 312, 126 0.261 0.250 −21 6.672 27 0.221 0.213 −10 6.384 23 0.286 0.280 29 9.942 62

100 312, 046 0.268 0.256 −22 6.695 27 0.222 0.215 −12 6.317 24 0.270 0.265 26 9.779 61
110 311, 961 0.257 0.245 −22 5.979 23 0.200 0.193 −5 6.316 25 0.284 0.278 31 9.695 61
120 311, 903 0.252 0.241 −21 5.892 19 0.193 0.186 1 6.411 26 0.311 0.304 37 9.977 63
130 311, 860 0.244 0.233 −19 5.886 20 0.190 0.184 3 6.562 28 0.322 0.315 41 10.344 66
140 311, 824 0.243 0.232 −20 5.880 19 0.190 0.183 5 6.758 30 0.335 0.328 44 10.696 69
150 311, 800 0.247 0.236 −21 6.011 20 0.185 0.179 2 6.452 28 0.309 0.303 40 10.365 66
160 310, 806 0.218 0.208 −16 5.451 25 0.140 0.135 0 5.234 27 0.255 0.249 37 9.596 63
170 310, 710 0.210 0.201 −15 5.473 25 0.137 0.132 0 5.077 26 0.249 0.244 36 9.359 62
180 310, 682 0.206 0.197 −14 5.303 24 0.136 0.131 2 5.064 26 0.266 0.260 39 9.492 63
190 310, 661 0.200 0.191 −13 5.285 23 0.144 0.139 5 5.163 26 0.298 0.292 44 9.843 65
200 310, 639 0.201 0.192 −13 5.413 22 0.143 0.138 4 5.088 25 0.293 0.287 44 9.726 64
210 310, 606 0.203 0.194 −13 5.599 23 0.145 0.141 6 5.459 27 0.314 0.307 47 10.294 68
220 310, 525 0.183 0.174 −13 4.672 12 0.148 0.143 −3 3.744 7 0.221 0.217 30 6.238 40
230 310, 513 0.179 0.171 −14 4.668 13 0.153 0.148 −6 3.729 7 0.206 0.202 27 6.113 40
240 310, 475 0.172 0.164 −14 4.347 10 0.130 0.126 −1 3.523 9 0.219 0.214 30 6.154 39
250 310, 462 0.171 0.163 −14 4.307 10 0.134 0.130 −2 3.480 8 0.211 0.206 28 5.958 38
258 310, 443 0.172 0.165 −14 4.371 10 0.134 0.129 −2 3.504 8 0.214 0.210 28 6.063 39

Mmax = 18 in variance model selection

0 437, 251 4.557 4.357 −238 100.000 38 3.231 3.121 0 100.000 261 4.027 3.942 106 100.000 367
10 325, 846 2.112 2.020 290 50.142 221 2.201 2.127 328 46.153 246 3.183 3.116 478 59.925 396
20 318, 985 1.027 0.982 104 25.991 136 0.566 0.547 82 18.748 99 1.089 1.066 162 27.261 179
30 315, 896 0.705 0.674 69 17.595 79 0.526 0.508 76 13.871 71 0.928 0.908 137 20.356 132
40 314, 044 0.404 0.386 28 10.602 45 0.296 0.286 30 8.630 34 0.531 0.519 68 12.462 71
50 313, 483 0.330 0.316 9 8.715 35 0.225 0.217 5 6.643 17 0.365 0.358 32 9.177 44
60 312, 939 0.316 0.302 −5 7.833 31 0.210 0.203 5 6.895 26 0.352 0.345 42 10.382 63
70 312, 359 0.270 0.258 −10 6.927 21 0.216 0.208 11 7.084 27 0.393 0.385 49 10.781 65
80 312, 165 0.260 0.248 −12 6.555 22 0.206 0.199 10 7.018 29 0.373 0.365 48 10.721 67
90 311, 964 0.233 0.223 −15 6.130 24 0.196 0.189 1 6.433 26 0.313 0.307 37 9.838 61

100 311, 882 0.237 0.227 −17 5.756 20 0.190 0.183 2 6.218 24 0.305 0.298 36 9.431 58
110 311, 827 0.239 0.229 −18 5.733 21 0.190 0.184 1 6.305 25 0.303 0.296 36 9.588 60
120 311, 769 0.245 0.234 −20 5.762 18 0.189 0.183 3 6.425 27 0.319 0.313 39 9.924 62
130 311, 716 0.224 0.214 −16 5.502 15 0.190 0.183 10 6.403 27 0.350 0.342 46 9.993 63
140 311, 005 0.216 0.206 −13 5.222 21 0.142 0.137 6 5.361 26 0.291 0.285 42 9.416 62
150 310, 660 0.203 0.194 −12 5.094 21 0.133 0.129 7 5.158 26 0.284 0.278 42 9.129 60
160 310, 611 0.201 0.192 −12 5.033 21 0.137 0.133 8 5.360 27 0.303 0.297 45 9.568 63
170 310, 586 0.196 0.187 −11 4.994 21 0.136 0.132 10 5.548 28 0.316 0.310 47 9.821 65
180 310, 550 0.193 0.184 −12 4.987 21 0.135 0.130 1 4.264 20 0.241 0.236 35 8.200 54
190 310, 535 0.196 0.187 −14 5.087 21 0.139 0.135 −3 4.049 18 0.217 0.212 31 7.884 52
200 310, 511 0.182 0.174 −11 4.965 21 0.131 0.127 0 3.992 18 0.231 0.226 34 7.810 52
210 310, 467 0.185 0.177 −12 5.011 20 0.131 0.127 0 3.967 17 0.231 0.226 34 7.741 51
220 310, 463 0.181 0.173 −12 5.059 20 0.130 0.125 2 4.181 19 0.246 0.241 36 8.110 54
230 310, 454 0.181 0.173 −11 5.409 23 0.138 0.133 1 4.405 20 0.246 0.241 36 8.436 56
240 310, 440 0.182 0.174 −11 5.398 23 0.138 0.133 1 4.457 21 0.250 0.245 37 8.559 57
250 310, 431 0.181 0.173 −11 5.509 23 0.138 0.133 1 4.525 21 0.251 0.246 37 8.638 57
252 310, 425 0.185 0.176 −11 5.515 23 0.138 0.133 1 4.548 22 0.253 0.248 37 8.700 57

Mmax = 22 in variance model selection

0 437, 251 4.557 4.357 −238 100.000 38 3.231 3.121 0 100.000 261 4.027 3.942 106 100.000 367
10 325, 796 2.115 2.023 290 50.203 222 2.206 2.131 329 46.238 246 3.189 3.121 479 60.021 396
20 318, 940 1.026 0.981 112 25.965 135 0.666 0.644 98 20.243 107 1.199 1.174 179 28.606 188
30 315, 849 0.708 0.677 70 17.681 79 0.532 0.514 77 14.005 72 0.936 0.917 139 20.526 133
40 314, 001 0.407 0.389 28 10.712 46 0.299 0.289 31 8.710 34 0.536 0.524 69 12.589 73
50 313, 413 0.348 0.332 10 9.025 36 0.223 0.216 5 6.616 17 0.364 0.356 32 9.225 44
60 312, 897 0.316 0.302 −4 7.866 31 0.211 0.203 6 6.983 27 0.358 0.351 44 10.549 65
70 312, 317 0.271 0.259 −9 6.969 22 0.217 0.210 12 7.185 28 0.399 0.391 50 10.961 67
80 312, 120 0.260 0.249 −11 6.565 23 0.207 0.200 10 7.119 30 0.379 0.371 49 10.896 69
90 311, 920 0.235 0.224 −15 6.091 24 0.196 0.189 1 6.427 26 0.313 0.306 37 9.791 61

100 311, 842 0.238 0.228 −16 6.034 23 0.194 0.187 1 6.531 27 0.311 0.304 37 9.949 63
110 311, 784 0.241 0.230 −18 5.900 24 0.192 0.185 1 6.554 28 0.304 0.297 36 10.004 63
120 311, 737 0.241 0.230 −18 5.809 21 0.189 0.182 2 6.395 27 0.310 0.303 38 9.924 63
130 311, 690 0.227 0.217 −16 5.653 18 0.187 0.181 8 6.468 28 0.339 0.332 45 10.100 64
140 310, 925 0.213 0.203 −13 5.206 22 0.140 0.136 7 5.430 27 0.293 0.286 43 9.548 63
150 310, 604 0.202 0.193 −11 5.131 22 0.133 0.129 7 5.286 27 0.289 0.283 42 9.321 61
160 310, 559 0.200 0.192 −11 5.063 22 0.139 0.134 9 5.507 28 0.310 0.304 46 9.791 65
170 310, 532 0.189 0.181 −10 4.999 22 0.134 0.129 8 5.194 26 0.297 0.291 44 9.438 62
180 310, 503 0.193 0.185 −12 5.222 24 0.132 0.128 4 5.137 26 0.270 0.264 40 9.462 62
190 310, 481 0.194 0.186 −13 5.113 22 0.140 0.136 −2 4.124 19 0.220 0.215 32 8.019 53
200 310, 454 0.189 0.181 −13 5.164 21 0.135 0.130 −1 4.033 18 0.224 0.220 33 7.836 52
210 310, 412 0.185 0.177 −12 5.038 20 0.132 0.128 0 4.019 18 0.231 0.226 34 7.805 52
220 310, 406 0.185 0.176 −12 5.067 20 0.132 0.128 1 4.062 18 0.239 0.234 35 7.981 53
224 310, 404 0.184 0.176 −12 5.112 20 0.132 0.128 1 4.076 18 0.239 0.234 35 7.934 52
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Table A30. AIC scores and out-of-sample validation figures of all derived FGLS proxy functions of
BEL under 150–443 and 300–886 after the final iteration. Highlighted in green and red respectively the
best and worst AIC scores and validation figures.

k Mmax AIC v.mae v.maea v.res v.mae0 v.res0 ns.mae ns.maea ns.res ns.mae0 ns.res0 cr.mae cr.maea cr.res cr.mae0 cr.res0

Type I algorithm under 150-443

150 2 315, 980 0.239 0.229 −16 8.147 46 0.255 0.246 −30 4.032 17 0.153 0.149 2 7.489 49
150 6 311, 949 0.231 0.221 −13 7.577 41 0.203 0.196 −18 4.762 22 0.186 0.183 17 8.637 57
150 10 311, 363 0.227 0.217 −10 7.460 40 0.194 0.188 −15 4.708 21 0.195 0.191 20 8.537 56
150 14 311, 161 0.231 0.221 −9 7.527 41 0.193 0.186 −14 4.701 21 0.200 0.195 21 8.497 56
150 18 311, 048 0.228 0.218 −9 7.433 40 0.187 0.181 −13 4.780 22 0.204 0.200 22 8.621 57
150 22 310, 974 0.230 0.220 −8 7.436 40 0.187 0.180 −12 4.802 22 0.207 0.203 23 8.639 57

Type I algorithm under 300-886

224 2 315, 615 0.196 0.187 −9 6.527 33 0.275 0.266 −30 4.564 −3 0.175 0.171 5 5.401 32
224 6 311, 554 0.200 0.191 −9 6.399 33 0.240 0.232 −23 4.292 4 0.183 0.179 13 6.389 40
224 10 311, 287 0.203 0.194 −8 6.473 33 0.234 0.226 −21 4.310 5 0.189 0.185 16 6.621 42
224 14 310, 980 0.200 0.191 −7 6.246 31 0.222 0.214 −19 4.257 6 0.194 0.190 18 6.697 42
224 18 310, 881 0.200 0.191 −7 6.194 31 0.217 0.210 −18 4.250 6 0.198 0.194 19 6.801 43
224 22 310, 832 0.200 0.192 −7 6.256 32 0.217 0.210 −18 4.223 7 0.196 0.192 19 6.844 44

Type II algorithm under 150-443

150 2 315, 629 0.239 0.229 −21 6.467 34 0.261 0.252 −30 3.796 10 0.177 0.173 3 6.654 44
150 6 311, 426 0.224 0.215 −14 5.904 31 0.177 0.171 −9 4.756 22 0.226 0.221 29 9.005 59
150 10 310, 868 0.212 0.203 −14 5.375 25 0.148 0.143 0 5.098 25 0.256 0.250 36 9.296 61
150 14 310, 714 0.214 0.205 −14 5.368 25 0.146 0.141 −1 4.857 23 0.244 0.239 34 8.906 59
150 18 310, 644 0.211 0.202 −14 5.131 23 0.139 0.135 1 4.816 23 0.250 0.245 35 8.618 57
150 22 310, 590 0.208 0.199 −13 5.209 23 0.139 0.134 5 5.193 26 0.275 0.270 40 9.256 61

Type II algorithm under 300-886

224 2 315, 491 0.209 0.199 −17 6.584 34 0.226 0.219 −22 3.999 14 0.165 0.161 12 7.290 48
237 6 311, 144 0.196 0.188 −15 5.342 23 0.125 0.121 0 4.765 24 0.235 0.230 30 8.243 54
244 10 310, 905 0.208 0.199 −11 6.577 35 0.153 0.147 −2 5.617 29 0.252 0.247 37 10.259 68
258 14 310, 443 0.172 0.165 −14 4.371 10 0.134 0.129 −2 3.504 8 0.214 0.210 28 6.063 39
252 18 310, 425 0.185 0.176 −11 5.515 23 0.138 0.133 1 4.548 22 0.253 0.248 37 8.700 57
224 22 310, 404 0.184 0.176 −12 5.112 20 0.132 0.128 1 4.076 18 0.239 0.234 35 7.934 52
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Table A31. Settings and out-of-sample validation figures of best performing multivariate adaptive
regression splines (MARS) models derived in a two-step approach sorted by first and second step
validation sets. Highlighted in green and red respectively the best and worst validation figures.

k Kmax tmin o p glm v.mae v.maea v.res v.mae0 v.res0 ns.mae ns.maea ns.res ns.mae0 ns.res0 cr.mae cr.maea cr.res cr.mae0 cr.res0

Sobol set2

148 206 0 6 s inv.g, id 0.265 0.253 −24 10.317 55 0.575 0.555 −40 16.234 −56 0.822 0.805 80 17.657 64
49 50 0 3 n inv.g, log 0.370 0.354 0 9.168 19 0.705 0.681 −12 29.477 −102 0.525 0.514 25 16.891 −65
60 66 0 4 s inv.g, id 0.324 0.310 −11 8.517 16 1.712 1.654 151 44.504 132 0.917 0.897 102 19.877 83
45 50 0 4 b inv.g, id 0.347 0.332 −2 8.686 11 0.447 0.431 −36 22.702 −125 0.511 0.500 35 15.785 −54

Sobol set and nested simulations set

45 50 0 4 b inv.g, id 0.347 0.332 −2 8.686 11 0.447 0.431 −36 22.702 −125 0.511 0.500 35 15.785 −54
17 19 0 4 b inv.g, id 0.834 0.797 25 24.673 124 0.480 0.464 −4 41.356 −243 0.763 0.747 108 21.398 −132
70 81 0 4 b inv.g, id 0.335 0.320 −22 10.872 52 0.554 0.535 −35 14.073 −38 0.875 0.857 102 18.250 99
33 34 0 3 n inv.g, id 0.426 0.407 −10 10.871 21 1.565 1.512 108 52.384 1 0.662 0.648 32 20.997 −75

Sobol set and capital region set

45 50 0 3 b pois, log 0.379 0.362 0 9.556 28 0.480 0.464 −43 24.878 −139 0.510 0.500 28 16.938 −69
31 34 0 3 b pois, log 0.476 0.455 −13 12.752 46 0.593 0.573 −54 31.148 −175 0.661 0.647 18 23.088 −103
45 50 0 4 b inv.g, id 0.347 0.332 −2 8.686 11 0.447 0.431 −36 22.702 −125 0.511 0.500 35 15.785 −54
59 66 0 3 b pois, log 0.428 0.439 40 16.674 98 0.760 0.734 −12 22.511 −41 0.809 0.792 68 18.403 39

