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Ivan Miguel Pires, Gonçalo Marques, Nuno M. Garcia, Nuno Pombo, Francisco
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1. Introduction

Assistive robots are a category of robots that share their area of work and interact with humans.
Their main goal is to help, assist, and monitor humans, especially people with disabilities. To achieve
this goal, it is necessary that these robots possess a series of characteristics: the ability to perceive their
environment from their sensors and act consequently, to interact with people in a multimodal manner,
and to navigate and make decisions autonomously. This complexity demands computationally expensive
algorithms to be performed in real-time. Therefore, with the advent of high-end embedded processors,
several algorithms could be processed concurrently and in real-time.

All these capabilities involve, to a greater or less extent, the use of machine learning techniques.
In particular, in the last few years, new deep learning techniques have enabled a very important
qualitative leap in different problems related to perception, navigation, and human understanding.
In this Special Issue, various works are presented involving the use of machine learning techniques for
assistive technologies, but in particular for assistive robots.

2. Machine Learning Techniques for Assistive Robotics

This Special Issue consists of eleven papers covering the application of machine learning techniques
on assistive technologies and assistive robots. There are two review papers and nine research ones.

The first review [1] is focused on the identification of the research works written in English about the
recognition of daily activities and environment recognition using the AdaBoost method. In particular,
it focuses on the data obtained from the sensors available in mobile devices that were published between
2012 and 2018. The second one [2] reviews and summarizes the research efforts toward the development
of these kinds of systems, focusing on two social groups: older adults and children with autism.

Regarding research papers, there are nine, and they are described briefly in the next paragraphs.
Pires et al. [3] use artificial neural networks (ANN) for the recognition of activities of daily living

(ADLs) with the data acquired from the sensors available in mobile devices. Firstly, before ANN
training, the mobile device is used for data collection. After training, mobile devices are used to apply
an ANN previously trained for the ADLs’ identification on a less restrictive computational platform.

In Reference [4], a system to detect the performance and the emotional state that elderly people
have when performing exercises is presented. With this detection, the authors want to build an
assistant that motivates those people to perform exercises and, concurrently, monitors them, observing
their physical and emotional responses.

The paper presented by Ferreira et al. [5] proposes the recognition of eight ADL, e.g., walking,
running, standing, going upstairs, going downstairs, driving, sleeping, and watching television, and nine
environments, e.g., bar, hall, kitchen, library, street, bedroom, living room, gym, and classroom, using
the instance-based k-nearest neighbor (IBk) and AdaBoost methods. The primary purpose of this paper
is to find the best machine learning method for ADL and environment recognition.

Electronics 2020, 9, 821; doi:10.3390/electronics9050821 www.mdpi.com/journal/electronics1
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The main proposal in [6] is to recognize users’ environment and standing activities. Furthermore,
these features are included in a framework for the ADL and environment identification. Therefore,
this paper is divided into two parts: firstly, acoustic sensors are used for the collection of data towards
the recognition of the environment, and secondly, the information of the recognized environment is
fused with the information gathered by motion and magnetic sensors. The environment and ADL
recognition are performed by pattern recognition techniques that aim for the development of their
system, including data collection, processing, fusion, and classification procedures.

Modern achievements accomplished in both cognitive neuroscience and human–machine
interaction technologies have enhanced the ability to control devices with the human brain by using
brain–computer interface systems. In particular, the development of brain-controlled mobile robots is
very important because systems of this kind can assist people, suffering from devastating neuromuscular
disorders, move and thus improve their quality of life. The research work presented in [7] concerns
the development of a system that performs motion control in a mobile robot in accordance with the
eye blinking of a human operator via a synchronous and endogenous electroencephalography-based
brain–computer interface, which uses alpha brain waveforms. The received signals are filtered in order
to extract suitable features. These features are fed as inputs to a neural network, which is properly
trained in order to guide the robotic vehicle.

One of the main problems in the elderly population and for people with functional disabilities is
falling when they are not being supervised. Therefore, there is a need for monitoring systems with
fall detection functionality. Mobile robots are a good solution for keeping the person in sight when
compared to static-view sensors. Along this line, Maldonado et al. [8] propose a vision-based solution
for fall detection based on a mobile-patrol robot that can correct its position in case of doubt. Deep
learning-based computer vision is used for person detection, and fall classification is done by using a
learning-based support vector machine (SVM) classifier.

In Reference [9], a Siamese network with an auto-encoding constraint is proposed to extract
discriminative features from detection responses in a tracking-by-detection framework. The proposed
network is improved to extract the previous-appearance-next vector from the tracklet for better
association. Feature experiments show that the proposed Siamese network has advantages in terms of
both discrimination and correctness.

Classification of complex acoustic scenes under real-time scenarios is an active domain, which has been
engaged by several researchers lately from the machine learning community. In Reference [10], a framework
for automatic acoustic classification for behavioral robotics is presented. Motivated by several texture
classification algorithms used in computer vision, a modified feature descriptor for sound is proposed,
which incorporates a combination of 1D local ternary patterns (1D-LTP) and baseline method Mel-frequency
cepstral coefficients (MFCC). The extracted feature vector is later classified using a multi-class SVM, which
is selected as a base classifier.

Near-infrared (NIR) facial expression recognition is resistant to illumination change. Chen et al. [11]
propose a three-stream three-dimensional convolutional neural network with a squeeze-and-excitation
(SE) block for NIR facial expression recognition. Each stream is fed with different local regions, namely the
eyes, nose, and mouth. The experimental results on the Oulu-CASIANIR facial expression database show
that the proposed method has a higher recognition rate than some of the state-of-the-art algorithms.

3. Future

The elderly population is growing year-by-year, and therefore, assistive robotics could help to
improve their standard of living and quality of life. Additionally, it can also go beyond this group of
people and help others that also currently live with disabilities and impairments. Machine learning
techniques will help in developing robust methods in this area, creating products (robots, devices, etc.)
and solutions that live together with humans on a daily basis.
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Abbreviations

The following abbreviations are used in this manuscript:

ANN Artificial neural networks
ADL Activities of daily living
IBk Instance-based 32k-nearest neighbor
SVM Support vector machine
1D-LTP 1D local ternary patterns
MFCC Mel-frequency cepstral coefficients
NIR Near-infrared
SE Squeeze-and-excitation
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Abstract: The application of pattern recognition techniques to data collected from accelerometers
available in off-the-shelf devices, such as smartphones, allows for the automatic recognition of
activities of daily living (ADLs). This data can be used later to create systems that monitor the
behaviors of their users. The main contribution of this paper is to use artificial neural networks
(ANN) for the recognition of ADLs with the data acquired from the sensors available in mobile
devices. Firstly, before ANN training, the mobile device is used for data collection. After training,
mobile devices are used to apply an ANN previously trained for the ADLs’ identification on a less
restrictive computational platform. The motivation is to verify whether the overfitting problem can
be solved using only the accelerometer data, which also requires less computational resources and
reduces the energy expenditure of the mobile device when compared with the use of multiple sensors.
This paper presents a method based on ANN for the recognition of a defined set of ADLs. It provides
a comparative study of different implementations of ANN to choose the most appropriate method
for ADLs identification. The results show the accuracy of 85.89% using deep neural networks (DNN).

Keywords: accelerometer; activities of daily living; mobile devices; sensors

1. Introduction

The accelerometer sensor commonly available in off-the-shelf mobile devices [1,2] measures the
acceleration of the movement of the mobile device, enabling the recognition of activities of daily living
(ADLs) [3]. After the development and conception of a system architecture for the identification of

Electronics 2020, 9, 509; doi:10.3390/electronics9030509 www.mdpi.com/journal/electronics5
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ADLs, it could be, for example, integrated into the creation of a personal digital life coach [4], essential
for the monitoring of elderly persons and persons with impairments, or for the training of certain
lifestyles. The accelerometer enables the recognition of several motion activities, including running,
walking on stairs, walking, and standing. Following the previous research studies [5–8], several steps
are incorporated in the recognition of ADLs, including data acquisition, data processing, data cleaning,
feature extraction, data fusion, and data classification.

Several authors studied the automatic recognition of ADLs [9–14]; artificial neural networks
(ANN) were widely used [15,16]. The accelerometer was used for the identification of ADLs
while comparing some implementations of ANN with different frameworks, such as the multilayer
perception (MLP) with Neuroph [17] and Encog [18] frameworks, and the deep neural network
(DNN) method with the DeepLearning4j [19] framework. The authors aimed to find the model that
achieves the best accuracy in recognition of running, walking, walking downstairs, walking upstairs,
and standing. These five ADLs were selected based on the literature review, wherein different studies
reported reliable results for these activities, to allow the comparison with the method implemented in
this research. The use of data acquired from the accelerometer sensor fused with the data retrieved
from the magnetometer and gyroscope sensors is available in the literature [20]. This paper attempts
to use different datasets of features with only the accelerometer data that should be analyzed to define
the best combination of features. The main objective of this paper is to explore the use of different sets
of features obtained using the accelerometer with the same datasets acquired for the previous study.
After the comparison performed in [20] about the use of data fusion from the data acquired from the
accelerometer, magnetometer, and gyroscope sensors, we verified that one of the major problems is
related to the overfitting obtained during the training phase of the ANN.

The frameworks presented in this study were used in the study [20] to verify which the best
methods are for the recognition of ADLs using the sensors available in the mobile device. Despite the
disadvantages of achieving poor accuracy, MLP implemented with Neuroph and Encog frameworks
still have the benefit of the adaption of the low resources of the mobile devices, because these methods
need less power processing and memory capabilities than the DNN method implemented with
DeepLearning4j. Therefore, the primary motivation of this paper is to verify whether the overfitting
problem can be solved using only the accelerometer data. Additionally, the authors aim to verify the
accuracy of the proposed method using only one sensor and a smaller number of features for the
training of the ANN, in order to use fewer computational resources and reduce the energy expenditure
of the mobile device when compared with the use of multiple sensors.

Thus, the main contribution of this paper is to perform a comparison of three different architectures
of ANN methods using only the accelerometer data to verify whether the overfitting problems are
avoided. This paper presents the use of ANN for ADLs recognition with the data acquired from mobile
sensors. In addition, it also presents a comparative study of different implementations to find the most
accurate method.

This paper is structured as follows: Section 2 presents work related to the identification of ADLs
using the accelerometer sensor. Section 3 describes the steps used for the recognition of ADLs using
the accelerometer sensor. Section 4 presents the discussion and results obtained during the research.
Finally, Section 5 consists of the presentation of the conclusions regarding the results obtained.

2. Related Work

Several methods can be used for the automatic classification of ADLs with the data acquired from
the accelerometer sensor available in the off-the-shelf mobile devices [3,21]. Numerous studies in this
field are presented in the literature. Therefore, it is not possible to include them all in this document.
Table 1 presents an analysis of 43 studies conducted on ADLs recognition using accelerometer data.
The studies were selected according to the following criteria: (1) use of smartphones for data collection;
(2) the features being clearly defined; (3) the methods being clearly defined; (4) the accuracy levels
being presented. These studies are available in multiple databases such as MDPI, Springer, and ACM
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collected using the Google Scholar portal. Still, the vast majority have been found in the IEEE Xplore
library. Following the different works analyzed, the methods that reported the best accuracies for the
recognition between 1 and 8 ADLs are the different types of ANN, including MLP and DNN methods,
using statistical features.

The studies presented in Table 1 reported that the most recognized ADLs with reported average
accuracies high than 85% are walking, standing, walking upstairs, walking downstairs, and running.
Therefore, these activities are considered in the proposed method. In total, 31 studies use smartphones
located in the user’s pocket. However, some studies also located the smartphone around the
waist, forearm, and wrist. Moreover, some studies combine the use of smartphones with other
wearable sensors.

The ADLs recognition indicates an average accuracy between 87.93% and 88.80% using different
methods. In addition, the ADLs reporting better accuracies in the analyzed studies are walking,
standing, walking upstairs, walking downstairs, and running. In total, 91% (N = 39) of the analyzed
papers support walking recognition reporting an average accuracy of 88.80%. The standing activity is
included in 29 studies which represent 67% of our literature review and provide an average accuracy
of 88.65%. Walking upstairs and downstairs activities are supported by 25 (58%) and 23 (53%) studies,
respectively. The first reports an average accuracy of 85.88% and the second reports an average
accuracy of 85.5%. Finally, the running activity is assessed by 42% (N = 18) of the evaluated studies
and reports 87.93% average accuracy.

Regarding the ADLs recognized in the analyzed studies, the mean, standard deviation, maximum,
minimum, correlation, variance, and median are the most used features in the literature. In total,
86% (N = 37) of the analyzed papers use the mean feature, reporting an average accuracy of 85.74%.
The standard deviation feature is included in 30, representing 70% of the evaluated papers, and
provides an average accuracy of 86.70%. The maximum and minimum values are included in 19 (44%)
and 17 (40%) studies, respectively. The maximum feature reports an average accuracy of 87.47%, and
the minimum feature reports 88.50%. The median and correlation features are used in 10 studies (23%)
each and report average accuracies of 87.44 % and 91.52%, respectively. Eight studies include the
variance as a feature for ADLs recognition reporting and average accuracy of 90.15%.

The implementations that reported an accuracy higher than 88% are ANN, multi-column
bidirectional long short-term memory (MBLSTM), Bayesian network, and random forest methods,
reporting an average accuracy between 88.65% and 91.29%. In total, 40% (N = 17) of the analyzed
papers use ANN methods reporting the average accuracy of 91.29%. Eight studies propose the random
forest for ADLs recognition, reporting 90.53% average accuracy. The MBLSTM method provides 89,4%
average accuracy, and the Bayesian Network is used by three studies reporting an average accuracy
of 88.65%.

In summary, the number of ADLs recognized with the different methods used, as well as the
particular dataset, influenced the accuracies reported. The identification of a lesser amount of ADLs
reported the best results in the literature. Following the ADLs and methods that reported the best
results, our research is focused on the implementation of ANN for the recognition of five ADLs,
including standing, walking, running, and walking upstairs and downstairs. These ADLs were
selected for our implementation because they are the most recognized in the literature, reporting
reliable accuracies.
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3. Methods

Based on the literature combined with the proposed system architecture for the recognition of
ADLs in [5–7,64], the methods that should be defined for each module of the proposed system, are as
follows: data acquisition, data processing, data fusion, and data classification. The data processing
methods include data cleaning and feature extraction methods. Additionally, since this study only
uses a single sensor, i.e., the accelerometer, the data fusion methods are not necessary.

Figure 1 represents the methodology and system architecture proposed by the authors in this
paper. The data acquisition is performed using the accelerometer sensor available in commonly
used, off-the-shelf mobile devices with a mobile application during running, walking, standing, and
walking upstairs and walking downstairs activities. This acquired data is processed using data cleaning
and feature extraction methods. After data processing, MLP and DNN methods are used for ADLs
identification.

Figure 1. Methodology and system architecture for the recognition of activities of daily living (ADLs).

3.1. Data Acquisition

This study was based on the data previously acquired for the study [20], which consists
on the acquisition of data related to five ADLs, such as standing (Figure 2), walking (Figure 3),
running (Figure 4), walking upstairs (Figure 5), and walking downstairs (Figure 6). The data used for
this study are available in a public repository [65] previously used in [20]. A visual presentation of the
data collected in each activity is presented in Figures 2–6.

Figure 2. Acceleration (m/s2)—five seconds of data collected during the activity of standing.
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Figure 3. Acceleration (m/s2)—five seconds of data collected during the activity of walking.

Figure 4. Acceleration (m/s2)—five seconds of data collected during the activity of running.

Figure 5. Acceleration (m/s2)—five seconds of data collected during the activity of walking upstairs.

Figure 6. Acceleration (m/s2)—five seconds of data collected during the activity of walking downstairs.

The dataset comprehends more than 2000 samples with five seconds of accelerometer data for
each ADL. A mobile device placed on the front pocket of the user’s pants was used for data acquisition.
The data were acquired in a controlled environment, where, before the start of the data collection,
the user had to select the ADLs that he/she would perform. Every five seconds of data were acquired
every five minutes. When the user planed to perform another ADLs, he/she should stop the data
collection and change the ADLs selected in the mobile application used.

Twenty-five individuals were selected for the experiments that always used the same mobile
device; i.e., an BQ Aquaris 5.7 smartphone [66]. These individuals were aged between 16 and 60 years
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old, composed of five teenagers and five people between 40 and 60 years old, and the remaining were
randomly selected. Several environmental constraints were uncontrolled during the data acquisition,
but we had control of the procedures related to the labeling of the different samples and the positioning
of the device. As we acquired five seconds of data every five minutes, the individuals spent around
7 h performing each ADL collected by the mobile device. In total, each individual spent around 35 h
for the data acquisition.

3.2. Data Processing

This study comprehends the use of accelerometer data with a low-pass filter application to clean
the data [67,68]. It consists of the first step of the data processing, and this module is finalized with
the extraction of the different statistical features. They are the same as the ones described in [20],
but only provided by the accelerometer data, including the five largest distances between the maximum
peaks; the mean, standard deviation, variance, and median of the maximum peaks; and the standard
deviation, mean, maximum and minimum values, variance, and median of the raw signal.

3.3. Data Classification

For the same purpose as [20], but only with the accelerometer data, this study aimed to recognize
the five proposed ADLs being used, based on the datasets presented in Figure 7. The granularity of
the features included varies between the datasets 1–5; i.e., the dataset 5 contains all inputs of datasets 1
to 5.

Figure 7. Datasets created for the analysis and recognition of the different ADLs.

For this purpose, we used three different implementations with distinct configurations using free
software available online. The application of the MLP method takes into account the same settings, but
two different implementations were performed using the Neuroph [17] and Encog [18] frameworks.
Additionally, we used the DeepLearning4j framework for the application of a DNN method [19].
These are Java-based frameworks that allow for the implementation of machine learning methods with
the adaptation to our data. All configurations of the frameworks implemented the sigmoid function
as the activation function, a maximum of 4 x 106 iterations and backpropagation [69]. However, the
learning rates applied in the MLP implementations and the DNN method are different; the value was
0.6 for MLP implementations and 0.1 for the DNN method. The MLP implementations also included
the momentum value equal to 0.4. Regarding the numbers of hidden layers, the MLP methods did
not include hidden layers, but the DNN method implemented three hidden layers. The DNN method
also included the Xavier function [70] as a weight/initialisation function, a seed value equal to 6,
and L2 regularization [71]. After different tests and adjustments, we verified that these parameters
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reported more consistent results with the data acquired than others, suggesting its implementation in
the developed method.

Additionally, the data classification was tested with normalized and non-normalized data,
implemented the min-max normalization for the implementations of the MLP method, and the
normalization with mean and standard deviation for the implementation of the DNN method.

4. Results and Discussion

As the different implementations reported the existence of overfitting during the creation of the
different ANNs, the early-stop training technique was implemented, stopping the training at a limit of
4 × 106 iterations. Thus, the results reported are presented in Figures 8 and 9 for non-normalized and
normalized data, respectively.

Figure 8. Results obtained with the MLP method implemented using non-normalized data with
Neuroph and Encog frameworks, and the DNN method implemented with the DeepLearning4j
framework (horizontal axis) for the different datasets (series), obtaining the accuracies in percentages
(vertical axis).

Figure 9. Results obtained with the MLP method implemented using normalized data with Neuroph
and Encog frameworks, and the DNN method implemented with the DeepLearning4j framework
(horizontal axis) for the different datasets (series), obtaining the accuracies in percentages (vertical axis).
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After the implementation with the Neuroph framework, the results obtained had very low
accuracies with normalized (between 20% and 30%) and non-normalized (between 20% and 40%)
data. Following the implementation with the Encog framework, the results obtained had a very low
accuracy (between 20% and 40%) with data without normalization, wherein, as excepted, the neural
networks trained with the dataset 5 reported a certainty around 75%. When the data were normalized,
the accuracy of the implemented method was always between 10% and 40%.

Next, for the implementation with the DeepLearning4j framework, the results obtained are
higher than 70%, but, for data without normalization, the results reported with the dataset 5 have an
accuracy lower than 30%, and for the normalized data, the results decrease with a reduced number of
features—dataset 5 reported the best results.

There are two types of normalization implemented with the data acquired, including the one
based on mean and standard deviation and the other one based on min-max. The accuracy reported
for non-normalized data is better than the accuracy reported for data with min-max normalization.
However, the results with all defined datasets increase with the application of L2 regularization and
normalization with mean and standard deviation.

Table 2 shows the maximum accuracies obtained with the MLP method with Neuroph and
Encog frameworks and the DNN method with the DeepLearning4j framework. The DeepLearning4j
framework reported the best accuracy, and the results obtained by Neuroph and Encog frameworks
are not satisfactory.

Table 2. Best accuracies obtained with the different frameworks and datasets.

Type of ANN Framework Dataset Best Accuracy
Achieved (%)

Non-normalised
data

MLP Neuroph 5 32.02

Encog 1 74.45

DNN DeepLearning4j 5 80.35

Normalised data MLP Neuroph 3 24.03

Encog 2 37.07

DNN DeepLearning4j 5 85.89

Analyzing the results presented in Table 2, Neuroph framework always reported bad results with
an accuracy of 32.02% using dataset 5 using non-normalized data, and an accuracy of 24.03% with
dataset 3 using normalized data. Among the frameworks used in this study, the Neuroph framework
reported the worst results, because its architecture is not adapted for this type of data, or because it
needs a large number of samples for the training of the ANN. The Neuroph framework reported better
results with a large number of inputs for the ANN.

The use of the Encog framework slightly improved the results obtained with normalized data,
reporting an accuracy of 37.07% using the dataset 2. However, Encog framework reported a high
accuracy with the use of non-normalized data (74.45%). In contrast with the Neuroph framework, it
was verified that the best accuracies were attained by the implementations with a smaller number of
inputs.

The major problem of the implementation of DeepLearning4j framework is the resource
consumption, where the performance is affected. However, the performance is only bad in the training
phase. The final implementation the ANN provides reliable results after being trained. DeepLearning4j
always reported high accuracy in the results with a large number of inputs—the results obtained were
80.35% accurate with non-normalized data, and 85.89% with normalized data.

The results recommend the DNN method with all features extracted from the acquired data as
the most reliable method for the identification of ADLs. However, before its implementation, the
data should be normalized with the mean and standard deviation method, and the L2 regularization
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method should be applied. Based on the tests performed with the acquired data, the results obtained
are always higher than those reported other ways. The results obtained have a precision value of 86.21%,
a recall value of 85.89%, and an F1 score value of 86.05%.

In addition to the analysis, the confusion matrixes for the different frameworks were made,
and are presented in Tables 3–8. By analyzing Table 3, it is possible to verify that the number of
true positive values in recognition of walking upstairs, walking downstairs, and standing, is meager,
proving a high number of false negatives and true negatives using the MLP method with the Neuroph
framework based on non-normalized data. Next, Table 4 shows that the number of true positive values
in recognition of all ADLs is meager, verifying a high number of false negatives using the MLP method
with the Neuroph framework based on normalized data.

Following the analysis of Table 5, it was verified that only running is recognized by the MLP
method with the Encog framework based on non-normalized data, presenting a high number of
false negative values. In contrast, based on the implementation of the MLP method with the Encog
framework based on normalized data, walking is always correctly recognized with 2000 true positive
values, but it has 7999 false negative values. The high number of false negative values is also verified
in the other ADLs, and the true negative and false positive values are too high.

Based on the use of the DNN method with the DeepLearning4j framework based on
non-normalized data, the number of true negatives is only low in recognition of standing activity,
reporting a high number of false positive values. However, the standing activity also reported a high
number of true positive values, while the other ADLs reported high false negative values. Finally, with
the use of the DNN method with the DeepLearning4j framework based on normalized data, the true
positive and true negative values are high in all ADLs recognized.

Table 3. Confusion matrix of the results obtained with non-normalized data by the implementation of
the MLP method with the Neuroph framework.

Walking Downstairs Walking Upstairs Running Standing Walking

True Positive 2 3 1471 0 2000

True Negative 3474 3473 2005 3476 1476

False Positive 1998 1997 529 2000 0

False Negative 4526 4527 5995 4524 6524

Table 4. Confusion matrix of the results obtained with normalized data by the implementation of the
MLP method with the Neuroph framework.

Walking Downstairs Walking Upstairs Running Standing Walking

True Positive 0 0 162 0 200

True Negative 2162 2162 2000 2162 162

False Positive 2000 2000 1838 2000 0

False Negative 5838 5838 6000 5838 7838

Table 5. Confusion matrix of the results obtained with non-normalized data by the implementation of
MLP method with Encog framework.

Walking Downstairs Walking Upstairs Running Standing Walking

True Positive 0 0 1001 0 0

True Negative 1001 1001 0 1001 1001

False Positive 2000 2000 999 2000 2000

False Negative 6999 6999 8000 6999 6999
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Table 6. Confusion matrix of the results obtained with normalized data by the implementation of the
MLP method with the Encog framework.

Walking Downstairs Walking Upstairs Running Standing Walking

True Positive 1 0 0 0 2000

True Negative 2000 2001 2001 2001 1

False Positive 1999 2000 2000 2000 0

False Negative 6000 5999 5999 5999 7999

Table 7. Confusion matrix of the results obtained with non-normalized data by the implementation of
the DNN method with the DeepLearning4j framework.

Walking Downstairs Walking Upstairs Running Standing Walking

True Positive 290 0 0 2000 0

True Negative 7786 7999 8000 506 7999

False Positive 214 1 0 7494 1

False Negative 1710 2000 2000 0 2000

Table 8. Confusion matrix of the results obtained with normalized data by the implementation of the
DNN method with the DeepLearning4j framework.

Walking Downstairs Walking Upstairs Running Standing Walking

True Positive 1334 1639 1909 1985 1722

True Negative 7641 7317 7978 7941 7712

False Positive 359 683 22 59 288

False Negative 666 361 91 15 278

This paper highlights the results obtained with different datasets using only the accelerometer
data for the creation of a part of the method for the automatic recognition of several ADLs, including
running, walking, walking upstairs and downstairs, and standing. The study also compares the results
obtained with different types of ANNs, requiring low processing for the correct implementation in
mobile devices.

The low accuracies verified with Neuroph and Encog frameworks are related to the fact that the
ANNs created are probably overfitted. The possible solutions may be the acquisition of more data,
the application of L2 regularization, the implementation of dropout regularization, the early stopping
of the training, the use of the batch normalization, or the use of a minor number of features in the ANN.
The DNN method with L2 regularization and normalized data reported the best results. The influence
of the amount of the maximum iterations is not substantial, but, in some cases, it increases the accuracy
of the ANN.

During the data acquisition, several constraints may exist, collecting noised values of sensors’
data. Commonly, the accelerometer is available in all mobile devices, and the implementation of the
system architecture for the recognition of ADLs and its environments can be possible with all devices
in the market. However, these are multitasking devices, and sometimes the data cannot be collected
or is incorrectly collected, providing low accuracy on the recognition of the ADL. Another example
consists of the positioning of the mobile device because the data is not correctly acquired during a call.
Memory and power processing are profoundly affected by the performance of different tasks at the
same time.

The main focus of this research was to explore the use of the accelerometer sensor for ADLs
recognition. We found that the accuracy obtained is in line with the previous results in the literature [20].
This study reports an accuracy of 85.89% in the recognition of five ADLs. Furthermore, using the
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DNN method, according to Table 2, the results obtained with the implementation of our methods are
not directly comparable, because the datasets and source code of the implementation used by other
authors are not publicly available. A comparison would be essential to proving the reliability of our
method. Thus, considering the average of the accuracies reported by ANNs and their variants shared
in the literature, the results (92% ± 6.55%) present better accuracies than those obtained in this study.
However, taking into account only the average of the accuracies reported by the projects that identified
more than one ADL, the results reported by other studies (90% ± 6.60%) are slightly equivalent to
those published by our research. Finally, considering only the studies that recognized five or more
ADLs, the results reported by these studies (90% ± 6.63%) are equivalent to the results obtained with
this work.

In conclusion, the accuracy of the ADLs recognition depends on several variables, including the
conditions for data acquisition, conditions for data processing, and the use of lightweight methods
(local processing) or server-side processing [72]. As presented in [72], it may cause failures on the
data acquisition, collect incorrect data, or claim the nonexistence of data in some instances, causing
improper recognition of ADL. To avoid some effects of inaccurate data, we implemented data cleaning
methods, and data imputation methods may be useful for reducing the impacts of unavailable data.
The main possible problems are related to the incorrect or nonexistent recognition of ADLs performed.

The main limitations of this study are related to the use of mobile devices for data acquisition.
On the one hand, there is a lack of scientific evidence and research on the definition of the best position
at which the mobile device must be located. On the other hand, other constraints during the data
acquisition are related to the frequency of the data acquisition because it depends on the different
processes running in the mobile device. During the experimental phase, the mobile application
developed for the data acquisition writes the data in text files; the latency to write in the text files also
influences the data acquisition and processing. However, the use of local processing and lightweight
methods reduces the lag of the connection with the network, but the different methods must always
be optimized.

Taking into account the results obtained in [43], the number of ADLs recognized, the number of
records for each ADL, and the features extracted are different in our study. Consequently, the accuracy
obtained in our research with the DNN method is higher than the results reported by the authors of [43].
We expect that in similar conditions of study [43], we obtain the same or better results. Nevertheless, it
will be impossible to test, as the authors [43] did not make their data publicly available.

5. Conclusions

This paper presents several approaches that use the accelerometer sensor commonly available
in mobile devices for ADLs recognition. Furthermore, the main contribution of this document
is to offer a comparative study of different ANN implementations to find the most appropriate
method for ADLs identification using only accelerometer data. The comparative study performed
in this research recommends the use of DNN for the recognition of ADLs. We proposed the
implementation of the trained DNN method in the system for the identification of the ADLs using only
the accelerometer sensor available in off-the-shelf mobile devices, applied with the DeepLearning4j
framework. The results show the accuracy of 85.89%, a precision value of 86.21%, a recall value of 85.89%,
and an F1 score value of 86.05% using the five largest distances between the maximum peaks; the mean,
standard deviation, variance, and median of the maximum peaks; and the standard deviation, mean,
maximum and minimum values, variance, and median of the raw signal as features.

Nevertheless, this study has some limitations concerning the use of mobile devices. The lack of
research on the best position of the mobile device for data collection is a relevant question. Moreover,
the energy expenditure concerning the processing power related to the frequency of data acquisition
is also a significant challenge that the authors have addressed by using only accelerometer data.
The authors verified that the overfitting problem is not avoided, but the results obtained using only
accelerometer data are similar to those obtained with the use of multiple sensors. Additionally, the
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authors found that using only one sensor and a smaller number of features for the train of the ANN
does not significantly decrease the accuracy of the results obtained. Still, it uses less computational
resources and promotes the energy consumption of the mobile device when compared with the use of
multiple sensors.

As future work, other implementation settings regarding different machine learning methods will
be studied. These implementations will include the design of other types of data classification methods,
e.g., ensemble learning methods and decision trees, to verify the existence of different approaches
with better results using our dataset. The dataset is publicly available, and other authors can use and
compare it with their methods.
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Abstract: In this paper, we present in depth the hardware components of a low-cost cognitive
assistant. The aim is to detect the performance and the emotional state that elderly people present
when performing exercises. Physical and cognitive exercises are a proven way of keeping elderly
people active, healthy, and happy. Our goal is to bring to people that are at their homes (or in
unsupervised places) an assistant that motivates them to perform exercises and, concurrently, monitor
them, observing their physical and emotional responses. We focus on the hardware parts and the
deep learning models so that they can be reproduced by others. The platform is being tested at an
elderly people care facility, and validation is in process.

Keywords: cognitive assistants; aging; emotion recognition

1. Introduction

We are currently facing a societal problem: the world’s population is growing older fast [1].
While this could be great news (and it is), there are intrinsic problems that come with fast shifting
demographic changes, and being unprepared for growing health requirements that elderly people
have is one of them.

Persons over the age of 65 are the fastest-growing age group, and it is expected that by 2050,
16% of the world population will be over 65 years, while in 2019, this value was already 9% [1].
This projection is global, meaning that regions such as Northern Africa and Western Asia, Central and
Southern Asia, Eastern and South-Eastern Asia, and Latin America and the Caribbean are expected to
double their elderly population [1]. Furthermore, by 2050, 25% of the population in Europe will be
65 years or over, being accompanied by an interesting fact: in 2018, children under five years of age
were outnumbered by persons aged over 65 [1]. This rapid increase is mainly due to improved medical
care, which diminishes the mortality rate. Although people live longer, this is not without its problems.
In the Euro28 area, it is expected that people over 65 years only have 10 more years (on average) until
serious health problems start to appear, as reported by the United Nations (UN) [1].

In their latest census, the UN has identified that there is an increasing shortage of employed
people, thus causing high stress to social protection systems [1]. This is due to two factors: the decrease
of working-age people and the social-economic problems of countries. For instance, in Japan, the ratio
between people aged 25–64 to those over age 65 is 1.8, while in most of Europe, the value is starting to
fall below of three. This means that there will be a high impact to countries’ economies as the GDP
will be affected by the decrease of the labor market, being overburdened by the increasing costs of
healthcare systems, pensions, and social protection.

Apart from the economic distress, there is the healthcare distress. Studies, like the ones that were
presented by Licher [2] and Jaul [3], show that maintaining high levels of quality of life while aging
is complicated. There is no clear path towards a definitive medical solution, as most of the illnesses
are non-curable and have very complex pathologies. A possible stand-in replacement to a medical
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treatment is backed by several research studies [4–6] that show that it is possible to refrain from the
advances of these illnesses by keeping the elderly active both physically and cognitively through
exercises. These exercises are often complex and require attention from a caregiver, either to help
perform those exercises or to correct the posture/strategy. This requires a large amount of monitoring
time by another person.

The caregivers are often overburdened by the care and assistance work, as evidenced by these
works [7–9] (with the most severe cases being non-specialized trained caregivers combined with
high-dependency elders). This means that often, the caregiver puts his/her health at risk, and the elder
does not receive adequate care. In specialized facilities, like nursing homes, this is less accentuated;
nonetheless, the lack of caregivers and the high number of residents may lead to a poorer experience
in these facilities [10]. Furthermore, as previously stated, the elderly are not economically prepared for
the high cost that these facilities charge [11].

In short, in the near future, a large number of older people will be left alone in their homes while
suffering from limiting and life-threatening diseases because they cannot afford nursing homes or
home care services or because they are not able to have assistance from an informal caregiver.

A possible solution to these issues may be the usage of technology to help elderly people perform
Activities of Daily Living (ADL) or attenuate their loneliness, while actively monitoring their health
status. There are already some projects in this domain, explained in depth in Section 2. These projects
shed some light on what the current approaches are, and more importantly, what the needs of elderly
people are and how technology can improve their quality of life.

Our project goal is to create a way so that elderly people can in stay their homes safely and
under active supervision, while at the same time engaging them in personalized active exercises and
exergames. The way that this goal is achieved by our platform is by using a low-cost, easy-to-deploy
sensor system that is able to monitor said exercises and interact with the elders, sending reports to
the informal/formal caregivers. The platform is constituted by two components: the sensors and the
software (exercise evaluator, scheduler, information portal, and interactor). Our proposal covers a less
traveled path, which is the usage of low-cost sensors (using in expensive commercial components and
3D printing) together with health-related software that gives personalized advice.

This paper is a continuation of the work presented in [12]. The main improvements in relation to
it are the improved sensor systems and the learning models for information extraction. Additionally,
the objective is that others are able to reproduce our platform with ease from the information presented
in this paper.

The paper is structured as follows. Section 2 analyses the related work. Section 3 presents the
proposed system, which describes the hardware (wristbands) and the emotion and activity detection.
Finally, the conclusions are presented in Section 4.

2. Related Work

This project touches on prolific domains: emotion detection, human activity recognition, and
cognitive assistants. Therefore, in this section, we present related work that belongs to those domains
or, like this project, touches on all or part of them.

2.1. Cognitive Assistants

The cognitive assistants consist typically of a combination of software and hardware systems that
help people (mostly cognitively impaired) in their ADL. The aim is to provide memory assistance
(through reminders), visual/auditory cues, and physical assistance (through robots or smart home
actuators) [13,14].

One example of this is the PHAROS [15] project, whose goal is to use a friendly-looking robot to
engage elderly people in playful activities, such as physical exercises or cognitive games. The aim is
to maintain a conversation that subliminally engages the users to perform the system’s suggestions.
Furthermore, using the robot sensors, it is able to detect and gauge the exercise performance and give
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this information to the caregivers so they are able to access if the users are performing the exercise well
and to measure if the users are losing abilities.

Using friendly robots to interact with the user was the work of Castillo et al. [16]. The objective
was to use a robot to guide the users in therapy sessions for apraxia of speech. The robot captured the
mouth movements and evaluated if they were correct, giving the users advice on how to perform the
exercises and tips about mouth positions.

The CoMEproject [17] is an example of a cognitive assistant that does have a robot counterpart.
This project uses wearable sensors and smartphones to monitor the users, giving way to interaction
while concurrently collecting reports from the usage. The users receive information and have tutorials
available on how to perform the planned activities. The caregivers are able to access the user
performance reports. This project is designed to be implemented in elderly care facilities, maximizing
the number of care receivers a caregiver is able to monitor.

The iGenda project [18–20] aims to provide assistance through ambient assisted living
devices/environments like a smart home. The objective is to use IoT or Internet connected devices to
convey information and actuators to change the environments for the users. The social objective is to
be a cognitive aid to people who are suffering from light to mild cognitive disabilities. iGenda’s core is
an event management system that monitors the users’ tasks and shared activities and provides cues
through screens and speakers to remind the users of the upcoming activities. Furthermore, the users
are able to interact with iGenda, using logical arguments and persuading them to perform certain
activities. Apart from this, iGenda is able to monitor users outside their home, resorting to information
of their smartphone; thus, it is able to verify if they are leaving safe/common areas.

2.2. Human Activity Recognition

The domain of human activity recognition is experiencing a boom in terms of development due to
the usage of novel deep learning techniques that were not available previously. Several studies [21,22]
showed that the majority of current projects and technologies used in human activity recognition
display a clear pattern: deep learning and datasets. This pattern allows the advancement of the
developments to the stage of micro-optimization due most models having over 85% accuracy.

One example is the work of Martinez-Martin et al. [23–25], which proposed a rehabilitation
system to provide rehabilitation monitoring at home using a humanoid robot. The goal was to use
the robot’s cameras to access the user’s physical movements visually, using deep learning methods,
and correct them using the robot screen and body to convey this information. The robot was also able
to navigate around the house and locate the user. The captured information (body movement measure)
was made available to healthcare professionals for them to correct the user if needed, providing
specialized attention.

The work of Vepakomma et al. [26] presented a framework that detected common home activities
from wrist bracelets. They resorted to deep learning methods to classify the raw input and produce
a result from even light gestures. Their framework was able to detect 22 distinct activities with an
accuracy of 90%. The issue with this project was that it was too personalized, meaning that these results
were achieved with only two persons, whereas the results were significantly lower with others users.

The work of Cao et al. [27] presented a novel classification method that achieved over 94%
accuracy in detecting ADL. The method worked by creating associations between activities determining
how usual a sequence of events was, like rinsing the mouth with water performed after brushing teeth.
Using these pre-established associations was faster than calculating real-time data. The downside
of this approach was its rigidity to changes and that singular activities were harder to detect, apart
from being required to input these associations by a technician, as the system was unable to learn on
its own.
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2.3. Emotion Detection

A novel domain is emotion detection, where, using a combination of hardware and software,
computer systems are able to identify human emotions. Several studies reported that there were various
methods to human emotion recognition [28,29]. There was a division between using non-invasive
sensors (like vital signs sensors) and using cameras. We focused on the advancements of detection
using body sensors, as used in this project. This decision was based on the privacy issues arising from
using cameras.

Brás et al. [30] presented 90% accuracy in detecting emotions using Electrocardiogram (ECG)
sensors, in a controlled environment. To achieve this high result, a novel approach was developed,
using a quantization method that compared the incoming signal to a dataset doing a meta-classification;
then compressing ECG meta-data resorting to an ECG dataset as a reference; finally, using the
probability that the ECG was classified correctly. This unorthodox process was limited to a tight
coupling of the models to the individuals that were used to train the system. The tests may have
introduced a bias in the results; for instance, it was reasonable to assume that people became scared
and anxious when they were exposed to fearful situations. Fear is an intense emotion that regularly
leads to an accelerated heartbeat, which is simple to identify in an ECG. The studies performed were
designed to cause a strong emotional response, the minimum threshold values being unknown and
whether muted emotions could be detected.

Using the matching pursuit algorithm and a probabilistic neural network method,
Goshvarpour et al. [31] detected emotional features using ECG and Galvanic Skin Response (GSR).
Nonetheless, in this work, only four emotions were detected: scary, happy, sad, and peaceful (from
the pleasure arousal dominance model). As a trigger, music was used on eleven students. Over 90%
accuracy was reported. From the study, it was determined that GSR had little impact on emotion
detection. Furthermore, the emotions were not linearly detected. Strong emotions, like arousal (happy),
were far simpler to detect than the others.

Naji et al. [32,33] used a combination of ECG with forehead biosignals to obtain a good accuracy
in emotion identification. It was discovered that facial movements (like frowning) were very useful
to identify emotions accurately. With the usage of the headband, a camera was not needed; thus, the
privacy concerns were not significant.

Seoane et al. [34] used body sensors to detect stress levels of military personnel (ATRECproject).
They established that placing the sensors (ECG and GSR) on the neck (throat area) provided a high
level of accuracy in terms of valence markers and alert levels, which are directly related to stress levels.
On the contrary, speech, GSR (on the hands/arms), or skin temperature provided little accuracy for
emotion detection.

As can be seen, there are different (even contradictory) approaches to classifying emotions with
minimal intrusion. ECG is crucial for the detection and classification of emotions, and the use of
various sensors can improve the accuracy of the classification or help to detect triggering events.

