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Human skin has remarkable features such as self-healing ability, flexibility, stretchability, high
sensitivity and tactile sensing capability. It senses pressure, humidity, temperature and other
multifaceted interactions with the surrounding environment. The imitation of human skin sensing
properties via electronic systems is one of the frontrunner research topics in prosthetics, robotics,
human-machine interfaces, artificial intelligence, virtual reality, haptics, biomedical instrumentation
and healthcare, to name but a few.

Electronic skins or artificial skins are devices that aim to assimilate and/or mimic the versatility and
richness of the human sense of touch via advanced materials and technologies. Generally, electronic
skins encompass embedded electronic systems which integrate tactile sensing arrays, signal acquisition,
data processing and decoding.

Tactile sensors sense diversity of properties via direct physical contact (i.e., physical touch), e.g.,
vibration, humidity, softness, texture, shape, surface recognition, temperature, shear and normal forces.
Tactile sensors are dispersed sensors that translate mechanical and physical variables and pain stimuli
into electrical signals. They are based on a wide range of technologies and materials, e.g., capacitive,
piezoresistive, optical, inductive, magnetic and strain gauges. Artificial tactile sensing allows the
detection, measurement and conversion of tactile information acquired from physical interaction with
objects. In the last two decades, the development of tactile sensors has shown impressive advances in
sensor materials, design and fabrication, transduction techniques, capability and integration; however,
tactile sensors are still limited by a set of constraints related to flexibility, conformability, stretchability,
complexity and by real-time implementation of information decoding and processing.

The Special Issue collects eight published papers, tackling the fabrication, integration and
implementation of tactile sensing in some of the abovementioned applications such as haptics, robotics,
human-computer interaction and artificial intelligence, modeling, decoding and processing of tactile
information using machine learning techniques.

Particularly, Wang et al. presented a flexible tactile sensor array (3 × 3) with surface texture
recognition method for human-robotic interactions. They developed and tested a novel method based
on Fine Element Modeling and phase delay to investigate the usability of the proposed flexible array for
slippage and grooved surface discrimination when slipping over an object [1]. Choi et al. developed a
skin-based biomimetic tactile sensor with bilayer structure and different elastic moduli to emulate
human epidermal fingerprints ridges and epidermis. They proved that the proposed sensor has a
texture detection capability for surfaces under 100 μm with only 20 μm height difference [2]. Chen et al.
investigated the influence of skin thickness and thermal contact resistance on a thermal model for tactile
perception. They proposed and tested a novel methodology to reproduce thermal cues for surface
roughness recognition [3]. Kameoka et al. developed and assessed a pressure distribution sensor that
measures stickiness when touching an adhesive surface via magnetic force offset [4]. Cordoba et al.
proposed a set of calibration methods, Quasi Single Point Calibration Method (QSPCM), other than
two-point calibration method (TPCM) for high-speed measurements of resistive sensors. The FPGA
implementation of the proposed circuit has been used to quantify resistances values in the range (267.56
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W,7464.5 W) [5]. Byun et al. presented a new gesture recognition method implemented on Flexible
Epidermal Tactile Sensor FETSA based on strain gauge to sense object deformation. They prototyped
and implemented a wearable hand gesture recognition smart watch. The latter demonstrated its
ability to detect eight motions of the wrist and showed higher performance than preexisting arm
bands, in terms of robustness, stability and repeatability [6]. Maurel et al. developed a viso-tactile
substitution system based on vibrotactile feedback called TactiNET for the active exploration of the
layout and the typography of web pages in a non-visual environment, the idea being to access the
morpho-dispositional semantics of the message conveyed on the web. They evaluated the ability
of the TactiNET to achieve the categorization of web pages in three domains—namely tourism,
e-commerce and news [7]. Finally, Alemeh et al. assessed a comparison of embedded machine learning
techniques—specifically convolutional neural networks models—for tactile data decoding units on
different hardware platforms. The proposed model shows a classification accuracy around 90.88% and
outperforms the current state-of art in terms of inference time [8].

I would like to take the opportunity to give my genuine thanks to all the authors for submitting
such valuable scientific contributions to this Special Issue. Furthermore, my sincere undisputed thanks
to all the reviewers for dedicating time and effort to revising the various manuscripts.
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Abstract: In this paper, we present the results of an empirical study that aims to evaluate the
performance of sighted and blind people to discriminate web page structures using vibrotactile
feedback. The proposed visuo-tactile substitution system is based on a portable and economical
solution that can be used in noisy and public environments. It converts the visual structures of
web pages into tactile landscapes that can be explored on any mobile touchscreen device. The light
contrasts overflown by the fingers are dynamically captured, sent to a micro-controller, translated
into vibrating patterns that vary in intensity, frequency and temperature, and then reproduced by our
actuators on the skin at the location defined by the user. The performance of the proposed system is
measured in terms of perception of frequency and intensity thresholds and qualitative understanding
of the shapes displayed.

Keywords: vibrotactile feedback; blind users; web accessibility

1. Introduction

Voice synthesis and Braille devices are the main technologies used by screen readers to afford
access to information for visually impaired people (VIP). However, they remain ineffective under
certain environmental conditions, in particular on mobile supports. Indeed, in 2017, the World Health
Organization (WHO: https://www.who.int/) counted about 45 million blind people in the world.
However, a study by The American Printing House for the Blind (APH: https://www.aph.org/) showed
that less than 10% of children between the ages of 4 and 21 are Braille readers. This statistic is even
lower for elder populations. Therefore, improving access to the Web is a priority, particularly to
promote the autonomy of VIP, who do not practice Braille.

At the same time, Web information is characterized by a multi-application multi-task multi-object
logic that builds complex visual structures. As such, typographical and layout properties used by web
designers allow sighted users to take a large amount of information in a matter of seconds to activate
appropriate reading strategies (first glance view of a web page). However, screen readers, which use
voice synthesis struggle to offer equivalent non-linear reading capabilities in non-visual environments.
Indeed, most accessibility software embedded in tablets and smartphones synthesize the text orally as
it is overflown by the fingers. This solution is interesting but daunting when it comes to browsing new
documents. In this case, the blind user must first interpret and relate snippets of speech synthesis to the
organization of all page elements. Indeed, the interpretation of a web page can only be complete if the
overall structure is accessible (aka. morpho-dispositional semantics). To do this, he moves his fingers
over almost the entire screen to carry out a heavy and somewhat random learning phase (often too
incomplete to bring out rapid reading strategies). In fact, most users rarely do so and have a “utilitarian”
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practice of touch devices, confining themselves to the functionalities of the web sites and interfaces they
are perfectly familiar with.

To reduce the digital divide and promote the right to “stroll” to everyone, it is imperative to
allow the non-visual understanding of the informational and organizational structures of web pages.
When a sighted person reads a document silently, we often observe a sequence of specific and largely
automated mental micro-processes: (1) the reader takes information from a first glance of all or part
of the web page by an instantaneous overview (skimming); (2) he can also activate fast scans of the
medium (scanning) consisting of searching for specific information within the web page. These two
processes, which are more or less conscious, alternate local and global perception, and can be repeated
in different combinations until individual objectives are met. Then, they can be anchored in high-level
reading strategies, depending on reading constraints and intentions. As such, layout and typography
play a decisive role in the success and efficiency of these processes. However, their restitution is almost
absent in existing screen reader solutions.

The purpose of our research is to provide access to the visual structure of a web page in a non-visual
environment, so that the morpho-dispositional semantics can be accessed by VIP and consequently
enable the complete access to the informative message conveyed in a web page. For that purpose, we
propose to develop a vibrotactile device (called TactiNET), which converts the visual structure of a web
page into tactile landscapes that can be explored on any mobile touchscreen device. The light contrasts
overflown by the fingers are dynamically captured, sent to a micro-controller, translated into vibrating
patterns that may vary in intensity, frequency and temperature, and then reproduced by our actuators
on the skin at the location defined by the user. In this paper, we particularly focus on the skimming
strategy and leave for further work the study of scanning procedures. Consequently, we specifically
tackle two research questions that are enunciated below:

• Question 1: What are the frequency and intensity thresholds of the device such that maximum
perception capabilities can be obtained (the study of temperature is out of the scope of this paper)?

• Question 2: How efficient is the device to provide access and qualitative understanding of the
visual shapes displayed in a web page?

The paper is organized in 6 sections. In the next section, we detail the related work. In Section 3,
we provide all the technical issues of the TactiNET. In Section 4, we present the results of the study of
the sensory capabilities of the device. In Section 5, we describe the experiments conducted to evaluate
the efficiency of the device to reproduce the visual structure of a web page. Finally, in Section 6,
we provide some discussions and draw our conclusions.

2. Related Work

Numerous devices have been proposed to attach vibrotactile actuators to the users’ body to
increase the perception and memorization of information. The idea of a dynamic sensory substitution
system can be found as early as the 1920s as mentioned in [1]. In the specific case of the transposition
of visual information into the form of tactile stimuli, a series of remarkable early experiments are
described in [2], which coined the term Tactile Vision Sensory Substitution (TVSS) for this purpose.
In this case, 400 solenoid actuators are integrated into the backrest of a chair and the user seated on it
manipulates a camera to scan objects placed in front of him. The images captured are then translated
into vibratory stimuli that are dynamically transmitted to the actuators. The spectacular results from
these experiments demonstrate the power of human brain plasticity to (1) naturally exploit visual
information encoded in a substitute sensory modality, (2) externalize its sensations and (3) create
meaning in a manner comparable to that which would have been produced by visual perception.

A few years later, the Optacon has been proposed to offer vibrotactile feedback [3]. This particularly
innovative device is capable of transposing printed texts into vibrotactile stimuli. An optical stylus
and a ruler make it possible to follow the lines of a text and to reproduce the shapes of the letters
dynamically under the pulp of a finger positioned on vibrotactile pins. Three weeks of learning on
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average were sufficient for a reading performance of about 16 words per minute, which stands for
a remarkable result as it opened up the new possibility of accessing non-specific paper books, i.e.,
designed for sighted people. The interesting idea is to support sensory substitution through active
exploration and analog rather than symbolic transposition (compared to Braille, for example in the
D.E.L.T.A system [4]). Unfortunately, despite its very good reception at the time by the blind population,
the marketing of the product was short due to the lack of a sustainable economic balance.

More recently, with the advent of new portable technologies and the constant increase in the power
of embedded applications and actuators, we can observe many interesting studies for the use of touch
in new interactions. [5] brings interesting knowledge about the potential of rich tactile notifications on
smartphones with different locations for actuators, and intensity and temporal variations of vibration.
Ref. [6] present a simple and inexpensive device that incorporates dynamic and interactive haptics into
tabletop interaction. In particular, they focus on how a person may interact with the friction, height,
texture and malleability of digital objects. Other research devices exploiting the ideas developed
in TVSS are dedicated to improving the perception of blind people to facilitate their independent
movements. To this end, Ref [7] propose to automatically extract the contours of images captured in
the blind person’s environment. This piece of information is then transposed into vibratory stimuli by
a set of 48 motors integrated inside a vest worn by the subject. As such, this navigation system (Tyflos)
integrates a 2D vibration array, which offers to the blind user a sensation of the 3D surrounding space.

In a task-oriented approach, these proposals do not adequately cover our needs regarding the
consideration of typography and layout for the non-visual reading of web pages. Several more specific
studies come closer to our perspectives. Many studies have focused on the use of textures to produce
different tactile sensations during the spatial exploration of graphics [8]. This research has led to
recommendations on texture composition parameters in terms of elementary shape, size, density,
spacing, combination or orientation. From there, devices have been developed to facilitate access to
diagrams by blind people [9–14]. However, they do not tackle the overall complexity of multi-modal
web documents that may gather textual, visual, layout information, to name but a few.

To fulfill this gap, the first tactile web browser adapted to hypertext documents was proposed
by [15]. Filters were applied to images and graphics to reduce the density of visual information and
extract important information to be displayed on a dedicated touch screen. The text was rendered
on the same touch screen in 8-dot Braille coding. This browser illustrates three main limitations
we wish to remove. First, it only considers part of the layout information (layout of the elements,
graphic/image/text differences), which are not sufficient to exploit the richness of the typographical
phenomena (e.g., colors, weights, font size) and the luminous contrasts they induce. Second, the
browser uses Braille to render text on the screen, whereas only a minority of blind people can read it
and the Braille language is limited to translate typographic and layout information. Third, the user’s
autonomy is reduced in the choice of accessible information since the browser unilaterally decides
which information is likely to be of interest. Another interesting browser has been proposed called
CSurf [16] but it also relies on data filtering and the valuable information is selected by the browser
itself. TactoWeb [17] is a multi-modal web browser that allows visually impaired people to navigate
through the space of web pages thanks to tactile and audio feedback. It relies on a lateral device to
provide tactile feedback consisting of a cell that stimulates the fingertip by stretching and contracting
the skin laterally. Although it preserves the positions and dimensions of the HTML elements, TactoWeb
sorts and adapts the information based on the analysis of the structure of the Document Object Model
(DOM) tree. Closer to the idea of the Tactos system [9] applied to web pages, the browser proposed
by [18] requires a tactile mouse to communicate the presence of HTML patterns hovering over the
cursor. The mouse is equipped with two touch cells positioned on top. During the system evaluations,
web pages were presented to the participants and then explored using the device. Each blind user was
asked to describe the layout of the visited pages. The results indicate that while the overall layout
seemed to be perceived, the description still revealed some inconsistencies in the relationship between
the elements and in the perception of the size of the objects. The idea of an analogical tactile perception
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of a web page is appealing but only if the tactile vocabulary of the device is rich enough to transpose
the visual semantics of web pages. Moreover, the disadvantage of requiring a specific web browser
partially breaks the principle, which we call “design for more”, on which we wish to base our solution.
This approach comes from the observation that one of the reasons that weakens the appropriation of a
device by a blind person is its destructive aspect. We make the hypothesis that a tool, even if it offers
new useful features, may not be accepted if it prevents the use of widely tested features. The system
should be able to be added to and combined with the tools classically used by a given individual,
whether with a speech synthesis, a Braille track or a specific browser.

According to us, a triple objective must be guaranteed to develop successful TVSS devices in
the context of non-visual access of web information: perception, action and emotion. Indeed, the
typographical and layout choices contribute to giving texture and color to the perception of the
document. As such, the author transmits a certain emotional value using these contrasts. Therefore,
we make the hypothesis that the improvement of screen readers goes through the development of
devices that make it possible to perceive the coherence of the visual structure of documents, as much
as for the information it contains, and the interactions it suggests, and the emotional value it conveys.

Another important aspect for the success of powerful screen readers consists of guaranteeing
conditions of appropriation. First, the system must not hinder exploratory movements, be autonomous,
robust and light. It must also be discrete and inexpensive as well as be easy to remove. The device must
also meet real user needs. Indeed, the multiplication of digital reading devices greatly complicates the
visual structure of digital documents in general and web pages in particular. There is therefore a great
need for this population to facilitate non-visual navigation on the Internet. We designed the TactiNET
device, presented in the following subsection, to meet this demand.

3. TactiNET Hardware and Framework

The state of the art shows that interfaces for non-visual and non-linear access to web pages
are still limited, especially with nomadic media, i.e., the blind user perceives the document only
through fragments ordered in the temporal dimension alone. It is imperative to allow a non-visual
apprehension of the documents that is both global and naturally interactive by giving blind people
a tactile representation of the visual structures. Our ambition is to replace one’s capacity for visual
exploration, which relies on the luminous vibration of the screen, by a capacity for manual exploration,
which relies on the tactile perception of vibrotactile or thermal (or both) actuators.

The device should translate information as faithfully as possible while preserving both
informational and cognitive efficiency. The user will then be in charge of interpreting the perceived
elements and will be able to make decisions that will facilitate active discovery, learning and even
bypassing the initially intended uses (concept known as enactivism [19]). This idea runs counter to
most of the current attempts to produce intelligent technologies by building complex applications
whose Man-Machine coupling is thought upstream. In this objective, a metaphor, known as “white cane
metaphor”, guides both our hardware and software design, i.e., the blind person explores the world by
navigating thanks to the contacts of his cane with the obstacles and materials around him. We hope that
the semantics of the text visual structures will play this role for the digital exploration of documents, by
creating a sensory environment made of “text sidewalks”, graphical textures and naturally signposted
paths orienting the movements of this “finger-cane”. The TactiNET hardware [20] has been developed
to offer both versatility and easy setup in the design of experiments. As shown in Figure 1, it consists of:

• A control tablet (item 1) where all the experimental parameters can be managed and programmed
(e.g., shape of the patterns, vibrations frequencies, etc.) and sent via Bluetooth to the user’s tablet
(item 2).

• A user tablet (item 2), where web pages are processed and displayed according to the graphical
language. The user’s five fingers coordinates are sent to the host system via a connection provided
by a ZigBee dongle (item 3).

6
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• The host system (item 4) where actuators can be connected through satellites. Each actuator can
be either a piezoelectric vibrator or a Peltier device to provide haptic or thermal user feedback
(item 5).

Depending on the information flown over by the fingers, data packets containing the control
information are transmitted from the user tablet to the host system, which can then control the
piezoelectric vibrators and Peltier based on the requested amplitude, frequency and temperature values.
All this hardware setup has been designed and realized at the GREYC UMR 6072 (http://www.greyc.fr)
laboratory with plastic cases built with a 3D printer. A total control on all the experimental parameters
is thus achieved and future extensions can be easily implemented. The host system is battery powered
with a built-in USB battery management system. It is thus portable and provides more than 2 h of
experiment time with full charge.

Figure 1. TactiNET: hardware setup.

3.1. Host System and Actuators Descriptions

The host system is built based on an Atmel ATZ-24-A2R processor that communicates with the
user’s tablet with its built-in ZigBee dedicated circuits. The host system consists of one main board
with processor, battery management and communication circuits, and up to 8 daughter boards that
can be stacked. Each daughter board can control up to 4 independent actuators connected via standard
3.5 mm 4 points connectors using an I2C protocol (see the satellite in Figure 2). Two kinds of actuators
have been developed to provide both haptic and thermal feedback: piezoelectric and Peltier.

Figure 2. The host system communicates with the user’s tablet via ZigBee. Satellites are connected via
3.5 mm jack connectors and contain both piezoelectric or Peltier actuators.

First, classical haptic devices usually use unbalanced mass small electric motors. In such devices,
the intensity and the frequency of the vibration are completely correlated. To avoid this correlation and
to have a perfect control on these two important parameters for haptic feedback, a more sophisticated
actuator based on the piezoelectric effect has been used. In particular, a specific circuit from Texas
Instrument was used to generate the high voltage (up to 200 V) needed to control the actuator.

Second, a simple thermal effect can be achieved using a power resistor. In such a device, only
temperature increase can be generated. To have a better control on the thermal feedback, a Peltier
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module has been used. As such, by controlling the sign of the DC voltage, the user’s skin can be cooled
or heated. The DC voltage is generated with a dedicated H bridge circuit.

Each satellite board contains the actuators and the dedicated circuits needed to control it. The type
of each satellite can be identified by the host system. This hardware architecture provides versatility
and is easy to use. As an example, Figure 3 shows a configuration with the host system wrapped
around the wrist with three satellites providing two kinds of haptic feedbacks and a thermal one.

Figure 3. Example of assembly on active hand with one base, two piezoelectric and one Peltier.

3.2. Performances

The haptic feedback consists of vibrations in a frequency range from 50 Hz up to 550 Hz
with a resolution of 7 Hz. The intensity of the vibration should be given in terms of skin pressure.
Unfortunately, one should know the mechanical force applied by the actuators on the skin. This
parameter is very difficult to obtain since it depends on the skin resistance that varies a lot from user
to user and with the environment (temperature, relative humidity, etc.). As we will see in the next
section, the vibration intensities are thus given by the 8 bit number used in our protocol to control the
vibration (0 = no vibration and 255 = full vibration).

The thermal feedback consists of temperature variations limited to +/−5 ◦C : the main limitation
is due to the DC current needed that may reduce the experiment time. Up to +/−10 ◦C can be easily
achieved but with serious time limitations.

With the ZigBee protocol, up to 10 host devices can be addressed. In addition, each host device
can receive 8 daughter boards that can control 4 actuators. Finally, up to 320 actuators can be controlled
within the TactiNET.

In summary, the device is designed as a modular experimental prototype intended for researchers
who are not experts in electronics. As such, depending on the objective of the study, different
combinations can easily be composed and evaluated, both in terms of the number of actuators and their
type. In addition, the actuators can freely be exchanged in a plug-and-play mode and are integrated in
a plastic housing made by a 3D printer. Each element has a hooking system so that it can be positioned
on different parts of the user’s body. In our experiments, described in the following subsections,
a single satellite is used with haptic feedback and placed on the non-navigating hand.

4. The Graphical Language of the TactiNET

In this section, we first propose an empirical validation of the TactiNET framework to recognize
simple shapes that simulate web page layouts, and based on demonstrated limitations, we define the
foundations of a graphical language based on patterns that vary in intensity and frequency.

4.1. Towards a Graphical Language for the Tactile Output

A first experiment has been carried out in [21] that aims at pre-testing the ability of users to
recognize shapes on a handheld device with the TactiNET in its minimal configuration within a
non-visual environment. This configuration consists of:
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• A single satellite positioned on the non-active hand: one vibrotactile actuator,
• A single dimension of variation: the brighter (respectively darker) the pixel overflown by the

index finger, the lower (respectively higher) the vibration amplitude.

The experiment has been conducted with 15 sighted users (eyes closed) and 5 blind people (see
Table 1) to explore, count, recognize and manually redraw different simulated web pages configurations.
The conclusions of this experiment were as follows. First, the ability to distinguish the size of the
shapes and their spatial relationships was assessed as highly variable in terms of exploration time (7 to
20 min in total to explore 4 configurations). The quality of manual drawings also varied from very
bad to almost perfect depending on user characteristics (age, early blindness, familiarity with tactile
technologies).

Table 1. Characteristics of the blind population.

User id 1 2 3 4 5

Age 63 67 59 56 36

Sex Male Female Male Female Female

Age of blindness 0 32 25 10 15

Operating system Linux Linux Windows - Windows

Dedicated technology ORCA NVDA, ORCA JAWS, NVDA - JAWS

However, as demonstrated in Figure 4, the best productions are qualitatively interesting despite
the relatively simple configuration of the TactiNET. Other interesting side results are worth noting.
First, an encouraging learning effect was clearly demonstrated when the experience lasted no more
than an hour. Second, we have identified a metric to measure a user’s interest in the information
overflown: the greater the interest, the proportionally greater the pressure exerted on the screen (this
feature needs to be studied more deeply in future work, in particular for scanning purposes).

Figure 4. Original shapes and drawings of the perceived visual structures by the user.

To propose a more complete graphical language capable of handling more relationships between
(1) the layout and typographic clues, and (2) the graphical patterns variable in shapes, sizes, surface
and border textures, and distances, we proposed to improve the perceptive capacities of the TactiNET
by optimizing the combination of different tactile stimuli, namely amplitude and frequency.

4.2. Minimum Perception Thresholds of Frequency and Amplitude

From this perspective, we designed a second experiment [22] designed to select the most perceptible
frequency range of the TactiNET device. Each frequency value studied was further combined with an
amplitude value either constant or increased by a slight random variability in order to incorporate a
texture effect that may enable more perceptual capacities. For that purpose, we conducted an experiment
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that crossed 3 groups of users (38 sighted children, 25 sighted adults and 5 blind adults, the same
population as in Section 4.1) and consisted of a series of comparison tests on a touch screen divided
into two distinct areas. The user had to decide whether the stimuli perceived when flying over each
zone differed. All tests were performed with a single actuator. The user had to explore the tablet with
the finger of one hand, and with the actuator placed on the other hand. The only question asked after
each exploration with no time limit was whether the two stimuli on the left and right of the interface
were identical. Initially, all amplitude values were set to a fixed value, and only the frequency values
changed from one stimulus to the other. To minimize interference and maximize the fluidity of the
experiment, a second tablet dedicated to the experimenter was connected to the first one by a Bluetooth
connection. It was equipped with an interface to quickly and remotely control the presentation and the
successive value of the series of stimuli. Each series consisted of a fixed reference value sent to the left
side of the tablet and a variable comparison value sent to the right side.

The main result indicates that participants were collectively more sensitive to differences of
frequencies close to 300 Hz. This perceptive ability becomes individualized and deteriorates as one
moves away from this value. This result can be positively compared to [23], which indicates that
tactile navigation on digital devices is more sensitive to vibration with frequencies within the range
of 200–250 Hz. On the other hand, the experiment did not show any significant effect of amplitude
noise, age or blindness (except for children who are significantly more sensitive to ascending than
descending series). To summarize, the conclusions concerning the first grammatical rules applicable to
our graphical language are declined according to the 5 frequency ranges listed below:

• Between 50 Hz and 150 Hz, the minimum perceptual threshold is 15 Hz.
• Between 150 Hz and 250 Hz, the minimum perceptual threshold is 13 Hz.
• Between 250 Hz and 350 Hz, the minimum perceptual threshold is 7 Hz.
• Between 350 Hz and 450 Hz, the minimum perceptual threshold is 10 Hz.
• Between 450 Hz and 550 Hz, the minimum perceptual threshold is 15 Hz.

These frequency values must be combined with amplitude values to increase the expressive
power of the graphical language. Consequently, we designed a third experiment [24] to select the most
perceptible amplitude range. Each studied amplitude value was further combined with the optimized
frequency value obtained in the previous experiment. The protocol was very similar to the previous
one excepted for the population (20 sighted adults and 5 blind adults (the same population as in
Section 4.1), the reference values for amplitude ranged from 55 to 255 (Set to this range to be included
in the communication frame and then translated by the micro-controller in amplitude value.), and the
“staircase” and “up-and-down” method [25] used to determinate the amplitude perceptive threshold.

Many amplitude values were compared to three reference amplitudes by crossing the two
populations of users. The best perceptive results are in an interval around the value 55 regardless of
the experimental condition. Nevertheless, although measuring less sensitive perceptual thresholds,
the higher values reveal a significant difference between the sighted and blind groups. Based on these
results, we increased our grammar by the following 3 rules:

• Between 0 and 100, the minimum perceptual threshold is 12.
• Between 100 and 200, the minimum perceptual threshold is 48.
• Between 200 and 255, the minimum perceptual threshold is 45.

Through these experiments, we began to weave links between a graphical language and basic
parameters of vibrotactile stimuli. In our last experiment, which is presented in the following section,
we attempt to relate these results to the visual structures extracted from a corpus of 900 web pages.

5. Recognition of Web Page Structures

To test the perceptual capacities of the TactiNET through its graphical language, we propose an
exploratory experiment based on the semi-automatic conversion of the global visual structures of
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web pages into vibrotactile stimuli. This conversion is achieved by dividing a given web page into
meaningful clusters of bounding-boxes represented by rectangular shapes, and by translating them
into vibrotactile stimuli. The final objective is to evaluate how these macro-structures can be perceived
in a non-visual environment by using the graphical language of the TactiNET.

5.1. Protocol Design

To evaluate the perceptive capacities of our device, we propose to run an exploratory experiment,
which tackles a small number of web pages from three different domains: tourism, e-commerce and
news (these are the three domains that are tackled by the academic-industrial consortium of the
TagThunder project funded by BPI France).

In particular, three representative web pages have been automatically chosen from a corpus of
900 web pages equally distributed by domain. The representative web page of a given category is the
one that obtains the highest similarity score when compared to all the other web pages in the same set
according to a similarity function proposed in [26]. The measure of similarity is based on the number
of intersection points between the rectangular bounding-boxes that make up two pages when they
are superimposed. Therefore, the web page that shows the maximum intersection points with all the
web pages of the category is chosen as the most representative of the category. Based on this measure,
the three representative web pages that have emerged from each category are www.francetourisme.fr
(tourism), www.asdiscount.com (e-commerce), and www.fdlm.org (news) (see Figure 5).