Nested simulations set and Sobol set

134 144 1.6−5 5 n gaus, log 0.273 0.261 −22 10.255 54 1.025 0.990 −1 28.192 −23 1.515 1.484 179 32.616 157
45 50 0 4 s inv.g, id 0.347 0.332 −2 8.686 11 0.447 0.431 −36 22.702 −125 0.511 0.500 35 15.785 −54
60 66 0 4 s inv.g, id 0.324 0.310 −11 8.517 16 1.712 1.654 151 44.504 132 0.917 0.897 102 19.877 83
45 50 0 4 b inv.g, id 0.347 0.332 −2 8.686 11 0.447 0.431 −36 22.702 −125 0.511 0.500 35 15.785 −54

Nested simulations set2

45 50 0 4 b inv.g, id 0.347 0.332 −2 8.686 11 0.447 0.431 −36 22.702 −125 0.511 0.500 35 15.785 −54
146 159 9.4−6 5 n gaus, log 0.279 0.267 −24 10.008 53 1.025 0.990 0 26.779 −11 1.498 1.467 174 31.702 163

76 97 3.8−5 4 b inv.g, log 0.344 0.329 −17 10.676 52 0.538 0.520 −37 11.874 −24 0.804 0.787 88 16.584 100
107 113 0 4 n gaus, log 0.321 0.307 −20 11.976 63 0.997 0.963 8 25.694 0 1.529 1.496 191 32.148 182

Nested simulations set and capital region set

45 50 0 4 s pois, id 0.353 0.338 −3 8.891 18 0.449 0.434 −36 23.634 −131 0.504 0.493 36 16.079 −58
31 34 0 4 s pois, id 0.437 0.418 −11 11.254 32 0.548 0.530 −45 28.444 −157 0.648 0.634 29 21.374 −84
72 82 3.1−5 4 b inv.g, inv 0.365 0.349 −16 11.181 53 0.579 0.560 −49 14.528 −51 0.700 0.685 65 14.619 64
45 50 0 4 b inv.g, id 0.347 0.332 −2 8.686 11 0.447 0.431 −36 22.702 −125 0.511 0.500 35 15.785 −54

Capital region set and Sobol set

125 144 0 5 f inv.g, inv 0.283 0.271 −20 10.336 54 0.630 0.608 −63 17.245 −76 0.675 0.660 45 14.737 32
45 50 0 4 s gaus, log 0.382 0.365 −1 9.916 32 0.469 0.453 −41 25.487 −144 0.495 0.485 32 16.868 −71

114 144 1.9−5 5 s inv.g,1/μ2 0.313 0.299 −12 9.414 40 0.708 0.684 −77 20.115 −97 0.626 0.612 36 14.095 17
45 50 0 4 b gaus, log 0.382 0.365 −1 9.916 32 0.469 0.453 −41 25.487 −144 0.495 0.485 32 16.868 −71

Capital region set and nested simulations set

45 50 0 4 f gaus, log 0.386 0.369 −1 10.095 34 0.468 0.452 −41 25.709 −145 0.496 0.486 32 17.077 −73
64 66 0 4 n inv.g,1/μ2 0.420 0.401 −3 11.506 39 0.840 0.811 3 25.969 −38 1.298 1.271 146 29.110 105

148 175 0 6 s inv.g,1/μ2 0.311 0.297 −16 10.447 52 0.576 0.556 −55 14.565 −57 0.611 0.598 30 12.844 27
77 81 0 4 n inv.g,1/μ2 0.387 0.370 −11 11.519 52 1.029 0.994 −28 25.831 −32 1.279 1.252 148 26.700 145

Capital region set2

45 50 0 4 s gaus, log 0.382 0.365 −1 9.916 32 0.469 0.453 −41 25.487 −144 0.495 0.485 32 16.868 −71
33 34 0 3 n inv.g,1/μ2 0.564 0.539 −14 15.693 64 0.827 0.800 −54 38.645 −185 0.745 0.729 −2 26.338 −134

148 175 0 6 s inv.g,1/μ2 0.311 0.297 −16 10.447 52 0.576 0.556 −55 14.565 −57 0.611 0.598 30 12.844 27
148 175 4.7−6 5 f inv.g, inv 0.296 0.283 −20 10.416 53 0.549 0.530 −54 18.260 −87 0.664 0.650 32 16.307 −1
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Table A32. Best MARS model of BEL derived in a two-step approach with the final coefficients.

k hk (X) β̂MARS,k

0 1 15, 397.13

1 h (X8 − 0.104892) 7901.89
2 h (0.104892 − X8) −8165.64
3 h (0.205577 − X1) · h (0.104892 − X8) 688.83
4 h (X6 − 1.17224) 265.08
5 h (1.17224 − X6) −280.94
6 h (X15 − 53.8706) −2.11
7 h (53.8706 − X15) 1.16
8 h (X7 −−0.147599) −60.90
9 h (−0.147599 − X7) −334.77

10 h (X8 −−0.0456197) 3183.07

11 h (0.205577 − X1) · h (0.104892 − X8) · h (X15 − 64.6262) −9.48
12 h (0.205577 − X1) · h (0.104892 − X8) · h (64.6262 − X15) 29.85
13 h (X1 − 0.945371) −64.88
14 h (0.945371 − X1) 124.45
15 h (X6 − 1.56058) · h (0.104892 − X8) −815.20
16 h (1.56058 − X6) · h (0.104892 − X8) 1085.80
17 h (1.44218 − X2) −60.23
18 h (X1 −−1.61447) · h (1.56058 − X6) · h (0.104892 − X8) −233.14
19 h (−1.61447 − X1) · h (1.56058 − X6) · h (0.104892 − X8) 415.92
20 h (X8 − 0.0159508) · h (53.8706 − X15) 8.94

21 h (0.0159508 − X8) · h (53.8706 − X15) 47.99
22 h (X9 − 0.247192) 47.72
23 h (0.247192 − X9) −82.58
24 h (0.993896 − X12) −63.61
25 h (X1 − 0.0195594) · h (0.0159508 − X8) · h (53.8706 − X15) −12.58
26 h (0.0195594 − X1) · h (0.0159508 − X8) · h (53.8706 − X15) −42.25
27 h (X7 −−0.147599) · h (X8 −−0.191689) 2124.93
28 h (X7 −−0.147599) · h (−0.191689 − X8) 1510.41
29 h (X3 − 0.323352) · h (0.104892 − X8) 948.86
30 h (0.323352 − X3) · h (0.104892 − X8) −577.61

31 h (X1 −−1.26627) · h (X7 −−0.147599) 101.15
32 h (−1.26627 − X1) · h (X7 −−0.147599) −10.00
33 h (X14 − 0.684998) 109.76
34 h (0.684998 − X14) −37.89
35 h (1.17224 − X6) · h (X8 −−0.12538) 216.62
36 h (1.17224 − X6) · h (−0.12538 − X8) 2076.18
37 h (0.945371 − X1) · h (X8 − 0.0019988) −156.79
38 h (0.945371 − X1) · h (0.0019988 − X8) 1262.56
39 h (X1 −−1.58818) · h (X6 − 1.56058) · h (0.104892 − X8) 137.60
40 h (1.56058 − X6) · h (0.104892 − X8) · h (X15 − 76.9327) −4.87

41 h (1.56058 − X6) · h (0.104892 − X8) · h (76.9327 − X15) 2.11
42 h (0.205577 − X1) · h (X2 − 1.43028) · h (0.104892 − X8) 24, 003.07
43 h (0.205577 − X1) · h (1.43028 − X2) · h (0.104892 − X8) −161.88
44 h (X1 − 0.945371) · h (X8 −−0.0165546) −224.18
45 h (X1 − 0.945371) · h (−0.0165546 − X8) −987.47
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Table A33. Basis function sets of LC and LL proxy functions of BEL corresponding to Kmax ∈ {16, 27}
derived by adaptive OLS selection.

k r1
k r2

k r3
k r4

k r5
k r6

k r7
k r8

k r9
k r10

k r11
k r12

k r13
k r14

k r15
k

Kmax = 16 in adaptive basis function selection

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
5 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
6 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0
8 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1
11 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
12 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
13 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
16 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0

Kmax = 27 in adaptive basis function selection

17 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
18 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1
19 0 0 0 0 0 0 0 2 0 0 0 0 0 0 1
20 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
21 1 0 0 0 0 0 0 2 0 0 0 0 0 0 0
22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2
23 2 0 0 0 0 0 0 0 0 0 0 0 0 0 1
24 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
25 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
26 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0
27 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0

Table A34. Basis function sets of LC and LL proxy functions of BEL corresponding to Kmax ∈ {15, 22}
derived by risk factor wise or combined risk factor wise and adaptive OLS selection.

k r1
k r2

k r3
k r4

k r5
k r6

k r7
k r8

k r9
k r10

k r11
k r12

k r13
k r14

k r15
k

Kmax = 15 in risk factor wise basis function selection

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
13 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
14 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Kmax = 22 in combined risk factor wise and adaptive selection

16 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
17 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0
18 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1
19 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
20 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
21 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
22 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
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Table A35. Settings and out-of-sample validation figures of LC and LL proxy functions of BEL using
basis function sets from Tables A33 and A34. Highlighted in green and red respectively the best and
worst validation figures.

k bw o v.mae v.maea v.res v.mae0 v.res0 ns.maens.maea ns.res ns.mae0 ns.res0 cr.maecr.maea cr.res cr.mae0 cr.res0

LC regression with gaussian kernel and LOO-CV

16 0.1 2 0.55 0.52 −44 13 50 0.70 0.68 −86 12 −7 0.55 0.54 −35 12 45
16 0.2 2 0.40 0.38 −26 11 47 0.52 0.50 −51 11 7 0.44 0.43 5 13 63
16 0.3 2 0.37 0.35 −25 11 45 0.45 0.44 −37 11 19 0.44 0.43 5 12 60
27 0.2 2 0.39 0.38 −26 11 43 0.51 0.49 −51 11 3 0.43 0.43 4 12 58
16 0.1 4 2.80 2.68 −155 84 −407 8.05 7.78 −558 247 −825 5.04 4.94 −96 128 −363

LL regression with gaussian kernel and LOO-CV

16 0.1 2 0.38 0.36 −11 12 57 0.57 0.55 −68 10 −15 0.41 0.40 −22 9 31
16 0.2 2 0.34 0.33 −6 11 59 0.45 0.43 −49 8 2 0.37 0.36 5 10 55
27 0.1 2 210.30 201.06−30, 682 5209−30, 589 131.04 126.61 −18, 981 3670−18, 902 4.09 4.00 −82 92 −3
27 0.2 22726.472606.74 400, 254 67, 487 400, 3063502.24 3383.85 422, 443 98, 081 422, 481 1.85 1.81 −25 41 13

LC regression with gaussian kernel and AIC

16 0.1 2 0.57 0.55 −43 14 55 0.65 0.62 −72 12 12 0.50 0.49 −12 14 72
16 0.2 2 1.63 1.55 38 41 73 1.94 1.88 266 57 286 2.57 2.51 384 61 404
27 0.1 2 0.56 0.54 −42 14 56 0.64 0.62 −72 12 12 0.50 0.49 −12 14 72

LC regression with Epanechnikov kernel and LOO-CV

15 0.1 2 0.53 0.50 −36 13 41 1.05 1.02 −38 22 24 0.51 0.50 −29 11 33
15 0.2 2 0.41 0.39 −31 10 33 1.14 1.10 3 26 53 1.18 1.16 97 27 146
15 0.3 2 0.40 0.38 −30 9 23 0.96 0.93 16 23 54 0.46 0.45 −6 11 33
15 0.4 2 0.35 0.33 −22 9 18 1.11 1.08 12 28 39 0.47 0.46 −2 11 25
15 0.5 2 0.34 0.33 −18 9 37 1.24 1.20 6 30 46 0.51 0.50 −22 11 18
15 0.6 2 0.33 0.32 −17 10 50 1.16 1.12 21 27 74 0.46 0.45 −2 11 50
15 0.7 2 0.33 0.32 −16 10 41 1.17 1.13 18 28 61 0.44 0.43 −14 9 28
15 0.8 2 0.33 0.31 −16 10 45 1.21 1.17 29 29 76 1.16 1.13 101 26 148
15 0.9 2 0.32 0.30 −20 12 61 1.14 1.10 40 27 107 1.14 1.11 111 29 178
15 1.0 2 0.32 0.31 −22 10 49 1.19 1.15 52 29 109 1.13 1.11 106 27 163
16 0.1 2 0.53 0.50 −40 13 43 1.20 1.16 2 28 71 0.51 0.50 −20 12 49
16 0.2 2 0.41 0.39 −26 11 50 1.16 1.12 27 28 88 0.44 0.43 2 12 64
16 0.3 2 0.36 0.34 −27 9 29 1.07 1.03 41 27 83 0.44 0.43 1 11 43
16 0.4 2 0.33 0.32 −19 8 22 1.16 1.12 27 30 53 0.45 0.44 4 10 30
16 0.5 2 0.32 0.31 −16 9 36 1.34 1.30 30 33 67 1.22 1.19 101 27 138
16 0.1 4 0.45 0.43 −26 13 34 0.74 0.71 −68 16 −23 0.59 0.57 5 15 51
16 0.2 4 3.29 3.15 −104 160 891 7.50 7.24 −14 329 966 8.06 7.89 176 295 1157
16 0.1 6 3.31 3.16 −32 84 68 5.74 5.55 −96 158 −10 6.62 6.48 −53 148 32
16 0.2 6 3.32 3.18 −71 85 −217 9.37 9.06 73 268 −87 13.18 12.90 246 304 86
16 0.1 8 3.94 3.77 146 105 −119 10.71 10.35 −191 308 −470 8.84 8.65 −312 205 −591
16 0.2 8 8.53 8.16 397 286 −639 7.79 7.52 70 347 −980 12.37 12.11 1365 390 315
22 0.1 2 0.50 0.48 −37 12 44 1.07 1.03 −41 22 25 0.52 0.50 −30 11 37
22 0.2 2 0.42 0.40 −28 10 39 1.07 1.03 −3 25 50 1.20 1.17 106 29 159
22 0.3 2 0.39 0.37 −29 9 23 0.89 0.86 6 22 43 0.45 0.44 −3 11 34
22 0.4 2 0.35 0.33 −21 8 16 1.05 1.02 3 27 26 0.49 0.48 −4 11 19
22 0.5 2 0.33 0.31 −14 9 32 1.17 1.13 −2 28 29 0.47 0.46 −15 10 16
22 0.6 2 0.33 0.32 −17 10 46 1.09 1.06 11 25 60 0.45 0.44 −1 11 48
22 0.7 2 0.32 0.31 −15 9 39 1.23 1.18 26 29 66 1.17 1.14 99 26 139
22 0.8 2 0.32 0.30 −15 10 46 1.19 1.15 32 28 78 1.12 1.10 106 26 152
22 0.9 2 0.31 0.30 −19 11 58 1.15 1.11 39 27 102 1.12 1.10 111 28 174
22 1.0 2 0.31 0.30 −21 10 48 1.13 1.09 41 27 96 1.12 1.10 107 27 162
27 0.2 2 0.40 0.38 −26 11 45 1.15 1.12 26 28 83 0.44 0.43 1 12 58
27 0.3 2 0.38 0.36 −28 9 24 0.90 0.87 7 22 45 0.46 0.45 −2 11 36
27 0.4 2 0.35 0.33 −21 9 17 1.05 1.02 2 27 26 0.48 0.47 −4 11 11