With this project, we aim at the advancement of the state-of-the-art, by overcoming the issues that
the projects presented in this section had. Nonetheless, it is of note that these projects were important
hallmarks and should be regarded as so, as they established the pathway to newer advancements.

3. Low-Cost Cognitive Assistant

This section describes our proposal for a system that is a continuation of previous research
presented in [12]. This new research incorporated a series of devices capable of detecting and classifying
the movements carried out by elderly people and detecting their emotions when performing them.

With the emergence of wearable devices capable of counting daily steps and calculating the Heart
Rate (HR), the use of these devices has many fields of application, the most common being in sport.
Nevertheless, many healthcare related applications have emerged using these devices. Devices such as
the Fitbit (https://www.fitbit.com/es/home) [35], which can be used to track physical activity, or the
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Apple Watch [36], which can be used to monitor people with cardiovascular diseases (through heart
rate measurements), are some of the examples in which these devices are used.

In recent years, new devices have appeared including communication protocols such as WiFi
and Bluetooth. All these features are used to create applications that facilitate the monitoring of the
elderly, allowing the acquisition of signals such as ECG, Photoplethysmography (PPG), respiratory
rate, and GSR.

Our device was designed by integrating two elements, the emotion detection using bio-signals
and the detection of movements in the lower and upper extremities through accelerometers.

To make this application possible, it was necessary to use different types of hardware that
facilitated the acquisition of data and software tools that analyzed the information sent by the devices.
This way, mixing these technologies, it was possible to recognize patterns, analyze images, analyze
emotions, detect stress, etc.

3.1. Wristbands

We devised a set of two wristband prototypes as shown in Figure 1 to be worn by the people
being monitored. Wristband B detected motion, whilst Wristband A had a more complex composition,
as can be observed in Figure 2. The goal pursued by using both of these wristbands was to detect not
only the emotion of the people being monitored, but also if they were properly doing the exercises
being suggested. The decision to manufacture our own devices was due to the fact that the data from
the commercial wristbands were filtered and preprocessed, so they did not have the precision required
for our platform.

Figure 1. Wristband A and Wristband B (motion detector) prototypes.

To perform the emotion detection using bio-signals, it was necessary to have a specific hardware
to acquire these signals. We designed a device capable of acquiring these signals so we could control
the tuning and raw signal. There were two signals captured by our device, and the first was a PPG
signal. This measurement was made by a sensor (Figure 3) that passed a light beam over the skin,
to make the subcutaneous vessels illuminate. This made a part of this beam be reflected, falling on a
photo sensor that converted it into an equivalent voltage. Because the skin absorbed more than 90% of
the light, the diode pair was accompanied by amplifiers and filters that ensured an adequate voltage.
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Figure 2. Wristband A prototype composition.

(a) PPG sensor (b) GSR sensor

Figure 3. Photoplethysmography (PPG) and Galvanic Skin Response (GSR) sensors.

The second signal captured by our system was skin resistance, which is the galvanic response of
the skin. This resistance varies with the state of the skin’s sweat glands, which are regulated by the
Autonomous Nervous System (ANS). If the sympathetic branch of the ANS is excited, the sweat glands
increase their activity by modifying the conductance of the skin. The ANS is directly related to the
regulation of emotional behavior in human beings. To capture these variations, a series of electronic
devices was used, equipped with sensors or electrodes that were in contact with the skin. When there
was a variation in skin resistance, these devices registered this activity and returned an analog signal,
which was proportional to the activity of the skin. Figure 3 shows the device used to make this capture.

The analog signals returned by the sensors were digitized using the ESP-32’s analog to digital
converter. Our system used an ESP-32 TTGO development system (Figure 4), which is being widely
used in IoT applications. This was mainly due to its easy programming and to the fact that it had WiFi,
LoRa, and Bluetooth communication protocols with low power consumption or BLE. These features
make this device the ideal tool to be used in monitoring applications.

In this way, the ESP-32 transformed the analog signals returned by the sensors to digital. This was
done using the analog-to-digital converter of the ESP-32. The digitized signals were transformed as
voltage equivalent to the acquired signal. To carry out the transmission of the acquired data, one of
the communication protocols incorporated in the development system was used. The ESP-32 TTGO
incorporated three communication protocols, WiFi, LoRa, and low power Bluetooth. We used the
HTTP protocol for data transfer via WiFi to the server.
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Figure 4. ESP-32 TTGO developer board.

3.2. Software

The sensor systems provided data about the human condition, and with this data we could form
information about the exercises that the users performed and their emotional condition. This was
performed by two modules that identified the exercises’ performance and the emotions. Additionally,
this information was made available to the users and caregivers so they were informed about
their progression.

3.2.1. Emotion Classification

To perform the emotion detection using biosignals, it was necessary to calculate the biosignal
values corresponding to each emotion for concrete individuals, as biosignals vary for each person.
Therefore, a dataset was created to train an artificial neural network that gave us the emotion values of
each individual using the biosignals as input.

The experiment to create the dataset acquired the signals of GSR and PPG while observing a
series of images, which sought to modify our emotions [37]. The experiments were performed by 20
test subjects using a database with 1182 images. This database was divided into two sets: the training
set of 900 images and the test set of 282 images.

Each experiment was composed by the following steps:

1. The set of training images (50) was observed by the test subjects for 10 s. During these 10 s,
the signals of GSR, PPG, temperature, and heart rate were recorded and stored.

2. At the same time, the subject was recorded using a camera in the monitoring system. The images
recorded were used to detect the emotion expressed by the subject. This detection was performed
using the Microsoft Detect Emotions Service, which detects the following emotions: anger,
contempt, disgust, fear, happiness, neutral, sadness, and surprise.

3. After 10 s of observation of the stimulus, the subject had 10 s more to respond to the SAM
(Self-Assessment Manikin) test [38]. This test allowed us to know the emotional state of the
individual in terms of PAD (Pleasure, Arousal, Dominance).

However, our dataset had two outputs: the first one corresponding to the emotion detected
using the image processing and the second one the emotion obtained using the SAM (Self-Assessment
Manikin) test [39]. The SAM test is a technique that allows the pictorial evaluation of emotional states
using three parameters: pleasure, excitement, and dominance, which are associated with a person’s
emotional reaction. SAM is an inexpensive and easy method to evaluate affective response reports
in many contexts quickly. The output used to supervise the neural network training was the result
obtained through the image; the SAM test gave us a qualitative description emotion associated with
the image.

Once the dataset was built, the next step was to train the model. To do this, six features were
extracted from each biosignal [40], which would allow us to perform the classification. To extract
the main characteristics of this database, the equations presented by Picard [39] were used. Picard
defined six equations to extract biological signal characteristics using statistical methods. Using these
equations, these characteristics were extracted from PPG and GRS signals. This allowed us to use
these data as input for the emotion classification algorithm, which used in-depth learning as a tool
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to perform this classification. Our classifier was composed of a 1D CNN (1D Convolutional Neural
Network), and the network structure is shown in Figure 5.

Figure 5. Structure of the 1D CNN used to classify emotions.

Figure 6 shows the accuracy between the input and validation data; likewise, you can observe the
loss during the same process (training and validation).

Figure 6. Model accuracy and loss of emotion recognition.

Those hyper-parameters were used in the experiments carried out in [12]. Due to the good results
that were obtained there, it was decided to use the same parameters for this paper.

34



Electronics 2020, 9, 310

The network had 12 neurons in the input layer, and these corresponded to the 12 characteristics
extracted from the signals (six for each signal). The hyper-parameters of the 1D-CNN are shown in
Table 1.

Table 1. 1D-CNN’s hyper-parameters to classify activities.

L2 Regularization or l2-penalty 0.01

Hidden Layers [32, 64, 128, 64, 32]

Dropout Rate 0.2

Monitor val_loss

Min. Delta 10

3.2.2. Exercise Classification

Physical exercise has a direct impact on human health. Studies have shown that frequent exercise
performed by older people [41] helps to reduce the risk of: stroke or heart attack, decreased bone
density, developing dementia, common diseases; and boost confidence and independence. In the vast
majority of cases, these exercises require the supervision of a specialist, a physiotherapist, or an expert
in sports. These experts suggest the exercises to be performed, based on age and physical limitations
or injuries. In some cases, this staff has to follow up, determining whether the exercises are being
performed correctly. The expert recognizes whether the exercise is being done properly or not based
on experience.

We propose a device to monitor remotely, capturing the movements of the wearer through
two accelerometers using low energy Bluetooth for communication. These data were sent to the
smartphone, which was responsible for recognizing the activity using deep learning techniques.
As there was no public database, it was decided to develop our own database. This database contained
five exercises, which were carried out by people aged between 30 and 50. During the exercises, people
were accompanied by a physiotherapist who was responsible for determining whether the exercise
was carried out correctly. Each one of the exercises: chest stretch, arm raises, one-leg stand, bicep
curls, and sideways walking, had a total of 31 participants, and a total of 1000 samples was collected
per exercise.

The database contained 150,000 signals; one has to be aware that these data were tripled. This was
mainly because the three axes of the accelerometer (X, Y, Z) were stored, so that in the end, we obtained
a database of 450,000 signals. From this database, the following partition was made to perform the
training, test, and validation of our model: training 80%, test 10%, and validation 10%.

Figure 7 shows the different steps carried out for the classification of physical activities.

Figure 7. Structure of the 1D CNN used to classify activities.
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The entries that allowed carrying out the classification of the activities was the acceleration in the
three axes of each of the activities. The realized activities, as well as the captured signals for each of
them can be seen in Figures 8–12 (the hyper-parameters of the 1D-CNN are shown in Table 2). Once the
signals were obtained, they were reshaped, creating a 6415 × 150 matrix (Table 3). Once the matrix
was reshaped, the data were sent to the neural network for classification.

Table 2. 1D-CNN’s hyper-parameters to classify activities.

Layer (Type) Output Shape Param#

reshape_1 (Reshape) (None, 50, 3) 0

conv1d_1 (Conv1D) (None, 41, 100) 3100

conv1d_2 (Conv1D) (None, 32, 100) 100,100

max_pooling1d_1 - MaxPooling1 (None, 32, 100) 0

conv1d_3 (Conv1D) (None, 23, 180) 180,180

conv1d_4 (Conv1D) (None, 14, 180) 324,180

global_average_pooling1d_1 (None, 180) 0

dropout_1 (Dropout) (None, 180) 0

dense_1 (Dense) (None, 5) 905

Figure 8. Arm rise.
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Table 3. Input data from the network.

x_train shape (6415, 50, 3)

N Training Samples 6415

y_train shape (6415,)

x_train shape (6415, 150)

input_shape 150

Figure 9. Chest stretch.

37



Electronics 2020, 9, 310

Figure 10. Bicep curls.

The results of the network are shown in Figures 13 and 14. Figure 13 shows model accuracy and
loss in the training phase.

Figure 14 shows the confusion matrix, which describes the false positives and false negatives of
our network. The information extracted from these graphs allowed us to determine that the model
adequately recognized physical activities. This matrix showed us the number of True Positives (TP),
against False Negatives (TN). Based on this matrix, we could determine that our system obtained a
total of 59 TP for the first exercise, a total of 62 TP for the second, for the third exercise 62 TP, the fourth
exercise 56 TP, and a total of 61 TP for the fifth exercise.
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Figure 11. One leg stand.

3.2.3. Information Display

Currently, we are focused on extracting information from the data available and constructing
reliable and accurate models that can be easily used in different scenarios. Nonetheless, the users and
caregivers are able to visualize the saved information in a simple web-page. The objective is to build a
multi-user/multi-level interface where the information is displayed in a personalized manner, showing
different graphics to each type of user (the granularity of the information that should be displayed to
the caregiver is very different from that that is displayed to the care receiver). Additionally, we will
be using the features of a previous project, iGenda [18–20], to manage the care receivers ADL and
exercises in an intelligent way, introducing cognitive help through remembering the care receivers of
events and giving them advises. The aim is to improve cognition by triggering actions that help the
elders to jog their memory, keeping them agile and active.
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Figure 12. Sideways walking.

Figure 13. Model accuracy and loss.
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Figure 14. Confusion matrix.

4. Conclusions

This paper presented the integration of non-invasive bio-signal monitoring for the detection
and classification of human emotional states and physical activities using a low-cost, easy-to-deploy
sensor system. In this manner, the developed system was used to attain data for the models capable of
detecting and classifying body movements and inferring the emotion that these exercises generated in
patients. Therefore, it was possible to build a system that produced complex results with minimal cost.

This was an advancement of the current state-of-the-art due to the combination of several software
features on just two simple low-cost devices. As stated in Section 2, there are other projects working
in this domain, but they tend to focus on off-the-shelf hardware solutions, thus suffering from
less-than-optimal data access of filtered data, unlike our case, as we had total control of the data.
Finally, most projects use expensive solutions, which may be a barrier for most elderly people, while
we used significantly less expensive solutions that may also decrease the time-to-market value.

The proposed approach was partially validated by patients and workers of a daycare center
Centro Social Irmandade de Säo Torcato. The validation was performed through the performance of
simple exercises with the patients under the supervision of caregivers. The future work will focus on
the development of new tests with a higher number of users and the complete version of the visual
interface. These new tests will allow us to use the information obtained to improve our learning
models for a better recognition of the different activities and tasks that are performed by the patients.
We will also focus our future research on determining the degree of accuracy in which the patient
performs the exercise, for greater confidence in making possible corrective decisions by the caregivers.
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Abstract: The recognition of Activities of Daily Living (ADL) using the sensors available in
off-the-shelf mobile devices with high accuracy is significant for the development of their framework.
Previously, a framework that comprehends data acquisition, data processing, data cleaning, feature
extraction, data fusion, and data classification was proposed. However, the results may be improved
with the implementation of other methods. Similar to the initial proposal of the framework, this paper
proposes the recognition of eight ADL, e.g., walking, running, standing, going upstairs, going
downstairs, driving, sleeping, and watching television, and nine environments, e.g., bar, hall, kitchen,
library, street, bedroom, living room, gym, and classroom, but using the Instance Based k-nearest
neighbour (IBk) and AdaBoost methods as well. The primary purpose of this paper is to find the best
machine learning method for ADL and environment recognition. The results obtained show that IBk
and AdaBoost reported better results, with complex data than the deep neural network methods.

Keywords: activities of daily living; AdaBoost; mobile devices; artificial neural networks; deep
neural networks

1. Introduction

The use of mobile devices while doing daily activities is increasing [1]. These devices have different
types of sensors that allow the acquisition of several data related to the user, including the accelerometer,
magnetometer, gyroscope, Global Positioning System (GPS) receiver, and microphone [2,3]. These sensors
allow the creation of intelligent systems to improve the quality of life. The monitoring of older adults
or people with chronic diseases is one of the critical purposes. Furthermore, it can be useful to support
sports activities and stimulate the practice of physical activity in teenagers [4]. The development of these
systems is included in the research of Ambient Assisted Living (AAL) systems and Enhanced Living
Environments (ELE) [5–10].
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The automatic recognition of ADL is widely researched [11–16], where the previously proposed
framework [2,17–25] was tested and validated with different types of Artificial Neural Networks
(ANN) [26–28], verifying that the best results were achieved with Deep Neural Networks (DNN).
The proposed framework allows the recognition of eight ADL, i.e., walking, running, standing,
going upstairs, going downstairs, watching television, sleeping, driving, and other activities without
motion, and nine environments, i.e., bar, classroom, gym, hall, kitchen, library, street, bedroom,
and living room. This framework uses sensors available in mobile devices [29,30], reporting different
accuracies. The proposed architecture is composed of data acquisition, data processing, data fusion,
and data classification. The classification module is divided into three small stages, including the
recognition of simple ADL, i.e., running, standing, walking, going upstairs, going downstairs, and other
activities without motion, with accelerometer, gyroscope, and magnetometer sensors, the recognition
of environments, i.e., bar, classroom, gym, hall, kitchen, library, street, bedroom, and living room,
with the microphone data, and the recognition of activities without motion, i.e., sleeping, watching
television, driving, and other activities without movement.

This research is based on the creation of a framework for the recognition of ADL and its environments.
Still, its main goal is related to the testing of ensemble learning methods to further improve the obtained
accuracy in the recognition.

The main contribution of this paper is the implementation of different machine learning methods
with the same dataset used for the creation of the framework [31], including AdaBoost [32,33] and
Instance Based k-nearest neighbour (IBk) [34], using different Java based frameworks, including
Weka [35] and Smile [36]. Finally, the results obtained with the different methods should be compared
to decide the best method for implementation using the ADL and environment recognition framework.

The results show that the application of the IBk method implemented with Weka software reported
better results than others, reporting results with around 77.68% accuracy in recognition of ADL, 41.43%
accuracy in recognition of environments, and 99.73% accuracy in recognition of activities without
motion. However, AdaBoost applied with Smile also gave important results, reporting results between
85.44% (going upstairs) and 99.98% (driving).

Section 2 gives the presentation of the different methods implemented. The results and the
comparative study of this paper are presented in Section 3. Finally, the discussion and conclusions are
presented in Section 4.

2. Methods

2.1. Study Design

This study consisted of the use of the same structure and data acquired by the research presented
in [18,21,22,24,25] to implement a comparative study between three types of studies. The tests were
conducted with the dataset available in [24], which included data related to the eight ADL and
nine environments. The information was acquired from the accelerometer, magnetometer, gyroscope,
microphone, and GPS receiver available in the mobile device.

As presented in [21], an Android application was used for the acquisition of the data related to the
different sensors. This mobile application is responsible for data acquisition and data processing using
built-in smartphone sensors such as the accelerometer, magnetometer, gyroscope, sound, and GPS
data. The software was responsible for managing five seconds of data every five minutes. It was
installed in a smartphone, and it was placed in the front pocket of the pants of 25 subjects with different
lifestyles, aged between 16 and 60 years old. For ADL and environment identification, a minimum of
2000 samples with five seconds of data acquired from the different sensors was available in the dataset
used for this research. Different environments were used in the performed tests and were strictly
related to specific activities. The volunteers had to select the ADL that would be performed using the
mobile application before the start of the test. By default, the mobile application did not save any data
without user input. However, the proposed method had limitations related to battery consumption
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and the processing power needed to perform the tests. Currently, the majority of the smartphones
available on the market incorporate high performance processing units that can be used to perform the
tests, and the main problem is related to power consumption. However, most people usually recharge
their mobile phones daily. Therefore, the proposed method can be used in real-life scenarios.

2.2. Overview of the Framework for the Recognition of the Activities of Daily Living and Environments

Based on the previously proposed framework [20], Figure 1 shows a framework composed of
four stages, including data acquisition, data processing, data fusion, and data classification. The data
processing consisted of several phases, including data cleaning and feature extraction. The data
classification was divided into three stages, the recognition of simple ADL (Stage 1), the identification
of environments (Stage 2), and the activities without motion (Stage 3). Stage 1 included the use of
the data acquired from the accelerometer, magnetometer, and gyroscope sensors. The data received
from the microphone were processed in Stage 2. Finally, Stage 3 increased the number of sensors,
combining the data acquired from the accelerometer, magnetometer, and gyroscope sensors with the
data obtained from the GPS receiver and the environment previously recognised.

Figure 1. Flowchart of the ADL and environment recognition framework implemented in this study.

Mobile devices are composed of several sensors, which are capable of acquiring different types
of data. The framework proposed was capable of acquiring and analysing 5 seconds of data and
identifying the current ADL executed and the current environment frequented. The next stage
consisted of the processing of the data acquired from the sensors for a further fusion of the different
data acquired from the sensors. The final module of the framework consisted of the classification of
the data, which started to process all features extracted from the sensors available in the mobile device
and identified if the ADL executed was available in the set of ADL proposed. In the affirmative case,
the ADL performed was presented to the user. Next, the environment frequented was recognised in
the next stage, and it was presented to the user. If no ADL was recognised or the ADL recognized
was standing, the identification of a standing ADL would be executed, trying to discover the activity
performed by the user.

2.2.1. Data Acquisition

This study was based on the same dataset used in [21], which is publicly available in [31].
This dataset was composed of small sets of data (five seconds every five minutes) captured by the
sensors available in the off-the-shelf mobile phones, i.e., accelerometer, magnetometer, gyroscope,
microphone, and GPS receiver, and stored in the cloud. The dataset used in the presented study was
created using an Android mobile application for data collection. On the one hand, the running and
walking data were collected in outdoor environments. On the other hand, standing and going down
and upstairs were performed inside buildings.

Moreover, the tests were conducted at different times of the day. In total, thirty-six hours of
data were collected, which corresponded to 2000 samples with five seconds of raw sensor data each.
Before data acquisition, the user had to use the smartphone to select the ADL that would be conducted
and the time needed.
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2.2.2. Data Cleaning

Data cleaning is a step performed during data processing. It is mainly used to minimise the effects
of the environmental noise acquired during the acquisition of the data from the sensors. Data cleaning
methods depend on the type of data acquired and the sensors used. On the one hand, a low pass filter
was applied to the data obtained from the accelerometer, magnetometer, and gyroscope sensors [37].
On the other hand, the Fast Fourier Transform (FFT) [38] was used to extract the relevant information
from the data collected from the microphone. There were no methods needed to clean the received
data from the other types of sensors.

2.2.3. Feature Extraction

After the cleaning of the data, we extracted the features. Table 1 presents the extracted features
from the selected sensors, which consisted mainly of statistical features. In Stage 1, the statistical
features were mainly used, i.e., standard deviation, mean, maximum and minimum value, variance,
and median, of the raw data and the peaks of the motion and magnetic sensors. It also included
the calculation of the five greatest distances between calculated peaks. Stage 2 was composed of
the feature acquired from the microphone, including the statistical features, i.e., standard deviation,
mean, maximum and minimum value, variance, and median, of the raw data, and the calculation
of 25 Mel frequency cepstrum coefficients with the microphone. Finally, Stage 3 included also the
distance travelled calculated from the Global Positioning (GPS) receiver data and the environment
recognised in Stage 2.

Table 1. Features extracted.

Sensor Type of Data Features

Accelerometer
Magnetometer

Gyroscope

Raw data standard deviation, mean, maximum and minimum
value, variance, and median

Peaks five greatest distances between peaks, mean, standard
deviation, variance, and median

Microphone Raw data 26 MFCC, standard deviation, mean, maximum value,
minimum value, variance, and median

GPS receiver Raw data distance travelled

2.2.4. Data Fusion and Classification

Data fusion and classification were included in the last stage of the ADL and environment
recognition framework. The previous studies reported that the best accuracies were achieved with
the DNN method [18,21,22,24,25], and all the features are presented in Table 1. This study presents
the results of the test and validation of different methods, including IBk, AdaBoost with the decision
stump, and AdaBoost with the decision tree, implemented in the Java programming language for
compatibility with Android based devices. The configurations used were different for the different
methods implemented. Firstly, the DNN method was implemented with an activation function named
sigmoid, which is a function that has the sigmoid curve, widely used as an activation function for neural
networks [39]. Several learning rates were previously studied, and it was verified that we obtained
better results with a value equal to 0.1. For this method, the maximum number of training iterations was
established as 4 × 106. The method was implemented without distance weighting, with three hidden
layers, a seed value of six, and backpropagation. The Xavier function [40] was used as an initialization
function, implementing L2 regularization [41]. Secondly, the IBk method was implemented with a
batch size of 100, a k value of 1, and the linear nearest neighbour search algorithm [42]. Finally, in the
last two methods implemented, the main difference was the weak classifier used in combination with
the AdaBoost method as the decision stump classifier [43], for the first one, and the decision tree
classifier [44], for the second one. Other differences were revealed, where the combination of the
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AdaBoost method with the decision stump classifier was implemented with a maximum number of
training iterations as 10, a seed value of 1, a batch size of 100, a weight threshold of 100, and without
resampling. Thus, the combination of the AdaBoost method with the decision tree classifier was
implemented with a seed value of 2, a batch size of 10, a number of maximum nodes equal to 4, and 200
as the number of trees.

Initially, we started with the identification of simple ADL, i.e., walking running, standing, going
upstairs, and going downstairs, which was performed with the data acquired from the accelerometer,
magnetometer, and gyroscope sensors. Secondly, the recognition of environments, i.e., bar, classroom,
gym, library, street, hall, living room, kitchen, and bedroom, was performed with the data retrieved
from the microphone. Finally, the recognition of activities without motion, i.e., driving, sleeping,
and watching television, was performed with the data collected by the accelerometer, magnetometer,
gyroscope, and GPS receiver with the inclusion of the environment recognised. Thus, the framework
provided the recognition of eight ADL and nine environments.

For the implementation of the methods, the following technologies and frameworks were used:

• DNN: DeepLearning4j framework [45];
• IBk: Weka software [35];
• AdaBoost with the decision stump: Weka software [35];
• AdaBoost with the decision tree: Smile (Statistical Machine Intelligence and Learning Engine)

framework [36].

3. Results

3.1. Recognition of Simple ADL

The results of simple ADL recognition with the IBk method presented around 80% accuracy using
the different combinations of motion and magnetic sensors, as presented in Table 2.

Table 2. ADL recognition using the Instance Based k-nearest neighbour (IBk) method implemented
with Weka software.

Sensors
Correlation

Coefficient

Mean

Absolute

Error

Root Mean

Squared

Error

Relative

Absolute

Error

Root

Relative

Squared

Error

Accuracy

Accelerometer 0.8335 0.261 0.817 21.8138% 57.7675% 73.9%

Accelerometer
and

Magnetometer
0.8771 0.2076 0.7011 17.2911% 49.5751% 79.23%

Accelerometer,
Magnetometer,
and Gyroscope

0.8781 0.2009 0.6991 16.733% 49.4287% 79.91%

AdaBoost is a binary classifier that uses a weak classier to improve the recognition of different
events. The implementation of this algorithm was performed with the identification of each ADL.
The results of simple ADL identification with the AdaBoost with the decision stump method
implemented with Weka software are presented in Table 3, verifying that all of the ADL were
recognised with an accuracy between 25.61% (going downstairs recognised with the accelerometer
and magnetometer sensors) and 98.44% (standing recognised with the accelerometer, magnetometer,
and gyroscope sensors).
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Table 3. Accuracies of ADL recognition using the AdaBoost with the decision stump method
implemented with Weka software.

ADL Accelerometer
Accelerometer and

Magnetometer

Accelerometer,

Magnetometer,

and Gyroscope

Going downstairs 26.24% 25.61% 37.79%
Going upstairs 31.73% 32.64% 32.91%

Running 93.13% 93.00% 92.26%
Standing 96.35% 96.58% 98.44%
Walking 37.51% 51.23% 50.87%

In addition, Table 4 presents the clarification of the values obtained in Table 3, presenting the
True Positive (TP), True Negative (TN), False Positive (FP), and False Negative (FN) values. As this
recognition was performed as binary recognition, i.e., the comparisons were performed by comparing
the correct value with all records, we verified that the values of TP and TN were higher than others,
proving the reliability of the method.

Table 4. Confusion matrix values of ADL recognition using the AdaBoost with the decision stump
method implemented with Weka software (TP = True Positive; TN = True Negative; FP = False Positive;
FN = False Negative).

ADL
Accelerometer

Accelerometer

and

Magnetometer

Accelerometer,

Magnetometer

and Gyroscope

TN FP FN TP TN FP FN TP TN FP FN TP

Going downstairs 7469 1061 531 939 7467 1073 533 927 7606 1017 394 983
Going upstairs 7075 630 925 1370 7379 967 621 1033 7627 1498 373 502

Running 7919 81 81 1919 7914 82 86 1918 7917 97 83 1903
Standing 7938 26 62 1974 7933 33 67 1967 7977 23 23 1977
Walking 7472 552 528 1448 7629 632 371 1368 7609 546 391 1454

Moreover, the results on the recognition of simple ADL with AdaBoost with the decision tree
method implemented with the Smile framework are presented in Table 5, verifying that all of the ADL
presented an accuracy between 83.79% and 99.55% using the different combinations of motion and
magnetic sensors.

Additionally, Table 6 presents the clarification of the values obtained in Table 5, presenting the
True Positive (TP), True Negative (TN), False Positive (FP), and False Negative (FN) values. As this
recognition was performed as binary recognition, i.e., the comparisons were performed by comparing
the correct value with all records, we verified that the sum of the values of TP and TN was 2000.
This was the value of the number of samples equal to each activity, but the method reported a high
number of FP.

Finally, the results previously obtained with the implementation of the recognition of simple ADL
with the DNN method implemented with the Deeplearning4j framework are presented in Table 7,
verifying that all of the ADL showed an accuracy between 66.70% and 99.35% using the different
combinations of motion and magnetic sensors.
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Table 5. Accuracies of ADL identification using AdaBoost with the decision tree implemented with the
SMILE framework.

ADL Accelerometer
Accelerometer and

Magnetometer

Accelerometer,

Magnetometer,

and Gyroscope

Going downstairs 83.79% 84.21% 86.07%
Going upstairs 85.29% 84.70% 85.44%

Running 98.49% 98.47% 98.43%
Standing 99.04% 99.01% 99.55%
Walking 86.90% 89.53% 91.13%

Table 6. Confusion matrix values of ADL identification using AdaBoost with the decision tree
implemented with the SMILE framework (TP = True Positive; TN = True Negative; FP = False Positive;
FN = False Negative).

ADL
Accelerometer

Accelerometer

and

Magnetometer

Accelerometer,

Magnetometer,

and Gyroscope

TP TN FP FN TP TN FP FN TP TN FP FN

Going downstairs 1017 983 7362 638 972 1028 7449 551 974 1026 7633 367
Going upstairs 1086 914 7443 557 940 1060 7530 470 1083 917 7461 539

Running 1917 83 7932 68 1917 83 7930 70 1908 92 7935 65
Standing 1965 35 7939 61 1963 37 7938 62 1976 24 7979 21
Walking 1060 940 7620 380 1317 683 7636 364 1494 506 7619 381

Table 7. Accuracies of ADL identification using the DNN method.

ADL Accelerometer
Accelerometer and

Magnetometer

Accelerometer,

Magnetometer,

and Gyroscope

Going downstairs 66.70% 67.95% 77.25%
Going upstairs 84.45% 81.55% 82.40%

Running 95.45% 95.70% 95.85%
Standing 99.25% 99.20% 99.35%
Walking 86.10% 88.05% 90.09%

3.2. Recognition of Environments

The use of the IBk method for the recognition of environments using the microphone data reported
an average accuracy of 41.43%, as presented in Table 8. The remaining results presented in Table 9
showed that the AdaBoost with the decision stump method implemented with Weka software had an
accuracy between 10.36% and 91.78%. Next, the AdaBoost with the decision tree implemented with
the SMILE framework reported an accuracy between 88.74% and 99.08%. Finally, the DNN method
implemented with the Deeplearning4j framework presented an accuracy between 19.90% and 98.00%.

In addition, Table 10 presents the clarification of the values obtained in Table 9, presenting the
True Positive (TP), True Negative (TN), False Positive (FP), and False Negative (FN) values. As this
recognition was performed as binary recognition, i.e., the comparisons were performed by comparing
the correct value with all records, we verified that the values of TP were higher in the recognition of bar,
library, hall, and street. However, in the remaining classes, the values of TN were correctly recognised.
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Table 8. Recognition of environments using the IBk method implemented with Weka software.

Sensors Sound
Correlation coefficient 0.8171
Mean absolute error 0.5857
Root mean squared error 1.5574
Relative absolute error 26.3488%
Root relative squared error 60.3156%
Accuracy 41.43%

Table 9. Accuracies of recognition of environments using the AdaBoost and DNN methods.

Environments
AdaBoost with the

Decision Stump

AdaBoost with the

Decision Tree
DNN

Bar 91.78% 99.08% 22.05%
Classroom 20.67% 88.74% 37.95%

Gym 10.36% 88.87% 87.85%
Hall 40.36% 92.38% 34.80%

Kitchen 16.11% 88.89% 51.35%
Library 34.01% 91.59% 19.90%
Street 38.38% 90.92% 25.35%

Bedroom 17.88% 88.88% 98.60%
Living room 18.82% 89.20% 33.50%

Table 10. Confusion matrix values of the recognition of environments using AdaBoost with the decision
stump implemented with Weka software (TP = True Positive; TN = True Negative; FP = False Positive;
FN = False Negative).

ADL
Sound

TN FP FN TP

Bar 15,961 146 39 1854
Library 15,791 1183 209 817

Hall 15,119 645 881 1355
Kitchen 16,000 1999 0 1

Bedroom 16,000 1999 0 1
Street 15,517 1180 483 820

Classroom 16,000 1999 0 1
Living room 16,000 1999 0 1

Gym 16,000 1999 0 1

Furthermore, Table 11 presents the clarification of the values obtained in Table 5, presenting the True
Positive (TP), True Negative (TN), False Positive (FP), and False Negative (FN) values. As this recognition
was performed as binary recognition, i.e., the comparisons were performed comparing the correct value
with all records, we verified that the values of TP were higher in the recognition of bar, library, hall,
and street. However, in the remaining classes, the values of TN were also correctly recognised.
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Table 11. Confusion matrix values of the recognition of environments using AdaBoost with the decision
tree implemented with the SMILE framework (TP = True Positive; TN = True Negative; FP = False
Positive; FN = False Negative).

ADL
Sound

TP FP TN FN

Bar 1917 83 15,918 82
Library 720 1280 15,767 233

Hall 1419 581 15,210 790
Kitchen 1 1999 16,000 0

Bedroom 14 1986 15,984 16
Street 787 1213 15,579 421

Classroom 148 1852 15,825 175
Living room 168 1832 15,888 112

Gym 1 1999 15,995 5

3.3. Recognition of Activities without Motion

Initially, we presented, in Table 12, the results on the recognition of activities without motion with
the IBk method reporting an accuracy between 99.27% and 100% using the data acquired from the
accelerometer, magnetometer, gyroscope, GPS receiver, and the environment previously identified.

Table 12. Accuracies of the recognition of activities without motion using the IBk method implemented
with Weka software.

Sensors
Correlation

Coefficient

Mean

Absolute

Error

Root Mean

Squared

Error

Relative

Absolute

Error

Root

Relative

Squared

Error

Accuracy

Accelerometer
and environment

1 0 0 0 0 100%

Accelerometer,
Magnetometer,

and Environment
1 0 0 0 0 100%

Accelerometer,
Magnetometer,
Gyroscope, and

Environment

1 0 0 0 0 100%

Accelerometer,
Distance, and
Environment

0.9969 0.0042 0.0645 0.6235% 7.903% 99.58%

Accelerometer,
Magnetometer,
Distance, and
Environment

0.9964 0.0045 0.0695 0.6734% 8.5118% 99.55%

Accelerometer,
Magnetometer,

Gyroscope,
Distance, and
Environment

0.9943 0.0073 0.0876 1.0974% 10.7201% 99.27%
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Furthermore, the results of the implementation of the recognition of activities without motion
with the AdaBoost with the decision stump method implemented with Weka software are presented
in Tables 13 and 14, verifying that the events were recognised with an accuracy between 98.32% and
100% using the data acquired from the accelerometer, magnetometer, gyroscope, GPS receiver, and the
environment previously identified.

Table 13. Accuracies of the activities’ recognition without motion using the AdaBoost with the decision
stump method implemented with Weka software for motion and magnetic sensors after the recognition
of the environment.

Accelerometer

and

Environment

Accelerometer,

Magnetometer,

and Environment

Accelerometer,

Magnetometer,

Gyroscope,

and Environment

Watching
television

100% 100% 100%

Sleeping 100% 100% 100%

Table 14. Accuracies of the activities’ recognition without motion using the AdaBoost with the decision
stump method implemented with Weka software for motion, magnetic, and location sensors after the
recognition of the environment

Accelerometer,

Distance, and

Environment

Accelerometer,

Magnetometer, Distance,

and Environment

Accelerometer, Magnetometer,

Gyroscope, Distance,

and Environment

Watching
television

98.58% 98.98% 98.98%

Driving 100% 100% 100%
Sleeping 98.32% 98.32% 98.32%

Additionally, Tables 15 and 16 present the clarification of the values obtained in Tables 13 and 14,
presenting the True Positive (TP), True Negative (TN), False Positive (FP), and False Negative (FN)
values. As this recognition was performed as binary recognition, i.e., the comparisons were performed
by comparing the correct value with all records, we verified that the values of TP and TN were higher
than others, proving the reliability of the method.

Table 15. Confusion matrix values of the recognition of activities without motion using the AdaBoost
with the decision stump method implemented with Weka software for motion and magnetic sensors
after the recognition of the environment (TP = True Positive; TN = True Negative; FP = False Positive;
FN = False Negative).

ADL

Accelerometer and

Environment

Accelerometer,

Magnetometer,

and Environment

Accelerometer,

Magnetometer,

Gyroscope,

and Environment

TN FP FN TP TN FP FN TP TN FP FN TP

Watching television 2000 0 0 2000 2000 0 0 2000 2000 0 0 2000
Sleeping 2000 0 0 2000 2000 0 0 2000 2000 0 0 2000
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Table 16. Confusion matrix values of the recognition of activities without motion using the AdaBoost
with the decision stump method implemented with Weka software for motion, magnetic, and location
sensors after the recognition of the environment (TP = True Positive; TN = True Negative; FP = False
Positive; FN = False Negative)

ADL

Accelerometer,

Distance, and

Environment

Accelerometer,

Magnetometer,

Distance, and

Environment

Accelerometer,

Magnetometer,

Gyroscope, Distance,

and Environment

TN FP FN TP TN FP FN TP TN FP FN TP

Watching television 3979 0 21 2000 3998 13 2 1987 3998 13 2 1987
Driving 4000 1 0 1999 4000 1 0 1999 4000 1 0 1999
Sleeping 3974 0 26 2000 3974 0 26 2000 3974 0 26 2000

Additionally, the results on the recognition of activities without motion with the AdaBoost
with the decision tree implemented with the SMILE framework are presented in Tables 17 and 18,
verifying that the events were recognised with an accuracy between 98.50% and 100% using the
data acquired from the accelerometer, magnetometer, gyroscope, GPS receiver, and the environment
previously identified.

Table 17. Accuracies of the activities’ recognition without motion using the AdaBoost with the decision
tree implemented with the SMILE framework for motion and magnetic sensors after the recognition of
the environment.

Accelerometer

and

Environment

Accelerometer,

Magnetometer,

and Environment

Accelerometer,

Magnetometer,

Gyroscope,

and Environment

Watching
television

100% 100% 100%

Sleeping 100% 100% 100%

Table 18. Accuracies of the activities’ recognition without motion using the AdaBoost with the decision
tree implemented with the SMILE framework for motion, magnetic, and location sensors after the
recognition of the environment.

Accelerometer,

Distance, and

Environment

Accelerometer,

Magnetometer, Distance,

and Environment

Accelerometer, Magnetometer,

Gyroscope, Distance,

and Environment

Watching
television

99.67% 99.97% 99.97%

Driving 99.98% 99.98% 99.98%
Sleeping 99.52% 99.52% 99.50%

Tables 19 and 20 present the clarification of the values obtained in Tables 17 and 18, presenting
the True Positive (TP), True Negative (TN), False Positive (FP), and False Negative (FN) values. As this
recognition was performed as binary recognition, i.e., the comparisons were performed comparing
the correct value with all records, we verified that the values of TP and TN were higher than others,
proving the reliability of the method.
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Table 19. Confusion matrix values of the recognition of activities without motion using the AdaBoost
with the decision tree implemented with the SMILE framework for motion and magnetic sensors after
the recognition of the environment (TP = True Positive; TN = True Negative; FP = False Positive; FN =
False Negative).

ADL

Accelerometer and

Environment

Accelerometer,

Magnetometer,

and Environment

Accelerometer,

Magnetometer,

Gyroscope,

and Environment

TP FP TN FN TP FP TN FN TP FP TN FN

Watching television 2000 0 2000 0 2000 0 2000 0 2000 0 2000 0
Sleeping 2000 0 2000 0 2000 0 2000 0 2000 0 2000 0

Table 20. Confusion matrix values of the recognition of activities without motion using the AdaBoost
with the decision tree implemented with the SMILE framework for motion, magnetic, and location
sensors after the recognition of the environment (TP = True Positive; TN = True Negative; FP = False
Positive; FN = False Negative).

ADL

Accelerometer,

Distance, and

Environment

Accelerometer,

Magnetometer,

Distance,

and Environment

Accelerometer,

Magnetometer,

Gyroscope, Distance,

and Environment

TP FP TN FN TP FP TN FN TP FP TN FN

Watching television 2000 0 3980 20 2000 0 3998 2 2000 0 3998 2
Driving 1999 1 4000 0 1999 1 4000 0 1999 1 4000 0
Sleeping 1998 2 3973 27 1998 2 3973 27 1998 2 3972 28

Finally, the results of the activity recognition without motion using the DNN method implemented
with the DeepLearning4j framework are presented in Tables 21 and 22, verifying that the events
were recognised with an accuracy between 79.55% and 98.50% using the data acquired from the
accelerometer, magnetometer, gyroscope, GPS receiver, and the environment previously identified.

Table 21. Accuracies of the activities’ recognition without motion using the DNN method for motion
and magnetic sensors after the recognition of the environment.

Accelerometer

and

Environment

Accelerometer,

Magnetometer,

and Environment

Accelerometer, Magnetometer,

Gyroscope, and Environment

Watching
television

94.05% 94.00% 94.15%

Sleeping 97.90% 97.85% 98.00%

Based on the results reported, Table 23 presents the average of the results obtained with the
different algorithms implemented. As shown, the best results were achieved with the IBk method
(99.68%) and AdaBoost with the decision tree as a weak classifier (94.05%).

The training stage was faster with IBk and AdaBoost with the decision tree than the DNN method
previously implemented. These methods were less complicated to implement than the DNN method
and were more efficient.
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Table 22. Accuracies of the activities’ recognition without motion using using the DNN method for
motion, magnetic, and location sensors after the recognition of the environment.