Figure 5. Three representative web pages: tourism (left), e-commerce (middle), and news (right).

After choosing the representative web pages, an agglomerative graph-based clustering algorithm
described in [27] has been applied on each of them to obtain meaningful clusters representing their
visual macro-structures. The algorithm starts with a web page and a given number of clusters to
discover. Then, three phases are processed: (1) extracting the visual parameters of HTML elements
(vision-based phase), (2) filtering and reorganizing HTML elements (DOM-based phase), and (3)
clustering the extracted bounding-boxes (agglomerative graph-based phase).

For this experiment, we fixed the number of zones to 5. This number comes from [28], who
showed that there is a limit in terms of the amount of information a person can receive, process, and
remember. The theory, known as Miller’s law, proposes that the average number of objects one can hold
in working memory is 7 +/− 2. Therefore, to guarantee that the number of chosen clusters does not affect
the performance of the participants, we chose 5 clusters as the minimum information to be handled. This
process is illustrated in Figure 6, where the rectangular shapes result from the agglomerative graph-based
clustering algorithm applied to each representative web page. Please note that the clustering shows
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differences in surface, location, orientation, and spatial relations. The results from the clustering have
then been adapted to our experimental setup to take into account the recommendations of [12] in terms
of rendering forms for non-visual navigation on touchscreen devices. Figure 7 shows the adapted
presentations of the vibrating pages representing each page of each category (the colors have no other
interest than to clearly distinguish the areas for the experimenter). After adapting each representative
web page, a particular vibrotactile feedback should be dedicated to each cluster. To exploit the light
contrasts produced by the tablet, the relationship between the visual structure of the zones and the
calculated vibrotactile stimulus is based on the standard deviation of the gray values of the pixels.
The greater the visual contrast, the higher the standard variation value, the greater the strength of the
tactile stimulus should be. Therefore, based on the results presented in the previous section in terms of
perception thresholds, the standard deviation value calculated for each zone is proportionally associated
with an amplitude value as mentioned in Table 2, while a constant value of 304.6875 Hz is assigned to
frequency. A basic vibrating page was also constructed to serve as a reference by setting the amplitude
to the optimum value of 55 for all zones.

Figure 6. Clustering process of representative web pages.

Figure 7. Adapted segmentation for experimental purposes.

Table 2. Amplitude values for the vibrotactile stimuli.

Web Page Black Zone Red Zone Green Zone Blue Zone Yellow Zone

Tourism 69 50 78 73 75

Commerce 79 80 72 65 95

News 69 57 52 77 31
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By optimizing both the vibration feedback parameters and the difference in the generated visual
structures, the experiment consists of making the hypotheses that (1) the TactiNET should increase the
ability to discern different categories of vibrating pages (i.e., whether two pages shown are similar or
different) and (2) better performance in this task should be achieved when using values of varying
amplitudes. The experimental setup is illustrated in Figure 8. Eleven users participated in this
experiment (5 sighted and 6 blind) as demonstrated in Table 3. The group of the 6 blind participants
is balanced in terms of gender and the precocity of their blindness and their average age is around
54 years old. Five of the blind population regularly use personal computers but in different proportions
(from 1 to 8 hours a day), and only one of them uses a smartphone to surf on the web. In parallel, all
sighted participants are women with an average age of around 26 years old.

Figure 8. Comparing web page structures depending on associated amplitude values.

Table 3. Characteristics of the blind and sighted population.

User Id Vision Status Age Sex Age of Blindness

D1 blind 55 Female 0

D2 blind 66 Male 0

D3 blind 39 Female 8

D4 blind 40 Male 0

D5 blind 69 Female 32

D6 blind 60 Male 27

V1 sighted 27 Female -

V2 sighted 26 Female -

V3 sighted 25 Female -

V4 sighted 29 Female -

V5 sighted 25 Female -

Overall, 36 web page structures comparisons have been performed by each participant. There are
3 comparisons of identical structures and 3 comparisons with different page structures. All comparisons
are repeated 3 times to avoid random selection. In addition, all comparisons are subject to 2 amplitude
conditions: variable or fixed. Under the same conditions as the previous experiment, each task included
a series of tests, which present the compared structures on two touchscreen tablets. After the exploration
phase, the participant had to decide whether both vibrotactile structures were identical or not. Finally, at
the end of all 36 comparisons, the user had to draw the last discovered structure on a A4 sheet of paper.

5.2. Analysis of the Results

We are aware that the number of blind participants is not sufficient to perform statistically
significant tests. However, gathering a large population of visually impaired people is (fortunately)
not an easy task. Consequently, the analysis of this experiment will be exploratory and preparatory
to determine specific hypotheses and to validate identified trends to be developed in a future larger
protocol. Figure 9 gathers results for all the comparisons of all pairs of vibrotactile pages, representative

13



Micromachines 2020, 11, 376

of the following categories: news (N), e-commerce (E), and tourism (T). The scores are distributed in
the four tables according to the 6 blind participants (D1 to D6), the 5 sighted participants (V1 to V5),
and the condition of the amplitude value (set to 55 or associated with the contrast value of the original
area set in Table 2).

Figure 9. Results of all comparisons.

Several general observations can be specified. First, the results are globally homogeneous between
the two populations regardless of the amplitude condition with a ratio of about 60% correct answers
overall (exactly between 61.1% and 64.8%). This score seems promising as (1) 5 out of 6 blind people
never use tactile devices, (2) none of them had any training time, and the experience was long (on
average 1.5 h) and boring, and (4) the device was in its minimal configuration i.e., one single vibrator
and a maximum of one dimension of vibratory variation. However, we note a slight superiority of
almost 4% for the blind population to correctly classify pairs with the variable amplitude. This remark is
important as this superiority comes exclusively from the case of comparisons between similar structures.
While the results in the four tables show that it is (logically) twice as easy to identify a dissimilarity
between two vibrotactile structures as it is to be certain of their identity, the blind seem more able (by
10%) to exploit the variation in amplitude to remove their doubts about the similarity of two structures.

5.2.1. Redrawing Task

Some remarks concern the quality of the drawings produced at the end of the experiment, as no
prior information was given on the nature of the elements explored. The sighted people (eyes closed)
were more comfortable in representing their perception naturally in the form of rectangles, but the
drawing was often more complex than the structure explored (see Figure 10). In parallel, three of the
non-sighted people could not abstract this notion and reproduced the path followed by their finger in
the form of lines (see Figure 11).

However, two blind people reproduced the structures very faithfully, even though no formal
indication had been given on the vibratory stimulus support (see Figures 12 and 13). In any case,
this exercise seemed to be an interesting task, even with a blind population of users, to evaluate the
capacity of our stimuli to construct a mental representation of the visual structure. With a statistically
more appropriate number of users, Figure 14 might show a correlation between the scores given to
the drawings by experts and the comparison ones. This may be particularly true when extracting
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exclusively results from the blind subjects (Figure 14 right). In this case, the correlation appears to
be more strongly linear than for the overall observation (Figure 14 left), where the V3 data may be
an outlier.

Figure 10. Sample drawings of V1 (middle) and V3 (right) in reference to the news structure.

Figure 11. Sample Drawings of D4 in reference to the e-commerce structure.

Figure 12. Sample drawings of D2 in reference to the news structure.

Figure 13. Sample drawings of D3 in reference to the tourism structure.

Figure 14. Recognition and drawing tasks: correlation for all subjects (left) and for the blind (right).

5.2.2. Navigation Strategies

As all the experiments were filmed, we were able to observe the different strategies used by the
participants to explore the tablet touchscreen. A first typology is provided in Figure 15. What seems
remarkable to us is the richness of the micro-strategies used and therefore the large number of possible
combinations to anchor them in a global strategy (see Table 4). This experience does not yet allow
us to define a clear relationship between combinations of micro-strategies and overall efficiency for
the recognition of visual text structures. Nevertheless, the relationship with the pre-perceptual visual
abilities seems obvious enough to extend this line of research, i.e., the aim is to lay a solid foundation
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for the exploitation of non-visual scanning processes and thus the development of effective tactile
reading strategies. A preliminary analysis can be produced from the following three observations:

Figure 15. Navigation micro-strategies (NS) of blind and sighted participants.

Table 4. Navigation strategies (NS) chosen by each participant.

Subject ID Chosen Navigation Strategies

D1 NS1, NS2, NS3, NS4, NS5, NS12

D2 NS3, NS4, NS12

D3 NS1, NS3, NS4, NS12

D4 NS3, NS4, NS10, NS12

D5 NS3, NS8, NS9

D6 NS3, NS4, NS8, NS9

V1 NS3, NS4, NS6, NS7, NS11, NS12

V2 NS3, NS4, NS12

V3 NS3, NS4

V4 NS3, NS4, NS12

V5 NS3, NS4

• The majority of participants start navigating the tablets from the left to right. This might be due to
the cultural habits related to the writing and reading directions.

• The participants use between two to six micro-strategies, which can be arranged into three classes:
(1) continuous navigation taking information in both horizontal and vertical dimensions (NS1,
NS2, NS3, NS10, NS11), (2) navigation using only one direction (horizontal, vertical or diagonal -
NS4, NS6, NS7, NS8, NS9, NS12) and (3) navigation using none of these possibilities (NS5).

• The micro-strategy NS3 is used by all participants as well as NS4 to the exception of D5. It is also
noticeable that there were remarkable differences between the participants in the time and the
speed of using each micro-strategy.

These remarks lead us to make several hypotheses. As the structure being flown over is not known
in advance, the natural strategies implemented are preferentially based on a continuous horizontal and
vertical course of the entire screen. However, the efficiency of information capture is degraded by the
sequence of too many or too different micro-strategies. These findings would participate to explain the
three lowest scores of blind people: D1 (too many micro-strategies), and D5 and D6 (use of too many
dimensions). The most effective strategies (D2, D3 and D4) have in common a two-step recognition.
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The information is first taken by a continuous path in both horizontal and vertical dimensions of the
screen, and then followed by a verification, essentially vertical, to remove some uncertainties.

5.2.3. Other Meaningful Results

Finally, looking at the detailed results by participant or by category of visual structures, some
elements of discussion also emerge. First, only the “tourism” web page structure explored by blind
people seems to influence the scores, i.e., scores are higher for blind people than for sighted participants.
Indeed, by looking at the left-hand bar graphs (blind) of Figures 16 and 17, the comparisons involving
this visual structure are systematically (to one exception) superior in both the “similar” (yellow bar)
and the “different” (brown and cyan bars) conditions. The explanation we propose is to be found in
the congruence between the shapes flown over and the amplitude value chosen. Indeed, the tourism
category is the only one for which shapes close in surface and size are associated with values of
close intensity (see Figure 7 and Table 2). This conclusion, if proven by further experiments on a vast
population, is very interesting to support our approach because it legitimizes the use of objective
criteria (variance in contrast), extracted from the source document and transformed in an analogical
way, to build a coherent tactile landscape. In any case, this also requires us (in the future) to weight the
amplitude value associated with the change in contrast of the zone by an area value of the zone.

Figure 16. Accuracy by category - amplitude set at 55.

Figure 17. Accuracy by category - variable amplitude.

Second, there seems to be a tendency for scores to be higher, the earlier the onset of blindness
is, as shown in Table 5. In addition to the conditions for the occurrence of blindness, we will note
in our results a tendency towards an easier task for blind people who are familiar with new tactile
technologies, and for those who spend a lot of time surfing the web. In fact, the best performance is
attributable to the only blind woman in the protocol (i.e., D3 with nearly 90% correct answers under
all conditions), who is the youngest, has an iPhone equipped with VoiceOver, and is connected for
more than 10 h a day.
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Table 5. Congenital vision loss effect on accuracy.

Fixed Amplitude Variable Amplitude

Type of Participants Similar Struct. Dissimilar Struct. Similar Struct. Dissimilar struct.

All blind 40.7% 81.5% 50.0% 79.6%

Congenital visual loss 50.0% 86.1% 63.9% 83.3%

6. Conclusions and Perspectives

In this paper, we developed a vibrotactile framework called TactiNET for the active exploration of
the layout and the typography of web pages in a non-visual environment, being the idea to access the
morpho-dispositionnal semantics of the message conveyed on the web.

For that purpose, we first built an experimental device allowing the analogical transposition of
the light contrasts emitted by a touch-sensitive tablet into vibratory and thermal stimuli. The main
ergonomic constraints were to be easily positionable on any part of the body, modular in terms of the
quality and the quantity of actuators, inexpensive (less than 100 dollars), robust and light.

We then tuned the device to lay the bricks of a tactile language based on the expressive capacity of
the stimuli produced. This work was initiated by the study of the minimum thresholds of perception
of the frequency and the amplitude of the vibration.

Finally, we evaluated the ability of the TactiNET to allow the correct categorization of web pages of
three domains, namely tourism, e-commerce and news presented through a vibrotactile adaptation of
their visual structure. Although exploratory, the experiments are particularly encouraging reinforced
by the fact that we deliberately chose very unfavorable conditions, i.e., (1) heterogeneity of the blind
population in terms of age, habituation to tactile technologies and web browsing, onset of blindness,
and (2) minimal configuration of our device with only one vibrotactile actuator and one maximum
dimension of variation. Despite this, the interesting hypotheses that we retain are:

• blind people tend to affirm the similarity between two structures better than sighted people,
especially when the relationships between the form overflown and the perceived intensities are
consistent;

• blind people seem to be capable of imagining the shapes they have felt without any prior
indication of the stimuli;

• users seem to develop a rich set of micro-strategies to browse the vibrating touch screen;
• the regular use of touch technologies and the number of daily hours spent on the web seem to be

a positive factor for the appropriation of the device.

This first exploratory study opens up many avenues of research. For example, one possible
direction is to refine on pressure, spatial and temporal criteria the typology of micro-strategies for
exploring forms. The objective will be to analyze the relationships between micro-strategies and
macro-strategies to access to information. We believe that through this interactive alternation between
local and global perceptions, our natural scanning and skimming capabilities can be exploited, whether
in the visual or the tactile modality.

One of the main perspectives of this work is also to experimentally explore more complex
configurations of our device and thus improve the expressiveness of our tactile language. First, we
will propose to study the association of visual and thermal parameters. Second, work is in progress
to evaluate the possibility of combining tactile stimuli with audio stimuli [29]. Third, increasing the
number of concurrent stimuli (up to 320) by associating a vibrotactile actuator to several fingers may
enable new sensory experiences as the touch screen might be accessed by a multi-sensory device.

Finally, we will note the emergence in our experience and by informal discussions with blind
people of a possible extension of the language. Indeed, one of the frequent difficulties encountered by
blind people is the difficulty of having an a priori idea of the size of a document. In our experiments,
some of the shapes chosen to calibrate the device had a black to white gradation over their entire surface
(i.e., the higher the gray level, the stronger the vibration of the actuator). Therefore, the gradation
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produced a continuously decreasing vibration as the finger flew over it. Many blind people reported
feeling differences in the speed of this decrease from the very beginning of their exploration of the
shape. In fact, we constructed by chance a stimulus that allowed blind people to anticipate the size
of an area. Therefore, it did not seem to be necessary for blind people to fly over more than a few
centimeters to discriminate these differences and to know in advance the complete travel time of the
shape. Consequently, we will propose to study the interest of a triple relationship (size of a zone,
surface gradient and amplitude strength).
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Abstract: Embedding machine learning methods into the data decoding units may enable the
extraction of complex information making the tactile sensing systems intelligent. This paper presents
and compares the implementations of a convolutional neural network model for tactile data decoding
on various hardware platforms. Experimental results show comparable classification accuracy
of 90.88% for Model 3, overcoming similar state-of-the-art solutions in terms of time inference.
The proposed implementation achieves a time inference of 1.2 ms while consuming around 900 μJ.
Such an embedded implementation of intelligent tactile data decoding algorithms enables tactile
sensing systems in different application domains such as robotics and prosthetic devices.

Keywords: tactile sensing systems; embedding intelligence; convolutional neural network

1. Introduction

Embedding intelligence near the sensor location may enable tactile sensing systems to be
incorporated in many application domains such as prosthetics, robotics, and the Internet of Things.
Tactile sensing systems are composed of three main parts, as shown in Figure 1. The distributed tactile
sensors are in charge of converting the mechanical stimuli applied on their surface into electrical
signals. Tactile sensors could be made from different materials, e.g., capacitive, piezoelectric, and
piezoresistive materials [1]; they should be able to enable capabilities similar to what happens on the
human skin such as normal and shear force detection, vibration detection, softness, texture, shapes,
etc. The readout electronics interface with the sensor arrays by acquiring and digitizing the electrical
signals to be then processed by the digital tactile data processing unit [2].

Figure 1. Block diagram of the tactile sensing system.

Decoding tactile information concerns different kinds of tasks, which could be categorized as:
simple or complex processing depending on the algorithm’s complexity. For simple processing,
an example of the information retrieved is temperature, the intensity of the contact force, and contact
location, direction, and distribution. Concerning complex processing, more intelligent tasks are
expected such as patterns, textures, and roughness classification or touch modalities’ discrimination.
Employing the complex processing approach enables intelligence in tactile sensing systems. It is
achieved by applying sophisticated and complex data decoding algorithms able to extract the
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meaningful information from sensors. Machine learning (ML) has emerged as an efficient method
in many fields and in everyday tasks in smartphones and electronic systems. ML is a powerful
learning from examples paradigm used to address classification and regression problems. In particular,
Convolutional (CNN) and Deep Neural Networks (DNN) have recently proven their effectiveness
when applied to image recognition and tactile data decoding [3]. Many recent research works have
focused on the development of ML algorithms for tactile sensing systems [4]. However, embedding
machine learning algorithms on hardware platforms near the sensors location is challenging due to
the complexity such algorithms impose in terms of time latency and energy consumption. Our main
goal is to achieve a tactile sensing system able to perform smart tasks. This system is intended to
be portable/wearable, for which the energy budget is limited. Moreover, for the target applications,
i.e., robotics and prosthetics, being lightweight is a critical constraint limiting the hardware and
battery size.

In this perspective, this paper presents the implementation of CNN algorithms on different
hardware platforms. The main contribution of this paper may be summarized as follows:

• It proposes an optimized CNN model, adopted from Gandarias et al.’s research [5], based on
reduced data, which demonstrates the ability to provide comparable results in terms of accuracy,
i.e., 90.88%, with reduced hardware complexity.

• It presents efficient implementations of the CNN model on different hardware platforms for
embedded tactile data processing. The proposed implementations achieve a time inference
of 1.2 ms while consuming around 900 μJ. The work demonstrates its suitability for real-time
embedded tactile sensing systems.

• It raises a discussion about integrating intelligence into tactile sensing systems and how it enables
tactile sensing systems in different application domains.

The remainder of this paper is organized as follows: Section 2 reports the state-of-the-art, showing
the recent embedded CNN implementations. In Section 3, we illustrate the experimental setup and
methodology. In Section 4, the hardware implementation is explained. The results and discussion are
presented in Section 5, followed by the conclusions in Section 6.

2. State-of-the-Art

Different works have addressed the tactile data classification problem, using different methods
including, but not limited to, machine learning and deep learning [6–10]. While most of the work
done was focused on the methodology itself, few works addressed the implementation on embedded
platforms where the real application should reside. Gandarias et al. [11] used two approaches to classify
eight objects: finger, hand, arm, pen, scissors, pliers, sticky tape, and Allen key, using a 28 × 50 tactile
sensory array attached to a robotic arm, the first approach using the Speeded-Up Robust Features
(SURF) descriptor, while the second a pre-trained AlexNet CNN for feature extraction, with a Support
Vector Machine (SVM) classifier for both approaches. In Yuan et al.’s research [12], a CNN was also
used for active tactile clothing perception, to classify clothes grasped by a robotic arm equipped with a
tactile sensor that output a large RGB pressure map. Based on different textile properties: thickness,
smoothness, textile type, washing method, softness, stretchiness, durability, woolen, and wind proof.
Each property held two or more labels, e.g., the thickness can be a number from 0–4, and the employed
model for textile classification was VGG-19 pretrained on ImageNet [13]. In Rouhafzay et al. [14],
a combination of virtual tactile sensors and visual guidance was employed to distinguish eight classes
of simulated objects; the tactile sensor size was 32 × 32, and the input size of the neural network was
32 × 32 × 32, which was a sequence of tactile sensor images. Abderrahmane et al. [15] introduced
a zero-shot object recognition framework, to identify previously unknown objects based on haptic
feedback. They used BioTac sensors, and two CNNs were employed: one for visual data (input size:
224 × 224 × 30) and the other for tactile data (32 × 30). They overcame the results of SVM in a previous
work [16]. In Alameh et al.’s research [3], transfer learning was used to classify touch modalities
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obtained through a small 4 × 4 piezoresistive sensory array, by transforming tensorial data into images
and then using different CNN models trained on ImageNet [13]. In Gandarias et al.’s research [5], they
used a light CNN based (only three convolutional layers inside) on AlexNet, to identify 22 objects
using their pressure map, collected from a 28 × 50 tactile sensory array. Other works include those
in [17–19].

While all these previous works were not implemented in an embedded environment, we can
find few others targeting an embedded implementation for tactile sensing applications. The need for
embedded implementation arises from the need to have low power, small form factor electronics to
process the tactile information, especially in prosthetic applications [20]. Osta et al. [21] demonstrated
an energy efficient system for binary touch modality classification, based on SVM and implemented on
a custom hardware architecture. The energy per inference was 81 mJ, and the inference time was 3.3 s.
Ibrahim et al. [22] presented a real-time implementation on FPGA for touch modality classification.
Using SVM, they achieved a 350 ms inference time and a 945 mJ inference energy for three class
classification, as well as 970 ms/6.01 J for a five class classification.

3. Experimental Setup and Methodology

3.1. Dataset

Targeting the classification of tactile data, the use of the dataset collected in [5] was considered.
Tactile data were collected by a high resolution (1400 pressure taxels) tactile array, which was attached
to the 6 DOF robotic arm AUBO Our-i5 [5]. A set of piezoresistive tactile sensors was distributed with
a density of 27.6 taxels/cm2, forming a matrix of 28 rows by 50 columns. The dataset was composed of
pressure images that presented the compliance of 22 objects with the tactile sensors. These images were
divided into 22 classes labeled as adhesive, Allen key, arm, ball, bottle, box, branch, cable, cable pipe,
caliper, can, finger, hand, highlighter pen, key, pen, pliers, rock, rubber, scissors, sticky tape, and tube.
Figure 2 shows an example of the tactile images of three objects used for the training of the CNN model.
Each taxel in the tactile array presents a pixel in the pressure image; thus, each pressure image is
28 × 50 × 3 in size. Therefore, the color of the pixel presents the pressure applied at the corresponding
taxel. The minimum pressure is presented by black color, and the maximum pressure is presented by
red color. Pressure images were then transformed into grayscale images (image size = 28 × 50 × 1),
forming the tactile dataset.

Figure 2. Examples of visual (top) vs. pressure (middle) vs. tactile images (bottom) of common objects.
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3.2. Tested Model

Due to computational and memory limitations in the embedded application, a light CNN model
was required to perform classification tasks with high accuracy and fewer parameters. In this work,
we chose to use one of the models implemented in [5] as a base model to classify the objects in the
aforementioned dataset. Among all the implemented networks, we chose to use the custom network
TacNet4 because it was the best network that fit the embedded application (fewer parameters with
high accuracy [5]). The model was based on AlexNet, which is usually used in computer vision
for object classification [23]. The network was composed of 3 Convolutional layers (Conv1, Conv2,
and Conv3) with filters sizes (5 × 5, 8), (3 × 3, 16), and (3 × 3, 32) respectively. Each convolutional
layer was followed by a Batch Normalization (BaN), Activation (ReLU), and Maxpooling (Maxpool)
layer, respectively, where all pooling layers used 2 × 2 maxpooling with a stride of two. A Fully
Connected layer (FC = [fc4]) with 22 neurons followed by a softmax layer were used to classify the
input tactile data and give the likelihood of belonging to each class (object). The input shape of the
model was configured to the size of the collected tactile data. Figure 3 shows the detailed structure of
the network used.

Figure 3. Architecture of the tested model. BaN, Batch Normalization.

The network was implemented in MATLAB R2019b using the Neural Network Toolbox. A total of
1100 tactile images were used to train the model. The learning process was implemented in MATLAB
by dividing the tactile data into three sets: training, validation, and test sets.

When having an adequate dataset, the validation set is expected to be a good statistical
representation of the entire dataset. If not, the results of the training procedure highly depend
on how the dataset is divided.

To avoid this, In this work, we used the cross-validation method. The data were partitioned into
five folds, and each fold was divided into training, validation, and test sets. The training set formed
80% of the dataset, and the validation and test sets formed 10% each. This process was then repeated
five times until all the folds were used, without having common elements across all folds for the
validation and test sets, as shown in Figure 4.

For each training process, the training set was composed of 880 images, 40 images for each
label, whilst each of the validation and test sets was composed of 110 images. Training the model
from scratch required a large dataset to achieve high accuracy. For that reason, data augmentation
techniques, i.e., flipping, rotation, and translation in the X and Y axis, were applied to the dataset.
Hence, the amount of tactile data available for training and validation was increased to 5280 and 660,
respectively. The performance of the implemented model was evaluated based on the recognition rates
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achieved in a classification experiment of the test set composed of 110 original images (objects) from
22 classes.

Figure 4. Visual representation of the training, test, and validation split using cross-validation.

For embedded applications, with computational, memory, and energy constraints, it is necessary
to decrease the number of trainable parameters in the CNN model. In this work, we chose to decrease
the number of parameters of the trained model by decreasing the input image size (i.e., lower resolution
images); an example is shown in Figure 5. For that reason, several experiments were performed to
choose the smaller size of the input data, keeping the same classification accuracy. The input shapes
were chosen in a way that each shape resulted in a reduction of the number of parameters.

Figure 5. Example of an image resized for the sticky tape object; the red canvas is shown for illustration,
which signifies the original image size (28 × 50).

Table 1 shows how the number of parameters of the layers depended on the input shape.
The change in the input shape affected only the number of parameters of the fully connected layer.
This was due to the fact that the number of parameters in the convolutional layer depended only
on the size and number of the filters assigned for each layer (((width of the filter × height of the
filter) + 1) × No. of filters), while in the FC layer, the number of parameters ((No. of neurons in the
FC layer × No. of neurons in the previous layer) + 1) was affected by the size of the input image and
the output layer. The performance of the model was studied with five different input shapes, as shown
in Table 1. This resulted in five different models with different input shapes, each one trained from
scratch 5 times (one time per fold), which output 25 trained NNs. Figure 6 shows the training and
validation accuracy over epochs, for the first three models among the five models. The figure shows
that the accuracy achieved by the three models was close to 100%. Each model was evaluated with
MATLAB by running a classification task on the test set.
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Table 1. Distribution of the number of parameters on the models’ layers.

Layers Model 1 Model 2 Model 3 Model 4 Model 5
(28 × 50) (26 × 47) (28 × 40) (28 × 32) (24 × 32)

Conv1 208 208 208 208 208
BaN1 16 16 16 16 16
Conv2 1168 1168 1168 1168 1168
BaN2 32 32 32 32 32
Conv3 4640 4640 4640 4640 4640
BaN3 64 64 64 64 64

FC 19,734 16,918 14,102 11,286 8470
Total 25,862 23,046 20,230 17,414 14,598

Figure 6. Learning accuracy for the 3 configurations of the TactNet4model: (a) training; (b) validation.

