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Abstract: In this review, a short description of exceptional field theory and its application is presented.
Exceptional field theories provide a U-duality covariant description of supergravity theories, allowing
addressing relevant phenomena, such as non-geometricity. Some applications of the formalism are
briefly described.

Keywords: T-duality; exotic branes; non-geometric backgrounds; exceptional field theory

1. Introduction

The notion of symmetry has been one of the most important drivers for theoretical physics in recent
decades. Recently, of most interest have been duality symmetries relating different theories or different
regimes of the same theory. The most well-known example of the former is the renowned AdS/CFT
correspondence of Maldacena [1], and more generally gauge-gravity duality. This correspondence
relates string theory on AdS5 × S5 at small coupling and the quantum N = 4 SYM at strong coupling.
This is based on equivalence between two descriptions of the same near-horizon region of the D3-brane
in terms of the open and closed strings, and allows addressing phenomena in CFT at strong coupling
in terms of gravitational degrees of freedom at weak coupling.

String theory also possesses symmetries, called T- and S-dualities, which relate different regimes
of the same theory. These allowed unifying five string theories, Type IIA/B, Type I, heterotic O(32)
and E8 × E8, into a duality web and to understand all these as different regimes of a single theory,
usually addressed as M-theory [2,3]. T-duality is a perturbative symmetry of the fundamental string
and is the oldest known duality in string theory. It manifests itself in the amazing fact that Type
IIA and Type IIB string theories compactified on a 1-torus S1 are equivalent at quantum level.
Most transparently this can be seen when looking at the mass spectrum of the closed string on a
background with one circular direction of radius R

M2 = p2 +
n2

R2 +
m2R2

α′2
+ 2(N + N̄ − 2). (1)

Here n is the number of discrete momenta of the string along the circular direction and m is the
number of windings of the string around the cycle, N and N̄ correspond to the numbers of higher
level left and right modes on the string. One immediately notices that the mass spectrum is symmetric
under the following replacement

R ←→ α′

R
,

m ←→ n.
(2)

The symmetry relates backgrounds with radii R and a′/R upon switching string momentum
and winding modes. More generally T-duality mixes metric and 2-form gauge field degrees of
freedom, thus potentially completely messing up structure of space-time. In particular, the symmetry
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allows consistently defining string dynamics on such backgrounds, given by explicit metric Gμν and
the Kalb-Ramond field Bμν that cannot be consistently described in terms of manifolds. Instead,
these are related to as T-folds, which are defined as a set of patches glued by T-duality transformations,
rather than diffeomorphisms [4]. Such backgrounds are called non-geometric and are of huge interest
for cosmological model building as string vacua potentially capable of completely stabilizing scalar
moduli ending up with a dS-like space with small cosmological constant.

T-duality is a perturbative symmetry of string theory seen already in the mass spectrum of
string excitations. S-duality of Type IIB string theory provides an example of non-perturbative string
symmetry. This relates strong and weak coupled regimes of the theory, and in addition relates heterotic
SO(32) and Type I strings. The net of dualities between five string theories allows understanding them
as different approximations to a single 11-dimensional theory called M-theory. The 11th direction
arises in the strong coupling limit of Type IIA theory.

M-theory describes dynamics of M2 and M5 branes, which are fundamental 2 and 5 dimensional
objects interacting with 3-form and 6-form gauge potentials dual to each other [3]. Low-energy limit of
the theory is captured by 11-dimensional maximal supergravity, whose algebra of central charges is
nicely interpreted in terms of M2 and M5 brane charges [3]. M-theory compactified on a circle S1 gives
Type IIA theory with the fundamental string arising from wrapped M2 brane. Compactifying M-theory
on a 2-torus one recovers either Type IIA or Type IIB depending on the reduction scheme, which is the
fundamental precursor for T-duality symmetry between these theory. In addition, modular symmetry
of the torus gives rise to S-duality symmetry of Type IIB as will be explained in more details below.
Together, T- and S-duality of the string combine into a set of U-duality symmetries, which appears to
be a powerful tool for investigating properties and the internal structure of M-theory. This review is
focused on duality symmetries of string and M-theory and in particular at approaches to supergravity
covariant with respect to these symmetries.

1.1. Dualities in String Theory

S-duality is a hidden symmetry of the Type IIB string theory which relates strong and weak
coupling regimes. On the field theory level this can be recovered by inspecting spectrum of massless
modes of the Type IIB string, which includes

g, φ, B(2), C(0), C(2), C(4), (3)

where g is the metric, φ is the scalar field called the dilaton and the 4-form gauge field C(4) is defined
to have self-dual field strength. With the action of the S-duality group SL(2,R) the fields drop into
irreducible representations with g being a scalar, the 2-forms B(2), C(2) combine into a doubled and the
scalar fields φ, C(0) combine into the so-called axio-dilaton defined as

τ = C(0) + ie−φ. (4)

Axio-dilaton transforms non-linearly under S-duality

τ′ =
aτ + b
cτ + d

,

[
a b
c d

]
∈ SL(2,R). (5)

The existence of this hidden symmetry of the Type IIB massless string spectrum suggests that
the supergravity action can be rewritten in an SL(2,R)-covariant form, which is indeed possible and
results in the following (see e.g., [5]):

SIIB =− 1
2

∫
d10x

(
R − 1

4
Tr(∂M∂M−1) +

3
4

Hμνρ
I MI J HμνρJ

+
5
6

FμνρσFμνρσ +
1

96
√−g

εI JC(4) ∧ H(3)
I ∧ H(3)

J
)

,
(6)

2
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where the indices I, J, · · · = 1, 2 label the fundamental 2 representation of SL(2) and

MI J =
1
	τ

[
|τ|2 −
τ

−
τ 1

]
,

Hμνρ
I = ∂[μBνρ]

I , Fμνρσκ = ∂[μCνρσκ] +
3
4

εI J B[μν
I∂ρBσκ]

J .

(7)

One may notice that the transformation (5) has the form that of the transformation of complex
structure of a 2-torus. This observation leads to the geometrical picture which is behind F-theory,
a 12-dimensional field theory, whose compactification on a 2-torus gives an orientifold reduction
of Type IIB theory (for more details see e.g., [6,7]). Freedom in definition of a complex structure
on the 2-torus of F-theory is equivalent to the S-duality symmetry of the 10-dimensional theory.
Such geometric interpretation of a symmetry of a theory goes along the line of the old Kaluza-Klein
idea, where the U(1) gauge symmetry of Maxwell theory is lifted into reparametrisations of a small
circle (1-torus) of a 5-dimensional gravitational theory with no electromagnetic degrees of freedom.
In this short review we highlight basic features and list some applications of the so-called Doubled
(Exceptional) Field Theory, which does the same to T(U)-dualities of string (M-)theory, i.e., provides a
geometric interpretation of the duality symmetries in terms of geometry of an especially constructed
higher dimensional space.

T-duality is a hidden symmetry of the 2-dimensional non-linear sigma model (string theory)
which relates the theory on a torus with radius Rx of a given direction x and the same theory on a torus
with radius α′/Rx of the same direction. Under T-duality transformation of the string background,
given by the metric, Kalb-Ramond 2-form field, the dilaton and the RR fields, partition function of the
string does not change. Consider the action for the closed string on a background with one circular
direction in the conformal gauge and adopt the light cone world-sheet coordinates σ±

S1[θ] =
∫

d2σ
(
G + B

)
μν

∂+Xμ∂−Xν

=
∫

d2σ
(

Gθθ∂+θ∂−θ + Eα̂θ∂+Xα̂∂−θ + Eθα̂∂+θ∂−Xα̂ + Eα̂β̂∂+Xα̂∂−X β̂
)

.
(8)

Here μ, ν = 0, . . . , 9 label all ten space-time directions, θ = θ(σ±) parametrizes the compact
direction and α̂, β̂ = 0, . . . , 8 parametrize the rest. For the background fields we define E = G + B.
To see that the action above is invariant under replacing the circle S1

θ of radius R by a circle S1
λ of

the inverse radius 1/R parametrized by λ, one used the global symmetry θ → θ + ξ and turns
it into a local one. The gauging is performed by introducing a world-volume 1-form gauge field
A = A+dσ+ + A−dσ− and replacing normal derivatives by covariant e dθ → Dθ = dθ + A. To turn
back to the correct counting of the degrees of freedom in the theory one must introduce a Lagrange
multiplier to restrict the gauge field to pure gauge. Hence, one arrives at the following action

S2[θ, λ, A] = S1[dθ → Dθ] +
∫

λF, (9)

where F = dA is the field strength for the gauge field A. Integrating the Lagrange multiplier λ out of
the partition function one return back to the action S1[θ]. Alternatively, integrating out vector degrees
of freedom A one arrives at (for more details see [8])

S2[λ] =
∫

d2σ
(

G′
λλ∂+λ∂−λ + E′

α̂λ∂+Xα̂∂−λ + E′
λα̂∂+λ∂−Xα̂ + E′

α̂β̂
∂+Xα̂∂−X β̂

)
, (10)

3
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with the new background E′ = G′ + B′ defined by the so-called Buscher rules

G′
λλ =

1
Gθθ

,

E′
λα̂ =

1
Gθθ

Eθα̂,

E′
α̂λ = − 1

Gθθ
Eα̂θ ,

E′
α̂β̂

= Eα̂β̂ − Eα̂θ
1

Gθθ
Eθβ̂.

(11)

Since the partition function did not change during the above procedure, the physics of the string
on two background related by the T-duality transformation (11) is the same. Taking into account the
transformation of measure of the functional integral one supplements the above rules by the following
transformation of the dilaton:

ϕ′ − 1
4

ln det G′ = ϕ − 1
4

ln det G. (12)

In the more general case of the string on a background with d compact isometric directions the
group of T-duality transformations can be shown to be O(d, d;Z). The most convenient tool for that is
the so-called Duff’s procedure [9,10] which exploits hidden symmetry between equations of motion
and Bianchi identities following from the action for the non-linear sigma model

S =
∫

d2σ
(√

−h habGμν + εabBμν

)
∂aXμ∂bXν (13)

For the metric and the B-field equations of motion and Bianchi identities can be rewritten in
explicitly O(d, d;Z)-covariant form

ηMNΦ̃iN = HMNΦiN . (14)

Here we define combinations

Φ̃iM =

[
εab∂bXμ

εab∂bYμ

]
, ΦiM =

[√
−h hab∂bXμ

√
−h hab∂bYμ

]
(15)

of derivatives of the normal coordinates Xμ and the dual coordinates Yμ. The equation (14) can
be considered to be self-duality constraints, which remove half of the fields of the full doubled set
XM = (Xμ, Yμ). The matrix HMN parametrizes the background fields in a T-duality covariant manner

HMN =

[
Gμν − BμρBρ

ν −Bμ
ν

Bμ
ν Gμν

]
∈ O(d, d)

O(d)× O(d)
. (16)

The invariant tensor of the O(d, d) group ηMN is taken in the block-skew-diagonal form

ηMN =

[
0 δ

μ
ν

δ
μ
ν 0

]
. (17)

At the level of string theory T-duality is a proper symmetry of the theory, which does not
change physics upon a transformation. When reducing to the low-energy dynamics governed by
10-dimensional half-maximal supergravity, T-duality turns into a solution-generating symmetry, as it
transforms a given string theory background into another one. In this case, the symmetry group

4
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O(d, d;R)is defined over rational numbers rather than only integers. In what follows, we will always
denote this group simply by O(d, d), and add Z explicitly when needed.

1.2. U-duality in Maximal Supergravity

When combined into the web of dualities five string theories become a single 11-dimensional
M-theory, encoded in dynamics of M2 and M5 branes. T- and S-duality symmetries lift into U-dualities
of the membranes; however, these are much more complicated for a sigma model analysis. In the
seminal paper by Cremmer, Julia, Lu and Pope [11,12] it has been shown that 11-dimensional
supergravity compactified on a d-torus Td possesses hidden symmetry Ed(d). This is reflected in
the fact that all bosonic field of the reduced theory can be collected into irreducible representations
of the U-duality group, while fermionic fields transform under maximal compact subgroup of Ed(d).
Here the notation d(d) means that one takes maximal real subgroup of complexification of the group Ed.

The most transparent way to see the symmetry is to analyse spectrum of fields in the lower
dimensional theory obtained by reduction of the 11-dimensional fields Gμ̂ν̂, Cμ̂ν̂ρ̂ say to 4 dimensions.

As it is shown in Figure 1 the resulting fields can be collected into the vector fields Aμ
M

transforming in the 56 of E7, scalar coset MMN ∈ E7(7)/SU(8), E7 scalars Gμν and a constant Cμνρ.
Vector degrees of freedom (Aμ

m, Aμmn) coming from the metric and the 3-form field correspond
28 electric gauge potentials. To compose the 56 irrep of E7, which is representation of the lowest
dimension, one adds magnetic potentials (Ãμm, Ãμ

mn) and imposes self-duality condition on the
U-duality covariant field strength

Fμν
M =

i
2

εμνρσΩMN MNKF ρσK. (18)

Here ΩMN is the symmetric invariant tensor of E7 and MMN is the scalar matrix which
parametrizes the coset space E7(7)/SU(8) and the antisymmetric tensor is usually chosen to be ε0123 = i.
The field strength is defined as usual as Fμν

M = 2∂[μAν]
M. As it has been explicitly shown in detail

in [11], to end up with irreducible representations of the U-duality group one must dualize all tensor
fields to the lowest possible rank. For the 2-form field Bμνm one constructs gauge invariant 3-form field
strength, whose Bianchi identities and equations of motion can be swapped by Hodge dualization to a
1-form field strength. This is associated with scalar fields. To keep covariancy and to recover tensor
hierarchy one must add the same amount of 2-form fields and impose duality condition.

11D

4D
# d.o.f.

Gμ̂ν̂

Gμν Aμ
m Gmn

Cμ̂ν̂ρ̂

Cμνρ Bμνm Aμmn Cmnk

7 vectorsmetric 28 scalars 3-form 7 2-forms 21 vectors 35 scalars

const 7 scalars

Aμ
M MMN

Figure 1. Reduction of 11D fields into four dimensions, dualization into the lowest possible rank tensor
and recollection into the E7 multiplet in the 56 and the coset space E7(7)/SU(8). Both magnetic and
electric vectors potentials are included in the counting (see the text).

Finally, equations of motion for the 3-form field in 4 dimensions imply that the field strength
is constant. It appears that this constant is not a scalar under the U-duality group, and one must
either set it to zero or to turn on all constant belonging to its representation. This can be done

5
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consistently in embedding tensor formalism, which results in a deformed theory with non-abelian
gauge symmetry [13].

In conventional supergravity U-duality symmetry is a global symmetry of the theory similar to
the U(1) duality symmetry of equations of motion of electrodynamics. In exceptional field theories this
symmetry receives a geometric interpretation as a symmetry of the underlying space-time. To carry a
proper representation of a U-duality group Ed space-time coordinates must be extended following a
special rule based on winding of branes, both standard and exotic. In Section 2.1 the construction and
local symmetries of the extended space will be explained in more details, in Section 2.3 field spectrum
and action of exceptional field theories will be reviewed for a general U-duality group and for E7(7) as
an explicit example. We will show that this theory reproduces the full 11D supergravity, Type IIA/B,
D = 4 gauged and ungauged supergravities depending on the choice of solution of a special constraint
called section condition. In Section 3.1 non-conventional solutions of this condition will be shown
to lead to non-geometric backgrounds, i.e., such field configurations which are not globally or even
locally well defined in terms of differential geometry. Finally, in Section 3.2 we consider exotic branes
as T(U)-duality partners of the standard branes of string and M-theory, and review their description in
terms of extended space and non-geometry in exceptional field theories.

2. Duality-Covariant Field Theories

2.1. Local Symmetries of Extended Space

Duality symmetries appear in toroidal reductions of supergravity and combine geometric
symmetries of the torus (diffeomorphisms), gauge transformations and actual duality transformations
mixing space-time and gauge degrees of freedom. To proceed with construction of a duality covariant
theory, one understands the group of duality symmetries O(d, d) or Ed(d) more fundamentally as
descending from geometrical structure of the underlying space. Since d coordinates of the d-torus do
not fit into an irreducible representation of the duality group, one has to consider an extended space.

In the previous section, we saw that T-duality symmetries relate winding and momentum modes
of the string, and for the string on a torus Td the mass spectrum can be covariantly written as

M2 = p2 +HMNPMPN + (N + N̄ − 2), (19)

where HMN is the generalized metric and PM combines the momentum pm and winding wm of the
string in an O(d, d)-covariant vector

PM =

[
pm

wm

]
. (20)

The first term p2 contains momenta in “external” non-toroidal directions p2 = ημν pμ pν. Recalling
Duff’s procedure, that operates with normal Xm and dual Ym scalar fields on the world-volume of the
string, it is natural to consider backgrounds, not necessarily toroidal that depend on the full set of
T-duality covariant coordinates XM = (xm, x̃m). Note that the generalized metric in the mass formula
is constant since the background is toroidal, this is relaxed in exceptional field theory and the toroidal
case is understood as the most symmetric background preserving all duality symmetries.

At the level of the non-linear sigma model extra degrees of freedom encoded by the dual scalar
fields Ym are removed by the self-duality condition (14). Similarly, T-covariant field theory with fields
depending on the doubled amount of coordinates must be augmented by a constraint that reduces
the number of space-time direction. Apart from reference to the sigma model, this is necessary
for further supersymmetric completion of the theory to avoid higher spin fields, which normally
appear in supersymmetric theories in dimensions higher than 11. The condition naturally follows

6
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from construction of local diffeomorphism symmetry on the extended space parametrized by the
coordinates XM which is defined by the so-called generalized Lie derivative

LΛVM = ΛN∂NVM − ΛM∂MVN + YMN
KL ∂NΛKVL, (21)

where VM = (vm, ωm) is a generalized vector combining a GL(d) vector vn and a 1-form ωm, the same
for the transformation parameter ΛM = (λm, λ̃m). The tensor YMN

KL encoding deformation of the
generalized Lie derivative away from the conventional GL(d) Lie derivative is subject to constraints
following from consistency of algebra of transformation δΛVM = LΛVM. These constraints have been
analysed in [14] and can be summarized as

Y(MN
KL YR)L

PQ − Y(MN
PQ δ

R)
K = 0 , for d ≤ 5,

YMN
KL = −αd PK

M
L

N + βd δM
K δN

L + δM
L δN

K ,

YMA
KB YBN

AL = (2 − αd)YMN
KL + (Dβd + αd) βd δM

K δN
L + (αd − 1) δM

L δN
K .

(22)

Here d is the number of compact dimensions and PA
B

C
D is the projector on the adjoint

representation of the corresponding duality group. It is defined as PA
B

C
DPD

C
K

L = PA
B

K
L and

PA
B

B
A = dim(adj). The coefficients αd and βd depend on the duality group and for the cases in

question take numerical values (α4, β4) = (3, 1
5 ), (α5, β5) = (4, 1

4 ), (α6, β6) = (6, 1
3 ). These conditions

imply that the Y-tensor must be constructed from invariant tensors of the corresponding T- and
U-duality groups (see Table 1).

Table 1. Y-tensor for different T(U)-duality groups for string and M-theory on a d-torus. Here the Greek
indices α, β, γ = 1, . . . , 5 label the representation 5 of SL(5) and the index i labels the 10 of SO(5, 5),
n denotes dimension of the representation generalized vectors of the theory transform in.

Duality Group The Y-tensor Dimension of Extended Space

O(d,d) YMN
KL = ηMNηKL n = 2d

SL(5) YMN
KL = εαMNεαKL n = 10

SO(5,5) YMN
KL = 1

2 (γ
i)MN(γi)KL n = 16

E6(6) YMN
KL = 10 dMNRdKLR n = 27

E7(7) YMN
KL = 12 cMN

KL + δ
(M
K δ

N)
L + 1

2 εMNεKL n = 56

The above still does not guarantee the algebra of transformations δΛVM is closed. Indeed,
one writes

LΛ1LΛ2 VM −LΛ2LΛ1 VM = L[Λ1,Λ2]C
VM + FM

0 ,

FM
0 =

(23)

where the bracket [Λ1, Λ2]C = LL1 Λ2 − LL2 Λ1 is a generalisation of the Courant bracket of the
Hitchin’s generalised geometry. The obstruction FM

0 =for the algebra to close is proportional to terms
of the type ηMN∂MΦ1∂NΦ2, hence one naturally imposes the so-called section constraint

ηMN∂M • ∂N• = 0 (24)

where bullets stand for any combination of any fields. Similarly, one shows that the very same
condition ensures satisfaction of the Jacobi identity for δΛ.

The most natural and transparent solution of the section constraint is ∂̃m• = 0, which is
simply the condition that nothing depends on x̃m. This drops the generalized Lie derivative back
to the conventional undoubled space-time and splits it into the usual Lie derivative and gauge

7



Symmetry 2019, 11, 993

transformations. More generally one can solve the section constraint by dropping dependence on all
x̃m apart a given x̃d, and drop in addition dependence on the corresponding normal coordinate xd.
Now one can use the set {x1, . . . , xd−1, x̃d} to measure distances, and hence these will correspond to
geometric coordinates of the new frame. These two frames are related by a T-duality transformation
along the direction d

Td : xd ←→ x̃d. (25)

In the next subsection we construct Exceptional Field Theories, which do not distinguish between
such frames, hence providing a local T(U)-duality covariant approach to supergravity.

2.2. Winding Modes and Exotic Branes

Before proceeding with the field theory construction it is suggestive to follow the logic of counting
of winding modes of M-branes in M-theory in details. In contrast to the string, where the winding
mode is always parametrized by a 1-form ωm irrespective of the number of compact directions,
winding modes of branes follows more complicated pattern. To start with, one notices that winding
modes of a p-brane can be parametrized by a p-form. Spectrum of M-theory contains M2, M5-branes,
KK6-monopole and various additional (exotic) branes, whose counting will be useful for U-duality
groups E8(8) and larger. Table 2 lists irreducible representations of U-duality groups for each dimension
d of compact torus, governing transformation of extended coordinates XM and the corresponding
generalized momentum PM. The normal geometric coordinates correspond to the usual momentum P
of a state. Windings of M2 and M5 branes are given by 2- and 5-forms respectively and give C2

d and C5
d

number of winding states, where Cn
m is the binomial coefficient. Hence, the M5 brane contributes only

starting from dimension d = 5, since it simply cannot wrap spaces of lower dimensions.

Table 2. Counting of winding modes of branes of M-theory on a background of the form M4 ×Td with
M4 being a four-dimensional manifold. The first column contains dimensions of the compact torus,
the second column lists the corresponding U-duality group, and the last column lists representations of
G under which coordinates of the extended space transform.

d G P M2 M5 KK6 53 26 0(1,7) RX

2 SL(2) 2 1 - - - - - 3
3 SL(3)×SL(2) 3 3 - - - - - (3,2)
4 SL(5) 4 6 - - - - - 10
5 SO(5,5) 5 10 1 - - - - 16s
6 E6(6) 6 15 6 - - - - 27

7 E7(7) 7 21 21 7 - - - 56

8 E8(8) 8 28 56 56 56 28 8 248

The Kaluza-Klein monopole KK6 is an object with 6 + 1-dimensional worldvolume and one
Taub-NUT direction corresponding to the Hopf cycle. This is magnetic dual of the graviton. Hence,
it windings are represented by a mixed-symmetry tensor z(7,1), which is a 7-form taking values in
1-forms and traceless. In components this is represented by the following tensor

za1...a7,b, (26)

where b must be equal to one of ai’s for non-vanishing components. For d = 7 winding direction this
amounts in 7 independent winding modes, while for the E8(8) case is is suggestive to contract za1...a7,b
with Levi-Civita tensor as

zb
a = za1...a7,b εa1...a7a. (27)

In total za
b has 8 × 8 = 64 components and the condition za

a
∣∣
no sum = 0 removes 8 more leaving

only 56.

8
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The important observation here is that the total number of momentum and winding modes for
a d-torus with d < 8 sums up to dimension of an irreducible representation of the corresponding
U-duality symmetry group. For d = 8 this apparently does not work, as summing winding modes
of all branes up to the KK6 one obtains 148, while dimension of the smallest irrep is 248. To cure the
result one first recalls that the spectrum of both string and M-theory contains exotic branes in addition
to the normal (standard) branes. These are T(U)-duality partners of the normal branes and can be
understood as sources of non-geometric backgrounds. Such backgrounds cannot be defined in terms
of manifolds, instead these are described in terms of T(U)-folds [4,15,16], whose patches are glued
by T(U)-duality transformations. At the level of field configurations this is realized as a monodromy
when going around the point the exotic brane is placed [17].

It is convenient to label exotic branes in the same way as states of the 3D maximal supergravity
are classified [3,17]. Hence, for any brane of string theory one adopts the notation b(cr ...c1)

n , where b + 1
gives the number of world-volume directions, ci denote the number of special (quadratic, cubic etc.)
directions and n gives the power of the string coupling constant gs in tension of the brane. Such brane
completely wrapped on a torus would have tension given by

M
[
bn

(cr ...c1)
]
=

Ri1 . . . Rib R2
j1

. . . R2
jc1

. . .

gn
s lb+2c1+3c2+...(r+1)cr+1

s

, (28)

where Ri denote radius of the i-th toroidal direction and ls is the string length. For example, for the
NS5-brane, which has 6 world-volume directions, no special circles and whose tension scales as g−2

s ,
one would use the notation NS5 = 50

2 ≡ 52. Kaluza-Klein monopole is denoted as KK5 = 51
2 and has 6

worldvolume directions, one special circle corresponding to the Hopf fibre and its tension scales as
g−2

s . In these notations duality symmetries of string theory act on such states as follows

Tx : Rx → l2
s

Rx
, gs →

ls
Rx

gs; S : gs →
1
g s

, ls → g
1
2
s ls. (29)

The well-known example of a T-duality orbit containing exotic branes has been investigated
in [18] (see also [19] for a review) and reads

50
2 → 51

2 → 52
2 → 53

2 → 54
2. (30)

The orbit starts with the NS5-brane, which is completely geometric and whose background
can be consistently described both locally and globally in terms of the metric and the gauge field.
Performing T-duality transformations along smeared transverse directions one obtains KK5-monopole
51

2 and then the exotic 52
2-brane. The background of the 52

2-brane cannot be described globally as it has
non-trivial monodromy and is glued by T-duality. Going further along the orbit one recovers 53

2-branes,
whose background is not well defined even locally, and 54

2-brane which is object of co-dimension-0.
These branes, the corresponding backgrounds and their description in terms of T-duality covariant
field theory will be considered in more details in Section 3.1.

Branes of M-theory completely wrapped on d compact direction with radii Ri are in
correspondence with massive BPS states of maximal (11 − d)-dimensional supergravity, and can
be labelled b(cr ...c1) similarly to the branes of string theory. Tension of b(cr ...c1)-brane, or equivalently
mass of the corresponding state, is then given by

M
[
b(cr ...c1)

]
=

Ri1 . . . Rib R2
j1

. . . R2
jc1

. . .

lb+2c1+3c2+...(r+1)cr+1
11

, (31)

where l11 is the 11-dimensional Planck mass. In these notations the M2-brane is denotes as 20 ≡ 2,
the KK6-monopole is denoted as 61.

9
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The exotic branes 53, 26 and 0(1,7) whose winding modes contribute counting for the E8(8)

U-duality group, have three, six and 7 special Hopf-fiber-like direction. In addition, the 0(1,7) brane
has one cubic special circle. Interpretation of cubic circles is more subtle that that of the quadratic ones,
some discussion of these for branes of the Type II theories can be found in [20]. Windings modes for
these branes correspond to components of the following mixed symmetry tensors

53 : za1...a8,b1b2b3 # = 56

26 : za1...a8,b1...b6 # = 28

0(1,7) : za1...a8,b1...b7,c1 # = 8

(32)

where indices to the right after commas must be equal to the those to the left, i.e., for the last line
we have c1 = b1 = a1 and b’s = a’s. One immediately notices the reason these branes are the ones
which are able to contribute the counting of winding for the E8(8) theory. Indeed, this U-duality group
corresponds to d = 8 toroidal directions, hence 8 is the maximal number of antisymmetric indices one
can have in a winding mode. Say for the 53 brane with 3 special directions this provides room for 5
longitudinal directions, while for the 0(1,7) one is left with none, hence a 0-brane.

It is important to note that although one includes windings of exotic branes into the counting
for the E8(8) case, components of the generalized momentum still do not sum up to 248, the smallest
possible irrep being rather 240. This cannot be cured by adding more exotic branes, since no other
such brane is able to fit the 8-torus. More importantly, as it will be clear from analysis of the field
spectrum of exceptional field theory, the problem is much more than just counting of extra coordinates,
a huge part of which would be dropped anyway. Vector fields of the theory must be in the same irrep
as the generalized momentum to add up to a covariant derivative, hence one needs extra 8 field to
build up an irrep. This is indeed what happens in the E8(8) ExFT: one introduces extra tensor fields
and imposes conditions on them similar to the section constraint [21]. For E9(9), which is an affine
algebra with infinite-dimensional representations, one has to add infinitely many coordinates and
fields. For larger U-duality groups the problem is even more complicated as first one encounters E10,
which is an extension of the E8 by two imaginary roots, and then E11, which must encode timelike
direction as well. Some progress in the construction of such infinitely dimensional extended spaces
and the corresponding theories has been made in [22–25].

2.3. Exceptional Field Theories

Consider a general exceptional field theory defined on D-dimensional space-time parametrized
by coordinates xμ, which we will call “external” and N-dimensional extended space, which we will
call “internal” parametrized by XM. It is important to note, however, that no compactification is
assumed in formulation of the theory. Toroidal reductions of supergravity described in the previous
subsection have been used exclusively for counting winding modes. In the framework of exceptional
field theories, toroidal backgrounds represent a solution, which preserves the maximal amount of
U-duality. In this respect, toroidal backgrounds for ExFT are the same as Minkowski for General
Relativity. In what follows, all fields are allowed to depend on the whole set of coordinates (xμ,XM).

On this space the following field content is defined: external metric gμν, N vector fields Aμ
M,

generalized metric MMN and various external tensors Bμ1...μr
α transforming under an irrep of G the

U-duality group. Generalized metric parametrized the coset space G/K, where K is the maximal
compact subgroup of G. For supersymmetric theories one in addition defines fermions, transforming
under an irrep of K.

Locally geometry of the extended space parametrized by XM is represented by the generalized
Lie derivative LΛ, which defines generalized diffeomorphism transformations of generalized tensors
along a generalized vector ΛM. Since, the vector ΛM = ΛM(x,X) depends both on the external and

10
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internal coordinates, partial derivative ∂μ of a generalized tensor does not transform covariantly. To fix
that one introduces long derivative following the usual approach of the Yang-Mills theory

Dμ = ∂μ −LAμ
. (33)

Hence, the vector fields Aμ
M play the role of gauge connection in the theory. The corresponding

field strength is defined in the usual way

[Dμ, Dν] = −LFμν . (34)

One however faces a subtlety here noticing that such defined field strength Fμν
M is not a

generalized tensor. This situation is familiar from the construction of maximal gauged supergravities,
where one has to add p-form gauge field to a p-form field strength to build covariant expressions.
Eventually, this leads to tensor hierarchy of the theory [26]. Hence, one defines

FM
μν = Fμν

M + YMN
KL ∂N Bμν

KL, (35)

using that LFμν
≡ LFμν up to the section constraint. In general, one shows that generalized vectors of

the form ΛM
0 = YMN

KL ∂NχKL for any χKL do not induce generalized diffeomorphisms when the section
constraint is satisfied (for details see [27]). Hence, the 2-forms of the theory came from reduction of the
3-form of 11-dimensional supergravity are utulized in the covariant field strength.

If the 2-forms are dynamical, one needs to construct a covariant field strength for them, which will
enter the fully covariant Lagrangian. For that, one considers Bianchi identity for the 2-form field
strength, which can be written as

3D[μFνρ]
M = YMN

KL ∂N Hμνρ
KL. (36)

As before, such recovered field strength Hμνρ
KL is covariant only when contracted with the

Y-tensor, and hence needs additional contributions. One invokes 3-form potential CμνρM,KL, for whose
field strength one needs a 4-form and so on. This tower of p-forms and their field strengths is called
tensor hierarchy of exceptional field theories and drops to that of maximal gauged supergravities upon
the Scherk-Schwarz reduction ansatz (see below). In principle, the hierarchy can go up to the top form;
however it ends much earlier since at some point one no longer needs to construct yet another field
strength since the corresponding gauge field is non-dynamical and does not enter the Lagrangian.
Although the E7 ExFT is more suitable for phenomenological applications, it has short tensor hierarchy
and issues with self-duality. Hence, let us consider the construction of the SL(5) ExFT in more detail to
illustrate the general idea.

Covariant field strength for the gauge field Aμ
mn that is recovered from the commutator of long

derivatives and then shifted by a derivative of Bμνm, takes the following form [28]

Fmn
μν = 2∂[μAmn

ν] − [Aμ,Aν]
mn
C +

1
4

εmnklp∂klBμνp, (37)

where εmnklp is the fully antisymmetric invariant tensor of SL(5). Explicit check shows that under
generalized transformations of the fundamental fields Aμ

mn and Bμνm such defined field strength
transforms covariantly, i.e., δΛFμν

mn = LΛFμν
mn.

Bianchi identity for the 2-form field strength has non-trivial RHS and which can be written as a
full derivative of a tensor Fμνρm

3D[μFνρ]
mn = − 1

16
εimnkl∂klFμνρi. (38)
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This tensor however has a freedom in adding of terms of the type

∂mnCμνρ
m. (39)

Indeed, in the Bianchi identity such term will give εimnkl∂kl∂ijCμνρ
j ≡ εimnkl∂[kl∂ij]Cμνρ

j, which
vanishes upon the section constraint of the theory

εimnkl∂mn • ∂kl• = 0. (40)

To match tensor hierarchy of the maximal D = 7 gauged supergravity [29] one fixes a coefficient
in front of the term and the covariant 3-form field strength reads

Fμνρm = 3D[μBνρ]m +
3
2

εmpqrs

(
Apq
[μ

∂ν Ars
ρ] −

1
3
[A[μ, Aν]E

pq Aρ]
rs
)
− 1

4
∂mnCμνρ

n. (41)

Now one notices by looking at the Figure 2 that there are too little degrees of freedom to compose
both the 2-form and the 3-form gauge potentials. On the other hand, according to the prescription
of [11] the three form Cμνρ should be dualized into a two form to complete the irrep 5 of SL(5).
Speaking about covariant theories, one would like to keep information about the 3-form, which is done
by taking into account an alternative prescription, which is to dualize the 2-forms Bμνa into 3-forms to
complete the irrep 5̄ of SL(5). Hence, one ends up with the same degrees of freedom encoded in the
fields Bμνm and Cμνρ

m. The duality relation between these potentials can be written in the following
covariant form

mmnFμνρ
n −

1
4!

εμνρλστκFλστκ
m = 0, (42)

where εμνρσκλτ is the Levi-Civita tensor in the external 7 directions and mmn is the inverse of the
generalized metric mmn.

11D

7D
# d.o.f.

Gμ̂ν̂

Gμν Aμ
a Gab

Cμ̂ν̂ρ̂

Aμab Cabc Cμνρ Bμνa

4 vectorsmetric 10scalars 6 vectors 4 scalars 3-form 4 2-forms

2-form 4 3-forms

Aμ
mn mmn Bμνm Cμνρ

m

Figure 2. Reduction of 11D fields into seven dimensions, dualization into the lowest possible rank
tensor and recollection into SL(5) multiplets. Dashed lines correspond to an alternative combination
of the 2- and 3-forms into the 3-form Cμνρ

m dual to Bμνm in 7 dimensions (see the text). Here the
small Latin indices m, n, k, . . . label the fundamental irrep 5 of SL(5) and small Latin indices from the
beginning of the alphabet label the fundamental irrep 4 of GL(4).

Since the 3-form field strength contains the same information as the 4-form field strength, the latter
is considered to be non-physical and is not included into the Lagrangian. It appears only in the
corresponding Bianchi identity

4D[μFνρσ]m = 6εmpqrsF[μν
pqFρσ]

rs + ∂nmFμνρσ
n (43)

and is needed to ensure invariance of the Lagrangian with respect to external diffeomorphisms.
Note that the 3-form gauge potential containing in the 4-form field strength has been already used for
construction of the 3-form covariant field strength (see Figure 2).
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Lagrangian of the theory is schematically the same as the one for the maximal D = 7
gauged supergravity

LEFT = LEH(R̂) + Lsc(Dμmkl) + LV(Fμν
mn) + LT(Fμνρ m)

+ Ltop − V(mkl , gμν).
(44)

Here the kinetic part is given by the Einstein-Hilbert term, scalar kinetic term, and vector and
tensor kinetic terms respectively. In addition, one includes the “scalar potential” V, which contains
only terms with derivatives ∂mn along extended coordinates, and the topological term Ltop which does
not contain contractions with the metric. Explicitly the expressions read

LEH = eeμ
α eν

βR̂μν
αβ,

Lsc =
1
12

egμνDμMMNDνMMN ,

LV = −1
4

eMMNFμν
MFμν

N = −1
8

emmkmnlFμν
mnFμνkl ,

LT = − 1
3 · (16)2 emmnFμνρ mFμνρ

n

V = − 1
13

MMN∂MMKL∂NMKL +
1
2
MMN∂MMKL∂LMNK

− 1
2
(g−1∂Mg)∂NMMN − 1

4
MMN(g−1∂Mg)(g−1∂N g)− 1

4
MMN∂Mgμν∂N gμν.

(45)

Here the modified Riemann curvature R̂μνab = Rμναβ + Fμν
Meρ

α∂Meρβ transforms covariantly
under both generalized and external diffeomorphisms. The potential V is written in terms of the 10×10
generalized metric MMN which is related to the 5 × 5 metric mmn by

Mmn kl = mmkmnl − mmlmnk, (46)

i.e., each capital index M labelling the 10 is represented by an antisymmetric pair of indices [mn] each
labelling the fundamental 5 of SL(5). In addition, one halves each contraction of capital indices when
turning to pairs to avoid extra counting.