Accelerometer,

Distance, and

Environment

Accelerometer,

Magnetometer, Distance,

and Environment

Accelerometer, Magnetometer,

Gyroscope, Distance,

and Environment

Watching
television

94.15% 94.25% 94.35%

Driving 80.65% 79.55% 84.15%
Sleeping 98.50% 98.30% 98.15%

Table 23. Average of the accuracy of each implemented method.

Stages DNN IBk
AdaBoost with the

Decision Stump

AdaBoost with the

Decision Tree

Stage 1 87.29% 77.68% 59.75% 91.33%
Stage 2 45.71% 41.43% 32.04% 90.95%
Stage 3 99.87% 99.73% 92.83% 99.87%
Overall 77.62% 72.95% 61.54% 94.05%

Based on the limitations of mobile devices, these methods should be implemented in the ADL
and environment recognition framework to improve the results provided to the user. The results
showed that the recognition of ADL and its environments was possible with the implementation of the
AdaBoost, IBk, and DNN methods. It allows opportunities to create a personal digital life coach and
monitor the different lifestyles. It is important for all people, because mobile devices are widely used.
They exploit the possibilities to improve the quality of life.

4. Discussion and Conclusions

The implementations of DNN, IBk, AdaBoost with the decision stump, and AdaBoost with the
decision tree were performed with success with the dataset previously acquired, which was based on
the data received from the accelerometer, magnetometer, gyroscope, GPS receiver, and microphone.
The framework was composed of data acquisition, data processing, data cleaning, feature extraction,
data fusion, and data classification, to recognise eight ADL and nine environments.

In general, the overall accuracies of the methods depended on the number of sensors and resources
available during data acquisition. The framework should be a function of the number of sensors
available in mobile devices. The methods with an accuracy higher than 90% were the IBk method and
AdaBoost with the decision tree as the weak classifier.

The AdaBoost and IBk methods reported the best results because these methods were not
susceptible to overfitting in comparison with the DNN method. Notably, one of the reasons for
this conclusion was the use of a weak classifier by AdaBoost that handled the discrimination of
some results.

According to the previously proposed structure of a framework for the recognition of ADL
and environments [2,17–25], the main focus of this study was related to the data classification
module, taking into account the implementations of the other modules performed in previous studies.
Previously, the DNN method was implemented, and it reported reliable results. Still, for the recognition
of the environments with acoustic data, the results obtained were below the expectations, because it
took many resources from the processing unit. For the validation of the different implemented methods,
we performed cross-validation with 10 folds.

Following the tests of the different methods for the recognition of simple ADL, the best results were
achieved with AdaBoost with the decision tree implemented with the SMILE framework, reporting
an overall accuracy of 91.33% with all combinations of sensors. Still, there was a high number of FP.
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In the case of the recognition of environments, the best method was also AdaBoost with the decision
tree implemented with the SMILE framework, reporting an overall accuracy of 99.87%. Still, it did
not recognise correctly two environments. However, the AdaBoost with the decision stump method
implemented with Weka software did not recognise five environments correctly, reporting an overall
accuracy of 32.04%. Finally, in the recognition of activities without motion, the results obtained with
AdaBoost with the decision tree implemented with the SMILE framework were the same as the results
obtained with the DNN method (99.87%).

As future work, the methods should be implemented during the development of the framework
for the identification of ADL and its environments, adapting the approach to all the sensors available
on mobile devices.
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Abstract: The identification of Activities of Daily Living (ADL) is intrinsic with the user’s
environment recognition. This detection can be executed through standard sensors present in
every-day mobile devices. On the one hand, the main proposal is to recognize users’ environment
and standing activities. On the other hand, these features are included in a framework for the ADL
and environment identification. Therefore, this paper is divided into two parts—firstly, acoustic
sensors are used for the collection of data towards the recognition of the environment and, secondly,
the information of the environment recognized is fused with the information gathered by motion
and magnetic sensors. The environment and ADL recognition are performed by pattern recognition
techniques that aim for the development of a system, including data collection, processing, fusion
and classification procedures. These classification techniques include distinctive types of Artificial
Neural Networks (ANN), analyzing various implementations of ANN and choosing the most
suitable for further inclusion in the following different stages of the developed system. The results
present 85.89% accuracy using Deep Neural Networks (DNN) with normalized data for the ADL
recognition and 86.50% accuracy using Feedforward Neural Networks (FNN) with non-normalized
data for environment recognition. Furthermore, the tests conducted present 100% accuracy for
standing activities recognition using DNN with normalized data, which is the most suited for the
intended purpose.

Keywords: Activities of Daily Living (ADL); data fusion; environments; feature extraction;
pattern recognition; sensors
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1. Introduction

Data collection [1] can be conducted using different sensors existing on mobile devices, such as
the microphone, the accelerometer, the magnetometer and the gyroscope. The acquired data from
mobile sensors are related to the movement and environment where the activities are performed [2].
These data can also be used to develop a method for automatic Activities of Daily Living (ADL) and
environment recognition [3].

In continuation of a previous study, available in Reference [4], this paper proposes the use of
the microphone for environment identification, that is, bar, classroom, gym, street, kitchen, hall,
living room, library and bedroom, which is fused with the data collected using the accelerometer,
gyroscope and magnetometer sensors for the recognition of the standing activities, that is, sleeping
and watching TV. These methods are included in the design of an ADL and environment recognition
framework, proposed in References [5–7]. The advantages of environment recognition are not limited
to the increasing number of ADL recognized. Furthermore, this allows the framework to combine
the environments with ADL recognition, which returns different results, such as the user walking on
the street.

The topic related to the recognition of the ADL has some studies available in the literature [8–13]
but there are no studies that use all sensors incorporated in the mobile devices. However, the Artificial
Neural Network (ANN) is one of the most used methods in this topic [14,15]. Based on our
previous studies using motion and magnetic sensors for the development of an environment and
ADL recognition framework [4,16], this paper proposes the creation of several methods to adapt the
framework to all sensors incorporated in mobile devices. Some methods using different combinations
of sensors are presented in previous studies [4,16], such as the accelerometer, using the accelerometer
and magnetometer and using all of the previously described, along with the gyroscope. Thus, this
study presents an approach using acoustic data for environment identification, as well as different
methods, fusing the environment recognized with other data sources. The proposed method can use
the accelerometer and the environment, the accelerometer, the magnetometer and environment but also
can be performed using all the mobile sensors and the environment (accelerometer, magnetometer
and gyroscope). For the implementation and testing of these methods, we propose the use of
ANN [17–19] using three different implementations of ANN [4]. This research also includes the
definition of the correct set of features needed and the best implementation of ANN for ADL and
environment recognition. The best results are achieved with Feedforward Neural Network (FNN)
with Backpropagation for environment recognition and with Deep Learning techniques for standing
activities identification.

The main goal of this study is the design of an ADL and environment recognition framework.
We discovered that the recognition of the environment increases the number of activities recognized,
differentiating the standing activities, where the proposed standing activities are sleeping and watching
TV. At this point, the framework will be able to recognize six activities and nine environments, utilizing
the accelerometer, gyroscope, magnetometer and mobile microphone sensors.

The Introduction section is concluded in this paragraph and the remaining sections are structured
as follows—Section 2 introduces a literature review focused on the use of acoustic sensors for ADL
and environment recognition. The methods used for the development of the ADL and environment
recognition framework are presented in Section 3. Section 4 presents the results of the implementation
of different methods. Finally, the discussion about the results and implementation in the framework is
presented in Section 5, the conclusions are presented in Section 6.

2. Related Work

There are no studies related to the use of the fusion of the data collected using all sensors
incorporated in off-the-shelf portable devices, including accelerometer, gyroscope, magnetometer
and microphone, for ADL and environment recognition [1]. However, numerous methods which
incorporate subsets of these mobile sensors are presented in the literature.
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The authors of Reference [20] used the Global Positioning System (GPS), accelerometer
and microphone sensors for sleeping, walking, standing, running, and social interaction activities
recognition using linear and logistic regression methods reporting an accuracy around 90%.

In Reference [21], the authors extracted the minimum, difference between axis, mean, standard
deviation, variance, correlation between axis, sum of coefficients, spectral energy and spectral entropy
from the accelerometer sensor. Moreover, they study the total spectrum power, zero-crossing rate,
spectral centroid, sub-band powers, spectral spread, spectral roll-off, spectral flux and Mel-Frequency
Cepstral Coefficients (MFCC) using the microphone. The proposed study applied Gradient Boosting
Decision Tree methods and Support Vector Machine (SVM) to recognize several activities such as sitting
on a chair, standing, lying, walking, going upstairs and downstairs, running, jogging and drinking.
The results report 89.12% and 91.5% accuracy.

The authors of Reference [22] recognized several activities, including cycling, cleaning table,
shopping, travelling by car, going to the toilet, cooking, watching television, eating, driving, working
at a computer, reading and sleeping, using data acquired from the microphone and accelerometer
sensors and applying the Gaussian mixture model (GMM) with log power and MFCC as features,
reporting an accuracy of 77.9%.

In Reference [23], the accelerometer and microphone sensors were also used for the recognition of
shopping, driving, travelling by car, cooking, washing dishes, cleaning with a vacuum cleaner, waiting
in a queue, sleeping, working at a computer, watching television, sitting, being a bar, walking, lying
and standing activities, using a J48 decision tree, logistic model tree (LMT) and functional tree (FT),
and Instance-based k-Nearest Neighbour (IBk) lazy algorithm with mean, standard deviation, angular
degree, range and MFCC as features. The reported accuracies are around 90%, where the LMT decision
tree reports 90.4%, the J48 decision tree reports 90.7%, the IBk lazy algorithm reports 90.8% and the FT
decision tree reports 90.7% [23].

The remaining studies available in the literature using acoustic sensors do not use data fusion
techniques, because they only use the microphone signal. Based on the acoustic signal acquired from
the microphone, the authors of Reference [24] used the SVM method with spectral roll-off, slope,
minimum, median, coefficient of variation, inverse coefficient of variation, trimmed mean, skewness,
kurtosis and 1st, 57th, 95th and 99th percentiles as features. This method presents an accuracy higher
than 90% for the recognition of some environments such as restaurant, casino, playground, train, street
with ambulance, street traffic, nature at day, nature at night, river and ocean.

In Reference [25], the Linear Discriminant Classifier (LDC) was used with microphone data to
recognize several ADLs, including eating, drinking, clearing the throat, relaxing, laughing, coughing,
sniffling and talking. This method uses several features including log power, total Root-Mean-Square
(RMS) energy, spectral kurtosis, spectral centroid, spectral roll-off, spectral flux, spectral skewness,
spectral slope, spectral variance, MFCC, zero crossing rate, minimum, mean, median, maximum, RMS,
1st and 3rd quartiles, interquartile range, standard deviation, skewness, kurtosis, quantity of peaks,
mean peaks distance, mean peaks amplitude, mean crossing rate and linear regression slope. The best
reported accuracy was achieved using the total RMS energy, spectral flux, spectral centroid, spectral
skewness, spectral variance, spectral roll-off, spectral kurtosis, spectral slope and MFCC as features.
The average of the reported accuracy was 66.5%.

Artificial Neural Networks (ANN) is one of the most used methods for ADL and environment
identification using acoustic signals. In Reference [26], the authors implemented an ANN method,
i.e.,(Multilayer Perceptron) MLP, with MFCC as features for the identification of acoustic warning
signals of emergency units (police, fire department and ambulance), reporting a highest accuracy
of 96.7%.

Another study [27] uses ANN for the recognition of several materials collisions such as boll, metal,
wood and plastic. Moreover, this research also focuses on the identification of other activities such as
door opening/closing, typewriting, knocking, a phone ringing, grains falling, spray and whistle, using
time-variance and frequency-variance patterns as features, reporting an average accuracy of 98%.
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In Reference [28], the ANN was used for the recognition of sneezing, dog barking, clock ticking,
baby crying, crowing rooster, raining, sound of sea waves, fire crackling, sound of helicopter and sound
of chainsaw with some features, such as zero crossing rate, MFCC, spectral flatness and spectral
centroid, reporting an accuracy around 94.5%.

The authors of Reference [29] used the FNN for the recognition of the sound of sirens from
emergency vehicles, automobile horns and normal street sounds with MFCC and zero crossing rate as
features, reporting an accuracy between 80% and 100%.

Deep Neural Network (DNN) is another type of ANN used for laughing, singing, crying, arguing
and sighing recognition with MFCC as features [30]. The authors of Reference [31] also used DNN for
the ambient scene analysis (i.e., voice, music, water and traffic), stress, emotion and speaker recognition
with MFCC as features, presenting an accuracy between 60% and 90%.

The SVM is another method used for ADL and environment recognition using acoustic signals.
In Reference [32], the authors achieved an accuracy of 78.4% by using the SVM method for keystrokes
identification with MFCC as features. Furthermore, the SVM method has been used by the authors of
Reference [33] for the identification of several sounds, including beach, forest, street, shaver, crowd
football, birds, dog, sink, dishwasher, washing machine, brushing teeth, speech, bus, car, restaurant,
phone ringing, train station, chair, vacuum cleaner, coffee machine, raining and computer keyboard,
using MFCC as features and reporting an accuracy around 80%. The SVM method is also used for the
recognition of sleeping using MFCC and sound pressure level (SPL) as features, reporting accuracies
between 75% and 81% [34,35].

The Hidden Markov model (HMM) is another method used for ADL and environment recognition
using acoustic signals. In Reference [36], the authors used HMM for the recognition of several sounds
such as automobile, aircraft, moped, train and truck. The proposed study has used calculation and
storage of sound levels, statistical indices, one-third-octave spectra and noise events detection based on
thresholds as features, presenting more than 95% accuracy. In Reference [37], the authors recognized
the idle state and the cicada singing sounds with HMM, based on the frequency bands and ratio.

The Gaussian Mixture Model (GMM) is another method used for ADL and environment
recognition using acoustic signals. In Reference [38], the authors used GMM with MFCC as features
for the recognition of calls during driving, reporting an accuracy around 86%. On the other hand,
the authors of Reference [39] used GMM with zero crossing rate, Root Mean Square (RMS), MFCC
and low energy frame rate as features for the recognition of emotional states, reporting an accuracy
between 65% and 100%.

The authors of Reference [40] used Random Forests and SVM methods for the recognition of
street music, siren, gun shot, idling, drilling, dog bark, children playing, car horn and air conditioner
sounds. This study used MFCC and motif features, reporting an accuracy between 26.45% and 55.68%
with SVM, and between 70.55% and 85% with Random Forests.

In Reference [41], the authors used the decision tree and HMM approach for several ADL and
environment identification including reading, meeting, chatting, assisting conference talks, lectures,
music, driving, elevator, walking, airplane, fan, vacuuming, shower, clapping, raining, climbing stairs,
and wind. The proposed method used a zero crossing rate, low energy frame rate, spectral roll-off,
spectral flux, bandwidth, normalized weighted phase deviation, and Relative Spectral Entropy (RSE).
The reported accuracy is higher than 78%.

The authors of Reference [42] implemented the GMM, Feed-Forward DNN, Recurrent Neural
Networks (RNN), and SVM for the recognition of baby crying and smoking alarm, using MFCC,
spectral centroid, spectral flatness, spectral roll-off, spectral kurtosis and zero crossing rate, reporting
accuracies between 2% and 24%.

The SVM, diverse density (DD) and expected maximization (EM) methods were implemented
in Reference [43] for the recognition of several sounds, including cutlery, water, voice, ambient
and music. The proposed method uses MFCC, spectral flux, spectral centroid, bandwidth, Normalized
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Mel-Frequency Bands, zero crossing rate and low energy frame rate as features, presenting 87%
accuracy (average).

In Reference [44], several sounds were identified, including coffee machine brewing, hand
washing, walking, elevator, door opening/closing and silence, using k-Nearest Neighbour (k-NN),
SVM and GMM methods. This study use several features, such as zero crossing rate, short-time energy,
temporal centroid, energy entropy, autocorrelation, RMS, spectral centroid, spectral roll-off point,
spectral spread, spectral entropy, spectral flux, and MFCC methods. The highest accuracies achieved
with the different methods are 97.9%, with k-NN, 90%, with GMM, and 100% with SVM [44].

The authors of Reference [45] implemented the Random Forests, HMM, GMM, SVM, ANN, k-NN,
and deep belief network methods to recognize babble, driving, machinery, crowded restaurant, street,
air conditioner, washer, dryer, and vacuum cleaner, with MFCC, band periodicity and band entropy.

In Reference [46], the authors implemented Naive Bayes, k-NN, Random Forests and Bayesian
Networks methods for the recognition of several nursing activities, including the measurement of
height, patient sitting, assisting doctor, attaching/measuring/removing electrocardiography (ECG),
changing bandage, cleaning body, examining edema and washing hands. This method uses several
features, including mean of intensity, mean, variance of intensity, variance, mean of Fast Fourier
Transform (FFT)-domain energy, and covariance between intensities. The results reported are 56.10%,
with k-NN and Naive Bayes, 73.18%, with k-NN and Bayesian Networks, 55.15%, with Naive Bayes
only, 80.96%, with Naive Bayes and Bayesian Networks, 59.03%, with Random Forests and Naive
Bayes, and 67.83%, with Random Forests and Bayesian Networks [46].

The identification of various sounds including alarms, birds, clapping, dogs, footsteps,
motorcycles, raining, rivers, sea waves, and wind, using k-NN, Naive Bayes, SVM, C4.5 decision tree,
logistic regression and ANN, imputing several features is proposed in Reference [47]. These features
include skewness, zero crossing rate, kurtosis, spectral spread, spectral roll-off, spectral centroid,
spectral flatness measure, spectral slope, spectral flux, spectral skewness, spectral kurtosis, spectral
sharpness, spectral crest factor, spectral smoothness, spectral variability, Chroma vectors and MFCC.
The highest reported accuracies are 45%, with k-NN, 45%, with Naive Bayes, 54%, with SVM, 45%,
with a C4.5 decision tree, 44%, with logistic regression and 54%, with ANN [47].

In Reference [48], a fall detection method was developed with k-NN, SVM, least squares method
(LSM), and ANN methods with spectrogram, MFCC, linear predictive coding (LPC) and matching
pursuit (MP) as features, reporting 98% accuracy.

The Random Forests classifier was also implemented for the recognition of babble, driving,
go to the supermarket, outdoor walking, multiple speakers and kitchen hood. This method use
band-periodicity, bandentropy, spectrum flux (SF), subband short-time energy deviation (STED) and
subband power spectral deviation (SPSD) as features extracted from the microphone, and present
more than 70% accuracy [49]. In Reference [50], the Random Forest was also used to recognize several
activities, including using an escalator, an elevator, a drink vending machine and a ticket vending
machine, crossing a gate, climingb straight stairs, waiting, entering, queuing, and getting off a train.
This study implemented several features extracted from the microphone, such as the step interval,
the average step interval variances, the trajectory stretchiness, the peak and trough strength and
the amplitude.

The cough sound was recently recognized with a microphone, implementing the k-NN with Hu
moment as features [51], which reports accuracies over 93%. Moreover, the the k-NN and the SVM
methods are implemented with MFCC, Spectral Centroid, Spectral Bandwidth, Spectral Crest Factor,
Spectral Turbulence, Spectral Flux, Ratio f50 versus f90, Spectral Roll-off, Spectral Standard Deviation,
Spectral Skewness, Spectral Kurtosis, Spectral Peak Entropy and Tsallis Entropy as features [52],
which has accuracies around 99%.

The HMM was also used with the microphone and accelerometer incorporated in mobile and
wearable devices for the recognition of different scenes, including meal, arm gestures of eating,
conversations, participants, TV viewing, clattering sound, and voice. This study used MFCC,
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the average X-axis acceleration and the changing rate were used as features, reporting a minimum
accuracy of 88.7% [53].

In Reference [54], the authors used the SVM method for the classification of the different types
of vehicles with the Zero Crossing Rate (ZCR), MFCC, Spectral centroid and Spectral flux as features
extracted from the microphone, reporting a minimum accuracy equal to 78.95%.

The Adaboost method was proposed in Reference [55] with the maximum, minimum, mean,
standard deviation, Root Mean Square (RMS), ZCR, bandwidth, normalized phase deviation and
MFCC as features collected using the microphone, gyroscope and magnetometer to identify meals,
cooking, TV viewing and conversations, reporting a minimum accuracy of 65%.

The authors of Reference [56] used the J48 decision tree for the recognition of chatting, coding,
writing documents, and playing games, reporting 95% accuracy with the maximum, minimum and
mean as features.

In Reference [57], the cycling activity was recognized with Weka (REPTree), reporting an accuracy
of 97.4% with frequency spectrum as a feature.

Other studies have been done but they used big data and distributed systems and our proposal
consists of the use of local processing for the recognition of ADL and its environments [58–60].

Table 1 present the ADL and environments identified using the microphone, verifying that the
standing activities are well differentiated with acoustic data.

Table 1. Activities of Daily Living (ADL) and environments identified in the literature review.

ADL: Number of Studies:

Street with emergency vehicles (police, fire department and ambulance) 6

Sleeping; walking; standing; street traffic; ocean 5

Driving; river 4

Sitting; cleaning with a vacuum cleaner; train; nature; typing; dog barking;
baby crying; raining; music

3

Running; lying; going upstairs; going downstairs; drinking; shopping;
travelling by car; cooking; watching television; eating; working
on a computer; reading; washing dishes; restaurant; laughing;
door opening/closing; telephone ringing; helicopter; speech; coffee
machine; elevator

2

social interaction activities; jogging; cycling; cleaning table; going to toilet;
waiting in a queue; being a bar; casino; playground; clearing the throat;
relaxing; coughing; sniffling; talking; grains falling; whistle; sneezing; clock
ticking; arguing; football; shaver; bird; dishwasher; brushing teeth; bus;
calling; air conditioner; car horn; children playing; drilling; meeting; chatting;
shower; clapping; smoking alarm; hand washing

1

Based on the previous studies, the features used for the recognition of ADL and environments
with acoustic data are presented in Table 2, showing that the MFCC, zero crossing rate, spectral
roll-off, spectral centroid, spectral flux, total RMS energy, mean, standard deviation, minimum, median
and low energy frame rate are used in more than 3 studies, with more relevance for MFCC.

At the end, the ADL and environment identification can be executed using several methods shown
in Table 3. We found that the approaches with the highest accuracy are ANN, k-NN, Gradient Boosting
Decision Tree, IBk lazy algorithm, logistic regression, linear regression and FNN. Following the
methods for ADL and environment identification using the acoustic signal, an average accuracy higher
than 90% is reported. Moreover, the method that presents better accuracy for ADL and environment
the recognition is the MLP, presenting 96% accuracy (average).
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Table 2. Features identified in the literature review.

Features: Number of Studies:

Mel-Frequency Cepstral Coefficients (MFCC) 21

zero-crossing rate 8

spectral roll-off 6

spectral centroid; spectral flux 5

total Root-Mean-Square (RMS) energy 4

Mean; standard deviation; minimum; median; low energy frame rate 3

spectral spread; log power; skewness; kurtosis; sound pressure level (SPL);
bandwidth; Relative Spectral Entropy (RSE)

2

total spectrum power; sub-band powers; range; angular degree; slope;
coefficient of variation; inverse coefficient of variation; trimmed mean;
percentiles (1st, 57th, 95th and 99th); spectral variance; spectral skewness;
spectral kurtosis; spectral slope; maximum; quartiles (1st and 3rd);
interquartile range; number of peaks; mean distance of peaks; mean
amplitude of peaks; mean crossing rate; linear regression slope; spectral
flatness; threshold; noise level; one-third-octave spectra; statistical indices;
motif; normalized weighted phase deviation; Normalized Mel-Frequency
Bands; short-time energy; temporal centroid; energy entropy; autocorrelation;
spectral entropy

1

Table 3. Classification methods identified in the literature review.

Methods: Number of Studies: Average of Reported Accuracy:

Multi-Layer Perceptron (MLP) 3 96%

k-Nearest Neighbour (k-NN) 3 95%

Gradient Boosting Decision Tree 1 92%

IBk lazy algorithm 1 91%

logistic regression 1 90%

linear regression 1 90%

Feedforward Neural Networks (FNN) 1 90%

Hidden Markov Models (HMM) 2 87%

diverse density (DD) 1 87%

expected maximization (EM) 1 87%

J48 decision tree 2 84%

FT decision tree 2 84%

LMT decision tree 2 84%

Support Vector Machine (SVM) 10 77%

Gaussian mixture model (GMM) 5 76%

Deep Neural Networks (DNN) 3 68%

Linear Discriminant Classifier (LDC) 1 67%

Random Forests 3 66%

Adaboost 1 65%

Recurrent Neural Networks (RNN) 1 24%
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3. Methods

In this work, we propose a model for the detection and recognition of the environment detection.
This model is based on acoustic sensors and a model for the recognition of standing activities based
on motion and magnetic sensors as an enhancement of a previous developed framework for the
recognition of ADL and their environments [4–7,16]. The framework was designed to recognize the
following ADL—running, walking, going upstairs, sleeping, going downstairs, sleeping, watching
TV and standing. In addition, the following scenarios are also recognized by the framework—bar,
classroom, gym, kitchen, library, street, hall, living room and bedroom.

3.1. Data Acquisition

The data acquisition module aims to capture all the sensors’ data, including accelerometer,
magnetometer, gyroscope and microphone. Unlike the microphone, the data from which are saved in
a raw forma, this data was acquired at the same time as the study available in Reference [4] and with
the same individuals.

3.2. Data Processing

On the one hand, environment recognition comprehends the use of the microphone with the
application of the Fast Fourier Transform (FFT) [61] to extract the relevant features. After the application
of the FFT, several features were extracted, including 26 MFCC coefficients and standard deviation,
average, maximum value, minimum value, variance and median of the raw signal.

On the other hand, the recognition of the standing activities makes use of the environment
recognized and accelerometer, magnetometer and/or gyroscope sensors’ data with the application of a
low pass filter [62], extracting the same features presented in Reference [4].

3.3. Data Fusion

This module encompasses several databases obtained from the combination of different sensors,
and features, which are depicted in Figure 1. The different combinations of sensors are:

• Microphone for the Environment Detection
• Accelerometer data plus Environment Recognized
• Accelerometer and Magnetometer data plus Environment Recognized
• Accelerometer, Magnetometer and Gyroscope data plus Environment Recognized

Figure 1. Different combinations of features for the recognition of environment and standing activities.

3.4. Classification

This study aims to recognize nine environments, including bar, classroom, gym, kitchen, library,
street, hall, living room and bedroom using the same methods and implementations, which are
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implemented and tested in Reference [4]. The different implementations were performed with
non-normalized and normalized data, implementing a stop criterion related to the maximum number
of training interactions tested with three limits, namely: 106, 2 × 106 and 4 × 106.

4. Results

4.1. Identification of the Environment of the Activities of Daily Living with Microphone

The implementation of MLP with Backpropagation reported the results presented in Figure 2,
verifying that the accuracy reported is very low with all datasets. With non-normalized data (Figure 2a,
the results achieved are between 10% and 15%. With normalized data (Figure 2b, the results obtained
are between 10% and 20%, where the best results are achieved with dataset 1.

Figure 2. Results obtained with Multilayer Perceptron (MLP) with Backpropagation for the different
datasets of microphone data. (a) shows the results with non-normalized data. (b) shows the results
with normalized data.

Moreover, the results reported by the implementation of the FNN with Backpropagation are
presented in Figure 3. In general, this implementation reports better results with non-normalized
data. With non-normalized data (Figure 3a), the FNN reports results higher than 70% with dataset 1
with a maximum number of training iterations, dataset 2 with 106 of training iterations, and dataset 4
with 4 × 106 of training iterations. With normalized data (Figure 3b), the FNN reports results below
than 60% but the results achieved are higher than 60% with the dataset 4 trained over 106 and 2 × 106

of iterations.

Figure 3. Results obtained with Feedforward Neural Network (FNN) with Backpropagation for the
different datasets of microphone data. (a) shows the results with non-normalized data. (b) shows the
results with normalized data.
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The results of the implementation of DNN are presented in Figure 4, where, with non-normalized
data (Figure 4a), the results obtained are below 20% with datasets 1 and 2, and the results obtained
are higher than 40% with datasets 3 and 4. In addition, with normalized data (Figure 4b), the results
reported are round 50% with all datasets.

Figure 4. Results obtained with Deep Neural Network (DNN) for the different datasets of
microphone data. (a) shows the results with non-normalized data. (b) shows the results with
normalized data.

In Table 4, the maximum accuracies achieved with the different implementations of ANN are
related to the different datasets used for the microphone data and the maximum number of training
iterations, verifying that the best results are achieved with the FNN with Backpropagation with
non-normalized data.

Table 4. Best accuracies obtained with the different frameworks, datasets and number of iterations for
the recognition of environments using microphone data.

Framework Datasets
Iterations Needed
for Training

Best Accuracy
Achieved (%)

Non-
normalized
data

MLP with Backpropagation 2 106 12.86

FNN with Backpropagation 1 2 × 106 86.50

DNN 4 4 × 106 48.11

Normalized
data

MLP with Backpropagation 1 106 19.43

FNN with Backpropagation 4 106 82.75

DNN 4 4 × 106 48.74

In conclusion, the method for the recognition of the environment that should be implemented in
the framework for the recognition of ADL and their environments is the FNN with Backpropagation
using non-normalized data, because it achieves results around 86.50% with the dataset 1.

4.2. Identification of the Standing Activities with the Environment Recognized and the Accelerometer Sensor

The use of normalized data resulted in the achievement of an accuracy of 100% with MLP
with Backpropagation, FNN with Backpropagation and DNN methods, because the use of the
correct recognition of environments with acoustic data provides a correct discretization of the
accelerometer data.

Following the use of non-normalized data, Figure 5 shows the results obtained with MLP with
Backpropagation, FNN with Backpropagation and DNN methods. MLP with Backpropagation
(Figure 5a) reported results between 50% and 100%, where the better accuracy was achieved with the
datasets 1 and 4. FNN with Backpropagation (Figure 5b) reported results around 100%, except with
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dataset 1 that achieves an accuracy around 50%. DNN method (Figure 5c) reported results around
100% with datasets 2, 4 and 5 with all training iterations, and with dataset 3 with 4 × 106 iterations,
but the results obtained with other combinations are below expectations.

Figure 5. Results obtained with MLP with Backpropagation (a), FNN with Backpropagation (b) and
DNN (c) methods for the different datasets of environment and accelerometer data.

In Table 5, the maximum accuracies achieved with the different types of ANN are presented with
the relation of the different datasets used for the environment recognized and the accelerometer data
and the maximum number of iterations.

Table 5. Best accuracies obtained with the different frameworks, datasets and number of iterations for
the recognition of standing activities with the accelerometer data and the environments recognized.

Framework Datasets
Iterations Needed
for Training

Best Accuracy
Achieved (%)

Non-
normalized
data

MLP with Backpropagation 1 106 100.00

FNN with Backpropagation 2 106 100.00

DNN 2 106 100.00

Normalized
data

MLP with Backpropagation 1 106 100.00

FNN with Backpropagation 1 106 100.00

DNN 1 106 100.00

Regarding the results obtained, in the case of the use of the environment recognized and the
accelerometer data in the module for the recognition of standing activities in the framework for the
identification ADL and their environments, the implementation that should be used is a DNN with
normalized data because the results obtained are always 100%.

4.3. Identification of the Standing Activities with the Environment Recognized and the Accelerometer and
Magnetometer Sensors

The use of normalized data resulted in the achievement of an accuracy of 100% with MLP with
Backpropagation, FNN with Backpropagation and DNN methods, because the use of the correct
recognition of environments with acoustic data provides a correct discretization of the accelerometer
and magnetometer data.

Following the use of non-normalized data, Figure 6 shows the results obtained with MLP with
Backpropagation, FNN with Backpropagation and DNN methods. MLP with Backpropagation
(Figure 6a) reported results around 100%, except with the datasets 1 and 5 which achieved an accuracy
around 50%. FNN with Backpropagation (Figure 6b) reported results around 100%. DNN method
(Figure 6c) reported results around 100% with dataset 5 with all training iterations, and with dataset 4
with 106 of training iterations, but the results obtained with other combinations are below expectations.

71



Electronics 2019, 8, 1499

Figure 6. Results obtained with MLP with Backpropagation (a), FNN with Backpropagation (b) and
DNN (c) methods for the different datasets of environment and accelerometer and magnetometer
sensors’ data.

In Table 6, the maximum accuracies achieved with the different implementations of ANN are
presented with the relationship between the different datasets used for the environment recognized,
and the accelerometer and magnetometer sensors’ data, and the maximum number of iterations.

Table 6. Best accuracies obtained with the different frameworks, datasets and number of iterations
for the recognition of standing activities with the accelerometer and magnetometer data, and the
environments recognized.

Framework Datasets
Iterations Needed
for Training

Best Accuracy
Achieved (%)

Non-
normalized
data

MLP with Backpropagation 4 106 99.05

FNN with Backpropagation 2 106 100.00

DNN 3 106 89.55

Normalized
data

MLP with Backpropagation 1 106 100.00

FNN with Backpropagation 1 106 100.00

DNN 1 106 100.00

DNN with normalized data always reported results equal to 100% with the use of the
accelerometer and magnetometer sensors’ data combined with the environment recognized. Thus,
the framework for the identification ADL and their environments should implement the DNN with
normalized data.

4.4. Identification of the Standing Activities with the Environment Recognized and the Accelerometer,
Magnetometer and Gyroscope Sensors

On the one hand, the results reported by the implementation of the MLP with Backpropagation
using the MLP with Backpropagation are presented in Figure 7. With non-normalized data (Figure 7a),
the results achieved are around 100%, except with the datasets 1 that achieves an accuracy around 50%.
With normalized data (Figure 7b), the results obtained are always around 100% with all datasets.
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Figure 7. Results obtained with MLP with Backpropagation for the different datasets of
environment, and accelerometer, magnetometer and gyroscope sensors’ data. (a) shows the results
with non-normalized data. (b) shows the results with normalized data.

On the other hand, the results reported by the implementation of the FNN with Backpropagation
are presented in Figure 8. With non-normalized data (Figure 8a), the results achieved are always
around 100%. With normalized data (Figure 8b), the results obtained are always around 100% with
all datasets.

Figure 8. Results obtained with FNN with Backpropagation for the different datasets of
environment and accelerometer, magnetometer and gyroscope sensors’ data. (a) shows the results with
non-normalized data. (b) shows the results with normalized data.

Additionally, the results reported by the implementation of DNN are presented in Figure 9.
On the one hand, with non-normalized data (Figure 9a), the results obtained are around 90% with
dataset 5 with all training iterations. However, the results obtained with other datasets are below the
expectations. On the other hand, with normalized data (Figure 9b), the results obtained are always
around 100% with all datasets.

The datasets acquired from the accelerometer, magnetometer and gyroscope combined with the
environment recognized, the maximum number of iterations and the maximum accuracies reported by
the different implementations of ANN are presented in Table 7.

Using the environment recognized and the accelerometer, magnetometer and gyroscope sensors’
data in the module for the recognition of standing activities in the framework for the identification
ADL and their environments, the reported results are always 100% with implementation of DNN with
normalized data.
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Figure 9. Results obtained with DNN for the different datasets of environment, and accelerometer,
magnetometer and gyroscope sensors’ data. (a) shows the results with non-normalized data. (b) shows
the results with normalized data.

Table 7. Best accuracies obtained with the different frameworks, datasets and number of iterations
for the recognition of standing activities with the accelerometer, gyroscope and magnetometer data,
and the environments recognized.

Framework Datasets
Iterations Needed
for Training

Best Accuracy
Achieved (%)

Non-
normalized
data

MLP with Backpropagation 2 106 100.00

FNN with Backpropagation 3 106 100.00

DNN 5 106 89.55

Normalized
data

MLP with Backpropagation 1 106 100.00

FNN with Backpropagation 1 106 100.00

DNN 1 106 100.00

5. Discussion

This research is included in the development of the framework for the recognition of ADL and their
environments, presented in References [5–7]. Furthermore, this study is composed by several modules
such as data acquisition, data processing, data fusion, and classification methods. The definition of
the method for the identification started in the previous studies [4,16]. These studies have used
accelerometer, gyroscope and magnetometer sensors to identify several activities such as going
downstairs, going upstairs, running, walking and standing with the DNN, data normalization and L2

regularization. In Section 4.1, the results of the recognition of the environments using the microphone
data, where the environments recognized are bar, classroom, gym, kitchen, library, street, hall, living
room and bedroom with the FNN with non-normalized data are presented. Fusing the environment
recognized with the accelerometer, gyroscope and magnetometer sensors’ data, the recognition of
more standing activities (i.e., watching TV and sleeping) was allowed, increasing the number of
ADL recognized at this stage of the development of the framework for the recognition of ADL and
environments, as presented in Figure 10.

The characteristics of the mobile devices, that is, the number of sensors available, influences the
methods for data fusion and artificial intelligence chosen. Ideally, all sensors available in the mobile
device should be used to increase the accuracy of the method. In Figure 10, a simplified schema for the
development of a framework for the identification of ADL is presented.
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Figure 10. ADL and environments recognized by the framework for the recognition of ADL
and environments.

Based on the results reported, the use of acoustic data revealed results with low accuracy because,
due to the amount of data used, it reports that the ANN are overfitted. In order to avoid the overfitting
problem, we used the early-stop technique, stopping the training of the ANN, when the reducing of
the training error stopped. The recognition of standing activities includes only the results obtained
with the recognition of the environment. The results obtained for the recognition of standing activities
are around 100%, because we considered that the environment is correctly recognized. The results of
the final framework will be different because of the recognition of environments that reported lower
accuracy. This study only took into account the recognition of environments and standing activities
separately. The use of the environment recognized correctly distinguish the activity performed.

The implementation of the framework for the recognition of ADL and their environments is
composed by data acquisition, data processing, data cleaning, feature extraction, data fusion and
data classification methods. Firstly, based on the results obtained in Section 4.1, the best results
achieved for each implementation are presented in Table 4. The best method for the recognition of
the environments is the FNN with non-normalized data, reporting an accuracy of 86.50%. Secondly,
based on results obtained with the use of the environment recognized and the accelerometer data,
presented in Section 4.2, the recognition of standing activities is allowed and the best results achieved
for each implementation are presented in Table 4. The best method for the recognition of the standing
activities is the DNN with normalization of the data and the application of L2 regularization, reporting
an accuracy of 100%. Thirdly, based on results obtained with the use of the environment recognized
and the accelerometer and magnetometer sensors’ data, presented in Section 4.3, the recognition of
standing activities is allowed and the best results achieved for each implementation are presented in
Table 5. The best method for the recognition of the standing activities is the DNN with normalization
of the data and the application of L2 regularization, reporting an accuracy of 100%. Finally, based on
results obtained with the use of the environment recognized and the accelerometer, magnetometer and
gyroscope sensors’ data, presented in Section 4.4, the recognition of standing activities is allowed and
the best results achieved for each implementation are presented in Table 6. The best method for the
recognition of standing activities is the DNN with normalization of the data and the application of L2

regularization, reporting an accuracy of 100%.
Our results and implementations cannot be directly compared with other studies because the

datasets and implementation code used by other authors are not share. We asked other authors about
the details of the implementation but they did not answer at the moment.

In conclusion, when the activity was recognized as standing and the environment is correctly
identified, the accuracy for the recognition of standing activities is 100%. At this stage of the framework
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for the recognition of ADL and their environments, two different classification methods are defined,
these are:

• DNN with normalized data for the general identification of ADL;
• FNN with non-normalized data for the general identification of the environments;
• DNN with normalized data for the identification of standing activities.

6. Conclusions

The development of a framework for ADL [1] and environment recognition using mobile
sensors, including accelerometer, gyroscope, magnetometer and microphone, with the architecture
presented in References [5–7], has several steps including data acquisition, data processing, data fusion
and classification methods. At this stage of the development, the proposed identified ADL are
running, walking, standing, going downstairs and upstairs, and sleeping, and the proposed identified
environments are bar, classroom, gym, kitchen, library, street, hall, watching TV and bedroom.

Depending on the types of sensors, several features were extracted from the sensors’ data for
further processing. The features extracted from the microphone are 26 MFCC coefficients and standard
deviation, average, maximum value, minimum value, variance and median of the raw signal.
Following the motion and magnetic sensors, we extracted the same features of the previous study [4].
The method developed should be adapted to the number of sensors available in the off-the-shelf
mobile devices and adapted to the limited resources of these devices.

In coherence with the previous studies [4,16], this research includes the comparison of three
different implementations of ANN, such as MLP and FNN with Backpropagation, and the DNN.
The DNN is the best method for the recognition of general ADL and standing activities, but the
FNN with Backpropagation is the best method for the recognition of environments. In Reference [4],
the different parameters of the ANN implemented are detailed.

The accuracies of the recognition ADL and their environments are different depending on the
different stages of the framework for the recognition of ADL and environments. Firstly, the best
accuracy for the recognition of the general ADL, presented in previous studies [4,16], is 85.89%,
implementing the DNN using L2 regularization and normalized data. Secondly, the best accuracy for
the recognition of the environments is 86.50%, implementing the FNN with Backpropagation using
non-normalized data. Finally, the recognition of standing activities are always around 100% with all
implementations studied, but, due to the performance, the best method for the implementation in the
framework is the DNN using L2 regularization and normalized data.

As future work, we intend to develop a framework for the identification of ADL and their
environments, adapting the method to the number of sensors available on the mobile device.
The recognition of the environments allows the framework for identifying the location in the
indoor/outdoor environments, where the ADL were performed. The environment recognition can
also improve the recognition of ADL, increasing the number of ADL recognized. The data related to
this research are available in a free repository [63].
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Abstract: Modern achievements accomplished in both cognitive neuroscience and human–machine
interaction technologies have enhanced the ability to control devices with the human brain by using
Brain–Computer Interface systems. Particularly, the development of brain-controlled mobile robots is
very important because systems of this kind can assist people, suffering from devastating neuromuscular
disorders, move and thus improve their quality of life. The research work presented in this paper, concerns
the development of a system which performs motion control in a mobile robot in accordance to the
eyes’ blinking of a human operator via a synchronous and endogenous Electroencephalography-based
Brain–Computer Interface, which uses alpha brain waveforms. The received signals are filtered in order
to extract suitable features. These features are fed as inputs to a neural network, which is properly trained
in order to properly guide the robotic vehicle. Experimental tests executed on 12 healthy subjects of
various gender and age, proved that the system developed is able to perform movements of the robotic
vehicle, under control, in forward, left, backward, and right direction according to the alpha brainwaves
of its operator, with an overall accuracy equal to 92.1%.