LL regression with Epanechnikov kernel and LOO-CV

15 0.1 2 0.45 0.43 −49 10 40 1.22 1.18 −100 22 −26 0.78 0.77 −104 11 −30
15 0.2 2 0.36 0.34 −34 8 13 1.59 1.53 −145 40 −112 0.60 0.58 −54 11 −21
15 0.3 2 0.32 0.31 −36 7 17 1.91 1.85 134 48 173 0.60 0.58 −36 11 3
15 0.4 2 0.34 0.33 −40 8 33 1.83 1.76 −164 42 −106 0.43 0.42 −49 6 9
15 0.5 2 0.33 0.31 −40 8 34 2.20 2.12 −219 53 −160 0.41 0.41 −45 6 15
15 0.6 2 0.30 0.29 −33 7 29 0.94 0.91 8 19 56 0.33 0.32 −28 5 21
15 0.7 2 0.31 0.30 −40 7 23 0.94 0.91 −13 19 36 0.36 0.35 −40 5 8
15 0.8 2 0.29 0.28 −38 5 8 0.86 0.83 4 19 36 0.32 0.32 −29 5 3
22 0.1 2 731.51 699.39 2738 85, 172 479, 6121564.87 1511.98−111, 628 127, 410 365, 231 492.49 482.11−19, 404 76, 575457, 455
22 0.2 2 0.34 0.33 −34 8 0 0.83 0.80 −15 21 4 0.42 0.41 −25 8 −5
22 0.3 2 98.03 93.73 14, 396 148 −250 101.69 98.25 15, 174 147 513 100.00 97.89 15, 028 100 367
22 0.4 2 98.05 93.75 14, 399 147 −248 113.99 110.14 13, 158 495 −1503 100.00 97.89 15, 028 100 367
22 0.5 2 100.00 95.61 14, 685 100 38 118.95 114.93 14, 984 651 323 100.00 97.89 15, 028 100 367
22 0.6 2 99.72 95.34 14, 644 106 −3 100.59 97.19 15, 004 120 343 100.00 97.89 15, 028 100 367
22 0.7 2 100.00 95.61 14, 685 100 38 100.00 96.62 14, 922 100 261 100.00 97.89 15, 028 100 367
22 0.8 2 0.29 0.28 −39 5 9 152.43 147.27 22, 622 4264 22, 655 0.31 0.30 −35 5 −2

LC regression with uniform kernel and LOO-CV

16 0.1 2 0.75 0.71 −56 18 46 1.53 1.48 −52 32 36 0.73 0.72 −59 15 29
16 0.5 2 1.22 1.17 −78 29 16 2.60 2.51 301 82 381 10.45 10.23 1419 242 1498
27 0.1 2 0.64 0.61 −38 16 31 1.30 1.26 13 32 68 0.59 0.58 −2 15 53
27 0.5 2 0.35 0.34 −16 12 53 1.34 1.30 25 33 79 1.40 1.37 117 32 171
16 0.1 4 0.71 0.68 −33 17 47 1.27 1.23 −1 31 65 0.67 0.65 −23 15 43
16 0.5 4 1.85 1.76 −139 39 50 2.29 2.22 18 51 193 7.09 6.94 769 157 943
27 0.1 4 0.66 0.63 −38 15 32 1.32 1.27 7 32 63 0.58 0.57 −15 14 40
27 0.5 4 0.39 0.37 −13 13 67 1.26 1.21 16 31 82 0.52 0.51 −10 13 56
16 0.1 6 1.83 1.75 −165 38 100 1.95 1.88 −178 29 72 1.55 1.51 −190 24 60
16 0.5 6 1.83 1.75 −6 56 271 1.08 1.04 80 65 344 1.66 1.63 225 74 488
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Krah, Anne-Sophie, Zoran Nikolić, and Ralf Korn. 2018. A least-squares Monte Carlo framework in proxy
modeling of life insurance companies. Risks 6: 62. [CrossRef]

Li, Qi, and Jeff Racine. 2004. Cross-validated local linear nonparametric regression. Statistica Sinica 14: 485–512.
Magnus, Jan R. 1978. Maximum likelihood estimation of the GLS model with unknown parameters in the

disturbance covariance matrix. Journal of Econometrics 7: 281–312. [CrossRef]
Marra, Giampiero, and Simon N. Wood. 2012. Coverage properties of confidence intervals for generalized

additive model components. Scandinavian Journal of Statistics 39: 53–74. [CrossRef]
Marx, Brian D., and Paul H.C. Eilers. 1998. Direct generalized additive modeling with penalized likelihood.

Computational Statistics & Data Analysis 28: 193–209.
McCullagh, Peter, and John A. Nelder. 1989. Generalized Linear Models, 2nd ed. London and New York:

Chapman & Hall.
McLean, Douglas. 2014. Orthogonality in Proxy Generator. Presentation, Insurance-ERS. Legendre Polynomial/QR

Decomposition Equivalence in Multiple Polynomial Regression. New York City: Moody’s Analytics.
Milborrow, Stephen. 2018. Earth: Multivariate Adaptive Regression Splines. Derived from mda:mars by Trevor

Hastie and Rob Tibshirani. Uses Alan Miller’s Fortran Utilities with Thomas Lumley’s Leaps Wrapper. R
Package Version 4.6.3. Available online: https://mran.microsoft.com/snapshot/2018-06-07/web/packages/
earth/index.html (accessed on 29 June 2018).

Mourik, Teus. 2003. Market risk of insurance companies. In Discussion Paper IAA Insurer Solvency Assessment
Working Party. Amsterdam, The Netherlands. Available online: http://www.actuaires.org/AFIR/colloquia/
Maastricht/Mourik.png (accessed on 12 August 2019).

Nadaraya, Elizbar A. 1964. On estimating regression. Theory of Probability and Its Applications 9: 141–42. [CrossRef]
Nelder, John A., and Robert W. M. Wedderburn. 1972. Generalized linear models. Journal of the Royal Statistical

Society, Series A 135: 370–84. [CrossRef]
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Abstract: This study evaluates four machine learning (ML) techniques (Decision Trees (DT), Random
Forests (RF), Neural Networks (NN) and Probabilistic Neural Networks (PNN)) on their ability to
accurately predict export credit insurance claims. Additionally, we compare the performance of the
ML techniques against a simple benchmark (BM) heuristic. The analysis is based on the utilisation
of a dataset provided by the Berne Union, which is the most comprehensive collection of export
credit insurance data and has been used in only two scientific studies so far. All ML techniques
performed relatively well in predicting whether or not claims would be incurred, and, with limitations,
in predicting the order of magnitude of the claims. No satisfactory results were achieved predicting
actual claim ratios. RF performed significantly better than DT, NN and PNN against all prediction
tasks, and most reliably carried their validation performance forward to test performance.

Keywords: machine learning; claims prediction; export credit insurance

1. Introduction

Predicting claims is a critical challenge for insurers and has significant implications for their
managerial, financial and underwriting decisions. Changes in (expected) claims do not only affect the
capital of an insurer, but also the capacity to underwrite further business. Insurance companies can
increase premium rates and adjust their underwriting policy to balance the effect of unexpected claims
(van der Veer 2019), but this will consequently impact their business opportunities negatively. We are,
therefore, investigating machine learning (ML) techniques for claims prediction using an international
dataset on export credit insurance claims.

Export credit insurance is a tool for exporters in mitigating risks that arise from exporting to
other countries. It covers companies against the risk of non-payment of their buyer due to commercial
and political risks. The commercial risks include full or partial default on payments, as well as
protracted default or insolvency of private buyers, while political risks, include non-payment of
public buyers or due to political events, e.g., government-imposed moratoria on payments, inability
to transfer currency, or force majeure (Berne Union 2019d). Export credit insurance is widely used
by exporters to protect their cash flows and receivables. Consequently, it also protects the profits
against unwanted volatility due to unsystematic risk. It can also cover lenders involved in the export
transaction (usually by granting loans or letters of credit for the buyer) against the default of their
credit due to the aforementioned reasons. Often lenders are only willing to grant financing if export
credit insurance is provided. Therefore, export credit insurance is regularly a key requirement for the
realisation of an export transaction (Krummaker 2020).

The Export Credit Insurance business is differentiated with respect to the tenure of the credit
granted. Short-term (ST) credits are typically up to one year, while medium- and long-term (MLT)
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credit insurance offers insurance for credit terms up to 15 years. MLT is mainly offered by public
Export Credit Agencies (ECAs), even though in recent years the private market has increased its MLT
capacities (Berne Union 2019d). In our study, we focus on MLT insurance provided by ECAs, which is
characterised by higher risk than in the ST business. Furthermore, for some, ECAs claims are a rare
occurrence. However, as the claims frequency is very low, the severity of potential claims can be
high and might also exhibit long-tail properties. In our article we address the challenge of insurers in
making reliable and consistent predictions of future claims based on historical claims experiences by
conducting a comparative analysis of ML approaches on a long-term dataset of export credit claims.

The aim of this study is to assess the performance of ML techniques in identifying the occurrence of
claims in export credit insurance and their potential performance loss when tested under near-realistic
forecasting conditions. We were able to access a unique dataset provided by the Berne Union to
compare four ML techniques by exposing them to three increasingly challenging prediction tasks.
Furthermore, we evaluate their performance against a simple benchmark (BM) technique, as ML
approaches are complex and resource-intensive to set up but might not achieve significantly better
results for claims prediction and reserving (England and Verrall 2002).

First, this article contributes to the gap in the literature on export credit insurance and claims.
Second, the paper also contribute to the advancement of the literature on claims prediction by providing
an evaluation of ML approaches, including a comparison against a simple BM. This, thirdly, also has
practical implications for actual claims prediction and reserving for export credit insurers and ECAs.

In the following section, we provide more background to the study before introducing the dataset
and a description of ML. After this, we describe the ML techniques used for this study, before discussing
the results. The conclusion also includes an outlook for further research.

2. Background

Export credit insurance is offered by private sector insurance companies, public government
backed ECAs and some multilateral organisations. Most developed countries, but also many emerging
countries and more developing countries, have their own ECA or access to multilateral credit insurers.
ECAs are official or quasi-official branches of their governments which offer export credit insurance,
guarantees and financing. ECAs are highly regulated in many countries in terms of their product
offerings and conditions as they are instruments of governments’ trade and foreign aid. To minimise
opportunities for hidden subsidies and state aids, ECAs are regulated by international agreements
on several levels. The World Trade Organization (WTO) has an explicit framework for trade policies,
and the OECD arrangement imposes further detailed rules on its members. The aim of these regulations
is to create a level playing field in the global export environment and coherence between national
export credit policies (OECD 2018). International competition of exporters is supposed to be based
on price and quality, and not on the most favourable terms of exporters’ ECAs (Drysdale 2015).
Consequently, ECAs of OECD countries are restricted to offer credit insurance only for risks which
are deemed non-marketable, i.e., for which the private insurance market is unwilling to provide
cover. ECAs mainly cover transactions with credit payment periods of longer than two years and/or
to high-risk countries, as private insurers usually do not cover credit risk with repayment terms of
longer than two years and can retreat from covering countries with increasing commercial or political
risk. These medium- and long-term business (MLT) are typically capital goods, such as industry or
infrastructure projects.1 A further aspect of OECD ECA regulation is the application of minimum
premium rates (MPR) for credit risk.2 Thus, ECAs have less discretion in setting premiums than private
insurers, which limits opportunities for managing underwriting and rates, claims ratios and reserves.

1 Krummaker (2020) provides an overview of export credit markets, governance and key forms of export credit insurance.
2 The MPR is based on several factors, including country risk classification, the time at risk, the buyer risk category and the

percentage of risk retention (OECD 2018).
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ECAs act as insurers of last resort and are usually reinsured or backed-up by their respective governments.
While private insurers are required to maintain certain levels of long-term and short-term solvency, ECAs often
just need to break even and not hold technical provisions for the liabilities and potential claims they take on
with underwriting export credit insurance (Moser et al. 2008; European Commission 2012).

ECAs play an important role in facilitating international trade as they provide critical and
significant cover to international trade transactions. In 2018, ca. 13% of global trade was covered
by MLT export credit insurance provided by ECAs (Berne Union members, Berne Union 2019a).
Although, ECAs are underwriting mid-and long-term business in non-marketable, riskier countries,
claims still might be an exception. Some ECAs might experience claims only irregularly, but if claims
occur, they might be significant. Therefore, it is questionable how well previous claims experiences
might be suited to predict future claims.

Prior research in the areas of export credit insurance and finance has only really intensified since
the early 2000s. Various papers have established the importance of export credit insurance or ECAs
for the support of economic growth, or the relationship between imports and insured trade credits
(e.g., Abraham and Dewit 2000; Egger and Url 2006; Moser et al. 2008; van der Veer 2015; Felbermayr
and Yalcin 2013). Another strand of literature focuses on the relationship between trading companies
and the impact of trade credit, financial market conditions and international trade, as well as the
implications of the financial crisis (e.g., Auboin 2009; Korinek et al. 2010; Morel 2011; Auboin and
Engemann 2014).

A key challenge for insurers is that, while claims are arising irregularly as a stochastic process
of two components, the uncertain number and amount of claims, premiums are not stochastic and
they are paid upfront. Although, claims reserving is a critical process in insurance companies, little
research has been done on claims in the area of export credit insurance. van der Veer (2019) has carried
out the only research examining the impact of export credit insurance claims on price and quality
of private export credit insurance. With our study, we address this gap in the literature and aim to
provide insights into potential advancements of claims prediction methods.

The export credit insurance industry is currently facing a period of higher uncertainty, driven
by the global economic and geo-political environment. Claims in 2018 have risen to historically high
levels, with total indemnifications of USD 6.4 bn, 17% higher than 2009 during the financial crisis and
75% higher than the annual average for the past decade (Berne Union 2019b).

This volatile environment makes it challenging for insurers and ECAs to derive reliable predictions
of expected claims based on historical data. While, private insurers face increasing financial and
regulatory requirements, ECAs have to justify that their use of taxpayers’ money is effective and
efficient, and creates the desired economic and social impact. For both, private and public insurers,
this means that it is increasingly important to deliver reliable estimates of claims, claims reserves and
associated expenses. As ECAs are an instrument of their governments’ economic and international
policies, the portfolio and structure of their business and consequently of their claims reflect national
industry and (geographical) export structures, thus, are specific to each country. Moreover, some ECAs
do not experience claims regularly; in the MLT business particularly, no claim is the norm and (larger)
claims are an exception. Predicting claims and estimating claims reserves as accurately as possible
thus is key to ECAs management and underwriting decisions, and will help to allocate capital that is
provided by the taxpayer more efficiently.
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Insurers have been using a range of deterministic and stochastic methods, such as the Chain Ladder or
Bornhuetter-Ferguson method, to predict claims and the related claims reserves (Baudry and Robert 2019).
However, developments on regulatory level as well as increasing uncertainty in export credit risks increase
the need for the application of more sophisticated methods (England and Verrall 2002; Verall et al. 2012).
Prior work by Wüthrich (2018a, 2018b), as well as Thesmar et al. (2019) show that ML approaches have
benefits for claims prediction purposes.3 The algorithms are able to discover patterns in multidimensional
datasets or can find new predictors and relationships in the data that have not been used in the traditional
methods (Thesmar et al. 2019). Wüthrich (2018a) further argues that ML techniques in claims reserving
are flexible and able to work structured, as well as unstructured data.

3. The Berne Union Data

The Berne Union (International Union of Credit and Investment Insurers) is the international
trade association of the global export credit and political risk insurance industry. The 85 members are
Export Credit Agencies, private insurers of credit and political risk as well as multilateral institutions
from 73 countries (Berne Union 2019a). In 2018, Berne Union members covered 13% of all cross-border
merchandise trade, with USD 2.5 trillion covered by credit, and political risk insurers about USD 6bn
claims paid (Berne Union 2019b). From the new MLT business written in 2018, 83% was accounted for
by public ECAs (Berne Union 2019c).

The Berne Union collects comprehensive data on their members’ ST and MLT business twice a year.
Their database is unique in that it covers transactional information of 33 of the most relevant ECAs,
making it the most extensive collection of structured data on export credit insurance and finance, and the
best overall proxy for trade credit in general (Auboin and Engemann 2014). Its main purpose is to serve
as a mechanism for Berne Union members to share their business information amongst themselves; to
date, the Berne Union data have been used in only two scientific studies, which analysed the impact of
trade credit and trade finance availability on trade (Auboin and Engemann 2014; Korinek et al. 2010).

The Berne Union database on MLT ECA business is organised by ECA, destination country,
activity (insurance or lending) and half-year, covering the years 2005 to 2018. Each record details
the volume of new commitments by type (Sovereign, Other Public, Banks, Corporates and Projects),
the volume of claims and recoveries (political, commercial, total), offers, reinsurance, exposure, staff,
premium income, administrative costs and cash flow. In light of the aim of this study, it is important to
note that the data reflect underwritten but not rejected contracts. Given that ECA transactions undergo
a high level of scrutiny before signing, claims are an exception, not the norm.