The topological part cannot be written in a covariant form, precisely as in the gauged supergravity
case; however its variation can

δLtop =
1

16 · 4!
εμνρλστκ

[
Fμνρλ

m∂mnΔCστκ
n + 6Fμν

mnFρλσmΔBτκn − 2FμνρmFλστnδAκ
mn
]

. (47)

Transformations Δ of the fields denote external diffeomorphisms parametrized by a vector ξμ,
generalized diffeomorphisms parametrized by a generalized vector Λmn and gauge transformations of
the fields Aμ

mn,Bμνm, Cμνρ
m:

δea
μ = ξμDνea

μ +Dμξνea
ν,

δMMN = ξμDμMMN ,

δAμ
M = ξνFνμ

M +MMN gμν∂Nξν +DμΛmn +
1

16
εimnkl∂klΞμi,

ΔBμνi = ξρFρμνi + 2D[μΞν]i − 2εimnpqΛmnFμν
pq − ∂miΨμν

m,

ΔCμνρ
m = − 1

3!
eεμνρσκλτξσmmnF κλτ

n + 3D[μΨνρ]
m + 3F[μν

mnΞρ]n + ΛmnFμνρn.

(48)

The amazing feature of exceptional field theories observed already in [30] is that the form of the
Lagrangian is completely fixed by demanding invariance with respect to the above transformations.
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In contrast, in gauged supergravities one has to impose supersymmetry to fix all coefficients,
although the general structure of the Lagrangian is completely the same. The non-trivial check
is that supersymmetry works well for the Lagrangian of exceptional field theory fixed in such a way.
This has been checked explicitly for E7 and E6 in [31,32], and is expected to work for all other cases
as well.

2.4. The Section Constraint

Exceptional field theories are formulated on a space-time parametrized by d external
(conventional) coordinates xμ and D “internal” extended coordinates XM. Since no reduction is
assumed, these are theories on a d + D-dimensional space-time, which always has dimension greater
than 11. To reduce the amount of degrees of freedom, and to ensure consistency of algebra of
generalized diffeomorphism one has to impose condition, the section constraint, which is

YMN
KL ∂M • ∂N•, (49)

where • stands for any field or combination of fields. Y-tensors for different U-duality groups are listed
in Table 1.

This condition restricts dependence of fields of the theory on the extended coordinates and can be
solved in various ways. Consider as an example the E7 theory for which the condition is

ΩMN∂M • ∂N = 0,

tα
MN∂M • ∂N = 0

(50)

where ΩMN is the invariant symplectic form of E7 < Sp(56) and tα are generators of the group. In [33]
it has been shown that this condition has precisely two algebraic types of solutions: corresponding
to embeddings of the D = 11 maximal supergravity and of Type IIB supergravity. All other follow
from this two. In addition, there is a special way to relax this constraint by imposing the so-called
Scherk-Schwarz ansatz.

Consider first the algebraic solution of the section constraint corresponding to embedding of the
11D maximal supergravity. In this case, one decomposes the fundamental 56 of E7 under the action of
the GL(7) subgroup as

56 → 7+3 + 21′+1 + 21−1 + 7′−3, (51)

where subscripts denote the GL(1) weight. For the coordinates XM this implies

X
M = (xm, ymn, ỹmn, x̃m). (52)

Here and further in this subsection

M, N, K, . . . = 1, . . . , 56, label the 56 of E7,

m, n, k . . . = 1, . . . , 7, label the 7 of SL(7),

a, b, c, d, . . . = 1, . . . , 6, label the 6 of SL(6),

α, β, . . . = 1, 2, label the 2 of SL(2).

(53)

The section constraint then can be satisfied by imposing

∂

∂ymn
= 0,

∂

∂ỹmn = 0,
∂

∂x̃m
= 0, (54)

hence fields depend only on 7 coordinates xm and 4 coordinates xμ, in total 11. Field content of the E7

theory decomposed under the GL(7) subgroup apparently fits the field content of the 11 dimensional
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supergravity in the 7 + 4 split form, as the former was constructed from the latter initially. Type IIA
supergravity is obtain from this theory by further S1 reduction in the usual way.

The alternative solution of the section constraint is associated with decomposition under the
embedding E7 ←↩ GL(6)× SL(2), which implies for the fundamental irrep

56 → (6, 1)+2 + (6′, 2)+1 + (20, 1)0 + (6, 2)−1 + (6′, 1)−2. (55)

For components of the extended coordinates this reads

X
M = (xa, yaα, yabc, ỹaα, x̃a), (56)

and the field content will be decomposed accordingly, The SL(2) subgroup transforming subsets of dual
coordinates correspond to S-duality symmetry of Type IIB supergravity. The section constraint implies

∂

∂yaα
= 0,

∂

∂yabc
= 0,

∂

∂ỹaα
= 0,

∂

∂x̃a
= 0, (57)

and the fields depend on 6 coordinates xa and 4 coordinates xμ, in total 10. After reduction, the SL(2)
S-duality symmetry can be kept manifestly at the cost of the full 10-dimensional Lorenz symmetry.
To restore the latter, one has to break the former.

A special solution to the section constraint trivially embedded into the above two classes is ∂M = 0,
i.e., all fields do not depend on extended coordinates. This corresponds simply to d-dimensional
maximal ungauged supergravity, i.e., a reduction of the 11-dimensional supergravity on a torus T11−d.
These are known to allow deformations, gaugings, producing a class of theories corresponding to
various reductions of the initial 11-dimensional theory [26]. Exceptional field theories are able to
reproduce such gauged supergravities as well under a special ansatz, which relaxes the differential
section condition to an algebraic constraint. These will be considered in more detail in Section 3.1.

2.5. Double Field Theory

Double field theory, which is a T-duality covariant formulation of supergravity, also fits the above
scheme. The duality group is O(n,n) with n + d = 10, the Y-tensor then becomes YMN

KL = ηMNηKL,
where M, N, K, L = 1, . . . , 2n for any n. Since algebraic structure of the theory does not depend on
the number of “internal” dimensions, it is natural to extend all 10 coordinates of Type II supergravity.
The generalized metric then

MMN ∈ O(10, 10)
O(1, 9)× O(9, 1)

, (58)

and the rest of the construction is repeated identically.
Important remark here concerns the section constraint, which is

ηMN∂M • ∂N• = ∂m • ∂̃m• = 0, (59)

where we introduce notation XM = (xm, x̃m) for extended coordinates. The above implies that for any
pair of a normal coordinate x∗ and the corresponding dual coordinate x̃∗ fields are allowed do depend
on one or another, but not on both. The choices are related by a T-duality transformation precisely as
in the Duff’s procedure

T∗ : x∗←→ x̃∗ . (60)

Hence, such defined T-duality means that one translates all upper indices ∗ into lower indices ∗,
and the coordinates x̃∗ becomes normal geometric coordinate in the new T-duality frame. Note however
a different possibility, where one simply replaces dependence of background fields on x∗ by x̃∗,
still counting the latter as a non-geometric dual coordinate. This will turn a solution of supergravity
equations of motion into a proper string background, which however (i) does not solve e.o.m.s,
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(ii) is non-geometric. This way DFT and ExFT allow addressing exotic branes and the corresponding
non-geometric backgrounds. See further Section 3.2 for more details.

3. Applications

3.1. Non-Geometric Compactifications

Choosing a solution of the section constraint of exceptional field theory can be understood as
a dimensional reduction as it drops dependence of fields of the theory on a subset of coordinates.
E.g., the trivial solution ∂M• = 0 when all fields depend only on D external coordinates corresponds
to reduction of the 11-dimensional supergravity on a 11 − D-torus. Other toroidal reductions can
as well be obtained in such a way by choosing a smaller subset of the extended coordinates to be
dropped. However, exceptional field theory is able to incorporate more general reductions, in fact all
parametrized in terms of embedding tensor.

Taking the general idea of twisted dimensional reduction of Scherk and Schwarz [34] one
introduces the following generalized Scherk-Schwarz ansatz

VM(x,X) = UM
A(X)VA(x), (61)

where UM
A(X) is usually referred to as the twist matrix. The ansatz tells that all information about

dependence on the extended coordinates XM is contained in the twist matrix. Inserting this into the
definition of generalised Lie derivative one obtains

LΛVM = UM
A(X)XBC

AΛA(x)VB(x), (62)

which can be thought of as a definition of the tensor XAB
C

XAB
C ≡ 2UM

CU[A
N∂NUB]

M + YCD
EB UM

EUD
N∂NUA

M, (63)

where UM
CUC

N = δM
N . In principle, this tensor depends on XM as it is constructed out of twist

matrices and their derivatives; however, for now we will assume XAB
C = const. Certainly this implies

restrictions on the twist matrices which will be discussed in a moment.
Upon the generalised Scherk-Schwarz ansatz the closure constraint (23) and the condition for

XAB
C to transform covariantly boil down to the following simple algebraic constraint

[XA, XB] = −XAB
CXC. (64)

Here we understand XAB
C as a matrix labelled by A. The above looks as a commutation relation

for an algebra with generators XA; however, since XAB
C is not necessarily antisymmetric, such simple

interpretation does not work. Instead, one recognizes here the structure of gauged supergravities,
with XAB

C being the embedding tensor. Hence, the main line of the subsection is that Scherk-Schwarz
reduction of exceptional field theories replaces the differential section constraint by the algebraic
condition (64), which has precisely the same form as the quadratic constraint of gauged supergravity.
Moreover, performing the reduction at the level of the action one reproduces precisely action of the
corresponding D-dimensional gauged supergravity. This has been shown first for DFT in [35] and
then for exceptional field theories SL(5), SO(5,5), E6, E7 and the enhanced O(d,d) exceptional field
theory in [36–39]. Let us now briefly describe structure of gauged supergravities and their relation to
generalized Scherk-Shwarz reductions.

Gauged supergravities most straightforwardly can be described in the so-called embedding tensor
formalism first developed in the context of three dimensional theories [40,41] and then constructed for
other maximal supergravities (for review see [26,42,43]). When dimensionally reduced on a d-torus
11-dimensional supergravity produces maximally supersymmetric theory in D = 11 − d dimensions,
which contains nV vector fields Aμ

A, with A = 1, . . . , nV . The vector fields descent from the metric
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and the 3-form C-field in 11 dimensions precisely in the same way as the generalized vector fields of
exceptional field theory (see Figures 1 and 2). For toroidal reductions the resulting theory is abelian
with the gauge group U(1)nV and gauge transformations

δΛAμ
A = ∂μΛA. (65)

In addition, the lower dimensional theory has U-duality symmetry group G and the vector
multiplet transforms under an irrep RV of dimension dimRV = nV . Reductions on more complicated
manifolds endowed with torsion and/or curvature, and reductions in the presence of fluxes of
gauge fields result in theories with less symmetry, and with vector multiplets belonging to adjoint
representation of a non-abelian gauge group. Such reductions correspond to the diagonal arrow
on Figure 3, while toroidal reductions correspond to the vertical arrow. Hence, it is natural to
deform the abelian maximal theory introducing non-abelian interactions between the nV vector fields,
preserving supersymmetry and local symmetries of the theory. A self-consistent algorithm for such
a procedure is based on the notion of embedding tensor Θ, which defines embedding of the desired
local gauge group G′ into the full global U-duality group G

Θ : G → G′. (66)

One writes deformation of the gauge transformation rule for vector multiplets as follows

δΛAμ
A = ∂μΛA − gXBC

AΛBAμ
C, (67)

where g is the deformation parameter. The “structure constants” XAB
C can be written in terms of the

embedding tensor as
XAB

C = ZAB
C + X̂AB

X = ΘA
αtαB

C, (68)

where {tα} = bas g is basis of generators of the global U-duality group G, and Z and X̂ are symmetric
and antisymmetric in {AB} respectively. Hence, the embedding tensor indeed selects a subset of these
generators to construct the constants XAB

C, which define the non-abelian gauge transformation.

N = 1 D = 11 Supergravity

Ungauged supergravity Gauged supergravity
gauging

reduction
on torus
Tn

reduction in presence of
– p–form fluxes

∫
Σ F(p) = CΣ

– torsion (geometric flux)
dec = Tab

cea ∧ eb

– non-geometric flux

Figure 3. Relations between toroidal reductions of N = 1 D = 11 supergravity, gaugings and more
complicated dimensional reductions involving geometric and non-geometric fluxes.

Certainly, such a deformation of the ungauged D-dimensional theory cannot be done in an
arbitrary way and has rather to satisfy certain constraints. The first one is the linear constraint and
comes from the condition that the resulting deformed equations of motion are still invariant under the
full set of supersymmetries, i.e., the deformed gauged supergravity is a maximally supersymmetric
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theory. The linear constraint projects certain representations of G in the decomposition of the
embedding tensor ΘA

α ∈ RnV ⊗ adj g, which can be schematically written as

PΘ = 0. (69)

As an example, one may consider the D = 4 theory constructed in [13,44], for which G = R+ × E7,
Rnv = 56, adj g = 133 and

ΘA
α ∈ 56 ⊗ 133 = 56 + 912 + 6480. (70)

The linear constraint tells that for the theory to be maximally supersymmetric the embedding
tensor cannot have the 6480 part

P6480 Θ = 0. (71)

Please note that the duality group to be gauged contains a R+ part, which correspond to global
rescalings of the external metric. After the gauging procedure the corresponding generators correspond
to the so-called trombone gauging. Certainly, theories with non-zero trombone part of the embedding
tensor cannot be written in terms of an action, as rescalings are symmetries of equations of motion,
rather than the action [44].

In addition to the linear constraint the embedding tensor must respect the so-called quadratic
constraint, which follows from the condition of covariancy of the tensor under global transformations.
These are nothing but (64)

[XA, XB] = −XAB
CXC. (72)

Note that the LHS does not have the part symmetric in {A, B}, while the tensor XAB
C has no

symmetry in the lower indices in general. Hence, the above implies constraint on the symmetric part
ZAB

CXCD
E = 0. This condition is essential for the Jacobi identity for gauge transformations. Indeed,

one discovers that the Jacobiator of gauge transformations has the conventional form

[δΛ1 , δΛ2 , δΛ3 ]V
A = −3X̂[BC

GX̂D]G
EXEF

AΛ1Λ2Λ3VF. (73)

However, the commutation relations (64) restricted for the antisymmetric part only do imply
the RHS of the above expression to vanish, which is usually the case for a conventional Lie algebraic
structure constants. Instead one again finds the symmetric part

3X̂[BC
GX̂D]G

E = ZG[B
EXCD]

G. (74)

hence, the Jacobi identity is satisfied upon ZAB
CXC = 0 similarly to the closure constraint.

Such rich algebraic structure of the deformations means that one is not simply dealing with a
single gauge group, but rather with a set of gauge groups inside the full duality group G, defined by
choosing the embedding tensor. Gauged supergravities for different dimensions have been constructed
in the series of papers [13,29,44–47] which contain detailed analysis of the constraint briefly described
above, construction of the corresponding effective action including the fermionic sector and analysis
of some examples.

Solving the linear and quadratic constraints for the embedding tensor one ends up with a theory
which can be in principle obtained as a dimensional reduction of the 11-dimensional supergravity
on some manifold. For example, a particular choice of gaugings for the D = 4 theory correspond to
embedding Θ : G → SO(8), which gives reduction on a S7 sphere considered in [48,49]. In this case,
components of the embedding tensor are equal to the integral value of the flux of the 7-form field
strength on the sphere.

Such gaugings, which can be interpreted in terms of dimensional reductions are called geometric
and are said to have higher dimensional origin. However, the full set of solutions to the quadratic
and linear constraint contains gaugings which do not have apparent higher dimensional origin,
moreover one can show that some cannot have any [50]. Although these still define consistent theories
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in lower dimensions and give masses and couplings for lower dimensional fields, one cannot come
up with a dimensional reduction scheme starting from the 11D supergravity and ending up with
these theories.

At this point, one turns back to the beginning of this subsection, where Scherk-Schwarz reduction
of exceptional field theories have been shown to produce algebraic structures of the same type as those
of gauged supergravities. In principle, since any gauging is given as an expression written in terms of
twist matrices and their derivatives, as in (63), one may hope that it is possible to solve these equations
and present twist matrices explicitly for each type of gauging. This has been shown to be true for
D = 7 half-maximal gaugings and D = 8 maximal gaugings in [50], where full classification of the
corresponding twist matrices was obtained. The most outstanding output of such analysis is that the
so-called non-geometric gaugings, i.e., those which do not have higher standard dimensional origin,
can be constructed out of generalized twist matrices. Moreover, the set of non-geometric gaugings
itself is divided into normal and genuine non-geometric subsets. The former is defined to belong to
a U-duality orbit of a geometric gauging, and hence the theory can be rotated to a frame, where no
non-geometry is present. On the other hand, the latter do not belong to such an orbit and hence the
theory is always non-geometric. At least for some examples, genuine non-geometric gaugings were
shown to descent from twist matrices which break the section constraint.

At this point it is suggestive to return to the constraint (64) and recall that for that to satisfy one
does not need to impose any conditions on dependence of twist matrices on the extended coordinates.
Hence, in principle it is possible to break the section constraint, while satisfying the quadratic constraint
that has been shown explicitly in [50]. Certainly, such twist matrices cannot be understood as defining
a reduction of the conventional supergravity. Whether such configurations can be understood as
proper string backgrounds is not clear, as all duality-covariant setups so far imply the section condition.
However, genuine non-geometric gaugings look very promising for cosmological model building as
these provide extra parameters in scalar potential of the lower dimensional theory, which may help to
stabilize its moduli. Indeed, if one considers a setup with geometric gaugings which fails to stabilize
certain subset of scalar moduli, any gaugings belonging to duality orbits of the initial ones would
also fail to do so, since the physics must be duality invariant. In contrast, genuine non-geometric
gaugings do not suffer from such constraints and hence can enhance the realm of possible models.
This approach has been taken to analyse cosmological implications of exceptional field theories in
application to some toy-model examples in [51–55].

3.2. Exotic Brane Backgrounds

Geometric gaugings of lower dimensional supergravities are equal to integral values of fluxes on
the internal manifold, and hence, naturally acquire interpretation in terms of branes. Wrapped around
cycles of the internal space, these source fluxes of gauge p-form fields, which then are subject of the
usual Dirac quantisation condition (see e.g., [56] for review). Similarly, non-geometric fluxes can be
interpreted as integrated values of field strengths of mixed symmetry potentials sourced by exotic
branes. Algebraic-wise one finds good correspondence between mixed allowed symmetry potentials
of lower dimensional supergravity (equivalently, exotic branes) and gaugings [57–59]. However,
the conventional supergravity is known to be unable to properly describe backgrounds of such exotic
branes and to provide a technique for calculating the corresponding non-geometric fluxes.

The well-known example comes from the T-duality orbit of the NS5-brane, starting with the
H-flux [18,19]. This is known to contain non-geometric Q- and R-fluxes via the relation

Habc
Ta←→ fab

c Tb←→ Qa
bc Tc←→ Rabc, (75)

where T∗ denotes T-duality transformation in the corresponding isometry direction. Since in the
conventional supergravity T-duality transformation is defined only along a Killing direction and
T-duality along the world-volume direction of the NS5-brane do not change the background, one has to
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smear on the four transverse directions to perform the transformation. The full NS5-brane background
is characterized by the harmonic function H = H(x1, x2, x3, x4) in four Euclidean dimensions

�H(x1, x2, x3, x4) = h δ(4)(x1, x2, x3, x4). (76)

To have flat asymptotics at spatial infinity as r → ∞ one defines the harmonic function as

H = 1 +
h
r2 , (77)

where r2 = (x1)2 + (x2)2 + (x3)2 + (x4)2. To smear along say the direction z := x4 one considers
harmonic function H = H(x1, x2, x3) which has apparent isometry along z and solves the equations of
motion of supergravity with the same amount of flux. This procedure gives the following background
of the smeared NS5-brane which we refer to as the H-monopole

ds2 = ds2
056789 + Hds2

1234,

B = A ∧ dz,

e−2(ϕ−ϕ0) = H−1.

(78)

where H = 1 + h/r and the 1-form A = Aidxi is defined to be of a magnetic configuration

2∂[i Aj] = εijk∂k H, (79)

hence the name “H-monopole”. Performing T-duality along the compact direction z by simply applying
the Buscher rules (11) one arrives at the background of KK-monopole

ds2 = ds2
056789 + Hds2

123 + H−1(dx4 + A)2,

B = 0.
(80)

This background has vanishing B-field and the magnetic monopole configuration is given by the
metric components gzi = Ai. In three transverse directions {x1, x2, x3} such background behaves as
the gravitational magnetic monopole.

Already at this step the backgrounds start to get tricky. Indeed, the Gross-Perry monopole
solution, which describes the {t, x1, x2, x3, z} part of the KK5 background, is topologically a Hopf
fibration with the special cycle given by the z direction [60]. Moving around this cycle one observes
periodicity in 4πh and glues the background by a diffeomorphisms transformation. This non-trivial
topological structure is reflected by non-vanishing geometric flux fij

z, defined as structure constants of
the algebra of local vielbeins

[ea, eb] = fab
cec, (81)

where a, b = 1, 2, 3, z and the vielbein is defined in the usual lower-triangular gauge as

ei
a = H− 1

2

⎡⎢⎢⎢⎣
H 0 0 0
0 H 0 0
0 0 H 0

A1 A2 A3 1

⎤⎥⎥⎥⎦ . (82)

To T-dualize further, one has to smear one more direction, say x3, which brings us to the set
of co-dimension-2 solutions. These are not well defined field configurations as one cannot satisfy
proper conditions at space infinity asymptotics. Formally, the harmonic function in two dimensions
is H(ρ) = h0 + h log ρ/ρ0, where ρ2 = (x1)2 + (x2)2, and diverges both at the core and at the infinity.
For that renormalization procedure introduces a dimensionful parameters ρ0, h0, which somehow run
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when one approaches the singularity points [17]. In what follows, we will drop these parameters for
simplicity and always assume the harmonic function of the form

H = 1 + h̃ log ρ. (83)

Performing T-duality transformation of the KK5-background smeared in such a way one arrives
at the following background

ds2 = H(dρ2 + ρ2dθ2) +
H

H2 + h̃2θ2
ds2

34 + ds2
056789,

B(2) =
h̃θ

H2 + h̃2θ2
dx3 ∧ dx4,

e−2(ϕ−ϕ0) =
H

H2 + h̃2θ2
,

(84)

where {ρ, θ} are the polar coordinates in the transverse plane {x1, x2}. One immediately notices the
non-trivial monodromy: when going around the brane θ → θ + 2π the background is glued by a
T-duality transformation in the directions {x3, x4}. Such non-geometric configurations are believed to
be sourced by exotic branes and are properly described on the language of T-folds [15,16,61]. In terms
of the classification (28) the background (84) is sourced by the 52

2-brane. Now it is easy to see that the
two ”quadratic” directions in the mass formula correspond to the two special directions of the brane.

The monodromy gluing the torus {x3, x4} can be conveniently represented as a linear
transformation of the corresponding generalized metric

H(θ′ = θ + 2π) = OtrH(θ)O, (85)

where the matrix O encodes the non-geometric β-transform

O =

[
12 0

β(θ′) 12

]
(86)

with β(θ) = h̃θ ∂3 ∧ ∂4. This suggests that it is more natural to use the β-frame of DFT [62] where
the generalized metric parametrized by the space-time metric and a bi-vector field βab instead of the
2-form Kalb-Ramond field. In these variables the background becomes

ds2 = H(dρ2 + ρ2dθ2) + H−1ds2
34 + ds2

056789,

β = β34 ∂

∂x3 ∧ ∂

∂x4 .
(87)

This form naturally reflects the fact that the 52
2-brane electrically interacts with the bi-vector field

as was shown explicitly in [20,63,64]. Indeed, the bi-vector βab is actually an 8-form taking values in
two-vectors, which can be written in 10-dimensions as

β(8,2) = βμ1,...μ8
ν1ν2 dxμ1 ∧ · · · ∧ dxμ8 ∂ν1 ∧ ∂ν2 , (88)

with additional condition that all components with any of the upper indices repeating any of the
lower indices vanish [58]. Hence, the corresponding Wess-Zumino term for the 52

2-brane has the
following structure

S52
2

WZ = h
∫

d6ξβα1...α612
34dξα1 ∧ · · · ∧ dξα6 , (89)

where ξα are the world-volume coordinates.
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Turning to the β-frame allows defining the corresponding flux explicitly as Qa
bc = ∂aβbc, which in

10 dimensions is represented by a (9, 2) mixed symmetry tensor. Smearing one more direction x2

one obtains linearly growing harmonic function, and T-dualising along x2 arrives at the s-called
R-monopole, the 53

2-brane. This is a co-dimension-1 solution, a domain wall, which is even more
peculiar. Non-vanishing R-flux Rabc = 3βd[a∂dβbc] of the background reflects non-associativity of the
closed string coordinates on such background [65,66].

One concludes that exotic brane backgrounds in the approach of the conventional supergravity are
solutions fo equations of motion of co-dimension ≤ 2, i.e., domain strings, walls and space-time filling
objects. Co-dimension-2 solutions are characterized by non-trivial monodromy around the core of the
object, which glues the background by a T-duality transformation. In the T-duality covariant approach
of DFT one expects to describe a whole duality orbit as a single field configuration. This is indeed
possible and has been shown explicitly for the orbit of the NS5-brane in [67,68] and for backgrounds of
exotic branes of M-theory in [69–71] (for review see [72]).

In [67,68] it has been shown that all branes, both geometric and exotic, of the T-duality
orbit starting with the NS5-brane are just different faces of a single object called DFT monopole.
This background is a solution of DFT equations of motion, characterized by the generalized metric
written in the form of a quasi-interval ds2 = HMNdXMdXN (note that this is not an invariant expression
and cannot be understood as a definition for distance in the doubled space) and the invariant dilaton d

ds2
DFT = H(1 + H−2 A2)dz2 + H−1dz̃2 + 2H−1 Ai(dyidz̃ − δijdỹjdz)

+ H(δij + H−2 Ai Aj)dyidyj + H−1δijdỹidỹj

+ ηrsdxrdxs + ηrsdx̃rdx̃s,

e−2d = He−2ϕ0 .

(90)

Here the harmonic function and the vector Ai are that of the H-monopole

H(y) = 1 +
h√

δijyiyj
,

2∂[i Aj] = εijk∂k H.

(91)

Of crucial importance here is the understanding of the coordinate dependence of the fields. First,
one notes that the section condition is satisfied since the fields depend only on (y1, y2, y3) and do
not depend on their duals (ỹ1, ỹ2, ỹ3). Second, the form of the solution as written above does not
tell us which coordinates are geometric, i.e., used for measuring physical distances, and which are
not. This is additional information which is given upon fixing position of the DFT monopole in the
doubled space. Since nothing changes when replacing xr by x̃r, equivalently, when T-dualizing along
the world-volume directions, one has five possible choices for geometric coordinates xμ listed in
Table 3. Consider the Q-monopole, the 52

2 brane, for which the geometric set of transverse coordinates
is (z̃, ỹ1, y2, y3). This implies that the harmonic function, which is always of the form (91), depends on
one dual coordinate that is x̃1 = y1 in this case. Hence, one has properly defined harmonic function
with nice asymptotic behaviour, which however is allowed to depend on dual coordinates. Please note
that instead of the H-monopole background one may start with the full NS5-brane background and
the harmonic function

H(z, y) = 1 +
h

z2 + δijyiyj , (92)

which would imply that a 5r
2-brane background is characterized by fields which depend on r dual

coordinates. This number if also equal to the number of special circles.
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The orbit starting at the NS5-brane was also considered in [67], where the background of the
localised Kaluza-Klein monopole has been recovered from the DFT monopole. Such a background has
been known before these results and was recovered from the usual Kaluza-Klein monopole background
by taking into account backreaction from worldsheet instantons in the two-dimensional linear sigma
model [73–76]. Similarly, worldsheet instanton corrections have been shown to localize the background
of the 52

2 co-dimension-2 brane in dual space [77]. In Figure 4 relations between monopoles and their
localized versions are shown schematically.

NS5-brane

H-monopole
localised in X9

H-monopole
isometry X9

KK-brane

KK-monopole
localised in X9

KK-monopole
isometry in X9

KK-monopole
localised in X8

isometry in X9

KK-monopole
isometry
in X8, X9

Q-brane

Q-monopole
localised in X9,
X8 is flat

Q-monopole
isometry X9

X8 is flat

Q-monopole
localised in X8

isometry in X9

Q-monopole
(52

2-brane)
isometry
in X8, X9

D=10

D=10

D=9

D=9

D=8

compact.
R9 finite

compact.
R9 → 0

naive
Buscher rules
along X9

T-duality
along X9

instanton

compact.
R8 finite

compact.
R8 → 0 instanton

T-duality
along X8

naive
Buscher rules
along X8

naive
Buscher rules
along X8

naive
Buscher rules
along X8

Figure 4. Systematics of backgrounds with H, geometric f and Q fluxes and their relations. Note that
in [77] Q-monopole localised in both X8 and X9 has been constructed with both these directions
being compact.
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Table 3. Possible choices for orientation of DFT monopole in the doubled space.

Coordinates Brane State

xμ = (z, y1, y2, y3, xr) NS5-brane (H-monopole) 50
2

xμ = (z̃, y1, y2, y3, xr) KK-monopole 51
2

xμ = (z̃, ỹ1, y2, y3, xr) Q-monopole 52
2

xμ = (z̃, ỹ1, ỹ2, y3, xr) R-monopole 53
2

xμ = (z̃, ỹ1, ỹ2, ỹ3, xr) R’-monopole 54
2

3.3. Deformations of Supergravity Backgrounds

Backgrounds of DFT depending on a dual coordinate and the possibility to parametrize the
generalized metric in terms of exotic degrees of freedom, such as the bi-vector βμν, open a window
to investigate issues related to integrability of the 2-dimensional sigma model. It is known that
kappa symmetry of the two-dimensional sigma model does not imply strictly equations of motion of
10-dimensional supergravity, but leads to a more general setup. This has been elaborated in a series
of paper (see e.g., [78–81]) and is usually referred to as the generalized supergravity. In this theory
the degree of freedom represented by the dilaton and its derivative is replaced by a set of vectors
(Xμ, Zμ, Iμ), and the equations of motion of generalized supergravity drop to the conventional ones
upon Xμ = ∂μ ϕ. The most amazing feature of this theory is that (at least some) solutions of its equations
of motion can be obtained as integrable deformations of backgrounds of the conventional sugra.

Integrability of the two-dimensional sigma model on the AdS5 × S5 background has been shown
in [82] by explicit construction of the corresponding Lax pair. Such sigma model gain the expected
interpretation as Type II string theory living on the AdS5 × S5 background supported by non-vanishing
flux of 5-form. In [83] a deformed version of the AdS5 × S5 sigma-model has been considered,
which appeared to be also integrable for the so-called η-deformations. The η-deformed sigma model
is very peculiar when understood as theory of string on a classical background. In this case, the
corresponding background, which is commonly referred to as (AdS5 × S5)η , does not satisfy equations
of motion of 10-dimensional supergravity [84]. However, it still defines a proper background for string
propagation due to Weyl invariance, and moreover the corresponding model is integrable. Such a
deformed background was shown to satisfy equations of motion of generalized supergravity [81,85,86].

At the level of field theory, generalized supergravity can be obtained from the conventional Type II
supergravity by considering equations of motion for background with one isometry direction x∗ and
with dilaton, linearly depending on the isometry direction ϕ = ϕ0 + ax∗. T-dualizing solutions along
x∗ by formally applying Buscher rules one obtains solutions of generalized supergravity. In Double
Field Theory such procedure is reflected by just changing the role x∗ as a geometric coordinate to
become non-geometric, as has been shown explicitly in [86,87]. Alternatively, one is able to reproduce
generalized supergravity equations of motion by generalized Scherk-Schwarz reduction of exceptional
field theory with twist matrices depending on one dual coordinate. This was explicitly shown for the
E6 ExFT in [88]; however, similar procedure can be performed for ExFTs with any U-duality group.

In addition to the nice incorporation of both generalized and normal supergravities in a single
picture, DFT provides a simple and straightforward algorithm for generating deformed backgrounds
from a given solution. This procedure has been mainly developed in [89–94] and is based on the
so-called β-frame of DFT [95]. The basic idea of B vs β frame is that the generalized metric of DFT as an
element of the coset space O(d, d)/O(d)× O(d) can be parametrized in terms of the fields Gμν, Bμν or
alternatively gμν, βμν

HMN =

[
Gμν − BμρBρ

ν −Bμ
ν

Bμ
ν Gμν

]
=

[
gμν −bμ

ν

bμ
ν gμν − βμρβρ

ν

]
. (93)
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This is equivalent to choosing the generalized vielbein to be of lower-triangular or
upper-triangular form. In principle, one may keep both Bμν and βμν fields in the metric; however this
will duplicate gauge degrees of freedom and require either an additional constraint or change in the
status of one of the fields. When substituted into the full action of DFT

SHHZ =
∫

dxdx̃e−2d
(

1
8
HMN∂MHKL∂NHKL −

1
2
HKL∂LHMN∂NHKM−

−2∂Md∂NHMN + 4HMN∂Md∂Nd
)

.
(94)

the generalized metric in β-frame provides the action of the so-called β-supergravity. This theory has
been initially developed to address non-geometric fluxes Q and R, which are more naturally written in
terms of the bivector field, as in the previous subsection.

The matrix equality (93) can be written in terms of the fundamental fields in the following
simple form

(G + B)−1 = g−1 + β. (95)

In the above one immediately recognizes the open-closed string map [96] that relates backgrounds
as seen by the closed string to that seen by the open string. In this interpretation the field βμν on the
RHS is understood as the non-commutativity parameter, usually denoted Θμν.

The relation (93) can be understood as a deformation of a solution given by the metric background
gμν by a coordinate-dependent parameter βμν (see Figure 5). One starts with a background with
vanishing B-field, parametrized only by metric degrees of freedom gμν and the dilaton Φ. Since
Bμν = 0, the corresponding generalized metric can be understood in either B or β-frame. Consider
now a deformed generalized metric, which contains the metric gμν that solves conventional equations
of motion, and the field β. Then, written in the B-frame this generalized metric encodes a solution of
equations of motion of the conventional supergravity. Equivalently, this implies that the generalized
metric solves equations of motion of DFT given the section constraint is satisfied. In the β-frame,
given gμν is a solution, these equations of motion impose constraints on the bi-vector field βμν for the
deformation to give a solution. In [93] these constraints have been obtained explicitly from equations
of motion of β-supergravity of [97]. Given a general solution of these equations one is guaranteed
to recover solutions of generalized supergravity after deformation, and in the special case, when
∂μβμν = 0, these boil down to solutions of the conventional supergravity.

gmn, Φ gmn, βmn, Φ Gmn, Bmn, φ

B-frame
solution

β-frame
solution

B-frame
solution

constraints on βmn

deformation open/closed map

Yang-Baxter deformation

Figure 5. Relationships between the relevant theories and their solutions. b-frame refers to the standard
supergravity (possibly generalised), while β-frame is the theory of [98]. Yang-Baxter deformation
acts within usual supergravity, but we interpret it as a composition of the open/closed string map
with a deformation by βmn. This leads to the constraints for βmn (essentially the CYBE) arising from
supergravity field equations.
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Of special interest are backgrounds with a set of isometries encoded by Killing vectors ka = ka
μ∂μ,

which form an algebra upon
[ka, kb] = fab

ckc. (96)

For these the deformation parameter can be chosen in the bi-Killing form

βμν = ka
μkb

νrab, (97)

where rab is a constant antisymmetric matrix. Such deformed backgrounds satisfy equations of motion
of supergavity if the r-matrix satisfied classical Yang-Baxter equation, which is the semi-classical limit
of the quantum Yang-Baxter equation

r[a|b|rc|d| fbd
e] = 0. (98)

A particular example of such deformation is given by the (AdS5 × S5)η-background discussed
above, which corresponds to deformations with r-matrix rab fab

c = Ic. The non-vanishing vector Ic is a
sign of the generalized supergravity equations of motion, and indeed ∂μβμν = ka

ν Ia.
The constraint imposed on couplings of the two-dimensional sigma-model by Weyl invariance

has been uplifted to the full T-duality covariant sigma-model in [94,99] and proper local counter-terms
have been constructed. The covariant approach implies a generalization of the bi-vector deformations
described above into a full β-shift. This is a local transformation inside DFT, which can be applied to a
solution with non-vanishing H-flux. The general procedure is as follows, one starts with a generalized
metric HMN and a set of generalized Killing vectors Ka

M, the deformation then is given by

H′
MN = hM

KHKLhN
L, hM

N = δM
N − 2ηrabKaMKb

N , (99)

where η is a constant parameter of deformation. The generalized Killing vector should satisfy the
algebraic section constraint (cf. that of [64])

ηMNKa
MKb

N = 0. (100)

This ensures the matrix hM
N to be a T-duality transformation, i.e., h ∈ O(d, d). In the usual duality

frame one chooses Ka
M = (ka

μ, 0) and the above transformation reduces to a β-deformation.