Keywords: brain–computer interface (BCI); human–robot interaction; assistive robotics; motion
control; electroencephalography (EEG); alpha brainwaves; neural network (NN)

1. Introduction

Communication within the body of mammals takes place via both electrical and chemical signals.
Electrophysiology is the branch of physiology that studies the electrical activities which are associated
with bodily parts. The recording of electrophysiological data is performed by placing electrodes at the
corresponding areas of interest. By this method, there are numerous systems developed which are able
to monitor the electrical activity and corresponding electrophysiological data in various organs such as
heart, brain, eyes, muscles, and stomach [1–3].

Electroencephalography (EEG) is an electrophysiological method which is used in order to monitor
the electrical activity of the brain by placing electrodes on the external surface of the scalp. EEG records
variations of voltage caused by the flow of ionic current in the interior of the brain’s neurons. Therefore,
EEG signals are waveforms, also known as brainwaves or brain waveforms, which signify the neural
oscillations produced by neurons which intercommunicate. Brainwaves are detected in the frequency
domain, having signal intensity measured in microvolts (μV) and signal frequency usually ranging
from 1 to 100 Hz. According to their frequency, there are specific bands classified as delta (δ) (1–4 Hz),
theta (θ) (4–7 Hz), alpha (α) (8–13 Hz), beta (β) (13–30 Hz), and gamma (γ) (>30 Hz) [4].
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A Brain–Computer Interface (BCI) is a system that enables communication between brain and
machines. A BCI, in order to perform its purposes, records brain signals, interprets them, and
produces corresponding commands to a connected machine [5]. BCI technology is used in various
applications, such as security and authentication, education, neuromarketing and advertisement, games
and entertainment, and several medical applications, such as cognitive neuroscience, brain-related
prevention and diagnosis of health problems, rehabilitation, and restoration [6–9].

This article presents the development of a BCI-based system that performs the motion control of
a robotic vehicle by using brainwaves of a human operator. After capturing the brainwaves via EEG,
a set of features is extracted and given as input to a neural network, which is trained to predict the
desired movement of the robotic vehicle. The rest of this paper is organized as follows: In Section 2, the
theoretical background of the research carried out is set up. In Section 3, the structure and operation of
the proposed system are explained. In Section 4, the performance of the system is evaluated through
the description of the experimental tests made, and the presentation of the corresponding results and
discussion on them. Finally, Section 5 concludes the article and proposes future research work.

2. Theoretical Background

2.1. BCI Types

A BCI provides an interconnection platform that supports the full duplex communication between
the brain and an external device. According to the way that BCIs use to set up the brain–device
interconnection, they are classified as non-invasive or invasive. Non-invasive BCIs use electrodes
placed on the scalp. They are easy and safe to use, low-cost, portable, and offer a relatively high
temporal resolution. Invasive BCIs use electrodes implanted in the interior of the scalp. Comparatively
to non-invasive BCIs offer higher values of amplitude, spatial resolution, and resistance to noise.
However, they require neurosurgery operations and they are both unsafe and expensive. Furthermore,
scar tissues decrease the quality of signals received. Practically, non-invasive BCIs are used more often.

There are various non-invasive methodologies used in BCI technology, such as Positron Emission
Tomography (PET), functional Magnetic Resonance Imaging (fMRI), and Near-Infrared Spectroscopy (NIRS),
which study changes made in the blood flow, magnetoencephalography (MEG), which monitors the
magnetic action of the brain, and EEG, which records the electric activity of the brain. Both NIRS and
fMRI BCIs offer high spatial resolution, but poor temporal resolution. Moreover, MEG and PET BCIs
offer high spatial and temporal resolution. However, PET BCIs require the inoculation of a radioactive
constituent into the bloodstream. Furthermore, both fMRI and MEG methods rely on the use of
equipment which is not only costly, but also huge. EEG BCIs are by far the most popular type, because,
despite their relatively poor spatial resolution, they have high temporal resolution, low-cost, and easy
installation. [6].

Moreover, BCIs are classified as either exogenous or endogenous, according to the nature of the
input signals. Exogenous BCIs analyze the brain activity created due to external stimuli. They are easy to
set up and offer high bit rates, but they need the continuous response of the user to outward incitements
which may be either tiring, or even unfeasible. Endogenous BCIs use self-regulation of brainwaves
without external stimuli. They provide lower data transfer rates but they can be operated via free
self-control even by users with sensory organs affected or suffering from motor neuron diseases [10].

Similarly, BCI systems are classified, according to the method used for input data processing,
as synchronous or asynchronous. Synchronous BCIs analyze the brain signals only after a specific
prompt and during predefined time intervals. Thus, the overall process is better organized and the
user is free to make any kind of movements, which would produce artifacts, when brain signals are
not observed. They also require minimal training and have stable performance and high accuracy.
Asynchronous BCIs inspect brain signals successively, thus letting the user act at free will. Therefore,
they offer more natural human–machine interaction. However, they are more complex in design and

82



Electronics 2019, 8, 1387

evaluation and require extensive training. Moreover, their performance may vary between users,
and their accuracy is not very high [10].

2.2. Brainwaves for EEG-BCIs

The most commonly used types of brain waveforms to develop EEG-based BCIs are P300, SSVEP,
ErrP, ERD/ERS, and alpha brainwaves [11].

P300 is an event-related positive potential deflection which is caused by the reaction to a desired
external stimulus of visual, auditory, or tactile modality. P300 waveforms are typically measured, with
a latency of roughly 250 to 500 ms between stimulus and response, by using electrodes located over
the parietal lobe of the scalp.

Steady state visually evoked potentials (SSVEP) are brain waveforms of exogenous type that are
generated as responses to visual stimulation at specific frequencies ranging from 3.5 Hz to 75 Hz.
Considering that SSVEP signals often have their highest values at medial occipital electrode sites, they
are supposed to originate mostly from the primary visual cortex.

Event-related desynchronization and event-related synchronization (ERD/ERS) waves are endogenous
brain signals, which are generated when performing mental tasks, such as motor imagery or mental
arithmetic. They can be measured at different cortical locations.

Error-related potential (ErrP) waveforms are brain signals which are activated every time that
a subject identifies the commitment of an error which has been made either by himself/herself or
by another individual during various choice tasks. Waves of this kind can be captured by applying
electrodes on various brain regions including the anterior cingulate cortex, anterior insula, inferior
parietal lobe, and intraparietal sulcus, as well as other regions of the cortex, subcortex, and cerebellum.

Alpha brainwaves are brain signals which have their amplitude increased whenever the eyes of
an individual are closed during wakeful relaxation. In contrast, the amplitude of alpha waveforms
is diminished for the duration of sleepiness and sleep and also when having eyes opened while
mental effort is performed. This phenomenon is usually referred to as alpha rhythm blocking. Alpha
brain waveforms can be monitored by applying a number of electrodes on both sides of the posterior
segments of the scalp where the occipital lobe, which is the center of visual processing activities in the
brain, is positioned.

2.3. BCI Operation

The operation of a typical BCI system is based on the sequential execution of a number of
procedures, which namely are signal acquisition, preprocessing, feature extraction, classification,
translation, and feedback to operator [10,11], as shown in Figure 1.

Figure 1. Block diagram representing the processes performed in a typical Brain–Computer Interface.

In EEG-BCIs, signal acquisition is performed by using electrodes which are positioned along the
scalp of the user. Normally, the settlement of electrodes on the scalp is performed in compliance to the
International 10–20 system. According to this system, electrodes are located on the scalp at 10% and 20%
of a measured distance from reference spots including nasion, inion, left, and right preauricular [10].
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The pattern of this system is depicted in Figure 2, where odd numbers refer to the left side of
the head, even numbers refer to the right side, A1 and A2 refer to the earlobes and ‘Fp’, ‘F’, ‘T’, ‘C’,
‘P’, and ‘O’ stand for the prefrontal, frontal, temporal, central, parietal, and occipital areas of the
brain, correspondingly.

Figure 2. Top view of the international 10–20 electrode placement system on a human scalp.

Preprocessing is the procedure which is carried out in order to reduce the noise from the signal and
apply some filtering and other methods in order to remove artifacts which are caused by endogenous
sources, such as motions of eyes, muscles, and heart, and exogenous sources, such as power-line
coupling and impedance mismatch [12]. Preprocessing is usually performed by using low-pass,
high-pass, band-pass, or notch filtering. However, the use of such filters may eliminate useful elements
of EEG signals having the same frequency band as artifacts [13].

In feature extraction, specific features of the signals in time domain or/and frequency domain that
can expressively differentiate specific classes are extracted and positioned into a feature vector in order
to enable the classification phase which follows. Autoregressive (AR), Hjorth, and EEG signal power
are commonly used feature extraction techniques [14].

During the classification phase, a properly built algorithm is used. This algorithm distinguishes
between classes which correspond to various brain activity patterns by deciding to which of these
classes every feature vector suits best. Neural networks (NNs) are widely used as classifiers in BCIs
because they provide the ability to approximate nonlinear decision boundaries [15,16]. Alternatively,
linear discriminant analysis (LDA), support vector machines (SVM), and statistical classifiers may be
used [17]. The advantage of LDA is that it is a simple-to-use probabilistic approach based on Bayes’
Rule. On the other hand, NNs have the advantage of being able to approximate nonlinear decision
boundaries. In cases where a small amount of training data is available, the use of SVM is a very good
choice. Finally, statistical classifiers have the ability to represent the uncertainty that is inherent in
brain signals.

During the translation phase the extracted signal features are converted into particular commands
to the device(s) under control, through the use of dedicated translation algorithms. Specifically, these
algorithms have the ability not only to adapt to the continuing variations of the signal features, but also
to ensure that the complete device control range is covered by the specific signal features from the user.

Finally, in the feedback to operator phase, the final outcome of the overall operation of the BCI system
is transferred back to the system operator, so that the performance of the system can be evaluated.
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2.4. BCI-Based Robot Control

An EEG-based brain-controlled robot is a robot that uses an EEG-based BCI to receive control
commands from its human operator. EEG-based brain-controlled mobile robots can support the
movement of both elderly people and people who are severely disabled with destructive neuromuscular
disorders, such as amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS), or strokes.

There are two main classes of EEG-based brain-controlled assistive robots which namely are
brain-controlled manipulators and brain-controlled mobile robots. Similarly, assistive mobile robots are
classified in two categories according to their mode of operation [11].

The first category consists of assistive mobile robots which operate under direct BCI control. Robots
of this kind are controlled exclusively via the commands that their users send to the robots controlled
via BCI modules, without any additional assistance by robot intelligence elements. For this reason,
they are less expensive and complex to develop and their users keep the absolute motion control.

On the other hand, the overall performance of these brain-controlled mobile robots mainly
depends on the performance of the BCIs, which in many cases may have inadequate speed of response
and accuracy. Furthermore, the demand for continuous production of motor control commands by the
users may be extremely tiring for them.

The initial example of a robot of this kind was presented in [18] where the left and right turning
movements of a robotic wheelchair were directly controlled by corresponding motion commands
translated from user brain signals.

Similarly, in [19] a brain-controlled mobile robot was able to perform forward, left, and right
motions by using a BCI based on motor imagery.

Moreover, in [20] the motion control of a wheelchair is performed via a BCI, which captures
alpha brainwaves. Specifically, a set of icons corresponding to predefined commands are sequentially
displayed on a screen and the user is able to select the desired command by closing his/her eyes as
soon as its corresponding icon appears on the display unit.

The second category consists of assistive mobile robots which operate under shared control. In the
robots of this category the control is performed by combining a BCI system along with an intelligent
controller, such as an autonomous navigation system. Due to their enhanced intelligence, robots of
this type are safer and less tiring for their users and more accurate in interpreting and executing their
commands. On the other hand, their development is of higher cost and computational complexity.

A typical example of shared control in assistive mobile robots is proposed in [21]. In this system
the operator, by using a SSVEP BCI system, has the ability to send commands in order to move a robotic
wheelchair in four directions (forwards, backwards, left, and right), while an autonomous navigation
system executes the delivered commands.

Similarly, in [22], by using a P300 BCI, the operator uses a list of predefined locations in order to
select the desired location and then sends this selection to an autonomous navigation system, which
guides a robotic wheelchair to the selected location. The limitation of the specific system is that it is
able to be operated only in a known environment.

Likewise, in [23] shared control is used. Specifically, the combined use of a P300 BCI along with
an autonomous navigation system is proposed in order to perform the motion control of a robotic wheelchair
in an environment which is unknown. Moreover, the user has the ability to make the wheelchair turn
either left or right by focusing correspondingly on one of two relative icons at a predefined visual display.

In [24] three mental tasks, which namely are the imagination of right or left hand movements and
the generation of words beginning with the same random letter, were used in a BCI system applied to
a robotic wheelchair. The system developed, which interacts with the user by using a PDA screen and
speakers, is able to guide the robotic wheelchair both in known and unknown environments.

3. Materials and Methods

The research work carried out made use of the experimental equipment described in Section 3.1
and followed the procedure explained in Section 3.2.
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3.1. Experimental Equipment

3.1.1. BCI Unit

The BCI device that was used, in order to capture the alpha brainwaves during the developed
experimental procedure, is the OpenBCI Ganglion [25], which is shown in Figure 3. This board has 4
available input channels and samples data at 200 Hz.

 
Figure 3. Overview of the Open Brain–Computer Interface (BCI) Ganglion unit used.

3.1.2. Robotic Unit

The vehicle used for the execution of the experimental procedure is a crawler robot built on
Dagu Rover 5 Chassis. A Raspberry Pi (model 3 B+) acts as the central processing unit for the
robot. Communication between the robotic vehicle and the computer is achieved via a TCP/IP socket
connection. As soon as the classifier determines the desired movement, a command is transmitted
to the robot. A serial communication is established between the Raspberry Pi and an Arduino UNO
microcontroller. Once a specified command is received by the Raspberry Pi, it is relayed to the
microcontroller, which in turn uses a L298N H-Bridge driver module to control the motors of the robot.
The experimental platform developed is illustrated in Figure 4.

 
Figure 4. Overview of the robotic unit used.

3.2. Experimental Procedure

The performance of the system developed was experimentally evaluated through a series of tests.
The main phases of the executed experimental procedure are as follows:
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3.2.1. Signal Acquisition

The brain signals monitored are alpha waves, which, as mentioned above, is the prominent EEG
wave pattern in awake adults while having eyes closed in the frequency range of 8–13 Hz. Generally,
EEG-BCIs based on rhythms like alpha waveforms are less sensitive to artifacts than other types due to
the fact that signal monitoring is limited in thin frequency bands. For this reason, high signal-to-noise
ratio (SNR) is achieved [12].

Gold-plated electrodes were placed on the scalp of each one of the subjects that participated in the
experimental procedure, according to the 10–20 system (displayed in Figure 2) at positions O1 and O2.
The specific positions were chosen because, although alpha rhythms can be also generated in other
parts of the brain, they are considered to exhibit greater amplitude in the posterior part of the brain,
specifically at derivations O1 and O2 [26]. The reference electrode was placed on the left earlobe (A1),
while the ground electrode was placed on the right earlobe (A2). In this way it is feasible to monitor
alpha brainwaves.

As it was abovementioned, the amplitude of alpha brainwaves diminishes when subjects open
their eyes. This is called alpha blocking phenomenon. By taking advantage of this phenomenon, subjects
can form n-bit binary sequences by opening or closing their eyes in 2-second intervals. Each bit interval
is designated by an acoustic cue.

Moreover, since this is a synchronous BCI, a button has to be pressed for the recording procedure
to start. Increased alpha activity (eyes closed) corresponds to a binary ‘1’, while decreased activity
(eyes open) corresponds to a binary ‘0’. As a proof of concept, 4-bit binary sequences were selected to
demonstrate the effectiveness of this system. In total, 4 control signals were designated for 4 robotic
movements as it can be seen in Table 1.

Table 1. Binary sequences with corresponding robotic movements.

Binary Sequence Robotic Movement

‘1010’ Forward
‘0101’ Reverse
‘1100’ Left
‘0011’ Right

3.2.2. Preprocessing and Feature Extraction

In order to extract the desired alpha brainwaves from the EEG signals, filtering was applied.
More specifically, a second order IIR notch filter, having a quality factor Q equal to 35, was applied
in order to remove mains frequency (50 Hz).

Consequently, the signals were further filtered by using a Butterworth IIR bandpass filter with
cutoff frequencies of 5 and 15 Hz. The maximum loss in the passband was found to be equal to 0.1 dB.
Similarly, the minimum attenuation in the stopband was measured to be equal to 30 db. The SciPy
Python library was used for the design and application of the filters.

A typical sample of the signal filtering process performed is indicatively depicted in Figure 5.
Specifically, the top graph shows the unfiltered signal acquired from the O1 position on the scalp of
a subject, which gives the command for a ‘left’ movement of the robotic vehicle. As aforementioned
in Table 1, the corresponding binary sequence is 1100 and this is why the signal amplitude is higher
during the first half of the signal duration and lower during the last half. The middle graph of Figure 5
illustrates the signal filtered via the use of the notch filter while the bottom graph shows the signal
further filtered with the bandpass filter.

Since alpha wave blocking is the reduction of alpha waves’ amplitude, this change can be measured
by transforming the EEG signal from the time domain to the frequency domain. This is achieved by
computing the Discrete Fourier Transform (DFT) of the signal using the FFT algorithm. The resulting
amplitudes for the alpha wave frequency range are then summed. This process is repeated 4 times for
each individual control signal; this is because control signals comprise of 4 2-second recording intervals.
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Figure 5. From top to bottom: Unfiltered electroencephalography (EEG) signal, EEG signal after
being filtered with a 50 Hz notch filter, and final EEG signal with additional 5–15 Hz bandpass
filter application.

Min-Max normalization is used to scale the features in the range of [0, 1], which are then saved
as a dataset. The resulting feature vector consists of 8 amplitude sums, 4 for each channel (O1, O2).
A total of 256 feature vectors are contained within the dataset. A visualization of an example feature
vector for the movement “left” is depicted in Figure 6, where there are 8 different values, 2 for each bit.
It is fairly easy to distinguish each individual bit value; in this case ‘1100’.

Figure 6. Bar chart showing the normalized sum of the FFT amplitudes for each EEG channel.

3.2.3. Classification and Translation

The classifier utilized for this research is a Multilayer Perceptron (MLP) neural network. This selection
was made because MLP neural networks constitute a very popular machine learning technique and there
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is an abundance of successful applications of MLP neural networks in EEG signal classification and BCI
research [27,28].

The classifier built consists of an input layer with 8 neurons, since the feature vector contains 8
amplitude sums, 4 for each channel. Furthermore, there are 4 neurons in the output layer because
there are 4 available classes (forward, reverse, left, and right). Moreover, there are 2 hidden layers,
each one consisting of 100 neurons.

The number of hidden layers and neurons was determined by a trial and error procedure.
Specifically, 1–3 hidden layers were considered. In addition, for each layer the number of neurons
examined was 20–200 with a step of 20. In total, 175 different network configurations were considered.
It was concluded that a2 hidden layers network with 100 neurons in each layer achieved the desired
performance in terms of classification accuracy. A graphical depiction of the classifier built is illustrated
in Figure 7.

Figure 7. Structure of the neural network built.

The activation function for the hidden layers is the Rectified Linear Unit (ReLU). The advantages
of ReLU include increased training speed and less suffering from the vanishing gradient problem [28].
The formula for ReLU is

ReLU(x) = max(0, x).

As for the output layers, the sigmoid function was used, which is given by the formula:

σ(x) =
1

1 + e−x ,

which bounds the output of each layer in the range of [0, 1]. This means that each neuron in the output
layer produces probabilities of the input being one of the 4 commands. The command with the highest
probability is selected.

The loss function used to measure the prediction error of the network during training is binary
cross-entropy [29], which is widely used in binary classification problems. It is defined as

L =
1
N

N∑

n=1

[yn· log ŷn + (1− yn)· log(1− ŷn)],
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where N is the number of samples, yn is the target output, and ŷn is the predicted output. Finally,
the optimization algorithm used to minimize the prediction error by adjusting the weight of each
neuron is Adam, using the default hyperparameter values, as described in [30]. All models were
trained in TensorFlow [31], using the Keras API [32].

In Figure 8 the neural network model training and validation loss is displayed. It can be distinguished
that training could take place for a smaller number of epochs, since the loss is at an already acceptable
value at around 25 epochs. The data used for validation is 40% of the total data.

 
Figure 8. Training and validation model loss.

4. Results and Discussion

The performance of the developed system was evaluated by using both offline and online
data which were gathered through a series of experimental tests performed in which 12 healthy
subjects participated.

4.1. Evaluation with Offline Data

For the offline evaluation, the system was tested by using prerecorded data gathered from
the same subjects used for recording the training data. Specifically, a small testing dataset of
50 feature vectors representing different movements was used. The neural network classified all of the
movements correctly.

4.2. Real-Time Evaluation

After evaluating the system on offline data, a real-time performance analysis was carried out
by using six female and six male subjects aged 20 to 28, and two female and two male subjects aged
32 to 40 years. The specific subjects were different from those that were used for the classifier training
and offline evaluation. For this purpose, an experimental process was carried out. The subjects were
instructed to move the robot in the following order: forward, reverse, left, and right consecutively.

Each one of the 12 subjects was briefed shortly on how the BCI works and how to issue each
movement command to the robot. A small number of trial runs were performed for the subjects to get
acquainted with the procedure. In total, 40 experimental tests were carried out. The total number of
commands issued was 480.

The results of the experimental procedure showed that lowest classification accuracy achieved
among the subjects was 85% while the highest one was 97.5%. The overall accuracy for all commands
was 92.1%. The confusion matrix for the total number of commands considered for classification
is illustrated in Figure 9, where green diagonal cells correspond to commands that are successfully
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classified, the red cells correspond to incorrectly classified commands, the gray column on the right
displays the precision and false recovery rate of the classifier, the gray row in the bottom expresses the
recall and the false negative rate of the classifier, and the blue cell displays the overall accuracy.

Figure 9. Confusion matrix for all issued subject commands.

Next, for analysis purposes, the experimental results were studied according to the gender and
the age of the subjects that participated in the experimental procedure.

Specifically, the results were first grouped and analyzed separately for each gender. The confusion
matrices for the female subjects and the male subjects are depicted in Figures 10 and 11, respectively,
where it is shown that the female subjects had a 1.6% higher classification accuracy compared to the
male subjects (92.9% to 91.3%).

Figure 10. Confusion matrix for female subjects.
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Figure 11. Confusion matrix for male subjects.

Next, the experimental results were grouped and analyzed according to the age of the subjects.
The first group contains the results that refer to the eight subjects aged between 20 and 28 years and
the second one the results derived by the four subjects aged between 32 and 40 years. The confusion
matrices for the group 20–28 and the group 32–40 are depicted in Figures 12 and 13, respectively, where
it is shown that these two groups have almost the same precision accuracy (92.2% for the subjects aged
20 to 28 and 91.9% for the subjects aged 32 to 40).

Figure 12. Confusion matrix for ages 20 to 28.
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Figure 13. Confusion matrix for ages 32 to 40.

4.3. Discussion

The overall accuracy of 92.1% achieved by the proposed approach is considered to be rather
satisfactory, especially given the fact that this rate is the result of real-time evaluation. It is also
important to note that different subjects than the ones used for training were employed for this
evaluation, a fact which attests to the robustness of the proposed method.

Better insight to the results can be gained by looking at the confusion matrix for all issued subject
commands. It can be seen that the proposed approach not only achieves a satisfactory overall success
rate, but also provides good performance per each individual movement.

Further analysis of inter-class performance shows that in 8.3% of the cases a ‘reverse’ command
was issued, it was misclassified as a ‘right’ command. Moreover, the command ‘left’ was misclassified
as a ‘forward’ command at a rate of 5.8% and the ‘right’ command as a ‘reverse’ command at a rate of
7.5%. This can be attributed to the fact that there is a short time delay until alpha wave amplitudes
increase or decrease upon eye closing or opening, respectively. Therefore, these amplitudes are
calculated into the next bit value, which can lead to errors.

A good indicator of the probability of a command being classified wrongly is the Hamming
distance between each command (Table 2). Therefore, the ‘forward’ and ‘reverse’ commands are more
likely to be misinterpreted into ‘left’ or ‘right’ commands and vice versa. Representing each command
with more than four bits would increase the Hamming distance and, as a result, the system accuracy,
but it would increase the overall recording time since the duration of every bit recording is two seconds.

Table 2. Hamming distances between robot commands.

Command ‘1010’ ‘0101’ ‘1100’ ‘0011’

Forward ‘1010’ 0 4 2 2
Reverse ‘0101’ 4 0 2 2

Left ‘1100’ 2 2 0 4
Right ‘0011’ 2 2 4 0

The categorization of the experimental results performed according to the age of the subjects
showed that the deviation in the classification accuracy of the age groups is negligible, probably
because of the relatively small age difference between the two groups.
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However, female subjects in the experimental procedure followed, achieved relatively higher
classification accuracy than the male ones. This can be attributed to the fact that women in general
exhibit greater alpha amplitudes than men [33,34].

On the other hand, although the performance of the proposed system was found to be successful,
it is true that all the participants during the experiments made in this research work were healthy.
Therefore, in real life conditions the effectiveness of experimental systems, like the one developed in
this research work, is questionable because it strongly depends on the health conditions of their users
who are supposed not only to be disabled persons but also having disability of various levels.

Moreover, the achievement of successful performance of a mobile robot within the territory of
a controlled laboratory environment does not guarantee its effectiveness in real-world applications
where the conditions are mostly variable and fuzzy.

Furthermore, the BCI systems that are based on a single signal may not be applicable to all users.
Therefore, hybrid schemes which make combined use of various types of brain signals can be a more
complex yet even more effective alternative.

5. Conclusions and Future Research

The research work, presented in this paper, concerns the development of a control system which
guides the motion of a mobile robot via a synchronous and endogenous EEG-based BCI, which uses
the alpha brain waveforms of a human operator.

Experiments made, with the involvement of 12 subjects who had minimum training, proved that
the system developed is able to guide the robotic vehicle under control in forward, left, backward, and
right direction according to the eyes’ blinking of its human operator. The accuracy achieved ranges
from 85% up to 97.5% among the subjects while the overall accuracy was found to be equal to 92.1%
for all commands. Further analysis of the experimental data related with the classification accuracy
between different genders and age groups showed that female subjects performed slightly better than
male ones (92.9% to 91.3%, respectively), while there was just a trivial difference detected between
subjects aged from 20 to 28 years and subjects aged from 32 to 40 years (92.2% to 91.9%, respectively).

Considering both the classification accuracy achieved, by applying real-time evaluation, and
the robustness evinced by the fact that subjects involved during training were different than those
during the experimental evaluation, it is concluded that the proposed method has the potential to be
incorporated in applications such as the motion assistance to handicapped persons.

In the future, the conductors of this research work intend to experiment with hybrid BCIs where
alpha brainwaves will be used along with brain signals of other type(s) such as P300 or SSVEP [35].

Moreover, task metrics, such as task completion time and path length traveled, and ergonomic
metrics, such as mental workload of participants, can be additionally used for the accomplishment of
multivariable evaluation of the performance of the system built [11].

Additionally, robot guidance can be assisted via additional sensors embedded into the robotic
vehicle [36].

The detrimental effect of artifacts on EEG data can be removed by using modern algorithms that
combine source decomposition with blind source separation and adaptive filtering [37].

Furthermore, enhanced performance can be achieved by applying advanced methods which
have been proposed in order to add new knowledge to already learned models of robot semantic
localization [38].
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Abstract: One of the main problems in the elderly population and for people with functional
disabilities is falling when they are not supervised. Therefore, there is a need for monitoring systems
with fall detection functionality. Mobile robots are a good solution for keeping the person in sight
when compared to static-view sensors. Mobile-patrol robots can be used for a group of people and
systems are less intrusive than ones based on mobile robots. In this paper, we propose a novel
vision-based solution for fall detection based on a mobile-patrol robot that can correct its position
in case of doubt. The overall approach can be formulated as an end-to-end solution based on two
stages: person detection and fall classification. Deep learning-based computer vision is used for
person detection and fall classification is done by using a learning-based Support Vector Machine
(SVM) classifier. This approach mainly fulfills the following design requirements—simple to apply,
adaptable, high performance, independent of person size, clothes, or the environment, low cost and
real-time computing. Important to highlight is the ability to distinguish between a simple resting
position and a real fall scene. One of the main contributions of this paper is the input feature vector
to the SVM-based classifier. We evaluated the robustness of the approach using a realistic public
dataset proposed in this paper called the Fallen Person Dataset (FPDS), with 2062 images and 1072
falls. The results obtained from different experiments indicate that the system has a high success rate
in fall classification (precision of 100% and recall of 99.74%). Training the algorithm using our Fallen
Person Dataset (FPDS) and testing it with other datasets showed that the algorithm is independent of
the camera setup.

Keywords: assistive robot; fall detection; lying-pose recognition; deep learning; mobile robot;
convolutional neural network; support vector machine

1. Introduction

Falls are considered one of the most serious issues for the elderly population [1]. In general, those
falls cause injury, loss of mobility, fear of falling and even death. Some studies suggest that falls where
the patient has been waiting a long time on the ground before help arrives are associated with bigger
health problems [2]. Reliable fall detection systems are an essential research topic for monitoring the
elderly and people with disabilities who are living alone [3].

Many approaches have been proposed using many different kinds of devices and methodologies
and some of them are summarized by Noury [4], Mubashir [5], Igual [6] and Khan [7]. Principally,
all proposed approaches can mostly be divided into two big groups—wearable-based and vision-based
devices methods.

Studies based on wearable devices are growing fast and they rely on sensors that are attached to
the person’s body as accelerometers, gyroscopes, interface pressure sensors and magnetometers [8–11].
Although these approaches have provided high detection rates by using small and cheap technology,
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they require active cooperation by wearing the sensors. As a consequence, for long-term use, they are
not a practical solution by themselves.

On the contrary, vision-based devices do not require any support from the elderly. At the same
time, cameras nowadays are increasingly used in our daily lives. Vision-based fall detection systems
analyze in real-time the position and shape of the person using different kinds of algorithms that
combine standard computing platforms and low-cost cameras. Compared with other methods, the
vision-based methods promise results due to the fast advances in computer-vision and video-camera
technologies, such as the economical Microsoft Kinect [12–14]. The combination of video-based and
ambient sensor-based systems (external sensors embedded in the environment, such as infrared,
pressure and acoustic sensors [15]) also provide excellent results.

Mobile robots are the right solution for keeping a single person in view when compared to static
cameras [14,16,17]. To avoid terrain difficulty, Máthé et al. [18] and Iuga et al. [19] proposed methods
that use uncrewed aerial vehicles (UAVs) as mobile robots. A useful aspect of patrol robots, instead of
robots that keep the person continuously in view, is the integration of privacy protection and real-time
algorithms. As the person is not under supervision all the time, especially in particular locations like
the bathroom, the elderly feel more relaxed because their privacy is less invaded.

In this work, we deal with the fall detection problem in the case of having one, two, or more people
in the same environment. We used our multifunctional and low-cost mobile robot equipped with a
2D image-based fall detection algorithm as a patrol robot. The assistive robot autonomously patrols
an indoor environment, and when it detects falls, it activates an alarm. The system was designed to
recognize lying-poses in single images without any knowledge about the background. Additionally,
the robot relocates itself in case of doubt in detection. However, we assume that it is improbable that a
patrol robot takes an image during the falling; therefore, this work focuses on detecting falls in a short
interval after the event of falling.

Additionally, to analyze the effectiveness of the approach, we provide a new dataset to be used in
fall detection algorithms. The main features of this dataset are:

• several scenarios with variable light conditions,
• different person sizes,
• images with more than one actor,
• persons wearing different clothes,
• several lying-position perspectives and
• resting and fallen persons.

The remainder of the paper is organized as follows. Section 2 describes the needs of and challenges
for fall detection systems and reviews the work related to fall detection vision-based approaches.
Section 3 describes the design and methodology of the proposed fall detection method in detail.
We describe the system architecture in Section 3.1. Section 3.2 focuses on person detection and fall
classification is analyzed in Section 3.3. In Section 4, a new dataset is described and the method is
evaluated. Section 4.1 describes the Fallen Person Dataset (FPDS) in detail. Section 4.2 presents the
used metrics for measuring the effectiveness of the technique. The following three Sections 4.3–4.5,
outline the carried-out experiments to evaluate the proposed approach from different points of view.
Two evaluations of the method, relocation of the patrol robot and performance verification over other
datasets were done and they are outlined in the last two Sections 4.6 and 4.7. Finally, in Section 5,
conclusions and future research directions are identified.

2. Vision-Based System Overview

Vision-based systems offer many advantages over wearable sensor-based systems. Mainly, they
are more robust and once they are installed, the person can forget about them. In these systems,
cameras play an important role. If we consider the number and type of cameras, there are mainly
three groups [20]—single camera, multicamera and depth cameras. For 2D-vision systems, only
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one uncalibrated camera is required but for 3D vision systems, we need a calibrated single camera
or multicamera.

The most extensive systems are based on a single camera due to their simplicity and price.
Particularly in the case of fixed cameras, since cameras are static, and background subtraction can
mainly be applied to find the person in the image [21]. Kim et al. [22] proposed one of the more
used real-time foreground-background methods. However, the person could be integrated into the
background when they have been sitting on a couch for long. Several approaches show that it is
possible to achieve good results using a single camera. Charfi et al. [23] proposed a technique based on
feature extraction, an SVM-based classifier and a final decision step. Liu et al. [24] used a k-nearest
neighbor classifier and Wang [25] performed multi-viewpoint pose parsing based on part-based
detection results.

Fixed cameras are efficient only if the camera is placed in the ceiling of the room to avoid occlusion
objects. However, the camera does not have good access to the vertical parameter of the body, which
provides essential information for fall detection [26]. Another intelligent solution consists of using an
assistive robot equipped with a single camera. In that case, occlusion or doubtful cases can be solved
using different viewpoints that can be taken from the moving robot.

On the other hand, a good solution for solving the problem of occlusion would use a system with
multiple cameras. However, the main issues in those cases are time-consuming calibration to compute
reliable 3D information and the synchronization process between the different cameras. Some studies
have been working out these problems, such as Rougier et al. who, in Reference [27], proposed a
method based on Gaussian Mixture Model (GMM) classification and human-shape deformation for
uncalibrated single- and multicamera systems.

Depth cameras, such as Kinect, provide several advantages, for example, independence from
light conditions, silhouette ambiguity of the human body, simplification of background-subtraction
tasks and reduction of the time needed for calibration [12,13].

In general, vision-based fall detectors have some challenges to resolve for good performance in
the different situations that the person can be found:

• high variability of possible body orientations on the floor,
• different person sizes,
• wide range of background structures and scenarios and
• occlusions being frequent cases in the fall detection context.

Based on all previously mentioned reasons, our proposal is a vision-based learning solution for
fall detection by using a single RGB camera mounted on an assistive patrol robot. The robot patrols
around the indoor environment and, in case of fall detection, activates an alarm. The proposed method
deals with three of the previous four points, as is shown in the Experiment Results section. How to
improve our work with the occlusions is further investigated.

3. Proposed Fall Detection Approach

Our approach solves the fall detection problem in an end-to-end solution based on two
steps—person detection and fall classification. The person detection algorithm aims to localize all
persons in an image. Its output is the enclosing bounding boxes and the confidence scores that reflect
how likely it is that the boxes contain a person. Fall classification estimates if the detected person is in
a fall or not.

In this approach, we propose to combine the YOLOv3 algorithm based on a Convolutional Neural
Network (CNN) for person detection and a Support Vector Machine (SVM) for fall classification.
The main steps of our detection system (Figure 1) are as follows:

• Take a single image.
• Person detection. Results are the coordinates of the bounding box of the detected human body.
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• Feature extraction from the bounding box coordinates.
• Fall identification.

– Nonfall detection—continue taking new images.
– Fall detection—ask for confirmation of the fall.
– Doubt detection—the bounding box is too small, too big, or is located at the edges of the

image. The robot needs to relocate itself to center the possible fall detection with the proper
dimensions.

Figure 1. Flowchart of fall detection approach.

3.1. System Architecture

As a base for the fall detection approach, we used the assistance robot LOLA, designed entirely
by our research team to monitor and help the elderly and any other person with a functional disability
who lives alone. The main idea behind the LOLA robot was to be an assistive robot that could also
work as a rollator for helping to walk or as a table to transport objects due to its shape—80 cm height,
58 cm width and 70 cm depth (Figure 2).

Figure 2. LOLA assistive robot.

The system is equipped with an Arduino Mega board, various sensors, a single RGB camera
and Raspberry V3 B+. We also needed a connection to a server to perform the heavy workload—image
processing and the fall detection algorithm. This connection could be WIFI to a remote server or
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ethernet to a laptop located in the robot. The camera is located 76 cm above the floor and takes images
of 640 × 480 pixels (Figure 3).

Figure 3. System-architecture overview.

3.2. Deep Learning-Based Person Detection

CNNs are one of the most popular machine-learning algorithm types at present and it has been
decisively proven over time that they outperform other algorithms in accuracy and speed for object
detection [28].

Algorithms for object detection using CNN can be broadly categorized into two-stage and
single-stage methods. The two-stage algorithm based on classification first generates many proposals
or interesting regions from the image (body) and then those regions are classified using the CNN
(head). In other words, the network does not check the complete image; instead, it only checks parts of
the image with a high probability of containing an object. Region-CNN (R-CNN) proposed by Ross
Girshick in 2014 [29] was the first of this series of algorithms that was later modified and improved,
for example, fast R-CNN [30], faster R-CNN [31], R-FCN [32], Mask R-CNN [33] and Light-Head
R-CC [34]. However, single-stage algorithms based on regression do not use regions to localize
the object within the image; the predict bounding boxes and class probabilities at the whole image.
The most known examples of this type of algorithm are Single Shot Detector (SSD), proposed by
Liu et al. [35] and ‘you only look once’ (YOLO) proposed by Joesph Redmon et al. in 2016 [36]. YOLO
has been updated to versions YOLOv2, YOLO9000 [37] and YOLOv3 [38]. In this paper, we decide
to apply real-time object detection system YOLOv3 for person detection, which has proven to be an
excellent competitor to other algorithms in terms of speed and accuracy.

The YOLO network takes an image and divides it into S × S grids. Each grid predicts B bounding
boxes

{
bi
}

, i = 1, . . . , B and provides a confidence score for each of them Con fbi, which reflects how
likely the box contains an object. Bounding boxes with this parameter above a threshold value are
selected and used to locate the object, a person in our case. The bounding box position is the output of
this stage for our algorithm.

3.3. Learning-Based Fall/Nonfall Classification

The effectiveness of SVM-based approaches for classification has been widely tested [39–41].
The SVM algorithm defines a hyperplane or decision boundary to separate different classes and
maximize the margin (maximum distance between data points of the classes). Support vectors are
training data points that define the decision boundary [42]. To find the hyperplane, a constrained
minimization problem has to be solved. Optimization techniques such as the Lagrange multiplier
method are needed.
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In the case of nonlinearly separable data, data points from initial space Rd are mapped into a
higher dimensional space Q where it is possible to find a hyperplane to separate the points. With this,
the classification-decision function becomes

f (x) = sgn(
Ns

∑
i=1

yiαiK(x, si) + b) (1)

where training data are represented by {xi, yi}, i = 1, . . . , N, yi ∈ {−1, 1}, b is the bias, αi, i = 1, . . . , N
are the Lagrange multipliers obtained during the optimization process [43] and si, i = 1, . . . , Ns are the
support vectors, for which αi �= 0 and K(x, xi) is a kernel function. A Radial Basis Function (RBF) was
used as a kernel in this study:

K(x, xi) = e−γ||(x−xi)||2 (2)

where γ is the parameter controlling the width of the Gaussian kernel.
The accuracy of the SVM classifier depends on regularization parameter C and γ. C is the

parameter that controls the penalization associated with the training samples that are misclassified
and γ defines how far the influence of a single training point reaches. So, both parameters must be
optimized for every different task in particular, for example, by using cross-validation.

The selection of the right features or input parameters to the SVM plays an important role in
having a high-performance classification algorithm. Some features are most widely used in the
literature as aspect ratio (AR), change in AR (CAR), fall angle (FA), center speed (CS) or head speed
(HS) [21,44,45]. However, after analyzing the parameters that provide the best trade-off performance
for goals to achieve in our approach, using the bounding box data of a detected person, we defined the
input feature vector for the SVM classifier as

• Aspect ratio of bounding box, ARi:

ARi =
Wbi
Hbi

(3)

• Normalized bounding box width, NWi:

NWi =
Wbi

Wimage
(4)

• Normalized bounding box bottom coordinate, NBi:

NBi = 1 − Ydownbi
Himage

(5)

where Wbi = Xrightbi − Xle f tbi, Hbi = Ydownbi − Xtopbi are the width and height of bounding box{
bi
}

, respectively, calculated from the bounding box position provided by YOLOv3 {Xle f tbi, Xrightbi,
Ytopbi, Ydownbi} and Wimagen, Himagen are the width and height of the overall image. Point (0, 0) is at
the top-left corner of the overall image. Parameter NBi defines the distance from the bottom of the
image to the lower part of the normalized bounding box. As the values of the NBi and NWi parameters
are between 0 and 1, in order to give a similar weight to ARi, we needed to adjust its value as input to
the SVM. We analyzed the data and Wbi was lower than 10Hbi for all cases, so we normalized ARi by
10 in order to get a feature in [0,1]. Therefore, we considered detection if Wbi < 10Hbi.