For the purposes of this study, we focus on combined insurance and lending MLT business,
and we enriched the data with ECA and destination summary information to indicate their size,
general development, business diversification, and claim history. A detailed list of added attributes,
including their rationale, is provided at Appendix A. All monetary variables were deflated using the
2010 based International Monetary Fund (IMF) Export-Import-Price-Index (XMPI) to obtain constant
USD values (International Monetary Fund et al. 2009). Table 1 provides descriptive statistics of the
25,396 records available of the ML exercise on exposure, new commitments and claims.

3 While Wüthrich (2018b) generates synthetic individual claims data, Wüthrich (2018a) uses liability claims data and the analysis
by Thesmar et al. (2019) is based on healthcare claims data.
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Table 1. Totals of exposure, new commitments and claims (mean and standard deviation (SD) of
records by year, in constant USD million).

Year 1 Number
of Records

Exposure New Commitments Claims Paid

Mean SD Mean SD Mean SD

2007 1983 254.37 785.74 72.24 350.92 0.58 4.13
2008 2028 248.34 804.19 73.51 334.62 0.49 4.48
2009 2094 278.96 927.32 91.29 528.51 1.44 27.37
2010 2063 284.32 873.14 82.59 343.57 0.82 6.37
2011 2072 288.09 876.39 86.18 364.00 1.07 10.15
2012 2078 303.35 897.73 79.91 324.73 1.02 11.36
2013 2061 320.35 939.42 71.49 275.30 1.08 9.69
2014 2150 296.78 883.90 70.46 356.33 0.93 10.03
2015 2194 301.25 901.09 64.78 347.95 1.38 24.78
2016 2189 308.82 971.67 58.51 330.23 1.34 13.06
2017 2239 306.62 985.34 57.85 374.20 1.18 9.42
2018 2245 301.31 1007.71 59.29 314.81 1.40 12.28
1 Data was enriched to include simple trend estimates based on the current and two antecedent years (see Appendix A
for details). Records from 2005 and 2006 could therefore not be used in support of the actual ML exercise.

4. Supervised Machine Learning

Supervised ML techniques aim to uncover potential relationships between independent and one
or several dependent variables (Rokach and Maimon 2005), or more often, to simply find a function
that allows a good prediction of a target attribute, based on available input attributes (Varian 2014).
The scientific literature on the subject provides a wide range of ML applications, including Naïve
Bayesian Classifiers, Bayesian Networks, Logistic Regression, Decision Trees (DT), Conditional Inference
Trees, Random Forests (RF), Support Vector Machines, k-Nearest-Neighbour and Neuronal Networks
(NN). The Least Absolute Shrinkage and Selection Operator (LASSO) algorithm is used occasionally in
economic applications and is alleged to be most familiar to economists (Mullainathan and Spiess 2017).
All these techniques are, in principle, suitable in supporting the prediction of claims as intended by
this study.

Amongst other factors, it is the field of application (Singh et al. 2016), including the dependencies
of its inherent variables, data structure, data quality, parameter tuning or the performance measure,
that determines whether one algorithm performs better than others. To this date, there is no
commonly accepted approach to link a particular problem to the most suitable ML technique to
solve it (Kuhn and Johnson 2013; Wanke and Barros 2016). It has, therefore, become popular to apply
several techniques to the same task and compare their performances (for example, Fauzan and Murfi
2018; Lorena et al. 2011; Mullainathan and Spiess 2017; Razi and Athappilli 2005; Singh et al. 2016;
Weerasinghe and Wijegunasekara 2016).

We follow this methodological framework by comparatively investigating DT, RF, NN and PNN
to predict claims in export credit insurance. Although, these techniques are well-understood and
documented, we will provide brief descriptions and our rationale for employing them in this section.
More in-depth explanations can be found in the references of the relevant paragraphs. For descriptions
of the techniques not covered here, we refer to the works of Athey (2018), Mullainathan and Spiess
(2017), Varian (2014) or Wanke and Barros (2016). Singh et al. (2016) provide a concise comparison of
the advantages and disadvantages of the different techniques, and Charte et al. (2019) give an overview
on non-standard ML problems.

4.1. Decision Trees

A DT is a recursive partition of a dataset into subsets which, ideally, amongst themselves are most
heterogeneous with respect to a given target attribute. The DT model representation begins with a
top node covering the entire dataset, characterized by the distribution of the target attribute. A DT
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algorithm seeks to select from all available input attributes the one attribute which, at an optimal split
value, separates the data so that target attribute distributions of the subsets diverge as much as possible
from the parent node, and are as pure as possible, meaning that each successor node contains mostly
records of the same target attribute value. Options to measure the degree of purity include, but are not
limited to, Gini impurity, Gini index, gain ratio and information gain (Rokach and Maimon 2005).

Let pi denote the probability of a target attribute of domain i to be chosen at random. If the record
was also labelled randomly according to the target attribute distribution, then the probability of the
record being labelled incorrectly is 1 − pi. If

∣∣∣dom(y)
∣∣∣ denotes the cardinality of the target attribute

domain, the Gini impurity of target attribute y of a given dataset S is defined as:

Gini impurity (y, S) =
|dom(y)|∑

i=1

pi(1− pi) =

|dom(y)|∑
i=1

pi − p2
i = 1−

|dom(y)|∑
i=1

p2
i .

In a perfectly pure data (sub)set, the probability of a record of type i to be chosen is 1, and its
probability to be labelled incorrectly is 0, resulting in a Gini impurity of 0. The less pure the dataset,
the larger the Gini impurity measure.

Let A denote the set of n input attributes A =
{
a1, . . . , aj, . . . , an

}
, cj the domain of input attribute

aj,
∣∣∣∣dom

(
aj
)∣∣∣∣ the cardinality of aj’s domain, and

∣∣∣Scj

∣∣∣ the cardinality of subset Scj of records of cj, then
the Gini index at split aj is defined as:

Gini index
(
y, aj
)
=

|dom(aj)|∑
cj=1

∣∣∣Scj

∣∣∣
|S| ·Gini impurity

(
y, Scj

)
.

The optimal split attribute aj is the one which results in the maximum Gini gain (the difference
between Gini impurity (y, S) and Gini index

(
y, aj
)

(Rokach and Maimon 2005), or simply the aj which

generates the minimum Gini index
(
y, aj
)
.

In a DT representation, a split is signified by edges leading from the parent node to child nodes,
typically displaying the target attribute distribution of the subsets which they represent. The algorithm
continues to split child nodes in the aforementioned manner and stops when predefined criteria are
met. Such criteria typically include a maximum number of splits, a minimum Gini gain threshold,
or a minimum number of records per node. Nodes that are not further split are called leaves or
terminal nodes.

If the DT is to classify new data, the value of the split attribute at each node determines which
edge to follow until a terminal node is reached; this node infers the prediction for a given instance
(Varian 2014). Figure 1 is an indicative example of a DT model representation with a dichotomized
target attribute “CLAIMS (NO/YES)”, with its most relevant predictor being “EXPOSURE” at a split
point of 50 million USD, and below the ≥50 million USD branch a second predictor of “DESTINATION
CLAIM HISTORY” at a split point of 400 million USD.

Finding an optimal DT by brute force is, under normal circumstances, computationally infeasible,
because the search space increases exponentially with the number of attributes and their values.
However, a range of efficient so-called inducers such as C4.5, CART or CHAID have been developed
to find reasonably accurate approximations (Rokach and Maimon 2005); some are limited to either,
discrete or continuous problems, some can process both.

The key advantages of DT are a generally good performance with relatively little computational
effort, and the output of intuitive, self-explanatory models (Singh et al. 2016), which can be communicated
well to practitioners. The latter makes DT highly interesting for applied research problems, which is
why we include them in this study.
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NO YES

CLAIMS

EXPOSURE

NO YES NO YES

< 50×106 USD ≥ 50×106 USD

DESTINATION CLAIM HISTORY

NO YES NO YES

< 400×106 USD ≥ 400×106 USD

Figure 1. Indicative example of a decision trees (DT) representation.

4.2. Random Forests

DT can be sensitive to changes in the training sample, and are also likely to over-fit if training
conditions are not carefully controlled (Singh et al. 2016; Varian 2014). The general idea behind
RF is to train a multitude of DT, based on different bootstrap samples from the training data,
and by sampling the input attributes that are available to the algorithm to choose from at each
node (Breiman 2001; Fang et al. 2016; Varian 2014). As a result, RF algorithms generate a pre-defined
number of DT, which may or may not come to different predictions when presented with new
data. The overall prediction returned by an RF is the category chosen by the majority of DT
(Lorena et al. 2011; Varian 2014), or the average result for continuous problems (Fang et al. 2016;
Mullainathan and Spiess 2017).

RF often perform ahead of many other classifiers (Fang et al. 2016; Lorena et al. 2011; Singh et al. 2016) and
are robust against overfitting (Fang et al. 2016; Liaw and Wiener 2002; Singh et al. 2016), which recommends
them for inclusion in this study.

4.3. Neural Networks

NN consist of layers of so-called neurons (Claveria and Torra 2014). The number of neurons
in the input layer equals the number n of input attributes. For a given record, each of the input
neurons picks up the value of its associated input attribute xInput, j and applies an activation function

σ to calculate a signal value as output: yInput, j = σ
(
xInput, j

)
. Typically, sigmoid functions such as

the hyperbolic tangent σ(x) =
(
ex − e−1

)
/
(
ex + e−1

)
or a logistic function σ(x) = 1/(1 + e−x) are used

(LeCun et al. 2015). yInput, j is forwarded to the neurons in the subsequent layer. One or several layers,
known as hidden layers, collect and aggregate signals from preceding layers, and turn, them into new
signals. Figure 2 is an illustration of an NN with just one hidden layer.
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Figure 2. Illustration of a multilayer NN.

Let yu,k denote the signal that neuron l of layer v receives from neuron k of its preceding layer u,
wl,k the weight that l applies to yu,k, and bv,l a bias term, to calculate a weighted sum zv,l,. l’s signal yv,l
is generated by applying an activation function σ to zv,l:

zv,l =

⎛⎜⎜⎜⎜⎜⎝∑
k

wl,kyu,k

⎞⎟⎟⎟⎟⎟⎠+ bv,l; yv,l = σ
(
zv,l
)
.

In classification problems, the number of neurons in the output layer equals the cardinality of the
domain of the target attribute. During training, an objective function E measures for each record the
(quadratic) error between the output signals yOutput,i of the output layer, and the actual target value yi:

E =
∑

i

1
2

(
yOutput,i − yi

)2
; yi = 1 for target domain i, otherwise yi = 0.

Given that the signals of each layer are functions of the weights, biases and signals of the preceding
layers, E is ultimately a function of (averaged) weights and biases from all training records and all
layers of the NN. The gradient of E indicates the sensitivity of the objective function to changes in
these parameters:

∇E =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...
∂E
∂wl,k
∂E
∂bv,l

...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The larger a partial derivative of E, the more the objective function benefits from its manipulation
during the descend towards a minimum. Therefore, weights and biases are adjusted simultaneously in
proportion of their negative partial derivative in every step of the training. This process is repeated
until improvements in the cost function fall below a predefined threshold. When a trained NN is used
for prediction, the learned rules are applied to new data, and the resulting output values are used as
prediction values (LeCun et al. 2015).

We include NN in this study because they are thought to be better suited than DT to model
complex, nonlinear relationships (Claveria and Torra 2014; Razi and Athappilli 2005; Singh et al. 2016).
Although, Varian (2014) provides a case to the contrary. Given that it is possible for claims to be the
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result of nonlinear economic relationships, it is interesting to see whether NN perform better than DT
in predicting claims.

4.4. Probabilistic Neural Networks

Specht (1990) proposed to modify NN by replacing the traditionally implemented sigmoid
activation functions with statistically derived exponential functions (Iounousse et al. 2015).
Specht named the class of such algorithms PNN and demonstrated that the introduced modification,
under certain, but easy, to meet conditions, makes it possible to asymptotically approach the Bayes
optimal decision surface of a classification problem (Specht 1990). PNN can map any input pattern
to any number of classifications, are capable of handling erroneous, sparse or missing data well,
and provide probability estimates in conjunction with their classification (Specht 1990). The feature
of explicit probabilities allows for extended analyses, e.g., of classification errors, and provides
opportunities to further improve prediction. In addition, PNN are more flexible than NN in handling
different types of input variables, and it seems generally valuable to test a variation of NN alongside
their original implementation, which is why we include PNN in our set of ML techniques.

5. Methodology

5.1. General Modelling Considerations

All ECAs exist to promote exports, but different national priorities have resulted in various designs
and mandates under which they operate (Stephens and Smallridge 2002). Furthermore, an ECA’s
business is significantly impacted by its nation’s economic size and export characteristics-profile.
Similarly, the political, judicial and commercial structure and stability of a destination country are
important factors of its risk profile. Classic econometric modelling requires such heterogeneity
to be accounted for, for example, by introducing ECA or destination dummy variables, to reflect
effects that are stable and specific to individual countries, and could, therefore, bias the model if
omitted. The DT, RF and PNN techniques, and the NN technique with some limitations, are perfectly
capable of recognizing ECA or destination names as input variables. However, in this study we
deliberately prevented the ML algorithms from knowing the specific agents of a given transaction.
The rationale is that if a certain attribute, such as ECA or destination name, is used during model
training (see Section 5.4 below), the resulting model requires that information to be present for
prediction purposes. Otherwise, when attempting to make a prediction for an ECA or destination,
not observed during training, the model fails. This can create problems at the training-validation
gateway. More importantly, it precludes the model from making predictions for “new” ECAs or
destinations. However, these might be the most relevant cases for ML to be employed in export
credit insurance claim prediction. To enable our ML models to deal with any agent, whether or not it
contributed training data, we exclusively fed generic information such as export volumes, portfolio
diversity etc. as inputs (see Appendix A for used attributes) to reflect different phenotypes of ECAs’
and destinations’ phenotypes. However, this approach bears some risks in introducing unobserved
heterogeneity, which should be borne in mind when analysing prediction outcomes.

A second consideration is associated with the nature of the intended prediction. Claims gain most
attention when they are exceptional, for example, when an ECA with traditionally low claims gets
hit by a large number or sum of claims within a short period of time. Therefore, the identification
of patterns preceding singular events of claims was considered as a potential aim of this study.
However, during the explorative phase it showed that, across ECAs and destinations, the occurrence
of claims is quite diverse. Although, most records in the database report no claims, ECA, destination
or annual aggregates often do. There are some ECAs or destinations for which claims are actually rare.
However, for some ECAs and destinations claims are a fairly regular feature, and some ECAs and
destinations are somewhere in between. Given that this is the first time the Berne Union dataset is
extensively analysed with a view towards claims, a decision was made to first explore the overall
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situation across all agents before focusing on subsets. Consistent with that, the study attempts a more
general assessment of the adequacy of different ML techniques to be used in claim prediction.

5.2. Prediction Tasks

Predicting claims can take a variety of shapes. To compare the performance of the different ML
techniques, we train models to solve prediction tasks with different degrees of difficulty (see Appendix A,
section “Target attributes”, for implementation details):

• “Claims YES/NO”: At the simplest level, the technique is to predict whether or not a given export
finance condition will incur claims as a dichotomous yes/no decision.

• “Claim ratio class”: Claims can vary significantly in value, so that a yes/no prediction is a great
simplification of the problem. Therefore, we also test ability of the techniques to predict the
magnitude of claims, expressed as five classes of claims/exposure-ratios.

• “Claim ratio”: Ultimately, we also want to evaluate how well ML techniques perform in predicting
an actual claim ratio, measured in terms of claims/exposure.

5.3. Technical Implementation of ML Algorithms and Analysis

Today, a range of tools, such as Python, RapidMiner or R, are available to support comfortable
implementations of ML workflows. For this study, we use the data analytics platform KNIME.
KNIME is a free and open-source software for data retrieval, data blending, modelling, analysis and
visualization. It includes a rich collection of ML and data mining components which can be assembled
following a modular data pipelining concept (KNIME 2019). All data preparation, training and testing
procedures were entirely designed and set up in KNIME; Table 2 shows a mapping of the KNIME ML
nodes that were selected against the prediction problems. Details on the nodes are available via the
KNIME node and workflow search engine (NodePit 2019).

Table 2. Mapping of ML techniques, prediction task and KNIME nodes.