4. Conclusions and Discussion

In this short review, we have briefly described the structure of exceptional field theories (ExFT’s),
which provide a (T)U-duality covariant approach to supergravity. These are based on symmetries of
toroidally reduced supergravity; however are defined on a general background. From the point of
view of ExFT the toroidal background is a maximally symmetric solution preserving all U-duality
symmetries. In this sense the approach is similar to the embedding tensor technique, which is used to
define gauge supergravity in a covariant and supersymmetry invariant form. Although any particular
choice of gauging breaks certain amount of supersymmetry, the formalism itself is completely invariant.
Similarly the U-duality covariant approach is transferred to dynamics of branes in both string and
M-theory, whose construction has not been covered here.
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In the text, we described construction of the field content of exceptional field theories from fields
of dimensionally reduced 11-dimensional supergravity, and local and global symmetries of the theories.
Various solutions of the section constraint giving Type IIA/B, 11D and lower-dimensional gauged
supergravities have been discussed without going deep into technical details. For readers’ convenience
references for the original works are present.

As a formalism exceptional field theory has found essential number of application, some of
which have been described in this review in more details. In particular, we have covered generalized
twist reductions of ExFTs, which reproduce lower-dimensional gauged supergravities, description of
non-geometric brane backgrounds and an algorithm for generating deformations of supergravity
backgrounds based on frame change inside DFT. However, many fascinating applications of the
DFT and ExFT formalisms have been left aside. Among these are non-abelian T-dualities in terms of
Poisson-Lie transformations inside DFT [100,101]; generating supersymmetric vacua and consistent
truncations of supergravity into lower dimensions [102–104] (for review see [105]); compactifications
on non-geometric (Calabi-Yau) backgrounds and construction of cosmological models [54,55,106,107].
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Abstract: The Maxwell-BF theory with a single-sided planar boundary is considered in Euclidean
four-dimensional spacetime. The presence of a boundary breaks the Ward identities, which
describe the gauge symmetries of the theory, and, using standard methods of quantum field
theory, the most general boundary conditions and a nontrivial current algebra on the boundary
are derived. The electromagnetic structure, which characterizes the boundary, is used to identify the
three-dimensional degrees of freedom, which turn out to be formed by a scalar field and a vector field,
related by a duality relation. The induced three-dimensional theory shows a strong–weak coupling
duality, which separates different regimes described by different covariant actions. The role of the
Maxwell term in the bulk action is discussed, together with the relevance of the topological nature of
the bulk action for the boundary physics.

Keywords: quantum field theory; topological quantum field theory; duality in gauge field theories;
boundary quantum field theory

PACS: 03.70.+k Theory of quantized fields; 11.10.-z Field theory

1. Introduction

Topological field theories have been the subject of a thorough investigation in theoretical
physics [1–3]. The initial aim was to unveil to what extent they could give hints for better understanding
gravity without matter [4], but it was soon recognized that they also had and still have a different role
if one adds a boundary [5,6]. Indeed, it is the boundary which plays a physical role and it is on the
boundary that the local observables of a new and different physics live. The introduction of a boundary
in a field theory was first proposed by Symanzik who introduced a separability ansatz in order to
study the Casimir effect of two parallel plates [7]. The method proposed by Symanzik concerns a
space divided into a left and a right hand side, and it has been applied to topological field theories of
different types [8], obtaining results particularly relevant for the theory of the fractional quantum Hall
effect [9] and of the topological insulators in three and four spacetime dimensions [10]. Later on, field
theories with a single-sided boundary have also been considered, which also lead to interesting results.
The first and most studied model is the Chern–Simons theory in three dimensions [11,12]. Soon after
appeared the BF models [13], the generalizations of the Chern–Simons model which can only live in an
odd spacetime [14,15] . The topological nature of the Chern–Simons action is that it does not depend
on the metric tensor and hence the energy momentum tensor vanishes. Later on, Witten proposed
another kind of topological theory where the action is not in the cohomology of the BRS operator and
hence the theory has no physical observables [16]. The common denominator to all these models is
that they are gauge field theories with the gauge field Aμ as the main actor and where the Maxwell
term does not appear since it breaks the topological nature of the model, which seems to be at the
basis of duality relations characterizing the boundary degrees of freedom of these models, whose

Symmetry 2019, 11, 921; doi:10.3390/sym11070921 www.mdpi.com/journal/symmetry32
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bulk theories are purely topological [17]. Duality relations of this type are known [18,19] to allow to
extract fermionic degrees of freedom out of bosonic ones, in a way compatible with the existence of
Hall or quantum spin states on the edge of higher-dimensional bulk theories. It is natural to ask the
question to what extent this is true, investigating whether fermionizing duality relations hold also
on the boundary of non-topological field theories, which would broaden the possible candidates for
the theories of fractional quantum Hall effect and of topological insulators. Moreover, the Maxwell
coupling is expected to be quite relevant in whatever physics may arise on the boundary and that is
why we are studying models where the Maxwell term is included in the bulk action. This has been done
for Chern–Simons theory with both double- [20] and single-sided [21] boundary, with significantly
different results. We note also that the introduction of a Maxwell term in the Chern–Simons action gives
rise to topologically massive theories [22,23] by means of a mechanism which cannot to be replicated
in spacetime dimensions other than three. The question also arises in what sense a topological theory
with a Maxwell coupling is still topological. We propose here the Maxwell-BF model as a new kind of
topological theory in four spacetime dimensions. The model does not fit into the known “topological”
classes of quantum field theories since it does depend explicitly on the metric and the Maxwell term
makes it cohomologically nontrivial. Nevertheless, the bulk theory has no local observables due to
the equations of motion, which enforce the field strength Fμν to vanish, and hence the gauge field
Aμ is pure gauge. This model has never been considered before with a boundary and the question
is not irrelevant. The fact that the physics of the model live on the boundary is neither intuitive nor
immediately deducible as a simple exercise.

The paper is organized as follows. In Section 2, the model with planar boundary is introduced.
The boundary conditions and the Ward identities, broken by the presence of the boundary, are derived.
A kind of electromagnetic structure is found on the boundary, with Maxwell equations solved by
potentials, which will play the role of degrees of freedom for the 3D theory. The identification of
electric and magnetic fields makes possible a physical interpretation of the role of the Maxwell term, as
deformation of the magnetic field. In Section 3, following standard methods of quantum field theory,
the algebra formed by the conserved electromagnetic currents is found, which heavily depends on
the Maxwell term in the bulk action. The algebra, written in terms of the 3D potentials, allows for
the construction, in Section 4, of the 3D theory, whose symmetries are identified. The holographic
contact is realized by means of the equations of motion of the 3D theory, which are required to be
compatible with the boundary conditions of the bulk 4D theory. The resulting equation is recognized
to be the duality relation which characterizes the existence of fermionic degrees of freedom on the
boundary and therefore turns out not to be peculiar of purely topological bulk field theories only. In
other words, the fact that the physical properties are the same in the holographic theory, whether the
Maxwell term is present or not, clarifies the meaning of topological quantum field theories when a
boundary is introduced.

2. The Model: Action, Boundary Conditions and Ward Identities

The action of the 4D Maxwell-BF theory in Euclidean spacetime is

Sbulk =
∫

d4x θ(x3)
(
k1 εμνρσFμνBρσ + k2 FμνFμν

)
, (1)

where the presence of the step-function θ(x3) restricts the model on the half-space x3 ≥ 0, with planar
boundary at x3 = 0, Fμν(x) is the electromagnetic tensor for the gauge field Aμ(x) and Bμν(x) =

−Bνμ(x) is the rank-2 antisymmetric tensor of the 4D topological BF theory [24,25]. The canonical
mass dimensions of the quantum fields are

[A] = 1 ; [B] = 2 . (2)
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Finally, k1 and k2 are constants that could be reabsorbed by a redefinition of the fields, but
we prefer to keep to be able to trace the contributions of the topological BF and Maxwell F2 term,
respectively.

In absence of boundary, i.e., without the θ-function in Equation (1), the action of the Maxwell-BF
theory is invariant under the following two symmetries:

δ(1)Aμ = ∂μΛ

δ(1)Bμν = 0
(3)

and

δ(2)Aμ = 0

δ(2)Bμν = ∂μζν − ∂νζμ ,
(4)

where Λ(x) and ζμ(x) are gauge parameters. The presence of the boundary in Sbulk breaks the δ(2)-
invariance, preserving the usual gauge symmetry δ(1):

δ(1)Sbulk = 0 ; δ(2)Sbulk = −4k2

∫
d4xδ(x3)ζiεijk∂j Ak , (5)

where Latin indices run from 0 to 2: i, j, ... = {0, 1, 2}.
The total action Stot is composed by four terms

Stot = Sbulk + Sg f + Sext + Sbd , (6)

where Sbulk is given by Equation (1), Sg f is the gauge fixing term

Sg f =
∫

d4x θ(x3) (bA3 + diB3i) , (7)

and b(x) and di(x) are Lagrange multipliers implementing the gauge conditions

A3 = B3i = 0 . (8)

In Sext, external sources Ji(x) and Jij(x) are introduced

Sext =
∫

d4x θ(x3)

(
Ji Ai +

1
2

JijBij

)
, (9)

by means of which the quantum fields surviving the gauge conditions in Equation (8) can be defined.
Finally, Sbd is the most general boundary term defined on x3 = 0 compatible with power counting

Sbd =
∫

d4x δ(x3)
(

a1εijk Ai∂j Ak + a2 Ai∂3 Ai + a3εijk AiBjk +
m
2

Ai Ai

)
, (10)

where ai and m are constant parameters and the canonical mass assignments in Equation (2) and
[δ] = 1 have been used. Notice that∫

d4x θ(x3)εμνρσFμνFρσ = 2
∫

d4x θ(x3)∂μ(εμνρσ AνFρσ)

= −4
∫

d4x δ(x3)εijk Ai∂j Ak ,
(11)

which justifies the fact that we did not introduce in Sbulk (Equation (1)) a term FF̃ in favor of its
Chern-Simons-like boundary counterpart, identified by the constant a1 in Equation (10). In addition,
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we chose to keep 3D covariance on the boundary. A more general, non-covariant boundary term could
have been written [26–28].

The equations of motion of the fields Ai and Bij are

δStot

δAi
= θ(x3)[−2k1εijk∂3Bjk − 4k2∂2

3 Ai − 4k2∂2
j Ai + 4k2∂i∂j Aj + Ji]

+ δ(x3)[(a3 − 2k1)εijkBjk + (a2 − 4k2)∂3 Ai + 2a1εijk∂j Ak + mAi] = 0
(12)

and
δStot

δBij
= θ(x3)[4k1εijk∂3 Ak + Jij] + δ(x3)[2a3εijk Ak] = 0 . (13)

From the equations of motion (Equations (12) and (13)) and performing limε→0
∫ +ε
−ε dx3, we get

the boundary conditions

(a3 − 2k1)εijkBjk + (a2 − 4k2)∂3 Ai + 2a1εijk∂j Ak + mAi

∣∣∣
x3=0

= 0 (14)

a3 Ai|x3=0 = 0 . (15)

The equations of motion lead also to the following Ward identities, broken due to the presence of
the boundary ∫ ∞

0
dx3 ∂i Ji = −∂i

(
2k1εijkBjk + 4k2∂3 Ai

)∣∣∣
x3=0

(16)

∫ ∞

0
dx3 ∂j Jij = (4k1 − 2a3) εijk∂j Ak

∣∣∣
x3=0

, (17)

where, to obtain Equation (16), the boundary conditions in Equation (14) have been used. On
the boundary x3 = 0 and at vanishing external sources, i.e., on the mass shell, the above Ward
identities imply

∂i

(
2k1εijkBjk + 4k2∂3 Ai

)∣∣∣
x3=0

= 0 (18)

and
εijk∂j Ak

∣∣∣
x3=0

= 0 . (19)

Notice that, due to Equation (19), the a1-term in the boundary action Sbd in Equation (10) vanishes.
Therefore, without loss of generality, we may rule it out

a1 = 0 . (20)

Equations (18) and (19) reveal an electromagnetic structure on the boundary x3 = 0, since they
suggest to define an “electric” and a “magnetic” field:

Ei ≡ Ai (21)

Hi ≡ k1εijkBjk + 2k2∂3 Ai , (22)

which allow identifying the degrees of freedom on the boundary x3 = 0 as the corresponding
electromagnetic potentials. Indeed, Equations (18) and (19) are solved by introducing a 3D vector field
ξi(X) and a 3D scalar field Φ(X), respectively:

√
Mεijk∂jξk(X) ≡ 2k1εijkBjk(x) + 4k2∂3 Ai(x)

∣∣∣
x3=0

(23)

1√
M

∂iΦ(X) ≡ Ai(x)|x3=0 , (24)
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where a massive scaling parameter M has been introduced in order to make compatible the mass
dimensions in Equation (2) of the 4D fields Aμ and Bμν with those of their 3D boundary counterparts
Φ and ξi [29]. In 3D spacetime dimensions, in fact, vector fields and scalar fields should have the
following mass dimensions:

[ξ] = [Φ] =
1
2

. (25)

A comment is in order: It turns out that a particular solution of the general boundary conditions
in Equations (14) and (15) exists, which makes the physics independent of the Maxwell term. In fact,
the choice

a2 �= 4k2 ; a3 = 2k1 ; m = any (26)

implies, from Equations (14) and (15), (Dirichlet and) Neumann boundary conditions for the gauge
field Ai on x3 = 0

∂3 Ai = 0|x3=0 . (27)

Consequently, the Ward identities do not depend on the coupling k2 of the Maxwell term in the
action in Equation (1), and the theory is indistinguishable, under any respect, from the pure topological
BF theory with planar boundary. The fact that the Neumann condition for the gauge field Ai, which
is a solution of the general boundary conditions in Equations (14) and (15), makes the Maxwell term
transparent and the non-topological theory equivalent to a topological one, is the first nontrivial result
of this paper. Since the aim of this paper is to study if and how the non-topological Maxwell term
has an impact on the physics on the boundary, we proceed from now disregarding the solution in
Equation (26). In particular, the boundary condition in Equation (15) is solved by

a3 = 0 . (28)

The k2-Maxwell term manifests itself on the r.h.s. of the Ward identity in Equation (16) by means
of ∂3 Ai|x3=0. We observe that, on the boundary x3 = 0, the fields Ai|x3=0 and ∂3 Ai|x3=0 must be
treated as independent dynamical fields [30]. Consequently, we need to couple, on the boundary
x3 = 0, an external source Ĵi to ∂3 Ai|x3=0, as done in [31], where the 3D Maxwell theory with boundary
has been studied:

Sext → Ŝext =
∫

d4x
[

θ(x3)

(
Ji Ai +

1
2

JijBij

)
+ δ(x3) Ĵi∂3 Ai

]
. (29)

3. The Boundary Algebra

Differentiating the two Ward identities in Equations (16) and (17) with respect to the external
sources Ji(x), Jij(x) and Ĵi(x) and then going at J = 0 lead to six algebraic relations. We consider the
subalgebra obtained as follows.

Differentiating the Ward identity in Equation (16) with respect to Jm(x′), and then going at
vanishing external source, we get

∂X
mδ(3)(X − X′) = ∂X

i

(
−2k1εijkΔAmBjk (X′, X)− 4k2ΔAm∂3 Ai

(X′, X)
)

. (30)

In Equation (30), ∂X
i ≡ ∂

∂Xi
, and the time-ordered propagator between two generic fields Φ(X)

and Φ(X) is defined on the generating functional of the connected Green functions Zc[J], as usual, as

ΔΦΨ(X, X′) ≡ δ(2)Zc

δJΦ(X)δJΨ(X′)

∣∣∣∣∣
JΦ=JΨ=0

= θ(x0 − x′0)〈Φ(X)Ψ(X′)〉+ θ(x′0 − x0)〈Ψ(X′)Φ(X)〉.
(31)
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Hence, from Equation (30), we have

∂X
mδ(3)(X − X′) = δ(x0 − x′0)〈[Am(X′), 2k1B̃(X) + 4k2∂3 A0(X)]〉

− 2θ(x0 − x′0)〈
[
∂X

i

(
k1εijkBjk + 2k2∂3 Ai

)
(X)Am(X′)

]
〉

− 2θ(x′0 − x0)〈
[

Am(X′)∂X
i

(
k1εijkBjk + 2k2∂3 Ai

)
(X)

]
〉,

(32)

where we define
B̃(X) ≡ εαβBαβ(X) . (33)

The last two terms on the r.h.s. of Equation (32) vanish on-shell due to Equation (18), so that, at
vanishing external sources, we get

∂X
mδ(3)(X − X′) = δ(x0 − x′0)〈[Am(X′), 2k1B̃(X) + 4k2∂3 A0(X)]〉 . (34)

Following the same steps, differentiating the Ward identity in Equation (16) with respect to the
external sources Jmn(x′) and Ĵm(x′) , we get, respectively,

δ(x0 − x′0)〈[Bmn(X′), k1B̃(X) + 2k2∂3 A0(X)]〉 = 0 (35)

and
δ(x0 − x′0)〈[k1B̃(X) + 2k2∂3 A0(X), ∂3 Am(X′)]〉 = 0 . (36)

On the other hand, deriving the Ward identity in Equation (17) with respect to Jmn(x′), we obtain

δ(x0 − x′0)〈[Bmn(X′), k1B̃(X) + 2k2∂3 A0(X)]〉 = 0 . (37)

From the above algebraic relations, we get the following subalgebra formed by equal-time
commutators:

〈[Aα(X), 2k1B̃(X′) + 4k2∂3 A0(X′)]〉x0=x′0
= ∂X

α δ(2)(X − X′) (38)

〈
[
Aα(X), Aβ(X′)

]
〉x0=x′0

= 0 (39)〈[
2k1B̃(X) + 4k2∂3 A0(X), 2k1B̃(X′) + 4k2∂3 A0(X′)

]〉
x0=x′0

= 0 , (40)

which, written in terms of the 3D boundary fields ξi(X) (Equation (23)) and Φ(X) (Equation (24)),
implies

〈[Φ(X), εαβ∂αξβ(X′)]〉x0=x′0
= δ(2)(X − X′) (41)

〈
[
Φ(X), Φ(X′)

]
〉x0=x′0

= 0 (42)

〈
[
εαβ∂αξβ(X), εαβ∂αξβ(X′)

]
〉x0=x′0

= 0 . (43)

4. The Action Induced on the 3D Boundary

The commutators in Equations (41)–(43) can be interpreted as equal-time canonical commutation
relations for the 3D canonically conjugate variables

q(X) ≡ 1√
M

Φ(X)

p(X) ≡
√

Mεαβ∂αξβ(X) ,
(44)

and this allows us to identify the most general action S3D[Φ, ξ] induced on the planar boundary x3 = 0
of the 4D Maxwell-BF theory, which must display the following features:
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1. The 3D action S3D[Φ, ξ] must be a local integrated functional of the 3D fields in Equations (23)
and (24), with canonical mass dimension equal to three.

2. The 3D Lagrangian L3D[Φ, ξ] must be such that the relation between the canonically conjugate
variables in Equation (44) holds true:

p(X) =
∂L3D
∂q̇(X)

, (45)

which implies that the Lagrangian L3D[Φ, ξ] must contain time derivatives only in the term pq̇.
3. The action S3D[Φ, ξ] must display the two symmetries, which leave invariant the definitions in

Equation (23) and (24):

(a) gauge symmetry
δgaugeξi = ∂iΛ (46)

(b) shift symmetry
δshi f tΦ = constant . (47)

The most general action satisfying the above requests is

S3D[Φ, ξ] =
∫

d3X
[
c1(εαβFαβ

)(∂0Φ) + c2FαβFαβ + c3∂αΦ∂αΦ
]

, (48)

where Fαβ = ∂αξβ − ∂βξα and ci, i = 1, 2, 3 are constants. From the action S3D[Φ, ξ], we get the
equations of motion

δS3D
δΦ

= −2∂α(c1εαβ∂0ξβ + c3∂αΦ) = 0 (49)

δS3D
δξα

= 2∂β(c1εαβ∂0Φ + 2c2Fαβ) = 0 . (50)

5. Holographic Constraint and Duality

The equations of motion (Equations (49) and (50)) of the scalar-vector 3D action S3D[Φ, ξ]

(Equation (48)) must be compatible with the boundary conditions in Equations (14) and (15) of
the 4D Maxwell-BF theory on the planar boundary x3 = 0. To make this holographic contact [32],
the boundary condition in Equation (14) written in terms of the boundary degrees of freedom ξi
(Equation (23)) and Φ (Equation (24)) is

εijk∂jξk − κ∂iΦ = 0 , (51)

where, besides Equations (20) and (28), we cho0se

a2 = 0 , (52)

and we define the dimensionless normalized mass parameter

κ ≡ m
M

. (53)

We recognize in Equation (51) the duality relation found in [33], which extracts fermionic degrees
of freedom from bosonic ones [18,19,34]. We come back to this point below. Here, it appears as the
unique boundary condition that relates the 4D Maxwell-BF theory with boundary and its holographic
3D counterpart(s), as explicitly shown below.
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Notice that the three components i = {0, α} of Equation (51) are

εαβFαβ − 2κ∂0Φ = 0 (54)

εαβ∂0ξβ − εαβ∂βξ0 + κ∂αΦ = 0 , (55)

which are compatible with Equations (49) and (50) if

c2 = − 1
2κ

c1 ; c3 = κc1 (56)

and if the temporal gauge choice for the 3D gauge field ξi is imposed

ξ0 = 0 . (57)

6. Summary of Results and Discussion

When a boundary is introduced in a quantum field theory, a crucial role is played by the boundary
term, which in the case studied in this paper is represented by Sbd (Equation (10)), which depends by a
number of constant parameters which need to be fine tuned in order to determine the holographic
theory induced on the boundary. For the 4D Maxwell-BF theory, the boundary term finally reduces to

Sbd =
m
2

∫
d4x δ(x3)Ai Ai , (58)

which depends on one massive parameter m only.
In presence of a boundary, the question naturally arises of which boundary conditions should be

imposed. The procedure described in this paper leads to the following boundary condition compatible
with the holographic construction:

2k1εijkBjk + 4k2∂3 Ai − mAi

∣∣∣
x3=0

= 0 , (59)

which involves both the k1-BF and the k2-Maxwell terms. Notice that it depends on one parameter
only (m). It is of a nonstandard type, since it does not fall into the usual Dirichlet, Neumann or
Robin boundary conditions on each field, separately. On the contrary, it mixes both the fields, and the
effect of the Maxwell term is to introduce a dependence on the transverse component of the gauge
field with respect to the planar boundary, which is independent of the longitudinal components, and
consequently must be treated as an independent dynamical variable on the boundary. As we remarked,
an unexpected consequence of the boundary conditions in Equations (14) and (15) is that they can be
solved by the set of parameters in Equation (26), which implies, in particular, Neumann boundary
condition for the gauge field Aμ. This corresponds to eliminating any dependence from k2, i.e., from
the Maxwell term, in the physics on the boundary, represented by the current algebra as well as the
boundary conditions themselves.

The boundary breaks all the invariances of the unbounded theory: translations, parity and gauge
symmetries. The first consequence concerns the choice of the gauge conditions, implemented by the
gauge fixing term Sg f in Equation (7), which does not need to be covariant. With deeper consequences,
the Ward identities describing the Ward identities are broken by boundary terms:∫ ∞

0
dx3 ∂i Ji = −∂i

(
2k1εijkBjk + 4k2∂3 Ai

)∣∣∣
x3=0

(60)

∫ ∞

0
dx3 ∂j Jij = 4k1 εijk∂j Ak

∣∣∣
x3=0

. (61)
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At J = 0, i.e., going on-shell, the vanishing of the boundary breakings lead to define on x3 = 0 an
“electric” field and a “magnetic” field, and the corresponding potentials:

Ei ≡ Ai ∝ ∂iΦ (62)

Hi ≡ k1εijkBjk + 2k2∂3 Ai ∝ εijk∂jξk , (63)

which allow physically interpreting the contribution of the Maxwell term as a deformation of the
magnetic field on the boundary. Without Maxwell term, i.e., at k2 = 0, the fields Ai and Bij are
interpreted as electric and magnetic fields on the boundary, respectively. Their transverse component
do not enter in the game and could safely be eliminated by Neumann boundary conditions. In the
presence of the Maxwell term, this is no longer true for the gauge field A, for which both the
longitudinal and transverse components are physically important: the former as electric field, and the
latter as deformation of the main magnetic field represented by the dual of the B-field. The potentials
corresponding to the boundary electric and magnetic fields (Equations (62) and (63)) are the degrees of
freedom by means of which the holographic 3D theory is constructed: a vector field ξi and a scalar
field Φ.

The algebra obtained from the broken Ward identities in Equations (60) and (61) by differentiating
them with respect to the external sources J, written in terms of the boundary degrees of freedom is

〈[Φ(X), εαβ∂αξβ(X′)]〉x0=x′0
= δ(2)(X − X′) (64)

〈
[
Φ(X), Φ(X′)

]
〉x0=x′0

= 0 (65)

〈
[
εαβ∂αξβ(X), εαβ∂αξβ(X′)

]
〉x0=x′0

= 0 , (66)

which can be seen as equal-time canonical commutation relations between canonical variables q(X)

and p(X).
Once the canonical variables are identified, the corresponding action is found to be

S3D[Φ, ξ] = c1

∫
d3X

[
(εαβFαβ)(∂0Φ)− 1

2κ
FαβFαβ + κ∂αΦ∂αΦ

]
, (67)

which is the most general 3D local integrated functional built with a scalar and a vector field, respecting
power counting and invariant under the gauge (Equation (46)) and shift (Equation (47)) symmetries,
and, most importantly, whose equations of motion are compatible with the boundary conditions
in Equation (59):

εijkFjk − 2κ∂iΦ = 0 . (68)

Equation (68) coincides with the duality relation between a scalar and a vector field which has
been invoked in [18,19,33] as the main tool for the mechanism of fermionization of bosonic degrees
of freedom. In other words, the effective dynamical variables living on the boundary of the 4D
Maxwell-BF are fermionic. This feature is crucial for the interpretation of the boundary degrees of
freedom as the edge states of the 3D topological insulators [35,36]. The new fact that we are recovering
here is that this property, which has been related to the topological character of the bulk theory [17],
indeed also holds for a non-topological theory such as Maxwell-BF theory. We comment in more detail
on this point below. The duality relation in Equation (68) has also more field theoretical consequences.
Thanks to Equation (68), indeed, the action in Equation (67) is covariant, despite the appearances.
In fact, the scalar field Φ can be eliminated from the action through Equation (68), and we find the 3D
Maxwell theory

SMax[ξ] =
c1

2κ

∫
d3X FijFij . (69)
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Alternatively, the duality relation in Equation (68) allows us to trade the vector for the scalar field

SKK[Φ] = κc1

∫
d3X ∂iΦ∂iΦ . (70)

The scalar–vector 3D theory described by Equation (67), the Maxwell action in Equation (69)
and the massless Klein–Gordon action in Equation (70) are all holographic counterparts of the 4D
Maxwell-BF theory with planar boundary. The two actions in Equations (69) and (70) are related by
the duality relation in Equation (51), which may be written in a way to emphasize its strong–weak
coupling aspect:

∂iΦ ↔ εijkFjk ∪ κ ↔ 1
κ

. (71)

In this form, it is apparent that the coupling κ in Equation (53) governs the regimes where one
type of action dominates with respect to the other: at strong coupling (very large κ), the dominating
term is the Maxwell one, while, at weak coupling (very small κ), it is the massless scalar action which
dominates. At intermediate regimes, both the degrees of freedom are present, and the relevant action
is Equation (67), whose degrees of freedom are fermionic, due to Equation (68), as remarked above.
It is this intermediate regime which is relevant for the topological insulators, for which the same action
in Equation (67) has been proposed in [35]. Surprisingly, the order parameter κ, which distinguishes
the various regimes, is directly related through Equation (53) to the only effective parameter m, which
survives in the boundary term in Equation (58), and hence plays a much more crucial role than one
might expect at first sight.

We conclude this paper with a remark concerning the effect of the presence of the Maxwell term
in the bulk action in Equation (1) together with a general consideration on the topological nature of
quantum field theories. The main feature of topological quantum field theories is the lack of local
observables, the only observables being global geometrical properties of the manifolds on which they
are built. Technically, this means that the local cohomology of the BRS operator is empty. Examples
of topological quantum field theories are the 3D Chern–Simons theory and BF theories, which may
be defined in any spacetime dimensions. The 4D Maxwell-BF theory studied in this paper is not
topological, since its action depends on the metric through the Maxwell term, and its cohomological
structure is nontrivial. Nevertheless, the bulk action has no local observables since the equations of
motion enforce the vanishing of the Fμν tensor; thus, we are looking at a different class of “topological”
theories where the boundary is expected to carry all the physical information. If a boundary is
introduced, as above, this nontriviality reflects in the algebra derived from the Ward identities in
Equations (60) and (61), which is rather complicated. We write down the four relations (out of six) as
Equations (34)–(37), where the dependence on the Maxwell term is highlighted by the coefficient k2.
In addition, the boundary condition in Equation (59) explicitly depends on the Maxwell term, which
physically results in a perturbation of the magnetic field H (Equation (63)). On the other hand, when
constructing the holographic scalar-vector 3D theory, the presence of the Maxwell term is buried in
the definition of the vector potential ξi in Equation (63), and both 3D actions (in their duality-related
representations, Equations (67), (69) and (70), and the duality relation, Equation (68)) are the same as
in the case of pure BF with boundary. In other words, from the holographic point of view, Maxwell-BF
theory with boundary is indistinguishable from the pure topological BF theory, as if holography would
protect the topological character of bulk theories.
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Abstract: The average helicity of a given electromagnetic field measures the difference between
the number of left- and right-handed photons contained in the field. Here, the average helicity is
derived using the conformally invariant inner product for Maxwell fields. Several equivalent integral
expressions in momentum space, in (r, t) space, and in the time-harmonic (r, ω) space are obtained,
featuring Riemann–Silberstein-like fields and potentials. The time-harmonic expressions can be
directly evaluated using the outputs of common numerical solvers of Maxwell equations. The results
are shown to be equivalent to the well-known volume integral for the average helicity, featuring the
electric and magnetic fields and potentials.

Keywords: electromagnetic helicity; conformal symmetry

The helicity of electromagnetic fields has received research attention since at least the 1960s [1–8].
Recently, the topic has picked up a considerable pace, partly because of the relevance of helicity in
chiral light–matter interactions [9–24]. In this context, one of the most basic quantities is the average
value of electromagnetic helicity for a given free electromagnetic field, which can be interpreted
as the pseudo-scalar that measures the difference between the number of left- and right-handed
polarized photons contained in the field [1,2]. The most common expression for average helicity
is [1–3,6–8,11–15,17,21–24]:

1
2

∫
R3

dr B(r, t) · A(r, t)− E(r, t) · C(r, t),

where E(r, t) [C(r, t)] and B(r, t) [A(r, t)] are the real-valued electric and magnetic fields[potentials],
respectively. The use of two potentials is a common strategy in this context [2,8,11–13,17,25].
In particular, it allows the obtaining of an integrand which is local in r. The above equation has
been arrived at in several ways. This article contains a different one.

In this article, several different integral expressions for the average helicity of a given
electromagnetic field are obtained starting from the inner product that ensures invariance of the
result under the largest symmetry group of Maxwell equations: The conformal group. We show that
the result from the derived expressions coincides with that of the above integral. In our approach,
all the fields are complex because only positive frequencies are included. The advantages of this
choice regarding the treatment of helicity with Riemann-Silberstein-like fields and their corresponding
potentials are discussed. Integral expressions in momentum space, (r, t) space, and (r, ω) space are
obtained. The numerical evaluation of the time-harmonic (r, ω) expressions, whose integrands are
local in r, can be conveniently performed using common numerical Maxwell solvers. The formalism is
used to obtain expressions for the computation of molecular circular dichroism in Appendix C.

We start by writing down the conformally invariant form of the average helicity and showing
that the result coincides with the common definition. To such end, we consider M, the vector space
of finite-energy solutions to Maxwell’s equations in free space. We denote vectors in such space by
kets such as |F〉, which represent particular electromagnetic field solutions. We are interested in
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the average helicity of the field. The key ingredient for the definition of average properties is an
inner product between two vectors |F〉 and |G〉, denoted 〈G|F〉, which endows M with the structure
of a Hilbert space. Properties such as energy, linear momentum, helicity, etc...., are represented by
Hermitian operators which map elements of M back onto itself. Then, for a given field |F〉, the average
value of a given property represented by a Hermitian operator Γ is the quadratic form

〈F|Γ|F〉, (1)

that is, the projection of the vector |F〉 onto the vector Γ|F〉. Since Γ is Hermitian, 〈F|Γ|F〉 must be a
real number.

The crucial question of which inner product to choose was settled by Gross by requiring the
inner product to be invariant under the conformal group [26]. That is: Given any two solutions |F〉
and |G〉, and their corresponding transformed versions under any transformation in the conformal
group, |F̄ 〉 and |Ḡ〉, the inner product must be so that 〈F|G〉 = 〈F̄ |Ḡ〉. Gross showed in Ref. [26]
that this requirement essentially determines the exact expression of the inner product, which we
will use later. The conformal group includes space–time translations, spatial rotations, and Lorentz
boosts, which together form the Poincaré group, plus space–time scalings, and special conformal
transformations [26]. The conformal group is the largest symmetry group of Maxwell equations in free
space. Conformally invariant results have hence the maximum possible validity in electromagnetism.

An important distinction is in order at this point. The use of the conformally invariant inner
product ensures the maximal validity for average quantities as defined by Equation (1): The projection
of the vector |F〉 onto the vector Γ|F〉 is equal to the projection of |F̄ 〉 = T|F〉 onto |ΓF〉 = TΓ|F〉,
i.e., 〈F|T†TΓ|F〉 = 〈F|Γ|F〉, for any transformation T in the conformal group, where T† is the
Hermitian adjoint of T. Satisfying this demand amounts to showing that an inner product exists with
respect to which the conformal group acts unitarily (TT† = T†T = I for all T, where I is the identity)
on the vector space of solutions of Maxwell equations [26]. Loosely speaking, this means that the
value of the averages in Equation (1) will not change regardless of “the conformal point of view” or
“conformal change of coordinate system”. This will hold for average helicity, and also for average
momentum, average angular momentum, etc.. . . A different matter is whether the average quantity in a
conformally transformed field is the same as the average quantity in the initial field, for all conformal
transformations. In this case, we are asking whether |F〉 and T|F〉 have the same average value of a
given property Γ, i.e., whether

〈F|T†ΓT|F〉 = 〈F|Γ|F〉 for all T, (2)

which is often not the case, such as for example when a Lorentz boost simultaneously changes the
energy and momentum of a given field. Incidentally, it will be clear later that Equation (2) is actually
met in the case of average helicity.

Writing down an explicit expression for Equation (1) requires us to choose an explicit
representation for the vectors in M and the operators acting on them. We choose the following
representation for the vectors in M:

|F〉 ≡ F (k) =

[
F+(k)

F−(k)

]
, (3)

where the F±(k) define the plane-wave components of a version of the Riemann-Silberstein vectors [5]

D(r, t)√
2ε0

± i
B(r, t)√

2μ0
=

√
ε0

2
[E(r, t)± iZ0H(r, t)] = F±(r, t)

=
∫
R3−{0}

dk√
(2π)3

F±(k) exp(ik · r − iωt), with c0
√

k · k = c0k = ω > 0,
(4)

45



Symmetry 2019, 11, 1427

where ε0, μ0, c0, and Z0 =
√

μ0/ε0 are the vacuum’s permittivity, permeability, speed of light, and
impedance, respectively, k is the wavevector, and ω = c0k = c0

√
k · k is the angular frequency.