Figure 7 shows the change in the number of trainable parameters and the average classification
accuracy, with respect to the change in the input shape, as well as the FLOPs. The classification
accuracy presented the average test accuracy among the five folds. The figure shows that it was
possible to decrease the input size from 28 × 50 × 1 to 26 × 47 × 1 or to 28 × 40 × 1 and achieve an
increase in the classification accuracy from 90.70% to 91.98% and 90.88%, respectively. Decreasing
the input size of the model resulted in a drop in the trainable parameters from 25,862 to 23,046
and 20,230 parameters, respectively, for the aforementioned models. This decrease in the number
of parameters would also induce a decrease of the number of Floating Point Operations (FLOPs),
as shown in Figure 7; the average ratio of the decrease in the number of parameters with respect
to the decrease in the number of FLOPs was 1/44 i.e., with each decrease in number of parameters,
there was a 44 times decrease of the FLOPs. The number of FLOPS in Figure 7 corresponds to the
convolutional layers only, where most of the FLOPs were, and these FLOPs were calculated according
to the following formula [24]: FLOPs = n × m × k, where n is the number of kernels, k is the size of
the kernel (width × height × depth), and m the size of output feature map (width × height), while the
depth in the kernel size corresponds to the depth of the input feature map.
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Figure 7. Comparison of the performance, number of trainable parameters, and FLOPS in the
convolutional layers.

4. Embedded Hardware Implementations

The models obtained from MATLAB were converted to Open Neural Network Exchange (ONNX)
format [25]. ONNX provides an open source format for AI models, both deep learning and traditional
ML, which enables the inter-operability between different frameworks. Figure 8 shows how the
CNN model was converted into different formats for different hardware platforms. Figure 7 shows
the number of trainable parameters and the corresponding accuracy for each model. It is clearly
shown that all models preserved comparable accuracy, but the best were the first three, i.e., Model 1,
Model 2, and Model 3. However, since Model 2 and Model 3 demonstrated a reduced number of
training parameters and accordingly a reduced number of operations (FLOPS), they were selected for
the hardware implementation. This choice was based on the fact that reducing FLOPS reduced the
inference time and power consumption.

Figure 8. Implementation flow.
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The reason behind the selection of hardware platforms was as follows:

1. The custom architecture targeting the embedded implementation of neural networks, e.g.,
Movidius NCS2.

2. The high usability of ARM processors in embedded architectures, e.g., Raspberry Pi 4.
3. The high performance architecture, designed for parallel processing in general, and also optimized

for embedded applications: e.g., NVidia Jetson TX2.
4. The support for the execution of pretrained neural network models coming from different

platforms without retraining.

4.1. Movidius Neural Compute Stick 2

Movidius Neural Compute Stick 2 (NCS2) is a hardware accelerator designed by Intel for
on-chip neural network inference, especially CNNs, equipped with the Intel Movidius MyriadX
Vision Processing Unit (VPU). It contains 16 SHAVE (Streaming Hybrid Architecture Vector Engine)
cores [26] and a dedicated hardware neural network accelerator. It requires a host to flash the neural
network, as well as to feed it with data and invoke the inference to get the results back via the USB 3.0
port. The host can be a Linux, Windows, or Mac based machine. To achieve these tasks, Intel provides
OpenVINO: Open Visual Inference and Neural network Optimization Toolkit, a cross platform toolkit
that enables deep learning inference and easy heterogeneous execution across multiple Intel® hardware
(VPU, GPU, CPU, FPGA). The optimizations offered by OpenVINO are: batch normalization and scale
shift, linear operation merge and linear operation fusion. The details were mentioned in [27].

4.2. Jetson TX2

NVidia’s Jetson TX2 [28] is a power efficient embedded AI computing device, designed mainly
for edge AI, and belongs to the Pascal™ family of GPUs, loaded with 8 GB of memory, 59.7 GB/s
of memory bandwidth, and 8 GB of RAM. In this experiment, we used TensorFlow (TF) [29] for
the inference, as well as NVidia TensorRT [30] under Ubuntu OS. TF is an open source end-to-end
machine learning platform, while TensorRT is a platform for high performance deep learning inference
dedicated to NVidia hardware. It includes a deep learning inference optimizer and a runtime that
delivers low latency and high throughput for deep learning inference applications.

As an optimization for TensorFlow, TensorFlow Lite (TFLite) [31] is an open source deep learning
framework for on device inference. The same TensorFlow model can be converted into the TFLite
model. To perform an inference with a TFLite model, the TFLite interpreter is required, which
uses a static graph ordering and a custom (less dynamic) memory allocator to ensure minimal load,
initialization, and execution latency [31], also reducing the weights’ precision, e.g., floating point vs.
fixed point precision, without affecting the accuracy.

4.3. ARM

As for the implementation on the ARM architecture, we used Raspberry Pi 4, equipped with a
Quad core Cortex-A72 (ARM v8) 64-bit System on Chip (SoC) @ 1.5 GHz and 4 GB RAM. For the
inference on this hardware, we used the TFLite runtime library, under the Ubuntu OS.

For all the mentioned platforms, both power consumption and inference time were calculated.
The inference time was calculated by averaging 110 inferences, which corresponded to the test set size.
As for the power consumption, two methods were used:

1. the provided APIs in Jetson TX2, which provided readings about voltage, power, and input
current to the GPU.

2. the external USB multimeter, connected in serial to the power source for both Raspberry Pi and
the Movidius NCS2.
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5. Results and Discussion

In this work, we achieved a better accuracy in tactile data classification using CNN compared
to the original model obtained in [5], even by resizing the input, therefore decreasing the number of
trainable parameters. The chosen models reduced the number of trainable parameters by a maximum
of 21.77% of the original trainable parameters and also increased the accuracy by a maximum of 1.28%,
noting that Model 5 (24 × 32 × 1) with 0.8% less accuracy than the original model had 42% fewer
trainable parameters. Choosing the right model depended on the implementation, i.e., a trade-off
between accuracy and hardware complexity should take place: if the best accuracy was targeted, then
Model 2 should be selected; while the choice of Model 3 would be when less hardware complexity was
needed, accepting a small accuracy degradation. Reducing the input size while still keeping the same
or even better accuracy could be explained in three points:

1. The random initialization of the weights may lead in different runs to different accuracy results,
e.g., 10 different runs for training Fold 4 of Model 2 with the same hyperparameters gave different
results, as shown in Table 2, which shows an average of 94.36% and a standard deviation of 1.904%.

2. Random selection of batch data and data shuffling would affect also the update of the weights
and make them different from one training to another.

3. The feature extraction process achieved by CNN was error resilient [32]. A CNN could still extract
features even with some manipulation of the input image. This was one of the reasons for data
augmentation [33] when training neural networks, which was to let the neural network learn the
features even from augmented images (scaled, rotated, flipped, etc.), instead of learning only the
samples in the original dataset. In our case, the features were still detectable even after image
resizing, as shown in Figure 5.

Table 2. Accuracy results for 10 runs on Model 2, Fold 4.

Trials Accuracy (%)

1 96.36
2 92.73
3 94.55
4 91.82
5 97.27
6 93.64
7 92.73
8 95.45
9 96.36

10 92.73
Average ± Stdev 94.36 ± 1.904%

According to Tables 3 and 4, the smallest power consumption and inference time were obtained
using TensorRT under Jetson TX2, which was 153 mW dynamic power within 5.29 ms as the inference
time, implying 0.809 × 10 −3 Joules of dynamic energy (see Table 5). The most dynamic energy
consumption was for the Intel Movidius NCS2, 1.9 ms × 800 mW = 1.52 × 10 −3 Joules. Regarding
the power consumption, since the neural network used was small compared to the hardware capacity,
the power consumption was almost the same for the three models, noting that the accuracy on the
USB power meter was on the 10 mW scale, so that a difference of less than 10 mW between two
measurements could not be detected using this instrument.
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Table 3. Comparison of the inference time between models.

Platform Inference Time (ms)

Hardware Software Model 1 Model 2 Model 3

Jetson TX2 TensorRT 5.5597 5.2905 5.919
TF 6.2943 5.4691 5.946

TFLite 1.3384 1.2181 1.2445
Core i7 MATLAB 3.245 2.6139 2.4715

Movidius NCS2 OpenVINO 1.9 1.9 1.86
Raspberry Pi4 TFLite 1.615 1.473 1.21

Table 4. Power consumption.

Platform Current (mA) Voltage (V) Consumed Power (mW)

Hardware Software Static Total Static Total Dynamic

Jetson TensorRT 8 16 19.072 152 305 153
TF 8 16 19.072 152 305 153

Movidius NCS2 OpenVINO - 160 5 - 800 800
Raspberry Pi4 TFLite 560 700 5 2800 3500 700

Table 5. Energy consumption.

Platform Energy Consumption (μJ)

Hardware Software Model 1 Model 2 Model 3

Jetson TX2 TensorRT 850.6341 809.4465 905.607
TF 963.0279 836.7723 909.738

Movidius NCS2 Open VINO 1520 1520 1488
Raspberry Pi4 TFLite 1130.5 1031.1 847

6. Conclusions

This paper presented the implementation of a smart tactile sensing system based on an embedded
CNN approach. The proposed model optimized a state-of-the-art model proposed in [5] by reducing
the input data size. The experimental results were comparable in terms of accuracy after reducing
the size from (28 × 50) to (26 × 47) and (28 × 40). The hardware implementation on different
hardware platforms, namely Movidius NCS2, NVidia’s Jetson TX2, and Cortex-A72 (ARM v8), was
provided. The proposed models showed better performance on hardware platforms when time
inference was compared. Power consumption was also measured and compared among different
platforms. Targeting portable tactile sensing systems, the proposed work demonstrated the feasibility
of integrating machine learning methods on a hardware platform to enable intelligence for such
a system. This may pave the way for smart tactile sensing systems to be applied in prosthetics
and robotics.
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Abbreviations

The following abbreviations are used in this manuscript:

CNN Convolutional Neural Network
DCNN Deep Convolutional Neural Network
SVM Support Vector Machine
ML Machine Learning
FPGA Field-Pogrammable Gate Array
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Abstract: Ever since the development of digital devices, the recognition of human gestures has
played an important role in many Human-Computer interface applications. Various wearable
devices have been developed, and inertial sensors, magnetic sensors, gyro sensors, electromyography,
force-sensitive resistors, and other types of sensors have been used to identify gestures. However,
there are different drawbacks for each sensor, which affect the detection of gestures. In this paper,
we present a new gesture recognition method using a Flexible Epidermal Tactile Sensor based on strain
gauges to sense deformation. Such deformations are transduced to electric signals. By measuring the
electric signals, the sensor can estimate the degree of deformation, including compression, tension,
and twist, caused by movements of the wrist. The proposed sensor array was demonstrated to be
capable of analyzing the eight motions of the wrist, and showed robustness, stability, and repeatability
throughout a range of experiments aimed at testing the sensor array. We compared the performance
of the prototype device with those of previous studies, under the same experimental conditions.
The result shows our recognition method significantly outperformed existing methods.

Keywords: gesture recognition; flexible epidermal tactile sensor array; wearable device; wearable sensors

1. Introduction

Ever since the development of digital devices, the recognition of human gestures has played
an important role in many Human-Computer interface (HCI) applications, permitting interaction
in a natural and comfortable way [1–4]. Hand gesture recognition has the advantage of being
applicable to a range of applications, such as handling presentations, controlling drones, and more [5].
A universal remote-control system using hand gestures is presented in [6]. Hand gesture recognition is
achieved using two main kinds of sensors: contact sensors and non-contact sensors. The non-contact
methods are primarily based on visual technologies such as camera sensors, Kinect, and Leap Motion
controller (LMC), which do not require attaching the sensors to the human body, as reported by
various studies [7–13]. Contact methods identify gestures by analyzing the signal acquired from
contact sensors, which are wrapped around the user’s arm or wrist, or are attached to a glove that
the user wears [14–16]. They have a wider recognition range than the non-contact methods, without
constraints such as limited range and the sight of sensors, and relatively accurate information can be
acquired due to the direct contact with the user. For this reason, various wearable devices have been
developed, and inertial sensor, magnetic sensor, gyro sensor, electromyography (EMG), force-sensitive
resistors (FSRs), and others have been used to identify gestures. In particular, the EMG sensor has
been used in many studies on gesture recognition [17–19]. Many researchers used EMG sensors for
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recognizing the intention of an operator [17,20–22]. Recently, to control digital devices, Thalmic Labs
Co. developed an EMG-based gesture recognition device, which is referred to as Myo [5]. The device
was designed as an armband bracelet to measure EMG signals from the forearm muscles. EMG-based
methods have become more important in the practical application of surface electromyography [22].
The main challenges of EMG-based methods are the weak signal intensity with noise [23]. Generally,
the amplitude range is 0–105 mV and the bandwidth is 0.5–2 kHz, so it is easily interfered in by the
external noise and the acquisition device itself [22,24].

Another gesture recognition approach is the use of FSRs. FSRs sensors detect muscle activity
by measuring and monitoring changes in resistance generated by movements of the muscles [25,26].
Since the muscle contraction occurs the longitudinal elongation and the expansion of its cross-sectional
area, it is possible to detect the muscular activity by monitoring the swelling of muscles by FSRs
sensor [24]. FSRs sensor is robust to noise compared to the other bio signal measurements, but the output
voltage of FSRs sensors is nonlinear due to relationship between output voltage and resistance [25].
In addition, since FSRs sensor is a thin film, and thus an input device with FSRs sensor should become
rigid, which causes discomfort in wearing [24].

Mechanomyography (MMG) can also be used to detect muscular activities. Muscular activity
is identified by mechanical vibration, which is generated by the tremor of each muscle fiber [24].
MMG-based methods commonly use an accelerometer [27,28] and a microphone [29,30]. However,
MMG based on an accelerometer can only be used when the magnitude of acceleration is distinguishable
compared to acceleration due to gravity and motion. MMG based on a sound transducer is reliable
only in a silent space [24].

These sensors have been shown to be successful in many studies over the past two decades.
However, there are still different drawbacks for each sensor, which affect the detection of gestures.
To overcome these problems and accurately recognize gestures, we developed a novel gesture
recognition method using a Flexible Epidermal Tactile Sensor Array (FETSA) based on strain gauges to
sense deformations. Such deformations are transduced to electric signals. By measuring the electric
signals, the sensor array can estimate the degree of deformations, including compression, tension, and
twist caused by movements of the wrist. The principle of FETSA is similar to that of MMG sensors and
FSR sensors, but its flexibility provides enhanced usability in terms of wearing the sensor. The sensor
guarantees linearity, in contrast with FSRs sensors. To test the performance of the sensor, we fabricated
a prototype clip-type device, and conducted comparison tests using the porotype device. We compared
the sensor with a commercial EMG sensor and an FSRs sensor, which are commonly used in gesture
recognition studies. Furthermore, we compared the porotype device with previous studies, under the
same experimental conditions. We conducted additional experiments using gestures defined in this
research. The resulting recognition method significantly outperformed existing methods.

2. Principle of Flexible Epidermal Tactile Sensor Array

When a gesture occurs, the length and thickness of the muscles around the wrist change during
concentric contraction and eccentric contraction, changes which are classified as dynamic contraction.
For concentric contraction, related muscles shorten and thicken while muscular force is generated.
In eccentric contraction the muscles involved lengthen and become thinner. Isometric contraction
corresponds to static contraction; there is no change in the muscle length, although the muscles generate
force. Isometric contraction occurs when maintaining a posture or holding an object. Therefore,
in order to detect hand movements when gestures occur, we must measure the changes in muscles,
whether concentric contraction or eccentric contraction. However, because the EMG sensor measures
all three types of contractions, devices based on the EMG sensor require additional signal processing to
distinguish isometric contraction from the other two contractions of interest. To unambiguously detect
concentric contraction and eccentric contraction, we developed a Flexible Epidermal Tactile Sensor
Array to measure the movement of muscles in a reliable and convenient way. The proposed sensor is
shown in Figure 1a.
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Figure 1. Flexible Epidermal Tactile Sensor Array (FETSA). (a) Design of the FETSA. (b) Fabricated sensor.

In sensor design, the number and location of sensors are important in order to recognize gestures.
The initial model was fabricated with 16-channel sensors, so that it could wrap around the whole
of a wrist [31]. Based on preliminary experiments, the final model has four sensors. To detect the
movement of wrist muscles, sensors are positioned over the muscles responsible for wrist movements.
The device was designed using flexible polyimide, so that it could be worn on the wrist to improve its
fit to the user’s body surface. Strain gauges are located on the flexible substrate. Figure 1b shows the
fabricated sensor array. Depending on the movement of the wrist, the analog resistance value of the
flexible array sensor is processed using a circuit and converted into a digital value. This value is then
used for gesture recognition.

Figure 2b shows the gesture recognition device based on FETSA. It was designed as a clip so that
it could be worn with a smart watch. The data acquisition board includes a serial communication unit,
through which the sensor signal is recorded. The baud rate is set to 115200 for real-time processing.
Sixty data units per second are acquired through the device. The four sensors of the device detect the
activities of muscles responsible for the movement of the wrist as shown in Figure 2a. Channel 1 is
located on the abductor pollicis longus muscle, which deals with the up and down movement of the
thumb. A sensor is located on each of the muscles responsible for the movement of the wrist.

Figure 2. (a) Location of sensors. (b) How to wear the device.

As discussed above, concentric and eccentric contraction in muscles under the wrist occur when
people make hand gestures. When the fist is twisted down, as shown in Figure 3, eccentric contraction
occurs at the extensor pollicis brevis muscle. This contraction influences the strain gauge of the sensor
located on the muscle. Force generated from the muscle is transmitted to the sensor, raising the
resistance value due to the expansion of the sensor. In contrast, when the fist is twisted up, concentric
contraction occurs in the muscle, decreasing the resistance value of the sensor. The proposed sensor
detects the activities of muscles under the wrist by measuring these deformations of the sensor to
detect gestures.
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Figure 3. Change of a strain gauge and resistance caused by the movement of a wrist.

3. Gesture Recognition with FETSA

In this section, we explain how the device recognizes gestures. First, we investigated the changes
in the signals from each of the sensors according to the movement of the wrist, since the muscles may
influence the deformation of adjacent sensors simultaneously. There are eight motions which can be
made with wrist and fingers (Figure 4).

Figure 4. Eight motions of the wrist and fingers: (a,b) radial and ulnar deviation of the wrist;
(c,d) extension and flexion of the wrist; (e,f) extension and flexion of fingers; (g,h) supination and
pronation of the wrist.

Since each muscle is theoretically concerned with different motions, each sensor of the device
detects different signals according to the motions. We investigated the changes in the signals when a
subject made different motions. The subjects started with a light motion by relaxing the hands before
making the eight motions shown in Figure 4.

Figure 5 shows the change in each signal when the eight motions shown in Figure 4 occurred.
The changes in the signals acquired from the four channels were different in each motion. For instance,
in motion (a) and motion (b), the signals acquired from channel 4 and channel 1 are similar, but the
signals are different in channel 2 and channel 3 (Figure 5a,b). The proposed method can distinguish
the eight motions using the differences in signals, an observation which verifies that the hand gestures
can be recognized.
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Figure 5. Changes in each of the signals (a–h) produced during the eight motions shown in Figure 4.
The shaded areas indicate when each movement was made.

The entire process of gesture recognition using the proposed device is shown in Figure 6.
The process consists of preprocessing, feature extraction, and classification. The steps are explained in
detail as follows.

Figure 6. Overview of the process of gesture recognition method using the proposed device.

3.1. Preprocessing

While recording bio-signals, mixed signals sometimes occur due to the presence of noise.
For example, noise can be recorded from the heartbeat reflected in the artery under the wrist,
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and interpreted as a movement of the wrist. Such noise leads to the degradation of the quality of
the signal, and must therefore be removed. As apparent in Figure 7a, a recording of a stable signal
is periodically deformed by heartbeats. As this deformation can cause reduction in the accuracy
of gesture recognition, we used a median filter to remove this noise. This approach is effective in
removing impulse noises while preserving the important properties of the signal. Figure 7b shows the
results after the noise is removed.

Figure 7. (a) Signal noise caused by heartbeat. (b) Results after the preprocessing.

3.2. Feature Extraction

Since signals acquired from the sensors differ according to the motion, as shown in Figure 5,
we extract uncomplicated time series features to distinguish between gestures. Based on the results of
the investigation, we selected two features which reflect the change and power of the signal.

The difference absolute mean value (DAMV) feature vector measures signal change equal to the
average absolute difference of two sequential values as follows:

DAMV =

N−1∑
i=1

∣∣∣X(i) −X((i + 1))
∣∣∣

N − 1
(1)

The mean absolute value (MAV) is a measure of signal power which is equal to the average
absolute value of the signal as follows:

MAV =

N∑
i=1

∣∣∣X(i)
∣∣∣

N
(2)

3.3. Classification

We used an algorithm based on support vector machines (SVMs), which are well known to be the
algorithm with the best generalization among machine algorithms. SVM is a supervised learning model
widely used in classification and regression analysis. SVM maps features onto higher dimensions using
a kernel function, and distinguishes them according to class, using hyperplanes. An appropriate SVM
kernel must be selected to determine the decision boundaries between the different classes. We selected
a radial basis function (RBF) kernel for non-linear classification [32].

k(xi, xj) = exp(−γ
∥∥∥xi − xj

∥∥∥ 2
), γ > 0 (3)

Here, γ is a kernel parameter which indicates the influence of squared Euclidean distance. We used
the LIBSVM library, one of the most-used SVM libraries [32]. The two features mentioned in Section 4.2
were used as input. A classifier classifies inputs using a trained model generated by the training process.

In training, the variation of the signal is high when making a gesture, so it is presumed that
the gesture is changed when the DAMV feature falls within the red circle, as shown in Figure 8.
An SVM was trained using the MAV and DAMV features by monitoring the changes of signals. In each
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experiment, we acquired training data from each subject making each gesture for five seconds before
the experiments began. To train the machine, we used five seconds of training data for each gesture
from each subject. To investigate the optimal kernel parameter, we used several different pairs (C, γ)
when the machine was trained, and selected an optimal parameter set empirically. In practice, there are
limitations of a training process such as this in training the machine, but it guarantees certain training
for specific subjects.

Since the period of feature extraction was about 30 Hz, the classifier was run using the trained
model in real-time at 30 Hz. We asked subjects to make a gesture and produced a classification by
confirming the concurrence of a classification result and the gesture the subject made.

Figure 8. Example of extracted DAMV features. The circled area indicates when the subject made
a gesture.

4. Experiments

In order to verify the performance of our proposed method, we conducted a comparison test
between the proposed sensor, a commercial EMG sensor, and an FSRs sensor. We compared the
accuracy of the proposed method with a commercial gesture recognition device and the results of
previous research. To produce an objective comparison, we used the same experimental conditions,
including the number of repetitions, gestures, and other factors, as used in previous studies. Lastly,
we conducted an experiment using the gestures described above.

4.1. Comparison with EMG Sensor

The FETSA sensor was compared with an EMG sensor, which is the most intuitive and widely-used
method for measuring muscle activity. A certified commercial EMG sensor, MyoWare Muscle Sensor of
Advancer Technologies, was used. The sensor was attached above the extensor pollicis brevis muscle,
which is responsible for the movement of the thumb, to detect the activities of the muscle. The FETSA
sensor corresponds with channel 2 in Figure 4a. The sensor signals were recorded when the subject
remained motionless and when the subject produced a “thumbs-up” motion.

Figure 9 shows the results of the comparison. In Figure 9a, signals were acquired when the subject
remained motionless with the sensors attached, and in Figure 9b, signals were acquired while the
subject produced the “thumbs-up” motion. As shown in Figure 9, the signal acquired from the FETSA
was relatively uniform when the subject took no motion or made the “thumbs-up” motion. In contrast,
in the EMG sensor, the signal had greater fluidity, even when the subject made no motion (Figure 9a).
When the subject made the “thumbs-up” motion, the fluctuation in the signal was large, as it was
affected by noise, and also static and dynamic contraction (Figure 9b). To analyze these results, the
average and standard deviation of the signals were calculated. When the subjects made no motion, the
average of the signal from FETSA was 970.08 and the standard deviation was 0.87, while the average
of the signal from EMG was 68.90, with a standard deviation of 39.8. The average of the signal from
FETSA was 995.18, and the standard deviation was 1.56. In contrast, the average of the signal from
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EMG was 67.47, and the standard deviation was 67.46. These results indicate that the FETSA sensor is
more robust to noise and more stable than the EMG sensor.

Figure 9. Comparison of the results using FETSA and EMG. (a) When the subject remained motionless.
(b) When the subject produced the “thumbs-up” motion.

4.2. Comparison with the FSR Sensor

Although the robustness against noise of the FETSA sensor was demonstrated in Section 4.1 in
comparison with the EMG sensor, it remained to be investigated whether FETSA can recognize gestures
effectively. Therefore, we compared FETSA with the FSRs sensor, one of the most widely-used sensors
for gesture recognition. A commercial FSRs sensor, RA18-DIY of Marveldex, was used. We attached
the sensor over the same muscle that was used for the EMG and FETSA sensors in the previous section.

As shown in Figure 10, since the FSRs sensor is robust to electric noise, it acquired a more stable
signal than the EMG sensor. When the subject was motionless, the average of the signal from the FETSA
was 969.57, and standard deviation was 0.76. In case of FSRs, the average and standard deviation of
the signal were 0.74 and 0.6 respectively. When the subject made the “thumbs-up” motion, the average
of the signal from FETSA was 994.05, and the standard deviation was 1.26. In the case of the FSRs, the
average and standard deviation of the signal were 2.98 and 1.01 respectively. Comparing both (a) and
(b), the standard deviation of signals acquired from FETSA and FSRs sensors were similar, with a small
fluctuation of 0.1–0.2. However, the sensors showed a difference in mean difference values. In the
case of FETSA, the mean difference value was 26.48 between when the subject made the “thumbs-up”
motion and when the subject remained motionless. In the FSRs, the mean difference value was 2.24. It
is difficult to distinguish between the two conditions based on the signal from the FSR sensor, because
the mean difference is low, with high standard deviation. However, it is easier to differentiate between
the two conditions from the FETSA signals, which have a larger mean difference. The reason why the
FSRs sensor does not have a high mean difference is that the signal does not increase when raising
the thumb, due to the non-linearity of the FSRs sensor. Overall, these results indicate that the FETSA
sensor is more effective than the FSRs sensor.
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Figure 10. Comparison of the results using FETSA and FSRs: (a) the subject remained motionless,
(b) the subjects made the “thumbs-up” motion.

4.3. Repeatability

Good repeatability is crucial for sensors, so we conducted an experiment to verify the repeatability
of FETSA. A subject wearing the device was asked to clench and open his fist 10 times in a row.

Every channel of the sensor array was used in the repeatability test, and the results are shown in
Figure 11. The same signal pattern was observed for each trial. To quantitative the results, the peak
values of signals from the four channels were measured, and their averages and standard deviations
were calculated. The average of the peak value was 1040.27 in channel 1, and the standard deviation
was 0.93. The average of all channels was 998.94 and the standard deviation was 0.81. The standard
deviations were very small compared to the average of peak values, indicating FETSA’s ability to
accurately measure repeated muscle activity.

Figure 11. Results of repeatability tests.
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4.4. Comparison with Contact Gesture Recognition Study

Pyeong-Gook Jung et al. [24] introduced a new method to detect muscular activity using
air-pressure sensors. This approach overcomes the drawbacks of EMG and MMG sensors in detecting
muscle activity and recognition of hand gestures. These researchers detected muscular activity by
measuring the change in air pressure at air-pressure sensors contacted with the muscle of interest.
They used fuzzy logic to determine gestures from the role of the muscles in each gesture.

To compare the performance of FETSA with that of the previous study, we used the six gestures
defined in Jung’s research (Figure 12). The test conditions were made as similar as possible, to ensure
valid comparisons (Table 1).

Figure 12. The six gestures that were defined in Jung’s research.

Table 1. Comparison results for each subject.