Task
ML Technique

DT RF NN PNN

Claims YES/NO

Decision Tree
Learner
Decision Tree
Predictor

Random Forest
Learner
Random Forest
Predictor

RProp MLP Learner
MultiLayerPerceptron
Predictor

PNN Learner
(DDA)
PNN Predictor

Claim ratio
class

Decision Tree
Learner
Decision Tree
Predictor

Random Forest
Learner
Random Forest
Predictor

Not investigated 1
PNN Learner
(DDA)
PNN Predictor

Claim ratio

Simple
Regression Tree
Learner
Simple
Regression Tree
Predictor

Random Forest
Learner
(Regression)
Random Forest
Predictor
(Regression)

RProp MLP Learner
MultiLayerPerceptron
Predictor

Not investigated 2

1 The only way to use the KNIME MLP node to obtain claim ratio classes is to calculate values first and classify them
afterwards. This is assessed to add no value to the ML analysis and is therefore omitted. 2 During the exploratory
study phase, KNIME PNN proved to be unduly computationally costly in solving problems with continuous target
variables, and therefore were not further assessed against the “claim ratio” task.

5.4. Training, Validation and Test Data

It is well known that ML algorithms can over-fit, resulting in good in-sample but poor out-of-sample
performance. Therefore, it is common to randomly split the data into a training and a validation
set (Kuhn and Johnson 2013; Mullainathan and Spiess 2017), specify models based on training data
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and test them against the validation data. The objective function is to minimise deviations between
predicted and actual target attribute values in the latter (Athey 2018). More advanced approaches
divide the data into three types of data, including; training data to estimate models; validation data to
choose a model, and; test data to assess its performance (Varian 2014).

Dividing the entire dataset into subsets for training, validation and testing by random sampling
is a defence against overfitting. However, it might not be a valid strategy for obtaining reliable
prediction models:

• Random sampling from the same population might, analogous to the law of large numbers or the
Glivenko-Cantelli theorem, result in generally converging conditions in the subsets. A model which
reflects the training data well without overfitting may, therefore, also be a good representation of
the validation and test sample by sheer principles of statistics.

• In a practical setting, an insurer would have no choice but to use historic data to make forecasts
about future data. Effectively, this implies a strictly chronological data separation, which is
different from random sampling.

To test and counter these concerns, we exclude 2018 data from model development and validation,
and only use them as test data later in the process. The records covering the period between 2007 and
2017 are used for training and validation. Figure 3 depicts the data separation and their use as part of
the entire training, validation and testing procedures employed by this study.

 
test model performance against 2018 data

parameter optimization:
apply all combinations

of predefined parameter
specifications;

repeat 10 times

MLT data

2018 data2007 to 2017 
data

training data validation 
data

separate data 
by year

partition data 
randomly

assess model 
performance

train model

accuracy

best 
parameters best model

continuous
target variables

Cohen‘s κ

best 
parameters best model

R2

best 
parameters best model

Figure 3. Model training, validation and testing process.
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5.5. Parameter Optimisation

ML inducers optimise a specific objective function by tuning parameters that can be seen as internal
to the algorithm. However, the performance of an algorithm is also affected by a range of parameters
that require external intervention. Typical examples are the selection of the objective function itself
or stopping criteria. Such parameters can neither be derived from the problem nor otherwise be
independently calculated (Kuhn and Johnson 2013; Wanke and Barros 2016). External parameter
optimisation is, therefore, integral to obtaining a powerful prediction model. Some of the externally
determined parameters are specific to an algorithm, but also some more general conditions around
data preparation and provision can play a role. Besides algorithm specific parameters, we investigate
how the size of the training sample (relative to the validation sample) and the fraction of records with
no claims affect model performance:

• The relation between the volume of the training and validation data addresses the simple question
of whether training with a smaller and validation against a larger sample (which might protect
against overfitting), or training with a larger and validation against a smaller sample yields
better results.

• The rationale for reducing the number of records with no claims is their dominance in the Berne
Union dataset (87.5% of the 2007–2017, and 86.2% of the 2018 records register a total of 0 claims
paid). This imbalance will cause models to lean towards the prediction of no claims although it
might be desirable to identify potential claims with precedence. A prioritized identification of a
recessive value can be achieved by partial suppression of the dominant value during training.

An overview of the algorithm-specific and general external parameters, including applied
variations, is provided at Appendix B. We explore all combinations of parameter variations by
brute force.

5.6. Model Benchmark

ML techniques require extensive data preparation and can be computationally costly, raising the
question of whether they actually perform better than simple heuristics (England and Verrall 2002).

The ML models of this study are generic and can be applied to any ECA and destination country,
irrespective of whether or not the ECA has a history of providing cover for the destination. Although,
no trivial method offer a fully equivalent capability, moving averages are a simple way for an ECA to
predict claims for destinations that it engaged in business with previously. In such cases, an estimator
for the claims ratio ri, j,t =

ci, j,t
ei, j,t

of ECA i and destination j in a given year t can be defined as (ei, j denotes
the exposure of ECA i to destination j, and ci, j denotes the respective claims; l is the number of
preceding years to be considered, also referred to as “window length” of the moving average):

r̂i, j,t =

∑l
ν=1 ci, j,t−ν∑l
ν=1 ei, j,t−ν

.

The resulting estimator, or a transformation of it into a binary YES/NO variable or a claim ratio
class, can be used as BM to help assess the benefit of instituting a more complex ML technique.

To avoid an arbitrary definition of the moving average’s window length l, for each ECA i and
destination j we determine the optimal window length li, j, opt which minimizes:

1
max{1; t− 2007} ·

2017∑
t=2007

∣∣∣∣∣∣∣
ci, j,t

ei, j,t
−
∑t−1
ν=max{2007;t−l} ci, j,ν∑t−1
ν=max{2007;t−l} ei, j,ν

∣∣∣∣∣∣∣.
The data separation employed during the development of the ML models (see Section 5.4) is also

applied to the BM, i.e., data from 2007 to 2017 are used to identify li, j, opt, and 2018 data serve to test
the BM.
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The execution of the BM optimisation yields that the optimal window length is mostly 1,
meaning that, on average, the previous year’s claims ratio often best predicts the current year’s
claim ratio. Table 3 provides an overview of the number of times each window length was determined
to be optimal.

Table 3. Optimal window length for moving average BM.

Optimal Window Length Number of ECA-Destination Combinations %

1 2156 80.4
2 112 4.2
3 49 1.8
4 37 1.4
5 33 1.2
6 22 0.8
7 28 1.0
8 25 0.9
9 33 1.2

10 188 7.0

5.7. Assessment of Model Performance

The obvious measure to assess model performance is accuracy, the proportion of correctly classified
records. However, it is useful to additionally consider Cohen’s κ, originally designed to evaluate
inter-rater reliability. Cohen’s κ adjusts accuracy po by considering correct predictions that would
occur at random,

κ =
po − pc

1− pc
,

where pc is the proportion of records expected to be correctly classified by chance (Cohen 1960). A κ of
0 means that accuracy is equal to agreement at random, a κ of 1 indicates perfect agreement (Cohen
1960), equating to 100% correct model predictions. A further advantage of this prudent correction
is that it penalises false predictions more evenly, irrespective of the predominance of individual
values: As mentioned above, 86.2% of the 2018 records register 0 claims. Under these circumstances,
a completely naïve model could achieve an accuracy of 0.862 by simply predicting “0 claims” 100%
of the time. However, this would equal agreement by chance and result in κ = 0, which seems a
more suitable evaluation of the worth of the model. For the assessment of continuous target variables,
we use R2.

It is possible for a model to perform well by chance during validation, preceding a much-reduced
performance during testing. To account for that possibility, we repeat the parameter optimisation ten
times. This approach is different from the more conventionally used cross-validation (Varian 2014),
but should achieve a comparable level of model-validation; it greatly simplifies the implementation of
the desired training/validation-sample-size ratio optimisation (see Section 5.5). The combination of
parameters yielding the highest average performance are used to test the models against 2018 data.
In addition, we collect the models with the highest performance overall for testing.

All performance measures are also applied to the BM by comparing the BM’s prediction for year t
with the actual value of year t. The BM’s window length optimisation (see Section 5.6) does not involve
any type of validation, which is why we apply the performance measures directly to the claims ratio
predictions, generated during the optimisation stage. The test performance measures of the BM and
the ML techniques are more comparable because, analogous to the ML model optimisation, the BM’s
window length optimisation is based on 2007 to 2017 data, with 2018 data reserved for testing.
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6. Results

Table 4 shows the validation and test results for both, the “Claims YES/NO” and the “Claim
ratio class” task in terms of accuracy. Cohen’s κ results are shown in Table 5. Table 6 lists R2 results,
which we used as performance measure for the “Claim ratio” task. The BM performance measure is
shown in the rightmost column (identical values are given against the “Best parameters” and “Best
model” section per task, as no such distinction exists for the BM). The study observations include:

• Amongst the ML techniques, with only two exceptions RF generate the best performance.
• The accuracy achieved against the “Claim ratio class” task is not much different from the accuracy of

the less challenging “Claims YES/NO” task. However, Cohen’s κ is more reflective of performance
differences, indicating that both, validation and test performance, deteriorate as the task becomes
more difficult.

• None of the investigated ML techniques yield satisfactory results against the “Claim ratio” task;
predictions of actual claim ratios turned out to be largely unreliable.

• The test performance is lower than validation performance (with only two exeptions), often by
just a small margin. Performance losses are more pronounced when measured by Cohen’s κ.

• No definitive conclusion can be made on whether validation should serve to identify optimal
model parameters, or to actually generate the specific model for prediction (sometimes utilizing
the best parameters, sometimes employing the best model yields better test performance; optimal
parameters are provided at Appendix C).

• The accuracy of the ML techniques is sometimes better, but generally at similar levels as the
BM’s value.

• In terms of Cohen’s κ, the BM performs better than any of the ML techniques. The reason
is that some ECAs experience uninterrupted sequences of claims with certain destinations.
Therefore, the simple rule “claims in t− 1 indicate claims in t” employed by the BM (see Section 5.6)
works well against the “Claims YES/NO” task, and also against the “Claim ratio class” task.

• Against the “Claim ratio” task, the ML techniques outperform the BM, although at a very low level.

Table 4. Best parameter and best model results: Accuracy (bold: best performing ML technique).

Task Outcome Dataset DT RF NN PNN BM

Claims YES/NO Best parameters Validation 0.886 0.900 0.887 0.881 0.901
Test 0.878 0.889 0.874 0.897 0.896

Best model Validation 0.900 0.909 0.900 0.898 0.901
Test 0.878 0.890 0.848 0.864 0.896

Claim ratio class
Best parameters Validation 0.881 0.888 − 0.877 0.867

Test 0.861 0.869 − 0.888 0.858

Best model Validation 0.896 0.903 − 0.897 0.867
Test 0.864 0.870 − 0.855 0.858

Tables 4–6 provide a “best performance” comparison, imitating outcomes of an actual insurer’s
claim prediction exercise. While, poorly performing models would normally be of little interest to
practitioners, we collected all models from the parameter optimisation stage of this study, irrespective
of their performance. This allows for more detailed analyses of the results which are provided in the
following sections.
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Table 5. Best parameter and best model results: Cohen’s κ (bold: best performing ML technique).

Task Outcome Dataset DT RF NN PNN BM

Claims YES/NO Best parameters Validation 0.352 0.439 0.357 0.292 0.566
Test 0.322 0.408 0.340 0.275 0.578

Best model Validation 0.421 0.489 0.433 0.358 0.566
Test 0.297 0.423 0.303 0.284 0.578

Claim ratio class
Best parameters Validation 0.252 0.336 − 0.211 0.446

Test 0.250 0.320 − 0.175 0.458

Best model Validation 0.276 0.392 − 0.272 0.446
Test 0.240 0.336 − 0.170 0.458

Table 6. Best parameters and best model results: R2 (bold figures: best performing ML technique).

Task Outcome Dataset DT RF NN PNN BM

Claim ratio Best parameters Validation 0.038 0.071 0.066 − 0.000
Test 0.021 0.053 0.046 − 0.011

Best model Validation 0.081 0.128 0.126 − 0.000
Test 0.037 0.074 0.027 − 0.011

6.1. Relationship between Accuracy and Cohen’s κ

A comparison of Tables 4 and 5 indicates that Cohen’s κ accentuates performance differences
better than accuracy (parameter optimisation confirmed that Cohen’s κ benefits from reducing the
number of records with 0 claims down to 20 to 40% during training; highest accuracies were achieved
with 80–100% of records with no claims; see Appendix C for parameter details). A high Cohen’s
κ might be associated with more correctly predicted claims (true positives) at the cost of less true
negatives, thereby sacrificing some accuracy. We applied all models from the parameter optimisation
stage to the test data, in order to understand the relationship between the two performance measures
empirically, logged each model’s accuracy and Cohen’s κ and plotted them against each other. Figure 4
shows scatterplots of accuracy and Cohen’s κ for RF and PNN models:

• For the RF models (“Claims YES/NO” task), shown on the left, accuracy and Cohen’s κ increase
together, peaking close to (0.89, 0.47). From the peak, there is a sharp drop of Cohen’s κ,
accompanied by a moderate reduction of accuracy.

• The PNN models (“Claim ratio class” task) on the right also show an initial joint increase of
accuracy and Cohen’s κ. Cohen’s κ peaks at a value of 0.22, from which a further increase of
accuracy is associated with a marked deterioration of Cohen’s κ.

Scatterplots for all investigated ML techniques are provided at Appendix D, showing that against
the “Claims YES/NO” task, DT, RF and NN generated models with high Cohen’s κ while retaining high
accuracy at the same time. Against the “Claims ratio class” task, only RF yielded models with both
measures being high. In conjunction with its general advantages (see Section 5.7), Cohen’s κ is assessed
to be the more insightful measure for the purposes of this study. However, for other applications,
accuracy might be more relevant.
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Figure 4. Example scatterplots highlighting the relationship between accuracy and Cohen’s κ

(scatterplots for all ML techniques are provided at Appendix D).

6.2. Comparison of ML Technique Performance

With only two exceptions, RF consistently delivered the best performance (see Tables 4–6).
We further compared the performance of all models by prediction task and ML technique via
Kruskal-Wallis tests; the results are shown in Table 7. Appendix E provides boxplots to illustrate
the performance of all models developed during the parameter optimisation exercise of this study
(Figure A2; the left half of the table shows performance variations measured during validation, mirrored
on the right by the corresponding performance of the same models applied to the test data). The tests
confirm statistically significant differences between the performances of the techniques. Pairwise
Wilcoxon-Mann-Whitney post-hoc tests were all significant with p � 0.0, corroborating that RF are
generally most successful in predicting claims under the conditions of this study (an interesting
anomaly is that, against the “Claims YES/NO” task, NN are the worst performer in terms of accuracy,
but the second-best performer in terms of Cohen’s κ).

Table 7. Kruskal-Wallis tests on ML technique performance (test data; bold figures: highest median rank).

Median Rank

Task Measure p-Value DT RF NN PNN

Claims Y/N Accuracy 0.0 11,628.5 19,613.5 8972 10,504
Cohens κ 0.0 11,134.5 19,716.5 13,003 5144

Claim ratio class Accuracy 0.0 8365 11,558.5 − 4934
Cohens κ 0.0 6526.5 11,467.5 − 4394

Claim ratio R2 0.0 2425.5 11,310.5 6115.5 −

6.3. Validation and Test Performance

Following the methodology outline of the study (see Section 5), we used the parameters and
models that performed best during validation to make predictions for 2018 data, assuming that this
approach is most likely to be adopted by practitioners. However, a model that performs well during
validation might not be optimal when confronted with new data. In fact, a comparison of corresponding
validation and test performance in Tables 4–6 shows a performance reduction in all but two cases.

Obviously, for an ML technique to be reliable it is important that its validation performance be
a good indicator of its performance when used to make forecasts. To investigate this relationship,
we calculated the correlation between validation and corresponding test performance, and estimated
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linear functions to describe their relationship; results are provided in Table 8 (standard errors of
regression parameters are provided in brackets; all parameters are statistically significant with p � 0):

• Against both the “Claims Y/N” and the “Claim ratio class” task, validation and test performance
are generally highly correlated. An exception are NN, and also PNN, against the “Claims YES/NO”
task, when performance is measured in terms of Cohen’s κ. RF consistently exhibit the highest
correlation for all tasks and measures, although sometimes by just a small margin.