The F±(k) can be further decomposed as F±(k) = ê±(k̂) f±(k), where f±(k) are complex-valued
scalar functions and ê±(k̂) are the k̂-dependent polarization vectors for each handedness(helicity)
(The ê±(k̂) can be obtained by the rotation of (±x̂ − iŷ)/

√
2, the two vectors corresponding to

k̂ = ẑ:
√

2ê±(k̂) = Rz(φ)Ry(θ) (∓x̂ − iŷ), where θ = arccos (kz/|k|) and φ = arctan
(
ky, kx

)
). We

note that k̂ · ê±(k̂) = 0, which makes the F±(k)[F±(r, t))] transverse functions, namely k̂ · F±(k) =
∇ · F±(r, t) = 0. The origin k = 0 is removed in the integral in Equation (4) because we are considering
electrodynamics and excluding electro- and magneto-statics, whereby |k| = ω/c0 = 0 needs to
be excluded. It important to note that only positive frequencies are included in Equation (4). This amounts
to considering positive energies only, which is possible in electromagnetism since the photon is its
own anti-particle. Only one sign of the energy (frequency) is needed because the same information
is contained on both sides of the spectrum ([5] § 3.1 and [4]). When only positive frequencies are
included, D(r, t), B(r, t), E(r, t) and H(r, t) in Equation (4) are complex-valued fields. With X standing
for D, B, E or H:

X(r, t) =
∫ ∞

>0

dω√
2π

Xω(r) exp(−iωt). (5)

We define the complex-valued fields so that the typical real-valued versions are obtained as

X (r, t) =
∫ ∞

>0

dω√
2π

Xω(r) exp(−iωt) + Xω(r)∗ exp(iωt). (6)

The restriction to positive frequencies is particularly consequential for the treatment of
helicity, the generalized polarization handednesses of the field. One of the advantages of the
Riemann-Silberstein vectors is their ability to encode the helicity content of the field. They are
the eigenstates of the helicity operator and potentially allow for the splitting of the two polarization
handednesses in any field, including near and evanescent fields. However, when they are defined
by means of real-valued fields, as in D(r,t)√

2ε0
± i B(r,t)√

2μ0
, their use for splitting the two helicities is not as

simple as it becomes when complex-valued fields are used. With real-valued fields we have that the

two ± fields determine each other through complex conjugation
[
D(r,t)√

2ε0
+ i B(r,t)√

2μ0

]∗
= D(r,t)√

2ε0
− i B(r,t)√

2μ0
,

which is at odds with the a priori physical independence of the two helicity components of the
electromagnetic field. For example, the complex conjugation connection means that the two ± squared

norms
∣∣∣∣D(r,t)√

2ε0
± i B(r,t)√

2μ0

∣∣∣∣2, which could intuitively be thought of as the (r, t)-local helicity intensities,

become equal at all space–time points
∣∣∣∣D(r,t)√

2ε0
+ i B(r,t)√

2μ0

∣∣∣∣2 =

∣∣∣∣D(r,t)√
2ε0

− i B(r,t)√
2μ0

∣∣∣∣2. This contradicts, for

example, the fact that there can be electromagnetic fields containing only one of the two helicities,
e.g., any linear combination of plane-waves with the same polarization handedness. The restriction
to positive frequencies overcomes these limitations: In Equation (4) F+(r, t) contains no information
about F−(r, t), in particular F+(r, t)∗ �= F−(r, t).

The choice of the representation in Equation (3), where the two helicity components are
distinguished, as opposed to other more common possibilities where the electric and magnetic fields
are distinguished, can also be motivated by the transformation properties of the two different options
with respect to the conformal group. Namely helicity is invariant under the conformal group [27,28],
i.e., all the generators of the conformal group commute with the helicity operator. This was established
by Mack and Todorov in Ref. [27] when they showed that a Casimir operator of the conformal group
is linearly related to the helicity operator. The invariance can also be inferred from the facts that (i)
helicity is ultimately proportional to the cosine of an angle (The cosine of the angle between the vector
of spin-1 matrices S and the linear momentum operator P is defined as cos ( � (S, P)) = S·P

|P||S| . Then,
using the definition of the helicity operator Λ in Equation (8) we can write Λ = cos ( � (S, P)) |S|.
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However, the action of |S| on members of M is trivial since |S|2 =
(
S2

1 + S2
2 + S2

3
)
= 2I where I is

the identity. This can be seen in ([29] Equation (5.54).), and is readily verified by direct calculation
using the spin-1 matrices.), and that, (ii) the preservation of angles is guaranteed by conformal
transformations. In the representation of Equation (3) this invariance means that no matter which
conformal transformation is applied to |F〉, the F+(k) upper components of F (k) will never end
up on the lower part, and vice-versa. This reduces the algebraic complexity of some expressions
and manipulations. In sharp contrast to this, what is meant by electric and magnetic fields is not
conformally invariant. Actually, the meanings of “electric” and “magnetic” are not even relativistically
invariant since electric and magnetic fields are intermixed by Lorentz boosts ([30] Equation (11.149)).
An important physical fact about helicity can be deduced from its conformal invariance. Since the
helicity operator (Λ) commutes with any T in the conformal group (TΛ = ΛT), and T is unitary
with respect to the chosen inner product (TT† = T†T = I), we can readily see that Equation (2)

is met (〈F|T†ΛT|F〉 ΛT=TΛ
= 〈F|T†TΛ|F〉 T†T=I

= 〈F|Γ|F〉.): The average helicity of a conformally
transformed field is the same as the average helicity of the initial field.

Let us go on to computing the average helicity of a given field as a conformally invariant inner
product. We will explicitly keep the constants ε0, μ0, c0, and Z0 in the expressions, and use the four
fields D, B, E and H. These choices [21,23] facilitate the re-use of the formulas when a description such
as the one in Equation (4) is possible in a non-vacuum background, such as for example in an infinite
isotropic and homogeneous linear medium.

Following Gross [26], and Bialynicki-Birula ([31] § 9) and ([5] § 5), the definitions in Equations (1)
and (3) allow us to write the average value of any property Γ as (Note: This is seen by comparing
Equation (4) with ([5] Equations (4.11)–(4.12)), and Equation (7) particularized to the energy operator

Γ → H =

[
ωI3×3 03×3

03×3 ωI3×3

]
with ([5] Equation (4.13)), and setting h̄ = 1.)

〈F|Γ|F〉 =
∫
R3−{0}

dk

c0|k|
F (k)†ΓF (k), (7)

where † means transpose conjugate. Equation (7) is an explicit expression of the conformally invariant
inner product between |F〉 and Γ|F〉 (Note: When Equation (7) is brought to the (r, t) domain, the
k-local expression results in the double integral

∫
R3 dr

∫
R3 dr̄ of a manifestly non-r-local integrand

including a term such as 1/|r − r̄|2 (see [26] Equation (6) and [5] Equation (5.7))).
We are now ready to focus our attention on the average value of helicity. The helicity operator Λ

is defined as the projection of the angular momentum operator vector J onto the direction of the linear
momentum operator vector P:

Λ =
J · P

|P| =
S · P

|P| , (8)

where for electromagnetism, S is the vector of spin-1 matrices (The second equality can be seen to
follow, for example, from considering the coordinate representation of the angular momentum and
linear momentum operator vectors, (ref. [5] Equations (5.24) and (5.25)): J ≡ −ir ×∇+ S, P ≡ −i∇.
Their inner product then reads J · P ≡ −(r ×∇) · ∇ − iS · ∇. The first term vanishes since it is the
divergence of a curl).

We start by particularizing Equation (7) to the helicity operator Λ.

〈F|Λ|F〉 =
∫
R3−{0}

dk

c0|k|
F (k)†ΛF (k) =

∫
R3−{0}

dk

c0|k|

[
F+(k)

F−(k)

]† [
ik̂× 0

0 ik̂×

] [
F+(k)

F−(k)

]
, (9)

where the last expression contains the explicit form of the helicity operator in our choice of
representation (This follows from the definition of helicity in Equation (8): S · P/|P| ≡ ik̂×,
where the equivalence follows from applying ([5] Equation (2.2))) in momentum space where
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P → k =⇒ P/|P| → k̂). We now use the fact that the F±(k) are eigenstates of helicity, namely
ik̂ × F±(k) = ±F±(k), to write

〈F|Λ|F〉 =
∫
R3−{0}

dk

c0|k|
F+(k)

†F+(k)− F−(k)†F−(k) =
∫
R3−{0}

dk

c0|k|
|F+(k)|2 − |F−(k)|2. (10)

We will now show that Equation (10) is equivalent to the most common integral expression
of the helicity average. To such end, and taking advantage of the fact that k �= 0, we define the
helicity potentials

V(k) = 1
ikc0

F (k) =
1

ikc0

[
F+(k)

F−(k)

]
=

[
V+(k)

V−(k)

]
, (11)

which in the (r, t) representation, and recalling that −iω → ∂t, are seen to be related to F±(r, t) as

− ∂tV±(r, t) = F±(r, t) =
√

ε0

2
[E(r, t)± iZ0H(r, t)] , (12)

from where we can use ([21] Equation (2)), namely −∂tC(r, t) = H(r, t) and − ∂tA(r, t) = E(r, t),
to recognize that these helicity potentials are linear combinations of complex versions of the transverse
real-valued “magnetic” A(r, t) and “electric” C(r, t) potentials [2,8,11–13,17,25].

V±(r, t) =
√

ε0

2
[A(r, t)± iZ0C(r, t)] . (13)

Appendix A contains some background information about the electric potential. Linear
combinations very similar to Equation (13) have been recently introduced by Elbistan et al. in
Ref. [17], albeit using real-valued vector functions instead of our complex A(r, t) and C(r, t). As
previously discussed, this difference is relevant for treating helicity. When real-valued fields are used
in the right hand side of Equation (13), it follows that V+(r, t)∗ = V−(r, t), which ultimately leads to a
zero value of the average helicity as reported in [17].

It is also worth pointing out that the V±(k) functions are transverse, i.e., k̂ · V±(k) = 0,
which follows from Equation (11) and the previously mentioned property k̂ · F±(k). The helicity
potentials only contain the transverse degrees of freedom, the same as the free electromagnetic field,
which ensures that the results obtained using V±(k) are gauge independent.

We proceed by using Equation (11) and the central expression in Equation (10) to obtain

〈F|Λ|F〉 = i
∫
R3−{0}

dk F+(k)
†V+(k)− F−(k)†V−(k). (14)

Equation (14) can now be brought to the (r, t) domain as follows. First, we apply the substitutions
F±(k) → F±(k) exp(−ic0k), and V±(k) → V±(k) exp(−ic0k)

〈F|Λ|F〉 =

i
∫
R3−{0}

dk [F+(k) exp(−ic0k)]† [V+(k) exp(−ic0k)]− [F−(k) exp(−ic0k)]† [V−(k) exp(−ic0k)] .
(15)

These changes do not affect the result, but allow us to see from Equation (4) that the
F±(k) exp(−ic0k) are the three-dimensional Fourier transforms (r → k) of F±(r, t). The same relation
holds between V±(k) exp(−ic0k) and V±(r, t). We can now apply applying Parseval’s theorem, i.e.,
the unitarity of the inverse Fourier transform k → r, to each of the two terms in the subtraction in
Equation (15):

〈F|Λ|F〉 = i
∫
R3

dr F+(r, t)†V+(r, t)− F−(r, t)†V−(r, t), (16)

where the integrand is local in r. We show in Appendix A that when Equation (10) is brought to
the (r, t) domain instead, the 1/|k| term results in the double integral

∫
R3 dr

∫
R3 dr̄ of a manifestly
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non-r-local integrand including a term such as 1/|r − r̄|2. The inconvenient 1/|k| term is absorbed in
the definition of the potentials in Equation (11).

To further approach the most common expression of the average helicity, we now substitute

F±(r, t) =
D(r, t)√

2ε0
± i

B(r, t)√
2μ0

, V±(r, t) =
√

ε0

2
[A(r, t)± iZ0C(r, t)] , (17)

into Equation (16) and obtain

〈F|Λ|F〉 = i
2

∫
R3

dr[
D(r, t)†A(r, t) + iZ0D(r, t)†C(r, t)− i

Z0
B(r, t)†A(r, t) + B(r, t)†C(r, t)

]
−
[

D(r, t)†A(r, t)− iZ0D(r, t)†C(r, t) +
i

Z0
B(r, t)†A(r, t) + B(r, t)†C(r, t)

]
=
∫
R3

dr
1

Z0
B(r, t)†A(r, t)− Z0D(r, t)†C(r, t),

(18)

which is a complex version of the well-known integral for the average helicity featuring real-valued
fields, as found e.g., in ([21] Equation (6)). Appendix B shows that the results of the complex and real
versions coincide.

The k-domain expressions in Equations (10) and (14), and the (r, t)-domain expression in
Equation (16) produce the correct result. We now obtain (r, ω)-domain expressions. The time-harmonic
decomposition is often used in both theoretical investigations and numerical computations.

We start by noting that the result of the integral in Equation (16) is independent of time
(Indeed, the simplifying arbitrary choice t = 0 is made by Gross in [26] for evaluating the inner
product with integrals featuring (r, t)-dependent integrands). The time independence of 〈F|Λ|F〉,
manifest in Equations (10) and (14), is ultimately due the fact that 〈F|Λ|F〉 must be invariant under
time translations since such transformations are in the conformal group, i.e., 〈F|Λ|F〉 cannot depend
on time. This can be exploited to obtain expressions for 〈F|Λ|F〉 involving the time-harmonic
decomposition of the fields. To such end, we go back to Equation (16), and expand each term in the
integrand into their frequency components

〈F|Λ|F〉 = i
∫
R3

dr[∫ ∞

>0

dω√
2π

Fω
+(r) exp(−iωt)

]† [∫ ∞

>0

dω√
2π

Vω
+(r) exp(−iωt)

]
−
[∫ ∞

>0

dω√
2π

Fω
−(r) exp(−iωt)

]† [∫ ∞

>0

dω√
2π

Vω
−(r) exp(−iωt)

]
= i

∫
R3

dr

∫ ∞

>0

dω√
2π

∫ ∞

>0

dω̄√
2π

[
Fω̄
+(r)

†Vω
+(r)− Fω̄

−(r)
†Vω

−(r)
]

exp (−i(ω − ω̄)t) .

(19)

Let us examine the last line of Equation (19). Because 〈F|Λ|F〉 cannot depend on time, and
since the two helicities are independent of each other, it follows that only the ω = ω̄ components can
contribute to the end result. This allows us to obtain the following three equivalent expressions:

(2π) 〈F|Λ|F〉 =i
∫
R3

dr

∫ ∞

>0
dω Fω

+(r)
†Vω

+(r)− Fω
−(r)

†Vω
−(r)

=
∫
R3

dr

∫ ∞

>0
dω

1
ω

(
|Fω

+(r)|2 − |Fω
−(r)|2

)
=
∫
R3

dr

∫ ∞

>0
dω ω

(
|Vω

+(r)|2 − |Vω
−(r)|2

)
,

(20)
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where the equalities readily follow from Fω
±(r) = iωVω

±(r), which follows from Equation (12).
Expressions that are local in r, such as Equations (14) and (20), justify the consideration of the

average helicity in a finite volume D. This then allows use of the corresponding expressions in practical
situations where numerical solvers calculate the fields in finite regions of space. The expressions in
Equation (20) are particularly adapted to the output of finite-element-method solvers such as COMSOL
and JCM, which use the time-harmonic decomposition of r-dependent fields.

Finally, regarding applications, the electromagnetic helicity is particularly relevant in chiral
light–matter interactions. Among these, the interaction of the field with chiral molecules is one of the
most researched cases, partly because the optical sensing of chiral molecules is important in chemistry
and pharmaceutical applications. In Appendix C we use the above formalism to derive expressions for
computing the circular dichroism signal for two different settings of the light-molecule interaction:
The 6 × 6 dipolarizability tensor and the T-matrix.

In conclusion, several equivalent expressions for the average value of the electromagnetic helicity
of a given field have been obtained from a starting point featuring maximal electromagnetic invariance,
i.e., from an expression whose result is invariant under the conformal group. Some of the obtained
expressions can be conveniently evaluated using the outputs of common Maxwell solvers.
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Appendix A. The Use of Two Potentials for Obtaining r-Local Integrands

The use of two potentials, one magnetic and one electric, has a long tradition in the studies of helicity
and of the symmetry generated by the helicity operator: Electromagnetic duality [2,8,11–13,17,25]. Duality
can be seen as the underlying reason for adding an electric potential next to the magnetic one.

In the absence of sources, the (real-valued) electric potential C(r, t) is typically defined by first
fixing its transverse part

E⊥(r, t) = −∇× C(r, t), (A1)

where E⊥(r, t) is the transverse electric field, and then exploiting the fact that C(r, t) has its own
gauge freedom [2,13,22] to fix the longitudinal part by a choice of gauge. When the radiation gauge
(∇ · C(r, t) = 0) is chosen, C(r, t) becomes a transverse field, containing the same kind of degrees
of freedom as the radiation electromagnetic fields. The electric potential has also been used in the
presence of sources [13,22,25]. The choice of the radiation gauge is also adequate in this case, since it
can be shown that the longitudinal degrees of freedom of the field can always be adscribed to the
sources instead ([32] I.B.5) and ([33] Chap. XXI, § 22).

In the particular context of integral expressions for the average electromagnetic helicity, the
introduction of potentials allows to obtain r-local integrands. This has been shown in the main text in
the derivations leading to the r-local Equation (16). We will know bring Equation (10), which does not
involve the potentials, to the (r, t) domain and see how precisely the non-r-locality arises. We start
hence from Equation (10), which only contains the F±(k) fields, and apply the non-result-altering
substitutions F±(k) → F±(k) exp(−ic0k):

〈F|Λ|F〉 =∫
R3−{0}

dk

c0|k|
[F+(k) exp(−ic0k)]† [F+(k) exp(−ic0k)]− [F−(k) exp(−ic0k)]† [F−(k) exp(−ic0k)] .

(A2)

We will first focus on the first term of the integrand, which we consider as the k-point-wise inner
product of two functions: F+(k) exp(−ic0k) and F+(k) exp(−ic0k)/|k|. In order to apply Parseval’s
theorem and bring Equation (A2) to the (r, t) domain, the inverse 3D Fourier transforms of the
two functions are needed. We know from the definitions in Equation (4) that the inverse 3D Fourier
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transform of F+(k) exp(−ic0k) is F+(r, t). The inverse transform of the product F+(k) exp(−ic0k)× 1
|k|

can be obtained using the convolution theorem and the inverse Fourier transform, denoted by F−1
3D {·},

of each of the two factors (see Equations (B.3) and (B.4) and Tab. II in ([32] I.B.2)):

F−1
3D

{
F+(k) exp(−ic0|k|)×

1
|k|

}
=

1
2π2

∫
R3

dr̄ F+(r̄, t)× 1
|r − r̄|2 . (A3)

Using Equation (A3) and its obvious counterpart for the second term in the integrand of
Equation (A2), we can use Parseval’s theorem to write:

〈F|Λ|F〉 = 1
2π2c0

∫
R3

dr

∫
R3

dr̄
F+(r, t)†F+(r̄, t)− F−(r, t)†F−(r̄, t)

|r − r̄|2 . (A4)

As explained in the main text, the typically undesired non-locality of the integrand in
Equation (A4) is avoided by the introduction of the helicity potentials, since they absorb the 1/|k|
term into their definition. We note that previously existing non-local expressions for average
electromagnetic helicity, like ([34] Equation (65)) and ([24] Equation (36)), can be shown to be
equivalent to Equation (A4). The same arguments show why the introduction of the magnetic and
electric potentials, A(r, t) and C(r, t), results in a r-local integrand in the typical definition of average
electromagnetic helicity. Finally, we note that mixed formulations exist where only one of the two
potentials is used, which still result in non-r-local integrands ([3] Equation (2.6)).

Appendix B. Equivalence between Complex and Real Versions

In this Appendix we show that Equation (18) of the main text, featuring complex-valued fields

〈F|Λ|F〉 =
∫
R3

dr
1

Z0
B(r, t)†A(r, t)− Z0D(r, t)†C(r, t), (A5)

featuring complex-valued fields is equivalent to the well-known integral for the average helicity
featuring real-valued fields, as found e.g., in ([21] Equation (6)):

1
2

∫
R3

dr
1

Z0
B(r, t) · A(r, t)− Z0D(r, t) · C(r, t). (A6)

We will use properties of complex-valued vector fields whose Fourier transforms contain only
positive frequencies, as defined in Equation (5) for X standing for A, B, C, D, and E:

X(r, t) =
∫ ∞

>0

dω√
2π

Xω(r) exp(−iωt). (A7)

The real and imaginary parts of X(r, t) = Xre(r, t) + iXim(r, t) are related by the Hilbert transform,
and then their Fourier transforms, denoted by F{·}, meet ([35] p. 49):

F{Xim(r, t)} = (−i sign ω)F{Xre(r, t)}. (A8)
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We now proceed by writing Equation (A5) using the real and imaginary parts of each field.
Since the end result of the integral must be a real number, we can already discard the imaginary part
of the integrand:

〈F|Λ|F〉 =
∫
R3

dr
1

Z0
Bre(r, t)†Are(r, t) +

1
Z0

Bim(r, t)†Aim(r, t)

− Z0Dre(r, t)†Cre(r, t)− Z0Dim(r, t)†Cim(r, t) =∫
R3

dr

[
1

Z0
Bre(r, t)†Are(r, t)− Z0Dre(r, t)†Cre(r, t)

]
+[

1
Z0

Bim(r, t)†Aim(r, t)− Z0Dim(r, t)†Cim(r, t)
]

.

(A9)

We will now show that the two expressions in square brackets produce the same contribution.
To such end, let us focus on one of their terms and use the time-harmonic decomposition (Note: The
one sided integral in Equation (6) can be written as a two sided integral over the frequency axis and
the familiar result Xω(r)∗ = X−ω(r) is recovered).∫

R3
dr Bim(r, t)†Aim(r, t) =∫

R3
dr

[∫ ∞

−∞

dω√
2π

F{Bim(r, t)} exp(−iωt)
]† [∫ ∞

−∞

dω√
2π

F{Aim(r, t)} exp(−iωt)
]

.
(A10)

The same considerations that take the last line of Equation (19) to the first line of Equation (20)
can be used to write:

(2π)
∫
R3

dr Bim(r, t)†Aim(r, t) =
∫
R3

dr

∫ ∞

−∞
dω F{Bim(r, t)}†F{Aim(r, t)}. (A11)

We now use Equation (A8) on the last expression in Equation (A11)

(2π)
∫
R3

dr Bim(r, t)†Aim(r, t) =∫
R3

dr

∫ ∞

−∞
dω [(−i sign ω)F{Bre(r, t)}]† [(−i sign ω)F{Are(r, t)}] =∫

R3
dr

∫ ∞

−∞
dω F{Bre(r, t)}†F{Are(r, t)} = (2π)

∫
R3

dr Bre(r, t)†Are(r, t),

(A12)

where the last equality follows by comparison with Equation (A11). Equation (A12) shows that the
two expressions inside the square brackets in Equation (A9) produce the same contribution, since the
steps leading to Equation (A12) can be applied to any of the product terms. We can hence write:

〈F|Λ|F〉 = 2
∫
R3

dr
1

Z0
Bre(r, t)†Are(r, t)− Z0Dre(r, t)†Cre(r, t). (A13)

Equivalence with Equation (A6) is shown after considering that the definition of the typical real
fields X (r, t) in Equation (6) implies that X (r, t) = 2Xre(r, t). Equation (A6) is finally reached by
substituting all the Xre(r, t) fields with X (r, t)/2 in Equation (A13).

Appendix C. Expressions for Computing Circular Dichroism

Let us assume that a chiral molecule is located at point r, and embedded in a possibly
frequency-dispersive, homogeneous, isotropic, achiral, and non-magnetic medium with permittivity
εω

m, permeability μω
m = μ0, impedance Zω =

√
μ0/εω

m, speed of light cω = 1/
√

μ0εω
m. The wavenumber

in such medium is kω = ω/cω. In this Appendix, these frequency-dependent quantities are assumed
to substitute their constant vacuum counterparts in all the equations in the main text.
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The most common time-harmonic light-molecule interaction model is the 6 × 6 dipolarizability
tensor, which relates the external electric and magnetic fields at the location of the molecule with the
electric [pω(r)] and magnetic [mω(r)] dipoles induced by the fields in the molecule:[

pω(r)

mω(r)

]
=

[
αω

ee αω
em

αω
me αω

mm

] [
Eω(r)

Hω(r)

]
. (A14)

One of the most relevant techniques for chiral molecule sensing is Circular Dichroism (CD),
which measures their differential absorption upon subsequent illumination with the two helicities.
Assuming that the field scattered by the molecule, i.e. the field radiated by the induced dipoles in
Equation (A14), is negligible with respect to the incident field, it is possible to write the rotationally
averaged molecular differential absorption as [36].

CD(r) =
∫ ∞

>0
dω Re{αω

me}
ωcω

2

[
|Fω

+(r)|2 − |Fω
−(r)|2

]
=
∫ ∞

>0
dω Re{αω

me}2c2
ωCω(r), (A15)

where Re{αω
me} is the real part of the rotational average of αω

me, Cω(r) is the optical chirality density
introduced by Tang and Cohen [37], and the second equality follows from ([16] Equation (5)) and
Equation (4).

Besides the dipolarizability model in Equation (A14), other light-molecule interaction descriptions
are possible. For example, the T-matrix of the molecule may be used. The T-matrix is a common
object in physics and engineering, which is intrinsically able to include all the multipolar orders of the
light-matter interaction, and allows to efficiently compute the coupled electromagnetic response of
different objects in a systematic and rigorous way [38]. The conversion between the dipolarizability
tensor and the T-matrix of the molecule up to the dipolar order is ([39] Equation (A15)):[

αω
ee αω

em
αω

me αω
mm

]
=

−i6π

cωZωk3
ω

[
Tω

NN iZTω
NM

−icωTω
MN cωZTω

MM

]
, (A16)

where N(M) refers to the electric(magnetic) character. We may now use this conversion to substitute
Re{αω

me} in Equation (A15):

CD(r) =
∫ ∞

>0
dω Re{Tω

MN}(3πc3
ω)

|Fω
+(r)|2 − |Fω

−(r)|2
ω2

=
∫ ∞

>0
dω Re{Tω

MN}(3πc3
ω)
[
|Vω

+(r)|2 − |Vω
−(r)|2

]
.

(A17)

In experimental measurements, a solution of chiral molecules is confined in its recipient,
which defines a volume D. Assuming uniform concentration of molecules over D, the total CD signal
can be computed by the volume integral of any of the expressions in Equation (A15) or Equation (A17)
over D. For example:

CD = ρ
∫
D

dr

∫ ∞

>0
dω Re{Tω

MN}(3πc3
ω)

|Fω
+(r)|2 − |Fω

−(r)|2
ω2

= ρ
∫ ∞

>0
dω

Re{Tω
MN}(3πc3

ω)

ω

∫
D

dr
|Fω

+(r)|2 − |Fω
−(r)|2

ω
,

(A18)

where ρ is a constant that depends on the molecular concentration. In the last expression, we recognize
one of the integrands from the average helicity in Equation (20).
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Abstract: The distinction of chiral and mirror symmetric objects is straightforward from a geometrical
point of view. Since the biological as well as the optical activity of molecules strongly depend on their
handedness, chirality has recently attracted high interest in the field of nano-optics. Various aspects
of associated phenomena including the influences of internal and external degrees of freedom on
the optical response have been discussed. Here, we propose a constructive method to evaluate the
possibility of observing any chiral response from an optical scatterer. Based on solely the T-matrix of
one enantiomer, planes of minimal chiral response are located and compared to geometric mirror
planes. This provides insights into the relation of geometric and optical properties and enables
identifying the potential of chiral scatterers for nano-optical experiments.

Keywords: optical chirality; mirror symmetry; helicity; optical scatterer

1. Introduction

It is usually a simple task to tell by eye whether an object is chiral or not: Achiral objects are
superimposable onto their mirror image and, accordingly, they possess a mirror plane [1]. Recently,
chiral scatterers have gained significant interest in nano-optics due to their potential to enhance the
weak optical signal of chiral molecules [2–4]. Especially, the quantities of optical chirality and optical
helicity as well as their relation to duality symmetry are subjects of current research [5]. The most
established experimental technique in this field is the analysis of the circular dichroism (CD) spectrum
which equals the differential energy extinction due to the illumination by right- and left-handed
circularly polarized light [6].

In order to observe such chiral electromagnetic response, it seems to be obvious that geometrically
chiral scatterers are required. However, it has been shown that extrinsic chirality, that is, a chiral
configuration of the illumination and geometric parameters, yields comparable effects as intrinsically
chiral objects [7]. By tuning the far-field polarization of the illumination, large chiral near-fields may
even be generated in the viscinity of achiral objects [8]. In CD measurements, randomly orientied
molecules are investigated, which can be classified by their T-matrix [9]. The latter has been used for
quantifying the electromagnetic (e.m.) chirality, based on a novel definition of it [10].

However, the quantification of the geometric chirality is an elusive task [11] and even the
unambiguous association of the terms right- and left-handed enantiomer of a general object is
impossible [12]. Different coefficients attempting to rate the chirality of an object are based on the
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maximal overlap of two mirror images [13] as well as the Hausdorff distance [14]. The choice of
a specific coefficient determines the most chiral object [15], that is, there is no natural choice for
quantifying geometric chirality. This also holds for the various figures of merit estimating the e.m.
chirality. Similar correlations between geometric and optical properties are investigated with respect
to the non-sphericity of arbitrary scatterers [16].

In this study, we start by transferring the simple procedure of finding a mirror plane to optics.
Such symmetries are present in different mathematical descriptions as for example, block structures
in the Mueller scattering matrix [17]. Here, we analyse the T-matrix and its associated geometric
mirror symmetries by employing translation and rotation theorems of vector spherial harmonics.
We illustrate this concept with numerical simulations of an experimentally realized gold helix.
Different quantifications of the e.m. chirality are compared. Furthermore, the symmetry planes
found in the optical response by our method are correlated to those of geometric origin. It is shown
that the complex optical response, including higher order multipoles, yields mirror planes in the
T-matrix which are not directly related to geometric symmetries.

In the following, we would like to briefly introduce the theory behind the methods described in
this study. Further information may be found in Supplementary Materials.

The most general description of an isolated optical scatterer is the well-known T-matrix [18].
It relates an arbitrary incident field with the scattered field caused by the scattering object. The optical
response to any incident field is included in the T-matrix. Accordingly, the following analysis of T is
independent of specific illumination parameters such as the direction, polarization and beam shape.
The goal of this study is to obtain insights into illumination-independent symmetries of the scatterer.

Usually, both the incident as well as the scattered field are given in the basis of vector spherical
harmonics for computations with the T-matrix [19] (see Supplementary Materials). Physically
observable quantities such as the scattered energy, the absorption, as well as the flux of optical
chirality are readily computed from T [9]. In numerical simulations, T may be computed with high
accuracy [20]. Knowing the response of the left-handed object Tl enables the analytic computation of
the response of its mirror image Tr:

Tr = M−1
xy TlMxy, (1)

where we choose mirroring in the xy-plane Mxy without loss of generality (see Supplementary
Materials for further details on notation). Note that the terminology of right- Tr and left-handed Tl is
ambiguous, as pointed out before, and may be interchanged.

Since we aim to investigate arbitrary mirror planes, we note that an arbitrary plane is given by the
three spherical coordinates of its normal: the inclination Θ and the azimuthal angle Φ, as well as the
distance d from the origin. We define the according transformation R(Θ, Φ, d) acting on the object as

R(Θ, Φ, d) = T (Θ, Φ, d)Rz(Φ)Ry(Θ), (2)

where T (Θ, Φ, d) is the translation of the T-matrix in the direction given by the angles and
the distance and Rz(Φ) and Ry(Θ) are the rotations around the z- and y-axis, respectively [21]
(see Supplementary Materials).

For a geometrically achiral object (see Figure 1a) there exists at least one transformation R(Θ, Φ, d)
such that Tl = R(Θ, Φ, d)TrR−1(Θ, Φ, d). On the other hand, the lack of a geometric mirror plane of
a chiral object Figure 1b implies that there exists no such transformation and that Tl and Tr do not
coincide for any set of transformation parameters (Θ, Φ, d). Note that this does not generally hold in
the long wavelength limit, that is, the incident wavelength being much larger than the dimension of
the scatterer, due to chiral dispersion [22].
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Figure 1. (a) The mirror image of an achiral object overlaps with its original after proper translations
and rotations. This implies that the original T-matrix Tr coincides with Tl of the mirror object after the
corresponding transformations R. (b) A chiral object and its mirror image are not congruent. If the
object is much smaller than the incident wavelength, it usually exists a transformation R after which Tl
and RTrR−1 are equal. Note that the achiral isosceles triangle in (a) possess a mirror plane in 2D and
that the asymmetric triangle in (b) is chiral only in 2D.

2. Results

For investigating the role of the geometric shape in nano-optics, it is of interest to identify those
planes of highest symmetry of a chiral object: Although there is no mirror plane in a chiral object,
a transformation may be identified in which the right- and left-handed T-matrices are closest to one
another. Rating the closeness is done here by calculating the 2-norm of the difference of these two
matrices. Accordingly, we introduce the coefficient χTT which minimizes the difference between the
T-matrices of mirror images as

χTT = min
(Θ,Φ,d)

∣∣∣∣∣∣Tl − R−1(Θ, Φ, d)TrR(Θ, Φ, d)
∣∣∣∣∣∣

2
. (3)

This means that for the mirror plane corresponding to minimal parameters (Θmin, Φmin, dmin) of
(3), the optical responses of the two mirror images are as similar as possible. In other words, the mirror
images are hardly distinguishable. For an achiral object χTT vanishes since there exists a transformation
for which the mirror images are identical.

Obviously, the choice of the norm is not unique and other quantifications of similarity of the
mirror images could be defined (see Supplementary Materials for the physical relevance of the 2-norm).
A recently introduced coefficient χSV is, for example, based on the singular-value decomposition
of the T-matrix in the helicity basis [10]. Alternatively, the angular-averaged differential energy
extinction χCD due to illuminating with either right- or left-handed circularly polarized plane waves is
experimentally accessible as the CD spectrum.

In order to exemplary introduce our formalism and compare it to previous work, we investigate
a nano-optical device numerically. The finite element method is employed to accurately simulate
the electromagnetic properties due to incident monochromatic light. Within this study we use the
commercial FEM package JCMsuite [23]. In postprocessing, the T-matrix is computed by decomposing
the scattered field into vector spherical wave functions [20] from illumination with 150 plane waves
with randomly chosen parameters (see Supplementary Materials).

In Figure 2, we compare simulations of the aforementioned three coefficients quantifying the
e.m. chirality for a gold helix as realized experimentally [24]. The helix is constructed on the surface of
a cylinder with height 230nm and radius 60nm (see Supplementary Materials). The CD spectrum χCD

shows zero values at incident wavelengths of λ = 615 nm and λ = 1070 nm. If only these wavelengths
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were analyzed, one could draw the conclusion that an achiral object is investigated. This contradicts
the goal of this study to obtain insights into illumination-independent symmetries of the scatterer—for
illuminations with λ = 615 nm and λ = 1070 nm, the scatterer seems to be geometrically achiral which
is obviously not the case. Nevertheless, CD makes the chiral geometric nature of the helix visible as a
maximum at 823 nm and a minimum at 1452 nm of smaller amplitude. For a helix with an opposite
twist—that is, the mirror image—the roles of the extrema are interchanged.

Figure 2. Chiral response of a gold nano-helix depending on the incident wavelength λ. The angular
averaged differential extinction of circularly polarized plane waves χCD (black dotted line) vanishes at
615 nm and 1070 nm which could be interpreted as achirality of the studied object. The electromagnetic
chirality coefficient χSV (dashed blue line) is based on the singular values of the T-matrix in the helicity
basis. Values below 0.1 at 610 nm and 1085 nm indicate nearly achiral optical response. However, the
minimal difference χTT (red solid line) between Tr and RTl R−1 reveals that the helix is chiral at all
wavelengths. Its maxima correspond to those of χCD and are, hence, observable.

On the other hand, the coefficient χSV is normalized by the average interaction strength of the
T-matrix at each wavelength. This yields a fairly flat spectrum with two narrow minima below 0.1 at
the two λ for which χCD = 0. These minima are not present in the minimized χTT introduced in (3).
However, the maxima of this latter coefficient are in accordance with the experimentally observable
CD extrema (χCD). In the long wavelength regime, all three coefficients tend to zero as expected for
point-like particles due to vanishing off-diagonal elements in the T-matrix.

The minimization in the three-dimensional parameter space in (3) is carried out using Bayesian
optimization [25] (see Supplementary Materials). Since the shape of the minimized function highly
depends on the actual object, the Bayesian approach is well suited for finding a global minimum.
The parameters (Θmin, Φmin, dmin) of the optimized value are related to geometric mirror planes.
In Figure 3a, the planes following from the respective transformation R(Θmin, Φmin, dmin) of the
xy-plane are plotted for all incident wavelengths from 550 nm to 2.05μm. The inclination Θ and
azimuthal angle Φ are given in the shown coordinate system which is centered at the centroid of
the helix.

We identify three distinct classes shown in blue, red and green. These correspond to planes which
are parallel and perpendicular to the helix axis, as well as tilted by a small angle Θ from the horizontal
position, respectively. The dark grey plane corresponds to the minimal geometric parameters which
will be explained in the following paragraphs. Details on the optimization such as challenging flat
behaviour for translations from the centroid and, on the obtained minimizing parameters, are given in
Supplementary Materials. Note that the minimization required to obtain the illumination-independent
coefficient χTT involves significantly higher numerical effort than the simple averaging for χCD for
which most information contained in T is ignored.

59



Symmetry 2020, 12, 158

Figure 3. (a) Transformed xy-planes (blue, red, green) corresponding to minimal χTT computed from
T-matrix of the gold helix (yellow). Planes for all incident wavelenghts λ ∈ [550, 2050] nm are shown.
The dark grey plane corresponds to minimal χGE. (b) Geometric chiral coefficient χGE(Θ, Φ) for the
helix and its mirror image which is rotated around the centroid (grey colormap). The minimal value of
0.57 belongs to the dark grey plane in Figure 3a. Angles of the colored planes are shown by circles.

Next, we compare the findings on the symmetry based on the optical T-matrix to those
stemming from purely geometric properties. As discussed previously, there is no coefficient which
unambiguously rates the geometric chirality of an object. We choose a coefficient χGE based on the
overlap of the left- Ol and right-handed Or(Θ, Φ, d) object, where the latter results from mirroring Ol
at the xy-plane and transformation with (Θ, Φ, d). Namely, the volume V of the overlap is compared
to the volume of the object [13] (see Supplementary Materials):

χGE(Θ, Φ, d) = 1 − V (Ol ∩ Or(Θ, Φ, d))
V(Ol)

. (4)

This coefficient vanishes for achiral objects as required for a degree of chirality [14].
Figure 3b displays the geometric chirality coefficient χGE(Θ, Φ, 0) for planes rotated around the

centroid of the helix as a grey colourmap. Dark regions with large values of χGE indicate a vanishing
overlap between the two mirrored helices. Note that for large distances to the origin d → ∞, the mirror
images do not overlap and χGE = 1. However, this is always possible no matter if the object is chiral
or not. As in the case of χTT, the parameter points of interest of χGE(Θ, Φ, d) are those corresponding
to a minimum: The minimum 0.57 in Figure 3b occurs at (180◦, 55◦) and (0◦, 125◦) which show the
intrinsic chiral property of the investigated helix. These two minima are equivalent since a finite helix
is C2 symmetric. The corresponding transformed xy-plane is shown in dark grey in Figure 3a.