Gesture A B C D E F

Success(Proposed)/Success(previous)/Trial
Subject A 30/30/30 30/30/30 30/29/30 30/29/30 30/28/30 30/30/30
Subject B 18/18/18 19/19/20 22/21/22 16/15/16 20/18/20 15/15/15
Subject C 18/17/18 15/14/15 15/15/15 15/14/15 15/15/15 15/16/17
Subject D 20/19/20 14/13/14 16/16/16 18/16/18 20/18/20 15/14/15
Subject E 17/16/17 15/16/17 18/17/18 20/18/20 15/14/15 15/14/15
Subject F 18/18/18 15/15/15 16/16/16 16/15/16 17/16/18 20/18/20
Total (%) 100/97.5/100 97.3/96.4/100 100/97.4/100 100/93.0/100 99.1/92.3/100 98.2/95.5/100

The average accuracy of FETSA was 99.1% while the average accuracy of the previous study
was 95.35% [24]. FETSA was therefore more effective at determining the same gestures than the
previous study.

4.5. Comparison with a Commercial Gesture Recognition Device

Myo, which is developed by Thalmic Labs Co., is a commercial gesture recognition device [5].
It measures EMG signals from sensors worn on the user’s arm to control other digital devices.
Myo provides five gestures (Figure 13).

Figure 13. The five gestures provided by Myo.
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We asked subjects to make the gestures while wearing the proposed device and Myo, and compared
the accuracy of gesture recognition from the two devices. The subjects participating in the test were
four men and four women. The results are presented in Table 2.

Table 2. Results of comparison tests between the proposed device and myo.

Gesture Myo (Error Rate) Proposed Device (Error Rate)

Motion 1 22.5 2.5
Motion 2 6.25 5
Motion 3 33.75 5
Motion 4 15 5
Motion 5 10 3.75
Total (%) 17.5 4.25

The average error rate of Myo was 17.5%. In contrast, the average error rate of FETSA was 4.25%.
Myo recognized motion 3 as motion 2, and failed to recognize motion 1, resulting in a considerable
increase in the average error rate. However, FETSA had a low average error rate and recognized the
five gestures more accurately than Myo.

4.6. Hand Gesture Recognition with an FETSA Sensor

We performed a recognition experiment using the gestures defined in this research. The six hand
gestures are shown in Figure 14: pinch of the finger ((1) in the Figure); flexion and extension of the
fingers ((2) and (3)); flexion and extension of the wrist ((4) and (5)); extension of a thumb from a fist (6).

Figure 14. The six gestures defined in this research.

The eight subjects participating in this experiment were six men and two women. Before the
experiment began, data from the subjects was used to train the SVM to recognize the gestures for five
seconds. Each experiment was conducted 30 times per gesture, and the researcher randomly selected
each gesture. The subjects made a gesture according to the researcher’s instructions. The gesture
recognition tests were repeated 1440 times. The results for the eight subjects are shown in Table 3.
The average success rate for gesture recognition was 97.8%, and the number of misclassifications was
very low at 2.2%.

43



Micromachines 2019, 10, 692

Table 3. Comparison results for all subjects.

Gesture 1 2 3 4 5 6 Total (%)

1 234 0 0 2 0 2 98.3
2 0 235 1 0 3 2 97.5
3 0 0 239 1 1 0 99.2
4 1 2 0 234 1 1 97.9
5 0 3 0 2 232 0 97.9
6 5 0 0 1 3 235 96.3

Total (%) 97.5 97.9 99.5 97.5 96.6 97.9 97.8

5. Discussion and Conclusions

In this study, we developed a new gesture recognition method using FETSA, based on strain
gauges to sense deformations. The sensor array was designed to overcome the drawbacks of other
sensors and accurately recognize gestures. We fabricated a prototype clip-type device, providing
enhanced usability in terms of wearing the sensor. Preprocessing algorithms were developed to remove
noise from the acquired electrical signals. DAMV and MAV features were extracted from the signals,
and gestures were recognized by an SVM, using the extracted features. The sensor array was shown
to be able to analyze the eight motions of the wrist. We compared the performance of the sensor
with those of a commercial EMG sensor and an FSRs sensor, which are commonly used in gesture
recognition studies, under the same experimental conditions. We conducted additional experiments
using the gestures defined in this research. As seen in the results, the proposed recognition method
performed extremely well when compared with existing methods. However, it is difficult to directly
compare our results with those of many other studies, due to the very different conditions involved,
such as different types of gestures and different numbers of gestures.

Table 4 shows the results of previous gesture recognition studies which used a wide variety of
techniques. Most recognition systems obtained accuracies of 80–90%, with an average accuracy of
90.93%. The results of this study, which produced 97–99% accuracy over the three experiments indicate
that the proposed device is superior to those used in previous studies (Table 2). In future research we
plan to study methods using both the movement and the location of a hand, combining the FETSA
sensor with the IMU sensor.

Table 4. Results from previous studies on gesture recognition studies.

Sensor Application Algorithm Accuracy

EMG & FSR [4] Wrist SVM 96%
EMG [33] Finger LDA 92%

Gyro sensor [1] Hand, finger - 98%

infrared sensor [34] Wrist Otsu’s
threshold 99%

OMTS [35] Wrist SVM 93%
EMG+IMU [36] Wrist LDA 96%

EMG+Inertial sensor [15] Wrist HMM 97.8%
EIT [37] Wrist SVM 90%

gyro sensor [38] Wrist - 96%
FSR [26] Wrist SVM 80%
EMG [2] Wrist HMM 89.60%
EMG [39] Leg LDA 90%

Flexible msg [40] Glove K-NN 93%
Gyro [41] Hand HMM 89%
EMG [18] Brachial muscle Fuzzy 92%
EMG [20] Hand, Finger HMM 90.5%
EMG [42] Wrist SVM 86%
MMG [43] Forearm LDA 89%
EMG [44] Forearm, Finger SVM 83%
EMG [45] Finger LDA 90%
MMG [28] Brachial muscle QDA 79.66%
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Abstract: Direct interface circuits are a simple, inexpensive alternative for the digital conversion of a
sensor reading, and in some of these circuits only passive calibration elements are required in order
to carry out this conversion. In the case of resistive sensors, the most accurate methods of calibration,
namely two-point calibration method (TPCM) and fast calibration methods I and II (FCMs I and
II), require two calibration resistors to estimate the value of a sensor. However, although FCMs I
and II considerably reduce the time necessary to estimate the value of the sensor, this may still be
excessive in certain applications, such as when making repetitive readings of a sensor or readings of a
large series of sensors. For these situations, this paper proposes a series of calibration methods that
decrease the mean estimation time. Some of the proposed methods (quasi single-point calibration
methods) are based on the TPCM, while others (fast quasi single-point calibration methods) make the
most of the advantages of FCM. In general, the proposed methods significantly reduce estimation
times in exchange for a small increase in errors. To validate the proposal, a circuit with a Xilinx
XC3S50AN-4TQG144C FPGA has been designed and resistors in the range (267.56 Ω, 7464.5 Ω) have
been measured. For 20 repetitive measurements, the proposed methods achieve time reductions of
up to 61% with a relative error increase of only 0.1%.

Keywords: direct interface circuits; calibration methods; error analysis; resistive tactile sensor;
time-based measurement

1. Introduction

Sensors interfacing with digital devices may be one of the most popular topics in electronics today.
We can find a multitude of very different applications where this type of circuit plays a fundamental
role, such as checking on patients [1], soil pore-water salinity sensors [2], monitoring composting
processes [3], or specially piezoresistive tactile sensors [4]. Direct interface circuits (DICs) [5] are a
series of circuits based on methods that use a small number of additional components to make the
connection between a sensor and a programmable digital device (PDD). There are DICs for resistive
sensors [6–14], capacitive [15–17] or inductive [18–22] sensors, and even DICs built to measure any of
them [23].

In some cases, the DICs use, together with the sensor, only additional passive components. In other
cases, the additional components may be a transistor or even a logic gate. Another important difference
between the various types of DICs is the use of analogue elements that may be included in the PDDs.
For example, we currently find microprocessors that can include analogue-to-digital converters (ADCs)
or analogue comparators. With performances being equal, DICs that do not require additional active
components or analogue elements within the PDDs will obviously be preferred. This type of DICs
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usually performs a time-to-digital conversion in the PDD in order to obtain the value of the physical
magnitude to be measured and will be used in this paper for the specific case of resistive sensors.
Using a DIC can result in a reduction in costs, complexity, and power consumption in the measurement
chain compared to the use of a traditional scheme with ADCs and signal conditioning circuits.

DIC parameters such as uncertainties, effective numbers of bits, calibrations, resolution, or
response to dynamic signals have already been well explored and analyzed [9,22,24–28]. However,
the time needed to perform the conversion has received little attention when this parameter is in fact
one of the most important characteristics for sensors, given the need for data acquisition speeds. This is
crucial in the case of DICs for resistive sensors based on time-to-digital conversion since the sensor’s
resistance value range can be very broad, meaning an extensive time range is necessary for conversion.
Furthermore, in order to improve accuracy in estimating the resistance value of the sensor, R, it is
necessary to carry out additional readings of certain calibration resistors, therefore increasing the
total time necessary to obtain R. This problem is increased when reading groups or arrays of resistive
sensors, as usually happens in applications with tactile sensors or electronic skins.

The aim of the calibration resistors is to eliminate the influence that different parameters have on
accuracy in estimating R. Apart from the internal resistance of the buffers of the pins of the PDDs, Ro,
other factors that introduce errors in the measurement are the variability in: the capacitance used in
the estimation process, C, the value in the supply voltage, VDD, and the threshold voltage of the pins of
the PDDs, Vf. All these possible sources of error can be compensated thanks to calibration resistors.
Another possible source of error would be the self-heating of the resistors. However, this phenomenon
can be neglected in DICs, since the current does not pass through the resistors continuously and its
value is low due to the high resistance normally shown by resistive sensors.

Since calibration resistors must also increase their value in line with the increase in the maximum
resistance value to be measured [26], the total time needed to estimate R, TE(R), can result in a high
value. If the resistance value of a sensor is only to be measured sporadically, this problem may not
be particularly important. However, if repetitive measurements are to be made for a single sensor or
information can be obtained for different sensors (or even if these two situations occur simultaneously),
then TE(R) becomes a fundamental parameter that can considerably slow down an application, or, in
certain cases, even prevent the use of DICs. Finding a method to reduce TE(R) can be crucial in some
practical applications, such as tactile sensors, where the number of resistive sensors to be read can
be very high and, moreover, a high reading frequency of the sensors is required in order to calculate
characteristics such as grips or slippages [29,30].

This paper presents a method for estimating R which allows TE(R) to be reduced without the need
for additional hardware while maintaining adequate accuracy in the measurement, making it possible
to use DICs in applications such as those indicated above.

The structure of the paper is as follows. In Section 2 different calibrations methods are evaluated
regarding accuracy and time needed to estimate R. Section 3 presents two new calibration methods to
increase the speed of a DIC. In Section 4, experimental results and discussion about these new methods
are performed. Finally, Section 5 presents the main conclusions.

2. Evaluating R Estimation Time in Classical Calibration Methods

There are three classic calibration methods for a DIC, differing in the number of calibration
resistors and how these resistors are used to discharge the capacitor. The circuits used in each of the
methods are shown in Figure 1. Figure 1a shows the circuit for the single-point calibration method
(SPCM). In this circuit, a capacitor is first charged to VDD through the Pp pin of the PDD (resistor
Rp is optional and only necessary if the current through the pin needs to be limited, although in the
literature we can also find that this resistor can reduce the influence of the power-supply noise [31]).
After charging, a discharge is made either through R or through a calibration resistor, Rc0. This is
done by configuring the pin connected to the resistor that discharges as a logic 0 output, while the
pin of the other resistor is configured as a high-impedance output. This way of proceeding in the
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discharge of a resistor will be called the normal discharge procedure. The discharge ends when the Pp
pin (configured as the high-impedance input during discharge) detects a change to the logic 0 input.
The capacitor is then re-charged and finally discharged again through the other resistor until a new
logic 0 input is detected.

Figure 1. Different types of direct interface circuits (DICs): (a) single-point calibration method (SPCM);
(b) two-point calibration method (TPCM); (c) three-signal calibration method (TSCM).

This method, taking into account the discharge equations of a capacitor, obtains [5]:

TR

TRc0
=

(R + Ro)C ln VDD
V f

(RRc0 + Ro)C ln VDD
V f

=
R + Ro

Rc0 + Ro
(1)

where TR and TRc0 are the discharge times from VDD to Vf through R and Rc0, respectively (the sub-index
of the time measurement will always indicate which resistor it is discharged through). These times will
be expressed as the number of PDD clock cycles occurring during the discharge process. Since Ro is
unknown, we cannot obtain the value of R based on Equation (1). However, if, as usually occurs, Ro is
a small value compared to those of the different resistors to be measured, it is possible to approximate:

R ≈ TR

TRc0
Rc0 (2)

Improving estimation of R provided by Equation (2) and eliminating error due to Ro requires
methods and circuits that use two calibration resistors: two-point calibration method (TPCM) and
three-signal calibration method (TSCM) [5]. The TPCM, as shown in Figure 1b, carries out the same
processes as the SPCM, but with two calibration resistors, Rc1 and Rc2. In this method, the calculation
of R is given [5] by:

R =
TR − TRc1

TRc2 − TRc1
(Rc2 −Rc1) + Rc1 (3)

For its part, the TSCM, as shown in Figure 1c, performs three discharge processes, like the TPCM,
but through Rc1, R+Rc1, and Rc2+Rc1. Proceeding in this way makes the equation for determining R
simpler [32], which can be written as:

R =
TR+Rc1 − TRc1

TRc2+Rc1 − TRc1
Rc2 (4)

TE(R) is different for each of the aforementioned methods. If we define Tcharge as the time necessary
for the capacitor charge, the values of TE(R) for the different methods are given by:

TE(R, SPCM) = 2Tcharge + TR + TRc0 (5)
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TE(R, TPCM) = 3Tcharge + TR + TRc1 + TRc2 (6)

TE(R, TSCM) = 3Tcharge + TR+Rc1 + TRc2+Rc1 + TRc1 (7)

where the second term in parenthesis for TE indicates which calibration method it is calculated with.
Two aspects must be considered with regard to Equations (5)–(7). Firstly, Tcharge is much lower

than the other times of these equations, since, as mentioned, Rp is either very small or not necessary,
meaning we can eliminate this term from these equations. Secondly, calibration resistors are not the
same in all methods. A common choice for the SPCM is to place Rc0 in the middle of the range of
resistors to be measured [Rmin, Rmax], in order to minimize the maximum error when using Equation (2).
Given this, Equation (5) becomes:

TE(R, SPCM) ≈ TR + T Rmax+Rmin
2

≈ TR +
TRmax + TRmin

2
(8)

where we have taken into consideration that Ro is very small compared to those of the resistors to
be measured.

For its part, optimal performance in the TPCM requires Rc1 and Rc2 to be, respectively, in 15%
and 85% of the resistance value range to be measured in order to minimize errors in estimation [26],
meaning Equation (6) can be written as:

TE(R, TPCM) ≈ TR + 0.15 · TRmax + 0.85 · TRmin}
TRc1

+ 0.85 · TRmax + 0.15 · TRmin}
TRc2

= TR + TRmax + TRmin (9)

The literature does not describe any criteria for choosing Rc1 and Rc2 in the TSCM, and, although
it is at least possible to maintain the 85% criterion for Rc2, it is obvious that Rc1 cannot be in 15% of the
range as its minimum value is Rmin +Rc1. The systematic error made by this method will therefore
always be greater than that obtained by the TPCM [33]. In any case, if we maintain the same criteria of
15% and 85% to situate the calibration resistors, we will have:

TE(R, TSCM) ≈ TR + 0.15 · TRmax + 0.85 · TRmin}
TR+Rc1

+ 0.15 · TRmax + 0.85 · TRmin}
TRc1

+ 0.85 · TRmax + 0.15 · TRmin}
TRc2+TRc1

=

= TR + 1.15 · TRmax + 1.85 · TRmin

(10)

Comparing Equations (9) and (10), it is obvious that TE(R,TSCM) > TE(R,TPCM), meaning that, in
terms of temporal performances for the same accuracy, the TPCM outperforms the TSCM [33]. It is
also obvious that TE(R,SPCM) < TE(R,TPCM), although the TPCM is more accurate and thus, the
application for which the DIC is used will determine which one to use. Given the foregoing, the ideal
situation would be to find a calibration method with a TE(R) similar to or lower than TE(R,SPCM)
and an accuracy equivalent to that obtained by the TPCM. The following section presents two new
calibration methods that meet these two requirements when measuring the resistance value of a large
number of sensors using the same DIC or carrying out repetitive measurements of the same sensor.
We call these new methods quasi single-point calibration methods (QSPCMs).

3. Quasi Single-Point Calibration Methods

3.1. Quasi Single-Point Calibration Method

Let us suppose that, as in the TPCM, we want to use two calibration resistors in order to repetitively
obtain the resistance value of a sensor (with the aim of achieving the maximum accuracy). Let Tn

R, Tn
Rc1

and Tn
Rc2 be the discharge times to obtain the nth estimation of R, Rn (the superscript will be used to
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indicate the estimation number in all variables). Since the calibration resistors are fixed, we have the
following relationship if Equation (3) is used for an initial estimation of R:

T0
R − T0

Rc1

T0
Rc2 − T0

Rc1

=

(
R0 + R0

o

)
C ln

V0
VDD
V0

f
−
(
Rc1 + R0

o

)
C ln

V0
VDD
V0

f(
Rc2 + R0

o

)
C ln

V0
VDD
V0

f
−
(
Rc1 + R0

o

)
C ln

V0
VDD
V0

f

=
R0 −Rc1

Rc2 −Rc1
(11)

It should be remembered that in Equation (11) VDD, Vf, and R are considered to be the same for
the three measurements, since the temporal moments of the discharges of the series of measurements
for an estimation are very close to each other (this approximation is one of the sources of error in any
type of DIC). Tn

R, Tn
Rc1, and Tn

Rc2 are measured again in any new estimation of R and Rn, thus updating
the values of the voltages and Ro.

However, if the aim is to speed up the estimation of Rn, we can also use the data from the initial
estimation of R as follows:

Tn
R−Tn

Rc1
T0

Rc2−T0
Rc1
· T0

Rc1
Tn

Rc1
=

(Rn+Rn
o )C ln

Vn
VDD
Vn

f
−(Rc1+Rn

o )C ln
Vn

VDD
Vn

f

(Rc2+Ro
o)C ln

V0
VDD
V0

f
−(Rc1+Ro

o)C ln
V0

VDD
V0

f

·
(Rc1+Ro

o)C ln
V0

VDD
V0

f

(Rc1+Rn
o )C ln

Vn
VDD
Vn

f

=

= Rn−Rc1
Rc2−Rc1

· Rc1+Ro
o

Rc1+Rn
o

(12)

With Equation (12), we can solve Rn:

Rn =
Rc1 + Rn

o

Rc1 + R0
o
· Tn

R − Tn
Rc1

T0
Rc2 − T0

Rc1

· T0
Rc1

Tn
Rc1
· (Rc2 −Rc1) + Rc1 (13)

The first quotient of the member on the right of this equation is a term very close to one,
since Ro << Rc1, and, moreover, the variations of Ro over time (due to the circuit conditions) are even
smaller, meaning R0

o ≈ Rn
o . Hence, if we define:

A =
T0

Rc1

T0
Rc2 − T0

Rc1

(14)

based on Equation (13), we can write Equation (15) that describes the QSPCM:

Rn =
Tn

R − Tn
Rc1

Tn
Rc1

A(Rc2 −Rc1) + Rc1 (15)

According to the method determined by Equation (15), when estimating R0 we will need to
evaluate the discharges through Rc1 and Rc2; for any other estimate of R, we only need to evaluate the
discharge through Rc1. Equation (15) can be applied not only for a succession of measurements of the
same sensor, but also when a series of resistive sensors is being measured (in this situation, Rn would
be the nth resistive sensor of the series).

As the value of Rc2 is close to the highest value to be measured and its discharge time is only
necessary in evaluating R0, it is significantly time-saving in the estimations of Rn. Moreover, it is
obvious that the hardware necessary to use Equation (15) in a DIC is the same as for the TPCM,
meaning there is no additional hardware cost. There may only be a computational cost in estimating R0

derived from a quotient and an added multiplication in Equation (15) compared to with Equation (3).
However, if the product A(Rc2 −Rc1) is stored in the PDD memory, starting from R1, the number of
arithmetic operations is lower in the QSPCM than in the TPCM, since subtraction of the denominator
of the quotient is removed.

53



Micromachines 2019, 10, 664

The main drawback in using the QSPCM is the small increase in error due to use of the
approximation that eliminates the first quotient of the term on the right side of Equation (13).
This phenomenon is studied in Section 4.

The QSPCM allows for an additional reduction in the uncertainty of the estimation of R if a mean
of the discharge times of the calibration resistors of the first j measurement cycles is used instead of
T0

Rc1 and T0
Rc2. This mean value, μ j(TRc), is defined by:

μ j(TRc) =
1
j

j−1∑
i=0

Ti
Rc (16)

where 1 < j << n is necessary in order to achieve significant time-savings in the measurements. We can
also define a new A j, similar to A that appears in Equation (14), taking these means into account:

Aj =
μ j(TRc1)

μ j(TRc2) − μ j(TRc1)
(17)

Proceeding in this way, we obtain Equation (18) equivalent to Equation (15):

Rn =
Tn

R − Tn
Rc1

Tn
Rc1

Aj(Rc2 −Rc1) + Rc1, 1 < j� n (18)

Equation (18) presents a lower uncertainty in estimating R and only a small increase in the
temporal cost, thanks to the fact that j << n. Equation (18) defines a variant of the QSPCM that we will
call QSPCM-j.

Obviously, QSPCM-j increases the total measurement time and the information to be stored in the
PDD. However, in Section 4, we show how very low values of j are enough to improve uncertainty in
the measurements and reduce the maximum errors.

3.2. Fast Quasi Single-Point Calibration Method

The total time needed to estimate R can still be reduced by applying the methods described in
Reference [33], called fast calibration methods I and II (FCM I and FCM II). In essence, the FCM I aims
to reduce the discharge time through the highest resistances. To achieve this, the discharge through R
stops after a preset time Tx (Tx > TRc1), followed immediately by the discharge of the capacitor through
Rc1 until completion. This discharge procedure will be referred to as the R accelerates the discharge
procedure. There is therefore a reduction in the measurement times of all resistors with TR > Tx, and
this reduction increases as the value of R increases. Using the FCM I, the value that TR would have
with the normal discharge procedure can be found, according to the expression:

TR =
TRc1

TRc1 − T′Rc1(R)
Tx, TR ≥ Tx (19)

where T′Rc1(R) is the time discharging through Rc1 after discharging through R for time Tx. If we
call the time used in the accelerated discharge procedure T∗R, this can be calculated using the
following expression:

T∗R = Tx + T′Rc1(R) (20)

Let ΔTR = ΔTR(R,Rc1,Tx) be the difference in measurement times between the normal discharge
procedure and the accelerated discharge procedure for R. Its value is therefore given by:

ΔTR = ΔTR(R, Rc1, Tx) = TR − T∗R = TR −
(
Tx + T′Rc1(R)

)
= TR −

(
Tx +

TR−Tx
TR
· TRc1

)
=

= (TR − Tx)
(
1− TRc1

TR

) (21)
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Equation (21) shows that, obviously, the reduction in measurement time increases as Tx decreases.
However, the choice of Tx also has implications for the maximum error in estimating R. Thus, the
smaller Tx (and also, in consequence, the time needed to find TR), the greater the error in estimating
R may be, although Reference [33] shows that there may be an optimal Tx values zone where this
phenomenon does not occur.

For its part, in the FCM II, the accelerated discharge procedure applies to both R and Rc2, with
TE(R) decreasing even more. This method will be used to reduce TE(R), even though it also comes at a
small cost in terms of accuracy of results. Obviously, TRc1 < Tx < TRc2 must occur in order to apply
the method.

In the FCM II, using Equation (19) for both R and Rc2, the estimation of R is given by:

R =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

TR−TRc1
TRc1

TRc1−T′Rc1(Rc2)
Tx−TRc1

(Rc2 −Rc1) + Rc1, TR ≤ Tx; TRc1 < Tx < TRc2

Tx
TRc1−T′Rc1(R)

−1

Tx
TRc1−T′Rc1(Rc2)

−1
(Rc2 −Rc1) + Rc1, TR > Tx; TRc1 < Tx < TRc2

(22)

Using Tn
R and T0

Rc2 calculated from the measurements made by the accelerated discharge procedure,
we obtain a new calibration method determined by the equations equivalent to Equations (14) and (15).
This method, which we will call Fast-QSPCM, is defined by:

Rn =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Tn

R−Tn
Rc1

Tn
Rc1

A∗(Rc2 −Rc1) + Rc1, Tn
R ≤ Tx; TRc1 < Tx < TRc2(

Tx
Tn

Rc1−Tn′
Rc1(R

n)
− 1
)
A∗(Rc2 −Rc1) + Rc1, Tn

R > Tx; TRc1 < Tx < TRc2
(23)

where Tn′
Rc1(R

n) is the time for which the capacitor is discharged through Rc1 after having done so
through R in the nth estimation. For its part, A* is described as:

A∗ = 1
Tx

T0
Rc1−T0′

Rc1(Rc2)
− 1

(24)

Operating in the same way with Equations (17) and (18), the equation that defines another
calibration method, Fast-QSPCM-j, is obtained:

Rn =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Tn

R−Tn
Rc1

Tn
Rc1

A∗ j(Rc2 −Rc1) + Rc1, Tn
R ≤ Tx; TRc1 < Tx < TRc2; 1 < j� n(

Tx
Tn

Rc1−Tn′
Rc1(R

n)
− 1
)
A∗ j(Rc2 −Rc1) + Rc1, Tn

R > Tx; TRc1 < Tx < TRc2; 1 < j� n
(25)

where A*j is the same as A defined in Equation (17) but is with TRc2 of each estimation calculated from
the measurements of the accelerated discharge procedure, similarly to that in Equation (24).

In order to compare TE(R) in the new methods to those obtained in Equations (8) and (9), we
are going to use the mean values of TE(R) (R being constant) in estimating n resistive sensors (or n
estimations of the same sensor), μ(TE(R)). In the case of the SPCM and the TPCM: μ(TE(R), SPCM)

and μ(TE(R), TPCM) match the values of TE(R) in Equations (8) and (9), since TE(R) is the same in any
estimation of Rn. However, in the QSPCM and in the Fast-QSPCM, the values of TE(R) differ in the
first estimation. For its part, in QSPCM-j and Fast-QSPCM-j, the first j estimations have a different
TE(R) value from those of the others. Table 1 shows the μ(TE(R)) for each method when n estimations
of R are made.
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Table 1. Mean time for an estimation of R, if n estimations are made, both in traditional methods and
in the methods presented in this paper.

Method Mean of TER for n Estimations, μ(TE(R))

SPCM TR + TRc0
TPCM TR + TRmax + TRmin

Fast calibration method II (FCM II)
{
μ(TE(R, TPCM)) − ΔTR(R, Rc1, Tx), TR > Tx

μ(TE(R, TPCM)), TR ≤ Tx
Quasi single-point calibration method (QSPCM) TR + TRc1 +

TRc2
n

Fast single-point calibration method (Fast-QSPCM)
{
μ(TE(R, QSPCM)) − ΔTR(R, Rc1, Tx) − ΔTR(Rc2,Rc1,Tx)

n , TR > Tx
μ(TE(R, QSPCM)), TR ≤ Tx

QSPCM-j TR + TRc1 + j TRc2
n

Fast-QSPCM-j
{
μ(TE(R, QSPCM− j)) − ΔTR(R, Rc1, Tx) − j ΔTR(Rc2,Rc1,Tx)

n , TR > Tx
μ(TE(R, QSPCM− j)), TR ≤ Tx

4. Experimental Results and Discussion

The performances obtained with the QSPCMs, SPCM, and TPCM have been compared using an
FPGA (Xilinx XC3S50AN-4TQG144C, Xilinx Inc., San Jose, CA, USA) [34] as a PDD mounted on a FR-4
fiberglass substrate with four layers. The FPGA uses a quartz crystal to generate a 50 MHz operating
frequency and needs two regulators (TPS79912 and TPS79633, Texas Instruments, Dallas, TX, USA)
to power the core of the device at 1.2 V and the I/O buffers at 3.3 V. This limits the noise that digital
activity can generate on the device’s input and output pins. The I/O buffers have been programmed to
provide the maximum current allowed by the manufacturer (i.e., 24 mA) in order to maintain digital
integrity of the signals. The resistance measurement results are transmitted via an SPI to a controller
and finally sent to a PC via a USB flash drive.