• Validation-test correlations are much lower against the “Claim ratio” task, but RF, again, achieve
the highest value.

• In conjunction with a validation-test-correlation close to 1, an intercept close to 0 and a slope
close to 1 indicate greatest performance reliability. For Cohen’s κ, which are considered the most
insightful performance measure, and R2 this is best achieved by RF.

Table 8. Correlation and relationship between validation and test performance.

Task Measure
ML

Technique
Validation-Test

Correlation
Intercept (Std.

Error)
Slope (Std.

Error)

Claims Y/N Accuracy DT 0.981 −0.078 (0.003) 1.073 (0.004)
RF 0.990 −0.097 (0.002) 1.098 (0.003)
NN 0.952 −0.102 (0.003) 1.079 (0.004)

PNN 0.990 −0.319 (0.002) 1.346 (0.002)
Cohen’s κ DT 0.851 0.045 (0.002) 0.882 (0.009)

RF 0.905 0.020 (0.003) 0.970 (0.008)
NN 0.492 0.141 (0.003) 0.504 (0.010)

PNN 0.688 0.090 (0.002) 0.625 (0.008)
Claim ratio class Accuracy DT 0.976 −0.108 (0.004) 1.107 (0.004)

RF 0.979 −0.154 (0.004) 1.159 (0.004)
PNN 0.978 −0.320 (0.003) 1.346 (0.004)

Cohen’s κ DT 0.902 0.025 (0.001) 0.882 (0.007)
RF 0.908 0.017 (0.002) 0.924 (0.007)

PNN 0.882 0.017 (0.001) 0.830 (0.006)
Claim ratio R2 DT 0.214 0.011 (0.000) 0.168 (0.017)

RF 0.706 0.013 (0.001) 0.812 (0.018)
NN 0.611 0.007 (0.000) 0.487 (0.007)

6.4. Computational Complexity

The four investigated ML techniques exhibited very different properties in terms of run-time
and model size. The DT algorithm consistently produced results much quicker than any of the other
algorithms, whereas PNN proved to be most time consuming. Depending on the task, the PNN took,
on average, up to 675 times as long as the DT to produce and validate one model. RF turned out to be
the second quickest technique (between nine to 15 times DT run-time), followed by NN (45 to 50 times
DT run-time).

On the other hand, RF models occupied significantly more storage than those produced by of any
of the other techniques. To some extent, this is to be expected, given that one RF model consists of
many DT (the RF models trained for the purposes of this study consisted of between 50 and 200 DT;
see Appendix B for details of parameter settings). However, PNN models can also be relatively large.
This is most certainly driven by their feature to provide probabilities against all possible classifications,
rather than just a single classification. However, against the Claims Y/N task, this means three attributes
(probability for class “NO”, probability for class “YES”, and prediction) instead of just one (prediction)
and does not fully explain the size difference between NN and PNN models. DT and NN models were
usually relatively small.

Neither, the run-time of the slowest, nor the model size of the most storage-consuming ML
technique are of concern when a single model is being built. However, external parameter optimization,
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as undertaken as part of this study (see Section 5.5), can easily result in several thousands of models.
In such instances, both, the time consumption of the PNN technique and the model size of the RF
technique can easily push a regular office desktop to its limits.

Table 9 provides average run-times (in milliseconds (ms)) to train and validate one model based
on 20,000 records for training and 3000 records for validation (64 Bit Windows machine, 2.11 GHz
Intel® Core i7-8650U CPU, 16 GB RAM), and the average size of one model (in kilobyte (kB)) per task
and ML technique.

Table 9. Comparison of ML algorithm run-times and model sizes.

Task
ML

Technique
Average Time to Train and
Validate One Model (ms)

Average Model Size
(kB)

Claims Y/N DT 342 5.1
RF 4177 1686.5
NN 15,533 12.3

PNN 179,207 735.2
Claim ratio class DT 272 5.2

RF 4025 2124.0
PNN 183,737 752.0

Claim ratio DT 312 11.9
RF 2821 5544.1
NN 15,446 12.3

7. Conclusions and Outlook

The purpose of our study was to evaluate ML techniques as a means for the prediction of claims
of export credit insurers. ML could be well-suited to provide more accurate claims predictions,
as regulatory requirements require for more sophisticated approaches for predicting claims, as well
as in calculating claims reserves, and the global environment of international trade might lead
to more volatility in actual claims experience. While, insurers have been using deterministic or
stochastic methods based on claims development triangles, more complex methods are based on
stricter assumptions, which can lead to several issues in their application and interpretation. Insurers
welcome automation and appreciate the increased speed of these methods, but it is still common to
apply human judgement on the results. However, more advanced models are able provide additional
information useful for the decision-making of the insurance company.

Therefore, we conducted a comparative study of four ML techniques and evaluated their ability
to accurately predict claims based on a unique dataset of export credit insurance claims over the period
of 2005 to 2018. Furthermore, we compared the ML techniques against the performance of a simple
heuristic, based on moving averages of claims from destinations that the insurer has done business
with previously.

Consistent with previous works (Fang et al. 2016; Lorena et al. 2011; Singh et al. 2016), RF provided
the best results by a range of measures. Therefore, it seems advisable to include RF in any further
research on the subject. However, RF can predict a target attribute value when provided with new
data, but they do not readily reveal the logic underlying that prediction. The strength of traditional
econometric approaches is that they help to extract relationships from masses of data by distilling
compact equations. These equations can also be applied to new data for purposes of prediction, but
more importantly, they can be analysed, in order to understand the relevance and inter-dependencies
of the system defining variables. This benefit exists neither for RF nor NN, PNN or many other ML
techniques, which is why they have been labelled “black boxes” by some (Olden and Jackson 2002). It is
an interesting question to understand what place a technique that produces good predictions, but does
not contribute to a better understanding of a subject, can have in academic research. An exception is
the DT technique, because it generates human-readable rules which provide some insight into the most
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important predictors of the dependent variable. Therefore, we recommend to employ DT alongside
with RF as a preparatory or augmenting step.

Several ML techniques have delivered satisfactory results against the “Claims Y/N” and “Claim
ratio class” task, but the generally poor performance against the “Claim ratio” task is a serious
shortcoming. While, it is unsurprising to find the lowest performance against the most challenging task,
it is not obvious why predictions of claim ratios lag behind the two other tasks by such a large margin.
A more detailed examination of the actual and predicted data indicates that model quality appears to
be significantly hampered by singular events of high claims, suggesting that no model was capable of
capturing the conditions preceding their occurrence. However, singular or exceptionally high claims,
which were not a focal point of this paper, might be of particularly interesting to ECAs. Therefore,
a follow-up study should investigate the prediction of claims of that type. This would require an
exploration of the circumstances under which a claim is considered to be exceptional, and probably an
addition of external economic data from sources such as OECD or similar.

It can also not be overlooked that the ML models in many respects performed no better,
and often worse, than the simple heuristic “claims in t − 1 indicate claims in t” as reflected by
the BM (see Section 5.6). Unlike the ML models, the BM is limited to ECAs and destinations with
already existing business relations. If such a business relationship does exist, the computationally
much less complex BM rule must be seen as superior to the investigated ML techniques. In all other
cases, ML might provide an alternative. Looking positively at the performance comparison between
the BM and the ML techniques (Tables 4–6), it can be stated that ML is capable of predicting the virtue
of a non-existing business relationship almost as well as if it would already exist. To help contain the
effort of building ML models for practical applications, we provide the optimal model parameters as
identified during this study at Appendix C.

Finally, there are two interesting topics for further research arising from the convergence of ML
and traditional techniques employed in insurance economics. The first topic refers to a performance
comparison between ML techniques and commonly used approaches such as Chain-Ladder or
Bornhuetter-Ferguson methods (Wüthrich 2018a, 2018b). To allow for a direct and fair comparison,
the requirement for ML models to be generic would have to be dropped, and individual claims
data over a time period instead of aggregate claims would need to be analysed. In that context it
should also be possible to better account for heterogeneity of ECAs and destinations, for example
by following the approach proposed by Wüthrich (2018b). A second topic might evolve from the
question whether classic problem-specific models, for example probability distributions for low-default
portfolios (for example, Kiefer 2009), can or should be merged with ML techniques, and to what extent
this could further improve prediction performance.
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Appendix A. Data Enrichment

For the ML exercise, the year, the total of new commitments and the total exposure were used
directly from the Berne Union database, and augmented with the following variables:

Target attributes (only one used at a time, depending on the prediction task):
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• A dichotomous claims variable (“Claims YES/NO”: “NO” if the total amount of claims paid equals
0, “YES” otherwise),

• Five classes of the claims/exposure ratio (“Claim ratio class”; classes are [0, 0], (0, 0.0033], (0.0033,
0.01], (0.01, 0.05], (0.05,∞)),

• The claims/exposure ratio (“Claim ratio”).

ECA summaries (annual values):

• Number of destination countries with exposure,
• Number of destination countries with exposure previous year (only used for NN),
• Number of destination countries with exposure two years ago (only used for NN),
• Number-of-destinations trend (“UP” for three consecutive years of increase, “DOWN” for three

consecutive years of decrease, otherwise “AMBIGUOUS”), to indicate whether the ECA appears
to generally expand or reduce the number of destinations in their portfolio (not used for NN),

• Destination exposure in % of the ECA’s total exposure, to indicate the relevance of the destination
for the ECA,

• Gini-coefficient of exposure, to indicate the ECA’s exposure diversification across their destinations,
• Number of years with claims prior to the current year,
• % of years with claims prior to the current year,
• Total of new commitments in the current year,
• Total of new commitments in the previous year (only used for NN),
• Total of new commitments two years ago (only used for NN),
• Total of new commitments trend (“UP” for three consecutive years of increase, “DOWN” for three

consecutive years of decrease, all other “AMBIGUOUS”), to indicate whether the ECA appears to
generally expand or reduce the volume of their commitments (not used for NN).

Destination summaries (annual values):

• Number of ECAs with exposure,
• Number of ECAs with exposure previous year (only used for NN),
• Number of ECAs with exposure two years ago (only used for NN),
• Number-of-ECAs trend (“UP” for three consecutive years of increase, “DOWN” for three consecutive

years of decrease, all other “AMBIGUOUS”), to indicate whether the destination appears to generally
expand or reduce the number of ECAs it is doing business with (not used for NN),

• ECA exposure in % of the destination’s total exposure, to indicate the relevance of the ECA for
the destination,

• Gini-coefficient of exposure, to indicate the destination’s exposure diversification across the ECAs
it is doing business with,

• Number of years with claims prior to the current year,
• % of years with claims prior to the current year,
• Running total of claims until prior to the current year,
• Total of new commitments in the current year,
• Total of new commitments in the previous year (only used for NN),
• Total of new commitments two years ago (only used for NN),
• Total of new commitments trend (“UP” for three consecutive years of increase, “DOWN” for three

consecutive years of decrease, all other “AMBIGUOUS”), to indicate whether the destination
appears to generally attract an increasing or decreasing amount of commitments (not used for NN).

Appendix B. Summary of Externally Optimised and Fixed Parameters

Table A1 details algorithm-specific and general externally tested parameters, including their
variation boundaries and increments.
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Table A1. Parameter summary.

KNIME Node
[ML Technique]

Parameter Lower Limit
Upper
Limit

Increment

Decision Tree Learner/
Simple Regression Tree Learner
[DT]

Minimum number of
records per node 30 90 20

Quality measure Gini index (fix) - n/a

Pruning method MDL (fix) - n/a

Average split point Yes (fix) - n/a

Binary nominal splits No (fix) - n/a

Random Forest Learner/
Random Forest Learner
(Regression)
[RF]

Number of models 50 200 50

Split criterion Information gain ratio (fix) - n/a

RProp MLP Learner
[NN]

Number of hidden
layers 1 3 1

Number of neurons
per layer 10 20 5

Maximum number of
iterations 100 (fix) - n/a

PNN Learner (DDA)
[PNN] Theta minus 0.1 0.35 0.05

Theta plus 0.35 0.65 0.05

General Training/validation
partitioning fraction 0.1 0.9 0.1

Fraction of records
with 0 claims 0.1 1 0.1

Appendix C. Optimal Parameters

Appendix C lists the optimal parameters identified during the validation stage of this study by
ML technique: Table A2 for DT, Table A3 for RF, Table A4 for NN and Table A5 for PNN.

Table A2. Results: Optimal DT Parameters.

Measure Task Outcome
Partitioning

Fraction
0 Claim
Fraction

Minimum Number
of Records per Node

Accuracy Claims YES/NO Best parameters 0.9 1.0 30
Best model 0.9 1.0 30

Claim ratio class Best parameters 0.9 0.8 30
Best model 0.9 0.9 70

Cohen’s κ Claims YES/NO Best parameters 0.9 0.4 50
Best model 0.9 0.5 30

Claim ratio class Best parameters 0.9 0.2 30
Best model 0.8 0.2 50

R2 Claim ratio Best parameters 0.9 0.8 90
Best model 0.9 0.8 70
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Table A3. Results: Optimal RF Parameters.

Measure Task Outcome
Partitioning

Fraction
0 Claim
Fraction

Number of
Models

Accuracy Claims YES/NO Best parameters 0.9 0.9 200
Best model 0.9 0.9 200

Claim ratio class Best parameters 0.9 0.9 200
Best model 0.9 0.9 200

Cohen’s κ Claims YES/NO Best parameters 0.8 0.4 150
Best model 0.9 0.3 200

Claim ratio class Best parameters 0.9 0.2 200
Best model 0.9 0.2 200

R2 Claim ratio Best parameters 0.9 0.6 50
Best model 0.9 0.8 200

Table A4. Results: Optimal NN Parameters.

Measure Task Outcome
Partitioning

Fraction
0 Claim
Fraction

Layers Neurons

Accuracy Claims YES/NO Best parameters 0.8 1.0 2 10
Best model 0.9 0.9 2 10

Cohen’s κ Claims YES/NO Best parameters 0.9 0.3 3 20
Best model 0.9 0.4 2 20

R2 Claim ratio Best parameters 0.9 1.0 2 20
Best model 0.9 1.0 2 20

Table A5. Results: Optimal PNN Parameters.

Measure Task Outcome
Partitioning

Fraction
0 Claim
Fraction

Theta
Minus

Theta
Plus

Accuracy Claims YES/NO Best parameters 0.9 1.0 0.30 0.65
Best model 0.9 1.0 0.15 0.65

Claim ratio class Best parameters 0.9 1.0 0.30 0.55
Best model 0.9 1.0 0.15 0.65

Cohen’s κ Claims YES/NO Best parameters 0.9 0.4 0.20 0.60
Best model 0.9 0.4 0.25 0.45

Claim ratio class Best parameters 0.9 0.2 0.30 0.40
Best model 0.9 0.2 0.20 0.55

Appendix D. Accuracy—Cohen’s κ Scatterplots

Figure A1 shows scatterplots to highlight the relationship between the performance measures
“accuracy” and “Cohen’s κ” for all investigated ML techniques and prediction tasks. The data results
from applying all models developed during the parameter optimisation exercise to the test data.
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Figure A1. Scatterplots of Accuracy and Cohen’s κ.

Appendix E. Boxplots on ML Technique Performance

The boxplots shown in Figure A2 illustrate the performance of all models developed during the
parameter optimisation exercise of this study. The left side of the table shows performance variations



Risks 2020, 8, 22

measured during validation, mirrored on the right by the corresponding performance of the same
models applied to the test data.

  

  

  

  

  
Figure A2. Boxplots: Comparison of ML techniques’ performance (validation and test data).
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Abstract: This note revisits the ideas of the so-called semiparametric methods that we consider to
be very useful when applying machine learning in insurance. To this aim, we first recall the main
essence of semiparametrics like the mixing of global and local estimation and the combining of
explicit modeling with purely data adaptive inference. Then, we discuss stepwise approaches with
different ways of integrating machine learning. Furthermore, for the modeling of prior knowledge,
we introduce classes of distribution families for financial data. The proposed procedures are illustrated
with data on stock returns for five companies of the Spanish value-weighted index IBEX35.