Alongside the geometric coefficient χGE, the planes identified for the minimized T-matrix
difference are shown as colored circles in Figure 3b. The colors (red, blue and green) of these circles are
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the same colors used for the planes, that is, a direct comparison of the angle parameters is possible.
As seen, the planes are ranked according to their Θ values: The perpendicular class 1 (blue) has
Θ ∈ [83, 105]◦ The flat planes belonging to class 2 (red) show Θ ∈ [0, 8.5]◦ and Θ ∈ [174, 180]◦ and the
tilted class 3 (green) has Θ ∈ [10, 19]◦ and Θ = 170◦.

3. Discussion

None of the three optical symmetry planes is directly related to the geometric mirror plane of the
helix. However, Figure 3b enables the comparison of geometric and optical symmetries. In order to
further analyze the optical response, we show the wavelength-dependent classification of the symmetry
planes on top of Figure 4. The three classes correspond to sharply separated wavelength ranges: Class 1
is valid for λ ∈ [550, 680] nm. For larger wavelengths λ ∈ [680, 1025] nm, the T-matrix possesses the
symmetry according to planes of class 2. Finally, in the long wavelength regime (λ ∈ [1025, 2050] nm),
the symmetry is in class 3.

Figure 4. Wavelength-dependent classification of symmetry planes of T-matrix (top). Absolute value
of averaged diagonal T-matrix entries corresponding to induced electric dipoles (solid), magnetic
dipoles (dashed) and electric quadrupoles (dotted). The classes 3 (green), 2 (red) and 1 (blue) belong to
decreasing wavelengths. Changes in symmetry of T are due to higher order multipoles.

The analysis in Figure 3b suggests that class 3 (green) is the closest one to the geometric mirror
plane. This is further strengthened by the full angular spectrum of the optical chirality coefficient
χTT (see Supplementary Materials). Accordingly, we find that the optical response is dominated by
the geometric shape for long wavelengths. Obviously, the optics is dominated by the electric dipole
moment in this regime which is also shown in Figure 4. Here, the mean of the diagonal entries of
submatrices of the T-matrix are shown. These are proportional to the electric and magnetic dipole
moments as well as to the electric quadrupole moments.

The three symmetry classes of the T-matrix occur close to three electric dipole peaks (λ = 623,
833, and 1473 nm) and are influenced by the anisotropy of the T-matrix. Truly chiral behaviour,
as observed here, however, originates not from anisotropy but from coupling between electric and
magnetic multipoles [26]. In Supplementary Materials, we elaborate on the complex interplay between
these different contributions in the dipolar limit. Here, we limit the discussion to the main aspects of
different multipolar contributions.

For large wavelengths with symmetry of class 3, the electric dipoles are much larger then any
other induced multipole. In the intermediated regime of symmetry class 2, the magnetic dipole
moment significantly increases. For short wavelengths with planes of class 1, the electric quadrupole
moment is stronger than the magnetic dipole moment which yields the change in the optical symmetry.
Higher order multipoles including mixed electric-magnetic moments are depicted in Supplementary
Materials, in which it is shown that the dominant dipolar moments contribute additionally to the
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variation of mirror planes. This elaborated study of multipolar resonances underlines again that the
chiral response deviates from expectations due to a purely geometrical analysis of the scatterer.

4. Conclusions

In summary, we have introduced a method to obtain geometric mirror planes from the optical
T-matrix of a scattering object. Accordingly, the optical effects of geometric structures such as
metamaterials are analyzed [27]. We applied the procedure to an isolated gold helix and found
correlations between the symmetry of its geometric shape and those of the optical response in the long
wavelength regime. On the one hand, this confirms the expectation that instrinsic geometric chirality
is directly related to an optically chiral response. On the other hand, for shorter wavelengths where
higher multipoles are induced, mirror planes derived from the T-matrix do not coincide with the
geometric mirror plane. This implies light-matter interactions whose symmetry cannot be explained
simply by geometric chirality. Our method can be applied to all isolated scattering objects being chiral
as the helix or achiral (see Supplementary Materials). It constructively identifies geometric planes of
mirror symmetry in their optical response. This approach provides the basis for a detailed analysis of
correlations between structural and spectral properties of nano-optical scatterers.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-8994/12/1/158/s1
and contain detailed information on T-matrix formalism, electromagnetic and geometric chirality coefficients,
multipolar analysis, geometric model and optimization as well as the analysis of an achiral scatterer with
our method.
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Abstract: In electromagnetic systems, duality is manifested in various forms: circuit, Keller–Dykhne,
electromagnetic, and Babinet dualities. These dualities have been developed individually in
different research fields and frequency regimes, leading to a lack of unified perspective. In this
paper, we establish a unified view of these dualities in electromagnetic systems. The underlying
geometrical structures behind the dualities are elucidated by using concepts from algebraic
topology and differential geometry. Moreover, we show that seemingly disparate phenomena,
such as frequency-independent effective response, zero backscattering, and critical response, can be
considered to be emergent phenomena of self-duality.

Keywords: duality; self-duality; Poincaré duality; circuit duality; Keller–Dykhne duality;
electromagnetic duality; Babinet’s principle; constant-resistance circuit; zero backscattering; critical
response; self-complementary antenna; metamaterials; metasurfaces

1. Introduction

Duality is an indispensable concept in mathematics, physics, and engineering. It relates two
seemingly different systems in a nontrivial manner and facilitates deeper insight into the underlying
structures behind the relevant physical theories. A duality transformation converts an object to its
dual counterpart. Performing duality transformations twice brings a system back to its original
state. Advantageously, duality transformation can sometimes convert a difficult problem into a more
tractable one. Moreover, if a system is dual to itself, namely self-dual, some special characteristics
could be expected. To name a few, self-duality characterizes a critical probability and temperature for
percolation on graphs [1,2] and two-dimensional Ising models [3], respectively.

For electromagnetic systems, duality appears in various forms, such as dual circuits [4,5],
Keller–Dykhne duality [6–8], electromagnetic duality [9–11], input–impedance duality for
antennas [12,13], and Babinet’s principle [14–26]. These dualities have been individually developed
in various research fields such as electrical engineering, radio-frequency engineering, and photonics
because the relevant frequency spectra broadly range from direct-current to the optical regime. Despite
the long history of dualities in electromagnetic systems, they have not been sufficiently discussed
from a unified perspective. In particular, universal geometrical structures behind the dualities are still
mathematically unclear in electromagnetic systems.

Recently, engineered artificial composites called metamaterials have been attracting much
attention due to their exotic electromagnetic properties [27]. In particular, two-dimensional
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metamaterials are called metasurfaces and are intensively studied as ultrathin functional
devices [28–30]. The operating frequency of metamaterials has been extended from the microwave to
the optical band, and versatile design principles over extensively wide frequency spectra are in high
demand. For example, circuit designs and nano-optics were integrated to establish a universal strategy
to design metamaterials [31]. Over the past few decades, duality has been assuming an important
role in the research and development of metamaterials. To name a few such cases, duality has been
leveraged to design complementary metasurfaces [32–35], self-complementary metasurfaces [36–42],
critical metasurfaces [43–52], maximally chiral metamaterials [53], and self-dual metamaterials with
zero backscattering [54] or helicity conservation [55–57]. In such situations, the extensive target
frequencies of metamaterials require a comprehensive understanding of duality in a unified manner.

In this paper, we establish a unified perspective which synthesizes dualities appearing in
electromagnetic systems. The underlying geometrical structures hidden behind dualities are uncovered
through Poincaré duality between circuit theory to optics. To this end, we introduce inner and
outer orientations of geometrical objects. We stress the importance of these two different kinds of
orientations because it is sometimes overlooked in primary electromagnetism. The correspondence
relationship among various dualities in electromagnetic systems is thoroughly discussed. Moreover,
we comprehensively show that self-duality manifests as frequency-independent effective response,
zero backscattering, and criticality in electromagnetic systems. As a whole, we attempted to keep the
paper pictorial as much as possible in order to easily grasp the important concepts for duality.

In Section 2, we start with discussions of electrical circuits. Although electrical circuits are
simplified and idealized systems, they include the essence of duality. To clearly see duality in circuit
theory, we provide an algebraic-topological framework for electrical circuits. Based on the established
framework, we strictly formulate circuit duality through Poincaré duality. Furthermore, we explain that
the effective response of a self-dual circuit is automatically derived from its self-duality. In Section 3,
we discuss zero backscattering for waves in self-dual circuits in terms of impedance matching. Section 4
generalizes circuit duality to Keller–Dykhne duality for a continuous two-dimensional resistive sheet.
We show that critical behavior can appear for a self-dual sheet. To extract the essence of the duality
in continuous systems, differential forms are utilized. We see that Keller–Dyhkne duality exactly
corresponds to circuit duality through discretization. In Section 5, we introduce electromagnetic duality
to Maxwell’s electromagnetic theory. Electromagnetic duality in a four-dimensional spacetime has a
similar structure to Keller–Dykhne duality in a two-dimensional plane. Section 6 introduces duality
for wave radiation and scattering by a two-dimensional sheet. Combining electromagnetic duality
and mirror symmetry of the sheet, we establish Babinet duality. Babinet duality induces the critical
response of a metallic checkerboard-like sheet. Finally, Section 7 summarizes the unified perspective
for dualities appearing in electromagnetic systems and gives a conclusion.

2. Circuit Theory

In this section, we establish a comprehensive formulation of circuit theory based on algebraic
topology. Within the proposed framework that makes use of Poincaré duality, we unveil the geometrical
structure of circuit duality. Next, we discuss the resultant duality in effective response and show that a
specific response is automatically guaranteed under self-duality. Compared to the previous algebraic
topological formulation of the circuit theory [58–60], we clarify the importance of inner and outer
orientations of geometrical objects for circuit duality. Our approach gives a succinct mathematical
description of circuit duality, and an amalgamation of circuit theory and algebraic topology yields
various benefits in this interdisciplinary area.
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2.1. Duality between Current and Voltage

� Circuits as Graphs

A circuit is considered as a network of interconnected components. The interconnection relation
can be represented by a graph G = (N , E) with a set N = {ni|i = 1, 2, · · · , |N |} expressing the totality
of nodes and a set E = {ei|i = 1, 2, · · · , |E |} representing the totality of directed edges (an ordered
2-element subset of N ), where |S| is the number of elements of a set S . Elements in N and E are called
0- and 1-cells, respectively. Circuit elements such as voltage sources or resistors are placed along the
graph edges. In this section, we mainly focus on circuits with resistors, voltage, and current sources.
Figure 1 shows an example of a circuit and the corresponding graph.

Figure 1. Example of (a) a circuit and (b) its corresponding graph, which represents the
circuit interconnection.

� Chains

Consider a current distribution with Ii flowing along each edge ei ∈ E . Here, ei is directed and
Ii flows in the direction of ei. A negative Ii represents a current flow in the reverse direction of ei.
This current distribution can be represented by a formal sum I = ∑

|E |
i=1 Ii ei, where E generates a vector

space over real numbers R. In a strict sense, we should consider RA := {sA|s ∈ R} with the unit of
ampere A instead of R for a current distribution, but we omitted the unit to avoid notation complexity.
A vector spanned by elements in E is called a 1-chain. The vector space composed of all 1-chains is
denoted by C1. Similarly, we can define a 0-chain as ∑

|N |
i=1 qini with qi ∈ R, and introduce a vector space

C0 over R as the totality of 0-chains.

� Boundary Operator

Now, we extract the connection information regarding G. Consider an edge e directing from
a node n1 to n2. As shown in Figure 2, the boundary of e is given by ∂e = n2 − n1. Extending the
definition linearly, we can introduce a linear boundary operator ∂ : C1 → C0. The matrix representation
of ∂ is denoted by Δi

j, called the incidence matrix. For the previous example in Figure 1b, we obtain the
following matrix representation of ∂:

∂[e1 e2 e3 e4] := [∂e1 ∂e2 ∂e3 ∂e4] = [n1 n2 n3]Δ (1)

with

Δ = [Δi
j] =

⎡⎢⎣−1 0 0 1
1 −1 −1 0
0 1 1 −1

⎤⎥⎦ . (2)
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Figure 2. Action of the boundary operator. Here, we have ∂e = n2 − n1.

� Kirchhoff’s Current Law

To understand the physical meaning of ∂, we consider ∂I for a current distribution I ∈ C1.
The coefficient of ∂I for n ∈ N represents the net inflow of the current: the current inflow to n minus
the current outflow from n. Therefore, the boundary operator can be used to express Kirchhoff’s
current law (KCL), which states that net current inflows at each node are zero. KCL restricts current
distribution to a linear subspace Z1 = ker ∂ = {c ∈ C1|∂c = 0}. For Equation (2), we have rank Δ = 2,
and dim Z1 = dim C1 − rank Δ = 2 from the rank–nullity theorem [61]. The basis of Z1 is given by
{m1 = e1 + e2 + e4, m2 = e2 − e3}. Here, m1 and m2 are closed loops called meshes. Generally, we can
construct a basis of Z1 with meshes [60].

� Cochains

Next, we represent a voltage distribution in geometric terms. For a finite-dimensional vector space
U, we can define its dual space U∗ = {α : U → R}, where α is a linear map and U∗ is a vector space
with dim U∗ = dim U. An element α ∈ U∗ can be interpreted as an apparatus which measures a vector
u ∈ U and yields α(u). For a basis {u1, u2, · · · , um} in U, we can define a dual basis {u1, u2, · · · , um}
in U∗ satisfying ui(uj) = δi

j, where the Kronecker delta δi
j is 1 if i = j; otherwise, 0. For a vector

v = ∑m
i=1 viui ∈ U with vi ∈ R, ui extracts the component with respect to ui as ui(v) = vi.

Along an edge, we can calculate power consumption as a real scalar equal to the voltage multiplied
by the current. The total power consumption in the circuit is the sum of power consumption over
all edges (power generation is represented by negative power consumption). Therefore, a voltage
distribution is considered as V ∈ C1 = (C1)

∗ yielding total power V(I) for I ∈ C1. An element
in C1 is called a 1-cochain. In C1, we have a dual basis {ei|i = 1, 2, · · · , |E |}. Then, we can express
V(I) = ∑

|E |
i=1 Vi Ii for V = ∑

|E |
i=1 Viei and I = ∑

|E |
i=1 Ii ei. We also write V(I) as

∫
I V to stress the analogy

to the theory of continuous fields. A 0-cochain ϕ ∈ C0 = (C0)
∗ also acts for a 0-chain b ∈ C0 as∫

b ϕ = ϕ(b).

� Kirchhoff’s Voltage Law

Now, we reframe Kirchhoff’s voltage law (KVL) in our geometric approach. KVL states that
the sum of voltages along any loop must be zero. Then, a voltage distribution V ∈ C1 must satisfy∫

I V = 0 for all I ∈ Z1 (also known as Tellegen’s theorem) because I is generated from mesh currents.
To concisely express KVL, we define a null space (U′)⊥ for a linear subspace U′ in U as (U′)⊥ = {α ∈
U∗|α(u) = 0 for all u ∈ U′}. The dimension of the null space is given by dim(U′)⊥ = dim U − dim U′.
The relation between U′ and (U′)⊥ is schematically depicted in Figure 3. By using the concept of a
null space, KVL is clearly rewritten to restrict voltage distribution to (Z1)

⊥.
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U

U'

U *

(U')

Figure 3. Relation between U′ and (U′)⊥.

� Dual Operators

Next, we want to define a dual boundary operator for ∂. Let U and W be finite-dimensional
vector spaces, and consider a linear map f : U → W. Then, a dual map f ∗ : W∗ → U∗ is defined
as [ f ∗(α)](u) := α[ f (u)] for α ∈ W∗ and all u ∈ U. Let {u1, u2, · · · , ul} and {w1, w2, · · · , wm}
be the bases of U and W, respectively. We have f ∗(wi) = ∑l

j=1[ f ∗(wi)](uj)uj = ∑l
j=1 wi[ f (uj)]uj =

∑l
j=1 uj Mi

j with the matrix representation of f as Mi
j = wi[ f (uj)]. This shows that the matrix

representation of the dual map is the transpose of the matrix representation of the original map. Using
the concept of the dual map, we can define a coboundary operator d = ∂∗ to satisfy

∫
∂c ϕ =

∫
c dϕ for

all c ∈ C1 and ϕ ∈ C0 = (C0)
∗. For a dual basis {ni} ⊂ C0 obtained from 0-cells N = {ni}, we have

dni = ∑
|E |
j=1 ejΔi

j with the incidence matrix Δi
j. For the example of Figure 1b, we have

d[n1 n2 n3] := [dn1 dn2 dn3] = [e1 e2 e3 e4]

⎡⎢⎢⎢⎣
−1 1 0
0 −1 1
0 −1 1
1 0 −1

⎤⎥⎥⎥⎦ . (3)

� Potential and Kirchhoff’s Voltage Law

Finally, we discuss a relation between KVL and a potential. KVL was formulated to state that the
voltage drop along any loop is zero, but how is this statement related to the existence of a potential?
To see this, we start from a general statement. Consider a linear map f : U → W. The image and kernel
of linear maps f and f ∗ are related through (ker f )⊥ = im f ∗ and (im f )⊥ = ker f ∗ [61]. The proof of
the first statement is as follows. First, (ker f )⊥ ⊃ im f ∗ holds because we have f ∗(β)(u) = β( f (u)) = 0
for all u ∈ ker f with β ∈ W∗. Second, dim(ker f )⊥ = dim U − dim ker f = rank f = rank f ∗ holds
due to the rank–nullity theorem. Then, we obtain (ker f )⊥ = im f ∗. A similar proof is applied for the
second statement. Now, we come back to circuit theory and define B1 = im d ⊂ C1. From (ker ∂)⊥ =

im d, we obtain (Z1)
⊥ = B1. This means that there is a potential ϕ ∈ C0 which satisfies V = −dϕ for a

voltage distribution V.

� Summary of Circuit Equations

The discussions so far show the duality between KCL and KVL. These results are summarized in
Figure 4. Importantly, the degree of freedom for currents and voltages constrained by KCL and KVL is
given by dim Z1 + dim B1 = dim C1. On the other hand, a circuit element along each edge gives the
relation between the current and voltage on the edges, and we have dim C1 equations with respect to all
the circuit elements. Therefore, the current and voltage distributions are unambiguously determined.
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Figure 4. Duality between Kirchhoff’s current and voltage laws.

2.2. Planar Graph as Cellular Paving

Consider the series and parallel resistors shown in Figure 5. Series resistors R1 and R2 have the
composite resistance R = R1 + R2. On the other hand, parallel resistors R′

1 and R′
2 have the total

resistance R′, satisfying 1/R′ = 1/R′
1 + 1/R′

2. We can clearly see the duality between resistance
and conductance (given by an inverse relationship) for series and parallel resistances. This duality
universally holds in more general situations, as we show in Section 2.5. In this subsection, we set up a
fundamental geometric structure to establish circuit duality.

Figure 5. (a) series and (b) parallel resistors with composite resistances R and R′, respectively.
The duality between resistance and conductance appears as R = R1 + R2 and 1/R′ = 1/R′

1 + /R′
2.

� 2-Chains in Planar Graphs

The graph shown in Figure 1b is planar, i.e., its edges intersect only at their nodes. For a planar
graph, we can define faces. In Figure 6, we show directed faces F = { f1, f2, f3}, where the internal
direction of each face is represented by the directed circle. Elements of F are called 2-cells. Note that
we include the unbounded face f3 outside the circuit. The area of face f3 can be finite if we consider
the planar graph to be on a sphere. The vector space generated by F is denoted by C2. It is natural to
define a boundary operator ∂ : C2 → C1, such that ej(∂ fi) = 1 [ej(∂ fi) = −1] if ej ∈ E is included in f
in the same [opposite] direction; otherwise, ej(∂ fi) = 0. For Figure 6, we have

∂[ f1 f2 f3] := [∂ f1 ∂ f2 ∂ f3] = [e1 e2 e3 e4]

⎡⎢⎢⎢⎣
1 0 1
1 −1 0
0 1 1
1 0 1

⎤⎥⎥⎥⎦ . (4)

Note that ∂ ◦ ∂ = 0 holds, i.e., the boundary of a cell boundary is empty.
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f1 f2 f3

e1
e2 e3e4

Figure 6. Faces in a planar circuit.

� Cellular Paving

In the previous examples, cells fully paved the two-dimensional plane without any gap. Such a
paving is often called a mesh in finite element analysis. Naturally, a p-cell is defined as a p-dimensional
directed face, which is extended from a 0-cell (point), 1-cell (edge), and 2-cell (face). Cellular paving
with the cells can be rigorously formulated in higher-dimensional spaces. The boundary of each
element is represented by a combination of lower-dimensional cells. Strictly speaking, a cellular paving
of some region R in a manifold is a finite set of open directed p-cells such that (i) two distinct cells
do not intersect, (ii) the union of all cells is R, and (iii) if the closures of two cells c and c′ meet, their
intersection is the closure of a unique cell c′′ [62]. However, we only need to grasp the concept of
cellular paving with an intuitive sense.

For a cellular paving K in an m-dimensional region, we can define Ci(K) (i = 0, 1, · · · , m)

generated from i-cells with a boundary operator ∂ : Cp(K) → Cp−1(K) satisfying ∂ ◦ ∂ = 0. Following
a similar treatment for graphs, Zp(K) = ker

(
∂ : Cp(K) → Cp−1(K)

)
and Bp(K) = im

(
∂ : Cp+1(K) →

Cp(K)
)

are defined. Next, we consider a dual space Cp(K) = (Cp(K))∗. As dual counterparts of Zp(K)

and Bp(K), we can define Zp(K) = ker
(
d : Cp(K) → Cp+1(K)

)
and Bp(K) = im

(
d : Cp−1(K) →

Cp(K)
)
. To extract topological characteristics, homology and cohomology groups are defined as

Hp(K) = Zp(K)/Bp(K) and Hp(K) = Zp(K)/Bp(K), respectively. It is known that dim Hp(K) and
dim Hp(K) do not depend on specific cellular paving, but only on the original m-dimensional region.

2.3. Inner and Outer Orientations

� Intuitive Explanation of Inner and Outer Orientations

Thus far, cells were assumed to be (internally) oriented. In this subsection, we clarify the definition
of orientation and provide a deeper explanation that is crucial for understanding the circuit duality.
First, one can intuitively grasp two types of orientation defined for a surface in a three-dimensional
space. In Figure 7a, the surface is internally oriented, where “internally” means that the orientation
is defined through the internal coordinates of the surface, regardless of whether or not the surface is
embedded in the three-dimensional space. On the other hand, we could consider an outer orientation of
the surface as the normal-vector field as shown in Figure 7b. Outer orientation refers to the transverse
direction of the surface and involves ambient space. To discuss how much fluid traverses the surface,
we do not use an inner-oriented surface, but an outer-oriented one. These two types of orientation are
strictly defined below and are important to express various physical quantities.

(a) (b)

Figure 7. Two types of orientation: (a) inner and (b) outer orientation of a surface in a
three-dimensional space.
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� Inner Orientation of Vector Space and Cell

As a starting point, we define an inner orientation of a vector space U. Consider two ordered bases
(e1, e2, · · · , em) and (e′1, e′2, · · · , e′m) in U. A basis transformation is represented by e′i = ∑m

j=1 ejPj
i.

When det P > 0, the direction associated with (e1, e2, · · · , em) is considered to be the same as that with
(e′1, e′2, · · · , e′m); otherwise, their directions are different. Then, bases are classified as two different
equivalence classes. We can choose one specific class to be positive orientation. If a vector space
U has such a positive orientation, U is called inner-oriented. Generally, a tangent space TP M is
a p-dimensional vector space composed of tangent vectors at a point P on a p-dimensional surface
(manifold) (Figure 8a). If tangent spaces on a p-cell are continuously oriented, it is called inner-oriented.
See a schematic picture shown in Figure 8b.

Figure 8. (a) tangent space TP M at a point P on a surface M; (b) inner-oriented 2-cell with continuously
oriented tangent spaces.

� Outer Orientation of Vector Space and Cell

Next, we introduce an outer orientation. Consider a linear subspace W in a vector space U.
When we choose an orientation of the quotient vector space U/W, we say that W is outer-oriented.
The outer orientation is naturally extended to a p-cell S in an m-dimensional manifold M.
Here, M is a total space including S and called ambient space. Because of TPS ⊂ TP M, we can
consider TP M/TPS as a vector space whose (nonzero) elements are considered to be transverse to
TPS. If a p-cell has continuous orientation of TP M/TPS for all P ∈ S, the cell is called outer-oriented.
An example of an outer-oriented 2-cell is shown in Figure 9.

Figure 9. Outer-oriented 2-cell S in a three-dimensional space is continuously outer-oriented in all
tangent spaces.

For a planar paving, we summarize all types of cells in Figure 10. An outer-oriented 0-cell is best
suited to represent a rotation around a point in the two-dimensional plane. Fluid flow transverse to an
edge is also represented by an outer-oriented 1-cell.
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Figure 10. Inner- and outer-oriented cells in a two-dimensional plane.

� Inner-Orientation Representation for Outer Orientation

Outer orientation can be represented by two inner orientations depending on the orientation of
ambient space. Let us see this representation in an example in a two-dimensional plane. Consider
an outer-oriented edge in a planar graph. With a given orientation of the plane (two-dimensional
Euclid space E2), we can convert the outer orientation into an inner one as shown in Figure 11.
The inner orientation is induced by rotating the outer orientation by 90◦, where the rotational direction
is determined by the ambient-space orientation. Importantly, the inner direction is reversed when we
choose the opposite ambient-space orientation. Thus, an outer-oriented cell š can be represented by
two different inner-oriented cells as š = {šo|o =�,�} with š� = −š�. The above intuitive discussion
can be generalized in other dimensional spaces as shown in Appendix A.

Figure 11. Inner-oriented components of an outer-oriented edge in a two-dimensional plane. The plane
orientations are given by the subscripts (�,�).

� Outer-Orientation Representation for Inner Orientation

The previous discussions on orientations are based on representations of an outer-oriented cell
by inner-oriented cells. We would like to remark on a dual perspective: an inner-oriented cell can
be represented by outer-oriented cells. This perspective is indicated in Figure 12. To obtain an outer
orientation, the inner orientation of the edge is rotated by 90◦ in the reverse direction of a given
orientation of the plane.
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Figure 12. Outer-oriented components of an inner-oriented edge in a two-dimensional plane.

� Operation for Outer-Oriented Chains and Cochains

Next, consider a cellular paving Ǩ with outer-oriented cells. We can define a vector space Cp(Ǩ)

generated from p-cells in Ǩ. Using the representation of an outer-oriented cell by inner-oriented cells,
we can define ∂ : Cp(Ǩ) → Cp−1(Ǩ) so that ∂ individually acts for each inner-oriented component.
For example, an inner-oriented component of the boundary of an outer-oriented 1-cell in a plane is
depicted in Figure 13. The boundary operations for outer-oriented cells in a two-dimensional plane
are summarized in Figure 14.

=

 

=

+

=
e

n1

n2

Figure 13. Boundary operation for an outer-oriented 1-cell in a two-dimensional plane is defined
through the inner-oriented component.

       =
       =+

(a)

(b)

e

f

n1

n2

e3

e1

e2

Figure 14. Boundary operation for an outer-oriented (a) edge and (b) face in a two-dimensional plane.

As a dual counterpart of Cp(Ǩ), the dual space Cp(Ǩ) = (Cp(Ǩ))∗ is defined by applying
the general theory for linear spaces. An outer-oriented cochain in Cp(Ǩ) is also represented by two
inner-oriented cochains and the coboundary operator d for outer-oriented cochains is naturally defined.

73



Symmetry 2019, 11, 1336

2.4. Essence of Poincaré Duality

� Dual Paving

For a cellular paving K with inner-oriented cells, we can compose a dual cellular paving K� with
outer-oriented cells. Here, we focus on ambient space of a two-dimensional plane to introduce the
concept. As shown in Figure 15a, each face fi in K is converted to an outer-oriented point ňi in K�.
Each edge ej in K is also replaced with an outer-oriented edge ěj in K� transverse to the original edge.
The obtained edge is connected to a point in K�, if the original edge is included in the original face.
Furthermore, each point nj in K is converted to a face f̌ j in K� as shown in Figure 15b. The face is
adjacent to an edge in K�, if the original point is connected to the original edge. Under this composition,
the orientation of each cell is naturally inherited from the original cell to the dual cell.

ei

(a)

(b)

dual

dual

+
nj

ej

fi

ni

ej

fj

ei

+

Figure 15. Correspondence between a cellular paving K and its dual paving K�. (a) a face fi in K ↔ a
point ňi in K�; (b) a point nj in K ↔ a face f̌ j in K�. In both figures, an edge ej in K corresponds to an
edge ěj in K�.

Let us explicitly see this composition in the previous example, where the original cellular paving
is shown again in Figure 16a. By applying the above procedure for K shown in Figure 16a, we obtain
the dual paving K� as shown in Figure 16b.

f1 f2 f3

e1

e2 e3

e4

n1

n2

n3

(a) (b)
+

+

+

f1 e4
n1 e3e2

f2

e1

n2

n3
f3

Figure 16. (a) cellular paving and (b) its dual paving.
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� Poincaré Duality

For this dual paving, we have the following matrix representations of ∂:

∂[ f̌1 f̌2 f̌3] = [ě1 ě2 ě3 ě4]

⎡⎢⎢⎢⎣
1 −1 0
0 1 −1
0 1 −1
−1 0 1

⎤⎥⎥⎥⎦ , (5)

∂[ě1 ě2 ě3 ě4] = [ň1 ň2 ň3]

⎡⎢⎣1 1 0 1
0 −1 1 0
1 0 1 1

⎤⎥⎦ . (6)

Comparing Equations (5) and (6) with Equations (1) and (4), we have[
∂ : C1(K) → C0(K)

]
= −

[
∂ : C2(K�) → C1(K�)

]T
, (7)[

∂ : C2(K) → C1(K)
]
=
[
∂ : C1(K�) → C0(K�)

]T
, (8)

where the square brackets indicate matrix representation. The above relations nj(∂ei) = −ěi(∂ f̌ j) and
ej(∂ fi) = ňi(∂ěj) hold from Figure 15. These relations universally hold even in a higher-dimensional
space. Recalling [d : Cp(K) → Cp+1(K)] = [∂ : Cp+1(K) → Cp(K)]T, we obtain the following
commutative diagram:

C2(K) C1(K) C0(K)

C0(K�) C1(K�) C2(K�)

∂

�2

∂

�1 �0

d −d

(9)

Here, we have isomorphisms �p : Cp(K) → Cm−p(K�) with m = 2, where �0 : ni �→ f̌ i,
�1 : ei �→ ěi, and �2 : fi �→ ňi. The dual counterpart of Equation (9) is given by

C2(K) C1(K) C0(K)

C0(K�) C1(K�) C2(K�)

d d

∂

�2

−∂

�1 �0 (10)

with �i = (�i)
∗ using the dual map (�i)

∗ of �i. These correspondences naturally hold in
higher-dimensional spaces and lead to Poincaré duality: Hp(M) ∼= Hm−p(M) for a compact orientable
m-dimensional manifold M [63].

2.5. Dual Circuits

� Poincaré Duality and Circuit Duality

Now, let us introduce dual circuits. Consider a circuit on a planar graph. The planar graph is seen
as a cellular paving K for a two-dimensional plane (or a sphere surface). Because there is no nontrivial
loop on a plane or sphere, we have the following equation:

im
(
∂ : C2(K) → C1(K)

)
= ker

(
∂ : C1(K) → C0(K)

)
. (11)

Let I ∈ Z1(K) and V ∈ B1(K) be current and voltage distributions satisfying KCL and KVL,
respectively. We set a reference resistance Rref(= 1/Gref) to exchange a current and voltage. Consider
current I� := Gref(�

1)−1(V) and voltage V� := Rref �1 (I) distributions for a circuit on K�, where
�1 : ei �→ ěi and (�1)−1 : ei �→ ěi are defined with �1 := (�1)

∗. Note that I� and V� are outer-oriented,
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but we can obtain an inner-oriented component for a given orientation of the plane. By combining
Equation (9) with Equation (11), KCL and KVL are shown to hold for I� and V� as explained below.
Here, we check KVL for V�. From Equation (11), a current distribution I ∈ Z1(K) can be written as
I = ∂F with “face” (or mesh) currents F ∈ C2(K). Then, we have V� = Rrefd

(
�2 (F)

)
, which indicates

V� ∈ B1(K�). A similar discussion to KCL holds for I�.
A current and voltage relation along a circuit element located at each edge ei ∈ E is written

by hi(I, V) = 0 for I ∈ Z1(K), and V ∈ B1(K). As a dual relation, we define h�i (I�, V�) :=
hi
(
Gref(�1)

−1(V�), Rref �
1 (I�)

)
. If we assign a circuit element with h�i (I�, V�) = 0 for each edge

ěi in K�, I� and V� give a solution of the circuit on K�. For example, consider a resistance with Ohm’s
law V = IR with scalar V, I, and R. Substituting V → I�Rref, I → GrefV�, we have I� = G�V� with
G� = R/(Rref)

2. Importantly, we obtain

RR� = (Rref)
2 (12)

for R� = 1/G�. The derived circuit on K� is called a dual circuit. The dual relation is summarized in Table 1.

Table 1. Dual relations in electrical circuits.

Circuit Dual Circuit

Current distribution I Voltage distribution V� = Rref �1 (I)
Voltage distribution V Current distribution I� = Gref(�

1)−1(V)
Face current F Potential ϕ� = −Rref �2 (F)

Potential ϕ Face current F� = Gref(�
0)−1(ϕ)

Voltage source Vs Current source Is
� = GrefVs

Current source Is Voltage source Vs
� = Rref Is

Resistance R Conductance G� = (Gref)
2R

Conductance G Resistance R� = (Rref)
2G

For the previous example shown in Figure 17a, we construct a dual circuit as shown in Figure 17b.
Here, we have I�S = VS/Rref, Ri

� = (Rref)
2/Ri, and take a specific orientation (�) of the plane to obtain

an inner orientation of the current source. We can clearly see the duality between series and parallel
connections in Figure 17. Therefore, the concept of dual circuits is considered as a generalization of
series–parallel duality.

(a) (b)

VS
R1

R2 R3
IS

R1

R2 R3

Figure 17. (a) example circuit and (b) its dual circuit.

� Duality for Composite Resistances

Consider a one-port network N composed of resistors. A voltage source is attached to N as shown
in Figure 18a. The network N is characterized by an equivalent resistance R = Vs/Is, where Vs and Is

are the voltage and current along the source, respectively. Consider the dual counterpart as shown in
Figure 18b. The dual network N� is characterized by R� = V�

s /I�s with the current Is
� and voltage Vs

�

along the source. From the corresponding duality, we have

RR� = (Rref)
2, (13)

where Rref is the reference resistance.
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N
N

Vs Is

Is

(a) (b)

Vs

Figure 18. (a) one-port network with a voltage source and (b) its dual counterpart.

2.6. Self-Dual Circuit

If the self-dual relation N = N� holds for a one-port network N, the composite resistance satisfies
R = R�. In this case, we obtain R = R� = Rref without solving circuit equations. As an example,
we consider a bridge circuit shown in Figure 19a and its dual counterpart over Rref is given in Figure 19b.
The self-dual condition is written as R1R2 = (Rref)

2. Under the self-dual condition, the circuit behaves
as an effective resistor with Rref.

Thus far, we only consider circuits with resistors, but the extension to alternating-current (AC)
circuits is obvious. Under this extension, the real-number field (R) is replaced with the complex one
(C). In AC circuits, resistances are replaced with complex impedances. Consider the example of an
AC circuit shown in Figure 19c. This circuit is obtained from Figure 19a by replacing R1 → Z1 = jωL,
R2 → Z2 = 1/( jωC), where ω is an angular frequency. The self-dual condition is given by Rref =√

L/C. Under the self-duality, the circuit surprisingly behaves as a frequency-independent resistor
with Rref, although capacitors and inductors exhibit frequency-dependent response. This result can
be interpreted to mean that the frequency dependency of capacitors and inductors negate each other
when the whole system is self-dual. Therefore, self-dual circuits provide a powerful way to produce
constant-resistance circuits [64].

R1 R2

Rref

R1R2

R1

Rref

(a) (b)

CL

LC

(c)

Rref

R2

R2 R1

Figure 19. (a) bridge circuit and (b) its dual circuit; (c) alternating-current bridge circuit.

3. Zero Backscattering from Self-Duality

Signals can propagate in a uniform transmission line without backscattering. In this section,
we associate self-duality with the zero-backscattering condition. Furthermore, we show that a large
phase shift without backscattering in Huygens’ metasurfaces can be understood by using a self-dual
circuit model.