Parameter ARi is the most significant feature that characterizes the fall. As can be seen from the
examples in Figure 4a,b, a person standing upright has a small ARi, while this ratio is large in the
case of a person lying in a horizontal body orientation position. However, this parameter alone is not
enough. There are some cases where the person is in a lying-position but this parameter does not show
it; this is the case of lying in a vertical body orientation position, as we show in Figure 4c.
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(a) (b) (c)

Figure 4. Aspect ratio. (a) Standing person ARi = 0.402. (b) Fallen person in horizontal-pose
orientation position ARi = 3.810. (c) Fallen person in vertical-pose orientation position ARi = 0.751.

One of the main goals of the algorithm is the ability to differentiate between fallen people and
resting situations. Figure 5 shows one example of how the optical perspective in the cameras works.
The object size in the image (in pixels) depends on the real image size (in mm) and the distance from
the camera to the object [46]:

• Objects with the same size at different distances from the camera (object planes) appear with a
different size (pixels) in the image plane; the closest one is visible in a larger size (Figure 5a);

• objects with the same size at the same distance to the camera (object planes) appear with the same
size (pixels) in the image plane (Figure 5b). If objects are at different heights in the object plane,
the same happens in the image plane.

When we compare a fallen person and a resting person at the same distance from the camera,
the situation is the one observed in Figure 5b. The resting person is the person in the higher position.
As shown in Figure 6a, the ARi and NWi parameters in both cases were the same (same size of
bounding box); however, the NBi parameter was different NB1, NB2. For the same value, NB1,
the bounding box size for a fallen person should be the red one (see Figure 6b).

Therefore, proposed parameters ARi, NWi and NBi provide needed information for differentiating
those situations and, during the training stage, the SVM learns the relation between them in both cases
(fall and resting position).

Figure 7 shows the previous explanation with real images. It contains three pairs of images where
fallen and resting persons are at the same distance from the camera (1.5, 2 and 3 m away). Table 1
shows the parameters provided to the SVM in those situations. As can be seen in the table, each pair of
images have a similar NWi parameter (slight differences are due to not being precisely at the same
position from the camera). However, parameter NBi had a larger value in the nonfall situation because
the body was in a higher position in the image.

Table 1. Input parameters to the support vector machine (SVM) from images in Figure 7.

1.5 m 2 m 3 m

ARi NWi NBi ARi NWi NBi ARi NWi NBi

5.33 0.85 0.014 4.54 0.61 0.11 3.47 0.39 0.22
4.64 0.69 0.25 4.41 0.56 0.30 3.06 0.37 0.32

103



Electronics 2019, 8, 915

Figure 5. Optical perspective. Image plane for same object at (a) different distances and
(b) different heights.

Figure 6. Relation between the NBi parameter and the bounding box size. (a) Fallen and resting
persons at same distance from camera. (b) Two fallen persons at different distances from camera.
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Figure 7. Fall/nonfall detection 1.5, 2 and 3 m away (each pair of images are in the same column).

4. Experiment Results

4.1. FPDS Dataset

Analysis and comparison of different fall detection algorithms is a real problem due to the lack
of public datasets with a large number of people in lying-positions [21,47,48]. ImageNet [28] and
MS-COCO [49] are examples of those large image datasets. Some fall detection datasets provide
images or videos with the camera situated in different positions but most of them in simulated
environments [23,48,50–52]. However, they are neither large enough nor have all the required image
variations for testing our experiments—several environments, more than one person in each image,
persons in resting positions, falls with a variety of body orientations and persons with different sizes
and clothes.

For all those reasons, in this paper, we present our own dataset (FPDS) to be used in fall detection
algorithms. All images were taken by using a single camera inserted in a robot at 76 cm above the
floor. This dataset consisted of a total of 2062 manually labeled images with 1072 falls and 1262 people
standing up, sitting in a chair, lying on the sofa, walking and so forth. Images could have more than
one actor and were recorded from different perspectives (Figure 8). An essential feature of this dataset
compared with other datasets was having actors with a height range of 1.2–1.8 m (see Figure 9).

Figure 8. Fallen Person Dataset (FPDS) images with different lying-body orientations.
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Figure 9. FPDS images with different person sizes—1.2, 1.4 and 1.8 m height.

Images were taken in eight different environments with variable illumination, as well as shadows
and reflections, defining eight splits. Figure 10 and Table 2 show sample images and the characteristics
of the FPDS, respectively.

Figure 10. Cont.
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Figure 10. Ground-truth image examples of the FPDS. Each row belongs to a different split. Bounding
boxes are red/green in case of fall/nonfall detection.

Table 2. FPDS dataset characteristics.

Split 1 Split 2 Split 3 Split 4 Split 5 Split 6 Split 7 Split 8 Total

Number of falls 278 223 180 104 49 42 15 181 1072
Number of nonfalls 175 82 175 3 704 0 39 84 1262
Number of images 400 323 368 117 553 42 51 210 2064

FPDS dataset consists of images and txt files with the same name. These files contain five
parameters per bounding box in the image— bounding box coordinates {Xle f tbi, Xrightbi, Ytopbi,
Ydownbi} and the classification label y (y = 1 fall, y = −1 nonfall). Additionally, in the dataset
we provided some sample images of a well-defined pattern (chessboard) taken with the camera
from different perspectives for calibration purposes. FPDS dataset is public and available at http:
//agamenon.tsc.uah.es/Investigacion/gram/papers/fall_detection/FPDS_dataset.zip.

For all experiments, training and testing images belonged to different splits to correctly evaluate
the ability of the algorithm to learn. We built training set L with splits 1, 2 and 3, by using 681 falls
and 432 nonfalls in a total number of 1084 images. Testing set T was built by using from 4 to 8 splits,
with 391 falls and 830 nonfalls in a total number of 973 images.

4.2. Metrics

To investigate the effectiveness of the method, we evaluate fall detection at the classifier-output
level by measuring error rates, computed from good and misclassified images. However, to fully
evaluate the algorithm, we needed to measure the precision and recall parameters [23]. Precision
provides information about the proportion of positive fall identifications that are actually falls and
recall the proportion of falls that were identified correctly. Unfortunately, these parameters work in
different directions, meaning that improving precision typically reduces recall and vice versa:

Pr =
TP

TP + FP
(6)

Re =
TP

TP + FN
(7)

being

• True positives (TP)—number of falls correctly detected,
• false negatives (FN)—number of falls not detected and
• false positives (FP)—number of nonfalls detected as falls.
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4.3. Experiment 1: Fall Classification

In this first experiment, we evaluated the performance of the learning-based fall/nonfall
classification algorithm by itself without considering the person detection part. We use the ground-
truth hand-labeled bounding boxes from our dataset as inputs. Cross-validation was performed on
the training set to find the optimal C and γ values in the RBF SVM classifier. Figure 11 shows the
accuracy-level curves for both parameters. We selected γ = 2 and C = 128 with an accuracy of 99.55%.
These values were also established for Experiments 2 and 3.

Figure 11. Accuracy-level curves during cross-validation for γ and C parameters in Experiment 1.

We summarize the experiment results in only one table to help with comparisons (Table 3).
The first row of this table are the results of this experiment. The fall classifier detected 390 true positives,
1 false negative and 0 false positives, which means precision and recall of 100% and 99.74%, respectively.
These results confirm a great selection of the selected input parameters to the SVM classifier.

Table 3. Performance over testing set T in the FPDS dataset.

TP FN FP Pr (%) Re (%)

Experiment 1: Fall classification 390 1 0 100 99.74
Experiment 2: Fall detection algorithm 304 87 9 97.12 77.74
Experiment 3: Fall detection with pose correction 360 31 17 95.49 92.07

Several approaches have been proposed to detect falls, with good results. However, only a few
of them take into account realistic datasets with different normal daily situations. One of the more
complicated situations to solve is not detecting falls versus standing but rather falls versus resting
situations where the person has a similar pose orientation. Our fall classifier can detect both situations
in all cases that were tested. Figure 12 shows two examples.
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Figure 12. Example images from testing test where algorithm differentiates between fallen person and
resting person.

4.4. Experiment 2: Fall Detection Algorithm

The next experiment evaluated the performance of the overall end-to-end fall detection
algorithm—person detection and fall classification. In this case, the person detection part was done by
using deep learning method YOLOv3.

To maximize performance, the confidence score of bounding box confbi provided by YOLOv3
should have been above than a certain threshold Confi. We selected threshold value Confi = 0.2 for
having good trade-off performance between recall and precision. Figure 13a shows this point by ‘*’.

(a) (b)

Figure 13. Recall and precision metrics for different thresholds. (a) Experiment 2, confi. (b)
Experiment 3, confr.

Note the terminology—subindex “i” is used for parameters assigned to the “image directly from
the camera” to differentiate them from the parameters assigned to the “rotated images” with subindex
“r” that is explained in the next subsection.

We used Intersection over Union (IoU) as an evaluation metric to compare the bounding boxes
provided by the fall detection algorithm and the ground-truth hand-labeled images from our dataset.
To set a threshold value for the IoU, called IoUi, we analyzed how this value affects the precision and
recall parameters. It was observed that the values of these metrics were almost independent of the
selected threshold, setting; in that case, value to IoUi = 0.2. Values Confi = 0.2 and IoUi = 0.2 were also
established in Experiment 3.

As in the preceding subsection, the second row of Table 3 shows the results of testing set T for
this experiment. It detected 304 true positives, 87 false negatives and 9 false positives. The values
of precision and recall, in this case, were 97.12% and 77.74%, respectively. The false alarms were
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mainly caused by errors in the person detection step of the overall algorithm. Therefore, if we compare
with the performance of the SVM classifier itself, overall performance is worse. YOLOv3 was trained
using the Common Objects in Context (COCO) dataset [49], which did not have enough lying-position
persons for training the CNN to recognize persons in that position with high accuracy.

4.5. Experiment 3: Fall Detection with Pose Correction

YOLOv3 performance to detect persons in lying-positions improves with customized training
using a dataset with a large number of persons in that position. However, to build this kind of dataset
is costly and time-consuming. Due to the lack of public datasets with this characteristic at the moment,
this training is not possible. The FPDS dataset proposed in this paper is useful for evaluating the
robustness of the algorithm in different situations but does not have enough images for the customized
training of YOLOv3.

The smallness of the training set represents a significant problem to the overall algorithm, as we
analyzed in the previous experiment. Many have, therefore, tried to reduce the need for large training
sets. In this article, we investigated how person pose position affects the efficiency of the approach.
The experiments show that adding simple pose correction to YOLOv3 improves performance without
the need for new customized training. The pose correction algorithm is explained in Figure 14. We ran
three separate YOLOv3 networks, one for the initial image and two more for the rotated images at 90
and 270 degrees.

Figure 14. Flowchart of fall detection with pose correction.

For better optimization, we analyzed whether the correct threshold of the confidence score
applied to the rotated images, called confr, was the same as the one used for the image directly from
the camera, confr. Figure 13b shows the precision and recall metrics for different thresholds. In this
case, we obtained the best trade-off for a value of confr = 0.15, keeping the value of confi = 0.2 for the
image directly from the camera.

This modified person-detector algorithm could detect the same fall more than once. To identify
if the bounding boxes belonged to the same fall, we needed to establish a new threshold for the
IoU parameter, called IoUr. In case the bounding boxes are the same, the algorithm keeps only one;
otherwise, it keeps both of them. A threshold of IoUr = 0.1 provides a good trade-off between the
precision and recall metrics.

Table 4 shows three examples from the testing set of the FPDS dataset with its detections in the
initial and rotated images. In the first row, we can observe how the lying-person was detected in the
two rotated images but not in the initial one. However, in the second example, the person was only
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detected in the 270◦-rotated image. In the last example, with two fallen persons, one of the falls was
detected in the three images but the other one was only detected in the 270◦-rotated image.

Table 4. Fall detection examples with pose correction.

Initial Image 90◦ Rotated Image 270◦ Rotated Image

Thanks to pose position correction, the overall method improved considerably in recall while
keeping almost the same precision. Results are shown in the third row of Table 3. It has detected 360
true positives, 31 false negatives and 17 false positives with values of precision and recall of 95.49%
and 92.07%, respectively.
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4.6. Evaluation 1: Relocation for Doubtful Cases

One of the main points of the proposed approach is the ability of the robot to relocate itself when
fall detection is doubtful. The relocation algorithm moves the robot depending on the size and position
of the detected bounding box. In all cases, the robot moves to center the possible fall detection with
proper dimensions. Figure 15 shows three different cases where the robot needs to move to get a better
picture of the person.

Figure 15. Robot relocation in three different testing examples of the FPDS dataset.

4.7. Evaluation 2: Other Datasets

To evaluate the detection effectiveness of our algorithm, we needed to test the proposed approach
with alternative algorithms described in the literature. In this case, we decided to use the public
Intelligent Autonomous Systems Laboratory Fallen Person Dataset (IASLAB-RGBD) [52], close enough
to our dataset. This dataset was generated by using a Kinect One V2 camera mounted on a mobile
robot 1.16 m above the floor. We used static dataset with 374 images, 363 falls and 133 nonfalls. Despite
our camera being 76 cm above the floor and the training set having been built by using the same splits
of the FPDS dataset as in the other test experiments, results were quite satisfactory in Experiment
1, with precision and recall of 99.45% and 100%, respectively. However, detection was not so good
in Experiments 2 and 3, as can be observed in Table 5. These results indicate the good selection of
the input feature vector to the SVM, which makes the classifier almost independent of the camera
setup. Giving the impossibility to compare the results directly, the comparison is proof of the good
performance of our method with other datasets that contain images that considerably differ from the
examples in the training set.

Table 5. Performance over the Intelligent Autonomous Systems Laboratory Fallen Person Dataset
(IASLAB-RGBD).

TP FN FP Pr (%) Re (%)

Experiment 1: Fall classification 363 0 2 99.45 100
Experiment 2: Fall detection algorithm 212 151 43 83.13 58.40
Experiment 3: Fall detection with pose correction 271 92 53 83.69 74.72

5. Conclusions and Future Work

In this paper, we presented a low-cost system for detecting falls in elderly populations and people
with functional disabilities who are living alone. The system is based on an assistive patrol robot that
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can be used for one, two, or more people. Our objective was to implement a vision-based fall detector
system in our robot that acquires image data, detects falls and alerts emergency services. In our
attempts to detect falls with an easy, fast and flexible end-to-end solution, we proposed a two-step
algorithm. We combined a CNN to be used for person-detection and an SVM for fall classification.
One of the main contributions of this paper was to find the combination features for the SVM-based
classifier that provide the best performance for the design requirements. Results obtained from the
different experiments indicate that the system had a high success rate in fall detection and could correct
the position of the robot in case of doubt.

It is important to remark that, compared with existing fall detection approaches that show
weakness in distinguishing between a resting position and a real fall scene, our fall classification
algorithm could correctly detect both situations in all tested cases. Another important result to
highlight is the ability to work correctly and detect fall situations with persons of different heights.

Since one of the goals of the work was to run a fall detection algorithm in real-time, it was needed
to evaluate time implementation. In our case, the only time-consuming task was due to YOLOv3
person detection, which is more than acceptable for a real-time fall detection system.

We evaluated the robustness of the method using a realistic dataset called FPDS, which is publicly
available and a contribution of this paper. The main features of this dataset are eight different
scenarios, various person sizes, more than one person in an image, several lying-position perspectives
and resting persons.

Additionally, we tested our algorithm using other datasets (training was done using the
FPDS dataset). The results are quite satisfactory in fall classification, which showed us the almost-
independence of the algorithm with the camera setup.

Future works to investigate are improvement in occlusion detection and the possibility to merge
person detection and fall classification into a single CNN by using one or two different classes.
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The following abbreviations are used in this manuscript:
CNN Convolutional Neuronal Network
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YOLO You Only Look Once
SVM Support Vector Machine
RBF Radial Basis Function
FPDS Fallen Person DataSet
TP True Positive
FN False Negative
FP False Positive
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Abstract: Multi-object tracking aims to estimate the complete trajectories of objects in a scene.
Distinguishing among objects efficiently and correctly in complex environments is a challenging
problem. In this paper, a Siamese network with an auto-encoding constraint is proposed to
extract discriminative features from detection responses in a tracking-by-detection framework.
Different from recent deep learning methods, the simple two layers stacked auto-encoder structure
enables the Siamese network to operate efficiently only with small-scale online sample data.
The auto-encoding constraint reduces the possibility of overfitting during small-scale sample training.
Then, the proposed Siamese network is improved to extract the previous-appearance-next vector
from tracklet for better association. The new feature integrates the appearance, previous, and next
stage motions of an element in a tracklet. With the new features, an online incremental learned
tracking framework is established. It contains reliable tracklet generation, data association to generate
complete object trajectories, and tracklet growth to deal with missing detections and to enhance the
new feature for tracklet. Benefiting from discriminative features, the final trajectories of objects can
be achieved by an efficient iterative greedy algorithm. Feature experiments show that the proposed
Siamese network has advantages in terms of both discrimination and correctness. The system
experiments show the improved tracking performance of the proposed method.

Keywords: multi-object tracking; Siamese network; discriminative feature; online learning

1. Introduction

As a key technology in computer vision, multi-object tracking (MOT) has received growing
attentions from researchers all over the world. In recent years, with the improvements in object
detecting techniques [1–3], tracking-by-detection (TBD) has become one of the most successful
strategies. It applies an object detector to produce detection responses in each frame, which are then
used to generate complete trajectories. The data association process mainly depends on object features
including appearance, motion, and other factors. It is often solved by Hungarian algorithms [4,5],
network flows [6–8], minimum energy models [9,10], conditional random field approaches [11,12],
hyper-graph model [13], deep learning methods [14–17], and so on.

Object feature expression is the basis of data association. Handcrafted features, such as the
histogram of oriented gradient (HOG) [18], local binary patterns (LBP) [19], and the histogram of
color (HOC) are widely used in computer vision researches [8,11,13,20]. These features were originally
designed to distinguish objects from various backgrounds. Although a combination of different
handcrafted features [11,13] is often used to improve discrimination, it is still not robust enough.
Meanwhile, detection responses given by object detectors are not always accurate and sometimes
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even false due to complex backgrounds, poor image quality, complicated movements, or occlusions of
objects. Thus, how to better distinguish targets by online detection responses, how to deal with noise
due to detection inaccuracy, and how to combine various cues of a target to enhance discrimination
remain key issues that limit tracking performance.

With the developments of deep learning in image classification, segmentation, and other
applications, researchers used deep architectures to learn discriminative features for multi-object
tracking, and they achieved good results. In [12,15,17,21–23], deep Siamese networks were adopted
instead of traditional handcrafted methods [11,13]. A contrastive loss function was used with the aim
of decreasing the feature distances for the same object pairs while increasing distances for the different
pairs. Due to the shortage of online samples, training of such deep neural network mainly depends
on offline learning. Although online fine-tuning measures are often adopted, the online data are too
limited to run a deep network effectively.

In this paper, a Siamese network with an auto-encoding constraint (SNAC) is proposed, which
is able to work well with a small-sized sample set. Different from previous deep Siamese networks,
the SNAC has a simple structure with two fully-connected layers, an auto-encoder layer, and a code-mix
layer. The simple network can be easily learned by online limited samples to extract discriminative
features to distinguish objects on the scene. Inspired by stacked auto-encoder methods [24,25],
the output of the encoder layer tries to represent the input detection response as accurately as possible.
This is done by adding a constraint term to the loss function, called the auto-encoding constraint,
which effectively prevents the network from overfitting while training with limited samples. To deal
with inaccurate detection responses (red bounding box in Figure 1a), Gaussian distribution training
samples are generated around detection responses to suppress noises. For each detection response,
one SNAC is trained to distinguish it from others in adjacent frames. Meanwhile, in order to enhance
robustness, following [22], the HOC is used as the input instead of raw pixels. With the discriminative
detection features extracted by SNACs, reliable tracklets are generated.

To better distinguish tracklets, SNAC is improved to extract a composite previous-appearance-next
(PAN) feature for each tracklet, which combines previous and next step motions with the appearance
of the tracklet element. Following [11,26], elements in the same tracklet can be treated as positive
samples, and the negative samples are obtained from time overlapped tracklets. The distribution is
proposed to express motion that can suppress motion noises, and this is also compatible with the
appearance for joint learning of the PAN feature.

In order to solve the MOT problem by the proposed SNAC, an online incremental learned tracking
framework is established. First, one SNAC is trained for each detection response online, and reliable
tracklets are generated mainly by the extracted features. Then, the PAN features are learned from
tracklets by improved SNACs. To improve the training efficiency, SNACs are trained by incremental
learning. During tracklet generation, the parameters of SNAC for detection in the new frame are
inherited from the predecessor tracklet element, and the training samples are updated frame by frame.
To extract PAN, the parameters are initialized by the SNAC of the related detection response. A tracklet
growing process is used to deal with missing and partial detections (Figure 1b,c) before tracklet
association. With the discriminative PAN feature, complete trajectories are solved efficiently by an
iterative greedy algorithm. The main contributions of this paper are summarized as follows:

(1) A simple structure Siamese network with an auto-encoding constraint is proposed to extract
discriminative features efficiently for objects on the scene. An auto-encoding constraint is added
to prevent overfitting when training data are limited.

(2) A composite feature of tracklet, PAN, is defined, which combines appearance and motion through
joint learning. To describe the sequential features of tracklets better, data association based on
PAN is more reliable.

(3) A tracking framework is established that includes reliable tracklet generation by incremental
learning with SNAC for the detection response, tracklet growth to enhance PAN performance and
deal with missing detections, and tracklet association with PAN to generate complete trajectories.
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(a) Inaccurate detection (b) Missing detection (c) Partial detection

Figure 1. Illustrations of detection failures in three consecutive frames. The solid yellow bounding
boxes represent the correct detection responses, and the red boxes are error cases. (a) The red bounding
box is a deviation detection that does not exactly match the target. (b) The red dashed bounding box
indicates a missing detection. (c) The detection response only includes the upper body of the target.

2. Related Works

Tracking by detection (TBD) has been one of the most promising methods developed to solve the
multi-object tracking (MOT) problem in recent years. It generates object trajectories based on detection
responses given by pre-designed detectors. For reliable data association, most recent researches were
based on tracklets. In [26], the dual-threshold method was proposed to generate reliable tracklets and
utilize them to get the final trajectories hierarchically. In [27], a prototype of a three frames triplet,
which is a type of three members tracklet, was designed to extract high-level features. The Hungarian
algorithm was also used to generate reliable tracklets in [12,15]. On the basis of tracklets, [11] built an
online learning conditional random field (CRF) model focused on distinguishing the difficult pairs of
objects. In [13], a hyper-graph model was developed to explore more complex relations among objects.
The latest MOT methods [12,21] also focused on using tracklets. In these studies, tracklet building
and feature expression are important to achieve reliable data association. In this section, MOT object
feature extraction methods are mainly introduced.

From handcrafted methods to deep learning techniques, many studies have achieved significant
improvements in extracting appropriate object features for MOT. In [11,13], a combination of multiple
handcrafted features was proposed to distinguish objects by appearance. Their sample collection
schemes were used in many following studies. The developments of deep learning have introduced
new ideas for feature description in tracking areas. In [24,28–30], deep neural networks were adopted
for single object tracking (SOT), and achieved significant improvements. In SOT problems, features
of objects were used to distinguish them from the background. Different from SOT, MOT mainly
distinguishes objects from each other. Due to this difference, the deep learning scheme of SOT cannot
provide good results for MOT problems.

The deep learning methods for MOT can be summarized into two categories. The first builds
a deep learning based tracking model to form the whole MOT system. Milan et al. [31] proposed
a tracking model based on recurrent neural networks (RNN). The proposed RNN model described
the whole tracking system including motion prediction, updating, object state judgment, and data
association. It was trained online in an end-to-end manner to track various objects. Schulter et al. [14]
proposed a deep network flow model for MOT, which instead of empirically hand-crafting costs,
learned the parameterized costs of the network flow model by end-to-end training. This dynamic
parameter setting method improved the robustness and accuracy of tracking. Zhou et al. [12]
proposed a deep continuous conditional random field (DCCRF) model for solving online MOT
problems. The unary term was used to provide a deep discriminative appearance feature for tracklet
association, and a pairwise term was used to deal with inter-object relations. In [16], a deep neural
network consisting of an encoder and a decoder was proposed. In their method, an encoder was
a fully-connected network and a decoder was a bidirectional long short-term memory (LSTM).
This network was able to learn the association matrix to solve MOT.
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The second group uses a deep neural network to extract discriminative feature for each object.
Unlike the previous kind, this method deals with the object feature extraction problem directly,
and many researchers have followed this idea. Sadehgian et al. [32] proposed an RNN model jointly
used the appearance, motion, and interactions of an object to encode a discriminative long-term
temporal relationship using these cues. Their discriminative appearance features were extracted by
a deep CNN. Son et al. [33] designed a quadruplet CNN (QCNN) network to learn the affinities
among objects based on appearance and motion. The proposed quadruplet loss function guided the
network to learn a temporally-smooth appearance model with motion-aware constraints. Features
extracted from the QCNN included time continuity, which enhanced the discrimination. In addition,
Siamese networks, first defined and used for signature verification, played an important role and have
achieved good results in face identification [34], people re-identification [35], and many computer
vision applications. Siamese networks are more suitable for distinguishing objects due to their
symmetrical structures. Wang et al. [15] applied a Siamese CNN (SCNN) to construct an appearance
affinity model for tracklets. They embedded a temporally-constrained multi-task mechanism in their
training process. Leal-Taixé et al. [22] used an SCNN to estimate the likelihood of two objects using a
multi-modal inputs including image and optical flow. Following [22], Yoon et al. [23] proposed the
historical appearance matching method and trained a Siamese network by a two-step process to deal
with noisy detections. In [17], a speeding method was proposed to remove redundant appearance
matchings of SCNN for real-time tracking. In the DCCRF model [12], SCNN was also used to extract
discriminative features. Based on SCNN, Bae et al. [21] proposed a confidence-based data association
method for MOT. They utilized the SCNN to learn a discriminative appearance model from offline
training datasets.

3. Online Learned Siamese Network with Auto-Encoding Constraint

In this section, a new Siamese network with an auto-encoding constraint (SNAC) is proposed. It is
better at distinguishing objects in MOT. Benefiting from the simple structure of two fully-connected
layers, an auto-encoder layer and a code-mix layer, the SNAC can be learned effectively. Meanwhile,
with an auto-encoding constraint in the loss function, SNAC can prevent overfitting while training
with limited online samples. In order to suppress detection noises, Gaussian distribution samples were
generated around detection responses to make up the training set and HOC was used as the input
instead of raw pixels. Then, an incremental learning algorithm was proposed to train the SNAC to
generate reliable tracklets. Mathematical notations are listed in Table 1.

Table 1. Notations.

Symbol Definition

SNAC Siamese network with an auto-encoding constraint
dt

i the ith detection response in frame t
Dt detection responses set in frame t
D = {D1, ..., Dt} sequence of Di for i = 1, 2, . . . , t
Tt

k the kth tracklet up to frame t
T

t = {T1, ..., Tt} set of all tracklets up to frame t
Fk

t feature vector of SNAC for Tt
k

{d} a set consisting of an element d
Dt − {d} the set Dt with d deleted
Ψ(.) the sample set
Λa(T, d) appearance similarity between T and d
Λ(T, d) overall affinity between T and d

3.1. The Structure of SNAC

The two-layer structure of SNAC is shown in Figure 2a. Bounding boxes of detection responses
were first resized to 48 × 32 as the inputs of the Siamese network. The two sub-networks (dashed
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boxes in Figure 2a) were identical in structure and share parameters including weights and biases.
A contrastive loss function was employed to learn the Siamese network.

As shown in Figure 2b, each sub-network consisted of an auto-encoder layer and a code-mix
layer. The first layer contained three parallel auto-encoders corresponding to the red, green, and blue
channels of the input RGB image, respectively. Similar to [22], the inputs were R, G, and B histograms,
not pixel values, and they were denoted as 256 dimensions vectors: x0, x1, and x2. Because of limited
samples, training based on pixel values may lead to overfitting. Meanwhile, the histogram can also
suppress the detection noises. Each auto-encoder contained a forward encoder, a backward decoder,
and an auto-encoding error evaluator. The encoder and decoder were fully-connected networks.
The output of the encoder was a vector with 100 dimensions, and the output of the decoder was a
reproduction of the corresponding input. The code-mix layer was fully connecting and combined
three code vectors of the first layer to produce a feature vector with 100 dimensions as the final output.
Mathematically, the sub-network can be written as:

⎧⎪⎪⎨
⎪⎪⎩

yk
m = σ(Wk

Exk
m + bk

E), m = p, q, k = 0, 1, 2

x̂k
m = σ(Wk

Dyk
m + bk

D), m = p, q, k = 0, 1, 2

zm = σ(WM(y0
m, y1

m, y2
m) + bM), m = p, q

(1)

where subscript m indexes the upper p or lower q sub-network, the upper-script k indexes the channel,
y is the code vector from an encoder, x̂ is the reproduction of y by the decoder, and z is the final feature
vector. W, b, and σ are the weights, biases, and activation functions of the neural networks, with the
subscripts E, D, and M indicating the encoder, decoder, and code-mix layer.

(a) The overall framework (b) Internal details

Figure 2. Structure of SNAC: (a) shows the overall structure of SNAC, including its symmetrical
structure and parameter sharing. Here, AEL stands for auto-encoder layer, superscripts 0, 1, and 2
indicate image channel numbers, and ML stands for the code-mix layer. (b) is the internal anatomical
diagram of the SNAC structure, showing its auto-encoder layer and code-mix layer.
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3.2. Loss Function and Auto-Encoding Constraint

To learn a Siamese network, a contrastive loss function was formulated based on similarity or
difference measurements between input pair. The objective was to train the network to sufficiently
reduce differences between pairs of the same inputs and to increase feature distances of different ones.
The distance of input training pair is denoted as:

D(xp, xq) = ||xp − xq||22 (2)

where xp and xq are feature vectors from the two sub-networks in SNAC. Instead of using the Euclidean
distance here, other measures, like Mahalanobis and Bhattacharyya distances, can be used.

Given a group of training samples, the loss function of SNAC to be minimized consists of three
terms, L1, L2, and L3, as follows:

L = αL1 + βL2 + γL3

= α ∑
p,q

max(0, δ − lpq[1 − ||zp − zq||22])

+ β ∑
k=0,1,2

||xk
j − x̂k

j ||22

+ γ( ∑
k=0,1,2

||Wk||22 + ||bk||22)

(3)

where α, β, and γ are weight coefficients between zero and one. The first term, L1, is a margin-based
loss of difference of sample pairs; δ is the decision margin, which satisfies (0 ≤ δ ≤ 1); lpq is the sample
indicator; lpq = 1 denotes a positive pair; and lpq = 0 denotes a negative pair. The L3 term is the
regularization constraint.

However, deep neural networks contain a large number of parameters and require huge sample
sets for training. For the case of using limited online samples, parameters of a deep model will often
be overfitting after training, and the network will not work. This method often pays more attentions to
some local details of training samples and does not balance the general features. Subsequently, inspired
by the stacked auto-encoder in [24,25], the L2 term was added, an auto-encoding constraint (AC) to the
loss function in Equation (3), to prevent overfitting, even when training with limited online samples.

3.3. Denoising through the Collection of Training Samples

Dt = {dt
i , i = 1, 2, ...Nt} is the detection set at frame t. Each detection response dt

i was associated
with the SNAC(dt

i). Training samples were collected around dt
i . The purpose of SNAC(dt

i) is to
distinguish dt

i from other object detection responses in adjacent frames, not over a longer time
period. The training samples of SNAC(dt

i) were collected online. Inspired by [11], dt
i is the only

one positive sample, and the remaining detection responses at frame t constitute the negative sample
set. Although SNAC(dt

i) can be trained by small-sized samples, an unbalanced sample set with only
one positive sample cannot drive it. To solve this problem, more samples are needed, which means
additional detection responses of dt

i .
There is a fundamental issue whereby detection responses are not always perfect, and their

bounding boxes are often inaccurate, as explained before in Figure 1a. When a noisy detection is used
as a training sample, it will impair the parameters of SNAC. However, detection noise is inevitable,
so this error can be suppressed through more dt

i with random noise. This noise processing is just
enough to solve the positive sample shortage problem.

Detection noise was assumed to be modeled as additive noise as follows:

pn = p + np, sn = s + ns (4)
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where p = (x, y) is the center position of the detection response, s = (w, h) is the size vector of width
and height, and np and ns are additive noises that refer to position and size, respectively. np and ns are
assumed to follow a Gaussian distribution, G(0, σp) and G(0, σs), where σp and σs are corresponding
covariances obtained by prior analysis.

A group of random bounding boxes Ψ({dt
i}) was generated around dt

i according to Equation (4)
with distributions of np and ns. In the same way, Ψ(Dt − {dt

i}) was obtained. Ψ({dt
i}) and

Ψ(Dt − {dt
i}) are the positive and negative sample sets, respectively. Using these online collected

samples, SNAC(dt
i) not only can extract discriminative features for dt

i , but it also can suppress
detection noises.

3.4. Iterative Tracklet Generation with SNAC by Incremental Learning

The above sections discussed the establishment and training of SNAC. Each detection response
dt

i is associated with SNAC(dt
i), which extracts discriminative features to better distinguish dt

i from
other detections belonging to Dt+1. Moreover, connecting these original independent networks not
only increases the number of samples, but can also improve the training efficiency. On the one
hand, SNAC(dt

i) can obtain more training samples from dt−1
j in the adjacent frame t − 1 through a

relationship. On the other hand, with this relationship, SNAC(dt
i) does not need random initialization

parameters for training, but inherits them from SNAC(dt−1
j ), which can reduce the training time to

improve the efficiency. This relationship is the principle of tracklet linking, that is the two detection
responses between adjacent frames belong to the same object. Incremental learning of SNACs through
this inheritance relationship can effectively match adjacent frame detection responses. To generate
reliable tracklets, an iterative algorithm with SNAC by incremental learning is proposed as shown in
Algorithm 1.

Algorithm 1 Iterative tracklet building with SNAC by incremental learning.

Input: D = {D1, D2, ..., Dt}, detection set of each frame
Output: T

t = {Tt
k}, tracklet setup to frame t

1: Initialization: t = 1, T1 = ∅
2: for each d ∈ D1 do
3: T1

k = d
4: Initialize F1

k with random parameters
5: Set P = Ψ(d), N = Ψ(D1 − d)
6: Train F1

k with P and N
7: end for
8: while t ≥ 2 do
9: for each Tt−1

k ∈ T
t−1 and each d ∈ Dt do

10: Compute Λa(Tt−1
k , d) as Equation (6)

11: Compute Λ(Tt−1
k , d) as Equation (5)

12: end for
13: For all Λ(Tt−1

k , d) meeting the link requirement, select
14: pairs of Tt−1

k and d by the Hungarian algorithm.
15: T

t = renewed T
t−1 by linking the selected pairs.

16: DR
t = Dt

17: for each Tt
k ∈ T

t having a new detection added do
18: d = the new detection of Tt

k
19: Set P = Ψ(d), N = Ψ(Dt − d)
20: Ft

k = Ft−1
k incrementally trained with P and N

21: DR
t = Dt − d

22: end for
23: for each d ∈ DR

t do
24: Add a new single member tracklet Tt

k = d,
25: and set its Ft

k as above.
26: end for
27: end while
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At the first frame t = 1, a new tracklet T1
i was established by a single member of d1

i in D1, and the
current total number of tracklets was N1. To match the detection response belonging to the same object
(or inexistence) in the next frame, a randomly initialized network, SNAC(d1

i ), was associated with
d1

i . After SNAC(d1
i ) training, the appearance similarity Λa(T1

i , d2
j ) can be calculated by T1

i , which

is equal to d1
i and d2

j . Together with the position similarity Λp(T1
i , d2

j ) based on position and size,

the total similarity Λ(T1
i , d2

j ) can be calculated. When similarities of all detection responses in Frame

1 have been calculated, the Hungarian algorithm was used to determine if there was a d2
j that could

be combined with T1
i . If d1

i and d2
j belong to the same object, d2

j joins with T1
i , and tracklet T1

i is

updated to T2
i . Otherwise, a new tracklet T2

N1+1 of d2
j is generated. Then, the processing went into

Frame 2, and tracklets that contained the detection responses in Frame 2 needed to train. Taking T2
i

as an example, its last element was d2
j . If d1

i exists as a former element of d2
j in tracklet T2

i , the initial

parameters of SNAC(T2
i ) equal to SNAC(d2

j ) will be inherited from the trained SNAC(d1
i ). In addition,

the positive and negative training sets can be expanded through the samples of SNAC(d1
i ). Training of

SNAC(T2
i ) can be done with fewer iterations in this incremental manner. If T2

i is a new added tracklet
that only contains d2

j , SNAC(T2
i ) will be trained similarly to SNAC(d1

i ). Finally, all reliable tracklets T
will be produced frame-by-frame.

Now, the calculation of similarities between a tracklet and a detection response is explained.
Λ(Tt−1

k , dt
j) is given as follows:

Λ(Tt−1
k , dt

j) = Λa(Tt−1
k , dt

j)Λo(Tt−1
k , dt

j). (5)

The appearance similarity was computed by the distance between feature vectors output by the
SNAC(Tt−1

k ). It is given by:

Λa(Tt−1
k , dt

j) = g{‖Ft−1
k ((Tt−1

k (e)))− Ft−1
k (dt

j)‖2
2} (6)

where Tt−1
k (e) denotes the end element of tracklet Tt−1

k , Ft−1
k denotes the output feature vector of the

SNAC for tracklet Tt−1
k , and g is a probability function on the squared distance of feature vectors.

Because of the margin-based loss of SNAC, the definition of function g is as follows:

g(x) =

⎧⎪⎨
⎪⎩

1
0

(1 + δ − x)/2δ

x < 1 − δ

x > 1 + δ

otherwise
(7)

where δ is the decision margin given in the loss function of Equation (3).
Overlapping is widely used to describe the detection position relationship. It takes information

about the coordinates and size into account. The overlapping Λo(Tt−1
k , dt

j) is given as:

Λo(Tt−1
k , dt

j) =
A∩(Tt−1

k (e), dt
j)

min[A(Tt−1
k (e), A(dt

j)]
(8)

where A is the area function on a detection response and A∩ is the area function on the intersection of
two detection responses.
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4. Multi-Object Tracking Framework

4.1. Overall Framework

Based on SNAC, a tracking framework following TBD was established to solve the MOT problem.
A TBD scheme can be described as solving an MAP problem by:

T * = arg max P
T

(T |D) (9)

where D is the set of given detection responses and T is the set of trajectories. In the framework,
tracklets were first generated. Because a tracklet is an ordered combination of detection responses, it is
able to extract higher order features to better describe relations between objects. Then, the problem
can be converted into a more reliable tracklet association as follows:

T * = arg max P
T

(T |T) (10)

where T is the set of all tracklets.
The whole framework is shown in Figure 3. First of all, the inputs were checked, and deformity

detection responses were deleted, such as too large or small bounding boxes. SNAC was proposed
to extract discriminative appearance features for detection responses. The online SNAC incremental
learning method mentioned above was used to generate reliable tracklets. The next step was to
generate tracking results through tracklet association. Similar to detection association based on the
learning method, SNAC was improved to extract a new discriminative composite feature PAN for the
tracklet instead of using traditional handcrafted methods. To enhance tracklet association, the tracklet
growing module was embedded to make tracklets as extended as possible. With the discriminative
PAN feature, tracklet association was converted to a linear programming problem that was solved by
an efficient greedy iterative algorithm, and the final trajectories were achieved. For real-time tracking,
the whole tracking process was carried out in sliding time windows.

Figure 3. Illustration of the overall online tracking by detection (TBD) framework. In addition to
standard inputs and outputs, an online tracking framework is established with new facilities, including
an iterative Siamese network with an auto-encoding constraint (SNAC) to learn the detection responses,
previous-appearance-next (PAN) to represent the composite features of tracklets, and pre-processing of
tracklet growth to cope with short-time detection failures. Finally, a greedy iterative algorithm is used
to output robust trajectories in sliding windows.

4.2. Previous-Appearance-Next Feature of the Tracklet

A tracklet Tt2
m = {dt1

i , dt1+1
j , ...dt2

k } is an ordered sequence of detection responses that represents

a moving object with a short time from frame t1–t2. To describe Tt2
m , appearance and motion are

indispensable. They are often assumed to be independent of each other in several studies [12,21,36].
Only by weighted summation can they express the similarity between two tracklets. To increase the
flexibility and discrimination, a composite previous-appearance-next (PAN) feature was proposed.
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The new feature combined appearance and motion for the tracklet, and it was extracted jointly by an
improved SNAC.

Taking Tt2
m and Tt4

n as examples, as shown in Figure 4b, Tt4
n is from frame t3–t4 and t2 < t3.

To calculate the similarity between Tt2
m and Tt4

n , it is better to use the tail part of Tt2
m and the head part

of Tt4
n rather than using their whole information. Tt2

m (e) is the last element of tracklet Tt2
m , and Tt4

n (s)
is the first element of Tt4

n . The PAN(Tt2
m (e)) vector integrated the appearance, previous, and next

stage motions of Tt2
m (e) to express the tail part composite feature of tracklet Tt2

m . Correspondingly,
the PAN(Tt4

n (s)) vector was defined for the head part composite feature of Tt4
n . The next stage motion

of tail Tt2
m and the previous of head Tt4

n were computed by estimation methods.
The SNAC for detection response was revised to extract PAN(.) vectors of tracklets. The new

structure is shown in Figure 4a. The previous and next stage motions were used as additional inputs
to the mix-layer. The first layer of the new SNAC was same as the old SNAC. Δp = (xp, yp) and
Δn = (xn, yn) are the previous and next motion vectors of Tt2

m (e), respectively. As shown in Figure 4b,
Δp represents the x and y axes displacements of Tt2

m from t2 − 1 to t2. For the next-stage motion
vector, Tt2

m (e + 1), the estimation of Tt2
m in frame t2 + 1 was computed first, and then, Δn of Tt2

m (e)
was calculated.