A series of 20 resistors with values between 267.56 Ω and 7464.5 Ω was used in order to evaluate
the performances of the different methods, as these values are within the range of a large number of
resistive sensors and, in particular, tactile sensors. Selecting a 47 nF capacitor ensured the discharge
times for all these resistors were measured using a 14-bit counter implemented in the FPGA, and,
moreover, that the relative maximum error using any method never exceeded 3%. Besides, three
additional resistors of 8170 Ω, 9056.1 Ω, and 9963.7 Ω were used solely for the Fast-QSPCM and
Fast-QSPCM-j methods, since these methods allow the discharge time of these resistors to be measured
with the 14-bit counter.

Apart from these resistors, Rc0 = 3486.8 Ω was used as a calibration resistor for the SPCM, and Rc1
= 1098.1 Ω and Rc2 = 6165.3 Ω were used for the other methods. All the resistors were measured using
an Agilent 34401A digital multimeter. A number of 500 measurement cycles were performed for each
of the 23 resistors used in order to measure the maximum errors and uncertainty. These 500 cycles
were repeated again each time the resistors are estimated using a different method. In each cycle, the
discharge time was measured through the resistor to be estimated and through one or both calibration
resistors, depending on the method used and the measurement cycle in question. Thus, for example,
for the QSPCM, discharge is via Rc2 only in the first measurement cycle, while in the remaining 499
cycles discharge is only through Rc1 and R.

Figure 2a shows the maximum errors obtained for the SPCM, the TPCM, and the QSPCM, while
Figure 2b shows these same errors but expressed as relative to the nominal value of the resistor to be
measured. For easier viewing, it should be noted that the results are presented in a linear scale on the
y-axis in Figure 2a, and in a log2 scale for Figure 2b. As expected, the biggest errors always occur in
the SPCM, except in the vicinity of its calibration resistor, 3486.8 Ω. Only in this case, Equation (2)
is a very good approximation to obtain R. The absolute error curve of this method shows a typical
“V” shape. For their part, the TPCM and the QSPCM maintain very similar errors to each other
throughout the entire range. Absolute errors are practically constant in the low resistance value zone,
while absolute errors increase slowly, and relative errors remain practically constant for high resistance
values. Especially striking is the low resistance values region, where the SPCM shows relative errors
up to 6 times greater than those of the other methods (of which errors are practically identical).
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(a) 

(b) 

Figure 2. Errors in estimating resistance values using SPCM, TPCM, and QSPCM: (a) absolute maximum
errors (linear scale); (b) relative maximum errors (log2 scale).

In order to evaluate the maximum errors in the Fast-QSPCM, Figure 3a compares these errors
with those of the TPCM and FCM II. Tx = 163.84 μs was chosen for the comparison, i.e., half the time
that can be measured with the 14-bit counter. This value was chosen as it is suitable for monitoring
the value of the most significant bit of the counter, in order to know if time Tx was reached during
the discharge, thus facilitating the hardware to be designed in the FPGA. This choice implies that all
resistors with values under approximately 4000 Ω discharge the capacitor by themselves, while larger
resistors use the accelerated discharge procedure to do so. However, as shown in Figure 3a, resistors
with values below 4000 Ω do not present the same errors using TPCM and FCM II since, in this second
method, Rc2 is also evaluated using Rc1. Although this reduces TE(R), it also increases the error. For its
part, the Fast-QSPCM in Figure 3a presents very similar errors to FCM II, and only shows to some
degree greater errors than FCM II for some of the higher resistance values. It is again important to
note that the TPCM can be used to measure a maximum resistance value of slightly more than 7500 Ω;
however, thanks to the decrease in discharge times for large resistors, the FCM II and the Fast-QSPCM
can be used to measure resistors of up to 10 kΩ. For this reason, the graphs in Figure 3 only show the
results obtained with FCM II and Fast-QSPCM for resistors with values greater than 7500 Ω. Figure 3b
shows the relative errors made by these methods, again in a log2 scale, where it is observed that the
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relative errors remain practically constant for large resistance values, with very close values in all
three methods.

(a) 

(b) 

Figure 3. Errors in estimating resistance values using the TPCM, FCM II, and Fast-QSPCM: (a) absolute
maximum errors (linear scale); (b) relative maximum errors (log2 scale).

Figure 4 compares the results obtained for QSPCM and QSPCM-j with j ∈ {2, 4, 16}. As expected,
the shapes of the curves for the absolute (Figure 4a) and relative (Figure 4b) errors become gentler as j
increases. However, there does not seem to be any truly significant improvements for j > 2, meaning
j = 2 appears to be a good compromise in terms of error reduction, smoothness of the curve, and
hardware complexity.
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(a) 

(b) 

Figure 4. Comparison of errors made in estimating resistance values using the QSPCM and different
values of j in QSPCM-j: (a) absolute maximum errors (linear scale); (b) relative maximum errors
(log2 scale).

The results shown in Figure 5 are similar to the previous ones for Fast-QSPCM and Fast-QSPCM-j
with j ∈ {2, 4, 16}. Again, an increase in j translates into smoother error curves for absolute (Figure 5a)
and relative (Figure 5b) errors. However, these graphs show slightly better results than the rest for j = 4
and would seem to be the best choice. In fact, neither Figure 4 nor Figure 5 shows major differences
between the results for the different methods. It is the designer who should select the most suitable
method for each application.
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(a) 

(b) 

Figure 5. Comparison of errors made in estimating resistance values using Fast-QSPCM and different
values of j in Fast-QSPCM-j: (a) absolute maximum errors (linear scale); (b) relative maximum errors
(log2 scale).

To round off this section, Table 2 shows a summary of the performances of the methods analyzed
when estimating a range of resistors with Rmax = 7464.5 Ω and Rmin = 267.56 Ω. The results are
calculated based on data used for Figures 2–5 and equations listed in Table 1. The Tx = 163.84 μs was
retained for the Fast-QSPCM and Fast-QSPCM-4 methods.

The second and third columns of Table 2 show the maximum errors obtained with any resistor
within the range used. The penultimate column of the Table 2 shows the time needed to estimate
Rmax according to the different methods when estimating a single sensor once. For its part, the last
column shows the case in which 20 estimations are made (for a single sensor or 20 different sensors).
Particularly striking is the fact that the Fast-QSPCM reduces the mean time for 20 estimations by 61%
compared to the TPCM, or by 47% compared to the SPCM. However, the maximum relative error only
increases by 0.1% compared to that with the TPCM and is 3.65 times lower than that with the SPCM.
For their part, the QSPCM and the QSPCM-2 present the lowest relative errors of all the methods, and
yet show important reductions in the mean estimation times compared to the SPCM and the TPCM.
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Table 2. Comparison of the performance of the different methods for a range of resistors with values
between 267.56 Ω and 7464.5 Ω.

Method
Max. Absolute

Error (Ω)
Max. Relative

Error (%)

μ(TE(Rmax)) μs

1 estimation 20 estimations

SPCM 10.07 2.63 449.83 449.83
TPCM 5.11 0.62 605.00 605.00
FCM II 6.00 0.92 409.11 409.11
QSPCM 5.56 0.52 605.00 364.54

Fast-QSPCM (Tx = 163.84 μs) 7.42 0.72 409.11 238.36
QSPCM-2 5.10 0.54 605.00 377.20

Fast-QSPCM-4 (Tx = 163.84 μs) 6.79 0.71 409.11 265.32

5. Conclusions

The TPCM is a calibration method commonly used in DICs for measuring resistive sensors, since
it presents fewer errors in estimations than the SPCM. However, the TPCM needs more time to perform
the estimation as it has to measure discharge times for three resistors: the resistor to be estimated and
two calibration resistors.

Although the FCM has recently been proposed in order to reduce estimation time, this reduction
may not be enough when having to make repetitive measurements of the values of a sensor or when
having to measure the values of a large number of sensors. For these situations, this paper proposes a
series of new methods, QSPCMs, in which two calibration resistors are also used but one of them is
only measured in an initial estimation. Some of the proposed methods are based on the same discharge
procedures as the TPCM, while others, in order to reduce the mean estimation time, use accelerated
discharge procedures, as the FCM.

In order to compare the new proposed methods with traditional methods, a circuit with an FPGA
(Xilinx XC3S50AN-4TQG144C) has been used to measure resistances values in the range (267.56 Ω,
7464.5 Ω). When 20 estimates of the range’s maximum resistance value are made, one of the proposed
methods, the Fast-QSPCM achieves a reduction of 61% in the mean estimation time compared to the
TPCM, while the relative maximum error for any resistance value in the range only increases by 0.1%.
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Abstract: The quantification of stickiness experienced upon touching a sticky or adhesive substance
has attracted intense research attention, particularly for application to haptics, virtual reality, and
human–computer interactions. Here, we develop and evaluate a device that quantifies the feeling
of stickiness experienced upon touching an adhesive substance. Keeping in mind that a typical
pressure distribution sensor can only measure a pressing force, but not a tensile force, in our setup,
we apply an offset pressure to a pressure distribution sensor and measure the tensile force generated
by an adhesive substance as the difference from the offset pressure. We propose a method of using a
magnetic force to generate the offset pressure and develop a measuring device using a magnet that
attracts magnetic pin arrays and pin magnets; the feasibility of the method is verified with a first
prototype. We develop a second prototype that overcomes the noise problems of the first, arising from
the misalignment of the pins owing to the bending of the magnetic force lines at the sensor edges.
We also obtain measurement results for actual samples and standard viscosity liquids. Our findings
indicate the feasibility of our setup as a suitable device for measuring stickiness.

Keywords: haptics; measurement techniques; stickiness; sticky feeling

1. Introduction

Haptic perception has begun garnering increasing attention over the past few years, and in this
regard, several studies have examined the representation of the human skin sensation, particularly
in the fields of virtual reality and human–computer interactions. In reproducing a realistic feeling,
it has been found effective to measure changes in the skin condition, such as the skin deformation
distribution and contact area, in real-world situations and to reproduce this information. For example,
Levesque et al. [1] measured the horizontal displacement of the skin of a finger tracing a glass surface
in detail to capture information on how the skin deforms when in contact with an irregular shape.
Bicchi et al. [2] captured changes in the skin contact area for a finger touching a flexible object. Such
measurements are closely related to the technique used in tactile presentation [3]. The measurement of
the horizontal displacement of skin is related to the development of devices that present horizontal
displacement [4,5] and the measurement of the skin contact area has led to the development of devices
that can represent a feeling of flexing/flexibility via changing the contact area [6,7].

Against this backdrop, here, we focus on the distribution of skin deformation corresponding to
the feeling of “stickiness”. In this study, stickiness is defined as the feeling experienced when touching
an adhesive material such as glue, Nattō (which is a traditional Japanese food made from soybeans),
or honey. The feeling of sticky sensation on the surface is also expressed as a frictional resistance [8].
Chen et al. [9]. investigated the correspondence between the measurement of physical properties
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of texture surface and subjective evaluation of touch sensation, and also mentioned the stickiness.
However, we address stickiness that is related to the motion of the finger along surface normal, that is,
the sensation experienced after releasing a finger that has been pressed against a sticky material. Here,
we note that stickiness affects our impression of daily consumables such as lotion, creams, and so on.
Moreover, stickiness is known as one of the factors responsible for the feeling of “wetness” in fabric
perception [10,11]. Stickiness is often used as a general aversion sensation [12] and is a quality that is
attributed to a wide range of materials and products.

Though Liu et al. measured adhesive force by the MEMS device [13], the development of
the system corresponding to the adhesive force measurement on the skin is necessary in order to
evaluate the sense of human. It has been speculated that both proprioceptive and cutaneous sensations
contribute to stickiness; here, however, we mainly focus on cutaneous sensation. In this context,
Yamaoka et al. [14] derived the relationship between the contact area of an adhesive surface and
the temporal change in the pressing force, and found that there is large hysteresis in the contact
area. The authors further created a stickiness display based on this finding. However, because their
observations were limited to the change in the contact area, the detailed force distribution during the
period of stickiness was not clearly elucidated. Such detailed physical properties are often required to
be measured in the field of food [15,16]. For example, Dan et al. [17]. measured the bite force applied
to raw and cooked apples using a pressure distribution sensor sheet.

In previous reports, we have described the basic principle of a system that measures the force
distribution between adhesive substances and finger skin [18,19]. We used a pressure distribution
sensor sheet to measure the adhesive force in the form of pressure distribution. Here, it must be
noted that common pressure distribution sensors can measure only positive (compressive) pressure,
but not negative pressure. Therefore, we devised a method of inserting a pin matrix between the
skin and the pressure distribution sensor to apply a “preload” using the weight of the pins. With this
configuration, the adhesive force can be observed as a decrease in the offset force when the finger is
raised. In our previous studies, the weight of the pin was set to 0.8 g, and in the case of a highly sticky
specimen, the pin could float because of the stronger adhesive force. Therefore, it was necessary to
apply a stronger preload to the sensor to perform more stable measurements. The other issue in our
previous studies involved the sensor sheet. Pressure-sensitive rubber sensors are prone to undesired
current pathways and large hysteresis, both of which make it difficult to realize accurate sensing using
prototype systems.

In this paper, we present and evaluate a stickiness measurement device with a large measurement
range. When compared with our previous approaches, here, we used a load cell substrate with
independent sensing points and applied a more powerful preload using a magnetic force.

2. Measuring System

2.1. Pressure Distribution Sensor Using Load Cell

To measure a distributed adhesive force, we developed a pressure distribution sensor using
load cells. Figure 1 shows the load cell, schematic, and photo of sensor substrate. In our study,
we used HSFPAR003A load cells (Alps, Inc. Tokyo, Japan) to measure the pressure; this load cell
allows the measurement of forces up to 3.5 N. Sensing points are located at 2.54 mm intervals, which
correspond to the two-point discrimination threshold of the human fingertip [20]; this interval is thus
sufficient for measurement. One-unit board has 16 load cells. One load cell is selected and amplified
by analog multiplexer (ADG726BCPZ, Analog Devices, Norwood, MA, USA) and differential amplifier
(AD623ARMZ, Analog Devices, Norwood, MA, USA).
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(a) (b) 

 
(c) 

Figure 1. (a) Load cell used for pressure sensing. (b,c) Schematic and photo of sensor substrate
comprising 4-by-4 load cells.

2.2. Offset Pressure Generated by Magnetic Force

Figure 2 shows the overall measurement system. The device consists of an acrylic pin insertion
plate, an 8 × 12 magnetic pin array, three base magnets (50 mm × 50 mm × 10 mm), six load cell
substrates (each mounted with 4 × 4 load cells), and an acrylic fixed pedestal.

In this study, to apply an offset preload to the load cell, a magnet was installed under the load cell
substrate and a pin matrix made of pin magnets was inserted between the point of skin contact and the
load cell substrate (Figure 2). Each pin of the magnet pin array was aligned to correspond to a single
load cell. With this configuration, because the magnet under the substrate and the pin magnet matrix
attract each other, an offset pressure (i.e., preload) can be applied to the load cell. Three magnets were
stacked to strengthen the magnetic field (which was about 430 mT at the center). The magnetic field
of adjacent pins might interfere with each other. However, because the polarities of the pin magnets
are all set in the same direction, and the pin magnets are all at the same height and approximately
horizontal, the force generated by the interference is the repulsive force in the tangential direction,
which, in principle, has no effect on the normal force measurement. The load cells and magnet pin
array were both positioned at 2.54 mm intervals. The pin magnet was 2 mm in diameter and 10 mm in
height, and the magnetic force was 275 mT. The acrylic plate and the pedestal were made with a laser
cutter. The acrylic plate was chosen because it is easy to cut using the laser cutter. The cut surface
becomes slightly conical, and the contact area with the pin becomes smaller, reducing the friction.

We used six load cell substrates mounted on the base board, constituting 96 measurement points.
The voltage signal from a single load cell is selected by the analog multiplexer, amplified by the
differential amplifier, and then measured by an AD converter (MCP3208, Microchip Technology
Inc., Chandler, AZ, USA). All operation is conducted by a micro-controller (mbed LPC1768, NXP
Semiconductors N.V., Eindhoven, Netherland), and the data are sent to PC via USB serial port.
Measurements of all points were conducted 60 times per second, and simple moving averages were
calculated for noise removal (window size was 16).
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Figure 2. Measurement system based on magnet (a) structure, (b) oblique view, (c) base magnet,
and (d) circuit board of sensing device. The attractive force between the base magnet and the pin
magnets works as a preload to the load cell at the sensing point, enabling measurement of tensile force
distribution of adhesive material. Six load cell substrates are mounted on the base board, constituting
96 measurement points.

We calibrated the load cell by adding a known weight on load cell. Figure 3 shows the result
of single unit, showing high linearity (R2 > 0.99) and the load cell value was 10.5 per 1 g. That is,
the measured weight is 0.095 gf (=0.94 mN) per value 1 of the load cell. It also shows a large offset
value (i.e., the output value was about 700 out of 4095 of the resolution of MCP 3208 without weight)
owing to magnetic force, which corresponds to around 686 mN preload, which is sufficient for daily
tangible materials such as foods and cosmetics. Figure 4 shows the magnetic field distribution of the
magnet under the substrate, measured at the surface of the base magnet at 6.25 mm intervals using
TM-801 tesla meter (KANETEC, Inc., Nagano, Japan). Although the magnetic force of the magnet
under the substrate varies depending on the measurement position, we note that a sufficient preload
ranging from 686 to 1323 mN can be exerted at any cells. In other words, this system cannot measure
adhesive substances with adhesive force of more than 686 mN at a single pin. While each pin receives
the different magnetic force, this value is treated as an offset and the pressure change amount can be
measured as a relative value regardless of the initial offset value.
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Figure 3. Load cell calibration. We measured load cell value by applying offset pressure by the magnetic
force and arbitrary weight.

Figure 4. Magnetic force map. The magnetic force was measured at intervals of 6.25 mm along the
length and width directions immediately at the surface of the magnet.

2.3. Preliminary Experiment

In our stickiness measurement experiments, the adhesive material of interest was applied to a
participant’s fingertip, who then pressed the fingertip onto the surface of the pin array. When the
finger pressure reached 5 N (summed force over all pins), the participant was asked to release the
fingertip along the vertical direction. The lifting process was completed in around 1 s. In the study,
we used Nattō stirred for 100 times by chopsticks as an adhesive material and baby powder (Johnson &
Johnson, Inc. Tokyo, Japan) as a non-adhesive material. Natto is a fermented food in Japan, and when
mixed, it becomes sticky.

2.4. Results and Discussion

Figures 5 and 6 show the measurement results for Nattō and baby powder, respectively. Although
we acquired 2D distributed data, representation by 3D graph was not easy to grasp and we chose
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to show the 2D view, longitudinal section of the center. As the measurement points are 8 by 12,
the horizontal axis of the graphs becomes 1 to 12. The vertical axis represents force (mN), with a
positive value meaning tensile force (i.e., negative pressure). In the case of Natto, pressing begins from
0.00 s and finger detachment begins after 2.67 s, totally detached at 4.01 s. In the case of baby powder,
pressing begins from 0.00 s, finger detachment begins at 1.67 s, and totally detached at 2.67 s. We asked
the participant to release his finger within 1 s, and we visually confirmed that the finger had separated
around this time.

 
Figure 5. Change in pressure distribution for Nattō (2D view, longitudinal section of the center).
The vertical axis represents the force (in milli Newton). The horizontal axis represents the location
of the sensing point. The four-digit numbers in each graph show the frame numbers at the time of
measurement. Measurements were taken in 0.0165 s/frame (60 fps).
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Figure 6. Change in pressure distribution for baby powder (2D view, longitudinal section of the center).
The vertical axis represents the force (in milli Newton). The horizontal axis shows the location of
the sensing point. The four-digit numbers in each graph show the frame numbers at the time of
measurement. Measurements were taken in 0.0165 s/frame (60 fps).

Upon comparing the two figures, we note that peak tensile force is stronger in the case of Nattō.
From 2.67 s, it can be observed that the tensile force is generated from the periphery of the surface
being pressed and gradually concentrated at the center. In both cases, after the finger was totally
detached, we still observe remaining tensile force, which is considered as noise.

One possible explanation of this offset noise is that the pin magnets were aligned along the
magnetic lines of the base magnet and the lines were not strictly vertical, which gave rise to the
interference between the pin and the pin insertion plate, which may have generated friction and thus
noise (Figure 7). This noise can be regarded as a hysteresis of the measuring device.
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Figure 7. Magnetic lines of force in the setup. The magnetic field lines of the base magnet have a tangential
component, generating frictional force between the pin magnet and the pin insertion acrylic plate.

3. Improvement of Measuring System

To solve the problem of the previous prototype—in which the pin magnets were aligned along
the base magnet’s magnetic lines of force and did not stand vertically, thus potentially causing friction
and noise—we next devised a one-row pin-array measuring device. This device is based on the
principle that when an infinitely long rectangular magnet is used, the magnetic force line at its center is
vertical (Figure 8). Consequently, in the improved device, the pin magnets are installed vertically on
the centerline of the rectangular magnet, which reduces the interference with the pin insertion plate
(Figure 9). Although only one row can be measured using this configuration when the object in contact
with the adhesive substance is semicircular, the distribution of the adhesive force is concentric and
measurement at one row is thus sufficient. As we use a human fingertip or artificial human finger here,
which can be considered semicircular, we consider a line measurement to be sufficient.

 
(a) (b) 

Figure 8. Magnetic field lines of square (a) and rectangular magnets (b). When an infinitely long
rectangular magnet is used, the magnetic force line at its center is vertical.

 
Figure 9. Pin magnet positioned at center and peripheral regions of rectangular magnet. The photographs
indicate that the pin can remain vertical because of vertical magnetic lines.
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3.1. Measuring System Using Single-Axis Robot

To apply the offset preload to a load cell, we installed a rectangular magnet such that the
center line of the rectangular magnet overlapped with the sensor portion of the single-row load-cell
substrate. As a result, the pin magnets were positioned along the vertical lines of the magnetic force.
In addition, two rows of pin magnets were added so as to sandwich the measuring pins, although
actual measurement was performed only for the pin magnets of the center row. These additional rows
of pins push the central pins from both sides with magnetic repulsive force, making the central pins
perpendicular to the base surface and thus minimizing friction between the pin insertion plate and the
pins. The actual device is shown in Figure 10. The device consists of an acrylic pin insertion plate,
a 3 × 16 magnet pin array, two 100 mm × 20 mm × 7 mm magnets, and a 1 × 16 load cell substrate.
Two base magnets were stacked to strengthen the magnetic field, which was about 410 mT at the center.
The load cell and its surrounding circuit components are the same as in the previous setup, while the
load cell substrate was redesigned to achieve 1 × 16 load cell configuration. Each pin of the magnet pin
array was aligned to correspond to one load cell, and a preload was applied to the load cells.

The load cells were arranged at intervals of 2.54 mm, and the magnet pin array was arranged in
the same manner. Each pin magnet was 2 mm in diameter and 10 mm in height, and the magnetic
force was 275 mT, corresponding to a preload of about 980 mN.

For contact with the adhesive substance, we used a hemispherical artificial human skin gel (with a
diameter of 5 cm, manufactured by BEAULAX Corporation, Saitama, Japan) with elasticity equivalent
to that of human skin as the contactor along with a single-axis robot (T4L manufactured by YAMAHA,
Shizuoka, Japan) to depress the artificial “finger”.

 
(a) (b) 

Figure 10. Single-column pin-array measuring device (a) overall view, (b) magnified view of the
measurement part.

3.2. Experiment 1

Adhesive substances were uniformly applied to the upper part of the pin array beforehand, and
the contactor was pressed against the upper surface of the pin array placed on the load cell. We placed
1 mm thick adhesive materials on each pin, with the procedure depicted in Figure 11. The temporal
change in the pressure distribution was measured when pulling apart the contactor from the surface.
The single-axis robot was used for pressing and separating the “finger”, and the pushing distance
of the contactor was set to 2 mm vertically downward from the state in contact with the pin array,
while the pulling-off distance was set to 2 mm vertically upward from the state in contact with the pin
array. The moving speed of the contactor was 1 mm/s. Honey, toothpaste, shaving gel, and shampoo
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were prepared as adhesive substances. These adhesive substances are familiar to us, and we can
find difference by touching them. If this system can measure the difference in adhesive force of these
substances, there is a possibility that the system can grasp the difference in the adhesive feeling felt by
human skin. The sticky substance attached to the contactor and pin arrays was removed each time
before the next trial.

Figure 11. Procedure of pasting adhesive material on each pin. 1� Place the insertion plate over the
pin magnet, 2� coat with an adhesive sample, 3� remove excess adhesive samples, and 4� remove the
insertion plate.

3.3. Results and Discussion

The measurement results in the case of honey are shown in Figure 12. The horizontal axis
represents the pin location, whereas the vertical axis represents the force. A positive value indicates
a tensile force (i.e., negative pressure). From the figure, we note that pushing starts at 0 s, whereas
pulling begins at around 3.00 s. A tensile (i.e., adhesive) force is observed at the edge of the contact
surface. It can also be confirmed that the adhesive force transfers to the center as the contact surface
area changes with the motion of the contactor. Overall, the noise was reduced from the previous
prototype, and we now can clearly observe tensile force behavior.

On the other hand, we still have some issues. When comparing the pressure distribution after
measurement (5.00 s) and before measurement (0 s), we observed a residual force in the positive
direction after the measurement. The reason for this hysteresis phenomenon is unclear (we have
confirmed that the load cell itself does not have observable hysteresis), but we presume that friction
between the contact pin and the plate still existed. Further, a tensile force can be observed to the
leftmost section of the graph in the interval from 1.33 s in Figure 12, which should not have contacted
the contactor and should be regarded as noise. As the rightmost and leftmost sensing points are not
surrounded by other pin magnets, they experience a magnetic force from the neighboring pin magnets
to generate a repulsive force in the left and right directions and interfere with the pin insertion plate.

Figures 13–15 show the measurement results for toothpaste, shaving gel, and shampoo, respectively.
As in the case of honey, we were able to measure the change in adhesion. When the results were
compared for each adhesive sample, it was found that in the case of toothpaste, the adhesive force
was the strongest and that the viscosity was high and the duration of the adhesive force was long,
together with the fact that the adhesive force remained up to 5.0 s. The shaving gel and shampoo had
weak adhesion.
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Figure 12. Change in pressure distribution for honey. The vertical axis represents the force (in milli
newton). The horizontal plane represents the location of the sensing point.
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Figure 13. Change in pressure distribution for toothpaste. The vertical axis represents the force (in milli
newton). The horizontal plane represents the location of the sensing point.
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Figure 14. Change in pressure distribution for shaving gel. The vertical axis represents the force
(in milli newton). The horizontal plane represents the location of the sensing point.
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Figure 15. Change in pressure distribution for shampoo. The vertical axis represents the force (in milli
newton). The horizontal plane represents the location of the sensing point.

3.4. Experiment 2

Subsequently, in order to verify whether the difference in adhesive force could be measured by this
system, we carried out measurements using a standard viscosity liquid. In this experiment, kinematic
viscosities (Centi-Stokes Visco Liquid, ASONE, Inc., Tokyo, Japan) of 500, 1000, 3000, 5000, and 10,000
(cSt) were measured. The moving speed and force of the contact object in the measurement were set
to values identical to the corresponding ones in experiment 1. The peak adhesive force during one
measurement was acquired 10 times consecutively for each sample, and the average value was used as
the measurement data of each sample.