3.1. Self-Dual Transmission Lines

In this section, we consider signal propagation in a transmission line, which can be expressed
by an LC ladder network [65]. In contrast to previous research on duality in transmission lines [66],
we provide a circuit theoretical interpretation of the characteristic impedance of a transmission line in
terms of self-dual response described in Section 2.
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� Telegraph Equations

A coaxial cable, which is composed of an inner conductor as a signal line and an outer conductor
as a ground shield, forms capacitors between two conductors and inductors with a magnetic field
around the inner conductor as shown in Figure 20a. With inductance L̄ and capacitance C̄ per unit
length, the system is discretized as the LC ladder composed of Li+ 1

2
= L̄Δz and Ci = C̄Δz in a unit

length Δz as shown in Figure 20b. In the i-th segment, Kirchhoff’s voltage and current laws are,
respectively, expressed as

Li− 1
2

dIi− 1
2

dt
= Vi−1 − Vi, (14)

Ci
dVi
dt

= Ii− 1
2
− Ii+ 1

2
. (15)

In the continuum limit of Δz → 0, the above equations become

L̄
∂I
∂t

= −∂V
∂z

, (16)

C̄
∂V
∂t

= − ∂I
∂z

, (17)

which are well known as the telegraph equations. Generally, L̄(z) and C̄(z) can depend on z.

Li Li+

CiCi 1 Ci+1

ViVi 1

I I

(b)(a) shield conductor

inner conductor

3
2 Li 1

2
1
2

i 1
2 i+ 1

2

Figure 20. (a) coaxial cable and (b) its circuit model.

� Zero Backscattering in Self-Dual Transmission Lines

Here, we see that the self-dual transmission line does not cause backscattering. If a transmission
line has a constant impedance Z =

√
L̄(z)/C̄(z) independent of z, then the transmission line becomes

self-dual: the telegraph equations with a uniform Z are invariant under duality transformation
(V, I) ↔ (Rref I, V/Rref) with Rref = Z. In terms of the new variables η± = V ± ZI, the self-dual
telegraph equations are written as

∂η±
∂z

± 1
v0

∂η±
∂t

= 0, (18)

where v0(z) = 1/
√

L̄C̄. With arbitrary functions f±, the general expression of the solution can be provided
by η±(t, z) = f±(t ∓

∫ z dz′/v0(z′)), which corresponds to a propagating wave with velocity ±v0(z)
without backscatterng. If Z(z) depends on z, self-duality is broken and backscattering may be observed.

� Circuit-Theoretical Derivation of Zero Backscattering

Next, we give a circuit-theoretical derivation of zero backscattering for a self-dual system.
A transmission line composed of LC ladder circuits is shown in Figure 21a, where inductances
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Li+ 1
2

and capacitances Ci may depend on the position i. The dual circuit with respect to a global
resistance Rref is illustrated as shown in Figure 21b. The transformed circuit elements are given as

L�
i = Ci(Rref)

2, C�
i+ 1

2
= Li+ 1

2
/(Rref)

2. (19)

In the limit of small L�
i and C�

i+ 1
2
, each capacitance can be shifted to next position because the

potential difference across each inductance is negligibly small. By repeating the shift of the capacitances
Ci → Ci+1 in the original circuit as shown in Figure 21c, we obtain the same circuit as Figure 21b
(L�

i = Li+ 1
2

and C�
i+ 1

2
= Ci) under the following condition for any i:

Rref =

√
Li+ 1

2

Ci
. (20)

In other words, the LC ladder network with constant Li+ 1
2
/Ci is self-dual for impedance inversion

with respect to Rref defined by Equation (20). In this way, the global parameter Rref is linked with the
local impedance Zi =

√
Li+ 1

2
/Ci, which is defined by Li+ 1

2
and Ci in each site.

Next, we consider excitation of the self-dual LC ladder by a voltage source V connected at the
left-hand side as shown in Figure 21d. The dual circuit is illustrated in Figure 21e, where the current
source is given by Is = Vs/Rref. By repeating the shift of the capacitances Ci → Ci+1 as depicted in
Figure 21f, Figure 21e can be identified with Figure 21f. As discussed in Section 2.6, the self-dual circuit is
characterized by the effective resistance Rref as shown in Figure 21g. Imagine that we connect a uniform
transmission line (T1) with a characteristic impedance of Rref to the half-infinite circuit (T2). When the
signal propagates from T1 to T2, any backscattering does not appear due to the impedance matching.

Ci 1
 

 

(a)

(b)

 

 

(d)

(e)

(g) =

Ci Ci+1

Li+LiLi

Li=Ci (Rref)2

Ci+  =Li+   /(Rref)2

Ci Ci+1

Ci+1
Rref

Ci+

Li

2
3

2
1

2
1

2
1

2
1

Li+2
1 Li+2

3

Li+2
1 Li+2

3

2
1

Ci 1
  Ci Ci+1

Li+LiLi 2
3

2
1

2
1 Li+2

1 Li+2
3

Ci Ci+1

capacitor shift capacitor shift

(c) (f)

Figure 21. (a) LC ladder circuit and (b) its dual circuit; (c) capacitors in the circuit (a) are shifted; (d) LC
ladder circuit excited by a voltage source and (e) its dual circuit; (f) capacitors in the circuit (d) are
shifted; (g) input impedance of the LC ladder circuit.
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� Heaviside Condition

Self-duality can be realized in transmission lines with inductance Li+ 1
2
= L̄Δz, capacitance

Ci = C̄Δz, conductance Gi = ḠΔz, and resistance Ri+ 1
2
= R̄Δz as shown in Figure 22. The self-dual

condition is given by √
L̄
C̄

=

√
R̄
Ḡ

. (21)

This self-dual condition is nothing but a no-distortion signal transmission condition derived by
Heaviside [67]. Due to the self-duality, frequency-independent response is realized and backscattering
vanishes, while a signal decays as it propagates.

Figure 22. LC ladder with resistance and conductance.

3.2. Circuit Model for Huygens’ Metasurface

Two-dimensional artificial structures called metasurfaces have been extensively investigated for
controlling the amplitude and phase of transmitted and/or reflected electromagnetic waves [68].
The wavefront control of light can be realized by designing metasurfaces with spatial variations of
phase responses [69–72]. The amplitude and phase responses of metasurfaces are generally interdependent.
Nevertheless, it is possible to control the phase of the transmitted light with constant power transmission,
which could be 100% in ideal conditions without losses, by carefully designing the resonant components
of the metasurfaces. Metasurfaces for the arbitrary control of transmission properties, or amplitude and
phase control, are called Huygens’ metasurfaces, which have been introduced by Pfeiffer and Grbic [73].
In this subsection, we clarify the role of self-duality in Huygens’ metasurfaces.

� Transmission and Reflection for Huygens’ Metasurfaces

It is assumed that monochromatic plane electromagnetic waves with a specific polarization are
normally incident on an isotropic metasurface placed at z = 0 in a vacuum with a wave impedance
of Z0. In this paper, the variable with a tilde represents the complex amplitude of a harmonically
oscillating quantity A = Ãe jωt + c.c., where c.c. denotes the complex conjugate of the preceding term.
The complex amplitudes of macroscopic electric and magnetic fields, which are averaged over the
typical scale of metasurface elements, are represented by Ẽ− and H̃− (Ẽ+ and H̃+) for the input (output)
side z ≤ 0 (z ≥ 0) in the proximity to the surface. Although electric and magnetic fields are represented
by vectors, we here focus on scalar amplitudes for a specific polarization. Electromagnetic response of
the metasurface is characterized by two parameters: electric sheet admittance Ye and magnetic sheet
impedance Zm. The averaged electric fields Ẽav = (Ẽ− + Ẽ+)/2 induce surface currents K̃ = YeẼav,
which demand the boundary condition H̃− − H̃+ = K̃ on z = 0 [74]. In the same way, the magnetic
counterpart can be considered, and the averaged magnetic fields H̃av = (H̃− + H̃+)/2 produce surface
magnetic currents K̃m = ZmH̃av, which require the boundary condition Ẽ− − Ẽ+ = K̃m. The boundary
conditions are summarized as

H̃− − H̃+ = Ye
Ẽ− + Ẽ+

2
, (22)

Ẽ− − Ẽ+ = Zm
H̃− + H̃+

2
. (23)
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For the incident wave propagating in the +z direction with the electric field Ẽin e− jkz and the
magnetic field H̃in e− jkz(= Ẽin e− jkz/Z0), the total electric and magnetic fields (Ẽ, H̃) are represented
as (Ẽin e− jkz + �Ẽin e jkz, H̃in e− jkz − �H̃in e jkz) in z ≤ 0 and (τẼin e− jkz, τH̃in e− jkz) in z ≥ 0, where τ

and � are the amplitude transmission and reflection coefficients. By substituting these fields at the
metasurface (z = 0) into Equations (22) and (23), the amplitude transmission and reflection coefficients
are obtained as

τ = (Z2−Z1)Z0
(Z0+Z1)(Z0+Z2)

,

� = Z1Z2−(Z0)
2

(Z0+Z1)(Z0+Z2)
,

(24)

where Z1 = Zm/2 and Z2 = 2/Ye. Hence, the reflection vanishes for Z1Z2 = (Z0)
2. In addition to

the no-reflection condition, if Z1 and Z2 are purely imaginary impedances, which are expressed as
Z1 = (Z0)

2/Z2 = jbZ0 with a dimensionless number b ∈ R, the transmission coefficient can be written as

τ =
1 − jb
1 + jb

. (25)

The incident waves are perfectly transmitted through the metasurface due to the fact that |τ|2 = 1
for any b, and the transmitted waves acquire a phase of θ = −2 arctan b. Such metasurfaces, which are
typical examples of Huygens’ metasurfaces, realize arbitrary phase shift θ without losses in an ideal
case by tailoring the design of the metasurface structures. Both of the electric and magnetic responses
are indispensable for the no-reflection condition.

� Circuit Model for Huygens’ Metasurfaces

The propagation of electromagnetic waves in a vacuum can be modeled as signal propagation
in a transmission line with the wave impedance Z0, and the metasurface is represented by circuit
elements inserted in the transmission line as shown in Figure 23a. In this model, the electric field Ẽ
and magnetic field H̃ are replaced with voltage Ṽ and current Ĩ, respectively; therefore, the circuit
model of the metasurface should satisfy the following conditions:

Ĩ− − Ĩ+ = Ye
Ṽ− + Ṽ+

2
, (26)

Ṽ− − Ṽ+ = Zm
Ĩ− + Ĩ+

2
. (27)

A circuit called a lattice circuit as shown in Figure 23b satisfies the above conditions [75].
The electric and magnetic responses are represented by impedances Z2(= 2/Ye) and Z1(= Zm/2),
respectively. Equations (26) and (27) can be confirmed separately for Figure 23b, considering excitation
by waves from both sides of the metasurface. For in-phase excitation Ṽ− = Ṽ+, all currents are sunk
into the bridge circuit, and the currents become antiphase Ĩ− = − Ĩ+. There is no voltage across Z1,
and the currents flow only in Z2. Hence, we obtain Ṽ− = Z2 Ĩ−, which is identical to Equation (26) for
Ṽ− = Ṽ+ and Ĩ− = − Ĩ+. In the opposite case, Ṽ− = −Ṽ+ and Ĩ− = Ĩ+, the currents flow only in Z1,
and Ṽ− = Z1 Ĩ−, so the equation that corresponds to Equation (27) can be derived.

� Zero Backscattering Due to Self-Duality

For Figure 23a, Zin = Ṽ−/ Ĩ− provides the input impedance for the metasurface, or lattice circuit,
followed by the transmission line in z > 0. The uniform semi-infinite transmission line in z > 0 can be
regarded as a resistor with an impedance of Z0 as shown in Figure 21g. As a result, the total system viewed
from the input side z < 0 is well described by a bridge circuit as shown in Figure 23c, and Zin is identical to
the impedance of the bridge circuit. As described in Section 2.6, the bridge circuit satisfying Z1Z2 = (Z0)

2

is self-dual for the inversion center Z0, and the input impedance Zin is always Z0. The reflection vanishes
under this condition, where the wave impedance Z0 is impedance-matched to the load represented by the
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bridge circuit. As a result, all energy is transmitted to the transmission line in z > 0. Thus, the no-reflection
condition for Huygens’ metasurfaces is interpreted in terms of self-duality.

(a)

m
et
as
ur
fa
ce

transmission
line

+

+Z0 Z0 tuptuotupni

Z1

(b)

z0

Z0
+

(c)

+

Z2Z2

Z1

Z2

Z2

Z1

Z1

Figure 23. (a) circuit model for propagating electromagnetic waves incident on a metasurface; (b) circuit
model of Huygens’ metasurfaces with Z1 = Zm/2 and Z2 = 2/Ye; (c) lumped circuit model for the
metasurface followed by a semi-infinite transmission line.

4. Keller–Dykhne Duality

Circuit duality can be extended for a continuous system. As with circuits, the effective response of
a continuous system is associated with that of the dual one; thus, a self-dual response is automatically
guaranteed. Such a constraint can induce critical behaviors of self-dual systems. Here, these topics
are reviewed. Next, we introduce differential forms to clearly extract the structure of the duality in a
continuous system. The correspondence between the dualities in continuous and discrete systems is
formulated through discretization of continuous fields. In this section, we always use the right-hand
vector product, in other words, A, B, and A × B obey the right-hand rule.

4.1. Two-Dimensional Resistive Sheets

Consider an electric field E(x, y) and current density K(x, y) on a two-dimensional resistive
sheet located at z = 0 with a sheet conductance G(x, y). Here, we assume that the fields inside the
thin sheet are uniform along z and omit z-dependency for the fields. Thus, we treat the fields as
two-dimensional vector fields independent of z. An example configuration is shown in Figure 24a.
The physical dimensions of E, K, and G are V/m, A/m, and 1/Ω, respectively. From KVL and KCL,
we obtain

∇× E = 0, (28)

∇ · K = 0. (29)

Figure 24. (a) two-dimensional resistive sheet with boundary conditions; (b) solution for a sheet with
a constant sheet conductance G(x, y) = Gref. Black lines represent the current flow. The potential is
shown as a color map with isopotential gray contours.
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Note that these equations can be directly obtained from Maxwell’s equations; by omitting the
time-derivative terms for steady states, we can obtain Equations (28) and (29) from Faraday’s law and
the law of charge conservation. Ohm’s law is given by

K = GE, (30)

where G is a conductance and generally a 2× 2 matrix. For a metallic electrode, the boundary condition
is written as

n × E = 0, (31)

where n is the unit vector normal to the boundary. For an open boundary, the boundary condition is
given by

n · K = 0. (32)

From Equation (28), the electric field is represented by

E = −∇ϕ (33)

with a potential ϕ(x, y). Combining Equation (33) with Equations (29) and (30), we obtain

∇ · G∇ϕ = 0. (34)

The boundary of the i-th electrode is specified by the Dirichlet boundary condition

ϕ = ϕi, (35)

which is constant along the boundary. The open boundary is given by the Neumann boundary condition

n · G∇ϕ = 0. (36)

For a simplified system with a constant scalar conductance, we have the Laplace equation

∇2 ϕ = 0 (37)

from Equation (34). An example solution of the Laplace equation calculated by COMSOL
Multiphysics R© is shown in Figure 24b.

4.2. Duality in Laplace Equation

In this subsection, we discuss duality in Laplace equations [76]. The solution of the Laplace
equation is called a harmonic function. A harmonic function can be considered as a part of a holomorphic
function. To see this fact, consider a holomorphic function w(z) = u(z) + jv(z) with z = x + jy,
u(z) = Re[w(z)], and v(z) = Im[w(z)]. The holomorphism leads to the Cauchy–Riemann equations:

∂u
∂x

=
∂v
∂y

, (38)

∂u
∂y

= − ∂v
∂x

. (39)

These equations can be expressed as ⎡⎣ ∂v
∂x
∂v
∂y

⎤⎦ = J

⎡⎣ ∂u
∂x
∂u
∂y

⎤⎦ (40)
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with J =

[
0 −1
1 0

]
, which induces counterclockwise 90◦ rotation. As we differentiate Equations (38)

and (39) along x and y, respectively, and combine the results, we obtain

∇2u = 0, (41)

which states that u is harmonic. Similarly, v is also harmonic. Here, v is called a harmonic conjugate of u.
If u is given, how can we obtain its harmonic conjugate v? Focusing on v(x, y) = v(x0, y0) +∫

path:(x0,y0)→(x,y)(∇v) · dr with Equation (40), we have

v(x, y) = v(x0, y0) +
∫

path:(x0,y0)→(x,y)
(J∇u) · dr, (42)

where r = [x y]T and (x0, y0) is a fixed point. We have assumed that the considered region is
simply connected to define Equation (42). When we consider a small displacement Δr along a line
v(x, y) = const., we have (J∇u) · Δr = 0, which leads to ∇u ‖ Δr. Therefore, u and v constitute
an orthogonal coordinate around the point ∇u �= 0, as shown in Figure 25a. In this subsection, the
operation of taking the harmonic conjugate is treated as a duality transformation.

Figure 25. (a) holomorphic function w(z) = u(z) + jv(z) defines an orthogonal coordinate around a
point with dw/dz �= 0; (b) harmonic potential ϕ and the lines of force −∇ϕ; (c) harmonic conjugate ψ

for ϕ and the lines of force −∇ψ.

The above result induces duality for the potential problem of the Laplace equation. Let ψ be the
harmonic conjugate of a harmonic potential ϕ. The relation between ϕ and ψ is depicted in Figure 25b,c.
Now, we come back to resistive sheet problems. The current stream lines and isopotential contours are
replaced with each other under the harmonic conjugate as shown in the simplest example of Figure 26.
Furthermore, we can see that the harmonic conjugate interchanges the Dirichlet and the Neumann
boundary conditions because of the 90◦ rotation.

Figure 26. Current and potential distributions for (a) original and (b) its dual resistive sheets with a
uniform conductance.
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4.3. Generalized Duality

Harmonic duality can be extended to a two-dimensional resistive sheet with a spatially
inhomogeneous sheet conductance G(x, y). Keller proved the duality for a system composed of
two different conductances [6], and Dykhne generalized it to a system with an arbitrary scalar function
G(x, y) [7]. The extended duality is often called Keller–Dykhne duality. Furthermore, Mendelson
generalized the duality for a tensor G(x, y) [8].

Here, we review the derivation of the duality. As with circuit duality, we set a reference resistance
Rref(= 1/Gref). Referring to a 90◦ rotation in Equation (40), we introduce the following dual fields on z = 0:

E� = Rref JK = Rrefez × K, (43)

K� = Gref JE = Grefez × E, (44)

with the unit vector ez along the z direction. The 90◦ rotation interchanges divergence and rotation of a
two-dimensional vector field v(x, y) as

∇× (ez × v) = ez∇ · v, (45)

∇ · (ez × v) = −ez · (∇× v), (46)

where we used ∇ × (A × B) = A(∇ · B) − B(∇ · A) + (B · ∇)A − (A · ∇)B and ∇ · (A × B) =

B · (∇× A)− A · (∇× B). Thus, KVL and KCL for E� and K� automatically follow: ∇× E� = 0 and
∇ · K� = 0. In addition, Ohm’s law in Equation (30) is converted to

K� = G�E� (47)

with
G� = (Gref)

2 JG−1 J−1. (48)

For R = G−1 and R� = (G�)−1, we obtain

R� JRJ−1 = (Rref)
2. (49)

Therefore, E� and K� give a solution for the sheet with G� under interchanging the Dirichlet
and Neumann boundary conditions. Note that G can be a tensor. For a scalar G, we simply obtain
G�G = (Gref)

2.

4.4. Effective Response and Duality

Duality can relate the effective response of an original sheet with its dual counterpart. To see this
statement, consider a resistive sheet with two terminals as shown in Figure 27a. Between electrodes,
we have the voltage V = −

∫
c1

E · dr and current flow I =
∫

c2
K · n2 dr. The effective conductance

between the terminals is defined as Geff = I/V. The dual system is also shown in Figure 27b,
and the voltage and current are represented by V� = −

∫
c2

E� · dr and I� =
∫

c1
K� · n1dr, respectively.

Using A · (B × C) = B · (C × A) = C · (A × B), we obtain

V� = Rref I, (50)

I� = GrefV. (51)

Therefore, the effective conductance G�
eff for the dual system is given by

G�
eff Geff = (Gref)

2. (52)
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If the system is self-dual and passive, which means that there is no active element with a negative
resistance, then Geff = G�

eff = Gref automatically follow. Thus, self-duality determines the effective
response regardless of the structural geometry.

 

G(x,y)

c2

c1
n1

n2

(a) (b)

G (x,y)

Figure 27. (a) resistive sheet with a sheet conductance G(x, y) and two terminals; (b) corresponding
counterpart with G� = (Gref)

2 JG−1 J−1. Unit normal vectors are denoted by n1 and n2 for curves c1

and c2, respectively.

4.5. Self-Duality and Singularity

The self-dual effective response can sometimes predict a critical behavior of the system. To see
how critical behavior appears in self-dual systems, we consider an ideal checkerboard with different
admittances Y1 and Y2, as shown in Figure 28a. Here, the AC response with an angular frequency
ω is discussed for the checkerboard. For a capacitive admittance Y1 = jωC and an inductive
admittance Y2 = ( jωL)−1, the checkerboard is self-dual with respect to a reference conductance
Gref =

√
Y1Y2 =

√
C/L. Then, we obtain a real effective admittance Yeff = Gref due to the self-duality.

The positive real admittance indicates that the system is lossy. However, the system is lossless
because the effective admittance composed only of capacitors and inductors must be purely imaginary.
Therefore, we do not have a physical solution for such a checkerboard composed of capacitors and
inductors. Thus, the lossless ideal checkerboard is singular.

The above observation can be also interpreted from a branch cut for the self-dual admittance
Yeff(Y1, Y2) =

√
Y1Y2 [77]. We fix Y2 at a point of the negative imaginary axis and gradually displace Y1

from Y2 as shown in Figure 28b. When we consider Yeff(Y1) =
√

Y1Y2 as a function of Y1, Yeff(Y1) must
have a branch cut in the complex plane. The previous discussion clearly shows that the branch cut is
located along the positive imaginary axis. This result indicates that two approaches from Re(Y1) > 0
and Re(Y1) < 0 regions to a point at the singular branch lead to different values of Yeff. The effective
admittance on the branch is critically sensitive to loss or gain of the system.

The above result can be generalized for arbitrary Y2. Using linearity

Yeff(sY1, sY2) = sYeff(Y1, Y2) (53)

for a scalar s, we can write Yeff as Yeff = Y2RrefYeff(ηGref, Gref) with η = Y1/Y2. Therefore, all system
characteristics are derived from yeff(η) := RrefYeff(ηGref, Gref) satisfying yeff(η) = η yeff(η

−1) due to
the self-duality Yeff(Y1, Y2) = Yeff(Y2, Y1). Because singular Y1 is represented by Y1 = sY2(s < 0) in the
previous discussion, self-dual yeff(η) has a branch cut along the negative real axis of η.
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Figure 28. (a) ideal checkerboard sheet with sheet admittances Y1 and Y2; (b) domain of definition
for the effective admittance Yeff(Y1) =

√
Y1Y2. The branch cut along the positive imaginary axis is

indicated by a wavy line.

4.6. Differential-Form Approach for Duality

Although Keller–Dykhne duality was formulated through vector analysis, the essence of the
duality can be vividly extracted by differential forms. Furthermore, differential forms are suitable
to discretize continuous fields to circuit systems. Discretizing differential forms, we bridge between
Keller–Dykhne duality and circuit duality.

Here, let us introduce differential forms and the exterior derivative in plain terms. To this end,
we only focus on Cartesian coordinates. For more technical details of differential forms, see [59,78].

� Covector and 1-Form

First, consider an electric field at a point (x0, y0). The Cartesian basis is denoted by {ex, ey}.
A displacement Δr = Δxex + Δyey and the electric potential difference Δϕ are related through

− Δϕ = Ex(x0, y0)Δx + Ey(x0, y0)Δy. (54)

It is possible to consider an electric field E as a linear function as E : Δr �→ −Δϕ. Physically, we may
understand the electric field as an apparatus that measures the (minus) electric potential difference for a
displacement Δr. Such a linear map from a vector to a scalar is called a covector. Introducing a dual basis
{dx, dy} with respect to the Cartesian basis {ex, ey}, we can write the covector as

E(x0, y0) = Ex(x0, y0)dx + Ey(x0, y0)dy. (55)

The action of the interior product between E(x0, y0) and a displacement vector Δr is written as

Δr� E(x0, y0) = Ex(x0, y0)Δx + Ey(x0, y0)Δy. (56)

From the definition, we have ex�dx = 1, ey�dx = 0, ey�dy = 1, and ex�dy = 0. A covector α should
be depicted as a set of parallel lines with an outer orientation as shown in Figure 29a. As the covector
becomes stronger, the lines become denser. The interior product v� α gives the signed number of lines that
the vector v pierces. Note that we consider a limit operation in the strict sense as follows: we set a small
resolution value ε and define a set of lines {Lm|m ∈ Z} with Lm = {r|r� α = mε}. The number of the lines
of {Lm} pierced by v is denoted as N(ε). Then, we obtain v� α = limε→0 εN(ε).

The electric field is given by a covector field

E(x, y) = Ex(x, y)dx + Ey(x, y)dy, (57)

which smoothly depends on (x, y). Covector fields are generally called 1-forms. An example of a
1-form is shown in Figure 29b. For a general 1-form α, v� α is evaluated at the tangent space to which
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v belongs: v� α = v� α(x0, y0) for v whose starting point is (x0, y0). The 1-form α can be integrated
along a curve c as ∫

c
α := lim

N→∞

N−1

∑
i=0

Δri� α, (58)

where curve c(t) : [0, 1] → E2 is discretized as Δri = c(ti+1)− c(ti) with ti = i/N (E2: two-dimensional
Euclidean space). Note that Δri is considered to be in the tangent space of c(ti). This definition can be
linearly extended for any 1-chain c, and a 1-form is considered as a 1-cochain. By integrating, we can
express a voltage difference as V = −

∫
c E.

Figure 29. (a) illustration of a covector α. The signed number of lines that a vector v pierces is given by
v� α. The positive direction of α is depicted by carets; (b) covector field (1-form); (c) discretized curve c
with displaced vectors Δri to define the integral of a 1-form α along c.

� Tensors and Products

Similar to a covector, a (covariant) tensor maps p input vectors to a scalar output: T(v1, v2, · · · , vp),
which has linearity in each slot. The interior product of a vector v and a tensor T can be defined as
v� T = T(v,!, · · · ), which indicates that the first slot is filled with v and the other slots are left waiting
for inputs (!).

To obtain a higher-order tensor, other products are introduced. First, the tensor product of two
covectors α and β is defined as follows: α⊗ β(u, v) = α(u)β(v) for u, v in a vector space U. For 1-forms,
the tensor product operates on each tangent space.

Second, the wedge product for two 1-forms α and β is defined as an antisymmetrized tensor

α ∧ β =
1
2
(α ⊗ β − β ⊗ α). (59)

The wedge product of two 1-forms satisfies

α ∧ β = −β ∧ α, (60)

α ∧ α = 0. (61)

As dx ∧ dx = dy ∧ dy = 0, only dx ∧ dy plays an important role. For u = uxex + uyey and
v = vxex + vyey, we have

dx ∧ dy(u, v) =
1
2

det

[
ux vx

uy vy

]
. (62)

Due to the antisymmetry dx ∧ dy(u, v) = −dx ∧ dy(v, u), dx ∧ dy measures a signed area of a
triangle spanned by u and v. In Figure 30a, we illustrate dx ∧ dy as directed circles and dx ∧ dy(u, v)
counts the number of circles inside the triangle spanned by u and v. If the direction from u to v is the
same (opposite) as the direction of the circles, the circles are counted as positive (negative) numbers.
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Figure 30. (a) dx ∧ dy as directed circles; (b) example of a 2-form; (c) discretization for integration.

� 2-Forms and Integration

We can also consider a field ω = f (x, y)dx ∧ dy with a scalar function f (x, y), where ω is called a
2-form. An example of a 2-form is shown in Figure 30b, where the dense circle area has a stronger field
than the sparse area. For integration, we discretize a directed 2-cell S as S =

⋃
i Si with disjoint small

triangles Si (Figure 30c). A 2-form can be integrated on S as∫
S

ω = lim ∑
i

f (xi, yi)ω(Δui, Δvi), (63)

where Δui and Δvi span a triangle Si with the same direction of S and (xi, yi) ∈ Si. The limit is taken
for finer meshes. Generally, S can be an arbitrary 2-chain. Then, a 2-form can be considered as a
2-cochain. Note that integration of a general tensor T without antisymmetry cannot be defined and
the antisymmetry is essential for integration. To define the integral, the integration over subdivided
triangles should be the same as that of the original triangle. At least, T(u, v) = T

(
u, u+v

2
)
+ T

( u+v
2 , v

)
is required for arbitrary u and v. Considering u = v, we obtain T(u, u) = 0 for arbitrary u.
Then, the antisymmetry T(u, v) = −T(v, u) must hold due to T(u + v, u + v) = 0.

� Exterior Derivative

The exterior derivative for a scalar function f (x, y) is defined as

d f =
∂ f
∂x

dx +
∂ f
∂y

dy, (64)

which corresponds to the gradient of the function f . For a 1-form α = αxdx + αydy, we define the
exterior derivative as

dα = (dαx) ∧ dx + (dαy) ∧ dy. (65)

By direct calculation,

dα =

(
∂αy

∂x
− ∂αx

∂y

)
dx ∧ dy,

this corresponds to a rotation. By using the exterior derivative, KVL is represented as dE = 0.

� Stokes’ Theorem

How may one relate an exterior derivative to the boundary of a chain? Green’s theorem

∮
∂S
( f dx + gdy) =

∫∫
S

(
∂g
∂x

− ∂ f
∂y

)
dxdy (66)

can be rewritten as the following equation for a 2-chain S with a 1-form α:∫
S

dα =
∫

∂S
α. (67)
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Equation (67) generally holds for higher-dimensional spaces, and it is known as Stokes’ theorem.
Stokes’ theorem relates the boundary operator ∂ with the exterior derivative d.

� Twisted 1-Form

Next, we consider a representation of current density. As discussed in Section 2.3, current flow
should be calculated for an outer-oriented 1-chain, so the current density is an outer-oriented 1-cochain.
The outer-oriented 1-chain č was represented as č = {čo|o =�,�} by using the inner-oriented
1-chain čo depending on a plane orientation o. Thus, current density K should be represented as
K = {Ko|o =�,�} with the two 1-forms satisfying

K−o = −Ko, (68)

where −o represents the opposite orientation of o. The set of two 1-forms satisfying Equation (68) is
called a twisted 1-form. On the other hand, ordinary forms are called untwisted. A twisted 1-form α̌ at a
point P is an outer-oriented covector α̌P, which is depicted as the inner-oriented lines in Figure 31a.
To stress the twist, we put the check symbol (ˇ) for twisted objects, but sometimes omit the mark to
reduce the notation complexity. In Figure 31b, the twisted 1-form K is depicted by (local) stream lines.
We can count the total current flow across a curve by the integration. The integration of K along an
outer-oriented 1-chain č is defined as ∫

č
K :=

∫
čo

Ko. (69)

The exterior derivative of K is also defined as

(dK)o = dKo. (70)

KCL states that ∫
∂Š

K =
∫

Š
dK = 0 (71)

for any outer-oriented 2-cell Š. Considering small Š, we obtain dK = 0 as KCL.

(a) (b)

P

v v P:
number of 
piercing

c

P

Figure 31. (a) interior product between an outer-oriented vector v̌ and an outer-oriented covector α̌P at
a point P; (b) integration of a twisted 1-form α̌ along an outer-oriented 1-chain č.

� Metric Tensor

To express Ohm’s law, we will define the Hodge star operation. To define the Hodge star operation,
we need to introduce a metric tensor. In the two-dimensional Euclidean space E2, we can define the
inner product of vectors u = uxex + uyey and v = vxex + vyey as

g(u, v) = u · v (72)

with u · v = uxvx + uyvy. Here, g is called the metric tensor. We can define a covector g�(u) for a vector
u satisfying

g�(u) = g(u,!). (73)
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Therefore, v� g�(u) = g(u, v) holds. The operation of g� on ex and ey is graphically shown in
Figure 32. The inverse map of g� is written as g� = (g�)−1.

Figure 32. Conversion between a vector and a covector.

� Area Form as a Twisted 2-Form

With respect to the metric of E2, {ex, ey} is an orthogonal basis: g(ei, ej) = δij (δij: Kronecker
delta). Using the orthogonal coordinate, we can define a twisted 2-form “Area” as

Area� = dx ∧ dy, (74)

Area� = −dx ∧ dy. (75)

The area form measures the unsigned area of an outer-oriented 2-chain.

� Hodge Star

Now, we define the Hodge star operation for a 1-form α as

(�α)o = g�(α)�Areao (76)

with respect to an orientation o of the plane. The star operator � maps a 1-form to a twisted 1-form.
Naturally, we can define a Hodge star operation for a twisted 1-form α̌ as:

� α̌ = g�(α̌o)�Areao. (77)

Then, the Hodge operator maps a twisted 1-form to an untwisted 1-form. The multiple operations
of � are shown in Figure 33. In this figure, we can see

� � = −Id, (78)

where Id is the identity operator. Therefore, � defines the complex structure in the two-dimensional plane.
By using the Hodge star, we can represent Ohm’s law with a scalar sheet conductance G as K = G � E.
Note that the Hodge operator can be defined for other p-forms, but the sign of �� generally depends on
the order p, the dimension of the space, and the metric signature, rather than Equation (78) [59].

91



Symmetry 2019, 11, 1336

Figure 33. Complex structure of Hodge operations for untwisted and twisted 1-forms.

4.7. Summary of Basic Equations in Differential-Form Approach

Now, we summarize the basic equations with differential forms for a two-dimensional resistive
sheet with a nonuniform scalar conductance. The electric field is represented by a 1-form E, while the
current density field is given by a twisted 1-form K. KVL and KCL are formulated as

dE = 0, (79)

dK = 0, (80)

respectively. The scalar Ohm’s law is rewritten as

K = G � E (81)

with a scalar sheet conductance G(= 1/R). These equations are schematically shown in Figure 34.
Although we only focused on Cartesian coordinates, Equations (79)–(81) are coordinate free. Therefore,
we can use an arbitrary coordinate for analysis. Another feature of the differential-form formalism is
the exclusion of the metric in Equations (79) and (80). The metric appears through the Hodge star in
Equation (81). Thus, Equations (79) and (80) are metric-free equations and easy to be discretized while
keeping the geometrical structure, as we see later.

untwisted twisted
E K

G

R
d d
0 0

Figure 34. Structure of basic equations in a two-dimensional resistive sheet.

4.8. Keller–Dykhne Duality with Differential Forms

Now, we formulate Keller–Dykhne duality with differential forms. Electric and current fields
are represented by untwisted and twisted 1-forms, respectively. To exchange these fields with two
different kinds of orientations, we need to fix an orientation � of the plane. Here, we define a twisted
scalar Ω� = {(Ω�)o|o =�,�} satisfying (Ω�)� = +1 and (Ω�)−� = −1. The pseudoscalar Ω� is
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regarded as the plane orientation �. For a twisted form ω̌, Ω� extracts the component Ω�ω̌ = ω̌�.
Now, we consider the replacement as

E� = RrefΩ�K, (82)

K� = −GrefΩ�E (83)

with respect to a reference resistance Rref(= 1/Gref). Clearly, these fields satisfy

dE� = 0, (84)

dK� = 0. (85)

From Equation (81) with Equations (82) and (83), we obtain

K� = G� � E�, (86)

where we use Equation (78) and G� = (Gref)
2/G for a scalar G.

4.9. Discretization

Discretizing a two-dimensional sheet, we can obtain circuit duality again. In this subsection,
we rigorously confirm this statement.

� Discretization

For a sheet region U, we consider a cellular paving K with nodes N , edges E , and faces F .
We write the relations among nodes, edges, and faces as

∂ei =
|N |
∑
j=1

njΔj
i (i = 1, 2, · · · , |E |), (87)

∂ fi =
|E |
∑
j=1

ejΠj
i (i = 1, 2, · · · , |F |) (88)

for ei ∈ E and fi ∈ F . The totality of p-forms on U is denoted by Cp(U). We can define φp : Cp(U) →
Cp(K) as [

φp(ω)
]
(c) =

∫
c

ω (89)

for ω ∈ Cp(U) and all c ∈ Cp(K). Here, φp makes a continuous field ω discretized. Now, we obtain a
commutative diagram:

C0(U) C1(U) C2(U)

C0(K) C1(K) C2(K)

d

φ0

d

φ1 φ2

d d

(90)

Commutativity can be checked as follows. We can calculate for all f ∈ C0(U), c ∈ C1(K) as

[
φ1(d f )

]
(c) =

∫
c

d f =
∫

∂c
f =

[
φ0( f )

]
(∂c) =

[
dφ0( f )

]
(c), (91)

where we used Stokes’ theorem. Similarly, we obtain φ2(dα) = d[φ1(α)], for all α ∈ C1(U).
The commutative diagram of Equation (90) indicates that the discretization by φ keeps the algebraic
structure of d.
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Using φ, we can discretize an electric field (untwisted 1-form) E as V = ∑
|E |
i=1 Viei with Vi =

∫
ei

E.
Moreover, KVL (dE = 0) is discretized as

dV = 0, (92)

which is explicitly expressed as ∑
|E |
j=1 VjΠj

i = 0. Therefore, Πj
i represents the discretized rotation of

the field.
For a current density K (twisted 1-form), we should consider the integration on the dual lattice.