Since Δp and Δn are two-dimensional vectors that include displacements with x and y directions
and the output of each auto-encoder in the first layer of SNAC is a 100-dimension feature vector, they
are totally different in type and cannot work together simply. Meanwhile, the existence of detection
noises makes the deterministic motion descriptions inaccurate. A distribution description method
was proposed to represent the motion instead of specific values. Assuming following the Gaussian
distribution, the x axis displacement, xp of Δp for instance, is described by G(xp, σx), where σx is set by
pre-training. G(yp, σy) is for y displacement, as well. The distribution description was given by sample
vectors of G(xp, σx) and G(yp, σy), and its length was taken to be equal to that of the appearance vector.
For in MOT, the motion feature is as important as appearance. The distribution description for Δn can
also be obtained. Then, they were merged with the three outputs of the first layer to form one mixed
vector for the second-layer training.

Then, SNAC(Tt2
m (e)) was trained to extract the tail PAN(Tt2

m (e)) feature. Training samples of
SNAC(Tt2

m (e)) were also collected online. Similar to [11], elements in Tt2
m are positive samples. Tracklets

that overlap with Tt2
m in time are positive samples. The parameters of the first layer were inherited

from the corresponding detection SNAC. After training the SNAC(Tt2
m ), discriminative local composite

features can be extracted to distinguish Tt2
m from other subsequent tracklets.

As shown in Figure 4b, similarities between tracklet Tt2
m and Tt4

n were computed. After training,
PAN(Tt2

m (e)) and PAN(Tt4
n (s + 1)), as shown by the blue dashed circle areas in the figure, were

extracted. Then, forward similarity was achieved as follows:

SF
m,n = ||PAN(Tt2

m (e))− PAN(Tt4
n (s + 1))||22 (11)

To get a reliable similarity, the backward relationship was also computed, as shown in
Equation (12).

SB
m,n = ||PAN(Tt2

m (e − 1))− PAN(Tt4
n (s))||22 (12)

The final similarity was given by:

ΛPAN(Tm, Tn) = g(min(SF
m,n, SB

m,n)) (13)

where g is the probability function for the distance of feature vectors, as defined in Equation (7).
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(a) SNAC for PAN (b) Similarity computing by PAN

Figure 4. The generation and application of PAN. (a) SNAC is revised and added two pieces of motion
information of a tracklet member together with the appearance codes from the auto-encoder layer
as the inputs of the code-mix layer. During the online training process, the PAN feature is the final
output of the code-mix layer. (b) Similarities of tracklets are determined by calculating the forward
and backward PAN affinities.

4.3. Tracklet Growing

If the frame gap between Tt2
m and Tt4

n was small, variations in the appearance and motion from
Tt2

m –Tt4
n were not obvious, and the PAN could work well. Otherwise, the long-term frame gap brought

a large variety of appearances, and motions may reduce the performance. PAN considers more local
elements of the tracklet to enhance the performance. In order to make tracklet association more
reliable, it is effective to reduce the time interval in the sliding windows as much as possible. Therefore,
the tracklet growing process was used to extend the tracklet by estimated bounding boxes, which were
missing from the detection. It contained forward and backward growth.

To forward the extended tracklet Tt2
m , the center position p

f
1(T

t2
m ) = (x̂, ŷ) in frame t2 + 1 was first

estimated by quadratic fitting. Then, the optimal estimation bounding box was searched as follows:

d* = arg min
d∈C

∥∥∥H(Tt2
m (e))− H(d)

∥∥∥2

2

s.t.
∥∥∥H(Tt2

m (e))− H(d)
∥∥∥ ≤ ε1

(14)

where C is the candidate bounding boxes set, center positions x and y are sampled according to the
distribution of G(0, σm), and the size is equal to Tt2

m (e). H denotes the color histogram of detection
Tt2

m (e). The goal was to find the most similar estimation. If the optimal estimation dt2+1
o was found,

a conflict process was also required to avoid false alarms. If the overlap between dt2+1
o and an existing

dt2+1
i exceeded the threshold, the forward growth of Tt2

m stopped. Otherwise, Tt2
m was updated to Tt2+1

m
with dt2+1

o and the growing process continued to frame t2 + 2. The backward extension was similar
to the forward process. For the isolated tracklets, random sampling was used to form the candidate
estimations. After these missing detection compensation processes, tracklets were extended to improve
the discrimination performance of PAN, and more reliable associations could be made.
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4.4. Tracklet Association in Sliding Windows

Tracklet association was the last module in MOT to generate the final trajectories of objects.
The main task was to link tracklets belonging to the same objects into a complete trajectory based on
similarities among tracklets. Solutions such as min-cost networks, energy minimization, successive
shortest paths, and the Hungary algorithm are widely used to generate tracking results. Global
optimization is an ideal scheme because the previous judgments will be revised to achieve the overall
optimal results. In cases where it is difficult to distinguish objects, this dynamic scheme can achieve
better tracking performance than a greedy strategy. Similar to tracking by learning feature extraction
method [15], network flows methods were no longer used to get the tracking result. The MAP problem
shown in Equation (10) was directly mapped to a generalized linear assignment:

max
L

N

∑
i=1

N

∑
j=1

Λ(Ti, Tj)Lij

s.t.
N

∑
i=1

Lij ≤ 1;
N

∑
j=1

Lij ≤ 1

(15)

To solve problem Equation (15), the similarity Λ(Ti, Tj) between tracklets was used; this is equal
to linking probabilities mainly based on PAN features. Λ(Ti, Tj) was computed by Equation (13).
However, PAN features cannot be extracted from tracklets with lengths of less than two elements.
For this particular case, Λ(Ti, Tj) degenerated into the traditional weighted combination of appearance
and motion. Lij is the association indicator, where 1 indicates connection and 0 means disconnection.
The constraints guaranteed the uniqueness of association. As the better discriminative PAN,
the similarity matrix Λ was normalized, and Equation (15) was solved by a greedy iterative algorithm.

5. Experiments

In this section, the performance of SNAC is first evaluated on detection responses and tracklets.
Then, the proposed MOT system is tested on the MOT Challenge Benchmark [37].

5.1. Evaluation of SNAC

In the MOT system, the SNAC was proposed to extract discriminative features for detection
responses and tracklets instead of handcrafted methods. Discrimination and accuracy were used as the
main indicators to evaluate the performance of SNAC. Meanwhile, the effects of histogram inputting
and the auto-encoding constraint were also evaluated. According to the order of the system framework,
the performance of SNAC was first evaluated on detection responses and then tested the SNAC on
tracklets. Since current public platforms do not provide annotation data for tracklets, how to make a
fair comparison is a thorny issue. Therefore, the performance of SNAC was mainly compared with
different constraints and handcrafted methods. In this experiment, the training processes of SNAC
were carried out with graphics processing units (GPUs).

5.1.1. SNAC for Detection Responses

During tracklet generation, an SNAC(dt
i) was established for each detection response dt

i to
implement the explicit frame-by-frame association. Through an online learning process, SNAC(dt

i)

was able to extract features for dt
i and Dt+1. Then, the similarity between dt

i and each detection of Dt+1

could be obtained by the Euclidean distance. Statistical discrimination and variance of SNAC(dt
i) from

these similarities can be calculated. Discrimination reflects the strength of the distinguishing ability,
and variance represents the robustness. To generate the tracklet set in sliding temporal windows,
each SNAC(dt

i) was trained by an incremental learning algorithm. Indicators of discrimination and
variance were computed from the overall results. Another important indicator in evaluating the SNAC
is the tracklet accuracy (TA). To compute TA, tracklets were treated as the final tracking results in a
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time window, so the metrics of MOT [38] could be used to evaluate the accuracy of tracklets. In this
case, the core indicator MOTA was equal to the TA in Equation (15):

TA = 1 − ∑t(FNt + FPt + IDst)

∑t GTt
(16)

where t is the frame index in the current time window; FN, FP, and IDs are the number of false negatives,
false positives, and mismatches, respectively; and GT is the number of ground truth tracklets annotated
by us in this experiment.

Three subsequences of the 2DMOT2015 dataset were chosen to do this experiment. TUD-Crossing
is a static camera scene, ETH-Jemoli and EHT-Linthescher are moving camera sequences. Three time
windows are selected from each sequence to create a total of nine video segments for the experiment.
GTs of the nine video segments are annotated.

As shown in Table 2, SNAC_L2 was chosen as the original SN with the L2 regularization constraint,
the SNAC_L2(pixel) with raw pixel input, and the RGB and HOG histogram methods were used for
comparison. The comparison of SNACs with traditional methods is first discussed. In Table 2, the red
number in each column represents the best performance. Compared with the RGB and HOG histogram
methods, the average discriminations of the SNACs were obviously superior, implying that the SNACs
distinguished objects better than traditional RGB and HOG histogram methods. There were lower
variances in the HOC and HOG methods due to lower discrimination. TA curves are shown in Figure 5.
TA values followed the variance of the appearance threshold. From Figure 5, it can be seen that the
SNACs methods were obviously better than HOC and HOG with a large threshold area. This means
that SNACs were more robust. The value of TA was one when the appearance threshold was zero
in these nine testing video experiments. In order to simplify the labeling works and clearly identify
the relationships among objects, these nine segments were relatively simple videos with no complex
interactions between objects. Thus, detections could be correctly associated only through overlapping
relationships. However, it is impossible to work in a complex environment only through position
and size information. Appearance is an essential factor in tracklet generation. In order to reduce the
annotation workload, the experiment selected related simple scenarios. Table 2 and Figure 5 show
that when a histogram was used as input, SNAC_L2 and SN_L2 were superior to the method with
raw pixels as the input for all indicators. This implies that the use of the histogram as input was a
more robust method that was better at suppressing detection noises. In the comparisons between
SNAC_L2 and SN_L2, no significant differences in TA or average discrimination were found, but the
discrimination variance of SNAC_L2 was lower. The auto-encoding constraint was shown to be useful
to enhance the robustness of SNAC and made it adapt to various environments.

Table 2. Performance comparison of different features of detection responses. Red represents the best,
and blue indicates the worst. HOC, histogram of color.

Methods SNAC_L2 SN_L2 SNAC_L2(Pixel) HOC HOG HOC + HOG

Indicators AD Var AD Var AD Var AD Var AD Var AD Var

Sequence 1 0.8152 0.0568 0.8112 0.0600 0.6189 0.0989 0.1315 0.0029 0.1295 0.0030 0.1324 0.0027
Sequence 2 0.7337 0.0490 0.7387 0.0539 0.6589 0.0811 0.1494 0.0041 0.1471 0.0041 0.1503 0.0040
Sequence 3 0.7832 0.0347 0.7930 0.0362 0.7736 0.0397 0.1405 0.0017 0.1426 0.0016 0.1409 0.0017
Sequence 4 0.7983 0.0392 0.8150 0.0295 0.5807 0.0785 0.1656 0.0029 0.1657 0.0031 0.1690 0.0030
Sequence 5 0.8265 0.0194 0.8395 0.0184 0.6435 0.0759 0.1855 0.0032 0.1851 0.0036 0.1869 0.0033
Sequence 6 0.8279 0.0333 0.8232 0.0352 0.8490 0.0358 0.2043 0.0022 0.2084 0.0029 0.2061 0.0025
Sequence 7 0.7662 0.0196 0.7770 0.0280 0.7863 0.0403 0.1358 0.0015 0.1348 0.0015 0.1359 0.0015
Sequence 8 0.8149 0.0200 0.8244 0.0160 0.7813 0.0530 0.1642 0.0021 0.1651 0.0021 0.1626 0.0022
Sequence 9 0.9015 0.0001 0.9000 0.0001 0.9003 0.0001 0.1353 0.0005 0.1423 0.0003 0.1364 0.0001
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(a) Video Sequence 1 (b) Video Sequence 2 (c) Video Sequence 3

(d) Video Sequence 4 (e) Video Sequence 5 (f) Video Sequence 6

(g) Video Sequence 7 (h) Video Sequence 8 (i) Video Sequence 9

Figure 5. Illustrations of the tracklet accuracy (TA) varying with the appearance threshold. From red to
pink, they represent the SNAC_L2, SN_L2, SNAC_L2(Pixel), HOC, HOG, and HOC + HOG methods.
Nine video sequences were sampled from the 2D MOT 2015 dataset and annotated. The abscissa axis
indicates the appearance threshold from 0–1, and ordinates axis represents the TA up to 100. Through
these curves, it can be seen that learning features are better than traditional methods at distinguishing
objects in multiple object tracking (MOT). The auto-encoding constraint (AC) term and histogram
inputs proposed in this paper also showed reasonable results.

5.1.2. SNAC for Tracklets

To improve the reliability of tracklet association, SNAC was improved to distinguish tracklets,
and its performance is evaluated in this section. To provide fair comparisons, the average
discriminations of PAN features and hand-crafted methods were evaluated. Six testing video sequences
were selected from the 2D MOT 2015 dataset, and the generated tracklets in a time window were
annotated for this experiment. The discrimination was calculated by the GT of tracklets, as shown in
Table 3. In each sequence, there discrimination was significantly enhanced from the appearance
to the composite PAN feature. Thus, PAN can effectively integrate appearance and motion to
enhance discrimination.
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Table 3. Discriminations of different features on tracklets.

Sequence 1 2 3 4 5 6

HOC + HOG 0.076 0.070 0.048 0.230 0.060 0.004
SNAC 0.151 0.256 0.200 0.193 0.128 0.246
PAN 0.208 0.404 0.369 0.289 0.224 0.379

5.2. Evaluation of the MOT System

In this section, the whole MOT system is evaluated using the MOT Challenge Benchmark, and the
2D MOT 2015 dataset was used for testing. Evaluation metrics are given by [38]. Multiple object
tracking accuracy (MOTA) combines false positives, missed targets, and identity switches. Multiple
object precision (MOTP) indicates the misalignment between GTs and tracked bounding boxes. Mostly
tracked targets (MT) is the ratio of GTs that are covered by a track hypothesis for at least 80% of their
respective life span. Mostly lost targets (ML) is the ratio of GTs that are covered by a track hypothesis
for at most 20% of their respective life span. FP and FN are the total number of false positives and
missed targets, respectively. ID switch (IDs) is the total number of identity switches. Frag is the total
number of times a trajectory is fragmented.

The proposed MOT system was developed by the Theano library [39] in a Python environment.
The primary station was equipped with a 4.0-GHz CPU and an NVIDIA GeForce GTX 1070 GPU.

The proposed MOT system was tested on the benchmark and compared with closely related works
and state-of-the-art MOT methods including those using traditional features [8,10,40,41], learning
features [17,22,23,31,42,43], and higher order motion information [44]. The experimental results are
listed in Table 4.

Table 4. Performance comparison of multiple object tracking (MOT) systems. Red represents the best.
The upward arrow indicates the higher the better, and the downward arrow means the lower the better.
MOTA, multiple object tracking accuracy; MOTP, multiple object precision; MT, mostly tracked; ML,
mostly lost; Frag, the total number of times a trajectory is fragmented.

Method MOTA↑ MOTP↑ MT↑ ML↓ FP↓ FN↓ IDs↓ Frag↓
Proposed 29.3 68.6 12.9% 36.3% 9880 32173 1385 2226

Siamese CNN [22] 29.0 71.2 8.5% 48.4% 5160 37,798 639 1316
HAM_INTP15 [23] 28.6 71.1 10.0% 44.0% 7485 35,910 460 1038

CEISP [40] 25.8 70.9 10.0% 44.0% 6316 37,798 1493 2240
LP_SSVM [42] 25.2 71.7 5.8% 53.0% 8369 36,932 646 849

LINF1 [41] 24.5 71.3 5.5% 64.6% 5864 40,207 298 744
TENSOR [44] 24.3 71.6 5.5% 46.6% 6644 38,582 1271 1304

DEEPDA_MOT [16] 22.5 70.9 6.4% 62.0% 7346 39,092 1159 1538
MTSTracker [43] 20.6 70.3 9.0% 63.9% 15,161 32,212 1387 2357
TC_Siamese [17] 20.2 71.1 2.6% 67.5% 6127 42,596 294 825

DCO_X [9] 19.6 71.4 5.1% 54.9% 10,652 38,232 521 819
RNN_LSTM [31] 19.0 71.0 5.5% 45.6% 11,578 36,706 1490 2081

DP_NMS [8] 14.5 70.8 6.0% 40.8% 13,171 34,814 4537 3090

The results for the MOT 2015 dataset showed that the proposed MOT system using SNAC
obtained a better performance for MOTA than the other competitors listed in Table 4. The proposed
method showed a comprehensive performance improvement compared with the hand-crafted feature
methods CEISP and DP_NMS. This means that online learned features can better distinguish among
targets and complete data association than traditional hand-crafted methods. Compared with the
deep neural network feature MOT system, it can be seen that learning features is suitable for MOT
applications. A higher MT indicates that tracklet growth can extend the short tracklets to enhance the
PAN feature to make object trajectories as complete as possible. Meanwhile, a lower ML also benefits
from the tracklet growing module. It also has disadvantages, as inaccurate detection compensation
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will lead to increases in FP and FN and reduce MOTP and the performance of PAN to achieve more
IDs. Further improvement is needed in this area. Specific indicators such as MT and ML were superior
for the proposed method than for several deep learning methods, especially the related deep Siamese
network methods [17,22,23]. This implies that the online learned feature extraction method, which
collects samples only from current scenes, can describe objects accurately and distinguish objects
robustly. The feature extraction method with a simple structure and online training is useful for MOT.
Although the proposed method was still no better than the state-of-the art methods detailed in [37],
a pure online solution is possible in terms of time and performance, but this needs to be confirmed by
further research.

Figure 6 demonstrates some tracking results of the proposed method on the 2D MOT 2015 dataset.
For the static camera cases of Figure 6a–e and the upper part of Figure 6f, tracking results showed good
performance. In Figure 6a, there are two pedestrians close in distance and alike in appearance, and
they walk together. This is a difficult situation in MOT as their trajectories are likely to interfere with
each other and produce false tracking results. With the help of discriminative features, the proposed
method correctly tracked them. Figure 6d shows that the method can track the targets of complex
movements robustly. Though scenes of the lower Figure 6f,g–i were difficult due to camera motion,
the proposed method still worked properly and correctly distinguished objects.

(a) Seq 1 (1–20) (b) Seq 2 (200–300) (c) Seq 3 (100–130)

(d) Seq 4 (300–350) (e) Seq 5 (50–100) (f) Seq 6(1–100);7(550–650)

(g) Seq 8 (190–240) (h) Seq 9 (100–230) (i) Seq 10 (200–300)

Figure 6. Tracking results on the 2D MOT 2015 dataset. There are ten sequences in the figure, in which
(f) contains two sequences. The ETH-Crossing sequence is not shown because it has less targets.
The former six sequences (a–e) and the upper one in (f) are static camera cases; the rest are motion
camera cases.

The execution efficiency of the proposed method is shown in Table 5. As the execution efficiency
of MOT methods tested on the MOT Challenge Benchmark were not calculated officially, but uploaded
by the authors themselves, it is hard to make fair comparisons. Multiple object tracking is a
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system including tracklet generation, tracking model establishment, tracklet association, trajectories
generation, and other specific modules. The runtime performance of the main modules in the proposed
MOT system are shown in Table 5, which is conducive to specific analysis. In the proposed MOT
system, tracklet generation, tracklet association, and tracking results generation were executed with a
4.0-GHz CPU, and detection training and tracklet training were ran by a Nvidia Geforce GTX 1070
GPU card. From Table 5, the efficiencies of tracklet generation and trajectory generation basically met
the real-time requirements. However, the training of SNAC consumed much time and reduced the
efficiency of the whole MOT system. The main reason was that the program codes were encoded
only for the purpose of functions evaluation and have not been optimized for running efficiency.
In addition, the hardware was not an engineering-grade graphics card. Further works will be carried
out for real-time implementation of the proposed MOT framework.

Table 5. Specific execution efficiency of proposed MOT system. Time consumption (C) and execution
efficiency (E) of the whole MOT system and main modules are calculated.

Modules Detections Training Tracklets Generation Tracklets Training Trajectories Generation Whole System

Indicators C (sec) E (fps) C (sec) E (fps) C (sec) E (fps) C (sec) E (fps) C (sec) E (fps)

AVG-Town 24.1358 0.0414 0.0255 39.2311 20.2524 0.0494 0.0383 26.1271 44.4519 0.0225
ADL-1 26.9062 0.0372 0.0460 21.7297 12.0443 0.0830 0.0186 53.6481 39.0152 0.0256
Venice 12.0126 0.08328 0.0021 469.7286 3.4141 0.2929 0.0036 278.74 15.4324 0.0648

PETS2L2 28.6360 0.0349 0.0328 30.4669 27.0256 0.0370 0.0622 16.0834 55.7565 0.0179
TUD-Cro 5.1749 0.1932 0.0063 157.8591 0.9073 1.1022 0.0012 840.3361 6.0897 0.1642
KITTI16 14.7907 0.0676 0.0174 57.4918 3.6223 0.2761 0.0160 62.3750 18.4464 0.0542
KITTI19 4.1255 0.2424 0.0059 170.6446 0.6580 1.5198 0.0034 292.0029 4.7928 0.2086
ADL-3 15.1071 0.0662 0.0220 45.5284 1.2581 0.7949 0.0026 389.1656 16.3897 0.0610
ETH-Jel 5.9893 0.1670 0.0083 120.0808 0.6869 1.4559 0.0017 582.0106 6.6862 0.1496
ETH-Lin 4.9171 0.2034 0.0098 101.5885 0.6640 1.5059 0.0011 946.5673 5.5921 0.1788
ETH-Cro 3.6163 0.2765 0.0050 199.2754 0.3902 2.5631 0.0006 1657.8749 4.0121 0.2492

6. Conclusions

In this paper, an SNAC method has been presented to better distinguish objects for MOT.
The online learned SNAC can work well in noisy and small sample environments. An incremental
learning SNAC algorithm was proposed to generate reliable tracklets. SNAC was also improved to
extract an PAN feature that combines appearance and motion for distinguishing tracklets. Tracklet
growth was used to compensate for missing detections to improve the association.

Two sub-experiments were designed to evaluate the performance of SNAC and the PAN feature.
The experimental results showed that SNAC could extract discriminative features from detection
responses and better distinguish them. Meanwhile, in terms of appearance, PAN had a significant
improvement in discrimination over SNAC and could better carry out tracklet association. The whole
tracking system was evaluated over the 2D MOT 2015 dataset, and the results were compared with the
state-of-the-art methods, showing a comparable performance. Experiments showed that this kind of
pure online feature extraction solution is suitable for MOT.

Further research includes two aspects. One is combining more useful information to improve the
proposed feature extraction method to better distinguish objects for MOT. Another is improving the
efficiency of the proposed method to achieve real-time tracking.
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Abstract: Classification of complex acoustic scenes under real time scenarios is an active domain
which has engaged several researchers lately form the machine learning community. A variety of
techniques have been proposed for acoustic patterns or scene classification including natural soundscapes
such as rain/thunder, and urban soundscapes such as restaurants/streets, etc. In this work, we
present a framework for automatic acoustic classification for behavioral robotics. Motivated by several
texture classification algorithms used in computer vision, a modified feature descriptor for sound is
proposed which incorporates a combination of 1-D local ternary patterns (1D-LTP) and baseline method
Mel-frequency cepstral coefficients (MFCC). The extracted feature vector is later classified using a
multi-class support vector machine (SVM), which is selected as a base classifier. The proposed method is
validated on two standard benchmark datasets i.e., DCASE and RWCP and achieves accuracies of 97.38%
and 94.10%, respectively. A comparative analysis demonstrates that the proposed scheme performs
exceptionally well compared to other feature descriptors.

Keywords: feature extraction; sound classification; support vector machine; sound processing;
robotics; MFCC

1. Introduction

Robotics is the branch of artificial intelligence which is concerned with designing robots that can
perform tasks and interact with the environment, without the aid of human intervention. Although the
mechanical control technology of robots has been remarkably well developed in recent years. The ability of
robots to perceive and analyse their surrounding environment, especially the auditory scenes still requires
a significant research effort. Acoustic-based classification complements the vision based classification in
a number of ways. First, considering the field of view, microphones are more nearly omni-directional
than even wide-angle camera lenses. Second, audio signals require a significantly smaller bandwidth and
low processing power. Third, acoustic classification is more reliable as the parameters of image/video
processing algorithms are affected by variations in light intensity, thus, increasing the probability of false
alarms. Detection and classification of acoustic scenes can help to facilitate the human-robot interaction
and increase the application domain of behavioral and assistive robotics.
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One of the key aspects of designing an acoustic classification system is the selection of proper signal
features that could achieve an effective discrimination between different sound signals. Sounds coming
from a general environment are considered neither music nor speech, but a collection of some audio
signals that resemble noise signals. While sufficient research has focused on music and speech analysis,
very little work has been done on concrete analysis of feature selection for classification of environmental
sounds. One of the main objectives of this research is to investigate the effect of multiple features on the
efficiency of an environmental scene classification system.

The state-of-the-art for acoustic scene classification features a number of approaches. Table 1 presents
a summary of some considerable works in this domain which are discussed as follows. In [1], an approach
based on local binary patterns (LBP) is adopted to construct the spectrogram image of environmental
sounds. The LBP features are enhanced by incorporating local statistics, normalized and finally classified
by a linear SVM. The accuracy is validated against RWCP dataset. In [2], the authors studied sound
classification in a non-stationary noise environment. At first, probabilistic latent component analysis
(PLCA) is performed for noise separation. Further, regularized kernel fisher discriminant analysis (KFDA)
is adopted for multi-class sound classification. The method is validated on RWCP dataset. In [3], acoustic
classification is performed using large-scale audio feature extraction. First, a large number of spectral,
cepstral, energy and voice related features are extracted from highly variable recordings. Then, a sliding
window approach is adopted with SVM to classify short recordings. Finally, a majority voting is employed
to classify large recordings. The work further proposes Mel spectra as the most relevant features.

Table 1. Summary of published works on acoustic scene classification.

Work Features Classifier Dataset Accuracy

[1] ID-LBP Linear SVM RWCP 98%

[2] PLCA, temporal–spectral patterns of
sound spectrogram FDA RWCP 91.04%

[3] MFCC, Spectral and energy features SVM DCASE 73%

[4] Multichannel LBP SVM RWCP, NTU-SEC 99.85%,
96.29%

[5] Matching Pursuit and MFCC GMM BBC sound effects 98.4%

[6] Thresholds based pre-processing, FFT SVM Self collected 250 recordings of dropping
and hitting sounds 87%

[7] LFCC GMM self collected dataset using a microphone
set up on cleaning robot platform 90%

[8] HOG pooling DCASE-challenge, Litis Rauin, EA 70%

[9] MP decomposition using Gabor
function with time frequency histogram

Random
Forest

Combination of self collected sounds,
Sound Idea database [10], Free sound
project [11]

[12] Deep neural network based transfer
learning Softmax DCASE 85.6%

[13] MFCC CNN UrbanSoundK 77%

[14] Multiple Hierarchical Self collected 92.6%

[15] MFCC, ZC, LAR etc. KNN Self Collected 99%

[16] average peak, height & width, no. of
half-wavelengths of music wave

Regression
analysis self collected 77%

In [4], features based on LBP from the logarithm of the Gammatone-like spectrogram are proposed.
However, LBP is sensitive to noise and discards important information. Therefore, a two-projection-based
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LBP feature descriptor is also proposed that captures the texture information of the spectrogram of sound
events. In [5], a matching pursuit (MP) algorithm is used to extract effective time-frequency features
from sounds. The MP technique uses a dictionary of atoms for feature selection, resulting in a set of
features that are flexible and physically interpretable. In [6], Fast Fourier Transform (FFT) is used to extract
spectral power and duration of event based sounds. A number of features are extracted which include
time-domain zero crossings, spectral centroid, roll off, flux and MFCC. Further, sound classification is done
using SVM and multi-layer perceptron (MLP). In [7], a combination of log frequency cepstral coefficient
(LFCC), Gaussian mixture models (GMMs) and a maximum likelihood criterion is employed to recognize
various sound events for a cleaning robot. Experimental results demonstrate that LFCC based approach
performs better than MFCC under low signal to noise ratio (SNR) environment. Human classification
accuracy in performing similar classification tasks is also evaluated by experiments.

In [8], a feature extraction pipeline is proposed for analyzing audio scene signals. Features are
computed from a histogram of gradients (HOG) of constant Q-transform followed by an appropriate
pooling scheme. The performance of the proposed scheme is tested on several datasets including Toy,
East Anglia (EA) and another dataset named Litis Rouen collected by the authors. In [9], MP algorithm is
used to extract useful Gabor atoms from input audio stream. MP is applied over the whole duration of
acoustic event. The time-frequency features are constructed from atoms in order to capture temporal and
spectral information of a sound event. Further, the classification is done using a random forest classifier.
Deep neural network (DNN) based transfer learning is proposed in [12] for acoustic classification. First,
the DNN is trained on source domain task that performs mid-level feature extraction. Then, the pre-trained
model is re-used on the DCASE target task. In [13], the authors proposed that dilated CNN architecture
performs better environmental sound classification as compared to CNN with max pooling. The effect
of dilation rate and number of layers on performance is also investigated. The work in [14] proposes a
hierarchical approach to classify different sound events such as silence, non-silence, speech, non-speech,
music and noise. In contrast to a classical one-step classification scheme, a different set of effective features
is selected at each level. In [15], a hearing aid system is proposed for real time recognition of various sounds.
The system is based on generating audio finger print i.e., a brief summary of audio file which collects
a number of features including spectrogram zero crossings (ZC), MFCCs, linear prediction coefficients
(LPCs) and log area ratio (LAR). The recognition is done on self collected sound samples using a K nearest
neighbors (KNN) classifier. The system achieves a maximum accuracy of 99%. In [16], the authors propose
automatic emotion classification system for music sounds. The work utilizes several features of sound
wave, i.e., peak value, average height, the number of half wavelengths, average width and beats per
minutes. Finally, regression analysis is perform to recognize various emotions from the sound. The system
achieves an average accuracy of 77%. In [17], sound identification method for a mobile robot in home
and office environment is proposed. A simple sound database called Pitch-Cluster-Maps (PCMs) based
on vector quantization technique is constructed and its codebook is generated using binarized frequency
spectrum. The works in [18,19] demonstrate that acoustic local ternary patterns (LTPs) show better
performance as compared to MFCCs for fall detection problem. In the literature, various convolutional
neural network (CNN) architectures are used to classify soundtracks from a dataset of 70 million training
videos (5.24 million hours) with 30, 871 video-level labels [20]. Experiments are performed using fully
connected DNNs, VGG [21], AlexNet [22], Inception [23] and ResNet [24] etc.

The acoustic scene classification approach proposed in this work has the following contributions.
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• An extended feature descriptor is proposed which takes advantage of modified 1-D LTP in
combination with MFCC.

• A feature fusion methodology is opted, which exploits the complementary strengths of both MFCC
and modified 1-D features to generate a serial vector.

• To provide a better insight, a set of classifiers are tested on two standard benchmark datasets.
This action supports researchers in selecting the best classifiers for this application.

The rest of the paper is organized as follows. In Section 2, the proposed method of acoustic scene
classification is discussed. Section 3 discusses the experimental setup and datasets. The performance
results and discussions are presented and discussed in Section 4 and finally, Section 5 concludes the paper.

2. Proposed Method

2.1. System Overview

Figure 1 shows the overall architecture of the proposed acoustic scene classification system. The sound
signal is captured from environment through a microphone. It is digitized using an ADC in the
preprocessing step and fed into the feature extraction stage. The MFCC and 1D-LTP features are extracted
from the digital sound signal, they are fused together in a joint feature vector and finally classified using
an SVM classifier. The main processing steps of the proposed system are discussed as follows.

1D-LTP

MFCC

Multiclass 
SVM

Joint 
Feature 
Vector

Feature 
Extraction

Feature 
Fusion

Classification

Figure 1. System Architecture for Acoustic Scene Classification.

2.2. Feature Extraction

2.2.1. 1-D Local Ternary Patterns

The local binary patterns (LBPs) have been investigated as among the most prominent feature
descriptors in the field of computer vision and image analysis [25]. The basic idea behind LBP is to
compare each pixel of an image with its neighborhood. Each compar ison of an image pixel with its
neighbors results in binary values ’0’ or ’1’. This helps to summarize a local structure in an image and
obtains powerful feature descriptors for a number of promising applications such as face recognition [26]
and texture analysis [27]. LBPs are invariant to monotonic grey scale changes and have low computational
cost [28]. Applying the LBP method for 1-D signals such as sound, helps to obtain useful information
about local temporal dynamics of sound. The LBPs achieve discriminative features of several sounds,
as exhibited by the works on music genre recognition [29] as well as environmental sound classification [1].
However, LBPs are highly affected by noise and fluctuations in acoustic samples [1]. In order to further
improve the discriminative power of LBP, LTPs were proposed for face recognition in 2010 [30], and later
on applied in a number of works [31–33]. In contrast to the LBPs which encode the relationships of ’greater
than’ or ’less than’ between the pixel and its neighbor, the LTPs reflect the ’greater than’, ’equal to’ or ’less
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than’ relationships. Under the same sampling conditions, LTPs help to achieve more discriminative and
sophisticated sound features as compared to 1D-LBPs.

Analog audio signal is first digitized with sampling frequency Fs to form a discrete signal X[i]
having N number of samples. The 1D-LTPs of sampled signal X[i] are computed using a sliding window
approach. Consider a signal sample x[i] with amplitude α is placed at the center of window with size
P + 1. Defining the upper and lower values of amplitude threshold as (α + t) and (α − t) respectively,
where t is arbitrary constant. From the amplitudes of signal samples that lie in the window, a ternary code
vector F of size P is obtained whose individual values are computed as;

F[j] = Q(x[i +
P
2
− r]), ∀j ∈ {0, · · · , P − 1}, (1)

r =

{
j j < P

2
j + 1 j ≥ P

2

}
, (2)

where Q(x[i]) is defined as;

Q(x[i]) =

⎧⎪⎨
⎪⎩

1, x[i] > (α + t)
0, (α − t) ≤ x[i] ≤ (α + t)
−1, x[i] < (α − t)

⎫⎪⎬
⎪⎭ . (3)

From the ternary code vector, the upper and lower local ternary patterns are computed as;

LTPupper[i] =
P−1

∑
k=0,k �=i

su(F[k]) · 2k, (4)

LTPlower[i] =
P−1

∑
k=0,k �=i

sl(F[k]) · 2k, (5)

where,

su(F[k])) =

{
1 F[k] = 1
0 otherwise

}
, (6)

sl(F[k])) =

{
1 F[k] = −1
0 otherwise

}
, (7)

Figure 2 illustrates the extraction of 1D-LTP features for one sample of a discrete audio signal.

141



Electronics 2019, 8, 483

X[i]

i

-1 0 1 1 0 -1 -1 -1

Upper LBP

Lower LBP

0 0 1 1 0 0 0 0

0 0 0 0 1 1 1 1

 + t

- t

Ternary code vector

48

15

LTP upper

LTP lower

x[i]

Figure 2. Extraction of 1D-LTP features.

2.2.2. Mel-Frequency Cepstral Coefficients (MFCC)

MFCCs are a baseline method that has been widely used in the analysis of audio signals.
Although primarily designed for speech recognition [34,35], they have been a popular feature of choice in
the automatic scene classification [36,37]. The MFCCs are the coefficients that collectively make up the
Mel Frequency Cepstrum (MFC), a representation of short term power spectrum of sound based on linear
cosine transform of a log power spectrum on a non linear Mel scale of frequency. The MFCCs are linearly
spaced on the Mel frequency scale which closely approximates the human auditory system’s response.
Such a representation of sound signal extracts discriminant features which help to achieve environmental
sound classification with good accuracy.

Figure 3 shows a standard pipeline for the extraction of MFCC features. In the first step, the digitized
sound signal is segmented in to short frames each having N samples. Next, the periodogram-based power
spectrum is estimated for each frame. Let si(n) denote the time domain signal (of N samples) that belongs to
frame i, its Discrete Fourier Transform (DFT) is calculated as;

Si(k) =
N

∑
n=1

si(n)h(n)e−j2πkn/N , 1 ≤ k ≤ K (8)
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where K denotes the length of DFT and h(n) denotes the N sample long analysis window. In this work,
Hamming window is used to realize a high-pass FIR filter to emphasize the high frequency part of the
signal and remove DC content. In the next step, the output of complex Fourier transform is magnitude
squared and power spectral estimate of frame i is computed as;

Pi(k) =
1
N
|Si(k)|2, 1 ≤ k ≤ K. (9)

Figure 3. MFCC Feature Extraction Pipeline.
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Then, a set of Mel-scaled filter banks is computed and applied to power spectrum of each frame.
The Mel-scale is linear for frequencies lower than 1000 Hz and a logarithm above it. To compute the filter
bank energy spectrum, each filter is multiplied by the power spectrum computed above and coefficients
are added up. The Mel-filtered spectrum of frame i is computed as;

Ei(l) =
N−1

∑
k=0

Pi(k)Hl(k), ∀l = 1, · · · , L (10)

where L denotes the total number of filters and Hl denotes the transfer function of lth filter. Next,
the logarithm of Mel-filtered energy spectrum is computed and Discrete Cosine Transform (DCT) is applied
to it. Mathematically,

E
′
l(l) = log(Ei(l)), ∀l = 1, · · · , L (11)

ci(n) =
L

∑
l=1

E
′
l(l)cos(n(l − 0.5)/π/L) (12)

where n = 1, · · · , L is the cepstral coefficient number. In the proposed frame work, initial 13 MFCCs are
used for scene classification.

2.3. Feature Fusion

The 1D-LTP and MFCC features extracted above are fused together to form a joint feature vector
for classification. The fusion of 1D-LTP and MFCC features helps to obtain a more sophisticated feature
representation which has better discriminative properties as well as an accurate representation in frequency
domain. The fusion process is a simple serial concatenation of 1D-LTP and MFCC feature vectors.

F
(c,s) = cκ ||sκ (13)

2.4. Classification

The classification stage employs a multiclass SVM. The basic idea of SVM is to find a hyperplane that
separates D-dimensional data into its two classes [38]. SVM is a discriminative model for classification
that principally depends on two basic assumptions. First, complex classification problems can be classified
through simple linear discriminative functions by transforming data into a high-dimension space. Second,
the training samples for SVMs consist only of those data points that lie close to the decision surface,
with the supposition that they provide the most relevant information for classification [39]. SVMs were
originally proposed as binary classifiers. However, in real scenarios, data is to be classified into multiple
classes. This is done by using multiclass SVM. Either a one-against-one (OAO) or one-against-all (OAA)
approach can be used [40]. For acoustic scene classification setup proposed in this work, the joint feature
vector extracted from previous stage is used to train the multiclass SVM OAO classifier.

3. Experiments

3.1. Setup

Experiments were performed using MATLAB 2016a software on 2.2 GHz Intel i7 processor with 8 GB
RAM. The extracted features are MFCC (13 coefficients) and 1D-LTPs (13 bins) with threshold t = 0.0002.
The classification is being done by applying various SVM kernels, and by finalizing quadratic and cubic
kernels because of their best performance [41]. Training/testing percentage is fixed to be 80/20 (80%
for training, and 20% for testing) for both datasets. The performance of classifier is measured through
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classification accuracy averaged over k-fold cross validation. The value of k = 10 has been selected based
on experimentation to generally result in best accuracy with low bias, modest variance and low correlation.
The classifier accuracy is measured as,

Accuracy =
TP + TN

TP + TN + FP + FN
× 100 (14)

where TP stands for true positive, TN for true negative, FP for false positive and FN for false negative.
The performance of the proposed approach is also compared with several state-of-the-art audio feature
representation techniques i.e., MFCC, ID-LBP and linear prediction cepstral coefficients (LPCC).

3.2. Datasets

An important challenge in acoustic scene classification for robotics is the collection of proper
environmental sound database. Since there is an infinite number of sounds, no single database can
cover all of them. Therefore, no robotic system is capable of recognizing all the sounds. Instead, the scene
recognition capability is limited by the application domain and set of tasks performed by the particular
robot. In order to have an initial reference for comparison, two standard benchmark datasets are selected,
i.e., (a) real world computing partnership (RWCP) sound scene dataset [42] and (b) DCASE challenge
dataset [43].

RWCP is one of the first datasets which are collected for scene understanding. It contains sounds of
various audio sources which were moved using a mechanical device. Recordings were done using a linear
array of 14 microphones and a semi-spherical array of 54 microphones with a DAT recorder at 48 KHz
frequency and 16 bit resolution. The average length of sound sample is about 1 s. A proposed feature
descriptor was tested on experimental dataset consisting of 17 different environmental sounds shown in
Table 2 (a) along with the number of samples for each class.

The DCASE challenge dataset consists of a set of recorded sounds in fifteen different urban
environments. The duration of each sound clip is 30 s and recording is performed in London. The DCASE
dataset consists of 15 different classes of urban sounds; each class contains 78 sound samples as given in
Table 2 (b). The RWCP and DCASE databases contain a variety of sound classes that accurately model
the general indoor or outdoor environment. We believe that verifying the performance of our proposed
solution on these databases can help to realize intelligent systems for advanced applications such as sound
localization [44] and human–robot interaction [45,46].

As discussed earlier, 1D-LTP features are discriminative. The scatter plots of Figures 4 and 5 show the
distribution of 1D-LTPs for several classes of RWCP and DCASE datasets. These plots demonstrate that the
1D-LTP feature values that belong to the same class are spaced close to each other, whereas the features
belonging to different classes are spaced relatively far on the scatter plot. Features having these strong
discriminative properties result in a good classification accuracy.