Keywords: semiparametric modeling; machine learning; VaR estimation; analyzing financial data

JEL Classification: C14; C53; C58; G17; G22; C45

1. Introduction

The Editors of this Special Issue pointed out that machine learning (ML) has no unanimous
definition. In fact, the term “ML”, coined by Samuel (1959), is quite differently understood in the
different communities. The general definition is that ML is concerned with the development of
algorithms and techniques that allow computers to learn. The latter means a process of recognizing
patterns in the data that are used to construct models; cf. “data mining” (Friedman 1998). These models
are typically used for prediction. In this note, we speak about ML for data based prediction and/or
estimation. In such a context, one may say that ML refers to algorithms that computer codes apply to
perform estimation, prediction, or classification. As said, they rely on pattern recognition (Bishop 2006)
for constructing purely data-driven models. The meaning of “model” is quite different here from what
“model” or “modeling” means in the classic statistics literature; see Breiman (2001). He speaks of the
data modeling culture (classic statistics) versus the algorithmic modeling coming from engineering
and computer science. Many statisticians have been trying to reconcile these modeling paradigms;
see Hastie et al. (2009). Even though the terminology comes from a different history and background,
the outcome of this falls into the class of so-called semi-parametric methods; see Ruppert et al. (2003)
or Härdle et al. (2004) for general reviews. According to that logic, ML would be a non-parametric
estimation, whereas the explicit parametrization forms the modeling part from classic statistics.

Why should this be of interest? The Editors of this Special Issue also urge practitioners not to
ignore what has already been learned about financial data when using presumably fully automatic
ML methods. Regarding financial data for example, Buch-Larsen et al. (2005), Bolancé et al. (2012),
Scholz et al. (2015, 2016), and Kyriakou et al. (2019) (among others) have shown the significant
gains in estimation and prediction when including prior knowledge in nonparametric prediction.
The first two showed how knowledge-driven data transformation improves nonparametric estimation
of distribution and operational risk; the third paper used parametrically-guided ML for stock
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return prediction; the fourth imputed bond returns to improve stock return predictions; and the
last proposed comparing different theory-driven benchmark models regarding their predictability.
Grammig et al. (2020) combined the opposing modeling philosophies to predict stock risk premia.
In this spirit, we will discuss the combination of purely data-driven methods with smart modeling, i.e.,
using prior knowledge. This will be exemplified along the analysis of the distributions (conditional
and unconditional) of daily stock returns and calculations of their value-at-risk (VaR).

Notice finally that in the case of estimation, methods are desirable that permit practitioners to
understand, maybe not perfectly, but quite well, what the method is doing to the data. This will
facilitate the interpretation of results and any further inference. Admittedly, this is not always
necessary and certainly also depends on the knowledge or imagination of the user. Yet, we believe
it is often preferable to analyze data in a glass box than in a black box. This aspect is respected in
our considerations.

Section 2 revisits the ideas of semiparametric statistics. Section 3 provides an intensive treatment
of the distribution modeling followed by its combination with local smoothing. In Section 4, we give
empirical illustrations. Section 5 concludes. In the Appendix are given additional details.

2. Preliminary Considerations and General Ideas

It is helpful to first distinguish between global and local estimation. Global means that the
parameter or function applies at any point and to the whole sample. Local estimation applies only to a
given neighborhood, like for kernel regression. It is clear that localizing renders a method much more
flexible; however, the global part allows for an easy modeling, and its estimation can draw on the entire
sample. Non-parametric estimators are not local by nature; for example, power series based estimators
are not. Unless you want to estimate a function with discontinuities, local estimators are usually
smoothing methods; see Härdle et al. (2004). This distinction holds also for complex methods (cf. the
discussion about extensions of neural networks to those that recognize local features), which often turn
out to be related to weighted nearest neighbor methods; see Lin and Jeon (2006) for random forests or
Silverman (1984) for splines. The latter is already a situation where we face a mixture of global and
local smoothing; another one is orthogonal wavelet series (Härdle et al. 1998).

Those mixtures are interesting because the global parts can borrow the strength from a larger
sample and have a smoothing effect, while the local parts allow for the desired flexibility to detect
local features. Power series can offer this only by including a (in practice unacceptable) huge number
of parameters. This is actually a major problem of many complex methods, but mixtures allow
substantially reducing this number. At the same time, they allow us to include prior knowledge about
general features. For example, imposing shape restrictions is much simpler for mixtures (like splines)
than it is for purely local smoothers; see Meyer (2008) and the references therein. Unless the
number of parameters is pre-fixed, their selection happens via reduction through regularization,
which can be implemented in many ways. Penalization methods like P-splines (Eilers et al. 2015)
or LASSO (Tibshirani 1996) are popular. The corresponding problem for kernel, nearest neighbors,
and related methods is the choice of the neighborhood size. In any case, one has to decide about
the penalization criterion and a tuning parameter. The latter is until today an open question;
presently, cross-validation-type methods are the most popular ones. For kernel based methods,
see Heidenreich et al. (2013) and Köhler et al. (2014) for a review or Nielsen and Sperlich (2003) in the
context of forecasting in finance.

The first question concerns the kind of prior information available, e.g., whether it is about the set
of covariates, how they enter (linearly, additively, with interactions), the shape (skewness, monotonicity,
number of modes, fat tails), or more generally, about smoothness. This is immediately followed by
the question of how this can be included; in some cases, this is obvious (like if knowing the set of
variables to be included); in some others, it is more involved (like including parameter information via
Bayesian modeling). Knowledge about smoothness is typically supposed in order to justify a particular
estimator and/or the selection method for the smoothing parameter. Information about the shape
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or how covariates enter the model comprises the typical ingredients of semiparametric modeling
(Horowitz 1998) to improve nonparametric estimation (Glad 1998).

Consider the problem of estimating a distribution, starting with the unconditional case. In many
situations, you are more interested in those regions for which data are hardly available. If you used then
a standard local density estimator, you would try to estimate interesting parameters like VaR from only
very few observations, maybe one to five, which is obviously not a good idea. Buch-Larsen et al. (2005)
proposed to apply a parametric transformation using prior knowledge. Combining this way a local
(kernel density) estimator with such a global one, however, allowed them to borrow strength from the
model and from data that were further away. Similarly, consider conditional distributions. Locally,
around a given value of the conditioning variable, you may have too few observations to estimate a
distribution nonparametrically. Then, you may impose on this neighborhood the same probability law
up to some moments, as we will do in our example below.1

Certainly, a good mixture of global and local fitting is problem-adapted. Then, the question falls
into two parts: which is the appropriate parametric modeling, and how to integrate it with the flexible
local estimator. For the former, you have to resort to expertise in the particular field. For the latter,
we will discuss some popular approaches. All this will be exemplified with the challenges of modeling
stock returns for five big Spanish companies and predicting their VaR.

In our example, the first step is to construct a parametric guide for the distribution of stock
returns Y. To this aim, we introduce the class of generalized beta-generated (BG) distributions
(going back, among others, to Eugene et al. (2002) and Jones (2004)), as this distribution class
allows modeling skewed distributions with potentially long or fat tails. While this is not a
completely new approach, we present it with an explicit focus on the above outlined objectives
including the calculation of VaRs and combining it with nonparametric estimation and/or validation.
Our validation is more related to model selection and testing, today well understood and
established, and therefore kept short. The former, i.e., the combination with nonparametric estimation,
is discussed for the problem of analyzing conditional distributions and can be extended to the
combination with methods for estimating in high dimensions. For this example, in which the
prior knowledge enters via a distribution class, we discuss two approaches: one is based on the
method of moments, the other one on maximum likelihood. The latter is popular due to Rigby and
Stasinopoulos (2005) and Severini and Staniswalis (1994). Rigby and Stasinopoulos (2005) considered
a fully parametrized model in which each distribution parameter (potentially transformed with a
known link) is written as an additive function of covariates, typically including a series of random
effects. They proposed a backfitting algorithm (implemented in the R library GAMLSS) to maximize a
penalized likelihood corresponding to a posterior mode estimation using empirical Bayesian arguments.
Severini and Staniswalis (1994) started out with the parametric likelihood, but localized it by kernels.
This is maximized then for some given values of the covariates.

3. A Practical Example

We now discuss the technical steps for the announced practical example. While this section
focuses on the technical part, the empirical exercise is done in the next section.

3.1. Distribution Modeling

Often, the Student t distribution was used in financial econometrics and risk management to model
the conditional asset returns, going back to Bollerslev (1987). However, it is well known that it does not
describe very well the empirical features of most financial data. Therefore, several proposals have been
made of skewed Student t distributions; see Theodossiou (1998) and Zhu and Galbraith (2010) for the

1 Further advantages are that semiparametric modeling can help to overcome the curse of dimensionality and that
semiparametric models are more robust to the choice of smoothing parameters.
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context of finance or Jones and Faddy (2003) and Azzalini and Capitanio (2003) in (applied) statistics.
For a more general discussion and compendium, see Rigby et al. (2019).

Let us consider two classes of skewed t distributions. Both are derived from the (generalized)
BG classes; see Appendix A. These allow for the generation of many flexible distribution classes.
The fist version depends on two parameters, whereas the second one depends on three. One may
directly go for the second one. Remember, however, later on, that this is just a parametric guide for the
semiparametric estimator. There is certainly a trade-off between the gain of flexibility, on the one hand,
and the loss of its regularization, on the other hand. Moreover, each additional parameter in the global
part may raise the costs of implementation and computation to an unacceptable degree. Both skewed t
distributions are generated by taking a standard Student t as the baseline distribution in (A1) and (A2),
respectively. Specifically, plugging in FY(y; a, b) = 1

2

(
1 + y/

√
a + b + y2

)
, a so-called scaled Student

t2, into (A1), gives our skewed t of Type 1 with the probability density function (pdf):

gT1(y; a, b) = k1

(
1 +

y√
a + b + y2

)a+1/2 (
1 − y√

a + b + y2

)b+1/2

, (1)

where k−1
1 = B(a, b)

√
a + b2a+b−1 and y ∈ R. We write Y ∼ T1(a, b); see Jones and Faddy (2003).

Plugging the baseline cumulative density (cdf) into (A2) gives our skewed t of Type 2 with the pdf:

gT2(y; a, b, c) = k2
1

(a + b + y2)3/2

(
1 +

y√
a + b + y2

)ac−1 (
1 − 1

2c

(
1 +

y√
a + b + y2

)c)b−1

, (2)

where k2 = c(a+b)
B(a,b)2ac and y ∈ R. We write Y ∼ T2(a, b, c); see Alexander and Sarabia (2010) and

Alexander et al. (2012). The densities gT1 , gT2 are illustrated in Figure 1.

Figure 1. Graphics of the probability density function: left for the skewed t1 (1) when (a, b) = (2,2),
(5,2), (8,2), (2,5), and (2,8); center for the skewed t2 (2) with (a, b, c) = (2,2,0.5), (8,2,0.5), (5,2,0.5), (2,5,0.5),
and (2,8,0.5); and on the right, (2,2,2), (8,2,2), (5,2,2), (2,5,2), and (2,8,2).

For implementation, estimation, model selection, and in particular, for the possible integration of
ML, we take a closer look at the basic properties of these two distributions. Note that for a = b in (1),
one obtains the classical Student t distribution with 2a degrees of freedom. The same is true for the
three-parameter case (2) when setting a = b with c = 1. Furthermore, the cdfs are given by:

GT1(y; a, b) = I

(
1
2

{
1 +

y√
a + b + y2

}
; a, b

)
, (3)

and:
GT2(y; a, b, c) = I(Fc

Y(y; a, b); a, b), (4)

respectively. Having explicit expressions for the pdf, one may think that likelihood based methods are
straight-forward, including those for tests and model selection. Note, however, that for a sample of
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size m, you need to know the joint distribution of (y1, . . . , ym), which are not independent. In practice,
many work with log ∏m

i=1 gTk (yi; θ), (k = 1, 2 with θ = (a, b) for k = 1, θ = (a, b, c) else) as a likelihood
approximate, ignoring potential dependencies. This weakens both the efficiency of estimation and the
validity of likelihood based inference. Therefore, it is interesting to look at alternatives. For estimation,
recall the moment based approach; then, we need to to express parameters a, b, and if applicable c,
in terms of estimable moments. For the case of the skewed t distribution of the first kind, we have:

E(Yr) =
(a + b)r/2

B(a, b)

r

∑
j=0

(
r
j

)
2−j(−1)jB

(
a − r

2
− j, b − r

2

)
(5)

if a, b > r/2. An advantage of this expression is that we do not need to estimate the centered,
standardized moments. This is even more an advantage when we try to estimate these moments
nonparametrically. Similarly, for the skewed t distribution of the second kind:

E(Yr) =
(a + b)r/2

B(a, b)

r

∑
j=0

(−1)j
(

r
j

)
2−j

∞

∑
k=0

(−r/2
k

)
(−1)kB

(
a − r/2 + j − k

c
, b
)

. (6)

Clearly, this reveals a problem because we cannot solve this (easily) for a, b, and c.

3.2. Financial Risk Measures

The parametric part provides us with explicit formulas that we can use to derive closed expressions
for the risk measures, namely the VaR and tail moments. In fact, it can be shown that:

VaRT1 [p; a, b] =

√
a + b(2VaRB[p; a, b]− 1)

2
√

VaRB[p; a, b](1 − VaRB[p; a, b])
, and (7)

VaRT2 [p; a, b, c] =

√
a + b(2VaR1/c

B [p; a, b]− 1)

2
√

VaR1/c
B [p; a, b](1 − VaR1/c

B [p; a, b])
, (8)

with 0 ≤ p ≤ 1, where VaRB[p; a, b] denotes the VaR of a classical Be(a, b) distribution. Furthermore,
if Y ∼ T1(a, b), then the for a given yp, its corresponding tail moments can we written as:

E{Yk|Y ≤ yp} = E

{
(a + b)k/2(2B − 1)k

2kBk/2(1 − B)k/2 |
√
(a + b)(2B − 1)
2
√

B(1 − B)
≤ yp

}

=
(a + b)k/2

2k

k

∑
j=0

ajE{Bk/2−j(1 − B)k/2 | B ≤ h(xp)},

where aj = (−1)j(k
j)2

k−j and h(z) = {a + b + z2 +
√
(a + b)z2 + z4}/{2(a + b + z2)}, which is

increasing in z, with a, b ∈ R+. For k = 1, we get the T(ail)VaR. If B ∼ Be(a, b), then one has:

E{Bk/2−j(1 − B)k/2 | B ≤ h(xp)} =
1 − FB̃(h(yp))

FB(h(yp))

B(k/2 + a − j, b − k/2)
B(a, b)

, (9)

where B̃ ∼ Be(k/2+ a − j, b − k/2), b > k/2, and h(z) as above. In sum, for the Type 1 class, we obtain
explicit expressions for the tail moments that do not change when (a, b) are functions of covariates.

3.3. Combining The Prior with Nonparametric Estimation

First, let us briefly consider the case of being only interested in the estimation of the unconditional
distribution g(·), say, in that of stock returns Y. Once a proper parametric choice (say Gθ) is found and
the parameters θ are estimated, we know that Ỹ := Gθ̂(Y) has a pretty smooth density g̃, which is not
too far from the uniform [0, 1] distribution. Then, as g(y) = g̃{Gθ̂(y)}, you obtain the final estimate.
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A next step to proceed could be to apply a nonparametric estimator like, for example, a kernel density
for g̃. The prior estimation served here to stretch data where we had many observations, and contract
them where we had only a few. You may say that this could also be done either by taking the empirical
cdf for transformation or by taking the local bandwidth that always includes the same number of
neighbors. This would be purely nonparametric and therefore renounce the use of prior information.
In practice, these alternatives suffer from various problems like giving wiggly results, a much harder
bandwidth choice, etc. For details and applications in actuarial sciences, consult Bolancé et al. (2012)
and Martínez Miranda et al. (2009).