The set of all twisted p-forms on U is represented as Čp(U). We have

[
φ̌p(ω̌)

]
(č) =

∫
č

ω̌ (93)

for ω̌ ∈ Čp(U) and all č ∈ Cp(K�). Then, another diagram similar to Equation (90) is obtained:

Č0(U) Č1(U) Č2(U)

C0(K�) C1(K�) C2(K�)

d

φ̌0

d

φ̌1 φ̌2

d d

(94)

Remembering (�1)
−1 : C1(K�) → C1(K), we can define I = (�1)

−1(φ̌1(K)
)
= ∑

|E |
i=1 Iiei with

Ii =
∫

ěi
K =

∫
(�1)−1ei K. Now, the discretized KCL is obtained as

∂I = 0, (95)

for which component representation is ∑
|E |
j=1 Δi

j I j = 0. Therefore, Δi
j indicates the discretized minus

divergence.
For the discretization of Ohm’s law, we interpolate E from Ei as

E ≈
|E|
∑
i=1

Eiwei , (96)

where {wei} are called interpolation forms. As the interpolation forms {wei}, so-called Whitney forms
can be used [62,79–82]. Now, Ohm’s law is discretized as

Ii =
|E |
∑
j=1

(∫
ěi

G � wej

)
Ej. (97)

� Correspondence between Keller–Dykhne Duality and Circuit Duality

Now, we establish correspondence between Keller–Dykhne duality and circuit duality. These two
dualities are related through the diagram shown in Figure 35. In this section, we prove the
commutativity of the two paths (1) and (2) in the figure.

Figure 35. Relation between Keller–Dykhne duality and circuit duality.
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(1) For I and V discretized from K and E, we can consider the dual circuit with current I� :=
Gref(�

1)−1(V) and voltage V� := Rref �1 (I) distributions for a circuit on K�:

I� = Gref

|E |
∑
i=1

Vi(�
1)−1(ei) = Gref

|E |
∑
i=1

Viěi, (98)

V� = Rref

|E |
∑
i=1

Ii �1 (ei) = Rref

|E |
∑
i=1

Ii ěi. (99)

(2) On the other hand, we discretize E� = RrefK� and K� = −GrefΩ�E in a dual mesh K�. We need
to choose a specific orientation � of the plane, and (ěi)� is regarded as an inner-oriented edge in
K�. Here, we introduce the �-conjugate operation to give an outer-oriented dual edge as ei

� = ěi.
The dual edge (ěi)�

� is outer-oriented, and represented as
(
(ěi)�

�)
�
= −ei (Figure 36), which reflects

the complex algebraic structure of the plane. Then, discretized E� and K� are given as(∫
(ěi)�

E�

)
(ěi)� = Rref

(∫
ěi

K
)
(ěi)� = (V�)�, (100)

(∫
(ěi)�

�
K�

)
(ěi)� =

(∫
−ei

(K�)�

)
(ěi)� = Gref

(∫
ei

E
)
(ěi)� = (I�)�. (101)

These equations indicate the commutativity of the diagram shown in Figure 35.
Thus, Keller–Dykhne duality corresponds to circuit duality through discretization.

Figure 36. Interchange between a primary mesh and dual mesh.

5. Electromagnetic Duality

The electric field induced by an electric dipole has similar properties to the magnetic field created
by a magnetic dipole. Such similarities can be considered as an emergent form of electromagnetic duality.
To correctly understand electromagnetic duality, we need to clarify the difference between electric
and magnetic fields. To this end, we utilize inner- and outer-oriented vectors called polar and axial
vectors, respectively [78]. By using these concepts, we accurately formulate electromagnetic duality,
while the role of orientation of the space in electromagnetic duality is elucidated. The analogy between
electromagnetic duality and Keller–Dykhne duality is also discussed.

5.1. Preliminary

� Polar and Axial Vectors

Here, we introduce two different kinds of vectors. Consider a line segment in a three-dimensional
space. As discussed in Section 2.3, we can set an inner or outer orientation of the line. An inner-oriented
line is called a polar vector and is represented by an arrow depicted in Figure 37a. The totality of polar
vectors forms a vector space, in which we define the sum of vectors and scalar multiplication of a
vector. An electric field is represented by a polar-vector field. On the other hand, an outer-oriented
line can be considered as shown in Figure 37b. Such an outer-oriented line segment is called an axial
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vector. Axial vectors also form a vector space. As we saw in Section 2.3, an outer-oriented object can
be represented by two-different inner-oriented ones. Here, we can represent the orientation of the
space by a helix, of which the winding direction is right- or left-handed. The helix winding direction is
arranged to be the same as the outer orientation of the axial vector, then the advance direction of the
corresponding screw induces the inner orientation of the line as shown in Figure 38. In other words,
when fingers of the left or right hand representing the helix handedness are curled in the direction
of the outer orientation, the thumb points out the inner orientation. Then, an axial vector is denoted
by a = {ao|o ∈ O} with polar vectors satisfying a−o = −ao for the set O of two spatial orientations.
Importantly, an axial vector is a geometric object independent of the orientation of the space, although
the polar vector obtained from the axial vector depends on the spatial orientation.

(a) (b)

Figure 37. (a) polar vector; (b) axial vector.

Figure 38. Representation of an axial vector by polar vectors depending on the space orientation.
A spatial orientation is entered in the subscript position and its output is a polar vector which depends
on the spatial orientation.

� Magnetic Field as Axial Vectors

To explain the necessity of the axial vectors, we consider Ampère’s law. The conventional
image of a magnetic field induced by a current flowing along a line (x = y = 0) is depicted in
Figure 39a, where the direction of the magnetic field is determined by the so-called right-hand
rule. However, there are three unnatural points in this illustration: (i) Why is the right-hand rule
required? (ii) Mirror reflection with respect to x = 0 or y = 0 does not change the current flow,
but it alters the direction of the vector field. Here, mirror reflection Mx with respect to x = 0
operates as [Mxv](x, y, z) = −vx(−x, y, z)ex + vy(−x, y, z)ey + vz(−x, y, z)ez for a polar vector field
v(x, y, z) = vx(x, y, z)ex + vy(x, y, z)ey + vz(x, y, z)ez. (iii) Mirror reflection with respect to z = 0
changes the direction of the current, but the vector field is unchanged under the operation. These three
problems are resolved when we consider magnetic fields as axial vector fields. A proper illustration
of the magnetic field is shown in Figure 39b, where the magnetic line is outer-oriented. In this
representation, we do not need the right-hand rule. The field in Figure 39b is symmetric with respect
to x = 0 or y = 0, while it is antisymmetric with respect to z = 0. Figure 39a is now interpreted as the
right-hand component for Figure 39b.
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Figure 39. Ampère’s law represented by (a) polar and (b) axial magnetic lines.

� Vector Product

Another important operation that can generate an axial vector is the vector product of polar
vectors. Consider the vector product between polar vectors A and B. Clearly, A and B are invariant
under a mirror reflection with respect to the plane spanned by A and B. Therefore, it is natural
to consider A × B as an axial vector as shown in Figure 40a. Then, the mirror symmetry is kept.
The representation by polar vectors is also depicted in Figure 40b. The vector product between a polar
vector and an axial vector is also defined to give a polar vector.

Figure 40. (a) axial vector obtained from a vector product of polar vectors; (b) its polar-vector representation.

� Scalar and Pseudoscalar

For a scalar, we can consider an outer-oriented object. The codimension for a scalar is three in this
three-dimensional space. Therefore, an outer-oriented or twisted scalar can be represented by a helix
in this space. An outer-oriented scalar is often called a pseudoscalar. A pseudoscalar š is represented
by two scalars š = {šo|o ∈ O} with š−o = −šo.

For example, magnetic charge density ρm = ∇ · B is a pseudoscalar because magnetic flux density
B is an axial vector. Therefore, a magnetic charge should be a pseudoscalar if it exists. The difference
between electric and magnetic charges is illustrated in Figure 41.

+ +

+ +

+

(a) (b)

Figure 41. (a) electric charges as a scalar; (b) magnetic charges as a pseudoscalar.

5.2. Formulation of Electromagnetic Duality

� Maxwell’s Equations

Maxwell’s equations can be written as

∇× E +
∂B
∂t

= −Jm, ∇ · D = ρe, (102)

∇× H − ∂D
∂t

= Je, ∇ · B = ρm (103)
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with electric field E, electric displacement field D, electric current density Je, electric charge density ρe,
magnetic field H, magnetic flux density B, magnetic current density Jm, and magnetic charge density ρm.
While E, D, and J are polar vectors, H, B, and Jm are axial vectors. Electric and magnetic charge densities
are represented by a scalar and pseudoscalar, respectively. Here, we introduce Jm and ρm to investigate
the duality. Note that Jm and ρm are fictitious because a magnetic monopole does not exist. Material fields
(D, H) are determined from (E, B) through the constitutive equations as described later.

� Electromagnetic Duality Transformation

Electric and magnetic fields are represented by polar and axial vectors as shown in Figure 37,
respectively. To exchange these two different types of vectors, we need to fix the orientation of the
space to σ and introduce a pseudoscalar Ωσ as (Ωσ)σ = +1 and (Ωσ)−σ = −1. The pseudoscalar
Ωσ can be represented by a helix with winding of σ as shown in Figure 42. For an axial vector a,
Ωσ converts it to the polar component as Ωσa = aσ.

R L
(a) (b)

Figure 42. (a) ΩR and (b) ΩL.

We set a reference resistance Rref(=: 1/Gref). For a spatial orientation σ, the electromagnetic
duality transformation is given by

E� = RrefΩσ H, D� = GrefΩσB, (104)

H� = −GrefΩσE, B� = −RrefΩσD. (105)

Under the duality transformation, Maxwell’s equations are invariant as

∇× E� +
∂B�

∂t
= −J�m, ∇ · D� = ρ�e , (106)

∇× H� − ∂D�

∂t
= J�e , ∇ · B� = ρ�m (107)

with

ρ�e = GrefΩσρm, J�e = GrefΩσ Jm, (108)

ρ�m = −RrefΩσρe, J�m = −RrefΩσ Je. (109)

� Duality for Constitutive Equations

Consider the relations called constitutive equations

D = εE + ξH, (110)

B = ζE + μH, (111)

where ξ and ζ are twisted. Generally, ε, ξ, ζ, and μ are tensors. Under Equations (104) and (105),
the constitutive equations are transformed as

D� = ε�E� + ξ�H�, (112)

B� = ζ�E� + μ�H� (113)
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with

ε� = (Gref)
2μ, ξ� = −ζ, (114)

ζ� = −ξ, μ� = (Rref)
2ε. (115)

� Self-Dual Media

Now, we require the set of self-dual conditions ε� = ε, ξ� = ξ, μ� = μ, and ζ� = ζ.
Then, the following equations should hold:

ε = (Gref)
2μ, ξ = −ζ. (116)

Here, the Gref satisfying Equation (116) is called the admittance Y of the medium. For scalar
ε and μ, we have Y =

√
ε/μ. In particular, a vacuum with ε = ε0, μ = μ0, ξ = ζ = 0 is self-dual

with respect to the vacuum admittance Y0 =
√

ε0/μ0. In circuit theory, a self-dual system did not
have backscattering. This statement is also established in electromagnetic systems under certain
conditions [54]. In addition, the duality transformation can be extended to continuous one and
continuous self-dual symmetry leads to the helicity conservation law [55,83–88].

5.3. Analogy between Keller–Dykhne Duality and Electromagnetic Duality

Maxwell’s electromagnetic theory in a four-dimensional spacetime has an analogous structure to
the sheet problem discussed in Section 4. To see this analogy, we use the differential-form approach to
Maxwell’s equations [62,89–92]. The wedge product, exterior derivative, integral, and Hodge star are
naturally extended in dimensions greater than two.

In a three-dimensional space, an electric field and magnetic field are represented by an untwisted
1-form E and twisted 1-form H, respectively. On the other hand, a magnetic flux density is denoted by
an untwisted 2-form B, while an electric displacement is represented by a twisted 2-form D. Using these
quantities, we define untwisted and twisted 2-forms F and G as

F = E ∧ dt + B, (117)

G = −H ∧ dt + D, (118)

respectively. Maxwell’s equations without a source are equivalent to

dF = 0, (119)

dG = 0, (120)

with the four-dimensional exterior derivative d. Now, we consider a medium with a scalar permittivity
ε and permeability μ, while we set ξ = 0 and ζ = 0. The constitutive equation is given by

G = Y � F (121)

with the admittance Y =
√

ε/μ (= 1/Z) and the four-dimensional Hodge star operator �.
These equations are summarized in Figure 43. For 2-forms in the four-dimensional space, we have

� � = −Id, (122)

with the identity operator Id. Equation (122) leads to a complex structure.
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Figure 43. Structure of Maxwell’s theory of electromagnetism.

Equations (119)–(121) perfectly correspond to Equations (79)–(81), respectively. When we fix an
orientation � of the four-dimensional spacetime, the duality transformation can be written as

F� = −RrefΩ�G, (123)

G� = GrefΩ�F. (124)

Then, the dual admittance is defined as

Y� = (Gref)
2/Y. (125)

The duality transformation of Equations (123) and (124) interchanges E and H in the
three-dimensional space. If we set Gref = Y, we obtain Y� = Y, which indicates the system is self-dual.
As an example, a vacuum is self-dual with respect to the vacuum admittance Y0 =

√
ε0/μ0 (= 1/Z0)

with vacuum permittivity ε0 and vacuum permeability μ0. Electromagnetic duality can be considered
as a manifestation of Poincaré duality in this spacetime [93].

6. Babinet Duality

Babinet’s principle known in optics and electromagnetism relates wave-scattering problems of two
complementary screens (Figure 44) [94]. Here, we call the duality appearing in Babinet’s principle as
Babinet duality. Babinet duality can be regarded as a high-frequency counterpart of Keller–Dykhne
duality, which is discussed in Section 4. At first, we introduce rigorous Babinet’s principle for
electromagnetic waves. Then, we analyze self-dual systems in terms of Babinet duality, such as
the Mushiake principle in antenna theory [13]. Finally, we discuss Babinet duality in the light of circuit
duality by using a transmission-line model of metasurfaces.

(a) (b)

opaque
region

transparent
region

opaque
region

transparent
region

incident
wave

x
y
z

x
y
z

Figure 44. (a,b) two scattering problems that are dual with each other. Opaque and transparent regions
are interchanged under the duality transformation. The screen in (b) is called the complementary
screen of that in (a), and vice versa.
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6.1. Babinet’s Principle for Electromagnetic Waves

Before moving on to Babinet’s principle for electromagnetic waves, we discuss the duality for
electromagnetic waves radiated from planar sheets. Next, the formulated duality is utilized to derive
Babinet’s principle for electromagnetic waves.

� Duality for Radiation from Planar Antennas

Here, we formulate the duality for fields radiated from nonuniform planar sheets in a vacuum,
while we stress the importance of axial vectors. Consider a sheet on z = 0 with an electric sheet
impedance Ze(x, y) and an external electric field Ẽext(x, y) as a voltage source. Generally, Ze(x, y) is
a tensor. Following Maxwell’s equations, the induced current distribution radiates electromagnetic
waves. The radiated electromagnetic field is represented by (Ẽ+, H̃+) and (Ẽ−, H̃−) in z ≥ 0 and
z ≤ 0, respectively. Mirror reflection with respect to z = 0 is expressed as Mz and the considered
system is invariant under Mz. First, let us see the symmetry property of electromagnetic fields
on z = 0. The component of v perpendicular to the plane z = 0 is obtained by vn = (v · ez)ez.
Then, the projection of v onto z = 0 is given by vt = Pv = v − vn with P = −ez × ez×. A polar vector
p and axial vector a behave differently for Mz as

Mz p = pt − pn, (126)

Mza = −at + an. (127)

These relations are schematically shown in Figure 45. From Equations (126) and (127), we obtain
the following symmetry at any point of the plane z = 0:

P Ẽ+ = P Ẽ−, ez · Ẽ+ = −ez · Ẽ−, (128)

P H̃+ = −P H̃−, ez · H̃+ = ez · H̃−. (129)

(a)
pt

pn an at

Mz pn
Mz pt

Mz an
Mz at

(b)

z=0 z=0

Figure 45. Mirror reflection of (a) polar and (b) axial vectors.

Next, the boundary condition on z = 0 is given by

P Ẽ+ = P Ẽ−, (130)

Ẽ2D = P(Ẽ+ + Ẽext) = ZeK̃2D, (131)

with the two-dimensional electric field Ẽ2D on z = 0, the sheet current density K̃2D = ez × (H̃+ −
H̃−) = 2ez × H̃+ which is obtained from Equation (129). Equation (130) represents the continuity of
the tangential electric field, while Equation (131) is equivalent to Ohm’s law. The boundary conditions
for D̃ and H̃ are derived from these boundary conditions [95].

Finally, we consider the duality transformation. We fix a spatial orientation σ and introduce a
pseudoscalar Ωσ satisfying (Ωσ)σ = 1 and (Ωσ)−σ = −1. The following duality transformations
are considered:
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1. z ≥ 0:
Ẽ�
+ = −Z0Ωσ H̃+, H̃�

+ = Y0ΩσẼ+, (132)

2. z ≤ 0:
Ẽ�
− = Z0Ωσ H̃−, H̃�

− = −Y0ΩσẼ−, (133)

where Z0(= 1/Y0) is the impedance of a vacuum. The transformed fields (Ẽ�
±, H̃�

±) are invariant under
Mz as shown in Figure 46. With this symmetry of Equation (129), we immediately obtain P Ẽ�

+ = P Ẽ�
−

on z = 0. On the other hand, Equation (131) is transformed as

K̃�
2D = Y�

e Ẽ�
2D, (134)

where we defined

K̃�
2D = 2ez × H̃�

+ + K̃�
ext, (135)

K̃�
ext = 2Y0Ωσez × Ẽext (136)

with Z�
e = (Y�

e )
−1. Here, the following general impedance inversion holds:

Z�
e JZe J−1 =

(
Z0

2

)2
(137)

with

J =

[
0 −1
1 0

]
.

Note that the impedance Z0 can be replaced with
√

μ/ε if the screen is placed in an isotropic and
homogeneous medium with permeability μ and permittivity ε. Furthermore, Ẽ�

2D = P Ẽ�
+ and K̃�

2D

satisfy

Ẽ�
2D =

Z0

2
Ωσez × K̃2D, (138)

K̃�
2D =

(
Z0

2

)−1
Ωσez × Ẽ2D (139)

on z = 0. Equations (137), (138), and (139) perfectly correspond to Equations (49), (43), and (44).
For the dual setup with the sheet impedance Z�

e and current source K̃�
ext, the radiated fields are given

by (Ẽ�
±, H̃�

±). For a scalar Ze, the impedance inversion simplifies to

ZeZ�
e =

(
Z0

2

)2
. (140)

Note that Equation (140) includes the duality between the perfect electric conductor (Ze = 0) and
aperture (Ze = ∞). In other words, the sheet-impedance model is a generalization of the binarized
case, where only opaque and transparent regions were considered for screens as shown in Figure 44.
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E+
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(b)

dual dual

E

H+

H

Figure 46. Duality transformation keeping the mirror symmetry. (a) H± to E�
± and (b) E± to H�

±.

� Babinet’s Principle for Sheet-Impedance Screens

Here, we derive Babinet’s principle by applying the previous discussion to scattering problems.
We consider a scattering problem by a screen characterized with a sheet impedance of Ze(x, y) for an
incident electromagnetic field (Ẽin, H̃in) from z < 0, as shown in Figure 47a. Fields scattered by the
screen are denoted by (Ẽs,±, H̃s,±) for z ≥ 0 and z ≤ 0, respectively. These scattered fields are induced
by the external electric field Ẽext = P Ẽin(x, y, 0) on z = 0.

00
z

(a) (b)Ze(x,y) Ze(x,y)
( in, Hin)

( s, , Hs, ) ( s,+, Hs,+)

( in, Hin)

( TR, HTR)

( s, , Hs, ) ( s,+, Hs,+)
z

Figure 47. (a,b) two scattering problems that are dual with each other. The dual screen (b) is obtained
through the impedance inversion of Equation (137).

Next, we consider the dual wave scattering by Z�
e (x, y) for an incident wave

(Ẽ�
in, H̃�

in) = (Z0Ωσ H̃ in,−Y0ΩσẼin), (141)

from z < 0. In the dual problem, we have to inject an external current rather than apply an electric
field. To this end, we virtually consider total reflection by a perfect electric conductor sheet at z = 0.
The totally reflected field (Ẽ�

TR, H̃�
TR) is obtained by a mirror reflection of (Ẽ�

in, H̃�
in) in z > 0 with

respect to z = 0 and a phase flip:

(Ẽ�
TR, H̃�

TR) = −(MzẼ�
in,Mz H̃�

in). (142)

Using the total reflection, we can introduce an external current as

K̃�
ext = −2ez × H̃�

in = 2Y0Ωσez × Ẽext (143)

on z = 0. This virtually injected current radiates the electromagnetic field (Ẽ�
s,±, H̃�

s,±) as shown in
Figure 47b. Here, Equation (143) is identical to Equation (136). Therefore, (Ẽs,±, H̃s,±) and (Ẽ�

s,±, H̃�
s,±)

are related through Equations (132) and (133), if Z�
e satisfies Equation (137). Thus, we could relate the

scattered fields in the two problems. This duality relationship is the Babinet’s principle for vector waves.
Babinet’s principle leads to complementary relation on transmission coefficients. Consider a

normal incidence of a plane wave to a periodic screen (metasurface) with a sheet impedance Ze(x, y)
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on z = 0. The complex transmission coefficient to the transmitting mode with the same polarization is
denoted by τ. In the dual situation, the incident wave of Equation (141) enters the dual metasurface
Z�

e (x, y) satisfying Equation (137). The complex electric transmission coefficient in the dual setup is
represented by τ�. Now, the following dual relation holds:

τ + τ� = 1. (144)

The detailed derivation of this relation is given in Appendix B.

� Babinet’s Principle for Power Transmissions

Next, we consider the consequence of Babinet duality on power transmission spectra of periodic
screens, i.e., the square of the absolute value of the complex amplitude transmission coefficients.
Using the continuity equation 1 + � = τ with a reflection coefficient �, we obtain

� = −τ�. (145)

On the other hand, we have the energy–conservation relation

|τ|2 + |�|2 = 1, (146)

under the following conditions: (i) periodicity of screens is smaller than the wavelength and thus
energy scattering into the other diffraction modes except for the zeroth order modes is negligible,
and (ii) polarization conversion is negligible (τ⊥ = ρ⊥ = 0 in Appendix B). By using Equations (145)
and (146), we obtain

|τ|2 + |τ�|2 = 1. (147)

This equation indicates that the power transmission spectrum in the dual problem has the opposite
shape of that in the original one.

6.2. Self-Dual Systems in Terms of Babinet Duality

In this subsection, we discuss the manifestation of self-duality in terms of Babinet duality.
First, we introduce self-complementary antennas, and then we discuss the criticality of metallic
checkerboard-like metasurfaces.

� Self-Complementary Antennas

In antenna theory, it is well-known that antennas with self-complementary geometry show a
frequency-independent input impedance, which is defined as the ratio of voltage and current at a
feeding point of an antenna, and such antennas are called self-complementary antennas [13].

Before moving on to the self-complementary case, we introduce duality for the effective response
of antennas. Consider an antenna with an electric sheet admittance Ye(x, y)(= Ze(x, y)−1) on z = 0
as shown in Figure 48a. On a rectangular patch S, an external voltage distribution Ẽext(x, y) is
applied. We assume that Ẽext is directed in the y-direction. For the dual setup, we set Z�

e satisfying
Equation (137) and an external current K̃�

ext = 2Y0Ωσez × Ẽext on S in Figure 48b. In particular,
when antennas are made only of perfect electric conductor (Ye = ∞), the corresponding dual antennas
have complementary shapes, which are obtained by interchanging metallic regions and hole regions.
The input impedances of the original and dual antenna are denoted by Zin and Z�

in, respectively. From
Babinet duality, these input impedances satisfy

ZinZ�
in =

(
Z0

2

)2
, (148)
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as derived in Appendix C. This equation means that the input impedance of the dual antenna is related
to that of the original antenna.

S

(a)

x

y

z

(b)

S

metal

Figure 48. (a) antenna on z = 0 with voltage source on S; (b) dual antenna with current source on S.
Note that metallic and vacant regions are interchanged through the impedance inversion.

Now, we consider self-dual antennas. An example of a self-dual antenna is realized with a
self-complementary geometry as shown in Figure 49. From Equation (148) and self-dual condition
Zin = Z�

in, we obtain

Zin = Z�
in =

Z0

2
, (149)

and this means that the input impedance of self-complementary antennas is independent of frequency.
Thus, the principle of self-complementary antennas called the “Mushiake Principle” [96] plays an
important role in designing broadband antennas [13]. Because semi-infinite free spaces in z > 0 and
z < 0 are seen as two parallel transmission lines with the characteristic impedance of Z0, Equation (149)
shows that self-complementary antennas are perfectly matched to the composite impedance of Z0/2.

Figure 49. Example of a self-complementary antenna.

� Critical Transition of Metallic Checkerboard-Like Metasurfaces

Here, we discuss critical behaviors of metallic checkerboard-like metasurfaces from the point
of view of self-duality in Babinet duality. We assume the metasurfaces are placed in a vacuum
and made of a perfect electric conductor. If we assume the periodicity of the checkerboard-like
metasurfaces, we can classify them into three distinct cases as shown in Figure 50: (a) metallic patches
are disconnected (disconnected phase), (b) metasurface is self-complementary, i.e., the metallic patches
touch each other at ideal point contacts (self-complementary point), and (c) metallic patches are
connected (connected phase). Note that structures in (c) are complementary to those in (a) if w = w�;
therefore, the two phases are related through Babinet duality. Now, consider the transition from the
disconnected phase to the connected phase. Under this transition, the checkerboard-like metasurface
passes through the self-complementary point between the two phases, as shown in Figure 50. As we
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see below, the electromagnetic responses of checkerboard-like metasurfaces abruptly change at this
self-complementary point, and this point is actually a singular point [44,45,47].

At first, we explain general transmission properties of checkerboard-like metasurfaces.
We consider that a circularly polarized plane wave with wavevector k = kez is normally incident on
the metasurfaces, and we observe the transmission behind the metasurfaces. For the disconnected
phase shown in Figure 50a, the power-transmission spectrum is typically like the lower panel of
Figure 50a. The metasurfaces in the disconnected phase behave as capacitive filters, which highly
transmit lower frequency components, while they resonantly reflect around the higher resonance
frequency [97]. Note that the incident frequency axis is clipped at the lowest diffraction frequency
c0/a, where a is the size of the unit cell of the metasurfaces. Above the lowest diffraction frequency,
the incident energy is enabled to be transmitted into higher-order diffraction modes with k �= ±kez.
In other words, effective loss (mode-conversion loss) appears for the zeroth-order mode. To restrict
our discussion to the single mode, we consider frequencies below c0/a in the following. In addition to
this constraint, thanks to the 4-fold rotational symmetry of the metasurfaces, polarization conversion is
prohibited (τ⊥ = ρ⊥ = 0). Then, we can use Equation (147) to obtain the power-transmission spectrum
of the complementary structures: |τ�|2 = 1 − |τ|2. In other words, the connected phase shown in
Figure 50c exhibits transmission spectra with the upside-down shapes to those of the disconnected
phase: it highly reflects lower frequency components, while it resonantly transmits around the higher
resonant frequency, as shown in the lower panel of Figure 50c [97].

Now, we derive the criticality of the self-complementary structure. At the self-complementary
point shown in Figure 50b, we have

τ = τ�, (150)

from the self-duality of the problem. Combining above with Equations (144) and (145), we can derive

τ = τ� = −� =
1
2

. (151)

Then, it is concluded that the self-complementary metasurface shows a finite dissipation A =

1 − |τ|2 − |�|2 = 1/2. The finite dissipation obviously contradicts the assumption that the system is
made of a lossless perfect electric conductor. Note that this contradiction occurs below the diffraction
frequency c0/a. For frequencies above c0/a, scattering into the diffraction modes is enabled, and thus
A is composed of not only dissipation but also mode conversion. In addition to this contradiction, the
frequency-independent behavior also contradicts Foster’s reactance theorem, which states that the
imaginary part of the impedance of a lossless and passive system must increase monotonically with
the frequency [98]. Thus, the transmission spectra of such systems cannot be flat. Consequently, we
can conclude that there is no physical solution for the ideal self-complementary point and thus the
checkerboard-like metasurface at the self-complementary point is singular.
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Figure 50. Metallic checkerboard-like metasurfaces and their typical power-transmission spectra.
(a) disconnected phase; (b) self-complementary point; and (c) connected phase. The size of the unit cell
is denoted by a.

Note that the dissipative intermediate structure in the transition between the disconnected and
connected phases is physically consistent, although the lossless intermediate structure is singular.
Such a dissipative intermediate structure, which contains dissipative elements (resistive sheets with
sheet impedance of Z0/2) at the connecting points of the checkerboard-like metasurfaces, can be
characterized by the novel frequency-independent response with τ = −� = 1/2 and dissipation
A = 1/2 [37], as shown in Figure 51. The frequency-independent response has been experimentally
observed in the terahertz frequency region [38]. In addition, introducing randomness into the
connectivity of the metallic patches also leads to the similar flat spectrum [42,48]. In this random case,
loss A results from mode conversion due to the randomness of the metasurface structure.

Figure 51. Resistive checkerboard-like metasurface, which is self-dual in terms of Babinet duality,
and its power transmission, reflection, and absorption spectra.

The criticality of metallic checkerboard-like metasurfaces is utilized for dynamical metasurfaces to
manipulate electromagnetic waves. By placing photoconductive materials like silicon or phase-change
materials like vanadium dioxide (VO2) between the metallic patches of checkerboard-like metasurfaces,
researchers have realized optically tunable waveguides [99], capacitive–inductive switchable filters [50],
dynamical polarizers [49], and dynamical switching of quarter-wavelength plates [52]. In addition
to these experiments, dynamical planar-chirality switching is also theoretically proposed [51].
The advantage of these dynamical checkerboard-like metasurfaces is that we can achieve deep
modulation of the electromagnetic characteristics of the metasurfaces because we dynamically induce
phase transitions of the checkerboard-like metasurfaces.
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6.3. Babinet Duality in Transmission-Line Models

Here, we consider Babinet duality in light of equivalent circuit models of metasurfaces.
As discussed in Section 3, responses of metasurfaces can be described by equivalent circuit models.
An electric metasurface in a vacuum can be modeled by an effective shunt impedance Zsh inserted
between two semi-infinite transmission lines with the characteristic impedance of Z0 and the phase
velocity of c0 as shown in Figure 52. The complex amplitude transmission coefficient τ := Ṽt/Ṽin

through the metasurface is written as

τ =
Zsh

Z0/2 + Zsh
. (152)

On the other hand, for the dual problem with the complementary metasurface, the dual
transmission coefficient τ� is written as

τ� =
Z�

sh
Z0/2 + Z�

sh
(153)

with the effective impedance of the dual metasurface Z�
sh.

Requiring the same duality relation with Equation (144):

τ + τ� = 1, (154)

we obtain

ZshZ�
sh =

(
Z0

2

)2
. (155)

This equation indicates that the effective impedance of the complementary metasurface is given by
the dual of the effective impedance of the original metasurface with respect to the reference impedance
Z0/2. In other words, the response of the complementary metasurface can be described by the dual
circuit to the equivalent circuit of the original metasurface.

In particular, when the shunting equivalent circuit is a self-dual circuit like the bridge circuit
shown in Figure 19, i.e., Zsh = Z�

sh = Z0/2 (see Section 2.6), we have τ = τ� = 1/2, and the
transmission and reflection characteristics are frequency independent. Thus, we can connect the
frequency-independent responses of self-dual resistive checkerboard-like metasurfaces to the constant
resistance property of self-dual circuits.

0
zZ0, c0

ZshVin e-jkz + Vr ejkz

Z0, c0

~ Vt e-jkz~~

Figure 52. Transmission-line model for scattering of plane waves by an electric metasurface.

7. Conclusions

A space can be discretized with primary and dual meshes. Topological properties of the primary
and dual meshes are related through Poincaré duality with each other. Especially in a 2n-dimensional
space such as a plane (n = 1) and spacetime (n = 2), the dual counterpart of an inner-oriented n-chain
is given by the outer-oriented n-chain. Thus, in an even-dimensional space, duality transformation
does not alter the dimension of an n-chain; rather, it changes the characteristics of orientation
for the chain. This special feature of even-dimensional spaces induces the complex structure for
n-chains. Inner-oriented and outer-oriented objects work as real and imaginary parts of a complex
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number, respectively. Due to this complex structure, the direction of an object is reversed when
duality transformations are applied twice for the object. Electromagnetic duality is induced by a
four-dimensional complex structure which appears from Poincaré duality. For a planar structure in
the three-dimensional structure, Babinet duality holds due to the combination of electromagnetic
duality and mirror symmetry. Keller–Dykhne duality is considered as an appearance of the Babinet
duality at lower frequencies of direct current and alternating current. Circuit duality is interpreted as a
discretized version of Keller–Dykhne duality.

Moreover, we can consider an additional invariance under duality transformation. When the
system has such internal symmetry, it is called self-dual. The effective response of a self-dual system
is automatically determined by the self-duality regardless of its components. This consequence
of self-duality can lead to a frequency-independent input impedance and zero backscattering.
Furthermore, critical response can even be predicted from self-duality, and it is leveraged to manipulate
the spectra and polarization of electromagnetic waves.