Table 2. Details of Individual Classes of RWCP and DCASE Datasets.

(a) RWCP Dataset

Class No. of Samples

Aircap 100
Bells 400
Bottle 200

Buzzer 100
Case 300
Clap 400
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Table 2. Cont.

Cup 200
Drum 100
Phone 200
Pump 100
Saw 200

Spray 100
Stapler 100

Tear 100
Toy 200

Whistle 300
Wood 300

Total 3400

(b) DCASE Dataset

Class No. of Samples

Beach 78
Bus 78
Cafe 78
Car 78

City Center 78
Forest 78

Grocery Store 78
Home 78

Library 78
Metro Station 78

Office 78
Park 78

Residential area 78
Train 78
Tram 78

Total 1170

Figure 4. Scatter plot of ID-LTPs of RWCP dataset.
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Figure 5. Scatter plot of ID-LTPs of DCASE dataset.

4. Results and Discussion

The accuracy trend for both datasets is demonstrated in Figure 6. Table 3 presents the overall
classification accuracy of the proposed and existing methods along with their computational time in
seconds. It can be comfortably observed from the stats that the proposed method (i.e., ID-LTP + MFCC)
outperforms shows a better accuracy with computational time smaller or comparable to other approaches.

Figure 6. Classification performance of the proposed ID-LTP and several other features over DCASE and
RWCP dataset.

To get a better insight, few other performance metrics are also investigated including sensitivity,
specificity, and error rate. Moreover, for a fair comparison, two classifier families, i.e., SVM and KNN are
contemplated due to their greater number of variants. Table 4 provides a comparison of seven classifiers
on the DCASE dataset. The SVM with quadratic kernel (SVM-Q) shows better results in terms of accuracy,
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specificity and error rate while SVM with cubic kernel (SVM-C) and KNN weighted (KNN-W) show better
sensitivity. In Table 5, the performance results are demonstrated for RWCP dataset. The SVM-Q classifier
achieves a high accuracy and error rate while better sensitivity and specificity values are achieved by the
KNN medium (KNN-M) and SVM-C, respectively.

Table 3. Performance results for DCASE and RWCP datasets.

Feature Descriptor
Accuracy

Time (s)
DCASE Dataset RWCP Sound Dataset

MFCC 92.9% 90% 1.2
ID-LBP 89.5% 85% 0.75
LPCC 87.3% 86% 0.92

ID-LTP + MFCC 97.38% 94.10% 0.81

Table 4. Performance of various classifiers for proposed feature extraction approach for DCASE dataset.

DCASE Dataset

Classifier
Performance

Accuracy (%) Sensitivity (%) Specificity (%) Error Rate

SVM-L 89.49 83.33 99.54 0.1051
SVM-Q 94.10 91.03 99.91 0.0590
SVM-C 93.85 93.59 99.91 0.0615
SVM-G 93.16 92.31 99.82 0.0684
KNN-M 85.04 92.31 98.81 0.1496
KNN-W 90.26 93.59 99.36 0.0974
KNN-C 82.56 84.62 98.35 0.1744

Table 5. Performance of various classifiers for proposed feature extraction approach for RWCP dataset.

RWCP Dataset

Classifier
Performance

Accuracy (%) Sensitivity (%) Specificity (%) Error Rate

SVM-L 93.97 98.50 99.93 0.0603
SVM-Q 97.38 99.0 99.83 0.0262
SVM-C 97.26 99.25 99.97 0.0274
SVM-G 94.44 98.75 99.57 0.0556
KNN-M 97.26 99.50 99.83 0.0274
KNN-W 96.85 99.00 99.80 0.0315
KNN-C 96.35 99.25 99.80 0.0365

Classification results of individual classes for the DCASE dataset are shown by a confusion matrix of
Figure 7. The figure shows that all classes except the city center class have an accuracy of more than 90%.
The confusion matrix of the proposed approach for RWCP dataset is shown in Figure 8. Here, the phone
class has an accuracy of 89% whereas, all the remaining classes have accuracy above 90%. The classification
results of Figure 7 and 8 confirm the accuracy and validity of the proposed feature classification technique.
To reveal the authenticity and robustness of our proposed method, confidence intervals against both
datasets are also provided for two state-of-the-art classifiers. Figure 9 demonstrates the confidence interval
showing min, max and average classification values of both classifiers. From the stats, its quite obvious
that SVM-Q can be formally selected as a standard classifier for this application.
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Figure 7. Confusion matrix of the proposed approach for DCASE dataset.

Figure 8. Confusion matrix of the proposed approach for RWCP dataset.
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Figure 9. Confidence interval against two selected classifiers on benchmark datasets.

5. Conclusions

Scene classification is an important task in behavioral robotics. Using acoustic signals for
environmental scene classification complements the visual-based classification in many ways. This study
aimed to select the image texture classification features and investigate their effect on the classification
of sound signals. In particular, the work proposes a modified feature descriptor as a combination of
1D-LTPs and MFCCs. Our analysis and simulation results for the two reference datasets i.e., DCASE
and RWCP show that 1D-LTPs exhibit good discriminative properties for sound signals. On the other
hand, the MFCCs as the baseline method, approximates the behavior of the human auditory system.
Fusing 1D-LTPs with MFCCs achieves a more sophisticated and discriminative feature representation of
environmental sounds. The proposed fused feature vector is classified with various kernels of multi-class
SVM. Results demonstrate that SVM with quadratic kernel achieves high accuracy as compared to other
feature representations. The proposed system can be applied to a number of practical indoor and outdoor
robotic scenarios.

6. Materials

Two publicly available datasets are utilized in this research are RWCP and DCASE. The RWCP
dataset is available at [42] and DCASE is available at: http://dcase.community/challenge2018/index.
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Abbreviations

The following abbreviations are used in this manuscript:

LBP Local Binary Patterns
LTP Local Ternary Patterns
MFCC Mel Frequency Cepstral Coefficients
SVM Support Vector Machine
PCLA Probabilistic Component Latent Analysis
KFDA Kernel Fisher Discriminant Analysis
HOG Histogram of Gradients
DNN Deep Neural Networks
DFT Discrete Fourier Transform
FFT Fast Fourier Transform
FIR Finite Impulse Response
GMM Gaussian Mixture Model
KNN K-Nearest Neighbour
SVM-C SVM with Cubic kernel
SVM-Q SVM with Quadratic kernel
SVM-G SVM with mean Gaussian kernel
KNN-M K Nearest Neighbors-Medium
KNN-W K Nearest Neighbors-Weighted
KNN-C K Nearest Neighbors-Cubic
OAO One Against One
OAA One Against All
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Abstract: Near-infrared (NIR) facial expression recognition is resistant to illumination change.
In this paper, we propose a three-stream three-dimensional convolution neural network with a
squeeze-and-excitation (SE) block for NIR facial expression recognition. We fed each stream with
different local regions, namely the eyes, nose, and mouth. By using an SE block, the network
automatically allocated weights to different local features to further improve recognition accuracy.
The experimental results on the Oulu-CASIA NIR facial expression database showed that the proposed
method has a higher recognition rate than some state-of-the-art algorithms.

Keywords: NIR facial expression recognition; SE block; 3D CNN; adaptive feature weights calibration

1. Introduction

Facial expressions carry rich non-verbal information. Machines with the ability to understand
facial expressions can better serve humans and fundamentally change the relationship between humans
and machines. Therefore, automatic facial expression recognition has attracted attention from many
fields, such as virtual reality [1,2], public security [3,4], and data-driven animation [5,6].

The effectiveness of facial expression recognition can be easily affected by environmental changes,
such as changes of light, angle, and distance. Among these, the change of illumination conditions
under visible light (VIS) (380–750 nm) has the largest influence [7,8]. To overcome this influence,
an active near-infrared (NIR) illumination source (780–1100 nm) is used for the recognition. In this
study, an NIR camera, together with the NIR illumination sources, were placed in front of the subjects.
The intensity of the NIR illumination source was much higher than that of the ambient NIR light in
indoor environments. Therefore, the ambient illumination problem could be solved as long as the active
NIR illumination source is constant. The NIR recognition system is resistant to ambient illumination
variations, and has been successfully applied to the field of face recognition [9]; it can perform well
even in dark environments [10], in which normal imaging systems fail to perform recognition.

Facial expressions manifest themselves as movements of one or several discrete parts of the
face, such as tightening the lips to express anger and raising the mouth to express happiness [11].
Some researchers use the features extracted from the entire face, which are called global features [12,13],
for recognition, while other researchers use features extracted from specific parts, which are called local
features [14–17]. Many researchers have demonstrated that local features improve the performance
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of facial expression recognition compared with global features [18,19]. The main reason for this
advancement is that the specific local regions contribute more accurate information of facial changes
that help to distinguish the expressions, while the global region contains more identity information.
Some researchers [20,21] have pointed out that the eyes, eyebrows, and mouth are the most expressive
facial parts. However, it is unknown which part of the face should carry more weight in expression
recognition or how the correct weight can be allocated to different parts of the face.

In earlier studies, many facial expression recognition systems used static images [22–24] that only
contain spatial information as the input. However, facial expression can be a dynamic process, and the
dynamic information of the face can better reflect the change of expression. Therefore, it is necessary to
extract spatial and temporal information from the image sequences to facilitate recognition.

In the work reported in this paper, we designed a convolutional neural network (CNN) to complete
NIR facial expression recognition. The CNN used is a three-stream three-dimensional (3D) CNN,
which can learn spatio-temporal information from image sequences. In addition, the three inputs to
the CNN are all local features, which not only reduce computational complexity, but also remove
information not related to the expressions (such as identity information). A squeeze-and-excitation
(SE) block is appended after the 3D CNN, which can automatically assign more weight to the local
features that carry more expression information. To overcome the over-fitting problem caused by small
data, features are extracted through three identical shallow networks. Finally, we add a global face
stream to the local network, further increasing the recognition rate.

The main contributions of this paper are the following: (1) Three local regions of the face are used
as the input of the network for the NIR expression recognition, which can not only accurately extract the
facial expression information, but also reduce the computational complexity and dimensions; and (2)
an SE block is added to model the dependencies between feature channels and adaptively learn the
weight of the channel to gain efficient expression information and attenuate the useless information.

2. Related Work

Facial expressions can be decomposed into movement of one or more discrete facial action
units (AUs). Inspired by this theory, Liu et al. [25] located common patches and unique patches of
different expressions for recognition. However, this method could cause overlapping of located areas.
Liu et al. [26] did further work and proposed a framework called FDM to select the active features of
each expression without overlapping. Later, Liu et al. [27] proposed a 3D CNN with deformable action
part constraints that can locate and code action units.

To extract temporal features while acquiring spatial features, Ji et al. [28] extended a CNN to a 3D
CNN, which can extract the spatio-temporal information from image sequences. Szegedy et al. [29]
utilized the 3D CNN to extract temporal information for video-based expression recognition.
Chen et al. [30] proposed a new descriptor, the histogram of oriented gradients from three orthogonal
planes (HOG-TOP), to extract the dynamic texture features from image sequences, which are fused with
the geometric features to identify expressions. Fonnegra et al. [31] proposed a deep learning model and
Yan et al. [32] presented collaborative-discriminative-multi-metric-learning (CDMML)-based image
sequences for emotion recognition. To make the system more precise, Zia et al. [33] proposed a dynamic
weight majority voting mechanism for the construction of ensemble systems. However, since these
methods are all based on visible light, the impact of external illumination changes are not considered.

The NIR facial images/videos are hardly influenced by the ambient visible light change. Farokhi
et al. [34] proposed a method of extracting global and local features by using Zernike moments
(ZMs) and Hermite kernels (HKs), respectively, and then used the fused features to identify the NIR
face. Taini et al. [35] assembled a near-infrared facial expression database and completed the first
study based on NIR facial expression recognition. Zhao et al. [18] developed the database of NIR
facial expressions, called the Oulu-CASIA NIR facial expression database, and used local binary
patterns form three orthogonal planes (LBP-TOP) to extract dynamic local features. It was proved
in this work that NIR can overcome the influence of visible-light illumination changes on expression
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recognition. However, these methods must extract facial expression features manually. Jeni et al. [36]
proposed a 3D-shape-information-based recognition technique and further proved that an NIR camera
configuration is suitable for facial expressions under light-changing conditions. Wu et al. [37] proposed
a three-stream 3D convolutional network for NIR facial expression recognition, using a combination of
global and local features, but did not consider assigning different weights to local features.

3. Materials and Methods

3.1. 3D CNN

A 3D CNN is more suitable for spatial-temporal feature extraction. In [28], to process image
sequences more efficiently, a 3D CNN approach is proposed to address action recognition problems.
Through 3D convolution and pooling operations, a 3D CNN has the ability to learn temporal features.

A 3D CNN consists of an input layer, 3D convolution, 3D pooling (usually, each convolution
layer is followed by the pooling layer), and a fully connected (FC) layer. The dimension of the input
image sequences to the 3D CNN is represented as d× l× h×w, where d is the number of the channels,
l the number of frames of video clips, and h and w the height and width, respectively, of each frame.
In addition, 3D convolution and pooling have a kernel size in t× k× k, where t is the temporal depth
and k the spatial size.

3.2. Squeeze-and-Excitation Networks (SENets)

Hu et al. [38] proposed squeeze-and-excitation networks (SENets). The basic architectural unit of
SENets is the SE building block, which is shown in Figure 1.

squeeze
excitation

scale

W

H

U

C
W

H

1 1 C1 1 CX

Z S

Figure 1. Squeeze-and-excitation (SE) block structure.

Before the SE block operation, input data X is transformed into features U through a series
of convolution operations, i.e., Ftr : X→ U, X ∈ RW′×H′×C′ , U ∈ RW×H×C, where Ftr represents the
transformation from X to U, H (H′) and W (W′) are the frame height and width, respectively, and C (C′)
are the number channels.

The SE block mainly consists of two operations: Squeeze and excitation. Because the filter learned
by each channel in the CNN operates on the local receptive field, each feature map in U cannot utilize
the context information of other feature maps. The purpose of the squeeze operation is to have a global
receptive field, so that the lower layers of the network can also use global information. The global
average pooling operation is used to compress U (multiple feature maps) into Z, so that the C feature
maps eventually become real columns of 1× 1×C. The squeeze operation is performed by

zm = Fsq(um) =
1

W ×H

W∑

i=1

H∑

j=1

um(i, j) (1)

where zm represents the mth element of Z and um the mth element of U.
The excitation operation is a simple gating with a sigmoid activation. The purpose of this operation

is to model the interdependence between feature channels by learning parameters to generate the
weight of each feature channel. To meet these requirements and limit the model complexity and
auxiliary generalization, two FC layers (1*1 conv layer) were introduced. One is the dimension
reduction layer, in which the parameter is W1 and the dimension reduction ratio r; the other is a
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dimension increase layer with parameter W2 followed by a Rectified linear unit (ReLU), W1 ∈ R
C
r ×C

and W2 ∈ RC×C
r . The excitation is performed by:

S = Fex(Z, W) = σ(g(Z, W)) = σ(W2 δ(W1, Z)) (2)

where S is the vector after excitation operation, and δ and σ refer to the ReLU function and the sigmoid
function, respectively.

Finally, S is combined with U to obtain the final output by:

∼
xm = Fscale(um, sm) = sm·um (3)

where sm is the mth element of S and
∼
xm the mth element of the final output

∼
X; Fscale refers to channel-wise

multiplication.
The goal of the SE block is to greatly improve the expressiveness of the network; it adaptively

recalibrates the feature weight by modeling the interdependencies between the channels. In more
detail, it allows the network to use global information to selectively enhance the beneficial features of
the channel and suppress the useless function channels.

3.3. Proposed System

In this paper, we propose a three-stream 3D CNN with an SE block called an SE three-stream
fusion network (SETFNet). We took three local regions, the eyes (including eyebrows), nose, and mouth,
from the facial expression image sequence as inputs to the three-stream network. After fusions of
the three streams, an SE block was added to the network to adaptively learn the weight of each
feature channel.

To avoid over-fitting problems, a deep CNN requires large amounts of data for training. However,
the available database for NIR expression is small in size. To train a CNN model on a small database,
researchers use a medium-size CNN [39,40]. Therefore, the SETFNet in this paper was also a
medium-size CNN with four convolutional layers.

The structure of the proposed SETFNet is shown in Figure 2. It is a three-stream 3D CNN
consisting of three identical sub-networks. Each sub-network consists of four convolutional layers
and has the same parameters. The number of convolution kernels for the four convolution layers,
first through fourth, is 16, 32, 64, and 128, respectively. The kernel size of the first convolution layer is
3×3×8, and a large temporal stride here is used to eliminate some useless information. The kernel size
of the other three convolution layers is 3×3×3. The three streams were fused and followed by an SE
block to recalibrate the weight of each stream. The details of each subnetwork are shown in Table 1.

Table 1. Configuration of each stream.

Layers Kernel Parameter Settings Number of Kernels Output Size

Date 32 × 36 × 64
Conv 3 × 3 × 8 16 9 × 18 × 32
Pool1 2 × 2 × 1 16 9 × 18 × 32
Conv2 3 × 3 × 3 32 9 × 9 × 16
Pool2 2 × 2 × 2 32 8 × 8 × 15
Conv3 3 × 3 × 3 64 8 × 8 × 15
Pool3 2 × 2 × 2 64 4 × 4 × 8
Conv4 3 × 3 × 3 128 2 × 4 × 8
Pool4 2 × 2 × 1 128 2 × 2 × 4
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Figure 2. Overall structure of the proposed SE three-stream fusion network (SETFNet). The SE block is
displayed in the dotted box.

Fusion Network

After extracting the features from the three regions (eyes, nose, and mouth), three stream features
defined as T1, T2, and T3 were obtained. The three stream features were then concatenated together to
achieve better recognition by

T = T1 ⊕ T2 ⊕ T3, (4)

where T is the fused feature and ⊕ represents the concatenation operation. The concatenated features T
were used as inputs to the next operation of the network.

3.4. Experiments

The proposed network was assessed on the Oulu-CASIA NIR facial expression database [18].
The network was implemented in the Caffe framework, which ran on a PC with a NVIDIA Geforce GTX
1080 graphical processing unit (GPU) (8 G). Training a model with the correct parameters is the key to
achieving optimal performance, which has a direct impact on the experimental results. We trained
the network from scratch using a batch size of 4, an initial learning rate of 10−3−3, and a weight decay
of 0.0005.

3.4.1. Database

Because the NIR facial expression database is not very common, the Oulu-CASIA NIR facial
expression database is currently the only suitable one. It was collected in dark, weak, and normal light
conditions, and consists of six kinds of facial expressions (anger, disgust, fear, happiness, sadness,
and surprise) of 80 people between 23 and 58 years old, so each illumination condition has 480 image
sequences. All expression sequences begin at the neutral emotion and end with the peak of the emotion.
Each subject was asked to sit on a chair in the observation room in a way that they were in front of
the camera. The distance between the face and camera was approximately 60 cm. Subjects made
expressions according to the image sequences, while videos were captured by a USB 2.0 PC Camera
(SN9C 201 & 202). Each clip was filmed by the camera at a frame rate of 25 fps. The image resolution
was 320 × 240.
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The aforementioned database has been used in many studies of facial expression recognition. It has
been proved that the identification task under dark illumination conditions is the most difficult [18],
because the facial image loses most of the texture features in dark light conditions. Therefore, we tested
the proposed network on this most difficult sub-dataset (dark illumination condition).

We used the very popular method of tenfold cross-validation. All of the image sequences were
divided into 10 groups. At each fold, nine groups were used to train the network and the rest were used
for testing. During the entire experiment, there was no overlap between the training and testing sets.

3.4.2. Data Pre-Processing

In our experiment, a video sequence was pre-processed in the following three steps: (1) Frame-
by-frame face detection; (2) locating eyes, nose, and mouth; and (3) cropping off the eyes, nose,
and mouth areas. We found that step 2 had a significant effect on the performance of the network,
so the choice of area to perform accurate spotting is crucial. To ensure that this was done accurately,
the local areas were cropped based on the location of landmark points annotated by a robust landmark
detector, discriminative response map fitting (DRMF) [41]. DRMF not only achieves good performance
in landmark-detection methods [30], but also consumes very little computation time.

The cropping of these local areas was done by an automatic method. Since some of the cuts are
inaccurate, manual cropping was used. Using the facial landmark points annotated earlier, the three
regions were identified by using rectangular bounding boxes determined based on the eyes, nose,
and mouth landmark points. We segmented the three local regions according to the following eleven
points: E1 (x1, y1), E2 (x2, y2), E3 (x3, y3), E4 (x4, y4), E5 (x5, y5), N1 (x6, y6), N2 (x7, y7), M1 (x8, y8),
M2 (x9, y9), M3 (x10, y10), and M4 (x11, y11) (shown in Figure 3). The center point of the rectangular
bounding box of the eye region is L1= E5 (x5, y5), and the length and width of the rectangle are 5

3 |x2 − x1|
and 4

3 |y4 − y1|, respectively. The center point of the rectangular bounding box of the nose region is L2 =
(x5,

y7−y6
2 ), and the length and width of the rectangle are |y7 − y6| and |x3 − x4|, respectively. The center

point of the rectangular bounding box of the mouth region is L3 = (x5,
y11−y9

2 ), and the length and
width of the rectangle are 5

3 |x10 − x8| and 4
3 |y11 − y9|, respectively.

 

Figure 3. Positions of 11 points for segmenting three regions.

For the network input, each video sequence is normalized to 32 frames using the linear interpolation
method [42]. Each frame of a global face (whole face) and local areas were resized to 88 × 108 and 36 ×
64, respectively. To reduce the amount of calculation, all input images were converted to 8-bit grayscale.
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4. Results and Discussion

4.1. Comparisons of Different Streams and Their Fusion

Table 2 shows the average results of tenfold cross-validation for each local region using a single
sub-network (one stream) and a fused network. The feature information of the eye (including eyebrows),
nose, and mouth regions is extracted by a single stream and the recognition rates are 35.37%, 42.76%,
and 68.35%, respectively. The mouth region has the highest recognition rate, which may indicate that
this part is the most expressive part in the database. The recognition rate of the eye region is the lowest
among the three regions. This may be due to some of the participants wearing glasses. In the NIR
face image, the NIR light reflected by the glasses removes the feature of the eyes, so that the frames
with glasses have a great influence on recognition. At the same time, we can see that the performance
of the recognition rate of the three-local-stream-fused networks (TFNets) reaches 78.68%, which is
much higher than that of each single stream network (eye, 35.37%; nose, 42.76%; mouth, 68.35%).
This indicates that our fusion is very effective in improving the recognition rate. After the network was
fused, we added the SE block that automatically allocates weights to different streams. Since the SE
block can make the entire network adaptively learn the weight of the feature channel, the SETFNet
further improves the recognition rate, reaching a recognition rate of 80.34%.

Table 2. Comparison of different local and fused networks.

Architecture Accuracy (%) Time (s)

Eye 35.37
Nose 42.76 0.515

Mouth 68.35

TFNet 78.68 1.158
SETFNet 80.34 1.237

SETFNet + global 81.67 2.142

To investigate whether the SETFNet had extracted most of the expression features, we added
one more stream to the SETFNet, which takes the frame of the global face as the input. Because
each frame of the global face has larger spatial size than that of each local area, we added one more
convolution pair to this added stream. The network structure is shown in Figure 4, with the fourth
stream being the global face stream. When it is added to the SETFNet, the recognition rate becomes
81.67%. The SETFNet itself can achieve an 80.34% recognition rate. That is to say, after adding the
entire face as input, the improvement of the recognition rate is still limited. This may indicate that the
SETFNet has extracted most of the expression features.

Table 2 also shows the time consumption of various single sub-networks and fused networks.
The time for a single sub-network to process an image sequence is 0.515 s, and the time for TFNet and
SETFNet to process a sequence is 1.158 and 1.237 s, respectively. Considering the large improvement
in recognition rate made by the TFNet and SETFNet, the increase of computation time is acceptable.
However, when a global face stream is added to the SETFNet, the time for the network to process a
sequence is 2.142 s. The slight increase in recognition rate (80.34% versus 81.67%) made by the global
stream is at the expense of the processing time (1.237 s versus 2.142 s). However, all of the computation
time may be within acceptable limits, since the input is 32 frames. Under the hardware settings used
(NVIDIA Geforce GTX 1080 GPU (8G) for deep-learning acceleration), the SETFNet can process 32/1.237
= 25.87 frames every second. The frame rate of a normal imaging system is 25–30 fps, and 25.87 fps
is within this range, which means that the SETFNet can give the recognition result just 1 s of lag in
real-time imaging if the computation is performed in parallel with the imaging. With better hardware,
the computation time can be further decreased to or to less than 1 s, which makes the processing a
real-time process. Therefore, this network could be used in real applications.
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Figure 4. Structure of SETFNet plus global face stream.

The recognition rate of the eye region is the lowest among the three regions. One reason may
be that the eyes have fewer features than the other parts; another reason could be that some of the
subjects wear glasses. To verify the effect of glasses on the recognition rate, we input the eyes with and
without glasses into the sub-network separately. The recognition results are shown in Table 3. It is
seen that the recognition rate without glasses is better than that with glasses, which indicates that the
glasses remove some features of the eyes. Since we divided the dataset into two parts, the recognition
rates of wearing glasses and not wearing glasses are lower than that of the single sub-network with all
data as the input.

Table 3. Comparison of recognition rate with and without glasses.

Category Accuracy (%)

With glasses 30.13
Without glasses 31.45

4.2. Comparison of Embedded SE Block

The SE block was added to the network after the fusion so that the network could receive the
information of the entire network and have a global receptive field. In the SE block, the reduction
ratio r is an important parameter that can change the capacity and computational cost. We compared
different reduction ratios r in our network model and the results are shown in the Table 4. When r = 16,
the accuracy is the highest; therefore, r is set as 16.

Table 4. Comparison of different network reduction ratios.

Architecture Accuracy (%)

SETFNet

r = 4 79.82
r = 8 79.12
r = 16 80.34
r = 32 79.54

SETFNet + global

r = 4 80.57
r = 8 81.25
r = 16 81.67
r = 32 80.38

162



Electronics 2019, 8, 385

4.3. Comparisons with Other Methods

Table 5 shows the different expression recognition rates of different methods on the Oulu-CASIA
NIR facial expression database under dark-lighting conditions. For all of the methods, we used the
tenfold cross-validation method to obtain an average recognition rate. The results of Deep Temporal
Geometry Network (DTAGN), 3D CNN Deformable Facial Action Parts (DAP), and NIRExpNet were
obtained from [37], and the result of LBP-TOP was obtained by implementing the algorithm using
MatLab software (MathWorks, Natick, MA, USA). SETFNet and SETFNet + global were implemented
by using Caffe. It is seen that LBP-TOP and 3D CNN DAP can achieve recognition rates of 69.32% and
72.12%, respectively, which are higher than that of DTAGN. NIRExpNet used the fusion information of
local and global features, and therefore can achieve an even higher recognition rate than LBP-TOP
and 3D CNN DAP. SETFNet uses only local information of three regions, but it can achieve a higher
recognition rate (even higher than NIRExpNet, which uses local and global features). When a global
face stream is added to SETFNet, it further improves the recognition rate to 81.67%. This indicates that
the automatic allocation of the weight-of-features channel helps improve the recognition performance,
which could be a promising method for NIR facial expression.

Table 5. Comparison of total recognition rates of different methods.

Method Accuracy (%)

LBP-TOP [18] 69.32
DTAGN [43] 66.67

3D CNN DAP [27] 72.12
NIRExpNet [37] 78.42

SETFNet 80.34
SETFNet + global 81.67

4.4. Confusion Matrixes

To analyze the experimental results further, the confusion matrixes of SETFNet and SETFNet
+ global are shown in Tables 6 and 7, respectively. The labels on the left-hand side represent actual
classes and those at the bottom represent the predicted classes; each percentage value in the matrix
was calculated by dividing the number of a predicted class to the number of the corresponding actual
class. After adding the global stream, the recognition rate of each expression is increased by 1–2%.
It can be seen from Tables 6 and 7 that whether or not the global face stream is added, both happiness
and surprise have high recognition rates, while fear and disgust have relatively low rates. The latter
low recognition rates may be due to the slight movement of AUs for fear and disgust, which makes it
more difficult to distinguish them from other expressions. Moreover, disgust is confused with anger,
fear, and sadness, and fear is confused with anger, disgust, happiness, and surprise, perhaps because
their appearance and movements are similar to each other.

Table 6. Confusion matrix of SETFNet. Labels on left-hand side represent actual classes; those on
bottom represent predicted classes.

An 77.64% 12.27% 1.25% 0 8.84% 0

Di 15.06% 72.91% 9.53% 0 2.50% 0
Fe 7.45% 6.31% 68.53% 1.25% 0 16.46%
Ha 0 0 6.64% 93.36% 0 0
Sa 12.25% 3.52% 0 2.89% 81.34% 0
Su 0 0 8.46% 3.25% 0 88.29%

An Di Fe Ha Sa Su
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Table 7. Confusion matrix of SETFNet + global. Labels on left-hand side represent actual classes;
those on bottom represent predicted classes.

An 78.43% 11.86% 0 0 9.71% ↑ 0

Di 13.38% 74.67% 7.87% 0 4.08% ↑ 0
Fe 9.54% ↑ 5.58% 71.08% 0 0 13.83%
Ha 0 0 5.74% 94.26% 0 0

Sa 9.46% 8.25% ↑ 0 0 82.29% 0
Su 0 0 3.38% 7.31% ↑ 0 89.31%

An Di Fe Ha Sa Su

SETFNet + global takes the entire face as input. The more input features there are, in general,
should increase the true prediction values (values on the diagonal of the confusion matrix) and decrease
the false prediction values (the zero value will be unchanged). It is seen from Table 6 that SETFNet +
global does increase all true prediction values. However, more input does not always decrease the
false prediction values. We can see from Table 7 that increased false prediction values do exist, which
are indicated by up-pointing arrows. As the database is small in size, the prediction values could vary
due to noise. To ensure that the located false prediction values are increased only as a result of more
input features, we located their paired false prediction values as well. Each false prediction value
pair appears in the same color in Table 7; for example, 9.54% (fear predicted as anger) and 0% (anger
predicted as fear) in green. Only when both paired values are increased can the two expressions be
considered as confused with each other more in SETFNet + global.

Under this criterion, we can see that sadness tends to be more recognized as disgust (8.25% versus
3.52%), or disgust tends to be more recognized as sadness (4.08% versus 2.50%), if SETFNet + global is
used. The reason for this might be that, in sadness and disgust expression situations, lower cheek areas
have an up-and-down movement pattern due to the movement of AU15 or AU10 [44]. When SETFNet
+ global takes these similar movement patterns as input, sadness will be recognized as disgust more.

Tables 8–11 show the confusion matrix of the comparison algorithms, with the labels on the
left-hand side representing actual classes and those at the bottom representing the predicted classes.
The confusion matrix of NIRExpNet (Table 8) was adopted from [37] directly. The other matrixes were
obtained by implementing the algorithms with MatLab code on the database (tenfold cross-validation).
Happiness and surprise again have higher recognition rates than the others in all algorithms. Fear has
the lowest average recognition rate, and disgust has a similar average recognition rate to that of anger
and sadness. This trend is in accord with what SETFNet reveals.

Table 8. Confusion matrixes of NIRExpNet.

An 71.01% 14.43% 0 0 14.56% 0

Di 20.56% 79.44% 0 0 0 0
Fe 0 8.00% 62.44% 0 0 29.56%
Ha 0 0 0 96.01% 0 3.99%
Sa 10.44% 0 14.44% 0 75.12% 0
Su 0 0 9.41% 4.04% 0 86.55%

An Di Fe Ha Sa Su

Table 9. Confusion matrixes of 3D CNN DAP.

An 69.82% 16.23% 8.68% 0 5.27% 0

Di 14.54% 73.41% 8.47% 0 3.58% 0
Fe 7.34% 7.46% 60.21% 8.32% 0 16.67%
Ha 0 0 8.58% 83.23% 0 8.19%
Sa 13.45% 9.93% 12.32% 0 64.30% 0
Su 4.51% 0 11.49% 2.45% 0 81.55%

An Di Fe Ha Sa Su
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Table 10. Confusion matrixes of DTAGN.

An 69.25% 15.28% 2.35% 3.30% 9.82% 0

Di 18.72% 70.32% 10.96% 0 0 0
Fe 5.42% 3.13% 59.32% 5.62% 3.05% 23.46%
Ha 0 7.66% 12.57% 71.13% 0 8.64%
Sa 15.62% 0 14.52% 0 60.21% 9.65%
Su 0 0 13.46% 15.42% 0 71.12%

An Di Fe Ha Sa Su

Table 11. Confusion matrixes of LBP-TOP.

An 63.45% 16.52% 7.66% 0 12.37% 0

Di 15.33% 58.36% 10.67% 3.26% 12.36% 0
Fe 7.46% 6.89% 64.31% 0 3.89% 17.45%
Ha 0 11.68% 7.89% 75.86% 0 4.57%
Sa 10.62% 8.77% 10.43% 0 70.18% 0
Su 0 0 9.39% 6.85% 0 83.76%

An Di Fe Ha Sa Su

To further analyze the discrimination ability of different methods, we counted the number of zero
false prediction values in each matrix. This number indicates that two corresponding expressions
are perfectly recognized by the method. It is observed that NIRExpNet has 20 zero false prediction
values, much more than other methods. 3D CNN DAP, DTAGN, and LBP-TOP have a similar number
of zero false prediction values (approximately 12). These results indicate that NIRExpNet has the
best performance in distinguishing one expression from others. This could be because NIRExpNet
is designed specifically for the dataset. The features extracted by NIRExpNet are balanced so the
possibility of confusing one expression with others is small.

Some zero false prediction values do not have zero paired values, e.g., the values in red in Table 9.
4.51% of the surprise expression was recognized as anger, but 0% anger was recognized as surprise
using 3D CNN DAP. This could be due to the noise of the small dataset.

The F1 score and Matthews correlation coefficient (MCC) are calculated using the confusion
matrixes, which are indexes considering accuracy and recall of the classification results and are fairer
methods for assessing a classifier. The F1 score and MCC are summarized in Table 12. It is observed
that SETFNet and SETFNet + global have the highest F1 and MCC, NIRExpNet has the second-highest
values, and 3D CNN DAP the third highest. LBP-TOP and DTAGN have the lowest F1 and MCC.
This indicates that SETFNet outperforms other methods in even more rigorous assessment. The order
of the F1 and MCC performance of the methods is in accord with accuracy performance. This also
indicates that the number of each sub-category is well balanced.

Table 12. Comparison of F1 score and MCC of different methods.

Method F1 Score MCC

LBP-TOP [18] 0.6712 0.6343
DTAGN [43] 0.6949 0.6077

3D CNN DAP [27] 0.7235 0.6702
NIRExpNet [37] 0.7828 0.7416

SETFNet 0.8034 0.7648
SETFNet + global 0.8164 0.7806

4.5. Potential Application and Improvement

SETFNet, which used three regions of the face as the input, can achieve higher recognition rates
than NIRExpNet, which used the entire face as input, because an SE block can automatically allocate
the weights to different streams. These results suggest that the automatic allocation of weights to
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different features will help improve the recognition rate. This idea of automatic allocation may have
potential use in other recognition tasks. The SE block can always be added after a feature fusion step
to allocate weights to different features to further improve the recognition rate.

SETFNet + global has a slightly higher recognition rate than SETFNet, but consumes much
more calculation time. This indicates that a small part of the face could carry most of the expression
information. For any other type of facial expression recognition task, we may only analyze the parts of
face carrying expression information, which can save much calculation time and make recognition a
real-time application.

The highest recognition rate on the Oulu-CASIA NIR facial expression database (dark condition)
is 98.6%, achieved by Rivera et al. [45]. A number transitional graph method (DNG) was proposed
in [45]. The confusion matrixes achieved by DNG method were summarized in Tables 13 and 14
(adopted from [45] directly), with the labels on the left-hand side representing actual classes and those
at the bottom representing the predicted classes. Table 13 is the confusion matrix of DNG using 3D
Sobel (DNGS), and Table 14 is the confusion matrix of DNG using nine-plane mask (DNGP). It is seen
that the recognition rate of each expression class is more than 97% and similar to each other. This may
indicate that the DNG has obtained good enough features to discriminate one expression from others.
In terms of zero false prediction values, DNGS has 21 zero false prediction values, and DNGP has
23 zero false prediction values, which are less than all other methods. This indicates that the DNG
method can achieve the most un-confused matrix. The F1 and MCC of DNG are higher than other
methods, as well (DNGS: F1 0.9859, MCC 0.9830; DNGP: F1 0.9879, MCC 0.9856). This indicates that
DNG outperforms other methods in more rigorous assessment.

Table 13. Confusion matrixes of DNGS.

An 98.75% 1.25% 0 0 0 0

Di 2.53% 97.47% 0 0 0 0
Fe 0 0 97.81% 0.63% 1.25% 0.31%
Ha 0 0.63% 0 98.73% 0.63% 0
Sa 0 0 0 0.63 99.38% 0
Su 0 0 0.63% 0 0 99.38%

An Di Fe Ha Sa Su

Table 14. Confusion matrixes of DNGp.

An 100% 0 0 0 0 0

Di 1.9% 96.2% 0 0 1.9% 0
Fe 0 0 99.38% 0 0.63% 0
Ha 0 0 0 98.73% 0.63% 0
Sa 0.63 0 0.63 0 98.75% 0
Su 0 0 0 0 0.63 99.38%

An Di Fe Ha Sa Su

DNG consists of designed feature-extraction and feature-fusion methods, which make the extracted
features robust in uneven illumination conditions. This could be the reason why DNG can achieve
the best performance. According to the design of the DNG, two aspects could be considered in the
future design of the SETFNet. Firstly, the uneven illumination conditions in the database could be
taken into account when designing the network, such as using the features extracted from DNG as a
stream to the network. Secondly, a more sophisticated fusion method could be used in future design,
e.g., the concatenation operation used in this paper could be replaced by the fusion method in DNG.

However, a different form of DNG using hand-crafted features, SETFNet, proposed in this paper
extracts features automatically. This design does not need the background knowledge of the data.
Specifically, The feature extraction in this paper was finished by using a 3D CNN. Since the dataset
used for training the CNN is small in size, the proposed network is not deep enough and may not
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extract high-level features. To further improve the recognition rate, transfer learning could be used,
i.e., training a deeper CNN on a larger dataset and then fine-tuning the network on the NIR database.

5. Conclusions

In this paper, we proposed a three-stream 3D CNN architecture with an SE block called SETFNet
that can automatically learn spatio-temporal features simultaneously. We only used three local regions
of the face as input to the network. The advantages of using local information as input to the network
were the removal of some information unrelated to recognition and a reduction of the amount of
computation. To enable the network to adaptively learn the weight of each feature channel, an SE
block was added to the network after the fusion of three single sub-networks. Experimental results
show that SETFNet can achieve an average recognition rate of 80.34%; when a global face stream was
added to SETFNet, the recognition rate was further increased to 81.67%, which is higher than some
state-of-the-art methods.
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Abstract: Over one billion people in the world suffer from some form of disability. Nevertheless,
according to the World Health Organization, people with disabilities are particularly vulnerable to
deficiencies in services, such as health care, rehabilitation, support, and assistance. In this sense,
recent technological developments can mitigate these deficiencies, offering less-expensive assistive
systems to meet users’ needs. This paper reviews and summarizes the research efforts toward the
development of these kinds of systems, focusing on two social groups: older adults and children
with autism.
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1. Introduction

According to the World Health Organization (WHO) [1], one in seven people experience disability
to some extent. However, only half can afford the required healthcare services [1]. This is especially
critical when a person’s quality of life diminishes and their independence is reduced. In this context,
technological advances can play an important role, since they may enable people with disabilities to
receive the healthcare necessary to lead a fulfilling life and be independent [2].

A review of the literature reveals the enormous variety of assistive technology currently available.
Given the wide ranges of types and levels of deficiency, assistive technology can be classified
depending on its complexity. Three concentric spheres of assistive technology can be defined with
the user at their center. These are (from the inside to the outside): embodied assistive technology,
assistive environments, and assistive robots.

Embodied assistive technology includes mobility devices [3,4] (e.g., wheelchairs, prostheses,
exoskeletons, or artificial limbs); specialized aids (e.g., hearing [5], vision [6–8], cognition [9],
or communication [10]); and specific hardware, software, and peripherals that assist people
with disabilities with accessing information technologies (e.g., computers and mobile devices).
Although these systems provide valued help, they usually offer just one functionality and lack much
intelligence (intelligence being understood as the ability to receive feedback from the environment and
adapt their behavior).

Going a step further, the environment can be adapted to the user’s needs, with sensors and
actuators, such as cameras or domotic systems, such that more functionalities are covered and
more information about the user’s health status can be gathered and processed, providing this
technology with intelligence. Along those lines, we can find smart homes [11], virtual assistants [12–14]
and ambient assisted living (AAL) settings [15–17]. Nevertheless, this kind of technology fails to
support independent life when the user has chronic or degenerative limitations in motor and/or
cognitive abilities.

As a solution, assistive robotics (AR) emerged. Its main goal is to fruitfully promote the
well-being and independence of persons with disabilities. Robots may assist people in a wide range
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of tasks at home (especially in terms of activities for daily living), and so ongoing research includes
household robots [18–20] and rehabilitation robots [21,22], among others. In the case of assistive robots,
interdisciplinarity is required to achieve the final goal, integrating research areas such as artificial
intelligence, human-robot interaction, and machine learning techniques, among others.

Thus, motivated by the current societal needs of the particular risk groups (i.e., children and
older adults), this paper reviews and summarizes the promising and challenging research on assistive
robotics aimed at helping older persons and children with autism to perform their daily tasks.