3.5. Results and Discussion

Figure 16 shows the peak value of the adhesive force for each sample as acquired from the
measured data. As can be observed from the figure, there is an obvious correlation between the peak
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values of the adhesive force and kinematic viscosity, and the difference in the adhesive force can be
suitably measured by means of our measuring device. The peak value of the adhesive force becomes
constant when the kinematic viscosity exceeds 5000 cSt.

The purpose of fabricating the second prototype was to solve the issues of the first prototype,
specifically the large observed noise possibly owing to friction between the pins and the plate caused
by inclined magnetic lines. Our results suggest that this noise is reduced with the new setup, and the
tensile force distribution can be clearly observed. This in turn implies that our speculation of the cause
of the noise was correct.

Figure 16. Plot of peak values of adhesive force (mN) and kinematic viscosity (cSt). The blue line
indicates the average peak value, whereas the gray points indicate the row data (for standard viscosity
liquids of 500, 1000, 3000, 5000, and 10,000 cSt).

4. Conclusions

In our study, we developed a measuring device for quantifying stickiness. A pressure distribution
sensor was used to observe the temporal change in the pressure distribution upon applying finger
pressure to a given adhesive material. Here, we note that a typical pressure distribution sensor can
measure a pressing force, but not a tensile force, and thus we proposed and implemented a method of
measuring the tensile force by applying an offset pressure in advance to the sensor and measuring the
resulting difference upon finger pressure application.

Subsequently, we developed a pressure distribution sensor board with built-in load cells and
independent sensing points for highly accurate measurements and implemented a preload application
method using a magnetic force. We next compared measurements acquired using a fingertip coated
with Nattō as an adhesive and a fingertip coated with baby powder. The results confirmed that the
tensile force generated by the adhesive substance was initially at the edge of the contact part, but moved
with the change in contact pressure, and eventually converged to the center.

However, owing to the inclination of the magnetic lines of force, there was interference between
the pin magnet and the pin insertion plate. Therefore, we proposed a linear arrangement to simplify
the system and provide a stable vertical preload. We subsequently measured several kinds of adhesive
substances using a single-axis robot that pressed an artificial finger onto the device coated with the
sticky substance of interest. The results indicated that the new setup was able to measure the adhesive
force distribution more accurately. We believe that our device can be used to suitably quantify the
stickiness of adhesive substances.

The current obvious limitation is that we did not fully eliminate noise. Our method also has some
innate drawbacks, such as the fact that it cannot measure adhesive force exceeding the offset pressure,
and excessively low viscosity substances such as water cannot be treated because they fall from the
magnet pins. Still, we believe that the measurement of adhesive force distribution should contribute to
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the study of stickiness, and comparing our measured data with a human’s subjective tactile feeling is
our next step.
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Abstract: In this article, we report on a biomimetic tactile sensor that has a surface kinetic interface
(SKIN) that imitates human epidermal fingerprint ridges and the epidermis. The SKIN is composed
of a bilayer polymer structure with different elastic moduli. We improved the tactile sensitivity of the
SKIN by using a hard epidermal fingerprint ridge and a soft epidermal board. We also evaluated
the effectiveness of the SKIN layer in shear transfer characteristics while varying the elasticity and
geometrical factors of the epidermal fingerprint ridges and the epidermal board. The biomimetic
tactile sensor with the SKIN layer showed a detection capability for surface structures under 100 μm
with only 20-μm height differences. Our sensor could distinguish various textures that can be easily
accessed in everyday life, demonstrating that the sensor may be used for texture recognition in future
artificial and robotic fingers.

Keywords: biomimetic; tactile sensor; fingerprint ridge; piezoelectric sensor; texture discrimination

1. Introduction

The human ability of tactile sensing using the finger plays an essential role in object manipulation
and our interaction with the external environment. When making contact with an object, we can
recognize its texture using tactile senses made through mechanoreceptors distributed throughout
the skin [1]. Therefore, research into tactile sensing attempts to mimic the mechanoreceptors in the
human skin, their pressure sensing ability, and their distribution in the skin. Recently, many groups
have reported on pressure sensors that demonstrate basic artificial tactile feeling and texture pattern
recognition for prosthesis and robotics applications. They have placed pressure sensors at the digits of
robotic arms to grip and manipulate objects and have arranged pressure sensors in an array form to
detect the shape of an object [2–5]. Electronic skin instrumented with pressure sensors for prosthesis
application has also been reported [6–8].

Many attempts at improving tactile sensing ability have focused on enhancing pressure sensing
sensitivity in the belief that higher pressure sensitivity would lead to enhanced sensibility of the
contacting object. To enhance sensitivity of the pressure sensors, a capacitor-type pressure sensor was
demonstrated, which was able to detect only a few milligrams of tactile pressures [9–15]. However,
the high pressure sensitivity was achievable only at low spatial resolution, limiting the fine-texture
detecting capability. A closer inspection of the human skin showed that the sensitivity and distribution
of the mechanoreceptors are not the only criteria for tactile sensing.
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When a human finger slides over an object’s surface, the fingerprint ridge structures interact
with the object’s surface structure and generate vibrational signals, which are then transmitted to
the mechanoreceptors lying under the epidermis. The generated action potential pulses in the
mechanoreceptors travel to the brain, where they are interpreted as shear interaction and are used
for recognizing the “fine texture” of the object [16]. To detect fine surface textures, ridge structures
mimicking human fingerprint ridges have been applied to tactile sensors [17–21]. The biomimetic
ridge structures showed the ability to detect a few hundred micrometers of scale surface structures [18],
and it was found that biomimetic ridge structures are an essential element for material and textural
identification. Despite there being many studies on tactile sensors with biomimetic ridge structures,
only a few have reported studies on the ridge structure itself, e.g., elasticity, dimension, for the
improvement of texture recognition.

In this study, we developed a biomimetic tactile sensor with a surface kinetic interface (SKIN) that
imitates two elements of the human skin: epidermal fingerprint ridges and the epidermis. Our tactile
sensor is composed of a SKIN (biomimetic epidermal fingerprint ridges and supporting epidermal
board) layer and a polyvinylidene difluoride (PVDF) piezoelectric polymer layer that acts as a vibration
sensor, which functions similarly to a fast-adapting mechanoreceptor. We evaluated the effectiveness
of the SKIN layer in transferring surface shear forces into vertical vibrations while varying the elasticity
and geometrical factors of the epidermal fingerprint ridges and epidermal board. We found that
the tactile sensitivity was increased when using a softer epidermal board and a harder epidermal
fingerprint ridge. The biomimetic tactile sensor with SKIN showed detectability for sub-100-μm surface
structures and 20-μm height differences. Our sensor produced signals that made it possible to discern
different types of paper, leather, and fabrics. It was also possible to distinguish a real human finger
from its replica. The developed biomimetic tactile sensor may be applied to future artificial fingers for
texture detection and recognition.

2. Surface Kinetic Interface (SKIN)

An illustration of human skin on a fingertip can be seen in Figure 1a. From a tactile sensing
perspective, the human skin is composed of two parts, the epidermis and the dermis. The epidermis
comes in contact with the outside world and transfers kinetic interactions to the dermis. In the
dermis, various mechanoreceptors convert the mechanical stimulus into action potential signals.
The mechanoreceptor illustrated in Figure 1a is a Meissner’s corpuscle, which generates an action
potential responding to changes in the surface strain [22]. In the finger epidermis, the top layer forms
epidermal fingerprint ridges (ERs) that interact directly with the contact material. Underneath it,
there are layers of cells that we call the epidermal board that collectively act as a force transfer layer [23].
We designed our tactile sensor skin to functionally mimic the outer skin of the human fingertip:
the SKIN layer that consists of ERs on top of a supporting epidermal board. The PVDF piezoelectric
thin-film layer acts as an array of vibration sensors mimicking fast-adapting mechanoreceptors (see
Figure 1b). The way shear forces are detected in our tactile sensor is quite similar to the human
fingertip. When an object horizontally touches the SKIN surface, a lateral shear force is applied to the
ERs. Torque is then generated at the contact point between the ERs, with the epidermal board acting as
an axis of rotation. Therefore, the contact shear force is transformed into torque and then transferred
as vertical pressure to the PVDF layer. The PVDF layer is a piezoelectric material that generates a
voltage signal when applied pressure deforms its polarized molecular structures. The magnitude of
the generated voltage signal depends on the magnitude of the lateral shear force; as higher shear force
induces higher vertical pressure on the PVDF. In addition, the frequency of the voltage signal depends
on the frequency of contact with the ERs. This depends on the relative speed of the scanning object and
the period of surface protrusions on the object’s surface that makes contact with the ERs. Therefore,
the magnitude and frequency of the generated output voltage depend mostly on the surface roughness
and hardness. This will be further elaborated in Section 4. Although our tactile sensor is biomimetic
in the SKIN structure, there are differences from human skin in that unlike each mechanoreceptor
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individually detecting the input stimulus, the PVDF layer acts as a continuous distribution of sensors,
with the detected output signal being a parallel integration of all the voltage signals generated over
the whole surface of the sensor at that particular time interval. In mapping the surface topography of
a contacting material, this would be disadvantageous, since any information generated through the
spatial distribution of contact pressure points within the sensor area would not be distinguishable.
However, it will be shown that for detecting the texture of the contacting surface, the parallel integration
of the voltage signals becomes advantages. This sensing mechanism is similar to vibrotactile sensation
in the duplex theory of human tactile perception using fast-adapting mechanoreceptors [24].

Figure 1. Schematic illustration and shear detecting mechanism of (a) the human fingertip and (b) the
biomimetic tactile sensor.

3. Fabrication

The Young’s modulus of human fingerprint ridges is known to be about three times higher than
that of the epidermal board, which is believed to increase the durability of the outer skin layer [25].
To mimic this configuration of the human epidermis, we fabricated harder ERs using SU-8 (Microchem,
Westborough, MA, USA), which had a Young’s modulus of ~3 GPa, and a soft epidermal board (using
polydimethylsiloxane (PDMS)), which had a Young’s modulus of ~750 kPa. For efficient force transfer,
ERs should not absorb the contact force through elastic deformation, while the epidermal board should
be flexible enough to localize the deformation and allow the ER to tilt with the applied contact shear
force. To test the effectiveness of this configuration, we fabricated four types of SKINs with differing
mechanical configurations: hard or soft ERs and hard or soft epidermal boards. We used SU-8 and
polyethylene terephthalate (PET) as the harder material (E ≈ 3 GPa) and PDMS as the softer material
(E ≈ 750 kPa) (see Figure 2a). The geometry of all SKINs was identical, with the thickness of the
epidermal board at 50 μm, the height of the ER at 50 μm, and the width of the ER plateau and valley
both at 100 μm, giving the fingerprint pattern a 200-μm period, which is roughly half of the period of
human fingerprints (0.3–0.5 mm) [26].

Figure 2b shows the fabrication processes of the different SKINs. For SKIN #1, an epidermal
board was fabricated by spin-coating 50-μm-thick SU-8 on an oxidized silicon substrate. Then the
SU-8 2075 was coated again at a 50-μm thickness, and ERs were patterned by using optical lithography.
Then the fabricated SKIN #1 was lifted off through HF etching of the oxide underneath. For SKIN #2,
a 50-μm-thick SU-8 ER master was patterned using optical lithography. A PET film was attached to
the ER master and was dipped into the PDMS. The viscosity of the PDMS was low enough to fill the
vacant spaces between the SU-8 master and the PET film. After the PDMS was cured, the fabricated
SKIN #2 was peeled off from the master. The PET film for SKIN #2 was etched by CF4 physical plasma
to form nanobrush structures, which promoted adhesion with PDMS by increasing the contact surface
area [27,28]. For SKIN #3, a 50-μm-thick SU-8 layer and 50-μm-thick PDMS were coated on the oxidized
silicon substrate. This SU-8 layer was helpful for the separation of the PDMS layer from the substrate
after completion of SKIN #3. Then the surface of the PDMS was treated by oxygen plasma for better
adhesion with a 2-μm-thick SU-8 layer coated on PDMS. This SU-8 thin layer works as the adhesive
layer between the PDMS and the following SU-8 ERs. A 50-μm-thick SU-8 ER was patterned by using
optical lithography. Finally, the fabricated SKIN #3 was peeled off from the bottom SU-8 layer on the
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substrate. For SKIN #4, a 50-μm-thick SU-8 ER master was patterned, and 50-μm-thick PDMS was
coated on the ER master. After the PDMS was cured, SKIN #4 was peeled off.

Figure 2. (a) Four types of surface kinetic interfaces (SKINs) with differing mechanical configurations
and (b) their fabrication processes.

Figure 3a shows an SEM image of the fabricated SKIN #3. The fabricated SKIN was attached to a
28-μm-thick PVDF sensor (DT1-028K, Measurement Specialties, Hampton, VA, USA) to complete the
flexible tactile sensor device structure (Figure 3b). The PVDF sensor was 12 mm wide and 30 mm long
and had a piezoelectric voltage constant (g33) of −0.33 Vm/N. Figure 4 shows the measurement set-up,
which had a 2-axis (x–z) motorized stage with 2 μm resolution. The scanning speed was controlled by
the motorized x axis, and the contact depth was controlled by a motorized z axis. A PET tip with 5 mm
of width and 125 μm in thickness was used for applying shear force to the ER (see inset). The PET
tip was scanned across the SKIN surface without any vertical pressure, and the response voltage
signal of the PVDF sensor was monitored using an oscilloscope. The tactile signal was obtained by
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subtracting the reference noise (which was obtained when the motorized stage was scanned above a
sample without touching) from the measured PVDF signal in the frequency domain [29].

Figure 3. Images of a fabricated biomimetic tactile sensor with SKIN: (a) a false-color SEM image of
the fabricated SKIN #3, which was composed of (yellow) SU-8 epidermal fingerprint ridges with a
200-μm-period and a 50-μm height, and a (blue) polydimethylsiloxane (PDMS) epidermal board with a
50-μm thickness; (b) an optical image of the fabricated flexible biomimetic tactile sensor with SKIN.

Figure 4. Optical image of the measurement set-up, where the inset shows an optical image of a SKIN
and a hovering polyethylene terephthalate (PET) tip.

4. Tactile Sensitivity Dependent on SKIN Configuration

The shear-induced torque applied to the ER structure acts to amplify the contact information [17,18].
To test the effect of having an ER on the sensor surface, the PET tip was scanned at 2.5 cm/s on the tactile
sensor with SKIN #1 and the tactile sensor with only an SU-8 epidermal board without an ER. In the
case of the tactile sensor with an ER, a significant fluctuation was observed in the sensor output signal
after 0.2 s (see Figure 5a). Figure 5b shows the sensor signal between 0.3 and 0.4 s. It was observed
that the main period of signal fluctuation was about 8 ms. However, in the case of the tactile sensor
without ER, a periodic signal was not observed except for a 15-mV fluctuation induced by power
noise (see Figure 5c). For more detailed analysis, we converted the time-dependent PVDF output
signal to the frequency domain using fast Fourier transform (FFT). Figure 5d shows the denoised FFT
results of Figure 5b,c. The tactile sensor without ERs showed frequency spectra in the low frequency
range. This feature was induced by the stick-slip of the PET tip on the epidermal board. However,
it was observed that there was a noticeable peak around 125 ± 5 Hz from the tactile sensor with an ER.
Judging from the fact that f = v/p, where f is the signal frequency, v is the scanning speed, and p is the
structural period, the distinct peak of about 125 Hz was induced by periodical interaction between the
PET tip and the ER. This result shows that the ERs generate periodic contact information at a specific
frequency. We defined this peak frequency induced by the period of ERs and the scanning speed as f ER.
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Figure 5. Measurement results of tactile sensor with or without epidermal fingerprint ridges (ERs)
when a PET tip was scanned at 2.5 cm/s on the tactile sensor: (a) the polyvinylidene difluoride (PVDF)
output signal of a tactile sensor with ridge structure; (b) the region of 0.3–0.4 s in (a); (c) the PVDF
output signal of a tactile sensor without ridge structure; (d) the fast Fourier transform (FFT) results
of (b,c).

To test which SKIN layer composition had the most efficient transfer of surface interactions to
the PVDF sensor, we performed the PET tip sliding measurement over the four different SKIN types
and compared their FFT results. It can be seen in Figure 6 that all of the SKINs showed a peak in
the FFT spectrum around f ER = 125 Hz, which corresponded with the 2.5 cm/s scanning speed of the
PET tip. The slight variation in the peak frequency may have been due to swelling in the polymer
layers that was created during the different fabrication processes, causing expansion in the epidermal
boards. In comparing the magnitudes of f ER, we found that SKIN #3 gave the highest magnitude of
−60.50 dB, followed by SKIN #1 at −64.90 dB: both had SU-8 ERs. The harder SU-8 would have less
elastic deformation than PDMS would, absorbing less of the lateral shear force applied by the sliding
PET tip. Hence, as the PET tip slid over the SU-8 ERs, its interaction was more pronounced than
with the SKINs with PDMS ridge structures, resulting in the signal magnitude of f ER being 6.85 times
higher for the sensor in SKIN #3 than in SKIN #2 (−68.86 dB), which both had PDMS epidermal boards.
Comparing SKIN #3 and SKIN #1, the signal magnitude of f ER was 2.75 times lower for the sensor
with SKIN #1, which had the harder SU-8 epidermal board. This is understandable if one considers
that a softer epidermal board would allow the ERs to tilt more with the applied shear force and create
higher local deformation, while the harder SU-8 would distribute the vertical force over a wider area
with lower local deformation, which would reduce the sensor signal. Therefore, it is reasonable that
SKIN #4 (with soft PDMS ERs and a hard PET epidermal board) showed the lowest magnitude of
f ER. The configuration of the material mechanical properties of SKIN #3 best mimicked that of the
human epidermis (with harder fingerprint ridges on top of a softer epidermal board), which gave it
the highest amplifying ability. From these results, we found that the human epidermal structure is
designed not only to increase ductility but also to efficiently transfer the input stimulus on the skin to
the mechanoreceptors.

The heights of the ER structures could also affect the amount of shear force transferred to the
PVDF sensor, since the generated torque would depend on the length of the displacement vector.
To investigate the dependence of the sensor’s sensitivity on the height of the ER structure, we performed
PET tip scanning measurements on the tactile sensor using SKIN #3, with ridges of 25 μm, 50 μm, 75 μm,
and 100 μm in height. The f ER of a pronounced peak appeared in the FFT results of all four tactile
sensors at 125 Hz, corresponding to the scanning speed of 2.5 cm/s. Figure 7a shows the magnitude
of f ER of all four tactile sensors with different ER heights. The magnitude of f ER increased by about
3.0 dB as the ER height increased from 25 μm to 75 μm, demonstrating that the increased height of the
ER had an amplifying effect for shear sensing due to the increased torque. However, the magnitude of
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f ER was greatly decreased at 100 μm in ER height. It seems that there was a limit to how high the ER
could be made to take advantage of the amplifying effect, since beyond a critical ER height, or aspect
ratio, we believe the ER structures may buckle and absorb the shear forces, leading to reduced force
transfer. This height-dependent degradation has also been observed in other reports [30].

Figure 6. FFT results of tactile sensors with four types of SKINs when a PET tip was scanned at 2.5 cm/s
on the tactile sensor. The indicated magnitude values show the magnitude of peak frequency (f ER)
induced by a 200-μm period of ERs and a 2.5 cm/s scanning speed.

Figure 7. Dependence of the magnitude of f ER on (a) the height (h) of the ER and (b) the thickness (t) of
the epidermal board.

We also investigated the relationship between the tactile sensitivity and the thickness of the
epidermal board. We used the same material configuration of SKIN #3 at a scanning speed of 2.5 cm/s,
but with different board thicknesses varying between 25, 50, and 75 μm, and kept the height of the ER
at 50 μm. We found that the highest magnitude of f ER in the tactile sensor was from the 50-μm-thick
epidermal board. This indicates that there may be an optimum thickness for the epidermal board that
will give the highest force transfer while reducing the dispersion of the vertical force [31]. Due to these
results, we chose SKIN #3 with an ER height of 75 μm and an epidermal board 50 μm thick for the
following texture sensing.
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5. Surface Period Detection

We evaluated the surface period-sensing characteristics of the developed tactile sensor using two
periodic grating structures with a 150-μm and 625-μm period (insets of Figure 8a,b). The periodic
grating structures were fabricated by a patterned 60-μm-thick SU-8. Figure 8a,b shows the FFT results
of tactile sensor output induced by scanning performed at 1–4 mm/s. When the grating structure slid on
the tactile sensor, individual ERs periodically interacted with each grating structure, and simultaneously
the individual grating structure periodically interacted with each ER. Therefore, the FFT results present
the f ER and the peak induced by a surface period of a contact object. We observed that the distribution
of the peaks showed a blue shift as the scanning speed increased, with the scanning speed divided by
the highest peak frequency remaining the same. At a 2-mm/s scanning speed (Figure 3a), a distinct
peak for f ER was observed at 10 Hz, and peaks at 13.3 Hz were induced by the 150-μm period of the
surface grating structure, with harmonic signals appearing at each 10- and 13.3-Hz multiple. We saw
similar characteristics for the 625-μm periodic structure. This showed that our sensor was able to
detect surface structures under 100 μm (75 μm wide and 60 μm high). Since the highest peak would
come from the ER’s interaction with the contacting surface, the f ER offered information on scanning
speed. Then the other peaks in the spectra could elucidate the surface periods of the object with the
known scanning speed.

Figure 8. Surface period-detecting characteristics of biomimetic tactile sensor: the FFT results of the
tactile sensor output induced by scanning the grating structures with (a) a 150-μm and (b) 625-μm
period at 1–4 mm/s scanning speed, where the insets show cross-sectional SEM images of the grating
structures (scale bars indicate 200 μm); (c) the FFT results of the tactile sensor output induced by
scanning a 3D-printed structure at 2 mm/s (varying the contact depth), where the inset shows a
cross-sectional SEM image of the 3D-printed structure (scale bar indicates 500 μm).

In sensing the surface roughness, varying the contact depth was an important factor in measuring
the surface structure with different heights. A plastic (polylactic acid) surface with a 390-μm-period
elliptic structure with a 20-μm height difference was fabricated by using a fused filament fabrication-type
3D printer, as seen in the inset of Figure 8c. The reciprocating direction of the printing nozzle resulted
in the height difference. Figure 8c shows the FFT results of the tactile sensor when the printing structure
was scanned at 2 mm/s, increasing the contact depth. Comparing the FFT result at a 90-μm contact
depth to that at 20 μm, we observed an additional peak at 5.12 Hz, reflecting the period of the printing
structure with a lower height. The peak at 5.12 Hz was not considered to be a harmonic of 2.56 Hz
due to its higher magnitude. This result shows that our tactile sensor was able to detect not only the
surface period but also a 20-μm height difference in surface structure. In the deeper contact depth
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of 160 μm, the signal magnitude of FFT decreased. It seems that the ER was not able to deform and
recover fast enough due to the increased pressure resulting from the increased contact depth.

When the SKIN interacts with the object’s surface, the generated vibration should depend on the
frictional aspect of the materials involved. Therefore, even with the same surface roughness, if the
material is different, it should produce vibrations with different spectral distributions. We fabricated
a PDMS replica of a finger, which should have had identical surface structures to the actual finger
used, and measured the sensor signal through tactile scanning to see how the measured signals would
differ. Figure 9a,b shows the FFT results, and it is clear that the two results were quite different and
distinguishable. In both cases, distinct peaks were observed identically at f ER = 10 Hz (representing
the ER period) and at 4.2 Hz (which was dependent on the 480-μm period of the human fingerprint).
However, differences in the amplitudes of major peaks and their harmonics and spectral distribution
in the lower frequency region were observed. This difference seems to have been caused by the
stiffness difference between the human finger and the PDMS replica. The human finger showed
larger deformability due to its Young’s modulus (~100 kPa [25]) being lower than PDMS (750 kPa).
The human skin’s lower modulus led to a larger contact area and higher friction with the SKIN
layer of the sensor. This allowed the characteristic peaks to become distributed, forming a higher
amplitude spectrum in the low-frequency region. In addition, the chemical characteristics of a finger
surface (cell membrane, oil, and sweat) differ from those of PDMS, which produces differing frictional
characteristics. This result showed that our sensor was able to distinguish between different materials
even if they had the same surface structure.

Figure 9. FFT results of tactile sensor output induced by scanning (a) a human finger and (b) a PDMS
replica, where the insets show optical images of a human finger pad and the PDMS replica. Blue arrows
indicate the f ER, and green arrows indicate the peaks of ERs of the contact objects.

6. Texture Detection

The ability to discern surface feature periods and contact materials may be used to distinguish the
characteristics of similar materials. We performed surface scanning measurements on similar materials
with different compositions to test this ability of our biomimetic tactile sensor. First, we compared
the scanning results between a sheet of printing paper and a sheet of papyrus at a 2 mm/s scanning
speed (see Figure 10a,b). The results taken from the printing paper scanning showed that the peaks at
f ER and its integral multiples showed far lower amplitudes than did papyrus. These complex spectra
could be simply analyzed using the energy spectrum density (ESD), which is the integral of FFT in
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a specific frequency range. Comparing the two results in the frequency range under and over f ER,
the ESDs of the papyrus were 22 times and 13 times larger than those of the printing paper. It can be
said that the papyrus had more surface features with periods shorter and longer than 200 μm. This can
be verified visually (as shown in the optical and SEM images of Figure 10a,b), as the printing paper
was featureless while the papyrus was feature-rich with many observable line structures. The surface
features of the papyrus had higher directionality, periodicity, and height than did the printing paper.
Due to these structural differences in surface topology, papyrus had the higher peak amplitude over
most of the observed frequency range. Since our fingertips felt that the papyrus surface was “rougher”
than that of the printing paper, the higher peaks in the FFT results may reflect the roughness of the
material surface.

Figure 10. FFT results of tactile sensor output induced by scanning (at a 2-mm/s scanning speed) (a) a
sheet of papyrus, (b) a sheet of printing paper, (c) cattle leather, and (d) polyurethane artificial leather,
where insets show SEM and optical images of each contact object (scale bars indicate 500 μm).
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For real leather and artificial leather, it is quite difficult for an untrained person to distinguish
between the two just by scanning their fingers over the surfaces. We found that the scanning results
of these materials did produce FFT results that were discernable. As shown in the inset images of
Figure 10c,d, cattle leather and polyurethane leather have similar surface structures with many grains
and pores. The FFT results showed a similar spectral distribution, which made it understandable
why it would be difficult to distinguish between them just by relying on touch. However, there were
features that stood out. In the frequency range from 8 to 22 Hz, the ESD of the cattle leather was 2 times
larger than that of the polyurethane leather. This shows that our sensor may be used to detect fine
differences between artificial and real leather.

The results of Figure 8c show that the contact depth was an essential factor in detecting more
detailed surface characteristics. Varying the contact depth, we measured the change in the frequency
spectrum between two fabrics with different hardness. As seen in the optical image of Figure 11a,b,
the harder fabric had tight weaves and the softer fabric had hair-like structures. The topmost spectrum
was recorded when the 10-Hz fingerprint peaks started to appear. Then the fabrics were scanned with
the sensor pressed on its surface with the pressure depth increasing in 20-μm steps toward a 200-μm
total depth. In the low-contact depth, we observed similar frequency spectra, which showed no specific
peak except for f ER despite the significant visual differences between the two fabrics. Increasing the
contact depth, we observed the appearance of peaks at 1.6 Hz and 0.2 Hz and their harmonics with a
1.2-mm period of the hard fabric and a 10-mm period of the soft fabric. Comparing the two FFT results,
the harder-fabric FFT showed more distinct peaks appearing as the scanning pressure increased to that
of the softer-fabric FFT. We can conclude that the frequency spectra taken at various contact depths can
give additional hardness information, which will aid in increasing the ability of the biomimetic tactile
sensor to distinguish between various materials and which may make tactile sensor-based material
identification a reality.