In conclusion, we have unveiled the underlying geometrical structures behind various dualities
in electromagnetic systems. Now, various dualities in electromagnetic systems emerge from the
correspondence between quantities with two different kinds of orientations through Poincaré duality.
The manifestations of self-duality in electromagnetic systems were consistently confirmed in a broad
frequency range.
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Appendix A. General Inner-Orientation Representation for Outer Orientation

The inner-orientation representation for outer orientation is generalized for any m-dimensional
space. We use the fact that an inner orientation of a vector space U can be specified by a totally
antisymmetric tensor ω : U × U × · · · × U → R, which is linear for all input slots and satisfies
ω(u1, u2, · · · , ui, · · · , uj, · · · , um) = −ω(u1, u2, · · · , uj, · · · , ui, · · · , um) for all possible i �= j. For an
inner-oriented vector space U, we select a positively-oriented basis (e1, e2, · · · , em) and set ω satisfying
ω(e1, e2, · · · , em) = 1. If ω(e′1, e′2, · · · , e′m) > 0 is satisfied, a basis (e′1, e′2, · · · , e′m) has the positive
orientation. Reversely, for given ω �= 0, we can specify a basis (e1, e2, · · · , em) with positive orientation
as ω(e1, e2, · · · , em) > 0. Now, consider an outer-oriented linear subspace W in U with l := dim W <

m := dim U. The surjective projection is denoted by u ∈ U �→ [u] ∈ U/W. Assume that an orientation
of ambient space U is specified by a totally antisymmetric tensor with m slots ωU and take a basis
([u1], [u2], · · · , [um−l ]) which has positive orientation with respect to U/W. Then, we can define a
totally antisymmetric tensor ωW over W as

ωW(w1, w2, · · · , wl) := ωU(u1, u2, · · · , um−l , w1, w2, · · · , wl), (A1)

where w1, w2, · · · , wl ∈ W and the first (m − l)-slots for the orientation tensor ωU are contracted by an
outer orientation. Thus, ωW determines the inner orientation of W depending on the ambient-space
orientation U. It is easily shown that the defined orientation of W does not depend on a specific choice
of u1, u2, · · · , um−l . The above discussion is applied to all tangent spaces smoothly, and then we can
represent an outer-oriented cell as two inner-oriented cells.
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Appendix B. Babinet’s Principle for Transmission and Reflection Coefficients

We derive Babinet’s principle for transmission and reflection coefficients for periodic
screens (metasurfaces) in order to get insight into Babinet’s principle under practical situations.
We assume that the complex amplitude of the electric field of the incident plane wave in Figure 47a
may be written as

Ẽin = Ẽinein exp(− jkz), (A2)

where ein is a unit polarization vector perpendicular to ez. Here, ein can be a linear polarization like ex,
ey or circular polarizations e± := (ex ± jey)/

√
2. Then, the scattered electric field can be expanded as

Ẽs,± =
(

Ẽsein + Ẽ⊥
s e⊥in

)
exp(∓ jkz) (A3)

in the far-field region, where e⊥in is the unit polarization vector orthogonal to ein. While in general
all diffracted waves caused by the periodic screens should also be considered, we here focus on the
zeroth order modes with the wavevector ±kez for simplicity (for a more general formulation, see [37]).
Thus, the complex amplitude transmission coefficients for the parallelly and orthogonally polarized
modes τ and τ⊥ are given by

τ :=
Ẽin + Ẽs

Ẽin
, (A4)

τ⊥ :=
Ẽ⊥

s

Ẽin
, (A5)

respectively. Similarly, we can write the complex amplitude reflection coefficients for the parallelly
and orthogonally polarized modes � and �⊥ as

� :=
Ẽs

Ẽin
= τ − 1, (A6)

�⊥ :=
Ẽ⊥

s

Ẽin
= τ⊥, (A7)

respectively.
Next, we consider the dual problem shown in Figure 47b. Here, we fix the spatial orientation

as σ = R for simplicity, where R represents the right-hand system. As shown in Equation (141),
the complex amplitude of the electric field of the dual incident wave is given by

Ẽ�
in = Z0(H̃in)R

= Ẽin(ez × ein)R exp(− jkz)

= Ẽine�in exp(− jkz),

(A8)

where e�in := (ez × ein)R is the dual incident polarization vector and H̃in = Y0ez × Ẽin is used, which
can be derived from Faraday’s law. According to Equation (142), the totally reflected field is written as
Ẽ�

TR = −Ẽine�in exp( jkz). From Babinet’s principle, the dual scattered electric field is given by

Ẽ�
s,± = ∓Z0(H̃s,±)R

= ∓Z0(±Y0ez × Ẽs,±)R

= −
[

Ẽs(ez × ein)R + Ẽ⊥
s (ez × e⊥in)R

]
exp(∓ jkz)

= −
(

Ẽse�in + Ẽ⊥
s e⊥,�

in

)
exp(∓ jkz),

(A9)
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where e⊥,�
in := (ez × e⊥in)R is the dual orthogonal polarization vector. Finally, the dual complex

transmission and reflection coefficients can be expressed as

τ� := − Ẽs

Ẽin
, (A10)

τ⊥,� := − Ẽ⊥
s

Ẽin
, (A11)

�� := − Ẽin + Ẽs

Ẽin
= τ� − 1, (A12)

�⊥,� := − Ẽ⊥
s

Ẽin
= τ⊥,�. (A13)

Note that these coefficients are defined over the dual polarization basis e�in and e⊥,�
in . If ein is

linearly polarized, then e�in corresponds to the orthogonal linear polarization. On the other hand, if
ein is circularly polarized, then e�in = ± jein and the dual polarization state is the same as the original
one up to a phase factor ± j, where + (−) corresponds to the left (right) circular polarization. Here,
we define handedness of circularly polarized plane waves from the receivers’ side. This convention
is commonly used in optics.By comparing Equations (A10) and (A11) with Equations (A4) and (A5),
respectively, we finally obtain

τ + τ� = 1, (A14)

τ⊥ + τ⊥,� = 0. (A15)

Appendix C. Duality for Input Impedances of Antennas

We derive a dual relation for input impedances of antennas shown in Figure A1a,b. To simplify
the discussion, we fix the spatial orientation as σ = R, where R represents the right hand. Two curves
c1 and c2 on S are defined in Figure A1c. The total current along c1 is calculated as

Ĩ = −2
∫

c2

(H̃+)R · dr. (A16)

The electromotive force along c1 is given by

Ṽ =
∫

c1

Ẽext · dr. (A17)

For the dual antenna, we have a current along the c2 direction as

Ĩ� =
∫

c1

K̃�
ext · (ez × dr)R = 2

∫
c1

Y0Ẽext · dr = 2Y0Ṽ. (A18)

On the other hand, the electromotive force along c2 is given by

Ṽ� =
∫

c2

Ẽ�
+ · dr = −Z0

∫
c2

(H̃+)R · dr =
Z0

2
Ĩ. (A19)

Here, we introduce input impedances of antennas Zin = Ṽ/ Ĩ and Z�
in = Ṽ�/ Ĩ�, where the

real part of an antenna input impedance represents electromagnetic radiation as a loss. These input
impedances satisfy

ZinZ�
in =

(
Z0

2

)2
. (A20)
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(a) (b)

x

y

z

(c)

c2

c1

metal

S

S S

Figure A1. (a) antenna with a sheet admittance Ys(x, y)
(
=: Zs(x, y)−1) on z = 0 is connected to

voltage source Ẽext(x, y), which is assumed to be in the y direction, on S; (b) dual antenna with a sheet
admittance Y�

s (x, y) (=: Z�
s (x, y)−1) satisfying Equation (137) on z = 0 is connected to current source

K̃�
ext(x, y) = 2Y0Ωσez × Ẽext on S; (c) definition of two curves on S.
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Abstract: The inherently weak nature of chiral light–matter interactions can be enhanced by
orders of magnitude utilizing artificially-engineered nanophotonic structures. These structures
enable high spatial concentration of electromagnetic fields with controlled helicity and chirality.
However, the effective design and optimization of nanostructures requires defining physical
observables which quantify the degree of electromagnetic helicity and chirality. In this perspective,
we discuss optical helicity, optical chirality, and their related conservation laws, describing situations
in which each provides the most meaningful physical information in free space and in the context
of chiral light–matter interactions. First, an instructive comparison is drawn to the concepts of
momentum, force, and energy in classical mechanics. In free space, optical helicity closely parallels
momentum, whereas optical chirality parallels force. In the presence of macroscopic matter, the optical
helicity finds its optimal physical application in the case of lossless, dual-symmetric media, while,
in contrast, the optical chirality provides physically observable information in the presence of
lossy, dispersive media. Finally, based on numerical simulations of a gold and silicon nanosphere,
we discuss how metallic and dielectric nanostructures can generate chiral electromagnetic fields upon
interaction with chiral light, offering guidelines for the rational design of nanostructure-enhanced
electromagnetic chirality.

Keywords: optical chirality; optical helicity; nanophotonics; plasmonics; parity symmetry; time
symmetry

1. Introduction

Chiral electromagnetic fields, exhibiting left- or right-handedness, have the ability to interact
selectively with matter. In particular, the chiral molecular building blocks of biological matter,
e.g., proteins and amino acids, exhibit distinct interactions with left- or right-handed light, thus
enabling the visualization of the role of chirality in natural processes [1]. Additionally, the selectivity
and sensitivity of chiral light–matter interactions has shown promise in a variety of technological
applications. The development of pharmaceuticals faces the challenge of heterochirality, where an
unbiased chemical reaction forms equal quantities of left- and right-handed products. Importantly, their
biochemical interaction with patients can range from the desired pharmaceutical treatment to harmful
side-effects by simply interchanging molecular chirality [2]. Thus, chiral light has been proposed as
a non-invasive method to bias chemical reactions toward products of a single handedness [3–5] or
to detect and separate molecules based on their chirality [6,7]. The chirality of light has additionally
found potential in optical information storage and transfer [8,9], with the ability to increase capacity
and selectivity.

Symmetry 2019, 11, 1113; doi:10.3390/sym11091113 www.mdpi.com/journal/symmetry117
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The interaction between chiral electromagnetic plane waves, such as circularly polarized light
(CPL), and matter is inherently limited in sensitivity due to their bounded spatial distribution.
Rapidly-evolving research efforts in the field of chiral nanophotonics aim to address this challenge
by the tailored design of metallic [10–28] and dielectric [29–38] nanostructures, arranged periodically
in sub-wavelength metamaterials and metasurfaces, or in colloidal dispersions, achieving highly
concentrated electromagnetic chirality in their evanescent field (see also review articles [25,39–42]).
However, the rational design of enhanced electromagnetic chirality in the presence of matter requires
the definition of physical observables by which to quantify the chirality of light. For this, the optical
helicity and the optical chirality have been proposed, where each quantity has been altered from its
free-space form to account for interactions with matter. While closely related, the optical helicity and
the optical chirality differ in their physical meaning, and their application in the presence of matter is
subtle yet distinct. This perspective performs a comprehensive comparison of each quantity and its
physical significance in free space and in the presence of matter.

First, the optical helicity and optical chirality are introduced in the context of rotating vector
fields and chiral symmetries, while the physical significance of each quantity in free space is
discussed in analogy to the relationship between momentum and force in classical mechanics.
Subsequently, the implications of optical helicity, optical chirality and their respective conservation
laws upon interaction with microscopic and macroscopic matter are considered with a particular
focus on the role of matter-induced losses. For this, an additional, physically-relevant comparison to
energy and momentum conservation in classical mechanics is provided and the physical observables
arising from the conservation law of optical chirality in lossy, dispersive media are discussed.
Finally, we apply these observables to elucidate the physical mechanisms of chiral light–matter
interactions in artificial nanostructures, where the distinct cases of metallic and dielectric nanoparticles
are analyzed numerically. In particular, the chiral electromagnetic fields generated by gold and silicon
nanospheres with 75 nm radius are considered, demonstrating in both cases that achiral, linearly
polarized excitation does not yield a net electromagnetic chirality, while chiral excitation with left- and
right-handed CPL results in mirror-symmetric optical chirality flux spectra.

2. Rotating and Handed Vector Fields

A rotating vector field is handed when its motion exhibits a non-zero component parallel to the
rotational axis. This vector field property, found in a variety of natural phenomena [43,44], can be
quantified by the helicity, a pseudoscalar resulting from projection of the angular momentum vector
onto the linear momentum vector [45,46]. In fluid dynamics, the helicity is obtained from the projection
of the fluid velocity v onto its curl, also known as vorticity, ∇× v [47]:

Hfluid =
∫

v · (∇× v)d3x. (1)

In plasma physics, the magnetic helicity:

Hmagnetic =
∫

A · (∇× A)d3x, (2)

can be employed for the topological classification of a magnetic induction field B = ∇×A, with vector
potential A [48], where integration over all of space results in gauge invariance of Equation (2) [43,49].
In contrast to Equations (1) and (2), single-particle helicity has been quantified in quantized systems
where, for instance, photon helicity amounts to ±1 [43,46,50].

In classical electrodynamics, where Maxwell’s equations describe the relationship between electric
and magnetic fields, Equation (2) can be extended to define the optical helicity [43]:

Hoptical =
1
2

∫ [√ ε0

μ0
A · (∇× A) +

√
μ0

ε0
C · (∇× C)

]
d3x, (3)
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where C is the electric pseudovector potential with E = −∇×C for electric field E in free space [43,49].
While the vector and pseudovector potentials A and C are gauge variant, upon integration over
all of space in Equation (3), only their gauge-invariant transverse components are non-zero [43].
The integrand of Equation (3), termed optical helicity density, is the lowest-order term in an infinite set of
conserved quantities [49,51], where higher orders are obtained by mapping the magnetic and electric
vector potentials onto their curls: A → ∇× A and C → ∇× C [52,53]. The first-order transformation
in this series yields the optical chirality density, a quantity identified as physically significant in the
study of chiral light–matter interactions [54]. The corresponding volume-integrated optical chirality is
written as [54,55]:

Ξ =
∫ [ ε0

2
E · (∇× E) +

1
2μ0

B · (∇× B)
]
d3x. (4)

While both the optical helicity (Equation (3)) and optical chirality (Equation (4)) provide
information on the handedness of electromagnetic fields, they are physically distinct quantities,
exhibiting a proportionality in the case of monochromatic electromagnetic fields in free space [43].

3. Physical Significance of Optical Helicity and Optical Chirality in Free Space

Noether’s theorem [56] states that a conserved quantity arises in the dynamic equations of
any continuous symmetry of a nondissipative system. As demonstrated by Calkin in 1965 [57],
the optical helicity density h (integrand of Equation (3)) is the conserved quantity related to
electromagnetic duality symmetry in free space, where electromagnetic duality describes a transformation
between electric and magnetic fields written as: E → Eθ = Ecosθ − Hsinθ and H → Hθ =

Esinθ + Hcosθ [50,57].
Concurrently in 1964, Lipkin utilized Maxwell’s equations to identify a new conservation law,

naming the conserved quantity Lipkin’s zilch [55]. It was not until 2010 when the physical significance
of Lipkin’s zilch was identified by Tang and Cohen as the local density of electromagnetic chirality,
now known as the optical chirality density χ (integrand of Equation (4)).

The optical helicity density h, the optical chirality density χ and their respective flux densities
Φ and F, follow formally analogous continuity equations in free space, as indicated in Table 1.
This congruence along with the ability of both the optical helicity and optical chirality to describe
the handedness of electromagnetic fields opens the question on how to distinguish these quantities,
as discussed below.

Table 1. Conservation laws of optical helicity (left column) and optical chirality (right column) in
free space with optical helicity density h, optical helicity flux density Φ, optical chirality density
χ, optical chirality flux density F, electric vector potential C, magnetic vector potential A, electric
field E, and magnetic induction field B. ε0 and μ0 represent the free-space electric permittivity and
magnetic permeability.

Optical Helicity Conservation in Free Space Optical Chirality Conservation in Free Space

h = 1
2
[√ ε0

μ0
A · (∇× A) +

√
μ0
ε0

C · (∇× C)
]

χ = ε0
2 E · (∇× E) + 1

2μ0
B · (∇× B)

Φ = 1
2
[√ ε0

μ0
A × (∇× C)− 1

c C × (∇× A)
]

F = 1
2
[
E × (∇× B)− B × (∇× E)

]
δh
δt +

1
μ0
∇ · Φ = 0 δχ

δt + 1
μ0
∇ · F = 0

The physical significance of the optical helicity density has been described with the help of
dimensional analysis, as it has units of angular momentum density

(N m s
m3

)
[43,52,58]. Here, we extend

this dimensional analysis to the optical chirality density χ with units of force density
( N

m3

)
.

Their respective units of angular momentum and force invite a qualitative comparison to the
relationship between momentum and force in classical mechanics, illustrated in Table 2.
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Table 2. Top: The relationship between force and momentum for linear and rotational motion
in classical mechanics, for linear momentum p, force F, angular momentum L, and torque τ.
Bottom: The relationship between the optical helicity density h and the optical chirality density
χ in classical electrodynamics.

Physical Significance Fundamental → Observable

Classical Mechanics

Linear Motion: dp
dt = F Linear Momentum [N s]

d
dt−→ Force [N]

Rotational Motion: dL
dt = τ Angular Momentum [N m s]

d
dt−→ Torque [N m]

Classical Electrodynamics

Handed Motion: h ∇×−−→ χ Optical Helicity Density [ N m s
m3 ] ∇×−−→ Optical Chirality Density [ N

m3 ]

For a closed system with time-invariant mass, Newton’s second law states that the net force
exerted on the system is equal to the time derivative of the linear momentum (first row in Table 2).
Similarly, for rotational motion in classical mechanics, the angular momentum is obtained from the
time derivative of the torque (second row in Table 2). Equivalent information can, therefore, be
obtained from the conservation of momentum and the conservation of force. However, momentum
conservation, from which force conservation can be derived, is more generally valid. In contrast,
for practical applications, forces lend themselves more easily to measurement and observation [59,60].

Inspired by classical mechanics, we draw a similar comparison for optical helicity and optical
chirality (third row in Table 2) [61,62]. While the vector potentials inherent to the optical helicity are not
directly physically observable, the optical chirality depends only on uniquely defined and observable
field quantities derived from Maxwell’s equations. In contrast, the optical chirality is a higher order
transformation of the optical helicity. Thus, while both the optical helicity density h and the optical
chirality density χ can provide information on the local handedness of an electromagnetic field in free
space, h is the more fundamental quantity, while χ is more suitable for experimental observation.

Chiral Symmetries in Electromagnetism

After establishing the optical chirality density and flux as physically observable quantities which
describe electromagnetic chirality, this section applies symmetry relations to illustrate how these
quantities represent the chirality of electromagnetic fields [61]. A chiral system exhibits parity odd
and time even symmetries [54,63]. For a function f (x, y, z) with spatial coordinates x, y, and z, parity
transformation occurs by inversion of the spatial coordinates through the origin. Specifically, f is parity
odd when f (x, y, z) = − f (−x,−y,−z) [63,64]. In addition, a function f is time even when inversion
of the temporal coordinate t results in f (t) = f (−t) [63,64]. Thus, chiral systems can take on two left-
and right-handed mirror-symmetric forms. For chiral electromagnetic quantities χ and F (as defined in
Table 1), the parity and time symmetries are noted in Table 3, resulting from the parity odd and time
even symmetry of the electric (E) field and the parity even and time odd symmetry of the magnetic
induction (B) field. To elucidate their physical origin, we now construct the symmetry relations of the
E and B fields from source charges and currents.

Table 3. Parity and time symmetries of the optical chirality density χ and the optical chirality flux
density F.

Physical Quantity Tensor Rank Parity Symmetry Time Symmetry

Optical Chirality Density χ 3 Odd (pseudoscalar) Even
Optical Chirality Flux Density F 1 Even (pseudovector) Even
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A static electric field is induced by interaction between positive and negative point charges
(Figure 1a). For spatial coordinates (x, y, z), an electric field vector E = (E, 0, 0) is induced by
a positive point charge at (−x, 0, 0) and a negative point charge at (+x, 0, 0). Parity inversion
directs the electric field vector along −x, whereupon the parity-odd electric field vector becomes
Eparity inversion = (−E, 0, 0). The time-even symmetry of E results from invariance of the polarity of
the point charges upon time reversal.

Figure 1. Illustration of parity symmetry for an electric field (E) arising between positive and
negative point charges (a) and the magnetic induction field (B) arising from a steady state current (b).
(c) Illustration of the distinction between a rotating vector field and a chiral vector field, where rotational
motion has a component along the axis of rotation.

Figure 1b illustrates how a static magnetic induction field B is induced by a temporally
steady-state current. While a current along +x results in a clockwise rotation of B, parity inversion,
directing the current along −x, leads to anti-clockwise rotation of B. Thus, B is parity even due to
the parity-odd symmetry of the curl operator [64]. Time inversion transforms the rotation of B from
clockwise to anti-clockwise as the current flows backwards temporally. With time invariance of the
curl operator, the B field is, therefore, time odd. Building on these fundamental examples, the parity
and time symmetries of chiral electromagnetic quantities, as noted in Table 1, are now discussed.

Regarding parity symmetry, the optical chirality density χ (Table 1) is a parity-odd pseudoscalar,
attributed to the scalar product of a vector (the E field or the curl of the B field) and a pseudovector (the
B field or the curl of the E field). In contrast, the optical chirality flux density F (Table 1) is a parity-even
pseudovector, its flux integral thus being parity odd. As shown in Figure 1c, rotating vector fields, e.g.,
the parity-even fields (∇× E) or B, do not exhibit the symmetries of a chiral quantity [65], as their
signs remain invariant upon parity inversion. Thus, a parity-odd pseudoscalar is obtained from the
product of these rotating fields with their related vector fields E or (∇× B), respectively [61].

We now describe the time symmetry of a chiral electromagnetic system by comparison to a
right-handed helical chiral object, the handedness of which is invariant upon forwards or backwards
motion in time. Similarly, a chiral electromagnetic field exhibits rotational motion about its axis and
the handedness of this motion remains unchanged under time reversal. This time-even property of
chiral electromagnetic fields is seen in the optical chirality density χ due to the projection of the E or B

fields onto their respective curl [61].

4. Physical Significance of Optical Helicity and Chirality upon Interaction with Matter

The free-space definitions of optical helicity and optical chirality (Table 1), require further
consideration in systems where light interacts with matter. In general, the presence of matter breaks
duality symmetry and the conservation of optical helicity, as predicted by Noether’s theorem [56], is
no longer valid. In contrast, the conservation law of optical chirality in the presence of matter requires
no such restrictions in the electric and magnetic fields or the material properties. Indeed, matter has
been identified as a source or sink of optical chirality [54,66,67]. While both conservation laws of
optical helicity and optical chirality have been modified from their free-space form to account for
interactions with matter [44,50,68–71], this section discusses the distinction in their physical relevance
and applicability.
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To better differentiate optical helicity and optical chirality conservation in the presence of matter,
we again draw a qualitative comparison between classical mechanics and classical electrodynamics.
Figure 2a illustrates the elastic (left panel) and inelastic (right panel) collision of two moving objects
with masses m1, m2 and velocities v1, v2, respectively. For elastic collision (left), both the linear
momentum p = mv and the mechanical energy, specifically the kinetic energy, of the system are
conserved at times t1 before the collision and t2 after the collision. In contrast, while the inelastic
collision (right) conserves the linear momentum p of the system, the mechanical energy is no
longer conserved as a portion is converted into other forms of energy (predominantly heat) [59].
Importantly, the comparison of elastic and inelastic collisions in Figure 2a reveals how the dissipation
of kinetic energy in the inelastic collision is only represented by energy conservation and is not
accounted for by momentum conservation. Momentum and energy conservation can thus provide
equivalent information in the lossless case of an elastic collision. However, their utility differs in the
dissipative case of an inelastic collision.

While physically distinct, the example of elastic and inelastic collisions in classical mechanics
is instructive for the qualitative understanding of optical helicity and optical chirality conservation
in matter. The presence of microscopic sources, in the form of point charges and currents, breaks duality
symmetry due to the existence of electric charges and the absence of magnetic charges in matter [64].
Under constraint of the divergence-free transverse component of the current density, the conservation
law of optical helicity has been reformulated to account for the presence of microscopic sources [44,70].
However, as this definition depends on vector potentials, where non-locality is circumvented by
restricting the fields to their transverse components, the resulting source term is not directly physically
observable. In contrast, the conservation law of optical chirality in the presence of microscopic material
sources has been defined as a direct consequence of Maxwell’s equations, resulting in a source term
composed solely of physical, observable quantities [54]:

δχ

δt
+

1
μ0

∇ · F = −1
2
(
j0 · ∇ × E + E · ∇ × j0

)
, (5)

where the source term arising from microscopic matter is shown on the right-hand side of Equation (5)
and j0 is the primary current density.

Figure 2b illustrates the physical relevance of optical helicity and optical chirality conservation in
the presence of macroscopic matter, in systems free of primary sources. The left panel of Figure 2b
shows chiral light interacting with a piecewise homogeneous, isotropic medium with constant εi/μi
over all material domains i [50]. Under these conditions, duality symmetry holds and both optical
helicity and optical chirality are conserved [50]. Duality symmetry can also be induced in cylindrically
symmetric dielectric objects and collections of objects under specific excitation conditions [72–74], also
leading to helicity conservation. The conservation of optical helicity has proven instrumental in the
analysis of the conversion of CPL into light with orbital angular momentum (OAM) [75–78]; it has
also enabled generation of enhanced optical mirages from dual nanospheres [79,80] and an improved,
elegant understanding of the interaction of vortex beams with well-defined helicity and macroscopic
matter [81].

The right panel of Figure 2b represents a lossy, dispersive medium interacting with chiral light.
In this case, the presence of matter breaks duality symmetry in the studied system and the optical
helicity is no longer conserved in its physically observable form. In contrast, the conservation law of
optical chirality can be extended from its free-space form (Table 1) to account for the presence of lossy,
dispersive media, as outlined below in Section 4.1 [66,67]. Note that duality symmetry can also be
broken in non-dispersive media where ε �= μ.

The definition of optical helicity in the presence of material losses faces a set of challenges:
For divergence-free displacement fields, the electric vector potential C, inherent to the optical helicity,
is written as E = −∇× C [49]. Gauss’ law in the presence of sources and currents, ∇ · D = ρ0 [64],
elucidates two cases for which this condition is met (i) systems free of primary sources (ρ0 = 0)
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and (ii) lossless media. Systems obeying (i) and (ii) have been rigorously studied in previous
work [50,68,71,82]—note that the model presented in [71] can be applied to systems with negligible
material losses, such as perfect metals.

For applications in nanophotonics, we focus on chiral light–matter interactions in artificial
nanostructures composed of linear, homogeneous, isotropic media, where material losses can play a
significant role in the generation of chiral electromagnetic fields [66,67,83]. We consider time-harmonic
electromagnetic fields with notation E(r, t) = Re

[E(r)e−iωt] for the electric field, where E(r) is the
complex electric field amplitude of the electric field at spatial coordinate r. For short-hand notation,
we write complex field amplitudes as E(r) = E . In linear media, the complex electric permittivity
ε = ε0(ε

′ + iε′′) has its imaginary part of the relative permittivity ε′′ = σ(r, ω)/(ε0ω), where σ is the
conductivity and J cond = σ(r, ω)E(r) is the complex amplitude of the conduction current density.
We then reformulate Gauss’ law as [61,64]:

∇ ·D = ∇ ·
(
ε0ε′E)+ i

ω
∇ ·

(
σ(r, ω)E)︸ ︷︷ ︸

∇·J cond=iωρcond(r)

= ρ0(r), (6)

with angular frequency ω. Equation (6) demonstrates that the electric displacement fields are not
divergence free in lossy media. Specifically, the underbrace in Equation (6) shows time-harmonic
charge continuity, from which Gauss’ law can be reformulated as: ∇ ·

(
ε0ε′E) = ρ0(r) + ρcond(r).

Thus, revisiting the case of an elastic and inelastic collision in classical mechanics (Figure 2),
we draw a qualitative comparison to the physical relevance of optical helicity and optical chirality in the
presence of matter. From Noether’s theorem, the conservation of linear momentum in a lossless system
arises from translational invariance [50,56] and, as Figure 2 demonstrates, the conservation of linear
momentum captures the translational motion of a mechanical collision. Similarly, the conservation
of optical helicity, with units of angular momentum, finds its physically relevant application
in the description of chiral symmetries of propagating electromagnetic fields in systems where
electromagnetic duality symmetry holds. In contrast, just as energy conservation captures the
conversion of kinetic energy to heat in the case of an inelastic collision, optical chirality conservation is
the suitable conservation law to describe the physical mechanism of optical chirality dissipation in the
presence of lossy, dispersive media.
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Figure 2. (a) Illustration of an elastic (left) and inelastic (right) collision of two objects with masses m1,
m2, moving at velocities v1, v2 at times t1, before the collision (top) and t2, after the collision (bottom),
respectively. While the total linear momentum of the system p = mv is conserved for the elastic (left)
and inelastic collision (right), the mechanical (kinetic) energy is not conserved for the inelastic collision
due to energy dissipation. (b) Illustration of the interaction between chiral light and macroscopic
matter for a lossless, dual-symmetric medium (left) and a lossy, dispersive medium (right). While
both optical helicity and optical chirality conservation hold for the lossless, dual-symmetric case (left),
the presence of a lossy, dispersive medium (right) breaks duality symmetry and helicity conservation
no longer holds in its physically observable form. In contrast, the conservation law of optical chirality
can be formulated to account for dissipative effects in the presence of lossy, dispersive media.

4.1. Observables Derived from Chiral Electromagnetism

In systems free of primary sources for time-harmonic fields, the conservation law of optical
chirality (Equation (5)) in linear, dispersive media with losses is written as [66]:

− 2ω
∫

V
Im(χe − χm)d3x +

∫
V

Re(∇ ·F )d3x = 0. (7)

The first term in Equation (7) represents optical chirality dissipation:

Im(χe − χm) = (8)
1
8
[−∇ε′ · Im(E × E∗)−∇μ′ · Im(H×H∗)]

+
1
4

ω(ε′μ′′ + ε′′μ′)Im(E∗ ·H),

where E and H are complex field amplitudes of the electric and magnetic induction fields, with
ε = ε′+ iε′′ as the complex electric permittivity and μ = μ′+ iμ′′ as the complex magnetic permeability.
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Equation (8) is composed of two physically distinct terms, where the first represents optical chirality
dissipation arising from material anisotropy, expressed by the gradient of ε′ and μ′, and the second
describes optical chirality dissipation due to material loss, expressed by the imaginary parts of the
material functions ε′′ and μ′′ [66,84]. The second term in Equation (7) represents the volume-integrated
optical chirality flux, with density F defined as:

F =
1
4
[E × (∇×H∗)−H∗ × (∇× E)]. (9)

In the far field, where electromagnetic fields are well-approximated as plane waves, F can be
represented by a weighted superposition of the optical chirality flux density arising from left- (F LCPL)
and right-handed (FRCPL) circularly polarized plane waves, yielding a total far-field (FF) optical
chirality flux F FF = |l|2F LCPL + |r|2FRCPL. The weighting factors for left- and right-handed CPL
are represented by constants l and r, respectively. From this, FFF is directly proportional to the third
Stokes parameter S3, describing the degree of circular polarization, as [66,85]:

F FF =
ω

c
(|l|2SLCPL − |r|2SRCPL) ∝ S3, (10)

where c is the speed of light and S = E ×H∗ is the complex amplitude of the Poynting vector [64].
The optical chirality flux generated by lossy, dispersive media has been experimentally observed in
the far field for periodic arrays of two-dimensionally chiral metallic nanoantennas [83] and colloidal
dispersions of three-dimensionally chiral metallic nanopyramids at the single-particle level [86].
These experimental results demonstrated how the optical chirality flux is a physically relevant far-field
observable, with the ability to provide information on chiral light–matter interactions in the near and
far field.

In addition to the physically observable description of optical chirality dissipation and flux,
derived from the conservation law of optical chirality (Equation (7)), the optical chirality density
χ (Table 1) has the ability to locally quantify the chirality of electromagnetic fields which can be
strongly enhanced upon interaction with matter. The free-space optical chirality density (Table 1) of
time-averaged, time-harmonic fields is written as:

χ̄ = − ω

2c2 Im(E∗ ·H) = − ω

2c2 |E ||H|cos(βiE ,H), (11)

where E and H are the complex electric field and magnetic field amplitudes, βiE ,H is the
angle between the product iE and the H field, and the overbar in χ̄ denotes the time average.
Tang and Cohen identified Equation (11) within the excitation rate equation for chiral molecules [54].
This finding revealed the possibility to increase chiral selectivity of molecular excitation by orders
of magnitude, when chiral molecules interact with electromagnetic fields of enhanced χ̄ [6].
Subsequently, the rapidly-developing research area of chiral nanophotonics, summarized in a series of
review articles [25,40–42], devoted itself to constructing solutions to Maxwell’s equations for which χ̄

exceeds its corresponding value for CPL, where χ̄/|χ̄CPL| was termed optical chirality enhancement by
Schäferling et al. [87].

A single electromagnetic plane wave reaches its maximum value of χ̄ at the circular polarization
state, resulting in |χ̄|/|χ̄CPL| = 1 [83]. However, the scale discrepancy between chiral molecules and
the wavelength of CPL results in inherently weak selectivity [54]. Optical chirality enhancement
beyond unity coincides with the concentration of electromagnetic energy (w = we + wm), as χ̄ is
bounded by c|χ̄|/(ωw) ≤ 1 for speed of light c and angular frequency ω [88,89].

In free space, theoretical studies have predicted |χ̄|/|χ̄CPL| > 1 for the diffraction-limited focusing
of a circularly polarized Gaussian beam or the appropriate superposition of two Gaussian beams
with radial and azimuthal polarization [90,91]. To better match molecular dimensions, evanescent
waves can achieve a theoretically-unlimited spatial concentration of electromagnetic fields at material
interfaces [92], enabling optical chirality enhancement beyond the diffraction limit [83]. In particular,
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artificial nanostructures, with dimensions comparable to the wavelength of light, show great promise
for the rational design of concentrated chiral electromagnetic fields.

We now provide a physical interpretation on how the optical chirality density χ and optical
chirality flux density F of electromagnetic fields (Table 1) can be enhanced upon interaction with
matter. A qualitative comparison can be made to vortex flow in fluid dynamics [61]. From Equation (1),
the helicity density of a fluid vortex is written as hfluid = v ·

(
∇× v

)
for fluid velocity v and vorticity

ω = ∇× v [47]. Further, the flux of the solenoidal vorticity ω is conserved, ∇ · ω = 0, indicating that
an equal number of vortices with clockwise or counterclockwise rotation crosses the boundary of a
closed system [47].

The formal analogy between the v field of hfluid and the electric and magnetic fields of χ allows
for the interpretation of χ as the wrapping density of electric and magnetic field lines around their
rotation axis [54]. With increasing wrapping density along this axis, χ will increase in value. Further,
while they differ in form, the vorticity flux ∇ · ω = 0 can support the interpretation of the optical
chirality flux ∇ ·F . In particular, ∇ ·F �= 0 when the boundary of a studied system is traversed by
an excess of one handedness of chiral electromagnetic field lines.

In contrast to fluidics, the interplay between electric and magnetic fields gives rise to additional
complexity in electromagnetic chirality. In particular, Maxwell’s equations dictate that a magnetic field
can be induced by the rotation of an electric field and vice versa [64]. Further, while solid interfaces
can act as sources of fluid vorticity, affecting fluid flow on boundary layers [93], the conservation law
of optical chirality (Equation (7)) elucidates how material charges and currents can act as sources or
sinks of chiral electromagnetic fields. In particular, both material loss and anisotropy (Equation (8))
can result in the dissipation and generation of electromagnetic chirality [54,66,67,70,83].

5. Chiral Light–Matter Interactions in Artificial Nanostructures

The effective design and optimization of artificial nanostructures with respect to their chiral
optical fields requires insight into the mechanism of their interaction with chiral light. This section
discusses the ability of metallic and dielectric nanostructures to generate chiral electromagnetic fields
and elucidates the physical mechanisms present in each case. Figure 3 shows numerical simulations
of the optical chirality flux generated by gold (part a) and silicon (part b) nanospheres of 75 nm
radius (COMSOL Multiphysics 5.3a, gold material functions from Johnson and Christy [94] and silicon
material functions from Aspnes and Studna [95]). In both systems, linearly polarized plane-wave
excitation (LP, black) does not generate an optical chirality flux. In contrast, excitation with left-
(LCP, red) and right-handed (RCP, blue) circularly polarized plane waves results in mirror-symmetric
optical chirality flux spectra. Thus, in an achiral system, such as the studied nanospheres, inversion
of the sign of the excitation light source inverts the sign of the optical chirality flux generated by
the nanostructure.

The conservation law of optical chirality (Equation (7)), which sets equal the physical mechanisms
of optical chirality dissipation and optical chirality flux can explain the generation of chiral optical
fields in Figure 3. In particular, a non-zero optical chirality dissipation arises from the interaction
between the achiral nanospheres and the chiral excitation source, leading to the generation of an optical
chirality flux. In contrast, prior work has shown that nanostructures with a chiral geometry interacting
with achiral, linearly polarized light have the ability to dissipate optical chirality, thus generating an
optical chirality flux [66,83,86,96]. Figure 3 also demonstrates that the silicon nanosphere generates an
optical chirality flux an order of magnitude larger than the gold nanosphere of the same size.

Beyond the simple case of spherical nanoparticles shown in Figure 3, we now discuss distinct
mechanisms which can contribute to enhancement of the optical chirality flux generated by metallic
and dielectric nanostructures. The delocalized surface-electron gas, oscillating on resonance in metallic
nanostructures [97], results in polarization and conduction currents which can interact in a sensitive
and selective manner with chiral electromagnetic fields [61]. Thus, metallic nanoparticles exhibiting a
left- or right-handed chiral geometry can effectively dissipate optical chirality and generate an optical
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chirality flux [66,83,86,96]. A myriad of research efforts have, therefore, realized metallic nanostructures
with complex chiral geometries, such as metallic helices, pyramids, dimers, and oligomers [10–28]
(see also review articles [25,39–41]).
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Figure 3. (a) Schematic illustration of a gold nanoparticle (spherical geometry, 75 nm radius) interacting
with a circularly polarized plane wave. Numerical simulations of the total, volume-integrated optical
chirality flux F̄ =

∫
V ∇ · Fd3x of the gold nanosphere upon excitation with linearly polarized

(LP, black), left-handed circularly polarized light (CPL) (LCP, red), and right-handed CPL (RCP, blue).
(b) Schematic illustration of a silicon nanoparticle (spherical geometry, 75 nm radius) interacting with a
circularly polarized plane wave. Numerical simulations of the total, volume-integrated optical chirality
flux F̄ of the silicon nanosphere upon excitation with linearly polarized (LP, black), left-handed CPL
(LCP, red), and right-handed CPL (RCP, blue).

In dielectric nanostructures, the conduction and polarization currents are considerably smaller
than in metals [98]. Further, in the absence of primary sources, an intrinsic magnetic dipole moment
arises from the magnetization current. Thus, tailoring the magnitude and phase shift of the intrinsic
electric and magnetic dipole moments can enhance the chiral electromagnetic fields generated by
dielectric nanostructures. This can be controlled by phase-shifted electric and magnetic fields in the
excitation source, as is the case for CPL (Figure 3b), or further geometric tuning, as was demonstrated
in recent research for achiral silicon nanospheres [29,30], silicon disk and sphere metasurfaces [32,33,
35,36], or dielectric dimer structures [31,34,37,38]. These additional degrees of freedom inherent to
the mechanism of chiral light–matter interactions in dielectric nanostructures enable the generation
of highly enhanced chiral electromagnetic fields in simplified geometric configurations, suitable for
high-throughput applications where strong optical chirality enhancement can be rationally designed
in the nanostructure near field.

6. Conclusions

In conclusion, this perspective provides insight on the physical applicability of the optical helicity
and the optical chirality in free space and in the presence of matter. In free space, a qualitative parallel
between momentum in classical mechanics and optical helicity in classical electrodynamics can be
made; likewise, a parallel between force and optical chirality also exists. We applied time and parity
symmetry relations to demonstrate how the optical chirality density and flux quantify the handedness
of an electromagnetic field. When chiral light interacts with macroscopic matter, we then identified
how the optical helicity provides useful physical information for the case of lossless, dual-symmetric
media, while the optical chirality provides physically observable information in the case of lossy,
dispersive media. Here, a comparison to energy and momentum conservation for the lossless, elastic
collision and the lossy, inelastic collision of two moving objects provides insight on the applicability
of optical helicity and optical chirality conservation in the presence of matter. Finally, we applied
the conservation law of optical chirality to numerically simulate the optical chirality flux generated
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by a gold and silicon nanosphere of 75 nm radius. While no optical chirality flux was generated
upon linearly polarized excitation, left- and right-handed CPL resulted in mirror-symmetric optical
chirality flux spectra in both cases. This effect can be further enhanced by tuning the geometry of
the nanostructure; while metallic nanostructures with a chiral shape direct the currents arising from
the surface-electron gas, the interplay between electric and magnetic dipole moments in dielectric
nanostructures affects the generation of chiral light. This information provides a platform from which
researchers can improve the rational design of nanophotonic structures for the optimized enhancement
of chiral light–matter interactions.
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