2. Socially Assistive Robots

One of the main difficulties in the acceptance of assistive technology is the way in which this
technology is perceived. In this sense, the interaction between the robot and the user is a key issue.
This social interaction led to the development of socially assistive robotics (SAR). According to
Feil-Seifer and Mataric [23], SAR can be defined as the intersection of AR and socially interactive
robotics (SIR), whose main task is interaction with human individuals.

Ideally, SAR should operate autonomously and not require the manipulation of a human operator.
The interaction with the user must be intuitive and must not require extensive training. Additionally,
the robots have to adapt their behaviors to the new routines and needs of the users, which is currently
the most challenging task to be solved [24]. To meet this demand, artificial intelligence and machine
learning algorithms must be developed and deployed in these systems, since the robots cannot be
programmed in advance to react to every possible circumstance that might occur during interactions
with the users.

As mentioned above, there exists a wide variety of applications depending on the needs to be
covered and the demands of the target social group. Given that the SAR focuses on improving the
user’s life conditions, this study reviews the advances in two of the most vulnerable social groups:

• Older adults;
• People with cognitive disorders.

Section 3 reviews the latest advances in age-related health issues, while Section 4 analyzes the
most significant research on children with autism in terms of diagnosis and therapy to train their
communicative and social skills.

3. Older Adult Care

The aging population is one of today’s major health concerns. This unprecedented situation
urgently requires technological solutions to confront the constantly increasing demands of care services,
which are currently overwhelmed. In this regard, the WHO identifies two key concepts in its Global
strategy and plan of action on aging and health [25]:

• Healthy aging, understood as the process of developing and maintaining functional ability for
older people’s well-being;

• Functional ability, where technology is used to perform functions that might otherwise be difficult
or impossible.

Healthy aging has become popular topic in recent decades. In this regard, SAR develops systems
to improve older people’s health through physical activity, which has a positive cognitive impact [26].
Some research attempts have consisted of companion robots that help users with assisted therapy and
activity (see [27] for an overview). However, work is needed to promote for their acceptance among
older people, as pointed out in [28], especially in terms of social interactions.

In addition, SAR for promoting physical exercise has been developed. This is, for instance,
the case of the robotic coach proposed by Görer et al. [29]. It is essentially a technique based on a
learning by imitation approach, which is used to learn the exercises from a human demonstrator.
Then, the reference joint angles are used to evaluate the user’s movements and to provide them with
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the necessary feedback to improve their performance. Note that two different platforms are used to
achieve this goal. A NAO robot is used to describe the physical exercises, while an RGB-D camera
captures the movements of the person. This can be problematic, since the correct position of the
RBG-D device is essential to properly evaluate the user’s performance. In addition, no sitting exercises
are used because the skeleton data are insufficient to obtain the required results. Finally, the robot
may confuse the user, given that it emulates the exercise as a demonstration and performs certain
movements that are not to be carried out, such as head motions.

Another proposal is PHAROS [30,31], a socially assistive robot that monitors and evaluates the
daily physical exercise done at the user’s home (see Figure 1). For this, machine learning techniques
(i.e., a convolutional neural network (CNN) together with a recurrent neural network (RNN)) are used
to properly identify and evaluate the exercise performance. In addition, it integrates a recommender that
generates the workout every day such that the person is working on what is necessary to stay healthy.

Figure 1. PHAROS robot in a pilot study at a residence of the elderly, Doña Rosa (Alicante).

Assisting functional ability requires more complex systems. In this sense, systems have been
evolving over time, integrating an increasing number of functionalities. This is the case of the
HOBBIT [32], a robot to help older people feel safe and continue to live in their own home. With this
aim, the robot, illustrated in Figure 2, is able to autonomously navigate around the user’s apartment,
going anywhere they request, being able to pick up objects from the ground, bring a specific object,
learn new objects to be found in the future, call in case of emergency, provide games for entertainment,
and also remind the user to take their medication.

Analogously, the EU project RAMCIP [33] has developed a robotic assistant for older adults and
those suffering from mild cognitive impairments (MCI) and dementia (see Figure 3). This robotic
assistant also integrates several functionalities that promote physical and cognitive activity, such as
detecting a fall (in which case a relative or external caregiver is informed), checking the cooker has been
turned off after preparing a meal or the lights have been turned on when walking at night, picking up
improperly left or fallen objects from the ground and moving them to safe storage, reminding users
about their mediation, bringing the corresponding medicine and monitoring its taking, and facilitating
social interactions with family and friends.
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Figure 2. Hobbit robot in a pilot study at the Doña Rosa senior care home.

Figure 3. RAMCIP robot in a pilot study at a user’s home.

Other solutions consider the possibility of integrating a robot platform into a smart home
environment such that its functionalities may be augmented. An example is the robot activity support
system (RAS) created by Washington State University [34] for adults with memory problems and other
impairments to help them to live independently. Thus, the smart home has sensors in the walls to
track the user’s movement and feeds their data into the robot’s neural network. This allows the robot
to integrate activity detection technology to provide assistance when required. However, it is still at an
early stage of development, and can only provide video instructions on how to do simple tasks, such as
assisting a person through the steps of taking a dog for a walk or guiding them to an object. In addition,
the need to install additional technology at home makes this option difficult and costly to implement.

Alternatively, other developments aim to assist people in nursing homes and healthcare facilities.
In these kinds of systems, the key issue is the social component, with the aim being for the older adult
user to perceive the robotic platform as a social companion rather than a machine to perform predefined
tasks. This is the main focus of Rudy [35], an assistive robot created by INF Robotics in 2017. This robot
offers telemedicine capabilities, such as remote patient monitoring (RPM), medication reminders,
and medication dispensing (shown in Figure 4). In addition, it integrates a social component that,
together with its friendly appearance, engages users. In fact, the social interactions are the most
appreciated functionality of this system, since loneliness is a major issue among the aging. Nevertheless,
it costs $5000, which is a significant amount which is not within all budgets.
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Figure 4. Rudy in a pilot study.

Along similar lines, Trinity College Dublin developed Stevie in 2017, which they improved in 2019
as Stevie II (Figure 5). The aim of this socially assistive IA robot was to augment the role of caregivers
in long-term care environments, allowing them to concentrate mainly on person-centered tasks.
Its functionalities range from medication reminders to keeping residents cognitively stimulated with
quizzes and games. For this, enhanced expressive capabilities and a well-defined social component
are used.

Figure 5. Stevie II in a pilot study.

4. Training Communication and Social Interaction in Children with Autism

In recent years, the use of SAR has become popular for the treatment and diagnosis of
autism [36]. Indeed, the research in this field has presented an increase in user therapy acceptance and
improvements in their social skills [37].

Applied behavior analysis (ABA) is one of the most extended therapies for the treatment of autism.
It consists of improving specific behaviors, which are divided into simple and repetitive tasks that are
presented sequentially and strategically while measuring and analyzing the patient’s performance
during the therapy [38].

The automation of some aspects of the therapy using technology with different devices and tools
has been widely studied (videos, virtual and augmented reality, and robotics [39]). ABA therapies
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combined with SARs have exhibited substantial advantages and demonstrated their effectiveness in
obtaining positive results in patients, such as high enthusiasm, increased attention, and increased
social activity [40].

These results may be explained by the fact that children with autism feel more comfortable
interacting with robots, because their behavior and reactions are more predictable [41]. Furthermore,
the social skills of the patients could be gradually improved by increasing the complexity and
unpredictability of the robot’s behavior, making it more similar to actual human behavior [42].

These robotics systems can be used to manage therapy sessions, collect data and analyze the
interactions with the patient, and generate information from this data in the form of reports and
graphs. For this reason, they are a powerful tool for the therapist to check patient’s progress and
facilitate diagnosis.

The visual appeal of the robotics platform is a key factor to engaging the attention of children with
autism. In general, these robots tend to use bright colors, rotating mechanical parts, striking shapes,
and lights [43]. Additionally, some studies have reported that children with autism prefer to interact
with robots with less humanoid characteristics [44]. However, some anthropomorphic robots have been
succesfully used in research, especially in imitation and emotion recognition activities. Tables 1 and 2
present different SAR robots used in experiments. Following [45], there are several robot types
depending on their location on the humanoid spectrum:

1. Android. They look like humans.
2. Mascot. They have humanoid forms but abstract or cartoonish appearances.
3. Mechanical. Humanoid forms with visibly mechanical parts.
4. Animal. Meant to look like pets.
5. Non-Humanoid. No resemblance to any living being.

Table 1. Robots used in autism therapies.

Robot Appearance Type Description Publications

Zeno R-50 Android

Child-sized robot (height = 0.64 m and
weight = 6.5 kg) with a simplified

expressive face. Its face has a motor that
can be animated using software.

[46–48]

Nao Android

Humanoid (height = 0.57 m and weight =
5 kg). Appearance of a human toddler.

11 DOF for its lower limbs and 14 DOF for
its upper body.

[49–58]

Pepper Android

Humanoid (height = 1.21 m and width =
0.48 m). It has almost the same articulations

than a human, except for its mobile base
and the impossibility of moving every

finger independently. It has 4 microphones,
two loudspeakers, two RGB cameras and a

depth sensor (Asus Xtion). It has tactile
sensors in the head and the back of its

hands. It has a speech recognition engine
that is able of identifying multiple

variations in the human voice.

[59–62]

KASPAR Android

Child-sized humanoid robot with minimal
expressions. Can create body movements
and gestures using its hands, arms, torso,

head and show facial expressions.

[63–69]
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Table 1. Cont.

Robot Appearance Type Description Publications

Keepon Animal
Small creature-like robot (height = 12 cm).
Simple, like a yellow snowman, and made

of soft materials (silicone rubber).
[70–72]

Popchilla Animal

Chinchilla-looking robot with movable
arms, ears, mouth and eyes (teleoperated)

with programmable speech output
(Interbots). Provided with a iPad app.

[73]

PABI Animal

Penguin-like small robot. 8 DOF in eyes,
head, wings and opening beak. It carries a

single board computer for autonomous
operation and wireless communication for
teleoperation. Speaker mounted behind its

beak for communication. 2 independent
video cameras in its eyes for tracking and

monitoring. It carries a tablet as an
interface with the onboard computer.

[74–76]

Pleo Animal

Dinosaur-like robot. Developed to learn
and repeat dances. 14 DOF, with movable

legs, torso, neck, eyes, tail and mouth.
Touch sensors in its whole body. Camera in

its nose for object tracking and
microphones. Capability to show emotions

by making noises.

[77–80]

Robota Android

Small robot (height = 45 cm and width =
14 cm) with the form of a young girl. 1 DOF

of movement in its limbs (up and down),
head rotation, 1 DOF for every arm,
coordinated motion of the two eyes,

individual blinking of the eyes and touch
sensibility. Capabilities for vision tracking

and machine learning.

[81–85]

Table 2. Robots used in autism therapies.

Robot Appearance Type Description Publications

i-Sobot Android

Biped robot (height = 16.5 cm and weight =
350 g). 17 pieces of micro servo motors for
walking and 180 different actions. 180 voice
and sound commands. Remote controller

or spoken commands.

[86–88]

Tito Mascot

Robot (height = 17 cm) Coloured red,
yellow and blue with washable clothes

made of soft material. Wheels to move but
with fake feet and legs to emulate human
shape. Movable arms and head, lighting

mouth for smiling. Wireless
microphone-camera device inside one eye

for tracking. Touch sensibility.
Autonomous and teleoperated modes.

[89]

GIPY-1 Mechanical

Cylindrical mobile robot (diameter = 20 cm
and height = 30 cm). Its face is the cladding
of the robot: round eyes and nose triangle,
with elliptical mouth. Can move forward,

backward and turn on its own axis.
Wireless controlled by a joystick.

[90,91]
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Table 2. Cont.

Robot Appearance Type Description Publications

HOAP-3 Android

Humanoid robot (height = 60 cm and
weight = 8.8 kg), commercialized by Fujitsu.

28 DOF for head, arms, legs and body
movement. Inbuilt camera in its eyes for

tracking and recognition. Microphones and
speaker for audio recognition and speech.

Expression LEDs to show emotions.
Autonomous operation and
teleoperated through WIFI.

[92]

Labo-1 Non-humanoid

Robotic mobile platform with form of a
flat-topped buggy. 8 infrared sensors
pointing in 4 directions for obstacle

avoidance and a singLe positional heat
sensor. Autonomous operation with an
onboard computer and two buttons for

behavior selection.

[93]

Ifbot Mascot

Humanoid robot (height = 45 cm).
2 moving arms with 1 DOF and two wheels
to move. 10 motors for facial expressions:

eyes, eyelids and neck. 104 LEDS in its
head and mouth to show emotions along

with the facial expression.

[94]

Cosmobot Mascot

Movable head, arm and mouth. Wheels to
drive the robot in 4 directions. Pressure

sensors and a built-in microphone for the
interaction with the children. Expandable

play station (Mission Control) for
interaction, with external ports for joystick,

wearable head and arm sensors.
Teleoperated and controllable from a

desktop computer software.

[95,96]

Ryan
Companionbot Android

Rear-projected humanoid. It shows 3D
avatar models with speech and facial

expressions. The animated face is projected
into a face-shaped translucent mask.
The 3D models are compatible with

Maya design software.

[97–99]

Since the therapist’s availability is limited, SARs must be developed with a certain level of
autonomy in order to carry out the treatments. This autonomy is directly correlated with a SAR’s
level of intelligence in adapting to the environment and the patient’s responses. This is where
machine learning comes in, providing solutions to the problems these systems must address, such as
eye-tracking, and face or automatic speech recognition.

Eye-tracking is the process of measuring the point of fixation of the gaze or the movement of
an eye with respect to the head. It is used to measure a patient’s attention to the robot. There exist
commercial solutions for this purpose, but they are high cost or depend on special and invasive
hardware (Tobii EyeX). However, there are many works focused on inferring the gazes of the users from
images of their faces. Traditional techniques usually rely on shape-based methods, such as [100,101],
observing geometries such as pupil centers and iris edges; and in appearance-based methods,
such as [102,103], they directly use the images of the eyes for the prediction, with handmade
features along with neural networks. In recent years, the focus has been on deep learning techniques
to accomplish this task using standard and inexpensive camera devices. This is the case of [104],
which uses a convolutional neural network to predict the gaze of the user from a color image of their
face, previously trained with a large-scale dataset of faces and correlated gazes. More recent works
such as [105] predict emotions and the patient’s mood states from eye tracking data using recurrent
neural networks.
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The study of the patient’s gaze is a crucial technique that helps with the diagnosis of autism and
measures the effectiveness of the interaction between the robot and the user. In [106], the researchers
carried out a study comparing the gaze attention of patients with autism when they interacted with
humans and with robots . Similar to the previous example, in [107] the authors compare the gaze
attention of people with autism while maintaining conversations with a human and a realistic android,
which could serve as a diagnostic tool. In [84,85] the authors report the effects of repeated exposure to
the humanoid robot Robota, which includes an increase in gaze attention and imitation.

Most of the experiments with these robots do not specify the kind of eye-tracking technique
they use, or even whether they use external hardware, but recent works in this topic show that deep
learning techniques outperform traditional ones without the need for invasive tools, so developments
may move in this direction in order to ensure the best experience for users.

Face recognition has been one of the most widely studied research topics in computer vision
since the beginnings of computer science, as it provides the recognition of subjects in a non-intrusive
manner. The first step involves the detection and delimitation of the region of the image containing the
face. Traditionally, detection has been conducted by searching for handcrafted features, like in [108],
which uses cascade classifiers with different resolutions, trained with the Adaboost technique,
based on Haar-like features. Subsequently, a vector of characteristics is extracted to describe the face,
using global techniques like Eigenfaces [109] or Fisherfaces [110] based on Principal Component
Analysis, or using local descriptors, like Local Binary Pattern Histograms [111], which codify
the local structure of the image by comparing every pixel with its neighbourhood. However,
traditional methods suffer when the conditions of the face are not ideal: recognition rates decrease with
variations of the pose of the face and changes in the lighting conditions. Recent works have adopted
end-to-end architectures based on deep learning that greatly outperform the traditional methods.
Studies such as [112–115] use variations of convolutional neural network architectures trained with
large-scale face datasets, obtained without pose restrictions, with good results on tests. Along with
face recognition, recent studies like [116,117], classify the user’s emotions by means of variants of
convolutional neural networks, with promising results.

These characteristics are important for socially assistive robots in order to identify the patient
and their mood and keep track of the history of the interaction. In [59], the researchers used face
and emotion recognition to make a Pepper robot adapt a story to the mood of the children. In [118],
the authors propose a technique for face recognition using a humanoid robot NAO to track the faces of
the children with autism and measure their concentration during social interaction. In [61], the authors
propose several activities through the interaction with a Pepper robot, receiving feedback by measuring
the users’ smiles.

Finally, automatic speech recognition is considered the most important bridge to enable
human-machine communication. However, the technical difficulties of speech processing led to
the keyboard and mouse becoming the most accurate interfaces for this purpose. Traditional methods
in speech processing used statistical models, such as hidden Markov models [119,120], to process
the wave signal and recognize the words pronounced and understand the sentences. However,
these methods were very limited in vocabulary and the complexity of the sentences that human users
could use and the recognition rates were far from perfect. Today, with the advent of GPUs, as in
the previous sections, deep learning techniques are becoming the focus for researchers. End-to-end
architectures, such as that proposed in [121–123], mainly based on a combination of convolutional
neural networks, for extraction of features, and recurrent neural networks, for temporal information
analysis, are taking the lead and obtaining interesting results.

In the case of social robotics, speech recognition is an important feature, as we need an intuitive,
organic, and more natural method of communication than the old-fashioned peripherals. In [58],
the researchers propose the use of the Nao robot to maintain conversations with children with autism
and automatically extract crucial information on their interests to recommend them picture books.
In [57], the authors propose a conversational therapy using a Nao robot that encourages the child to
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talk about their experiences and help them to recognize objects and imitate facial expressions. As a
different approach, in [62], the authors use a Pepper robot to teach people with typical development to
communicate with people with autism spectrum disorder.

All of these studies show that not only can patients with autism benefit from the advent of the
SAR and artificial intelligence techniques, but therapists and family members also have more tools to
help them with therapy and day-to-day living.

5. Conclusions

Socioeconomic changes and the lack of healthcare professionals to cover the unceasing demand of
services and care have led to the need for technological solutions to mitigate this situation. In addition
to intelligently interacting with the environment, the techniques developed must be successfully
adopted by users. In this sense, neuroscientific evidence shows that users, especially children, tend to
engage with robots better than traditional screens and their design must make the user feel comfortable
and increase their well-being. As a consequence, the scientific response to these issues is assistive
robotics, and more precisely, socially assistive robotics, which integrates a human-robot interaction in
a social way.

This paper presents an overview of the state-of-the-art SAR solutions for helping and assisting
older adults in their daily activities, such as activity scheduling and rehabilitation; and for helping
children with autism spectrum disorders by means of diagnosis and social therapies. These solutions
benefit from new advances in artificial intelligence, as these increase the autonomy levels of assistance
robots, allowing them to adapt to unforeseen circumstances without the direct intervention of a human.
Thus, the advent of SAR along with AI can help users with their day-to-day living, promoting their
daily functioning, well-being, and independence.

Despite the active development in (social) assistive technology, there is still work to be done.
Indeed, the current solutions do not provide ideal solutions to all needs of people with disabilities,
but the results are highly promising.
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Abstract: Using the AdaBoost method may increase the accuracy and reliability of a framework for
daily activities and environment recognition. Mobile devices have several types of sensors, including
motion, magnetic, and location sensors, that allow accurate identification of daily activities and
environment. This paper focuses on the review of the studies that use the AdaBoost method with the
sensors available in mobile devices. This research identified the research works written in English
about the recognition of daily activities and environment recognition using the AdaBoost method
with the data obtained from the sensors available in mobile devices that were published between 2012
and 2018. Thus, 13 studies were selected and analysed from 151 identified records in the searched
databases. The results proved the reliability of the method for daily activities and environment
recognition, highlighting the use of several features, including the mean, standard deviation, pitch,
roll, azimuth, and median absolute deviation of the signal of motion sensors, and the mean of the
signal of magnetic sensors. When reported, the analysed studies presented an accuracy higher than
80% in recognition of daily activities and environments with the Adaboost method.

Keywords: daily activities recognition; ensemble learning; ensemble classifiers; environments; mobile
devices; sensors; systematic review

1. Introduction

AdaBoost is one of the first boosting algorithms developed by Yoav Freund and Robert Schapire
that was adapted for practical application in many solving tasks. AdaBoost is a method that uses
ensemble learning techniques to combine multiple weak classifiers into a single strong classifier. It is
combined with other artificial intelligence methods to increase the accuracy of the recognition [1].
Thus, weak learners, including decision tree and decision boosting, are commonly used with the
AdaBoost method. In comparison with other machine learning methods, the AdaBoost method is less
susceptible to overfitting.
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One of the strategies adopted by the different implementation of Adaboost consists in combination
with other methods to reduce the errors obtained [2,3]. The primary purpose of ensemble
learning techniques is to improve the results by combining the results of different methods [2,3].
These techniques consist of the combination of several machine learning techniques with a single
purpose and model to improve the prediction results [4–6]. It can be divided into two groups,
sequential ensemble methods and parallel ensemble methods, where our focus is the sequential
ensemble methods, because the implementation of Adaboost consists in the application of a base
learner that is generated sequentially [7].

In the last years, several studies have been developed with a focus on the recognition of daily
activities using the sensors available in the commonly used mobile devices. These studies conclude
that it is possible to accurately detect the daily activities and environments with motion, magnetic,
location and acoustic sensors embedded on mobile devices, reporting reliable results available in the
literature with different machine learning methods [8–23].

To date, and due to the increasing power processing capabilities of the different mobile devices,
the Adaboost method is one of the most used methods, and it reports reliable results [24–32].
The motivation of this systematic review is to evaluate the reliability of the Adaboost method for
daily activities and environment recognition using the sensors available in mobile devices for further
implementation of a framework [33–42].

Generally, the raw readings of one-dimensional (e.g., blood pressure sensor, thermometer, etc.) or
multi-dimensional signals (e.g., accelerometer or gyroscope) can be directly processed by AdaBoost,
and other classification and regression algorithms in general. To do that, all sensory readings in a
specific time window represent different inputs. For example, if a thermometer reads data with 1 Hz
frequency, and the window is 60 s, there will be 60 inputs to AdaBoost. Similarly, a three-dimensional
gyroscope would present 180 inputs. Many deep learning methods accept the input data in this
format. Be that as it may. Usually, many algorithms benefit from a feature engineering step [43],
which significantly improves the accuracy or simplifies the complexity of the models [23,44].

Due to the complex nature of the sensory data collected using the sensors available in mobile
devices, the overfitting problem is impacts many machine learning algorithms, including multilayer
perceptron neural networks (MLP), deep neural networks (DNN) and feedforward neural networks
(FNN) [33–42]. Methods for parameter tuning such as grid search [45] and systematic feature
selection [23] are usually applied to mitigate this problem.

Previous studies [33–42] shown that the proposed framework includes the correct modules for
the reliable recognition of daily activities and environments. However, the results can be improved
with other methods, including ensemble learning methods.

This paper reviews the different studies available in the literature related to the implementation
of the AdaBoost method for daily activities recognition. This review is included in the research and
development of a framework associated with the identification of daily activities and environments using
the sensors available in mobile devices, where the AdaBoost method can increase the accuracy compared
to other implementations. The motivation of this paper is to improve the accuracy reported in previous
studies for the recognition. This review intends to explore the use of the Adaboost method to verify if it
reports better results than MLP, FNN, and DNN methods for the identification of daily activities.

The main contribution of this review is the presentation of a base of study for the readers who
deal with the recognition of daily activities and environments using sensors available in mobile devices
providing an in-depth survey of several research projects which implement Adaboost method.

This review shows that the features that reported better results are mean, standard deviation,
pitch, roll, azimuth and median absolute deviation of the signal of motion sensors, and the mean of
the signal of magnetic sensors. According to the results, the Adaboost method provides huge accuracy
for the recognition of daily activities and environments.
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The following sections are organized as follows: Section 2 presents the methodology of the review.
The results obtained are presented in Section 3. Section 4 presents the discussion on the results. Finally,
the conclusions are presented in Section 5.

2. Methodology

2.1. Research Questions

In this way, the leading questions of this review are: (RQ1) What is AdaBoost? (RQ2) How to
detect daily activities with AdaBoost? (RQ3) How to identify daily activities with AdaBoost using
mobile devices?

2.2. Inclusion Criteria

Studies assessing the recognition of daily living using AdaBoost method were included in this
review according to the following criteria: (1) Detect daily activities using sensors; (2) implementing
AdaBoost method for the automatic recognition of daily activities, presenting the information
about the activities and environments recognized; (3) make use of mobile devices; (4) presents the
accuracies obtained with AdaBoost method; (5) published between 2010 and 2019; (6) were available
in open-access libraries; and (7) written in English.

2.3. Search Strategy

The authors of this review searched for studies according to the inclusion criteria in the following
electronic databases: IEEE Xplore and Science Direct. Every study was independently evaluated by
eight reviewers (JF, IMP, GM, NMG, EZ, PL, FFR, and SS), and all parties evaluated its suitability.
The studies were examined to identify the characteristics of AdaBoost and its relevance for the
implementation in recognition of daily activities and environments using mobile devices.

2.4. Extraction of Study Characteristics

The following data were extracted from the studies and tabulated (see Tables 1 and 2): Year of
publishing, the population was taken into account, purpose, equipment used, and outcomes of each
publication. All cited studies in Tables 1 and 2 informed that the experiments were performed in
laboratory settings. The verification of the availability of the raw data was performed.
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3. Results

As pictured in Figure 1, we identified 151 papers with three duplicates, that were removed.
The other 148 articles were evaluated according to the title, keywords, and abstract, excluding
133 citations. After full-text evaluation, two papers were removed from the remaining 15 papers.
The qualitative and quantitative synthesis included information related to the remaining 13 articles.
In conclusion, we examined 13 documents.

Figure 1. Articles analysis.

To find relevant information about the implementations presented in the different studies analysed
in this review, the reader should find the information in the original cited works. Table 1 shows the year
of publication and the resume of the papers and final results. Table 2 shows the population, the purpose
of the study, devices, settings of the papers, pros, and cons. When the datasets used in a study is publicly
available, or the population information is provided, it is considered as a positive aspect. In many cases,
the evaluation uses a cross-validation scheme (regular or stratified per class). However, the studies do not
consider different subsets of the population for training and testing (i.e., train/test split based on subjects
or patients). This is generally a more rigorous evaluation scheme and is expected to hurt the reported
accuracy. Other more specific pros and cons are provided for each study.

The papers were published between 2012 and 2018, where two studies were published in 2018
(15%), four studies were published in 2017 (31%), two studies were published in 2016 (15%), two studies
were published in 2015 (15%), two studies were published in 2014 (15%), and one study was published in
2012 (8%). Regarding the used devices, it was split among 43% for smartphones and the remaining 57%
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for mobile devices. The source code is not available for all studies analysed. Moreover, 69% of the studies
have the raw data available. Finally, we verified that there are no studies that shared the source code.

Methods for Identification of Activities in Daily Living

In the study [57], the authors tried to use different classifiers for the recognition of activities with
sensors to find the best method. Ten classifiers were utilized with the AdaBoost method. The dataset
used was publicly available. The settings were investigated using nine inertial sensors from seventeen
individuals taking into account 33 fitness activities. The used sampling rate was 50 Hz. After checking
accuracies of the AdaBoost method, authors came to conclude that its implementation with random
forest gives the best accuracy, with a value of 99.98%.

Authors of [49] have proposed harmonized authentication based on ThumbStroke dynamics
(HATS) for mobile devices. The performance of HATS was tested, taking into account the different
screen sizes of several mobile devices. Laboratory experiments were conducted to collect data for
testing. Participants were required prior experience with touch screen devices and a qwerty keyboard.
The study selected some features for learning ThumbStroke models, and these are timing features,
spatial features, movement direction features, and operation features. The phrases, entered by the
participants, were adopted from MacKenzie and Soukoreff and varied from 16 to 43 characters.
Based method across all settings and classification models, the final results showed that HATS
outperformed the keystroke dynamics. Among all the classification methods used, AdaBoost reported
a maximum accuracy of 41.8%.

Li et al. [54] talks about an indoor/outdoor detection system (IOS). This method is split by the
machine learning-based IOS-detector and the lightweight WiFi sub-detector. The first part infers indoor,
outdoor, or semi-open environments based on the classification results. The second part focuses on
the implementation of mobile devices. Finally, the other part consists of the IOS detection that shows
high accuracy for the system. In conclusion, the proposed IOS detector achieves around 96% for the
aggregated IOS detector and over 85% accuracy for the lightweight WiFi-based sub-detector.

In the study [50], the authors introduce a method for re-authenticating users taking into account
a behavioral biometric-based on users’ document scrolling traits. More specifically focused on
identifying abnormal scrolling behavior on users while interacting with protected or read-only
documents. Dataset was obtained from a previous project aimed to detect document access activities
that indicate cyber attacks. Features for this paper were slit in vectors, being vector one derived from
scrolling traits, vector two a representation of the polarity of scrolling, and vector 3 treats the dataset
as a bipartite graph with two node sets. k-means clustering achieved the best performance with an
83.5% success rate in predicting the authenticated user.

The paper [48] presents a highly efficient method for the automatic detection of asthmatic
wheezing in breathing sounds. The process is suitable for personal asthma monitoring via mobile
devices since its not computationally complex. Most of the used data came from online databases of
Human lung sounds. However, the authors also used several of their recordings of regular and wheezy
breaths. The authors also confirmed the optimality of the audio spectral envelope (ASE) plus the
value of the tonality index (TI) as a feature detector, using the mRMR (minimal redundancy–maximal
relevance) method. Thousands of experiments were performed, and the best results were obtained
from the fluctuation of the Audio Spectral Envelope descriptor adopted from the MPEG-7 standard,
reporting an accuracy around 100%.

Authors of [53] developed a method to collect the sensor data, acceleration, gyroscope,
geomagnetic, and atmospheric pressure were the four kinds of sensors used. The shallow feature
extraction of the raw data happens before the CNN learning deep feature, which will reduce the
complexity of the network and training time of the model. This process is critical for smartphones
because of their limited resources. Three classes of features are extracted from each frame,
including statistical, time, and frequency domains. Namely, the features used are: Mean, standard
deviation, variance, median, minimum, maximum, range, interquartile range, kurtosis, skewness, root
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mean square, integral, double integral, autocorrelation, mean-crossing rate, fast Fourier transform,
spectral energy, spectral entropy, spectrum peak position, wavelet entropy, and wavelet magnitude.
Final results show that the proposed method can achieve 98% accuracy, meaning it outperforms
the SVM (support vector machine) and AdaBoost classification in efficiency and computational cost,
reporting accuracy of 93.6% with AdaBoost.

Yuan et al. [58] propose an indoor localization system using sensors for smartphones and
smartwatches. Over 36,000 samples of data were collected in a 185.12 m2 real indoor environment by
a user using two different devices. Looking with the experimental results, the authors concluded that
Twi-AdaBoost outperforms the state-of-the-art indoor localization algorithms. The localization error
of position x and y achieved was 0.387 m and 0.398 m, respectively. The used datasets include the
features: Place ID, Timestamp, Accelerometer_X, Accelerometer_Y, Accelerometer_Z, MagneticField_X,
MagneticField_Y, MagneticField_Z, X_Axis Angle (Pitch), Y_Axis Angle (Roll), Z_Axis, Angle (Azimuth),
Gyroscope_X, Gyroscope_Y, and Gyroscope_Z, reporting an accuracy around 99%.

In the paper [55], a novel technique based on the Bayesian voting algorithm that can be used with
low-power sensors for transportation mode detection is presented. The authors used a set of data that
consists of 400 h from eight individuals. Five sensors were used, being those: Acceleration, gyroscope,
geomagnetic, barometer, and base station obtain by using AdaBoost classification to improve the results.
Besides, the Bias algorithm was used to extract the features to reduce the adaptive boosting feature
dimensions and determine the critical factors for identifying different transportation modes. The features
used are: Mean, standard deviation, variance, median, minimum, maximum, range, interquartile,
kurtosis, skewness, root mean square, time integral, double integral, auto-correlation, mean-crossing rate,
fast Fourier transform, spectral energy, spectral entropy, spectrum peak position, wavelet entropy, wavelet
magnitude, peak volume, intensity, length, variance of peak features, peak frequency, stationary duration,
stationary frequency. Taking into account the final results, authors concluded that their algorithm could
supply and replace some traffic pattern recognition algorithms and fix the problem that different mobile
phones have various sensors, reporting accuracy between 64.54% and 96.83%.

In [51], the authors presented a contextual multi-armed bandits (MAB) approach that enables
activity classification. This method makes context adaptation, continuous online learning, and active
learning. Since the cost of extracting specific features is very high, the authors decided to use side
information as the context. Since features can be used as contexts, this is not a limitation for the project.
The proposed algorithm with active learning outperformed the benchmark algorithms by an average
of 35%, reporting, and accuracy between 70% and 85%.

Xu et al. [47] focuses on three challenges, including the ability to accurately detect context using
sensors and machine learning. The selection of activities for classification is performed by using
context, reducing the complexity and improving the accuracy, speed, and energy usage, and the
ability for experts in prescribing sets of physical activities under different environments. The features
used for the project were: kNN (k-Nearest Neighbor) with time, kNN with wireless media access
control (MAC) address and signal strength, and AdaBoost with audio peak frequency, peak energy,
average power, and total energy. These were extracted from raw sensor data using a java program
implementing the IContextFeatureExtractor interface. The data used was acquired by 14 participants
that carried an Android mobile phone, and four 9-DOF devices were placed on dominant wrists, knee,
ankle, and mid-waist. Each subject performed every required activity under every context for 2–5 min.
The data were split into training (30%) and testing (70%) sets. Authors concluded that despite the
methodology demonstrating effectiveness, efficiency, and potential, a more extensive study needs to
be performed to improve privacy, security, and user-friendliness, reporting accuracy between 59% and
100%.

In [56], the problem of occupancy detection in a domestic environment was studied using machine
learning techniques and their boosting versions on a dataset collected from electricity and water
consumption smart meters. These features were selected using the Mutual Information technique.
The dataset contains energy and water consumption (during summer) time data of 1-minute resolution
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for 16 consecutive days. The features included in the used dataset were: Central power, refrigerator,
television, washing machine, dryer, cold water-kitchen, hot water-kitchen, dishwasher-water and
washing machine-water, reporting accuracy higher than 70%.

Authors of [52] evaluated ten representative classifiers in the identification of two available
datasets. The first dataset consists of accelerometer readings of walking patterns from 22 participants.
The second one contains activity and postural transition data collected from the accelerometer and
magnetometer data acquired from 30 participants. For the Walking dataset, the authors split the data
into fixed-width sliding windows with a 50% overlap and extract nine features from every window and
scale the features to [−1, 1]. The authors obtained the mean, standard deviation, and median absolute
deviation from the different axis of the sensors. The authors of the study already pre-processed the
sensor signals by noise filter and partitioned the data into fixed-width sliding windows with a 50%
overlap as well and constructed a 561-feature vector for every window. From those features, authors
extracted 24 features, including mean, standard deviation from the different axis of body acceleration,
gravity acceleration, jerk signals of body acceleration, angular velocity, and jerk signals of angular
velocity. In conclusion, the authors reported an accuracy between 95.6% and 97.8%.

The study [46] focuses on using mobile devices for the detection of cardiovascular autonomic
neuropathy. The authors concentrated on the task of the detection and monitoring of cardiovascular
autonomic neuropathy. After all the studies, they concluded that best outcomes were obtained by
the novel combined ensemble of AdaBoost and Bagging based on the J48 decision tree, reporting the
highest accuracy of 94.53%.

4. Discussion

This review confirms that AdaBoost, and in general boosting ensemble methods, are reliable for
the identification of daily activities. Several studies are not well described, and the source code of the
algorithms are not publically available. The verification and reproducibility of the obtained results
is not easily possible, because of the following reasons: Only some authors shared the datasets; in
many cases, the methods are not explained well explained, in particular, the preprocessing of the
datasets; and the hyper-parameter tuning is poorly described, or the exact algorithm parameters are
not described.

The number of studies using the AdaBoost method for the recognition of daily activities is
minimal, and the daily activities mainly recognized are the simple activities, including walking,
running, walking upstairs and downstairs, and other quotidian activities.

Following our literature review, most of the analysed studies (85%) report the best results using
AdaBoost methods. Only two studies (15%) presented in [49,58] have said that the AdaBoost based
methods do not show the best results when compared with the other approaches for daily activities
and environments recognition. Nevertheless, the authors of these studies still recognised the reliable
applicability of the AdaBoost method for activity and environment recognition activities.

In summary, all reviewed works first perform a feature extraction step, which somewhat varies
depending on the used sensor types. In cases of multiple sensors, or multi-channel sensors, the feature
extraction is performed independently for each time series (i.e., channel or sensor). Generally, various
statistical metrics, as listed in Table 3, are computed on the raw signal in the time domain, and rarely
features are deriving from the frequency domain. Then, after the features are extracted from each sensor
as a separate time series, the extracted features are fed into the classifiers. Very often, a systematic
approach to feature extraction improves the accuracy [23].

The authors used different features, and the average accuracies obtained with them can be
comparable. Table 3 presents the average accuracy of the various features extracted, verifying that the
features that allow the recognition of daily activities with an accuracy higher than 90% are the mean,
standard deviation, pitch, roll, azimuth and median absolute deviation of signal of motion sensors,
and the mean of the signal of magnetic sensors.
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Table 3. Average of the accuracy reported in the studies analysed, grouped by features.

Feature
Average reported accuracy
with AdaBoost

mean of signal of magnetic sensors 99.0%

pitch, roll, and the azimuth of the signal of motion sensors 99.0%

median absolute deviation of the signal of motion sensors 96.7%

mean of signal of motion sensors 96.0%

standard deviation of the signal of motion sensors 90.1%

median, variance, minimum and maximum values, interquartile range,
range, skewness, kurtosis, integral, double-integral, Root Mean Square
(RMS), Fast Fourier Transform (FFT), spectral entropy, spectral energy,
wavelet entropy, spectrum peak position and wavelet magnitude of
signal of motion sensors

87.1%

scrolling traits and polarity of scrolling 83.5%

peak volume, intensity, variance of peaks, stationary duration and
stationary frequency of the signal of motion sensors 80.6%

peak frequency of the signal of motion sensors 80.3%

peak energy, average power and total energy of signal of motion sensors 80.0%

Moreover, Table 4 presents the advantages and disadvantages of the Adaboost method, proving
that it can be used for the recognition of daily activities and environments with the recent advancements
in the hardware and software of the devices commonly used.

Table 4. Advantages and disadvantages of the use of Adaboost method in the different studies analyzed.

Pros Cons

- The combination of the Adaboost and J48 decision
tree revealed the best results.

- Adaboost can be used for the monitoring of diabetes.
- Adaboost with Bagging and Boosting based on

decision trees reported reliable accuracy.
- This algorithm can be applied for real-time

assessments with sensor data.
- It provides high recognition accuracy and low

computational complexity.
- It provides high security and usability of the

different implementations.
- It can be executed in real-time with reliable accuracy.
- The combination of Adaboost with the k-Nearest

Neighbors algorithm outperformed all other classifiers.
- The Adaboost method shows high reliability in the

recognition of different activities.
- The results obtained can be correlated between

different devices.

- The research on multi-level classifiers should
continue to improve the results.

- The energy consumption of the Adaboost
method is very high.

- It should always have high reliability for
medical purposes.

- It has limited capabilities for recognition.
- The classified should be updated with new data.
- Larger-scale experiments need to be conducted

to validate the efficacy of the algorithms further.

In comparison with other algorithms, the Adaboost method uses different algorithms as the weak
learner, in which these algorithms will take into account the features extracted from the signals, such as
mean, standard deviation, variance, and others. In general, Adaboost made use of complex data,
but it can be used with 1D data in comparison with other algorithms. The authors of the research
studies analysed used the Adaboost with uni-dimensional data, i.e., they used the features extracted
from the data to provide the results, where the results obtained proved its reliability for physical and
physiological data.

In conclusion, the use of mobile devices for daily activities recognition using AdaBoost is limited,
because of the low power processing and battery capabilities of these devices [59,60]. According to
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the reported studies in this review, it is possible to conclude that the use of the AdaBoost method is
reliable with mobile devices as verified by the accuracies reported in the different studies, where only
two studies reported accuracies lower than 50%.

5. Conclusions

This review presents studies available in the literature that use the AdaBoost method for the
recognition of daily activities and environments. Thirteen studies were analysed, and the main findings
are summarised as follows:

• (RQ1) The AbaBoost method is an ensemble learning method that is used in conjunction with
other algorithms. The different algorithms are commonly named as weak classifiers, avoiding the
overfitting problem;

• (RQ2) The AdaBoost method is implemented in conjunction with other algorithms to increase the
accuracy of the recognition of daily activities and environments;

• (RQ3) For the recognition of daily activities and environments, the AdaBoost method is combined
with a weak classifier. The features that reported better accuracy are the mean, standard deviation,
pitch, roll, azimuth, and median absolute deviation of the signal of motion sensors, and the mean
of the signal of magnetic sensors.

This review also highlights the use of smartphones and other mobile devices as they should have
a particular purpose because of limited battery life and processing capabilities. First, the authors
excluded studies that are not focused on the recognition of daily activities end environments with
the AdaBoost method. Secondly, the studies that do not use sensors available on mobile devices
were excluded. We excluded several studies after analysis of the abstracts and full-text of the papers.
Another reason for exclusion was the language of the study, excluding the studies that were not written
in English. With the features collected, the AdaBoost method allows recognition with an accuracy
higher than 80%.

As future work, the implementation of the AdaBoost method in the framework for the recognition
of daily activities and environments; it will be used to recognize seven daily activities and nine
environments.
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