Figure 11. FFT results of tactile sensor output induced by scanning (a) a hard fabric with tight weaves
and (b) a soft fabric with hair-like structures, increasing the contact depth. Inset images show SEM and
optical images of the two different fabrics (scale bars indicate 1 mm).
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7. Discussion

Previously reported tactile sensors that were based on measuring scanning vibrations commonly
used accelerometers and microphones [32,33]. These sensors were built into or on top of an artificial
finger, and vibration damping could occur, which would reduce the accuracy of the results. Since
our biomimetic tactile sensor would be in direct contact with an object, it could effectively detect
the vibration information induced by the interaction between the ERs and the contact object without
damping. Our SKIN showed tactile sensitivity that was high enough to detect sub-100-μm surface
structures of a sheet of papyrus. It has been reported that ERs show good tactile sensitivity on surfaces
with structural periods that are 0.5–2 times as long as that of the ERs [26]. When varying the design of
the ER period, the tactile sensitivity may be adjusted to the target sensitivity, which may be required
for various applications.

Conventional fingerprint identification security systems can detect the surface structure of human
finger pads but cannot discriminate between finger pad replicas. In the results in Figure 9, it is shown
that our biomimetic tactile sensor had the capability of discriminating between a human finger pad and
its replica, which may make them applicable for future security systems. By utilizing its mechanical
flexibility, if we incorporate the biomimetic tactile sensor into the previously reported tactile stiffness
sensor [34], it may be possible to develop a portable tactile measurement system that can detect surface
roughness as well as stiffness, which will make tactile surface recognition possible.

8. Conclusions

We developed a SKIN with a bilayer structure with different elastic moduli that mimics human
ER and epidermis characteristics. When a hard ER and a soft epidermal board were used for the SKIN,
we improved the effectiveness of transferring surface shear forces into vertical vibrations. The SKIN
with a hard SU-8 ER and a soft PDMS epidermal board showed 6.85 times higher tactile sensitivity than
did the one fabricated using only the soft PDMS. We optimized the ER dimensions and the epidermal
board thickness, and the biomimetic tactile sensor with the optimized SKIN was able to detect a
75-μm period and a 20-μm height difference in a contact surface. Our sensor also showed an ability to
sense the difference between contact with a human finger and a PDMS replica with the same surface
structure. In addition, we demonstrated that it was possible to discern the differences in textures of
paper, leather, and fabric using the biomimetic tactile sensor. With further development and through
use of the sensor’s mechanical flexibility, our biomimetic tactile sensor may make texture-recognizing
artificial fingers a possibility.
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Abstract: Flexible tactile sensor with contact force sensing and surface texture recognition abilities is
crucial for robotic dexterous grasping and manipulation in daily usage. Different from force sensing,
surface texture discrimination is more challenging in the development of tactile sensors because of
limited discriminative information. This paper presents a novel method using the finite element
modeling (FEM) and phase delay algorithm to investigate the flexible tactile sensor array for slippage
and grooved surfaces discrimination when sliding over an object. For FEM modeling, a 3 × 3 tactile
sensor array with a multi-layer structure is utilized. For sensor array sliding over a plate surface,
the initial slippage occurrence can be identified by sudden changes in normal forces based on wavelet
transform analysis. For the sensor array sliding over pre-defined grooved surfaces, an algorithm
based on phase delay between different sensing units is established and then utilized to discriminate
between periodic roughness and the inclined angle of the grooved surfaces. Results show that the
proposed tactile sensor array and surface texture recognition method is anticipated to be useful in
applications involving human-robotic interactions.

Keywords: finite element modeling; surface texture; grooved surface; tactile sensor array; wavelet
transform; spectral analysis; inclined angle

1. Introduction

Flexible tactile sensors have been widely utilized in robotics, prosthetic hands, and medical
surgery [1,2]. For grasping and manipulation tasks, the robotic hand with integrated tactile sensors can
perceive tactile information between the hand, fingers, and grasped objects. This tactile information
plays an important role and can be used for robotic feedback control [3,4]. For daily grasping in robotic
and prosthetic hands, if the applied grasping force is too low, objects may slip through the hand, while
fragile objects may be damaged when the applied force is too large. Furthermore, the roughness,
texture, material hardness, and contour of the objects also affect the requisite grasping force [5].
Therefore, robotic dexterous manipulation generally requires integrated tactile sensors on the robotic
hand with force sensing as well as object texture and contour shape recognition abilities.

The tactile sensor array is usually designed with several sensing units arranged in a row/column
configuration and can be used to measure distributed contact forces [6,7]. In the past decade,
developments in the tactile sensor array have attracted many researchers, and several types of tactile
sensor array have been proposed [8–10]. Recently, we utilized conductive rubber as the sensing
material to develop a flexible tactile sensor array with 3 × 3 sensing units which can be worn on the
finger of a robotic hand and can measure three-axis contact forces during grasping applications [11,12].
The contact behavior of the sensor array with objects affects the contact force sensing performance
of the tactile sensor array we developed. Analytical modeling was conducted to study the sensing
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performance and mechanical behavior in many researches. The basic structure of the tactile sensor is
usually first simplified into a combination of cylinders, cuboids and other basic geometries. Then a
lumped parameter model can be developed to analyze the mechanical properties of the tactile sensor.
Zhang et al. [13] utilized the Stribeck friction model to study the mechanical behavior between a rigid
gripper and the gripped object during the initial slippage phase. They found that the induced normal
force changes suddenly when slipping occurs due to change in the static/dynamic friction coefficient.
Ho et al. [14,15] simplified the fingertip into a bundle of beam to calculate localized displacement for
slip detection.

For a tactile sensor array with a more complex structural design, numerical modeling will be an
effective approach to study the performance and contact behavior of the tactile sensors. Dao et al. [16]
presented a numerical model in Marc Mentat software that analyzed the normal stress distribution
of the sensing units when an external force is applied and identified the optimal location for the
arrangement of piezoresistors. Youssefian et al. [17] developed a finite element modeling (FEM) of the
tactile sensor by adopting nonlinear elastic material properties to study the induced stress and strain
when a normal force is applied to the outer surface of the tactile sensors. In these proposed numerical
models, the structure of the tactile sensors needs to be simplified into beam and plate structures for fast
calculation convergence. Therefore, this will inevitably affect the accuracy of the mechanical behaviors
of the tactile sensors for external force sensing, like the filtering effects of the sensor’s top cover material
is neglected [18]. Thus, to analyze the sensing performance and contact behavior, an accurate 3D FEM
model of the tactile sensor array needs to be developed, and this is a goal of this research.

As mentioned earlier, the surface roughness, hardness, texture and contour shape of the object affect
the sensing performance of the tactile sensor array. For surface texture recognition, two approaches
have been validated to have the ability to extract the object’s features. (1) Using a tactile sensor array
with high-density sensing units to measure the contact forces when it touches the object’s surface.
Then the measured force values are plotted into a gray scale figure, which can be used to discriminate
between the contour shapes of the objects using an image processing algorithm [19,20]. (2) Using a
spectral analysis algorithm to analyze the measured forces when the tactile sensor slides along the
surface of the objects. Oddo et al. [21] utilized a 2 × 2 tactile sensor array to measure the normal
forces when sliding over the patterned surfaces, and fast Fourier transformation (FFT) was used to
discriminate between the surface roughness and periodic information from the grooved surfaces.
Further, they developed an approach using a machine learning algorithm (k-NN classifier) and wavelet
transform to classify the surface texture [22]. In 2012, Fishel et al. [23] utilized a biologically inspired
tactile sensor (BioTac) to measure tactile vibrations and reaction forces when exploring surfaces with
different textures. The Bayesian exploration algorithm was then used to analyze the force data obtained,
and 117 types of textures were successfully identified. This algorithm requires plenty of input data for
the improvement of accuracy, and this limits the application of the BioTac sensor for surface texture
recognition. Therefore, based on the obtained reaction forces of the tactile sensor array, an effective
surface texture recognition method still needs to be developed.

Therefore, the proposed tactile sensor for surface texture recognition still needs to be investigated,
the present surface recognition method can still not be used for practical usage. To fill this research gap,
we developed an accurate 3D FEM model of the tactile sensor array to study the sensing performance
and contact behavior of the sensor when contacted with objects. Based on the measured contact forces
of the tactile sensor array, a novel approach based on phase delay algorithm for grooved surface
recognition is developed and verified by both FEM modeling and experimental validation. The main
content of this paper is divided as follow: Section 2 presents the structure and working principles of the
tactile sensor array on which 3D FEM modeling was conducted. Section 3 describes the experimental
setup and procedures. Two sets of experiments were conducted: slippage detection and surface texture
recognition when the sensor array slides over the object’s surface. The FEM simulation, experimental
results, and discussion are presented in Section 4.
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2. Design of Tactile Sensor Array and FEM Modeling

2.1. Flexible Tactile Sensor Array

Of the tactile sensing principles, piezoresistive sensing is selected because of its relatively simple
structural design and good anti-noise performance. Highly sensitive INASTAMOR pressure conductive
rubber (from Inaba Rubber Co. Ltd., Osaka, Japan) is utilized as the sensitive material and cut into
small pieces of round-shaped chips with a diameter of 3.0 mm. The structural design of the 3 × 3
flexible tactile sensor array is illustrated in Figure 1a,b. This sensor array mainly consists of three layers:
top polydimethylsiloxane (PDMS) bump, a middle room temperature vulcanizable (RTV) adhesive
layer with conductive rubber chips, and bottom electrodes on a thin film of polyethylene terephthalate
(PET). The thicknesses of these three layers are 0.8, 0.5 and 0.1 mm, respectively. The distance between
adjacent units is about 3.5 mm, and thus the overall dimensions of the tactile sensor array are 20 mm ×
16 mm × 1.4 mm. A detailed structural design of the flexible tactile sensor array can be found in one of
the references [12].

 
Figure 1. (a,b) Structure of the flexible tactile sensor array; (c) Fabricated tactile sensor array.

The patterned electrodes underneath the rubber chip have four side electrodes and one central
common electrode, which generates four resistors (R1, R2, R3 and R4) and divides the sensing unit into
five areas, as shown in Figure 1b. Thus, these four resistors can measure the changes in resistance for
external three-axis force sensing. Typically, as the tactile sensor array is worn on the finger of a hand
for grasping and touching objects, the external force will be exerted over the sensor array, and the
induced deformation of the PDMS bump and conductive rubber chips will change the resistances of
these four resistors.

2.2. FEM Modeling

For FEM modeling, the finite element mesh of the 3D tactile sensor array model with dimensions
of 20 mm × 16 mm × 1.4 mm is shown in Figure 2a. The accurate 3D geometry of the bump, rubber
chip, and substrate film layers were converted to the FEM mesh using ABAQUS (v6.14, Dassault
Systèmes Simulia Corp., Providence, RI, USA). Both “structured” and “sweep” algorithms for element
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mesh were utilized. The bump layer, rubber chip and surrounding RTV adhesive, and the PET film
were connected using the “tie” function to lock the nodes onto the surfaces. To ensure perfectly tied
surfaces, the mesh (node positions) on the mating surface must be consistent. For mesh convergence,
the region of the bump and rubber chip and other contact regions were finely meshed, as shown
in Figure 2b. Altogether, the tactile sensor array was meshed using 78,885 eight-node hexahedron
elements. The element numbers in each layer are as follows: bump (53,236 elements), conductive
rubber chip (10,368 elements), RTV adhesive (14,001 elements) and bottom PET film (1280 elements).
For boundary conditions, the PDMS bump, conductive rubber chip, RTV adhesive, and PET film
layers were merged together. The underside of the PET layer was confined by the displacement
boundary condition.

 
Figure 2. (a) 3D finite element modeling (FEM) model of flexible tactile sensor array; (b) Close-up view
of sensing unit.

The mechanical properties of the PET film were adopted from a previous study while Young’s
modulus and Poisson ratio are about 3000 MPa and 0.47 [24]. For the conductive rubber, PDMS and
RTV adhesive, uniaxial compression tests were conducted according to American Society for Testing
and Materials (ASTM) standards [25]. The measured nominal stress versus nominal strain curves for
the rubber, PDMS and RTV adhesive materials are shown in Figure 3.
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Figure 3. Measured nominal stress versus strain curves of rubber, room temperature vulcanizable
(RTV) and polydimethylsiloxane (PDMS) materials.

All three stress-strain curves have nonlinear elastic behaviors, especially under large strains.
The hyper-elastic Yeoh model [26] was used in the ABAQUS software to represent the nonlinear
properties of the conductive rubber, PDMS and RTV adhesive materials. For these incompressible
materials, the strain energy density function can be expressed as

W(I1) = C1(I1 − 3) + C2(I1 − 3)2 + C3(I1 − 3)3 (1)

where I1 stands for the first invariant of the Green deformation tensor and Ci is the material parameter.
Under the circumstance of uniaxial compression, Equation (1) can be transformed into the form that
describes the relation between the stress σ and strain ε as

σ = 2C1(λ− λ−2) + 4C2(λ3 − 3λ+ 1 + 3λ−2 − 2λ−3)

+6C3(λ5 − 6λ3 + 3λ2 + 9λ− 6− 9λ−2 + 12λ−3 − 4λ−4)
(2)

where λ is the elongation and equals to 1 + ε.
By using the least squares fitting, three parameters (C1, C2, and C3) in the Yeoh model for rubber,

RTV adhesive, and PDMS are obtained, and these are listed in Table 1.

Table 1. Material properties of rubber, RTV, and PDMS materials.

Material
Yeoh Model

Poisson Ratio
C1 C2 C3

Conductive rubber 0.5686 0.0540 −0.0181 0.47
RTV adhesive 0.5551 −0.0356 0.0027 0.48

PDMS 0.7997 0.2881 −0.0375 0.47 [27]

3. Experimental Setup and Procedure

3.1. Experimental Setup

The entire experimental setup is shown in Figure 4. It mainly consists of an xyz linear motion
stage and a three-axis commercialized force sensor. The developed flexible tactile sensor array was
attached to a plastic loading bar, which was mounted to a z-axis motion stage. A scanning circuit based
on digital signal processing (TMS320F2812, Texas Instruments Inc, Dallas, TX, USA) was designed
and used for the distributed normal and shear forces measurement [12]. During the experiments,
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two types of surfaces (flat surface and grooved surface) made using stereolithography (SLA) technique
were utilized. The flat surface was used for slippage detection when the loading bar and tactile
sensor array slid on the surface. The grooved surfaces with different patterns were used for surface
texture recognition.

 
Figure 4. Experimental setup for the validation tests.

3.2. Experimental Procedure

During the experiments, the motion speed of the linear stage was controlled by the stepping
motors. To reduce the inertia effects, the sliding movement of the loading bar and tactile sensor array
should be lower than 1.0 mm/s. For experimental validation, two sets of experiments were conducted:

Slippage detection. First, the loading bar with a tactile sensor array compressed the flat surface
for 8 s, and the induced compression force was increased up to 20 N. This force was a little large than
that of FEM simulation, because this force is sufficient to overcome the effect of the death zone, and
make the output voltage of each sensing unit clear enough (over 0.5 V) for further analyses. Secondly,
this is followed by a holding stage that lasted for 15 s. Thirdly, the loading bar and tactile sensor array
slid along the plate surface for about 25 s at a constant speed of 0.25 mm/s.

Surface texture recognition. Three grooved surfaces with different spatial periods of 0.9, 1.2,
and 1.5 mm were utilized. The inclined angle (α), defined as the angle between the grooves and the
y-axis, was set as 0–60◦ with an increment of 15◦. The tactile sensor array first compressed the grooved
surface for about 3 s, and then held for 10 s. The induced compression force was also kept as 20 N.
Then, the loading bar and tactile sensor array slid along the grooved surfaces for about 40 s.

The sampling rate of the scanning circuit for the generated forces sensing was set as 0.1 kHz.
For each experimental set, three repeated tests were carried out repeatability.
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4. Results and Discussion

4.1. Slippage Detection in Sliding Movement

By using the developed FEM model, the sliding movement of the tactile sensor array over the
flat surface was analyzed. During the simulation, the sliding movement is divided into two steps.
Step I—compressing and holding: the tactile sensor array was vertically compressed against the flat
surface until the total reaction force reaches up to about 15 N. This force was a little lower than that of
experimental tests with the aim to improve the convergence property and the convergence effectiveness
of sliding movement during FEM simulation. As for each sensing unit, the force difference between
experimental and FEM simulation can be further decreased to about 0.56 N. Then this step was held
for 1 s to maintain the normal force of 15 N. Step II—sliding: the sensor array was moved sliding along
the x-axis direction at a speed of 1.0 mm/s. Because our developed tactile sensor array has extremely
low weight less than 10 g, the moving speed lower than 1.0 mm/s can be considered as the quasi-static
state movement. So, the moving speed lower than 1.0 mm/s has little effect on the FEM simulation
predicted forces and will greatly reduce the simulation time.

FEM simulation results for each sensing unit at the end of the compression and sliding stages
are shown in Figure 5. In Figure 5a,c, the generated normal stress along the z-axis is symmetrically
distributed at the cross-section view of the sensing unit during the compression stage. During the
sliding stage, the compression stress in the left region (marked as L) is generally increased and becomes
greater than that in the right region (marked as R), as shown in Figure 5b,d. This phenomenon has been
confirmed by other studies [11,12] and can be attributed to the torque caused by the friction between
the flat plate and the PDMS bump. The shear deformation of the sensing unit also occurred during
sliding movement. This can be explained as the localized displacement occurred at the contact region
of the PDMS bump [14,15]. The lower boundary of the hemisphere-shaped bump cannot immediately
follow the movement of the upper part of the tactile sensor due to the friction in the contact region.
Thus, gross slippage will be generated as the distance between the contact region and the PET substrate
is stretched long enough to overcome the effects of friction.

 
Figure 5. The stress distribution in the cross-section view of the sensing unit at the end of (a) compress
and (b) sliding. A-A cross-section at the end of (c) compress and (d) sliding.

The normal force generated at the left and right areas of the sensing unit are extracted based on
the simulation results, as shown in Figure 6a. In Figure 6a, the sliding direction of the tactile sensor
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array along the flat surface can be observed as from the red area to the blue area. The normal forces
obtained at both the left and right area are gradually increased from zero to 0.07 N at the loading
stage. During the sliding stage, the normal force at the left area is increased significantly, while the
generated normal force in the right area is decreased. Though the force’s amplitude was generally
small, the relative change rate almost reaches 100%. Therefore, the sliding direction can be identified
based on the obtained normal force curves in the left and right areas.

 
Figure 6. (a) Simulated normal force extracted from the left and right area of the patterned electrodes in
the sensing unit (b) Measured voltages of R1 and R3 when sliding along a flat surface, DSWT analysis
of the simulated normal force in left area (c) and right area (e) DSWT analysis of the measured voltages
in R1 (d) and R3 (f).

To validate the FEM prediction, experimental tests are conducted. Figure 6b shows the measured
voltages of the tactile sensor array in R1 and R3 resistors when the sensor array is compressing and
sliding on a flat surface. The experimental setup and procedure adopted are presented in the preceding
Section 3. Generally, the measured voltages of R1 and R3 have greater variations while having almost
the same trends as that of the simulated normal force, as shown in Figure 6a. This is because the
sensitivity of the utilized conductive rubber material in tactile sensor is over 500 kΩ /N when the
applied force is lower than 0.7 N [12]. At the sliding stage, the measured voltage of R1 is also increased,
and the voltage of R3 is decreased. Therefore, we can clearly distinguish the sliding occurrence and
direction from either the FEM simulated normal forces or the measured voltages at the side electrode
area and resistors.
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Initial slippage detection is proven to be important for robotic hand grasping. Wavelet transform
has been utilized to analyze the measured forces or voltages of the tactile sensors and demonstrates the
ability to identify the change of the derivation for initial slippage discrimination [28]. Here, we also
utilized the wavelet transform to analyze the simulated normal forces and measured voltages in
Figure 6a,b. Figure 6c–f shows the discrete sequence wavelet transform (DSWT) results of the simulated
normal forces and measured voltages of R1 and R3, respectively. We picked Coiflet as the mother
wavelet function and set its length equal to 6. Two peaks can be observed at the transition moments
from the loading to holding and from the holding to sliding stages, as shown in Figure 6c–f. The
variations of the wavelet coefficient at initial sliding are much greater than that after loading. Thus, by
setting a reasonable threshold value for the wavelet coefficient, the initial slippage can be distinguished
as the tactile sensor array contacts and slides along object surfaces. More details of this method for
slippage detection can be found in our previous study [11].

4.2. Surface Texture Recognition

4.2.1. Phase Delay Algorithm for Surface Texture Recognition

Spectrum analysis of the tactile sensor’s output voltages can be used to determine the spatial
periodical information of the utilized grooved surfaces. The spatial period value (D), defined as the
distance between two adjacent ridges (as shown in Figure 7b), can be calculated as:

D = v/MAF (3)

where v is the sliding speed, and MAF stands for the frequency with the maximum amplitude.

 

Figure 7. (a) Force-time curves of No. 1–3 units, (b) schematic view for the calculation of inclined angle α.
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In practical application, the grooved texture in the plate surface usually has an inclined angle of α.
Applying FFT to the obtained data may get us a fake spatial period value equal to D/cos(α). Therefore,
the inclined angle (α) also needs to be determined. For this purpose, we changed the distance between
the sensing units in each row and column to create different phase delays, as shown in Figure 7b.
We assumed that the force-time curves of one column of three sensing units are as shown in Figure 7a.
The horizontal movement ends at T2, when No. 2 unit is at the center of the groove, which causes
the force-time curve to end at a minimal value. At T1, the No. 3 unit will also be in a similar position
where it sustains the lowest pressure. If the sliding movement continues, the force of No. 1 unit will
drop to the same value at T3. In this condition, the movement path distances (AB and MO) can be
calculated as vt1 and vt2, respectively, where t1 and t2 are the gaps between each moment, as indicated
in Figure 7a. If the distance AC (l1) or CO (l2) is longer than that of D/sin(α), the inclined angle (α) can
be calculated using the anti-trigonometric function and can be expressed as

α = arctan(
v · t1

l1
) (4)

The schematic diagram to calculate α is shown in Figure 7b. 
CGH is first created as the same
as 
CBA, where point H is located on line CO. Then, we connect point G and point M and create a
right triangle 
GNM, where line GN is perpendicular to line MN. The angle ∠MGN is the same as that
of inclined angle α. The length of GN and MN can be calculated as (l1−l2) and v·(t1−t2), respectively.
Thus, the inclined angle α can be calculated as

α = arctan[
v · (t1 − t2)

l1 − l2
] (5)

Also, the spatial period value (D) can be calculated as

D = v · cos(α)/MAF (6)

The procedure and flow chart of the phase delay algorithm for the grooved surface texture
recognition is shown in Figure 8. The whole procedure can be mainly divided into three modules.
In Slippage Judging module, the threshold based on wavelet coefficient is used. As the coefficient value
is larger than 0.002, the program will jump out of the first loop and enter the Data Preprocessing module.
The scanning circuit will sample the voltage data from three electrodes in the same column for 10 s.
Using the low-pass filtering, the time gap (t1 and t2) is calculated based on the cross-correlation function
analysis in this step. As for simulation, the force curves usually have an approximate sinusoidal shape.
As for real tests, the measured voltage signals will be affected by external noises and vibrations, making
the voltage curves not as good as that of the simulation results. Thus, we reconstructed the sine function
of the characteristic frequency in the time domain and input these new curves into the cross-correlation
function as shown in Figure 8. This step can be regarded as “band-pass filtering”, which can improve
the accuracy of the final results. After getting the reconstructed sine function, the program enters the
Period Calculating module. By using Equations (5) and (6), the inclined angle (α) and spatial period
value (D) can be calculated. Both maximum and minimum points of the cross-correlation curve will be
taken as two different inputs. Therefore, we can obtain two spatial period results in the end of this
module. If the difference between these two values is greater than 0.01 mm, the program will jump
back and sample another set of data for a new round of calculation. Otherwise, the mean value will
be output.
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Figure 8. Flow chart and procedure to calculate the inclined angle and spatial period value for the
grooved surfaces.

4.2.2. Spatial Period Discrimination

To verify the ability of the developed method for surface texture recognition, both simulation,
and experimental tests were performed when the tactile sensor array slid along the grooved surfaces.
For grooved surface recognition, the compression force was set as 15 N and 20 N for FEM simulation
and experimental tests, respectively. The applied force during experimental tests is a little larger.
The reasons are the measured output voltage of our tactile sensor array usually contains some noises
from the scanning circuit and environment. If the applied force is too small, it will affect the accuracy
of tactile sensor for surface texture recognition. Even the misjudging of the frequency characteristics
may be occurred, and leads to false result. For the utilized grooved surfaces, as shown in Figure 9a,
the inclined angle of the grooves on the plate is set as zero and spatial period as 0.9, 1.2 and 1.5 mm,
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respectively. As the sensor array slid along the surface, the measured voltages of one sensing unit for
these grooved surfaces are shown in Figure 9b. We can see that the variation of voltage signals increases
with the increase in the spatial period. For example, the grooved surface with 1.5 mm spatial period
has the highest variation in the voltage curve. It is because narrower groove makes the compressed
bumps of sensor less released.

 
Figure 9. (a) Three grooved surfaces with different spatial periods of 0.9, 1.2 and 1.5 mm; (b) Measured
voltage; (c) Spectrum analysis for surface texture recognition.

Using the calculation procedure in Figure 8 (simplified, as there is no inclined angle), spectrum
analysis is conducted, as shown in Figure 9c. For comparison, the MAF and spatial periods of the
grooved surfaces in simulation and experimental tests are calculated and listed in Table 2. We can see
that the deviation of the calculated MAF and the spatial period from the real values are generally low
as the errors are usually smaller than 6.7%. Thus, we can conclude that plate surfaces with different
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grooved textures can be recognized successfully using the method developed and the proposed tactile
sensor array.

Table 2. Results of calculated spatial period and inclined angle in grooved surfaces.

Spatial Period Discrimination (angle
= 0◦) Inclined Angle Calculation (D = 1.2 mm)

Real
D/mm

0.90 1.20 1.50
Real

Angle
0◦ 15◦ 30◦ 45◦ 60◦

Simulation
MAF |

Error (Hz)
1.11 |
0.0%

0.78 |
6.0%

0.67 |
0.0% α | Error 0.00◦ |

0.0%
11.51◦ |
23.3%

29.12◦ |
2.9%

44.10◦ |
2.0%

62.53◦ |
−4.2%

D | Error
(mm)

0.90 |
0.0%

1.12 |
6.7%

1.50 |
0.0%

D | Error
(mm)

1.14 |
5.0%

1.31 |
−9.2%

1.16 |
3.3%

1.14 |
5.0%

1.23 |
−2.5%

Experiment
MAF |

Error (Hz)
1.06 |
4.5%

0.83 |
0.0%

0.67 |
0.0% α | Error 0.48◦ |

/
13.59◦ |

7.4%
29.90◦ |

0.3%
45.47◦ |

1.0%
61.50◦ |
−2.5%

D | Error
(mm)

0.95 |
−5.6%

1.20 |
0.0%

1.50 |
0.0%

D | Error
(mm)

1.25 |
−4.2%

1.22 |
−1.7%

1.30 |
−8.3%

1.31 |
−9.2%

1.19 |
0.8%

4.2.3. Inclined Angle Calculation in Grooved Surfaces

To validate the developed method for the calculation of grooved surface with an inclined angle,
we set l1 and l2 as 3.5 mm and 3.8 mm, respectively. For simulation and experimental tests, the grooved
surface’s spatial period is set as 1.2 mm and the inclined angle of the grooved patterns as 0◦, 15◦, 30◦,
45◦ and 60◦, respectively.