We turn now to the slightly more challenging problem of considering conditional distributions.
For example, what is the stock return distribution of Telefónica and its VaR given a certain value of
the Spanish IBEX35? Having huge datasets, you may try to estimate this with a fully nonparametric
estimator. However, if you doubt that stationarity holds over a long period, you may want to
restrict your dataset to not include more than twelve months (as an example). In such a case,
you better resort to a parametric guide like above and turn a, b (and c if applicable) into flexible
functions of the conditioning covariate X. Again, a likelihood based approach may now look at
log prodm

i=1gTk (yi; θ(xi)) (k = 1, 2 with θ(xi) = (a(xi), b(xi)) for k = 1, etc.) ignoring potential
dependencies. Rigby and Stasinopoulos (2005) specified the elements of θ as additive, parametrized
functions of xi with some random coefficients, and maximized a penalized version of this. In contrast,
Severini and Staniswalis (1994) did not parametrize the elements of θ, but maximized (along θ) the
smoothed version, i.e., summ

i=1 log gTk (yi; θ(x))Kh(x − xi) for any x. Here, Kh(v) = h−1K(v/h) for a
kernel function K(·) with bandwidth h. That is, they obtained for given x an estimate of the value that
θ takes at x. Notice that the latter method is usually implemented for θ containing only one element
(typically the mean).

As said before, an interesting alternative is to estimate nonparametrically the moments of Y
and then derive the elements of θ. Thanks to Formula (5), we can do this for the Type 1 skewed t
distributions. More specifically, the algorithm would look as follows: For sample (xi, yi), i = 1, 2, . . . , m
with yi being the return of the stock and xi the conditioning variable (in our application, the market
return) conduct:

Step 1: Estimate the conditional first two moments μ1 and μ2 by:

μ1(xi) = E(y|xi), and log μ2(xi) = E(y2|xi) ,

where the nonparametric functions can be estimated, e.g., by kernel regression, splines, etc.
Step 2: You now may either take a grid over the range of X, with M grid points xj, or you

may calculate the estimates for each observation xi. Let us call them μ̂1j and μ̂2j, j = 1, 2, . . . , M for
either case.

Step 3: Calculate estimates (âj, b̂j) by solving in (aj, bj), j = 1, 2, . . . , M, the non-linear system:

μ̂1j =
(aj − bj)

√
aj + bj

2
·

Γ(aj − 1
2 )Γ(bj − 1

2 )

Γ(aj)Γ(bj)
, (10)

μ̂2j =
aj + bj

4
·
(aj − bj)

2 + aj − 1 + bj − 1
(aj − 1)(bj − 1)

. (11)

Step 4: Then, the estimate of the conditional distribution is of the form:

ĝ(y|xj) = gF(y|âj, b̂j) .

Following Nielsen and Sperlich (2003), Kyriakou et al. (2019), and Mammen et al. (2019), you could
use local linear regression in Step 1 for both functions, combined with the validated R2 for the
bandwidth choice. Obviously, any method known as ML, including LASSO variable selection, can be
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applied in this step. However, it is less evident how these methods could be combined with the
aforementioned likelihood based approaches. Note further that the conditional distribution obtained
by this strategy can also be used for semiparametric prediction of the unconditional distribution:

ĝ(y) =
1
m

m

∑
i=1

gF(y|âi, b̂i) . (12)

This shows that with μ̂1, μ̂2, you can predict the marginal distribution of Y for scenarios in which
the distribution of X is changing (Dai et al. 2016). For example, we could predict the unconditional
distribution of stocks for different distributions of the IBEX35. Note finally that Step 3 cannot easily
be applied to the skewed t distribution of Type 2; recall (6). In such a case, you could only try to
apply the idea of Rigby and Stasinopoulos (2005), but with procedures and algorithms that are still to
be developed.

4. Empirical Illustration

Consider daily stock returns from 1 January 2015 to 31.12.2015 for five companies of the Spanish
value-weighted index IBEX35; namely Amadeus (IT solutions for tourist industry), BBVA (global
financial services), Mapfre (insurance market), Repsol (energy sector), and Telefónica (information and
communications technology services); see Table 1. The returns are negatively skewed in four of the
five companies considered, but positively skewed in the last one.

Table 1. Summary statistics. The sample size is m = 261 for all sets.

Stocks Amadeus BBVA Mapfre Repsol Telefónica

Maximum daily return 0.046286 0.040975 0.050847 0.073466 0.062264
Minimum daily return −0.097367 −0.060703 −0.067901 −0.0877323 −0.051563
Mean 0.000900 −0.000452 −0.000623 −0.001416 −0.000408
Standard deviation 0.014601 0.016249 0.015942 0.021349 0.016301
Skewness −1.163797 −0.465779 −0.723655 −0.166165 0.130372
Kurtosis 10.292160 3.824688 4.873980 5.435928 4.422885

We first fit the data by the maximum likelihood (ignoring dependence) to both distribution classes,
working with standardized data. Tables 2 and 3 show the parameter estimates with standard errors.

Table 2. Maximum likelihood estimates for the skewed t model of Type 1, standardized data. Standard
errors are in parenthesis.

Stocks Amadeus BBVA Mapfre Repsol Telefónica

â 6.194309 10.773980 7.271484 5.009976 7.083988
(2.378890) (8.474473) (3.684818) (1.980271) (3.810294)

b̂ 6.171897 10.76088 7.250156 5.005015 7.086958
(2.378415) (8.477441) (3.686769) (1.980433) (3.810390)

Table 3. Maximum likelihood estimates for the skewed t model of Type 2, standardized data. Standard
errors are in parenthesis.

Stocks Amadeus BBVA Mapfre Repsol Telefónica

â 1.050617 0.935678 0.8685684 0.808572 1.120804
(0.443072) (0.407211) (0.329048) (0.363157) (0.650834)

b̂ 5.126098 7.144007 6.217545 2.998354 3.497796
(2.091549) (5.104088) (3.184219) (0.917090) (1.110353)

ĉ 2.973896 3.653026 3.617017 2.721519 2.331579
(0.761879) (0.733523) (0.668503) (0.698227) (0.774010)
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To choose between these two models, one may use the Bayesian information criterion (BIC).
However, as our (working) likelihood neglects the dependence structure, it might not be reliable.
While the three-parameter model presents the largest values for BIC (not shown), the gain, however,
is always close to, or smaller than, 1%.

An alternative is to apply ML methods comparing the parametric estimates with purely
nonparametric ones. This is not recommendable any longer when switching to conditional distributions
due to the moderate sample sizes. In Figure 2, you see how our models (in red) adapted to the
empirical cdf (blue) for the stocks of Amadeus and BBVA. As expected, the three-parameter model
gave slightly better fits. In practice, the interesting thing to see is where improvements occurred,
if any. The practitioner has to judge then what is of interest for his/her problem; ML cannot do this
for him/her. However, ML can offer specification tests; see Gonzales-Manteiga and Crujeiras (2013)
for a review. For example, a test that formalizes our graphical analysis is the Kolmogorov–Smirnov
(KS) test:

KS = sup |Fm(yi)− F(yi; θ̂)|, i = 1, 2, . . . , m,

where Fm(yi) is the empirical cdf and F(y; θ̂) is the cdf of the particular model class with θ̂ from Tables 2
and 3. To calculate the p-value, we can use the parametric bootstrap:

Step 1: For the observed sample, find the maximum likelihood estimator, F(y; θ̂), F̂m(y), and KS.
Step 2: Generate J bootstrap samples y(j)

1 , . . . , y(j)
m ∼ F(y; θ̂) under H0 (the data follow model F);

fit them; and compute F(y; θ̂(j)), F̂(j)
m (y), and KS(i) for each bootstrap sample j = 1, 2, . . . , J.

Step 3: Calculate the p-value as the fraction of synthetic bootstrap samples with a KS statistic
greater than the empirical KS statistic obtained from the original data.

To obtain an approximate accuracy of the p-value for ε =0.01, we generated J = 1
4 ε−2 = 2500

bootstrap samples. Table 4 shows the results for both distribution classes and all datasets. It can be
seen that with all p-values larger than 0.499, both models could not be rejected at any reasonable
significance level in any of the considered datasets.

Finally, let us see how different the VaR are, when calculated on the base of one model compared
to the other; recall Equations (7) and (8). They were calculated at the 95% confidence level for all
datasets; see Table 5. The T1 model with two parameters provided slightly higher VaR values than the
T2 model. The difference again seemed to be somewhat marginal, except maybe for Amadeus.
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Figure 2. Plots of the theoretical cdfs of the skewed t models (LEFT: T1 model; RIGHT: T2 model) and
the empirical cdf. Stocks: Amadeus; BBVA.

Table 4. Bootstrap p-values for both models and all five datasets.

Stocks Amadeus BBVA Mapfre Repsol Telefónica

Skewed t T1 0.593 0.676 0.499 0.761 0.829
Skewed t T2 0.732 0.908 0.733 0.732 0.915

Table 5. Values at risk VaRT1[0.05; a, b)] and VaRT2[0.05; a, b, c] for the five stocks considered.

Stocks Amadeus BBVA Mapfre Repsol Telefónica

VaRT1 −0.024941 −0.028328 −0.028521 −0.040059 −0.029110
VaRT2 −0.023089 −.02817 −0.027794 −0.038330 −0.028029

Let us turn to the estimation of the conditional distribution. Here, the integration of the ML
happens by incorporating the covariates nonparametrically. For the sake of presentation and brevity,
we restricted ourselves here to the moment based approach; for more details on the likelihood based
one, we refer (besides the above cited literature) to the recent compendium of Rigby et al. (2019) and
the references therein. Limiting ourselves to the moment based method automatically limited us to the
skewed t1 class; recall Equation (6).2 Furthermore, for the sake of illustration, we limited the exercise
to the estimation of all distribution parameters as nonparametric functions of one given covariate X,
namely the IBEX35. It was obvious that estimates for μ1, μ2 could equally well be the result of a complex
multivariate regression or a variable selection procedure like LASSO. We estimated μ1(IBEX35)
and μ2(IBEX35) using different methods provided by standard software; the presented results
were obtained from penalized (cubic) spline regression with data-driven penalization. For details,

2 You may develop numerical approximations working with (6), but this is clearly beyond the scope of this note. However,
the above studies insinuate that the gain by using the more complex Type 2 class is rather marginal. Those advantages get
easily compensated by the local estimator.
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consult Ruppert et al. (2003) and the SemiPar project. Figure 3 gives an example of how this performed
for the BBVA stocks.

Figure 3. Estimates μ̂1, ̂log μ2 for BBVA stock returns as functions of IBEX35.

Table 6 gives for the IBEX35 quantiles Q1 = −0.00768, Median = Q2 = 0.00079, Q3 = 0.00687 the
corresponding moment estimates of the different stock returns; Table 7 the corresponding (aj, bj) for
Formulas (10) and (11). Table 8 gives the corresponding conditional VaRs obtained from Formula (7).

Table 6. First two moments of stock returns for given IBEX35 values (looking at its quantiles).

IBEX35 Amadeus BBVA Mapfre Repsol Telefónica
Quartile μ̂1j μ̂2j μ̂1j μ̂2j μ̂1j μ̂2j μ̂2j μ̂1j μ̂2j μ̂1j

Q1 −0.323500 2.336970 −0.493668 1.489340 −0.481228 2.215213 −0.430198 1.654110 −0.509551 1.941169
Q2 0.025464 2.385443 0.094427 1.240531 0.060678 1.487417 0.056462 1.474321 0.034497 1.253373
Q3 0.280358 2.492818 0.503731 1.523203 0.439138 1.623399 0.405799 1.698132 0.433284 1.421627

Table 7. Parameter (aj, bj) of the conditional stock return distributions for given IBEX35 values.

IBEX35 Amadeus BBVA Mapfre Repsol Telefónica

Quartile âj b̂j âj b̂j âj b̂j âj b̂j âj b̂j

Q1 1.742906 2.136783 5.397247 6.904428 1.990996 2.690554 3.143186 4.048275 2.490487 3.398563
Q2 1.736629 1.709150 5.492494 5.226327 3.133551 3.019128 3.184576 3.076590 5.016808 4.924298
Q3 1.953575 1.639172 6.478997 5.008818 4.327494 3.356619 3.640170 2.851049 6.809153 5.483973

Table 8. The conditional value at risk VaRT1(IBEX35) for given IBEX35 values.

IBEX35 Amadeus BBVA Mapfre Repsol Telefónica

Q1 −0.037728 −0.038910 −0.044802 −0.053801 −0.043939
Q2 −0.031199 −0.027981 −0.030278 −0.041117 −0.029327
Q3 −0.026029 −0.020886 −0.022744 −0.032601 −0.021913

In Figure 4, you can see the entire conditional distributions for the three IBEX35 quantiles. Finally,
in Figure 5, we plotted the resulting unconditional distributions when you integrate over the observed
IBEX35 values; recall Equation (12). They reflect quite nicely the asymmetries and some fat tails.
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Figure 4. Conditional densities of stock returns at the quantiles of IBEX35 for Amadeus (upper left),
BBVA (upper center), Mapfre (upper right), Repsol (lower left), and Telefónica (lower right).

Figure 5. Unconditional densities of stock returns obtained from integrating the conditional ones over
all observed IBEX35 values.

5. Discussion and Conclusions

In this note, we revisited the ideas of semiparametric modeling to propose for ML what one
could call glass box modeling. It integrates ML in a mixture of a global and a local part in which the
global one is as a parametric guide for the nonparametric estimate. We discussed different advantages
of such a kind of smart modeling and the steps to be performed. In our illustration (analyzing
financial data), we proposed as a parametric guide some (generalized) beta-generated distributions.
In particular, we considered two classes of skewed t distributions. This allowed us to work with
analytical expressions for the pdf, cdf, moments, and quantile functions, including the VaR, even on a
local level. An empirical application with five datasets of stock returns was performed for illustration.
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Appendix A. Some Classes of Beta-Generated Distributions

This is to recall the class of BG distributions and to present some basic properties of this class.
Let us call pdf f (y) the baseline probability function with F(y) being the corresponding cdf. The class
of BG distributions is defined in terms of the pdf by:

gF(y; a, b) =
Γ(a + b)
Γ(a)Γ(b)

f (y)F(y)a−1[1 − F(y)]b−1, (A1)

where Γ(y) denotes the gamma function and a, b > 0 some real numbers. If for m being the sample size,
we set a = i and b = m − i + 1 in (A1), one obtains the pdf of the ith order statistic from F (Jones 2004).
For a �= b, we obtain a family of skewed distributions, for a = m and b = 1 the distribution of the
maximum, for a = 1 and b = m the one of the minimum, and for a = b = 1 obviously gF = f . In our
context, the first property is the most interesting one. The parameters a and b control the tailweight
of the distribution, where a controls the left-hand and b the right-hand tailweight. Consequently,
for a = b, one obtains a symmetric sub-family, but still with a = b controlling the tailweight. The BG
distribution accommodates several kinds of tails like potential and exponential ones (Jones 2004).

For the moment method and in order to express the VaR in terms of moments or (a, b), we need
to relate a, b to (directly) estimable moments. Let us now denote the cdf associated with (A1) by
GF(y; a, b) = I(F(y); a, b) with I(F(y); ·, ·) denoting the incomplete beta-function ratio:

Bx(a, b)/B1(a, b) , where By(a, b) =
∫ y

0
ta−1(1 − t)b−1dt

where 0 ≤ y ≤ 1, such that B1(a, b) = (Γ(a)Γ(b)/Γ(a + b). For a random variable B ∼ Be(a, b), i.e.,
following the classical beta distribution, a simple stochastic representation of (A1) is Y = F−1(B).
This allows for a direct simulation of the values of a random variable with pdf (A1). The raw (i.e.,
not centered, not normalized) moments of a BG distribution can be obtained by:

E[Yr] = E[{F−1(B)}r] for integers r > 0 .

Recently, some extensions have been proposed, e.g., by Alexander and Sarabia (2010),
Alexander et al. (2012) and Cordeiro and de Castro (2011), of which we consider the one towards
three parameters: The generalized BG (GBG) distribution is defined for a, b, c > 0 by the pdf:

gF(y; a, b, c) =
cΓ(a + b)
Γ(a)Γ(b)

f (y)F(y)ac−1[1 − F(y)c]b−1. (A2)

For c = 1, we get the BG distribution; for a = c = 1, one obtains the so-called proportional hazard
model; and setting a = 1 yields the so-called Kumaraswamy generated distribution.
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