According to the calculation procedure and Equations (5) and (6), the inclined angle and spatial
period for simulation and validation tests are calculated as shown in Table 2. We can see that both
the calculated inclined angle and spatial period values for the simulation and experiments generally
match well with the pre-determined results. For angle calculation, the greatest errors (23.3% for the
simulation and 7.4% for the experiment) occur when the inclined angle equals 15◦. It is because the
slope of the inversed tangent function is extremely steep when the inclined angle is lower than 20◦.
Thus, even a small difference in the inputs would affect the accuracy of the calculated results. For the
angle in the range of 30◦ to 60◦, the relative errors are greatly reduced and less than 5.0%, as shown in
Table 2. For the spatial period calculation, as it is also influenced by the sampling time, the error’s
variation shows a different trend compared with the previous one. Still, the biggest error is less than
9.2% for both simulation and experiment tests. Therefore, a plate with inclined arranged grooves on
the surface can also be recognized using the developed method.

Typically, the simulated force curves for the inclined angle of 0◦, 30◦ and 60◦ are shown in
Figure 10a,c,e. The peak number in the force curve is decreased from 7 to 6 when the inclined angle
increased from 0◦ to 30◦. The peak number dramatically drops to 3 when the angle is raised up to
60◦. This is due to the inclined grooves will enlarge the horizontal gap distance between the adjacent
grooves. Under a uniform sliding motion, the larger angle will increase the time period, and in
turn leads to less peaks, as show in Figure 10a,c,e. These three figures also show the trends that the
overlapped force curves are gradually apart from each other. The green one is much closer to the red
one than that of blue one. This phenomenon verifies that the existence of phase delay which caused
by the inclined arranged grooves. Longer distance between elements 2 and 3 makes the phase delay
more obviously. As in Figure 10e, the variation of the force curves drops from 0.08 N to 0.04 N with
the increase of inclined angle. The curves stand for the total normal force applied on a fusiform area
as shown in Figure 5. The inclined grooves arrangement will increase the minimum contacted area
between the ridges and the fusiform area during sliding. Thus, the bump could not be fully released,
and making the force curve variation become smaller.
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Figure 10. Simulated normal force curves when the sensor array is sliding along the grooved surface
with an inclined angle α equal to (a) 0◦, (c) 30◦ and (e) 60◦. Measured voltages from the validation test
for inclined angle calculation when α equals (b) 0◦, (d) 30◦, (f) 60◦.

The measured voltage curves in real tests are shown in Figure 10b,d,f. Most phenomena discussed
in the simulation cases could be verified here, like the peak number drops from 8 to 4 when the angle
increases to 60◦. The above results indicated that the grooved surfaces with different spatial period
and inclined angle arrangement could be successfully discriminated by using the proposed flexible
tactile sensor sliding motion and phase delay algorithm, thus may have potential in robotic grasping
tasks for surface texture recognition.

5. Conclusions

This study develops a methodology using FEM modeling and the Phase Delay Algorithm to
validate the flexible tactile sensor array for slippage and surface texture recognition in sliding motions.
The structure and working principle of the tactile sensor array and its 3D FEM modeling are presented.
The hyper-elastic Yeoh model is utilized to describe the material properties of PDMS, RTV adhesive,
and conductive rubber utilized in the tactile sensors. For the sensor array sliding along the flat surface,
both FEM simulation and experiments demonstrated that slippage occurrence and sliding direction
can be determined based on the simulated normal force and measured voltages in the side resistors’
region. For surface texture recognition, the Phase Delay Algorithm and its calculation procedure are
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developed. Results also showed that the grooved surface with and without inclined arranged grooves
can be successfully discriminated.

This study opens up the opportunity to study surface texture identification for a flexible tactile
sensor array in real applications. Optimal structural design of the flexible tactile sensor array including
electrode pattern’s design needs to be performed in future work. Further, the approach of using phase
delay algorithm and artificial neural network for the developed tactile sensor array for robotic hand
discrimination of unknown surface textures will also be conducted.
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Abstract: A few experimental studies on thermal tactile perception have shown the influence of the
thermal contact resistance which relates to contact surface roughness and pressure. In this paper,
the theoretical influence of the skin thickness and the thermal contact resistance is studied on the
thermal model describing the temperature evolution in skin and materials when they come in contact.
The thermal theoretical profile for reproducing a thermal cue for given contact thermal resistance
is also presented. Compared to existing models of thermal simulation, the method proposed here
has the advantage that the parameters of skin structure and thermal contact resistance in target
temperature profiles can be adjusted in thermal perception simulation according to different skin
features or surface roughness if necessary. The experimental results of surface roughness recognition
were also presented.

Keywords: thermal tactile perception; surface roughness; skin thickness; thermal perception
reproduction

1. Introduction

Thermal perception is a rich, emotive, and entirely silent information source. For example,
when our hands touch objects, thermal perceptions can provide information about their thermal
characteristics, and help us recognize materials [1]. More, it could be used as an alternative mobile
feedback channel when required, as it is silent for quiet environments, especially in electromagnetic
interference case where monitors or headsets cannot work normally.

To simulate exchanging information by thermal tactile, some thermal displays have been
developed for the reproduction of the thermal perception when a finger is in contact with a virtual or a
remote real object [2,3]. Different thermal properties make different thermal profiles which result in
different thermal tactile perceptions [4].

The relationship between the contact temperature evolution and the thermal characteristics
have been studied to develop thermal feedback systems [5,6]. The works presented theoretical and
experimental study of a model of heat exchange during hand-object interactions, and particularly
evaluated by comparing the theoretical values of temperature changes to those experimentally
measured [7,8]. The authors also studied how the contact area and contact pressure during hand-object
interactions affected the skin temperature changes.

When a finger contacts a material, not only the thermal characteristics of the skin and the material
but also the skin physical structure and their contact state have an influence on the heat exchange
during hand-object interactions. There are some significant factors affecting the heat exchange.

The work [9] proposed a model for heat transfer occurring between the finger skin and any
given surface based on an electrical analogy, and discussed the comparison between the model and
some experimental results by considering various phenomena like the applied pressure by the finger,
the speed of the blood circulation, the interface state. The experimental results [10] have shown that
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there was a small change in skin temperature as a function of the surface roughness of the contact
material. Some analyses of the relation between the skin temperature change and contact pressure in a
thermal display have been also presented with the aid of an infrared thermal measurement system [11].
A quantified model for local and overall thermal sensations in non-uniform thermal environments is
also proposed in [12].

However, some features still should be specified. For example, what influence do the finger skin
physical characteristics (The thickness of skin, the surface roughness) exert on thermal perception
during hand-object interactions?

The thermoreceptors which function as thermal sensors are scattered between the dermis and
epidermis [13]. The thermal perception originates from the temperature drop and its change rate
at thermoreceptors, which relates to physical and thermal properties, initial temperature difference,
thermal contact resistance, and other factors [14].

Finite-element calculations have been applied to simulation in the case of thermal contact
resistance in order to simulate flat and smooth surfaces of objects with different properties in virtual
reality [2]. The fingertip surface roughness was measured and the thermal contact resistance of the
finger was estimated based on an infrared camera during interaction phases to study the influence of
surface properties on thermal tactile perception [15]. With the addition of thermal contact resistance to
the thermal model, the temperature profiles of the skin and materials become more realistic.

However, the role of a fingertip skin thickness and the roughness of contact surface,
which influences the temperature drop at thermoreceptors, should be investigated more. The authors
in [13] have considered the thickness of the epidermis and dermis to model the temperature responses
at the cold receptors. The thermal model was studied from the consideration that the skin is not
regarded as homogeneous but as consisting of three layers of tissue that differ in terms of heat flux:
epidermis, dermis, and endodermis [16].

The skin thickness and the roughness of contact surface were both considered in the present paper
in order to study the thermal responses of the fingertip as it makes contact with materials with different
surface roughness. We believe it is helpful in modelling thermal tactile perception with considering
these factors.

2. Thermal Modelling

The condition of contact between a fingertip and a material is shown in Figure 1. The fingertip
has three layers: the inner layer is well known as the subdermal zone; the middle layer is the dermis;
and the outer layer is the epidermis. The thermal contact resistance is specifically considered here.

Figure 1. The condition of contact between a fingertip and a material.
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As the subdermal zone is with large heat capacity and low heat conductivity, its temperature will
remain stable normally when the outside thermal stimulus changes. A thermoreceptor is a sensory
receptor that helps us get “cold” or “hot” sensations. The temperature and its change rate at warm or
cold thermoreceptors are the main source of cold or hot sensation [17].

Cold thermoreceptors are much more numerous than warm thermoreceptors by a ratio of up
to 30:1, and respond to the decreases in temperature over a temperature range of 5–43 ◦C [18,19].
The different depths of cold thermoreceptor may bring about different temperature drops. However,
the actual depth is dependent on the certain thickness of skin.

The thermal exchange between the skin and a material in contact with is a transient process and
is dominated by heat conduction. Normally heat flows from the skin to materials. And the thermal
contact resistance between the fingertip and materials is involved unavoidably in real contact. So,
it should be also considered in thermal modelling.

These total thermal resistances result in less temperature drop at thermoreceptors than that
in theory. For above considerations, an experimental system has been constructed to measure the
surface roughness [8]. And a device was also developed to implement the skin-object thermal contact
resistance measurement [20].

The whole thermal contact system with thermal resistance considered can be modelled as shown
in Figure 2.

Figure 2. Thermal contact system.

TS(x, t) and TM(x, t) refer to finger temperature and material temperature, and TS0 and TM0 are
their initial values. Here L is the thickness of skin, and d is the thickness of its dermis. And there is a
thermal sensor between the finger and material to measure the interface temperature. Here, the thermal
resistance which results in some temperature drop ΔT is denoted as R here.

Let λi be the thermal conductivity, ci be the specific heat, and ρi be the density, then αi =
λi

ρici
is

known as the thermal diffusion coefficient, and βi = (λiρici)
1
2 is the thermal contact coefficient, here
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i = S and M represents skin and material respectively. So, the governing Equations of the skin and
material can be expressed as:

∂θS(x, t)
∂t

= αS
∂2θS(x, t)

∂x2 ,

{
θS(x, t) = 1, t = 0
θS(x, t) = 1, x = 0

}
(1a)

∂θM(x, t)
∂t

= αM
∂2θM(x, t)

∂x2 ,

{
θM(x, t) = 0, t = 0
θM(x, t) = 0, x → ∞

}
(1b)

where the relative residual temperature is defined:

θi(x, t) =
Ti(x, t)− TM0

TS0 − TM0
, i = S, M.

When t > 0, the boundary conditions are θS(L−, t) = θM(L+, t) + Δθ at the contact interface,

and −λS
∂θS(x,t)

∂x |x = L− = −λM
∂θM(x,t)

∂x |x = L+ =
θS(L− ,t)−θM(L+ ,t)

R , t > 0. By introducing Laplace
transforms to Equations (1a) and (1b), they are transformed to the differential Equations in variable x:

d2
−
θ S(x, s)
dx2 =

1
αS

[
s
−
θ S(x, s)− 1

]
(2a)

d2
−
θ M(x, s)

dx2 =
1

αM
s
−
θ M(x, s) (2b)

where s is the common Laplace complex variable.

Let μ =
√

αS
αM

, β = λS
λMμ = βS

βM
, H1 = β+1

RλS
, H2 = β−1

RλS
, γ = β−1

β+1 = H2
H1

and take the inverse Laplace
transform of Equations (2a) and (2b). The approximate solution of the temperature in skin and material
can be gotten as (3a) and (3b) according to the Laplace transform table in [21].

θS(x, t) = 1 − βM
βS + βM

∞

∑
n=0

(−1)nγn
{

er f c
[
(2n + 1)L − x

2
√

αSt

]
− er f c

[
(2n + 1)L + x

2
√

αSt

]
− eSR

}
(3a)

θM(x, t) = βS
βS+βM

∞
∑

n=0
(−1)nγn

{
er f c

[
2nL−μ(x−L)

2
√

αSt

]
+ er f c

[
(2n+2)L+μ(x−L)

2
√

αSt

]
− eMR

}
(3b)

where eSR = eH1(L−x)+H1
2αSter f c

[
H1

√
αSt + L−x

2
√

αSt

]
− eH1(L+x)+H1

2αSter f c
[

H1
√

αSt + L+x
2
√

αSt

]
, eMR =

eH1μ(x−L)+H1
2αSter f c

[
H1

√
αSt + μ(x−L)

2
√

αSt

]
− eH1[2L+μ(x−L)]+H1

2αSter f c
[

H1
√

αSt + 2L+μ(x−L)
2
√

αSt

]
.

The temperatures in the fingertip skin and the material can be written as respectively:

TS(x, t) = TS0 − (TS0 − TM0)
1−γ

2

∞
∑

n=0
(−1)nγn

{
er f c

[
(2n+1)L−x

2
√

αSt

]
− er f c

[
(2n+1)L+x

2
√

αSt

]
− eSR

}
(4a)

TM(x, t) = TM0 + (TS0 − TM0)
1+γ

2

∞
∑

n=0
(−1)nγn

{
er f c

[
2nL−μ(x−L)

2
√

αSt

]
+ er f c

[
(2n+1)L+μ(x−L)

2
√

αSt

]
− eMR

}
. (4b)

It is evident that the temperature drop at the thermoreceptors is dependent on not only TS0,
TM0, βS, βM, αS, αM, but also L, d, and the thermal resistance R. Here βS and αS are the thermal
parameters characterizing the skin of fingertip, L and d are the physical parameters characterizing
the skin of fingertip, and R is the thermal resistance parameter characterizing the contact state for
thermal conductivity.
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Before simulating using the above thermal model, the thermal contact resistance can be given
from the following relation [15]:

Rc =
0.8Rq

λSFΔa

(
H
P

)0.95
(5)

where λSF = 2λS ·λa
λS+λa

(W/m·k) is the harmonic mean thermal conductivity of the contact interface,

Rq =
[
R2

S + R2
a
]0.5 is the effective root mean square surface roughness, Δa is the effective absolute

average surface asperity slope, H = 12.5 g/mm2 is the skin microhardness, and P is the contact
pressure. Here some parameters were adopted directly in the following simulation from the
reference [15]: Δa = 0.3, H = 12.5 g/mm2, RS = 21.69 μm, and Ra is for the surface roughness
of material. The contact pressure is given with a contact force of 2 N and contact area of 135 mm2.

The theoretical temperature evolutions of stainless steel (SS) for different thicknesses of epidermis
are shown in Figure 3. As denoted above, L is the thickness of fingertip skin, and d is the thickness of
dermis, then L − d is the thickness of epidermis. Here the initial temperatures of finger and material
are set as 36 ◦C and 20 ◦C, respectively. The thermal characteristics applied in the simulation have
been listed in Table 1. The simulation results show that the temperature evolutions at thermoreceptors
are quite different for different thicknesses of epidermis.

Figure 3. The temperature evolutions at thermoreceptors for different thicknesses of epidermis
(Material = SS with absolutely smooth surface). SS—stainless steel.

Table 1. Thermal properties of stainless steel (SS) and skin.

Material λ (W/(m·K)) ρ (kg/m3) c (J/(kg·K)) β (W·s1/2/(m2·K))

SS 14.9 7900 447 7253.71
Skin 0.34 1200 3340 1167.36

The terms eSR and eMR are factors for thermal contact resistance. Comparing with the model
without considering thermal contact resistance, the factor eSR will bring a temperature drop loss
at thermoreceptors:

|ΔTS(x, t)| = βM
βS + βM

eSR|TS0 − TM0|. (6)

For the same material, the temperature drop at thermoreceptors depends on not only the
initial temperature difference between skin and the material but also their thermal contact state.
The temperature drop will reduce with the increase of the thermal contact resistance.

The theoretical temperature evolutions at thermoreceptors with different surface roughness of
stainless steel (SS) are illustrated in Figure 4a, where each temperature drop and its change rate reduce
obviously with the increase of the surface roughness. And in Figure 4b, the steady-state temperature
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(replaced with the value at 20th second in the simulation) at thermoreceptors becomes higher with the
increase of surface roughness for the heat flux conducted out of the skin becomes less.

(a) (b) 

Figure 4. The simulations for different surface roughness of SS: (a) The temperature evolutions
at thermoreceptors; (b) The relationship between surface roughness and steady-state temperature
at thermoreceptors.

It is shown in Figure 4b that the different surface roughness results in different steady-state
temperatures at thermoreceptors. Namely the absolute temperature drops for the same material are
also different after first several seconds of contact. And this may bring some different degrees of
thermal tactile perception.

Remark 1. From Figure 3, besides the initial temperature difference |TS0 − TM0| between skin and material
and their thermal properties, one factor influencing temperature evolution at thermoreceptors is the thickness of
skin. The thicker the skin, the smaller is the temperature drop at thermoreceptors.

Skin thickness varies considerably according to the race, age, sex and region of the body surface.
For example, for Korean population, the thickness of epidermis varies from 31 μm to 637 μm, while
the thickness of dermis varies from 469 μm to 1942 μm [22]. So, the factor of skin thickness should be
studied in thermal simulation.

Remark 2. Another factor is the thermal contact resistance. It is obvious in Figure 4a that each temperature
evolution at thermoreceptors is quite different from others as the contact surface roughness of each material
sample is not the same. So, does each steady-state temperature drop. Both of the theory and simulation results
show that the temperature drop at the thermoreceptors becomes less with the increase of the thermal contact
resistance. So, the influence of thermal contact resistance should be also considered in modelling for thermal
tactile perception.

Now consider how to simulate the thermal perception of a given material with the initial
temperature TM0 when considering the influence of both skin thickness and thermal contact resistance.

To reproduce an appointed thermal cue via a thermal tactile display, the contact temperature
should be controlled to track the corresponding target temperature profile. A thermal sensor
was situated between the fingertip skin and the material to measure the interface temperature.
The theoretical profile of the interface temperature can be gotten from the following Equation:

TM(x, t)|L+ ← x = TM0 + (TS0 − TM0)
1+γ

2

{
er f c

[
μ(x−L)
2
√

αSt

]
+ er f c

[
2L+μ(x−L)

2
√

αSt

]
− eMR

}
|L+ ← x . (7)

Equation (7) derives from Equation (4b) when x approaches L+. TM(x, t)|L+ ← x denotes the
theoretical interface temperature of material side. It should be noted that the thermal contact resistance
can be adjusted in thermal perception simulation. The theoretical interface temperature profiles for
different surface roughness of SS are illustrated in Figure 5.
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Figure 5. The theoretical interface temperature profiles for different surface roughness (material = SS,
Rs = 21.69 μm).

With the increase of surface roughness, the thermal contact resistance increases and the heat flux
out of the skin becomes less, and the steady-state temperature drop becomes less. So, the surface
roughness of material also results in some difference in thermal tactile perception.

From the definition in [4], the theoretical relative recognizing profiles with thermal resistance at
thermoreceptors can be gotten as:

ψ(t) =
TS0 − TS(d, t)

TS0 − TM0
=

1 + γ

2

{
er f c

[
L − d

2
√

αSt

]
− er f c

[
L + d

2
√

αSt

]
− eSR

}
(8)

In ideal case, the relative recognizing profiles with the same thermal characteristics are consistent
for different initial temperatures. However, in real case, the thermal contact resistance has some
influence on relative recognizing profile as discussed above. The relative recognizing profiles of SS
with different surface roughness are illustrated in Figure 6.

Figure 6. The relative thermal recognizing profiles (material = SS, Rs = 21.69 μm).

Remark 3. It is feasible to apply relative thermal recognizing profiles to thermal tactile perception simulation
with adjusting the parameter of thermal contact resistance. Due to inter-individual variations, it is difficult to
set the initial skin temperatures exactly or thermal contact resistances to specific ones. However, we can manage
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to measure them and provide some approximate values. As soon as they are determined, the theoretical profiles
are then gotten, and the corresponding thermal cues can be reproduced by a thermal tactile display.

3. Experiments

The two experiments have been presented here. The first experiment is designed to study the
influence of the thermal contact resistance on the thermal recognizing profile. The second one is aimed
to verify the influence of the skin thickness and investigate the difference between real and simulated
surface roughness recognition.

3.1. Influence of the Surface Roughness on the Thermal Recognizing Profiles

In order to evaluate the influence of thermal contact resistance on thermal modelling,
an experiment was designed to investigate the evolution of interface temperature for different surface
roughness of the same material. One set of temperature profile was measured for different surface
roughness of SS.

The object with different surface roughness was standard samples processed by surface
shot-peening, whose surface sizes are 20 mm × 23 mm or 50 mm × 46 mm with the thickness
of 3 mm. As is shown in Figure 7, it is divided into 8 parts of different surfaces roughness. The object is
made of nickel alloy using precision electroforming technology and has an advantage of high hardness,
good abrasion resistance and good rust prevention. It makes this experiment safe and reliable.

Figure 7. The samples with different surface roughness (material = SS).

The participant cleaned his right hand before starting the experiment. A platinum thin-film
thermal sensor (polyimide with foil backing, Minco S651) was glued to the fingertip of the right index
finger with a biocompatible cyanoacrylate to decrease thermal resistance of contact.

The initial temperature of skin was about 35 ◦C, warmed and maintained with a hot-water bag
beforehand. The room temperature was maintained at 24 ◦C, and also measured by a thermal sensor
whenever necessary. The participant was instructed to place his right index fingertip on each sample
in turn. The contact time for each trial lasted more than 25 s. However, the change of the contact
temperature was only recorded in first 25 s for the transient process is over. Every temperature
evolution was measured by the sensor, and illustrated in Figure 8.
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Figure 8. The experimental temperature evolution for different surface roughness (material = SS).

The experimental temperature evolutions in Figure 8 are similar to those in Figure 4. With the
increase of the surface roughness of SS, the steady-state temperature drop (approximately replaced
by the values at 25th second) also becomes less. This verifies that the surface roughness of SS affects
the thermal tactile perception during hand-object interactions. The perception will become weaker
because of the increase of the thermal resistance.

The comparisons between simulation and experimental data at 20 s are shown in Table 2. There are
slight differences between simulation and experiment. Due to the limited sensor size and the spherical
surface of the roughness samples (50 μm and 100 μm), the actual contact pattern including contact
area and the contact pressure is different from others by degrees, resulting in a large deviation from
the theoretical value.

Table 2. Comparisons between simulation and experimental data.

Roughness (μm) Simulation Data (◦C) Experiment Data (◦C) Errors (%)

0.4 25.704 25.776 0.280
1.6 25.729 25.751 0.086
12.5 26.269 26.340 0.270
50 27.338 28.116 2.84
100 28.820 30.021 4.17

3.2. Experiment of Recognition of Different Surface Roughness

The second experiment was designed to measure subject’s ability to identify SS samples with
different surface roughness, and investigate the difference between real and simulated surface
roughness recognition. The participants are thirty normal healthy adults including twelve women
and eighteen men aged between 18 and 45 years in experiments. They were all right-handed, but with
different occupations, for example, student, teacher, worker, farmer, etc. Before the experiment,
they were simply trained to contact samples with about 2 N pressure expertly. Besides, their skin
thickness was estimated by calculating the dimension of the skin’s bio-speckles [23].

According to their skin thickness, the participants are split two groups: group A and group B.
Each group has fifteen participants. The group A has five men and ten women, whose skin thickness
is smaller than 800 μm, 600–750 μm. The group B has twelve men and three women, whose skin
thickness is greater than 800 μm, about 900–1200 μm.

The experimental material is SS, whose surface roughness is listed in Table 3.

121



Micromachines 2019, 10, 87

Table 3. Roughness of experimental sample.

Roughness Number Roughness Value (Ra, μm)

1# 1.6
2# 12.5
3# 50
4# 100

Each participant’s index finger was first cleaned in order to not interfere with the contact.
The participants’ initial fingertip skin temperatures ranged from 35.5 ◦C to 36 ◦C, warmed beforehand
with a hot-water bag, and measured by a radiation thermometer just before touching. The room
temperature was maintained at about 20 ◦C. In experiment there was a Platinum thin-film thermal
sensor (also S651) glued with thermally conductive silicone which can decrease the thermal contact
resistance between the sensor and samples. The sensor also helps to prohibit the surface texture
tactile perception.

At the beginning, four stainless steel samples with different surface roughness were shown and
presented to thirty participants by thermal feedback to become familiar with them.

In the real surface roughness recognition experiment, four stainless steel samples with different
roughness were presented to participants randomly with three repetitions of each sample. Participants
were forbidden to watch the procedure. When making contact with a sample they were instructed
to judge it. No feedback was given regarding the correctness of each judgment. The contact time for
each trial was not more than 20 s. After finishing the real material recognition experiment, participants
could touch the samples again and reviewed their thermal cues. The results were labeled into two
group A and B with real material.

In the next simulated surface roughness recognition experiment, the theoretical thermal cues
are reproduced from the Equation (7). Except the skin thickness, the physical properties of skin and
contact state in thermal reproduction were chosen as the same in the above simulation for simplicity.
The mean skin thickness was set as 650 μm for group A and 1000 μm for group B, respectively.

The thermal tactile display device applied to simulate the different thermal cues has been
developed [24]. It consists of a Peltier pad, two thermal sensors for ambient temperature and contact
temperature, a radiation thermometer for finger temperature and four pressure sensors for the force of
touch. The maximum difference of temperature between the cold and hot sides is more than 80 ◦C.

The target temperature profiles were given by the theoretical temperature based on Equation (7).
As long as the initial skin and material temperatures also their thermal characteristics were set
respectively, then the corresponding target temperature profile was specified for the given surface
roughness and skin thickness.

Four samples with different simulated roughness were presented to participants randomly with
three trials. After hearing a sound cue, a participant put the right index finger on the sensor attached
on the Peltier pad. At the same time, the temperature profile was set to the corresponding target
one. The participants took their hands back to the hot-water bag after speaking out the choice of the
simulated roughness. The contact time for each trial was also not more than 20 s.

The two groups’ responses in term of the correct percentage of roughness recognition for both
real and their corresponding simulated samples are illustrated in Figure 9.

122



Micromachines 2019, 10, 87

Figure 9. The proportions of correct recognition of two groups for real and simulated SS samples.

As shown in Figure 9, the correct proportion of surface roughness recognition goes up slowly with
the difference of the thermal recognition profiles which become more obvious, as shown in Figure 8.
However, the correct proportions of surface roughness recognition are still not quite high. The sample
with surface roughness 1# (Ra = 1.6 μm) is often confused with other samples, both for the real and
simulated samples. And the results also indicate that when only thermal cues are available, surface
roughness recognition is quite not definite even when there is obvious difference of roughness.

On the other hand, comparing the correct recognition proportions of group A and group B for
the same real surface roughness, the proportion of the group A is higher than that of the group B to a
certain extent. This means that the skin thickness has some influence on thermal perception.

As pointed out above, thicker skin will bring about less temperature drop at thermoreceptors in
contact with real material. For simulated material, however, this difference becomes less because the
temperature drop loss is compensated according to our thermal model.

With the addition of thermal contact resistance to the thermal model, the temperature profiles
of the skin and materials become more realistic. Although the different surface roughness can be
recognized by the thermal tactile perception to a certain extent, the thermal perception is a complex
process. It also relates to the participant’s psychological response. However, the results show at least
that the influence of surface roughness on thermal perception is existed basically in experiment.

Comparing to previous thermal simulation methods, the one proposed here has an advantage
that the parameters of skin structure or surface roughness in target temperature profile can be adjusted
in thermal simulation experiment according to different skin feature or material surface roughness
if necessary.

4. Conclusions

This paper investigated the factors influencing thermal tactile perception based on
thermoreceptors. Thickness of skin and thermal contact resistance have been considered in thermal
modelling, and the theoretical temperature profiles in skin and material have been presented when
they contact with each other. Also, a method has been proposed to reproduce thermal cues for different
skin thickness and surface roughness. With the consideration of thermal contact resistance in thermal
modelling, the temperature profiles of the skin and materials become more realistic. The experimental
results of roughness recognition for real and simulated materials indicate that material roughness and
the skin thickness influence the thermal perception.
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